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Summary. Time series of financial asset returns often exhibit the volatility cluster-
ing property: large changes in prices tend to cluster together, resulting in persistence
of the amplitudes of price changes. After recalling various methods for quantifying
and modeling this phenomenon, we discuss several economic mechanisms which have
been proposed to explain the origin of this volatility clustering in terms of behavior
of market participants and the news arrival process. A common feature of these
models seems to be a switching between low and high activity regimes with heavy-
tailed durations of regimes. Finally, we discuss a simple agent-based model which
links such variations in market activity to threshold behavior of market participants
and suggests a link between volatility clustering and investor inertia.

1 Introduction

The study of statistical properties of financial time series has revealed a wealth
of interesting stylized facts which seem to be common to a wide variety of
markets, instruments and periods [12, 16, 25, 47]:

• Excess volatility: many empirical studies point out to the fact that it
is difficult to justify the observed level of variability in asset returns by
variations in “fundamental” economic variables. In particular, the occur-
rence of large (negative or positive) returns is not always explainable by
the arrival of new information on the market [15].

• Heavy tails: the (unconditional) distribution of returns displays a heavy
tail with positive excess kurtosis.
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paper is based on joint work with F. Ghoulmie and J.P. Nadal.



2 Rama Cont

• Absence of autocorrelations in returns: (linear) autocorrelations of
asset returns are often insignificant, except for very small intraday time
scales (� 20 minutes) where microstructure effects come into play.

• Volatility clustering: as noted by Mandelbrot [40], “large changes tend
to be followed by large changes, of either sign, and small changes tend
to be followed by small changes.” A quantitative manifestation of this
fact is that, while returns themselves are uncorrelated, absolute returns
|rt| or their squares display a positive, significant and slowly decaying
autocorrelation function: corr(|rt|, |rt+τ |) > 0 for τ ranging from a few
minutes to a several weeks.

• Volume/volatility correlation: trading volume is positively correlated
with market volatility. Moreover, trading volume and volatility show the
same type of “long memory” behavior [36].

Among these properties, the phenomenon of volatility clustering has intrigued
many researchers and oriented in a major way the development of stochastic
models in finance –GARCH models and stochastic volatility models are in-
tended primarily to model this phenomenon. Also, it has inspired much debate
as to whether there is long-range dependence in volatility. We review some of
these issues in Section 2. As noted by the participants of this econometric de-
bate [54, 46], statistical analysis alone is not likely to provide a definite answer
for the presence or absence of long-range dependence phenomenon in stock
returns or volatility, unless economic mechanisms are proposed to understand
the origin of such phenomena.

Some insights into these economic mechanisms are given by agent-based
models of financial markets. Agent-based market models attempt to explain
the origin of the observed behavior of market prices in terms of simple, styl-
ized, behavioral rules of market participants [11, 38, 39, 32]: in this approach
a financial market is modeled as a system of heterogeneous, interacting agents
and several examples of such models have been shown to generate price be-
havior similar to those observed in real markets. We review some of these
approached in Section 3 and discuss how they lead to volatility clustering.

Most of these agent-based models are complex in structure and have been
studied using Monte Carlo simulations. As noted also by LeBaron [31], due to
the complexity of such models it is often not clear which aspect of the model is
responsible for generating the stylized facts and whether all the ingredients of
the model are indeed required for explaining empirical observations. In Section
4 we present an agent-based model capable of generating time series of asset
returns with properties similar to the stylized facts above, but which is simple
enough in structure so the origins of volatility clustering can be traced back
to agents behavior. This model points to a link between investor inertia and
volatility clustering and provide an economic explanation for the switching
mechanism proposed in the econometrics literature as an origin of volatility
clustering.
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2 Volatility clustering in financial time series

Denote by St the price of a financial asset — a stock, an exchange rate or a
market index — and Xt = lnSt its logarithm. Given a time scale ∆, the log
return at scale ∆ is defined as:

rt = Xt+∆ − Xt = ln(
St+∆

St
). (1)

∆ may vary between a minute (or even seconds) for tick data to several days.
Observations are sampled at discrete times tn = n∆. Time lags will be denoted
by the Greek letter τ ; typically, τ will be a multiple of ∆ in estimations. For
example, if ∆ =1 day, corr[rt+τ , rt] denotes the correlation between the daily
return at period t and the daily return τ periods later.

2.1 Empirical behavior of autocorrelation functions

A typical display of daily log-returns is shown in figure 1: the volatility cluster-
ing feature is seen graphically from the presence of sustained periods of high
or low volatility. As noted above, the autocorrelation of returns is typically
insignificant at lags between a few minutes and a month. An example is shown
in figure 2 (left). This “spectral whiteness” of returns can be attributed to
the activity of arbitrageurs who exploit linear correlations in returns via trend
following strategies [41]. By contrast, the autocorrelation function of absolute
returns remains positive over lags of several weeks and decays slowly to zero:
figure 2 (right) shows this decay for SLM stock (NYSE). This observation is
remarkably stable across asset classes and time periods and is regarded as a
typical manifestation of volatility clustering [8, 13, 16, 25]. Similar behavior
is observed for the autocorrelation of squared returns [8] and more generally
for |rt|α [16, 17, 13] but it seems to be most significant for α = 1 i.e. absolute
returns [16].

GARCH models [8, 19] were among the first models to take into account
the volatility clustering phenomenon. In a GARCH(1,1) model the (squared)
volatility depends on last periods volatility:

rt = σtεt σ2
t = a0 + aσ2

t−1 + bε2
t 0 < a + b < 1 (2)

leading to positive autocorrelation in the volatility process σt, with a rate of
decay governed by a + b: the closer a + b is to 1, the slower the decay of the
autocorrelation of σt. The constraint a + b < 1 allows for the existence of a
stationary solution, while the upper limit a+ b = 1 corresponds to the case of
an integrated process. Estimations of GARCH(1,1) on stock and index returns
usually yield a + b very close to 1 [8]. For this reason the volatility clustering
phenomenon is sometimes called a “GARCH effect”; one should keep in mind
however that volatility clustering is a “non-parametric” property and is not
intrinsically linked to a GARCH specification.
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Fig. 1. Large changes cluster together: BMW daily log-returns. ∆ = 1 day.

While GARCH models give rise to exponential decay in autocorrelations
of absolute or squared returns, the empirical autocorrelations are similar to a
power law [13, 25]:

C|r|(τ) = corr(|rt|, |rt+τ |) � c

τβ

with an exponent β ≤ 0.5 [13, 9], which suggests the presence of “long-range”
dependence in amplitudes of returns, discussed below.

2.2 Long range dependence

Let us recall briefly the commonly used definitions of long range dependence,
based on the autocorrelation function of a process:

Definition 1 (Long range dependence). A stationary process Yt (with
finite variance) is said to have long range dependence if its autocorrelation
function C(τ) = corr(Yt, Yt+τ ) decays as a power of the lag τ :

C(τ) = corr(Yt, Yt+τ ) ∼
τ→∞

L(τ)
τ1−2d

0 < d <
1
2

(3)
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Fig. 2. SLM stock, NYSE, ∆ = 5 minutes. Left: autocorrelation function of log-
returns. Right: autocorrelation of absolute log-returns.

where L is slowly varying at infinity, i.e. verifies ∀a > 0, L(at)
L(t) → 1 as t → ∞.

By contrast, one speaks of “short range dependence” if the autocorrelation
function decreases at a geometric rate:

∃K > 0, c ∈]0, 1[, |C(τ)| ≤ Kcτ (4)

Obviously, (3) and (4) are not the only possibilities for the behavior of the
autocorrelation function at large lags: there are many other possible decays
rates, intermediate between a power decay and a geometric decay. However,
it is noteworthy that in all stochastic models used in the financial modeling
literature, the behavior of returns and their absolute values fall within one of
the two categories.

The long range dependence property (3) hinges upon the behavior of the
autocorrelation function at large lags, a quantity which may be difficult to es-
timate empirically [7]. For this reason, models with long-range dependence are
often formulated in terms of self-similar processes, which allow to extrapolate
across time scales and deduce long time behavior from short time behavior,
which is more readily observed. A stochastic process (Xt)t≥0 is said to be
self-similar if there exists H > 0 such that for any scaling factor c > 0, the
processes (Xct)t≥0 and (cHXt)t≥0 have the same law:

(Xct)t≥0
d=(cHXt)t≥0. (5)

H is called the self-similarity exponent of the process X. Note that a self-
similar process cannot be stationary, so the above definition of long-range
dependence cannot hold for a self-similar process, but eventually for its in-
crements (if they are stationary). The typical example of self-similar process
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whose increments exhibit long range dependence is fractional Brownian mo-
tion [43].

But self-similarity does not imply long-range dependence in any way: α-
stable Lévy processes provide examples of self-similar processes with inde-
pendent increments. Nor is self-similarity implied by long range dependence:
Cheridito [10] gives several examples of Gaussian semimartingales with the
same long range dependence features as fractional Brownian noise but with
no self-similarity (thus very different “short range” properties and sample path
behavior). The example of fractional Brownian motion is thus misleading in
this regard, since it conveys the idea that these two properties are associated.
When testing for long range dependence in a model based on fractional Brow-
nian motion, we thus test the joint hypothesis of self-similarity and long-range
dependence and strict self-similarity is not observed to hold in asset returns
[12, 13].

A fallacy often encountered in the literature is that long range depen-
dence in returns is incompatible with absence of (continuous-time) arbitrage.
Again, the origin of this idea can be traced back to models based on fractional
Brownian motion: since fractional Brownian motion is not a semimartingale, a
model in which the (log)-price are described by a fractional Brownian motion
is not arbitrage-free (in the continuous-time sense) [51]. This result (and the
fact that fractional Brownian motions fails to be a semimartingale) crucially
depends on the local behavior of its sample paths, not on its long range depen-
dence property. Cheridito [10] gives several examples of Gaussian processes
with the same long range dependence features as fractional Brownian motion,
but which are semimartingales and lead to arbitrage-free models.

2.3 Dependence in stock returns

The volatility clustering feature indicates that asset returns are not indepen-
dent across time; on the other hand the absence of linear autocorrelation
shows that their dependence is nonlinear. Whether this dependence is “short
range” or “long range” has been the object of many empirical studies.

The idea that stock returns could exhibit long range dependence was first
suggested by Mandelbrot [41] and subsequently observed in many empirical
studies using R/S analysis [42]. Such tests have been criticized by Lo [37] who
pointed out that, after accounting for short range dependence, they might
yield a different result and proposed a modified test statistic. Lo’s statistic
highly depends on the way “short range” dependence is accounted for and
shows a bias towards rejecting long range dependence [53]. The final empirical
conclusions are therefore less clear [54].

However, the absence of long range dependence in returns may be compat-
ible with its presence in absolute returns or “volatility”. As noted by Heyde
[26], one should distinguish long range dependence in signs of increments,
when sign(rt) verifies (3), from long range dependence in amplitudes, when
|rt| verifies (3). Asset returns do not seem to possess long range dependence
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in signs [26]. Many authors have thus suggested models, such as FIGARCH
[4], in which returns have no autocorrelation but their amplitudes have long
range dependence [4, 18].

It has been argued [33, 5] that the decay of C|r|(τ) can also be reproduced
by a superposition of several exponentials, indicating that the dependence
is characterized by multiple time scales. In fact, an operational definition of
long range dependence is that the time scale of dependence in a sample of
length T is found to be of the order of T : dependence extends over the whole
sample. Interestingly, the largest time scale in [33] is found to be of the order
of...the sample size, a prediction which would be compatible with long-range
dependence!

Many of these studies test for long range dependence in returns, volatil-
ity,.. by examining sample autocorrelations, Hurst exponents etc. but if time
series of asset returns indeed possess the two features of heavy tails and long
range dependence, then many of the standard estimation procedures for these
quantities may fail to work [50]. For example, sample autocorrelation func-
tions may fail to be consistent estimators of the true autocorrelation of returns
in the price generating process: Resnick and van der Berg [49] give examples
of such processes where sample autocorrelations converge to random values as
sample size grows! Also, in cases where the sample ACF is consistent, its esti-
mation error can have a heavy-tailed asymptotic distribution, leading to large
errors. The situation is even worse for autocorrelations of squared returns [45].
Thus, one must be cautious in identifying behavior of sample autocorrelation
with the autocorrelations of the return process.

Slow decay of sample autocorrelation functions may possibly arise from
other mechanism than long-range dependence. For example, Mikosch & Star-
ica [46] note that nonstationarity of the returns may also generate spurious
effects which can be mistaken for long-range dependence in the volatility.
However, we will not go to the extreme of suggesting, as in [46], that the slow
decay of sample autocorrelations of absolute returns is a pure artefact due
to non-stationarity. “Non-stationarity” does not suggest a modeling approach
and it seems highly unlikely that unstructured non-stationarity would lead
to such a robust, stylized behavior for the sample autocorrelations of abso-
lute returns, stable across asset classes and time periods. The robustness of
these empirical facts call for an explanation, which “non-stationarity” does
not provide. Of course, these mechanisms are not mutually exclusive: a recent
study by Granger and Hyng [24] illustrates the interplay of these two effects
by combining an underlying long memory process with occasional structural
breaks.

Independently of the econometric debate on the “true nature” of the return
generating process, one can take into account such empirical observations
without pinpointing a specific stochastic model by testing for similar behavior
of sample autocorrelations in agent-based models (described below), and using
sample autocorrelations for indirect inference [22] of the parameters of such
models.
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3 Mechanisms for volatility clustering

While GARCH, FIGARCH and stochastic volatility models propose statistical
constructions which mimick volatility clustering in financial time series, they
do not provide any economic explanation for it. We discuss here possible
mechanisms which have been proposed for the origin of volatility clustering.

3.1 Heterogeneous arrival rates of information

Heterogeneity in agent’s time scale has been considered as a possible origin for
various stylized facts [25]. Long term investors naturally focus on long-term
behavior of prices, whereas traders aim to exploit short-term fluctuations.

Granger [23] suggested that long memory in economic time series can be
due to the aggregation of a cross section of time series with different persis-
tence levels. This argument was proposed by Andersen & Bollerslev [1] as a
possible explanation for volatility clustering in terms of aggregation of differ-
ent information flows.

The effects of the diversity in time horizons on price dynamics have also
been studied by Lebaron [32] in an artificial stock market, showing that the
presence of heterogeneity in horizons may lead to an increase in return vari-
ability, as well as volatility-volume relationships similar to those of actual
markets.

3.2 Evolutionary models

Several studies have considered modeling financial markets by analogy with
ecological systems where various trading strategies co-exist and evolve via
a “natural selection” mechanism, according to their relative profitability
[2, 3, 34, 32]. The idea of these models, the prototype of which is the Santa
Fe artificial stock market [3, 34], is that a financial market can be viewed as
a population of agents, identified by their (set of) decision rules. A decision
rule is defined as a mapping from an agents information set (price history,
trading volume, other economic indicators) to the set of actions (buy, sell, no
trade). The evolution of agents decision rule is often modeled using a genetic
algorithm [27]. The specification and simulation of such evolutionary models
can be quite involved and specialized simulation platforms have been devel-
oped to allow the user to specify variants of agents strategies and evolution
rules. Other evolutionary models represent the evolution by a deterministic
dynamical system which, through the complex price dynamics it generate, are
able to mimick some “statistical” properties of the returns process, including
volatility clustering [28].

Though the Santa Fe market model is capable of qualitatively replicating
some of the stylized facts [34], precise comparisons with empirical observa-
tions are still lacking. Indeed, given the large number of parameters, it is not
possible to calibrate the parameters in order to interpret the time periods
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in the simulations as “days” or “minutes” etc. thereby leading to a lack of
reference for empirical comparisons.

More importantly, the competition between numerous strategies in such
complex simulation models does not allow to pinpoint a single mechanism as
being responsible for volatility clustering or other stylized properties. Models
in which a dominant mechanism is at work are more helpful in this respect;
we will now discuss some instances of such models.

3.3 Behavioral switching

The economic literature contains examples where switching of economic agents
between two behavioral patterns leads to large aggregate fluctuations [29]: in
the context of financial markets, these behavioral patterns can be seen as
trading rules and the resulting aggregate fluctuations as large movements in
the market price i.e. heavy tails in returns. Recently, models based on this
idea have also been shown to generate volatility clustering [30, 39].

Lux and Marchesi [39] study an agent-based model in which heavy tails of
asset returns and volatility clustering arise from behavioral switching of mar-
ket participants between fundamentalist and chartist behavior. Fundamental-
ists expect that the price follows the fundamental value in the long run. Noise
traders try to identify price trends, which results in a tendency to herding.
Agents are allowed to switch between these two behaviors according to the
performance of the various strategies. Noise traders evaluate their performance
according to realized gains, whereas for the fundamentalists, performance is
measured according to the difference between the price and the fundamental
value, which represents the anticipated gain of a “convergence trade”. This
decision-making process is driven by an exogenous fundamental value, which
follows a Gaussian random walk. Price changes are brought about by a market
maker reacting to imbalances between demand and supply. Most of the time,
a stable and efficient market results. However, its usual tranquil performance
is interspersed by sudden transient phases of destabilization. An outbreak of
volatility occurs if the fraction of agents using chartist techniques surpasses
a certain threshold value, but such phases are quickly brought to an end by
stabilizing tendencies. This behavioral switching is believed be the cause of
volatility clustering, long memory and heavy tails in the Lux-Marchesi model
[39].

Kirman and Teyssière [30] have proposed a variant of [29] in which the
proportion α(t) of fundamentalists in the market follows a Markov chain,
of the type used in epidemiological models, describing herding of opinions.
Simulation of this model exihibit autocorrelation patterns in absolute returns
with a behavior similar to that described in Section 2.

3.4 The role of investor inertia

As argued by Liu [35], the presence of a Markovian regime switching mecha-
nism in volatility can lead to volatility clustering, is not sufficient to generate
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long-range dependence in absolute returns. More important than the switch-
ing is the fact the time spent in each regime –the duration of regimes– should
have a heavy-tailed distribution [48, 52]. By contrast with Markov switch-
ing, which leads to short range correlations, this mechanism has been called
“renewal switching”.2

Bayraktar et al. [6] study a model where an order flow with random, heavy-
tailed, durations between trades leads to long range dependence in returns.
When the durations τn of the inactivity periods have a distribution of the
form P(τn ≥ t) = t−αL(t), conditions are given under which, in the limit of a
large number of agents randomly submitting orders, the price process in this
models converges to a a process with Hurst exponent H = (3 − α)/2 > 1/2.
In this model the randomness (and the heavy tailed nature) of the durations
between trades are both exogenous ingredients, chosen in a way that generates
long range dependence in the returns. However, as noted above, empirical
observations point to clustering and persistence in volatility rather than in
returns so such a result does not seem to be consistent with the stylized facts.

By contrast, as noted above, regime switching in volatility with heavy-
tailed durations could lead to volatility clustering. Although in the agent-
based models discussed above, it may not be easy to speak of well-defined
“regimes” of activity, but Giardina and Bouchaud [21] argue that this is indeed
the mechanism which generates volatility clustering in the Lux-Marchesi [39]
and other models discussed above. In these models, agents switch between
strategies based on their relative performance; Giardina and Bouchaud argue
that this (cumulative) relative performance index actually behaves in time
like a random walk, so the switching times can be interpreted as times when
the random walk crosses zero: the interval between successive zero-crossings
is then known to be heavy-tailed, with a power-law decay of exponent 3/2.

4 Volatility clustering and threshold behavior

While switching between high and low volatility states is probably the mech-
anism leading to volatility clustering in many of the agent-based models dis-
cussed above, this explanation is not easy to trace back to the level of agent
behavior, partly because the models described above contain various other in-
gredients whose contribution to the overall behavior is thus blurred. We now
discuss a simple model [14] reproducing several stylized empirical facts, where
the origin of volatility clustering can be clearly traced back to investor inertia,
caused by threshold response of investors to news arrivals.
2 See the chapter by Giraitis, Leipus and Surgailis in this volume for a review on

renewal switching models.
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4.1 An agent-based model for volatility clustering

Our model describes a market where a single asset, whose price is denoted by
St, is traded by N agents. Trading takes place at discrete periods t = 0, 1, 2, ...
We will see that, provided the parameters of the model are chosen in a certain
range, we will be able to interpret these periods as “trading days”. At each
period, agents have the possibility to send an order to the market for buying
or selling a unit of asset: denoting by φi(t) the demand of the agent, we have
φi(t) = 1 for a buy order and φi(t) = −1. We allow the value φi(t) to be
zero; the agent is then inactive at period t. The inflow of public information
is modeled by a sequence of IID Gaussian random variables (εt, t = 0, 1, 2, ..)
with εt ∼ N(0,D2). εt represents the value of a common signal received by all
agents at date t−1. The signal εt is a forecast of the future return rt and each
agent has to decide whether the information conveyed by εt is significant, in
which case she will place a buy or sell order according to the sign of εt.

The trading rule of each agent i = 1, ..., N is represented by a (time–
varying) decision threshold θi(t). The threshold θi(t) can be viewed as the
agents (subjective) view on volatility. The trading rule we study may be seen
as a stylized example of threshold behavior: without sufficient external stim-
ulus (|εt| ≤ θi(t)), an agent remains inactive φi(t) = 0 and if the external
signal is above a certain threshold, the agent will act: if εt > θi(t), φi(t) = 1,
if εt < −θi(t), φi(t) = −1. The corresponding demand generated by the agent
is therefore given by:

φi(t) = 1εt>θi(t) − 1εt<−θi(t). (6)

The excess demand is then given by Zt =
∑N

i=1 φi(t). A non-zero value of Z
produces a change in the price given by

rt = ln
St

St−1
= g(

Zt

N
) (7)

where the price impact function g : R 
→ R is an increasing function with
g(0) = 0. We define the (normalized) market depth λ by : g′(0) = 1

λ . Examples
are a linear price impact g(z) = z/λ or g(z) = arctan(z/λ), both having been
used in various disequilibrium models.

Initially, we start from a population distribution F0 of thresholds: θi(0), i =
1..N are positive IID variables drawn from F0. Updating of strategies is asyn-
chronous: at each time step, any agent i has a probability 0 ≤ s ≤ 1 of updat-
ing her threshold θi(t). Thus, in a large population, q represents the fraction
of agents updating their views at any period; 1/q represents the typical time
period during which an agent will hold a given view θi(t). If periods are to be
interpreted as days, q is typically a small number s � 10−1 − 10−3. When an
agent updates her threshold, she sets it to be equal to the recently observed
absolute return, which is an indicator of recent volatility |rt| = | ln St

St−1
|. In-

troducing IID random variables ui(t), i = 1..N, t ≥ 0 uniformly distributed on
[0, 1], which indicate whether agent i updates her threshold or not:
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θi(t) = 1ui(t)<s|rt| + 1ui(t)≥sθi(t − 1) (8)

This way of updating can be seen as a stylized version of various estimators
of volatility based on moving averages of absolute or squared returns. It is
also corroborated by a recent empirical study by Zovko and Farmer [55], who
show that traders use recent volatility as a signal when placing orders.

The asynchronous updating scheme proposed here avoids introducing an
artificial ordering of agents as in sequential choice models. As noted above, the
heterogeneity of time scales of intervention of agents is a feature believed to be
important for generating persistence in volatility [1, 23, 31]. The random na-
ture of updating in this model is a parsimonious way to introduce heterogene-
ity in time scales without introducing extra parameters. Given this random
updating scheme, even if we start from an initially homogeneous population
θi(0) = θ0, heterogeneity creeps into the population through the updating
process and evolves in a random manner, leading to a history-dependent dis-
ordered system.

Let us recall the main ingredients of the model. At each time period:

1. agents receive a common signal ε(t) ∼ N(0,D2)
2. each agent i compares the signal to her threshold θi(t)
3. if |ε(t)| > θi(t) the agent considers the signal as significant and generates

an order φi(t) according to (6).
4. The market price is impacted by the excess demand and moves according

to (7).
5. Each agent updates, with probability q, her threshold according to (8).

