
ptg11539634

ptg11539634

“This is great stuff! Your descriptions are so vibrant and vivid that I'm rediscovering the truth
buried in OO principles that are otherwise so internalized that I forget to explore them. Your
thoughts on design and knowing the future are especially eloquent.”

—Ian McFarland, President, New Context, Inc.

“As a self-taught programmer, this was an extremely helpful dive into some OOP concepts that I
could definitely stand to become better acquainted with! And, I’m not alone: there’s a sign posted
at work that reads, “WWSMD?—What Would Sandi Metz Do”?

—Jonathan Mukai, Pivotal in NYC

“Meticulously pragmatic and exquisitely articulate, Practical Object Oriented Design in Ruby
makes otherwise elusive knowledge available to an audience which desperately needs it. The pre-
scriptions are appropriate both as rules for novices and as guidelines for experienced professionals.”

—Katrina Owen, developer, Bengler

“I do believe this will be the most important Ruby book of 2012. Not only is the book 100%
on-point, Sandi has an easy writing style with lots of great analogies that drive every point home.”

—Avdi Grimm, Author of Exceptional Ruby and Objects on Rails

“While Ruby is an object-oriented language, little time is spent in the documentation on what
OO truly means or how it should direct the way we build programs. Here Metz brings it to the
fore, covering most of the key principles of OO development and design in an engaging, easy-to-
understand manner. This is a must for any respectable Ruby bookshelf.”

—Peter Cooper, editor, Ruby Weekly

“So good, I couldn’t put it down! This is a must-read for anyone wanting to do object-oriented pro-
gramming in any language, not to mention it has completely changed the way I approach testing.”

—Charles Max Wood, video and audio show host, TeachMeToCode.com

“Distilling scary OO design practices with clear-cut examples and explanations makes this a book
for novices and experts alike. It is well worth the study by anyone interested in OO design being
done right and ‘light.’ I thoroughly enjoyed this book.”

—Manuel Pais, editor, InfoQ.com

“If you call yourself a Ruby programmer, you should read this book. It’s jam-packed with great nuggets
of practical advice and coding techniques that you can start applying immediately in your projects.”

—Ylan Segal, San Diego Ruby User Group

“This is the best OO book I’ve ever read. It’s short, sweet, but potent. It slowly moves from simple
techniques to more advanced, each example improving on the last. The ideas it presents are useful
not just in Ruby but in static languages like C# too. Highly recommended!”

—Kevin Berridge, software engineering manager, Pointe Blank

Solutions, and organizer, Burning River Developers Meetup

Praise for Practical Object-Oriented Design in Ruby

ptg11539634

“The book is just perfect! The elegance of Ruby shines but it also works as an A to Z of object-
oriented programming in general.”

—Emil Rondahl, C# & .NET consultant

“This is an exceptional Ruby book, in which Metz offers a practical look at writing maintainable,
clean, idiomatic code in Ruby. Absolutely fantastic, recommended for my Ruby hacker friends.”

—Zachary “Zee” Spencer, freelancer & coach

“This is the best programming book I’ve read in ages. Sandi talks about basic principles, but these
are things we’re probably still doing wrong and she shows us why and how. The book has the per-
fect mix of code, diagrams, and words. I can’t recommend it enough and if you’re serious about
being a better programmer, you’ll read it and agree.

—Derick Hitchcock, senior developer, SciMed Solutions

“I predict this will become a classic. I have an uncomfortable familiarity with programming liter-
ature, and this book is on a completely different level. I am astonished when I find a book that
offers new insights and ideas, and even more surprised when it can do so, not just once, but
throughout the pages. This book is excellently written, well-organized, with lucid explanations of
technical programming concepts.”

—Han S. Kang, software engineer and member of the LA Rubyists

“You should read this book if you write software for a living. The future developers who inherit
your code will thank you.”

—Jose Fernandez, senior software engineer at New Relic

“Metz’s take on the subject is rooted strongly in theory, but the explanation always stays grounded
in real world concerns, which helped me to internalize it. The book is clear and concise, yet
achieves a tone that is more friendly than terse.”

—Alex Strasheim, network administrator, Ensemble Travel Group

“This is an amazing book about just how to do object-oriented thinking when you’re program-
ming in Ruby. Although there are some chapters that are more Ruby-specific, this book could be a
great resource for developers in any language. All in all, I can’t recommend this book enough.”

—James Hwang, thriceprime.com

“Whether you’re just getting started in your software development career, or you’ve been coding for
years (like I have), it’s likely that you’ll learn a lot from Ms. Metz’s book. She does a fantastic job
of explaining the whys of well-designed software along with the hows.”

—Gabe Hollombe, software craftsman, avantbard.com

“In short, this is in my top five programming books I’ve ever read. I believe that in twenty years this
will be considered one of the definitive works on object-oriented programming. I plan to re-read it at
least once a year to keep my skills from falling into atrophy. If you’re a relatively new, intermediate,
or even somewhat advanced OO developer in any language, purchasing this book is the best way
I know to level up your OO design skills.”

—Brandon Hays, freelance software developer

ptg11539634

PRACTICAL OBJECT-ORIENTED
DESIGN IN RUBY

ptg11539634

T
he Addison-Wesley Professional Ruby Series provides readers

with practical, people-oriented, and in-depth information about

applying the Ruby platform to create dynamic technology solutions.

The series is based on the premise that the need for expert reference

books, written by experienced practitioners, will never be satisfied solely

by blogs and the Internet.

Visit informit.com/ruby for a complete list of available products.

Addison-Wesley

Professional Ruby Series
Obie Fernandez, Series Editor

ptg11539634

PRACTICAL OBJECT-ORIENTED
DESIGN IN RUBY
An Agile Primer

Sandi Metz

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg11539634

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Metz, Sandi.
Practical object-oriented design in Ruby : an agile primer / Sandi Metz.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-72133-0 (alk. paper)

1. Object-oriented programming (Computer science) 2. Ruby (Computer
program language) I. Title.
QA76.64.M485 2013
005.1'17—dc23 2012026008

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-321-72133-4
ISBN-10: 0-321-72133-0
Text printed in the United States at RR Donnelley in Crawfordsville, Indiana.
Second printing, April 2013

Editor-in-Chief
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Packager
Laserwords

Copy Editor
Phyllis Crittenden

Indexer
Constance A. Angelo

Proofreader
Gina Delaney

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
Laserwords

ptg11539634

For Amy, who read everything first

ptg11539634

This page intentionally left blank

ptg11539634

Contents

Foreword xv

Introduction xvii

Acknowledgments xxi

About the Author xxiii

1 Object-Oriented Design 1
In Praise of Design 2

The Problem Design Solves 2
Why Change Is Hard 3
A Practical Definition of Design 4

The Tools of Design 4
Design Principles 5
Design Patterns 6

The Act of Design 7
How Design Fails 7
When to Design 8
Judging Design 10

A Brief Introduction to Object-Oriented Programming 11
Procedural Languages 12
Object-Oriented Languages 12

Summary 14

2 Designing Classes with a Single Responsibility 15
Deciding What Belongs in a Class 16

Grouping Methods into Classes 16
Organizing Code to Allow for Easy Changes 16

ix

ptg11539634

Creating Classes That Have a Single Responsibility 17
An Example Application: Bicycles and Gears 17
Why Single Responsibility Matters 21
Determining If a Class Has a Single Responsibility 22
Determining When to Make Design Decisions 22

Writing Code That Embraces Change 24
Depend on Behavior, Not Data 24
Enforce Single Responsibility Everywhere 29

Finally, the Real Wheel 33
Summary 34

3 Managing Dependencies 35
Understanding Dependencies 36

Recognizing Dependencies 37
Coupling Between Objects (CBO) 37
Other Dependencies 38

Writing Loosely Coupled Code 39
Inject Dependencies 39
Isolate Dependencies 42
Remove Argument-Order Dependencies 46

Managing Dependency Direction 51
Reversing Dependencies 51
Choosing Dependency Direction 53

Summary 57

4 Creating Flexible Interfaces 59
Understanding Interfaces 59
Defining Interfaces 61

Public Interfaces 62
Private Interfaces 62
Responsibilities, Dependencies, and Interfaces 62

Finding the Public Interface 63
An Example Application: Bicycle Touring Company 63
Constructing an Intention 64
Using Sequence Diagrams 65

x Contents

ptg11539634

Asking for “What” Instead of Telling “How” 69
Seeking Context Independence 71
Trusting Other Objects 73
Using Messages to Discover Objects 74
Creating a Message-Based Application 76

Writing Code That Puts Its Best (Inter)Face Forward 76
Create Explicit Interfaces 76
Honor the Public Interfaces of Others 78
Exercise Caution When Depending on Private Interfaces 79
Minimize Context 79

The Law of Demeter 80
Defining Demeter 80
Consequences of Violations 80
Avoiding Violations 82
Listening to Demeter 82

Summary 83

5 Reducing Costs with Duck Typing 85
Understanding Duck Typing 85

Overlooking the Duck 87
Compounding the Problem 87
Finding the Duck 90
Consequences of Duck Typing 94

Writing Code That Relies on Ducks 95
Recognizing Hidden Ducks 96
Placing Trust in Your Ducks 98
Documenting Duck Types 98
Sharing Code Between Ducks 99
Choosing Your Ducks Wisely 99

Conquering a Fear of Duck Typing 100
Subverting Duck Types with Static Typing 100
Static versus Dynamic Typing 101
Embracing Dynamic Typing 102

Summary 104

xiContents

ptg11539634

6 Acquiring Behavior Through Inheritance 105
Understanding Classical Inheritance 105
Recognizing Where to Use Inheritance 106

Starting with a Concrete Class 106
Embedding Multiple Types 109
Finding the Embedded Types 111
Choosing Inheritance 112
Drawing Inheritance Relationships 114

Misapplying Inheritance 114
Finding the Abstraction 116

Creating an Abstract Superclass 117
Promoting Abstract Behavior 120
Separating Abstract from Concrete 123
Using the Template Method Pattern 125
Implementing Every Template Method 127

Managing Coupling Between Superclasses and Subclasses 129
Understanding Coupling 129
Decoupling Subclasses Using Hook Messages 134

Summary 139

7 Sharing Role Behavior with Modules 141
Understanding Roles 142

Finding Roles 142
Organizing Responsibilities 143
Removing Unnecessary Dependencies 145
Writing the Concrete Code 147
Extracting the Abstraction 150
Looking Up Methods 154
Inheriting Role Behavior 158

Writing Inheritable Code 158
Recognize the Antipatterns 158
Insist on the Abstraction 159
Honor the Contract 159

xii Contents

ptg11539634

Use the Template Method Pattern 160
Preemptively Decouple Classes 161
Create Shallow Hierarchies 161

Summary 162

8 Combining Objects with Composition 163
Composing a Bicycle of Parts 164

Updating the Bicycle Class 164
Creating a Parts Hierarchy 165

Composing the Parts Object 168
Creating a Part 169
Making the Parts Object More Like an Array 172

Manufacturing Parts 176
Creating the PartsFactory 177
Leveraging the PartsFactory 178

The Composed Bicycle 180
Deciding Between Inheritance and Composition 184

Accepting the Consequences of Inheritance 184
Accepting the Consequences of Composition 187
Choosing Relationships 188

Summary 190

9 Designing Cost-Effective Tests 191
Intentional Testing 192

Knowing Your Intentions 193
Knowing What to Test 194
Knowing When to Test 197
Knowing How to Test 198

Testing Incoming Messages 200
Deleting Unused Interfaces 202
Proving the Public Interface 203
Isolating the Object Under Test 205
Injecting Dependencies Using Classes 207
Injecting Dependencies as Roles 208

xiiiContents

ptg11539634

Testing Private Methods 213
Ignoring Private Methods During Tests 213
Removing Private Methods from the Class Under Test 214
Choosing to Test a Private Method 214

Testing Outgoing Messages 215
Ignoring Query Messages 215
Proving Command Messages 216

Testing Duck Types 219
Testing Roles 219
Using Role Tests to Validate Doubles 224

Testing Inherited Code 229
Specifying the Inherited Interface 229
Specifying Subclass Responsibilities 233
Testing Unique Behavior 236

Summary 240

Afterword 241

Index 243

xiv Contents

ptg11539634

Foreword

One of the core truisms of software development is that as your code grows and
requirements for the system that you are building change, additional logic will be
added that is not yet present in the current system. In almost all cases, maintainability
over the life of the code is more important than optimizing its present state.

The promise of using object-oriented (OO) design is that your code will be easier
to maintain and evolve than otherwise. If you are new to programming, how do you
unlock these secrets to maintainability using OO? The fact is that many of us have
never had holistic training in writing clean object-oriented code, instead picking up
our techniques through osmosis from colleagues and a myriad of older books and
online sources. Or if we were given a primer in OO during school, it was done in lan-
guages such as Java or C++. (The lucky ones were taught using Smalltalk!)

Sandi Metz’s Practical Object-Oriented Design in Ruby covers all of the basics of
OO using the Ruby language, meaning that it’s ready to usher countless Ruby and
Rails newcomers to the next steps in their professional development as mature pro-
grammers.

Ruby itself, like Smalltalk, is a completely object-oriented (OO) language.
Everything in it, even primitive data constructs such as strings and numbers, is repre-
sented by objects with behavior. When you write your own applications in Ruby, you
do so by coding your own objects, each encapsulating some state and defining its own
behavior. If you don’t already have OO experience, it can feel daunting to know how
to start the process. This book guides you every step of the way, from the most basic
questions of what to put in a class, through basic concepts such as the Single
Responsibility Principle, all the way through to making tradeoffs between inheritance
and composition, and figuring out how to test objects in isolation.

The best part, though, is Sandi’s voice. She’s got a ton of experience and is one of
the nicest members of the community you’ll ever meet, and I think she did a great job

xv

ptg11539634

getting that feeling across in her writing. I’ve known Sandi for several years now, and I
wondered if her manuscript would live up to the pleasure of actually getting to know
Sandi in real life. I’m glad to say that it does, in spades, which is why I’m glad to wel-
come her as our newest author to the Professional Ruby Series.

—Obie Fernandez, Series Editor
Addison Wesley Professional Ruby Series

xvi Foreword

ptg11539634

Introduction

We want to do our best work, and we want the work we do to have meaning. And, all
else being equal, we prefer to enjoy ourselves along the way.

Those of us whose work is to write software are incredibly lucky. Building soft-
ware is a guiltless pleasure because we get to use our creative energy to get things
done. We have arranged our lives to have it both ways; we can enjoy the pure act of
writing code in sure knowledge that the code we write has use. We produce things
that matter. We are modern craftspeople, building structures that make up present-
day reality, and no less than bricklayers or bridge builders, we take justifiable pride in
our accomplishments.

This all programmers share, from the most enthusiastic newbie to the apparently
jaded elder, whether working at the lightest weight Internet startup or the most staid,
long-entrenched enterprise. We want to do our best work. We want our work to have
meaning. We want to have fun along the way.

And so it’s especially troubling when software goes awry. Bad software impedes
our purpose and interferes with our happiness. Where once we felt productive, now
we feel thwarted. Where once fast, now slow. Where once peaceful, now frustrated.

This frustration occurs when it costs too much to get things done. Our internal
calculators are always running, comparing total amount accomplished to overall effort
expended. When the cost of doing work exceeds its value, our efforts feel wasted. If
programming gives joy it is because it allows us to be useful; when it becomes painful
it is a sign that we believe we could, and should, be doing more. Our pleasure follows
in the footsteps of work.

This book is about designing object-oriented software. It is not an academic
tome, it is a programmer’s story about how to write code. It teaches how to arrange
software so as to be productive today and to remain so next month and next year. It
shows how to write applications that can succeed in the present and still adapt to the

xvii

ptg11539634

future. It allows you to raise your productivity and reduce your costs for the entire
lifetime of your applications.

This book believes in your desire to do good work and gives you the tools you
need to best be of use. It is completely practical and as such is, at its core, a book about
how to write code that brings you joy.

Who Might Find This Book Useful?
This book assumes that you have at least tried to write object-oriented software. It is
not necessary that you feel you succeeded, just that you made the attempt in any object-
oriented (OO) language. Chapter 1 contains a brief overview of object-oriented
programming (OOP) but its goal is to define common terms, not to teach programming.

If you want to learn OO design (OOD) but have not yet done any object-oriented
programming, at least take a tutorial before reading this book. OO design solves prob-
lems; suffering from those problems is very nearly a prerequisite for comprehending
these solutions. Experienced programmers may be able to skip this step but most readers
will be happier if they write some OO code before starting this book.

This book uses Ruby to teach OOD but you do not need to know Ruby to
understand the concepts herein. There are many code examples but all are quite
straightforward. If you have programmed in any OO language you will find Ruby easy
to understand.

If you come from a statically typed OO language like Java or C++ you have the
background necessary to benefit from reading this book. The fact that Ruby is
dynamically typed simplifies the syntax of the examples and distills the design ideas to
their essence, but every concept in this book can be directly translated to a statically
typed OO language.

How to Read This Book
Chapter 1, Object-Oriented Design, contains a general overview of the whys, whens
and wherefores of OO design, followed by a brief overview of object-oriented
programming. This chapter stands alone. You can read it first, last, or, frankly, skip it
entirely, although if you are currently stuck with an application that suffers from lack
of design you may find it a comforting tale.

If you have experience writing object-oriented applications and want to jump
right in, you can safely start with Chapter 2. If you do so and then stumble upon an

xviii Introduction

ptg11539634

unfamiliar term, come back and browse the Introduction to Object-Oriented
Programming section of Chapter 1, which introduces and defines common OO terms
used throughout the book.

Chapters 2 through 9 progressively explain object-oriented design. Chapter 2,
Designing Classes with a Single Responsibility, covers how to decide what belongs in a
single class. Chapter 3, Managing Dependencies, illustrates how objects get entangled
with one another and shows how to keep them apart. These two chapters are focused
on objects rather than messages.

In Chapter 4, Creating Flexible Interfaces, the emphasis begins to shift away from
object-centric towards message-centric design. Chapter 4 is about defining interfaces
and is concerned with how objects talk to one another. Chapter 5, Reducing Costs with
Duck Typing, is about duck typing and introduces the idea that objects of different
classes may play common roles. Chapter 6, Acquiring Behavior Through Inheritance,
teaches the techniques of classical inheritance, which are then used in Chapter 7,
Sharing Role Behavior with Modules, to create duck typed roles. Chapter 8,
Combining Objects with Composition, explains the technique of building objects via
composition and provides guidelines for choosing among composition, inheritance,
and duck-typed role sharing. Chapter 9, Designing Cost-Effective Tests, concentrates
on the design of tests, which it illustrates using code from earlier chapters of the book.

Each of these chapters builds on the concepts of the last. They are full of code and
best read in order.

How to Use This Book
This book will mean different things to readers of different backgrounds. Those
already familiar with OOD will find things to think about, possibly encounter some
new points of view, and probably disagree with a few of the suggestions. Because there
is no final authority on OOD, challenges to the principles (and to this author) will
improve the understanding of all. In the end you must be the arbiter of your own
designs; it is up to you to question, to experiment, and to choose.

While this book should be of interest to many levels of reader, it is written with
the particular goal of being accessible to novices. If you are one of those novices, this
part of the introduction is especially for you. Know this: object-oriented design is not
black magic. It is simply things you don’t yet know. The fact that you’ve read this far
indicates you care about design; this desire to learn is the only prerequisite for benefiting
from this book.

xixIntroduction

ptg11539634

Chapters 2 through 9 explain OOD principles and provide very explicit program-
ming rules; these rules will mean different things to novices than they mean to experts.
If you are a novice, start out by following these rules in blind faith if necessary. This
early obedience will stave off disaster until you can gain enough experience to make
your own decisions. By the time the rules start to chafe, you’ll have enough experience
to make up rules of your own and your career as a designer will have begun.

xx Introduction

ptg11539634

Acknowledgments

It is a wonder this book exists; the fact that it does is due to the efforts and encourage-
ment of many people.

Throughout the long process of writing, Lori Evans and TJ Stankus provided
early feedback on every chapter. They live in Durham, NC, and thus could not escape
me, but this fact does nothing to lessen my appreciation for their help.

Midway through the book, after it became impossible to deny that its writing
would take approximately twice as long as originally estimated, Mike Dalessio and
Gregory Brown read drafts and gave invaluable feedback and support. Their encour-
agement and enthusiasm kept the project alive during dark days.

As it neared completion, Steve Klabnik, Desi McAdam, and Seth Wax reviewed
the book and thus acted as gracious stand-ins for you, the gentle reader. Their impres-
sions and suggestions caused changes that will benefit all who follow.

Late drafts were given careful, thorough readings by Katrina Owen, Avdi Grimm,
and Rebecca Wirfs-Brock, and the book is much improved by their kind and thought-
ful feedback. Before they pitched in, Katrina, Avdi, and Rebecca were strangers to me;
I am grateful for their involvement and humbled by their generosity. If you find this
book useful, thank them when you next see them.

I am also grateful for the Gotham Ruby Group and for everyone who expressed
their appreciation for the design talks I gave at GoRuCo 2009 and 2011. The folks at
GoRuCo took a chance on an unknown and gave me a forum in which to express
these ideas; this book started there. Ian McFarland and Brian Ford watched those talks
and their immediate and ongoing enthusiasm for this project was both infectious and
convincing.

xxi

ptg11539634

The process of writing was greatly aided by Michael Thurston of Pearson Education,
who was like an ocean liner of calmness and organization chugging through the chaotic
sea of my opposing rogue writing waves. You can, I expect, see the problem he faced. He
insisted, with endless patience and grace, that the writing be arranged in a readable
structure. I believe his efforts have paid off and hope you will agree.

My thanks also to Debra Williams Cauley, my editor at Addison-Wesley, who
overheard an ill-timed hallway rant in 2006 at the first Ruby on Rails conference in
Chicago and launched the campaign that eventually resulted in this book. Despite
my best efforts, she would not take no for an answer. She cleverly moved from one
argument to the next until she finally found the one that convinced; this accurately
reflects her persistence and dedication.

I owe a debt to the entire object-oriented design community. I did not make up
the ideas in this book, I am merely a translator, and I stand on the shoulders of
giants. It goes without saying that while all credit for these ideas belongs to others—
failures of translation are mine alone.

And finally, this book owes its existence to my partner Amy Germuth. Before
this project started I could not imagine writing a book; her view of the world as a
place where people did such things made doing so seem possible. The book in your
hands is a tribute to her boundless patience and endless support.

Thank you, each and every one.

xxii Acknowledgments

ptg11539634

About the Author

Sandi Metz has 30 years of experience working on projects that survived to grow and
change. She writes code every day as a software architect at Duke University, where her
team solves real problems for customers who have large object-oriented applications
that have been evolving for 15 or more years. She’s committed to getting useful software
out the door in extremely practical ways. Practical Object-Oriented Design in Ruby is
the distillation of many years of whiteboard drawings and the logical culmination of a
lifetime of conversations about OO design. Sandi has spoken at Ruby Nation and several
times at Gotham Ruby User’s Conference and lives in Durham, NC.

xxiii

ptg11539634

This page intentionally left blank

ptg11539634

CHAPTER 1
Object-Oriented Design

The world is procedural. Time flows forward and events, one by one, pass by. Your
morning procedure may be to get up, brush your teeth, make coffee, dress, and then
get to work. These activities can be modeled using procedural software; because you
know the order of events you can write code to do each thing and then quite deliberately
string the things together, one after another.

The world is also object-oriented. The objects with which you interact might
include a spouse and a cat, or an old car and a pile of bike parts in the garage, or your
ticking heart and the exercise plan you use to keep it healthy. Each of these objects
comes equipped with its own behavior and, while some of the interactions between
them might be predictable, it is entirely possible for your spouse to unexpectedly step
on the cat, causing a reaction that rapidly raises everyone’s heart rate and gives you
new appreciation for your exercise regimen.

In a world of objects, new arrangements of behavior emerge naturally. You don’t
have to explicitly write code for the spouse_steps_on_cat procedure, all you need
is a spouse object that takes steps and a cat object that does not like being stepped on.
Put these two objects into a room together and unanticipated combinations of behavior
will appear.

This book is about designing object-oriented software, and it views the world as a
series of spontaneous interactions between objects. Object-oriented design (OOD)
requires that you shift from thinking of the world as a collection of predefined proce-
dures to modeling the world as a series of messages that pass between objects. Failures
of OOD might look like failures of coding technique but they are actually failures of

1

ptg11539634

perspective. The first requirement for learning how to do object-oriented design is to
immerse yourself in objects; once you acquire an object-oriented perspective the rest
follows naturally.

This book guides you through the immersion process. This chapter starts with a
general discussion of OOD. It argues the case for design and then proceeds to describe
when to do it and how to judge it. The chapter ends with a brief overview of object-
oriented programming that defines the terms used throughout the book.

In Praise of Design
Software gets built for a reason. The target application—whether a trivial game or a
program to guide radiation therapy—is the entire point. If painful programming were
the most cost-effective way to produce working software, programmers would be
morally obligated to suffer stoically or to find other jobs.

Fortunately, you do not have to choose between pleasure and productivity. The
programming techniques that make code a joy to write overlap with those that most
efficiently produce software. The techniques of object-oriented design solve both the
moral and the technical dilemmas of programming; following them produces cost-
effective software using code that is also a pleasure to work on.

The Problem Design Solves
Imagine writing a new application. Imagine that this application comes equipped
with a complete and correct set of requirements. And if you will, imagine one more
thing: once written, this application need never change.

For this case, design does not matter. Like a circus performer spinning plates
in a world without friction or gravity, you could program the application into motion
and then stand back proudly and watch it run forever. No matter how wobbly, the
plates of code would rotate on and on, teetering round and round but never quite
falling.

As long as nothing changed.
Unfortunately, something will change. It always does. The customers didn’t

know what they wanted, they didn’t say what they meant. You didn’t understand
their needs, you’ve learned how to do something better. Even applications that
are perfect in every way are not stable. The application was a huge success, now
everyone wants more. Change is unavoidable. It is ubiquitous, omnipresent, and
inevitable.

2 Chapter 1. Object-Oriented Design

ptg11539634

Changing requirements are the programming equivalent of friction and gravity.
They introduce forces that apply sudden and unexpected pressures that work against
the best-laid plans. It is the need for change that makes design matter.

Applications that are easy to change are a pleasure to write and a joy to extend.
They’re flexible and adaptable. Applications that resist change are just the opposite;
every change is expensive and each makes the next cost more. Few difficult-to-change
applications are pleasant to work on. The worst of them gradually become personal
horror films where you star as a hapless programmer, running madly from one spin-
ning plate to the next, trying to stave off the sound of crashing crockery.

Why Change Is Hard
Object-oriented applications are made up of parts that interact to produce the
behavior of the whole. The parts are objects; interactions are embodied in the mes-
sages that pass between them. Getting the right message to the correct target object
requires that the sender of the message know things about the receiver. This knowl-
edge creates dependencies between the two and these dependencies stand in the way
of change.

Object-oriented design is about managing dependencies. It is a set of coding tech-
niques that arrange dependencies such that objects can tolerate change. In the absence
of design, unmanaged dependencies wreak havoc because objects know too much
about one another. Changing one object forces change upon its collaborators, which
in turn, forces change upon its collaborators, ad infinitum. A seemingly insignificant
enhancement can cause damage that radiates outward in overlapping concentric circles,
ultimately leaving no code untouched.

When objects know too much they have many expectations about the world in
which they reside. They’re picky, they need things to be “just so.” These expectations
constrain them. The objects resist being reused in different contexts; they are painful
to test and susceptible to being duplicated.

In a small application, poor design is survivable. Even if everything is connected
to everything else, if you can hold it all in your head at once you can still improve the
application. The problem with poorly designed small applications is that if they are
successful they grow up to be poorly designed big applications. They gradually
become tar pits in which you fear to tread lest you sink without a trace. Changes that
should be simple may cascade around the application, breaking code everywhere and
requiring extensive rewriting. Tests are caught in the crossfire and begin to feel like a
hindrance rather than a help.

3In Praise of Design

ptg11539634

A Practical Definition of Design
Every application is a collection of code; the code’s arrangement is the design. Two iso-
lated programmers, even when they share common ideas about design, can be relied
upon to solve the same problem by arranging code in different ways. Design is not an
assembly line where similarly trained workers construct identical widgets; it’s a studio
where like-minded artists sculpt custom applications. Design is thus an art, the art of
arranging code.

Part of the difficulty of design is that every problem has two components. You
must not only write code for the feature you plan to deliver today, you must also cre-
ate code that is amenable to being changed later. For any period of time that extends
past initial delivery of the beta, the cost of change will eventually eclipse the original
cost of the application. Because design principles overlap and every problem involves
a shifting timeframe, design challenges can have a bewildering number of possible
solutions. Your job is one of synthesis; you must combine an overall understanding of
your application’s requirements with knowledge of the costs and benefits of design
alternatives and then devise an arrangement of code that is cost effective in the present
and will continue to be so in the future.

Taking the future into consideration might seem to introduce a need for psychic
abilities normally considered outside the realm of programming. Not so. The future
that design considers is not one in which you anticipate unknown requirements and
preemptively choose one from among them to implement in the present. Programmers
are not psychics. Designs that anticipate specific future requirements almost always end
badly. Practical design does not anticipate what will happen to your application, it
merely accepts that something will and that, in the present, you cannot know what.
It doesn’t guess the future; it preserves your options for accommodating the future. It
doesn’t choose; it leaves you room to move.

The purpose of design is to allow you to do design later and its primary goal is to
reduce the cost of change.

The Tools of Design
Design is not the act of following a fixed set of rules, it’s a journey along a branching
path wherein earlier choices close off some options and open access to others. During
design you wander through a maze of requirements where every juncture represents a
decision point that has consequences for the future.

Just as a sculptor has chisels and files, an object-oriented designer has tools—
principles and patterns.

4 Chapter 1. Object-Oriented Design

ptg11539634

Design Principles
The SOLID acronym, coined by Michael Feathers and popularized by Robert
Martin, represents five of the most well known principles of object-oriented design:
Single Responsibility, Open-Closed, Liskov Substitution, Interface Segregation, and
Dependency Inversion. Other principles include Andy Hunt and Dave Thomas’s
DRY (Don’t Repeat Yourself) and the Law of Demeter (LoD) from the Demeter
project at Northeastern University.

The principles themselves will be dealt with throughout this book; the question
for now is “Where on earth did they come from?” Is there empirical proof that
these principles have value or are they merely someone’s opinion that you may
freely discount? In essence, who says?

All of these principles got their start as choices someone made while writing code.
Early OO programmers noticed that some code arrangements made their lives easier
while others made them harder. These experiences led them to develop opinions
about how to write good code.

Academics eventually got involved and, needing to write dissertations, decided
to quantify “goodness.” This desire is laudable. If we could count things, that is,
compute metrics about our code and correlate these metrics to high- or low-quality
applications (for which we also need an objective measure), we could do more of
the things that lower costs and fewer of things that raise them. Being able to meas-
ure quality would change OO design from infinitely disputed opinion into measur-
able science.

In the 1990s Chidamber and Kemerer1 and Basili2 did exactly this. They took
object-oriented applications and tried to quantify the code. They named and measured
things like the overall size of classes, the entanglements that classes have with one
another, the depth and breadth of inheritance hierarchies, and the number of methods
that get invoked as a result of any message sent. They picked code arrangements they
thought might matter, devised formulas to count them, and then correlated the resulting
metrics to the quality of the enclosing applications. Their research shows a definite
correlation between use of these techniques and high-quality code.

5The Tools of Design

1. Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object-oriented design. IEEE Trans.
Softw. Eng. 20(6): 476–493.

2. Basili Technical Report (1995). Univ. of Maryland, Dep. of Computer Science, College Park, MD,
20742 USA. April 1995. A Validation of Object-Oriented Design Metrics as Quality Indicators.

ptg11539634

While these studies seem to prove the validity of the design principles, they come,
for any seasoned programmer, with a caveat. These early studies examined very small
applications written by graduate students; this alone is enough to justify viewing the
conclusions with caution. The code in these applications may not be representative of
real-world OO applications.

However, it turns out caution is unnecessary. In 2001, Laing and Coleman exam-
ined several NASA Goddard Space Flight Center applications (rocket science) with the
express intention of finding “a way to produce cheaper and higher quality software.”3

They examined three applications of varying quality, one of which had 1,617 classes
and more than 500,000 lines of code. Their research supports the earlier studies and
further confirms that design principles matter.

Even if you never read these studies you can be assured of their conclusions. The
principles of good design represent measurable truths and following them will im-
prove your code.

Design Patterns
In addition to principles, object-oriented design involves patterns. The so-called Gang
of Four (Gof), Erich Gamma, Richard Helm, Ralph Johnson, and Jon Vlissides,
wrote the seminal work on patterns in 1995. Their Design Patterns book describes pat-
terns as “simple and elegant solutions to specific problems in object-oriented software
design” that you can use to “make your own designs more flexible, modular, reusable
and understandable.”4

The notion of design patterns is incredibly powerful. To name common problems
and to solve the problems in common ways brings the fuzzy into focus. Design
Patterns gave an entire generation of programmers the means to communicate and
collaborate.

Patterns have a place in every designer’s toolbox. Each well-known pattern is a
near perfect open-source solution for the problem it solves. However, the popularity
of patterns led to a kind of pattern abuse by novice programmers, who, in an excess
of well-meaning zeal, applied perfectly good patterns to the wrong problems. Pattern
misapplication results in complicated and confusing code but this result is not the

6 Chapter 1. Object-Oriented Design

3. Laing, Victor & Coleman, Charles. (2001). Principal Components of Orthogonal Object-
Oriented Metrics (323-08-14).

4. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns, Elements of Reusable
Object-Oriented Software. New York, NY: Addison-Wesley Publishing Company, Inc.

ptg11539634

fault of the pattern itself. A tool cannot be faulted for its use, the user must master
the tool.

This book is not about patterns; however, it will prepare you to understand them
and give you the knowledge to choose and use them appropriately.

The Act of Design
With the discovery and propagation of common design principles and patterns, all
OOD problems would appear to have been solved. Now that the underlying rules are
known, how hard can designing object-oriented software be?

Pretty hard, it turns out. If you think of software as custom furniture, then prin-
ciples and patterns are like woodworking tools. Knowing how software should look
when it’s done does not cause it to build itself; applications come into existence
because some programmer applied the tools. The end result, be it a beautiful cabinet
or a rickety chair, reflects its programmer’s experience with the tools of design.

How Design Fails
The first way design fails is due to lack of it. Programmers initially know little about
design. This is not a deterrent, however, as it is possible to produce working applica-
tions without knowing the first thing about design.

This is true of any OO language but some languages are more susceptible than
others and an approachable language like Ruby is especially vulnerable. Ruby is very
friendly; the language permits nearly anyone to create scripts to automate repetitive
tasks, and an opinionated framework like Ruby on Rails puts web applications within
every programmer’s reach. The syntax of the Ruby language is so gentle that anyone
blessed with the ability to string thoughts into logical order can produce working
applications. Programmers who know nothing about object-oriented design can be
very successful in Ruby.

However, successful but undesigned applications carry the seeds of their own
destruction; they are easy to write but gradually become impossible to change. A
programmer’s past experience does not predict the future. The early promise of
painless development gradually fails and optimism turns to despair as program-
mers begin to greet every change request with “Yes, I can add that feature, but it
will break everything.”

Slightly more experienced programmers encounter different design failures.
These programmers are aware of OO design techniques but do not yet understand

7The Act of Design

ptg11539634

how to apply them. With the best of intentions, these programmers fall into the
trap of overdesign. A little bit of knowledge is dangerous; as their knowledge
increases and hope returns, they design relentlessly. In an excess of enthusiasm they
apply principles inappropriately and see patterns where none exist. They construct
complicated, beautiful castles of code and then are distressed to find themselves
hemmed in by stone walls. You can recognize these programmers because they
begin to greet change requests with “No, I can’t add that feature; it wasn’t designed
to do that.”

Finally, object-oriented software fails when the act of design is separated from the
act of programming. Design is a process of progressive discovery that relies on a feed-
back loop. This feedback loop should be timely and incremental; the iterative tech-
niques of the Agile software movement (http://agilemanifesto.org/) are thus perfectly
suited to the creation of well-designed OO applications. The iterative nature of Agile
development allows design to adjust regularly and to evolve naturally. When design is
dictated from afar none of the necessary adjustments can occur and early failures of
understanding get cemented into the code. Programmers who are forced to write
applications that were designed by isolated experts begin to say, “Well, I can certainly
write this, but it’s not what you really want and you will eventually be sorry.”

When to Design
Agile believes that your customers can’t define the software they want before seeing
it, so it’s best to show them sooner rather than later. If this premise is true, then it
logically follows that you should build software in tiny increments, gradually iter-
ating your way into an application that meets the customer’s true need. Agile
believes that the most cost-effective way to produce what customers really want is
to collaborate with them, building software one small bit at a time such that each
delivered bit has the opportunity to alter ideas about the next. The Agile experi-
ence is that this collaboration produces software that differs from what was
initially imagined; the resulting software could not have been anticipated by any
other means.

If Agile is correct, two other things are also true. First, there is absolutely no point
in doing a Big Up Front Design (BUFD) (because it cannot possibly be correct), and
second, no one can predict when the application will be done (because you don’t
know in advance what it will eventually do).

It should come as no surprise that some people are uncomfortable with Agile.
“We don’t know what we’re doing” and “We don’t know when we’ll be done” can be a

8 Chapter 1. Object-Oriented Design

http://agilemanifesto.org/

ptg11539634

difficult sell. The desire for BUFD persists because, for some, it provides a feeling of
control that would otherwise be lacking. Comforting though this feeling may be, it is
a temporary illusion that will not survive the act of writing the application.

BUFD inevitably leads to an adversarial relationship between customers and pro-
grammers. Because any big design created in advance of working software cannot be
correct, to write the application as specified guarantees that it will not meet the cus-
tomer’s needs. Customers discover this when they attempt to use it. They then request
changes. Programmers resist these changes because they have a schedule to meet, one
that they are very likely already behind. The project gradually becomes doomed as
participants switch from working to make it succeed to striving to avoid being blamed
for its failure.

The rules of this engagement are clear to all. When a project misses its delivery
deadline, even if this happened because of changes to the specification, the pro-
grammers are at fault. If, however, it is delivered on time but doesn’t fulfill the
actual need, the specification must have been wrong, so the customer gets the
blame. The design documents of BUFD start out as roadmaps for application
development but gradually become the focus of dissent. They do not produce
quality software, instead they supply fiercely parsed words that will be invoked in
the final, scrambling defense against being the person who ends up holding the hot
potato of blame.

If insanity is doing the same thing over and over again and expecting different
results, the Agile Manifesto was where we collectively began to regain our senses. Agile
works because it acknowledges that certainty is unattainable in advance of the applica-
tion’s existence; Agile’s acceptance of this truth allows it to provide strategies to over-
come the handicap of developing software while knowing neither the target nor the
timeline.

However, just because Agile says “don’t do a big up front design” doesn’t mean
it tells you to do no design at all. The word design when used in BUFD has a differ-
ent meaning than when used in OOD. BUFD is about completely specifying and
totally documenting the anticipated future inner workings of all of the features of
the proposed application. If there’s a software architect involved this may extend to
deciding, in advance, how to arrange all of the code. OOD is concerned with a
much narrower domain. It is about arranging what code you have so that it will be
easy to change.

Agile processes guarantee change and your ability to make these changes depends
on your application’s design. If you cannot write well-designed code you’ll have to
rewrite your application during every iteration.

9The Act of Design

ptg11539634

Agile thus does not prohibit design, it requires it. Not only does it require design,
it requires really good design. It needs your best work. Its success relies on simple,
flexible, and malleable code.

Judging Design
In the days of yore, programmers were sometimes judged by the number of lines of
code (referred to as source lines of code or SLOC) they produced. It’s obvious how this
metric came to be; any boss who thinks of programming as an assembly line where
similarly trained workers labor to construct identical widgets can easily develop a
belief that individual productivity can be judged by simply weighing output. For
managers in desperate need of a reliable way to compare programmers and evaluate
software, SLOC, for all its obvious problems, was far better than nothing; it was at
least a reproducible measure of something.

This metric was clearly not developed by programmers. While SLOC may pro-
vide a yardstick by which to measure individual effort and application complexity, it
says nothing about overall quality. It penalizes the efficient programmer while reward-
ing the verbose and is ripe to be gamed by the expert to the detriment of the underlying
application. If you know that the novice programmer sitting next to you will be
thought more productive because he or she writes a lot of code to produce a feature
that you could produce with far fewer lines, what is your response? This metric alters
the reward structure in ways that harm quality.

In the modern world, SLOC is a historical curiosity that has largely been replaced
by newer metrics. There are numerous Ruby gems (a google search on ruby metrics
will turn up the most recent) that assess how well your code follows OOD principles.
Metrics software works by scanning source code and counting things that predict
quality. Running a metrics suite against your own code can be illuminating, humbling,
and sometimes alarming. Seemingly well-designed applications can rack up impressive
numbers of OOD violations.

Bad OOD metrics are indisputably a sign of bad design; code that scores poorly
will be hard to change. Unfortunately, good scores don’t prove the opposite, that is,
they don’t guarantee that the next change you make will be easy or cheap. The prob-
lem is that it is possible to create beautiful designs that over-anticipate the future.
While these designs may generate very good OOD metrics, if they anticipate the
wrong future they will be expensive to fix when the real future finally arrives. OOD
metrics cannot identify designs that do the wrong thing in the right way.

The cautionary tale about SLOC gone wrong therefore extends to OOD metrics.
Take them with a grain of salt. Metrics are useful because they are unbiased and

10 Chapter 1. Object-Oriented Design

ptg11539634

produce numbers from which you can infer something about software; however, they
are not direct indicators of quality, but are proxies for a deeper measurement. The
ultimate software metric would be cost per feature over the time interval that matters,
but this is not easy to calculate. Cost, feature, and time are individually difficult to
define, track, and measure.

Even if you could isolate an individual feature and track all of its associated costs,
the time interval that matters affects how code should be judged. Sometimes the value
of having the feature right now is so great that it outweighs any future increase in
costs. If lack of a feature will force you out of business today it doesn’t matter how
much it will cost to deal with the code tomorrow; you must do the best you can in the
time you have. Making this kind of design compromise is like borrowing time from
the future and is known as taking on technical debt. This is a loan that will eventually
need to be repaid, quite likely with interest.

Even when you are not intentionally taking on technical debt, design takes time
and therefore costs money. Because your goal is to write software with the lowest cost
per feature, your decision about how much design to do depends on two things: your
skills and your timeframe. If design takes half your time this month and does not start
returning dividends for a year, it may not be worth it. When the act of design prevents
software from being delivered on time, you have lost. Delivering half of a well-designed
application might be the same as delivering no application at all. However, if design
takes half of your time this morning, pays that time back this afternoon, and then
continues to provide benefits for the lifetime of the application, you get a kind of
daily compounding interest on your time; this design effort pays off forever.

The break-even point for design depends on the programmer. Inexperienced pro-
grammers who do a lot of anticipatory design may never reach a point where their
earlier design efforts pay off. Skilled designers who write carefully crafted code this
morning may save money this afternoon. Your experience likely lies somewhere
between these extremes, and the remainder of this book teaches skills you can use to
shift the break-even point in your favor.

A Brief Introduction to Object-Oriented
Programming
Object-oriented applications are made up of objects and the messages that pass
between them. Messages will turn out to be the more important of the two, but in
this brief introduction (and in the first few chapters of the book) the concepts will get
equal weight.

11A Brief Introduction to Object-Oriented Programming

ptg11539634

Procedural Languages
Object-oriented programming is object-oriented relative to non object-oriented, or
procedural, programming. It’s instructive to think of these two styles in terms of their
differences. Imagine a generic procedural programming language, one in which you
create simple scripts. In this language you can define variables, that is, make up names
and associate those names with bits of data. Once assigned, the associated data can be
accessed by referring to the variables.

Like all procedural languages, this one knows about a small, fixed set of different
kinds of data, things like strings, numbers, arrays, files, and so on. These different
kinds of data are known as data types. Each data type describes a very specific kind of
thing. The string data type is different from the file data type. The syntax of the lan-
guage contains built-in operations to do reasonable things to the various data types.
For example, it can concatenate strings and read files.

Because you create variables, you know what kind of thing each holds. Your
expectations about which operations you can use are based on your knowledge of a
variable’s data type. You know that you can append to strings, do math with numbers,
index into arrays, read files, and so on.

Every possible data type and operation already exists; these things are built into
the syntax of the language. The language might let you create functions (group some
of the predefined operations together under a new name) or define complex data
structures (assemble some of the predefined data types into a named arrangement),
but you can’t make up wholly new operations or brand new data types. What you see
is all you get.

In this language, as in all procedural languages, there is a chasm between data and
behavior. Data is one thing, behavior is something completely different. Data gets
packaged up into variables and then passed around to behavior, which could, frankly,
do anything to it. Data is like a child that behavior sends off to school every morning;
there is no way of knowing what actually happens while it is out of sight. The influ-
ences on data can be unpredictable and largely untraceable.

Object-Oriented Languages
Now imagine a different kind of programming language, a class-based object-oriented
one like Ruby. Instead of dividing data and behavior into two separate, never-the-
twain-shall-meet spheres, Ruby combines them together into a single thing, an object.
Objects have behavior and may contain data, data to which they alone control access.
Objects invoke one another’s behavior by sending each other messages.

12 Chapter 1. Object-Oriented Design

ptg11539634

Ruby has a string object instead of a string data type. The operations that work
with strings are built into the string objects themselves instead of into the syntax of
the language. String objects differ in that each contains its own personal string of data,
but are similar in that each behaves like the others. Each string encapsulates, or hides,
its data from the world. Every object decides for itself how much, or how little, of its
data to expose.

Because string objects supply their own operations, Ruby doesn’t have to know
anything in particular about the string data type; it need only provide a general way
for objects to send messages. For example, if strings understand the concat message,
Ruby doesn’t have to contain syntax to concatenate strings, it just has to provide a way
for one object to send concat to another.

Even the simplest application will probably need more than one string or number
or file or array. As a matter of fact, while it’s true that you may occasionally need a
unique, individual snowflake of an object, it’s far more common to desire to manufac-
ture a bunch of objects that have identical behavior but encapsulate different data.

Class-based OO languages like Ruby allow you to define a class that provides a
blueprint for the construction of similar objects. A class defines methods (definitions of
behavior) and attributes (definitions of variables). Methods get invoked in response to
messages. The same method name can be defined by many different objects; it’s up to
Ruby to find and invoke the right method of the correct object for any sent message.

Once the String class exists it can be used to repeatedly instantiate, or create,
new instances of a string object. Every newly instantiated String implements the same
methods and uses the same attribute names but each contains its own personal data.
They share the same methods so they all behave like Strings; they contain different
data so they represent different ones.

The String class defines a type that is more than mere data. Knowing an object’s
type lets you have expectations about how it will behave. In a procedural language
variables have a single data type; knowledge of this data type lets you have expecta-
tions about which operations are valid. In Ruby an object may have many types, one
of which will always come from its class. Knowledge of an object’s type(s) therefore
lets you have expectations about the messages to which it responds.

Ruby comes with a number of predefined classes. The most immediately recogniz-
able are those that overlap the data types used by procedural languages. For example,
the String class defines strings, the Fixnum class, integers. There’s a pre-existing
class for every data type that you would expect a programming language to supply.
However, object-oriented languages are themselves built using objects and here’s where
things begin to get interesting.

13A Brief Introduction to Object-Oriented Programming

ptg11539634

The String class, that is, the blueprint for new string objects, is itself an object;
it’s an instance of the Class class. Just as every string object is a data-specific instance
of the String class, every class object (String, Fixnum, ad infinitum) is a data-
specific instance of the Class class. The String class manufactures new strings, the
Class class manufactures new classes.

OO languages are thus open-ended. They don’t limit you to a small set of built-in
types and pre-predefined operations; you can invent brand new types of your own.
Each OO application gradually becomes a unique programming language that is
specifically tailored to your domain.

Whether this language ultimately brings you pleasure or gives you pain is a matter
of design and the concern of this book.

Summary
If an application lives long enough, that is, if it succeeds, its biggest problem will become
that of dealing with change. Arranging code to efficiently accommodate change is a
matter of design. The most visible elements of design are principles and patterns, but
unfortunately even applying principles correctly and using patterns appropriately does
not guarantee the creation of an easy-to-change application.

OO metrics expose how well an application follows OO design principles. Bad
metrics strongly imply future difficulties; however, good metrics are less helpful. A design
that does the wrong thing might produce great metrics but may still be costly to change.

The trick to getting the most bang for your design buck is to acquire an under-
standing of the theories of design and to apply these theories appropriately, at the
right time, and in the right amounts. Design relies on your ability to translate theory
into practice.

What is the difference between theory and practice?
In theory, there is none. If theory were practice you could learn the rules of

OOD, apply them consistently, and create perfect code from this day forward; your
work here would be done.

However, no matter how deeply theory believes this to be true, practice knows better.
Unlike theory, practice gets its hands dirty. It is practice that lays bricks, builds bridges,
and writes code. Practice lives in the real world of change, confusion, and uncertainty. It
faces competing choices and, grimacing, chooses the lesser evil; it dodges, it hedges, it
robs Peter to pay Paul. It makes a living by doing the best it can with what it has.

Theory is useful and necessary and has been the focus of this chapter. But enough
already; it’s time for practice.

14 Chapter 1. Object-Oriented Design

ptg11539634

CHAPTER 2
Designing Classes with
a Single Responsibility

The foundation of an object-oriented system is the message, but the most visible
organizational structure is the class. Messages are at the core of design, but because
classes are so obvious this chapter starts small and concentrates on how to decide
what belongs in a class. The design emphasis will gradually shift from classes to
messages over the next several chapters.

What are your classes? How many should you have? What behavior will they
implement? How much do they know about other classes? How much of themselves
should they expose?

These questions can be overwhelming. Every decision seems both permanent and
fraught with peril. Fear not. At this stage your first obligation is to take a deep breath
and insist that it be simple. Your goal is to model your application, using classes, such
that it does what it is supposed to do right now and is also easy to change later.

These are two very different criteria. Anyone can arrange code to make it work
right now. Today’s application can be beat into submission by sheer force of will. It’s a
standing target at a known range. It is at your mercy.

Creating an easy-to-change application, however, is a different matter. Your
application needs to work right now just once; it must be easy to change forever.
This quality of easy changeability reveals the craft of programming. Achieving it takes
knowledge, skill, and a bit of artistic creativity.

15

ptg11539634

Fortunately, you don’t have to figure everything out from scratch. Much thought and
research has gone into identifying the qualities that make an application easy to change.
The techniques are simple; you only need to know what they are and how to use them.

Deciding What Belongs in a Class
You have an application in mind. You know what it should do. You may even have
thought about how to implement the most interesting bits of behavior. The problem
is not one of technical knowledge but of organization; you know how to write the
code but not where to put it.

Grouping Methods into Classes
In a class-based OO language like Ruby, methods are defined in classes. The classes
you create will affect how you think about your application forever. They define a
virtual world, one that constrains the imagination of everyone downstream. You are
constructing a box that may be difficult to think outside of.

