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FOREWORD

This	work	follows	and	largely	replaces	my	1977	Essay,	FRACTALS:	FORM,
CHANCE	AND	DIMENSION,	which	had	followed	and	largely	replaced	my
1975	Essay	in	French,	LES	OBJETS	FRACTALS:	FORME,	HASARD	ET
DIMENSION.	Each	stage	involved	new	art,	a	few	deletions,	extensive	rewriting
that	affected	nearly	every	section,	additions	devoted	to	my	older	work,	and—
most	important—extensive	additions	devoted	to	new	developments.
	
Richard	F.	Voss	made	an	essential	contribution	to	the	1977	Essay	and	to	this

work,	especially	by	designing	and	now	redesigning	the	fractal	flakes,	most
landscapes,	and	the	planets.	The	programs	for	many	striking	illustrations	new	to
this	Essay	are	by	V.	Alan	Norton.
	
Other	invaluable,	close,	long-term	associates	were	Sigmund	W.	Handelman,

then	Mark	R.	Laff,	for	computation	and	graphics,	and	H.	Catharine	Dietrich,
then	Janis	T.	Riznychok,	for	editing	and	typing.
	
Individual	acknowledgments	for	the	programs	behind	the	illustrations	and	for

other	specific	assistance	are	found	after	the	list	of	references	at	the	end	of	the
volume.
	
For	their	backing	of	my	research	and	my	books,	I	am	deeply	indebted	to	the

Thomas	J.	Watson	Research	Center	of	the	International	Business	Machines
Corporation.	As	Group	Manager,	Department	Director,	and	now	Director	of
Research,	IBM	Vice	President	Ralph	E.	Gomory	imagined	ways	of	sheltering
and	underwriting	my	work	when	it	was	a	gamble,	and	now	of	giving	it	all	the
support	I	could	use.
	
My	first	scientific	publication	came	out	on	April	30,	1951.	Over	the	years,	it

had	seemed	to	many	that	each	of	my	investigations	was	aimed	in	a	different
direction.	But	this	apparent	disorder	was	misleading:	it	hid	a	strong	unity	of



purpose,	which	the	present	Essay,	like	its	two	predecessors,	is	intended	to	reveal.
Against	odds,	most	of	my	works	turn	out	to	have	been	the	birth	pangs	of	a	new
scientific	discipline.



I

INTRODUCTION



1

Theme

Why	is	geometry	often	described	as	“cold”	and	“dry?”	One	reason	lies	in	its
inability	to	describe	the	shape	of	a	cloud,	a	mountain,	a	coastline,	or	a	tree.
Clouds	are	not	spheres,	mountains	are	not	cones,	coastlines	are	not	circles,	and
bark	is	not	smooth,	nor	does	lightning	travel	in	a	straight	line.
More	generally,	I	claim	that	many	patterns	of	Nature	are	so	irregular	and

fragmented,	that,	compared	with	Euclid—a	term	used	in	this	work	to	denote	all
of	standard	geometry—Nature	exhibits	not	simply	a	higher	degree	but	an
altogether	different	level	of	complexity.	The	number	of	distinct	scales	of	length
of	natural	patterns	is	for	all	practical	purposes	infinite.
The	existence	of	these	patterns	challenges	us	to	study	those	forms	that	Euclid

leaves	aside	as	being	“formless,”	to	investigate	the	morphology	of	the
“amorphous.”	Mathematicians	have	disdained	this	challenge,	however,	and	have
increasingly	chosen	to	flee	from	nature	by	devising	theories	unrelated	to
anything	we	can	see	or	feel.
Responding	to	this	challenge,	I	conceived	and	developed	a	new	geometry	of

nature	and	implemented	its	use	in	a	number	of	diverse	fields.	It	describes	many
of	the	irregular	and	fragmented	patterns	around	us,	and	leads	to	full-fledged
theories,	by	identifying	a	family	of	shapes	I	call	fractals.	The	most	useful
fractals	involve	chance	and	both	their	regularities	and	their	irregularities	are
statistical.	Also,	the	shapes	described	here	tend	to	be	scaling,	implying	that	the
degree	of	their	irregularity	and/or	fragmentation	is	identical	at	all	scales.	The
concept	of	fractal	(Hausdorff)	dimension	plays	a	central	role	in	this	work.
Some	fractal	sets	are	curves	or	surfaces,	others	are	disconnected	“dusts,”	and

yet	others	are	so	oddly	shaped	that	there	are	no	good	terms	for	them	in	either	the
sciences	or	the	arts.	The	reader	is	urged	to	sample	them	now,	by	browsing
through	the	book’s	illustrations.
Many	of	these	illustrations	are	of	shapes	that	had	never	been	considered

previously,	but	others	represent	known	constructs,	often	for	the	first	time.



Indeed,	while	fractal	geometry	as	such	dates	from	1975,	many	of	its	tools	and
concepts	had	been	previously	developed,	for	diverse	purposes	altogether
different	from	mine.	Through	old	stones	inserted	in	the	newly	built	structure,
fractal	geometry	was	able	to	“borrow”	exceptionally	extensive	rigorous
foundations,	and	soon	led	to	many	compelling	new	questions	in	mathematics.
Nevertheless,	this	work	pursues	neither	abstraction	nor	generality	for	its	own

sake,	and	is	neither	a	textbook	nor	a	treatise	in	mathematics.	Despite	its	length,	I
describe	it	as	a	scientific	Essay	because	it	is	written	from	a	personal	point	of
view	and	without	attempting	completeness.	Also,	like	many	Essays,	it	tends	to
digressions	and	interruptions.
This	informality	should	help	the	reader	avoid	the	portions	lying	outside	his

interest	or	beyond	his	competence.	There	are	many	mathematically	“easy”
portions	throughout,	especially	toward	the	very	end.	Browse	and	skip,	at	least	at
first	and	second	reading.



PRESENTATION	OF	GOALS

This	Essay	brings	together	a	number	of	analyses	in	diverse	sciences,	and	it
promotes	a	new	mathematical	and	philosophical	synthesis.	Thus,	it	serves	as
both	a	casebook	and	a	manifesto.	Furthermore,	it	reveals	a	totally	new	world	of
plastic	beauty.



A	SCIENTIFIC	CASEBOOK

Physicians	and	lawyers	use	“casebook”	to	denote	a	compilation	concerning
actual	cases	linked	by	a	common	theme.	This	term	has	no	counterpart	in	science,
and	I	suggest	we	appropriate	it.	The	major	cases	require	repeated	attention,	but
less	important	cases	also	deserve	comment;	often,	their	discussion	is	shortened
by	the	availability	of	“precedents.”
One	case	study	concerns	the	widely	known	application	of	widely	known

mathematics	to	a	widely	known	natural	problem:	Wiener’s	geometric	model	of
physical	Brownian	motion.	Surprisingly,	we	encounter	no	fresh	direct
application	of	Wiener’s	process,	which	suggests	that,	among	the	phenomena	of
higher	complexity	with	which	we	deal,	Brownian	motion	is	a	special	case,	an
exceptionally	simple	and	unstructured	one.	Nevertheless,	it	is	included	because
many	useful	fractals	are	careful	modifications	of	Brownian	motion.
The	other	case	studies	report	primarily	upon	my	own	work,	its	pre-fractal

antecedents,	and	its	extensions	due	to	scholars	who	reacted	to	this	Essay’s	1975
and	1977	predecessors.	Some	cases	relate	to	the	highly	visible	worlds	of
mountains	and	the	like,	thus	fulfilling	at	long	last	the	promise	of	the	term
geometry.	But	other	cases	concern	submicroscopic	assemblies,	the	prime	object
of	physics.
The	substantive	topic	is	occasionally	esoteric.	In	other	instances,	the	topic	is	a

familiar	one,	but	its	geometric	aspects	had	not	been	attacked	adequately.	One	is
reminded	on	this	account	of	Poincaré’s	remark	that	there	are	questions	that	one
chooses	to	ask	and	other	questions	that	ask	themselves.	And	a	question	that	had
long	asked	itself	without	response	tends	to	be	abandoned	to	children.
Due	to	this	difficulty,	my	previous	Essays	stressed	relentlessly	the	fact	that	the

fractal	approach	is	both	effective	and	“natural.”	Not	only	should	it	not	be
resisted,	but	one	ought	to	wonder	how	one	could	have	gone	so	long	without	it.
Also,	in	order	to	avoid	needless	controversy,	these	earlier	texts	minimized	the
discontinuities	between	exposition	of	standard	and	other	published	material,
exposition	with	a	new	twist,	and	presentation	of	my	own	ideas	and	results.	In	the
present	Essay,	to	the	contrary,	I	am	precise	in	claiming	credit.
Most	emphatically,	I	do	not	consider	the	fractal	point	of	view	as	a	panacea,



and	each	case	analysis	should	be	assessed	by	the	criteria	holding	in	its	field,	that
is,	mostly	upon	the	basis	of	its	powers	of	organization,	explanation,	and
prediction,	and	not	as	example	of	a	mathematical	structure.	Since	each	case
study	must	be	cut	short	before	it	becomes	truly	technical,	the	reader	is	referred
elsewhere	for	detailed	developments.	As	a	result	(to	echo	d’Arcy	Thompson
1917),	this	Essay	is	preface	from	beginning	to	end.	Any	specialist	who	expects
more	will	be	disappointed.



A	MANIFESTO:	THERE	IS	A	FRACTAL	FACE	TO
THE	GEOMETRY	OF	NATURE

Now,	the	reason	for	bringing	these	prefaces	together	is	that	each	helps	one	to
understand	the	others	because	they	share	a	common	mathematical	structure.	F.	J.
Dyson	has	given	an	eloquent	summary	of	this	theme	of	mine.
“Fractal	is	a	word	invented	by	Mandelbrot	to	bring	together	under	one

heading	a	large	class	of	objects	that	have	[played]	...	an	historical	role	...	in	the
development	of	pure	mathematics.	A	great	revolution	of	ideas	separates	the
classical	mathematics	of	the	19th	century	from	the	modern	mathematics	of	the
20th.	Classical	mathematics	had	its	roots	in	the	regular	geometric	structures	of
Euclid	and	the	continuously	evolving	dynamics	of	Newton.	Modern	mathematics
began	with	Cantor’s	set	theory	and	Peano’s	space-filling	curve.	Historically,	the
revolution	was	forced	by	the	discovery	of	mathematical	structures	that	did	not	fit
the	patterns	of	Euclid	and	Newton.	These	new	structures	were	regarded	...	as
‘pathological,’...	as	a	‘gallery	of	monsters,’	kin	to	the	cubist	painting	and	atonal
music	that	were	upsetting	established	standards	of	taste	in	the	arts	at	about	the
same	time.	The	mathematicians	who	created	the	monsters	regarded	them	as
important	in	showing	that	the	world	of	pure	mathematics	contains	a	richness	of
possibilities	going	far	beyond	the	simple	structures	that	they	saw	in	Nature.
Twentieth-century	mathematics	flowered	in	the	belief	that	it	had	transcended
completely	the	limitations	imposed	by	its	natural	origins.
“Now,	as	Mandelbrot	points	out,...	Nature	has	played	a	joke	on	the

mathematicians.	The	19th-century	mathematicians	may	have	been	lacking	in
imagination,	but	Nature	was	not.	The	same	pathological	structures	that	the
mathematicians	invented	to	break	loose	from	19th-century	naturalism	turn	out	to
be	inherent	in	familiar	objects	all	around	us.”1
In	brief,	I	have	confirmed	Blaise	Pascal’s	observation	that	imagination	tires

before	Nature.	(“L’imagination	se	lassera	plutôt	de	concevoir	que	la	nature	de
fournir.”)
Nevertheless,	fractal	geometry	is	not	a	straight	“application”	of	20th	century

mathematics.	It	is	a	new	branch	born	belatedly	of	the	crisis	of	mathematics	that
started	when	duBois	Reymond	1875	first	reported	on	a	continuous



nondifferentiable	function	constructed	by	Weierstrass	(Chapters	3,	39,	and	41).
The	crisis	lasted	approximately	to	1925,	major	actors	being	Cantor,	Peano,
Lebesgue,	and	Hausdorff.	These	names,	and	those	of	Besicovitch,	Bolzano,
Cesàro,	Koch,	Osgood,	Sierpiński,	and	Urysohn,	are	not	ordinarily	encountered
in	the	empirical	study	of	Nature,	but	I	claim	that	the	impact	of	the	work	of	these
giants	far	transcends	its	intended	scope.
I	show	that	behind	their	very	wildest	creations,	and	unknown	to	them	and	to

several	generations	of	followers,	lie	worlds	of	interest	to	all	those	who	celebrate
Nature	by	trying	to	imitate	it.
Once	again,	we	are	surprised	by	what	several	past	occurrences	should	have

led	us	to	expect,	that	“the	language	of	mathematics	reveals	itself	unreasonably
effective	in	the	natural	sciences...,	a	wonderful	gift	which	we	neither	understand
nor	deserve.	We	should	be	grateful	for	it	and	hope	that	it	will	remain	valid	in
future	research	and	that	it	will	extend,	for	better	or	for	worse,	to	our	pleasure
even	though	perhaps	also	to	our	bafflement,	to	wide	branches	of	learning”
(Wigner	1960).



MATHEMATICS,	NATURE,	ESTHETICS

In	addition,	fractal	geometry	reveals	that	some	of	the	most	austerely	formal
chapters	of	mathematics	had	a	hidden	face:	a	world	of	pure	plastic	beauty
unsuspected	till	now.



“FRACTAL”	AND	OTHER	NEOLOGISMS

There	is	a	saying	in	Latin	that	“to	name	is	to	know:”	Nomen	est	numen.	Until	I
took	up	their	study,	the	sets	alluded	to	in	the	preceding	sections	were	not
important	enough	to	require	a	term	to	denote	them.	However,	as	the	classical
monsters	were	defanged	and	harnessed	through	my	efforts,	and	as	many	new
“monsters”	began	to	arise,	the	need	for	a	term	became	increasingly	apparent.	It
became	acute	when	the	first	predecessor	of	this	Essay	had	to	be	given	a	title.
I	coined	fractal	from	the	Latin	adjective	fractus.	The	corresponding	Latin	verb

frangere	means	“to	break:”	to	create	irregular	fragments.	It	is	therefore	sensible
—and	how	appropriate	for	our	needs!—that,	in	addition	to	“fragmented”	(as	in
fraction	or	refraction),	fractus	should	also	mean	“irregular,”	both	meanings
being	preserved	in	fragment.
The	proper	pronunciation	is	fracʹtal,	the	stress	being	placed	as	in	fracʹtion.
The	combination	fractal	set	will	be	defined	rigorously,	but	the	combination

natural	fractal	will	serve	loosely	to	designate	a	natural	pattern	that	is	usefully
representable	by	a	fractal	set.	For	example,	Brownian	curves	are	fractal	sets,	and
physical	Brownian	motion	is	a	natural	fractal.
(Since	algebra	derives	from	the	Arabic	jabara	-	to	bind	together,	fractal	and

algebra	are	etymological	opposites!)
More	generally,	in	my	travels	through	newly	opened	or	newly	settled	territory,

I	was	often	moved	to	exert	the	right	of	naming	its	landmarks.	Usually,	to	coin	a
careful	neologism	seemed	better	than	to	add	a	new	wrinkle	to	an	already
overused	term.
And	one	must	remember	that	a	word’s	common	meaning	is	often	so

entrenched,	that	it	is	not	erased	by	any	amount	of	redefinition.	As	Voltaire	noted
in	1730,	“if	Newton	had	not	used	the	word	attraction,	everyone	in	[the	French]
Academy	would	have	opened	his	eyes	to	the	light;	but	unfortunately	he	used	in
London	a	word	to	which	an	idea	of	ridicule	was	attached	in	Paris.”	And	phrases
like	“the	probability	distribution	of	the	Schwartz	distribution	in	space	relative	to
the	distribution	of	galaxies”	are	dreadful.
The	terms	coined	in	this	Essay	avoid	this	pitfall	by	tapping	underutilized	Latin

or	Greek	roots,	like	trema,	and	the	rarely	borrowed	robust	vocabularies	of	the



shop,	the	home,	and	the	farm.	Homely	names	make	the	monsters	easier	to	tame!
For	example,	I	give	technical	meanings	to	dust,	curd,	and	whey.	I	also	advocate
pertiling	for	a	thorough	(=	per)	form	of	tiling.