Compared to most agent–based models considered in the literature, there is
no exogenous “fundamental price” process and we do not distinguish between
“fundamentalist” and “chartist” traders. Also, the same information is avail-
able to all agents but they differ in the way they process the information. We
do not introduce any “social interaction” among agents: no notion of locality,
lattice or graph structure is introduced. The model has very few parameters:
q describes the average updating frequency, D the standard deviation of the
noise representing the news arrival process, the market depth λ and the num-
ber of agents N which is typically large. We will observe nevertheless that
this simple model generates time series of returns with interesting dynamics
and properties similar to empirically observed properties of asset returns.

4.2 Simulation results

In order for a direct comparison with empirical stylized facts to be mean-
ingful, we compute sample moments as in the case of empirical data, by
averaging over the (single) sample path. After simulating a sample path of
the price St for T = 104 periods, we compute the time series of returns
rt = ln(St/St−1), t = 1..T , their histogram, a moving average estimator of the
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standard deviation of returns (“volatility”), the sample autocorrelation func-
tion of returns and the sample autocorrelation function of absolute returns.
In order to decrease the sensitivity of results to initial conditions, we allow
for a transitory regime and discard the first 103 periods before averaging.

In order to interpret the trading periods as “days” and compare the results
with properties of daily returns, we note that when g is linear |rt| ≤ 1

λ and
choose 5 ≤ λ ≤ 20 which allows a (maximal) range of daily returns between
5% and 20%. Also, the amplitude D of the input noise can be chosen such
as to reproduce a realistic range of values for the (annualized) volatility: this
leads to choosing D in the range 10−3 − 10−2. Let us emphasize that we are
discussing the calibration of the order of magnitude of parameters, not fine–
tuning them to a set of critical values. The results discussed in the sequel
are generic within this range of parameters. Figures 3 and 4 illustrate typical
sample paths obtained with different parameter values: they all generate series
of returns with realistic ranges and realistic values of annualized volatility.
For each series, we represent the histogram of returns both in linear and
logarithmic scales, the ACF of returns Cr, the ACF of absolute returns C|r|.
The return series obtained possess regularities which match the properties
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Fig. 3. Numerical simulation of the model with updating frequency q = 0.01 (aver-
age updating period: 100 “days”) N = 1000 agents, D = 0.001 and λ = 10.

outlined in the introduction [14]:
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1. Excess volatility: the sample standard deviation of returns can be much
larger than the standard deviation of the input noise representing news
arrivals σ̂(t) � D.

2. Mean-reverting volatility: the market price fluctuates endlessly and the
volatility, as measured by the moving average estimator σ̂(t), does neither
to zero nor to infinity and displays a mean-reverting behavior.

3. The simulated process generates a leptokurtic distribution of returns with
(semi)heavy tails, with an excess kurtosis around κ � 7. As shown in the
logarithmic histogram plots in figures 3–4, the tails exhibit an approxi-
mately exponential decay, as observed in various studies of daily returns
[16].

4. The returns are uncorrelated: the sample autocorrelation function of the
returns exhibits an insignificant value (very similar to that of asset re-
turns) at all lags, indicating the absence of linear serial dependence in the
returns.

5. Volatility clustering: the autocorrelation function of absolute returns re-
mains significantly positive over many time lags, corresponding to persis-
tence of the amplitude of returns a time scale � 1/q.
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Fig. 4. Numerical simulation of the model with updating frequency q = 0.1 (average
updating period: 10 “days”) N = 1500 agents, D = 0.001 and λ = 10.
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4.3 Theoretical analysis

Contrarily to some of the models discussed above, this model is simple enough
to allow for a theoretical study of its qualitative studies [14]. Let us being by
examining two limiting cases:

1. Feedback without heterogeneity: In the case where q = 1, all agents
synchronously update their threshold at each period. Consequently, the
agents have the same thresholds, given by the last periods absolute return:
θi(t) = |rt−1| and will therefore generate the same order: Zt = Nφ1(t) ∈
{0, N,−N}. So, the return rt depends on the past only through the abso-
lute return |rt−1|:

rt = f(|rt−1, εt|) = g(N)1εt>|rt−1| + g(−N)1εt<−|rt−1|,

a dependence structure typical of ARCH models [19], leading to un-
correlated returns and volatility clustering. In this case, the distribu-
tion of rt conditional on |rt−1| is actually a trinomial distribution: rt ∈
{0, g(N), g(−N)}, which is not realistic. Simulation studies show that a
similar behavior persists for 1− q � 1, leading to tri-modal distributions.
This confirms our intuition that the updating probability q should be
chosen small.

2. Heterogeneity without feedback: In the case where q = 0, no updat-
ing takes places: the trading strategies, given by the thresholds θi, are
unaffected by the price behavior and the feedback effect is not present
anymore. Heterogeneity is still present: the distribution of the thresholds
remains identical to what it was at t = 0. The return rt depends only on
εt :

rt = g(
1
N

N∑

i=1

1εt>θi
− 1εt<−θi

) = F (εt)

We conclude therefore that the returns are IID random variables, obtained
by transforming the Gaussian IID sequence (εt) by the nonlinear function
F given in (9), whose properties depend on the (initial) distribution of
thresholds (θi, i = 1..N). The log–price then follows a (non–Gaussian)
random walk and the model does not exhibit volatility clustering.

The two limiting cases above show that, in order to obtain the interesting
statistical properties observed in the simulated examples shown above, it is
necessary to have 0 < q � 1: both feedback and heterogeneity are essential
ingredients. In the general case we have the following properties:

• Markovian dynamics: the thresholds [θi(t), i = 1...N ] follow a Markov
chain in {g(k), k = 0...N}. We have θi(t+1) = θi(t) with probability 1− q
and
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θi(t + 1) = |rt| = |g(
1
N

N∑

i=1

[1εt>θi
− 1εt<−θi

])| with probability q.(9)

In fact given that agents are indistinguishable and only the empirical
distribution of threshold values affects the returns, defining Nk(t) =∑N

i=1 1[0,ak[(θi(t)) then (Nk(t), k = 0..N − 1)t=0,1,.. evolves as a Markov
chain in {0, ..., N}N . N(t) = (Nk(t), k = 0..N − 1) is none other than the
(cumulative) population distribution of the thresholds. The fact that N(t)
itself follows a Markov chain means that the population distribution of
thresholds is a random measure on {0, ..., N}, which is characteristic of
disordered systems [44], even if we start from a deterministic set of val-
ues for the initial thresholds (even identical ones). Here the disorder is
endogenous and is generated by the random updating mechanism.

• Excess volatility: In this model, the volatility of the news arrival process
is quantified by D which is the standard deviation of the external noise εt,
whereas the volatility of the returns can be measured a posteriori as the
(conditional or unconditional) standard deviation of rt. As seen from the
nonlinear relation between εt and rt,

rt = g(
∑N

i=1 1εt>θi(t) − 1εt<−θi(t)

λN
) (10)

even after conditioning on the current states of agents θi(t), i = 1..N ,
Eq. (10) yields a nonlinear relation between the input noise εt and the
returns which can have the effect of amplifying the noise by an order of
magnitude or more. In the simulation example shown in figure 3, D = 10−3

which corresponds to an annualized volatility of 1.6%, while the annualized
volatility of returns is in the range of 20%, an order of magnitude larger:
the order of magnitude of the volatility of returns may be quite different
from that of the input noise.

• Absence of autocorrelation
From the dynamic equations of the model

Zt =
1
N

N∑

i=1

φi(t) =
1
N

N∑

i=1

[1εt>θi
− 1εt<−θi

] (11)

rt = g(Zt) = g(
1
N

N∑

i=1

[1εt>θi
− 1εt<−θi

]) (12)

one can deduce that, if g is an odd function (in particular if g is linear) then
asset returns (rt)t≥0 are uncorrelated: cov(rt, rt+1)=0. This is due to the
fact that the trading/ nontrading decision is based only on the amplitude
of the signal, not its sign. The sign of the return is determined by the sign
of the common signal, which is independent across periods.

• Investor inertia
Except in times of crisis or market crash, at a given point in time only
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a small proportion of stockholders are actually trading in the market. As
a result, the (daily) order flow for a typical stock can be much smaller
than the market capitalization. This phenomenon, sometimes referred to
as investor inertia, is a generic outcome in our model due to threshold
behavior of agents. Starting from an initial holding of πi(0), the quantity of
asset held by agent i is given by πi(t) =

∑t
τ=0 φi(τ). Figure 4.3 displays the

evolution of the portfolio πi(t) of a typical agent: short periods of activity
(trading) are separated by long periods of inertia, where the portfolio
remains constant. This “inertia” increases in periods of high volatility, an
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Fig. 5. Evolution of the portfolio of a typical agent, with long periods of inactivity
punctuated by bursts of activity.

effect similar to the behavior of risk-averse agent.
• Mean reversion and clustering of volatility

Many market microstructure models –especially those with learning or
evolution– converge over large time intervals to an equilibrium where prices
and other aggregate quantities cease to fluctuate randomly. By contrast,
in the present model, prices fluctuate endlessly and the volatility exhibits
mean-reverting behavior. Suppose we are in a period of “low volatility”;
the amplitude |rt| of returns is small. Agents who update their thresholds
will therefore update them to small values, become more sensitive to news
arrivals, thus generating higher excess demand and thus increasing the
amplitude of returns. Conversely, in a period of high volatility, agents will
update their threshold values to high values and become less reactive to
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the incoming signal: this increase in investor inertia will thus decrease the
amplitude of returns. The mean reversion time in the volatility corresponds
here to the time it takes for agents to adjust their thresholds to current
market conditions, which is of order τc = 1/q.
When the amplitude of the noise is small it can be shown [14] that volatility
decays exponentially in time and increases through upward “jumps”. This
behavior is actually similar to that of a class of stochastic volatility models,
introduced by Barndorff-Nielsen and Shephard [5] and successfully used to
describe various econometric properties of returns.

5 Conclusion

Volatility clustering is recognized as a stylized property present in most fi-
nancial time series. Agent-based models seek to explain volatility clustering
in terms of behavior of market participants, described in terms of simple rules.
We have discussed several agent-based models capable of generating volatility
clustering. A common feature of these models seems to be the “switching” of
the market between periods of high and low activity, with long durations of
periods. Models differ in the mechanism which leadsz to this switching at the
level of agents.

While the econometric debate on the short range or long range nature of
dependence in volatility still goes on (and may probably never be resolved),
agent-based models can provide motivation for choosing between alternative
econometric specifications which are otherwise equally plausible in statistical
terms, thus providing a useful complement to econometric analysis.
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1. INTRODUCTION 

Both foreign exchange markets and national 
stock markets share a number of stylised facts for 
which a satisfactory explanation is still lacking in 
standard theories of financial markets (see Pagan, 
1996, and de Vries, 1994, for recent surveys of the 
time series properties of financial data). In this 
paper, we will introduce a behavioural model of 
speculative activity whose time series 
characteristics conform with the most important 
empirical regularities. 

To set the stage, we first provide a short 
account of the ubiquitous characteristics of 
financial data: 

7 

• first, standard statistical procedures are usually 
not able to reject the hypothesis that financial 
prices follow a random walk. If levels (or logs) 
obey a unit root dynamics, returns or differences 
of logs should be stationary. In fact, this has been 
confinned throughout the literature. However, 
certain distributional characteristics of returns 
also count as well-established facts which - in the 
wording of de Vries (1994) - "have a sound 
statistical basis but for which no convincing 
economic explanation has been established". 

• the first of these is the clustering of volatility. 
More formally, this can be identified with what is 
now known as ARCH effects: non-homogeneity 
of volatility together with highly significant 
autocorrelation in all measures of volatility 
despite insignificant autocorrelation in raw 
returns. 



• the third stylised fact is the fat tail 
phenomenon: exchange rate changes or stock 
returns at weekly, daily and higher frequencies 
exhibit more probability mass in the tails and in 
the centre of the distribution than does the 
standard Normal. 

Though these three properties characterise the 
behaviour of almost all financial prices, 
behavioural explanations of these features of 
financial data are sparse. 

2. THE MODEL 

The model presented in this paper is close in 
economic content to the ones analysed in Lux 
(1995, 1997, 1998). This approach shares features 
of both Kirman's (1993) and Day and Huang's 
(1990) models of speculative activity. We consider 
an ensemble of interacting agents who may pursue 
a chartist or fundamentalist strategy. Furthermore, 
the chartist group is composed of two subgroups 
containing individuals who are optimistic or 
pessimistic about the future development of the 
market. 

The dynamics of the model are governed by both 
endogenous changes of agents' behaviour and price 
reactions brought about by a market maker who co
ordinates demand and supply. In detail, we have 
the following elements of the dynamics: 

(1) chartists switching between the optimistic 
and pessimistic subgroup under the influence of the 
majority opinion as well as the observed price 
trend, 

(2) switching of agents between chartist and 
fundamentalist strategy. These behavioural 
changes are modelled in the following way: agents 
meet individuals from the other group, compare 
(myopic) excess profits from both strategies and 
with a probability depending on the pay-off 
differential switch to the more successful strategy. 

(3) endogenous price formation by a market 
maker who reacts on imbalances between demand 
and supply in the usual manner. Demand and 
supply functions themselves are derived from the 
activities and dispositions of speculators. 

All potential changes of behaviour (from 
optimistic to pessimistic disposition and vice versa, 
from fundamentalism to chartism and vice versa) 
as well as the price adjustment by the market 
maker are formalised using Poisson transition 
probabilities. It is, thus, assumed that changes of 
behaviour occur asynchronously in our model. 
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3. MAIN RESULTS 

In contrast to earlier articles, here we are not 
interested in the potential of cyclic or chaotic time 
paths but will concentrate on investigating the 
system's dynamics in the presence of stable 
'fundamental' equilibria in which the price is (on 
average) equal to the fundamental value of the 
asset. However, using a combination of theoretical 
tools and micro-simulations it is demonstrated that 
an otherwise stable fundamental equilibrium can 
be subject to sudden transient phases of 
destabilisation. The characteristic features of these 
periods are bursts of severe fluctuations around the 
equilibrium which, however, quickly die out in the 
course of events the system returning to a stable 
and calm state again. 

Fig. 1 shows the time development of returns 
and z, the fraction of chartist traders, from a 
typical micro-simulation. 

The trajectory of returns, plotted over 3,000 time 
steps, clearly shows that we do not only find the 
small homogenous disturbances with a given 
variance that one would usually expect in the 
presence of a stable equilibrium. Instead we see 
long calm periods punctuated with sudden bursts of 
clustered volatility in returns. 

In the bottom diagram we depict the trajectory 
of the fraction of chartists, denoted by z, together 
with the theoretically derived suspected bifurcation 

value z where the fundamental equilibrium looses 
ist stability. Looking at both the upper and lower 
part of the figure, the following interplay between 
both variables can be observed: As long as z is far 

from z, the time development of z appears quite 
random. It is accompanied by small fluctuations of 
returns around zero whose magnitude appears to be 
correlated with the number of chartists, z. 

However, once z approaches z, overproportionaIly 
strong price changes set in. The reason is that, with 
a certain dominance of chartist practices, 
deviations from the fundamental equilibrium 
become self-reinforcing and the system cannot 
maintain its local stability any more. 

Nevertheless, the dynamics is globally stable: 
deviations are checked after some time presumedly 
because of the superior performance of 
fundamentalists. Hence, sooner or later the market 
returns to its usual tranquil mode of operation after 
any outbreak of instability. 



Froction of chortist. omonq trod .. , 

Fig. 1: Upper part: typical simulated time series of 
returns, bottom part: simultaneous development 
of the fraction of chartists, z, within the 
population of speculators. The broken line 

indicates the critical value z = 0.65 where a 
loss of stability is expected. 

It is quite obvious that the behaviour of the 
simulated time series in the upper part of Fig. I 
conforms with empirical observations in a number 
of aspects: first, returns appear to be stationary and 
are also distributed rather symmetrically around 
zero Second, they exhibit occasionally sudden, 
strong deviations which appear to come in clusters. 

We conducted a series of statistical tests using the 
time series from several simulation runs with 
different parameter sets (see the paper for details). 
They confinned that our artificial time paths for 
prices and returns share the basic characteristics of 
real-life markets: non-rejection of unit roots in 
levels together with heteroscedasticity and 
leptokurtosis of returns. 

4. A BROADER PERSPECTIVE 

The phenomenon of volatility bursts has also 
been found in a somewhat different economic 
context recently by Youssefmir and Hubennan 
(1997) who dealt with the evolution of resource 
utilisation by adaptive agents. In their paper, tlley 
conjectured that the same mechanism may serve as 
an explanation for volatility clustering in financial 
markets. The present paper confinns this 
conjecture. 

In recent natural science literature, a number of 
papers with qualitatively similar dynamic 
behaviour can be found which may, however, result 
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from very different types of models (see e.g., 
Fujisaka and Yamada, 1986; Heagy et al., 1994). 
The phenomenon under study has been denoted on
off intermittency. Loosely speaking, the unifying 
feature of all examples of its occurrence is an 
attracting state (which may not always be a fixed 
point) becoming temporally unstable due to a local 
bifurcation, i.e. some key variable surpassing some 
stability threshold. This destabilisation may be 
generated in a deterministic manner (e.g. through 
weak coupling to another dynamics) or may occur 
stochastically. In any case, there will be no lasting 
deviation from the equilibrium as the system is 
driven back to stability by some endogenous 
mechanism. 

In our model of chartist/fundamentalist 
interaction, the bifurcation parameter is the time
varying fraction of traders pursuing a chartist 
strategy. In general, agents are allowed to switch 
between a chartist and a fundamentalist trading 
strategy after comparing the respective profits. 
However, in the vicinity of the equilibrium the 
price (on average) equals the fundamental value 
and no price trend can be identified and exploited 
so that neither strategy is superior. As a 
consequence, then, switching between strategies 
occurs in an unsystematic manner and depends, so 
to say, on idiosyncratic motivation which is 
captured using transition probabilities instead of a 
deterministic modelling device. Hence, the fraction 
of agents pursuing one or the other strategy follows 
a random walk and, sooner or later, leaves the 
region warranting a stable market. The ensuing 
destabilisation is characterised by an outbreak of 
severe fluctuations with a large fraction of traders 
switching to chartism and pursuing destabilising 
trend-following strategies. However, this situation 
does not last very long, as the temporary advantage 
of chartists disappears when the ensuing price 
bubble breaks down. Afterwards, fundamentalists 
gain on average higher profits which leads to a 
conversion of chartists to the other strategy. This 
makes oscillations diminish and the state variables 
are pushed towards a stable market constellation 
again. However, every once in a while, the pattern 
will repeat. More picturesque, one may describe the 
market as being stable (and efficient) to a large 
extent, but inherently nervous with the potential of 
sudden, unforecastable eruptions. 

Although we are able to provide some intuition 
and mathematical insight for the phenomenon of 
volatility bursts using tools from mean-field theory 
and local stability analysis, their appearance can 
only be demonstrated using numerical simulation. 
We believe that our findings extend beyond the 
stylised model of speculative behaviour analysed in 
this paper. Considering our results as well as those 
obtained in a different context by Y oussefmir and 
Hubennan the key increments for the emergence of 
volatility bursts (in models with many interacting 



agents) seem to be the following: (i) indetenninacy 
of the population composition in equilibrium (i.e. 
no strategy has an advantage within a stationary 
environment) and (ii) dependence of stability of the 
equilibrium itself on the composition of the 
population. We believe that these conditions are 
met by various economic models. In any case, the 
similarity between the phenomenon of on-off 
intennittency and the behaviour of the successful 
ARCH time series models developed in financial 
econometrics seems remarkable and may point to 
an explanation of the underlying phenomena. 
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ABSTRACT The volatility clustering has critical implications in financial risk management. This paper aims
to analyze the existence and cause of volatility clustering in financial time-series using different measures
simultaneously. Specifically, we utilize the clustering indices, asymmetry measures, and the power of the
scale freeness in the visibility graph. For the experiment, we utilize four representing financial time-series,
including the S&P500, one-year US Treasury Constant Maturity rate, Euro-Dollar exchange rate, and Crude
oil for the stock, bond, exchange, and commodity markets, respectively. The duration of the experiment is
from 2009 to 2018, which is divided into two sub-periods: crisis and post-crisis periods. At first, we identify
the positive and slowly decaying non-linear autocorrelation in all markets, which indicates the power-law
decay. Also, the autocorrelation of the simulated time-series suggests that the order of return-series with
respect to its magnitude contributes more to the volatility clustering than the heavy-tailed distributions.
Secondly, we detect that the scale of the return contributes more to volatility clustering than the sign of
the return. Lastly, we observe that the clustering and asymmetry measures are more robust measures to the
return distribution changes than the PSVG to analyze the volatility clustering.

INDEX TERMS Clustering asymmetry, clustering index, finance, pattern clustering, power-law decay,
statistical analysis, time series analysis, visibility graph, volatility clustering.

I. INTRODUCTION
The financial time-series and its associated return distribu-
tion, representing the market’s volatility, are of great interest
to both researchers and investors. In general, the finan-
cial time series are assumed to be independent and iden-
tically distributed (iid) generated from random walks [1].
Therefore, the probability density function of the return
should follow the Gaussian distribution. However, the clus-
tering of the large fluctuations in financial price-series is
observed accompanying the return distribution’s heavy tail
property [2], [3]. In other words, a large fluctuation is likely
to follow a previous large fluctuation, whereas a small fluc-
tuation is likely to follow a previous small fluctuation, which
rejects the iid assumption. Such a phenomenon is called the
volatility clustering. The financial market is characterized by
unexpected shocks. In this milieu, the volatility clustering has

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Asaduzzaman .

critical implications in financial risk management, especially
in calculating the Value-at-Risk or Expected Shortfall of the
portfolio.When an unexpected shock is realized, the volatility
of a financial market dramatically increases. Furthermore,
the existence of volatility clustering suggests the persistence
of extreme volatility for a while. Given that the risk measures
are estimated based on the historical return series, investors
must adjust the estimates to adequately manage and ensure
the institution’s capability against the additional risk. Hence,
it is important and necessary to analyze the existence and
causes of volatility clustering is the financial time-series.

From Econometrics’s perspective, the traditional method
to detect the causes of the volatility clustering is the Autore-
gressive Conditionally Heteroscedastic (ARCH) [3], which
is extended to GARCH (Generalized ARCH) [4]. These
methods are robust and descriptive approaches to analyze
the volatility clustering, but neither of these models explains
why such distribution appears. Also, both methods assume a
specific distribution for a financial time-series, which even
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makes the standard estimation process difficult since the
long-memory or heavy-tailed characteristics of the financial
time-series is changing over time [5]–[7].

From Econophysics’ perspective, many researchers have
discovered several stylized facts in financial markets.
In particular, the heavy tail and aggregated normal distribu-
tion of the asset return distribution [8]–[14], asymmetry on
rises and falls of the price dynamics, long-range autocorrela-
tion or cross-correlation [7], [15]–[20], volatility clustering
[21]–[24] have been studied, which generally suggest the
rejection of the traditional normality assumption on the return
distribution [25]–[29]. In this context, the volatility clustering
has been studied as one of the major stylized facts [5], [23].

At first, the quantitative method can be used to capture
the volatility clustering based on the autocorrelations of
the return series [2]. Significantly, the evidence of volatil-
ity clustering is the positive and slowly decaying (a.k.a.
power-law decay) autocorrelation. Note that such power-law
decay is observed in the absolute or squared return series,
often referred to as the non-linear autocorrelation, rather than
the plain log-returns. It is known that the slowly decaying
non-linear autocorrelation is mainly due to the correlation
between the large fluctuation of volatility clusters. However,
it is difficult to assert that the slow decay of nonlinearity
implies the long memory tendency of volatility [5]. Never-
theless, if a particular time series has long memory property,
or if the distribution of returns is close to non-normality,
many statistical estimates tend to possess the autocorrelation
or power-law decay [7], [19], [23].