Despite the importance of correctly grouping methods into classes, at this early
stage of your project you cannot possibly get it right. You will never know less than
you know right now. If your application succeeds many of the decisions you make
today will need to be changed later. When that day comes, your ability to successfully
make those changes will be determined by your application’s design.

Design is more the art of preserving changeability than it is the act of achieving
perfection.

Organizing Code to Allow for Easy Changes
Asserting that code should be easy to change is akin to stating that children should
be polite; the statement is impossible to disagree with yet it in no way helps a parent
raise an agreeable child. The idea of easy is too broad; you need concrete definitions
of easiness and specific criteria by which to judge code.

If you define easy to change as

• Changes have no unexpected side effects

• Small changes in requirements require correspondingly small changes in code

• Existing code is easy to reuse

• The easiest way to make a change is to add code that in itself is easy to change

16 Chapter 2. Designing Classes with a Single Responsibility

ptg11539634

Then the code you write should have the following qualities. Code should be

• Transparent The consequences of change should be obvious in the code that is
changing and in distant code that relies upon it

• Reasonable The cost of any change should be proportional to the benefits the
change achieves

• Usable Existing code should be usable in new and unexpected contexts

• Exemplary The code itself should encourage those who change it to perpetuate
these qualities

Code that is Transparent, Reasonable, Usable, and Exemplary (TRUE) not only
meets today’s needs but can also be changed to meet the needs of the future. The first
step in creating code that is TRUE is to ensure that each class has a single, well-defined
responsibility.

Creating Classes That Have a Single Responsibility
A class should do the smallest possible useful thing; that is, it should have a single
responsibility.

Illustrating how to create a class that has a single responsibility and explaining
why it matters requires an example, which in turn requires a small divergence into the
domain of bicycles.

An Example Application: Bicycles and Gears
Bicycles are wonderfully efficient machines, in part because they use gears to provide
humans with mechanical advantage. When riding a bike you can choose between a
small gear (which is easy to pedal but not very fast) or a big gear (which is harder to
pedal but sends you zooming along). Gears are great because you can use small ones
to creep up steep hills and big ones to fly back down.

Gears work by changing how far the bicycle travels each time your feet
complete one circle with the pedals. More specifically, your gear controls how
many times the wheels rotate for each time the pedals rotate. In a small gear your
feet spin around several times to make the wheels rotate just once; in a big gear
each complete pedal rotation may cause the wheels to rotate multiple times. See
Figure 2.1.

17Creating Classes That Have a Single Responsibility

ptg11539634

The terms small and big are not very precise. To compare different gears, bicyclists
use the ratio of the numbers of their teeth. These ratios can be calculated with this
simple Ruby script:

1 chainring = 52 # number of teeth

2 cog = 11

3 ratio = chainring / cog.to_f

4 puts ratio # -> 4.72727272727273

5

6 chainring = 30

7 cog = 27

8 ratio = chainring / cog.to_f

9 puts ratio # -> 1.11111111111111

The gear created by combining a 52-tooth chainring with an 11-tooth cog (a 52 × 11)
has a ratio of about 4.73. Each time your feet push the pedals around one time your
wheels will travel around almost five times. The 30 × 27 is a much easier gear; each
pedal revolution causes the wheels to rotate a little more than once.

Believe it or not, there are people who care deeply about bicycle gearing. You can
help them out by writing a Ruby application to calculate gear ratios.

The application will be made of Ruby classes, each representing some part of the
domain. If you read through the description above looking for nouns that represent
objects in the domain you’ll see words like bicycle and gear. These nouns represent the
simplest candidates to be classes. Intuition says that bicycle should be a class, but noth-
ing in the above description lists any behavior for bicycle, so, as yet, it does not qual-
ify. Gear, however, has chainrings, cogs, and ratios, that is, it has both data and
behavior. It deserves to be a class. Taking the behavior from the script above, you cre-
ate this simple Gear class:

18 Chapter 2. Designing Classes with a Single Responsibility

Small Gear Big Gear

Little chainring, big cog.
Feet go around many times, wheel goes
around just once.

A big chainring and little cog.
Feet go around once; wheel goes
around many times.

Figure 2.1 Small versus big bicycle gears.

ptg11539634

1 class Gear

2 attr_reader :chainring, :cog

3 def initialize(chainring, cog)

4 @chainring = chainring

5 @cog = cog

6 end

7

8 def ratio

9 chainring / cog.to_f

10 end

11 end

12

13 puts Gear.new(52, 11).ratio # -> 4.72727272727273

14 puts Gear.new(30, 27).ratio # -> 1.11111111111111

This Gear class is simplicity itself. You create a new Gear instance by providing the
numbers of teeth for the chainring and cog. Each instance implements three methods:
chainring, cog, and ratio.

Gear is a subclass of Object and thus inherits many other methods. A Gear con-
sists of everything it directly implements plus everything it inherits, so the complete
set of behavior, that is, the total set of messages to which it can respond, is fairly large.
Inheritance matters to your application’s design, but this simple case where Gear in-
herits from object is so basic that, at least for now, you can act as if these inherited
methods do not exist. More sophisticated forms of inheritance will be covered in
Chapter 6, Acquiring Behavior Through Inheritance.

You show your Gear calculator to a cyclist friend and she finds it useful but im-
mediately asks for an enhancement. She has two bicycles; the bicycles have exactly the
same gearing but they have different wheel sizes. She would like you to also calculate
the effect of the difference in wheels.

A bike with huge wheels travels much farther during each wheel rotation than
one with tiny wheels, as shown in Figure 2.2.

19Creating Classes That Have a Single Responsibility

Figure 2.2 Effect of wheel size on distance traveled.

Big wheel — one rotation goes a long way. Small wheel — one rotation goes hardly anywhere.

ptg11539634

Cyclists (at least those in the United States) use something called gear inches to
compare bicycles that differ in both gearing and wheel size. The formula follows:

gear inches = wheel diameter * gear ratio

where

wheel diameter = rim diameter + twice tire diameter.

You change the Gear class to add this new behavior:

1 class Gear

2 attr_reader :chainring, :cog, :rim, :tire

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

5 @cog = cog

6 @rim = rim

7 @tire = tire

8 end

9

10 def ratio

11 chainring / cog.to_f

12 end

13

14 def gear_inches

15 # tire goes around rim twice for diameter

16 ratio * (rim + (tire * 2))

17 end

18 end

19

20 puts Gear.new(52, 11, 26, 1.5).gear_inches

21 # -> 137.090909090909

22

23 puts Gear.new(52, 11, 24, 1.25).gear_inches

24 # -> 125.272727272727

The new gear_inches method assumes that rim and tire sizes are given in inches,
which may or may not be correct. With that caveat, the Gear class meets the spec-
ifications (such as they are) and the code, with the exception of the following bug,
works.

1 puts Gear.new(52, 11).ratio # didn't this used to work?

2 # ArgumentError: wrong number of arguments (2 for 4)

3 # from (irb):20:in 'initialize'

20 Chapter 2. Designing Classes with a Single Responsibility

ptg11539634

4 # from (irb):20:in 'new'

5 # from (irb):20

6

The bug above was introduced when the gear_inches method was added.
Gear.initialize was changed to require two additional arguments, rim and tire.
Altering the number of arguments that a method requires breaks all existing callers of
the method. This would normally be a terrible problem that would have to be dealt
with instantly, but because the application is so small that Gear.initialize
currently has no other callers, the bug can be ignored for now.

Now that a rudimentary Gear class exists, it’s time to ask the question: Is this the
best way to organize the code?

The answer, as always, is: it depends. If you expect the application to remain
static forever, Gear in its current form may be good enough. However, you can
already foresee the possibility of an entire application of calculators for bicyclists.
Gear is the first of many classes of an application that will evolve. To efficiently evolve,
code must be easy to change.

Why Single Responsibility Matters
Applications that are easy to change consist of classes that are easy to reuse. Reusable
classes are pluggable units of well-defined behavior that have few entanglements. An
application that is easy to change is like a box of building blocks; you can select just
the pieces you need and assemble them in unanticipated ways.

A class that has more than one responsibility is difficult to reuse. The various
responsibilities are likely thoroughly entangled within the class. If you want to reuse
some (but not all) of its behavior, it is impossible to get at only the parts you need.
You are faced with two options and neither is particularly appealing.

If the responsibilities are so coupled that you cannot use just the behavior you
need, you could duplicate the code of interest. This is a terrible idea. Duplicated code
leads to additional maintenance and increases bugs. If the class is structured such that
you can access only the behavior you need, you could reuse the entire class. This just
substitutes one problem for another.

Because the class you’re reusing is confused about what it does and contains
several tangled up responsibilities, it has many reasons to change. It may change for a
reason that is unrelated to your use of it, and each time it changes there’s a possibility
of breaking every class that depends on it. You increase your application’s chance of
breaking unexpectedly if you depend on classes that do too much.

21Creating Classes That Have a Single Responsibility

ptg11539634

Determining If a Class Has a Single Responsibility
How can you determine if the Gear class contains behavior that belongs somewhere
else? One way is to pretend that it’s sentient and to interrogate it. If you rephrase
every one of its methods as a question, asking the question ought to make sense. For
example, “Please Mr. Gear, what is your ratio?” seems perfectly reasonable, while
“Please Mr. Gear, what are your gear_inches?” is on shaky ground, and “Please Mr. Gear,
what is your tire (size)?” is just downright ridiculous.

Don’t resist the idea that “what is your tire?” is a question that can legitimately be
asked. From inside the Gear class, tire may feel like a different kind of thing than
ratio or gear_inches, but that means nothing. From the point of view of every other
object, anything that Gear can respond to is just another message. If Gear responds to it,
someone will send it, and that sender may be in for a rude surprise when Gear changes.

Another way to hone in on what a class is actually doing is to attempt to describe it
in one sentence. Remember that a class should do the smallest possible useful thing.
That thing ought to be simple to describe. If the simplest description you can devise
uses the word “and,” the class likely has more than one responsibility. If it uses the word
“or,” then the class has more than one responsibility and they aren’t even very related.

OO designers use the word cohesion to describe this concept. When everything in
a class is related to its central purpose, the class is said to be highly cohesive or to have a
single responsibility. The Single Responsibility Principle (SRP) has its roots in
Rebecca Wirfs-Brock and Brian Wilkerson’s idea of Responsibility-Driven Design
(RDD). They say “A class has responsibilities that fulfill its purpose.” SRP doesn’t
require that a class do only one very narrow thing or that it change for only a single
nitpicky reason, instead SRP requires that a class be cohesive—that everything the
class does be highly related to its purpose.

How would you describe the responsibility of the Gear class? How about
“Calculate the ratio between two toothed sprockets”? If this is true, the class, as it currently
exists, does too much. Perhaps “Calculate the effect that a gear has on a bicycle”? Put this
way, gear_inches is back on solid ground, but tire size is still quite shaky.

The class doesn’t feel right. Gear has more than one responsibility but it’s not
obvious what should be done.

Determining When to Make Design Decisions
It’s common to find yourself in a situation where you know something isn’t quite right
with a class. Is this class really a Gear? It has rims and tires, for goodness sake! Perhaps
Gear should be Bicycle? Or maybe there’s a Wheel in here somewhere?

22 Chapter 2. Designing Classes with a Single Responsibility

ptg11539634

If you only knew what feature requests would arrive in the future you could make
perfect design decisions today. Unfortunately, you do not. Anything might happen.
You can waste a lot of time being torn between equally plausible alternatives before
rolling the dice and choosing the wrong one.

Do not feel compelled to make design decisions prematurely. Resist, even
if you fear your code would dismay the design gurus. When faced with an imper-
fect and muddled class like Gear, ask yourself: “What is the future cost of doing
nothing today?”

This is a (very) small application. It has one developer. You are intimately familiar
with the Gear class. The future is uncertain and you will never know less than you
know right now. The most cost-effective course of action may be to wait for more
information.

The code in the Gear class is both transparent and reasonable, but this does not
reflect excellent design, merely that the class has no dependencies so changes to it have
no consequences. If it were to acquire dependencies it would suddenly be in violation
of both of those goals and should be reorganized at that time. Conveniently, the new
dependencies will supply the exact information you need to make good design
decisions.

When the future cost of doing nothing is the same as the current cost, postpone
the decision. Make the decision only when you must with the information you have
at that time.

Even though there’s a good argument for leaving Gear as is for the time being,
you could also make a defensible argument that it should be changed. The structure
of every class is a message to future maintainers of the application. It reveals your
design intentions. For better or for worse, the patterns you establish today will be
replicated forever.

Gear lies about your intentions. It is neither usable nor exemplary. It has multi-
ple responsibilities and so should not be reused. It is not a pattern that should be
replicated.

There is a chance that someone else will reuse Gear, or create new code that fol-
lows its pattern while you are waiting for better information. Other developers believe
that your intentions are reflected in the code; when the code lies you must be alert to
programmers believing and then propagating that lie.

This “improve it now” versus “improve it later” tension always exists. Applications
are never perfectly designed. Every choice has a price. A good designer understands
this tension and minimizes costs by making informed tradeoffs between the needs of
the present and the possibilities of the future.

23Creating Classes That Have a Single Responsibility

ptg11539634

Writing Code That Embraces Change
You can arrange the code so that Gear will be easy to change even if you don’t know
what changes will come. Because change is inevitable, coding in a changeable style has
big future payoffs. As an additional bonus, coding in these styles will improve your
code, today, at no extra cost.

Here are a few well-known techniques that you can use to create code that
embraces change.

Depend on Behavior, Not Data
Behavior is captured in methods and invoked by sending messages. When you create
classes that have a single responsibility, every tiny bit of behavior lives in one and only
one place. The phrase “Don’t Repeat Yourself ” (DRY) is a shortcut for this idea. DRY
code tolerates change because any change in behavior can be made by changing code
in just one place.

In addition to behavior, objects often contain data. Data is held in an instance
variable and can be anything from a simple string or a complex hash. Data can be
accessed in one of two ways; you can refer directly to the instance variable or you can
wrap the instance variable in an accessor method.

Hide Instance Variables

Always wrap instance variables in accessor methods instead of directly referring to
variables, like the ratio method does below:

1 class Gear

2 def initialize(chainring, cog)

3 @chainring = chainring

4 @cog = cog

5 end

6

7 def ratio

8 @chainring / @cog.to_f # <-- road to ruin

9 end

10 end

Hide the variables, even from the class that defines them, by wrapping them in
methods. Ruby provides attr_reader as an easy way to create the encapsulating
methods:

24 Chapter 2. Designing Classes with a Single Responsibility

ptg11539634

1 class Gear

2 attr_reader :chainring, :cog # <-------

3 def initialize(chainring, cog)

4 @chainring = chainring

5 @cog = cog

6 end

7

8 def ratio

9 chainring / cog.to_f # <-------

10 end

11 end

Using attr_reader caused Ruby to create simple wrapper methods for the variables.
Here’s a virtual representation of the one it created for cog:

1 # default implementation via attr_reader

2 def cog

3 @cog

4 end

This cog method is now the only place in the code that understands what cog means.
Cog becomes the result of a message send. Implementing this method changes cog
from data (which is referenced all over) to behavior (which is defined once).

If the @cog instance variable is referred to ten times and it suddenly needs to be
adjusted, the code will need many changes. However, if @cog is wrapped in a method,
you can change what cog means by implementing your own version of the method.
Your new method might be as simple as the first implementation below, or more
complicated, like the second:

1 # a simple reimplementation of cog

2 def cog

3 @cog * unanticipated_adjustment_factor

4 end

1 # a more complex one

2 def cog

3 @cog * (foo? ? bar_adjustment : baz_adjustment)

4 end

25Writing Code That Embraces Change

ptg11539634

The first example could arguably have been done by making one change to the value
of the instance variable. However, you can never be sure that you won’t eventually
need something like the second example. The second adjustment is a simple behavior
change when done in a method, but a code destroying mess when applied to a bunch
of instance variable references.

Dealing with data as if it’s an object that understands messages introduces two
new issues. The first issue involves visibility. Wrapping the @cog instance variable in a
public cog method exposes this variable to the other objects in your application; any
other object can now send cog to a Gear. It would have been just as easy to create a
private wrapping method, one that turns the data into behavior without exposing that
behavior to the entire application. Choosing between these two alternatives is covered
in Chapter 4, Creating Flexible Interfaces.

The second issue is more abstract. Because it’s possible to wrap every instance
variable in a method and to therefore treat any variable as if it’s just another object,
the distinction between data and a regular object begins to disappear. While it’s some-
times expedient to think of parts of your application as behavior-less data, most things
are better thought of as plain old objects.

Regardless of how far your thoughts move in this direction, you should hide data
from yourself. Doing so protects the code from being affected by unexpected changes.
Data very often has behavior that you don’t yet know about. Send messages to access
variables, even if you think of them as data.

Hide Data Structures

If being attached to an instance variable is bad, depending on a complicated data
structure is worse. Consider the following ObscuringReferences class:

1 class ObscuringReferences

2 attr_reader :data

3 def initialize(data)

4 @data = data

5 end

6

7 def diameters

8 # 0 is rim, 1 is tire

9 data.collect {|cell|

10 cell[0] + (cell[1] * 2)}

11 end

12 # ... many other methods that index into the array

13 end

26 Chapter 2. Designing Classes with a Single Responsibility

ptg11539634

This class expects to be initialized with a two-dimensional array of rims and tires:

1 # rim and tire sizes (now in millimeters!) in a 2d array

2 @data = [[622, 20], [622, 23], [559, 30], [559, 40]]

ObscuringReferences stores its initialization argument in the variable @data
and obediently uses Ruby’s attr_reader to wrap the @data instance variable in a
method. The diameters method sends the data message to access the contents of
the variable. This class certainly does everything necessary to hide the instance
variable from itself.

However, since @data contains a complicated data structure, just hiding the
instance variable is not enough. The data method merely returns the array. To do
anything useful, each sender of data must have complete knowledge of what piece of
data is at which index in the array.

The diameters method knows not only how to calculate diameters, but also
where to find rims and tires in the array. It explicitly knows that if it iterates over data
that rims are at [0] and tires are at [1].

It depends upon the array’s structure. If that structure changes, then this code
must change. When you have data in an array it’s not long before you have refer-
ences to the array’s structure all over. The references are leaky. They escape encapsu-
lation and insinuate themselves throughout the code. They are not DRY. The
knowledge that rims are at [0] should not be duplicated; it should be known in just
one place.

This simple example is bad enough; imagine the consequences if data returned
an array of hashes that were referenced in many places. A change to its structure
would cascade throughout your code; each change represents an opportunity to create
a bug so stealthy that your attempts to find it will make you cry.

Direct references into complicated structures are confusing, because they obscure
what the data really is, and they are a maintenance nightmare, because every reference
will need to be changed when the structure of the array changes.

In Ruby it’s easy to separate structure from meaning. Just as you can use a method
to wrap an instance variable, you can use the Ruby Struct class to wrap a structure.
In the following example, RevealingReferences has the same interface as the
previous class. It takes a two-dimensional array as an initialization argument and it
implements the diameters method. Despite these external similarities, its internal
implementation is very different.

27Writing Code That Embraces Change

ptg11539634

1 class RevealingReferences

2 attr_reader :wheels

3 def initialize(data)

4 @wheels = wheelify(data)

5 end

6

7 def diameters

8 wheels.collect {|wheel|

9 wheel.rim + (wheel.tire * 2)}

10 end

11 # ... now everyone can send rim/tire to wheel

12

13 Wheel = Struct.new(:rim, :tire)

14 def wheelify(data)

15 data.collect {|cell|

16 Wheel.new(cell[0], cell[1])}

17 end

18 end

The diameters method above now has no knowledge of the internal structure of the
array. All diameters knows is that the message wheels returns an enumerable and
that each enumerated thing responds to rim and tire. What were once references to
cell[1] have been transformed into message sends to wheel.tire.

All knowledge of the structure of the incoming array has been isolated inside the
wheelify method, which converts the array of Arrays into an array of Structs.
The official Ruby documentation (http://ruby-doc.org/core/classes/Struct.html)
defines Struct as “a convenient way to bundle a number of attributes together, using
accessor methods, without having to write an explicit class.” This is exactly what
wheelify does; it creates little lightweight objects that respond to rim and tire.

The wheelify method contains the only bit of code that understands the struc-
ture of the incoming array. If the input changes, the code will change in just this one
place. It takes four new lines of code to create the Wheel Struct and to define the
wheelify method, but these few lines of code are a minor inconvenience compared
to the permanent cost of repeatedly indexing into a complex array.

This style of code allows you to protect against changes in externally owned data
structures and to make your code more readable and intention revealing. It trades in-
dexing into a structure for sending messages to an object. The wheelify method
above isolates the messy structural information and DRYs out the code. It makes this
class far more tolerant of change.

28 Chapter 2. Designing Classes with a Single Responsibility

http://ruby-doc.org/core/classes/Struct.html

ptg11539634

Although it might be easier to just have an array of Wheels to begin with, it is not
always possible. If you can control the input, pass in a useful object, but if you are
compelled to take a messy structure, hide the mess even from yourself.

Enforce Single Responsibility Everywhere
Creating classes with a single responsibility has important implications for design, but the
idea of single responsibility can be usefully employed in many other parts of your code.

Extract Extra Responsibilities from Methods

Methods, like classes, should have a single responsibility. All of the same reasons
apply; having just one responsibility makes them easy to change and easy to reuse. All
the same design techniques work; ask them questions about what they do and try to
describe their responsibilities in a single sentence.

Look at the diameters method of class RevealingReferences:

1 def diameters

2 wheels.collect {|wheel|

3 wheel.rim + (wheel.tire * 2)}

4 end

This method clearly has two responsibilities: it iterates over the wheels and it calculates
the diameter of each wheel.

Simplify the code by separating it into two methods, each with one responsibility.
This next refactoring moves the calculation of a single wheel’s diameter into its own
method. The refactoring introduces an additional message send but at this point in
your design you should act as if sending a message is free. Performance can be improved
later, if need be. Right now the most important design goal is to write code that is
easily changeable.

1 # first - iterate over the array

2 def diameters

3 wheels.collect {|wheel| diameter(wheel)}

4 end

5

6 # second - calculate diameter of ONE wheel

7 def diameter(wheel)

8 wheel.rim + (wheel.tire * 2))

9 end

29Writing Code That Embraces Change

ptg11539634

Will you ever need to get the diameter of just one wheel? Look at the code again; you
already do. This refactoring is not a case of overdesign, it merely reorganizes code that
is currently in use. The fact that the singular diameter method can now be called
from other places is a free and happy side effect.

Separating iteration from the action that’s being performed on each element is a
common case of multiple responsibility that is easy to recognize. In other cases the
problem is not so obvious.

Recall the gear_inches method of the Gear class:

1 def gear_inches

2 # tire goes around rim twice for diameter

3 ratio * (rim + (tire * 2))

4 end

Is gear_inches a responsibility of the Gear class? It is reasonable that it would be.
But if it is, why does this method feel so wrong? It is muddled and uncertain and
seems likely to cause trouble later. The root cause of the problem is that the method
itself has more than one responsibility.

Hidden inside gear_inches is the calculation for wheel diameter. Extracting
that calculation into this new diameter method will make it easier to examine the
class’s responsibilities.

1 def gear_inches

2 ratio * diameter

3 end

4

5 def diameter

6 rim + (tire * 2)

7 end

The gear_inches method now sends a message to get wheel diameter. Notice that
the refactoring does not alter how diameter is calculated; it merely isolates the behavior
in a separate method.

Do these refactorings even when you do not know the ultimate design. They are
needed, not because the design is clear, but because it isn’t. You do not have to know
where you’re going to use good design practices to get there. Good practices reveal design.

This simple refactoring makes the problem obvious. Gear is definitely responsible
for calculating gear_inches but Gear should not be calculating wheel diameter.

30 Chapter 2. Designing Classes with a Single Responsibility

ptg11539634

The impact of a single refactoring like this is small, but the cumulative effect of
this coding style is huge. Methods that have a single responsibility confer the follow-
ing benefits:

• Expose previously hidden qualities Refactoring a class so that all of its methods
have a single responsibility has a clarifying effect on the class. Even if you do not
intend to reorganize the methods into other classes today, having each of them
serve a single purpose makes the set of things the class does more obvious.

• Avoid the need for comments How many times have you seen a comment that is
out of date? Because comments are not executable, they are merely a form of
decaying documentation. If a bit of code inside a method needs a comment,
extract that bit into a separate method. The new method name serves the same
purpose as did the old comment.

• Encourage reuse Small methods encourage coding behavior that is healthy for
your application. Other programmers will reuse the methods instead of duplicat-
ing the code. They will follow the pattern you have established and create small,
reusable methods in turn. This coding style propagates itself.

• Are easy to move to another class When you get more design information and
decide to make changes, small methods are easy to move. You can rearrange behavior
without doing a lot of method extraction and refactoring. Small methods lower
the barriers to improving your design.

Isolate Extra Responsibilities in Classes

Once every method has a single responsibility, the scope of your class will be more
apparent. The Gear class has some wheel-like behavior. Does this application need a
Wheel class?

If circumstances allow you to create a separate Wheel class, perhaps you should.
For now, imagine that you choose not to create a new, permanent, publicly available
class at this moment. Perhaps some design restriction has been imposed upon you, or
perhaps you are so uncertain about where you’re going that you don’t want to create a
new class that others might start depending on, lest you change your mind.

It may seem impossible for Gear to have a single responsibility unless you remove
its wheel-like behavior; the extra behavior is either in Gear or it’s not. However, cast-
ing the design choice in either/or terms is shortsighted. There are other choices. Your
goal is to preserve single responsibility in Gear while making the fewest design com-
mitments possible. Because you are writing changeable code, you are best served by

31Writing Code That Embraces Change

ptg11539634

postponing decisions until you are absolutely forced to make them. Any decision you
make in advance of an explicit requirement is just a guess. Don’t decide; preserve your
ability to make a decision later.

Ruby allows you to remove the responsibility for calculating tire diameter from
Gear without committing to a new class. The following example extends the previous
Wheel Struct with a block that adds a method to calculate diameter.

1 class Gear

2 attr_reader :chainring, :cog, :wheel

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

5 @cog = cog

6 @wheel = Wheel.new(rim, tire)

7 end

8

9 def ratio

10 chainring / cog.to_f

11 end

12

13 def gear_inches

14 ratio * wheel.diameter

15 end

16

17 Wheel = Struct.new(:rim, :tire) do

18 def diameter

19 rim + (tire * 2)

20 end

21 end

22 end

Now you have a Wheel that can calculate its own diameter. Embedding this Wheel in
Gear is obviously not the long-term design goal; it’s more an experiment in code
organization. It cleans up Gear but defers the decision about Wheel.

Embedding Wheel inside of Gear suggests that you expect that a Wheel will only
exist in the context of a Gear. If you lift your head from this book for a moment and
look out at the real world, common sense suggests otherwise. In this case, enough
information exists right now to support the creation of an independent Wheel class.
However, every domain isn’t this clear-cut.

If you have a muddled class with too many responsibilities, separate those
responsibilities into different classes. Concentrate on the primary class. Decide on

32 Chapter 2. Designing Classes with a Single Responsibility

ptg11539634

its responsibilities and enforce your decision fiercely. If you identify extra responsibilities
that you cannot yet remove, isolate them. Do not allow extraneous responsibilities to
leak into your class.

Finally, the Real Wheel
While you’re pondering the design of the Gear class, the future arrives. You show your
calculator to your cyclist friend again and she tells you that it’s very nice but that while
you’re writing calculators she would also like to have one for “bicycle wheel circumfer-
ence.” She has a computer on her bike that calculates speed; this computer has to be
configured with the bicycle’s wheel circumference to do its job.

This is the information you’ve been waiting for; it’s a new feature request that
supplies the exact information you need to make the next design decision.

You know that the circumference of a wheel is PI times its diameter. Your embedded
Wheel already calculates diameter; it’s a simple matter to add a new method to calcu-
late circumference. These changes are minor; the real change here is that now your
application has an explicit need for a Wheel class that it can use independently of
Gear. It’s time to set Wheel free to be a separate class of it’s own.

Because you have already carefully isolated the Wheel behavior inside of the Gear
class, this change is painless. Simply convert the Wheel Struct to an independent
Wheel class and add the new circumference method:

1 class Gear

2 attr_reader :chainring, :cog, :wheel

3 def initialize(chainring, cog, wheel=nil)

4 @chainring = chainring

5 @cog = cog

6 @wheel = wheel

7 end

8

9 def ratio

10 chainring / cog.to_f

11 end

12

13 def gear_inches

14 ratio * wheel.diameter

15 end

16 end

17

33Finally, the Real Wheel

ptg11539634

18 class Wheel

19 attr_reader :rim, :tire

20

21 def initialize(rim, tire)

22 @rim = rim

23 @tire = tire

24 end

25

26 def diameter

27 rim + (tire * 2)

28 end

29

30 def circumference

31 diameter * Math::PI

32 end

33 end

34

35 @wheel = Wheel.new(26, 1.5)

36 puts @wheel.circumference

37 # -> 91.106186954104

38

39 puts Gear.new(52, 11, @wheel).gear_inches

40 # -> 137.090909090909

41

42 puts Gear.new(52, 11).ratio

43 # -> 4.72727272727273

Both classes have a single responsibility. The code is not perfect, but in some ways it
achieves a higher standard: it is good enough.

Summary
The path to changeable and maintainable object-oriented software begins with classes
that have a single responsibility. Classes that do one thing isolate that thing from the
rest of your application. This isolation allows change without consequence and reuse
without duplication.

34 Chapter 2. Designing Classes with a Single Responsibility

ptg11539634

CHAPTER 3
Managing Dependencies

Object-oriented programming languages contend that they are efficient and effective
because of the way they model reality. Objects reflect qualities of a real-world problem
and the interactions between those objects provide solutions. These interactions are
inescapable. A single object cannot know everything, so inevitably it will have to talk
to another object.

If you could peer into a busy application and watch the messages as they pass, the
traffic might seem overwhelming. There’s a lot going on. However, if you stand back
and take a global view, a pattern becomes obvious. Each message is initiated by an
object to invoke some bit of behavior. All of the behavior is dispersed among the
objects. Therefore, for any desired behavior, an object either knows it personally,
inherits it, or knows another object who knows it.

The previous chapter concerned itself with the first of these, that is, behaviors
that a class should personally implement. The second, inheriting behavior, will be
covered in Chapter 6, Acquiring Behavior Through Inheritance. This chapter is
about the third, getting access to behavior when that behavior is implemented in
other objects.

Because well designed objects have a single responsibility, their very nature requires
that they collaborate to accomplish complex tasks. This collaboration is powerful and
perilous. To collaborate, an object must know something know about others. Knowing
creates a dependency. If not managed carefully, these dependencies will strangle your
application.

35

ptg11539634

Understanding Dependencies
An object depends on another object if, when one object changes, the other might be
forced to change in turn.

Here’s a modified version of the Gear class, where Gear is initialized with four fa-
miliar arguments. The gear_inches method uses two of them, rim and tire, to
create a new instance of Wheel. Wheel has not changed since you last you saw it in
Chapter 2, Designing Classes with a Single Responsibility.

1 class Gear

2 attr_reader :chainring, :cog, :rim, :tire

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

5 @cog = cog

6 @rim = rim

7 @tire = tire

8 end

9

10 def gear_inches

11 ratio * Wheel.new(rim, tire).diameter

12 end

13

14 def ratio

15 chainring / cog.to_f

16 end

17 # ...

18 end

19

20 class Wheel

21 attr_reader :rim, :tire

22 def initialize(rim, tire)

23 @rim = rim

24 @tire = tire

25 end

26

27 def diameter

28 rim + (tire * 2)

29 end

30 # ...

31 end

32

33 Gear.new(52, 11, 26, 1.5).gear_inches

36 Chapter 3. Managing Dependencies

ptg11539634

Examine the code above and make a list of the situations in which Gear would be
forced to change because of a change to Wheel. This code seems innocent but it’s
sneakily complex. Gear has at least four dependencies on Wheel, enumerated as
follows. Most of the dependencies are unnecessary; they are a side effect of the coding
style. Gear does not need them to do its job. Their very existence weakens Gear and
makes it harder to change.

Recognizing Dependencies
An object has a dependency when it knows

• The name of another class. Gear expects a class named Wheel to exist.

• The name of a message that it intends to send to someone other than self.
Gear expects a Wheel instance to respond to diameter.

• The arguments that a message requires. Gear knows that Wheel.new requires a
rim and a tire.

• The order of those arguments. Gear knows the first argument to Wheel.new
should be rim, the second, tire.

Each of these dependencies creates a chance that Gear will be forced to change
because of a change to Wheel. Some degree of dependency between these two classes
is inevitable, after all, they must collaborate, but most of the dependencies listed above
are unnecessary. These unnecessary dependencies make the code less reasonable.
Because they increase the chance that Gear will be forced to change, these dependen-
cies turn minor code tweaks into major undertakings where small changes cascade
through the application, forcing many changes.

Your design challenge is to manage dependencies so that each class has the fewest
possible; a class should know just enough to do its job and not one thing more.

Coupling Between Objects (CBO)
These dependencies couple Gear to Wheel. Alternatively, you could say that each
coupling creates a dependency. The more Gear knows about Wheel, the more tightly
coupled they are. The more tightly coupled two objects are, the more they behave like
a single entity.

If you make a change to Wheel you may find it necessary to make a change to
Gear. If you want to reuse Gear, Wheel comes along for the ride. When you test
Gear, you’ll be testing Wheel too.

37Understanding Dependencies

ptg11539634

Figure 3.1 illustrates the problem. In this case, Gear depends on Wheel and four
other objects, coupling Gear to five different things. When the underlying code was
first written everything worked fine. The problem lies dormant until you attempt to
use Gear in another context or to change one of the classes upon which Gear
depends. When that day comes the cold hard truth is revealed; despite appearances,
Gear is not an independent entity. Each of its dependencies is a place where another
object is stuck to it. The dependencies cause these objects to act like a single thing.
They move in lockstep; they change together.

When two (or three or more) objects are so tightly coupled that they behave as a
unit, it’s impossible to reuse just one. Changes to one object force changes to all. Left
unchecked, unmanaged dependencies cause an entire application to become an entan-
gled mess. A day will come when it’s easier to rewrite everything than to change anything.

Other Dependencies
The remainder of this chapter examines the four kinds of dependencies listed above
and suggests techniques for avoiding the problems they create. However, before going
forward it’s worth mentioning a few other common dependency related issues that
will be covered in other chapters.

One especially destructive kind of dependency occurs where an object knows
another who knows another who knows something; that is, where many messages are
chained together to reach behavior that lives in a distant object. This is the “knowing
the name of a message you plan to send to someone other than self ” dependency, only
magnified. Message chaining creates a dependency between the original object and

38 Chapter 3. Managing Dependencies

Gear depends on wheel, A, B, C and D Gear and its dependencies act like one thing

Gear Gear

Wheel

W
he

el

B

B

A A

C
C

D
D

Figure 3.1 Dependencies entangle objects with one another.

ptg11539634

every object and message along the way to its ultimate target. These additional couplings
greatly increase the chance that the first object will be forced to change because a
change to any of the intermediate objects might affect it.

This case, a Law of Demeter violation, gets its own special treatment in Chapter 4,
Creating Flexible Interfaces.

Another entire class of dependencies is that of tests on code. In the world outside
of this book, tests come first. They drive design. However, they refer to code and thus
depend on code. The natural tendency of “new-to-testing” programmers is to write
tests that are too tightly coupled to code. This tight coupling leads to incredible frus-
tration; the tests break every time the code is refactored, even when the fundamental
behavior of the code does not change. Tests begin to seem costly relative to their value.
Test-to-code over-coupling has the same consequence as code-to-code over-coupling.
These couplings are dependencies that cause changes to the code to cascade into the
tests, forcing them to change in turn.

The design of tests is examined in Chapter 9, Designing Cost-Effective Tests.
Despite these cautionary words, your application is not doomed to drown in un-

necessary dependencies. As long as you recognize them, avoidance is quite simple.
The first step to this brighter future is to understand dependencies in more detail;
therefore, it’s time to look at some code.

Writing Loosely Coupled Code
Every dependency is like a little dot of glue that causes your class to stick to the things
it touches. A few dots are necessary, but apply too much glue and your application
will harden into a solid block. Reducing dependencies means recognizing and removing
the ones you don’t need.

The following examples illustrate coding techniques that reduce dependencies by
decoupling code.

Inject Dependencies
Referring to another class by its name creates a major sticky spot. In the version of
Gear we’ve been discussing (repeated below), the gear_inches method contains an
explicit reference to class Wheel:

1 class Gear

2 attr_reader :chainring, :cog, :rim, :tire

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

39Writing Loosely Coupled Code

ptg11539634

5 @cog = cog

6 @rim = rim

7 @tire = tire

8 end

9

10 def gear_inches

11 ratio * Wheel.new(rim, tire).diameter

12 end

13 # ...

14 end

15

16 Gear.new(52, 11, 26, 1.5).gear_inches

The immediate, obvious consequence of this reference is that if the name of the
Wheel class changes, Gear’s gear_inches method must also change.

On the face of it this dependency seems innocuous. After all, if a Gear needs to
talk to a Wheel, something, somewhere, must create a new instance of the Wheel
class. If Gear itself knows the name of the Wheel class, the code in Gear must be
altered if Wheel’s name changes.

In truth, dealing with the name change is a relatively minor issue. You likely have
a tool that allows you to do a global find/replace within a project. If Wheel’s name
changes to Wheely, finding and fixing all of the references isn’t that hard. However,
the fact that line 11 above must change if the name of the Wheel class changes is the
least of the problems with this code. A deeper problem exists that is far less visible but
significantly more destructive.

When Gear hard-codes a reference to Wheel deep inside its gear_inches
method, it is explicitly declaring that it is only willing to calculate gear inches for
instances of Wheel. Gear refuses to collaborate with any other kind of object, even if
that object has a diameter and uses gears.

If your application expands to include objects such as disks or cylinders and you
need to know the gear inches of gears which use them, you cannot. Despite the fact
that disks and cylinders naturally have a diameter you can never calculate their gear
inches because Gear is stuck to Wheel.

The code above exposes an unjustified attachment to static types. It is not the
class of the object that’s important, it’s the message you plan to send to it. Gear needs
access to an object that can respond to diameter; a duck type, if you will (see
Chapter 5, Reducing Costs with Duck Typing). Gear does not care and should not
know about the class of that object. It is not necessary for Gear to know about the
existence of the Wheel class in order to calculate gear_inches. It doesn’t need to

40 Chapter 3. Managing Dependencies

ptg11539634

know that Wheel expects to be initialized with a rim and then a tire; it just needs
an object that knows diameter.

Hanging these unnecessary dependencies on Gear simultaneously reduces Gear’s
reusability and increases its susceptibility to being forced to change unnecessarily.
Gear becomes less useful when it knows too much about other objects; if it knew less
it could do more.

Instead of being glued to Wheel, this next version of Gear expects to be initialized
with an object that can respond to diameter:

1 class Gear

2 attr_reader :chainring, :cog, :wheel

3 def initialize(chainring, cog, wheel)

4 @chainring = chainring

5 @cog = cog

6 @wheel = wheel

7 end

8

9 def gear_inches

10 ratio * wheel.diameter

11 end

12 # ...

13 end

14

15 # Gear expects a ‘Duck’ that knows ‘diameter’

16 Gear.new(52, 11, Wheel.new(26, 1.5)).gear_inches

Gear now uses the @wheel variable to hold, and the wheel method to access, this object,
but don’t be fooled, Gear doesn’t know or care that the object might be an instance of
class Wheel. Gear only knows that it holds an object that responds to diameter.

This change is so small it is almost invisible, but coding in this style has huge
benefits. Moving the creation of the new Wheel instance outside of Gear decouples
the two classes. Gear can now collaborate with any object that implements diameter.
As an extra bonus, this benefit was free. Not one additional line of code was written;
the decoupling was achieved by rearranging existing code.

This technique is known as dependency injection. Despite its fearsome reputation,
dependency injection truly is this simple. Gear previously had explicit dependencies
on the Wheel class and on the type and order of its initialization arguments, but
through injection these dependencies have been reduced to a single dependency on
the diameter method. Gear is now smarter because it knows less.

41Writing Loosely Coupled Code

ptg11539634

Using dependency injection to shape code relies on your ability to recognize that
the responsibility for knowing the name of a class and the responsibility for knowing
the name of a message to send to that class may belong in different objects. Just because
Gear needs to send diameter somewhere does not mean that Gear should know
about Wheel.

This leaves the question of where the responsibility for knowing about the actual
Wheel class lies; the example above conveniently sidesteps this issue, but it is exam-
ined in more detail later in this chapter. For now, it’s enough to understand that this
knowledge does not belong in Gear.

Isolate Dependencies
It’s best to break all unnecessary dependences but, unfortunately, while this is
always technically possible it may not be actually possible. When working on an
existing application you may find yourself under severe constraints about how
much you can actually change. If prevented from achieving perfection, your goals
should switch to improving the overall situation by leaving the code better than
you found it.

Therefore, if you cannot remove unnecessary dependencies, you should isolate
them within your class. In Chapter 2, Designing Classes with a Single Responsibility,
you isolated extraneous responsibilities so that they would be easy to recognize and re-
move when the right impetus came; here you should isolate unnecessary dependences
so that they are easy to spot and reduce when circumstances permit.

Think of every dependency as an alien bacterium that‘s trying to infect your class.
Give your class a vigorous immune system; quarantine each dependency.
Dependencies are foreign invaders that represent vulnerabilities, and they should be
concise, explicit, and isolated.

Isolate Instance Creation

If you are so constrained that you cannot change the code to inject a Wheel into a
Gear, you should isolate the creation of a new Wheel inside the Gear class. The
intent is to explicitly expose the dependency while reducing its reach into your class.

The next two examples illustrate this idea.
In the first, creation of the new instance of Wheel has been moved from Gear’s

gear_inches method to Gear’s initialization method. This cleans up the gear_inches
method and publicly exposes the dependency in the initialize method. Notice that
this technique unconditionally creates a new Wheel each time a new Gear is created.

42 Chapter 3. Managing Dependencies

ptg11539634

1 class Gear

2 attr_reader :chainring, :cog, :rim, :tire

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

5 @cog = cog

6 @wheel = Wheel.new(rim, tire)

7 end

8

9 def gear_inches

10 ratio * wheel.diameter

11 end

12 # ...

The next alternative isolates creation of a new Wheel in its own explicitly defined
wheel method. This new method lazily creates a new instance of Wheel, using Ruby’s
||= operator. In this case, creation of a new instance of Wheel is deferred until
gear_inches invokes the new wheel method.

1 class Gear

2 attr_reader :chainring, :cog, :rim, :tire

3 def initialize(chainring, cog, rim, tire)

4 @chainring = chainring

5 @cog = cog

6 @rim = rim

7 @tire = tire

8 end

9

10 def gear_inches

11 ratio * wheel.diameter

12 end

13

14 def wheel

15 @wheel ||= Wheel.new(rim, tire)

16 end

17 # ...

In both of these examples Gear still knows far too much; it still takes rim and tire as
initialization arguments and it still creates its own new instance of Wheel. Gear is still
stuck to Wheel; it can calculate the gear inches of no other kind of object.

However, an improvement has been made. These coding styles reduce the number
of dependencies in gear_inches while publicly exposing Gear’s dependency on

43Writing Loosely Coupled Code

ptg11539634

Wheel. They reveal dependencies instead of concealing them, lowering the barriers to
reuse and making the code easier to refactor when circumstances allow. This change
makes the code more agile; it can more easily adapt to the unknown future.

The way you manage dependencies on external class names has profound effects
on your application. If you are mindful of dependencies and develop a habit of rou-
tinely injecting them, your classes will naturally be loosely coupled. If you ignore this
issue and let the class references fall where they may, your application will be more like
a big woven mat than a set of independent objects. An application whose classes are
sprinkled with entangled and obscure class name references is unwieldy and inflexible,
while one whose class name dependencies are concise, explicit, and isolated can easily
adapt to new requirements.

Isolate Vulnerable External Messages

Now that you’ve isolated references to external class names it’s time to turn your
attention to external messages, that is, messages that are “sent to someone other than
self.” For example, the gear_inches method below sends ratio and wheel to
self, but sends diameter to wheel:

1 def gear_inches

2 ratio * wheel.diameter

3 end

This is a simple method and it contains Gear’s only reference to wheel.diameter.
In this case the code is fine, but the situation could be more complex. Imagine that
calculating gear_inches required far more math and that the method looked
something like this:

1 def gear_inches

2 #... a few lines of scary math

3 foo = some_intermediate_result * wheel.diameter

4 #... more lines of scary math

5 end

Now wheel.diameter is embedded deeply inside a complex method. This complex
method depends on Gear responding to wheel and on wheel responding to diameter.
Embedding this external dependency inside the gear_inches method is unnecessary
and increases its vulnerability.

44 Chapter 3. Managing Dependencies

ptg11539634

Any time you change anything you stand the chance of breaking it; gear_inches
is now a complex method and that makes it both more likely to need changing and
more susceptible to being damaged when it does. You can reduce your chance of being
forced to make a change to gear_inches by removing the external dependency and
encapsulating it in a method of its own, as in this next example:

1 def gear_inches

2 #... a few lines of scary math

3 foo = some_intermediate_result * diameter

4 #... more lines of scary math

5 end

6

7 def diameter

8 wheel.diameter

9 end

The new diameter method is exactly the method that you would have written if you
had many references to wheel.diameter sprinkled throughout Gear and you
wanted to DRY them out. The difference here is one of timing; it would normally be
defensible to defer creation of the diameter method until you had a need to DRY
out code; however, in this case the method is created preemptively to remove the de-
pendency from gear_inches.

In the original code, gear_inches knew that wheel had a diameter. This
knowledge is a dangerous dependency that couples gear_inches to an external object
and one of its methods. After this change, gear_inches is more abstract. Gear now
isolates wheel.diameter in a separate method and gear_inches can depend on a
message sent to self.

If Wheel changes the name or signature of its implementation of diameter, the
side effects to Gear will be confined to this one simple wrapping method.

This technique becomes necessary when a class contains embedded references to
a message that is likely to change. Isolating the reference provides some insurance
against being affected by that change. Although not every external method is a candi-
date for this preemptive isolation, it’s worth examining your code, looking for and
wrapping the most vulnerable dependencies.

An alternative way to eliminate these side effects is to avoid the problem from the
very beginning by reversing the direction of the dependency. This idea will be addressed
soon but first there’s one more coding technique to cover.

45Writing Loosely Coupled Code

ptg11539634

Remove Argument-Order Dependencies
When you send a message that requires arguments, you, as the sender, cannot avoid
having knowledge of those arguments. This dependency is unavoidable. However,
passing arguments often involves a second, more subtle, dependency. Many method
signatures not only require arguments, but they also require that those arguments be
passed in a specific, fixed order.

In the following example, Gear’s initialize method takes three arguments:
chainring, cog, and wheel. It provides no defaults; each of these arguments is
required. In lines 11–14, when a new instance of Gear is created, the three arguments
must be passed and they must be passed in the correct order.

1 class Gear

2 attr_reader :chainring, :cog, :wheel

3 def initialize(chainring, cog, wheel)

4 @chainring = chainring

5 @cog = cog

6 @wheel = wheel

7 end

8 ...

9 end

10

11 Gear.new(

12 52,

13 11,

14 Wheel.new(26, 1.5)).gear_inches

Senders of new depend on the order of the arguments as they are specified in Gear’s
initialize method. If that order changes, all the senders will be forced to change.

Unfortunately, it’s quite common to tinker with initialization arguments.
Especially early on, when the design is not quite nailed down, you may go through
several cycles of adding and removing arguments and defaults. If you use fixed-order
arguments each of these cycles may force changes to many dependents. Even worse,
you may find yourself avoiding making changes to the arguments, even when your
design calls for them because you can’t bear to change all the dependents yet again.

Use Hashes for Initialization Arguments

There’s a simple way to avoid depending on fixed-order arguments. If you have
control over the Gear initialize method, change the code to take a hash of options
instead of a fixed list of parameters.

46 Chapter 3. Managing Dependencies

ptg11539634

The next example shows a simple version of this technique. The initialize
method now takes just one argument, args, a hash that contains all of the inputs.
The method has been changed to extract its arguments from this hash. The hash itself
is created in lines 11–14.

1 class Gear

2 attr_reader :chainring, :cog, :wheel

3 def initialize(args)

4 @chainring = args[:chainring]

5 @cog = args[:cog]

6 @wheel = args[:wheel]

7 end

8 ...

9 end

10

11 Gear.new(

12 :chainring => 52,

13 :cog => 11,

14 :wheel => Wheel.new(26, 1.5)).gear_inches

The above technique has several advantages. The first and most obvious is that it
removes every dependency on argument order. Gear is now free to add or remove
initialization arguments and defaults, secure in the knowledge that no change will
have side effects in other code.

This technique adds verbosity. In many situations verbosity is a detriment, but in
this case it has value. The verbosity exists at the intersection between the needs of the
present and the uncertainty of the future. Using fixed-order arguments requires less
code today but you pay for this decrease in volume of code with an increase in the risk
that changes will cascade into dependents later.

When the code in line 11 changed to use a hash, it lost its dependency on argument
order but it gained a dependency on the names of the keys in the argument hash. This
change is healthy. The new dependency is more stable than the old, and thus this code
faces less risk of being forced to change. Additionally, and perhaps unexpectedly, the
hash provides one new, secondary benefit: The key names in the hash furnish explicit
documentation about the arguments. This is a byproduct of using a hash but the fact
that it is unintentional makes it no less useful. Future maintainers of this code will be
grateful for the information.

The benefits you achieve by using this technique vary, as always, based on your
personal situation. If you are working on a method whose parameter list is lengthy

47Writing Loosely Coupled Code

ptg11539634

and wildly unstable, in a framework that is intended to be used by others, it will likely
lower overall costs if you specify arguments in a hash. However, if you are writing a
method for your own use that divides two numbers, it’s far simpler and perhaps
ultimately cheaper to merely pass the arguments and accept the dependency on order.
Between these two extremes lies a common case, that of the method that requires a
few very stable arguments and optionally permits a number of less stable ones. In this
case, the most cost-effective strategy may be to use both techniques; that is, to take a
few fixed-order arguments, followed by an options hash.

Explicitly Define Defaults

There are many techniques for adding defaults. Simple non-boolean defaults can be
specified using Ruby’s || method, as in this next example:

1 # specifying defaults using ||

2 def initialize(args)

3 @chainring = args[:chainring] || 40

4 @cog = args[:cog] || 18

5 @wheel = args[:wheel]

6 end

This is a common technique but one you should use with caution; there are situations
in which it might not do what you want. The || method acts as an or condition; it
first evaluates the left-hand expression and then, if the expression returns false or
nil, proceeds to evaluate and return the result of the right-hand expression. The use
of || above therefore, relies on the fact that the [] method of Hash returns nil for
missing keys.