RESTATEMENT	OF	GOALS

In	sum,	the	present	Essay	describes	the	solutions	I	propose	to	a	host	of	concrete
problems,	including	very	old	ones,	with	the	help	of	mathematics	that	is,	in	part,
likewise	very	old,	but	that	(aside	from	applications	to	Brownian	motion)	had
never	been	used	in	this	fashion.	The	cases	this	mathematics	allows	us	to	tackle,
and	the	extensions	these	cases	require,	lay	the	foundation	of	a	new	discipline.
Scientists	will	(I	am	sure)	be	surprised	and	delighted	to	find	that	not	a	few

shapes	they	had	to	call	grainy,	hydralike,	in	between,	pimply,	pocky,	ramified,
seaweedy,	strange,	tangled,	tortuous,	wiggly,	wispy,	wrinkled,	and	the	like,	can
henceforth	be	approached	in	rigorous	and	vigorous	quantitative	fashion.
Mathematicians	will	(I	hope)	be	surprised	and	delighted	to	find	that	sets	thus

far	reputed	exceptional	(Carleson	1967)	should	in	a	sense	be	the	rule,	that
constructions	deemed	pathological	should	evolve	naturally	from	very	concrete
problems,	and	that	the	study	of	Nature	should	help	solve	old	problems	and	yield
so	many	new	ones.
Nevertheless,	this	Essay	avoids	all	purely	technical	difficulties.	It	is	addressed

primarily	to	a	mixed	group	of	scientists.	The	presentation	of	each	theme	begins
with	concrete	and	specific	cases.	The	nature	of	fractals	is	meant	to	be	gradually
discovered	by	the	reader,	not	revealed	in	a	flash	by	the	author.
And	the	art	can	be	enjoyed	for	itself.



2

The	Irregular	and	Fragmented	in	Nature

“All	pulchritude	is	relative....	We	ought	not	...	to	believe	that	the	banks	of	the
ocean	are	really	deformed,	because	they	have	not	the	form	of	a	regular	bulwark;
nor	that	the	mountains	are	out	of	shape,	because	they	are	not	exact	pyramids	or
cones;	nor	that	the	stars	are	unskillfully	placed,	because	they	are	not	all	situated
at	uniform	distance.	These	are	not	natural	irregularities,	but	with	respect	to	our
fancies	only;	nor	are	they	incommodious	to	the	true	uses	of	life	and	the	designs
of	man’s	being	on	earth.”	This	opinion	of	the	seventeenth	century	English
scholar	Richard	Bentley	(echoed	in	the	opening	words	of	this	Essay)	shows	that
to	bring	coastline,	mountain,	and	sky	patterns	together,	and	to	contrast	them	with
Euclid,	is	an	ancient	idea.



FROM	THE	PEN	OF	JEAN	PERRIN

Next	we	tune	to	a	voice	nearer	in	time	and	profession.	To	elaborate	upon	the
irregular	or	fragmented	character	of	coastlines,	Brownian	trajectories,	and	other
patterns	of	Nature	to	be	investigated	in	this	Essay,	let	me	present	in	free
translation	some	excerpts	from	Perrin	1906.	Jean	Perrin’s	subsequent	work	on
Brownian	motion	won	him	the	Nobel	Prize	and	spurred	the	development	of
probability	theory.	But	here	I	quote	from	an	early	philosophical	manifesto.
Although	it	was	later	paraphrased	in	the	preface	to	Perrin	1913,	this	text	failed	to
gain	attention	until	quoted	in	this	Essay’s	first	(French)	version.	It	had	come	to
my	notice	too	late	to	have	a	substantive	effect	on	my	work,	but	it	spurred	me	on
at	a	time	of	need,	and	its	eloquence	remains	unmatched.
“It	is	well	known	that,	before	giving	a	rigorous	definition	of	continuity,	a	good

teacher	shows	that	beginners	already	possess	the	idea	which	underlies	this
concept.	He	draws	a	well-defined	curve	and	says,	holding	a	ruler,	‘You	see	that
there	is	a	tangent	at	every	point.’	Or	again,	in	order	to	impart	the	notion	of	the
true	velocity	of	a	moving	object	at	a	point	in	its	trajectory,	he	says,	‘You	see,	of
course,	that	the	mean	velocity	between	two	neighboring	points	does	not	vary
appreciably	as	these	points	approach	infinitely	near	to	each	other.’	And	many
minds,	aware	that	for	certain	familiar	motions	this	view	appears	true	enough,	do
not	see	that	it	involves	considerable	difficulties.
“Mathematicians,	however,	are	well	aware	that	it	is	childish	to	try	to	show	by

drawing	curves	that	every	continuous	function	has	a	derivative.	Though
differentiable	functions	are	the	simplest	and	the	easiest	to	deal	with,	they	are
exceptional.	Using	geometrical	language,	curves	that	have	no	tangents	are	the
rule,	and	regular	curves,	such	as	the	circle,	are	interesting	but	quite	special.
“At	first	sight	the	consideration	of	the	general	case	seems	merely	an

intellectual	exercise,	ingenious	but	artificial,	the	desire	for	absolute	accuracy
carried	to	a	ridiculous	length.	Those	who	hear	of	curves	without	tangents,	or	of
functions	without	derivatives,	often	think	at	first	that	Nature	presents	no	such
complications,	nor	even	suggests	them.
“The	contrary,	however,	is	true,	and	the	logic	of	the	mathematicians	has	kept

them	nearer	to	reality	than	the	practical	representations	employed	by	physicists.



This	assertion	may	be	illustrated	by	considering	certain	experimental	data
without	preconception.
“Consider,	for	instance,	one	of	the	white	flakes	that	are	obtained	by	salting	a

solution	of	soap.	At	a	distance	its	contour	may	appear	sharply	defined,	but	as	we
draw	nearer	its	sharpness	disappears.	The	eye	can	no	longer	draw	a	tangent	at
any	point.	A	line	that	at	first	sight	would	seem	to	be	satisfactory	appears	on	close
scrutiny	to	be	perpendicular	or	oblique.	The	use	of	a	magnifying	glass	or
microscope	leaves	us	just	as	uncertain,	for	fresh	irregularities	appear	every	time
we	increase	the	magnification,	and	we	never	succeed	in	getting	a	sharp,	smooth
impression,	as	given,	for	example,	by	a	steel	ball.	So,	if	we	accept	the	latter	as
illustrating	the	classical	form	of	continuity,	our	flake	could	just	as	logically
suggest	the	more	general	notion	of	a	continuous	function	without	a	derivative.”
	
An	interruption	is	necessary	to	draw	attention	to	Plates	10	and	11.
The	black-and-white	plates	first	mentioned	in	a	given	chapter	are	collected	on

pages	that	follow	immediately,	and	are	numbered	as	the	pages	on	which	they
occur.	The	color	plates	form	a	special	signature,	whose	captions	are	written	to	be
fairly	independent	of	the	rest	of	the	book.
The	quote	resumes.

	
“We	must	bear	in	mind	that	the	uncertainty	as	to	the	position	of	the	tangent	at

a	point	on	the	contour	is	by	no	means	the	same	as	the	uncertainty	observed	on	a
map	of	Brittany.	Although	it	would	differ	according	to	the	map’s	scale,	a	tangent
can	always	be	found,	for	a	map	is	a	conventional	diagram.	On	the	contrary,	an
essential	characteristic	of	our	flake	and	of	the	coast	is	that	we	suspect,	without
seeing	them	clearly,	that	any	scale	involves	details	that	absolutely	prohibit	the
fixing	of	a	tangent.
“We	are	still	in	the	realm	of	experimental	reality	when	we	observe	under	the

microscope	the	Brownian	motion	agitating	a	small	particle	suspended	in	a	fluid
[this	Essay’s	Plate	13].	The	direction	of	the	straight	line	joining	the	positions
occupied	at	two	instants	very	close	in	time	is	found	to	vary	absolutely	irregularly
as	the	time	between	the	two	instants	is	decreased.	An	unprejudiced	observer
would	therefore	conclude	that	he	is	dealing	with	a	function	without	derivative,
instead	of	a	curve	to	which	a	tangent	could	be	drawn.
“It	must	be	borne	in	mind	that,	although	closer	observation	of	any	object

generally	leads	to	the	discovery	of	a	highly	irregular	structure,	we	often	can	with



advantage	approximate	its	properties	by	continuous	functions.	Although	wood
may	be	indefinitely	porous,	it	is	useful	to	speak	of	a	beam	that	has	been	sawed
and	planed	as	having	a	finite	area.	In	other	words,	at	certain	scales	and	for
certain	methods	of	investigation,	many	phenomena	may	be	represented	by
regular	continuous	functions,	somewhat	in	the	same	way	that	a	sheet	of	tinfoil
may	be	wrapped	round	a	sponge	without	following	accurately	the	latter’s
complicated	contour.
“If,	to	go	further,	we...	attribute	to	matter	the	infinitely	granular	structure	that

is	in	the	spirit	of	atomic	theory,	our	power	to	apply	to	reality	the	rigorous
mathematical	concept	of	continuity	will	greatly	decrease.
“Consider,	for	instance,	the	way	in	which	we	define	the	density	of	air	at	a

given	point	and	at	a	given	moment.	We	picture	a	sphere	of	volume	v	centered	at
that	point	and	including	the	mass	m.	The	quotient	m/v	is	the	mean	density	within
the	sphere,	and	by	true	density	we	denote	some	limiting	value	of	this	quotient.
This	notion,	however,	implies	that	at	the	given	moment	the	mean	density	is
practically	constant	for	spheres	below	a	certain	volume.	This	mean	density	may
be	notably	different	for	spheres	containing	1,000	cubic	meters	and	1	cubic
centimeter	respectively,	but	it	is	expected	to	vary	only	by	1	in	1,000,000	when
comparing	1	cubic	centimeter	to	one-thousandth	of	a	cubic	millimeter.
“Suppose	the	volume	becomes	continually	smaller.	Instead	of	becoming	less

and	less	important,	these	fluctuations	come	to	increase.	For	scales	at	which	the
Brownian	motion	shows	great	activity,	fluctuations	may	attain	1	part	in	1,000,
and	they	become	of	the	order	of	1	part	in	5	when	the	radius	of	the	hypothetical
spherule	becomes	of	the	order	of	a	hundredth	of	a	micron.
“One	step	further	and	our	spherule	becomes	of	the	order	of	a	molecule	radius.

In	a	gas,	it	will	generally	lie	in	intermolecular	space,	where	its	mean	density	will
henceforth	vanish.	At	our	point	the	true	density	will	also	vanish.	But	about	once
in	a	thousand	times	that	point	will	lie	within	a	molecule,	and	the	mean	density
will	be	a	thousand	times	higher	than	the	value	we	usually	take	to	be	the	true
density	of	the	gas.
“Let	our	spherule	grow	steadily	smaller.	Soon,	except	under	exceptional

circumstances,	it	will	become	empty	and	remain	so	henceforth	owing	to	the
emptiness	of	intra-atomic	space;	the	true	density	vanishes	almost	everywhere,
except	at	an	infinite	number	of	isolated	points,	where	it	reaches	an	infinite	value.
“Analogous	considerations	are	applicable	to	properties	such	as	velocity,

pressure,	or	temperature.	We	find	them	growing	more	and	more	irregular	as	we
increase	the	magnification	of	our	necessarily	imperfect	image	of	the	universe.



The	function	that	represents	any	physical	property	will	form	in	intermaterial
space	a	continuum	with	an	infinite	number	of	singular	points.
“Infinitely	discontinuous	matter,	a	continuous	ether	studded	with	minute	stars,

also	appears	in	the	cosmic	universe.	Indeed,	the	conclusion	we	have	reached
above	can	also	be	arrived	at	by	imagining	a	sphere	that	successively	embraces
planets,	solar	system,	stars,	and	nebulae....
“Allow	us	now	a	hypothesis	that	is	arbitrary	but	not	self-contradictory.	One

might	encounter	instances	where	using	a	function	without	a	derivative	would	be
simpler	than	using	one	that	can	be	differentiated.	When	this	happens,	the
mathematical	study	of	irregular	continua	will	prove	its	practical	value.”
Then,	starting	a	new	section	for	emphasis.	“However,	this	hope	is	nothing	but

a	daydream,	as	yet.”



WHEN	A	“GALLERY	OF	MONSTERS”	BECOMES
A	MUSEUM	OF	SCIENCE

Part	of	this	daydream,	relative	to	Brownian	motion,	did	become	reality	in
Perrin’s	own	lifetime.	Perrin	1909	chanced	to	catch	the	attention	of	Norbert
Wiener	(Wiener	1956,	pp.	38-39,	or	1964,	pp.	2-3),	who,	to	his	own	“surprise
and	delight”	was	moved	to	define	and	study	rigorously	a	nondifferentiable	first
model	of	Brownian	motion.
This	model	remains	essential,	but	physicists	stress	that	its	nondifferentiability

is	traceable	to	abusive	idealization,	namely	the	neglect	of	inertia.	In	doing	so,
physicists	turn	their	back	to	the	feature	of	Wiener’s	model	that	is	most
significant	for	the	present	work.
As	to	the	other	applications	of	mathematics	to	physics	that	Perrin	foresaw,

they	were	not	even	attempted	until	the	present	work.	The	collection	of	sets	to
which	Perrin	was	alluding	(Weierstrass	curves,	Cantor	dusts,	and	the	like)
continued	to	remain	a	part	of	“pure	mathematics.”
Some	writers,	for	example	Vilenkin	1965,	call	this	collection	a	“Mathematical

Art	Museum,”	without	suspecting	(I	am	sure)	how	accurate	those	words	were	to
be	proven	by	the	present	work.	We	know	from	Chapter	I	that	other	writers
(beginning	with	Henri	Poincaré)	call	it	a	“Gallery	of	Monsters,”	echoing	the
Treatise	of	Algebra	of	John	Wallis	(1685),	where	the	fourth	dimension	is
described	as	“a	Monster	in	Nature,	and	less	possible	than	a	Chimera	or
Centaure.”
One	of	the	aims	of	the	present	Essay	is	to	show,	through	relentless	hammering

at	diverse	explicit	“cases,”	that	the	same	Gallery	may	also	be	visited	as	a
“Museum	of	Science.”
Mathematicians	are	to	be	praised	for	having	devised	the	first	of	these	sets	long

ago,	and	scolded	for	having	discouraged	us	from	using	them.



Plates	10	and	11	ARTIFICIAL	FRACTAL	FLAKES
	
In	an	inspiring	text	quoted	in	Chapter	2,	Jean	Perrin	comments	on	the	form	of
the	“white	flakes	that	are	obtained	by	salting	a	solution	of	soap.”	These
illustrations	are	meant	to	accompany	Perrin’s	remarks.
One	must	hasten	to	state	that	they	are	neither	photographs	nor	computer

reconstitutions	of	any	real	object,	be	it	a	soap	flake,	a	rain	cloud,	a	volcanic
cloud,	a	small	asteroid,	or	a	piece	of	virgin	copper.
Nor	do	they	claim	to	result	from	a	theory	embodying	the	diverse	aspects	of	a

real	flake’s	formation—chemical,	physico-chemical,	and	hydrodynamical.
A	fortiori,	they	do	not	claim	to	be	directly	related	to	scientific	principles.
They	are	computer-generated	shapes	meant	to	illustrate	as	simply	as	I	can

manage	certain	geometric	characteristics	that	seem	to	be	embodied	in	Perrin’s
description,	and	that	I	propose	to	model	using	the	notion	of	fractal.
These	flakes	exist	only	in	a	computer’s	memory.	They	were	never	made	into

hard	models,	and	the	shading	too	was	implemented	by	computation.
The	flakes’	construction	is	explained	in	Chapter	30.	The	obvious	perceptual

differences	between	them	are	due	to	differences	in	the	value	of	a	parameter	D
written	next	to	each.	It	is	called	fractal	dimension,	is	basic	to	the	present	work,
and	is	introduced	in	Chapter	3.	The	overall	shapes	being	the	same	in	all	3	cases
is	due	to	bias	introduced	by	the	use	of	an	approximation,	and	is	discussed	in	the



caption	of	Plates	266	and	267.
An	earlier	version	was	oddly	reminiscent	of	a	presumed	photograph	of	the

Loch	Ness	monster.	Could	this	convergence	of	form	be	coincidental?