Secondly, there is a network-driven method to detect the
volatility clustering based on the fact that the dynamic prop-
erties of the time series can be preserved in the network
framework. Specifically, many researchers have developed
the methods to explain the geometrical structure of the
time series, including the cycle approach [30], correlation
approach [31], visibility graph [32], recurrence network [33],
and isometric network [34]. Also, the monitoring of different
patterns of the complex systems in the time-series has been
studied [35]–[38]. Among them, we consider the visibility
graph to analyze the clustering behavior of the financial
time-series based on the following reasons. At first, the visi-
bility graph is known to map the time series into the network
values and successfully inherits the time series’s properties.
In particular, it is known that the visibility graph transforms
the random series into a random graph, the periodic series into
a regular graph [39], and the fractal series into a scale-free
graph [40]–[43]. In this regard, the visibility graph has been
utilized in various domains, including the geometric structure
of traffic pattern [44], analyzing exchange rate series [45],
and reflecting the geometric structure of the two-dimensional
Ising algorithm [46]. Secondly, the visibility graph has fast
computing time with a simple algorithmic structure, while
most complex network-based algorithms require long com-
puting time. Besides, the most recent development of the
visibility graph is the Power of Scale-freeness of Visibility
Graph (PSVG). Note that this method’s feature does not

require an infinite time series, so it is easy to implement in
the practical usages since the real-world time-series is always
finite. Hence, we employ the PSVG for the analyses.

The non-linear autocorrelation and visibility graphs are
useful methods to analyze the volatility clustering in the
financial time-series. However, there has been a lim-
ited attempt to simultaneously incorporate both methods
to explain the volatility clustering phenomenon in detail.
Therefore, in this study, we suggest the measures for reliable
estimation and explanation of the volatility clustering and
provide the relevance between two approaches by comparing
variations in clustering and fractality measures. In particular,
we utilized the clustering and asymmetry measures presented
in [22], [24]. Moreover, it is also necessary to measure the
degree of influence when the causes of clustering are related.
Hence, we analyze the values obtained from the measures of
volatility clustering effect. Specifically, we analyze the influ-
ence of positive/negative values, large/small fluctuations, and
each fluctuation ratio. In addition, the associated asymmetry
measures are included to identify the different causes. Note
that there are studies on the asymmetry degree, clustering
degree, or scale difference according to rising and falling,
which are also included in this research [47]–[50].

The rest of this paper is organized as follows. At first,
Section 2 presents the methods and measures used in this
paper where the Section 2.1, 2.2, and 2.3 explains the clus-
tering index and asymmetric volatility measures, the PSVG
approach, and the measures for their variations in differ-
ent conditions of return distributions, respectively. Then,
Section 3 presents the statistical properties and descriptive
information of fractality of four representing financial mar-
kets, and Section 4 analyzes and discusses the results of
the experiments, including the effects on clustering of the
distributional features, clustering and asymmetry effects by
the scale and sign of the data, and variations effects appear in
sequence. Lastly, Section 5 concludes.

II. METHODS
A. CLUSTERING INDEX AND ASYMMETRY
The volatility clustering in the financial time series can be
analyzed based on the daily log-return series. Let St be the
daily closing price of a financial asset at time t , then the daily
log-return, Rt , can be defined as

Rt = ln
(

St
St−1

)
. (1)

The volatility clustering can be quantitatively studied by
observing the positive and slowly decaying autocorrelation
of the absolute daily log-return series, which indicates the
power-law decay behavior. We follow the procedures defined
in [22], [24]. Let C(xt , xt+τ ) be the autocorrelation function
of time-series variable x for some time interval τ , then

C(x, xt+τ ) ≡
E [(xt − E[xt ])(xt+τ − E[xt+τ ]))√

E[x2t ]− (E[xt ])2
√
E[x2t+τ ]− E[xt+τ ]2

. (2)
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Note that the autocorrelation is analyzed to detect the
factor contributing to the volatility clustering by comparing
the original and Gaussian-rearranged financial return series.
The rearrangement procedure can be summarized as follows.
At first, we define the Gaussian distribution with its mean and
standard deviation analogous to those of the original return
series. Secondly, we draw an equal number of data from
this Gaussian distribution and refer it as Gaussian simulated
series. Thirdly, we sort both the empirical and the simulated
series in the descending order according to absolute returns.
Lastly, we substitute values in the empirical series by the sim-
ulated series one by one from the largest one to the smallest
one.

Then, we utilize the clustering index to analyze the volatil-
ity clustering in the financial time series. Let c denotes
the degree of volatility clustering, indicating the largest p%
within a time window of size n. Given that c is calculated
by sliding the moving window with a specified time step,
a clustering index, CIn, for time window n can be defined in
terms of the ratio of standard deviation c series such that,

CIn ≡
σO

σG
(3)

where σO and σG are the standard deviations of the
original and Gaussian-rearranged return series for the time
window n, respectively. In this regard, CIn indicates the ratio
of clustering patterns within the current data compared to the
simulated Gaussian distribution. In case when the clustering
is more similar to the original than the simulated Gaussian
distribution, the larger the time window size from 1 to 100,
the higher the number of largest p% included in the window.
Also, the larger the timewindow size, the smaller the standard
deviation represents the heavier tail. As a result, the largerCIn
is, the higher the degree of volatility clustering is compared
to the Gaussian distribution, which indicates the compara-
tively higher kurtosis and heavier tail. Besides, the theoretical
upper limit of the clustering index, CI limn , can be derived as
described in [22], [24]. Simply put, we can derive a standard
deviation of m clustering values using the probability that m
corresponding to largest p% are involved within the window
of size n such that,

σG =

√√√√ n∑
m=0

(
m−

p
100

n
)2 ( p

100

)m (
1−

p
100

)n−m
=

√
n
( p
100

) (
1−

p
100

)
(4)

where p
100n indicates a mean value of c series about window

of size n. In this context, the limit of a standard deviation can
be defined as follows. For the time series of length N ,

1
N − n+ 1

[( p
100

N − n
)(
n−

p
100

n
)2

+

((
1−

p
100

)
N − n

)( p
100

n
)2

+

n∑
m=0

(
m−

p
100

n
)2]

. (5)

Since p
100N and

(
1− p

100

)
N are larger than n, Eq.(5)

converges to n2( p
100 )(1 −

p
100 ). As N → ∞, the theoretical

limit of the standard deviation, σlim, converges to

σlim =

√
n2
( p
100

) (
1−

p
100

)
. (6)

Finally, the theoretical upper limit of clustering index, CI limn ,
is,

CI limn =
σlim

σG
=

√
n2( p

100 )(1−
p

100 )√
n( p

100 )(1−
p

100 )
=
√
n (7)

In general, the persistence of the volatility can be detected
using the GARCH estimation [4], [51], [52], which is widely
used to measure the degree of the volatility clustering. How-
ever, the GARCH-model only provides the existence of
clustering or persistence of the volatility with difficulties
in determination of the parameter order, error distribution,
the significance of estimated coefficients, and convergence
of the algorithm. In contrast, the clustering index does not
require such an estimation process. Therefore, the clustering
index has its advantage in measuring the degree of volatility
clustering in time-series.

Furthermore, the asymmetry of clustering also can be mea-
sured. In this study, we employ two asymmetry measures as
defined in [22], [24]. The first measure, Ascale, evaluates the
asymmetry between the largest values and smallest values of
the clustering index such that

Ascale =
CIL − CIS

CIL + CIS
(8)

whereCIL andCIS indicate the clustering indices due to large
and small values, respectively. Therefore, the measure shows
which of large or small fluctuation contains more clustering
as the window size increases. That is, the more large (small)
values clustering, the closer Ascale is to positive (negative)
value. The second measure, Asign, calculates the asymmetry
between large positive values and large negative values.

Asign =
CI+ − CI−

CI+ + CI−
(9)

where CI+ and CI− indicate the clustering indices due to
large positive returns and large negative returns, respectively.
Therefore, we can determine the degree of clustering due
to window size and large positive or large negative values.
Likewise, positive Asign refers to the existence of more clus-
tering in the positive return series.

B. VISIBILITY GRAPH ALGORITHM
It is possible to map the volatility in times series to its
visibility graph [10]. In this graph, the node corresponds
to the volatility values, whereas the undirected edge repre-
sents the connection between two volatility values when the
two nodes satisfy the following condition of the equation.
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Let Xi be the i-th point of the time series, then the condition
for the existence of the edge is

Xtc ≤ Xtb + (Xta − Xtb )
Xtb − Xtc
Xtb − Xta

(10)

where ta and tb correspond to the node for specific time(node)
in time series, with tc(ta ≤ tc ≤ tb). Note that more
detailed procedure can be found in [53]. Based on the con-
structed visibility graph, we count the number of connec-
tions in Xi(i = ta, . . . , tc, . . . , tb), which can be defined
as the k degree of the each node in the undirected graph.
In this context, the degree distribution(P(k) = nk/n) can
b e obtained by calculating the ratio of the total number of
nodes(n) to frequency nk for each k . The degree distribution is
known to follow the power-law behaviour, and the power-law
exponent(λ) is called as the Power of the Scale freeness in
Visibility Graph (PSVG) such that

P(k) ∼ k−λ. (11)

The PSVG is closely related to the complexity and fractal-
ity in time series. The PSVG has an inverse relationship with
the Hurst exponent(H (0 < H < 1)), which is also related
to the autocorrelation in time series. The time-series has the
characteristic of the fractional Brownian Motion(fBM) when
the λ and H are related as,

λ = 3− 2H (12)

where H = 0.5, H > 0.5, and H < 0.5 indicate the
non-correlated, correlated(persistent), and anti-correlated
(anti-persistent) time-series, respectively.

C. MEASURES OF VARIATIONS IN CLUSTERING,
ASYMMETRY, AND POWER-LAW EXPONENTS
For instance, if the largest p%for themeasure is set to be 20%,
the results of the measures only represent relatively high-risk
investments, including extremely large positive and negative
returns, which excludes the empirical evidence from the rel-
atively smaller returns. Therefore, we suggest investigating
the clustering pattern of volatility in more detail by analyzing
the variations within the proposed clustering and asymmetry
measures when p% is changed. In this research, we obtain
the variations in measures by comparing the largest 20%
and 40%. For the clustering indices (CIL ,CIS ,CI+,CI−)
and asymmetry measures (Ascale,Asign), the variations can be
simply obtained by subtracting the values of 40% from those
of 20%.

In addition, we also investigate the variations in PSVG,
the power-law coefficients, λ, in visibility graph. If the
power-law coefficient is denoted by λL(p) for largest p%,
it can be defined by the coefficient ratio of original data
and Gaussian simulated so that the results can be compa-
rable with those of CIL ,CIS ,CI+,CI−,Ascale and, Asign.
Therefore, the measures regarding the largest p%(λL(p)),
smallest p%(λS (p)), largest positive p%(λ+(p)), and smallest

negative p%(λ−(p)) can be defined such that,

λL(p) =
λLO(p)

λLG(p)

λS (p) =
λSO(p)

λSG(p)

λ+(p) =
λ+O(p)

λ+G(p)

λ−(p) =
λ−O(p)

λ−G(p)
(13)

where the subscripts O and G on the right-hand side of
the equations indicate the original and Gaussian simulated,
respectively. Also, the relative difference between largest and
smallest value λscalep , and that of large positive and large

negative value λsignp are similarly defined as follows.

λscale(p) = λL(p)− λS (p)

λsign(p) = λ+(p)− λ−(p) (14)

Based on the above measures, we can explore the variations
in power-law coefficients by subtracting the values of 40%
from those of 20%. The methods used in this research are
summarized in Figure 1.

III. DATA AND DESCRIPTIVE STATISTICS
In this study, we investigate the four representing finan-
cial time-series from different markets including the
S&P500(S&PCOMP) for the stock market, one year US
Treasury Constant Maturity rate bond(FRTCM1Y) for the
bond market, Euro-Dollar exchange rate(EUDOLLR) for the
exchange market, and the crude oil price(CRUDOIL) for
the commodity markets. Each data obtained from the Thom-
son Reuters Datastream includes the ten years of daily closing
prices from 2009 to 2018, resulting in 2608 observations. For
the analysis, we divide the ten years into two sub-periods
with equal size. The first sub-period (SP1) is from
2009-01-01 to 2013-12-31, which includes the outbreak of
the sub-prime mortgage crisis and the European debt crisis,
whereas the second sub-period (SP2) is from 2014-01-01 to
2018-12-31, which does not include any major financial
crisis. In this context, the division of sub-period can provide
empirical evidence of the volatility clustering in different
market conditions. Note that this paper focuses on the impact
of themagnitude(large and small values) and the sign(positive
and negative values) of volatility on the volatility clustering
or fractality by considering the daily return in percent to
represent the volatility.

Figure 2 shows the time-varying properties of the financial
price and return series. Specifically, the red and yellow lines
on the left are the daily returns and absolute return series,
respectively, in percent. The black lines on the right are the
rearranged Gaussian simulated returns. Note that the vertical
dotted lines in each figure represent the division point of the
sub-periods. Interestingly, we observe the repeated pattern
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FIGURE 1. Flow chart of the methods used in analyses.

TABLE 1. Descriptive Statistics of return series.

for large or small absolute returns for all markets and sub-
periods, which indicates the volatility clustering property.
Specifically, S&PCOMP in Figure 2(a) shows the relatively
high volatility in SP1 than that in the SP2. The highest volatil-
ity can be found in 2008, which indicates the sub-prime mort-
gage crisis. Some high volatility points exist in the second
sub-period, but it has a much smaller magnitude with shorter
duration. In the case of FRTCM1Y in Figure 2(b), constant
high volatility is observed from 2008 to 2015, which covers
the entire SP1 and the one-third of the SP2. Then, the volatil-
ity gradually decreases and becomes extremely small at the
end of the SP2. EUDOLLR and CRUDOIL in Figure 2(c,d)
show repeated patterns of large and small volatility for both
sub-periods. Thus, the various volatility pattern is observed
in different financial markets.

The descriptive statistics in Table 1 also shows the differ-
ent volatility patterns in different financial markets. In the
case of S&PCOMP, the mean and standard deviation of
the volatility, defined as the daily return series, in SP1 is
higher than those of SP2, as suggested in Figure 2(a). The
volatility in SP2 was more left-skewed than that of SP1.
The volatility in SP1 showed auto-correlation by the Ljung-
Box test in lag 10 and 20, whereas the volatility in SP2 shows
the weaker auto-correlation. Note that the test statistics on
auto-correlation implies that the volatility clustering is higher
in SP1 than SP2. In the case of FRTCM1Y, a kurtosis in SP2 is
twice larger than that in SP1, whereas the skewness in SP2 is
half of that in SP1. In the case of EUDOLLR, unlike other
financial assets, the statistics in SP1 and SP2 are analogous
in values. In addition, EUDOLLR shows no auto-correlation
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FIGURE 2. Time series of returns(left) and absolute returns(right) by sub-periods.

in both sub-period. Lastly, in CRUDOIL, the kurtosis in
SP1 is twice greater than that in SP2. Also, the Ljung-Box
auto-correlation test indicates weaker auto-correlation
in SP2.

Then, we infer the clustering pattern based on the con-
nectedness among distinct volatility values(nodes). At first,
Figure 3 illustrates the linear fit to estimate the PSVG on
four markets. The horizontal axis is the logarithm of degree
k (1/k for minus value), while the vertical axis indicates the
logarithm of degree distribution P(k). In addition, blue and
red dashed lines result from linear fitting for SP1 and SP2,
respectively, with layered areas representing standard error

of them. The results show that the degree distribution for
each market follows the power-law. The detailed statistics are
summarized in Table 2. At first, the PSVGs expressed as a
mean±standard deviation are around 1.6 for all markets and
sub-periods. Also, the PSVGs of all markets follow the frac-
tional Brownian motion, whose values can be ranged from
0 to 1. Note that the values of fractional Brownian motion
for all markets are ranged between 0.6 and 0.75, implying
a persistence behavior. While the descriptive statistics on
volatility show significantly different patterns amongmarkets
and sub-periods, the descriptive statistics on fractality show
similar patterns regardless of market and sub-period.
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FIGURE 3. The distribution and slope of linear fit (λp) for each sub-period.

TABLE 2. Descriptive statistics on fractality.

IV. EMPIRICAL RESULTS AND DISCUSSIONS
A. CLUSTERING DUE TO THE POSITION OF THE DATA IN
TIME AND DISTRIBUTIONAL CHARACTERISTICS
Based on the results in Section III, the financial time
series shows a high kurtosis or heavy-tail behavior. Thus,
it is reasonable to assume that its non-Gaussian distribu-
tional property might cause volatility clustering. Figure 4
shows the histograms of the original and Gaussian simulated
time-series of fourmarkets. Based on the results, theGaussian
series is simulated correctly, considering the Gaussian fit-
ting on the histogram for all markets and sub-periods.

Also, the histogram of the original series is different from the
Gaussian simulated series for all markets and sub-periods.

Figure 5 shows the auto-correlation of the absolute return
series for the original (red), Gaussian simulated (black), and
rearranged Gaussian simulated (blue) data in four markets.
For all markets, the original and rearranged Gaussian simu-
lated returns show the positive and slowly decaying behav-
ior, which indicates the existence of volatility clustering.
Furthermore, theGaussian simulated returns’ auto-correlation
whose values revolve around zero is different from those of
the original and rearranged Gaussian simulated returns in all
markets and sub-periods. The fact that the auto-correlation of
the rearranged Gaussian simulated series is more analogous
to that of the original series than that of the Gaussian sim-
ulated series implies that the position of the return series’s
magnitude in time causes the volatility clustering more sig-
nificantly than its distribution characteristics.

B. VOLATILITY CLUSTERING AND ASYMMETRY DUE TO
THE DATA SCALE AND SIGN
We observe that the position of the magnitude of the volatility
(absolute return) in time is a significant factor contributing to
the volatility clustering. In this regard, we further investigate
the factor for different types of returns. At first, we examine
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FIGURE 4. Comparison of histogram plots between the origin time series return(left) and gaussian simulated return(right).

the clustering effect due to large or small absolute returns.
Then, we examine the clustering effect due to the large pos-
itive and negative absolute returns. Figure 6 and 7 show the
volatility clustering affected by the scale and sign during the
SP1 and SP2, respectively, based on the clustering index.
Note that the solid black line is the theoretical limit, CI limn ,
and the blue and red lines in the left figures are the CIL and
CIS , respectively, whereas the blue and red lines in the right
figures are the CI+ and CI−, respectively. That is, the blue
lines indicate how many large returns exist within cluster-
ing data(time window) compared to Gaussian distribution,
whereas the red lines indicate how many small returns exist
within clustering data(time window) compared to Gaussian
distribution. Also, the dashed lines indicate the clustering
index when p = 0.2 (top 20% of the large or small returns),
whereas the dash-dotted lines indicate the clustering index
when p = 0.4 (top 40% of the large or small returns). For all
markets and sub-periods, the original data, which exhibits the
volatility clustering, possesses more of both large and small
returns than the Gaussian distribution. The results imply
that large or small returns promote the volatility clustering.
Also, there are more of both positive and negative returns in
large asset returns (p = 0.2). Therefore, the large positive

and large negative returns promote the volatility clustering.
Note that there are relatively more large returns than small
returns in the original data. Besides, the proportion of positive
and negative returns in clustering is due to large returns.
In summary, the contribution to the clustering effect within
top 40% clustering data is Large > Small > Large(−) >
Large(+).

The above results separate the contribution of large and
small returns(scale) to the clustering effect from that of
positive and negative returns(sign) within large returns.
Therefore, it is necessary to compare the scale and the sign
simultaneously and investigate the difference between sub-
periods. In this context, the asymmetry measures are shown
in Figure 8. Ascale, plotted as the blue line, indicates which
of the large returns and small returns has more impact on the
clustering, and Asign, plotted as the red line, indicates which
of the positive returns and negative returns has more impact
on the clustering. During the SP1, the top 20% asset return
tends to have many large returns than small returns, with
slightly more positive returns than negative returns. In addi-
tion, the top 40% volatility also has many large returns with
comparatively more negative returns than positive returns.
Lastly, as time window size increases, Ascale with p = 0.4 is
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FIGURE 5. Auto-correlation plots on daily, Gaussian simulated, and rearranged Gaussian simulated returns.
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FIGURE 6. Clustering effect by scale(left) and sign(right) during SP1.
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FIGURE 7. Clustering effect by scale(left) and sign(right) during SP2.
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FIGURE 8. Asymmetry by scale and sign sub-periods.
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TABLE 3. Median of clustering index and asymmetry on each market and sub-period.

TABLE 4. Top six ordering patterns of the clustering effects and their ratios and cases of market returns.

more decreased in SP2 than SP1. However, the overall trend
is very similar to that of SP1.

Table 3 summarizes the median of the clustering index
and the degree of asymmetry. Note that the median is
used to ensure the statistical robustness against dramatic
change caused by the time window’s small size. In other
words, the table shows the degree to which the scale and
the sign contribute to the clustering effect of Top 20%
and Top 40% returns. In the case of the clustering effect,
the clustering effects also become larger when the clustering
indices of large, large positive, large negative, and small
returns are larger. In the case of the asymmetry effect,
the positive(negative) values in the scale column mean small
returns have less(more) contribution to clustering in pos-
itive(negative) returns. The positive(negative) value in the
sign column means positive returns in large return contribute
more (less) to clustering than negative return does.

Lastly, the patterns in clustering effect are summarized
in Table 4. We reduce the total of sixteen patterns into six
major patterns contributing to the volatility clustering. The
most frequent pattern, which covers 50%, is the order of
Large> Large(+)> Large(−)> Small returns located in the
first row. This pattern holds for all markets and sub-periods in
the top 20% returns. The larger the asset return and the larger
the positive asset return, the higher the volatility clustering
and persistent behavior are. In contrast, all the remaining five
priority patterns occur in the Top 40% returns. It implies

that when lower returns (larger p) is desired, the factors
affecting the volatility clustering and persistent behavior
can be different according to the market and period. While
S&PCOMP consistently shows the order of Large> Small>
Large(−) > Large(+) in Top 40% asset return for SP1 and
SP2 as described in the third row, EUDOLLR shows different
pattern depending on sub-period as listed in the fifth and sixth
rows. In the case of FRTCM1Y and CRUDOIL, both the
large and small returns can be the most critical factor to the
volatility clustering and persistent behavior depending on
the sub-periods in the opposite way as described in the second
and fourth rows.

C. VARIATIONS OF VOLATILITY CLUSTERING,
ASYMMETRY, AND POWER-LAW PROPERTIES
Previously, we discover the factors contributing to the clus-
tering effect according to different markets and the sub-
periods. Especially, we observe the establishment of various
patterns regarding the order of contributing factors when p
is increased from 0.2 to 0.4. Note that the order is the same
for all markets and sub-periods when p = 0.2. Furthermore,
the detailed results on the variations of clustering and asym-
metric properties can be investigated in Table 5. Specifically,
the pattern of factors contributing to the clustering when
extending from high-returns(p = 0.2) to low-returns(p =
0.4) are summarized. The variations in six different measures
are presented based on the subtraction of the values of p =
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TABLE 5. Variations of clustering and asymmetry measures from the top 20% to 40% returns on each sub-period.

TABLE 6. Variations of power-law properties from the top 20% to 40% returns on each sub-period.

0.4 from those of p = 0.2 with its corresponding direc-
tion. At first, we examine the results in SP1. For instance,
the results of S&PCOMP show that the volatility cluster-
ing due to large returns, including the large, large positive,
and large negative returns, decreases as p increases (−0.75,
−0.88,−0.38). In contrast, the clustering due to small returns
increases (0.25). These results are consistent in the other
three markets. In terms of asymmetry measures, the volatility
clustering is increased by small and large negative returns

given that the scale and sign are −0.21 and −0.12, respec-
tively. If each market’s result is only considered in terms
of the direction, the volatility clustering due to small return
increases in all markets. In the case of the direction of asym-
metry measures, the clustering due to large negative return
becomes larger in all the markets except EUDOLLR when p
increases. The result of SP2 is analogous to that of SP1. Both
small and large negative return increases in all four markets
except EUDOLLR when p increases. That is, EUDOLLR
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TABLE 7. Directional consistency between the variations in clustering and asymmetry measures and power-law exponents.

has more large returns than small returns. Although the
market volatility is lower in SP2 than SP1 in four markets,
the effect of a factor on the volatility clustering remains the
same even under the non-Gaussian distribution. In summary,
the volatility clustering of the low-returns(p = 0.4) is more
affected by the small return and large negative returns than the
high-returns(p = 0.2).