In the case where args contains a :boolean_thing key that defaults to true, use
of || in this way makes it impossible for the caller to ever explicitly set the final variable
to false or nil. For example, the following expression sets @bool to true when
:boolean_thing is missing and also when it is present but set to false or nil:

@bool = args[:boolean_thing] || true

This quality of || means that if you take boolean values as arguments, or take arguments
where you need to distinguish between false and nil, it’s better to use the fetch
method to set defaults. The fetch method expects the key you’re fetching to be in the
hash and supplies several options for explicitly handling missing keys. Its advantage over
|| is that it does not automatically return nil when it fails to find your key.

48 Chapter 3. Managing Dependencies

ptg11539634

In the example below, line 3 uses fetch to set @chainring to the default, 40,
only if the :chainring key is not in the args hash. Setting the defaults in this way
means that callers can actually cause @chainring to get set to false or nil, something
that is not possible when using the || technique.

1 # specifying defaults using fetch

2 def initialize(args)

3 @chainring = args.fetch(:chainring, 40)

4 @cog = args.fetch(:cog, 18)

5 @wheel = args[:wheel]

6 end

You can also completely remove the defaults from initialize and isolate them
inside of a separate wrapping method. The defaults method below defines a second
hash that is merged into the options hash during initialization. In this case, merge
has the same effect as fetch; the defaults will get merged only if their keys are not in
the hash.

1 # specifying defaults by merging a defaults hash

2 def initialize(args)

3 args = defaults.merge(args)

4 @chainring = args[:chainring]

5 # ...

6 end

7

8 def defaults

9 {:chainring => 40, :cog => 18}

10 end

This isolation technique is perfectly reasonable for the case above but it’s especially
useful when the defaults are more complicated. If your defaults are more than simple
numbers or strings, implement a defaults method.

Isolate Multiparameter Initialization

So far all of the examples of removing argument order dependencies have been for
situations where you control the signature of the method that needs to change. You
will not always have this luxury; sometimes you will be forced to depend on a method
that requires fixed-order arguments where you do not own and thus cannot change
the method itself.

49Writing Loosely Coupled Code

ptg11539634

Imagine that Gear is part of a framework and that its initialization method
requires fixed-order arguments. Imagine also that your code has many places where
you must create a new instance of Gear. Gear’s initialize method is external to
your application; it is part of an external interface over which you have no control.

As dire as this situation appears, you are not doomed to accept the dependencies.
Just as you would DRY out repetitive code inside of a class, DRY out the creation of
new Gear instances by creating a single method to wrap the external interface. The
classes in your application should depend on code that you own; use a wrapping
method to isolate external dependencies.

In this example, the SomeFramework::Gear class is not owned by your application;
it is part of an external framework. Its initialization method requires fixed-order argu-
ments. The GearWrapper module was created to avoid having multiple dependencies
on the order of those arguments. GearWrapper isolates all knowledge of the external
interface in one place and, equally importantly, it provides an improved interface for
your application.

As you can see in line 24, GearWrapper allows your application to create a new
instance of Gear using an options hash.

1 # When Gear is part of an external interface

2 module SomeFramework

3 class Gear

4 attr_reader :chainring, :cog, :wheel

5 def initialize(chainring, cog, wheel)

6 @chainring = chainring

7 @cog = cog

8 @wheel = wheel

9 end

10 # ...

11 end

12 end

13

14 # wrap the interface to protect yourself from changes

15 module GearWrapper

16 def self.gear(args)

17 SomeFramework::Gear.new(args[:chainring],

18 args[:cog],

19 args[:wheel])

20 end

21 end

22

50 Chapter 3. Managing Dependencies

ptg11539634

23 # Now you can create a new Gear using an arguments hash.

24 GearWrapper.gear(

25 :chainring => 52,

26 :cog => 11,

27 :wheel => Wheel.new(26, 1.5)).gear_inches

There are two things to note about GearWrapper. First, it is a Ruby module instead
of a class (line 15). GearWrapper is responsible for creating new instances of
SomeFramework::Gear. Using a module here lets you define a separate and distinct
object to which you can send the gear message (line 24) while simultaneously con-
veying the idea that you don’t expect to have instances of GearWrapper. You may
already have experience with including modules into classes; in the example above
GearWrapper is not meant to be included in another class, it’s meant to directly
respond to the gear message.

The other interesting thing about GearWrapper is that its sole purpose is to
create instances of some other class. Object-oriented designers have a word for objects
like this; they call them factories. In some circles the term factory has acquired a
negative connotation, but the term as used here is devoid of baggage. An object whose
purpose is to create other objects is a factory; the word factory implies nothing more,
and use of it is the most expedient way to communicate this idea.

The above technique for substituting an options hash for a list of fixed-order
arguments is perfect for cases where you are forced to depend on external interfaces
that you cannot change. Do not allow these kinds of external dependencies to permeate
your code; protect yourself by wrapping each in a method that is owned by your own
application.

Managing Dependency Direction
Dependencies always have a direction; earlier in this chapter it was suggested that one
way to manage them is to reverse that direction. This section delves more deeply into
how to decide on the direction of dependencies.

Reversing Dependencies
Every example used thus far shows Gear depending on Wheel or diameter, but the
code could easily have been written with the direction of the dependencies reversed.
Wheel could instead depend on Gear or ratio. The following example illustrates one
possible form of the reversal. Here Wheel has been changed to depend on Gear and

51Managing Dependency Direction

ptg11539634

gear_inches. Gear is still responsible for the actual calculation but it expects a
diameter argument to be passed in by the caller (line 8).

1 class Gear

2 attr_reader :chainring, :cog

3 def initialize(chainring, cog)

4 @chainring = chainring

5 @cog = cog

6 end

7

8 def gear_inches(diameter)

9 ratio * diameter

10 end

11

12 def ratio

13 chainring / cog.to_f

14 end

15 # ...

16 end

17

18 class Wheel

19 attr_reader :rim, :tire, :gear

20 def initialize(rim, tire, chainring, cog)

21 @rim = rim

22 @tire = tire

23 @gear = Gear.new(chainring, cog)

24 end

25

26 def diameter

27 rim + (tire * 2)

28 end

29

30 def gear_inches

31 gear.gear_inches(diameter)

32 end

33 # ...

34 end

35

36 Wheel.new(26, 1.5, 52, 11).gear_inches

This reversal of dependencies does no apparent harm. Calculating gear_inches still
requires collaboration between Gear and Wheel and the result of the calculation is

52 Chapter 3. Managing Dependencies

ptg11539634

unaffected by the reversal. One could infer that the direction of the dependency
does not matter, that it makes no difference whether Gear depends on Wheel or
vice versa.

Indeed, in an application that never changed, your choice would not matter.
However, your application will change and it’s in that dynamic future where this
present decision has repercussions. The choices you make about the direction of
dependencies have far reaching consequences that manifest themselves for the life of
your application. If you get this right, your application will be pleasant to work on
and easy to maintain. If you get it wrong then the dependencies will gradually take
over and the application will become harder and harder to change.

Choosing Dependency Direction
Pretend for a moment that your classes are people. If you were to give them advice
about how to behave you would tell them to depend on things that change less often
than you do.

This short statement belies the sophistication of the idea, which is based on three
simple truths about code:

• Some classes are more likely than others to have changes in requirements.

• Concrete classes are more likely to change than abstract classes.

• Changing a class that has many dependents will result in widespread consequences.

There are ways in which these truths intersect but each is a separate and distinct notion.

Understanding Likelihood of Change

The idea that some classes are more likely to change than others applies not only to
the code that you write for your own application but also to the code that you use but
did not write. The Ruby base classes and the other framework code that you rely on
both have their own inherent likelihood of change.

You are fortunate in that Ruby base classes change a great deal less often than
your own code. This makes it perfectly reasonable to depend on the * method, as
gear_inches quietly does, or to expect that Ruby classes String and Array will
continue to work as they always have. Ruby base classes always change less often than
your own classes and you can continue to depend on them without another thought.

Framework classes are another story; only you can assess how mature your
frameworks are. In general, any framework you use will be more stable than the code

53Managing Dependency Direction

ptg11539634

you write, but it’s certainly possible to choose a framework that is undergoing such
rapid development that its code changes more often than yours.

Regardless of its origin, every class used in your application can be ranked along
a scale of how likely it is to undergo a change relative to all other classes. This rank-
ing is one key piece of information to consider when choosing the direction of
dependencies.

Recognizing Concretions and Abstractions

The second idea concerns itself with the concreteness and abstractness of code. The
term abstract is used here just as Merriam-Webster defines it, as “disassociated from
any specific instance,” and, as so many things in Ruby, represents an idea about code
as opposed to a specific technical restriction.

This concept was illustrated earlier in the chapter during the section on injecting
dependencies. There, when Gear depended on Wheel and on Wheel.new and on
Wheel.new(rim, tire), it depended on extremely concrete code. After the code
was altered to inject a Wheel into Gear, Gear suddenly begin to depend on some-
thing far more abstract, that is, the fact that it had access to an object that could
respond to the diameter message.

Your familiarity with Ruby may lead you to take this transition for granted, but
consider for a moment what would have been required to accomplish this same trick
in a statically typed language. Because statically typed languages have compilers that
act like unit tests for types, you would not be able to inject just any random object
into Gear. Instead you would have to declare an interface, define diameter as part of
that interface, include the interface in the Wheel class, and tell Gear that the class you
are injecting is a kind of that interface.

Rubyists are justifiably grateful to avoid these gyrations, but languages that force
you to be explicit about this transition do offer a benefit. They make it painfully,
inescapably, and explicitly clear that you are defining an abstract interface. It is impos-
sible to create an abstraction unknowingly or by accident; in statically typed languages
defining an interface is always intentional.

In Ruby, when you inject Wheel into Gear such that Gear then depends on a Duck
who responds to diameter, you are, however casually, defining an interface. This inter-
face is an abstraction of the idea that a certain category of things will have a diameter.
The abstraction was harvested from a concrete class; the idea is now “disassociated from
any specific instance.”

The wonderful thing about abstractions is that they represent common, stable
qualities. They are less likely to change than are the concrete classes from which they

54 Chapter 3. Managing Dependencies

ptg11539634

were extracted. Depending on an abstraction is always safer than depending on a
concretion because by its very nature, the abstraction is more stable. Ruby does not
make you explicitly declare the abstraction in order to define the interface, but for
design purposes you can behave as if your virtual interface is as real as a class. Indeed, in
the rest of this discussion, the term “class” stands for both class and this kind of interface.
These interfaces can have dependents and so must be taken into account during design.

Avoiding Dependent-Laden Classes

The final idea, the notion that having dependent-laden objects has many conse-
quences, also bears deeper examination. The consequences of changing a dependent-
laden class are quite obvious—not so apparent are the consequences of even having a
dependent-laden class. A class that, if changed, will cause changes to ripple through
the application, will be under enormous pressure to never change. Ever. Under any
circumstances whatsoever. Your application may be permanently handicapped by your
reluctance to pay the price required to make a change to this class.

Finding the Dependencies That Matter

Imagine each of these truths as a continuum along which all application code falls.
Classes vary in their likelihood of change, their level of abstraction, and their number
of dependents. Each quality matters, but the interesting design decisions occur at the
place where likelihood of change intersects with number of dependents. Some of the
possible combinations are healthy for your application; others are deadly.

Figure 3.2 summarizes the possibilities.

55Managing Dependency Direction

C
A
B

D
Neutral Zone:

Less

ManyD

e

p

e

n

d

e

n

t

s Few

Likelihood of Requirements Change

More

Changes are unlikely
and have few side
effects.

Neutral Zone:
Changes are likely but
they have few side
effects.

Danger Zone:
These classes WILL
change and the
changes will cascade
into dependents.

Abstract Zone:
Changes are unlikely
but, if they occur, will
have broad effects.

Figure 3.2 Likelihood of change versus number of dependents

ptg11539634

The likelihood of requirements change is represented on the horizontal axis. The
number of dependents is on the vertical. The grid is divided into four zones, labeled A
through D. If you evaluate all of the classes in a well-designed application and place
them on this grid, they will cluster in Zones A, B, and C.

Classes that have little likelihood of change but contain many dependents fall
into Zone A. This Zone usually contains abstract classes or interfaces. In a thought-
fully designed application this arrangement is inevitable; dependencies cluster around
abstractions because abstractions are less likely to change.

Notice that classes do not become abstract because they are in Zone A; instead
they wind up here precisely because they are already abstract. Their abstract nature
makes them more stable and allows them to safely acquire many dependents. While
residence in Zone A does not guarantee that a class is abstract, it certainly suggests
that it ought to be.

Skipping Zone B for a moment, Zone C is the opposite of Zone A. Zone C
contains code that is quite likely to change but has few dependents. These classes tend
to be more concrete, which makes them more likely to change, but this doesn’t matter
because few other classes depend on them.

Zone B classes are of the least concern during design because they are almost neutral
in their potential future effects. They rarely change and have few dependents.

Zones A, B, and C are legitimate places for code; Zone D, however, is aptly
named the Danger Zone. A class ends up in Zone D when it is guaranteed to change
and has many dependents. Changes to Zone D classes are costly; simple requests
become coding nightmares as the effects of every change cascade through each
dependent. If you have a very specific concrete class that has many dependents and you
believe it resides in Zone A, that is, you believe it is unlikely to change, think again.
When a concrete class has many dependents your alarm bells should be ringing. That
class might actually be an occupant of Zone D.

Zone D classes represent a danger to the future health of the application. These
are the classes that make an application painful to change. When a simple change has
cascading effects that force many other changes, a Zone D class is at the root of the
problem. When a change breaks some far away and seemingly unrelated bit of code,
the design flaw originated here.

As depressing as this is, there is actually a way to make things worse. You can
guarantee that any application will gradually become unmaintainable by making its
Zone D classes more likely to change than their dependents. This maximizes the con-
sequences of every change.

56 Chapter 3. Managing Dependencies

ptg11539634

Fortunately, understanding this fundamental issue allows you to take preemptive
action to avoid the problem.

Depend on things that change less often than you do is a heuristic that stands in for
all the ideas in this section. The zones are a useful way to organize your thoughts but
in the fog of development it may not be obvious which classes go where. Very often
you are exploring your way to a design and at any given moment the future is unclear.
Following this simple rule of thumb at every opportunity will cause your application
to evolve a healthy design.

Summary
Dependency management is core to creating future-proof applications. Injecting
dependencies creates loosely coupled objects that can be reused in novel ways.
Isolating dependencies allows objects to quickly adapt to unexpected changes.
Depending on abstractions decreases the likelihood of facing these changes.

The key to managing dependencies is to control their direction. The road to
maintenance nirvana is paved with classes that depend on things that change less
often than they do.

57Summary

ptg11539634

This page intentionally left blank

ptg11539634

CHAPTER 4
Creating Flexible
Interfaces

It’s tempting to think of object-oriented applications as being the sum of their classes.
Classes are so very visible; design discussions often revolve around class responsibilities
and dependencies. Classes are what you see in your text editor and what you check in
to your source code repository.

There is design detail that must be captured at this level but an object-oriented
application is more than just classes. It is made up of classes but defined by messages.
Classes control what’s in your source code repository; messages reflect the living, ani-
mated application.

Design, therefore, must be concerned with the messages that pass between ob-
jects. It deals not only with what objects know (their responsibilities) and who they
know (their dependencies), but how they talk to one another. The conversation be-
tween objects takes place using their interfaces; this chapter explores creating flexible
interfaces that allow applications to grow and to change.

Understanding Interfaces
Imagine two running applications, as illustrated in Figure 4.1. Each consists of objects
and the messages that pass between them.

59

ptg11539634

In the first application, the messages have no apparent pattern. Every object may
send any message to any other object. If the messages left visible trails, these trails
would eventually draw a woven mat, with each object connected to every other.

In the second application, the messages have a clearly defined pattern. Here the
objects communicate in specific and well-defined ways. If these messages left trails, the
trails would accumulate to create a set of islands with occasional bridges between them.

Both applications, for better or worse, are characterized by the patterns of their
messages.

The objects in the first application are difficult to reuse. Each one exposes too
much of itself and knows too much about its neighbors. This excess knowledge results
in objects that are finely, explicitly, and disastrously tuned to do only the things that
they do right now. No object stands alone; to reuse any you need all, to change one
thing you must change everything.

The second application is composed of plug-able, component-like objects. Each
reveals as little about itself, and knows as little about others, as possible.

The design issue in the first application is not necessarily a failure of dependency
injection or single responsibility. Those techniques, while necessary, are not enough to
prevent the construction of an application whose design causes you pain. The roots of
this new problem lie not in what each class does but with what it reveals. In the first
application each class reveals all. Every method in any class is fair game to be invoked
by any other object.

Experience tells you that all the methods in a class are not the same; some are more
general or more likely to change than others. The first application takes no notice of this.
It allows all methods of any object, regardless of their granularity, to be invoked by others.

In the second application, the message patterns are visibly constrained. This appli-
cation has some agreement, some bargain, about which messages may pass between its
objects. Each object has a clearly defined set of methods that it expects others to use.

60 Chapter 4. Creating Flexible Interfaces

Figure 4.1 Communication patterns.

ptg11539634

These exposed methods comprise the class’s public interface.
The word interface can refer to a number of different concepts. Here the term is

used to refer to the kind of interface that is within a class. Classes implement methods,
some of those methods are intended to be used by others and these methods make up
its public interface.

An alternative kind of interface is one that spans across classes and that is inde-
pendent of any single class. Used in this sense, the word interface represents a set of
messages where the messages themselves define the interface. Many different classes
may, as part of their whole, implement the methods that the interface requires. It’s
almost as if the interface defines a virtual class; that is, any class that implements the
required methods can act like the interface kind of thing.

The remainder of this chapter will address the first kind of interface, that is,
methods within a class and how and what to expose to others. Chapter 5, Reducing
Costs with Duck Typing, explores the second kind of interface, the one that represents
a concept that is broader than a class and is defined by a set of messages.

Defining Interfaces
Imagine a restaurant kitchen. Customers order food off a menu. These orders come
into the kitchen through a little window (the one with the bell beside it, “order up!”)
and the food eventually comes out. To a naïve imagination it may seem as if the
kitchen is filled with magical plates of food that are waiting, pining to be ordered, but
in reality the kitchen is full of people, food, and frenzied activity and each order triggers
a new construction and assembly process.

The kitchen does many things but does not, thankfully, expose them all to its
customers. It has a public interface that customers are expected to use; the menu.
Within the kitchen many things happen, many other messages get passed, but these
messages are private and thus invisible to customers. Even though they may have
ordered it, customers are not welcome to come in and stir the soup.

This distinction between public and private exists because it is the most effective
way to do business. If customers directed the cooking, they would have to be re-educated
whenever the kitchen ran low on an ingredient and needed to make a substitution.
Using a menu avoids this problem by letting each customer ask for what they want
without knowing anything about how the kitchen makes it.

Each of your classes is like a kitchen. The class exists to fulfill a single responsibil-
ity but implements many methods. These methods vary in scale and granularity and
range from broad, general methods that expose the main responsibility of the class to

61Defining Interfaces

ptg11539634

tiny utility methods that are only meant to be used internally. Some of these methods
represent the menu for your class and should be public; others deal with internal
implementation details and are private.

Public Interfaces
The methods that make up the public interface of your class comprise the face it
presents to the world. They:

• Reveal its primary responsibility

• Are expected to be invoked by others

• Will not change on a whim

• Are safe for others to depend on

• Are thoroughly documented in the tests

Private Interfaces
All other methods in the class are part of its private interface. They:

• Handle implementation details

• Are not expected to be sent by other objects

• Can change for any reason whatsoever

• Are unsafe for others to depend on

• May not even be referenced in the tests

Responsibilities, Dependencies, and Interfaces
Chapter 2, Designing Classes with a Single Responsibility, was about creating classes
that have a single responsibility—a single purpose. If you think of a class as having a
single purpose, then the things it does (its more specific responsibilities) are what
allows it to fulfill that purpose. There is a correspondence between the statements you
might make about these more specific responsibilities and the classes’ public methods.
Indeed, public methods should read like a description of responsibilities. The public
interface is a contract that articulates the responsibilities of your class.

Chapter 3, Managing Dependencies, was about dependencies and its take-home
message was that a class should depend only on classes that change less often than it

62 Chapter 4. Creating Flexible Interfaces

ptg11539634

does. Now that you are dividing every class into a public part and a private part, this
idea of depending on less changeable things also applies to the methods within a class.

The public parts of a class are the stable parts; the private parts are the changeable
parts. When you mark methods as public or private you tell users of your class upon
which methods they may safely depend. When your classes use the public methods of
others, you trust those methods to be stable. When you decide to depend on the
private methods of others, you understand that you are relying on something that is
inherently unstable and are thus increasing the risk of being affected by a distant and
unrelated change.

Finding the Public Interface
Finding and defining public interfaces is an art. It presents a design challenge because
there are no cut-and-dried rules. There are many ways to create “good enough” inter-
faces and the costs of a “not good enough” interface may not be obvious for a while,
making it difficult to learn from mistakes.

The design goal, as always, is to retain maximum future flexibility while writing
only enough code to meet today’s requirements. Good public interfaces reduce the
cost of unanticipated change; bad public interfaces raise it.

This section introduces a new application to illustrate a number of rules-of-thumb
about interfaces and a new tool aid to in their discovery.

An Example Application: Bicycle Touring Company
Meet FastFeet, Inc., a bicycle touring company. FastFeet offers both road and moun-
tain bike trips. FastFeet runs its business using a paper system. It currently has no
automation at all.

Each trip offered by FastFeet follows a specific route and may occur several times
during the year. Each has limitations on the number of customers who may go and
requires a specific number of guides who double as mechanics.

Each route is rated according to its aerobic difficulty. Mountain bike trips have an
additional rating that reflects technical difficulty. Customers have an aerobic fitness
level and a mountain bike technical skill level to determine if a trip is right for them.

Customers may rent bicycles or they may choose to bring their own. FastFeet has
a few bicycles available for customer rental and it also shares in a pool of bicycle
rentals with local bike shops. Rental bicycles come in various sizes and are suitable for
either road or mountain bike trips.

63Finding the Public Interface

ptg11539634

Consider the following simple requirement, which will be referred to later as a use
case: A customer, in order to choose a trip, would like to see a list of available trips of
appropriate difficulty, on a specific date, where rental bicycles are available.

Constructing an Intention
Getting started with the first bit of code in a brand new application is intimidating.
When you are adding code to an existing code base you are usually extending an
existing design. Here, however, you must put pen to paper (figuratively) and make
decisions that will determine the patterns of this application forever. The design that
gets extended later is the one that you are establishing now.

You know that you should not dive in and start writing code. You may believe
that you should start writing tests, but that belief doesn’t make it easy. Many
novice designers have serious difficulty imagining the first test. Writing that test
requires that you have an idea about what you want to test, one that you may not
yet have.

The reason that test-first gurus can easily start writing tests is that they have so
much design experience. At this stage, they have already constructed a mental map of
possibilities for objects and interactions in this application. They are not attached to
any specific idea and plan to use tests to discover alternatives, but they know so much
about design that they have already formed an intention about the application. It is
this intention that allows them to specify the first test.

Whether you are conscious of them or not, you have already formed some inten-
tions of your own. The description of FastFeet’s business has likely given you ideas
about potential classes in this application. You probably expect to have Customer,
Trip, Route, Bike, and Mechanic classes.

These classes spring to mind because they represent nouns in the application that
have both data and behavior. Call them domain objects. They are obvious because they
are persistent; they stand for big, visible real-world things that will end up with a
representation in your database.

Domain objects are easy to find but they are not at the design center of your
application. Instead, they are a trap for the unwary. If you fixate on domain objects
you will tend to coerce behavior into them. Design experts notice domain objects
without concentrating on them; they focus not on these objects but on the messages
that pass between them. These messages are guides that lead you to discover other
objects, ones that are just as necessary but far less obvious.

64 Chapter 4. Creating Flexible Interfaces

ptg11539634

Before you sit at the keyboard and start typing you should form an intention
about the objects and the messages needed to satisfy this use case. You would be best
served if you had a simple, inexpensive communication enhancing way to explore
design that did not require you to write code.

Fortunately, some very smart people have thought about this issue at great length
and have devised an effective mechanism for doing just that.

Using Sequence Diagrams
There is a perfect, low-cost way to experiment with objects and messages: sequence
diagrams.

Sequence diagrams are defined in the Unified Modeling Language (UML) and
are one of many diagrams that UML supports. Figure 4.2 shows a sampling of some
diagrams.

If you have joyfully embraced UML you already know the value of sequence
diagrams. If you are unfamiliar with UML and find the graphic alarming, fear not.
This book is not turning into a UML guide. Lightweight, agile design does not
require the creation and maintenance of piles of artifacts. However, the creators of

65Finding the Public Interface

Figure 4.2 Sample UML diagrams.

ptg11539634

UML put a great deal of thought into how to communicate object-oriented design
and you can leverage off their efforts. There are UML diagrams that provide excellent,
transient ways to explore and communicate design possibilities. Use them; you do not
need to reinvent this wheel.

Sequence diagrams are quite handy. They provide a simple way to experiment with
different object arrangements and message passing schemes. They bring clarity to your
thoughts and provide a vehicle to collaborate and communicate with others. Think of
them as a lightweight way to acquire an intention about an interaction. Draw them on
a whiteboard, alter them as needed, and erase them when they’ve served their purpose.

Figure 4.3 shows a simple sequence diagram. This diagram represents an attempt
to implement the use case above. It shows Moe, a Customer and the Trip class,
where Moe sends the suitable_trips message to Trip and gets back a response.

Figure 4.3 illustrates the two main parts of a sequence diagram. As you can see,
they show two things: objects and the messages passing between them. The following
paragraphs describe the parts of this diagram but please note that the UML police will
not arrest you if you vary from the official style. Do what works for you.

In the example diagram each object is represented by two identically named boxes,
arranged one above the other and connected by a single vertical line. It contains two
objects, the Customer Moe and the class Trip. Messages are shown as horizontal lines.
When a message is sent, the line is labeled with the message name. Message lines end or
begin with an arrow; this arrow points to the receiver. When an object is busy process-
ing a received message, it is active and its vertical line is expanded to a vertical rectangle.

The diagram also contains a single message, suitable_trips, sent by Moe to
the Trip class. Therefore, this sequence diagram can be read as follows: Customer
Moe sends the suitable_trips message to the Trip class, which is activated to
process it and then, when finished, returns a response.

66 Chapter 4. Creating Flexible Interfaces

Figure 4.3 A simple sequence diagram.

moe
Customer

suitable_trips
(on_date,
of_difficulty,
need_bike)

class
Trip

moe
Customer

class
Trip

ptg11539634

This sequence diagram is very nearly an exact literal translation of the use case.
The nouns in the use case became objects in the sequence diagram and the action of
the use case turned into a message. The message requires three parameters: on_date,
of_difficulty, and need_bike.

While this example serves quite adequately to illustrate the parts of a sequence
diagram, the design that it implies should give you pause. In this sequence diagram
Moe expects the Trip class to find him a suitable trip. It seems reasonable that Trip
would be responsible for finding trips on a date and of a difficulty, but Moe may also
need a bicycle and he clearly expects Trip to handle that too.

Drawing this sequence diagram exposes the message passing between the Customer
Moe and the Trip class and prompts you to ask the question: “Should Trip be respon-
sible for figuring out if an appropriate bicycle is available for each suitable trip?” or more
generally, “Should this receiver be responsible for responding to this message?”

Therein lies the value of sequence diagrams. They explicitly specify the messages
that pass between objects, and because objects should only communicate using public
interfaces, sequence diagrams are a vehicle for exposing, experimenting with, and
ultimately defining those interfaces.

Also, notice now that you have drawn a sequence diagram, this design conversation
has been inverted. The previous design emphasis was on classes and who and what
they knew. Suddenly, the conversation has changed; it is now revolving around mes-
sages. Instead of deciding on a class and then figuring out its responsibilities, you are
now deciding on a message and figuring out where to send it.

This transition from class-based design to message-based design is a turning point
in your design career. The message-based perspective yields more flexible applications
than does the class-based perspective. Changing the fundamental design question
from “I know I need this class, what should it do?” to “I need to send this message,
who should respond to it?” is the first step in that direction.

You don’t send messages because you have objects, you have objects because you
send messages.

From a message passing point of view, it is perfectly reasonable for a Customer to
send the suitable_trips message. The problem isn’t that Customer should not
send it, the problem is that Trip should not receive it.

Now that you have the suitable_trips message in mind but no place to send
it, you must construct some alternatives. Sequence diagrams make it easy to explore
the possibilities.

If the Trip class should not be figuring out if bicycles are available for a trip, perhaps
there’s a Bicycle class that should. Trip can be responsible for suitable_trips and

67Finding the Public Interface

ptg11539634Bicycle for suitable_bicycle. Moe can get the answer he needs if he talks to both of
them. That sequence diagram looks like Figure 4.4.

For each of these diagrams, consider what Moe has to know.
In Figure 4.3, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

In Figure 4.4, he knows that:

• He wants a list of trips.

• There’s an object that implements the suitable_trips message.

• Part of finding a suitable trip means finding a suitable bicycle.

• There’s another object that implements the suitable_bicycle message.

Sadly, Figure 4.4 is an improvement in some areas but a failure in others. This design
removes extraneous responsibilities from Trip but unfortunately, it merely transfers
them to Customer.

The problem in Figure 4.4 is that Moe not only knows what he wants, he also
knows how other objects should collaborate to provide it. The Customer class has
become the owner of the application rules that assess trip suitability.

68 Chapter 4. Creating Flexible Interfaces

moe
Customer

class
Trip

class
Bicycle

moe
Customer

class
Trip

class
Bicycle

for each trip found

suitable_trip
(on_date,
of difficulty)

suitable_bicycle
(trip_date,
route type)

Figure 4.4 Moe talks to trip and bicycle.

ptg11539634

When Moe knows how to decide if a trip is suitable, he isn’t ordering behavior off
of a menu, he’s going into the kitchen and cooking. The Customer class is co-opting
responsibilities that belong somewhere else and binding itself to an implementation
that might change.

Asking for “What” Instead of Telling “How”
The distinction between a message that asks for what the sender wants and a message
that tells the receiver how to behave may seem subtle but the consequences are
significant. Understanding this difference is a key part of creating reusable classes with
well-defined public interfaces.

To illustrate the importance of what versus how, it’s time for a more detailed
example. Put the customer/trip design problem aside for a bit; it will return soon.
Switch your attention to a new example involving trips, bicycles, and mechanics.

In Figure 4.5, a trip is about to depart and it needs to make sure all the bicycles
scheduled to be used are in good shape. The use case for this requirement is: A trip, in
order to start, needs to ensure that all its bicycles are mechanically sound. Trip could
know exactly how to make a bike ready for a trip and could ask a Mechanic to do
each of those things:

69Finding the Public Interface

a
Trip

bicycles

clean bicycle(bike)

pump tires(bike)

lube chain(bike)

check brakes(bike)

a
Mechanic

a
Trip

a
Mechanic

for each bicycle

Figure 4.5 A Trip tells a Mechanic how to prepare each Bicycle.

ptg11539634

In Figure 4.5:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes methods clean_bicycle,
pump_tires, lube_chain, and check_brakes.

• Trip expects to be holding onto an object that can respond to clean_bicycle,
pump_tires, lube_chain, and check_brakes.

In this design, Trip knows many details about what Mechanic does. Because Trip
contains this knowledge and uses it to direct Mechanic, Trip must change if Mechanic
adds new procedures to the bike preparation process. For example, if Mechanic
implements a method to check the bike repair kit as part of Trip preparation, Trip
must change to invoke this new method.

Figure 4.6 depicts an alternative where Trip asks Mechanic to prepare each
Bicycle, leaving the implementation details to Mechanic.

In Figure 4.6:

• The public interface for Trip includes the method bicycles.

• The public interface for Mechanic includes method prepare_bicycle.

• Trip expects to be holding onto an object that can respond to prepare_bicycle.

70 Chapter 4. Creating Flexible Interfaces

a
Trip

a
Mechanic

a
Trip

a
Mechanic

clean_bicycle(bike)

prepare bicycle(bike)

bicycles

etc...

for each bicycle

Figure 4.6 A Trip asks a Mechanic to prepare each Bicycle.

ptg11539634

Trip has now relinquished a great deal of responsibility to Mechanic. Trip knows that it
wants each of its bicycles to be prepared, and it trusts the Mechanic to accomplish this
task. Because the responsibility for knowing how has been ceded to Mechanic, Trip will
always get the correct behavior regardless of future improvements to Mechanic.

When the conversation between Trip and Mechanic switched from a how to a
what, one side effect was that the size of the public interface in Mechanic was drasti-
cally reduced. In Figure 4.5 Mechanic exposes many methods, in Figure 4.6 its public
interface consists of a single method, prepare_bicycle. Because Mechanic prom-
ises that its public interface is stable and unchanging, having a small public interface
means that there are few methods for others to depend on. This reduces the likelihood
of Mechanic someday changing its public interface, breaking its promise, and forcing
changes on many other classes.

This change of message patterns is a great improvement to the maintainability of
the code but Trip still knows a lot about Mechanic. The code would be more flexible
and more maintainable if Trip could accomplish its goals while knowing even less.

Seeking Context Independence
The things that Trip knows about other objects make up its context. Think of it this way:
Trip has a single responsibility but it expects a context. In Figure 4.6 Trip expects to be
holding onto a Mechanic object that can respond to the prepare_bicycle message.

Context is a coat that Trip wears everywhere; any use of Trip, be it for testing or
otherwise, requires that its context be established. Preparing a trip always requires
preparing bicycles and in doing so Trip always sends the prepare_bicycle message
to its Mechanic. You cannot reuse Trip unless you provide a Mechanic-like object
that can respond to this message.

The context that an object expects has a direct effect on how difficult it is to
reuse. Objects that have a simple context are easy to use and easy to test; they expect
few things from their surroundings. Objects that have a complicated context are hard
to use and hard to test; they require complicated setup before they can do anything.

The best possible situation is for an object to be completely independent of its
context. An object that could collaborate with others without knowing who they are
or what they do could be reused in novel and unanticipated ways.

You already know the technique for collaborating with others without knowing
who they are—dependency injection. The new problem here is for Trip to invoke the
correct behavior from Mechanic without knowing what Mechanic does. Trip wants
to collaborate with Mechanic while maintaining context independence.

71Finding the Public Interface

ptg11539634

At first glance this seems impossible. Trips have bicycles, bicycles must be prepared,
and mechanics prepare bicycles. Having Trip ask Mechanic to prepare a Bicycle
seems inevitable.

However, it is not. The solution to this problem lies in the distinction between
what and how, and arriving at a solution requires concentrating on what Trip wants.

What Trip wants is to be prepared. The knowledge that it must be prepared is
completely and legitimately within the realm of Trip’s responsibilities. However,
the fact that bicycles need to be prepared may belong to the province of Mechanic.
The need for bicycle preparation is more how a Trip gets prepared than what a
Trip wants.

Figure 4.7 illustrates a third alternative sequence diagram for Trip preparation.
In this example, Trip merely tells Mechanic what it wants, that is, to be prepared,
and passes itself along as an argument.

In this sequence diagram, Trip knows nothing about Mechanic but still manages
to collaborate with it to get bicycles ready. Trip tells Mechanic what it wants, passes
self along as an argument, and Mechanic immediately calls back to Trip to get the
list of the Bicycles that need preparing.

In Figure 4.7:

• The public interface for Trip includes bicycles.

• The public interface for Mechanic includes prepare_trip and perhaps
prepare_bicycle.

72 Chapter 4. Creating Flexible Interfaces

Figure 4.7 A Trip asks a Mechanic to prepare the Trip.

a
Trip

a
Mechanic

prepare_bicycle(bike)

prepare_trip(self)

bicycles

for each bicycle

a
Trip

a
Mechanic

ptg11539634

• Trip expects to be holding onto an object that can respond to prepare_trip.

• Mechanic expects the argument passed along with prepare_trip to respond to
bicycles.

All of the knowledge about how mechanics prepare trips is now isolated inside of
Mechanic and the context of Trip has been reduced. Both of the objects are now easier
to change, to test, and to reuse.

Trusting Other Objects
The designs illustrated by Figures 4.5 through 4.7 represent a movement towards
increasingly object-oriented code and as such they mirror the stages of development of
the novice designer.

Figure 4.5 is quite procedural. A Trip tells a Mechanic how to prepare a
Bicycle, almost as if Trip were the main program and Mechanic a bunch of callable
functions. In this design, Trip is the only object that knows exactly how to prepare a
bike; getting a bike prepared requires using a Trip or duplicating the code. Trip’s
context is large, as is Mechanic’s public interface. These two classes are not islands
with bridges between them, they are instead a single, woven cloth.

Many new object-oriented programmers start out working just this way, writing
procedural code. It’s inevitable; this style closely mirrors the best practices of their
former procedural languages. Unfortunately, coding in a procedural style defeats the
purpose of object orientation. It reintroduces the exact maintenance issues that OOP
is designed to avoid.

Figure 4.6 is more object-oriented. Here, a Trip asks a Mechanic to prepare a
Bicycle. Trip’s context is reduced, and Mechanic’s public interface is smaller.
Additionally, Mechanic’s public interface is now something that any object may prof-
itably use; you don’t need a Trip to prepare a bike. These objects now communicate
in a few well-defined ways; they are less coupled and more easily reusable.

This style of coding places the responsibilities in the correct objects, a great im-
provement, but continues to require that Trip have more context than is necessary.
Trip still knows that it holds onto an object that can respond to prepare_bicycle,
and it must always have this object.

Figure 4.7 is far more object-oriented. In this example, Trip doesn’t know or care
that it has a Mechanic and it doesn’t have any idea what the Mechanic will do. Trip
merely holds onto an object to which it will send prepare_trip; it trusts the receiver
of this message to behave appropriately.

73Finding the Public Interface

ptg11539634

Expanding on this idea, Trip could place a number of such objects into an array
and send each the prepare_trip message, trusting every preparer to do whatever it
does because of the kind of thing that it is. Depending on how Trip was being used,
it might have many preparers or it might have few. This pattern allows you to add
newly introduced preparers to Trip without changing any of its code, that is, you can
extend Trip without modifying it.

If objects were human and could describe their own relationships, in Figure 4.5
Trip would be telling Mechanic: “I know what I want and I know how you do it;” in
Figure 4.6: “I know what I want and I know what you do” and in Figure 4.7: “I know
what I want and I trust you to do your part.”

This blind trust is a keystone of object-oriented design. It allows objects to collab-
orate without binding themselves to context and is necessary in any application that
expects to grow and change.

Using Messages to Discover Objects
Armed with knowledge about the distinction between what and how, and the impor-
tance of context and trust, it’s time to return to the original design problem from
Figures 4.3 and 4.4.

Remember that the use case for that problem stated: A customer, in order to
choose a trip, would like to see a list of available trips of appropriate difficulty, on a
specific date, where rental bicycles are available.

Figure 4.3 was a literal translation of this use case, one in which Trip had too
much responsibility. Figure 4.4 was an attempt to move the responsibility for finding
available bicycles from Trip to Bicycle, but in doing so it placed an obligation on
Customer to know far too much about what makes a trip “suitable.”

Neither of these designs is very reusable or tolerant of change. These problems are
revealed, inescapably, in the sequence diagrams. Both designs contain a violation of
the single responsibility principle. In Figure 4.3, Trip knows too much. In Figure
4.4, Customer knows too much, tells other objects how to behave, and requires too
much context.

It is completely reasonable that Customer would send the suitable_trips
message. That message repeats in both sequence diagrams because it feels innately cor-
rect. It is exactly what Customer wants. The problem is not with the sender, it is with
the receiver. You have not yet identified an object whose responsibility it is to imple-
ment this method.

74 Chapter 4. Creating Flexible Interfaces

ptg11539634

This application needs an object to embody the rules at the intersection of
Customer, Trip and Bicycle. The suitable_trips method will be part of its
public interface.

The realization that you need an as yet undefined object is one that you can arrive
at via many routes. The advantage of discovering this missing object via sequence dia-
grams is that the cost of being wrong is very low and the impediments to changing
your mind are extremely few. The sequence diagrams are experimental and will be dis-
carded; your lack of attachment to them is a feature. They do not reflect your ultimate
design, but instead they create an intention that is the starting point for your design.

Regardless of how you reach this point it is now clear that you need a new object,
one that you discovered because of your need to send it a message.

Perhaps the application should contain a TripFinder class. Figure 4.8 shows a
sequence diagram where a TripFinder is responsible for finding suitable trips.

TripFinder contains all knowledge of what makes a trip suitable. It knows the
rules; its job is to do whatever is necessary to respond to this message. It provides a

75Finding the Public Interface

moe
Customer

a
TripFinder

class
Trip

class
Bicycle

for each trip found

suitable_trips
(on_date,
of_difficulty,
need_bike)

suitable_trips
(on_date,
of_difficulty)

suitable_bicycle
(trip_date,
route_type)

moe
Customer

a
TripFinder

class
Trip

class
Bicycle

Figure 4.8 Moe asks the TripFinder for a suitable trip.

ptg11539634

consistent public interface while hiding messy and changeable internal implementa-
tion details.

Moving this method into TripFinder makes the behavior available to any other
object. In the unknown future perhaps other touring companies will use TripFinder
to locate suitable trips via a Web service. Now that this behavior has been extracted
from Customer, it can be used, in isolation, by any other object.

Creating a Message-Based Application
This section used sequence diagrams to explore design, define public interfaces, and
discover objects.

Sequence diagrams are powerfully useful in a transient way; they make otherwise
impossibly convoluted conversations comprehensible. Flip back through the last
several pages and imagine attempting this discussion without them.

Useful as they are, they are a tool, nothing more. They help keep the focus on
messages and allow you to form a rational intention about the first thing to assert in a
test. Switching your attention from objects to messages allows you to concentrate on
designing an application built upon public interfaces.

Writing Code That Puts Its Best (Inter)Face Forward
The clarity of your interfaces reveals your design skills and reflects your self-discipline.
Because design skills are always improving but never perfected, and because even
today’s beautiful design may look ugly in light of tomorrow’s requirement, it is difficult
to create perfect interfaces.

This, however, should not deter you from trying. Interfaces evolve and to do so
they must first be born. It is more important that a well-defined interface exist than
that it be perfect.

Think about interfaces. Create them intentionally. It is your interfaces, more than all
of your tests and any of your code, that define your application and determine its future.

The following section contains rules-of-thumb for creating interfaces.

Create Explicit Interfaces
Your goal is to write code that works today, that can easily be reused, and that can be
adapted for unexpected use in the future. Other people will invoke your methods; it is
your obligation to communicate which ones are dependable.

76 Chapter 4. Creating Flexible Interfaces

ptg11539634

Every time you create a class, declare its interfaces. Methods in the public
interface should

• Be explicitly identified as such

• Be more about what than how

• Have names that, insofar as you can anticipate, will not change

• Take a hash as an options parameter

Be just as intentional about the private interface; make it inescapably obvious. Tests,
because they serve as documentation, can support this endeavor. Either do not test
private methods or, if you must, segregate those tests from the tests of public methods.
Do not allow your tests to fool others into unintentionally depending on the changeable,
private interface.

Ruby provides three relevant keywords: public, protected, and private. Use
of these keywords serves two distinct purposes. First, they indicate which methods are
stable and which are unstable. Second, they control how visible a method is to other
parts of your application. These two purposes are very different. Conveying informa-
tion that a method is stable or unstable is one thing; attempting to control how others
use it is quite another.

Public, Protected, and Private Keywords

The private keyword denotes the least stable kind of method and provides
the most restricted visibility. Private methods must be called with an implicit
receiver, or, inversely, may never be called with an explicit receiver.

If class Trip contains private method fun_factor, you may not send
self.fun_factor from within Trip or a_trip.fun_factor from another
object. However, you may send fun_factor, defaulting to self (the implicit
receiver) from within instances of Trip and its subclasses.

The protected keyword also indicates an unstable method, but one
with slightly different visibility restrictions. Protected methods allow explicit
receivers as long as the receiver is self or an instance of the same class or
subclass of self.

Thus, if Trip’s fun_factor method is protected, you may always
send self.fun_factor. Additionally, you may send a_trip.fun_factor,

77Writing Code That Puts Its Best (Inter)Face Forward

ptg11539634

but only from within a class where self is the same kind of thing (class or
subclass) as a_trip.

The public keyword indicates that a method is stable; public methods
are visible everywhere.

To further complicate matters, Ruby not only provides these keywords but also sup-
plies various mechanisms for circumventing the visibility restrictions that private
and protected impose. Users of a class can redefine any method to public regard-
less of its initial declaration. The private and protected keywords are more like
flexible barriers than concrete restrictions. Anyone can get by them; it’s simply a mat-
ter of expending the effort.

Therefore, any notion that you can prevent method access by using these keywords
is an illusion. The keywords don’t deny access, they just make it a bit harder. Using
them sends two messages:

• You believe that you have better information today than programmers will have in
the future.

• You believe that those future programmers need to be prevented from accidentally
using a method that you currently consider unstable.

These beliefs may be correct but the future is a long way off and one can never be certain.
The most apparently stable methods may change regularly and the most initially unstable
may survive the test of time. If the illusion of control is a comfort, feel free to use the key-
words. However, many perfectly competent Ruby programmers omit them and instead
use comments or a special method naming convention (Ruby on Rails, for example, adds
a leading ‘_’ to private methods) to indicate the public and private parts of interfaces.

These strategies are perfectly acceptable and sometimes even preferable. They
supply information about method stability without imposing visibility restrictions.
Use of them trusts future programmers to make good choices about which methods
to depend upon based on the increased information they have at that time.

Regardless of how you choose to do so, as long as you find some way to convey
this information you have fulfilled your obligations to the future.

Honor the Public Interfaces of Others
Do your best to interact with other classes using only their public interfaces. Assume
that the authors of those classes were just as intentional as you are now and they
are trying desperately, across time and space, to communicate which methods are

78 Chapter 4. Creating Flexible Interfaces

ptg11539634

dependable. The public/private distinctions they made are intended to help you and
it’s best to heed them.

If your design forces the use of a private method in another class, first rethink
your design. It’s possible that a committed effort will unearth an alternative; you
should try very hard to find one.

When you depend on a private interface you increase the risk of being forced to
change. When that private interface is part of an external framework that undergoes
periodic releases, this dependency is like a time bomb that will go off at the worst pos-
sible moment. Inevitably, the person who created the dependency leaves for greener
pastures, the external framework gets updated, the private method being depended
upon changes, and the application breaks in a way that baffles current maintainers.

A dependency on a private method of an external framework is a form of technical
debt. Avoid these dependencies.

Exercise Caution When Depending on Private Interfaces
Despite your best efforts you may find that you must depend on a private interface. This
is a dangerous dependency that should be isolated using the techniques described in
Chapter 3. Even if you cannot avoid using a private method, you can prevent the
method from being referenced in many places in your application. Depending on a
private interface increases risk; keep this risk to a minimum by isolating the dependency.

Minimize Context
Construct public interfaces with an eye toward minimizing the context they require
from others. Keep the what versus how distinction in mind; create public methods
that allow senders to get what they want without knowing how your class implements
its behavior.

Conversely, do not succumb to a class that has an ill-defined or absent public
interface. When faced with a situation like that of the Mechanic class in Figure 4.5,
do not give up and tell it how to behave by invoking all of its methods. Even if
the original author did not define a public interface it is not too late to create one
for yourself.

Depending on how often you plan to use this new public interface, it can be a
new method that you define and place in the Mechanic class, a new wrapper class
that you create and use instead of Mechanic, or a single wrapping method that you
place in your own class. Do what best suits your needs, but create some kind of
defined public interface and use it. This reduces your class’s context, making it easier
to reuse and simpler to test.

79Writing Code That Puts Its Best (Inter)Face Forward

ptg11539634

The Law of Demeter
Having read about responsibilities, dependencies, and interfaces you are now equipped
to explore the Law of Demeter.

The Law of Demeter (LoD) is a set of coding rules that results in loosely coupled
objects. Loose coupling is nearly always a virtue but is just one component of design
and must be balanced against competing needs. Some Demeter violations are harmless,
but others expose a failure to correctly identify and define public interfaces.

Defining Demeter
Demeter restricts the set of objects to which a method may send messages; it prohibits
routing a message to a third object via a second object of a different type. Demeter is
often paraphrased as “only talk to your immediate neighbors” or “use only one dot.”
Imagine that Trip’s depart method contains each of the following lines of code:

customer.bicycle.wheel.tire

customer.bicycle.wheel.rotate

hash.keys.sort.join(', ')

Each line is a message chain containing a number of dots (periods). These chains are
colloquially referred to as train wrecks; each method name represents a train car and
the dots are the connections between them. These trains are an indication that you
might be violating Demeter.

Consequences of Violations
Demeter became a “law” because a human being decided so; don’t be fooled by its
grandiose name. As a law it’s more like “floss your teeth every day,” than it is like gravity.
You might prefer not to confess to your dentist but occasional violations will not collapse
the universe.

Chapter 2 stated that code should be transparent, reasonable, usable and exem-
plary. Some of the message chains above fail when judged against TRUE:

• If wheel changes tire or rotate, depart may have to change. Trip has noth-
ing to do with wheel yet changes to wheel might force changes in Trip. This
unnecessarily raises the cost of change; the code is not reasonable.

• Changing tire or rotate may break something in depart. Because Trip is
distant and apparently unrelated, the failure will be completely unexpected. This
code is not transparent.

80 Chapter 4. Creating Flexible Interfaces

ptg11539634

• Trip cannot be reused unless it has access to a customer with a bicycle that
has a wheel and a tire. It requires a lot of context and is not easily usable.

• This pattern of messages will be replicated by others, producing more code with
similar problems. This style of code, unfortunately, breeds itself. It is not exemplary.

The first two message chains are nearly identical, differing only in that one retrieves a
distant attribute (tire) and the other invokes distant behavior (rotate). Even expe-
rienced designers argue about how firmly Demeter applies to message chains that
return attributes. It may be cheapest, in your specific case, to reach through intermedi-
ate objects to retrieve distant attributes. Balance the likelihood and cost of change
against the cost of removing the violation. If, for example, you are printing a report
of a set of related objects, the most rational strategy may be to explicitly specify the
intermediate objects and to change the report if it becomes necessary. Because the
risk incurred by Demeter violations is low for stable attributes, this may be the most
cost-efficient strategy.

This tradeoff is permitted as long as you are not changing the value of the attrib-
ute you retrieve. If depart sends customer.bicycle.wheel.tire with the intent
of altering the result, it is not just retrieving an attribute, it is implementing behavior
that belongs in Wheel. In this case, customer.bicycle.wheel.tire becomes just
like customer.bicycle.wheel.rotate; it’s a chain that reaches across many
objects to get to distant behavior. The inherent cost of this coding style is high; this
violation should be removed.

The third message chain, hash.keys.sort.join is perfectly reasonable and,
despite the abundance of dots, may not be a Demeter violation at all. Instead of eval-
uating this phrase by counting the “dots,” evaluate it by checking the types of the
intermediate objects.

hash.keys returns an Enumerable

hash.keys.sort also returns an Enumerable

hash.keys.sort.join returns a String

By this logic, there is a slight Demeter violation. However, if you can bring yourself to
accept that hash.keys.sort.join actually returns an Enumerable of Strings, all
of the intermediate objects have the same type and there is no Demeter violation. If
you remove the dots from this line of code, your costs may well go up instead of down.