Plate	13	JEAN	PERRIN’S	CLASSIC	DRAWINGS	OF	PHYSICAL
BROWNIAN	MOTION



	
Physical	Brownian	motion	is	described	in	Perrin	1909	as	follows:	“In	a	fluid
mass	in	equilibrium,	such	as	water	in	a	glass,	all	the	parts	appear	completely
motionless.	If	we	put	into	it	an	object	of	greater	density,	it	falls.	The	fall,	it	is
true,	is	the	slower	the	smaller	the	object;	but	a	visible	object	always	ends	at	the
bottom	of	the	vessel	and	does	not	tend	again	to	rise.	However,	it	would	be
difficult	to	examine	for	long	a	preparation	of	very	fine	particles	in	a	liquid
without	observing	a	perfectly	irregular	motion.	They	go,	stop,	start	again,	mount,
descend,	mount	again,	without	in	the	least	tending	toward	immobility.”
The	present	plate,	the	only	one	in	this	book	to	picture	a	natural	phenomenon,

is	reproduced	from	Perrin’s	Atoms.	We	see	four	separate	tracings	of	the	motion
of	a	colloidal	particle	of	radius	0.53μ,	as	seen	under	the	microscope.	The
successive	positions	were	marked	every	30	seconds	(the	grid	size	being	3.2μ),
then	joined	by	straight	intervals	having	no	physical	reality	whatsoever.
To	resume	our	free	translation	from	Perrin	1909,	“One	may	be	tempted	to

define	an	‘average	velocity	of	agitation’	by	following	a	particle	as	accurately	as
possible.	But	such	evaluations	are	grossly	wrong.	The	apparent	average	velocity
varies	crazily	in	magnitude	and	direction.	This	plate	gives	only	a	weak	idea	of
the	prodigious	entanglement	of	the	real	trajectory.	If	indeed	this	particle’s
positions	were	marked	down	100	times	more	frequently,	each	interval	would	be
replaced	by	a	polygon	smaller	than	the	whole	drawing	but	just	as	complicated,
and	so	on.	It	is	easy	to	see	that	in	practice	the	notion	of	tangent	is	meaningless
for	such	curves.”
This	Essay	shares	Perrin’s	concern,	but	attacks	irregularity	from	a	different

angle.	We	stress	the	fact	that	when	a	Brownian	trajectory	is	examined
increasingly	closely,	Chapter	25,	its	length	increases	without	bound.
Furthermore,	the	trail	left	behind	by	Brownian	motion	ends	up	by	nearly

filling	the	whole	plane.	Is	it	not	tempting	to	conclude	that	in	some	sense	still	to
be	defined,	this	peculiar	curve	has	the	same	dimension	as	the	plane?	Indeed,	it
does.	A	principal	aim	of	this	Essay	will	be	to	show	that	the	loose	notion	of
dimension	splits	into	several	distinct	components.	The	Brownian	motion’s	trail	is
topologically	a	curve,	of	dimension	1.	However,	being	practically	plane	filling,	it
is	fractally	of	dimension	2.	The	discrepancy	between	these	two	values	will,	in
the	terminology	introduced	in	this	Essay,	qualify	Brownian	motion	as	being	a
fractal.





3

Dimension,	Symmetry,	Divergence

A	central	role	is	played	in	this	Essay	by	the	ancient	notions	of	dimension
(meaning	number	of	dimensions	or	dimensionality)	and	of	symmetry.
Furthermore,	we	constantly	encounter	diverse	symptoms	of	divergence.



THE	IDEA	OF	DIMENSION

Mathematicians	recognized	during	their	1875-1925	crisis	that	a	proper
understanding	of	irregularity	or	fragmentation	(as	of	regularity	and
connectedness)	cannot	be	satisfied	with	defining	dimension	as	a	number	of
coordinates.	The	first	step	of	a	rigorous	analysis	is	taken	by	Cantor	in	his	June
20,	1877,	letter	to	Dedekind,	the	next	step	by	Peano	in	1890,	and	the	final	steps
in	the	1920’s.
Like	all	major	intellectual	developments,	the	outcome	of	this	story	can	be

interpreted	in	diverse	ways.	Anyone	who	writes	a	mathematical	book	on	the
theory	of	dimension	implies	that	this	theory	is	unique.	But	to	my	mind	the	main
fact	is	that	the	loose	notion	of	dimension	turns	out	to	have	many	mathematical
facets	that	not	only	are	conceptually	distinct	but	may	lead	to	different	numerical
values.	Just	as	William	of	Occam	says	of	entities,	dimensions	must	not	be
multiplied	beyond	necessity,	but	a	multiplicity	of	dimensions	is	absolutely
unavoidable.	Euclid	is	limited	to	sets	for	which	all	the	useful	dimensions
coincide,	so	that	one	may	call	them	dimensionally	concordant	sets.	On	the	other
hand,	the	different	dimensions	of	the	sets	to	which	the	bulk	of	this	Essay	is
devoted	fail	to	coincide;	these	sets	are	dimensionally	discordant.
Moving	on	from	the	dimensions	of	mathematical	sets	to	the	“effective”

dimensions	of	the	physical	objects	modeled	by	these	sets,	we	encounter	a
different	sort	of	inevitable	and	concretely	essential	ambiguity.	Both	the
mathematical	and	the	physical	aspects	of	dimension	are	previewed	in	this
chapter.



DEFINITION	OF	THE	TERM	FRACTAL

The	present	section	uses	undefined	mathematical	terms,	but	many	readers	may
find	it	helpful,	or	at	least	reassuring,	to	scan	this	text,	and	anybody	can	skip	it.
This	and	later	digressions	in	this	Essay	are	delimited	by	the	new	brackets	

and	►.	The	latter	is	very	bold,	so	as	to	be	readily	found	by	anyone	who	becomes
lost	in	a	digression	and	wants	to	skip	ahead.	But	the	“open	bracket”	symbol
avoids	attracting	attention,	so	as	to	prevent	digressions	from	receiving	excessive
attention.	Material	discussed	later	often	receives	advance	mention	in	digressions.

	The	fact	that	the	basic	fractals	are	dimensionally	discordant	can	serve	to
transform	the	concept	of	fractal	from	an	intuitive	to	a	mathematical	one.	I	chose
to	focus	on	two	definitions,	each	of	which	assigns	to	every	set	 E	in	Euclidean
space,	no	matter	how	“pathological,”	a	real	number	which	on	intuitive	and
formal	grounds	strongly	deserves	to	be	called	its	dimension.	The	more	intuitive
of	the	two	is	the	topological	dimension	according	to	Brouwer,	Lebesgue,
Menger,	and	Urysohn.	We	denote	it	by	DT.	It	is	described	in	an	entry	in	Chapter
41.	The	second	dimension	was	formulated	in	Hausdorff	1919	and	put	in	final
form	by	Besicovitch.	It	is	discussed	in	Chapter	39.	We	denote	it	by	D.

	Whenever	(as	is	usually	the	case)	we	work	in	the	Euclidean	span	 E,	both
DT	and	D	are	at	least	0	and	at	most	E.	But	the	resemblance	ends	here.	The
dimension	DT	is	always	an	integer,	but	D	need	not	be	an	integer.	And	the	two
dimensions	need	not	coincide;	they	only	satisfy	the	Szpilrajn	inequality
(Hurewicz	&	Wallman	1941,	Chapter	4)

D≥DT.

For	all	of	Euclid,	D=DT.	But	nearly	all	sets	in	this	Essay	satisfy	D>DT.	There
was	no	term	to	denote	such	sets,	which	led	me	to	coin	the	term	fractal,	and	to
define	it	as	follows:

	A	fractal	is	by	definition	a	set	for	which	the	Hausdorff	Besicovitch
dimension	strictly	exceeds	the	topological	dimension.

	Every	set	with	a	noninteger	D	is	a	fractal.	For	example,	the	original	Cantor
set	is	a	fractal	because	we	see	in	Chapter	8	that



D=log	2/log	3~0.6309>0,	while	DT=0.

And	a	Cantor	set	in	 E	can	be	tailored	and	generalized	so	that	DT=0,	while	D
takes	on	any	desired	value	between	0	and	E	(included).

	Furthermore,	the	original	Koch	curve	is	a	fractal	because	we	see	in	Chapter
6	that

D=log4/log3~1.2618>1,	while	DT=1.

	However,	a	fractal	may	have	an	integer	D.	For	example,	Chapter	25	shows
that	the	trail	of	Brownian	motion	is	a	fractal	because

D=2,	while	DT=1.

	The	striking	fact	that	D	need	not	be	an	integer	deserves	a	terminological
aside.	If	one	uses	fraction	broadly,	as	synonymous	with	a	noninteger	real
number,	several	of	the	above-listed	values	of	D	are	fractional,	and	indeed	the
Hausdorff	Besicovitch	dimension	is	often	called	fractional	dimension.	But	D
may	be	an	integer	(not	greater	than	E	but	strictly	greater	than	DT).	I	call	D	a
fractal	dimension.



FRACTALS	IN	HARMONIC	ANALYSIS

	Part	of	the	study	of	fractals	is	the	geometric	face	of	harmonic	analysis,	but	this
fact	is	not	stressed	in	the	present	work.	Harmonic	(=	spectral	or	Fourier)	analysis
is	not	known	to	most	readers,	and	many	who	use	it	effectively	are	not	acquainted
with	its	basic	structures.
Also,	both	the	fractal	and	the	spectral	approach	have	their	own	strong	flavor

and	personality,	which	are	better	appreciated	by	first	investigating	each	for	its
own	sake.	Finally,	compared	to	harmonic	analysis,	the	study	of	fractals	is	easy
and	intuitive.



OF	“NOTIONS	THAT	ARE	NEW,...	BUT”

Lebesgue	made	fun	of	certain	“notions	that	are	new,	to	be	sure,	but	of	which	no
use	can	be	made	after	they	have	been	defined.”	This	comment	never	applied	to
D,	but	the	use	of	D	remained	concentrated	in	few	areas,	all	of	them	in	pure
mathematics.	I	was	the	first	to	use	D	successfully	in	the	description	of	Nature.
And	one	of	the	central	goals	of	this	work	is	to	establish	D	in	a	central	position	in
empirical	science,	thereby	showing	it	to	be	of	far	broader	import	than	anyone
imagined.
Several	areas	of	physics	accepted	my	claim	concerning	D	with	exceptional

promptness.	In	fact,	having	recognized	the	inadequacies	of	standard	dimension,
numerous	scholars	in	these	areas	had	already	been	groping	towards	broken,
anomalous	or	continuous	dimensions	of	all	kind.	These	approaches	had
remained	mutually	unrelated,	however.	Furthermore,	few	definitions	of
dimension	were	used	more	than	once,	none	had	the	backing	of	a	mathematical
theory,	and	none	was	developed	far	enough	for	the	lack	of	mathematical	backing
to	make	a	difference.	For	the	developments	to	be	described	here,	to	the	contrary,
the	existence	of	a	mathematical	theory	is	vital.



A	MATHEMATICAL	STUDY	OF	FORM	MUST	GO
BEYOND	TOPOLOGY

A	mathematician,	if	asked	which	well-defined	branch	of	mathematics	studies
form,	is	very	likely	to	mention	topology.	This	field	is	important	to	our	purposes
and	is	referred	to	in	the	preceding	section,	but	the	present	Essay	advances	and
defends	the	claim	that	the	loose	notion	of	form	possesses	mathematical	aspects
other	than	topological	ones.
Topology,	which	used	to	be	called	geometry	of	situation	or	analysis	situs

(Toπos	means	position,	situation	in	Greek),	considers	that	all	pots	with	two
handles	are	of	the	same	form	because,	if	both	are	infinitely	flexible	and
compressible,	they	can	be	molded	into	any	other	continuously,	without	tearing
any	new	opening	or	closing	up	any	old	one.	It	also	teaches	that	all	single	island
coastlines	are	of	the	same	form,	because	they	are	topologically	identical	to	a
circle.	And	that	the	topological	dimension	is	the	same	for	coastlines	and	circles:
equal	to	1.	If	one	adds	offshore	“satellite	islands,”	the	cumulative	coastline	is
topologically	identical	to	“many”	circles.	Thus,	topology	fails	to	discriminate
between	different	coastlines.
By	way	of	contrast,	Chapter	5	shows	that	different	coastlines	tend	to	have

different	fractal	dimensions.	Differences	in	fractal	dimension	express	differences
in	a	nontopological	aspect	of	form,	which	I	propose	to	call	fractal	form.
Most	problems	of	real	interest	combine	fractal	and	topological	features	in

increasingly	subtle	fashion.
Observe	that	in	the	case	of	topology,	the	definitions	of	the	field	itself	and	of

DT	were	refined	in	parallel,	while	the	notion	of	D	preceded	the	present	study	of
fractal	form	by	half	a	century.
Incidentally,	Felix	Hausdorff’s	name	being	given	to	a	class	of	topological

spaces,	the	widely	used	contracted	term	for	D,	Hausdorff	dimension,	seems	to
have	undertones	of	“dimension	of	a	Hausdorff	space,”	thus	suggesting	it	is	a
topological	concept—which	emphatically	is	not	the	case.	This	is	yet	another
reason	for	preferring	fractal	dimension.



EFFECTIVE	DIMENSION

In	addition	to	the	mathematical	notions	underlying	DT	and	D,	this	Essay	often
invokes	effective	dimension,	a	notion	that	should	not	be	defined	precisely.	It	is	an
intuitive	and	potent	throwback	to	the	Pythagoreans’	archaic	Greek	geometry.	A
novelty	of	this	Essay	is	that	it	allows	the	value	of	effective	dimension	to	be	a
fraction.
Effective	dimension	concerns	the	relation	between	mathematical	sets	and

natural	objects.	Strictly	speaking,	physical	objects	such	as	a	veil,	a	thread,	or	a
tiny	ball	should	all	be	represented	by	three-dimensional	shapes.	However,
physicists	prefer	to	think	of	a	veil,	a	thread,	or	a	ball—if	they	are	fine	enough—
as	being	“in	effect”	of	dimensions	2,	1,	and	0,	respectively.	For	example,	to
describe	a	thread,	the	theories	relating	to	sets	of	dimension	1	or	3	must	be
modified	by	corrective	terms.	And	the	better	geometrical	model	is	determined
after	the	fact,	as	involving	the	smaller	corrections.	If	luck	holds,	this	model
continues	to	be	helpful	even	when	corrections	are	omitted.	In	other	words,
effective	dimension	inevitably	has	a	subjective	basis.	It	is	a	matter	of
approximation	and	therefore	of	degree	of	resolution.