Furthermore, we summarize the variation of fractality
in Eqs.(13) and (14) in Table 6. Similar to the Table 5,
we describe how PSVG changes when p increases from 0.2
(high-return) to 0.4 (low-return). Note that the positive value
and direction indicate the increases in persistent behavior in
volatility clustering, whereas the negative value and direc-
tion indicate the increases in anti-persistent behavior. For
instance, the result of S&PCOMP in SP1 shows that the
large returns (0.0299, 0.0655, 0.1314) increase the persistent
behavior in volatility clustering, whereas the small returns
contribute to the increase in anti-persistent behavior. The
same results can be found on the scale. Also, anti-persistent
behavior is more increased by large negative values than large
positive values. That is, small and large negative returns, criti-
cal factors in the clustering effect, increase the anti-persistent
behavior of volatility clustering. Again, all the four mar-
kets except EUDOLLR shows the same pattern. Unlike SP1,
the variations in PSVG in SP2 are hardly generalized for
different markets. While S&PCOMP in SP2 has the same
pattern in SP1, all the other markets have distinct fractality
patterns. In other words, unlike clustering and asymmetry
measures, the PSVG are highly affected by non-Gaussian
distribution. Note that the return distribution of SP2 is closer
to the Gaussian distribution than that of SP1 for all markets.
It implies that the clustering and asymmetry measures are
more robust than the PSVG in terms of generalization of the
pattern of factors contributing to the volatility clustering.

Lastly, Table 7 summarizes the comparison whether the
sign of directions in Table 5 and that of in Table 6 are
the same. Given that the number of trues in SP1 is much
smaller than that in SP2, we presume that the directions of

clustering and asymmetry measures when p increases from
0.2 to 0.4 and that of PSVG changes in opposite direction
when the market is highly volatile.

V. CONCLUSION
The prices of numerous financial products in the market
change over time and generate various financial time-series
patterns. In particular, volatility clustering exists, indicating
the phenomenon that the large (small) fluctuations of the
financial time-series consistently occur after the previous
large (small) fluctuations. There have been efforts to detect
the volatility clustering and explain the causes of the volatility
clustering within the market. In this study, we accumulate
state-of-the-art methods and analyzed volatility clustering
using the non-linear autocorrelation and various clustering
and asymmetry measures. We also provide a further explana-
tion of the causes of the volatility clustering when the target
return is changed. Note that, to the best of our knowledge,
this is the first attempt to utilize clustering and asymmetry
measures to analyze the volatility clustering simultaneously,
including their variations with respect to the target returns.

The findings of this paper are as follows. In terms of the
existence of volatility clustering, we observe that volatility
clustering occurs in all representative financial time series of
the four financial markets where the return distributions fol-
low the fractional Brownian motion rather than the Gaussian
distribution in most markets and sub-periods. Also, we con-
firm that the data positioning of the return series contributes
more to the volatility clustering than the distributional char-
acteristics such as heavy-tails. Specifically, we observe that
the four representative financial return-series show the pos-
itive and slowly decaying non-linear autocorrelation. Also,
we confirm that the Gaussian simulated returns, whose order
of returns are rearranged as the underlying real financial time-
series, also show the power-law decay.

The results above are further investigated by the clustering
and asymmetry measures. In particular, the factors affect-
ing the volatility clustering are studied in detail. At first,
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we observe that the order of contributing factors on volatility
clustering is Large > Large positive > Large negative >
Small returns for high target return (small p). In contrast,
the order of contributions of the factors appears differently
depending on the market conditions. Secondly, in most mar-
kets and sub-periods, we discover that the scale of the
return contributes more to volatility clustering than its sign.
It implies that the extreme upward or downward price move-
ment might last longer when realized. Thirdly, we find that
irrespective of market conditions, the group who obtain high
returns tends to keep their high returns where the order of con-
tributing factors are independent of the market or sub-periods
since the clustering and asymmetry measures show the
similar pattern regardless of market condition. In contrast,
the variation of PSVG shows different contributing factors
depending on market conditions. During the financial crisis
(SP1), the direction of increase or decrease in PSVG is similar
for all contributing factors. However, after the financial crisis
(SP2), the direction of increase or decrease in PSVG varies
depending on the market and contributing factors. Given
that the financial crisis and non-financial crisis periods show
different return distributions, the PSVG coefficients seem to
be affected by the non-Gaussian distribution, unlike cluster-
ing and asymmetry measures. Therefore, we presume that
clustering and asymmetrymeasures aremore robustmeasures
to distribution for the volatility clustering than PSVG. Lastly,
in a highly volatile market, an inverse relationship between
the directions of the clustering effect defined by the clustering
indices and asymmetry and PSVG is observed when the
variation is examined from high returns to low returns.

Based on the empirical evidences, we conclude that the
volatility clustering in the financial time-series exists whose
contributing factors varies for market condition and target
returns. Therefore, as a future work, we are planning to
model the Value-at-Risk and Expected Shortfall algorithms,
switching with respect to volatility clustering incurred from
different causes. Such algorithms can be further implemented
in terms of decentralized in financial risk management
system.
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Abstract. In this financial engineering research we evaluate if observed nonnormalities in the market price distributions are 
caused mainly by a volatility clustering or also by another nonclustering mechanism. Such findings allow us to assess accor d
ing to which rules the market price is actually developing or even make conclusions about market price directional forecasting 
chances, based on the realistic financial processes which we assign to the clustering and nonclustering mechanisms. 
In the research we suggest certain methodology how to recognize these processes behind the market price development. We 
apply the method to the European government bonds market and for the comparison also to 1 day periods of S&P 500 Index 
development, with respect to the different time periods. 
Based on the findings we confirm the combination of both the volatility clustering and the nonclustering processes to be active 
inside 1 day periods and to be responsible for measured nonnormalities. We also find significant nonclustering mechanism in 
30 and 60 minute periods in case of European government bonds.
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dependence, feedbacks.

JEL Classification: G1, G10, G17. 

Introduction

The main contribution of this financial engineering study 
is to resolve a general question: “Are the departures from 
normality caused by a volatility clustering or also by anot
her nonclustering mechanism distributing the market 
price in a nonnormal way?” If we find certain situations 
when empirically measured departures are not caused by 
volatility clustering we have to logically conclude that these 
nonnormalities must be caused by some nonclustering 
processes. According to the empirical observations and 
also simulations we recommend to assign these poten
tial nonclustering processes to the real existing feedback 
mechanisms which are based on the directional depen
dency and which will be also discussed later in the text. 
Such processes allow us to improve directional forecas
ting, which we cannot basically conclude in the case of 
volatility clustering process, because the clustering itself 

can be also caused by the pure volatility effects without the 
directional dependency, and in addition: if such mechanism 
is also hidden (Stádník 2013a) the whole situation is then 
applicable to the future profit making and such findings do 
have a certain practical value. A solution of this question 
is also important for a general assessment of the market 
functionality, depending on the mechanisms responsible 
for the departures. In this research we try to answer the 
above formulated question for Euro Bund Futures, which 
directly affect the European government bond market, and 
we study the price distribution inside 1, 5, 10, 30, 60 minu
te periods and also within 1 day time series as we expect 
specific economic processes which are dominating inside 
the short time periods, processes which are significant for 
the longer periods and we also observe processes which 
are common for all the periods. In addition and also for 
the comparison we try to answer the same question for 
S&P500 index day price development. 



1. Literature review

The volatility clustering is nowadays considered to be the main 
cause of the leptokurtic departures and the clusters itself are 
usually considered to be caused by a pure volatility dependen
cy effects. The pure volatility dependence process is denoted 
as the process in which price direction is always independent 
of the past but the volatility is dependent. Such a process does 
not allow directional forecasting and it is closely connected 
to the size of price steps in the given time period. There are 
more theories of basic research in the area of volatility de
pendence. For example the Gaussian mixture distribution. 
Gaussian mixture has an acceptable interpretation: financial 
market occurs in two regimes with high and low volatility. 
We can model many nonnormal distributions which charac
teristic depend on the probability of both regimes and their 
parameters. If the regimes have a Markov law of motion, 
the mixture is then a hidden Markov model (Baum, Petrie 
1966), which is also known as the Markov regime switching 
model. We find many extensions of the Markov switching 
model (Krolzig 1997; etc.). Other famous works in this area 
were done by Bollerslev (1986) GARCH process; Engle (1995) 
ARCH process. Some new research in the area of volatility 
dependence was done by Witzany (2013) or Roch (2011). 
While GARCH, ARCH and other volatility models propose 
statistical constructions based on volatility clustering in finan
cial time series, they do not provide any financial explanation. 
The financial explanation of volatility clustering is quite diffi
cult. The simplest possible financial clustering mechanism is 
just the switching of the market between periods of high and 
low activity or clustering of economic news. The other idea 
was the competition between more trading strategies but the 
simulation does not allow to confirm that the mechanism is 
responsible for volatility clustering (Cont 2005). Some eco
nomic works contain examples where switching of economic 
agents between two behavioral patterns leads to large volati
lity. Volatility clustering should also arise from the switching 
of market participants between fundamentalist and chartist 
behavior (Lux, Marchesi 2000). Chart traders evaluate their 
investments using historical development, whereas funda
mentalists evaluate their investment opportunity according to 
the difference between the market price and the fundamental 
valuation. According to the LuxMarchesi model the market 
price development follows the Gaussian random walk untill 
the moment when some chart traders using certain techniques 
surpass a certain threshold value and at this moment a volati
lity outbreak occurs. According to Cont 2005, the origin of 
volatility clustering can also be caused by threshold response 
of investors to news arrivals. Other new research connected to 
the volatility clustering were done by Jianga, Lia, Caia (2008) 
or Tsenga JieJun, SaiPing Lia (2011). 

Instead of the volatility dependency effects we are able to 
explain nonnormalities using pure directional dependency 
effects. This way considers the price development direction 

to be dependent on the past and allows certain forecasting 
chances in comparison to the volatility dependency. There are 
many case studies based on the directional dependency but 
comprehensive modeling of the departures from normality 
in this way is not so frequent. For example the commonly 
used technical trading rules are based on a market price di
rection forecasting according to the past. We can consider 
Technical Analysis to be the prediction tool, but its benefit 
is still under discussion. We meet many other interesting 
detailed works or case studies in the area like Henriksson, 
Merton (1981); Anatolyev, Gerko (2005); Diviš, Teplý (2005); 
Primbs, Rathinam (2009); Gontis, Ruseckas, Kononovičius 
(2010); Lux (2011); Dzikevičius, Vetrov (2012); Černohorská, 
Teplý, Vrábel (2012); Janda, Svarovska (2010). Price direction 
development dependence also takes place in the basic feed
back process according to the behavioral finance concept 
where upward trend is more likely to be followed by another 
upward movement (Schiller 2003) or in other research as for 
example momentum studies (Pesaran, Timmermann 1995; 
Stankevičienė, Gembickaja 2012), short term trend trading 
strategy in futures market based on chart pattern recognition 
(Masteika, Rutkauskas 2012) or in the development of the con
ception of sustainable return investment decisions strategy in 
capital and money markets (Rutkauskas et al. 2008). We have 
to mention also the work of Larrain 1991, which states that 
long term memory exists inside the financial market, other 
similar works of Hsieh (1991), Peters (1989, 1991, and 1994) 
which focus mainly on measurement of probability diversions 
from normality. 

It is important for our research that the directional 
dependency way is able to explain the departures without 
the clustering mechanisms. For example feedbacks sys
tem according to the Dynamic Financial Market Model 
(Stádník 2011) is able to cause sharpness and fat tails in the 
distribution. Feedbacks increase the value of probability 
of next price step up or down direction (from 50/50 for 
the pure symmetrical random walk to for example 51/49) 
depending on the previous development. The idea of feed
back processes is based on the empirical observations that 
traders, investors and other market participants not only 
watch present or historical data but according to them they 
are also placing buy or sell orders and thus influence future 
development. Feedback which keeps the movement in a cer
tain direction is described in the model as a trend stabilizer 
feedback. For example traders participating in “momentum 
trading” try to find instruments that are moving significant
ly in one direction and in order to realize financial profit 
on the movement they basically prolong shortterm trends. 
The other important feedback is a price inertia feedback 
which is pushing the market price back to a certain level 
and which is resulting from “level trading” where traders 
believe the price will return to the level which was set after 
the last economic news of high importance for example.
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A special case is volatility clustering which could be well 
explained using the directional dependency effects like the 
spring oscillation mechanism (Stádník 2013b) when feed
backs may cooperate and under certain conditions cause 
volatility clusters as the final result. This is the case when we 
observe volatility clusters which are not caused by volatility 
dependence but by directional dependence behind.

2. Methodology

To make the decision between the clustering or nonclus
tering mechanism responsible for the departures from 
normality in the price distributions we have to, first of all, 
assess the impact of both the mechanisms on the character 
of the price distribution and its departures. The general 
clustering mechanism causes significant autocorrelation 
in volatility data series and possibly the departures from 
normality in the distribution but we have to mention at 
this point also an artificial case of observing volatility 
clusters with the resulting Gaussian distribution as it is 
simulated in the Figure 14 in the appendix. Typical non
clustering mechanisms like the price inertia feedback dis
tribute the price to the initial (level) value and contribute 
to the sharpness in the distribution. On the other hand the 
trend stabilizer feedback contributes to the fat tails. In such 
cases the resulting price distribution is nonnormal but 
the leptokurtic one and the volatility series is without the 
volatility clusters. To support our ideas about this impact 
of the feedbacks on the price distribution we have made 
the simulation (Fig. 15, appendix). In this simulation we 
simulate the price inertia and the trend stabilizer according 
to the Dynamic Financial Market Model. The simulation is 
without any volatility clustering. We can see in the figure 
that the volatility autocorrelation (0.0236) is insignificant 
but the value of acuteness (1.665) is significantly high. For 
the assessment of the price inertia action we have defined 
acuteness (Eq.1) as the ratio of histogram maximum value 
in the measured distribution over the maximum value of 
an adequate normal distribution:

 measured

normal

Max
acuteness

Max
= . (1)

The value of acuteness for normal distribution is 1. The 
value of kurtosis is not a useful quantitative pointer of the 
sharpness especially in this case when the price inertia is acti
ve separately. The case of the same sharpness and the different 
values of kurtosis are demonstrated in the Figures 1a and 1b.

Based on the previous we can logically conclude into 
the main methodology steps: 

If there is no significant autocorrelation in the volatility 
data series and the price distribution exhibits certain acute
ness then the departures are not caused by the volatility clus
ters but by some nonclustering mechanism which could 
for example be the price inertia feedback action. 

If there is significant volatility autocorrelation and cer
tain acuteness then the departures in the price distribution 
may be caused by a clustering mechanism in cooperation 
with a nonclustering mechanism. In such a case we have 
to decide if the departures are caused only by the clusters 
or also by the coexistence of both effects. To answer such a 
question we suggest the filtering of volatility clusters thus 
separating from data series the continuous parts without 
the clusters. We continue filtering until the autocorrelation 
of volatility time series is insignificant but we also cannot 
destruct the series (continuous parts without clusters must 
be left). Autocorrelation is measured on the absolute values 
of volatility series. After the filtering we are allowed to study 
the price distribution of the data series without the clusters 
and also inside the clusters separately. If the price distribu
tion without the clusters is a nonnormal one it means the 
nonclustering mechanism causing the departures is pre
sent. In addition to that if the value of kurtosis or acuteness 
of such distribution is lower than of the original distribution 
with the clusters we can conclude on coexistence of both 
the clustering and nonclustering mechanisms in the ori
ginal distribution. In case that it is not possible to eliminate 
volatility clusters without the destruction of data series (we 
cannot separate continuous time periods without clusters) 
we cannot be sure if the departures are caused only by the 
volatility clustering or also by nonclustering effects. If we 
for example eliminate volatility clusters from one day vo
latility data series of certain investment instrument (stock, 
bond, etc.) which performs one day nonnormal price dis
tribution and if filtered price series is also nonnormally 
distributed, we conclude that there must be present some 
nonclustering mechanism like for example price inertia 
feedback (Stádník 2012) distributing the price towards to 
the initial value and causing departures in the distribution. 
Such feedback is the typical directional dependency process 
which allows better directional forecasting (Stádník 2013a). 

We apply the suggested methodology to European bond 
futures which directly affects prices of appropriate govern
ment bonds (mainly 10 years maturities), traded on EUREX 
exchange, contract name: EuroBund Futures and also on 
S&P500 Index. All the data time series in the research have 

Fig. 1. Distributions (a) and (b) are with the same acute
ness but a different kurtosis: 5.285 and 0.096 (source: own 
research)

a      b
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been downloaded from Reuters system and for the elimina
tion of clusters we have used special software which detects 
continuous periods of lower and higher volatility.

 3. Findings in Euro-Bund Futures 1 min, 5 min and 
10 min price distributions

In case of 1, 5 and 10 minute price volatility data series 
(Figs 2a, 3, 4a) we were not successful in eliminating volati
lity clusters (to decrease the level of autocorrelation without 
the destruction of the appropriate time series). 

This is why in the case of 1, 5 and 10 minute price de
velopment we cannot be sure about reliable conclusions. 
The departures in the price distributions (Figs 2b and 4b) 
are probably caused by certain clustering mechanisms (au
tocorrelations: 0.201, 0.22, 0.183) but we are not able to 
make any conclusion on nonclustering mechanism based 
on the measurement of volatility data series in this case. The 
solution could be reached by the direct market observation 
and according to the market participants’ behavior.

4. Findings in Euro-Bund Futures 30 min, 60 min 
price distributions 

In the 30 and 60 minute price volatility series (Figs 5a, 6a) 
the volatility has low autocorrelation (0.108 and 0.0966) 
but the price distributions (Figs 5b, 6b) perform the high 
acuteness (1.760, 1.765) and also kurtosis.

Fig. 2. 1 minute volatility series (a) and price distribution (b) 
of EuroBund Futures, volatility autocor.: 0.201, average va
lue: 0.0000578, skewness: –0.156, kurtosis: 29.369, acuteness: 
1.479, data: 2013 (source: own research)

a

b

Fig. 3. 5 minutes volatility, volatility autocor.: 0,229, data: 
2013 (source: own research)

Fig. 4. 10 minutes volatility series (a) and price distribution 
(b) of EuroBund Futures, volatility autocor.: 0,18373, average 
value: –0.000615, skewness: –0.0852, kurtosis: 9.049, acute
ness: 1.631, data: 2013 (source: own research)

a

b

Fig. 5. 30 minutes volatility series (a) and price distribution 
(b) of EuroBund Futures, volatility autocor.: 0.10835, average 
value: –0.000904, skewness: –4.237, kurtosis: 84.038, acute
ness: 1.760, data: 2013 (source: own research)

a

b

Fig. 6. 60 minutes volatility series (a) and price distribution 
(b) of EuroBund Futures, volatility autocor: 0.0966, average 
value: 0.000264, skewness: –2.136, kurtosis: 34.878, acuteness: 
1.765, data: 2013 (source: own research)

a

b
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the volatility autocorrelation to an insignificant level 
(from 0.138 to –0.00502). There is volatility data series 
of an independent random walk (autocorrelation 0.0120) 
in the Figure 13 in the appendix for a comparison. We 
may conclude that the price distribution which does not 
involve the clusters (Fig. 8b) also has significant acuteness 
and therefore there is present a nonclustering mecha
nism responsible for measured nonnormalities in the 
price distributions. 

Also inside the volatility clusters (Fig. 9a) where the vo
latility autocorrelation is insignificant (0.0185) but the price 
distribution (Fig. 9b) has significant acuteness we confirm 
nonclustering mechanisms. As the value of kurtosis of the 
original distribution (Fig. 7b) is higher than in the cases of 
the price distributions without the clusters and inside the 
clusters we conclude on coexistence of both the clustering 
and the nonclustering mechanisms responsible for the de
partures in the original price distribution. 

6. Findings in S&P500 1 day return distribution

For the comparison we try to eliminate clusters from 
S&P500 return volatility series (Fig. 10a). In this case we 
have been successful in eliminating the volatility clus
ters (Fig. 11a) and thus reduce volatility autocorrelation 
(from 0.22 to 0.0248). Based on that we can measure that 
the price distribution which does not involve the clusters 
(Fig. 11b) has significant acuteness (1.795) and therefore 
there is also present a nonclustering mechanism which 
causes the departures from normality. 

Fig. 7. 1 day volatility series (a) and price distribution (b) of 
EuroBund Futures, volatility autocor. 0.138, average value: 
0.0107, skewness: –0.294, kurtosis: 3.265, acuteness: 1.593, 
data: 1990–2013 (source: own research)

a

b

Fig. 8. 1 day volatility series (a) and price distribution (b) 
of EuroBund Futures without VOLATILITY CLUSTERS, 
volatility autocor.: –0.00502, average value: 0.02, skewness: 
–0.06136, kurtosis: 0.618, acuteness: 1.369, data:1990–2013 
(source: own research)

a

b

Fig. 9. 1 day volatility series (a) and price distribution (b) 
of EuroBund Futures inside VOLATILITY CLUSTERS, 
volatility autocor.: 0.0185, average value: 0, skewness: –0.383, 
kurtosis: 1.4006, acuteness: 1.416, data: 1990–2013 (source: 
own research)

In this case we can conclude on the directional depen
dency effects mainly responsible for the departures in the 
price distributions.

5. Findings in Euro-Bund Futures 1 day price  
distribution

From 1 day price volatility series (Fig. 7a) we successfully 
eliminate the volatility clusters (Fig. 8a) thus decreasing 

a

b
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As the value of kurtosis of the original distribution with 
the clusters is higher we can also confirm the coexistence 
of the directional and volatility dependency processes res
ponsible for the departures in the original price distribution 
as is the case of the EuroBund Futures contract. We also 
confirm a significant nonclustering mechanism causing the 
departures inside the clusters (Fig. 12a), because the value 
of autocorrelation is insignificant (0.045) but the acuteness 
(Fig. 12b) is significantly high (1.858). 

7. Main findings summary

For the short time period series of Euro Bund Futures 
(1, 5, 10 minutes) we were not successful in confirming 
a nonclustering mechanism according to the suggested 
methodology and we conclude that the volatility clustering 
is probably the key factor causing the departures inside 
these high frequency distributions.

For 30 and 60 minute price distributions we recognize 
that the volatility autocorrelation is low and due to the si
gnificant departures in the price distribution we consider 
a nonclustering mechanism to be the key reason for the 
departures from normality. 

For the daily distributions we find the coexistence of the 
clustering and nonclustering mechanisms. We successfully 
eliminate the volatility clusters from the development and 
we recognize that the filtered development is also distribu
ted in a nonnormal way. Also the price development inside 

Fig. 10. 1 day volatility series (a) and return distribution (b) 
of S&P500, volatility autocor.: 0.22, average value: 0.0294, 
skewness: 0.936, kurtosis: 25.421, acuteness: 1.795, data: 
1963–2013 (source: own research)

Fig. 11. 1 day volatility series (a) and return distribution of 
S&P500 (b) without VOLATILITY CLUSTERS, volatility au
tocor: 0.0248, average value: 0.0357, skewness: kurtosis 0.0355, 
acuteness: 1.589, data: 1963–2013 (source: own research)

Fig. 12. 1 day volatility series (a) and price distribution (b) 
of S&P500 inside VOLATILITY CLUSTERS, volatility au
tocorrelation: 0.045, average value: 0.00629, skewness: 0.127, 
kurtosis 1.0181, acuteness: 1.858, data: 1963–2013 (source: 
own research)

a

b

a

b

a

b
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the clusters is nonnormal. The data set in the case of S&P 
500 daily development indicates exactly the same result.