As you can see, Demeter is more subtle than first appears. Its fixed rules are not
an end in themselves; like every design principle, it exists in service of your overall
goals. Certain “violations” of Demeter reduce your application’s flexibility and main-
tainability, while others make perfect sense.

81The Law of Demeter

ptg11539634

Avoiding Violations
One common way to remove “train wrecks” from code is to use delegation to avoid
the “dots.” In object-oriented terms, to delegate a message is to pass it on to another
object, often via a wrapper method. The wrapper method encapsulates, or hides,
knowledge that would otherwise be embodied in the message chain.

There are a number of ways to accomplish delegation. Ruby contains delegate.rb
and forwardable.rb and the Ruby on Rails framework includes the delegate
method. Each of these exists to make it easy for an object to automatically intercept a
message sent to self and to instead send it somewhere else.

Delegation is tempting as a solution to the Demeter problem because it removes
the visible evidence of violations. This technique is sometimes useful, but beware, it
can result in code that obeys the letter of the law while ignoring its spirit. Using
delegation to hide tight coupling is not the same as decoupling the code.

Listening to Demeter
Demeter is trying to tell you something and it isn’t “use more delegation.”

Message chains like customer.bicycle.wheel.rotate occur when your design
thoughts are unduly influenced by objects you already know. Your familiarity with the
public interfaces of known objects may lead you to string together long message
chains to get at distant behavior.

Reaching across disparate objects to invoke distant behavior is tantamount to
saying, “there’s some behavior way over there that I need right here and I know how
to go get it.” The code knows not only what it wants (to rotate) but how to navigate
through a bunch of intermediate objects to reach the desired behavior. Just as Trip,
earlier, knew how Mechanic should prepare a bike and so was tightly coupled to
Mechanic, here the depart method knows how to navigate through a series of
objects to make a wheel rotate and therefore is tightly coupled to your overall object
structure.

This coupling causes all kinds of problems. The most obvious is that it raises
the risk that Trip will be forced to change because of an unrelated change some-
where in the message chain. However, there’s another problem here that is even
more serious.

When the depart method knows this chain of objects, it binds itself to a very
specific implementation and it cannot be reused in any other context. Customers
must always have Bicycles, which in turn must have Wheels that rotate.

82 Chapter 4. Creating Flexible Interfaces

ptg11539634

Consider what this message chain would look like if you had started out by deciding
what depart wants from customer. From a message-based point of view, the answer
is obvious:

customer.ride

The ride method of customer hides implementation details from Trip and reduces
both its context and its dependencies, significantly improving the design. When
FastFeet changes and begins leading hiking trips it’s much easier to generalize from
customer.ride to customer.depart or customer.go than to disentangle the ten-
tacles of this message chain from your application.

The train wrecks of Demeter violations are clues that there are objects whose
public interfaces are lacking. Listening to Demeter means paying attention to your
point of view. If you shift to a message-based perspective, the messages you find will
become public interfaces in the objects they lead you to discover. However, if you are
bound by the shackles of existing domain objects, you’ll end up assembling their exist-
ing public interfaces into long message chains and thus will miss the opportunity to
find and construct flexible public interfaces.

Summary
Object-oriented applications are defined by the messages that pass between objects.
This message passing takes place along “public” interfaces; well-defined public inter-
faces consist of stable methods that expose the responsibilities of their underlying
classes and provide maximal benefit at minimal cost.

Focusing on messages reveals objects that might otherwise be overlooked. When
messages are trusting and ask for what the sender wants instead of telling the receiver
how to behave, objects naturally evolve public interfaces that are flexible and reusable
in novel and unexpected ways.

83Summary

ptg11539634

This page intentionally left blank

ptg11539634

CHAPTER 5
Reducing Costs with
Duck Typing

The purpose of object-oriented design is to reduce the cost of change. Now that you
know messages are at the design center of your application, and now that you are
committed to the construction of rigorously defined public interfaces, you can com-
bine these two ideas into a powerful design technique that further reduces your costs.

This technique is known as duck typing. Duck types are public interfaces that are
not tied to any specific class. These across-class interfaces add enormous flexibility to
your application by replacing costly dependencies on class with more forgiving
dependencies on messages.

Duck typed objects are chameleons that are defined more by their behavior than
by their class. This is how the technique gets its name; if an object quacks like a duck
and walks like a duck, then its class is immaterial, it’s a duck.

This chapter shows you how to recognize and exploit duck types to make your
application more flexible and easier to change.

Understanding Duck Typing
Programming languages use the term “type” to describe the category of the contents
of a variable. Procedural languages provide a small, fixed number of types, generally
used to describe kinds of data. Even the humblest language defines types to hold
strings, numbers, and arrays.

85

ptg11539634

It is knowledge of the category of the contents of a variable, or its type, that
allows an application to have an expectation about how those contents will behave.
Applications quite reasonably assume that numbers can be used in mathematical
expressions, strings concatenated, and arrays indexed.

In Ruby these expectations about the behavior of an object come in the form of
beliefs about its public interface. If one object knows another’s type, it knows to
which messages that object can respond.

An instance of the Mechanic class contains, obviously, the complete public inter-
face of Mechanic. It is blindingly apparent that any object holding onto an instance
of Mechanic can treat the instance as if it is a Mechanic; the object, by its very nature,
implements the Mechanic class’s public interface.

However, you are not limited to expecting an object to respond to just one interface.
A Ruby object is like a partygoer at a masquerade ball that changes masks to suit the
theme. It can expose a different face to every viewer; it can implement many different
interfaces.

Just as beauty is in the physical world, within your application an object’s type is
in the eye of the beholder. Users of an object need not, and should not, be concerned
about its class. Class is just one way for an object to acquire a public interface; the
public interface an object obtains by way of its class may be one of several that it con-
tains. Applications may define many public interfaces that are not related to one
specific class; these interfaces cut across class. Users of any object can blithely expect it
to act like any, or all, of the public interfaces it implements. It’s not what an object is
that matters, it’s what it does.

If every object trusts all others to be what it expects at any given moment, and
any object can be any kind of thing, the design possibilities are infinite. These
possibilities can be used to create flexible designs that are marvels of structured
creativity or, alternatively, to construct terrifying designs that are incomprehensi-
bly chaotic.

Using this flexibility wisely requires that you recognize these across-class types
and construct their public interfaces as intentionally and as diligently as you did those
of within-class types back in Chapter 4, Creating Flexible Interfaces. Across-class
types, duck types, have public interfaces that represent a contract that must be explicit
and well-documented.

The best way to explain duck types is to explore the consequences of not using
them. This section contains an example that goes through several refactorings, solving
a messy design problem by finding and implementing a duck type.

86 Chapter 5. Reducing Costs with Duck Typing

ptg11539634

Overlooking the Duck
In the following code Trip’s prepare method sends message prepare_bicycles to
the object contained in its mechanic parameter. Notice that the Mechanic class is
not referenced; even though the parameter name is mechanic, the object it contains
could be of any class.

1 class Trip

2 attr_reader :bicycles, :customers, :vehicle

3

4 # this 'mechanic' argument could be of any class

5 def prepare(mechanic)

6 mechanic.prepare_bicycles(bicycles)

7 end

8

9 # ...

10 end

11

12 # if you happen to pass an instance of *this* class,

13 # it works

14 class Mechanic

15 def prepare_bicycles(bicycles)

16 bicycles.each {|bicycle| prepare_bicycle(bicycle)}

17 end

18

19 def prepare_bicycle(bicycle)

20 #...

21 end

22 end

Figure 5.1 contains the corresponding sequence diagram, where an outside object gets
everything started by sending prepare to Trip, passing along an argument.

The prepare method has no explicit dependency on the Mechanic class but it does
depend on receiving an object that can respond to prepare_bicycles. This depend-
ency is so fundamental that it’s easy to miss or to discount, but nonetheless, it exists.
Trip’s prepare method firmly believes that its argument contains a preparer of bicycles.

Compounding the Problem
You may already have noticed that this example is like the sequence diagram in Figure 4.6
of Chapter 4. The next refactoring there improved the design by pushing knowledge

87Understanding Duck Typing

ptg11539634

of how a Trip gets prepared into Mechanic. The next example here, alas, is no
improvement at all.

Imagine that requirements change. In addition to a mechanic, trip preparation
now involves a trip coordinator and a driver. Following the established pattern of the
code, you create new TripCoordinator and Driver classes and give them the
behavior for which they are responsible. You also change Trip’s prepare method to
invoke the correct behavior from each of its arguments.

The following code illustrates the change. The new TripCoordinator and
Driver classes are simple and inoffensive but Trip’s prepare method is now a cause
for alarm. It refers to three different classes by name and knows specific methods im-
plemented in each. Risks have dramatically gone up. Trip’s prepare method might
be forced to change because of a change elsewhere and it might unexpectedly break as
the result of a distant, unrelated change.

1 # Trip preparation becomes more complicated

2 class Trip

3 attr_reader :bicycles, :customers, :vehicle

4

5 def prepare(preparers)

6 preparers.each {|preparer|

7 case preparer

8 when Mechanic

9 preparer.prepare_bicycles(bicycles)

10 when TripCoordinator

11 preparer.buy_food(customers)

12 when Driver

88 Chapter 5. Reducing Costs with Duck Typing

some
object

a
Trip

a
Mechanic

a
Mechanic

some
object

a
Trip

prepare_bicycles(bicycles)

prepare(mechanic)

Figure 5.1 Trip prepares itself by asking a mechanic to prepare the bicycles.

ptg11539634

13 preparer.gas_up(vehicle)

14 preparer.fill_water_tank(vehicle)

15 end

16 }

17 end

18 end

19

20 # when you introduce TripCoordinator and Driver

21 class TripCoordinator

22 def buy_food(customers)

23 # ...

24 end

25 end

26

27 class Driver

28 def gas_up(vehicle)

29 #...

30 end

31

32 def fill_water_tank(vehicle)

33 #...

34 end

35 end

This code is the first step in a process that will paint you into a corner with no way
out. Code like this gets written when programmers are blinded by existing classes and
neglect to notice that they have overlooked important messages; this dependent-laden
code is a natural outgrowth of a class-based perspective.

The roots of the problem are innocent enough. It’s easy to fall into the trap of
thinking of the original prepare method as expecting an actual instance of
Mechanic. Your technical brain surely recognizes that prepare’s argument can
legally be of any class, but that doesn’t save you; in your heart of hearts you think of
the argument as being a Mechanic.

Because you know that Mechanic understands prepare_bicycle and are confi-
dent that you are passing a Mechanic, initially all is well. This perspective works fine
until something changes and instances of classes other than Mechanic begin to
appear on the argument list. When that happens, prepare must suddenly deal with
objects that do not understand prepare_bicycle.

If your design imagination is constrained by class and you find yourself unex-
pectedly dealing with objects that don’t understand the message you are sending, your

89Understanding Duck Typing

ptg11539634

tendency is to go hunt for messages that these new objects do understand. Because
the new arguments are instances of TripCoordinator and Driver, you naturally
examine the public interfaces of those classes and find buy_food, gas_up and
fill_water_tank. This is the behavior that prepare wants.

The most obvious way to invoke this behavior is to send these very messages,
but now you’re stuck. Every one of your arguments is of a different class and
implements different methods; you must determine each argument’s class to know
which message to send. Adding a case statement that switches on class solves the
problem of sending the correct message to the correct object but causes an explo-
sion of dependencies.

Count the number of new dependencies in the prepare method. It relies on spe-
cific classes, no others will do. It relies on the explicit names of those classes. It knows
the names of the messages that each class understands, along with the arguments that
those messages require. All of this knowledge increases risk; many distant changes will
now have side effects on this code.

To make matters worse, this style of code propagates itself. When another new
trip preparer appears, you, or the next person down the programming line, will add a
new when branch to the case statement. Your application will accrue more and more
methods like this, where the method knows many class names and sends a specific
message based on class. The logical endpoint of this programming style is a stiff and
inflexible application, where it eventually becomes easier to rewrite everything than to
change anything.

Figure 5.2 shows the new sequence diagram. Every sequence diagram thus far
has been simpler than its corresponding code, but this new diagram looks frighten-
ingly complicated. This complexity is a warning. Sequence diagrams should always
be simpler than the code they represent; when they are not, something is wrong with
the design.

Finding the Duck
The key to removing the dependencies is to recognize that because Trip’s prepare
method serves a single purpose, its arguments arrive wishing to collaborate to accom-
plish a single goal. Every argument is here for the same reason and that reason is unre-
lated to the argument’s underlying class.

Avoid getting sidetracked by your knowledge of what each argument’s class
already does; think instead about what prepare needs. Considered from prepare’s

90 Chapter 5. Reducing Costs with Duck Typing

ptg11539634

point of view, the problem is straightforward. The prepare method wants to prepare
the trip. Its arguments arrive ready to collaborate in trip preparation. The design
would be simpler if prepare just trusted them to do so.

Figure 5.3 illustrates this idea. Here the prepare method doesn’t have a preor-
dained expectation about the class of its arguments, instead it expects each to be a
“Preparer.”

This expectation neatly turns the tables. You’ve pried yourself loose from existing
classes and invented a duck type. The next step is to ask what message the prepare
method can fruitfully send each Preparer. From this point of view, the answer is
obvious: prepare_trip.

91Understanding Duck Typing

some
object

a
Trip

a
Mechanic

a
Coordinator

a
Driver

some
object

a
Trip

a
Mechanic

a
Coordinator

a
Driver

prepare(preparers)

[preparers]

[Mechanic]

[Driver]

prepare_bicycles(bicycles)

buy_food(customers)

gas_up(vehicle)

fill_water_tank(vehicle)

loop

alt

[TripCoordinator]

Figure 5.2 Trip knows too many concrete classes and methods.

ptg11539634

Figure 5.4 introduces the new message. Trip’s prepare method now expects its
arguments to be Preparers that can respond to prepare_trip.

What kind of thing is Preparer? At this point it has no concrete existence; it’s
an abstraction, an agreement about the public interface on an idea. It’s a figment of
design.

Objects that implement prepare_trip are Preparers and, conversely, objects
that interact with Preparers only need trust them to implement the Preparer
interface. Once you see this underlying abstraction, it’s easy to fix the code. Mechanic,
TripCoordinator and Driver should behave like Preparers; they should implement
prepare_trip.

Here’s the code for the new design. The prepare method now expects its argu-
ments to be Preparers and each argument’s class implements the new interface.

92 Chapter 5. Reducing Costs with Duck Typing

some
object

missing
‘Preparer’

a
Trip

missing
‘Preparer’

a
Mechanic

a
Coordinator

a
Driver

some
object

a
Trip

a
Mechanic

a
Coordinator

a
Driver

prepare(preparers)

[preparers]

[Mechanic]

[Driver]

loop

alt

[TripCoordinator]

prepare_bicycles(bicycles)

buy_food(customers)

gas_up(vehicle)

fill_water_tank(vehicle)

Figure 5.3 Trip needs each argument to act like a preparer.

ptg11539634
1 # Trip preparation becomes easier

2 class Trip

3 attr_reader :bicycles, :customers, :vehicle

4

5 def prepare(preparers)

6 preparers.each {|preparer|

7 preparer.prepare_trip(self)}

8 end

9 end

10

11 # when every preparer is a Duck

12 # that responds to ‘prepare_trip’

13 class Mechanic

14 def prepare_trip(trip)

15 trip.bicycles.each {|bicycle|

16 prepare_bicycle(bicycle)}

17 end

18

19 # ...

20 end

21

22 class TripCoordinator

23 def prepare_trip(trip)

93Understanding Duck Typing

some
object

a
Trip

a
Preparer

some
object

a
Trip

a
Preparer

[preparers]

prepare(preparers)

prepare_trip(self)

request_additional info

additional info response

loop

Figure 5.4 Trip collaborates with the preparer duck.

ptg11539634

24 buy_food(trip.customers)

25 end

26

27 # ...

28 end

29

30 class Driver

31 def prepare_trip(trip)

32 vehicle = trip.vehicle

33 gas_up(vehicle)

34 fill_water_tank(vehicle)

35 end

36 # ...

37 end

The prepare method can now accept new Preparers without being forced to
change, and it’s easy to create additional Preparers if the need arises.

Consequences of Duck Typing
This new implementation has a pleasing symmetry that suggests a rightness about the
design, but the consequences of introducing a duck type go deeper.

In the initial example, the prepare method depends on a concrete class. In this
most recent example, prepare depends on a duck type. The path between these
examples leads through a thicket of complicated, dependent-laden code.

The concreteness of the first example makes it simple to understand but danger-
ous to extend. The final, duck typed, alternative is more abstract; it places slightly
greater demands on your understanding but in return offers ease of extension. Now
that you have discovered the duck, you can elicit new behavior from your application
without changing any existing code; you simply turn another object into a Preparer
and pass it into Trip’s prepare method.

This tension between the costs of concretion and the costs of abstraction is fun-
damental to object-oriented design. Concrete code is easy to understand but costly to
extend. Abstract code may initially seem more obscure but, once understood, is far
easier to change. Use of a duck type moves your code along the scale from more
concrete to more abstract, making the code easier to extend but casting a veil over the
underlying class of the duck.

The ability to tolerate ambiguity about the class of an object is the hallmark of
a confident designer. Once you begin to treat your objects as if they are defined by

94 Chapter 5. Reducing Costs with Duck Typing

ptg11539634

their behavior rather than by their class, you enter into a new realm of expressive
flexible design.

Polymorphism

The term polymorphism is commonly used in object-oriented programming
but its use in everyday speech is rare enough to warrant a definition.

Polymorphism expresses a very specific concept and can be used,
depending on your inclinations, either to communicate or to intimidate.
Either way, it’s important to have a clear understanding of its meaning.

First, a general definition: Morph is the Greek word for form, morphism
is the state of having a form, and polymorphism is the state of having many
forms. Biologists use this word. Darwin’s famous finches are polymorphic; a
single species has many forms.

Polymorphism in OOP refers to the ability of many different objects to
respond to the same message. Senders of the message need not care about
the class of the receiver; receivers supply their own specific version of the
behavior.

A single message thus has many (poly) forms (morphs).
There are a number of ways to achieve polymorphism; duck typing, as

you have surely guessed, is one. Inheritance and behavior sharing (via Ruby
modules) are others, but those are topics for the next chapters.

Polymorphic methods honor an implicit bargain; they agree to be inter-
changeable from the sender’s point of view. Any object implementing a poly-
morphic method can be substituted for any other; the sender of the message
need not know or care about this substitution.

This substitutability doesn’t happen by magic. When you use polymor-
phism it’s up to you to make sure all of your objects are well-behaved. This
idea is covered in Chapter 7, Sharing Role Behavior with Modules.

Writing Code That Relies on Ducks
Using duck typing relies on your ability to recognize the places where your applica-
tion would benefit from across-class interfaces. It is relatively easy to implement a
duck type; your design challenge is to notice that you need one and to abstract its
interface.

This section contains patterns that reveal paths you can follow to discover ducks.

95Writing Code That Relies on Ducks

ptg11539634

Recognizing Hidden Ducks
Many times unacknowledged duck types already exist, lurking within existing code.
Several common coding patterns indicate the presence of a hidden duck. You can
replace the following with ducks:

• Case statements that switch on class

• kind_of? and is_a?

• responds_to?

Case Statements That Switch on Class

The most common, obvious pattern that indicates an undiscovered duck is the example
you’ve already seen; a case statement that switches on the class names of domain
objects of your application. The following prepare method (same as above) should
grab your attention as if it were playing trumpets.

1 class Trip

2 attr_reader :bicycles, :customers, :vehicle

3

4 def prepare(preparers)

5 preparers.each {|preparer|

6 case preparer

7 when Mechanic

8 preparer.prepare_bicycles(bicycles)

9 when TripCoordinator

10 preparer.buy_food(customers)

11 when Driver

12 preparer.gas_up(vehicle)

13 preparer.fill_water_tank(vehicle)

14 end

15 }

16 end

17 end

When you see this pattern you know that all of the preparers must share something
in common; they arrive here because of that common thing. Examine the code and
ask yourself, “What is it that prepare wants from each of its arguments?”

The answer to that question suggests the message you should send; this message
begins to define the underlying duck type.

96 Chapter 5. Reducing Costs with Duck Typing

ptg11539634

Here the prepare method wants its arguments to prepare the trip. Thus,
prepare_trip becomes a method in the public interface of the new Preparer duck.

kind_of? and is_a?

There are various ways to check the class of an object. The case statement above is one of
them. The kind_of? and is_a? messages (they are synonymous) also check class.
Rewriting the previous example in the following way does nothing to improve the code.

1 if preparer.kind_of?(Mechanic)

2 preparer.prepare_bicycles(bicycle)

3 elsif preparer.kind_of?(TripCoordinator)

4 preparer.buy_food(customers)

5 elsif preparer.kind_of?(Driver)

6 preparer.gas_up(vehicle)

7 preparer.fill_water_tank(vehicle)

8 end

Using kind_of? is no different than using a case statement that switches on class;
they are the same thing, they cause exactly the same problems, and they should be
corrected using the same techniques.

responds_to?

Programmers who understand that they should not depend on class names but
who haven’t yet made the leap to duck types are tempted to replace kind_of? with
responds_to?. For example:

1 if preparer.responds_to?(:prepare_bicycles)

2 preparer.prepare_bicycles(bicycle)

3 elsif preparer.responds_to?(:buy_food)

4 preparer.buy_food(customers)

5 elsif preparer.responds_to?(:gas_up)

6 preparer.gas_up(vehicle)

7 preparer.fill_water_tank(vehicle)

8 end

While this slightly decreases the number of dependencies, this code still has too many.
The class names are gone but the code is still very bound to class. What object will
know prepare_bicycles other than Mechanic? Don’t be fooled by the removal of
explicit class references. This example still expects very specific classes.

97Writing Code That Relies on Ducks

ptg11539634

Even if you are in a situation where more than one class implements
prepare_bicycles or buy_food, this code pattern still contains unnecessary
dependencies; it controls rather than trusts other objects.

Placing Trust in Your Ducks
Use of kind_of?, is_a?, responds_to?, and case statements that switch on
your classes indicate the presence of an unidentified duck. In each case the code is
effectively saying “I know who you are and because of that I know what you do.”
This knowledge exposes a lack of trust in collaborating objects and acts as a
millstone around your object’s neck. It introduces dependencies that make code
difficult to change.

Just as in Demeter violations, this style of code is an indication that you are miss-
ing an object, one whose public interface you have not yet discovered. The fact that
the missing object is a duck type instead of a concrete class matters not at all; it’s the
interface that matters, not the class of the object that implements it.

Flexible applications are built on objects that operate on trust; it is your job to
make your objects trustworthy. When you see these code patterns, concentrate on the
offending code’s expectations and use those expectations to find the duck type. Once
you have a duck type in mind, define its interface, implement that interface where
necessary, and then trust those implementers to behave correctly.

Documenting Duck Types
The simplest kind of duck type is one that exists merely as an agreement about its
public interface. This chapter’s example code implements that kind of duck, where
several different classes implement prepare_trip and can thus be treated like
Preparers.

The Preparer duck type and its public interface are a concrete part of the
design but a virtual part of the code. Preparers are abstract; this gives them
strength as a design tool but this very abstraction makes the duck type less than
obvious in the code.

When you create duck types you must both document and test their public inter-
faces. Fortunately, good tests are the best documentation, so you are already halfway
done; you need only write the tests.

See Chapter 9, Designing Cost-Effective Tests, for more on testing duck types.

98 Chapter 5. Reducing Costs with Duck Typing

ptg11539634

Sharing Code Between Ducks
In this chapter, Preparer ducks provide class-specific versions of the behavior required
by their interface. Mechanic, Driver and TripCoordinator each implement method
prepare_trip. This method signature is the only thing they have in common. They
share only the interface, not the implementation.

Once you start using duck types, however, you’ll find that classes that implement
them often need to share some behavior in common. Writing ducks that share code is
one of the topics covered in Chapter 7.

Choosing Your Ducks Wisely
Every example thus far unequivocally declares that you should not use kind_of? or
responds_to? to decide what message to send an object, yet you don’t have to look
far to find reams of well-received code that do exactly that.

The following code is an example from the Ruby on Rails framework (active_record/
relations/finder_methods.rb). This example patently uses class to decide how to deal
with its input, a technique that is in direct opposition to the guidelines stated above.
The first method below clearly decides how to behave based on the class of its args
argument.

If sending a message based on the class of the receiving object is the death knell
for your application, why is this code acceptable?

1 # A convenience wrapper for <tt>find(:first, *args)</tt>.

2 # You can pass in all the same arguments to this

3 # method as you can to <tt>find(:first)</tt>.

4 def first(*args)

5 if args.any?

6 if args.first.kind_of?(Integer) ||

7 (loaded? && !args.first.kind_of?(Hash))

8 to_a.first(*args)

9 else

10 apply_finder_options(args.first).first

11 end

12 else

13 find_first

14 end

15 end

99Writing Code That Relies on Ducks

ptg11539634

The major difference between this example and the previous ones is the stability of the
classes that are being checked. When first depends on Integer and Hash, it is
depending on core Ruby classes that are far more stable than it is. The likelihood of
Integer or Hash changing in such a way as to force first to change is vanishingly
small. This dependency is safe. There probably is a duck type hidden somewhere in this
code but it will likely not reduce your overall application costs to find and implement it.

From this example you can see that the decision to create a new duck type relies
on judgment. The purpose of design is to lower costs; bring this measuring stick to
every situation. If creating a duck type would reduce unstable dependencies, do so.
Use your best judgment.

The above example’s underlying duck spans Integer and Hash and therefore its
implementation would require making changes to Ruby base classes. Changing base
classes is known as monkey patching and is a delightful feature of Ruby but can be
perilous in untutored hands.

Implementing duck types across your own classes is one thing, changing Ruby
base classes to introduce new duck types is quite another. The tradeoffs are different;
the risks are greater. Neither of these considerations should prevent you from monkey
patching Ruby at need; however, you must be able to eloquently defend this design
decision. The standard of proof is high.

Conquering a Fear of Duck Typing
This chapter has thus far delicately sidestepped the dynamic versus static typing
battlefield, but the issue can no longer be avoided. If you have a statically typed program-
ming background and find the idea of duck typing alarming, this section is for you.

If you are unfamiliar with the argument, are happily using Ruby, and were
convinced by the prior discourse on duck typing, you can skim this section without
fear of missing important new concepts. You might, however, find what follows useful
if you need to fend off arguments made by your more statically typed friends.

Subverting Duck Types with Static Typing
Early in this chapter, type was defined as the category of the contents of a variable.
Programming languages are either statically or dynamically typed. Most (though not
all) statically typed languages require that you explicitly declare the type of each variable
and every method parameter. Dynamically typed languages omit this requirement;
they allow you to put any value in any variable and pass any argument to any method,
without further declaration. Ruby, obviously, is dynamically typed.

100 Chapter 5. Reducing Costs with Duck Typing

ptg11539634

Relying on dynamic typing makes some people uncomfortable. For some, this
discomfort is caused by a lack of experience, for others, by a belief that static typing is
more reliable.

The lack-of-experience problem cures itself, but the belief that static typing is
fundamentally preferable often persists because it is self-reinforcing. Programmers
who fear dynamic typing tend to check the classes of objects in their code; these very
checks subvert the power of dynamic typing, making it impossible to use duck types.

Methods that cannot behave correctly unless they know the classes of their argu-
ments will fail (with type errors) when new classes appear. Programmers who believe
in static typing take these failures as proof that more type checking is needed. When
more checks are added, the code becomes less flexible and even more dependent on
class. The new dependencies cause additional type failures, and the programmer
responds to these failures by adding yet more type checking. Anyone caught in this
loop will naturally have a hard time believing that the solution to their type problem
is to remove type checking altogether.

Duck typing provides a way out of this trap. It removes the dependencies on class
and thus avoids the subsequent type failures. It reveals stable abstractions on which
your code can safely depend.

Static versus Dynamic Typing
This section compares dynamic and static typing, hoping to allay any fears that keep
you from being fully committed to dynamic types.

Static and dynamic typing both make promises and each has costs and benefits.
Static typing aficionados cite the following qualities:

• The compiler unearths type errors at compile time.

• Visible type information serves as documentation.

• Compiled code is optimized to run quickly.

These qualities represent strengths in a programming language only if you accept this
set of corresponding assumptions:

• Runtime type errors will occur unless the compiler performs type checks.

• Programmers will not otherwise understand the code; they cannot infer an object’s
type from its context.

• The application will run too slowly without these optimizations.

101Conquering a Fear of Duck Typing

ptg11539634

Dynamic typing proponents list these qualities:

• Code is interpreted and can be dynamically loaded; there is no compile/make cycle.

• Source code does not include explicit type information.

• Metaprogramming is easier.

These qualities are strengths if you accept this set of assumptions:

• Overall application development is faster without a compile/make cycle.

• Programmers find the code easier to understand when it does not contain type
declarations; they can infer an object’s type from its context.

• Metaprogramming is a desirable language feature.

Embracing Dynamic Typing
Some of these qualities and assumptions are based on empirical facts and are easy to
evaluate. There is no doubt that, for certain applications, well-optimized statically
typed code will outperform a dynamically typed implementation. When a dynami-
cally typed application cannot be tuned to run quickly enough, static typing is the
alternative. If you must, you must.

Arguments about the value of type declarations as documentation are more
subjective. Those experienced with dynamic typing find type declarations distracting.
Those used to static typing may be disoriented by lack of type information. If you are
coming from a statically typed language, like Java or C++, and feel unmoored by the
lack of explicit type declarations in Ruby, hang in there. There’s lots of anecdotal
evidence to suggest that, once accustomed to it, you’ll find this less verbose syntax
easier to read, write, and understand.

Metaprogramming (i.e., writing code that writes code) is a topic that program-
mers tend to feel strongly about and the side of the argument they support is related
to their past experience. If you have solved a massive problem with a simple, elegant
piece of metaprogramming, you become an advocate for life. On the other hand, if
you’ve faced the daunting task of debugging an overly clever, completely obscure,
and possibly unnecessary bit of metaprogramming, you may perceive it as a tool for
programmers to inflict pain upon one another and wish to banish it forever.

Metaprogramming is a scalpel; though dangerous in the wrong hands, it’s a tool
no good programmer should willingly be without. It confers great power and requires

102 Chapter 5. Reducing Costs with Duck Typing

ptg11539634

great responsibility. The fact that some people cannot be trusted with knives does not
mean sharp instruments should be taken from the hands of all. Metaprogramming,
used wisely, has great value; ease of metaprogramming is a strong argument in favor of
dynamic typing.

The two remaining qualities are static typing’s compile time type checking and
dynamic typing’s lack of a compile/make cycle. Static typing advocates assert that
preventing unexpected type errors at runtime is so necessary and so valuable that its
benefit trumps the greater programming efficiency that is gained by removing the
compiler.

This argument rests on static typing’s premise that:

• The compiler truly can save you from accidental type errors.

• Without the compiler’s help, these type errors will occur.

If you have spent years programming in a statically typed language you may accept
these assertions as gospel. However, dynamic typing is here to shake the foundations
of your belief. To these arguments dynamic typing says “It can’t” and “They won’t.”

The compiler cannot save you from accidental type errors. Any language that
allows casting a variable to a new type is vulnerable. Once you start casting, all bets
are off; the compiler excuses itself and you are left to rely on your own wits to pre-
vent type errors. The code is only as good as your tests; runtime failures can still
occur. The notion that static typing provides safety, comforting though it may be, is
an illusion.

Furthermore, it doesn’t actually matter whether the compiler can save you or not;
you don’t need saving. In the real world, compiler preventable runtime type errors
almost never occur. It just doesn’t happen.

This is not to suggest that you’ll never experience a runtime type error. Few pro-
grammers make it through life without sending a message to an uninitialized variable
or assuming an array has elements when it is actually empty. However, discovering at

103Conquering a Fear of Duck Typing

SAFETY

THIRD

Figure 5.5 Sharp instruments: useful, but not for everyone.

ptg11539634

runtime that nil doesn’t understand the message it received is not something the
compiler could have prevented. These errors are equally likely in both type systems.

Dynamic typing allows you to trade compile time type checking, a serious restric-
tion that has high cost and provides little value, for the huge gains in efficiency provided
by removing the compile/make cycle. This trade is a bargain. Take it.

Duck typing is built on dynamic typing; to use duck typing you must embrace
this dynamism.

Summary
Messages are at the center of object-oriented applications and they pass among objects
along public interfaces. Duck typing detaches these public interfaces from specific classes,
creating virtual types that are defined by what they do instead of by who they are.

Duck typing reveals underlying abstractions that might otherwise be invisible.
Depending on these abstractions reduces risk and increases flexibility, making your
application cheaper to maintain and easier to change.

104 Chapter 5. Reducing Costs with Duck Typing

ptg11539634

CHAPTER 6
Acquiring Behavior
Through Inheritance

Well-designed applications are constructed of reusable code. Small, trustworthy self-
contained objects with minimal context, clear interfaces, and injected dependencies
are inherently reusable. This book has, up to now, concentrated on creating objects
with exactly these qualities.

Most object-oriented languages, however, have another code sharing technique,
one built into the very syntax of the language: inheritance. This chapter offers a detailed
example of how to write code that properly uses inheritance. Its goal is to teach you to
build a technically sound inheritance hierarchy; its purpose is to prepare you to decide
if you should.

Once you understand how to use classical inheritance, the concepts are easily
transferred to other inheritance mechanisms. Inheritance is thus a topic for two
chapters. This chapter contains a tutorial that illustrates how to write inheritable
code. Chapter 7, Sharing Role Behavior with Modules, expands these techniques to
the problem of sharing code via Ruby modules.

Understanding Classical Inheritance
The idea of inheritance may seem complicated but as with all complexity, there’s a
simplifying abstraction. Inheritance is, at its core, a mechanism for automatic message
delegation. It defines a forwarding path for not-understood messages. It creates

105

ptg11539634

relationships such that, if one object cannot respond to a received message, it delegates
that message to another. You don’t have to write code to explicitly delegate the
message, instead you define an inheritance relationship between two objects and the
forwarding happens automatically.

In classical inheritance these relationships are defined by creating subclasses.
Messages are forwarded from subclass to superclass; the shared code is defined in the
class hierarchy.

The term classical is a play on the word class, not a nod to an archaic technique,
and it serves to distinguish this superclass/subclass mechanism from other inheritance
techniques. JavaScript, for example, has prototypical inheritance and Ruby has modules
(more on modules in the next chapter), both of which also provide a way to share
code via automatic delegation of messages.

The uses and misuses of inheritance are best understood by example, and this
chapter’s example provides a thorough grounding in the techniques of classical inheri-
tance. The example begins with a single class and goes through a number of refactorings
to reach a satisfactory set of subclasses. Each step is small and easily understood but it
takes a whole chapter’s worth of code to illustrate all of the ideas.

Recognizing Where to Use Inheritance
The first challenge is recognizing where inheritance would be useful. This section
illustrates how to know when you have the problem that inheritance solves.

Assume that FastFeet leads road bike trips. Road bicycles are lightweight, curved
handlebar (drop bar), skinny tired bikes that are meant for paved roads. Figure 6.1
shows a road bike.

Mechanics are responsible for keeping bicycles running (no matter how much
abuse customers heap upon them), and they take an assortment of spare parts on every
trip. The spares they need depend on which bicycles they take.

Starting with a Concrete Class
FastFeet’s application already has a Bicycle class, shown below. Every road bike that’s
going on a trip is represented by an instance of this class.

Bikes have an overall size, a handlebar tape color, a tire size, and a chain type.
Tires and chains are integral parts and so spares must always be taken. Handlebar tape
may seem less necessary, but in real life it is just as required. No self-respecting cyclist
would tolerate dirty or torn bar tape; mechanics must carry spare tape in the correct,
matching color.

106 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

1 class Bicycle

2 attr_reader :size, :tape_color

3

4 def initialize(args)

5 @size = args[:size]

6 @tape_color = args[:tape_color]

7 end

8

9 # every bike has the same defaults for

10 # tire and chain size

11 def spares

12 { chain: '10-speed',

13 tire_size: '23',

14 tape_color: tape_color}

15 end

16

17 # Many other methods...

18 end

19

20 bike = Bicycle.new(

21 size: 'M',

22 tape_color: 'red')

107Recognizing Where to Use Inheritance

Figure 6.1 A lightweight, drop-bar, skinny tired road bike.

ptg11539634

23

24 bike.size # -> 'M'

25 bike.spares

26 # -> {:tire_size => "23",

27 # :chain => "10-speed",

28 # :tape_color => "red"}

Bicycle instances can respond to the spares, size, and tape_color messages and
a Mechanic can figure out what spare parts to take by asking each Bicycle for its
spares. Despite the fact that the spares method commits the sin of embedding
default strings directly inside itself, the above code is fairly reasonable. This model of a
bicycle is obviously missing a few bolts and is not something you could actually ride,
but it will do for this chapter’s example.

This class works just fine until something changes. Imagine that FastFeet begins
to lead mountain bike trips.

Mountain bikes and road bikes are much alike but there are clear differences
between them. Mountain bikes are meant to be ridden on dirt paths instead of paved
roads. They have sturdy frames, fat tires, straight-bar handlebars (with rubber hand
grips instead of tape), and suspension. The bicycle in Figure 6.2 has front suspension
only, but some mountain bikes also have rear, or “full” suspension.

108 Chapter 6. Acquiring Behavior Through Inheritance

Figure 6.2 A beefy, straight-bar, front-suspension, fat-tired mountain bike.

ptg11539634

Your design task is to add support for mountain bikes to FastFeet’s application.
Much of the behavior that you need already exists; mountain bikes are definitely

bicycles. They have an overall bike size and a chain and tire size. The only differences
between road and mountain bikes are that road bikes need handlebar tape and mountain
bikes have suspension.

Embedding Multiple Types
When a preexisting concrete class contains most of the behavior you need, it’s tempt-
ing to solve this problem by adding code to that class. This next example does just
that, it changes the existing Bicycle class so that spares works for both road and
mountain bikes.

As you see below, three new variables have been added, along with their corre-
sponding accessors. The new front_shock and rear_shock variables hold moun-
tain bike specific parts. The new style variable determines which parts appear on
the spares list. Each of these new variables is handled properly by the initialize
method.

The code to add these three variables is simple, even mundane; the change to
spares proves more interesting. The spares method now contains an if statement
that checks the contents of the variable style. This style variable acts to divide
instances of Bicycle into two different categories—those whose style is :road and
those whose style is anything else.

If any alarms are going off as you review this code, please be reassured, they will
soon be silenced. This example is simply a detour that illustrates an antipattern, that
is, a common pattern that appears to be beneficial but is actually detrimental, and for
which there is a well-known alternative.

109Recognizing Where to Use Inheritance

Note
In case you’re confused by the tire sizes below, know that
bicycle tire sizing is, by tradition, inconsistent. Road bikes
originated in Europe and use metric sizing; a 23-millimeter
tire is slightly less than an inch wide. Mountain bikes origi-
nated in the United States and give tire sizes in inches. In the
example below, the 2.1-inch mountain bike tire is more than
twice as wide as the 23 mm road bike tire.

ptg11539634

1 class Bicycle

2 attr_reader :style, :size, :tape_color,

3 :front_shock, :rear_shock

4

5 def initialize(args)

6 @style = args[:style]

7 @size = args[:size]

8 @tape_color = args[:tape_color]

9 @front_shock = args[:front_shock]

10 @rear_shock = args[:rear_shock]

11 end

12

13 # checking "style" starts down a slippery slope

14 def spares

15 if style == :road

16 { chain: '10-speed',

17 tire_size: '23', # milimeters

18 tape_color: tape_color }

19 else

20 { chain: '10-speed',

21 tire_size: '2.1', # inches

22 rear_shock: rear_shock }

23 end

24 end

25 end

26

27 bike = Bicycle.new(

28 style: :mountain,

29 size: 'S',

30 front_shock: 'Manitou',

31 rear_shock: 'Fox')

32

33 bike.spares

34 # -> {:tire_size => "2.1",

35 # :chain => "10-speed",

36 # :rear_shock => 'Fox'}

This code makes decisions about spare parts based on the value held in style; struc-
turing the code this way has many negative consequences. If you add a new style
you must change the if statement. If you write careless code where the last option is
the default (as does the code above) an unexpected style will do something but
perhaps not what you expect. Also, the spares method started out containing

110 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

embedded default strings, some of these strings are now duplicated on each side of the
if statement.

Bicycle has an implied public interface that includes spares, size, and all the
individual parts. The size method still works, spares generally works, but the parts
methods are now unreliable. It’s impossible to predict, for any specific instance of
Bicycle, whether a specific part has been initialized. Objects holding onto an
instance of Bicycle may, for example, be tempted to check style before sending it
tape_color or rear_shock.

The code wasn’t great to begin with; this change did nothing to improve it.
The initial Bicycle class was imperfect but its imperfections were hidden—

encapsulated within the class. These new flaws have broader consequences. Bicycle
now has more than one responsibility, contains things that might change for different
reasons, and cannot be reused as is.

This pattern of coding will lead to grief but is not without value. It vividly illus-
trates an antipattern that, once noticed, suggests a better design.

This code contains an if statement that checks an attribute that holds the category
of self to determine what message to send to self. This should bring back memories of a
pattern discussed in the previous chapter on duck typing, where you saw an if statement
that checked the class of an object to determine what message to send to that object.

In both of these patterns an object decides what message to send based on a cate-
gory of the receiver. You can think of the class of an object as merely a specific case of
an attribute that holds the category of self ; considered this way, these patterns are the
same. In each case if the sender could talk it would be saying “I know who you are and
because of that I know what you do.” This knowledge is a dependency that raises the
cost of change.

Be on the lookout for this pattern. While sometimes innocent and occasionally
defensible, its presence might be exposing a costly flaw in your design. Chapter 5,
Reducing Costs with Duck Typing, used this pattern to discover a missing duck type;
here the pattern indicates a missing subtype, better known as a subclass.

Finding the Embedded Types
The if statement in the spares method above switches on a variable named style,
but it would have been just as natural to call that variable type or category.
Variables with these kinds of names are your cue to notice the underlying pattern.
Type and category are words perilously similar to those you would use when describing
a class. After all, what is a class if not a category or type?

111Recognizing Where to Use Inheritance

ptg11539634

The style variable effectively divides instances of Bicycle into two different
kinds of things. These two things share a great deal of behavior but differ along the
style dimension. Some of Bicycle’s behavior applies to all bicycles, some only to
road bikes, and some only to mountain bikes. This single class contains several different,
but related, types.

This is the exact problem that inheritance solves; that of highly related types that
share common behavior but differ along some dimension.

Choosing Inheritance
Before proceeding to the next example it’s worth examining inheritance in more
detail. Inheritance may seem like a mysterious art but, like most design ideas, it’s simple
when looked from the right perspective.

It goes without saying that objects receive messages. No matter how complicated
the code, the receiving object ultimately handles any message in one of two ways. It
either responds directly or it passes the message on to some other object for a response.

Inheritance provides a way to define two objects as having a relationship such that
when the first receives a message that it does not understand, it automatically forwards,
or delegates, the message to the second. It’s as simple as that.

The word inheritance suggests a biological family tree where a few progenitors
sit at the top and descendents branch off below. This family tree image is, however,
a bit misleading. In many parts of the biological world it’s common for descendents
to have two ancestors. You, for example, quite likely have two parents. Languages
that allow objects to have multiple parents are described as having multiple inheri-
tance and the designers of these languages face interesting challenges. When an ob-
ject with multiple parents receives a message that it does not understand, to which
parent ought it forward that message? If more than one of its parents implements
the message, which implementation has priority? As you might guess, things get
complicated quickly.

Many object-oriented languages sidestep these complications by providing single
inheritance, whereby a subclass is allowed only one parent superclass. Ruby does this;
it has single inheritance. A superclass may have many subclasses, but each subclass is
permitted only one superclass.

Message forwarding via classical inheritance takes place between classes. Because
duck types cut across classes, they do not use classical inheritance to share common
behavior. Duck types share code via Ruby modules (more on modules in the next
chapter).

112 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

Even if you have never explicitly created a class hierarchy of your own, you use
inheritance. When you define a new class but do not specify its superclass, Ruby
automatically sets your new class’s superclass to Object. Every class you create is, by
definition, a subclass of something.

You also already benefit from automatic delegation of messages to superclasses.
When an object receives a message it does not understand, Ruby automatically for-
wards that message up the superclass chain in search of a matching method imple-
mentation. A simple example is illustrated in Figure 6.3, which shows how Ruby
objects respond to the nil? message.

Remember that in Ruby, nil is an instance of class NilClass; it’s an object like
any other. Ruby contains two implementations of nil?, one in NilClass, and the
other in Object. The implementation in NilClass unconditionally returns true,
the one in Object, false.

When you send nil? to an instance of NilClass, it, obviously, answers true.
When you send nil? to anything else, the message travels up the hierarchy from one
superclass to the next until it reaches Object, where it invokes the implementation
that answers false. Thus, nil reports that it is nil and all other objects report that
they are not. This elegantly simple solution illustrates the power and usefulness of
inheritance.

The fact that unknown messages get delegated up the superclass hierarchy
implies that subclasses are everything their superclasses are, plus more. An instance of
String is a String, but it’s also an Object. Every String is assumed to contain

113Recognizing Where to Use Inheritance

Figure 6.3 NilClass answers true to nil?, string (and all others) answer false.

String and all other
classes

NilClass

When an instance of NilClass
receives the nil? message, its
implementation returns true.

When instance of other classes receive
the nil? message, the message
automatically travels up the superclass
hierarchy to object, whose
implementation returns false.

nill? -> true

Object

nill? -> false

ptg11539634

Object’s entire public interface and must respond appropriately to any message
defined in that interface. Subclasses are thus specializations of their superclasses.

The current Bicycle example embeds multiple types inside the class. It’s time to
abandon this code and revert to the original version of Bicycle. Perhaps mountain
bikes are a specialization of Bicycle; perhaps this design problem can be solved
using inheritance.

Drawing Inheritance Relationships
Just as you used UML sequence diagrams to communicate message passing in
Chapter 4, Creating Flexible Interfaces, you can use UML class diagrams to illustrate
class relationships.

Figure 6.4 contains a class diagram. The boxes represent classes. The connecting
line indicates that the classes are related. The hollow triangle means that the relation-
ship is inheritance. The pointed end of the triangle is attached to the box containing
the superclass. Thus, the figure shows Bicycle as a superclass of MountainBike.

Misapplying Inheritance
Under the premise that the journey is more useful than the destination, and that experi-
encing common mistakes by proxy is less painful than experiencing them in person, this
next section continues to show code that is unworthy of emulation. The code illustrates
common difficulties encountered by novices. If you are practiced at using inheritance
and are comfortable with these techniques, feel free to skim. However, if you are new to
inheritance, or you find that all of your attempts go awry, then follow along carefully.

114 Chapter 6. Acquiring Behavior Through Inheritance

Figure 6.4 MountainBike is a subclass of bicycle.

Bicycle

MountainBike

ptg11539634

The following is a first attempt at a MountainBike subclass. This new subclass
is a direct descendent of the original Bicycle class. It implements two methods,
initialize and spares. Both of these methods are already implemented in Bicycle,
therefore, they are said to be overridden by MountainBike.

In the following code each of the overridden methods sends super.

1 class MountainBike < Bicycle

2 attr_reader :front_shock, :rear_shock

3

4 def initialize(args)

5 @front_shock = args[:front_shock]

6 @rear_shock = args[:rear_shock]

7 super(args)

8 end

9

10 def spares

11 super.merge(rear_shock: rear_shock)

12 end

13 end

Sending super in any method passes that message up the superclass chain. Thus, for
example, the send of super in MountainBike’s initialize method (line 7 above)
invokes the initialize method of its superclass, Bicycle.

Jamming the new MountainBike class directly under the existing Bicycle class
was blindly optimistic, and, predictably, running the code exposes several flaws.
Instances of MountainBike have some behavior that just doesn’t make sense. The fol-
lowing example shows what happens if you ask a MountainBike for its size and
spares. It reports its size correctly but says that it has skinny tires and implies that it
needs handlebar tape, both of which are incorrect.

1 mountain_bike = MountainBike.new(

2 size: 'S',

3 front_shock: 'Manitou',

4 rear_shock: 'Fox')

5

6 mountain_bike.size # -> 'S'

7

8 mountain_bike.spares

9 # -> {:tire_size => "23", <- wrong!

10 # :chain => "10-speed",

115Misapplying Inheritance

ptg11539634

11 # :tape_color => nil, <- not applicable

12 # :front_shock => 'Manitou',

13 # :rear_shock => "Fox"}

It comes as no surprise that instances of MountainBike contain a confusing mishmash
of road and mountain bike behavior. The Bicycle class is a concrete class that was not
written to be subclassed. It combines behavior that is general to all bicycles with behav-
ior that is specific to road bikes. When you slam MountainBike under Bicycle, you
inherit all of this behavior—the general and the specific, whether it applies or not.

Figure 6.5 takes serious liberties with class diagrams to illustrate this idea. It
shows road bike behavior embedded inside of Bicycle. The way this code is arranged
causes MountainBike to inherit behavior that it does not want or need.

116 Chapter 6. Acquiring Behavior Through Inheritance

Bicycle

MountainBike

RoadBike

Figure 6.5 Bicycle combines general bicycle behavior with specific road bike behavior.

The Bicycle class contains behavior that is appropriate for both a peer and a par-
ent of MountainBike. Some of the behavior in Bicycle is correct for MountainBike,
some is wrong, and some doesn’t even apply. As written, Bicycle should not act as
the superclass of MountainBike.

Because design is evolutionary, this situation arises all the time. The problem here
started with the names of these classes.

Finding the Abstraction
In the beginning, there was one idea, a bicycle, and it was modeled as a single class,
Bicycle. The original designer chose a generic name for an object that was actually
slightly more specialized. The existing Bicycle class doesn’t represent just any kind of
bicycle, it represents a specific kind—a road bike.

ptg11539634

This naming choice is perfectly appropriate in an application where every
Bicycle is a road bike. When there’s only one kind of bike, choosing RoadBike for
the class name is unnecessary, perhaps even overly specific. Even if you suspect that
you will someday have mountain bikes, Bicycle is a fine choice for the first class
name, and is sufficient unto the day.

However, now that MountainBike exists, Bicycle’s name is misleading. These
two class names imply inheritance; you immediately expect MountainBike to be a
specialization of Bicycle. It’s natural to write code that creates MountainBike as a
subclass of Bicycle. This is the right structure, the class names are correct, but the
code in Bicycle is now very wrong.

Subclasses are specializations of their superclasses. A MountainBike should be
everything a Bicycle is, plus more. Any object that expects a Bicycle should be
able to interact with a MountainBike in blissful ignorance of its actual class.

These are the rules of inheritance; break them at your peril. For inheritance to
work, two things must always be true. First, the objects that you are modeling must
truly have a generalization–specialization relationship. Second, you must use the cor-
rect coding techniques.