DIFFERENT	EFFECTIVE	DIMENSIONS
IMPLICIT	IN	A	BALL	OF	THREAD

To	confirm	this	last	hunch,	a	ball	of	10	cm	diameter	made	of	a	thick	thread	of	1
mm	diameter	possesses	(in	latent	fashion)	several	distinct	effective	dimensions.
To	an	observer	placed	far	away,	the	ball	appears	as	a	zero-dimensional	figure:

a	point.	(Anyhow,	it	is	asserted	by	Blaise	Pascal	and	by	medieval	philosophers
that	on	a	cosmic	scale	our	whole	world	is	but	a	point!)	As	seen	from	a	distance
of	10	cm	resolution,	the	ball	of	thread	is	a	three-dimensional	figure.	At	10	mm,	it
is	a	mess	of	one-dimensional	threads.	At	0.1	mm,	each	thread	becomes	a	column
and	the	whole	becomes	a	three-dimensional	figure	again.	At	0.01	mm,	each
column	dissolves	into	fibers,	and	the	ball	again	becomes	one-dimensional,	and
so	on,	with	the	dimension	crossing	over	repeatedly	from	one	value	to	another.
When	the	ball	is	represented	by	a	finite	number	of	atomlike	pinpoints,	it
becomes	zero-dimensional	again.	An	analogous	sequence	of	dimensions	and
crossovers	is	encountered	in	a	sheet	of	paper.
The	notion	that	a	numerical	result	should	depend	on	the	relation	of	object	to

observer	is	in	the	spirit	of	physics	in	this	century	and	is	even	an	exemplary
illustration	of	it.
Most	of	the	objects	considered	in	this	Essay	are	like	our	ball	of	thread:	they

exhibit	a	succession	of	different	effective	dimensions.	But	a	vital	new	element	is
added:	certain	ill-defined	transitions	between	zones	of	well-defined	dimension
are	reinterpreted	as	being	fractal	zones	within	which	D>DT.



SPATIAL	HOMOGENEITY,	SCALING,	AND	SELF-
SIMILARITY

Having	finished	with	dimensions	for	the	time	being,	let	us	prepare	for	the	theme
of	symmetry	by	recalling	that	Euclid	begins	with	the	simplest	shapes,	such	as
lines,	planes,	or	spaces.	And	the	simplest	physics	arises	when	some	quantity
such	as	density,	temperature,	pressure,	or	velocity	is	distributed	in	a
homogeneous	manner.
The	homogeneous	distribution	on	a	line,	plane,	or	space	has	two	very

desirable	properties.	It	is	invariant	under	displacement,	and	it	is	invariant	under
change	of	scale.	When	we	move	on	to	fractals,	either	invariance	must	be
modified	and/or	restricted	in	its	scope.	Hence,	the	best	fractals	are	those	that
exhibit	the	maximum	of	invariance.
Concerning	displacement:	different	parts	of	the	trail	of	Brownian	motion	can

never	be	precisely	superposed	on	each	other—as	can	be	done	with	equal	parts	of
a	straight	line.	Nevertheless,	the	parts	can	be	made	to	be	superposable	in	a
statistical	sense.	Nearly	all	the	fractals	in	the	present	Essay	are	to	some	extent
invariant	under	displacement.
Furthermore,	most	fractals	in	this	Essay	are	invariant	under	certain

transformations	of	scale.	They	are	called	scaling.	A	fractal	invariant	under
ordinary	geometric	similarity	is	called	self-similar.
In	the	compound	term	scaling	fractals,	the	adjective	serves	to	mitigate	the

noun.	While	the	primary	term	fractal	points	to	disorder	and	covers	cases	of
intractable	irregularity,	the	modifier	scaling	points	to	a	kind	of	order.
Alternatively,	taking	scaling	as	the	primary	term	pointing	to	strict	order,	fractal
is	a	modifier	meant	to	exclude	lines	and	planes.
The	motivation	for	assuming	homogeneity	and	scaling	must	not	be

misinterpreted.	Here	as	in	standard	geometry	of	nature,	no	one	believes	that	the
world	is	strictly	homogeneous	or	scaling.	Standard	geometry	investigates
straight	lines	as	a	preliminary.	And	mechanics	also	views	uniform	rectilinear
motion	as	merely	a	first	step.
The	same	is	true	of	the	study	of	scaling	fractals,	but	the	first	step	takes	much

longer	in	this	case	because	the	straight	line	is	replaced	by	a	wealth	of	diverse



possibilities,	which	this	book	can	merely	sample.	One	should	not	be	surprised
that	scaling	fractals	should	be	limited	to	providing	first	approximations	of	the
natural	shapes	to	be	tackled.	One	must	rather	marvel	that	these	first
approximations	are	so	strikingly	reasonable.
It	is	good	to	point	out	that	self-similarity	is	an	old	idea.	In	the	case	of	the	line,

it	occurred	to	Leibniz	circa	1700	(see	under	SCALING	IN	LEIBNIZ	AND
LAPLACE	in	Chapter	41).	And	its	generalization	beyond	lines	and	planes	is
almost	a	hundred	years	old	in	mathematics,	though	its	concrete	importance	was
not	appreciated	until	this	Essay.	Also,	it	is	not	new	in	science,	since	Lewis	F.
Richardson	postulated	in	1926	that	over	a	wide	range	of	scales	turbulence	is
decomposable	into	self-similar	eddies.	Furthermore,	striking	analytical
consequences	of	this	idea	in	mechanics	are	drawn	in	Kolmogorov	1941.	And	the
analytic	aspects	of	scaling	in	physics	are	associated	with	the	notion	of
renormalization	group,	Chapter	36.
However,	this	Essay’s	1975	predecessor	was	the	first	to	address	itself	to	the

geometric	aspects	of	nonstandard	scaling	in	Nature.



“SYMMETRIES”	BEYOND	SCALING

After	it	finishes	with	lines,	Euclid	tackles	shapes	with	richer	properties	of
invariance,	usually	called	“symmetries.”	And	this	Essay	also	makes	a	fairly
lengthy	excursion	into	nonscaling	fractals,	in	Chapters	15	to	20.
Self-mapping	but	nonscaling	fractals	are	intimately	linked	with	some	of	the

most	refined	and	difficult	areas	of	“hard”	classical	mathematical	analysis.
Contrary	to	rumors	that	analysis	is	a	dry	subject,	these	fractals	tend	to	be
astoundingly	beautiful.



DIVERGENCE	SYNDROMES

Almost	every	case	study	we	perform	involves	a	divergence	syndrome.	That	is,
some	quantity	that	is	commonly	expected	to	be	positive	and	finite	turns	out
either	to	be	infinite	or	to	vanish.	At	first	blush,	such	misbehavior	looks	most
bizarre	and	even	terrifying,	but	a	careful	reexamination	shows	it	to	be	quite
acceptable...,	as	long	as	one	is	willing	to	use	new	methods	of	thought.
Cases	where	a	symmetry	is	accompanied	by	a	divergence	are	also	a	familiar

fixture	of	quantum	physics,	within	which	diverse	divergence	eliminating
arguments	take	a	place	of	honor.	Luckily,	the	various	fractal	divergences	are
much	easier	to	handle.



4

Variations	and	Disclaimers

Now	that	the	diverse	objectives	of	this	Essay	are	outlined,	we	examine	its
manner.	It	too	attempts	to	integrate	several	distinct	facets.



OBSCURITY	IS	NOT	A	VIRTUE

To	be	accessible	to	scholars	and	students	not	necessarily	specializing	in	the
various	subjects	tackled,	many	of	which	are	esoteric,	this	work	incorporates
much	exposition.
But	exposition	is	not	its	principal	purpose.
Further,	an	attempt	is	made	not	to	frighten	away	those	who	are	not	interested

in	mathematical	precision,	but	who	ought	to	be	interested	in	my	main
conclusions.	Rigorous	mathematical	backup	is	available	throughout	(and	is
sounder	than	in	much	of	physics),	but	the	book’s	style	is	informal	(though
precise).	All	detail	is	set	aside	to	Chapter	39,	to	the	references,	and	to	diverse
works	to	come.
Since	original	work	is	not	expected	to	show	such	concerns,	this	Essay	is	to

some	extent	a	work	of	popularization.
But	popularization	is	not	its	main	purpose.



ERUDITION	IS	GOOD	FOR	THE	SOUL

As	exemplified	in	Chapter	2,	this	Essay	includes	many	old	and	obscure
references.	Most	did	not	attract	my	attention	until	well	after	my	own	work	in
related	areas	was	essentially	complete.	They	did	not	influence	my	thinking.
However,	during	the	long	years	when	my	interests	were	not	shared	by	anyone,	I
rejoiced	in	discovering	analogous	concerns	in	ancient	works,	however	fleetingly
and	ineffectually	expressed,	witness	their	failure	to	be	developed.	In	this	fashion,
an	interest	in	“classics,”	which	the	usual	practice	of	science	destroys,	was
nurtured	in	my	case.
In	other	words,	I	rejoiced	in	finding	that	the	stones	I	needed—as	the	architect

and	builder	of	the	theory	of	fractals—included	many	that	had	been	considered	by
others.	But	why	continue	to	dwell	on	this	fact	today?	Casual	footnotes	would
satisfy	the	prevailing	custom,	while	an	excessive	stress	on	distant	roots	or
origins	risks	fostering	the	absurd	impression	that	my	building	is	largely	a	pile	of
old	stones	with	new	names	on	them.
Thus,	my	antiquarian	curiosity	would	require	a	justification,	but	I	shall	not

attempt	one.	It	is	enough	to	say	that,	in	my	opinion,	an	interest	in	the	history	of
ideas	is	good	for	the	scientist’s	soul.
However,	whenever	we	read	a	great	man’s	writings	in	a	light	with	which	he

was	not	blessed,	we	may	ponder	the	delightful	preface	Lebesgue	wrote	to	a	book
by	Lusin.	He	disclaimed	many	profound	thoughts	with	which	said	book	credited
him,	saying	he	might	have,	or	should	have,	had	these	thoughts,	but	had	not,	and
that	they	originated	with	Lusin.	A	related	item	is	Whittaker	1953,	wherein	quotes
from	Poincaré	and	Lorentz	are	marshalled	in	favor	of	a	thesis	both	had	pointedly
disclaimed:	that	the	physical	theory	of	relativity	was	their	creation	and	not
Einstein’s.
Also,	for	each	author	jotting	down	years	ago	an	idea	which	we	can	now

develop	but	he	did	not,	we	run	the	risk	of	finding	a	second	author	to	declare	that
the	idea	is	absurd.	And	should	we	credit	the	young	Henri	Poincaré	with	ideas	he
failed	to	develop,	and	the	mature	Henri	Poincaré	rejected?	Stent	1972	might	lead
us	to	the	conclusion	that	prematurity,	being	too	much	ahead	of	one’s	time,
deserves	nothing	but	compassionate	oblivion.



While	excessive	erudition	in	relation	to	the	history	of	ideas	is	self-defeating.	I
do	wish	to	assert	the	echoes	from	the	past,	stressing	them	further	in	the
biographical	and	historical	sketches	in	Chapters	40	and	41.
Yet,	a	display	of	erudition	is	certainly	not	the	main	purpose	of	this	Essay.



“TO	SEE	IS	TO	BELIEVE”

In	a	letter	to	Dedekind,	at	the	very	beginning	of	the	1875-1925	crisis	in
mathematics,	Cantor	is	overwhelmed	by	amazement	at	his	own	findings,	and
slips	from	German	to	French	to	exclaim	that	“to	see	is	not	to	believe”	(“Je	le
vois,	mais	je	ne	le	crois	pas”).	And,	as	if	on	cue,	mathematics	seeks	to	avoid
being	misled	by	the	graven	images	of	monsters.	What	a	contrast	between	the
rococo	exuberance	of	pre-	or	counterrevolutionary	geometry,	and	the	near-total
visual	barrenness	of	the	works	of	Weierstrass,	Cantor,	or	Peano!	In	physics,	an
analogous	development	threatened	since	about	1800,	since	Laplace’s	Celestial
Mechanics	avoided	all	illustration.	And	it	is	exemplified	by	the	statement	by	P.
A.	M.	Dirac	(in	the	preface	of	his	1930	Quantum	Mechanics)	that	nature’s
“fundamental	laws	do	not	govern	the	world	as	it	appears	in	our	mental	picture	in
any	very	direct	way,	but	instead	they	control	a	substratum	of	which	we	cannot
form	a	mental	picture	without	introducing	irrelevancies.”
The	wide	and	uncritical	acceptance	of	this	view	has	become	destructive.	In

particular,	in	the	theory	of	fractals	“to	see	is	to	believe.”	Therefore,	before	he
proceeds	further,	the	reader	is	again	advised	to	browse	through	my	picture	book.
This	Essay	was	designed	to	help	make	its	contents	accessible	in	various	degrees
to	a	wide	range	of	readers,	and	to	try	and	convince	even	the	purest	among
mathematicians	that	the	understanding	of	known	concepts	and	the	search	for
new	concepts	and	conjectures	are	both	helped	by	fine	graphics.	Rarely	does
contemporary	scientific	literature	show	such	trust	in	the	usefulness	of	graphics.
However,	showing	pretty	pictures	is	not	the	main	purpose	in	this	Essay;	they

are	an	essential	tool,	but	only	a	tool.
One	must	also	recognize	that	any	attempt	to	illustrate	geometry	involves	a

basic	fallacy.	For	example,	a	straight	line	is	unbounded	and	infinitely	thin	and
smooth,	while	any	illustration	is	unavoidably	of	finite	length,	of	positive
thickness,	and	rough	edged.	Nevertheless,	a	rough	evocative	drawing	of	a	line	is
felt	by	many	to	be	useful,	and	by	some	to	be	necessary,	to	develop	intuition	and
help	in	the	search	for	proof.	And	a	rough	drawing	is	a	more	adequate	geometric
model	of	a	thread	than	the	mathematical	line	itself.	In	other	words,	it	suffices	for
all	practical	purposes	that	a	geometric	concept	and	its	image	should	fit	within	a



certain	range	of	characteristic	sizes,	ranging	between	a	large	but	finite	size	to	be
called	outer	cutoff	and	a	small	but	positive	inner	cutoff.
Today,	thanks	to	computer-controlled	graphics,	the	same	kind	of	evocative

illustration	is	practical	in	the	case	of	fractals.	For	example,	all	self-similar	fractal
curves	are	also	unbounded	and	infinitely	thin.	Also,	each	has	a	very	specific	lack
of	smoothness,	which	makes	it	more	complicated	than	anything	in	Euclid.	The
best	representation,	therefore,	can	only	hold	within	a	limited	range,	on	the
principles	we	have	already	encountered.	However,	cutting	off	the	very	large	and
the	very	small	detail	is	not	only	quite	acceptable	but	even	eminently	appropriate,
because	both	cutoffs	are	either	present	or	suspected	in	Nature.	Thus	the	typical
fractal	curve	can	be	evoked	satisfactorily	by	elementary	strokes	in	large	but
finite	number.
The	larger	the	number	of	strokes	and	the	greater	the	accuracy	of	the	process,

the	more	useful	the	representation,	because	fractal	concepts	refer	to	the	mutual
placement	of	strokes	in	space,	and	it	is	vital	in	illustrating	them	to	keep	to
precise	scale.	Hand	drawing	would	be	prohibitive,	but	computer	graphics	serves
beautifully.	My	successive	Essays	have	been	very	much	influenced	by	the
availability	of	increasingly	sophisticated	systems—and	of	increasingly
sophisticated	programmer-artists	to	run	them!	Also,	I	am	fortunate	in	having
access	to	a	device	that	produces	camera	ready	illustrations.	This	Essay	provides
a	sample	of	its	output.
Graphics	is	wonderful	for	matching	models	with	reality.	When	a	chance

mechanism	agrees	with	the	data	from	some	analytic	viewpoint	but	simulations	of
the	model	do	not	look	at	all	“real,”	the	analytic	agreement	should	be	suspect.	A
formula	can	relate	to	only	a	small	aspect	of	the	relationship	between	model	and
reality,	while	the	eye	has	enormous	powers	of	integration	and	discrimination.
True,	the	eye	sometimes	sees	spurious	relationships	which	statistical	analysis
later	negates,	but	this	problem	arises	mostly	in	areas	of	science	where	samples
are	very	small.	In	the	areas	we	shall	explore,	samples	are	huge.
In	addition,	graphics	helps	find	new	uses	for	existing	models.	I	first

experienced	this	possibility	with	the	random	walk	illustration	in	Feller	1950—
the	curve	looked	like	a	mountain’s	profile	or	cross	section,	and	the	points	where
it	intersects	the	time	axis	reminded	me	of	certain	records	I	was	then
investigating,	relative	to	telephone	errors.	The	ensuing	hunches	eventually	led	to
the	theories	presented	in	Chapters	28	and	31,	respectively.	My	own	computer-
generated	illustrations	provided	similar	inspiration,	both	to	me	and	to	others	kind
enough	to	“scout”	for	me	in	more	sciences	than	I	knew	existed.