Conclusions and the scientific discussion

In this financial research we propose a certain methodo
logy for the recognition between the clustering and non
clustering processes being responsible for the departures 
from normality in the price distributions. The methodo
logy is applicable to the worldwide financial investment 
instruments. From the volatility time series we basically 
suggest the filtering of volatility clusters and then study 
the price distributions without the clusters and also inside 
the clusters separately to make the final conclusions on the 
existence of certain nonclustering mechanisms distribu
ting the price in a nonnormal way. We also define certain 
quantitative pointer (acuteness) as the measure of expected 
nonclustering mechanism causing the departures which 
is the price inertia feedback resulting from the mentioned 
level trading technique. 

In the study we find quite different results with respect 
to the different time periods. These distinctions could be 
connected to the various style of trading techniques domi
nating within certain time periods. We can state that the 
findings generally support the assumption that the volatility 
clustering is not the main or the only reason for the depar
tures from normality in the price distributions, but there is 
also some nonclustering mechanism cooperating, which 
also causes the departures. From the financial point of view 
we recommend the mentioned price inertia feedback to 
be assigned to this nonclustering process. The existence 
of this feedback is also supported by the direct empirical 
observations, by the statistical research (Stádník 2012) and 
by the simulation according to the Figure 15 in the appendix 
(discussed in the “Methodology” chapter). Such feedback 
is the typical directional dependency process which is con
nected to the better directional forecasting (Stádník 2013a) 
but its practical value is still under the discussion.

In addition we also suspect this feedback to be the rea
son for the measured nonnormalities inside the separated 
volatility clusters while the clustering itself could be caused 
by for example the clustering of economic news or trading 
activities.
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Fig. 13. Example of pure symmetric random walk volatility 
series (a), autocorrelation: 0.012 and price distribution (b) 
with average value: –0.0356, skewness: –0.0092, kurtosis: 
–0.252 (source: own research) 

Fig. 14. Artificial example of volatility clustering with Gaus
sian distribution, volatility autocorrelation: –0.563, skewness: 
–0.0092, kurtosis: –0.252 (source: own research)

Fig. 15. 1 day returns distribution of S&P500 (b) SIMU
LATIONS USING FEEDBACKS (WITHOUT VOLATILITY 
CLUSTERING), volatility autocor.: 0.0236 (a), skewness: 
–1.057, kurtosis: 5.259, acuteness: 1.665 (source: own rese
arch)
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space that are associated with the incipient appearance of high-volatility clusters. This is achieved using 

the Generalized Pareto Distribution for the generation of particles. Risk-sensitive estimates are used by a 

detector that evaluates changes between prior and posterior probability densities via asymmetric hypoth- 

esis tests, allowing early detection of sudden volatility increments (typically associated with early stages 

of high-volatility clusters). Performance of the proposed approach is compared to other implementations 

based on the classic Particle Filter, in terms of its capability to track regions of the state-space associated 

to a greater financial risk. The proposed volatility cluster detection scheme is tested and validated using 

both simulated and actual IBM’s daily stock market data. 
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1. Introduction 

Volatility of returns is a well-studied variable in Finance, mainly 

because its relevance in pricing and risk management. Since the 

work of Mandelbrot in the 1960’s, it has been widely accepted 

that volatility presents itself in temporal clusters, where large price 

variations are followed by large variations ( Cont, 2005; Mandel- 

brot, 1963 ). Multiple researchers have tried to model the complex 

behavior of volatility, being the GARCH model ( Bollerslev, 1986 ) 

the first to capture these temporal cluster properties. The wide 

recognition for the GARCH models has given rise to a whole fam- 

ily of structures, in which stochastic variations have been lately 

introduced. 

On the one hand, from an engineering perspective, early online 

detection of high-volatility clusters in a stochastic environment 

poses an interesting problem, since detection algorithms must be 

designed to monitor a latent (non-observable) state; simultane- 

ously tracking disturbances introduced by other non-measurable 

variables that are always present in complex systems (such as 

stock markets). In fact, from the standpoint of state-space mod- 

eling for financial time series, volatility is a non-observable state, 

while continuously compounded returns can be associated with 

daily measurements. Given that inference on financial volatility 

∗ Corresponding author. Tel.: +56 229784215; fax: +56 226720162. 

E-mail addresses: kmundnic@ing.uchile.cl (K. Mundnich), morchard@ing. 

uchile.cl (M.E. Orchard). 

is necessary to detect high risk events, the challenge is then to 

propose detection frameworks based on accurate and precise es- 

timates of this non-observable state. 

On the other hand, in Finance, the words “early online detec- 

tion” have reached unsuspected relevance in a world where is now 

possible to use information from high-volatility cluster detectors 

(which could have been originally focused on very specific and 

critical markets) for the implementation of online predictive strate- 

gies at a global-scale. Consider, for example, the implementation of 

intelligent expert systems that could recommend optimal correc- 

tive actions for Latin American markets based on online anomaly 

detectors analyzing Asian markets during the early morning. In- 

deed, the development of tools for online early detection of high- 

volatility clusters (such as the one proposed in this article) gener- 

ates appropriate conditions for the implementation of novel online 

schemes for optimal decision-making in Finance; a task where the 

whole community working on expert and intelligent systems may 

contribute in the near future. 

These fundamental questions have motivated in recent years 

substantial research with focus in the detection of structural breaks 

(or model parameter changes) in financial variables, with the pur- 

pose of understanding market shocks or anomalies ( Chan & Koop, 

2014; Chen, Gerlach, & Liu, 2011; He & Maheu, 2010; Rapach 

& Strauss, 2008; Ross, 2013 ). Given the complexities involved in 

modeling volatility, several approaches have been proposed, in- 

cluding new models such as the structural break GARCH (SB- 

GARCH). For these models that include stochastic volatility and 

http://dx.doi.org/10.1016/j.eswa.2016.01.052 

0957-4174/© 2016 Elsevier Ltd. All rights reserved. 
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breaks, the most common approach for the estimation of volatil- 

ity has been sequential Monte Carlo methods (a.k.a. Particle Fil- 

ters) ( Arulampalam, Maskell, Gordon, & Clapp, 2002; Doucet, God- 

sill, & Andrieu, 20 0 0 ), because of its good performance, flexibility, 

and the possibility to estimate model parameters online ( Liu and 

West, 2001 , chap. 10). Further efforts have been spent in the study 

of jumps (or discontinuities) of returns and volatility ( Andersen, 

Tim, & Diebold, 2007; Eraker, Johannes, & Polson, 2003; Laurent, 

Lecourt, & Palm, 2014; Lee & Mykland, 2008 ), although these ap- 

proaches impose restrictions for the quality of data that may be 

difficult to address. In fact, most of the available tests for detec- 

tion of jumps include high-frequency, intra-day information of the 

studied variables or high liquidity of the assets ( Laurent et al., 

2014 ), or offline tests. 

In this regard, we propose a novel online early detector of 

high-volatility clusters based on unobserved GARCH models ( Tobar, 

2010 ) (uGARCH, a variation of the GARCH model), Risk-Sensitive 

Particle-Filters (RSPF) estimators ( Thrun, Langford, & Verma, 2002 ), 

and hypothesis testing procedures. The proposed detector utilizes 

risk-sensitive particle filters to generate an estimate of the volatil- 

ity probability density function (PDF) that offers better resolution 

in the areas of the state-space that are associated with the incip- 

ient appearance of high-volatility clusters. Risk-sensitive estimates 

are used by a detector that evaluates changes between prior and 

posterior probability densities via asymmetric hypothesis tests, al- 

lowing early detection of sudden volatility increments (typically 

associated with early stages of high-volatility clusters). This algo- 

rithm is tested in simulated data (where volatility is known), as 

well as IBM’s stock market data, where volatility has to be esti- 

mated (since ground truth cannot be measured). To the best of 

our knowledge, this is the first attempt in financial econometrics 

to perform online detection of events by contrasting the informa- 

tion that is present in priors and posterior probability densities es- 

timates in Bayesian estimation frameworks. 

The main contributions of this article are: 

• Implementation and assessment of a novel method for the gen- 

eration of volatility estimators, based on RSPF, that provides 

better resolution in the areas of the state-space associated with 

the appearance of high-volatility clusters. 
• Implementation and assessment of early detection schemes for 

high-volatility clusters based on the comparison between prior 

and posterior particle-filtering-based estimates. 
• A throughout performance comparison between RSPF and clas- 

sic sequential Monte Carlo methods in terms of their effective- 

ness when used in early detection of high-volatility clusters. 

The structure of this article is as follows. Section 2 presents a 

literature review on the use of Bayesian frameworks for Financial 

volatility estimation. Section 3 presents the proposed method for 

early detection of high-volatility clusters. Section 4 presents perfor- 

mance measures to be used in the assessment of obtained results, 

provides a sensitivity analysis for the proposed method using sim- 

ulated data (where the ground truth value of the unmeasured state 

is known), and finalizes with a throughout performance analysis 

for the proposed method based on actual IBM stock data. Section 5 

presents a few interesting general remarks, while Section 6 shows 

the main conclusions related to this research. 

2. A Bayesian framework for volatility estimation 

Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) meth- 

ods have been widely used to approximate integrals and prob- 

ability density functions ( Tobar, 2010 ). Nevertheless, their use in 

Bayesian inference is not direct, since this problem involves a se- 

quence of time-variant probability density functions; while MCMC 

assumes that the objective density is time-invariant. This prompted 

the development of a sequential version of Monte Carlo integra- 

tion, one that is able to use measurements to improve recursive 

estimation. 

The first section of this section introduces the uGARCH model, 

a stochastic volatility model based on the well-known GARCH(1,1) 

model ( Bollerslev, 1986 ). Then, the tracking problem is presented 

in Section 2.2 , providing insight about the problems encountered 

in a Bayesian filtering framework. Also, Monte Carlo integration 

and the importance sampling method are presented. This opens the 

possibility to explore the Particle Filter and the Risk Sensitive Par- 

ticle Filter, which may be employed in a stochastic volatility esti- 

mation framework. Finally, Section 2.3 explains the need for online 

parameter estimation. 

2.1. The uGARCH model 

The uGARCH model can be seen as a state-space structure that 

allows the implementation of a Bayesian framework for the pur- 

pose of volatility estimation. 

The uGARCH model ( Tobar, 2010 ) assumes that the dynamics of 

volatility are not driven by the observed process u k = r k − μk | k −1 . 

Instead, they are driven by a non-observable process u ′ 
k 
which has 

the same distribution as u k . The uGARCH model is defined as: 

σ 2 
k = ω + ασ 2 

k −1 η
2 
k + βσ 2 

k −1 , (1) 

r k = μ + σk εk , (2) 

where r k is a process of returns, σ k is the stochastic volatility, 

μ ∈ R 

+ , ω ∈ R 

+ , and α, β > 0 are parameters, with α + β < 1 . 

Furthermore, εk ∼ N (0 , 1) and ηk ∼ N (0 , σ 2 
η ) are i.i.d. 1 processes 

for every time step k . 

It is necessary to note from Eqs. (1) and ( 2 ) that the subscripts 

are not written conditionally: at time step k , σ 2 
k 

is not known 

without uncertainty, given �k −1 . 

To completely define the model, it is necessary to present 

the state transition distribution p(σ 2 
k 
| σ 2 

k −1 
) and the likelihood 

p(r k | σ 2 
k 
) : 

p(σ 2 
k | σ 2 

k −1 ) = 

1 √ 

2 πσ 2 
η ασ 2 

k −1 

(
σ 2 
k 

− ω + βσ 2 
k −1 

)
· exp 

[
σ 2 
k 

− ω + βσ 2 
k −1 

2 σ 2 
η ασ 2 

k 

]
, σ 2 

k ≥ ω + βσ 2 
k −1 . (3) 

p(r k | σ 2 
k ) = 

1 √ 

2 πσ 2 
k 

exp 

(
− (r k − μ) 2 

2 σ 2 
k 

)
. (4) 

For the complete derivation of Eq. (4) , please refer to Mundnich 

(2013) . The calculation and presentation of Eq. (4) makes the use 

of a generic Particle Filtering approach for volatility estimation in 

this model possible. 

2.2. The Particle Filter 

State-space models consider a transition equation that describes 

the prior distribution of a hidden Markov process { x k ; k ∈ N } , called 
the state process, and an observation equation describing the like- 

lihood of the observation { z k ; k ∈ N } ( Doucet et al., 20 0 0 ): 
x k = f (x k −1 , v k −1 ) , (5) 

z k = h (x k , w k ) , (6) 

where f ( ·, ·) is a state-transition function with corresponding 

{ v k −1 , k ∈ N } i.i.d. innovation process, and h ( ·, ·) is the observation 

1 Independent and identically distributed. 
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function with { w k , k ∈ N } its corresponding i.i.d. noise process. In 
particular, the objective of tracking is to recursively estimate x k 
from all available measurements z 1: k = { z i ; i = 1 , . . . , k } up to time 

k . 

Within a Bayesian estimation framework, all relevant informa- 

tion about x 0: k given the observations z 0: k can be obtained from 

the posterior distribution p ( x 0: k | z 0: k ). In many applications, never- 

theless, it is sufficient to calculate the marginal conditional distri- 

bution p ( x k | z 0: k ). In particular, the intention of the Bayesian ap- 

proach is to recursively construct p ( x k | z 1: k ), using Arulampalam 

et al. (2002) : 

p(x k | z 1: k ) = 

p(z k | x k ) p(x k | z 1: k −1 ) 

p(z k | z 1: k −1 ) 
, (7) 

= 

p(z k | x k ) ∫ p(x k | x k −1 ) p(x k −1 | z 1: k −1 ) dx k −1 ∫ 
p(z k | x k ) p(x k | z 1: k −1 ) dx k 

. (8) 

Eq. (8) forms the basis for the Bayesian optimal solution in the 

mean square error sense. In most cases, this expression is only 

conceptual, and cannot be determined analytically. In a restricted 

set of cases, the optimal solution may be found ( Kalman, 1960 ). 

This is possible only if the noises v k and w k are additive and Gaus- 

sian and the functions f ( ·, ·) are h ( ·, ·) are linear. 
Particle Filters are a class of algorithms developed to solve 

Eq. (8) through sequential Monte Carlo simulations when the in- 

tegrals are intractable due to possible nonlinearities in the model 

involved or noise processes that do not possess standard distribu- 

tions. Solving these integrals is achieved through the Importance 

Sampling principle. The key idea is to represent the required pos- 

terior density function by a set of random samples which serve as 

support points with associated weights and to compute estimates 

based on these samples and weights, this is: 

p(x k | z 1: k ) ≈
N s ∑ 

i =1 

w 

(i ) 
k 

δ(x k − x (i ) 
k 

) , (9) 

The former approximation may be obtained using an importance 

density q ( x 0: k | z 1: k ) to generate random samples x (i ) 
k 

, where the 

weights w 

(i ) 
k 

are calculated using: 

w 

(i ) 
k 

∝ 

p(x (i ) 
0: k 

| z 1: k ) 
q (x (i ) 

0: k 
| z 1: k ) 

, (10) 

∝ w 

(i ) 
k −1 

p(z k | x (i ) k 
) p(x (i ) 

k 
| x (i ) 

k −1 
) 

q (x (i ) 
k 

| x (i ) 
k −1 

, z k ) 
. (11) 

This algorithm is generally called Sampling Importance Sampling 

(SIS), and denotes the simplest form to solve Eq. (8) . 

The position of the particles and consequent performance of the 

filter is greatly determined by the importance density q (x k | x (i ) k −1 
, z k ) 

from which particles are drawn. The structure of the Particle Filter 

algorithm and importance densities usually employed do not re- 

gard the problem of high risk and low-likelihood event tracking. In 

the case where unlikely events may conduce to great loss or high 

costs, it is natural extend the Particle Filter algorithm to track these 

low probability states. 

The Risk Sensitive Particle Filter is proposed as an extension of 

the ‘Classic’ Particle Filter, where the particles are generated from 

an importance density that is the product of the combination of 

the posterior density function and a risk functional. 

Risk Sensitive Particle Filters generate samples that are dis- 

tributed according to Thrun et al. (2002) : 

q (x k | x (i ) k −1 
, z k ) = γk r(x k ) p(x k | z 1: k ) , (12) 

where 

γk = 

1 ∫ 
r(x k ) p(x k | z 1: k ) (13) 

is a normalizing constant that ensures that the importance den- 

sity is indeed a probability density function. Hence, the position of 

samples are generated according to the likelihood of a certain state 

event x (i ) 
k 

and its risk r(x (i ) 
k 

) . 

Considering the former approach, the Classic Particle Filter 

needs a simple modification. First, the initial set of particles x (i ) 
0 

is generated from γ 0 r ( x 0 ) p ( x 0 ), and Eq. (11) is updated to 

w 

(i ) 
l 

= 

r(x (i ) 
k 

) p(z k | x (i ) k 
) 

r(x (i ) 
k −1 

) 
. (14) 

In this work, the authors propose an importance density 

q (x k | x (i ) k −1 
, z k ) , for which they assume that a risk functional r(x (i ) 

k 
) 

exists. 

2.3. Online parameter estimation with Particle Filters 

In the context of state estimation, it is sometimes necessary to 

handle an online estimation scheme for a model parameter vec- 

tor. Although parameters α and β have been presented as fixed in 

the uGARCH model, this is not necessarily adequate, given possible 

structural breaks in the data. The stock market suffers from vari- 

ations and regime shifts, and these variations may be considered 

as parameter changes through time. This is true not only for time 

series derived from the stock market, but for a diverse range of 

applications where state tracking is intended. 

To understand the problems of parameter estimation outside a 

Bayesian context, let θ be a vector parameter. The maximum like- 

lihood estimate of the vector parameter θ is obtained by maximiz- 

ing the log-likelihood function ( Kitagawa & Sato, 2001 , chap. 9): 

l(θ ) = log [ L (θ )] = 

κ∑ 

k =1 

log [ p(z k | z 1: k −1 , θ )] , (15) 

where 

p(z k | z 1: k −1 , θ ) = 

∫ 
p(z k | x k , θ ) p(x k | z 1: k −1 , θ ) dx k (16) 

needs to be approximated through Monte Carlo. 

The maximization of Eq. (15) for the estimation of θ is not al- 

ways direct, and approximations over Eq. (16) make this method 

impractical, due to the high computational costs involved if param- 

eter estimation is intended for every time step. Thus, a different 

perspective is necessary to approach the online parameter estima- 

tion problem. This idea is attacked through the artificial evolution 

of parameters. 

The first ideas about introducing random disturbances to par- 

ticles were proposed by Gordon, Salmond, and Smith (1993) , and 

are currently widely used in financial econometrics. In their work, 

the authors propose to introduce random disturbances to the po- 

sitions of particles (called roughening penalties ) in order to combat 

degeneracy. This idea has been extended in order to estimate on- 

line a vector of fixed model parameters, which is referred to as 

artificial evolution ( Liu & West, 2001 , chap. 10). Artificial evolution 

of parameters is a simple and powerful idea, nevertheless, it re- 

quires careful handling because of the inherent model information 

loss given by the consideration of time-varying parameters that are 

fixed. 

Instead of estimating the vector parameter θ through maximum 

likelihood, the Bayesian framework may be introduced to estimate 

θ online. This is achieved by augmenting the state vector x k with 

unknown parameters θ as: 

x ′ k = 

[
θk 
x k 

]
, (17) 

where θk = θ implies the consideration of an extended model 

where parameters are time-varying. Then, an independent, 
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Data
Prior and

posterior estimates

Volatility Estimation

Hypothesis
Test Detection

Fig. 1. Detection flow chart. Data is served as an input for the PF-based estimation, which produces prior and posterior estimates that are given as the input for the 

hypothesis test, which results in the early detection of high volatility clusters. 

Data

Offline estimation
of α0 and β0

Maximum Likelihood

PF hyper-
parameter selection

Error minimization

Online estimation
of αk and βk

Model extension

Volatility σk

estimation

PF-estimation

Fig. 2. Estimation flow chart. In an initialization step, PF hyper-parameter selection is performed through error minimization. Then, offline parameter estimation is performed 

using maximum likelihood. Finally, the PF estimates in parallel the model parameters αk and βk , as well as the stochastic volatility σ k . 

zero-mean normal increment is added to the parameter at each 

time step ( Liu & West, 2001 , chap. 10): 

θk = θk + ζk , (18) 

ζk ∼ N (0 , W k ) , (19) 

where W k is a variance matrix and θ k and ζ k are conditionally in- 

dependent given �k . The key motivation is that the artificial evo- 

lution of parameters gives new values for each iteration, and thus, 

weight assignment in Particle Filters considers the likelihood of the 

state and parameter values. 

3. Detection of high volatility clusters using PF-based 

estimation methods 

This chapter describes the implementation details followed to 

create an online high volatility cluster detection scheme. In the 

context of Bayesian estimation in state-space models, volatility 

arises as a non-observable state. Therefore, simulated stock market 

data is used to correctly implement, analyze and assess the pro- 

posed Bayesian filtering framework. 

Our approach proposes the use of the GARCH(1,1) volatility 

model to create a volatility time series – after defining the value 

of some model parameters – and consequently generate a returns 

series for the given volatility at every time step. This is useful to 

measure the effectiveness of estimation frameworks and detection 

schemes. 

The detection scheme presented in this section is founded upon 

a Bayesian estimation framework, which is based in Particle Filter- 

based estimation ( Fig. 1 ). Therefore, it is mandatory to compre- 

hend the details of the estimation process in order to understand 

the construction of the detection scheme. These details include the 

online hyper-parameter estimation and volatility estimation in the 

uGARCH model, and the construction of prior and posterior es- 

timates ( Arulampalam et al., 2002 ). To introduce these concepts, 

Section 3.1 first describes the data used in the development of 

this work. Then details about offline hyper-parameter estimation 

are given. This offline estimation is used as the input for online 

hyper-parameter estimation, which is performed in parallel to the 

volatility estimation ( Fig. 2 ). 

3.1. Data 

The assessment of Bayesian estimation frameworks and detec- 

tion schemes requires data sets where observations and the state 

are known for every instant in a given period. This allows the eval- 

uation of filtering schemes and consequent comparison of the im- 

plemented techniques. Given that the volatility of a returns series 

is not observable, it is mandatory to generate data sets where the 

algorithms can be tested and fine-tuned. This section provides de- 

tails about artificially generated data used during this work, and 

presents the acquisition and post-processing necessary to apply the 

proposed algorithms in stock market data. 

3.1.1. Simulated data 

The simulated data has been generated using a GARCH(1,1) 

model, where model parameters α and β are chosen in such a way 

that α + β is a value close to 1. In observed financial time series, 

it is not possible to ensure that the values of the model parame- 

ters α and β are fixed for a given time window. For this reason, 

volatility time series are created using time-dependent parameters 

over the studied time span. In particular, time series of 500 steps 

have been generated, with a parameter change in the step 250 (see 

Table 1 ). This change resembles a regime shift (or structural break) 

in the market ( Tobar, 2010 ). 

The model used for data generation is: 

σ 2 
k | k −1 = ω + αu 2 k −1 + βσ 2 

k −1 | k −2 , (20) 

r k = μ + u k , (21) 

Table 1 

GARCH(1,1) model parameters for each data set. The arrow ( → ) in- 

dicates a change in the parameter value at time step 250. Note that 

parameters μ and ω are constant for each set. 

Parameter GARCH1 GARCH3 

μ 9 × 10 −4 9 × 10 −4 

ω 10 × 10 −6 10 × 10 −6 

α 0.20 → 0.10 0.20 → 0.12 

β 0.60 → 0.85 0.60 → 0.80 
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Fig. 3. IBM’s adjusted closing stock prices and corresponding daily returns from September 12th, 2005 to September 1st, 2009. 

where μk | k −1 = μ and ω are considered constant parameters in the 

studied time span, and σ 2 
0 = 0 . 5 × 10 −4 . 

The implemented method for data generation creates data sets 

in which there are large volatility variations and small volatility 

variations. These are necessary for the correct assessment of the 

proposed detection algorithm, as well as providing the necessary 

environment to assess the robustness of the method against model 

variations. 

3.1.2. Stock market data 

A section of IBM daily stock prices is used to apply the devel- 

oped algorithm for early high volatility cluster detection. The data 

is extracted from ( Yahoo!, 2013 ), with information between Jan- 

uary 1st, 1962 and May 17th, 2013 for a total of 12 , 933 data points. 