It makes perfect sense to model mountain bike as a specialization of bicycle; the
relationship is correct. However, the code above is a mess and if propagated will lead
to disaster. The current Bicycle class intermingles general bicycle code with specific
road bike code. It’s time to separate these two things, to move the road bike code out
of Bicycle and into a separate RoadBike subclass.

Creating an Abstract Superclass
Figure 6.6 shows a new class diagram where Bicycle is the superclass of both
MountainBike and RoadBike. This is your goal; it’s the inheritance structure you
intend to create. Bicycle will contain the common behavior, and MountainBike
and RoadBike will add specializations. Bicycle’s public interface should include
spares and size, and the interfaces of its subclasses will add their individual parts.

Bicycle now represents an abstract class. Chapter 3, Managing Dependen-
cies, defined abstract as being disassociated from any specific instance, and that
definition still holds true. This new version of Bicycle will not define a complete
bike, just the bits that all bicycles share. You can expect to create instances of
MountainBike and RoadBike, but Bicycle is not a class to which you would
ever send the new message. It wouldn’t make sense; Bicycle no longer represents a
whole bike.

117Finding the Abstraction

ptg11539634

Some object-oriented programming languages have syntax that allows you to
explicitly declare classes as abstract. Java, for example, has the abstract keyword.
The Java compiler itself prevents creation of instances of classes to which this keyword
has been applied. Ruby, in line with its trusting nature, contains no such keyword and
enforces no such restriction. Only good sense prevents other programmers from
creating instances of Bicycle; in real life, this works remarkably well.

Abstract classes exist to be subclassed. This is their sole purpose. They provide a
common repository for behavior that is shared across a set of subclasses—subclasses
that in turn supply specializations.

It almost never makes sense to create an abstract superclass with only one sub-
class. Even though the original Bicycle class contains general and specific behavior
and it’s possible to imagine modeling it as two classes from the very beginning, do
not. Regardless of how strongly you anticipate having other kinds of bikes, that day
may never come. Until you have a specific requirement that forces you to deal with
other bikes, the current Bicycle class is good enough.

Even though you now have a requirement for two kinds of bikes, this still may not
be the right moment to commit to inheritance. Creating a hierarchy has costs; the best
way to minimize these costs is to maximize your chance of getting the abstraction right
before allowing subclasses to depend on it. While the two bikes you know about supply
a fair amount of information about the common abstraction, three bikes would supply
a great deal more. If you could put this decision off until FastFeet asked for a third kind
of bike, your odds of finding the right abstraction would improve dramatically.

A decision to put off the creation of the Bicycle hierarchy commits you to writing
MountainBike and RoadBike classes that duplicate a great deal of code. A decision to
proceed with the hierarchy accepts the risk that you may not yet have enough informa-
tion to identify the correct abstraction. Your choice about whether to wait or to proceed

118 Chapter 6. Acquiring Behavior Through Inheritance

Bicycle

MountainBike RoadBike

Figure 6.6 Bicycle as the superclass of MountainBike and RoadBike.

ptg11539634

hinges on how soon you expect a third bike to appear versus how much you expect the
duplication to cost. If a third bike is imminent, it may be best to duplicate the code and
wait for better information. However, if the duplicated code would need to change every
day, it may be cheaper to go ahead and create the hierarchy. You should wait, if you can,
but don’t fear to move forward based on two concrete cases if this seems best.

For now, assume you have good reason to create a Bicycle hierarchy even though
you only know about two bikes. The first step in creating the new hierarchy is to make
a class structure that mirrors Figure 6.6. Ignoring the rightness of the code for a
moment, the simplest way to make this change is to rename Bicycle to RoadBike

and to create a new, empty Bicycle class. The following example does just that.

1 class Bicycle

2 # This class is now empty.

3 # All code has been moved to RoadBike.

4 end

5

6 class RoadBike < Bicycle

7 # Now a subclass of Bicycle.

8 # Contains all code from the old Bicycle class.

9 end

10

11 class MountainBike < Bicycle

12 # Still a subclass of Bicycle (which is now empty).

13 # Code has not changed.

14 end

The new RoadBike class is defined as a subclass of Bicycle. The existing
MountainBike class already subclassed Bicycle. Its code did not change, but its
behavior certainly has because its superclass is now empty. Code that MountainBike
depends on has been removed from its parent and placed in a peer.

This code rearrangement merely moved the problem, as illustrated in Figure 6.7.
Now, instead of containing too much behavior, Bicycle contains none at all. The
common behavior needed by all bicycles is stuck down inside of RoadBike and is
therefore inaccessible to MountainBike.

This rearrangement improves your lot because it’s easier to promote code up to a
superclass than to demote it down to a subclass. The reasons for this are not yet obvious
but will become so as the example proceeds.

The next few iterations concentrate on achieving this new class structure by
moving common behavior into Bicycle and using that behavior effectively in the
subclasses.

119Finding the Abstraction

ptg11539634

RoadBike still contains everything it needs and thus it still works, but
MountainBike is now seriously broken. As an example, here’s what happens if you
create instances of each subclass and ask them for size. RoadBike returns the correct
response, MountainBike just blows up.

1 road_bike = RoadBike.new(

2 size: 'M',

3 tape_color: 'red')

4

5 road_bike.size # => "M"

6

7 mountain_bike = MountainBike.new(

8 size: 'S',

9 front_shock: 'Manitou',

10 rear_shock: 'Fox')

11

12 mountain_bike.size

13 # NoMethodError: undefined method 'size'

It’s obvious why this error occurs; neither MountainBike nor any of its superclasses
implement size.

Promoting Abstract Behavior
The size and spares methods are common to all bicycles. This behavior belongs in
Bicycle’s public interface. Both methods are currently stuck down in RoadBike; the

120 Chapter 6. Acquiring Behavior Through Inheritance

Figure 6.7 Now RoadBike contains all the common behavior.

Bicycle

MountainBike
RoadBike

Bicycle

ptg11539634

task here is to move them up to Bicycle so the behavior can be shared. Because the
code dealing with size is simplest it’s the most natural place to start.

Promoting size behavior to the superclass requires three changes as shown in the
example below. The attribute reader and initialization code move from RoadBike to
Bicycle (lines 2 and 5), and RoadBike’s initialize method adds a send of super
(line 14).

1 class Bicycle

2 attr_reader :size # <- promoted from RoadBike

3

4 def initialize(args={})

5 @size = args[:size] # <- promoted from RoadBike

6 end

7 end

8

9 class RoadBike < Bicycle

10 attr_reader :tape_color

11

12 def initialize(args)

13 @tape_color = args[:tape_color]

14 super(args) # <- RoadBike now MUST send 'super'

15 end

16 # ...

17 end

RoadBike now inherits the size method from Bicycle. When a RoadBike receives
size, Ruby itself delegates the message up the superclass chain, searching for an
implementation and finding the one in Bicycle. This message delegation happens
automatically because RoadBike is a subclass of Bicycle.

Sharing the initialization code that sets the @size variable, however, requires a bit
more from you. This variable is set in Bicycle’s initialize method, a method that
RoadBike also implements, or overrides.

When RoadBike overrides initialize, it provides a receiver for this message,
one that perfectly satisfies Ruby and prevents the message’s automatic delegation to
Bicycle. If both initialize methods need to be run, RoadBike is now obligated
to do the delegation itself; it must send super to explicitly pass this message on to
Bicycle, as it did in line 14 above.

Before this change, RoadBike responded correctly to size but MountainBike
did not. The behavior they share in common in now defined in Bicycle, their common

121Finding the Abstraction

ptg11539634

superclass. The magic of inheritance is such that both now respond correctly to size
as shown below.

1 road_bike = RoadBike.new(

2 size: 'M',

3 tape_color: 'red')

4

5 road_bike.size # -> ""M""

6

7 mountain_bike = MountainBike.new(

8 size: 'S',

9 front_shock: 'Manitou',

10 rear_shock: 'Fox')

11

12 mountain_bike.size # -> 'S'

The alert reader will notice the code that handles bicycle size has been moved twice. It
was in the original Bicycle class, got moved down to RoadBike, and now has been
promoted back up to Bicycle. The code has not changed; it has just been moved twice.

You might be tempted to skip the middleman and just leave this bit of code in
Bicycle to begin with, but this push-everything-down-and-then-pull-some-things-
up strategy is an important part of this refactoring. Many of the difficulties of inheri-
tance are caused by a failure to rigorously separate the concrete from the abstract.
Bicycle’s original code intermingled the two. If you begin this refactoring with that
first version of Bicycle, attempting to isolate the concrete code and push it down to
RoadBike, any failure on your part will leave dangerous remnants of concreteness in
the superclass. However, if you start by moving every bit of the Bicycle code to
RoadBike, you can then carefully identify and promote the abstract parts without
fear of leaving concrete artifacts.

When deciding between refactoring strategies, indeed, when deciding between design
strategies in general, it’s useful to ask the question: “What will happen if I’m wrong?” In
this case, if you create an empty superclass and push the abstract bits of code up into it,
the worst that can happen is that you will fail to find and promote the entire abstraction.

This “promotion” failure creates a simple problem, one that is easily found and easily
fixed. When a bit of the abstraction gets left behind, the oversight becomes visible as soon
as another subclass needs the same behavior. In order to give all subclasses access to the
behavior you’ll be forced to either duplicate the code (in each subclass) or promote it (to
the common superclass). Because even the most junior programmers have been taught
not to duplicate code, this problem gets noticed no matter who works on the application

122 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

in the future. The natural course of events is such that the abstraction gets identified and
promoted, and the code improves. Promotion failures thus have low consequences.

However, if you attempt this refactoring from the opposite direction, trying to
convert an existing class from concrete to abstract by pushing just the concrete parts
down into a new subclass, you might accidentally leave remnants of concrete behavior
behind. By definition this leftover concrete behavior does not apply to every possible
new subclass. Subclasses thus begin to violate the basic rule of inheritance; they are
not truly specializations of their superclasses. The hierarchy becomes untrustworthy.

Untrustworthy hierarchies force objects that interact with them to know their
quirks. Inexperienced programmers do not understand and cannot fix a faulty hierar-
chy; when asked to use one they will embed knowledge of its quirks into their own
code, often by explicitly checking the classes of objects. Knowledge of the structure of
the hierarchy leaks into the rest of the application, creating dependencies that raise the
cost of change. This is not a problem you want to leave behind. The consequences of
a demotion failure can be widespread and severe.

The general rule for refactoring into a new inheritance hierarchy is to arrange
code so that you can promote abstractions rather than demote concretions.

In light of this discussion, the question posed a few paragraphs ago might more
usefully be phrased: “What will happen when I’m wrong?” Every decision you make
includes two costs: one to implement it and another to change it when you discover
that you were wrong. Taking both costs into account when choosing among alternatives
motivates you to make conservative choices that minimize the cost of change.

With this in mind, turn your attention to spares.

Separating Abstract from Concrete
RoadBike and MountainBike both implement a version of spares. RoadBike’s
definition (repeated below) is the original one that was copied from the concrete
Bicycle class. It is self-contained and thus still works.

1 class RoadBike < Bicycle

2 # ...

3 def spares

4 { chain: '10-speed',

5 tire_size: '23',

6 tape_color: tape_color}

7 end

8 end

123Finding the Abstraction

ptg11539634

The spares definition in MountainBike (also repeated below) is leftover from the
first attempt at subclassing. This method sends super, expecting a superclass to also
implement spares.

1 class MountainBike < Bicycle

2 # ...

3 def spares

4 super.merge({rear_shock: rear_shock})

5 end

6 end

Bicycle, however, does not yet implement the spares method, so sending spares
to a MountainBike results in the following NoMethodError exception:

1 mountain_bike.spares

2 # NoMethodError: super: no superclass method 'spares'

Fixing this problem obviously requires adding a spares method to Bicycle, but
doing so is not as simple as promoting the existing code from RoadBike.

RoadBike’s spares implementation knows far too much. The chain and
tire_size attributes are common to all bicycles, but tape_color should be known
only to road bikes. The hard-coded chain and tire_size values are not the correct
defaults for every possible subclass. This method has many problems and cannot be
promoted as is.

It mixes a bunch of different things. When this awkward mix was hidden inside
a single method of a single class it was survivable, even (depending on your toler-
ance) ignorable, but now that you would like to share only part of this behavior,
you must untangle the mess and separate the abstract parts from the concrete parts.
The abstractions will be promoted up to Bicycle, the concrete parts will remain in
RoadBike.

Put away thoughts of the overall spares method for a moment and concentrate
on promoting just the pieces that all bicycles share, chain and tire_size. They are
attributes, like size, and should be represented by accessors and setters instead of
hard-coded values. Here are the requirements:

• Bicycles have a chain and a tire size.

• All bicycles share the same default for chain.

124 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

• Subclasses provide their own default for tire size.

• Concrete instances of subclasses are permitted to ignore defaults and supply
instance-specific values.

The code for similar things should follow a similar pattern. Here’s new code that handles
size, chain, and tire_size in a similar way.

1 class Bicycle

2 attr_reader :size, :chain, :tire_size

3

4 def initialize(args={})

5 @size = args[:size]

6 @chain = args[:chain]

7 @tire_size = args[:tire_size]

8 end

9 #

10 end

RoadBike and MountainBike inherit the attr_reader definitions in Bicycle and
both send super in their initialize methods. All bikes now understand size,
chain, and tire_size and each may supply subclass-specific values for these attrib-
utes. The first and last requirements listed above have been met.

Despite the buildup, there’s nothing special about this code. Good sense suggests
that it should have been written like this in the beginning; it’s high time this version
appeared. It is inheritable by subclasses, certainly, but nothing about the code suggests
that it expects to be inherited.

Meeting the two requirements that deal with defaults, however, adds something
interesting.

Using the Template Method Pattern
This next change alters Bicycle’s initialize method to send messages to get
defaults. There are two new messages, default_chain and default_tire_size, in
lines 6 and 7 below.

While wrapping the defaults in methods is good practice in general, these new
message sends serve a dual purpose. Bicycle’s main goal in sending these messages is
to give subclasses an opportunity to contribute specializations by overriding them.

This technique of defining a basic structure in the superclass and sending messages
to acquire subclass-specific contributions is known as the template method pattern.

125Finding the Abstraction

ptg11539634

In the following code, MountainBike and RoadBike take advantage of only one
of these opportunities for specialization. Both implement default_tire_size, but
neither implements default_chain. Each subclass thus supplies its own default for
tire size but inherits the common default for chain.

1 class Bicycle

2 attr_reader :size, :chain, :tire_size

3

4 def initialize(args={})

5 @size = args[:size]

6 @chain = args[:chain] || default_chain

7 @tire_size = args[:tire_size] || default_tire_size

8 end

9

10 def default_chain # <- common default

11 '10-speed'

12 end

13 end

14

15 class RoadBike < Bicycle

16 # ...

17 def default_tire_size # <- subclass default

18 '23'

19 end

20 end

21

22 class MountainBike < Bicycle

23 # ...

24 def default_tire_size # <- subclass default

25 '2.1'

26 end

27 end

Bicycle now provides structure, a common algorithm if you will, for its subclasses.
Where it permits them to influence the algorithm, it sends messages. Subclasses con-
tribute to the algorithm by implementing matching methods.

All bicycles now share the same default for chain but use different defaults for tire
size, as shown below:

1 road_bike = RoadBike.new(

2 size: 'M',

126 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

3 tape_color: 'red')

4

5 road_bike.tire_size # => '23'

6 road_bike.chain # => "10-speed"

7

8 mountain_bike = MountainBike.new(

9 size: 'S',

10 front_shock: 'Manitou',

11 rear_shock: 'Fox')

12

13 mountain_bike.tire_size # => '2.1'

14 road_bike.chain # => "10-speed"

It’s too early to celebrate this success, however, because there’s still something wrong
with the code. It contains a booby trap, awaiting the unwary.

Implementing Every Template Method
Bicycle’s initialize method sends default_tire_size but Bicycle itself does
not implement it. This omission can cause problems downstream. Imagine that
FastFeed adds another new bicycle type, the recumbent. Recumbents are low, long
bicycles that place the rider in a laid-back, reclining position; these bikes are fast and
easy on the rider’s back and neck.

What happens if some programmer innocently creates a new RecumbentBike
subclass but neglects to supply a default_tire_size implementation? He encounters
the following error.

1 class RecumbentBike < Bicycle

2 def default_chain

3 '9-speed'

4 end

5 end

6

7 bent = RecumbentBike.new

8 # NameError: undefined local variable or method

9 # 'default_tire_size'

The original designer of the hierarchy rarely encounters this problem. She wrote
Bicycle; she understands the requirements that subclasses must meet. The existing
code works. These errors occur in the future, when the application is being changed to

127Finding the Abstraction

ptg11539634

meet a new requirement, and are encountered by other programmers, ones who un-
derstand far less about what’s going on.

The root of the problem is that Bicycle imposes a requirement upon its sub-
classes that is not obvious from a glance at the code. As Bicycle is written, subclasses
must implement default_tire_size. Innocent and well-meaning subclasses like
RecumbentBike may fail because they do not fulfill requirements of which they are
unaware.

A world of potential hurt can be assuaged, in advance, by following one simple
rule. Any class that uses the template method pattern must supply an implementation
for every message it sends, even if the only reasonable implementation in the sending
class looks like this:

1 class Bicycle

2 #...

3 def default_tire_size

4 raise NotImplementedError

5 end

6 end

Explicitly stating that subclasses are required to implement a message provides useful
documentation for those who can be relied upon to read it and useful error messages
for those who cannot.

Once Bicycle provides this implementation of default_tire_size, creating a
new RecumbentBike fails with the following error.

1 bent = RecumbentBike.new

2 # NotImplementedError: NotImplementedError

While it is perfectly acceptable to merely raise this error and rely on the stack trace to
track down its source, you may also explicitly supply additional information, as
shown in line 5 below.

1 class Bicycle

2 #...

3 def default_tire_size

4 raise NotImplementedError,

5 "This #{self.class} cannot respond to:"

6 end

7 end

128 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

This additional information makes the problem inescapably clear. As running this
code shows, this RecumbentBike needs access to an implementation of
default_tire_size.

1 bent = RecumbentBike.new

2 # NotImplementedError:

3 # This RecumbentBike cannot respond to:

4 # 'default_tire_size'

Whether encountered two minutes or two months after writing the RecumbentBike
class, this error is unambiguous and easily corrected.

Creating code that fails with reasonable error messages takes minor effort in the
present but provides value forever. Each error message is a small thing, but small
things accumulate to produce big effects and it is this attention to detail that marks
you as a serious programmer. Always document template method requirements by
implementing matching methods that raise useful errors.

Managing Coupling Between Superclasses
and Subclasses
Bicycle now contains most of the abstract bicycle behavior. It has code to manage
overall bike size, chain, and tire size, and its structure invites subclasses to supply com-
mon defaults for these attributes. The superclass is almost complete; it’s missing only
an implementation of spares.

This spares superclass implementation can be written in a number of ways; the
alternatives vary in how tightly they couple the subclasses and superclasses together.
Managing coupling is important; tightly coupled classes stick together and may be
impossible to change independently.

This section shows two different implementations of spares—an easy, obvious
one and another that is slightly more sophisticated but also more robust.

Understanding Coupling
This first implementation of spares is simplest to write but produces the most tightly
coupled classes.

129Managing Coupling Between Superclasses and Subclasses

ptg11539634

Remember that RoadBike’s current implementation looks like this:

1 class RoadBike < Bicycle

2 # ...

3 def spares

4 { chain: '10-speed',

5 tire_size: '23',

6 tape_color: tape_color}

7 end

8 end

This method is a mishmash of different things and the last attempt at promoting it
took a detour to clean up the code. That detour extracted the hard-coded values for
chain and tire into variables and messages, and promoted just those parts up the
Bicycle. The methods that deal with chain and tire size are now available in the
superclass.

MountainBike’s current spares implementation looks like this:

1 class MountainBike < Bicycle

2 # ...

3 def spares

4 super.merge({rear_shock: rear_shock})

5 end

6 end

MountainBike’s spares method sends super; it expects one of its superclasses to
implement spares. MountainBike merges its own spare parts hash into the result
returned by super, clearly expecting that result to also be a hash.

Given that Bicycle can now send messages to get chain and tire size and that its
spares implementation ought to return a hash, adding the following spares method
meets MountainBike’s needs.

1 class Bicycle

2 #...

3 def spares

4 { tire_size: tire_size,

5 chain: chain}

6 end

7 end

130 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

Once this method is placed in Bicycle all of MountainBike works. Bringing
RoadBike along is merely a matter of changing its spares implementation to mirror
MountainBike’s, that is, replacing the code for chain and tire size with a send to
super and adding the road bike specializations to the resulting hash.

Assuming this final change to MountainBike has been made, the following listing
shows all of the code written so far and completes the first implementation of this
hierarchy.

Notice that the code follows a discernible pattern. Every template method sent by
Bicycle is implemented in Bicycle itself, and MountainBike and RoadBike both
send super in their initialize and spares methods.

1 class Bicycle

2 attr_reader :size, :chain, :tire_size

3

4 def initialize(args={})

5 @size = args[:size]

6 @chain = args[:chain] || default_chain

7 @tire_size = args[:tire_size] || default_tire_size

8 end

9

10 def spares

11 { tire_size: tire_size,

12 chain: chain}

13 end

14

15 def default_chain

16 '10-speed'

17 end

18

19 def default_tire_size

20 raise NotImplementedError

21 end

22 end

23

24 class RoadBike < Bicycle

25 attr_reader :tape_color

26

27 def initialize(args)

28 @tape_color = args[:tape_color]

29 super(args)

30 end

131Managing Coupling Between Superclasses and Subclasses

ptg11539634

31

32 def spares

33 super.merge({ tape_color: tape_color})

34 end

35

36 def default_tire_size

37 '23'

38 end

39 end

40

41 class MountainBike < Bicycle

42 attr_reader :front_shock, :rear_shock

43

44 def initialize(args)

45 @front_shock = args[:front_shock]

46 @rear_shock = args[:rear_shock]

47 super(args)

48 end

49

50 def spares

51 super.merge({rear_shock: rear_shock})

52 end

53

54 def default_tire_size

55 '2.1'

56 end

57 end

This class hierarchy works, and you might be tempted to stop right here. However,
just because it works doesn’t guarantee that it’s good enough. It still contains a booby
trap worth removing.

Notice that the MountainBike and RoadBike subclasses follow a similar pat-
tern. They each know things about themselves (their spare parts specializations) and
things about their superclass (that it implements spares to return a hash and that it
responds to initialize).

Knowing things about other classes, as always, creates dependencies and depend-
encies couple objects together. The dependencies in the code above are also the booby
traps; both are created by the sends of super in the subclasses.

Here’s an illustration of the trap. If someone creates a new subclass and forgets to
send super in its initialize method, he encounters this problem:

132 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

1 class RecumbentBike < Bicycle

2 attr_reader :flag

3

4 def initialize(args)

5 @flag = args[:flag] # forgot to send ‘super’

6 end

7

8 def spares

9 super.merge({flag: flag})

10 end

11

12 def default_chain

13 '9-speed'

14 end

15

16 def default_tire_size

17 '28'

18 end

19 end

20

21 bent = RecumbentBike.new(flag: 'tall and orange')

22 bent.spares

23 # -> {:tire_size => nil, <- didn't get initialized

24 # :chain => nil,

25 # :flag => "tall and orange"}

When RecumbentBike fails to send super during initialize it misses out on the
common initialization provided by Bicycle and does not get a valid size, chain, or
tire size. This error can manifest at a time and place far distant from its cause, making
it very hard to debug.

A similarly devilish problem occurs if RecumbentBike forgets to send super in
its spares method. Nothing blows up, instead the spares hash is just wrong and
this wrongness may not become apparent until a Mechanic is standing by the road
with a broken bike, searching the spare parts bin in vain.

Any programmer can forget to send super and therefore cause these errors, but
the primary culprits (and the primary victims) are programmers who don’t know the
code well but are tasked, in the future, with creating new subclasses of Bicycle.

The pattern of code in this hierarchy requires that subclasses not only know what
they do but also how they are supposed to interact with their superclass. It makes
sense that subclasses know the specializations they contribute (they are obviously the

133Managing Coupling Between Superclasses and Subclasses

ptg11539634

only classes who can know them), but forcing a subclass to know how to interact with
its abstract superclass causes many problems.

It pushes knowledge of the algorithm down into the subclasses, forcing each to
explicitly send super to participate. It causes duplication of code across subclasses,
requiring that all send super in exactly the same places. And it raises the chance
that future programmers will create errors when writing new subclasses, because
programmers can be relied upon to include the correct specializations but can easily
forget to send super.

When a subclass sends super it’s effectively declaring that it knows the algo-
rithm; it depends on this knowledge. If the algorithm changes, then the subclasses may
break even if their own specializations are not otherwise affected.

Decoupling Subclasses Using Hook Messages
All of these problems can be avoided with one final refactoring. Instead of allowing
subclasses to know the algorithm and requiring that they send super, superclasses can
instead send hook messages, ones that exist solely to provide subclasses a place to con-
tribute information by implementing matching methods. This strategy removes
knowledge of the algorithm from the subclass and returns control to the superclass.

In the following example, this technique is used to give subclasses a way to con-
tribute to initialization. Bicycle’s initialize method now sends post_initialize
and, as always, implements the matching method, one that in this case does nothing.

RoadBike supplies its own specialized initialization by overriding
post_initialize, as you see here:

1 class Bicycle

2

3 def initialize(args={})

4 @size = args[:size]

5 @chain = args[:chain] || default_chain

6 @tire_size = args[:tire_size] || default_tire_size

7

8 post_initialize(args) # Bicycle both sends

9 end

10

11 def post_initialize(args) # and implements this

12 nil

13 end

14 # ...

134 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

15 end

16

17 class RoadBike < Bicycle

18

19 def post_initialize(args) # RoadBike can

20 @tape_color = args[:tape_color] # optionally

21 end # override it

22 # ...

23 end

This change doesn’t just remove the send of super from RoadBike’s initialize
method, it removes the initialize method altogether. RoadBike no longer controls
initialization; it instead contributes specializations to a larger, abstract algorithm. That
algorithm is defined in the abstract superclass Bicycle, which in turn is responsible
for sending post_initialize.

RoadBike is still responsible for what initialization it needs but is no longer
responsible for when its initialization occurs. This change allows RoadBike to know less
about Bicycle, reducing the coupling between them and making each more flexible
in the face of an uncertain future. RoadBike doesn’t know when its post_initialize
method will be called and it doesn’t care what object actually sends the message.
Bicycle (or any other object) could send this message at any time, there is no
requirement that it be sent during object initialization.

Putting control of the timing in the superclass means the algorithm can change
without forcing changes upon the subclasses.

This same technique can be used to remove the send of super from the spares
method. Instead of forcing RoadBike to know that Bicycle implements spares
and that Bicycle’s implementation returns a hash, you can loosen coupling by
implementing a hook that gives control back to Bicycle.

The following example changes Bicycle’s spares method to send
local_spares. Bicycle provides a default implementation, one that returns an
empty hash. RoadBike takes advantage of this hook and overrides it to return its own
version of local_spares, adding road bike specific spare parts.

1 class Bicycle

2 # ...

3 def spares

4 { tire_size: tire_size,

5 chain: chain}.merge(local_spares)

6 end

135Managing Coupling Between Superclasses and Subclasses

ptg11539634

7

8 # hook for subclasses to override

9 def local_spares

10 {}

11 end

12

13 end

14

15 class RoadBike < Bicycle

16 # ...

17 def local_spares

18 {tape_color: tape_color}

19 end

20

21 end

RoadBike’s new implementation of local_spares replaces its former implementa-
tion of spares. This change preserves the specialization supplied by RoadBike but
reduces its coupling to Bicycle. RoadBike no longer has to know that Bicycle
implements a spares method; it merely expects that its own implementation of
local_spares will be called, by some object, at some time.

After making similar changes to MountainBike, the final hierarchy looks like this:

1 class Bicycle

2 attr_reader :size, :chain, :tire_size

3

4 def initialize(args={})

5 @size = args[:size]

6 @chain = args[:chain] || default_chain

7 @tire_size = args[:tire_size] || default_tire_size

8 post_initialize(args)

9 end

10

11 def spares

12 { tire_size: tire_size,

13 chain: chain}.merge(local_spares)

14 end

15

16 def default_tire_size

17 raise NotImplementedError

18 end

19

136 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

20 # subclasses may override

21 def post_initialize(args)

22 nil

23 end

24

25 def local_spares

26 {}

27 end

28

29 def default_chain

30 '10-speed'

31 end

32

33 end

34

35 class RoadBike < Bicycle

36 attr_reader :tape_color

37

38 def post_initialize(args)

39 @tape_color = args[:tape_color]

40 end

41

42 def local_spares

43 {tape_color: tape_color}

44 end

45

46 def default_tire_size

47 '23'

48 end

49 end

50

51 class MountainBike < Bicycle

52 attr_reader :front_shock, :rear_shock

53

54 def post_initialize(args)

55 @front_shock = args[:front_shock]

56 @rear_shock = args[:rear_shock]

57 end

58

59 def local_spares

60 {rear_shock: rear_shock}

61 end

62

137Managing Coupling Between Superclasses and Subclasses

ptg11539634

63 def default_tire_size

64 '2.1'

65 end

66 end

RoadBike and MountainBike are more readable now that they contain only special-
izations. It’s clear at a glance what they do, and it’s clear that they are specializations of
Bicycle.

New subclasses need only implement the template methods. This final example
illustrates how simple it is to create a new subclass, even for someone unfamiliar with
the application. Here is class RecumbentBike, a new specialization of Bicycle:

1 class RecumbentBike < Bicycle

2 attr_reader :flag

3

4 def post_initialize(args)

5 @flag = args[:flag]

6 end

7

8 def local_spares

9 {flag: flag}

10 end

11

12 def default_chain

13 "9-speed"

14 end

15

16 def default_tire_size

17 '28'

18 end

19 end

20

21 bent = RecumbentBike.new(flag: 'tall and orange')

22 bent.spares

23 # -> {:tire_size => "28",

24 # :chain => "9-speed",

25 # :flag => "tall and orange"}

The code in RecumbentBike is transparently obvious and is so regular and predictable
that it might have come off of an assembly line. It illustrates the strength and value of
inheritance; when the hierarchy is correct, anyone can successfully create a new subclass.

138 Chapter 6. Acquiring Behavior Through Inheritance

ptg11539634

Summary
Inheritance solves the problem of related types that share a great deal of common
behavior but differ across some dimension. It allows you to isolate shared code and
implement common algorithms in an abstract class, while also providing a structure
that permits subclasses to contribute specializations.

The best way to create an abstract superclass is by pushing code up from concrete
subclasses. Identifying the correct abstraction is easiest if you have access to at least
three existing concrete classes. This chapter’s simple example relied on just two but in
the real world you are often better served to wait for the additional information that
three cases supply.

Abstract superclasses use the template method pattern to invite inheritors to supply
specializations, and use hook methods to allow these inheritors to contribute these
specializations without being forced to send super. Hook methods allow subclasses to
contribute specializations without knowing the abstract algorithm. They remove the
need for subclasses to send super and therefore reduce the coupling between layers of
the hierarchy and increase its tolerance for change.

Well-designed inheritance hierarchies are easy to extend with new subclasses, even
for programmers who know very little about the application. This ease of extension is
inheritance’s greatest strength. When your problem is one of needing numerous spe-
cializations of a stable, common abstraction, inheritance can be an extremely low-cost
solution.

139Summary

ptg11539634

This page intentionally left blank

ptg11539634

CHAPTER 7
Sharing Role Behavior
with Modules

The previous chapter ended on a high note, with code that looked so promising you
may be wondering where it’s been all your life. However, before you decide to use
classical inheritance to solve every imaginable design problem, consider this: What
will happen when FastFeet develops a need for recumbent mountain bikes?

If the solution to this new design problem feels elusive, that’s perfectly under-
standable. Creation of a recumbent mountain bike subclass requires combining the
qualities of two existing subclasses, something that inheritance cannot readily accom-
modate. Even more distressing is the fact that this failure illustrates just one of several
ways in which inheritance can go wrong.

To reap benefits from using inheritance you must understand not only how to
write inheritable code but also when it makes sense to do so. Use of classical inheri-
tance is always optional; every problem that it solves can be solved another way.
Because no design technique is free, creating the most cost-effective application
requires making informed tradeoffs between the relative costs and likely benefits of
alternatives.

This chapter explores an alternative that uses the techniques of inheritance
to share a role. It begins with an example that uses a Ruby module to define a
common role and then proceeds to give practical advice about how to write all
inheritable code.

141

ptg11539634

Understanding Roles
Some problems require sharing behavior among otherwise unrelated objects. This
common behavior is orthogonal to class; it’s a role an object plays. Many of the roles
needed by an application will be obvious at design time, but it’s also common to
discover unanticipated roles as you write the code.

When formerly unrelated objects begin to play a common role, they enter into a
relationship with the objects for whom they play the role. These relationships are not
as visible as those created by the subclass/superclass requirements of classical inheri-
tance but they exist nonetheless. Using a role creates dependencies among the objects
involved and these dependencies introduce risks that you must take into account
when deciding among design options.

This section unearths a hidden role and creates code to share its behavior among
all players, while at the same time minimizing the dependencies thereby incurred.

Finding Roles
The Preparer duck type from Chapter 5, Reducing Costs with Duck Typing, is
a role. Objects that implement Preparer’s interface play this role. Mechanic,
TripCoordinator, and Driver each implement prepare_trip; therefore, other
objects can interact with them as if they are Preparers without concern for their un-
derlying class.

The existence of a Preparer role suggests that there’s also a parallel Preparable
role (these things often come in pairs). The Trip class acts as a Preparable in the
Chapter 5 example; it implements the Prepareable interface. This interface includes
all of the messages that any Preparer might expect to send to a Preparable, that is,
the methods bicycles, customers, and vehicle.The Preparable role is not
terribly obvious because Trip is its only player but it’s important to recognize that it
exists. Chapter 9, Designing Cost-Effective Tests, suggests techniques for testing and
documenting the Preparable role so as to distinguish it from the Trip class.

Although the Preparer role has multiple players, it is so simple that it is entirely
defined by its interface. To play this role all an object need do is implement its own
personal version of prepare_trip. Objects that act as Preparers have only this
interface in common. They share the method signature but no other code.

Preparer and Preparable are perfectly legitimate duck types. It’s far more
common, however, to discover more sophisticated roles, ones where the role requires
not only specific message signatures, but also specific behavior. When a role needs
shared behavior you’re faced with the problem of organizing the shared code. Ideally

142 Chapter 7. Sharing Role Behavior with Modules

ptg11539634

this code would be defined in a single place but be usable by any object that wished to
act as the duck type and play the role.

Many object-oriented languages provide a way to define a named group of meth-
ods that are independent of class and can be mixed in to any object. In Ruby, these
mix-ins are called modules. Methods can be defined in a module and then the module
can be added to any object. Modules thus provide a perfect way to allow objects of
different classes to play a common role using a single set of code.

When an object includes a module, the methods defined therein become avail-
able via automatic delegation. If this sounds like classical inheritance, it also looks like
it, at least from the point of view of the including object. From that object’s point of
view, messages arrive, it doesn’t understand them, they get automatically routed some-
where else, the correct method implementation is magically found, it is executed, and
the response is returned.

Once you start putting code into modules and adding modules to objects, you
expand the set of messages to which an object can respond and enter a new realm of
design complexity. An object that directly implements few methods might still have a
very large response set. The total set of messages to which an object can respond includes

• Those it implements

• Those implemented in all objects above it in the hierarchy

• Those implemented in any module that has been added to it

• Those implemented in all modules added to any object above it in the hierarchy

If this seems like a frighteningly large and potentially confusing response set, you have
a clear grasp of the problem. Acquiring an understanding of the behavior of a deeply
nested hierarchy is at best intimidating, at worst, impossible.

Organizing Responsibilities
Now that you have a sufficiently somber view of the possibilities, it’s time to look at a
manageable example. Just as with classical inheritance, before you can choose whether
to create a duck type and put shared behavior into a module, you have to know how
to do it correctly. Fortunately, the classical inheritance example in Chapter 6,
Acquiring Behavior Through Inheritance, is about to pay off; this example builds on
those techniques and is significantly shorter.

Consider the problem of scheduling a trip. Trips occur at specific points in time
and involve bicycles, mechanics, and motor vehicles. Bikes, mechanics, and vehicles are

143Understanding Roles

ptg11539634

real things in the physical world that can’t be in two places at once. FastFeet needs a
way to arrange all of these objects on a schedule so that it can determine, for any point
in time, which objects are available and which are already committed.

Determining if an unscheduled bike, mechanic, or vehicle is available to partici-
pate in a trip is not as simple as looking to see if it’s idle throughout the interval
during which the trip is scheduled. These real-world things need a bit of downtime
between trips, they cannot finish a trip on one day and start another the next. Bicycles
and motor vehicles must undergo maintenance, and mechanics need a rest from being
nice to customers and a chance to do their laundry.

The requirements are that bicycles have a minimum of one day between trips,
vehicles a minimum of three days, and mechanics, four days.

The code to schedule these objects can be written in many ways, and, as has been
true throughout the book, this example will evolve. It begins with some rather alarming
code and works it way to a satisfactory solution, all in the interest of exposing likely
antipatterns.

Assume that a Schedule class exists. Its interface already includes these three
methods:

scheduled?(target, starting, ending)

add(target, starting, ending)

remove(target, starting, ending)

Each of the above methods takes three arguments: the target object and the start
and end dates for the period of interest. The Schedule is responsible for knowing if
its incoming target argument is already scheduled and for adding and removing
targets from the schedule. These responsibilities rightly belong here in the
Schedule itself.

These methods are fine, but unfortunately there’s a gap in this code. It is true that
knowing if an object is scheduled during some interval is all the information needed
to prevent over-scheduling an already busy object. However, knowing that a object is
not scheduled during an interval isn’t enough information to know if it can be sched-
uled during that same interval. To properly determine if an object can be scheduled,
some object, somewhere, must take lead time into account.

Figure 7.1 shows an implementation where the Schedule itself takes responsibil-
ity for knowing the correct lead time. The schedulable? method knows all the possible
values and it checks the class of its incoming target argument to decide which lead
time to use.

144 Chapter 7. Sharing Role Behavior with Modules

ptg11539634

You’ve seen the pattern of checking class to know what message to send; here the
Schedule checks class to know what value to use. In both cases Schedule knows too
much. This knowledge doesn’t belong in Schedule, it belongs in the classes whose
names Schedule is checking.

This implementation cries out for a simple and obvious improvement, one sug-
gested by the pattern of the code. Instead of knowing details about other classes, the
Schedule should send them messages.

Removing Unnecessary Dependencies
The fact that the Schedule checks many class names to determine what value to
place in one variable suggests that the variable name should be turned into a message,
which in turn should be sent to each incoming object.

145Understanding Roles

instigating
object

the
Schedule

instigating
object

the
Schedule

The ‘target’ argument
contains an instance of
Bicycle, Vehicle or Mechanic.

schedulable?(target, starting, ending)

!scheduled?(target, starting + lead_days, ending)

lead_days = 1

lead_days = 4

lead_days = 3

[target.class==Bicycle]

[target.class==Mechanic]

[target.class==Vehicle]

alt

Figure 7.1 The schedule knows the lead time for other objects.

ptg11539634

Discovering the Schedulable Duck Type

Figure 7.2 shows a sequence diagram for new code that removes the check on class
from the schedulable? method and alters the method to instead send the
lead_days message to its incoming target argument. This change replaces an if
statement that checks the class of an object with a message sent to that same object. It
simplifies the code and pushes responsibility for knowing the correct number of lead
days into the last object that could possibly know the correct answer, which is exactly
where this responsibility belongs.

A close look at Figure 7.2 reveals something interesting. Notice that this diagram
contains a box labeled “the target.” The boxes on sequence diagrams are meant to rep-
resent objects and are commonly named after classes, as in “the Schedule” or “a
Bicycle.” In Figure 7.2, the Schedule intends to send lead_days to its target, but
target could be an instance of any of a number of classes. Because target’s class is
unknown, it’s not obvious how to label the box for the receiver of this message.

The easiest way to draw the diagram is to sidestep this issue by labeling the box
after the name of the variable and sending the lead_days message to that “target”
without being precise about its class. The Schedule clearly does not care about
target’s class, instead it merely expects it to respond to a specific message. This
message-based expectation transcends class and exposes a role, one played by all targets
and made explicitly visible by the sequence diagram.

The Schedule expects its target to behave like something that understands
lead_days, that is, like something that is “schedulable.” You have discovered a
duck type.

146 Chapter 7. Sharing Role Behavior with Modules

Figure 7.2 The schedule expects targets to know their own lead time.

instigating
object

the
target

the
Schedule

instigating
object

the
target

the
Schedule

schedulable?(target, starting, ending)

lead_days

!scheduled?(target, starting + lead_days, ending)

ptg11539634

Right now this new duck type is shaped much like the Preparer duck type from
Chapter 5; it consists only of this interface. Schedulables must implement
lead_days but currently have no other code in common.

Letting Objects Speak for Themselves

Discovering and using this duck type improves the code by removing the Schedule’s
dependency on specific class names, which makes the application more flexible and
easier to maintain. However, Figure 7.2 still contains unnecessary dependencies that
should be removed.

It’s easiest to illustrate these dependencies with an extreme example. Imagine a
StringUtils class that implements utility methods for managing strings. You can ask
StringUtils if a string is empty by sending StringUtils.empty?(some_string).

If you have written much object-oriented code you will find this idea ridiculous.
Using a separate class to manage strings is patently redundant; strings are objects, they
have their own behavior, they manage themselves. Requiring that other objects know
about a third party, StringUtils, to get behavior from a string complicates the code
by adding an unnecessary dependency.

This specific example illustrates the general idea that objects should manage
themselves; they should contain their own behavior. If your interest is in object B, you
should not be forced to know about object A if your only use of it is to find things out
about B.

The sequence diagram in Figure 7.2 violates this rule. The instigator is trying to
ascertain if the target object is schedulable. Unfortunately, it doesn’t ask this ques-
tion of target itself, it instead asks a third party, Schedule. Asking Schedule if a
target is schedulable is just like asking StringUtils if a string is empty. It forces the
instigator to know about and thus depend upon the Schedule, even though its only
real interest is in the target.

Just as strings respond to empty? and can speak for themselves, targets should
respond to schedulable?. The schedulable? method should be added to the
interface of the Schedulable role.

Writing the Concrete Code
As it currently stands, the Schedulable role contains only an interface. Adding the
schedulable? method to this role requires writing some code and it’s not immediately
obvious where this code should reside. You are faced with two decisions; you must
decide what the code should do and where the code should live.

147Understanding Roles

ptg11539634

The simplest way to get started is to separate the two decisions. Pick an arbi-
trary concrete class (for example, Bicycle) and implement the schedulable?
method directly in that class. Once you have a version that works for Bicycle you
can refactor your way to a code arrangement that allows all Schedulables to share
the behavior.

Figure 7.3 shows a sequence diagram where this new code is in Bicycle.
Bicycle now responds to messages about its own “schedulability.”

Before this change, every instigating object had to know about and thus had
a dependency on the Schedule. This change allows bicycles to speak for them-
selves, freeing instigating objects to interact with them without the aid of a third
party.

The code to implement this sequence diagram is straightforward. Here’s a very
simple Schedule. This is clearly not a production-worthy implementation but it
provides a good enough stand-in for the rest of the example.

1 class Schedule

2 def scheduled?(schedulable, start_date, end_date)

3 puts "This #{schedulable.class} " +

4 "is not scheduled\n" +

5 " between #{start_date} and #{end_date}"

6 false

7 end

8 end

148 Chapter 7. Sharing Role Behavior with Modules

instigating
object

a
Bicycle

a
Schedule

a
Schedule

a
Bicycle

instigating
object

schedulable?(starting, ending)

lead_days

!scheduled?(self, starting – lead_days, ending)

Figure 7.3 Bicycle classes know if they are schedulable.

ptg11539634

This next example shows Bicycle’s implementation of schedulable?. Bicycle
knows its own scheduling lead time (defined on line 23 and referenced on line 13 below),
and delegates scheduled? to the Schedule itself.

1 class Bicycle

2 attr_reader :schedule, :size, :chain, :tire_size

3

4 # Inject the Schedule and provide a default

5 def initialize(args={})

6 @schedule = args[:schedule] || Schedule.new

7 # ...

8 end

9

10 # Return true if this bicycle is available

11 # during this (now Bicycle specific) interval.

12 def schedulable?(start_date, end_date)

13 !scheduled?(start_date - lead_days, end_date)

14 end

15

16 # Return the schedule's answer

17 def scheduled?(start_date, end_date)

18 schedule.scheduled?(self, start_date, end_date)

19 end

20

21 # Return the number of lead_days before a bicycle

22 # can be scheduled.

23 def lead_days

24 1

25 end

26

27 # ...

28 end

29

30 require 'date'

31 starting = Date.parse("2015/09/04")

32 ending = Date.parse("2015/09/10")

33

34 b = Bicycle.new

35 b.schedulable?(starting, ending)

36 # This Bicycle is not scheduled

37 # between 2015-09-03 and 2015-09-10

38 # => true

149Understanding Roles

ptg11539634

Running the code (lines 30–35) confirms that Bicycle has correctly adjusted the
starting date to include the bicycle specific lead days.

This code hides knowledge of who the Schedule is and what the Schedule does
inside of Bicycle. Objects holding onto a Bicycle no longer need know about the
existence or behavior of the Schedule.

Extracting the Abstraction
The code above solves the first part of current problem in that it decides what the
schedulable? method should do, but Bicycle is not the only kind of thing that is
“schedulable.” Mechanic and Vehicle also play this role and therefore need this
behavior. It’s time to rearrange the code so that it can be shared among objects of
different classes.

The following example shows a new Schedulable module, which contains an
abstraction extracted from the Bicycle class above. The schedulable? (line 8) and
scheduled? (line 12) methods are exact copies of the ones formerly implemented in
Bicycle.

1 module Schedulable

2 attr_writer :schedule

3

4 def schedule

5 @schedule ||= ::Schedule.new

6 end

7

8 def schedulable?(start_date, end_date)

9 !scheduled?(start_date - lead_days, end_date)

10 end

11

12 def scheduled?(start_date, end_date)

13 schedule.scheduled?(self, start_date, end_date)

14 end

15

16 # includers may override

17 def lead_days

18 0

19 end

20

21 end

150 Chapter 7. Sharing Role Behavior with Modules

ptg11539634

Two things have changed from the code as it previously existed in Bicycle. First, a
schedule method (line 4) has been added. This method returns an instance of the
overall Schedule.

Back in Figure 7.2 the instigating object depended on the Schedule, which
meant there might be many places in the application that needed knowledge of the
Schedule. In the next iteration, Figure 7.3, this dependency was transferred to
Bicycle, reducing its reach into the application. Now, in the code above, the
dependency on Schedule has been removed from Bicycle and moved into the
Schedulable module, isolating it even further.

The second change is to the lead_days method (line 17). Bicycle’s former
implementation returned a bicycle specific number, the module’s implementation
now returns a more generic default of zero days.

Even if there were no reasonable application default for lead days, the
Schedulable module must still implement the lead_days method. The rules for
modules are the same as for classical inheritance. If a module sends a message it must
provide an implementation, even if that implementation merely raises an error indicating
that users of the module must implement the method.

Including this new module in the original Bicycle class, as shown in the example
below, adds the module’s methods to Bicycle’s response set. The lead_days
method is a hook that follows the template method pattern. Bicycle overrides this
hook (line 4) to provide a specialization.

Running the code reveals that Bicycle retains the same behavior as when it
directly implemented this role.

1 class Bicycle

2 include Schedulable

3

4 def lead_days

5 1

6 end

7

8 # ...

9 end

10

11 require 'date'

12 starting = Date.parse("2015/09/04")

13 ending = Date.parse("2015/09/10")

14

151Understanding Roles

ptg11539634

15 b = Bicycle.new

16 b.schedulable?(starting, ending)

17 # This Bicycle is not scheduled

18 # between 2015-09-03 and 2015-09-10

19 # => true

20

Moving the methods to the Schedulable module, including the module and over-
riding lead_days, allows Bicycle to continue to behave correctly. Additionally,
now that you have created this module other objects can make use of it to become
Schedulable themselves. They can play this role without duplicating the code.

The pattern of messages has changed from that of sending schedulable? to a
Bicycle to sending schedulable? to a Schedulable. You are now committed to
the duck type and the sequence diagram shown in Figure 7.3 can be altered to look
like the one in Figure 7.4.

152 Chapter 7. Sharing Role Behavior with Modules

instigating
object

a
Schedulable

a
Schedulable

a
Schedule

a
Schedule

instigating
object

schedulable?(starting, ending)

lead_days

!scheduled?(self, starting – lead_days, ending)

Figure 7.4 The schedulable duck type.

Once you include this module in all of the classes that can be scheduled, the pat-
tern of code becomes strongly reminiscent of inheritance. The following example
shows Vehicle and Mechanic including the Schedulable module and responding
to the schedulable? message.

1 class Vehicle

2 include Schedulable

3

4 def lead_days

5 3

ptg11539634

6 end

7

8 # ...

9 end

10

11 class Mechanic

12 include Schedulable

13

14 def lead_days

15 4

16 end

17

18 # ...

19 end

20

21 v = Vehicle.new

22 v.schedulable?(starting, ending)

23 # This Vehicle is not scheduled

24 # between 2015-09-01 and 2015-09-10

25 # => true

26

27 m = Mechanic.new

28 m.schedulable?(starting, ending)

29 # This Mechanic is not scheduled

30 # between 2015-02-29 and 2015-09-10

31 # => true

The code in Schedulable is the abstraction and it uses the template method pattern
to invite objects to provide specializations to the algorithm it supplies. Schedulables
override lead_days to supply those specializations. When schedulable? arrives at
any Schedulable, the message is automatically delegated to the method defined in
the module.

This may not fit the strict definition of classical inheritance, but in terms of how
the code should be written and how the messages are resolved, it certainly acts like it.
The coding techniques are the same because method lookup follows the same path.

This chapter has been careful to maintain a distinction between classical inheri-
tance and sharing code via modules. This is-a versus behaves-like-a difference definitely
matters, each choice has distinct consequences. However, the coding techniques for
these two things are very similar and this similarity exists because both techniques rely
on automatic message delegation.

153Understanding Roles

ptg11539634

Looking Up Methods
Understanding the similarities between classical inheritance and module inclusion is
easier if you understand how object-oriented languages, in general, and Ruby, in
particular, find the method implementation that matches a message send.

A Gross Oversimplification

When an object receives a message, the OO language first looks in that object’s class for a
matching method implementation. This makes perfect sense; method definitions would
otherwise need to be duplicated within every instance of every class. Storing the methods
known to an object inside of its class means that all instances of a class can share the same
set of method definitions; definitions that need then exist in only one place.

Throughout this book there has been little concern with explicitly stating
whether the object under discussion is an instance of a class or the class itself, expect-
ing that the intent will be clear from the context and that you are comfortable with
the notion that classes themselves are objects in their own right. Describing how
method lookup works is going to require a bit more precision.