Naturally,	graphics	is	extended	by	cinematography:	films	concerned	with
some	classical	fractals	have	been	provided	by	Max	1971.



THE	STANDARD	FORM,	AND	THE	NEW
FRACTAL	FORM,	OF	GEOMETRIC	“ART”

As	to	this	book’s	endpapers	and	diverse	patterns	scattered	around,	they	were	the
unintended	result	of	faulty	computer	programming.	I	hear	and	read	of	both	the
intended	and	the	unintended	illustrations	being	described	as	a	“New	Form	of
Art.”
Clearly,	competing	with	artists	is	not	at	all	a	purpose	of	this	Essay.

Nevertheless,	one	must	address	this	issue.	The	question	is	not	whether	the
illustrations	are	neatly	drawn	and	printed,	and	the	originals	being	drawn	by
computer	is	not	essential	either,	except	in	terms	of	economics.	But	we	do	deal
with	a	new	form	of	the	controversial	but	ancient	theme	that	all	graphical
representations	of	mathematical	concepts	are	a	form	of	art,	one	that	is	best	when
it	is	simplest,	when	(to	borrow	a	painter’s	term)	it	can	be	called	“minimal	art.”
It	is	widely	held	that	minimal	art	is	restricted	to	limited	combinations	of

standard	shapes:	lines,	circles,	spirals,	and	the	like.	But	such	need	not	be	the
case.	The	fractals	used	in	scientific	models	are	also	very	simple	(because	science
puts	a	premium	on	simplicity).	And	I	agree	that	many	may	be	viewed	as	a	new
form	of	minimal	geometric	art.
Is	some	of	it	reminiscent	of	M.	C.	Escher?	It	should	be,	because	Escher	had

the	merit	of	letting	himself	be	inspired	by	the	hyperbolic	tilings	in	Fricke	&
Klein	1897,	which	(see	Chapter	18)	relate	closely	to	shapes	that	are	being
incorporated	into	the	fractal	realm.
The	fractal	“new	geometric	art”	shows	surprising	kinship	to	Grand	Masters

paintings	or	Beaux	Arts	architecture.	An	obvious	reason	is	that	classical	visual
arts,	like	fractals,	involve	very	many	scales	of	length	and	favor	self-similarity
(Mandelbrot	19811).	For	all	these	reasons,	and	also	because	it	came	in	through
an	effort	to	imitate	Nature	in	order	to	guess	its	laws,	it	may	well	be	that	fractal
art	is	readily	accepted	because	it	is	not	truly	unfamiliar.	Abstract	paintings	vary
on	this	account:	those	I	like	also	tend	to	be	close	to	fractal	geometric	art,	but
many	are	closer	to	standard	geometric	art—too	close	for	my	own	comfort	and
enjoyment.
A	paradox	emerges	here:	As	observed	in	Dyson’s	quote	in	Chapter	1,	modern



mathematics,	music,	painting,	and	architecture	may	seem	to	be	related	to	one
another.	But	this	is	a	superficial	impression,	notably	in	the	context	of
architecture:	A	Mies	van	der	Rohe	building	is	a	scalebound	throwback	to	Euclid,
while	a	high	period	Beaux	Arts	building	is	rich	in	fractal	aspects.



POINTS	OF	LOGISTICS

Successive	chapters	take	up	diverse	topics	by	increasing	complexity,	in	order	to
introduce	the	basic	ideas	gradually.	The	fact	that	this	approach	seems	feasible	is
a	great	asset	for	the	theory	of	fractals.	The	amount	of	built-in	repetition	is	such
that	the	reader	is	unlikely	to	lose	the	main	thrust	of	the	argument	if	he	skips	the
passages	he	feels	to	be	either	repetitious	or	too	complicated	(in	particular,	those
that	go	beyond	the	most	elementary	mathematics).	Much	information	is	included
in	the	captions	of	the	plates.
As	already	mentioned,	the	plates	are	grouped	after	the	chapters	where	they	are

first	examined.	Also	this	writer	feels	every	so	often	the	need	to	engage	in	private
conversation,	so	to	speak,	with	specific	groups	of	readers	who	might	be	overly
troubled	if	some	point	were	left	unmentioned	or	unexplained.	The	digressions
are	left	in	the	text	but	marked	by	the	newfangled	brackets	 	and	►,	which
should	make	them	easier	to	skip.	Other	digressions	are	devoted	to	incidental
remarks	I	have	no	time	to	explore	fully.	But	this	Essay	is	less	digressive	than	the
1977	Fractals.
An	attempt	is	made	to	show	at	a	glance	whether	the	discussion	is	concerned

with	theoretical	or	empirical	dimensions	D.	The	latter	are	mostly	known	to	one
or	two	decimals,	and	are	therefore	written	as	1.2	or	1.37.	The	former	are	written
as	integers,	ratios	of	integers,	ratios	of	logarithms	of	integers,	or	in	decimal	form
to	at	least	four	decimals.



BACK	TO	THE	BASIC	THEME

Having	disclaimed	diverse	goals	that	are	peripheral	to	this	Essay,	let	me	echo
Chapter	1.	This	work	is	a	manifesto	and	a	casebook,	devoted	nearly	exclusively
to	theories	and	theses	which	I	initiated	but	which	often	led	to	the	revival	and	the
reinterpretation	of	diverse	old	works.
None	of	these	theories	stopped	growing,	and	a	few	are	still	at	the	seed	stage.

Some	are	published	here	for	the	first	time,	while	others	had	been	described	in
my	earlier	articles.	In	addition,	I	mention	numerous	developments	my	earlier
Essays	had	inspired,	and	which	in	turn	stimulated	me.	However,	I	do	not	attempt
to	list	all	the	fields	where	fractals	prove	useful,	for	fear	of	destroying	the	style	of
an	Essay	and	the	flavor	of	a	manifesto.
Last	reminder:	I	do	not	propose	to	develop	any	case	study	in	the	full	detail

desired	by	the	specialists.	But	many	topics	are	touched	upon	repeatedly;	don’t
forget	to	use	the	index.



II

THREE	CLASSIC	FRACTALS,	TAMED



5

How	Long	Is	the	Coast	of	Britain?

To	introduce	a	first	category	of	fractals,	namely	curves	whose	fractal	dimension
is	greater	than	1,	consider	a	stretch	of	coastline.	It	is	evident	that	its	length	is	at
least	equal	to	the	distance	measured	along	a	straight	line	between	its	beginning
and	its	end.	However,	the	typical	coastline	is	irregular	and	winding,	and	there	is
no	question	it	is	much	longer	than	the	straight	line	between	its	end	points.
There	are	various	ways	of	evaluating	its	length	more	accurately,	and	this

chapter	analyzes	several	of	them.	The	result	is	most	peculiar:	coastline	length
turns	out	to	be	an	elusive	notion	that	slips	between	the	fingers	of	one	who	wants
to	grasp	it.	All	measurement	methods	ultimately	lead	to	the	conclusion	that	the
typical	coastline’s	length	is	very	large	and	so	ill	determined	that	it	is	best
considered	infinite.	Hence,	if	one	wishes	to	compare	different	coastlines	from
the	viewpoint	of	their	“extent,”	length	is	an	inadequate	concept.
This	chapter	seeks	an	improved	substitute,	and	in	doing	so	finds	it	impossible

to	avoid	introducing	various	forms	of	the	fractal	concepts	of	dimension,
measure,	and	curve.



MULTIPLICITY	OF	ALTERNATIVE	METHODS
OF	MEASUREMENT

METHOD	A:	Set	dividers	to	a	prescribed	opening	∈,	to	be	called	the	yardstick
length,	and	walk	these	dividers	along	the	coastline,	each	new	step	starting	where
the	previous	step	leaves	off.	The	number	of	steps	multiplied	by	ϵ	is	an
approximate	length	L(ϵ).	As	the	dividers’	opening	becomes	smaller	and	smaller,
and	as	we	repeat	the	operation,	we	have	been	taught	to	expect	L(ϵ)	to	settle
rapidly	to	a	well-defined	value	called	the	true	length.	But	in	fact	what	we	expect
does	not	happen.	In	the	typical	case,	the	observed	L(ϵ)	tends	to	increase	without
limit.
The	reason	for	this	behavior	is	obvious:	When	a	bay	or	peninsula	noticed	on	a

map	scaled	to	1	/	100,000	is	reexamined	on	a	map	at	1	/	10,000,	subbays	and
subpeninsulas	become	visible.	On	a	1	/	1,000	scale	map,	sub-subbays	and	sub-
subpeninsulas	appear,	and	so	forth.	Each	adds	to	the	measured	length.
Our	procedure	acknowledges	that	a	coastline	is	too	irregular	to	be	measured

directly	by	reading	it	off	in	a	catalog	of	lengths	of	simple	geometric	curves.
Therefore,	METHOD	A	replaces	the	coastline	by	a	sequence	of	broken	lines
made	of	straight	intervals,	which	are	curves	we	know	how	to	handle.
METHOD	B:	Such	“smoothing	out”	can	also	be	accomplished	in	other	ways.

Imagine	a	man	walking	along	the	coastline,	taking	the	shortest	path	that	stays	no
farther	from	the	water	than	the	prescribed	distance	ϵ.	Then	he	resumes	his	walk
after	reducing	his	yardstick,	then	again,	after	another	reduction;	and	so	on,	until	ϵ
reaches,	say,	50	cm.	Man	is	too	big	and	clumsy	to	follow	any	finer	detail.	One
may	further	argue	that	this	unreachable	fine	detail	(a)	is	of	no	direct	interest	to
Man	and	(b)	varies	with	the	seasons	and	the	tides	so	much	that	it	is	altogether
meaningless.	We	take	up	argument	(a)	later	on	in	this	chapter.	In	the	meantime,
we	can	neutralize	argument	(b)	by	restricting	our	attention	to	a	rocky	coastline
observed	when	the	tide	is	low	and	the	waves	are	negligible.	In	principle,	Man
could	follow	such	a	curve	down	to	finer	details	by	harnessing	a	mouse,	then	an
ant,	and	so	forth.	Again,	as	our	walker	stays	increasingly	closer	to	the	coastline,
the	distance	to	be	covered	continues	to	increase	with	no	limit.
METHOD	C:	An	asymmetry	between	land	and	water	is	implied	in	METHOD



B.	To	avoid	it,	Cantor	suggests,	in	effect,	that	one	should	view	the	coastline	with
an	out-of-focus	camera	that	transforms	every	point	into	a	circular	blotch	of
radius	ϵ.	In	other	words,	Cantor	considers	all	the	points	of	both	land	and	water
for	which	the	distance	to	the	coastline	is	no	more	than	ϵ.	These	points	form	a
kind	of	sausage	or	tape	of	width	2ϵ,	as	seen	in	a	different	context	on	Plate	32.
Measure	the	area	of	the	tape	and	divide	it	by	2ϵ.	If	the	coastline	were	straight,
the	tape	would	be	a	rectangle,	and	the	above	quotient	would	be	the	actual	length.
With	actual	coastlines,	we	have	an	estimated	length	L(ϵ).	As	ϵ	decreases,	this
estimate	increases	without	limit.
METHOD	D:	Imagine	a	map	drawn	in	the	manner	of	pointillist	painters	using

circular	blotches	of	radius	ϵ.	Instead	of	using	circles	centered	on	the	coastline,	as
in	METHOD	C,	let	us	require	that	the	blotches	that	cover	the	entire	coastline	be
as	few	in	number	as	possible.	As	a	result,	they	may	well	lie	mostly	inland	near
the	capes	and	mostly	in	the	sea	near	the	bays.	Such	a	map’s	area,	divided	by	2ϵ,
is	an	estimate	of	the	length.	This	estimate	also	“misbehaves.”



ARBITRARINESS	OF	THE	RESULTS	OF
MEASUREMENT

To	summarize	the	preceding	section,	the	main	finding	is	always	the	same.	As	ϵ	is
made	smaller	and	smaller,	every	approximate	length	tends	to	increase	steadily
without	bound.
In	order	to	ascertain	the	meaning	of	this	result,	let	us	perform	analogous

measurements	on	a	standard	curve	from	Euclid.	For	an	interval	of	straight	line,
the	approximate	measurements	are	essentially	identical	and	define	the	length.
For	a	circle,	the	approximate	measurements	increase	but	converge	rapidly	to	a
limit.	The	curves	for	which	a	length	is	thus	defined	are	called	rectifiable.
An	even	more	interesting	contrast	is	provided	by	the	results	of	measurement

on	a	coastline	that	Man	has	tamed,	say	the	coast	at	Chelsea	as	it	is	today.	Since
very	large	features	are	unaffected	by	Man,	a	very	large	yardstick	again	yields
results	that	increase	as	ϵ	decreases.
However,	there	is	an	intermediate	zone	of	ϵ’s	in	which	L(ϵ)	varies	little.	This

zone	may	go	from	20	meters	down	to	20	centimeters	(but	do	not	take	these
values	too	strictly).	But	L(ϵ)	increases	again	after	ϵ	becomes	less	than	20
centimeters	and	measurements	become	affected	by	the	irregularity	of	the	stones.
Thus,	if	we	trace	the	curves	representing	L(ϵ)	as	a	function	of	ϵ,	there	is	little
doubt	that	the	length	exhibits,	in	the	zone	of	ϵ’s	between	ϵ=20	meters	and	ϵ=20
centimeters,	a	flat	portion	that	was	not	observable	before	the	coast	was	tamed.
Measurements	made	in	this	zone	are	obviously	of	great	practical	use.	Since

boundaries	between	different	scientific	disciplines	are	largely	a	matter	of
conventional	division	of	labor	between	scientists,	one	might	restrict	geography
to	phenomena	above	Man’s	reach,	for	example,	on	scales	above	20	meters.	This
restriction	would	yield	a	well-defined	value	of	geographical	length.	The	Coast
Guard	may	well	choose	to	use	the	same	ϵ	for	untamed	coasts,	and	encyclopedias
and	almanacs	could	adopt	the	corresponding	L(ϵ).
However,	the	adoption	of	the	same	ϵ	by	all	the	agencies	of	a	government	is

hard	to	imagine,	and	its	adoption	by	all	countries	is	all	but	inconceivable.	For
example,	Richardson	1961,	the	lengths	of	the	common	frontiers	between	Spain
and	Portugal,	or	Belgium	and	Netherlands,	as	reported	in	these	neighbors’



encyclopedias,	differ	by	20%.	The	discrepancy	must	in	part	result	from	different
choices	of	ϵ.	An	empirical	finding	to	be	discussed	soon	shows	that	it	suffices	that
the	ϵ	differ	by	a	factor	of	2,	and	one	should	not	be	surprised	that	a	small	country
(Portugal)	measures	its	borders	more	accurately	than	its	big	neighbor.
The	second	and	more	significant	reason	against	deciding	on	an	arbitrary	ϵ	is

philosophical	and	scientific.	Nature	does	exist	apart	from	Man,	and	anyone	who
gives	too	much	weight	to	any	specific	ϵ	and	L(ϵ)	lets	the	study	of	Nature	be
dominated	by	Man,	either	through	his	typical	yardstick	size	or	his	highly
variable	technical	reach.	If	coastlines	are	ever	to	become	an	object	of	scientific
inquiry,	the	uncertainty	concerning	their	lengths	cannot	be	legislated	away.	In
one	manner	or	another,	the	concept	of	geographic	length	is	not	as	inoffensive	as
it	seems.	It	is	not	entirely	“objective.”	The	observer	inevitably	intervenes	in	its
definition.