The data considered for filtering is the adjusted closing price , which 

is commonly used for analysis of historical data. Data in which 

the proposed algorithm is applied is shown in Fig. 3 , which cor- 

responds to 10 0 0 data points between September 12th, 2005 and 

September 1st, 2009. This data set includes the dramatic market 

fall occurred in October 2008. 

3.2. Implementation issues related to Bayesian filtering 

3.2.1. Estimation of model parameters α and β
Model parameters α and β have a high impact on volatility se- 

ries. These parameters have the power to drive the variation speed 

of a volatility series and to control the average of the series over 

time. Hence, it is of great importance to have good estimates of 

both model parameters to adequately estimate volatility. 

In financial time series, it is impossible to know if model pa- 

rameters α and β are fixed for a given time window in a data set. 

Therefore, it is necessary to estimate these model parameters on- 

line. This work includes two stages of model parameter estimation: 

estimation through maximum likelihood in a training set and on- 

line estimation in test data points. 

Estimation of model parameter initial conditions through maximum 

likelihood. Model parameter estimation has been performed in 

both simulated data sets and stock market data through maximum 

likelihood. This is plausible due to the similar structure in both the 

GARCH(1,1) model and the uGARCH model. In particular, this task 

has been accomplished using the garchfit function available in 
the Financial Toolbox of MATLAB ®. 

In the simulated data sets, model parameter estimation is per- 

formed using the first 150 steps for each returns time series. For 

IBM’s stock prices, model parameter estimation is performed over 

the first 200 time steps of the returns time series. These estima- 

tions are used as the initial conditions for online model parameter 

estimation. 

Online model parameter estimation. Section 2.3 describes the rea- 

sons for using online model parameter estimation in a Particle Fil- 

tering scheme. In this work, parameters α and β of the uGARCH 

model are allocated into an extended state vector, 

(x k ) 
′ = 

[ 

αk 

βk 

σ 2 
k 

] 

, (22) 

where αk and βk are parameters considered to be time-variant, 

and are called pseudo-particles. 

Maximum likelihood estimates α0 and β0 are used to compute 

the initial conditions α1 and β1 , which include a random pertur- 

bation for every particle ( i ): 

α(i ) 
1 

= N (α0 , 0 . 1 · α0 ) , (23) 

β(i ) 
1 

= N (β0 , 0 . 1 · β0 ) . (24) 

The initial conditions are used to drive the noise variance of the 

parameters in the extended state vector (see Eq. (17) ): 

α(i ) 
k 

∼ N (α(i ) 
k −1 

, α(i ) 
1 

σ 2 
α,β ) (25) 

β(i ) 
k 

∼ N (β(i ) 
k −1 

, β(i ) 
1 

σ 2 
α,β ) (26) 

There are two major drawbacks with this method: 

• P (α(i ) 
k 

< 0) > 0 and P (β(i ) 
k 

< 0) > 0 ∀ i, k, 

• P (α(i ) 
k 

+ β(i ) 
k 

> 1) > 0 ∀ i, k, 

both of which are not permitted in the uGARCH model. In par- 

ticular, they have been addressed in the following way: 

• For each α(i ) 
k 

< 0 , let α(i ) 
k 

= 10 −5 . Similarly, for each β(i ) 
k 

< 0 , 

let β(i ) 
k 

= 10 −5 . 

• The Particle Filter self-regulates from the cases where α(i ) 
k 

+ 

β(i ) 
k 

> 1 , provided that these cases have very low likelihood, 

which translate into very low values of corresponding weights. 

Hence, no saturation condition has been used for the upper 

bound. 
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Fig. 4. Comparison between q PF (σ 2 
k 
| σ 2(i ) 

k −1 
) and q RSPF (σ 2 

k 
| σ 2(i ) 

k −1 
) . In this example, σ 2(i ) 

k −1 
= 5 × 10 −4 , α = 0 . 2 , β = 0 . 6 , ω = 1 . 0468 × 10 −5 , and σ 2 

η = 0 . 7 . The RSPF obtains particles 

from a fat-tailed distribution to ensure a higher resolution in risk-sensitive areas. 

3.2.2. Particle Filters 

Volatility estimation in both simulated data and stock mar- 

ket data has been performed using two different Particle Filter- 

ing schemes, including classic and risk sensitive approaches. The 

estimation is performed using 100 particles. Due to the inherent 

randomness of the filtering processes, these are repeated 10 times. 

Also, both filters are implemented with a resampling stage, where 

residual resampling is used. Next, details about each particular fil- 

ter are presented. 

Classic Particle Filter. The Classic Particle Filter (PF) for volatility 

estimation in the uGARCH model has been implemented using an 

importance density equal to 

q PF (x k | x (i ) k −1 
, z k ) = p(σ 2 

k | σ 2(i ) 
k −1 

) . (27) 

A closed expression for p(σ 2 
k 
| σ 2(i ) 

k −1 
) has been given in Eq. (4) . Thus, 

samples are generated according to: 

σ (i ) 
k 

∼ p(σ 2 
k | σ 2(i ) 

k −1 
) , (28) 

which leads to the following weight update equation: 

w 

(i ) 
k 

= w 

2(i ) 
k −1 

p(r k | σ 2(i ) 
k 

) . (29) 

Risk Sensitive Particle Filter. In the search for an importance density 

function that could be used to propose a risk sensitive approach 

towards volatility estimation, it was necessary to find a distribu- 

tion with very specific characteristics. First, the probability density 

function needs a localization parameter that lets both the Classic 

Particle Filter’s (PF) and Risk Sensitive Particle Filter’s (RSPF) im- 

portance density have the same support. Second, the RSPF’s im- 

portance density should have a fatter tail than the PF’s density. The 

proposed RSPF uses the Generalized Pareto Distribution as the im- 

portance density function, which is commonly used to model the 

tails of other distributions; since it is able to model exponential, 

polynomial and even finite tails. 

The Generalized Pareto Distribution is defined as follows 

( Embrechts, Kluppelberg, & Mikosch, 1997; Mathworks, 2013 ): 

f GPD (x | k, σ, θ ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 

σ

[
1 + k 

x −θ

σ

]−1 −
1 

k 
if 

{
k > 0 , for θ < x 
k < 0 , for θ < x < σ/k 

1 

σ
exp 

[
−x − θ

σ

]
if k = 0 , for θ < x 

(30) 

This distribution has two special cases, where it is reduced to 

other distributions: 

• If k = 0 and θ = 0 , the generalized Pareto distribution is equiv- 

alent to the exponential distribution. 

• If k > 0 and θ = σ/k, the generalized Pareto distribution is 

equivalent to the Pareto distribution. 

The probability density function of the GPD has three parame- 

ters. These can be interpreted as follows: 

• k : Shape parameter, 
• σ : Scale parameter, 
• θ : Threshold (location) parameter. 

These parameters cannot take any value if one wants to en- 

sure the convergence of the first and second moments of the GDP, 

since 

E [ X ] = θ + 

σ

1 + k 
, for k < 1 , 

V ar[ X ] = 

σ 2 

(1 − k ) 2 (1 − 2 k ) 
, for k < 1 / 2 , (31) 

Considering that the variance is defined for k < 1/2, the parame- 

ters of the probability density function of the GPD have been used 

in the following way to utilize it as the importance density of the 

RSPF: 

k = 0 . 49 , (32) 

σ = 0 . 3 σ 2(i ) 
k −1 

, (33) 

θ = ω + β(i ) 
k −1 

σ 2(i ) 
k −1 

, (34) 

where β(i ) 
k 

is the ( i ) th pseudo-particle for the online estimation 

of the uGARCH parameter β . Parameter k has been fixed in the 

aforementioned value to reproduce the shape of p(σ 2 
k 
| σ 2 

k −1 
) (see 

Eq. (4) ). Parameter σ gives the scale to f GPD ( x | k, σ , θ ). Given that 
max { f GPD (x | k, σ, θ ) } = 1 /σ, using a scaled previous-step particle, 

a desired fat tail with similar shape to p(σ 2 
k 
| σ 2 

k −1 
) is obtained. Pa- 

rameter θ sets the location of the density of the GPD and is set 

to be equivalent to ω + β(i ) 
k −1 

(see Eq. (4 )), this is, the support of 

f GPD ( x | k, σ , θ ) is set to be equivalent to the support of p(σ 2 
k 
| σ 2 

k −1 
) . 

Hence, the importance density function employed is 

q RSPF (x k | x (i ) k −1 
, z k ) = f GPD (σ

2 
k | 0 . 49 ;0 . 3 σ 2(i ) 

k −1 
;ω + β(i ) 

k −1 
σ 2(i ) 
k −1 

) . (35) 

Particles are drawn from 

σ 2(i ) 
k 

∼ f GPD (σ
2 
k | 0 . 49 ;0 . 3 σ 2(i ) 

k −1 
;ω + β(i ) 

k −1 
σ 2(i ) 
k −1 

) , (36) 

and the weight update equation is 

w 

(i ) 
k 

= w 

(i ) 
k −1 

p(r k | σ 2(i ) 
k 

) p(σ (i ) 
k 

| σ (i ) 
k −1 

) 

f GPD (σ
2(i ) 
k 

| 0 . 49 ;0 . 3 σ 2(i ) 
k −1 

;ω + β(i ) 
k −1 

σ 2(i ) 
k −1 

) 
. (37) 

A visual comparison of q PF (x k | x (i ) k −1 
, z k ) and q RSPF (x k | x (i ) k −1 

, z k ) is 

shown in Fig. 4 . Notice that both importance densities are defined 

over the same support, and q RSPF (x k | x (i ) k −1 
, z k ) has a fatter tail than 

q PF (x k | x (i ) k −1 
, z k ) . Hence, the design conditions for the RSPF’s impor- 

tance density are met. 
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Fig. 5. Examples of prior and posterior densities of the RSPF in a volatility filtering process. 

Fig. 6. Hypothesis test example. The filled area under the smoothed prior density represents the 70% confidence interval for the smoothed prior density. Here, the null 

hypothesis is accepted. 

3.3. Detection using a hypothesis test 

The Particle Filter, such as any other Bayesian filtering frame- 

work, predicts through model dynamics ( Eq. (5) ), and updates the 

estimation with the new measurement. Therefore, for every time 

step, the Particle Filter produces a prior estimate and a posterior 

estimate: 

Prior: ˆ p (x k | z 1: k −1 ) = 

N s ∑ 

i =1 

w 

(i ) 
k −1 

δ(x k − x (i ) 
k 

) , (38) 

Posterior: ˆ p (x k | z 1: k ) = 

N s ∑ 

i =1 

w 

(i ) 
k 

δ(x k − x (i ) 
k 

) , (39) 

Differences between prior and posterior densities may be consid- 

erable if model dynamics diverge from actual measurements. This 

is the case when unlikely events such as unexpected market falls 

or machine ruptures occur. Fig. 5 shows the vast differences that 

may occur between prior and posterior density estimates. A detec- 

tion scheme through hypothesis test exploits these differences to 

design rapid change detectors in the estimated state. 

To accept or reject the null hypothesis H 0 , the implemented 

test considers the 70% confidence interval of the prior density, and 

contrasts it with the mean of the posterior density. The confidence 

interval is calculated using Parzen windows and a Normal kernel, 

whose bandwidth σ kernel is obtained through Silverman’s thumb 

rule ( Principe, 2010 ). If the mean of the posterior density is greater 

than the 70% interval bound of the prior density, the null hypothe- 

sis is accepted. Fig. 6 shows an example of the designed hypothesis 

test, where an unlikely event occurs and the null hypothesis H 0 is 

accepted. 

4. Results obtained for the proposed detection strategy 

This section describes the results obtained for volatility esti- 

mation using Particle Filters, and detection of high volatility clus- 

ters using information derived from the filtering process. During 

the training stage, hyper-parameter selection for the setup of the 

PF algorithm is achieved through a sensibility analysis and sub- 

sequent selection through the smallest associated estimation er- 

ror (in percentage). These results are used to select the PF algo- 

rithm hyper-parameters to be utilized in the detection scheme, 

where estimation through PF is crucial. After the hyper-parameter 

selection stage, results for three different detection approaches are 

presented. 

The performance measure introduced in this chapter may only 

be used in simulated data, where the true volatility is known. 

Hence, quantitative results showing performance measures results 

are presented for simulated data, and qualitative results are pre- 

sented for returns series derived from IBM stock prices. 

4.1. Performance measure: accuracy indicator 

Section 2 describes the non-observability property of the state 

associated with financial volatility. The performance measure de- 

scribed in this section assume knowledge of the ground truth data, 

and as a consequence, results may be analyzed only in simulated 

data. The following sections consider ˆ σ 2 
k 
as the estimated volatility 

and σ 2 
k 

as the true volatility (this is, the ground truth). 

Accuracy of Particle Filters, including the Classic and Risk Sensi- 

tive approaches, is compared in terms of error (in percentage). The 

accuracy indicator is defined as follows: 

i EX (k ) = 

| ̂  σ 2 
k 

− σ 2 
k 
| 

σ 2 
k 

· 100 . (40) 

Given that i EX ( k ) is defined for every time step k of the filtering 

process, one can obtain an average of i EX ( k ) over the filtering time 

window T i , . . . , T f : 

I EX = 

1 

T f − T i 

T f ∑ 

k = T i 
i EX (k ) = 

1 

T f − T i 

T f ∑ 

k = T i 

| ̂  σ 2 
k 

− σ 2 
k 
| 

σ 2 
k 

· 100 . (41) 

Furthermore, given that I EX is defined only for one filtering process, 

one can obtain an average of I EX over the amount of realizations of 

the filtering process, which include 10 in this work: 

Ī EX = 

1 

10 

10 ∑ 

n =1 

I EX (n ) . (42) 

In particular, index Ī EX serves as the base to compare the error 

(in percentage) for each filtering process, for each set of hyper- 

parameters. Hence, the best set of parameters is obtained by ob- 

serving the smaller index Ī EX . 
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Table 2 

Parameter estimation using MATLAB ®’s garchfit function 
from the Financial Toolbox. 

Parameter GARCH1 GARCH3 

α 0 .1477 0 .2612 

β 0 .2768 0 .6699 

α + β ( < 1) 0 .4245 0 .9311 

4.2. Volatility estimation through Particle Filters for an early high 

volatility cluster detection scheme 

4.2.1. Fitting model parameters 

The first step towards a filtering process starts with the esti- 

mation of model parameters that are used as the initial conditions 

in the extended GARCH model (refer to Section 3.2.1 ). As previ- 

ously mentioned, for the uGARCH model this can be achieved by 

maximum likelihood, assuming that the model is in fact a GARCH 

model ( Table 1 ). 

Table 2 shows the results of model parameter estimation for 

the simulated data sets. The parameters are obtained using the 

garchfit function of MATLAB ® over the training window of each 

data set. The true values for this time window are α = 0 . 2 and 

β = 0 . 6 for every data set. From Table 2 , GARCH1 is the data set 

that obtains the poorest parameter estimates from data contained 

within the training window. 

This estimation has direct incidence over the filtering process, 

since these values are used as initial conditions for the extended 

uGARCH model, where the dynamics are non-observable. Initial 

conditions in non-observable systems are of great importance in 

the outcome of the a Bayesian filtering process. If the system is 

non-observable, the state may follow one of an infinite number of 

possible paths that match the current observations. Therefore, ac- 

curate initial conditions are necessary to achieve an unbiased esti- 

mate of the state. 

4.2.2. Particle Filter hyper-parameter selection 

This section presents the results of the sensibility analysis of 

hyper-parameters of the Classic Particle Filter. These parameters 

have been tested to find the combination that minimizes the 

estimation error Ī EX . The tested parameters include R th (resam- 

pling threshold), σα, β (pseudo-particle standard deviation), and 

ση (process noise). 

To find the hyper-parameter values that minimize the estima- 

tion error, the following hyper-parameter mesh is used: 

• R th = { 0 . 5 , 0 . 6 , 0 . 7 } , 

• σα,β = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 . 0010 , 0 . 0015 , 0 . 0020 , 0 . 0025 , 0 . 0030 

0 . 0035 , 0 . 0040 , 0 . 0050 , 0 . 0075 , 0 . 0100 

0 . 0125 , 0 . 0150 , 0 . 0175 , 0 . 0200 , 0 . 0225 

0 . 0250 , 0 . 0275 , 0 . 0300 , 0 . 0350 , 0 . 0400 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, 

• ση = { 0 . 5 , 0 . 6 , 0 . 7 } . 
It should be noted that the selected values that are employed to 

create the mesh for σα, β were placed at irregular intervals. Since 

there is a tendency to have better estimations with lower values of 

σα, β , a better resolution has been given to the interval of smaller 

values. 

Every set of hyper-parameters is used to run 10 times each fil- 

tering process over the complete time window T = { 1 , . . . , 500 } of 
every set of simulated data (GARCH1 and GARCH3). The error is 

computed over the interval T ′ = { 151 , . . . , 500 } , which excludes the 

training interval. 

Table 3 a and b shows the percentage error for the mean of the 

10 filtering routines for each set of parameters. Since results are 3- 

dimensional, the tables show the results for ση = 0 . 7 , which is the 

noise process value that minimizes the error for every data set. 
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Table 4 

Summary of the sensibility analysis for the Classic Particle Filter. 

Parameter GARCH1 GARCH3 Mean 

R th 0 .7 0 .7 0 .63 

σα, β 0 .0350 0 .0035 0 .0141 

ση 0 .7 0 .7 0 .7 

Minimum error Ī EX 19 .4162 16 .1627 22 .9247 

α + β ( < 1) 0 .4245 0 .9311 0 .7609 

The first thing to note in Table 3 a and b is that the mini- 

mum percentage error for the filtering process on these data sets 

is bounded approximately between 16% and 19%. Second, it is very 

important to notice that errors are very similar for each one of the 

columns of the tables. This means that the resampling threshold 

R th has a limited impact on the estimates when contrasted to the 

ground truth from an accuracy perspective. This is very important 

since one can simply employ an average of R th over all data sets 

without losing estimation accuracy, or simply select the value that 

is most often the best value. Also, data shows that minimization 

occurs over a convex space which lets one assume that there is 

in fact a set of parameters which minimize the estimation error. 

These results also demonstrate that higher noises (this is, greater 

particle variability) do not translate into better estimates. In fact, 

there is a small subset of the parameter space where Bayesian fil- 

ters such as the Particle Filter may work properly. 

Table 4 shows the summary of selected hyper-parameters for 

each data set and its arithmetic mean, calculated using the infor- 

mation for every data set. Error values increase hugely towards the 

left side of the columns of Table 3 a. This most probably occurs due 

to the poor estimation of initial conditions through maximum like- 

lihood. Since the initial conditions are far from the ideal values, 

more variability is needed in the artificial evolution equations in- 

cluded within the Particle Filter algorithm in order to effectively 

learn and find the correct intervals where these parameters lie. On 

the other hand, error values increase hugely towards the right side 

of Table 3 b. Initial conditions are very close to the ideal values, low 

noise variabilities are needed in order to find the correct intervals 

where these parameters lie. 

The inherent non-observability issues of volatility imply that 

using an average value for σα, β over all the data sets where the 

filtering process is applied will result in poor estimations for the 

certain data sets. 

To choose specific hyper-parameter values R th , σα, β and ση , it 

is necessary to consider that hyper-parameters R th and ση have a 

very small incidence in the estimation error given the parameter 

mesh. Thus, both of these parameters are set to 0.7. For parameter 

σα, β , if one considers the arithmetic mean, results for the GARCH1 

data set are far from optimum. Nevertheless, this is the proposed 

value used in the detection scheme. As a summary, the values con- 

sidered for the proposed detection algorithms are the following: 

R th = 0 . 6 , (43) 

σα,β = 0 . 0141 , (44) 

ση = 0 . 7 . (45) 

4.2.3. PF and RSPF-based volatility estimation results 

Filtering results with optimum hyper-parameters for each data set. 

This section presents the results obtained for volatility estimation 

using the hyper-optimum parameters for the Classic Particle Filter- 

ing processes, described in Section 4.2.2 . These hyper-parameters 

have also been applied and used in the RSPF. Results are shown in 

Figs. 7 b and 8 b. 

Fig. 7. Volatility estimation in GARCH1 data set. Thin line represents ground truth 

volatility, coarse line represents the PF estimation, and coarse dashed line repre- 

sents the RSPF estimation. 

Fig. 8. Volatility estimation in data set GARCH3. Thin line represents ground truth 

volatility, coarse line represents the PF estimation, and coarse dashed line repre- 

sents the RSPF estimation. 

Analysis of the estimation performance in each data set uncov- 

ers many interesting findings that need to be addressed. The com- 

ments about results are discussed separately for every data set. 

• GARCH1 ( Fig. 7 ): In this data set, there is a large change in the 

model parameters α and β for the simulated data at time step 

250. Up to time step 250, both the PF and RSPF are only able 

to track the trend of the volatility curve, but there is no re- 

action to sudden changes. This behavior changes in time step 

250, where there is a tendency towards capturing rapid volatil- 

ity changes. The filter demonstrates the results of the learn- 

ing process at time step 290, where a hefty volatility cluster 
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occurs. There is correct tracking of volatility shape with a very 

small estimation bias. This occurs between time steps 290 and 

500, which corresponds to the end of the time window. 
• GARCH3 ( Fig. 8 ): There is excellent filtering performance 

throughout the time window. Accurate estimation, excellent 

shape tracking. For this data set, only about 100 time steps are 

necessary for the algorithm to learn and adapt. 

The algorithms need at most 300 data points to learn and 

correctly adapt to the observed data. In general, there is good 

tracking of trends before this turning point, but if the algorithm 

is able to adapt properly, both tendency and shape are correctly 

tracked. 

One important aspect from these results is that estimation per- 

formance depends vastly on the value σα, β . Previous experiments 

demonstrate that low values of σα, β (this is, lower than the op- 

timum) result in underestimation of financial volatility in both PF 

approaches, while higher values of σα, β are conducive to overesti- 

mation of volatility. From the purpose of tracking the shape of the 

envelope that characterizes the evolution of volatility in time, this 

is irrelevant, unless the filters lose the ability to track due to lack 

of particle variability. Given these results, it could be convenient to 

separate σα, β into σα and σβ (this is, to consider separate sources 

of uncertainty on each pseudo-particle that extends the model). 

This is important for two reasons: First, is it necessary to under- 

stand that α multiplies the process noise ση in Eq. (1) and there- 

fore, the process noise in the extended uGARCH model is the result 

of the multiplication of two random variables: αk ∼ N (αk −1 , α1 σα) 

and η2 
k 
. Second, variables α and β introduce different behaviors in 

the model, since the former is associated to innovations and the 

latter is associated to the memory of the model. 

According to Rachev, Hsu, Bahasheva, and Fabozzi (2008) , the 

value of α + β in the GARCH model is the “process persistence pa- 

rameter , since it determines the speed of the mean-reversion of 

volatility to its long-term average. A higher value for α + β implies 

that the effect of the shocks of volatility, u 2 
k 
, dies out slowly”. In 

Table 4 , the estimated value of α + β was included for each data 

set. Although there is no apparent relation between the filtering 

performance of the Particle Filters and the value of α + β, there 

is in fact one relation that needs attention: The data set in which 

the estimated value of α was bigger, the filtering performance was 

more accurate and errors were systematically lower ( Table 3 b). 

From a detection perspective, it is necessary to notice that the 

RSPF is usually more capable of tracking correctly sudden rises of 

volatility. In these cases, estimations of the RSPF are better than 

the PF estimations, since the latter tends to under estimate. This 

seems a natural result considering the construction of both PFs: 

The RSPF grants more resolution to high volatility areas, resulting 

in a better estimation of sudden volatility rises. 

Continuing with the PF and RSPF comparison, the PF usually 

outperforms the RSPF in terms of estimation accuracy. Albeit sud- 

den volatility changes from low to high values, the PF is less biased 

than the RSPF. 