As stated above, the search for a method begins in the class of the receiving
object. If this class does not implement the message, the search proceeds to its super-
class. From here on only superclasses matter, the search proceeds up the superclass
chain, looking in one superclass after another, until it reaches the top of the hierarchy.

Figure 7.5 shows how a generic object-oriented language would look up the
spares method of the Bicycle hierarchy that you created in Chapter 6. For the
purposes of this discussion, class Object sits at the top of the hierarchy. Please note

154 Chapter 7. Sharing Role Behavior with Modules

Object

Bicycle ??? spares

spares

superclass

superclass

class

Mountain
Bike

a
mountain

bike

??? spares

Figure 7.5 A generalization of method lookup.

ptg11539634

that the specifics of method lookup in Ruby will turn out to be more involved, but
this is a reasonable first model.

In Figure 7.5, the spares message is sent to an instance of MountainBike. The
OO language first looks for a matching spares method in the MountainBike
class. Upon failing to find method spares in that class, the search proceeds to
MountainBike’s superclass, Bicycle.

Because Bicycle implements spares, this example’s search stops here. However,
in the case where no superclass implementation exists, the search proceeds from one
superclass to the next until it reaches the top of the hierarchy and searches in Object.
If all attempts to find a suitable method fail, you might expect the search to stop, but
many languages make a second attempt to resolve the message.

Ruby gives the original receiver a second chance by sending it a new message,
method_missing, and passing :spares as an argument. Attempts to resolve this
new message restart the search along the same path, except now the search is for
method_missing rather than spares.

A More Accurate Explanation

The previous section explains only how methods are looked up for classical inheri-
tance. This next section expands the explanation to encompass methods defined in a
Ruby module. Figure 7.6 adds the Schedulable module to the method lookup path.

155Understanding Roles

Object

Schedulable

Bicycle

schedulable?

superclass

included
modules

superclass

class

Mountain
Bike

a
mountain

bike

Figure 7.6 A more accurate explanation of method lookup.

ptg11539634

The object hierarchy in Figure 7.6 looks much like the one from Figure 7.5. It
differs only in that Figure 7.6 shows the Schedulable module highlighted between
the Bicycle and Object classes.

When Bicycle includes Schedulable, all of the methods defined in the module
become part of Bicycle’s response set. The module’s methods go into the method
lookup path directly above methods defined in Bicycle. Including this module doesn’t
change Bicycle’s superclass (that’s still Object), but as far as method lookup is con-
cerned, it may as well have. Any message received by an instance of MountainBike now
stands a chance of being satisfied by a method defined in the Schedulable module.

This has enormous implications. If Bicycle implements a method that is also
defined in Schedulable, Bicycle’s implementation overrides Schedulable’s. If
Schedulable sends methods that it does not implement, instances of MountainBike
may encounter confusing failures.

Figure 7.6 shows the schedulable? message being sent to an instance of
MountainBike. To resolve this message, Ruby first looks for a matching method in
the MountainBike class. The search then proceeds along the method lookup path,
which now contains modules as well as superclasses. An implementation of schedu-
lable? is eventually found in Schedulable, which lies in the lookup path between
Bicycle and Object.

A Very Nearly Complete Explanation

Now that you’ve seen how modules fit into the method lookup path, it’s time to
complicate the picture further.

It’s entirely possible for a hierarchy to contain a long chain of superclasses, each of
which includes many modules. When a single class includes several different modules,
the modules are placed in the method lookup path in reverse order of module inclu-
sion. Thus, the methods of the last included module are encountered first in the
lookup path.

This discussion has, until now, been about including modules into classes via
Ruby’s include keyword. As you have already seen, including a module into a class
adds the module’s methods to the response set for all instances of that class. For exam-
ple, in Figure 7.6 the Schedulable module was included into the Bicycle class, and,
as a result, instances of MountainBike gain access to the methods defined therein.

However, it is also possible to add a module’s methods to a single object, using
Ruby’s extend keyword. Because extend adds the module’s behavior directly to an
object, extending a class with a module creates class methods in that class and extending
an instance of a class with a module creates instance methods in that instance. These

156 Chapter 7. Sharing Role Behavior with Modules

ptg11539634

two things are exactly the same; classes are, after all, just plain old objects, and extend
behaves the same for all.

Finally, any object can also have ad hoc methods added directly to its own personal
“Singleton class.” These ad hoc methods are unique to this specific object.

Each of these alternatives adds to an object’s response set by placing method defi-
nitions in specific and unambiguous places along the method lookup path. Figure 7.7
illustrates the complete list of possibilities.

Before continuing, here’s a word of warning. Figure 7.7 is accurate enough to guide
the behavior of most designers, but it is not the complete story. For most application

157Understanding Roles

Object Methods defined in class
Object.

Methods defined in modules
included in class Bicycle.

Methods defined in class
Bicycle.

Methods defined in modules
included in class MountainBike.

Methods defined in modules with
which this instance of mountain
bike has been extended.

Methods defined only in this
one mountain bike instance.

Methods defined in class
MountainBike.

modules

Bicycle

Mountain
Bike

Singleton
Class

a
mountain

bike

any
message

modules

modules

1
2
3
4

1
2
3
4

1
2
3
4

Figure 7.7 A nearly complete explanation of method lookup.

ptg11539634

code it is perfectly adequate to behave as if class Object is the top of the hierarchy but,
depending on your version of Ruby, this may not be technically true. If you are writing
code for which you think this issue might matter, make sure you understand the object
hierarchy of the Ruby in question.

Inheriting Role Behavior
Now that you’ve seen how to define a role’s shared code in a module and how a mod-
ule’s code gets inserted into the method lookup path, you are equipped to write some
truly frightening code. Imagine the possibilities. You can write modules that include
other modules. You can write modules that override the methods defined in other
modules. You can create deeply nested class inheritance hierarchies and then include
these various modules at different levels of the hierarchy.

You can write code that is impossible to understand, debug, or extend.
This is powerful stuff, and dangerous in untutored hands. However, because

this very same power is what allows you to create simple structures of related objects
that elegantly fulfill the needs of your application, your task is not to avoid these
techniques but to learn to use them for the right reasons, in the right places, in the
correct way.

This first step along this path is to write properly inheritable code.

Writing Inheritable Code
The usefulness and maintainability of inheritance hierarchies and modules is in direct
proportion to the quality of the code. More so than with other design strategies, sharing
inherited behavior requires very specific coding techniques, which are covered in the
following sections.

Recognize the Antipatterns
There are two antipatterns that indicate that your code might benefit from inheritance.

First, an object that uses a variable with a name like type or category to
determine what message to send to self contains two highly related but slightly
different types. This is a maintenance nightmare; the code must change every time a
new type is added. Code like this can be rearranged to use classical inheritance by putting
the common code in an abstract superclass and creating subclasses for the different
types. This rearrangement allows you to create new subtypes by adding new subclasses.
These subclasses extend the hierarchy without changing the existing code.

158 Chapter 7. Sharing Role Behavior with Modules

ptg11539634

Second, when a sending object checks the class of a receiving object to deter-
mine what message to send, you have overlooked a duck type. This is another main-
tenance nightmare; the code must change every time you introduce a new class of
receiver. In this situation all of the possible receiving objects play a common role.
This role should be codified as a duck type and receivers should implement the duck
type’s interface. Once they do, the original object can send one single message to
every receiver, confident that because each receiver plays the role it will understand
the common message.

In addition to sharing an interface, duck types might also share behavior. When
they do, place the shared code in a module and include that module in each class or
object that plays the role.

Insist on the Abstraction
All of the code in an abstract superclass should apply to every class that inherits it.
Superclasses should not contain code that applies to some, but not all, subclasses.
This restriction also applies to modules: the code in a module must apply to all
who use it.

Faulty abstractions cause inheriting objects to contain incorrect behavior; attempts
to work around this erroneous behavior will cause your code to decay. When interacting
with these awkward objects, programmers are forced to know their quirks and into
dependencies that are better avoided.

Subclasses that override a method to raise an exception like “does not implement”
are a symptom of this problem. While it is true that expediency pays for all and that it
is sometimes most cost effective to arrange code in just this way, you should be reluc-
tant to do so. When subclasses override a method to declare that they do not do that
thing they come perilously close to declaring that they are not that thing. Nothing
good can come of this.

If you cannot correctly identify the abstraction there may not be one, and if no
common abstraction exists then inheritance is not the solution to your design
problem.

Honor the Contract
Subclasses agree to a contract; they promise to be substitutable for their superclasses.
Substitutability is possible only when objects behave as expected and subclasses are
expected to conform to their superclass’s interface. They must respond to every message
in that interface, taking the same kinds of inputs and returning the same kinds of

159Writing Inheritable Code

ptg11539634

outputs. They are not permitted to do anything that forces others to check their type
in order to know how to treat them or what to expect of them.

Where superclasses place restrictions on input arguments and return values, sub-
classes can indulge in a slight bit of freedom without violating their contract.
Subclasses may accept input parameters that have broader restrictions and may return
results that have narrower restrictions, all while remaining perfectly substitutable for
their superclasses.

Subclasses that fail to honor their contract are difficult to use. They’re “special”
and cannot be freely substituted for their superclasses. These subclasses are declaring
that they are not really a kind-of their superclass and cast doubt on the correctness of
the entire hierarchy.

Liskov Substitution Principle (LSP)

When you honor the contract, you are following the Liskov Substitution
Principle, which is named for its creator, Barbara Liskov, and supplies the “L”
in the SOLID design principles.

Her principle states:

Let q(x) be a property provable about objects x of type T. Then q(y)
should be true for objects y of type S where S is a subtype of T.

Mathematicians will instantly comprehend this statement; everyone else
should understand it to say that in order for a type system to be sane, sub-
types must be substitutable for their supertypes.

Following this principle creates applications where a subclass can be used
anywhere its superclass would do, and where objects that include modules
can be trusted to interchangeably play the module’s role.

Use the Template Method Pattern
The fundamental coding technique for creating inheritable code is the template
method pattern. This pattern is what allows you to separate the abstract from the con-
crete. The abstract code defines the algorithms and the concrete inheritors of that ab-
straction contribute specializations by overriding these template methods.

The template methods represent the parts of the algorithm that vary and
creating them forces you to make explicit decisions about what varies and what
does not.

160 Chapter 7. Sharing Role Behavior with Modules

ptg11539634

Preemptively Decouple Classes
Avoid writing code that requires its inheritors to send super; instead use hook mes-
sages to allow subclasses to participate while absolving them of responsibility for
knowing the abstract algorithm. Inheritance, by its very nature, adds powerful de-
pendencies on the structure and arrangement of code. Writing code that requires sub-
classes to send super adds an additional dependency; avoid this if you can.

Hook methods solve the problem of sending super, but, unfortunately, only for
adjacent levels of the hierarchy. For example, in Chapter 6, Bicycle sent hook
method local_spares that MountainBike overrode to provide specializations. This
hook method serves its purpose admirably, but the original problem reoccurs if you
add another level to the hierarchy by creating subclass MonsterMountainBike under
MountainBike. In order to combine its own spare parts with those of its parent,
MonsterMountainBike would be forced to override local_spares, and within it,
send super.

Create Shallow Hierarchies
The limitations of hook methods are just one of the many reasons to create shallow
hierarchies.

Every hierarchy can be thought of a pyramid that has both depth and breadth. An
object’s depth is the number of superclasses between it and the top. Its breadth is the
number of its direct subclasses. A hierarchy’s shape is defined by its overall breadth
and depth and it is this shape that determines ease of use, maintenance, and exten-
sion. Figure 7.8 illustrates a few of the possible variations of shape.

161Writing Inheritable Code

Shallow, Narrow Shallow, Wide

Deep, Narrow Deep, Wide

Figure 7.8 Hierarchies come in different shapes.

ptg11539634

Shallow, narrow hierarchies are easy to understand. Shallow, wide hierarchies are
slightly more complicated. Deep, narrow hierarchies are a bit more challenging and
unfortunately have a natural tendency to get wider, strictly as a side effect of their
depth. Deep, wide hierarchies are difficult to understand, costly to maintain, and
should be avoided.

The problem with deep hierarchies is that they define a very long search path for
message resolution and provide numerous opportunities for objects in that path to
add behavior as the message passes by. Because objects depend on everything above
them, a deep hierarchy has a large set of built-in dependencies, each of which might
someday change.

Another problem with deep hierarchies is that programmers tend to be familiar
with just the classes at their tops and bottoms; that is, they tend to understand only
the behavior implemented at the boundaries of the search path. The classes in the
middle get short shrift. Changes to these vaguely understood middle classes stand a
greater chance of introducing errors.

Summary
When objects that play a common role need to share behavior, they do so via a Ruby
module. The code defined in a module can be added to any object, be it an instance
of a class, a class itself, or another module.

When a class includes a module, the methods in that module get put into the same
lookup path as methods acquired via inheritance. Because module methods and inher-
ited methods interleave in the lookup path, the coding techniques for modules mirror
those of inheritance. Modules, therefore, should use the template method pattern to
invite those that include them to supply specializations, and should implement hook
methods to avoid forcing includers to send super (and thus know the algorithm).

When an object acquires behavior that was defined elsewhere, regardless of
whether this elsewhere is a superclass or an included module, the acquiring object
makes a commitment to honoring an implied contract. This contract is defined by the
Liskov Substitution Principle, which in mathematical terms says that a subtype should
be substitutable for its supertype, and in Ruby terms this means that an object should
act like what it claims to be.

162 Chapter 7. Sharing Role Behavior with Modules

ptg11539634

CHAPTER 8
Combining Objects
with Composition

Composition is the act of combining distinct parts into a complex whole such
that the whole becomes more than the sum of its parts. Music, for example, is
composed.

You may not think of your software as music but the analogy is apt. The musical
score of Beethoven’s Fifth Symphony is a long list of distinct and independent notes.
You need hear them only once to understand that while it contains the notes, it is not
the notes. It is something more.

You can create software this same way, by using object-oriented composition to
combine simple, independent objects into larger, more complex wholes. In composi-
tion, the larger object is connected to its parts via a has-a relationship. A bicycle has
parts. Bicycle is the containing object, the parts are contained within a bicycle.
Inherent in the definition of composition is the idea that, not only does a bicycle have
parts, but it communicates with them via an interface. Part is a role and bicycles are
happy to collaborate with any object that plays the role.

This chapter teaches the techniques of OO composition. It starts with an example,
moves on to a discussion of the relative strengths and weakness of composition and
inheritance, and then concludes with recommendations about how to choose between
alternative design techniques.

163

ptg11539634

Composing a Bicycle of Parts
This section begins where the Bicycle example in Chapter 6, Acquiring Behavior
Through Inheritance, ended. If that code is no longer in the forefront of your mind, it’s
worth flipping back to the end of Chapter 6 and refreshing your memory. This section
takes that example and moves it through several refactorings, gradually replacing
inheritance with composition.

Updating the Bicycle Class
The Bicycle class is currently an abstract superclass in an inheritance hierarchy and
you’d like to convert it to use composition. The first step is to ignore the existing code
and think about how a bicycle should be composed.

The Bicycle class is responsible for responding to the spares message. This
spares message should return a list of spare parts. Bicycles have parts, the bicycle–parts
relationship quite naturally feels like composition. If you created an object to hold all of
a bicycle’s parts, you could delegate the spares message to that new object.

It’s reasonable to name this new class Parts. The Parts object can be responsible
for holding a list of the bike’s parts and for knowing which of those parts needs spares.
Notice that this object represents a collection of parts, not a single part.

The sequence diagram in Figure 8.1 illustrates this idea. Here, a Bicycle sends
the spares message to its Parts object.

Every Bicycle needs a Parts object; part of what it means to be a Bicycle is to
have-a Parts. The class diagram in Figure 8.2 illustrates this relationship.

164 Chapter 8. Combining Objects with Composition

Figure 8.1 A Bicycle asks Parts for spares.

a Bicycle the Parts

a Bicycle the Parts

spares

Bicycle Parts
1

Figure 8.2 A Bicycle has-a Parts.

ptg11539634

This diagram shows the Bicycle and Parts classes connected by a line. The line
attaches to Bicycle with a black diamond; this black diamond indicates composition,
it means that a Bicycle is composed of Parts. The Parts side of the line has the
number “1.” This means there’s just one Parts object per Bicycle.

It’s easy to convert the existing Bicycle class to this new design. Remove most of
its code, add a parts variable to hold the Parts object, and delegate spares to
parts. Here’s the new Bicycle class.

1 class Bicycle

2 attr_reader :size, :parts

3

4 def initialize(args={})

5 @size = args[:size]

6 @parts = args[:parts]

7 end

8

9 def spares

10 parts.spares

11 end

12 end

Bicycle is now responsible for three things: knowing its size, holding onto its
Parts, and answering its spares.

Creating a Parts Hierarchy
That was easy, but only because there wasn’t much bicycle related behavior in the
Bicycle class to begin with; most of the code in Bicycle dealt with parts. You still
need the parts behavior that you just removed from Bicycle, and the simplest way to
get this code working again is to simply fling that code into a new hierarchy of Parts,
as shown below.

1 class Parts

2 attr_reader :chain, :tire_size

3

4 def initialize(args={})

5 @chain = args[:chain] || default_chain

6 @tire_size = args[:tire_size] || default_tire_size

7 post_initialize(args)

8 end

165Composing a Bicycle of Parts

ptg11539634

9

10 def spares

11 { tire_size: tire_size,

12 chain: chain}.merge(local_spares)

13 end

14

15 def default_tire_size

16 raise NotImplementedError

17 end

18

19 # subclasses may override

20 def post_initialize(args)

21 nil

22 end

23

24 def local_spares

25 {}

26 end

27

28 def default_chain

29 '10-speed'

30 end

31 end

32

33 class RoadBikeParts < Parts

34 attr_reader :tape_color

35

36 def post_initialize(args)

37 @tape_color = args[:tape_color]

38 end

39

40 def local_spares

41 {tape_color: tape_color}

42 end

43

44 def default_tire_size

45 '23'

46 end

47 end

48

49 class MountainBikeParts < Parts

50 attr_reader :front_shock, :rear_shock

51

166 Chapter 8. Combining Objects with Composition

ptg11539634

52 def post_initialize(args)

53 @front_shock = args[:front_shock]

54 @rear_shock = args[:rear_shock]

55 end

56

57 def local_spares

58 {rear_shock: rear_shock}

59 end

60

61 def default_tire_size

62 '2.1'

63 end

64 end

This code is a near exact copy of the Bicycle hierarchy from Chapter 6; the dif-
ferences are that the classes have been renamed and the size variable has been
removed.

The class diagram in Figure 8.3 illustrates this transition. There is now an
abstract Parts class. Bicycle is composed of Parts. Parts has two subclasses,
RoadBikeParts and MountainBikeParts.

167Composing a Bicycle of Parts

MountainBikeParts

RoadBikeParts

Parts
1

Bicycle

Figure 8.3 A hierarchy of Parts.

After this refactoring, everything still works. As you can see below, regardless of
whether it has RoadBikeParts or MountainBikeParts, a bicycle can still correctly
answer its size and spares.

1 road_bike =

2 Bicycle.new(

3 size: 'L',

4 parts: RoadBikeParts.new(tape_color: 'red'))

5

6 road_bike.size # -> 'L'

7

ptg11539634

8 road_bike.spares

9 # -> {:tire_size=>"23",

10 # :chain=>"10-speed",

11 # :tape_color=>"red"}

12

13 mountain_bike =

14 Bicycle.new(

15 size: 'L',

16 parts: MountainBikeParts.new(rear_shock: 'Fox'))

17

18 mountain_bike.size # -> 'L'

19

20 mountain_bike.spares

21 # -> {:tire_size=>"2.1",

22 # :chain=>"10-speed",

23 # :rear_shock=>"Fox"}

This wasn’t a big change and it isn’t much of an improvement. However, this refac-
toring did reveal one useful thing; it made it blindingly obvious just how little
Bicycle specific code there was to begin with. Most of the code above deals with
individual parts; the Parts hierarchy now cries out for another refactoring.

Composing the Parts Object
By definition a parts list contains a list of individual parts. It’s time to add a class to
represent a single part. The class name for an individual part clearly ought to be Part
but introducing a Part class when you already have a Parts class makes conversation
a challenge. It is confusing to use the word “parts” to refer to a collection of Part
objects, when that same word already refers to a single Parts object. However, the
previous phrase illustrates a technique that side steps the communication problem;
when discussing Part and Parts, you can follow the class name with the word
“object” and pluralize “object” as necessary.

You can also avoid the communication problem from the beginning by choosing
different class names, but other names might not be as expressive and may well intro-
duce communication problems of their own. This Parts/Part situation is common
enough that it’s worth dealing with head-on. Choosing these class names requires a
precision of communication that’s a worthy goal in itself.

Thus, there’s a Parts object, and it may contain many Part objects—simple as
that.

168 Chapter 8. Combining Objects with Composition

ptg11539634Creating a Part
Figure 8.4 shows a new sequence diagram that illustrates the conversation between
Bicycle and its Parts object, and between a Parts object and its Part objects.
Bicycle sends spares to Parts and then the Parts object sends needs_spare to
each Part.

Changing the design in this way requires creating a new Part object. The Parts
object is now composed of Part objects, as illustrated by the class diagram in Figure 8.5.
The “1..*” on the line near Part indicates that a Parts will have one or more Part
objects.

Introducing this new Part class simplifies the existing Parts class, which now
becomes a simple wrapper around an array of Part objects. Parts can filter its list of
Part objects and return the ones that need spares. The code below shows three
classes: the existing Bicycle class, the updated Parts class, and the newly introduced
Part class.

1 class Bicycle

2 attr_reader :size, :parts

3

4 def initialize(args={})

5 @size = args[:size]

6 @parts = args[:parts]

169Composing the Parts Object

a Bicycle

spares

needs_spare

the Parts a Part

a Bicycle the Parts a Part

Figure 8.4 Bicycle sends spares to Parts, Parts sends needs_spare to each Part.

Bicycle Parts
1

Part
1..*

Figure 8.5 Bicycle holds one Parts object, which in turn holds many Part objects.

ptg11539634

7 end

8

9 def spares

10 parts.spares

11 end

12 end

13

14 class Parts

15 attr_reader :parts

16

17 def initialize(parts)

18 @parts = parts

19 end

20

21 def spares

22 parts.select {|part| part.needs_spare}

23 end

24 end

25

26 class Part

27 attr_reader :name, :description, :needs_spare

28

29 def initialize(args)

30 @name = args[:name]

31 @description = args[:description]

32 @needs_spare = args.fetch(:needs_spare, true)

33 end

34 end

Now that these three classes exist you can create individual Part objects. The following
code creates a number of different parts and saves each in an instance variable.

1 chain =

2 Part.new(name: 'chain', description: '10-speed')

3

4 road_tire =

5 Part.new(name: 'tire_size', description: '23')

6

7 tape =

8 Part.new(name: 'tape_color', description: 'red')

9

10 mountain_tire =

170 Chapter 8. Combining Objects with Composition

ptg11539634

11 Part.new(name: 'tire_size', description: '2.1')

12

13 rear_shock =

14 Part.new(name: 'rear_shock', description: 'Fox')

15

16 front_shock =

17 Part.new(

18 name: 'front_shock',

19 description: 'Manitou',

20 needs_spare: false)

Individual Part objects can be grouped together into a Parts. The code below com-
bines the road bike Part objects into a road bike suitable Parts.

1 road_bike_parts =

2 Parts.new([chain, road_tire, tape])

Of course, you can skip this intermediate step and simply construct the Parts object
on the fly when creating a Bicycle, as shown in lines 4–6 and 22–25 below.

1 road_bike =

2 Bicycle.new(

3 size: 'L',

4 parts: Parts.new([chain,

5 road_tire,

6 tape]))

7

8 road_bike.size # -> 'L'

9

10 road_bike.spares

11 # -> [#<Part:0x00000101036770

12 # @name="chain",

13 # @description="10-speed",

14 # @needs_spare=true>,

15 # #<Part:0x0000010102dc60

16 # @name="tire_size",

17 # etc ...

18

19 mountain_bike =

20 Bicycle.new(

21 size: 'L',

171Composing the Parts Object

ptg11539634

22 parts: Parts.new([chain,

23 mountain_tire,

24 front_shock,

25 rear_shock]))

26

27 mountain_bike.size # -> 'L'

28

29 mountain_bike.spares

30 # -> [#<Part:0x00000101036770

31 # @name="chain",

32 # @description="10-speed",

33 # @needs_spare=true>,

34 # #<Part:0x0000010101b678

35 # @name="tire_size",

36 # etc ...

As you can see from lines 8–17, and 27–34 above, this new code arrangement works
just fine, and it behaves almost exactly like the old Bicycle hierarchy. There is one
difference: Bicycle’s old spares method returned a hash, but this new spares
method returns an array of Part objects.

While it may be tempting to think of these objects as instances of Part, composi-
tion tells you to think of them as objects that play the Part role. They don’t have to
be a kind-of the Part class, they just have to act like one; that is, they must respond to
name, description, and needs_spare.

Making the Parts Object More Like an Array
This code works but there’s definitely room for improvement. Step back for a
minute and think about the parts and spares methods of Bicycle. These mes-
sages feel like they ought to return the same sort of thing, yet the objects that come
back don’t behave in the same way. Look at what happens when you ask each for
its size.

In line 1 below, spares is happy to report that its size is 3. However, asking this
same question of parts doesn’t turn out so well, as you can see from lines 2–4.

1 mountain_bike.spares.size # -> 3

2 mountain_bike.parts.size

3 # -> NoMethodError:

4 # undefined method 'size' for #<Parts:...>

172 Chapter 8. Combining Objects with Composition

ptg11539634

Line 1 works because spares returns an array (of Part objects) and Array understands
size. Line 2 fails because parts returns instance of Parts, which does not.

Failures like this will chase you around for as long as you own this code. These
two things both seem like arrays. You will inevitably treat them as if they are, despite
the fact that exactly one half of the time, the result will be like stepping on the proverbial
rake in the yard. The Parts object does not behave like an array and all attempts to
treat it as one will fail.

You can fix the proximate problem by adding a size method to Parts. This is a
simple matter of implementing a method to delegate size to the actual array, as
shown here:

1 def size

2 parts.size

3 end

However, this change starts the Parts class down a slippery slope. Do this, and it
won’t be long before you’ll want Parts to respond to each, and then sort, and then
everything else in Array. This never ends; the more array-like you make Parts, the
more like an array you’ll expect it to be.

Perhaps Parts is an Array, albeit one with a bit of extra behavior. You could
make it one; the next example shows a new version of the Parts class, now as a subclass
of Array.

1 class Parts < Array

2 def spares

3 select {|part| part.needs_spare}

4 end

5 end

The above code is a very straightforward expression of the idea that Parts is a special-
ization of Array; in a perfect object-oriented language this solution would be exactly
correct. Unfortunately, the Ruby language has not quite achieved perfection and this
design contains a hidden flaw.

This next example illustrates the problem. When Parts subclasses Array, it
inherits all of Array’s behavior. This behavior includes methods like +, which adds
two arrays together and returns a third. Lines 3 and 4 below show + combining
two existing instances of Parts and saving the result into the combo_parts
variable.

173Composing the Parts Object

ptg11539634

This appears to work; combo_parts now contains the correct number of parts
(line 7). However, something is clearly not right. As line 12 shows, combo_parts
cannot answer its spares.

The root cause of the problem is revealed by lines 15–17. Although the objects
that got +’d together were instances of Parts, the object that + returned was an instance
of Array, and Array does not understand spares.

1 # Parts inherits '+' from Array, so you can

2 # add two Parts together.

3 combo_parts =

4 (mountain_bike.parts + road_bike.parts)

5

6 # '+' definitely combines the Parts

7 combo_parts.size # -> 7

8

9 # but the object that '+' returns

10 # does not understand 'spares'

11 combo_parts.spares

12 # -> NoMethodError: undefined method 'spares'

13 # for #<Array:...>

14

15 mountain_bike.parts.class # -> Parts

16 road_bike.parts.class # -> Parts

17 combo_parts.class # -> Array !!!

It turns out that there are many methods in Array that return new arrays, and unfor-
tunately these methods return new instances of the Array class, not new instances of
your subclass. The Parts class is still misleading and you have just swapped one
problem for another. Where once you were disappointed to find that Parts did not
implement size, now you might be surprised to find that adding two Parts together
returns a result that does not understand spares.

You’ve seen three different implementations of Parts. The first answers only the
spares and parts messages; it does not act like an array, it merely contains one. The
second Parts implementation adds size, a minor improvement that just returns the
size of its internal array. The most recent Parts implementation subclasses Array
and therefore gives the appearance of fully behaving like an array, but as the example
above shows, an instance of Parts still displays unexpected behavior.

It has become clear that there is no perfect solution; it’s therefore time to make
a difficult decision. Even though it cannot respond to size, the original Parts

174 Chapter 8. Combining Objects with Composition

ptg11539634

implementation may be good enough; if so, you can accept its lack of array-like
behavior and revert to that version. If you need size and size alone, it may be
best to add just this one method and so settle for the second implementation. If you
can tolerate the possibility of confusing errors or you know with absolute certainty
that you’ll never encounter them, it might make sense to subclass Array and walk
quietly away.

Somewhere in the middle ground between complexity and usability lies the fol-
lowing solution. The Parts class below delegates size and each to its @parts array
and includes Enumerable to get common traversal and searching methods. This
version of Parts does not have all of the behavior of Array, but at least everything
that it claims to do actually works.

1 require 'forwardable'

2 class Parts

3 extend Forwardable

4 def_delegators :@parts, :size, :each

5 include Enumerable

6

7 def initialize(parts)

8 @parts = parts

9 end

10

11 def spares

12 select {|part| part.needs_spare}

13 end

14 end

Sending + to an instance of this Parts results in a NoMethodError exception.
However, because Parts now responds to size, each, and all of Enumerable, and
obligingly raises errors when you mistakenly treat it like an actual Array, this code
may be good enough. The following example shows that spares and parts can now
both respond to size.

1 mountain_bike =

2 Bicycle.new(

3 size: 'L',

4 parts: Parts.new([chain,

5 mountain_tire,

6 front_shock,

175Composing the Parts Object

ptg11539634

7 rear_shock]))

8

9 mountain_bike.spares.size # -> 3

10 mountain_bike.parts.size # -> 4

You again have a workable version of the Bicycle, Parts, and Part classes. It’s time
to reevaluate the design.

Manufacturing Parts
Look back at lines 4–7 above. The Part objects held in the chain, mountain_tire,
and so on, variables were created so long ago that you may already have forgotten
them. Think about the body of knowledge that these four lines represent. Somewhere
in your application, some object had to know how to create these Part objects. And
here, on lines 4–7 above, this place has to know that these four specific objects go with
mountain bikes.

This is a lot of knowledge and it can easily leak all over your application. This
leakage is both unfortunate and unnecessary. Although there are lots of different indi-
vidual parts, there are only a few valid combinations of parts. Everything would be
easier if you could describe the different bikes and then use your descriptions to
magically manufacture the correct Parts object for any bike.

It’s easy to describe the combination of parts that make up a specific bike. The
code below does this with a simple 2-dimensional array, where each row contains
three possible columns. The first column contains the part name ('chain',
'tire_size', etc.), the second, the part description ('10-speed', '23', etc.) and
the third (which is optional), a Boolean that indicates whether this part needs a spare.
Only 'front_shock' on line 9 below puts a value in this third column, the other
parts would like to default to true, as they require spares.

1 road_config =

2 [['chain', '10-speed'],

3 ['tire_size', '23'],

4 ['tape_color', 'red']]

5

6 mountain_config =

7 [['chain', '10-speed'],

8 ['tire_size', '2.1'],

9 ['front_shock', 'Manitou', false],

10 ['rear_shock', 'Fox']]

176 Chapter 8. Combining Objects with Composition

ptg11539634

Unlike a hash, this simple 2-dimensional array provides no structural information.
However, you understand how this structure is organized and you can encode your
knowledge into a new object that manufactures Parts.

Creating the PartsFactory
As discussed in Chapter 3, Managing Dependencies, an object that manufactures
other objects is a factory. Your past experience in other languages may predispose you
to flinch when you hear this word, but think of this as an opportunity to reclaim it.
The word factory does not mean difficult, or contrived, or overly complicated; it’s
merely the word OO designers use to concisely communicate the idea of an object
that creates other objects. Ruby factories are simple and there’s no reason to avoid this
intention revealing word.

The code below shows a new PartsFactory module. Its job is to take an array
like one of those listed above and manufacture a Parts object. Along the way it may
well create Part objects, but this action is private. Its public responsibility is to create
a Parts.

This first version of PartsFactory takes three arguments, a config, and the
names of the classes to be used for Part, and Parts. Line 6 below creates the new
instance of Parts, initializing it with an array of Part objects built from the information
in the config.

1 module PartsFactory

2 def self.build(config,

3 part_class = Part,

4 parts_class = Parts)

5

6 parts_class.new(

7 config.collect {|part_config|

8 part_class.new(

9 name: part_config[0],

10 description: part_config[1],

11 needs_spare: part_config.fetch(2, true))})

12 end

13 end

This factory knows the structure of the config array. In lines 9–11 above it expects
name to be in the first column, description to be in the second, and needs_spare
to be in the third.

177Manufacturing Parts

ptg11539634

Putting knowledge of config’s structure in the factory has two consequences.
First, the config can be expressed very tersely. Because PartsFactory understands
config’s internal structure, config can be specified as an array rather than a hash.
Second, once you commit to keeping config in an array, you should always create
new Parts objects using the factory. To create new Parts via any other mechanism
requires duplicating the knowledge that is encoded in lines 9–11 above.

Now that PartsFactory exists, you can use the configuration arrays defined
above to easily create new Parts, as shown here:

1 road_parts = PartsFactory.build(road_config)

2 # -> [#<Part:0x00000101825b70

3 # @name="chain",

4 # @description="10-speed",

5 # @needs_spare=true>,

6 # #<Part:0x00000101825b20

7 # @name="tire_size",

8 # etc ...

9

10 mountain_parts = PartsFactory.build(mountain_config)

11 # -> [#<Part:0x0000010181ea28

12 # @name="chain",

13 # @description="10-speed",

14 # @needs_spare=true>,

15 # #<Part:0x0000010181e9d8

16 # @name="tire_size",

17 # etc ...

PartsFactory, combined with the new configuration arrays, isolates all the knowl-
edge needed to create a valid Parts. This information was previously dispersed
throughout the application but now it is contained in this one class and these two
arrays.

Leveraging the PartsFactory
Now that the PartsFactory is up and running, have another look at the Part class
(repeated below). Part is simple. Not only that, the only even slightly complicated
line of code (the fetch on line 7 below) is duplicated in PartsFactory. If
PartsFactory created every Part, Part wouldn’t need this code. And if you remove
this code from Part, there’s almost nothing left; you can replace the whole Part class
with a simple OpenStruct.

178 Chapter 8. Combining Objects with Composition

ptg11539634

1 class Part

2 attr_reader :name, :description, :needs_spare

3

4 def initialize(args)

5 @name = args[:name]

6 @description = args[:description]

7 @needs_spare = args.fetch(:needs_spare, true)

8 end

9 end

Ruby’s OpenStruct class is a lot like the Struct class that you’ve already seen, it
provides a convenient way to bundle a number of attributes into an object. The dif-
ference between the two is that Struct takes position order initialization arguments
while OpenStruct takes a hash for its initialization and then derives attributes from
the hash.

There are good reasons to remove the Part class; this simplifies the code and you
may never again need anything as complicated as what you currently have. You can
remove all trace of Part by deleting the class and then changing PartsFactory to
use OpenStruct to create an object that plays the Part role. The following code
shows a new version of PartFactory where part creation has been refactored into a
method of its own (line 9).

1 require 'ostruct'

2 module PartsFactory

3 def self.build(config, parts_class = Parts)

4 parts_class.new(

5 config.collect {|part_config|

6 create_part(part_config)})

7 end

8

9 def self.create_part(part_config)

10 OpenStruct.new(

11 name: part_config[0],

12 description: part_config[1],

13 needs_spare: part_config.fetch(2, true))

14 end

15 end

Line 13 above is now the only place in the application that defaults needs_spare to
true, so PartsFactory must be solely responsible for manufacturing Parts.

179Manufacturing Parts

ptg11539634

This new version of PartsFactory works. As shown below, it returns a Parts
that contains an array of OpenStruct objects, each of which plays the Part role.

1 mountain_parts = PartsFactory.build(mountain_config)

2 # -> <Parts:0x000001009ad8b8 @parts=

3 # [#<OpenStruct name="chain",

4 # description="10-speed",

5 # needs_spare=true>,

6 # #<OpenStruct name="tire_size",

7 # description="2.1",

8 # etc ...

The Composed Bicycle
The following code shows that Bicycle now uses composition. It shows Bicycle,
Parts, and PartsFactory and the configuration arrays for road and mountain bikes.

Bicycle has-a Parts, which in turn has-a collection of Part objects. Parts and
Part may exist as classes, but the objects in which they are contained think of them as
roles. Parts is a class that plays the Parts role; it implements spares. The role of
Part is played by an OpenStruct, which implements name, description and
needs_spare.

The following 54 lines of code completely replace the 66-line inheritance hierarchy
from Chapter 6.

1 class Bicycle

2 attr_reader :size, :parts

3

4 def initialize(args={})

5 @size = args[:size]

6 @parts = args[:parts]

7 end

8

9 def spares

10 parts.spares

11 end

12 end

13

14 require 'forwardable'

15 class Parts

16 extend Forwardable

180 Chapter 8. Combining Objects with Composition

ptg11539634

17 def_delegators :@parts, :size, :each

18 include Enumerable

19

20 def initialize(parts)

21 @parts = parts

22 end

23

24 def spares

25 select {|part| part.needs_spare}

26 end

27 end

28

29 require 'ostruct'

30 module PartsFactory

31 def self.build(config, parts_class = Parts)

32 parts_class.new(

33 config.collect {|part_config|

34 create_part(part_config)})

35 end

36

37 def self.create_part(part_config)

38 OpenStruct.new(

39 name: part_config[0],

40 description: part_config[1],

41 needs_spare: part_config.fetch(2, true))

42 end

43 end

44

45 road_config =

46 [['chain', '10-speed'],

47 ['tire_size', '23'],

48 ['tape_color', 'red']]

49

50 mountain_config =

51 [['chain', '10-speed'],

52 ['tire_size', '2.1'],

53 ['front_shock', 'Manitou', false],

54 ['rear_shock', 'Fox']]

This new code works much like the prior Bicycle hierarchy. The only difference is
that the spares message now returns an array of Part-like objects instead of a hash,
as you can see on lines 7 and 15 below.

181The Composed Bicycle

ptg11539634

1 road_bike =

2 Bicycle.new(

3 size: 'L',

4 parts: PartsFactory.build(road_config))

5

6 road_bike.spares

7 # -> [#<OpenStruct name="chain", etc ...

8

9 mountain_bike =

10 Bicycle.new(

11 size: 'L',

12 parts: PartsFactory.build(mountain_config))

13

14 mountain_bike.spares

15 # -> [#<OpenStruct name="chain", etc ...

Now that these new classes exist, it’s very easy to create a new kind of bike.
Adding support for recumbent bikes took 19 new lines of code in Chapter 6. This

task can now be accomplished with 3 lines of configuration (lines 2–4 below).

1 recumbent_config =

2 [['chain', '9-speed'],

3 ['tire_size', '28'],

4 ['flag', 'tall and orange']]

5

6 recumbent_bike =

7 Bicycle.new(

8 size: 'L',

9 parts: PartsFactory.build(recumbent_config))

10

11 recumbent_bike.spares

12 # -> [#<OpenStruct

13 # name="chain",

14 # description="9-speed",

15 # needs_spare=true>,

16 # #<OpenStruct

17 # name="tire_size",

18 # description="28",

19 # needs_spare=true>,

20 # #<OpenStruct

21 # name="flag",

22 # description="tall and orange",

23 # needs_spare=true>]

182 Chapter 8. Combining Objects with Composition

ptg11539634

As shown in lines 11–23 above, you can now create a new bike by simply describing
its parts.

Aggregation: A Special Kind of Composition

You already know the term delegation; delegation is when one object receives
a message and merely forwards it to another. Delegation creates dependen-
cies; the receiving object must recognize the message and know where to
send it.

Composition often involves delegation but the term means something
more. A composed object is made up of parts with which it expects to interact
via well-defined interfaces.

Composition describes a has-a relationship. Meals have appetizers, uni-
versities have departments, bicycles have parts. Meals, universities, and bicy-
cles are composed objects. Appetizers, departments, and parts are roles. The
composed object depends on the interface of the role.

Because meals interact with appetizers using an interface, new objects
that wish to act as appetizers need only implement this interface.
Unanticipated appetizers fit seamlessly and interchangeably into existing
meals.

The term composition can be a bit confusing because it gets used for two
slightly different concepts. The definition above is for the broadest use of the
term. In most cases when you see composition it will indicate nothing more
than this general has-a relationship between two objects.

However, as formally defined it means something a bit more specific; it
indicates a has-a relationship where the contained object has no life inde-
pendent of its container. When used in this stricter sense you know not only
that meals have appetizers, but also that once the meal is eaten the appetizer
is also gone.

This leaves a gap in the definition that is filled by the term aggregation.
Aggregation is exactly like composition except that the contained object has
an independent life. Universities have departments, which in turn have pro-
fessors. If your application manages many universities and knows about
thousands of professors, it’s quite reasonable to expect that although a depart-
ment completely disappears when its university goes defunct, its professors
continue to exist.

The university–department relationship is one of composition (in its
strictest sense) and the department–professor relationship is aggregation.

183The Composed Bicycle

ptg11539634

Destroying a department does not destroy its professors; they have an existence
and life of their own.

This distinction between composition and aggregation may have little
practical effect on your code. Now that you are familiar with both terms you
can use composition to refer to both kinds of relationships and be more
explicit only if the need arises.

Deciding Between Inheritance and Composition
Remember that classical inheritance is a code arrangement technique. Behavior is dis-
persed among objects and these objects are organized into class relationships such that
automatic delegation of messages invokes the correct behavior. Think of it this way:
For the cost of arranging objects in a hierarchy, you get message delegation for free.

Composition is an alternative that reverses these costs and benefits. In composi-
tion, the relationship between objects is not codified in the class hierarchy; instead
objects stand alone and as a result must explicitly know about and delegate messages
to one another. Composition allows objects to have structural independence, but at
the cost of explicit message delegation.

Now that you’ve seen examples of inheritance and composition you can begin to
think about when to use them. The general rule is that, faced with a problem that
composition can solve, you should be biased towards doing so. If you cannot explicitly
defend inheritance as a better solution, use composition. Composition contains far
fewer built-in dependencies than inheritance; it is very often the best choice.

Inheritance is a better solution when its use provides high rewards for low risk.
This section examines the costs and benefits of inheritance versus composition and
provides guidelines for choosing the best relationship.

Accepting the Consequences of Inheritance
Making wise choices about using inheritance requires a clear understanding of its costs
and benefits.

Benefits of Inheritance

Chapter 2, Designing Classes with a Single Responsibility, outlined four goals for
code: it should be transparent, reasonable, usable, and exemplary. Inheritance, when
correctly applied, excels at the second, third, and fourth goals.

184 Chapter 8. Combining Objects with Composition

ptg11539634

Methods defined near the top of inheritance hierarchies have widespread influ-
ence because the height of the hierarchy acts as a lever that multiplies their effects.
Changes made to these methods ripple down the inheritance tree. Correctly modeled
hierarchies are thus extremely reasonable; big changes in behavior can be achieved via
small changes in code.

Use of inheritance results in code that can be described as open–closed; hierarchies
are open for extension while remaining closed for modification. Adding a new sub-
class to an existing hierarchy requires no changes to existing code. Hierarchies are thus
usable; you can easily create new subclasses to accommodate new variants.

Correctly written hierarchies are easy to extend. The hierarchy embodies the
abstraction and every new subclass plugs in a few concrete differences. The existing
pattern is easy to follow and replicating it will be the natural choice of any program-
mer charged with creating new subclasses. Hierarchies are therefore exemplary; by
their nature they provide guidance for writing the code to extend them.

You need look no farther than the source of object-oriented languages themselves
to see the value of organizing code using inheritance. In Ruby, the Numeric class
provides an excellent example. Integer and Float are modeled as subclasses of
Numeric; this is-a relationship is exactly right. Integers and floats are fundamentally
numbers. Allowing these two classes to share a common abstraction is the most parsi-
monious way to organize code.

Costs of Inheritance

Concerns about the use of inheritance fall into two different areas. The first fear is
that you might be fooled into choosing inheritance to solve the wrong kind of prob-
lem. If you make this mistake a day will come when you need to add behavior but
find there’s no easy way do so. Because the model is incorrect, the new behavior won’t
fit; in this case you’ll be forced to duplicate or restructure code.

Second, even when inheritance makes sense for the problem, you might be writ-
ing code that will be used by others for purposes you did not anticipate. These other
programmers want the behavior you have created but may not be able to tolerate the
dependencies that inheritance demands.

The previous section on the benefits of inheritance was careful to qualify its
assertions as applying only to a “correctly modeled hierarchy.” Imagine reasonable,
usable and exemplary as two-sided coins. The benefit side represents the wonderful
gains that inheritance provides. If you apply inheritance to a problem for which
it is not suited, you effectively flip these coins over and encounter a parallel
detriment.

185Deciding Between Inheritance and Composition

ptg11539634

The flip side of the reasonable coin is the very high cost of making changes near
the top of an incorrectly modeled hierarchy. In this case, the leveraging effect works to
your disadvantage; small changes break everything.

The opposing side of the usable coin is the impossibility of adding behavior
when new subclasses represent a mixture of types. The Bicycle hierarchy in
Chapter 6 failed when the need for recumbent mountain bikes appeared. This
hierarchy already contains subclasses for MountainBike and RecumbentBike;
combining the qualities of these two classes into a single object is not possible in
the hierarchy as it currently exists. You cannot reuse existing behavior without
changing it.

The other side of the exemplary coin is the chaos that ensues when novice pro-
grammers attempt to extend incorrectly modeled hierarchies. These inadequate
hierarchies should not be extended, they need to be refactored, but novices do not
have the skills to do so. Novices are forced to duplicate existing code or to add
dependencies on class names, both of which serve to exacerbate existing design
problems.

Inheritance, therefore, is a place where the question “What will happen when
I’m wrong?” assumes special importance. Inheritance by definition comes with a
deeply embedded set of dependencies. Subclasses depend on the methods defined in
their superclasses and on the automatic delegation of messages to those superclasses.
This is classical inheritance’s greatest strength and biggest weakness; subclasses are
bound, irrevocably and by design, to the classes above them in the hierarchy. These
built-in dependencies amplify the effects of modifications made to superclasses.
Enormous, broad-reaching changes of behavior can be achieved with very small
changes in code.

This is true, for better or for worse, whether you come to regret it or not.
Finally, your consideration of the use of inheritance should be tempered by your

expectations about the population who will use your code. If you are writing code for
an in-house application in a domain with which you are intimately familiar, you may
be able to predict the future well enough to be confident that your design problem is
one for which inheritance is a cost-effective solution. As you write code for a wider
audience, your ability to anticipate needs necessarily decreases and the suitability of
requiring inheritance as part of the interface goes down.

Avoid writing frameworks that require users of your code to subclass your objects
in order to gain your behavior. Their application’s objects may already be arranged in
a hierarchy; inheriting from your framework may not be possible.

186 Chapter 8. Combining Objects with Composition

ptg11539634

Accepting the Consequences of Composition
Objects built using composition differ from those built using inheritance in two basic
ways. Composed objects do not depend on the structure of the class hierarchy, and they
delegate their own messages. These differences confer a different set of costs and benefits.

Benefits of Composition

When using composition, the natural tendency is to create many small objects that con-
tain straightforward responsibilities that are accessible through clearly defined interfaces.
These well-composed objects excel when measured against several of Chapter 2’s goals
for code.

These small objects have a single responsibility and specify their own behavior.
They are transparent; it’s easy to understand the code and it’s clear what will happen if
it changes. Also, the composed object’s independence from the hierarchy means that it
inherits very little code and so is generally immune from suffering side effects as a
result of changes to classes above it in the hierarchy.

Because composed objects deal with their parts via an interface, adding a new
kind of part is a simple matter of plugging in a new object that honors the interface.
From the point of view of the composed object, adding a new variant of an existing
part is reasonable and requires no changes to its code.

By their very nature, objects that participate in composition are small, structurally
independent, and have well-defined interfaces. This allows their seamless transition into
pluggable, interchangeable components. Well-composed objects are therefore easily
usable in new and unexpected contexts.

At its best, composition results in applications built of simple, pluggable objects
that are easy to extend and have a high tolerance for change.

Costs of Composition

Composition’s strengths, as with most things in life, contribute to its weaknesses.
A composed object relies on its many parts. Even if each part is small and easily

understood, the combined operation of the whole may be less than obvious. While
every individual part may indeed be transparent, the whole may not be.

The benefits of structural independence are gained at the cost of automatic mes-
sage delegation. The composed object must explicitly know which messages to delegate
and to whom. Identical delegation code may be needed by many different objects;
composition provides no way to share this code.

187Deciding Between Inheritance and Composition

ptg11539634

As these costs and benefits illustrate, composition is excellent at prescribing
rules for assembling an object made of parts but doesn’t provide as much help
for the problem of arranging code for a collection of parts that are very nearly
identical.

Choosing Relationships
Classical inheritance (Chapter 6), behavior sharing via modules (Chapter 7, Sharing Role
Behavior with Modules) and composition are each the perfect solution for the problem
they solve. The trick to lowering your application costs is to apply each technique to the
right problem.

Some of the grand masters of object-oriented design have given advice about
using inheritance and composition.

• “Inheritance is specialization.”—Bertrand Meyer, Touch of Class: Learning to
Program Well with Objects and Contracts

• “Inheritance is best suited to adding functionally to existing classes when you will
use most of the old code and add relatively small amounts of new code.” ——
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software

• “Use composition when the behavior is more than the sum of its parts.”—para-
phrase of Grady Booch, Object-Oriented Analysis and Design

Use Inheritance for is-a Relationships

When you select inheritance over composition you are placing a bet that the bene-
fits thereby accrued will outweigh the costs. Some bets are more likely to pay off
than others. Small sets of real-world objects that fall naturally into static, transpar-
ently obvious specialization hierarchies are candidates to be modeled using classical
inheritance.

Imagine a game where players race bicycles. Players assemble their bikes by “buying”
parts. One of the parts they can buy is a shock. The game provides six nearly identical
shocks; each differs slightly in cost and behavior.

All of these shocks are, well, shocks. Their “shock-ness” is at the core of their iden-
tity. Shocks exist in no more atomic category. Variants of shocks are far more alike
than they are different. The most accurate and descriptive statement that you can
make about any one of the variants is that it is-a shock.

188 Chapter 8. Combining Objects with Composition

ptg11539634

Inheritance is perfect for this problem. Shocks can be modeled as a shallow narrow
hierarchy. The hierarchy’s small size makes it understandable, intention revealing, and
easily extendable. Because these objects meet the criteria for successful use of
inheritance, the risk of being wrong is low, but in the unlikely event that you are
wrong, the cost of changing your mind is also low. You can achieve the benefits of
inheritance while exposing yourself to few of its risks.