IS	THIS	ARBITRARINESS	GENERALLY
RECOGNIZED,	AND	DOES	IT	MATTER?

The	view	that	coastline	lengths	are	nonrectifiable	is	doubtless	held	true	by	many
people,	and	I	for	one	do	not	recall	ever	thinking	otherwise.	But	my	search	for
written	statements	to	this	effect	is	a	near	fiasco.	Aside	from	the	Perrin	quote	in
Chapter	2,	there	is	the	observation	in	Steinhaus	1954	that	“the	left	bank	of	the
Vistula,	when	measured	with	increasing	precision,	would	furnish	lengths	ten,
hundred	or	even	thousand	times	as	great	as	the	length	read	off	the	school	map	...
[A]	statement	nearly	approaching	reality	would	be	to	call	most	arcs	encountered
in	nature	nonrectifiable.	This	statement	is	contrary	to	the	belief	that
nonrectifiable	arcs	are	an	invention	of	mathematicians	and	that	natural	arcs	are
rectifiable:	it	is	the	opposite	that	is	true.”	But	neither	Perrin	nor	Steinhaus	follow
up	on	this	insight.
Let	me	also	retell	a	story	reported	by	C.	Fadiman.	His	friend	Edward	Kasner

would	ask	small	tots	“to	guess	the	length	of	the	eastern	coast	line	of	the	United
States.	After	a	‘sensible’	guess	had	been	made	...	he	would	...	point	out	that	this
figure	increased	enormously	if	you	measured	the	perimeter	of	each	bay	and	inlet,
then	that	of	every	projection	and	curve	of	each	of	these,	then	the	distance
separating	every	small	particle	of	coastline	matter,	each	molecule,	atom,	etc.
Obviously	the	coast	line	is	as	long	as	you	want	to	make	it.	The	children
understood	this	at	once;	Kasner	had	more	trouble	with	grownups.”	The	story	is
nice,	but	it	is	not	relevant	here:	Kasner’s	goal	was	not	to	point	out	an	aspect	of
Nature	worthy	of	further	exploration.
Therefore,	Mandelbrot	1967s	and	the	present	Essay	are	effectively	the	first

works	on	this	subject.
One	is	reminded	of	William	James	writing	in	The	Will	to	Believe	that	“The

great	field	for	new	discoveries	...	is	always	the	unclassified	residuum.	Round
about	the	accredited	and	orderly	facts	of	every	science	there	ever	floats	a	sort	of
dust-cloud	of	exceptional	observations,	of	occurrences	minute	and	irregular	and
seldom	met	with,	which	it	always	proves	more	easy	to	ignore	than	to	attend	to.
The	ideal	of	every	science	is	that	of	a	closed	and	completed	system	of	truth	...
Phenomena	unclassifiable	within	the	system	are	paradoxical	absurdities,	and



must	be	held	untrue	...	—one	neglects	or	denies	them	with	the	best	of	scientific
consciences...	Any	one	will	renovate	his	science	who	will	steadily	look	after	the
irregular	phenomena.	And	when	the	science	is	renewed,	its	new	formulas	often
have	more	of	the	voice	of	the	exception	in	them	than	of	what	were	supposed	to
be	the	rules.”
This	Essay,	whose	ambition	is	indeed	to	renew	the	Geometry	of	Nature,	relies

upon	many	puzzles	so	unclassified	that	they	are	only	published	when	the	censors
nod.	The	next	section	discusses	a	first	example.



THE	RICHARDSON	EFFECT

The	variation	of	the	approximate	length	L(ϵ)	obtained	by	Method	A	has	been
studied	empirically	in	Richardson	1961,	a	reference	that	chance	(or	fate)	put	in
my	way.	I	paid	attention	because	(Chapter	40)	I	knew	of	Lewis	Fry	Richardson
as	a	great	scientist	whose	originality	mixed	with	eccentricity.	As	we	shall	learn
in	Chapter	10,	we	are	indebted	to	him	for	some	of	the	most	profound	and	most
durable	ideas	regarding	the	nature	of	turbulence,	notably	the	notion	that
turbulence	involves	a	self-similar	cascade.	He	also	concerned	himself	with	other
difficult	problems,	such	as	the	nature	of	armed	conflict	between	states.	His
experiments	were	of	classic	simplicity,	but	he	never	hesitated	to	use	refined
concepts	when	he	deemed	them	necessary.
The	diagrams	reproduced	in	Plate	33,	found	among	his	papers	after	he	died,

were	published	in	a	near	confidential	(and	totally	inappropriate)	Yearbook.	They
all	lead	to	the	conclusion	that	there	are	two	constants,	which	we	shall	call	λ	and
D,	such	that—to	approximate	a	coastline	by	a	broken	line—one	needs	roughly
Fϵ–D	intervals	of	length	ϵ,	adding	up	to	the	length

L(ϵ)~Fϵ1–D.

The	value	of	the	exponent	D	seems	to	depend	upon	the	coastline	that	is	chosen,
and	different	pieces	of	the	same	coastline,	if	considered	separately,	may	produce
different	values	of	D.	To	Richardson,	the	D	in	question	was	a	simple	exponent	of
no	particular	significance.	However,	its	value	seems	to	be	independent	of	the
method	chosen	to	estimate	the	length	of	a	coastline.	Thus	D	seems	to	warrant
attention.



A	COASTLINE’S	FRACTAL	DIMENSION
(MANDELBROT	1967s)

Having	unearthed	Richardson’s	work,	I	proposed	(Mandelbrot	1967s)	that,
despite	the	fact	that	the	exponent	D	is	not	an	integer,	it	can	and	should	be
interpreted	as	a	dimension,	namely,	as	a	fractal	dimension.	Indeed,	I	recognized
that	all	the	above	listed	methods	of	measuring	L(ϵ)	correspond	to	nonstandard
generalized	definitions	of	dimension	already	used	in	pure	mathematics.	The
definition	of	length	based	on	the	coastline	being	covered	by	the	smallest	number
of	blotches	of	radius	ϵ	is	used	in	Pontrjagin	&	Schnirelman	1932	to	define	the
covering	dimension.	The	definition	of	length	based	on	the	coastline	being
covered	by	a	tape	of	width	2ϵ	implements	an	idea	of	Cantor	and	Minkowski
(Plate	32),	and	the	corresponding	dimension	is	due	to	Bouligand.	Yet	these	two
examples	only	hint	at	the	many	dimensions	(most	of	them	known	only	to	a	few
specialists)	that	star	in	diverse	specialized	chapters	of	mathematics.	A	certain
number	of	them	are	discussed	further	in	Chapter	39.
Why	did	mathematicians	introduce	this	plethora	of	distinct	definitions?

Because	in	some	cases	they	yield	distinct	values.	Luckily,	however,	such	cases
are	never	encountered	in	this	Essay,	and	the	list	of	possible	alternative
dimensions	can	be	reduced	to	two	that	I	have	not	yet	mentioned.	The	older	and
best	investigated	one	dates	back	to	Hausdorff	and	serves	to	define	fractal
dimension;	we	come	to	it	momentarily.	The	simpler	one	is	similarity	dimension:
it	is	less	general,	but	in	many	cases	is	more	than	adequate;	it	is	explored	in	the
following	chapter.
Clearly,	I	do	not	propose	to	present	a	mathematical	proof	that	Richardson’s	D

is	a	dimension.	No	such	proof	is	conceivable	in	any	natural	science.	The	goal	is
merely	to	convince	the	reader	that	the	notion	of	length	poses	a	conceptual
problem,	and	that	D	provides	a	manageable	and	convenient	answer.	Now	that
fractal	dimension	is	injected	into	the	study	of	coastlines,	even	if	specific	reasons
come	to	be	challenged,	I	think	we	shall	never	return	to	the	stage	when	D=1	was
accepted	thoughtlessly	and	naively.	He	who	continues	to	think	that	D=1	has	to
argue	his	case.
The	next	step,	to	explain	the	shape	of	the	coastlines	and	to	deduce	the	value	of



D	from	other	more	basic	considerations,	is	put	off	until	Chapter	28.	Suffice	at
this	point	to	announce	that	to	a	first	approximation	D=3/2.	This	value	is	much
too	large	to	describe	the	facts	but	more	than	sufficient	to	establish	that	it	is
natural,	proper,	and	expected	for	a	coastline’s	dimension	to	exceed	the	standard
Euclidean	value	D=1.



HAUSDORFF	FRACTAL	DIMENSION

If	we	accept	that	various	natural	coasts	are	really	of	infinite	length	and	that	the
length	based	on	an	anthropocentric	value	of	ϵ	gives	only	a	partial	idea	of	reality,
how	can	different	coastlines	be	compared	to	each	other?	Since	infinity	equals
four	times	infinity,	every	coastline	is	four	times	longer	than	each	of	its	quarters,
but	this	is	not	a	useful	conclusion.	We	need	a	better	way	to	express	the	sound
idea	that	the	entire	curve	must	have	a	“measure”	that	is	four	times	greater	than
each	of	its	fourths.
A	most	ingenious	method	of	reaching	this	goal	has	been	provided	by	Felix

Hausdorff.	It	is	intuitively	motivated	by	the	fact	that	the	linear	measure	of	a
polygon	is	calculated	by	adding	its	sides’	lengths	without	transforming	them	in
any	way.	One	may	say	(the	reason	for	doing	so	will	soon	become	apparent)	that
these	lengths	are	raised	to	the	power	D=1,	the	Euclidean	dimension	of	a	straight
line.	The	surface	measure	of	a	closed	polygon’s	interior	is	similarly	calculated
by	paving	it	with	squares,	and	adding	the	squares’	sides	raised	to	the	power	D=2,
the	Euclidean	dimension	of	a	plane.	When,	on	the	other	hand,	the	“wrong”
power	is	used,	the	result	gives	no	specific	information:	the	area	of	every	closed
polygon	is	zero,	and	the	length	of	its	interior	is	infinite.
Let	us	proceed	likewise	for	a	polygonal	approximation	of	a	coastline	made	up

of	small	intervals	of	length	ϵ.	If	their	lengths	are	raised	to	the	power	D,	we
obtain	a	quantity	we	may	call	tentatively	an	“approximate	measure	in	the
dimension	D.”	Since	according	to	Richardson	the	number	of	sides	is	N=Fϵ-D,
said	approximate	measure	takes	the	value	FϵDϵ-D=F.
Thus,	the	approximate	measure	in	the	dimension	D	is	independent	of	ϵ.	With

actual	data,	we	simply	find	that	this	approximate	measure	varies	little	with	ϵ.
In	addition,	the	fact	that	the	length	of	a	square	is	infinite	has	a	simple

counterpart	and	generalization:	a	coastline’s	approximate	measure	evaluated	in
any	dimension	d	smaller	than	D	tends	to	∞	as	ϵ	→	0.	Similarly,	the	area	and	the
volume	of	a	straight	line	are	zero.	And	when	d	takes	any	value	larger	than	D,	the
corresponding	approximate	measure	of	a	coastline	tends	to	0	as	ϵ	→	0.	The
approximate	measure	behaves	reasonably	if	and	only	if	d=D.



A	CURVE’S	FRACTAL	DIMENSION	MAY
EXCEED	1;	FRACTAL	CURVES

By	design,	the	Hausdorff	dimension	preserves	the	ordinary	dimension’s	role	as
exponent	in	defining	a	measure.
But	from	another	viewpoint,	D	is	very	odd	indeed:	it	is	a	fraction!	In

particular,	it	exceeds	1,	which	is	the	intuitive	dimension	of	curves	and	which
may	be	shown	rigorously	to	be	their	topological	dimension	DT.
I	propose	that	curves	for	which	the	fractal	dimension	exceeds	the	topological

dimension	1	be	called	fractal	curves.	And	the	present	chapter	can	be
summarized	by	asserting	that,	within	the	scales	of	interest	to	the	geographer,
coastlines	can	be	modeled	by	fractal	curves.	Coastlines	are	fractal	patterns.



Plate	31	MONKEYS	TREE
	
At	this	point,	the	present	small	incidental	plate	should	be	viewed	as	merely	a
decorative	drawing,	filling	a	gap.
However,	when	the	reader	has	finished	Chapter	14,	he	will	find	in	this

drawing	a	hint	to	help	unscramble	the	“architecture”	in	Plate	146.	A	more	sober
hint	resides	in	the	following	generator.





Plate	32	AN	EXAMPLE	OF	MINKOWSKI	SAUSAGE
	
When	a	mathematician	wants	to	“tame”	a	wildly	irregular	curve,	one	of	the

standard	procedures	is	to	select	a	radius	ϵ	and	to	draw	around	each	point	of	the
curve	a	disc	of	radius	ϵ.	This	procedure,	dating	back	at	least	to	Hermann
Minkowski	and	possibly	to	Georg	Cantor,	is	brutal	but	very	effective.	(As	to	the
term	sausage,	unverifiable	rumor	claims	it	is	a	leftover	of	an	application	of	this
procedure	to	the	Brownian	curves	of	Norbert	Wiener.)
In	the	present	illustration	such	smoothing	is	not	applied	to	an	actual	coastline

but	to	a	theoretical	curve	that	will	be	constructed	later	(Plate	49)	by	continual
addition	of	ever	smaller	detail.	Comparing	the	piece	of	sausage	drawn	to	the
right	with	the	rightmost	end	of	the	sausage	drawn	above	it,	we	see	that	the
construction	of	the	curve	passes	a	critical	stage	when	it	begins	to	involve	details
of	size	smaller	than	ϵ.	Later	stages	of	construction	leave	the	sausage	essentially
unaffected.

Plate	33	RICHARDSON’S	EMPIRICAL	DATA	CONCERNING	THE



RATE	OF	INCREASE	OF	COASTLINES’	LENGTHS
	
This	Figure	reproduces	Richardson’s	experimental	measurements	of	length

performed	on	various	curves	using	equal-sided	polygons	of	increasingly	short
side	ϵ.	As	expected,	increasingly	precise	measurements	made	on	a	circle
stabilize	very	rapidly	near	a	well-determined	value.
In	the	case	of	coastlines,	on	the	contrary,	the	approximate	lengths	do	not

stabilize	at	all.	As	the	yardstick	length	ϵ	tends	to	zero,	the	approximate	lengths,
as	plotted	on	doubly	logarithmic	paper,	fall	on	a	straight	line	of	negative	slope.
The	same	is	true	of	boundaries	between	countries.	Richardson’s	search	in
encyclopedias	reveals	notable	differences	in	the	lengths	of	the	common	land
frontiers	claimed	by	Spain	and	Portugal	(987	versus	1214	km),	and	by	the
Netherlands	and	Belgium	(380	versus	449	km).	With	a	slope	of	-0.25,	the	20%
differences	between	these	claims	can	be	accounted	for	by	assuming	that	the	ϵ’s
differ	by	a	factor	of	2,	which	is	not	unlikely.
To	Richardson,	his	lines’	slopes	had	no	theoretical	interpretation.	The	present

Essay,	on	the	other	hand,	interprets	coastlines	as	approximate	fractal	curves,	and
uses	the	slope	of	each	line	as	an	estimate	of	1-D,	where	D	is	the	fractal
dimension.



6

Snowflakes	and	Other	Koch	Curves

In	order	to	understand	fully	my	interpretation	of	Richardson’s	D	as	a	fractal
dimension,	we	move	from	natural	phenomena	over	which	we	have	no	control,	to
geometric	constructs	we	can	design	at	will.