As a final comment, one should notice that the RSPF outper- 

forms the Classic PF in terms of 1-step prediction in cases where 

volatility experiences sudden increments. This occurs due to the 

construction of the uGARCH model, in comparison to the GARCH 

model. Comparing both dynamics equations, 

GARCH: σ 2 
k | k −1 = ω + αu 2 k −1 + βσ 2 

k −1 | k −2 , 

uGARCH: σ 2 
k = ω + ασ 2 

k −1 η
2 
k + βσ 2 

k −1 , 

where u k = σk | k −1 εk , the innovations process in the GARCH model 

depends on the value of the previous step of the returns process, 

while the volatility dynamics of the uGARCH model are time inde- 

pendent of the returns series. Since the simulated data was gener- 

ated according to a GARCH model and cases associated with filter- 

ing through PF schemes is based on the uGARCH model, this 1-step 

prediction in sudden volatility rises is possible. 

Filtering results with averaged hyper-parameters (as used in detection 

scheme). This section presents the results obtained for financial 

volatility estimation using the averaged hyper-parameters in the 

Classic Particle Filtering implementation ( Eqs. (43) –(45) ). The use 

of averaged hyper-parameter values is performed as an attempt to 

provide a more realistic solution to the problem of interest. This 

algorithm is intended to be used in stock market data and the 

hyper-parameters need to be estimated. These hyper-parameters 

have also been applied and used in the RSPF. Results are shown 

in Figs. 7 c and 8 c. 

The previous section describes the phenomenon of over and un- 

derestimation related to the selected value of σα, β . Given that the 

previous experiment showed results for the optimum value of this 

parameter, this situation was not apparent. Nonetheless, the new 

experiment makes this behavior palpable. A detailed analysis for 

each filtering process is given below. 

• GARCH1 ( Fig. 7 c): The corresponding figure clearly shows un- 

derestimation of the state. Nevertheless, an interesting result is 

that shape tracking is extremely accurate, which is essential for 

the correct operation of the proposed detection algorithms. 
• GARCH3 ( Fig. 8 c): Results for this data set are extremely inter- 

esting because of the ample robustness of the filtering perfor- 

mance to variations of the value σα, β . Shape tracking and es- 

timation accuracy are almost intact in contrast to the use of 

optimum parameters. 

The anomalous behavior occurring in data set GARCH1 ( Fig. 7 c) 

may be explained again by the estimation through maximum like- 

lihood of parameter α. 

Comparing the performance of the PF and RSPF, there is again a 

clear response from the RSPF towards estimating correctly sudden 

changes in volatility from low to high values. This is correct for 

sudden changes, since the PF tends to be less biased in average. 

This behavior is extremely important for the detection scheme, 

since correct performance from the proposed detection techniques 

can be obtained even though the optimal parameters are not used 

in simulated or real data. 

4.3. Early detection of high volatility clusters using a hypothesis test 

This section presents results obtained from the proposed hy- 

pothesis test to capture early rises in volatility. Figs. 9 and 10 show 

these results. These figures contain 3 subfigures, which correspond 

to (a) returns series, (b) volatility series, RSPF prior and posterior 

estimation, and confidence interval, (c) detection points. 

Figs. 9 to 10 show that the detector works correctly, since it is 

able to capture early rises of volatility which transform into high 

volatility clusters. The detector can also be interpreted as a local 

peak detector in the returns series, which is expected. Since the 

hypothesis test contrasts the dynamics of the model (prior) and 

the updated dynamics through the observations (posterior), it is 

clear that detections will occur mainly when local peaks of returns 

occur. 

A detailed analysis of the results for each of the data sets is 

given ahead. 

• GARCH1 ( Fig. 9 ): All of the high volatility clusters are detected, 

except for the high volatility variation due to regime shift at 

time step 250. This regime shift introduces a notorious mean 

variation in volatility, which the test is not able to capture, 

since there are no vast variations in the returns series. High 

volatility sub-clusters around time step 350 are also detected. 
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Fig. 9. Hypothesis test-based detection for data set GARCH1. 

Fig. 10. Hypothesis test-based detection for data set GARCH3. 

• GARCH3 ( Fig. 10 ): All of the major sudden volatility rises are 

detected, except for the higher volatility episode starting at ap- 

proximately time step 320. Continuing over this line of thought, 

the detector works as expected, although the performance mea- 

sures do not correctly express the actual detector capacity. 

The detection results obtained through a proposed hypothesis 

test show that the detector is very sensitive even to mild high 

volatility clusters, when the estimation framework works properly. 

This translates into the difficulty of measuring correctly the perfor- 

mance of the algorithm, since there is no possible definable hard 

limit between low and high volatility clusters. In fact, one can only 

use a diffuse definition. 

Other results that need to be addressed correspond to the ro- 

bustness of the algorithm and the employed value of σα, β in 

Table 5 

Parameter estimation of the GARCH(1,1) model through 

maximum likelihood for IBM’s returns series between 

September 12th, 2005 and September 1th, 2009. 

GARCH parameter Value 

ω 2.5690 ×10 −6 

α 0.0647 

β 0.9234 

μ 6.9333 ×10 −4 

the estimation stage. This parameter has tremendous implications 

over the estimation performance, but not over detection perfor- 

mance. If shape is tracked correctly, the hypothesis test-based de- 

tector performs exceptionally well, even under extreme estimation 

biases. 

4.4. Case study: early detection of high volatility clusters in IBM’s 

stock data 

IBM stock price series are usually used as examples for the 

study of returns series and volatility series ( Tsay, 2010 ). There are 

various episodes since the year 1962 which are interesting events 

to explore, including the market falls of 1987 and 2008. As men- 

tioned in Sction 3.1.2 , the data employed for this case study in- 

volves adjusted closing prices between September 12th, 2005 and 

September 1st, 2009. 

The data observed here does not include the ground truth val- 

ues for volatility, which means that volatility can only be esti- 

mated and therefore, there is no possibility to quantify the detec- 

tor’s performance. Analysis is solely based upon observation of the 

obtained results and qualitative interpretation of the data. 

Table 5 displays the estimated parameters for the GARCH(1,1) 

model in the first 200 data points of the series, which serve as 

the training period. The parameters ω and μ are left fixed in the 

extended uGARCH model, while estimations of α and β are used 

as initial conditions for the online estimation of these parame- 

ters. The estimation exhibits a very low value for α, while β has 

a large value. Given that α + β = 0 . 9881 and that evidence shows 

that usually α + β is close to 1, one might assume that the esti- 

mation is good. Given that the value of α is small, the pseudo- 

particle standard deviation used is equal to σα,β = 0 . 04 . Moreover, 

R th = 0 . 7 and ση = 0 . 7 . 

Fig. 11 exhibits the obtained results from volatility estimation 

and early detection of high volatility clusters. In particular, details 

about the adjusted price series, returns series, volatility estimation, 

detections and the training window may be observed. Analysis of 

this Fig. 11 c shows that volatility estimation of both the PF and the 

RSPF are extremely close, and the differences between most esti- 

mations occur, although mildly, in sudden volatility rises, where 

the RSPF has a faster reaction towards unlikely values. This is more 

visible at the beginning of bigger high volatility clusters, from time 

step 500 and onwards. 

Estimations obtained from the RSPF are used as the base of the 

hypothesis test-based detector, which showed the best results in 

the previous sections. One may observe that most of the small high 

volatility clusters between time steps 200 and 500 are detected. 

There are some false positives and false negatives, but these are 

minor. In the time window that includes time steps 50 0–10 0 0, all 

of the major volatility clusters are detected in a very early stage, 

including the high volatility cluster starting at time step 750, con- 

ducive to the big stock market drop of the year 2008. Moreover, in 

this time window, there are only 2 false positives, which occur af- 

ter the last high volatility cluster. All of the other detections need 

to be considered true positives. 
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Fig. 11. Early hypothesis test-based detection of high volatility clusters in IBM’s stock data. 

5. Discussion 

The results obtained from the PF and RSPF are aligned with 

the literature: they are suitable frameworks that may offer ex- 

cellent estimation performance for stochastic volatility estimation. 

Nevertheless, non-observability issues may produce poor results, a 

problem that needs to be correctly addressed. Analysis of the pa- 

rameter estimation of the GARCH model together with the sensi- 

bility analysis including noise values demonstrate that estimation 

performance is extremely dependent on four aspects: 

1. Correct initial conditions for particle population. 

2. Adequate characterization of process noise sources. 

3. Correct initial conditions of pseudo-particles if the state-space 

model has been extended to include online parameter estima- 

tion. 

4. Adequate characterization of process noise sources for pseudo- 

particle variability within artificial evolution-based approaches. 

Inadequate values can lead to algorithms with inability to learn, 

or extremely biased estimates. Moreover, there is an important 

relationship between points 3 and 4: if estimates of the GARCH 

model (which in this case are used as the initial conditions) are too 

low or inaccurate, higher noise values for these pseudo-particles 

are needed to improve the learning capabilities of the PF algo- 

rithm. As a consequence, the parameter σα, β should be separated 

into σα and σβ , this is, use a separate dispersion value for the 

noise process of each pseudo-particle which extends the model. 

A performance comparison between the Classic Particle Filter 

and the proposed Risk Sensitive approach shows that the Risk Sen- 

sitive algorithm behaves better for purposes of tracking sudden 

volatility changes from low to high values. The greater particle 

resolution offered by the Risk Sensitive Particle Filter in areas of 

high volatility give this algorithm a very high performance in these 

cases. 

This filtering approach, combined with the proposed detection 

technique based on the contrast of prior and posterior estimations 

of the Risk Sensitive Particle Filter through a hypothesis test proves 

that early detection of high volatility clusters is possible with a 

small error. Important aspects associated with the performance en- 

sure that the detection is extremely robust to biased estimates, 

which are related to sub-optimal dispersion values of noise. In par- 

ticular, if the Particle Filter does not lose the ability to learn and 

track the shape of volatility, the proposed hypothesis test-based 

detector excels in early detection of high volatility clusters. 
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6. Conclusions 

This work presents and explores the use of Particle Filter- 

ing frameworks for the online detection of variations in financial 

returns that may conduce to high volatility clusters. Our approach 

uses a novel volatility estimator based on a Risk Sensitive Particle 

Filters (RSPF) that employs the Generalized Pareto Distribution to 

generate particles in areas associated to higher risk. 

The methods proposed include the use of a simple stochas- 

tic variation of the GARCH model – the uGARCH model– in or- 

der to capture volatility variations of financial returns that may 

lead to high-volatility clusters. This model has been chosen in 

order to diminish the complexity of our method, while simulta- 

neously helping to track disturbances introduced by other non- 

measurable factors (often found in complex systems such as the 

stock markets). This efforts result in a simple, but effective, detec- 

tion scheme based on the comparison of prior and posterior PDF 

estimates through a hypothesis test. The proposed method proves 

(both with simulated and actual financial data) that early detection 

of high volatility clusters is possible with a small error using low- 

complexity models and risk-sensitive approaches in the detection 

framework. 

Future work will focus on exploring connections with the prob- 

lem of jumps detection in financial variables. Our approach offers a 

framework that is independent from the stochastic volatility model 

structure; thus representing a plausible option for online jumps 

detection in financial econometrics. 
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Abstract 
 
This paper examines the existence and the nature of the volatility clustering phenomenon in the Johannesburg Stock 
Exchange (JSE). Volatility clustering is one of the most common stylized facts in financial time series; this phenomenon has 
intrigued many researchers and oriented in a major way the development of stochastic models in finance. The study uses 
GARCH-type models to detect volatility clustering. GARCH-type models are widely used to test the volatility clustering 
phenomenon. Their popularity stems from their healing power for heteroskedasticity in regression models and their ability to 
model nonlinear dynamics. Various studies on volatility clustering suggest that negative shocks to stock prices will generate 
more volatility than positive shocks of equal magnitude. In this regard the study also examines the asymmetric effect of positive 
and negative shocks in the JSE. The results indicate the presence of volatility clustering in the JSE. An asymmetric effect of 
positive and negative shocks on conditional volatility could not be identified. 
 

Keywords: Volatility clustering, leverage effect, GARCH, asymmetric GARCH models. 
 

 
1. Introduction 
 
Uncertainty plays a crucial role in financial theories. Many models in the field of academic finance use variance (or 
standard deviation) as a measure of uncertainty. In most of these models variance is assumed to be constant through 
time; this is known as homoscedasticity (Brooks, 2002: 386). However, empirical evidences have rejected this 
assumption. It has been established that time series exhibit volatility clustering, where calm and volatile episodes are 
observed, such that at least the variance appears to be predictable. Figure 1 represents the daily return of the 
FTSE/JSE’s All Share Index, for a period of five years. This raw time series data suggests that there are periods of 
volatility clustering where days of large movement are followed by days with the same feature. 
 
Figure.1. Daily returns for FTSE/JSE All Share Index during for the period between 10 August 2006 and 10 August 2011 
 

 
Source:  McGregor BFA, 2012 



 E-ISSN 2039-2117 
ISSN 2039-9340        

Mediterranean Journal of Social Sciences
MCSER Publishing, Rome-Italy 

Vol 4 No 14 
November 2013 

          

 
 

622 

Statistically, volatility clustering entails a strong autocorrelation in squared returns. A technical term given to this 
phenomenon is Autoregressive Conditional Heteroskedasticity (ARCH) or simply the ARCH effect.  

Modelling volatility is important when it comes to risk management and portfolio selection as well as pricing of 
assets. Volatility makes investors more averse to holding stocks due to uncertainty; investors in turn demand a higher 
risk premium to insure against the increased uncertainty. A greater risk premium results in a higher cost of capital, which 
subsequently leads to less private investment (Emenike, 2010). Therefore, modelling volatility improves the usefulness of 
measuring the intrinsic value of securities and in the process it becomes easy for a firm to raise funds in the market. 
Additionally, the detection of volatility provides an insight for a better way to design an appropriate investment strategy 
(Emenike, 2010). On the basis of the aforementioned, it is essential to know the behaviour of volatility of the 
Johannesburg Stock Exchange (JSE) returns. This paper adds to the existing literature on the persistence of market 
return volatility at the JSE. Previous studies by Samouilhan (2007) and Louw (2008), found that volatility clustering is 
present clustering on the FTSE/JSE top 40 index. This study broadens the analysis by examining volatility in the South 
African stock exchange using the FTSE/JSE All Share Index (ALSI) as a proxy for the entire shares listed on the South 
African stock market.  

The study is organised as follows: Section Two provides a brief review of the relevant literature on volatility 
clustering. Section Three covers data and methodology. Section Four provides a discussion of the empirical findings, and 
Section Five concludes.

2. Volatility Clustering: A Review 
 
As mentioned above, empirical research has provided strong evidence that volatility is time-varying and that changes in 
volatility are predictable to some extent. A ground-breaking study by Mandelbrot (1963), and later confirmed by Fama 
(1965), found that there is a memory effect the size of price change. Large price changes were followed by large price 
changes of either sign, or that small price changes where followed by small prices changes of either sign. Another study 
by Christie (1982) established that, owing to financial leverage, there is a negative relationship between the volatility of 
the rate of return on equity and the value of equity. This meant that an increase in financial leverage was accompanied 
by an increase in volatility (Louw, 2008). Christie’s (1982) findings were in sharp contrast with Black’s (1976) results that 
indicated that positive and bad news had a symmetrical impact on volatility (Louw, 2008).  

An easy method for detecting volatility clustering is to capture changing variance using Autoregressive Conditional 
Heteroskedasticity (ARCH) and Generalized ARCH (GARCH), models developed by Engle (1982), and extended by 
Bollerslev (1986) and Nelson (1991). 

Various studies investigated volatility clustering on financial markets using GARCH-type models, and include, 
among others, Jacobsen and Dannenburg (2003) who used temporal aggregation on monthly stock returns for daily, 
weekly, bi-weekly and monthly data from France, Germany, Italy, Netherlands, United Kingdom and the United States. 
They identified a significant GARCH effect at monthly levels, which was confirmed by a Monte Carlo simulation. 
Jagajeevan (2012) examined the persistence of volatility, risk-return trade off and asymmetric volatility in returns, on daily 
and monthly returns on the All Share Price Index of the Colombo stock exchange. He only identified volatility clustering in 
daily returns, but not in monthly returns. Jagajeevan (2012) also identifies a leverage effect in daily returns, where the 
stock market becomes more volatile when negative shock takes place as compared the positive shock.  

By using agent-based models 1 , academics have established that agents’ herd behaviour 2  causes volatility 
clustering in stock markets. For instance, Alfarano and Lux (2001) noted that the existence of herd behaviour among 
market participants modifies the distribution of market returns. As they explained further, this is characterized by the 
presence of fat tails and volatility clustering in these financial data. Yamamoto (2011) used an agent-based model to run 
simulations on an artificial stock market. The simulations consisted of two economies: one with and the other without 
herding. He established that a herding economy can engender volatility clustering, but volatility could be found when 
agents do not herd others at all. Park (2008) demonstrated that herd behaviour leads to a high increase in volatility but 
not trading volume. 

As far as African stock markets are concerned, a considerable number of studies investigated volatility clustering. 
Emenike (2010) investigated volatility clustering, leptokurtosis and leverage effect for the Nigerian Stock Exchange 
returns series. Using GARCH (1,1) he found that volatility of stock returns is persistent in Nigeria. Using the GJR-GARCH 
                                                                            
1 Computer simulation that represents individual actors in a dynamic social system. 
2  Herd behaviour occurs when managers simply mimic the investment decision of other managers, ignoring substantive private 
information. 
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(1,1) model he also identified leverage effects in Nigerian stock returns. A study by Floros (2008) examined volatility in 
the Egyptian stock market using daily data for Egypt’s CMA general index. Using GARCH –type models, he found strong 
evidence of volatility clustering. He also noted that a leverage effect exists and that bad news increased volatility. A study 
by Samouilhan (2007) found a large degree of persistence of volatility on equity returns on the JSE for the broad ALSI40 
index and its various sub-sectors. Using a Component ARCH (CARCH) model, he found significant evidence of volatility 
clustering over both the long and the short run for each series and for the broad index. Louw (2008) examined volatility 
clustering on the FTSE/JSE top 40 index. He used various models to test the phenomenon, namely, linear regression, 
exponential smoothing, GARCH (1,1) and EGARCH(1,1). After conducting an analysis of the distribution qualities, the 
autocorrelation of volatility for five return intervals, as well as the results of forecasting models, he found sufficient 
evidence that volatility clustering exists on the FTSE/JSE top 40 index. He also concluded that more complex models, 
such as GARCH (1,1) and EGARCH(1,1), marginally outperform less complex models. Ahmed and Suliman (2011) used 
both symmetric and asymmetric GARCH models to investigate conditional variance in daily returns of the Khartoum 
Stock Exchange (KSE). They found a high degree of persistence in the conditional volatility of stock returns on the KSE. 
 
3. Data and Methodology 

3.1 Data 
 
In this study, daily returns based on closing prices of the FTSE/JSE All Share Index for the period between August 2006 
and August 2011 was used. They represent 1250 observations. The data was downloaded from database of McGregor 
BFA. 

Table 1 presents descriptive statistics for the series, they are: sample means, standard deviations, skewness, 
kurtosis and the Jarque-Bera test for normality (with their p-value). It is clear that the distribution of the series is non-
normal and has leptokurtic distribution, features that are common with most financial data (Chinzara, 2008). 

Table 1. Descriptive statistics for the log return of FTSE/JSE All Share Index 
 

Number of observation mean Median Minimum Maximum Standard deviation Skewness Kutosis Jarque-Bera 
1250 0.012 0.0465 -3.292 2.968 0.651 -0.121 140.639 404*** 

 ***, ** and * indicate significance at the 1%, 5% and 10% levels respectively. 

3.2 Methodology 
 
The study uses a Generalised Autoregressive Conditional Heteroskedasticity (GARCH) type model to test volatility 
clustering. As mentioned above, the GARCH models are widely used to test the volatility clustering phenomenon. Their 
popularity stems from their healing power for heteroskedasticity in regression models and their ability to model nonlinear 
dynamics (Hourvouliades, 2007).  

 The GARCH model, employs the maximum likelihood procedure, and allows the conditional variance to be 
dependent upon previous own lags. The conditional variance equation is expressed as follows: 

 …………………………………………………… (1) 

where  is a constant term,  is the volatility at time t,  is previous period’s squared the error term, and 

 is the previous period’s volatility. For any GARCH (p, q), the order is normally chosen through the Schwarz 
Bayesian Information Criteria (SBIC) and is based on the following formula: 

 …………………………………………… (2) 
where T is the sample size, k is the number of estimated parameters and ESS is the sum of the squared residuals 

in the regression. The SBIC is usually chosen over the Akaike Information Criterion (AIC) because it penalizes more 
heavily for degrees of freedom, therefore, it tends to select more parsimonious models. The model with the smallest 
criterion value for each GARCH specification is used (Chinzara, Azakpioko, 2009).  

Interestingly enough, first-order GARCH models, that is, GARCH (1,1) models, are so often empirically adequate 
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to test volatility clustering that they have achieved something of a canonical status (Diebold, 2012) . 

3.2.1 GARCH (1,1)  
 
Working under the assumption that volatility depends on the last period’s conditional volatility, the GARCH (1,1) model is 
expressed as follows: 

   ………………………………….…………….….……. (3) 

 ……………………………………...…….. (4) 
Where Equation 3 is the mean equation and Equation 4 is the conditional variance equation,  is a constant 

term,  is the volatility at time t,  is previous period’s squared the error term, and  is the previous period’s 
volatility. Statistically significant positive parameter estimates  and  (with the constraint  < 1) would indicate 
the presence of clustering, with the rate of persistence expressed by how closer  is to unity, the bigger the 
persistence of conditional volatility.  

The constraint  < 1 allows the process to remain stationary, with the upper limit of  = 1 which 
represents an integrated process. 

It should be noted that a key feature for an appropriate mean Equation 3 is that it should be “white noisy” meaning 
that its error terms should be serially uncorrelated. In this regard the mean Equation 3 will have to be tested for 
autocorrelation using the Durbin Watson (DW) test and the LM autocorrelation test. Should there be evidence of 
autocorrelation, lagged values of the dependent variable will be added to the right-hand side of Equation 4 until serial 
correlation is eliminated (Chinzara, Azakpioko, 2009). The appropriate mean equation will also be tested for ARCH effect 
to ensure that it is necessary to proceed to estimating GARCH models.  

The GARCH (1,1) model assumes that good and bad news have a symmetrical effect on volatility and this is not 
always the case in various financial time-series. In this regard, the study estimated EGARCH and GJR GARCH models. 

3.2.2 GJR GARCH (1,1,1) 
 
The GJR GRCH model is a simple extension of GARCH with the additional term added to account for possible 
asymmetries. The conditional variance is given by: 

 ……………………………………………………. (5) 

where  = 1 if  < 0 and  = 1otherwise.  
I is the asymmetry component and  is the asymmetry coefficient. The presence of leverage effects is indicated 

by significantly positive . The idea behind this is that good news ( > 0) and bad news ( < 0) will have different 
impacts on conditional variance. Good news will have an impact of , bad news will have an impact of +  . Thus, 
if  is significantly different from zero, the impact of good news is different from the impact of bad news on current 
volatility (Arguile, 2012). It is worth noting that the condition for non-negativity will be , , ,and

. 

3.2.3 EGARCH (1,1,1) 
 
Another GARCH model that accounts for an asymmetric affect is Exponential GARCH (1,1,1) (EGARCH). It is expressed 
as follows:  

…………………………… (6) 

Where and  are still interpreted as they are in the GARCH (1, 1) model and  is the asymmetry coefficient. The 
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inclusion standardized residual  allows the EGARCH model to be asymmetric for . This is captured by the fact 
that the ARCH effect represented by  will be obtained for positive residuals and the ARCH effect represented by 

 will be obtained for negative residuals. In other words, the leverage effect, which is a special case of asymmetric 
impacts, would exist if  < 0 (Chinzara, 2008).

4. Results and Analysis 
 
Before running GARCH-type models, the mean equation was estimated and tested for autocorrelation for FTSE/ ALSI 
index and ARCH effect. The results are reported in Table 2. 
 