In terms of this Chapter’s example, each different shock plays the role of Part. It
inherits common shock behavior and the Part role from its abstract Shock super-
class. The PartsFactory currently assumes that every part can be represented by the
Part OpenStruct, but you could easily extend the part configuration array to supply
the class name for a specific shock. Because you already think of Part as an interface,
it’s easy to plug in a new kind of part, even if this part uses inheritance to get some of
its behavior.

If requirements change such that there is an explosion in the kinds of shocks,
reassess this design decision. Perhaps it still holds, perhaps not. If modeling a bevy of
new shocks requires dramatically expanding the hierarchy, or if the new shocks don’t
conveniently fit into the existing code, reconsider alternatives at that time.

Use Duck Types for behaves-like-a Relationships

Some problems require many different objects to play a common role. In addition to
their core responsibilities, objects might play roles like schedulable, preparable, printable,
or persistable.

There are two key ways to recognize the existence of a role. First, although an object
plays it, the role is not the object’s main responsibility. A bicycle behaves-like-a schedu-
lable but it is-a bicycle. Second, the need is widespread; many otherwise unrelated
objects share a desire to play the same role.

The most illuminating way to think about roles is from the outside, from the
point of view of a holder of a role player rather than that of a player of a role. The
holder of a schedulable expects it to implement Schedulable’s interface and to
honor Schedulable’s contract. All schedulables are alike in that they must meet
these expectations.

Your design task is to recognize that a role exists, define the interface of its duck
type and provide an implementation of that interface for every possible player. Some
roles consist only of their interface, others share common behavior. Define the com-
mon behavior in a Ruby module to allow objects to play the role without duplicating
the code.

189Deciding Between Inheritance and Composition

ptg11539634

Use Composition for has-a Relationships

Many objects contain numerous parts but are more than the sums of those parts.
Bicycles have-a Parts, but the bike itself is something more. It has behavior that is
separate from and in addition to the behavior of its parts. Given the current require-
ments of the bicycle example, the most cost-effective way to model the Bicycle
object is via composition.

This is-a versus has-a distinction is at the core of deciding between inheritance
and composition. The more parts an object has, the more likely it is that it should be
modeled with composition. The deeper you drill down into individual parts, the more
likely it is that you’ll discover a specific part that has a few specialized variants and is
thus a reasonable candidate for inheritance. For every problem, assess the costs and
benefits of alternative design techniques and use your judgment and experience to
make the best choice.

Summary
Composition allows you to combine small parts to create more complex objects such
that the whole becomes more than the sum of its parts. Composed objects tend to
consist of simple, discrete entities that can easily be rearranged into new combina-
tions. These simple objects are easy to understand, reuse, and test, but because they
combine into a more complicated whole, the operation of the bigger application may
not be as easy to understand as that of the individual parts.

Composition, classical inheritance, and behavior sharing via modules are competing
techniques for arranging code. Each has different costs and benefits; these differences
predispose them to be better at solving slightly different problems.

These techniques are tools, nothing more, and you’ll become a better designer if
you practice each of them. Learning to use them properly is a matter of experience
and judgment, and one of the best ways to gain experience is to learn from your own
mistakes. The key to improving your design skills is to attempt these techniques,
accept your errors cheerfully, remain detached from past design decisions, and refactor
mercilessly.

As you gain experience, you’ll get better at choosing the correct technique the first
time, your costs will go down, and your applications will improve.

190 Chapter 8. Combining Objects with Composition

ptg11539634

CHAPTER 9
Designing Cost-Effective
Tests

Writing changeable code is an art whose practice relies on three different skills.
First, you must understand object-oriented design. Poorly designed code is natu-

rally difficult to change. From a practical point of view, changeability is the only design
metric that matters; code that’s easy to change is well-designed. Because you have read
this far it’s only fair to assume that your efforts will pay off and that you have acquired
a foundation from which to begin the practice of designing changeable code.

Second, you must be skilled at refactoring code. Not in the casual sense of “go
into the application and fling some things around,” but in the real, grown-up, bullet-
proof sense defined by Martin Fowler in Refactoring: Improving the Design of Existing
Code:

Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves the
internal structure.

Notice the phrase does not alter the external behavior of the code. Refactoring, as formally
defined, does not add new behavior, it improves existing structure. It’s a precise process
that alters code via tiny, crab-like steps and carefully, incrementally, and unerringly
transforms one design into another.

Good design preserves maximum flexibility at minimum cost by putting off deci-
sions at every opportunity, deferring commitments until more specific requirements

191

ptg11539634

arrive. When that day comes, refactoring is how you morph the current code structure
into one that will accommodate the new requirements. New features will be added
only after you have successfully refactored the code.

If your refactoring skills are weak, improve them. The need for ongoing refactoring
is an outgrowth of good design; your design efforts will pay full dividends only when
you can refactor with ease.

Finally, the art of writing changeable code requires the ability to write high-value
tests. Tests give you confidence to refactor constantly. Efficient tests prove that altered
code continues to behave correctly without raising overall costs. Good tests weather
code refactorings with aplomb; they are written such that changes to the code do not
force rewrites of the tests.

Writing tests that can perform this trick is a matter of design and is the topic of
this chapter.

An understanding of object-oriented design, good refactoring skills, and the ability
to write efficient tests form a three-legged stool upon which changeable code rests.
Well-designed code is easy to change, refactoring is how you change from one design
to the next, and tests free you to refactor with impunity.

Intentional Testing
The most common arguments for having tests are that they reduce bugs and provide
documentation, and that writing tests first improves application design.

These benefits, however valid, are proxies for a deeper goal. The true purpose of
testing, just like the true purpose of design, is to reduce costs. If writing, maintaining,
and running tests consumes more time than would otherwise be needed to fix bugs,
write documentation, and design applications tests are clearly not worth writing and
no rational person would argue otherwise.

It is common for programmers who are new to testing to find themselves in the
unhappy state where the tests they write do cost more than the value those tests provide,
and who therefore want to argue about the worth of tests. These are programmers
who believed themselves highly productive in their former test-not lives but who have
crashed into the test-first wall and stumbled to a halt. Their attempts at test-first
programming result in less output, and their desire to regain productivity drives them
to revert to old habits and forgo writing tests.

The solution to the problem of costly tests, however, is not to stop testing but
instead to get better at it. Getting good value from tests requires clarity of intention
and knowing what, when, and how to test.

192 Chapter 9. Designing Cost-Effective Tests

ptg11539634

Knowing Your Intentions
Testing has many potential benefits, some obvious, others more obscure. A thorough
understanding of these benefits will increase your motivation to achieve them.

Finding Bugs

Finding faults, or bugs, early in the development process yields big dividends. Not only
is it easier to find and fix a bug nearer in time to its creation, but getting the code right
earlier rather than later can have unexpected positive effects on the resulting design.
Knowing that you can (or can’t) do something early on may cause you to choose alterna-
tives in the present that alter the design options available in the future. Also, as code
accumulates, embedded bugs acquire dependencies. Fixing these bugs late in the process
may necessitate changing a lot of dependent code. Fixing bugs early always lowers costs.

Supplying Documentation

Tests provide the only reliable documentation of design. The story they tell remains
true long after paper documents become obsolete and human memory fails. Write
your tests as if you expect your future self to have amnesia. Remember that you will
forget; write tests that remind you of the story once you have.

Deferring Design Decisions

Tests allow you to safely defer design decisions. As your design skills improve you will
begin to write applications that are sprinkled with places where you know the design
needs something but you don’t yet have enough information to know exactly what.
These are the places where you are awaiting additional information, valiantly resisting
the forces that compel you to commit to a specific design.

These “pending” decision points are often coded as slightly embarrassing, extremely
concrete hacks hidden behind totally presentable interfaces. This situation occurs
when you are aware of just one concrete case in the present but you fully expect new
cases to arrive in the near future. You know that at some point you will be better
served by code that handles these many concrete cases as a single abstraction, but right
now you don’t have enough information to anticipate what that abstraction will be.

When your tests depend on interfaces you can refactor the underlying code with
reckless abandon. The tests verify the continued good behavior of the interface
and changes to the underlying code do not force rewrites of the tests. Intentionally
depending on interfaces allows you to use tests to put off design decisions safely and
without penalty.

193Intentional Testing

ptg11539634

Supporting Abstractions

When more information finally arrives and you make the next design decision, you’ll
change the code in ways that increase its level of abstraction. Herein lies another of
the benefits of tests on design.

Good design naturally progresses toward small independent objects that rely on
abstractions. The behavior of a well-designed application gradually becomes the result
of interactions among these abstractions. Abstractions are wonderfully flexible design
components but the improvements they provide come at one slight cost: While each
individual abstraction might be easy to understand, there is no single place in the code
that makes obvious the behavior of the whole.

As the code base expands and the number of abstractions grows, tests become
increasingly necessary. There is a level of design abstraction where it is almost impossi-
ble to safely make any change unless the code has tests. Tests are your record of the
interface of every abstraction and as such they are the wall at your back. They let you
put off design decisions and create abstractions to any useful depth.

Exposing Design Flaws

The next benefit of tests is that they expose design flaws in the underlying code. If a
test requires painful setup, the code expects too much context. If testing one object
drags a bunch of others into the mix, the code has too many dependencies. If the test
is hard to write, other objects will find the code difficult to reuse.

Tests are the canary in the coal mine; when the design is bad, testing is hard.
The inverse, however, is not guaranteed to be true. Costly tests do not necessarily

mean that the application is poorly designed. It is quite technically possible to write
bad tests for well-designed code. Therefore, for tests to lower your costs, both the
underlying application and the tests must be well-designed.

Your goal is to gain all of the benefits of testing for the least cost possible. The best
way to achieve this goal is to write loosely coupled tests about only the things that matter.

Knowing What to Test
Most programmers write too many tests. This is not always obvious because in many
cases the cost of these unnecessary tests is so high that the programmers involved have
given up testing altogether. It’s not that they don’t have tests. They have a big, but out-
of-date test suite; it just never runs. One simple way to get better value from tests is to
write fewer of them. The safest way to accomplish this is to test everything just once
and in the proper place.

194 Chapter 9. Designing Cost-Effective Tests

ptg11539634

Removing duplication from testing lowers the cost of changing tests in reaction
to application changes, and putting tests in the right place guarantees they’ll be forced
to change only when absolutely necessary. Distilling your tests to their essence requires
having a very clear idea about what you intend to test, one that can be derived from
design principles you already know.

Think of an object-oriented application as a series of messages passing between a
set of black boxes. Dealing with every object as a black box puts constraints on what
others are permitted to know and limits the public knowledge about any object to the
messages that pierce its boundaries.

Well-designed objects have boundaries that are very strong. Each is like the
space capsule shown in Figure 9.1. Nothing on the outside can see in, nothing on
the inside can see out and only a few explicitly agreed upon messages can pass through
the predefined airlocks.

This willful ignorance of the internals of every other object is at the core of design.
Dealing with objects as if they are only and exactly the messages to which they respond
lets you design a changeable application, and it is your understanding of the impor-
tance of this perspective that allows you to create tests that provide maximum benefit
at minimum cost.

The design principles you are enforcing in your application apply to your tests as
well. Each test is merely another application object that needs to use an existing class.
The more the test gets coupled to that class, the more entangled the two become and
the more vulnerable the test is to unnecessarily being forced to change.

Not only should you limit couplings, but the few you allow should be to stable
things. The most stable thing about any object is its public interface; it logically follows
that the tests you write should be for messages that are defined in public interfaces. The

195Intentional Testing

A) Received
from others

C) Sent
to others

B) Sent to self

Object under
Test

Origins of Messages

depended upon by others no dependents

Figure 9.1 Objects under test are like space capsules, messages breach their boundaries.

ptg11539634

most costly and least useful tests are those that blast holes in an object’s containment
walls by coupling to unstable internal details. These over-eager tests prove nothing
about the overall correctness of an application but nonetheless raise costs because they
break with every refactoring of underlying class.

Tests should concentrate on the incoming or outgoing messages that cross an
object’s boundaries. The incoming messages make up the public interface of the receiving
object. The outgoing messages, by definition, are incoming into other objects and so
are part of some other object’s interface, as illustrated in Figure 9.2.

In Figure 9.2, messages that are incoming into Foo make up Foo’s public interface.
Foo is responsible for testing its own interface and it does so by making assertions
about the results that these messages return. Tests that make assertions about the
values that messages return are tests of state. Such tests commonly assert that the results
returned by a message equal an expected value.

Figure 9.2 also shows Foo sending messages to Bar. A message sent by Foo to Bar

is outgoing from Foo but incoming to Bar. This message is part of Bar’s public inter-
face and all tests of state should thus be confined to Bar. Foo need not, and should
not, test these outgoing messages for state. The general rule is that objects should
make assertions about state only for messages in their own public interfaces. Following
this rule confines tests of message return values to a single place and removes unneces-
sary duplication, DRYing out your tests and lowering maintenance costs.

The fact that you need not test outgoing messages for state does not mean outgoing
messages need no tests at all. There are two flavors of outgoing messages, and one of
them requires a different kind of test.

Some outgoing messages have no side effects and thus matter only to their
senders. The sender surely cares about the result it gets back (why else send the mes-
sage?), but no other part of the application cares if the message gets sent. Outgoing
messages like this are known as queries and they need not be tested by the sending
object. Query messages are part of the public interface of their receiver, which already
implements every necessary test of state.

However, many outgoing messages do have side effects (a file gets written, a data-
base record is saved, an action is taken by an observer) upon which your application

196 Chapter 9. Designing Cost-Effective Tests

Incoming IncomingOutgoing

Foo Bar

Figure 9.2 One object’s outgoing message is another’s incoming.

ptg11539634

depends. These messages are commands and it is the responsibility of the sending
object to prove that they are properly sent. Proving that a message gets sent is a test of
behavior, not state, and involves assertions about the number of times, and with what
arguments, the message is sent.

Here, then, are the guidelines for what to test: Incoming messages should be
tested for the state they return. Outgoing command messages should be tested to
ensure they get sent. Outgoing query messages should not be tested.

As long as your application’s objects deal with one another strictly via public
interfaces, your tests need know nothing more. When you test this minimal set of
messages, no change in the private behavior of any object can affect any test. When
you test outgoing command messages only to prove they get sent, your loosely coupled
tests can tolerate application changes without being forced to change in turn. As long
as the public interfaces remain stable, you can write tests once and they will keep you
safe forever.

Knowing When to Test
You should write tests first, whenever it makes sense to do so.

Unfortunately, judging when it makes sense to do so can be a challenge for novice
designers, rendering this advice less than helpful. Novices often write code that is far
too coupled; they combine unrelated responsibilities and bind many dependencies
into every object. Their applications are tightly woven tapestries of entangled code
where no object lives in isolation. It is very hard to retroactively test these applications
because tests are reuse and this code can’t be reused.

Writing tests first forces a modicum of reusability to be built into an object from
its inception; it would otherwise be impossible to write tests at all. Therefore, novice
designers are best served by writing test-first code. Their lack of design skills may
make this bafflingly difficult but if they persevere they will at least have testable code,
something that may not otherwise be true.

Be warned, however, that writing tests first is no substitute for and does not guar-
antee a well-designed application. The reusability that results from test-first is an
improvement over nothing at all but the resulting application can still fall far short of
good design. Well-intentioned novices often write expensive, duplicative tests around
messy, tightly coupled code. It is an unfortunate truth that the most complex code is
usually written by the least qualified person. This does not reflect an innate complexity
of the underlying task, rather a lack of experience on the part of the programmer.
Novice programmers don’t yet have the skills to write simple code.

197Intentional Testing

ptg11539634

The overcomplicated applications these novices produce should be viewed as
triumphs of perseverance; it’s a miracle these applications work at all. The code is
hard. The applications are difficult to change and every refactoring breaks all the tests.
This high cost of change can easily start a downward productivity spiral that is dis-
couraging for all concerned. Changes cascade throughout the application, and the
maintenance cost of tests makes them seem costly relative to their worth.

If you are a novice and in this situation, it’s important to sustain faith in the value
of tests. Done at the correct time and in the right amounts, testing, and writing code
test-first, will lower your overall costs. Gaining these benefits requires applying object-
oriented design principles everywhere, both to the code of your application and to the
code in your tests. Your new-found knowledge of design already makes it easier to
write testable code, most of the remainder of this chapter illustrates how to apply
these design principles during the construction of tests. Because well-designed
applications are easy to change, and well-designed tests may very well avoid change
altogether, these overall design improvements pay off dramatically.

Experienced designers garner subtler improvements from testing-first. It’s not
that they can’t benefit from it or that they’ll never discover something unexpected by
following its dictates, rather that the gains accrued from forced reuse are ones they
already have. These programmers already write loosely coupled, reusable code; tests
add value in other ways.

It is not unheard of for experienced designers to “spike” a problem, that is, to do
experiments where they just write code. These experiments are exploratory, for prob-
lems about whose solution they are uncertain. Once clarity is gained and a design sug-
gests itself, these programmers then revert to test-first for production code.

Your overall goal is to create well-designed applications that have acceptable test
coverage. The best way to reach this goal varies according to the strengths and experience
of the programmer.

This license to use your own judgment is not permission to skip testing. Poorly
designed code without tests is just legacy code that can’t be tested. Don’t overestimate
your strengths and use an inflated self-view as an excuse to avoid tests. While it some-
times makes sense to write a bit of code the old fashioned way, you should err on the
side of test-first.

Knowing How to Test
Anyone can create a new Ruby testing framework and sometimes it seems that everyone
has. The next shiny new framework may contain a feature that you just can’t live without;
if you understand the costs and benefits, feel free to choose any framework that suits you.

198 Chapter 9. Designing Cost-Effective Tests

ptg11539634

However, there are many good reasons to stay within the testing mainstream. The
frameworks with the most use have the best support. They are speedily updated to en-
sure compatibility with new releases of Ruby (and of Rails) and so present no obstacle
to keeping current. Their large user base biases them towards maintaining backward
compatibility; it’s unlikely they’ll change in such a way as to force a rewrite of all your
tests. And because they are widely adopted, it’s easy to find programmers who have ex-
perience using them.

As of this writing, the mainstream frameworks are MiniTest, from Ryan Davis
and seattle.rb and bundled with Ruby as of version 1.9, and RSpec, from David
Chelimsky and the RSpec team. These frameworks have different philosophies and
while you may naturally lean towards one or the other, both are excellent choices.

Not only must you choose a framework, you must grapple with alternative styles
of testing: Test Driven Development (TDD) and Behavior Driven Development
(BDD). Here the decision is not so clear-cut. TDD and BDD may appear to be in
opposition but they are best viewed as on a continuum like Figure 9.3, where your
values and experience dictate the choice of where to stand.

Both styles create code by writing tests first. BDD takes an outside-in approach,
creating objects at the boundary of an application and working its way inward, mock-
ing as necessary to supply as-yet-unwritten objects. TDD takes an inside-out ap-
proach, usually starting with tests of domain objects and then reusing these newly
created domain objects in the tests of adjacent layers of code.

Past experience or inclination may render one style more suitable for you than the
other, but both are completely acceptable. Each has costs and benefits, some of which
will be explored in the next sections on writing tests.

When testing, it’s useful to think of your application’s objects as divided into
two major categories. The first category contains the object that you’re testing,

199Intentional Testing

More
outside in

BDD

More
inside out

TDD

1

1

2

2

3
3

Figure 9.3 BDD and TDD should be viewed as on a continuum.

ptg11539634

referred to from now on as the object under test. The second category contains
everything else.

Your tests must obviously know things about the first category, that is, about
the object under test, but they should remain as ignorant as possible about the
second. Pretend that the rest of the application is opaque, that the only information
available during the test is that which can be gained from looking at the object
under test.

Once you dial your testing focus down to the specific object under test, you’ll
need to choose a testing point-of-view. Your tests could stand completely inside of the
object under test, with effective access to all of its internals. This is a bad idea, how-
ever, because it allows knowledge that should be private to the object to leak into the
tests, increasing coupling between them and raising the likelihood that changes to
code will require changes in tests. It’s better for tests to assume a viewpoint that sights
along the edges of the object under test, where they can know only about messages
that come and go.

MiniTest Framework

The tests in this chapter are written using MiniTest. This is not an endorse-
ment of one framework over another, rather a recognition of the fact that
examples written in MiniTest will run anywhere Ruby 1.9 or above is installed.
You can duplicate and experiment with these examples without installing
additional software.

By the time you read this chapter MiniTest may have changed. Perfect
strangers may well have improved this software and given you those improve-
ments free of charge; such is the life of the open source developer. Regardless
of how MiniTest may have evolved, the principles illustrated below hold true.
Don’t get distracted by changes in syntax; concentrate on understanding the
underlying goals of the tests. Once you understand these goals, you can
achieve them via any testing framework.

Testing Incoming Messages
Incoming messages make up an object’s public interface, the face it presents to the
world. These messages need tests because other application objects depend on their
signatures and on the results they return.

200 Chapter 9. Designing Cost-Effective Tests

ptg11539634

These first tests use code from the examples in Chapter 3, Managing Dependencies.
Following is a reminder of those Wheel and Gear classes, as they were when entangled
together. Gear creates an instance of the Wheel class deep inside its gear_inches
method, on line 24 below.

201Testing Incoming Messages

Note
The remainder of this chapter contains tests for code that
appeared previously in this book. These code samples
served earlier to explain the principles of object-oriented
design; here they will illustrate how to test different com-
ponents of design. The following tests don’t cover every
line of code you’ve seen, but they do test every concept
you’ve learned in this book.

1 class Wheel

2 attr_reader :rim, :tire

3 def initialize(rim, tire)

4 @rim = rim

5 @tire = tire

6 end

7

8 def diameter

9 rim + (tire * 2)

10 end

11 # ...

12 end

13

14 class Gear

15 attr_reader :chainring, :cog, :rim, :tire

16 def initialize(args)

17 @chainring = args[:chainring]

18 @cog = args[:cog]

19 @rim = args[:rim]

20 @tire = args[:tire]

21 end

22

23 def gear_inches

24 ratio * Wheel.new(rim, tire).diameter

25 end

ptg11539634

26

27 def ratio

28 chainring / cog.to_f

29 end

30 # ...

31 end

Table 9.1 shows the messages (other than those that return simple attributes) that
cross these object’s boundaries. Wheel responds to one incoming message, diameter
(which in turn is sent by, or outgoing from, Gear) and Gear responds to two incoming
messages, gear_inches and ratio.

The opening paragraph of this section stated that every incoming message is part
of an object’s public interface and so must be tested. Now it’s time to add a slight
caveat to this rule.

Deleting Unused Interfaces
Incoming messages ought to have dependents. As you can see from Table 9.1, this is
true for diameter, gear_inches, and ratio where they are incoming messages.
Some object other than the original implementer depends on each of these messages.

If you draw this table for the object under test and find a purported incoming
message that does not have dependents, you should view that message with great sus-
picion. What purpose is served by implementing a message that no one sends? It’s not
really incoming at all, it’s a speculative implementation that reeks of guessing about the
future and clearly anticipates requirements that do not exist.

Do not test an incoming message that has no dependents; delete it. You application
is improved by ruthlessly eliminating code that is not actively being used. Such code is
negative cash flow, it adds testing and maintenance burdens but provides no value.
Deleting unused code saves money right now, if you do not do so you must test it.

202 Chapter 9. Designing Cost-Effective Tests

Table 9.1 Incoming and Outgoing Messages by Object.

Object Incoming Messages Outgoing Messages Has Dependents?

Wheel diameter Yes

Gear diameter No

gear_inches Yes

ratio Yes

ptg11539634

Overcome any reluctance that you feel; practicing this pruning will teach you its
value. Until such time as you are completely convinced of the rightness of this strategy
you may console yourself with the knowledge that in extremity you can recover
deleted code from revision control. Regardless of whether you do it with joy or in
pain, delete the code. Unused code costs more to keep than to recover.

Proving the Public Interface
Incoming messages are tested by making assertions about the value, or state, that their
invocation returns. The first requirement for testing an incoming message is to prove
that it returns the correct value in every possible situation.

The following code shows a test of Wheel’s diameter method. Line 4 creates an
instance of Wheel and line 6 asserts that this Wheel has a diameter of 29.

1 class WheelTest < MiniTest::Unit::TestCase

2

3 def test_calculates_diameter

4 wheel = Wheel.new(26, 1.5)

5

6 assert_in_delta(29,

7 wheel.diameter,

8 0.01)

9 end

10 end

This test is extremely simple and it invokes very little code. Wheel has no hidden
dependencies so no other application objects get created as a side effect of running
this test. Wheel’s design allows you to test it independently of every other class in your
application.

Testing Gear is a bit more interesting. Gear requires a few more arguments than
Wheel, but even so the overall structure of these two tests is very similar. In the
gear_inches test below, line 4 creates a new instance of Gear and line 10 makes
assertions about the results of the method.

1 class GearTest < MiniTest::Unit::TestCase

2

3 def test_calculates_gear_inches

4 gear = Gear.new(

5 chainring: 52,

203Testing Incoming Messages

ptg11539634

6 cog: 11,

7 rim: 26,

8 tire: 1.5)

9

10 assert_in_delta(137.1,

11 gear.gear_inches,

12 0.01)

13 end

14 end

This new gear_inches test looks a lot like Wheel’s diameter test but don’t be
fooled by appearances. This test has entanglements that the diameter test did not
have. Gear’s implementation of gear_inches unconditionally creates and uses
another object, Wheel. Gear and Wheel are coupled in the code and in the tests,
though it’s not obvious here.

The fact that Gear’s gear_inches method creates and uses another object
affects how long this test runs and how likely it is to suffer unintended consequences
as a result of changes to unrelated parts of the application. The coupling that creates
this problem, however, is hidden inside of Gear and so totally invisible in this test.
The test’s purpose is to prove that gear_inches returns the right result and it cer-
tainly fulfills that requirement, but the way the underlying code is structured adds
hidden risk.

If Wheels are expensive to create, the Gear test pays that cost even though
it has no interest in Wheel. If Gear is correct but Wheel is broken, the Gear test
might fail in a misleading way, at a place far distant from the code you’re trying
to test.

Tests run fastest when they execute the least code and the volume of external
code that a test invokes is directly related to your design. An application constructed
of tightly coupled, dependent-laden objects is like a tapestry where pulling on one
thread drags the entire rug along. When tightly coupled objects are tested, a test of
one object runs code in many others. If the code were such that Wheel were also
coupled to other objects, this problem is magnified; running the Gear test would
then create a large network of objects, any of which might break in a maddeningly
confusing way.

These problems are manifested in, but are not unique to, the tests. Because tests
are the first reuse of code, this problem is but a harbinger of things to come for your
application as a whole.

204 Chapter 9. Designing Cost-Effective Tests

ptg11539634

Isolating the Object Under Test
Gear is a simple object but attempts to test its gear_inches method have already
unearthed hidden complexity. The goal of this test is to ensure that gear inches are cal-
culated correctly but it turns out that running gear_inches relies on code in objects
other than Gear.

This exposes a broader design problem; when you can’t test Gear in isolation, it
bodes ill for the future. This difficulty in isolating Gear for testing reveals that it is
bound to a specific context, one that imposes limitations that will interfere with reuse.

Chapter 3 broke this binding by removing the creation of Wheel from Gear.
Here’s a copy of the code that made that transition; Gear now expects to be injected
with an object that understands diameter.

1 class Gear

2 attr_reader :chainring, :cog, :wheel

3 def initialize(args)

4 @chainring = args[:chainring]

5 @cog = args[:cog]

6 @wheel = args[:wheel]

7 end

8

9 def gear_inches

10 # The object in the'wheel' variable

11 # plays the 'Diameterizable' role.

12 ratio * wheel.diameter

13 end

14

15 def ratio

16 chainring / cog.to_f

17 end

18 # ...

19 end

This transition of code is paralleled by a transition of thought. Gear no longer cares
about the class of the injected object, it merely expects that it implement diameter.
The diameter method is part of the public interface of a role, one that might reasonably
be named Diameterizable.

Now that Gear is decoupled from Wheel, you must inject an instance of
Diameterizable during every Gear creation. However, because Wheel is the only

205Testing Incoming Messages

ptg11539634

application class that plays this role, your runtime options are severely limited. In real
life, as the code currently exists, every Gear that you create will of necessity be injected
with an instance of Wheel.

As circular as this sounds, injecting a Wheel into Gear is not the same as inject-
ing a Diameterizable. The application code looks exactly the same, granted, but
its logical meaning differs. The difference is not in the characters that you type but
in your thoughts about what they mean. Freeing your imagination from an attach-
ment to the class of the incoming object opens design and testing possibilities that
are otherwise unavailable. Thinking of the injected object as an instance of its role
gives you more choices about what kind of Diameterizable to inject into Gear
during your tests.

One possible Diameterizable is, obviously, Wheel, because it clearly implements
the correct interface. The next example makes this very prosaic choice; it updates the
existing test to accommodate the changes to the code by injecting an instance of
Wheel (line 6) during the test.

1 class GearTest < MiniTest::Unit::TestCase

2 def test_calculates_gear_inches

3 gear = Gear.new(

4 chainring: 52,

5 cog: 11,

6 wheel: Wheel.new(26, 1.5))

7

8 assert_in_delta(137.1,

9 gear.gear_inches,

10 0.01)

11 end

12 end

Using a Wheel for the injected Diameterizable results in test code that exactly mir-
rors the application. It is now obvious, both in the application and in the tests, that
Gear is using Wheel. The invisible coupling between these classes has been publicly
exposed.

This test is fast enough but this adequate speed is quite by accident. It’s not
that the gear_inches test has been carefully isolated and thus decoupled from
other code; not at all, it’s just that all the code coupled to this test runs quickly
as well.

206 Chapter 9. Designing Cost-Effective Tests

ptg11539634

Notice also that it’s not obvious here (or anywhere else for that matter) that Wheel
is playing the Diameterizable role. The role is virtual, it’s all in your head. Nothing
about the code guides future maintainers to think of Wheel as a Diameterizable.

However, despite the invisibility of the role and this coupling to Wheel, structuring
the test in this way has one very real advantage, as the next section shows.

Injecting Dependencies Using Classes
When the code in your test uses the same collaborating objects as the code in your
application, your tests always break when they should. The value of this cannot be
underestimated.

Here’s a simple example. Imagine that Diameterizable’s public interface
changes. Another programmer goes into the Wheel class and changes the diameter
method’s name to width, as shown in line 8 below.

1 class Wheel

2 attr_reader :rim, :tire

3 def initialize(rim, tire)

4 @rim = rim

5 @tire = tire

6 end

7

8 def width # <—— used to be 'diameter'

9 rim + (tire * 2)

10 end

11 # ...

12 end

Imagine further that this programmer failed to update the name of the sent message
in Gear. Gear still sends diameter in its gear_inches method, as you can see in
this reminder of Gear’s current code:

1 class Gear

2 # ...

3 def gear_inches

4 ratio * wheel.diameter # <—- obsolete

5 end

6 end

207Testing Incoming Messages

ptg11539634

Because the Gear test injects an instance of Wheel and Wheel implements width but
Gear sends diameter, the test now fails:

1 Gear

2 ERROR test_calculates_gear_inches

3 undefined method 'diameter'

This failure is unsurprising, it is exactly what should happen when two concrete objects
collaborate and the receiver of a message changes but its sender does not. Wheel has
changed and as a result Gear needs to change. This test fails as it should.

The test is simple and the failure obvious because the code is so concrete, but like
all concretions it works only for this specific case. Here, for this code, the test above is
good enough, but there are other situations in which you are better served to locate
and test the abstraction.

A more extreme example illuminates the problem. If there are hundreds of
Diameterizables, how do you decide which is most intention revealing to inject
during the test? What if Diameterizables are extremely costly, how do you avoid
running lots of unnecessary, time-consuming code? Common sense suggests that if
Wheel is the only Diameterizable and it is fast enough, the test should just inject a
Wheel, but what if your choice is less obvious?

Injecting Dependencies as Roles
The Wheel class and the Diameterizable role are so closely aligned that it’s hard to
see them as separate concepts, but understanding what happened in the previous test
requires making a distinction. Gear and Wheel both have relationships with a third
thing, the Diameterizable role. As you can see in Figure 9.4, Diameterizable is
depended on by Gear and implemented by Wheel.

208 Chapter 9. Designing Cost-Effective Tests

Wheel Gear

Is injected
into

Behaves
like
a

Diameterizable

#diameter

Figure 9.4 Gear depends upon Diameterizable; Wheel implements it.

ptg11539634

This role is an abstraction of the idea that disparate objects can have diameters.
As with all abstractions, it is reasonable to expect this abstract role to be more stable
than the concretion from which it came. However in the specific case above the opposite
is true.

There are two places in the code where an object depends on knowledge of
Diameterizable. First, Gear thinks that it knows Diameterizable’s interface; that
is, it believes it can send diameter to the injected object. Second, the code that
created the object to be injected believes that Wheel implements this interface; that is,
it expects Wheel to implement diameter. Now that Diameterizable has changed,
there’s a problem. Wheel has been updated to implement the new interface but unfor-
tunately Gear still expects the old one.

The whole point of dependency injection is that it allows you to substitute
different concrete classes without changing existing code. You can assemble new
behavior by creating new objects that play existing roles and injecting these objects
where those roles are expected. Object-oriented design tells you to inject dependen-
cies because it believes that specific concrete classes will vary more than these roles,
or conversely, roles will be more stable than the classes from which they were
abstracted.

Unfortunately, the opposite just happened. In this example it was not the class
of the injected object that changed, it was the interface of the role. It is still correct to
inject a Wheel but now incorrect to send that Wheel the diameter message.

When a role has a single player, that one concrete player and the abstract role are
so closely aligned that the boundaries between them are easily blurred and it is a prac-
tical fact that sometimes this blurring doesn’t matter. In this case Wheel is the only
player of Diameterizable and you don’t currently expect to have others. If Wheels
are cheap, injecting an actual Wheel has little negative effect on your tests.

When the application code can only be written one way, mirroring that arrange-
ment is often the most effective way to write tests. Doing so permits tests to correctly
fail regardless of whether the concretion (the name of the Wheel class) or the abstraction
(the interface to the diameter method) changes.

However, this is not always true. Sometimes there are forces at work that drive
you to wish to forgo the use of Wheel in your tests. If your application contains many
different Diameterizables you might want to create an idealized one so your tests
clearly convey the idea of this role. If all Diameterizables are expensive, you may
want to fake a cheap one to make your tests run faster. If you are doing BDD, your
application might not yet contain any object that plays this role; you may be forced to
manufacture something just to write the test.

209Testing Incoming Messages

ptg11539634

Creating Test Doubles

This next example explores the idea of creating a fake object, or test double, to play the
Diameterizable role. For this test, assume Diameterizable’s interface has re-
verted to the original diameter method and that diameter is again correctly imple-
mented by Wheel and sent by Gear. Line 2 below creates a fake, DiameterDouble.
Line 13 injects this fake into Gear.

1 # Create a player of the ‘Diameterizable’ role

2 class DiameterDouble

3 def diameter

4 10

5 end

6 end

7

8 class GearTest < MiniTest::Unit::TestCase

9 def test_calculates_gear_inches

10 gear = Gear.new(

11 chainring: 52,

12 cog: 11,

13 wheel: DiameterDouble.new)

14

15 assert_in_delta(47.27,

16 gear.gear_inches,

17 0.01)

18 end

19 end

A test double is a stylized instance of a role player that is used exclusively for testing.
Doubles like this are very easy to make; nothing hinders you from creating one for
every possible situation. Each variation is like an artist’s sketch. It emphasizes a single
interesting feature and allows the underlying object’s other details to recede to the
background.

This double stubs diameter, that is, it implements a version of diameter that
returns a canned answer. DiameterDouble is quite limited, but that’s the whole
point. The fact that it always returns 10 for diameter is perfect. This stubbed return
value provides a dependable foundation on which to construct the test.

Many test frameworks have built-in ways to create doubles and to stub return values.
These specialized mechanisms can be handy, but for simple test doubles it’s fine to use
plain old Ruby objects, as does the example above.

210 Chapter 9. Designing Cost-Effective Tests

ptg11539634

DiameterDouble is not a mock. It’s easy to slip into the habit of using the word
“mock” to describe this double, but mocks are something else entirely and will be cov-
ered later in this chapter in the section Testing Outgoing Messages.

Injecting this double decouples the Gear test from the Wheel class. It no longer
matters if Wheel is slow because DiameterDouble is always fast. This test works just
fine, as running it shows:

1 GearTest

2 PASS test_calculates_gear_inches

This test uses a test double and is therefore simple, fast, isolated, and intention reveal-
ing; what could possibly go wrong?

Living the Dream

Imagine now that the code undergoes the same alterations as before:
Diameterizable’s interface changes from diameter to width and Wheel gets
updated but Gear does not. This change once again breaks the application.
Remember that the previous Gear test (which injected a Wheel instead of using a
double) noticed this problem right away and began to fail with an undefined method

‘diameter’ error.
Now that you’re injecting DiameterDouble, however, here’s what happens when

you re-run the test:

1 GearTest

2 PASS test_calculates_gear_inches

The test continues to pass even though the application is definitely broken. This appli-
cation cannot possibly work; Gear sends diameter but Wheel implements width.

You have created an alternate universe, one in which tests cheerfully report that
all is well despite the fact that the application is manifestly incorrect. The possibility
of creating this universe is what causes some to warn that stubbing (and mocking)
makes for brittle tests. However, as is always true, the fault here is with the program-
mer, not the tool. Writing better code requires understanding the root cause of this
problem, which in turn necessitates a closer look at its components.

The application contains a Diameterizable role. This role originally had one
player, Wheel. When GearTest created DiameterDouble, it introduced a second
player of the role. When the interface of a role changes, all players of the role must adopt

211Testing Incoming Messages

ptg11539634

the new interface. It’s easy, however, to overlook role players that were constructed
specifically for tests and that is exactly what happened here. Wheel got updated with
the new interface but DiameterDouble did not.

Using Tests to Document Roles

It’s no wonder this problem occurs; the role is nearly invisible. There’s no place in the
application where you can point your finger and say “This defines Diameterizable.”
When remembering that the role even exists is a challenge, forgetting that test doubles
play it is inevitable.

One way to raise the role’s visibility is to assert that Wheel plays it. Line 6 below does
just this; it documents the role and proves that Wheel correctly implements its interface.

1 class WheelTest < MiniTest::Unit::TestCase

2 def setup

3 @wheel = Wheel.new(26, 1.5)

4 end

5

6 def test_implements_the_diameterizable_interface

7 assert_respond_to(@wheel, :diameter)

8 end

9

10 def test_calculates_diameter

11 wheel = Wheel.new(26, 1.5)

12

13 assert_in_delta(29,

14 wheel.diameter,

15 0.01)

16 end

17 end

The implements_the_diameterizable_interface test introduces the idea of
tests for roles but is not a completely satisfactory solution. It is, in fact, woefully
incomplete. First, it cannot be shared with other Diameterizables. Other players of
this role would have to duplicate this test. Next, it does nothing to help with the “liv-
ing the dream” problem from the Gear test. Wheel’s assertion that it plays this role
does not prevent Gear’s DiameterDouble from becoming obsolete and allowing the
gear_inches test to erroneously pass.

Fortunately, the problem of documenting and testing roles has a simple solution,
one that will be thoroughly covered in the subsequent section, Proving the

212 Chapter 9. Designing Cost-Effective Tests

ptg11539634

Correctness of Ducks. For now it’s enough to recognize that roles need tests of
their own.

The goal of this section was to prove public interfaces by testing incoming mes-
sages. Wheel was cheap to test. The original Gear test was more expensive because it
depended on a hidden coupling to Wheel. Replacing that coupling with an injected
dependency on Diameterizable isolated the object under test but created a
dilemma about whether to inject a real or a fake object.

This choice between injecting real or fake objects has far-reaching consequences.
Injecting the same objects at test time as are used at runtime ensures that tests break
correctly but may lead to long running tests. Alternatively, injecting doubles can speed
tests but leave them vulnerable to constructing a fantasy world where tests work but
the application fails.

Notice that the act of testing did not, by itself, force an improvement in design.
Nothing about testing made you remove the coupling and inject the dependency.
While it’s true that the outside-in approach of BDD provides more guidance than
does TDD, neither practice prevents a naïve designer from writing Wheel and then
embedding the creation of a Wheel deep inside of Gear. This coupling doesn’t make
tests impossible, it just raises costs. Reducing the coupling is up to you and relies on
your understanding of the principles of design.

Testing Private Methods
Sometimes the object under test sends messages to itself. Messages sent to self invoke
methods that are defined in the receiver’s private interface. These private messages are
like proverbial trees falling in empty forests; they do not exist, at least as far as the rest
of your application is concerned. Because sends of private methods cannot be seen
from outside of the black box of the object under test, in the pristine world of idealized
design they need not be tested.

However, the real world is not so neat and this simple rule does not completely
suffice. Dealing with private methods requires judgment and flexibility.

Ignoring Private Methods During Tests
There are many excellent reasons to omit tests of private methods.

First, such tests are redundant. Private methods are hidden inside the object under
test and their results cannot be seen by others. These private methods are invoked by
public methods that already have tests. A bug in a private method can certainly break

213Testing Private Methods

ptg11539634

the overall application but this failure will always be exposed by an existing test.
Testing private methods is never necessary.

Second, private methods are unstable. Tests of private methods are therefore
coupled to application code that is likely to change. When the application changes the
tests will be forced to change in turn. It’s easy to create a situation where precious time
is spent performing ongoing maintenance on unnecessary tests.

Finally, testing private methods can mislead others into using them. Tests provide
documentation about the object under test. They tell a story about how it expects to
interact with the world at large. Including private methods in this story distracts the
readers from its main purpose and encourages them to break encapsulation and to
depend on these methods. Your tests should hide private methods, not expose them.

Removing Private Methods from the Class Under Test
One way to sidestep this entire problem is to avoid private methods altogether. If you
have no private methods, you need not be concerned for their tests.

An object with many private methods exudes the design smell of having too
many responsibilities. If your object has so many private methods that you dare not
leave them untested, consider extracting the methods into new object. The extracted
methods form the core of the responsibilities of the new object and so make up its
public interface, which is (theoretically) stable and thus safe to depend upon.

This strategy is a good one, but unfortunately is only truly helpful if the new
interface is indeed stable. Sometimes the new interface is not, and it is at this point
that theory and practice part ways. This new public interface will be exactly as stable
(or as unstable) as was the original private interface. Methods don’t magically become
more reliable just because they got moved. It is costly to couple to unstable methods—
regardless of whether they are portrayed as public or private.

Choosing to Test a Private Method
Times of great uncertainly call for drastic measures. It is therefore occasionally defen-
sible to fling a bit of smelly code into place and hide the mess until better information
arrives. Hiding messes is easily done; just wrap the offending code in a private
method.

If you create a mess and never fix it your costs will eventually go up, but in the
short term, for the right problem, having enough confidence to write embarrassing
code can save money. When your intention is to defer a design decision, do the simplest
thing that solves today’s problem. Isolate the code behind the best interface you can
conceive and hunker down and wait for more information.

214 Chapter 9. Designing Cost-Effective Tests

ptg11539634

Applying this strategy can result in private methods that are wildly unstable.
Once you’ve made this leap it’s reasonable to consider compounding your sins by test-
ing these unstable methods. The application code is ugly and will undergo frequent
change; the risk of breaking something is ever-present. These tests are costly and will
likely be forced to change in lock-step with the underlying code, but every other op-
tion for keeping things running may be more expensive.

These tests of private methods aren’t necessary in order to know that a change
broke something, the public interface tests still serve that purpose admirably. Tests of
private methods produce error messages that directly pinpoint the failing parts of pri-
vate code. These more specific errors are tight couplings that increase maintenance
costs, but they make it easier to understand the effects of changes and so they take
some of the pain out of refactoring complex private code.

Reducing the barriers to refactoring is important, because refactor you will. That’s
the whole point. The mess is temporary, you intend to refactor out of it. As more de-
sign information arrives, these private methods will improve. Once the fog clears and a
design reveals itself, the methods will become more stable. As stability improves, the
cost of maintaining and the need for tests will go down. Eventually it will be possible to
extract the private methods into a separate class and safely expose them to the world.

The rules-of-thumb for testing private methods are thus: Never write them, and if
you do, never ever test them, unless of course it makes sense to do so. Therefore, be bi-
ased against writing these tests but do not fear to do so if this would improve your lot.

Testing Outgoing Messages
Outgoing messages, as you know from the “What to Test” section, are either queries or
commands. Query messages matter only to the object that sends them, while com-
mand messages have effects that are visible to other objects in your application.

Ignoring Query Messages
Messages that have no side effects are known as query messages. Here’s a simple ex-
ample, where Gear’s gear_inches method sends diameter.

1 class Gear

2 # ...

3 def gear_inches

4 ratio * wheel.diameter

5 end

6 end

215Testing Outgoing Messages

ptg11539634

Nothing in the application other than the gear_inches method cares that diameter
gets sent. The diameter method has no side effects, running it leaves no visible trace,
and no other objects depend on its execution.

In the same way that tests should ignore messages sent to self, they also should
ignore outgoing query messages. The consequences of sending diameter are hidden
inside of Gear. Because the overall application does not need this message to be sent,
your tests need not care.

Gear’s gear_inches method depends on the result that diameter returns, but
tests to prove the correctness of diameter belong in Wheel, not here in Gear. It is re-
dundant for Gear to duplicate those tests, maintenance costs will increase if it does.
Gear’s only responsibility is to prove that gear_inches works correctly and it can do
this by simply testing that gear_inches always returns appropriate results.

Proving Command Messages
Sometimes, however, it does matter that a message get sent; other parts of your appli-
cation depend on something that happens as a result. In this case the object under test
is responsible for sending the message and your tests must prove it does so.

Illustrating this problem requires a new example. Imagine a game where players
race virtual bicycles. These bicycles, obviously, have gears. The Gear class is now
responsible for letting the application know when a player changes gears so the applica-
tion can update the bicycle’s behavior.

In the following code, Gear meets this new requirement by adding an observer.
When a player shifts gears the set_cog or set_chainring methods execute. These
methods save the new value and then invoke Gear’s changed method (line 20). This
method then sends changed to observer, passing along the current chainring and cog.

1 class Gear

2 attr_reader :chainring, :cog, :wheel, :observer

3 def initialize(args)

4 # ...

5 @observer = args[:observer]

6 end

7

8 # ...

9

10 def set_cog(new_cog)

11 @cog = new_cog

12 changed

216 Chapter 9. Designing Cost-Effective Tests

ptg11539634

13 end

14

15 def set_chainring(new_chainring)

16 @chainring = new_chainring

17 changed

18 end

19

20 def changed

21 observer.changed(chainring, cog)

22 end

23 # ...

24 end

Gear has a new responsibility; it must notify observer when cogs or chainrings
change. This new responsibility is just as important as its previous obligation to
calculate gear inches. When a player changes gears the application will be correct
only if Gear sends changed to observer. Your tests should prove this message
gets sent.

Not only should they prove it, but they also should do so without making asser-
tions about the result that observer’s changed method returns. Just as Wheel’s tests
claimed sole responsibility for making assertions about the results of its own diame-
ter method, observer’s tests are responsible for making assertions about the results
of its changed method. The responsibility for testing a message’s return value lies
with its receiver. Doing so anywhere else duplicates tests and raises costs.

To avoid duplication you need a way to prove that Gear sends changed to
observer that does not force you to rely on checking what comes back when it does.
Fortunately, this is easy; you need a mock. Mocks are tests of behavior, as opposed to
tests of state. Instead of making assertions about what a message returns, mocks define
an expectation that a message will get sent.

The test below proves that Gear fulfills its responsibilities and it does so without
binding itself to details about how observer behaves. The test creates a mock (line 4)
that it injects in place of the observer (line 8). Each test method tells the mock to
expect to receive the changed message (lines 12 and 17) and then verifies that it did
so (lines 14 and 20).

1 class GearTest < MiniTest::Unit::TestCase

2

3 def setup

4 @observer = MiniTest::Mock.new

217Testing Outgoing Messages

ptg11539634

5 @gear = Gear.new(

6 chainring: 52,

7 cog: 11,

8 observer: @observer)

9 end

10

11 def test_notifies_observers_when_cogs_change

12 @observer.expect(:changed, true, [52, 27])

13 @gear.set_cog(27)

14 @observer.verify

15 end

16

17 def test_notifies_observers_when_chainrings_change

18 @observer.expect(:changed, true, [42, 11])

19 @gear.set_chainring(42)

20 @observer.verify

21 end

22 end

This is the classic usage pattern for a mock. In the notifies_observers_when_
cogs_change test above, line 12 tells the mock what message to expect, line 13 trig-
gers the behavior that should cause this expectation to be met, and then line 14 asks
the mock to verify that it indeed was. The test passes only if sending set_chainring
to gear does something that causes observer to receive changed with the given
arguments.

Notice that all the mock did with the message was remember that it received it. If
the object under test depends on the result it gets back when observer receives
changed, the mock can be configured to return an appropriate value. This return
value, however, is beside the point. Mocks are meant to prove messages get sent, they
return results only when necessary to get tests to run.

The fact that Gear works just fine even after you mock observer’s changed
method such that it does absolutely nothing proves that Gear doesn’t care what that
method actually does. Gear’s only responsibility is to send the message; this test
should restrict itself to proving Gear does so.

In a well-designed application, testing outgoing messages is simple. If you have
proactively injected dependencies, you can easily substitute mocks. Setting expecta-
tions on these mocks allows you to prove that the object under test fulfills its respon-
sibilities without duplicating assertions that belong elsewhere.

218 Chapter 9. Designing Cost-Effective Tests

ptg11539634

Testing Duck Types
The Testing Incoming Messages section in this chapter wandered into the territory
of testing roles, but while it introduced the issue, it did not provide a satisfactory
resolution. It’s time to return to that topic and examine how to test duck types. This
section shows how to create tests that role players can share and then returns to the
original problem and uses shareable tests to prevent test doubles from becoming
obsolete.

Testing Roles
The code for this first example comes from the Preparer duck type of Chapter 5,
Reducing Costs with Duck Typing. These first few code samples repeat part of the
lesson from Chapter 5; feel free to skim down to the first test if you have a clear memory
of the problem.

Here’s a reminder of the original Mechanic, TripCoordinator, and Driver
classes:

1 class Mechanic

2 def prepare_bicycle(bicycle)

3 #...

4 end

5 end

6

7 class TripCoordinator

8 def buy_food(customers)

9 #...

10 end

11 end

12

13 class Driver

14 def gas_up(vehicle)

15 #...

16 end

17 def fill_water_tank(vehicle)

18 #...