SELF-SIMILARITY	AND	CASCADES

Until	now	we	stressed	that	coastlines’	geometry	is	complicated,	but	there	is	also
a	great	degree	of	order	in	their	structure.
Although	maps	drawn	at	different	scales	differ	in	their	specific	details,	they

have	the	same	generic	features.	In	a	rough	approximation,	the	small	and	large
details	of	coastlines	are	geometrically	identical	except	for	scale.
One	may	think	of	such	a	shape	as	drawn	by	a	sort	of	fireworks,	with	each

stage	creating	details	smaller	than	those	of	the	preceding	stages.	However,	a
better	term	is	suggested	by	our	Lewis	Richardson’s	noted	work	on	turbulence:
the	generating	mechanism	may	be	called	a	cascade.
When	each	piece	of	a	shape	is	geometrically	similar	to	the	whole,	both	the

shape	and	the	cascade	that	generate	it	are	called	self-similar.	This	chapter	probes
self-similarity	using	very	regular	figures.
The	most	extreme	contrasts	to	self-similar	shapes	are	provided	by	curves	that

(a)	have	a	single	scale,	like	the	circle,	or	(b)	have	two	clearly	separated	scales,
like	a	circle	adorned	with	“scallops.”	Such	shapes	can	be	described	as
scalebound.



COASTLIKE	TERAGONS	AND	THE	TRIADIC
KOCH	CURVE	

To	insure	that	an	infinite	number	of	scales	of	length	are	present	in	a	curve,	the
safest	is	to	put	them	in	deliberately	and	separately.	A	regular	triangle	of	side	1
has	a	single	scale,	triangles	of	side	⅓	have	a	smaller	scale,	and	triangles	of	side
(⅓)k	are	of	increasingly	small	scale.	And	by	piling	these	triangles	on	top	of	each
other,	as	in	Plate	42,	one	is	left	with	a	shape	combining	all	scales	below	1.
In	effect,	we	assume	that	a	bit	of	coastline	drawn	to	a	scale	of	1	/	1,000,000	is

a	straight	interval	of	length	1,	to	be	called	initiator.	Then	we	assume	that	the
detail	that	becomes	visible	on	a	map	at	3/1,000,000	replaces	the	earlier	interval’s
middle	third	by	a	promontory	in	the	shape	of	an	equilateral	triangle.	The
resulting	second	approximation	is	an	broken	line	formed	of	four	intervals	of
equal	lengths,	to	be	called	generator.	We	further	assume	that	the	new	detail	that
appears	at	9/1,000,000	results	from	the	replacement	of	each	of	the	generator’s
four	intervals	by	the	generator	reduced	in	a	ratio	of	one-third,	forming
subpromontories.
Proceeding	in	this	fashion,	we	break	each	straight	line	interval,	replacing	the

initiator	by	an	increasing	broken	curve.	Since	we	deal	with	them	throughout	this
Essay,	let	me	coin	for	such	curves	the	term	teragon,	from	the	Greek	τϵραs,
meaning	“monster,	strange	creature,”	and	γωνα,	meaning	“corner,	angle.”	Very
appropriately,	the	metric	system	uses	tera	as	prefix	for	the	factor	1012.
And,	if	the	same	cascade	process	is	made	to	continue	to	infinity,	our	teragons

converge	to	a	limit	first	considered	by	von	Koch	1904,	Plate	45.	We	must	be
specific,	and	shall	call	it	the	triadic	Koch	curve	and	denote	it	by	 .
This	curve’s	area	vanishes,	as	is	obvious	on	Plate	43.	On	the	other	hand,	each

stage	of	construction	increases	its	total	length	in	a	ratio	of	4/3,	hence	the	limit
curve	is	of	infinite	length.	Furthermore,	it	is	continuous,	but	it	has	no	definite
tangent	anywhere—like	the	graph	of	a	continuous	function	without	a	derivative.
As	a	model	of	a	coastline,	 	is	only	a	suggestive	approximation,	but	not

because	it	is	too	irregular,	rather	because,	in	comparison	with	a	coastline,	its
irregularity	is	far	too	systematic.	Chapters	24	and	28	“loosen	it	up”	to	make	it	fit
better.



THE	KOCH	CURVE	AS	MONSTER

As	introduced	in	the	preceding	section,	the	Koch	curve	must	seem	the	most
intuitive	thing	in	geometry.	But	the	conventional	motivation	for	it	is	totally
different.	So	is	the	conventional	attitude	towards	it	on	the	part	of
mathematicians.	They	are	all	but	unanimous	in	proclaiming	that	 	is	a
monstrous	curve!	For	elaboration,	let	us	look	up	The	Crisis	of	Intuition,	Hahn
1956,	which	will	serve	us	repeatedly.	We	read	that	“the	character	of	[a
nonrectifiable	curve	or	of	a	curve	without	a	tangent]	entirely	eludes	intuition;
indeed	after	a	few	repetitions	of	the	segmenting	process	the	evolving	figure	has
grown	so	intricate	that	intuition	can	scarcely	follow;	and	it	forsakes	us
completely	as	regards	the	curve	that	is	approached	as	a	limit.	Only	thought,	or
logical	analysis,	can	pursue	this	strange	object	to	its	final	form.	Thus,	had	we
relied	on	intuition	in	this	instance,	we	should	have	remained	in	error,	for
intuition	seems	to	force	the	conclusion	that	there	cannot	be	curves	lacking	a
tangent	at	any	point.	This	first	example	of	the	failure	of	intuition	involves	the
fundamental	concepts	of	differentiation.”
The	best	one	can	say	of	these	words	is	that	they	stop	short	of	a	celebrated

exclamation	of	Charles	Hermite,	writing	on	May	20,	1893,	to	T.	Stieltjes	of
“turning	away	in	fear	and	horror	from	this	lamentable	plague	of	functions	with
no	derivatives.”	(Hermite	&	Stieltjes	1905,	II,	p.	318.)	One	likes	to	believe	that
great	men	are	perfect,	and	that	Hermite	was	being	ironic,	but	Lebesgue’s	1922
Notice	(Lebesgue	1972-,	I)	suggests	otherwise.	Having	written	a	paper
concerned	with	surfaces	devoid	of	tangent	planes,	“thoroughly	crumpled
handkerchiefs,”	Lebesgue	wanted	it	published	by	the	Académie	des	Sciences,
but	“Hermite	for	a	moment	opposed	its	inclusion	in	the	Comptes	Rendus;	this
was	about	the	time	when	he	wrote	to	Stieltjes....”
We	recall	that	Perrin	and	Steinhaus	knew	better,	but	the	only	mathematician	to

argue	otherwise	on	the	basis	of	intuition	alone	(Steinhaus	argues	on	the	basis	of
fact)	is	Paul	Levy	(Levy	1970):	“[I	have]	always	been	surprised	to	hear	it	said
that	geometric	intuition	inevitably	leads	one	to	think	that	all	continuous
functions	are	differentiable.	From	my	first	encounter	with	the	notion	of
derivative,	my	experience	proved	that	the	contrary	is	true.”



These	voices	had	not	been	heard,	however.	Not	only	near	every	book	but
every	science	museum	proclaims	that	nondifferentiable	curves	are	counter-
intuitive,	“monstrous,”	“pathological,”	or	even	“psychopathic.”



THE	KOCH	CURVE,	TAMED.	THE	DIMENSION
D=log	4/log	3=1.2618

I	claim	that	a	Koch	curve	is	a	rough	but	vigorous	model	of	a	coastline.	For	a	first
quantitative	test,	let	us	investigate	the	length	L(ϵ)	of	the	triadic	Koch	teragon
whose	sides	are	of	length	ϵ.	This	lengths	can	be	measured	exactly,	and	the	result
is	extraordinarily	satisfying:

L(ϵ)=ϵ1-D.

This	exact	formula	is	identical	with	Richardson’s	empiric	law	relative	to	the
coast	of	Britain.	For	the	triadic	Koch	curve,

D=log	4/log	3~1.2618,

hence	D	lies	in	the	range	of	values	observed	by	Richardson!
	PROOF:	Clearly,	L(1)=1	and

L(ϵ/3)=(4/3)L(ϵ).

This	equation	has	a	solution	of	the	form	L(ϵ)=(1-D	if	D	satisfies

3D-1=4/3.

Hence	D=log	4/log	3,	as	asserted.
Naturally,	the	Koch	D	is	not	an	empirical	but	a	mathematical	constant.

Therefore	the	argument	for	calling	D	a	dimension	becomes	even	more
persuasive	in	the	case	of	the	Koch	curve	than	in	the	case	of	coastlines.
On	the	other	hand,	the	approximate	Hausdorff	measure	in	the	dimension	D	(a

notion	introduced	in	the	preceding	chapter)	equals	ϵD	multiplied	by	the	number
of	legs	of	length	ϵ,	that	is,	equals	ϵD.	ϵ-D=1.	This	is	a	good	indication	that	the
Hausdorff	dimension	is	D.	Unfortunately,	the	Hausdorff	definition	is
disappointingly	difficult	to	handle	rigorously.	Moreover,	even	if	it	had	been	easy
to	handle,	the	generalization	of	dimension	beyond	integers	is	so	far-reaching	an
idea	that	one	should	welcome	further	motivation	for	it.



THE	SIMILARITY	DIMENSION

It	happens	that	in	the	case	of	self-similar	shapes	a	very	easy	further	motivation	is
available	in	the	notion	of	similarity	dimension.	One	often	hears	mathematicians
use	the	similarity	dimension	to	guess	the	Hausdorff	dimension,	and	the	bulk	of
the	present	Essay	encounters	only	cases	where	this	guess	is	correct.	In	their
context,	there	can	be	no	harm	in	thinking	of	fractal	dimension	as	being
synonymous	with	similarity	dimension.	 	We	have	here	a	counterpart	to	the	use
of	topological	dimension	as	synonymous	with	“intuitive”	dimension.
As	a	motivating	prelude,	let	us	examine	the	standard	self-similar	shapes:

intervals	in	the	line,	rectangles	in	the	plane,	and	the	like;	see	Plate	44.	Because	a
straight	line’s	Euclidean	dimension	is	1,	it	follows	for	every	integer	“base”	b	that
the	“whole”	interval	0≤x<X	may	be	“paved”	(each	point	being	covered	once	and
only	once)	by	N=b	“parts.”	These	“parts”	are	the	intervals	(k-1)X/b≤x<kX/b,
where	k	goes	from	1	to	b.	Each	part	can	be	deduced	from	the	whole	by	a
similarity	of	ratio	r(N)=1/b=1/N.
Likewise,	because	a	plane’s	Euclidean	dimension	is	2,	it	follows	that	whatever

the	value	of	b,	the	“whole”	made	up	of	a	rectangle	0≤x<X;	0≤y<Y	can	be
“paved”	exactly	by	N=b2	parts.	These	parts	are	rectangles	defined	by	the
combined	inequalities

(k-1)X/b≤x<kX/b,	
and	(h-1)Y/b≤y<hY/b,

wherein	k	and	h	go	from	1	to	b.	Each	part	can	now	be	deduced	from	the	whole
by	a	similarity	of	ratio	r(N)=1/b=1/N½.
For	a	rectangular	parallelepiped,	the	same	argument	gives	us	r(N)=1/N⅓.
And	there	is	no	problem	in	defining	spaces	whose	Euclidean	dimension	is

E>3.	(The	Euclidean—or	Cartesian—dimension	is	denoted	by	E	in	this	book.)
All	D-dimensional	parallelepipeds	defined	for	D≤E	satisfy

r(N)=1/N1/D.

Thus,

NrD=1.



Equivalent	alternative	expressions	are

log	r(N)=log	(1/N1/D)=-(log	N)/D,	
D=-log	N/log	r(N)=log	N/log	(1/r).

Now	let	us	move	on	to	nonstandard	shapes.	In	order	for	the	exponent	of	self-
similarity	to	have	formal	meaning,	the	sole	requirement	is	that	the	shape	be	self-
similar,	i.e.,	that	the	whole	may	be	split	up	into	N	parts,	obtainable	from	it	by	a
similarity	of	ratio	r	(followed	by	displacement	or	by	symmetry).	The	D	obtained
in	this	fashion	always	satisfies

0≤D≤E.

In	the	example	of	the	triadic	Koch	curve,	N=4	and	r=⅓,	hence	D=log	4/log	3,
identical	to	the	Hausdorff	dimension.



CURVES;	TOPOLOGICAL	DIMENSION

Thus	far,	we	have	been	casual	in	calling	Koch’s	K	a	curve,	but	we	must	return	to
this	notion.	Intuitively,	a	standard	arc	is	a	connected	set	that	becomes
disconnected	if	any	single	point	is	removed.	And	a	closed	standard	curve	is	a
connected	set	that	separates	into	standard	arcs	if	2	points	are	removed.	For	the
same	reason,	Koch’s	K	is	a	curve.
The	mathematician	says	that	all	the	shapes	with	the	above	property,	e.g.,	R,	[0,

1]	or	a	circle,	are	of	topological	dimension	DT=1.	Thus,	yet	another	notion	of
dimension	has	to	be	considered!	Being	disciples	of	William	of	Ockham,	all
scientists	know	that	“entities	must	not	be	multiplied	beyond	necessity.”	It	must
therefore	be	confessed	that	our	switching	back	and	forth	between	several	near
equivalent	forms	of	fractal	dimension	is	a	matter	of	convenience.	However,	the
coexistence	of	a	fractal	and	a	topological	dimension	is	a	matter	of	necessity.
Readers	who	skipped	the	digressive	definition	of	fractal	in	Chapter	3	are	advised
to	scan	it	now,	and	everyone	is	advised	to	read	the	entry	devoted	to
DIMENSION	in	Chapter	41.



INTUITIVE	MEANING	OF	D	IN	THE	PRESENCE
OF	CUTOFFS	A	AND	λ

Cesàro	1905	begins	with	the	motto,

The	will	is	infinite	
and	the	execution	confined,	
the	desire	is	boundless	
and	the	act	a	slave	to	limit.

Indeed,	limits	apply	to	scientists	no	less	than	to	Shakespeare’s	Troilus	and
Cressida.	To	obtain	a	Koch	curve,	the	cascade	of	smaller	and	smaller	new
promontories	is	pushed	to	infinity,	but	in	Nature	every	cascade	must	stop	or
change	character.	While	endless	promontories	may	exist,	the	notion	that	they	are
self-similar	can	only	apply	between	certain	limits.	Below	the	lower	limit,	the
concept	of	coastline	ceases	to	belong	to	geography.
It	is	therefore	reasonable	to	view	the	real	coastline	as	involving	two	cutoff

scales.	Its	outer	cutoff	Ω	might	be	the	diameter	of	the	smallest	circle
encompassing	an	island,	or	perhaps	a	continent,	and	the	inner	cutoff	∈	might	be
the	20	meters	mentioned	in	Chapter	5.	Actual	numerical	values	are	hard	to
pinpoint,	but	the	need	for	cutoffs	is	unquestionable.
Yet,	after	the	very	big	and	the	very	small	details	are	cut	off,	D	continues	to

stand	for	an	effective	dimension	as	described	in	Chapter	3.	Strictly	speaking,	the
triangle,	the	Star	of	David,	and	the	finite	Koch	teragons	are	of	dimension	1.
However,	both	intuitively	and	from	the	pragmatic	point	of	view	of	the	simplicity
and	naturalness	of	the	corrective	terms	required,	it	is	reasonable	to	consider	an
advanced	Koch	teragon	as	being	closer	to	a	curve	of	dimension	log	4/log	3	than
to	a	curve	of	dimension	1.
As	for	a	coastline,	it	is	likely	to	have	several	separate	dimensions	(remember

the	balls	of	thread	in	Chapter	3).	Its	geographic	dimension	is	Richardson’s	D.
But	in	the	range	of	sizes	of	interest	in	physics,	the	coastline	may	have	a	different
dimension—associated	with	the	concept	of	interface	between	water,	air,	and
sand.