Table 2: Test for autocorrelation and ARCH effects 

DW stat test Arch LM test
ALSI 1.92 45.230 [0.000]***

***, ** and * indicate significance at the 1%, 5% and 10% levels respectively. 
 
The result of the DW stat test is 1.92 implying that there is no evidence of autocorrelation in the mean equation. It is also 
clear that ALSI shows significant evidence of the ARCH effect, implying that the mean equation did not adequately 
capture volatility, hence we estimate the GARCH models based on this mean equation. 

GARCH(1,1), EGARCH(1,1,1) and GJR GARCH(1,1,1,1) are therefore estimated and the results are reported in 
Table 3 
 
Table 3. Testing for volatility clustering 

GARCH(1,1) EGARCH(1,1,1) GJR GARCH(1,1,1)
0.0064*** - 0.104 *** 0.0063*** 

0.108 *** 0.105 *** 0.031 

0.876*** 0.982 *** 0.906*** 

0.984 1.807 0.937 
n/a -0.114 *** 1.199

AIC 2067.009 2027.480 2033.276
BIC 2092.664 2035.196 2053.801

***, ** and * indicate significance at the 1%, 5% and 10% levels respectively. 
 
The sum of the  and  coefficients is high in all models, indicating the presence of volatility clustering. For instance, in 
the GARCH model the sum of is 0.984 indicates the presence of volatility clustering. In the EGARCH model, 
however, the stationarity condition (  +  < 1) is violated, since the sum of  and  is more than unity. For this reason, the 
EGARCH model should not be used to test the leverage effect. As for the GJR model, although the asymmetry 
coefficient is positive, it is not significant at conventional levels of significance. Given the fact that GJR GARCH and 
EGARCH could not reach conclusive results, we conclude that asymmetric effects of news on conditional volatility are 
not prevalent in the JSE.

5. Conclusion 
 
This paper investigated the volatility of stock market returns in the JSE using three variants of the GARCH model, 
namely, GARCH(1,1) GJR GARCH(1,1,1) and EGARCH(1,1,1). Volatility clustering and leverage effects were examined 
for the JSE returns series from August 2006 to August 2011. The results from the GARCH (1,1) model show that volatility 
of stock returns is persistent in South Africa. The result of EGARCH and GJR-GARCH (1,1) fail to indicate the existence 
of leverage effects in South African stock returns. This is in line with Louw’s (2008) work that acknowledged the presence 
of volatility clustering in the FTSE/JSE top 40 index.
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Quantifying volatility clustering in financial time series
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Abstract

A novel concept is introduced in this work to quantify and compare the
volatility clustering among various financial time series. We further give
examples to demonstrate that comparing to conventional methods, our ap-
proach can extract more details from the financial time series, such as the
rise/fall and large/small asymmetry. For example, one obvious feature can
be observed from our analysis is that the big losses in financial markets usu-
ally lump more severely than big gains. In addition, we also find that instead
of the heavy tails in asset return distributions, the slow decay behaviour in
autocorrelation functions of absolute returns is actually directly related to
the degree of clustering of large fluctuations within the financial time series.

Keywords: Econophysics, Volatility clustering, Heavy-tailed distribution,
Financial stylized facts
PACS: 89.65.Gh, 89.75.Da, 05.45.Tp

1. Introduction

In financial markets, prices of stocks and commodities fluctuate over time
which then produce financial time series. These time series are in fact of
great interest both to practitioners and theoreticians for making inferences
and predictions. Using modern day technologies, one can now obtain a vast
amount of financial data that record every transaction in financial markets
which was not possible a couple of decades ago. The analysis involved is also
far more complicated. With the tremendous amount of information obtained
over the past decade, researchers have now come to agree on several stylized
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Figure 1: The empirical data of the NASDAQ Composite index from February 8, 1971
through June 30, 2009. (a) shows the historical daily closing price while (b) plots the daily
returns during this period.

facts about financial markets, i.e., heavy tails (or fat tails in the terminol-
ogy of finance) in asset return distributions, absence of auto-correlations of
asset returns, volatility clustering, aggregational normality and asymmetry
between rises and falls [1, 2, 3, 4, 5]. Figure 1 (a) shows a plot of the histori-
cal daily closing values of NASDAQ Composite index from February 8, 1971
through June 30, 2009 while figure 1 (b) is its daily price returns during this
period. The price return Rτ (t) at time t is defined as the difference between
the price p(t) of a financial asset (here it is the index value of NASDAQ) at
time t and its price a time τ before, p(t− τ), divided by p(t− τ),

Rτ (t) =
p(t)− p(t− τ)

p(t− τ)
. (1)

Therefore, one can obtain the daily returns R1(t) by setting τ = 1 trading day
and these returns reflect the price fluctuations in this time series. We will use
daily returns to define fluctuations in a financial price series throughout this

2
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Figure 2: The probability density function of the normalized daily returns of the NASDAQ
index in figure 1.

article. As one can see in figure 1 (b) that the daily returns are varying over
time. A naive thinking would be that these fluctuations are independent,
identically distributed (iid) variables generated by some random processes
(i.e., random walks [6]) and therefore the probability density function of the
returns should follow a Gaussian distribution. However, it turns out that the
empirical distributions of the returns are indeed heavy-tailed. In figure 2,
we depict the probability density function of normalized daily returns of the
NASDAQ index. The normalized daily return is defined as (R1(t)− µR) /σR,
where µR and σR denote the average and the standard deviation of R1(t). One
can clearly see that there are heavy tails at the two ends of the distribution.
For comparison, we also include a Gaussian fit with µ = 0 and σ = 1. This
is one of the stylized facts that was discovered back in 1960s [7, 8]. Many
studies have been carried out over the years on different financial time series
and the heavy tails in return distributions have always been observed. There
have been many suggestions on the form of the distributions but no general
consensus has been reached on the exact form of the tails so far. We will
not continue our discussion on this issue here but refer our reader to the
literature [4, 5, 9, 10].

In addition to those heavy tails in return distributions, large fluctuations
in prices seem to lump together as well [11, 12]. If one examines the empirical
time series shown in figure 1, it is easy to observe that large fluctuations in
prices are more often followed by large ones while small fluctuations are
more likely followed by small ones. This stylized fact is known as volatility

3
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Figure 3: The autocorrelation functions of the returns and its absolute value.

clustering [13]. In financial time series, it is not just that there are more large
fluctuations than pure random processes but also these large fluctuations tend
to cluster together. It is often suggested that a more quantitative way to view
this property is to look at the autocorrelations of the return series [12]. The
autocorrelation function C (xt, xt+τ ) is defined as

C (xt, xt+τ ) ≡ 〈(xt − 〈xt〉) (xt+τ − 〈xt+τ 〉)〉√
〈xt

2〉 − 〈xt〉2
√
〈x2

t+τ 〉 − 〈xt+τ 〉2
, (2)

where 〈x〉 denotes the expectation value of the variable x. While the returns
themselves do not show the evidence of temporal correlations, the absolute
returns or their squares do display a positive, pronounced slowly decaying
autocorrelation which indeed exhibit power-law decay behaviour. The au-
tocorrelations of the absolute value or the square, etc of the asset returns
are often known as the nonlinear autocorrelations. We will only consider
the autocorrelation of the absolute returns as an example of the nonlinear
autocorrelation in this paper.

Figure 3 are plots of the autocorrelation functions of the returns and its
absolute value for the time series shown in figure 1. It is easy to see that there
is no correlation among the returns since the autocorrelation function drops
to the noise level within a couple of days. On the other hand, the autocorrela-
tion function of the absolute returns, i.e., the nonlinear autocorrelation does
exhibit a much slower decay behaviour. Researchers have fitted this with a
power law decay, and it is not clear at this moment whether the slow decay
should imply long time memory of the financial time series [13]. However,
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Table 1: The probability of the occurrence of large and small fluctuations following the
occurrence of large or small ones on the previous day (the first column). The result here
is for NASDAQ time series.

20% Largest Smallest Rest
Largest 0.3947 0.1156 0.4897
Smallest 0.1265 0.2401 0.6334
Rest 0.1597 0.2148 0.6255

one should also keep in mind that if the time series do possess the properties
of the long time memory and the heavy-tailed distribution, many standard
estimation procedures (i.e., examining sample autocorrelations.) may fail to
work [13, 14, 15]. Therefore, in order to have a more reliable measurement of
the volatility clustering, an alternative approach is also needed while dealing
with financial time series. For instance, if only the clustering behaviour is
concerned, one can simply characterize this property by the concept of prob-
ability. Table 1 is an example which shows the probability of the occurrence
of large and small fluctuations following the occurrence of large or small fluc-
tuations on the previous day. By large (small) fluctuations, we here choose
them to be the largest (smallest) 20% of all the returns and the remaining
returns are denoted as the rest. Therefore, each row in table 1 sums to unity.
It is easy to see that the probability that there will be a large (small) re-
turn following a large (small) one on the previous day is significantly higher
(larger than 20% in this case) than that of a pure random process.

A natural question to ask is whether the above stylized facts are indeed
related to each other and if so, is it possible for one to understand its ori-
gin. In the following, we will give an attempt to answer the first question
which would hopefully shed light on searching for an answer to the second
question. This paper is organized as follows. In section 2, we will give de-
tailed analysis of volatility clustering in financial time series. In particular,
we give arguments on what ingredient in financial time series is responsi-
ble for reproducing the nonlinear autocorrelations of price returns such as
the one shown in figure 3. We then introduce, in section 3, an index as a
quantitative measure of volatility clustering in financial time series. This
would allow us to directly compare the degree of volatility clustering across
different financial time series. The asymmetry between rises (gains) and falls
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(losses) in the time series will be discussed in section 4. Section 5 will be
the summary and discussion. In this work, we have carried out the analy-
sis on seven different representative financial time series. They include (i)
NASDAQ Composite Index (NASDAQ), (ii) Standard & Poor’s 500 index
(S&P500), (iii) Hang Seng Index (HSI), (iv) Microsoft stock price (MSFT),
(v) US Dollar/New Taiwan Dollar (USD/NTD), (vi) Australian Dollar/New
Taiwan Dollar (AUD/NTD) and (vii) West Texas Intermediate (WTI). While
we use NASDAQ as an example throughout the paper, we will include the
results of other financial time series in the appendix.

2. Volatility clustering and autocorrelation functions

We now begin our study by looking into the question of whether there is a
relationship among the heavy tails of return distributions, volatility cluster-
ing and autocorrelation functions, if the answer is yes, how they are related.
Let us begin by asking the following question: Is it necessary for one to have
a heavy-tailed distribution in order for the nonlinear autocorrelation function
to exhibit the slow decay? To answer this question, let us now assume that
the return distribution follow a Gaussian distribution instead of the empir-
ical distribution shown in figure 2. In this case, we assume the Gaussian
distribution to have its mean and standard deviation to be the same as the
mean and the standard deviation of the daily returns series in figure 1. One
can easily perform a simulation on this. We now draw an equal number of
returns from this Gaussian distribution and call it the simulated data set.
After this is done, we sort both the empirical set and the simulated set in
the descending order of absolute returns. We then substitute the values in
the empirical data set by the simulated data set one by one from the largest
fluctuation to the smallest one and calculate the nonlinear autocorrelation
function of this rearranged Gaussian data. The result is presented in fig-
ure 4. For comparison, we also include the nonlinear autocorrelation of the
empirical data and the result from a pure Gaussian noise which is drawn
from a Gaussian distribution but without arranging the data according to
the positions of empirical data set like we do for the rearranged Gaussian
data. The pure Gaussian noise shows no temporal correlations as expected.
What is surprising is that the rearranged Gaussian returns shows the same
kind of slow decay behaviour as the empirical data set. On the other hand,
if we randomize the temporal positions of the empirical returns, namely, we
reshuffle the original financial time series, the result we obtain is always sim-
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Figure 4: The nonlinear autocorrelation function of the empirical data and of the rear-
ranged Gaussian data.

ilar to the case of the pure Gaussian noise, which means that there is no
temporal correlation. The above analysis therefore strongly suggests that
the heavy tails in return distributions are not responsible for the slow decay
behaviour of the nonlinear autocorrelation functions.

If the heavy tails in the distributions are not responsible for slow decay in
nonlinear autocorrelation functions, what possible ingredients in the financial
time series would be responsible for such a slow decay behaviour. We here
try to provide an answer to this question. Let us begin by looking at the
clustering of large price fluctuations in figure 1. We begin by picking out the
largest p% (where p is a constant) fluctuations (whether they are positive or
negative) in the time series1 and see whether their clustering behaviour would
affect the nonlinear autocorrelation function of the returns. Since we are only
interested in the clustering behaviour, which in turn means the temporal po-
sitions but not the values of the large fluctuations in the financial time series,
we can here simply use 1 to represent the largest p% fluctuations and 0 for
all the other smaller fluctuations. In this way, we will have a sequence which
contains only 0 and 1. This will in turn make our analysis much easier to
interpret. Figure 5 shows the nonlinear autocorrelation of figure 1 using 1
for the largest p% fluctuations and 0 for the rest. We here include the results

1A similar treatment is to pick the large fluctuations that are outside q standard de-
viations of the average value of the returns, where q is a pure number, see e.g., H.E.
Stanley [16].
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Figure 5: The nonlinear autocorrelation functions of the empirical data, the Gaussian
data and the sequences of 1s and 0s with p = 10, 20 and 30. p here refers to the largest
p% fluctuations in the empirical returns and are represented by 1s while the rest are
represented by 0s.

for sequences with p = 10, 20 and 30. To facilitate our discussion, we also
include both the nonlinear autocorrelation for empirical data and the Gaus-
sian noise for comparison. One can see that all these sequences show similar
slow decay behaviour as the original empirical data set, though with smaller
values. This analysis thus shows that the positions of the large fluctuations
are essential for a slow-decaying nonlinear autocorrelation function. There-
fore, one can conclude that it is the clustering of large fluctuations rather
than the heavy tail in the return distribution which should be responsible for
the slow decay behaviour of nonlinear autocorrelation functions. This fact
has also been observed in the other financial time series in our study and the
results are presented in the appendix.

Before we end this section, we would also like to make a further study
of the clustering of fluctuations in financial time series. Instead of looking
at the clustering of large fluctuations, we now focus on the clustering of
the small fluctuations in time series. Since small fluctuations are smaller
in value and basically do not contribute to the nonlinear autocorrelation
functions, they are often left out in the discussion in the literature. However,
whether their temporal positions in a time series can have similar effects as
the large fluctuations is an interesting question that one can ask. In figure 6
(a), we plot the historical daily return time series of the currency exchange
rate USD/NTD from July 2, 2001 through June 30, 2009, where the black
line denotes the original empirical returns while the red one represents the
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Figure 6: (a) The historical daily return series for the currency exchange rate USD/NTD
(black) and the series with the largest 20% and smallest 20% of the returns being swapped
(red). (b) The nonlinear autocorrelations of the original returns (line with open circles)
and the swapped returns (line with triangles).
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same set but with the largest 20% and smallest 20% of the returns being
swapped. The nonlinear autocorrelations of the original empirical returns
(line with open circles) and the swapped returns (line with triangles) are
drawn in figure 6 (b). We also include in this figure the autocorrelation
function of the original returns for comparison. One can see that although
the line with triangles has values smaller than the original data set, both lines
have similar slow decay behaviour. This in turn means that the clustering of
small fluctuations in this returns series has basically the same kind of feature
as that of their large fluctuation counterparts. On the other hand, as we
swap the large and small fluctuations in the other six financial time series
that we have been investigating, the nonlinear autocorrelation functions of
the swapped returns series show no sign of slow decay. They basically drop
very fast, similar to the kind of Gaussian noise in figure 4. This interesting
fact will be discussed in more detail in the next section as we introduce a
clustering index to quantitatively study the clustering behaviour of different
financial time series. The introduction of this index would then allow us to
directly compare the degree of clustering across different financial time series.

3. Quantitative measurement of volatility clustering

As mentioned above, in order to discuss the volatility clustering in a more
quantitative way, it is better to introduce some parameters to quantitatively
measure the volatility clustering of different financial time series that we
can make comparison with. We here introduce an index to quantify the
volatility clustering in the financial time series. We begin by introducing
a moving window with a certain window size to scan through a given time
series. As an example, one can pick a window with size of n (where n is
fixed throughout the scanning process) trading days. Similar to what we
have done in previous section, we can count the total number of trading days
that are among the largest p% fluctuations in returns within this window as
we scan through the time series. As we will see, one can interpret this as the
degree of volatility clustering of the largest p% fluctuations with respect to
this particular window with size n.

Figure 7 is an illustration of the clustering of the largest 20% fluctuations
in figure 1 with a window size of 10 trading days, a span of two weeks in
real daily life. The statistics here is obtained by using the so called moving
window method. This means that we begin by putting the window on the
first day of the whole series and count the number of days among largest
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Figure 7: The plot of the frequency distribution of the number of days with largest 20%
fluctuations within a window of 10 trading days.

20% fluctuations within this 10-day window. This is the first step. We then
move on to the second day of the whole series and again count the number
of days among largest 20% fluctuations within this next 10-day window, the
second step. We repeat the same procedure until we finish scanning through
the whole time series. The curve with full circles in figure 7 is a plot of the
frequency distribution of the number of days among the largest 20% fluctua-
tions within a 10-day period by using this moving window method. To make
it into a quantitative measure of the degree of clustering, we need to compare
it with a randomly generated time series for example, a Gaussian noise series.
The curve with open circles in figure 7 is the frequency distribution of the
number of days of the largest 20% fluctuations within a 10-day period from
a simulated Gaussian noise series. From figure 7, one can already visually
tell the difference between these two curves. To be more concise, we take the
ratio of the standard deviation of the number of days of the largest p% fluc-
tuations within the n-day window between the empirical and the simulated
data sets. Mathematically, it is defined as Rn ≡ σe/σG, where σe and σG are
the standard deviation of the number of days of the largest p% fluctuations
within an n-day period for the empirical and simulated Gaussian data sets
respectively. The larger the ratio is, the larger the degree of clustering will
be. This result can be understood easily. The average number of days of
largest p% fluctuations within a window size of n is equal to p×n/100. This
is true irrespective of whether it is the empirical data set or the simulated
one. One can indeed see this for the simulated data set which has a peak
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near this value. However, if the time series displays the phenomenon of clus-
tering of large fluctuations, there will be a higher frequency of occurrence
that the number of days of the largest p% fluctuations within this window
is much larger than the average value p × n/100. Similarly, there will also
be a higher frequency of occurrence that the number of days of the largest
p% fluctuations within this window is much smaller than the average value
p×n/100. This scenario will indeed be reflected in the value of the standard
deviation of the frequency distribution in figure 7. Thus, one can simply take
the ratio of the standard deviation of the empirical and simulated data sets
to get a quantitative measure of the degree of clustering of the largest p%
fluctuations of the financial time series that one is interested in.

The ratio or index Rn that we introduce here can in fact be studied
analytically. It has both theoretical upper and lower bounds and the standard
deviation of the simulated Gaussian noise can also be calculated analytically.
Let us first derive the theoretical value of the standard deviation of the
simulated Gaussian noise. Recall from above that the mean value of the
average number of days of the largest p% fluctuations within a n-day window
is equal to p×n/100. For a total of n days, the probability that there are m
days with fluctuations among the largest p% fluctuations can be written as

n!

m!(n−m)!
Pm(1− P )n−m , (3)

where P denotes p/100. We here convert the percentage into decimals for
simplicity. The standard deviation of the average number of days of the
largest p% fluctuations within a n-day window is therefore equal to

σG =

[
n∑

m=0

(m− Pn)2Pm(1− P )n−m

]1/2

=
√

nP (1− P ) , (4)

which is the familiar result in statistics for the standard deviation of a se-
quence of n random events with occurrence probability P . The theoretical
lower bound for the index corresponds to the case when the time series is
completely random, which is therefore equal to 1.

To get a theoretical upper limit of the standard deviation of the average
number of days of the largest p% fluctuations within a n-day period, we
proceed as follows. We look for an extreme case when all the largest p%
fluctuations are ordered one after the other, then follow by the rest of the
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data points (one can of course reverse the order of the largest p% fluctuations
and the rest). The first p% of the data points will then be represented by 1
and the rest will be by 0, as what we have done in the above. This is the
case when we should have the largest possible degree of clustering. If one
plots this extreme case in figure 7, one will have two peaks in the frequency
distribution function, one is at 0, and the other is at n (10 in the case in
figure 7). Let us now use a window of size n and begin with the first data
point, which is a 1, and count the n data points in this window, all of which
are 1s (assuming that the length of the time series N is much longer than
the window size n). Recall that we call this procedure to be step one. We
then let the window slide to the next data point, the second step, and so on.
As the moving window continues to move along the time series, it will have
moved PN − n + 1 steps before it reaches the first 0. We again have P here
to be equal to p/100 for simplicity. As it continues to move along the time
series, the number of 1s will decrease while the number of 0s will increase
until the window consists of all 0s. There are then (1 − P )N − n + 1 steps
which has all 0s within the moving window. For the whole time series, we
have a total of N − n + 1 steps so we have to average over these steps. It
is now easy to calculate the standard deviation in this extreme case, which
is the square root of the expression in Eq. (5). Recall that the average 1s
within the moving window is Pn. We then have

1
N−n+1

{(PN − n)(n− Pn)2 + [(1− P )N − n] (Pn)2 +
∑n

m=0(m− Pn)2}
= 1

N−n+1
{n2(N − n− 1)P (1− P ) + n(n+1)(2n+1)

6
− n3 [P 2 + (1− P )2]} . (5)

In the limit PN and (1− P )N >> n, the right hand side of Eq. (5) reduces
to n2P (1−P ). Therefore, the theoretical limit of the standard deviation σlim

as N goes to infinity is

σlim =
√

n2P (1− P ) . (6)

The theoretical upper limit of Rn is then equal to

Rlim
n =

σlim

σG

=
√

n . (7)

Figure 8 shows the value of the clustering index for NASDAQ time series
in figure 1 for various largest p% fluctuations as a function of window size n.
The different curves represent the different largest p% of the fluctuations in
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Figure 8: The clustering index, Rn, for the NASDAQ return series with p = 5 (solid), 10
(dash), 15 (dot) and 20 (dash dot). The theoretical limit of the index is drawn as a thick
line for comparison.

the time series. We have included here the results for p = 5, 10, 15 and 20.
Also included is the curve of the theoretical limit of the index. The index
values all start from unity when the window size n corresponds to 1 trading
day, and gradually increase as the window size increases.

With the clustering index in hand, one can practically study the behaviour
of clustering of any sort of fluctuations in a financial time series. Other than
the largest p% that we have looked into, one can also look at the degree of
clustering for small fluctuations. To give the reader an idea of how one can
use the index to study the properties of financial time series, we go back to
a case which we considered in previous section. Recall that we have studied
a time series in which we swapped the largest p% and smallest p% of the
returns in the series, as indicated in figure 6. It turns out that the nonlinear
autocorrelation function of the swapped data set still exhibits similar slow
decay behaviour. On the other hand, we have analyzed the other six time
series that we consider in this paper and there is practically no such kind
of slow decay behaviour of the swapped data sets. Using the index that we
introduce here, the difference becomes clear. Figure 9 shows the curves for
the index value of the smallest 20% returns vs. window size in all the seven
financial time series that we study in this work. One can now see that the
value of the index is rather small for each of the other six financial time
series when compared with the curve for USD/NTD. This means that the
clustering of the smallest 20% returns of these other financial time series
indeed behave not much different from random sequences. On the other
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Figure 9: The clustering index for smallest 20% returns of the NASDAQ, S&P500, HSI,
MSFT, USD/NTD, AUD/NTD and WTI series. The theoretical limit of the index is
drawn as a thick line for comparison.

hand, the clustering of the time series USD/NTD as shown in figure 6 is
significantly larger which in turn reflects the slow decay behaviour of the
swapped data set in figure 6. This example suggests that the index that
we introduce here is a good indicator to quantify the degree of clustering of
fluctuations in financial time series. In the next section, we will see that the
index that we introduce here indeed contains more information than people
have previous observed in financial time series.

4. Rise/Fall asymmetry

There exists discussions in the literature [17, 18, 19, 20] about the asym-
metry of asset returns such as the skewness of the returns distribution in
figure 2. In the study of financial time series, one can for example, ask
whether there are more days that the returns are gains (rises) 