19 end

20 end

219Testing Duck Types

ptg11539634

Each of these classes has a reasonable public interface, yet when Trip used these
interfaces to prepare a trip it was forced to check the class of each object to determine
which message to send, as shown here:

1 class Trip

2 attr_reader :bicycles, :customers, :vehicle

3

4 def prepare(preparers)

5 preparers.each {|preparer|

6 case preparer

7 when Mechanic

8 preparer.prepare_bicycles(bicycles)

9 when TripCoordinator

10 preparer.buy_food(customers)

11 when Driver

12 preparer.gas_up(vehicle)

13 preparer.fill_water_tank(vehicle)

14 end

15 }

16 end

17 end

The case statement above couples prepare to three existing concrete classes.
Imagine trying to test the prepare method or the consequences of adding a new kind
of preparer into this mix. This method is painful to test and expensive to maintain.

If you come upon code that uses this antipattern but does not have tests, consider
refactoring to a better design before writing them. It’s always dangerous to make
changes in the absence of tests, but this teetering pile of code is so fragile that refactor-
ing it first might well be the most cost-effective strategy. The refactoring that fixes this
problem is simple and makes all subsequent change easier.

The first part of the refactoring is to decide on Preparer’s interface and to imple-
ment that interface in every player of the role. If the public interface of Preparer is
prepare_trip, the following changes allow Mechanic, TripCoordinator, and
Driver to play the role:

1 class Mechanic

2 def prepare_trip(trip)

3 trip.bicycles.each {|bicycle|

4 prepare_bicycle(bicycle)}

220 Chapter 9. Designing Cost-Effective Tests

ptg11539634

5 end

6

7 # ...

8 end

9

10 class TripCoordinator

11 def prepare_trip(trip)

12 buy_food(trip.customers)

13 end

14

15 # ...

16 end

17

18 class Driver

19 def prepare_trip(trip)

20 vehicle = trip.vehicle

21 gas_up(vehicle)

22 fill_water_tank(vehicle)

23 end

24 # ...

25 end

Now that Preparers exist, Trip’s prepare method can be vastly simplified. The
following refactoring alters Trip’s prepare method to collaborate with Preparers
instead of sending unique messages to each specific class:

1 class Trip

2 attr_reader :bicycles, :customers, :vehicle

3

4 def prepare(preparers)

5 preparers.each {|preparer|

6 preparer.prepare_trip(self)}

7 end

8 end

Having done these refactorings you are positioned to write tests. The above code con-
tains a collaboration between Preparers and a Trip, which can now be thought of
as a Preparable. Your tests should document the existence of the Preparer role,
prove that each of its players behaves correctly, and show that Trip interacts with
them appropriately.

221Testing Duck Types

ptg11539634

Because several different classes act as Preparers, the role’s test should be writ-
ten once and shared by every player. MiniTest is a low ceremony testing framework
and it supports sharing tests in the simplest possible way, via Ruby modules.

Here’s a module that tests and documents the Preparer interface:

1 module PreparerInterfaceTest

2 def test_implements_the_preparer_interface

3 assert_respond_to(@object, :prepare_trip)

4 end

5 end

This module proves that @object responds to prepare_trip. The test below uses
this module to prove that Mechanic is a Preparer. It includes the module (line 2)
and provides a Mechanic during setup via the @object variable (line 5).

1 class MechanicTest < MiniTest::Unit::TestCase

2 include PreparerInterfaceTest

3

4 def setup

5 @mechanic = @object = Mechanic.new

6 end

7

8 # other tests which rely on @mechanic

9 end

The TripCoordinator and Driver tests follow this same pattern. They also include
the module (lines 2 and 10 below) and initialize @object in their setup methods
(lines 5 and 13).

1 class TripCoordinatorTest < MiniTest::Unit::TestCase

2 include PreparerInterfaceTest

3

4 def setup

5 @trip_coordinator = @object = TripCoordinator.new

6 end

7 end

8

9 class DriverTest < MiniTest::Unit::TestCase

10 include PreparerInterfaceTest

11

222 Chapter 9. Designing Cost-Effective Tests

ptg11539634

12 def setup

13 @driver = @object = Driver.new

14 end

15 end

Running these three tests produces a satisfying result:

1 DriverTest

2 PASS test_implements_the_preparer_interface

3

4 MechanicTest

5 PASS test_implements_the_preparer_interface

6

7 TripCoordinatorTest

8 PASS test_implements_the_preparer_interface

Defining the PreparerInterfaceTest as a module allows you to write the test once
and then reuse it in every object that plays the role. The module serves as a test and as
documentation. It raises the visibility of the role and makes it easy to prove that any
newly created Preparer successfully fulfills its obligations.

The test_implements_the_preparer_interface method tests an incoming
message and as such belongs with the receiving object’s tests, which is why the module
gets included in the tests of Mechanic, TripCoordinator, and Driver. Incoming
messages, however, go hand-in-hand with outgoing messages and you must test
both sides of this equation. You have proven that all receivers correctly implement
prepare_trip, now you must also prove that Trip correctly sends it.

As you know, proving that an outgoing message gets sent is done by setting
expectations on a mock. The following test creates a mock (line 4), tells it to expect
prepare_trip (line 6), triggers Trip’s prepare method (line 8), and then verifies
that the mock received the proper message (line 9).

1 class TripTest < MiniTest::Unit::TestCase

2

3 def test_requests_trip_preparation

4 @preparer = MiniTest::Mock.new

5 @trip = Trip.new

6 @preparer.expect(:prepare_trip, nil, [@trip])

7

8 @trip.prepare([@preparer])

223Testing Duck Types

ptg11539634

9 @preparer.verify

10 end

11 end

The test_requests_trip_preparation test lives directly in TripTest. Trip is
the only Preparable in the application so there’s no other object with which to share
this test. If other Preparables arise the test should be extracted into a module and
shared among Preparables at that time.

Running this test proves that Trip collaborates with Preparers using the correct
interface:

1 TripTest

2 PASS test_requests_trip_preparation

This completes the tests of the Preparer role. It’s now possible to return to the problem
of brittleness when using doubles to play roles in tests.

Using Role Tests to Validate Doubles
Now that you know how to write reusable tests that prove an object correctly plays a
role you can use this technique to reduce the brittleness caused by stubbing.

The earlier section, Testing Incoming Messages, introduced the “living the
dream” problem. The final test in that section contained a misleading false positive, in
which a test that should have failed instead passed because of a test double that
stubbed an obsolete method. Here’s a reminder of that faultily passing test:

1 class DiameterDouble

2

3 def diameter # The interface changed to 'width',

4 10 # but this double and Gear both

5 end # still use 'diameter'.

6 end

7

8 class GearTest < MiniTest::Unit::TestCase

9 def test_calculates_gear_inches

10 gear = Gear.new(

11 chainring: 52,

224 Chapter 9. Designing Cost-Effective Tests

ptg11539634

12 cog: 11,

13 wheel: DiameterDouble.new)

14

15 assert_in_delta(47.27,

16 gear.gear_inches,

17 0.01)

18 end

19 end

The problem with this test is that DiameterDouble purports to play the
Diameterizable role but it does so incorrectly. Now that Diameterizable’s inter-
face has changed DiameterDouble is out-of-date. This obsolete double enables the
test to bumble along in the mistaken belief that Gear works correctly, when in actual
fact GearTest only works when combined with its similarly confused test double.
The application is broken but you cannot tell it by running this test.

You last saw WheelTest in the Using Tests to Document Roles section, where it
was attempting to counter this problem by raising the visibility of Diameterizable’s
interface. Here’s an example where line 6 proves that Wheel acts like a Diameterizable
that implements width:

1 class WheelTest < MiniTest::Unit::TestCase

2 def setup

3 @wheel = Wheel.new(26, 1.5)

4 end

5

6 def test_implements_the_diameterizable_interface

7 assert_respond_to(@wheel, :width)

8 end

9

10 def test_calculates_diameter

11 # ...

12 end

13 end

With this test, you now hold all the pieces needed to solve the brittleness problem.
You know how to share tests among players of a role, you recognize that you have two
players of the Diameterizable role, and you have a test that any object can use to
prove that it correctly plays the role.

225Testing Duck Types

ptg11539634

The first step in solving the problem is to extract test_implements_the_di-
ameterizable_interface from Wheel into a module of its own:

1 module DiameterizableInterfaceTest

2 def test_implements_the_diameterizable_interface

3 assert_respond_to(@object, :width)

4 end

5 end

Once this module exists, reintroducing the extracted behavior back into WheelTest
is a simple matter of including the module (line 2) and initializing @object with a
Wheel (line 5):

1 class WheelTest < MiniTest::Unit::TestCase

2 include DiameterizableInterfaceTest

3

4 def setup

5 @wheel = @object = Wheel.new(26, 1.5)

6 end

7

8 def test_calculates_diameter

9 # ...

10 end

11 end

At this point WheelTest works just as it did before the extraction, as you can see by
running the test:

1 WheelTest

2 PASS test_implements_the_diameterizable_interface

3 PASS test_calculates_diameter

It’s gratifying that the WheelTest still passes but this refactoring serves a broader pur-
pose than that of merely rearranging the code. Now that you have an independent
module that proves that a Diameterizable behaves correctly, you can use the mod-
ule to prevent test doubles from silently becoming obsolete.

The GearTest below has been updated to use this new module. Lines 9 through
15 define a new test class, DiameterDoubleTest. DiameterDoubleTest is not about

226 Chapter 9. Designing Cost-Effective Tests

ptg11539634

Gear per se, its purpose is to prevent test brittleness by ensuring the ongoing soundness
of the double.

1 class DiameterDouble

2 def diameter

3 10

4 end

5 end

6

7 # Prove the test double honors the interface this

8 # test expects.

9 class DiameterDoubleTest < MiniTest::Unit::TestCase

10 include DiameterizableInterfaceTest

11

12 def setup

13 @object = DiameterDouble.new

14 end

15 end

16

17 class GearTest < MiniTest::Unit::TestCase

18 def test_calculates_gear_inches

19 gear = Gear.new(

20 chainring: 52,

21 cog: 11,

22 wheel: DiameterDouble.new)

23

24 assert_in_delta(47.27,

25 gear.gear_inches,

26 0.01)

27 end

28 end

The fact that DiameterDouble and Gear are both incorrect has been allowing previ-
ous versions of this test to pass. Now that the double is being tested to ensure it hon-
estly plays its role, running the test finally produces an error:

1 DiameterDoubleTest

2 FAIL test_implements_the_diameterizable_interface

3 Expected #<DiameterDouble:...> (DiameterDouble)

4 to respond to #width.

5 GearTest

6 PASS test_calculates_gear_inches

227Testing Duck Types

ptg11539634

The GearTest still passes erroneously but that’s not a problem because
DiameterDoubleTest now informs you that DiameterDouble is wrong. This failure
causes you to correct DiameterDouble to implement width, as shown on line 2 below:

1 class DiameterDouble

2 def width

3 10

4 end

5 end

After this change, re-running the test produces a failure in GearTest:

1 DiameterDoubleTest

2 PASS test_implements_the_diameterizable_interface

3

4 GearTest

5 ERROR test_calculates_gear_inches

6 undefined method 'diameter'

7 for #<DiameterDouble:0x0000010090a7f8>

8 gear_test.rb:35:in 'gear_inches'

9 gear_test.rb:86:in 'test_calculates_gear_inches'

10

Now that DiameterDoubleTest passes, GearTest fails. This failure points directly
to the offending line of code in Gear. The tests finally tell you to change Gear’s
gear_inches method to send width instead of diameter, as in this example:

1 class Gear

2

3 def gear_inches

4 # finally, 'width' instead of 'diameter'

5 ratio * wheel.width

6 end

7

8 # ...

9 end

Once you make this final change, the application is correct and all tests correctly pass:

1 DiameterDoubleTest

2 PASS test_implements_the_diameterizable_interface

228 Chapter 9. Designing Cost-Effective Tests

ptg11539634

3

4 GearTest

5 PASS test_calculates_gear_inches

Not only does this test pass, but it will continue to pass (or fail) appropriately, no matter
what happens to the Diameterizable interface. When you treat test doubles as you
would any other role player and test them to prove their correctness, you avoid test
brittleness and can stub without fear of consequence.

The desire to test duck types creates a need for shareable tests for roles, and once
you acquire this role-based perspective you can use it to your advantage in many situ-
ations. From the point of view of the object under test, every other object is a role and
dealing with objects as if they are representatives of the roles they play loosens coupling
and increases flexibility, both in your application and in your tests.

Testing Inherited Code
You’ve finally arrived at the last challenge, testing inherited code. This section is much
like the previous ones in that it recapitulates a previously seen example and then pro-
ceeds to test it. The example used here is the final Bicycle hierarchy from Chapter 6,
Acquiring Behavior Through Inheritance. Even though that hierarchy eventually
proved unsuitable for inheritance, the underlying code is fine and serves admirably as
a basis for these tests.

Specifying the Inherited Interface
Here’s the Bicycle class as you last saw it in Chapter 6:

1 class Bicycle

2 attr_reader :size, :chain, :tire_size

3

4 def initialize(args={})

5 @size = args[:size]

6 @chain = args[:chain] || default_chain

7 @tire_size = args[:tire_size] || default_tire_size

8 post_initialize(args)

9 end

10

11 def spares

12 { tire_size: tire_size,

13 chain: chain}.merge(local_spares)

229Testing Inherited Code

ptg11539634

14 end

15

16 def default_tire_size

17 raise NotImplementedError

18 end

19

20 # subclasses may override

21 def post_initialize(args)

22 nil

23 end

24

25 def local_spares

26 {}

27 end

28

29 def default_chain

30 '10-speed'

31 end

32 end

Here is the code for RoadBike, one of Bicycle’s subclasses:

1 class RoadBike < Bicycle

2 attr_reader :tape_color

3

4 def post_initialize(args)

5 @tape_color = args[:tape_color]

6 end

7

8 def local_spares

9 {tape_color: tape_color}

10 end

11

12 def default_tire_size

13 '23'

14 end

15 end

The first goal of testing is to prove that all objects in this hierarchy honor their con-
tract. The Liskov Substitution Principle declares that subtypes should be substi-
tutable for their supertypes. Violations of Liskov result in unreliable objects that
don’t behave as expected. The easiest way to prove that every object in the hierarchy

230 Chapter 9. Designing Cost-Effective Tests

ptg11539634

obeys Liskov is to write a shared test for the common contract and include this test
in every object.

The contract is embodied in a shared interface. The following test articulates the
interface and therefore defines what it means to be a Bicycle:

1 module BicycleInterfaceTest

2 def test_responds_to_default_tire_size

3 assert_respond_to(@object, :default_tire_size)

4 end

5

6 def test_responds_to_default_chain

7 assert_respond_to(@object, :default_chain)

8 end

9

10 def test_responds_to_chain

11 assert_respond_to(@object, :chain)

12 end

13

14 def test_responds_to_size

15 assert_respond_to(@object, :size)

16 end

17

18 def test_responds_to_tire_size

19 assert_respond_to(@object, :tire_size)

20 end

21

22 def test_responds_to_spares

23 assert_respond_to(@object, :spares)

24 end

25 end

Any object that passes the BicycleInterfaceTest can be trusted to act like a
Bicycle. All of the classes in the Bicycle hierarchy must respond to this interface
and should be able to pass this test. The following example includes this interface test
in the abstract superclass BicycleTest (line 2), and in the concrete subclass
RoadBikeTest (line 10):

1 class BicycleTest < MiniTest::Unit::TestCase

2 include BicycleInterfaceTest

3

4 def setup

231Testing Inherited Code

ptg11539634

5 @bike = @object = Bicycle.new({tire_size: 0})

6 end

7 end

8

9 class RoadBikeTest < MiniTest::Unit::TestCase

10 include BicycleInterfaceTest

11

12 def setup

13 @bike = @object = RoadBike.new

14 end

15 end

Running the test tells a story:

1 BicycleTest

2 PASS test_responds_to_default_chain

3 PASS test_responds_to_size

4 PASS test_responds_to_tire_size

5 PASS test_responds_to_chain

6 PASS test_responds_to_spares

7 PASS test_responds_to_default_tire_size

8

9 RoadBikeTest

10 PASS test_responds_to_chain

11 PASS test_responds_to_tire_size

12 PASS test_responds_to_default_chain

13 PASS test_responds_to_spares

14 PASS test_responds_to_default_tire_size

15 PASS test_responds_to_size

232 Chapter 9. Designing Cost-Effective Tests

Note
Don’t be alarmed that the parts of BicycleTest and
RoadBikeTest run in different orders; random test or-
dering is a feature of MiniTest.

The BicycleInterfaceTest will work for every kind of Bicycle and can be easily
included in any new subclass. It documents the interface and prevents accidental
regressions.

ptg11539634

Specifying Subclass Responsibilities
Not only do all Bicycles share a common interface, the abstract Bicycle superclass
imposes requirements upon its subclasses.

Confirming Subclass Behavior

Because there are many subclasses, they should share a common test to prove that each
meets the requirements. Here’s a test that documents the requirements for subclasses:

1 module BicycleSubclassTest

2 def test_responds_to_post_initialize

3 assert_respond_to(@object, :post_initialize)

4 end

5

6 def test_responds_to_local_spares

7 assert_respond_to(@object, :local_spares)

8 end

9

10 def test_responds_to_default_tire_size

11 assert_respond_to(@object, :default_tire_size)

12 end

13 end

This test codifies the requirements for subclasses of Bicycle. It doesn’t force subclasses to
implement these methods, in fact, any subclass is free to inherit post_initialize and
local_spares. This test just proves that a subclass does nothing so crazy that it causes
these messages to fail. The only method that must be implemented by subclasses is
default_tire_size. The superclass implementation of default_tire_size raises
an error; this test will fail unless the subclass implements its own specialized version.

RoadBike acts like a Bicycle so its test already includes the
BicycleInterfaceTest. The test below has been changed to include the new
BicycleSubclassTest; RoadBike should also act like a subclass of Bicycle.

1 class RoadBikeTest < MiniTest::Unit::TestCase

2 include BicycleInterfaceTest

3 include BicycleSubclassTest

4

5 def setup

6 @bike = @object = RoadBike.new

7 end

8 end

233Testing Inherited Code

ptg11539634

Running this modified test tells an enhanced story:

1 RoadBikeTest

2 PASS test_responds_to_default_tire_size

3 PASS test_responds_to_spares

4 PASS test_responds_to_chain

5 PASS test_responds_to_post_initialize

6 PASS test_responds_to_local_spares

7 PASS test_responds_to_size

8 PASS test_responds_to_tire_size

9 PASS test_responds_to_default_chain

Every subclass of Bicycle can share these same two modules, because every subclass
should act both like a Bicycle and like a subclass of Bicycle. Even though it’s been
a while since you’ve seen the MountainBike subclass, you can surely appreciate the
ability to ensure that MountainBikes are good citizens by simply adding these two
modules to its test, as shown here:

1 class MountainBikeTest < MiniTest::Unit::TestCase

2 include BicycleInterfaceTest

3 include BicycleSubclassTest

4

5 def setup

6 @bike = @object = MountainBike.new

7 end

8 end

The BicycleInterfaceTest and the BicycleSubclassTest, combined, take all
of the pain out of testing the common behavior of subclasses. These tests give you
confidence that subclasses aren’t drifting away from the standard, and they allow
novices to create new subclasses in complete safety. Newly arrived programmers don’t
have to scour the superclasses to unearth requirements, they can just include these
tests when they write new subclasses.

Confirming Superclass Enforcement

The Bicycle class should raise an error if a subclass does not implement
default_tire_size. Even though this requirement applies to subclasses, the actual
enforcement behavior is in Bicycle. This test is therefore placed directly in
BicycleTest, as shown on line 8 below:

234 Chapter 9. Designing Cost-Effective Tests

ptg11539634

1 class BicycleTest < MiniTest::Unit::TestCase

2 include BicycleInterfaceTest

3

4 def setup

5 @bike = @object = Bicycle.new({tire_size: 0})

6 end

7

8 def test_forces_subclasses_to_implement_default_tire_size

9 assert_raises(NotImplementedError) {@bike.default_tire_size}

10 end

11 end

Notice that line 5 of BicycleTest supplies a tire size, albeit an odd one, at Bicycle
creation time. If you look back at Bicycle’s initialize method you’ll see why. The
initialize method expects to either receive an input value for tire_size or to be
able retrieve one by subsequently sending the default_tire_size message. If you
remove the tire_size argument from line 5, this test dies in its setup method while
creating a Bicycle. Without this argument, Bicycle can’t successfully get through
object initialization.

The tire_size argument is necessary because Bicycle is an abstract class that
does not expect to receive the new message. Bicycle doesn’t have a nice, friendly creation
protocol. It doesn’t need one because the actual application never creates instances of
Bicycle. However, the fact that the application doesn’t create new Bicycles doesn’t
mean this never happens. It surely does. Line 5 of the BicycleTest above clearly creates
a new instance of this abstract class.

This problem is ubiquitous when testing abstract classes. The BicycleTest
needs an object on which to run tests and the most obvious candidate is an instance of
Bicycle. However, creating a new instance of an abstract class can range from diffi-
cult and impossible. This test is fortunate in that Bicycle’s creation protocol allows
the test to create a concrete Bicycle instance by passing tire_size, but creating a
testable object is not always this easy and you may find it necessary to employ a more
sophisticated strategy. Fortunately, there’s an easy way to overcome this general prob-
lem that will be covered below in the section Testing Abstract Superclass Behavior.

For now, supplying the tire_size argument works just fine. Running
BicycleTest now produces output that looks more like that of an abstract superclass:

1 BicycleTest

2 PASS test_responds_to_default_tire_size

3 PASS test_responds_to_size

235Testing Inherited Code

ptg11539634

4 PASS test_responds_to_default_chain

5 PASS test_responds_to_tire_size

6 PASS test_responds_to_chain

7 PASS test_responds_to_spares

8 PASS test_forces_subclasses_to_implement_default_tire_size

Testing Unique Behavior
The inheritance tests have so far concentrated on testing common qualities. Most
of the resulting tests were shareable and ended up being placed in modules
(BicycleInterfaceTest and BicycleSubclassTest), although one test
(forces_subclasses_to_implement_default_tire_size) did get placed
directly into BicycleTest.

Now that you have dispensed with the common behavior, two gaps remain. There
are as yet no tests for specializations, neither for the ones provided by the concrete sub-
classes nor for those defined in the abstract superclass. The following section concentrates
on the first; it tests specializations supplied by individual subclasses. The section after
moves the focus upward in the hierarchy and tests behavior that is unique to Bicycle.

Testing Concrete Subclass Behavior

Now is the time to renew your commitment to writing the absolute minimum number
of tests. Look back at the RoadBike class. The shared modules already prove most of
its behavior. The only thing left to test are the specializations that RoadBike supplies.

It’s important to test these specializations without embedding knowledge of the
superclass into the test. For example, RoadBike implements local_spares and also re-
sponds to spares. The RoadBikeTest should ensure that local_spares works while
maintaining deliberate ignorance about the existence of the spares method. The shared
BicycleInterfaceTest already proves that RoadBike responds correctly to spares, it
is redundant and ultimately limiting to reference that method directly in this test.

The local_spares method, however, is clearly RoadBike’s responsibility. Line 9
below tests this specialization directly in RoadBikeTest:

1 class RoadBikeTest < MiniTest::Unit::TestCase

2 include BicycleInterfaceTest

3 include BicycleSubclassTest

4

5 def setup

6 @bike = @object = RoadBike.new(tape_color: ‘red’)

7 end

236 Chapter 9. Designing Cost-Effective Tests

ptg11539634

8

9 def test_puts_tape_color_in_local_spares

10 assert_equal ‘red’, @bike.local_spares[:tape_color]

11 end

12 end

Running RoadBikeTest now shows that it meets its common responsibilities and
also supplies its own specializations:

1 RoadBikeTest

2 PASS test_responds_to_default_chain

3 PASS test_responds_to_default_tire_size

4 PASS test_puts_tape_color_in_local_spares

5 PASS test_responds_to_spares

6 PASS test_responds_to_size

7 PASS test_responds_to_local_spares

8 PASS test_responds_to_post_initialize

9 PASS test_responds_to_tire_size

10 PASS test_responds_to_chain

Testing Abstract Superclass Behavior

Now that you have tested the subclass specializations it’s time to step back and finish
testing the superclass. Moving your focus up the hierarchy to Bicycle reintroduces a
previously encountered problem; Bicycle is an abstract superclass. Creating an
instance of Bicycle is not only hard but the instance might not have all the behavior
you need to make the test run.

Fortunately, your design skills provide a solution. Because Bicycle used tem-
plate methods to acquire concrete specializations you can stub the behavior that
would normally be supplied by subclasses. Even better, because you understand the
Liskov Substitution Principle, you can easily manufacture a testable instance of
Bicycle by creating a new subclass for use solely by this test.

The test below follows just such a strategy. Line 1 defines a new class,
StubbedBike, as a subclass of Bicycle. The test creates an instance of this class (line
15) and uses it to prove that Bicycle correctly includes the subclass’s local_spares
contribution in spares (line 23).

It remains convenient to sometimes create an instance of the abstract Bicycle
class, even though this requires passing the tire_size argument, as on line 14. This
instance of Bicycle continues to be used in the test on line 18 to prove that the
abstract class forces subclasses to implement default_tire_size.

237Testing Inherited Code

ptg11539634

These two kinds of Bicycles coexist peacefully in the test, as you see here:

1 class StubbedBike < Bicycle

2 def default_tire_size

3 0

4 end

5 def local_spares

6 {saddle: 'painful'}

7 end

8 end

9

10 class BicycleTest < MiniTest::Unit::TestCase

11 include BicycleInterfaceTest

12

13 def setup

14 @bike = @object = Bicycle.new({tire_size: 0})

15 @stubbed_bike = StubbedBike.new

16 end

17

18 def test_forces_subclasses_to_implement_default_tire_size

19 assert_raises(NotImplementedError) {

20 @bike.default_tire_size}

21 end

22

23 def test_includes_local_spares_in_spares

24 assert_equal @stubbed_bike.spares,

25 { tire_size: 0,

26 chain: '10-speed',

27 saddle: 'painful'}

28 end

29 end

The idea of creating a subclass to supply stubs can be helpful in many situations. As
long as your new subclass does not violate Liskov, you can use this technique in any
test you like.

Running BicycleTest now proves that it includes subclass contributions on the
spares list:

1 BicycleTest

2 PASS test_responds_to_spares

3 PASS test_responds_to_tire_size

238 Chapter 9. Designing Cost-Effective Tests

ptg11539634

4 PASS test_responds_to_default_chain

5 PASS test_responds_to_default_tire_size

6 PASS test_forces_subclasses_to_implement_default_tire_size

7 PASS test_responds_to_chain

8 PASS test_includes_local_spares_in_spares

9 PASS test_responds_to_size

One last point: If you fear that StubbedBike will become obsolete and permit
BicycleTest to pass when it should fail, the solution is close at hand. There is
already a common BicycleSubclassTest. Just as you used the Diameterizable
InterfaceTest to guarantee DiameterDouble’s continued good behavior, you can
use BicycleSubclassTest to ensure the ongoing correctness of StubbedBike. Add
the following code to BicycleTest:

1 # Prove the test double honors the interface this

2 # test expects.

3 class StubbedBikeTest < MiniTest::Unit::TestCase

4 include BicycleSubclassTest

5

6 def setup

7 @object = StubbedBike.new

8 end

9 end

After you make this change, running BicycleTest produces this additional output:

1 StubbedBikeTest

2 PASS test_responds_to_default_tire_size

3 PASS test_responds_to_local_spares

4 PASS test_responds_to_post_initialize

Carefully written inheritance hierarchies are easy to test. Write one shareable test for
the overall interface and another for the subclass responsibilities. Diligently isolate
responsibilities. Be especially careful when testing subclass specializations to prevent
knowledge of the superclass from leaking down into the subclass’s test.

Testing abstract superclasses can be challenging; use the Liskov Substitution
Principle to your advantage. If you leverage Liskov and create new subclasses that are
used exclusively for testing, consider requiring these subclasses to pass your subclass
responsibility test to ensure they don’t accidentally become obsolete.

239Testing Inherited Code

ptg11539634

Summary
Tests are indispensable. Well-designed applications are highly abstract and under con-
stant pressure to evolve; without tests these applications can neither be understood
nor safely changed. The best tests are loosely coupled to the underlying code and test
everything once and in the proper place. They add value without increasing costs.

A well-designed application with a carefully crafted test suite is a joy to behold
and a pleasure to extend. It can adapt to every new circumstance and meet any
unexpected need.

240 Chapter 9. Designing Cost-Effective Tests

ptg11539634

Afterword

Responsibilities, dependencies, interfaces, ducks, inheritance, behavior sharing, com-
position, and testing—you’ve learned it all. You’ve immersed yourself in a world of
objects, and if this book has achieved its goal, you think differently about objects now
than when you first began.

Chapter 1, Object-Oriented Design, stated that object-oriented design is about
managing dependencies; that statement is still true but it’s just one truth about design.
A deeper truth is that there is a way in which all objects are identical, regardless of
whether they represent entire applications, major subsystems, individual classes, or
simple methods. A single object never stands alone; applications consist of objects
that are related to one another. Like a key and its lock, a hand and its glove, or a call
and its response objects are defined, not by what they do, but by the messages that
pass between them. Object-oriented design is fractal; the central problem is to define
an extensible way for objects to communicate, and at every level of magnification this
problem looks the same.

This book is full of rules about how to write code—rules for managing depend-
encies and creating interfaces. Now that you know these rules you can bend them to
your own purposes. The tensions inherent in design mean that these rules are meant
to be broken; learning to break them well is a designer’s greatest strength.

The tenets of design are tools and with practice they will come naturally into your
hand, allowing you to create changeable applications that serve their purpose and bring
you joy. Your applications will not be perfect but do not be discouraged. Perfection is
elusive, perhaps even unreachable; this should not impede your desire to achieve it.
Persist. Practice. Experiment. Imagine. Do your best work, and all else will follow.

241

ptg11539634

This page intentionally left blank

ptg11539634

Index

243

| | = operator, 43, 48–49
Abstract

behavior, promoting, 120–23
classes, 117–20, 235, 237
definition of, 54
superclass, creating, 117–20

Abstractions
extracting, 150–53
finding, 116–29
insisting on, in writing

inheritable code, 159
recognizing, 54–55
separating from concretions,

123–25
supporting, in intentional testing,

194
template method pattern, 125–29

Across-class types, 86
Ad infinitum, 3
Aggregation, 183–84
Agile, 8–10
Antipattern

definition of, 109, 111
recognizing, 158–59

Argument-order dependencies,
removing, 46–51

defaults, explicitly defining, 48–49
hashes for initialization

arguments, using, 46–48
multiparameter initialization,

isolating, 49–51
Automatic message delegation,

105–6

Behaves-like-a relationships, 189
Behavior

acquired through inheritance,
105–39

confirming, 233–36
data structures, hiding, 26–29
depending on, instead of data,

24–29
instance variables, hiding,

24–26
set of, 19
subclass, 233–39
superclass, 234–39
testing, 236–39

Behavior Driven Development
(BDD), 199, 213

Big Up Front Design (BUFD), 8–9
Booch, Grady, 188
Break-even point, 11
Bugs, finding, 193

Case statements that switch on
class, 96–98

kind_of? and is_a?, 97
responds_to?, 97

Category used in class, 111
Class. See also Single responsibility,

classes with
abstract, 117–20, 235, 237
avoiding dependent-laden, 55
bicycle, updating, 164–65
case statements that switch on,

96–98

code, organizing to allow for
changes, 16–17

concrete, 106–9, 209
deciding what belongs in, 16–17
decoupling, in writing inheritable

code, 161
dependent-laden, avoiding, 55
grouping methods into, 16
references to (See Loosely coupled

code, writing)
responsibilities isolated in, 31–33
Ruby based vs. framework,

53–54
type and category used in, 111
virtual, 61

Class-based OO languages, 12–13
Class class, 14
Classical inheritance, 105–6
Class of an object

ambiguity about, 94–95
checking, 97, 111, 146

Class under test, removing private
methods from, 214

Code. See also Inheritable code,
writing; Inherited code,
testing

concrete, writing, 147–50
dependency injection to shape,

41–42
depending on behavior instead of

data, 24–29
embracing change, writing,

24–33

ptg11539634

244 Index

initialization, 121
loosely coupled, writing, 39–51
open–closed, 185
organizing to allow for changes,

16–17
putting its best (inter)face

forward, writing, 76–79
relying on duck typing, writing,

95–100
single responsibility, enforcing,

29–33
truths about, 53

Code arrangement technique, 184
Cohesion, 22
Command messages, 197, 216–18
Compile/make cycle, 102, 103, 104
Compiler, 54, 101, 103–4, 118
Composition

aggregation and, 183–84
benefits of, 187
of bicycle, 180–84
of bicycle of parts, 164–68
consequences of, accepting,

187–88
costs of, 187–88
for has-a relationships, 183, 190
inheritance and, deciding

between, 184–90
manufacturing parts, 176–80
objects combined with, 163–90
of parts object, 168–76
summary, 190
use of term, 183–84

Concrete class, 106–9, 209
Concretions

abstractions separated from,
123–25

inheritance and, 106–9
recognizing, 54–55
writing, 147–50

Context
independence, seeking, 71–73
minimizing, 79

Contract, honoring, 159–60
Costs

of composition, 187–88
of duck typing, 85–104
of inheritance, 185–86
of testing, 191–240

Coupling
decoupling classes in writing

inheritable code, 161

decoupling subclasses using hook
messages, 134–38

between superclasses and
subclasses, managing,
129–38

understanding, 129–34
Coupling between objects (CBO),

37–38
C++, 102

Data
depending on behavior instead

of, 24–29
instance variables, hiding, 24–26
structures, hiding, 26–29
types, 12, 13

Decoupling
classes in writing inheritable

code, 161
subclasses using hook messages,

134–38
Defaults, explicitly defining, 48–49
Delegation, 82, 183
Demeter. See Law of Demeter

(LoD)
Demotion failure, 123
Dependencies

argument-order, removing,
46–51

coupling between objects, 37–38
direction of (See Dependency

direction)
finding, 55–57
injecting (See Dependency

injection)
interfaces and, 62–63
isolating, 42–45
loosely coupled code, writing,

39–51
managing, 35–57
objects speaking for themselves,

147
other, 38–39
recognizing, 37
removing unnecessary, 145–47
reversing, 51–53
scheduling duck type,

discovering, 146–47
summary, 57
understanding, 36–39

Dependency direction
abstractions, recognizing, 54–55

change in, likelihood of (See
Likelihood of change)

choosing, 53–57
concretions, recognizing, 54–55
dependent-laden classes,

avoiding, 55
finding, 55–57
managing, 51–57
reversing, 51–53

Dependency injection
failure of, 60
in loosely coupled code, 39–42
as roles, 208–13
to shape code, 41–42
using classes, 207–8

Dependency Inversion Principle, 5
Dependent-laden classes, avoiding,

55
Design

act of, 7–11
definition of, 4
failure in, 7–8
judging, 10–11
patterns, 6–7
principles, 5–6
problems solved by, 2–3
tools, 4–7
when to design, 8–10

Design decisions
deferring, 193
when to make, 22–23

Design flaws, exposing, 194
Design patterns, 6–7
Design Patterns: Elements of

Reusable Object-Oriented
Software (Gamma, Helm,
Johnson, and Vlissides), 6,
188

Design principles, 5–6
Design tools, 4–7
Documentation

of duck types, 98
of roles, testing used in, 212–13
supplying, in testing, 193

Domain objects, 64, 83, 96, 199
Doubles, role tests to validate,

224–29
DRY (Don’t Repeat Yourself), 5,

24, 27, 28, 45, 50, 196
Duck types, 219–29

defining, 85
documenting, 98

ptg11539634

245Index

finding, 90–94
hidden, recognizing, 96–98
overlooking, 87
sharing between, 99
testing roles, 219–24
trust in, placing, 98
using role tests to validate

doubles, 224–29
Duck typing

for behaves-like-a relationships, 189
case statements that switch on

class, 96–98
choosing ducks wisely, 99–100
code that relies on, writing, 95–100
consequences of, 94–95
costs reduced with, 85–104
dynamic typing and, 100–104
fear of, conquering, 100–104
problem, compounding, 87–90
scheduling, discovering, 146–47
static typing and, 100–102
summary, 104
understanding, 85–95

Dynamic typing
embracing, 102–4
static typing vs., 100–102

Embedded types of inheritance
finding, 111–12
multiple, 109–11

Explicit interfaces, creating, 76–78
External messages, isolating, 44–45
Extra responsibilities

extracted from methods, 29–31
isolated in classes, 31–33

Factories, 51
File data type, 12
Fixed-order arguments, 46–51
Fixnum class, 13, 14
Fowler, Martin, 191
Framework class, vs. Ruby based

class, 53–54

Gamma, Erich, 6, 188
Gang of Four (Gof), 6, 188
Gear inches, 20–21

has-a relationships, 183, 190
vs. is-a relationships, 188–89

Hashes used for initialization
arguments, 46–48

Helm, Richard, 6, 188

Hidden ducks
finding, 90–94
recognizing, 96–98

Highly cohesive class, 22
Hook messages, 134–38
Hunt, Andy, 5

Incoming messages, testing,
200–213

injecting dependencies as roles,
208–13

injecting dependencies using
classes, 207–8

interfaces, deleting unused,
202–3

isolating object under test, 205–7
proving public interface, 203–4

Inheritable code, writing, 158–62
abstraction, insisting on, 159
antipatterns, recognizing, 158–59
classes, preemptively decouple,

161
contract, honoring, 159–60
shallow hierarchies, creating,

161–62
template method pattern, using,

160
Inheritance

abstract class, finding, 116–29
behavior acquired through,

105–39
benefits of, 184–85
choosing, 112–14
classical, 105–6
composition and, deciding

between, 184–90
concretions and, 106–9
consequences of, accepting,

184–86
costs of, 185–86
embedded types of, 109–12
family tree image of, 112
implying, 117
for is-a relationships, 188–89
misapplying, 114–16
multiple, 112
problem solved by, 112
recognizing where to use, 106–14
relationships, drawing, 114
rules of, 117
single, 112
summary, 139

superclasses and subclasses,
coupling between, 129–38

Inherited code, testing, 229–39
behavior, testing unique, 236–39
inherited interface, specifying,

229–32
subclass responsibilities,

specifying, 233–36
Inherited interface, specifying,

229–32
Inheriting role behavior, 158
Initialization arguments, 41–43

hashes used for, 46–48
in isolation of instance creation,

42–43
Initialization code, 121
Injection of dependencies. See

Dependency injection
Instance variables, hiding, 24–26
Intention, constructing, 64–65
Intentional testing, 192–200
Interface

inherited, specifying, 229–32
Interfaces. See also Private

interfaces; Public interfaces
code putting its best (inter)face

forward, writing, 76–79
defining, 61–63
deleting unused, 202–3
dependencies and, 62–63
explicit, 76–78
flexible, 59–83
Law of Demeter and, 80–83
responsibilities and, 62–63
summary, 83
understanding, 59–61

Interface Segregation Principle, 5
is_a?, 97
is-a relationships, 188–89

vs. has-a relationships, 188–89
Isolation

of dependencies, 42–45
of external messages, 44–45
of instance creation, 42–43, 42–44
of multiparameter initialization,

49–51
of object under test, 205–7
of responsibilities in classes, 31–33

Java, 102, 118
JavaScript, 106
Johnson, Ralph, 6, 188

ptg11539634

246 Index

Keywords, 77–78
kind_of?, 97

Law of Demeter (LoD), 5, 80–83
defining Demeter, 80
Demeter project, 5, 80
listening to Demeter, 82–83
violations, 80–82

Likelihood of change, 53–57
in embedded references to

messages, 45
vs. number of dependents, 55–57
understanding, 53–54

Liskov, Barbara, 160
Liskov Substitution Principle (LSP),

5, 160, 230–31, 237, 239
Loosely coupled code, writing,

39–51
inject dependencies, 39–42
isolate dependencies, 42–45
remove argument-order

dependencies, 46–51

Managing dependencies, 3
Message, 15
Message chaining, 38–39, 80–83
Messages. See also Incoming

messages, testing
applications, creating, 76
automatic message delegation,

105–6
command, proving, 216–18
delegating, 82
external, isolating, 44–45
incoming, testing, 200–213
likely to change, embedded

references to, 45
message forwarding via classical

inheritance, 112
objects discovered by, 74–76
query, ignoring, 215–16
testing outgoing, 215–18

Metaprogramming, 102–3
Methods

extra responsibilities extracted
from, 29–31

grouping into classes, 16
wrapper, 24–25, 82

Methods, looking up, 154–58
gross oversimplification, 154–55
more accurate explanation,

155–56

very nearly complete explanation,
156–58

Metrics, 5, 10–11
Meyer, Bertrand, 188
MiniTest, 200
Modules

definition of, 143
role behavior shared with,

141–62
Monkey patching, 100
Multiparameter initialization,

isolating, 49–51
Multiple inheritance, 112

NASA Goddard Space Flight
Center applications, 6

Nil, 48–49, 113
NilClass, 113

Object class
ambiguity about, 94–95
checking, 97, 111, 146

Object-Oriented Analysis and Design
(Booch), 188

Object-oriented design (OOD),
1–14. See also Design

dependencies managed by, 3
masters of, 188
overview of, 1

Object-oriented languages, 12–14
Object-oriented programming,

11–14
object-oriented languages in,

12–14
overview of, 11
procedural languages in, 12

Objects. See also Parts object
combined with composition,

163–90
domain, 64, 83, 96, 199
messages used to discover, 74–76
speaking for themselves, 147
trusting other, 73–74

Object under test, 200, 202, 205–7
Open–closed code, 185
Open-Closed Principle, 5, 185
Overridden methods, 115

Parts object
composition of, 168–76
creating, 169–72

creating PartsFactory, 177–78
hierarchy, creating, 165–68
leveraging PartsFactory, 178–80
making more like array, 172–76
manufacturing, 176–80

Polymorphism, 95
Private interfaces

defining, 61, 62
depending on, caution in, 79

Private keyword, 77–78
Private methods, testing, 213–15

choosing, 214–15
ignoring, 213–14
removing from class under test,

214
Programing languages

statically or dynamically typed,
100–104

syntax in, 118
type used in, 85–86

Promotion failure, 122–23
Protected keyword, 77–78
Public interfaces

context independence, seeking,
71–73

defining, 61, 62
example application: bicycle

touring company, 63–64
finding, 63–76
intention, constructing, 64–65
message-based application,

creating, 76
messages used to discover objects,

74–76
of others, honoring, 78–79
proving, 203–4
sequence diagrams, using, 65–69
trusting other objects, 73–74
“what” vs. “how,” importance of,

69–71
Public keyword, 77–78

Query messages, 196, 197, 215–16

Refactoring
barriers to, reducing, 215
definition of, 191
in extracting extra responsibilities

from methods, 29–31
rule for, 123
strategies, deciding between,

122–23

ptg11539634

247Index

testing roles and, 220–21, 226
in writing changeable code,

191–92
Refactoring: Improving the Design of

Existing Code (Fowler), 191
Relationships, 188–90

aggregation and, 183–84
use composition for has-a

relationships, 190
use duck types for behaves-like-a

relationships, 189
use inheritance for is-a

relationships, 188–89
responds_to?, 97
Responsibilities, organizing,

143–45
Responsibility-Driven Design

(RDD), 22
Reversing dependency direction,

51–53
Roles

concrete code, writing, 147–50
finding, 142–43
inheritable code, writing, 158–62
injecting dependencies as, 208–13
role behavior shared with

modules, 141–62
summary, 162
testing, in duck typing, 219–24
testing to document, 212–13
tests to validate doubles, 224–29
understanding, 142–58

Ruby based class vs. framework
class, 53–54

Runtime type errors, 101, 103–4

Sequence diagrams, using, 65–69
Shallow hierarchies in writing

inheritable code, 161–62
Single inheritance, 112
Single responsibility, classes with

benefits of, 31
code embracing change, writing,

24–33
creating, 17–23
design decisions, when to make,

22–23
designing, 15–34
determining, 22

enforcing, 29–33
example application: bicycles and

gears, 17–21
extra responsibilities and,

29–33
importance of, 21
real wheel, 33–34
summary, 34

Single Responsibility Principle, 5
designing classes with, 15–34

SOLID design principles, 5, 160
Source code repository, 59
Source lines of code (SLOC),

10–11
Specializations, 117
Spike a problem, 198
Static typing

duck types and, subverting with,
100–101

vs. dynamic typing, 100–102
String class, 13–14
String data type, 12, 13
String objects, 13–14
Subclass behavior

confirming, 233–34
testing, 236–37

Subclasses
decoupling using hook messages,

134–38
superclasses and, coupling

between, 129–38
Superclass behavior

confirming, 234–36
testing, 237–39

Superclasses
creating, 117–20
subclasses and, coupling between,

129–38
Syntax, 118

Technical debt, 11, 79
Template method pattern

implementing every, 127–29
using, 125–27
in writing inheritable code, 160

Test Driven Development (TDD),
199, 213

Testing
abstractions, supporting, 194

bugs, finding, 193
cost-effective, designing,

191–240
creating test doubles, 210–11
design decisions, deferring, 193
design flaws, exposing, 194
documentation, supplying, 193
duck types, 219–29
incoming messages, 200–213
inherited code, 229–39
intentional testing, 192–200
knowing how to test, 198–200
knowing what to test, 194–97
knowing when to test, 197–98
knowing your intentions, 193–94
outgoing messages, 215–18
private methods, 213–15
summary, 240
to document roles, 212–13

Testing outgoing messages, 215–18
command messages, proving,

216–18
query messages, ignoring, 215–16

Thomas, Dave, 5
Touch of Class: Learning to Program

Well with Objects and
Contracts (Meyer), 188

Train wreck, 80, 82, 83
TRUE code, 17
Types, 85. See also Duck typing

across-class, 86
static vs. dynamic, 100–102
within-class, 63

Type used in class, 111

Unified Modeling Language
(UML), 65–66, 114

Use case, 64, 65, 66, 67, 69, 74

Variables, defining, 12
Virtual class, 61
Vlissides, Jon, 6, 188

“What” vs. “how,” importance of,
69–71

Wilkerson, Brian, 22
Wirfs-Brock, Rebecca, 22
Within-class types, 63
Wrapper method, 24–25, 82

	Contents
	Foreword
	Introduction
	Acknowledgments
	About the Author
	1 Object-Oriented Design
	In Praise of Design
	The Problem Design Solves
	Why Change Is Hard
	A Practical Definition of Design

	The Tools of Design
	Design Principles
	Design Patterns

	The Act of Design
	How Design Fails
	When to Design
	Judging Design

	A Brief Introduction to Object-Oriented Programming
	Procedural Languages
	Object-Oriented Languages

	Summary

	2 Designing Classes with a Single Responsibility
	Deciding What Belongs in a Class
	Grouping Methods into Classes
	Organizing Code to Allow for Easy Changes

	Creating Classes That Have a Single Responsibility
	An Example Application: Bicycles and Gears
	Why Single Responsibility Matters
	Determining If a Class Has a Single Responsibility
	Determining When to Make Design Decisions

	Writing Code That Embraces Change
	Depend on Behavior, Not Data
	Enforce Single Responsibility Everywhere

	Finally, the Real Wheel
	Summary

	3 Managing Dependencies
	Understanding Dependencies
	Recognizing Dependencies
	Coupling Between Objects (CBO)
	Other Dependencies

	Writing Loosely Coupled Code
	Inject Dependencies
	Isolate Dependencies
	Remove Argument-Order Dependencies

	Managing Dependency Direction
	Reversing Dependencies
	Choosing Dependency Direction

	Summary

	4 Creating Flexible Interfaces
	Understanding Interfaces
	Defining Interfaces
	Public Interfaces
	Private Interfaces
	Responsibilities, Dependencies, and Interfaces

	Finding the Public Interface
	An Example Application: Bicycle Touring Company
	Constructing an Intention
	Using Sequence Diagrams
	Asking for “What” Instead of Telling “How”
	Seeking Context Independence
	Trusting Other Objects
	Using Messages to Discover Objects
	Creating a Message-Based Application

	Writing Code That Puts Its Best (Inter)Face Forward
	Create Explicit Interfaces
	Honor the Public Interfaces of Others
	Exercise Caution When Depending on Private Interfaces
	Minimize Context

	The Law of Demeter
	Defining Demeter
	Consequences of Violations
	Avoiding Violations
	Listening to Demeter

	Summary

	5 Reducing Costs with Duck Typing
	Understanding Duck Typing
	Overlooking the Duck
	Compounding the Problem
	Finding the Duck
	Consequences of Duck Typing

	Writing Code That Relies on Ducks
	Recognizing Hidden Ducks
	Placing Trust in Your Ducks
	Documenting Duck Types
	Sharing Code Between Ducks
	Choosing Your Ducks Wisely

	Conquering a Fear of Duck Typing
	Subverting Duck Types with Static Typing
	Static versus Dynamic Typing
	Embracing Dynamic Typing

	Summary

	6 Acquiring Behavior Through Inheritance
	Understanding Classical Inheritance
	Recognizing Where to Use Inheritance
	Starting with a Concrete Class
	Embedding Multiple Types
	Finding the Embedded Types
	Choosing Inheritance
	Drawing Inheritance Relationships

	Misapplying Inheritance
	Finding the Abstraction
	Creating an Abstract Superclass
	Promoting Abstract Behavior
	Separating Abstract from Concrete
	Using the Template Method Pattern
	Implementing Every Template Method

	Managing Coupling Between Superclasses and Subclasses
	Understanding Coupling
	Decoupling Subclasses Using Hook Messages

	Summary

	7 Sharing Role Behavior with Modules
	Understanding Roles
	Finding Roles
	Organizing Responsibilities
	Removing Unnecessary Dependencies
	Writing the Concrete Code
	Extracting the Abstraction
	Looking Up Methods
	Inheriting Role Behavior

	Writing Inheritable Code
	Recognize the Antipatterns
	Insist on the Abstraction
	Honor the Contract
	Use the Template Method Pattern
	Preemptively Decouple Classes
	Create Shallow Hierarchies

	Summary

	8 Combining Objects with Composition
	Composing a Bicycle of Parts
	Updating the Bicycle Class
	Creating a Parts Hierarchy

	Composing the Parts Object
	Creating a Part
	Making the Parts Object More Like an Array

	Manufacturing Parts
	Creating the PartsFactory
	Leveraging the PartsFactory

	The Composed Bicycle
	Deciding Between Inheritance and Composition
	Accepting the Consequences of Inheritance
	Accepting the Consequences of Composition
	Choosing Relationships

	Summary

	9 Designing Cost-Effective Tests
	Intentional Testing
	Knowing Your Intentions
	Knowing What to Test
	Knowing When to Test
	Knowing How to Test

	Testing Incoming Messages
	Deleting Unused Interfaces
	Proving the Public Interface
	Isolating the Object Under Test
	Injecting Dependencies Using Classes
	Injecting Dependencies as Roles

	Testing Private Methods
	Ignoring Private Methods During Tests
	Removing Private Methods from the Class Under Test
	Choosing to Test a Private Method

	Testing Outgoing Messages
	Ignoring Query Messages
	Proving Command Messages

	Testing Duck Types
	Testing Roles
	Using Role Tests to Validate Doubles

	Testing Inherited Code
	Specifying the Inherited Interface
	Specifying Subclass Responsibilities
	Testing Unique Behavior

	Summary

	Afterword
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