ALTERNATIVE	KOCH	GENERATORS	AND	SELF-
AVOIDING	KOCH	CURVES

Let	us	restate	the	basic	principle	of	construction	of	the	triadic	Koch	curve.	One
begins	with	two	shapes,	an	initiator	and	a	generator.	The	latter	is	an	oriented
broken	line	made	up	of	N	equal	sides	of	length	r.	Thus	each	stage	of	the
construction	begins	with	a	broken	line	and	consists	in	replacing	each	straight
interval	with	a	copy	of	the	generator,	reduced	and	displaced	so	as	to	have	the
same	end	points	as	those	of	the	interval	being	replaced.	In	all	cases,	D=log	N/log
(1/r).
It	is	easy	to	change	this	construction	by	modifying	the	generator,	in	particular

by	combining	promontories	with	bays,	as	exemplified	in	upcoming	plates.	In	this
way	we	obtain	Koch	teragons	that	converge	to	curves	whose	dimensions	are
between	1	and	2.
All	these	Koch	curves	are	self-avoiding:	have	no	self-intersection.	This	is	why

their	wholes	can	be	divided	into	disjoint	parts	with	no	ambiguity,	in	order	to
define	D.	However,	a	Koch	construction	using	carelessly	chosen	generators	risks
self-contact	or	self-intersection,	or	even	self-overlap.	When	the	desired	D	is
small,	it	is	easy	to	avoid	double	points	by	careful	choice	of	the	generator.	The
task	becomes	increasingly	difficult	as	D	increases,	but	remains	possible	as	long
as	D<2.
However,	any	Koch	construction	that	attempts	to	reach	a	dimension	D>2	leads

inevitably	to	curves	that	cover	the	plane	infinitely	many	times.	The	case	D=2
deserves	a	special	discussion	to	be	provided	in	Chapter	7.



KOCH	ARCS	AND	HALF	LINES

In	some	cases,	the	term	Koch	curve	must	be	replaced	by	more	precise,	and
pedantic,	terminology.	The	shape	at	the	bottom	of	Plate	44	is	technically	the
Koch	map	of	a	line	interval,	and	can	be	called	a	Koch	arc.	Thus	the	boundary	in
Plate	45	is	made	of	three	Koch	arcs.	And	it	is	often	useful	to	extrapolate	an	arc
into	a	Koch	half	line:	The	extrapolation	enlarges	the	original	arc,	using	its	left
end	point	as	focus,	in	the	ratio	1/r=3,	then	in	the	ratio	32	and	so	on.	Each
successive	extrapolate	contains	the	preceding	one,	and	the	limit	curve	contain	all
the	intermediate	finite	stages.



DEPENDENCE	OF	MEASURE	ON	THE	RADIUS,
WHEN	D	IS	A	FRACTION

Let	us	now	extend	from	Euclidean	to	fractal	dimensions	another	standard	result
in	Euclid.	For	idealized	physical	objects	of	uniform	density	p,	the	weight	M(R)
of	a	rod	of	length	2R,	of	a	disc	of	radius	R	or	of	a	ball	of	radius	R	is	proportional
to	pRE.	For	E=1,	2,	and	3,	the	proportionality	constants	are	respectively	equal	to
2,	2π,	and	4π/3.
The	rule	M(R)∝RD	also	applies	to	fractals	when	they	are	self-similar.
In	the	triadic	Koch	case,	the	proof	is	easiest	when	the	origin	is	the	end	point	of

a	Koch	half	line.	When	a	circle	of	radius	R0=3k	(with	k≥0)	contains	the	mass
M(R0),	the	circle	of	radius	R=R0/3	contains	the	mass	M(R)=M(R0)/4.	Hence,

M(R)=M(R0)(R/R0)D	=	[M(R0)R0-D]RD.

Consequently,	the	ratio	M(R)/RD	is	independent	of	R,	and	can	serve	to	define
a	“density”	p.



KOCH	MOTION

Imagine	a	point	moving	along	a	Koch	half	line,	taking	equal	time	to	cover	arcs
of	equal	measure.	If	we	then	invert	the	function	giving	time	as	function	of
position,	we	obtain	a	position	as	function	of	time,	that	is,	a	motion.	Of	course	its
velocity	is	infinite.



PREVIEW	OF	RANDOM	COASTLINES

The	Koch	curve	reminds	us	of	real	maps,	but	has	major	defects	one	encounters
almost	unchanged	in	the	early	models	of	every	case	study	in	this	Essay.	Its	parts
are	identical	to	each	other,	and	the	self-similarity	ratio	r	must	be	part	of	a	strict
scale	of	the	form	b-k,	where	b	is	an	integer,	namely,	⅓,	(⅓)2,	and	so	on.	Thus,	a
Koch	curve	is	a	very	preliminary	model	of	a	coastline.
I	have	developed	diverse	ways	of	avoiding	both	defects,	but	all	involve

probabilistic	complications	which	are	better	tackled	after	we	settle	many	issues
concerning	nonrandom	fractals.	However,	curious	readers	familiar	with
probability	may	peek	ahead	to	the	models	based	on	my	“squig	curves”	(Chapter
24),	and,	more	important,	on	level	curves	of	fractional	Brown	surfaces	(Chapter
28).
The	same	method	of	exposition	is	followed	later	in	this	Part.	Numerous

patterns	of	Nature	are	discussed	against	the	background	of	systematic	fractals
that	provide	a	very	preliminary	model,	while	the	random	models	I	advocate	are
postponed	to	later	chapters.
REMINDER.	In	all	cases	where	D	is	known	precisely,	is	not	an	integer,	and	is

written	in	decimal	form	to	enable	comparisons,	it	is	carried	to	four	decimals.
This	number	4	is	chosen	to	make	obvious	that	D	is	neither	an	empirical	value
(all	empirical	values	are	known	at	present	to	1	or	2	decimals),	nor	an
incompletely	determined	geometric	value	(at	present,	the	latter	are	known	either
to	1	or	2	decimals,	or	to	6	decimals	and	more.)



COMPLEX,	OR	SIMPLE	AND	REGULAR?

Koch	curves	exhibit	a	novel	and	most	interesting	combination	of	complexity	and
simplicity.	At	first	blush,	they	are	enormously	more	complicated	than	the
standard	curves	of	Euclid.	However,	the	Kolmogorov	and	Chaitin	theory	of
mathematical	algorithms	suggests	the	contrary	conclusion,	that	a	Koch	curve	is
not	significantly	more	complicated	than	a	circle!	This	theory	starts	with	a
collection	of	“letters”	or	“atomic	operations,”	and	takes	the	length	of	the	shortest
known	algorithm	that	yields	a	desired	function	as	an	objective	upper	bound	to
the	function’s	complexity.
To	apply	this	way	of	thinking	to	the	construction	of	curves,	let	the	letters	or

“atoms”	of	the	graphic	process	be	straight	“strokes.”	In	this	alphabet,	tracing	a
regular	polygon	requires	a	finite	number	of	strokes,	each	described	by	a	finite
number	of	lines	of	instruction,	hence	it	is	a	task	of	finite	complexity.	By	contrast,
a	circle	involves	an	“infinite	number	of	infinitely	short	strokes,”	hence	seems	a
curve	of	infinite	complexity.	However,	if	the	construction	of	the	circle	is	made	to
proceed	recursively,	it	is	seen	to	involve	only	a	finite	number	of	instructions,
hence	to	be	also	a	task	of	finite	complexity.	For	example,	starting	with	a	regular
polygon	of	2m	sides	(m>2),	one	replaces	each	stroke	of	length	2	sin(π/2m)	by	two
strokes	of	length	2	sin(π/2m+1);	then	the	loop	starts	again.	To	construct	Koch
curves,	the	same	approach	is	used,	but	with	simpler	operations,	since	the	stroke
length	has	simply	to	be	multiplied	by	r,	and	the	replacement	strokes’	relative
positions	are	the	same	throughout.	Hence	this	punch-line:	When	complexity	is
measured	by	the	presently	best	algorithm’s	length	in	this	particular	alphabet,	a
Koch	curve	is	actually	simpler	than	a	circle.
This	peculiar	ranking	of	curves	by	relative	simplicity	should	not	be	taken

seriously.	Most	notably,	the	contrary	conclusion	is	reached	if	the	alphabet	is
based	on	the	compass	and	ruler—meaning	that	the	circle	is	relabeled	as
“atomic.”	Nevertheless,	as	long	as	a	sensible	alphabet	is	used,	any	Koch	curve	is
not	only	of	finite	complexity	but	simpler	than	most	curves	in	Euclid.
Being	fascinated	with	etymology,	I	cannot	leave	this	discussion	without

confessing	that	I	hate	to	call	a	Koch	curve	“irregular.”	This	term	is	akin	to	ruler,
and	is	satisfactory	as	long	as	one	keeps	to	the	meaning	of	ruler	as	an	instrument



used	to	trace	straight	lines:	Koch	curves	are	far	from	straight.	But	when	thinking
of	a	ruler	as	a	king	(=	rex,	same	Latin	root),	that	is,	as	one	who	hands	down	a	set
of	detailed	rules	to	be	followed	slavishly,	I	protest	silently	that	nothing	is	more
“regular”	than	a	Koch	curve.

Plate	42	TRIADIC	KOCH	ISLAND	OR	SNOWFLAKE	K.	ORIGINAL
CONSTRUCTION	BY	HELGE	VON	KOCH	(COASTLINE	DIMENSION

D=log	4/log	3~1.2618)
	
The	construction	begins	with	an	“initiator,”	namely,	a	black	Δ	(equilateral
triangle)	with	sides	of	unit	length.	Then	one	pastes	upon	the	midthird	of	each
side	a	Δ-shaped	peninsula	with	sides	of	length	⅓.	This	second	stage	ends	with	a
star	hexagon,	or	Star	of	David.	The	same	process	of	addition	of	peninsulas	is
repeated	with	the	Star’s	sides,	and	then	again	and	again,	ad	infinitum.
Each	addition	displaces	the	points	in	an	interval’s	midthird	in	a	perpendicular

direction.	The	triangular	initiator	vertices	never	move.	The	other	9	vertices	of	the
Star	of	David	achieve	their	final	positions	after	a	finite	number	of	stages.	Still
other	points	are	displaced	without	end,	but	move	by	decreasing	amounts	and
eventually	converge	to	limits,	which	define	the	coastline.
The	island	itself	is	the	limit	of	a	sequence	of	domains	bounded	by	polygons,

each	of	which	contains	the	domain	bounded	by	the	preceding	polygon.	A
photographic	negative	of	this	limit	is	part	of	Plate	45.
Observe	that	this	and	many	other	plates	in	the	book	represent	islands	or	lakes

rather	than	coastlines,	and	in	general	represent	“solid	areas”	rather	than	their
contours.	This	method	takes	fullest	advantage	of	the	fine	resolution	of	our
graphics	system.
WHY	A	TANGENT	CANNOT	BE	DEFINED	HERE.	Take	as	fixed	point	a



vertex	of	the	original	Δ	and	draw	a	cord	to	a	point	on	the	limit	coastline.	As	this
point	converges	clockwise	to	the	vertex,	the	connecting	cord	oscillates	within	a
30°	angle,	and	never	tends	to	a	limit	one	could	call	a	clockwise	tangent.	The
counter-clockwise	tangent	is	not	defined	either.	A	point	where	there	is	no	tangent
because	clockwise	and	counterclockwise	chords	oscillate	in	well-defined	angles
is	called	hyperbolic.	The	points	that	K	attains	asymptotically	fail	to	have	a
tangent	for	a	different	reason.

Plate	43	TRIADIC	KOCH	ISLAND	OR	SNOWFLAKE	K.	ALTERNATIVE
CONSTRUCTION	BY	ERNEST	CESARO	(COASTLINE	DIMENSION

D=log	4/log	3~1.2618)
	
An	alternative	construction	of	the	Koch	island	is	given	in	Cesàro	1905,	a	work
of	such	charm	as	to	make	me	forget	the	hard	search	for	the	original	(and	the
irritation	at	later	finding	it	reprinted	in	Cesàro	1964).	Here	is	a	free	translation	of
a	few	ecstatic	lines.	“This	endless	imbedding	of	this	shape	into	itself	gives	us	an
idea	of	what	Tennyson	describes	somewhere	as	the	inner	infinity,	which	is	after
all	the	only	one	we	could	conceive	in	Nature.	Such	similarity	between	the	whole
and	its	parts,	even	its	infinitesimal	parts,	leads	us	to	consider	the	triadic	Koch
curve	as	truly	marvelous.	Had	it	been	given	life,	it	would	not	be	possible	to	do
away	with	it	without	destroying	it	altogether	for	it	would	rise	again	and	again
from	the	depths	of	its	triangles,	as	life	does	in	the	Universe.”
Cesàro’s	initiator	is	a	regular	hexagon	with	sides	of	length	√3/3.	The

surrounding	ocean	is	in	gray.	Increasingly	small	Δ-shaped	bays	are	squeezed	in
ad	infinitum,	the	Koch	island	being	the	limit	of	decreasing	approximations.
This	method	of	construction	and	Koch’s	method	described	in	Plate	42	are



carried	out	in	parallel	in	the	present	plate.	In	this	way,	the	Koch	coastline	is
squeezed	between	an	inner	and	an	outer	teragon	that	grow	increasingly	close	to
each	other.	One	can	think	of	a	cascade	process	starting	with	three	successive
rings:	solid	land	(in	black),	swamp	(in	white),	and	water	(in	gray).	Each	cascade
stage	transfers	chunks	of	swamp	to	either	solid	land	or	water.	At	the	limit	the
swamp	exhausts	itself	from	a	“surface”	down	to	a	curve.
MIDPOINT	DISPLACEMENT	INTERPRETATION.	It	involves	the

following	generator	and	next	step	(the	angle	here	is	120°)

When	placed	outside	the	inner	kth	teragon,	it	yields	the	outer	kth	teragon;	when
placed	inside	the	outer	kth	teragon,	it	yields	the	inner	(k+1)st	teragon.	This
approach	is	useful	in	Plates	64	and	65,	and	in	Chapter	25.

Plate	44	TWO	KINDS	OF	SELF-SIMILARITY:	STANDARD	AND
FRACTAL

	
The	top	Figures	recall	how,	given	an	integer	(here,	b=5),	a	straight	interval	of
unit	length	may	be	divided	into	N=b	subintervals	of	length	r=1/b.	Similarly,	a



unit	square	can	be	divided	into	N=b2	squares	of	side	r=1/b.	In	either	case,	log
N/log	(1/r)	is	the	shape’s	similarity	dimension—a	notion	school	geometry	feels
no	need	of	pinpointing,	since	its	value	reduces	to	the	Euclidean	dimension.
The	bottom	Figure	is	a	triadic	Koch	curve,	one-third	of	a	Koch	coastline.	It

too	can	be	decomposed	into	reduced-size	pieces,	with	N=4	and	r=⅓.	The
resulting	similarity	dimension	D=log	N/log	(1/r)	is	not	an	integer	(its	value	is
~1.2618),	and	it	corresponds	to	nothing	in	standard	geometry.
Hausdorff	showed	that	D	is	of	use	in	mathematics,	and	that	it	is	identical	to

the	Hausdorff,	or	fractal,	dimension.	My	claim	is	that	D	is	also	vital	in	natural
science.



Plate	45	TRIADIC	KOCH	LAKE	K	(COASTLINE	DIMENSION	D=log
4/log	3~1.2618)

	
The	construction	described	in	the	captions	of	Plates	42	and	43	has	been	carried
much	further,	and	a	photographic	negative	taken,	yielding	a	lake	rather	than	an
island.
The	peculiar	pattern	of	gray	“waves”	that	fills	this	lake	is	not	haphazard.	It	is

explained	in	Plates	68	and	69.
The	coastline	on	this	Plate	is	not	self-similar,	because	a	loop	cannot	be

decomposed	into	the	union	of	other	loops.	◁	However,	Chapter	13	uses	the
notion	of	self-similarity	within	an	infinite	collection	of	islands.

Plates	46	and	47	ALTERNATIVE	KOCH	ISLAND	AND	LAKE
(COASTLINE	DIMENSION	D=log	9/log	7~1.1291)

	
This	variant	of	the	Koch	island	is	due	to	W.	Gosper	(Gardner	1976):	the	initiator
is	a	regular	hexagon,	and	the	generator	is

PLATE	46.	In	this	plate,	several	stages	of	construction	of	the	“Gosper	island”
are	drawn	as	a	bold	line	“wrapping.”	The	corresponding	thin	line	“filling”	is
explained	in	Plate	70.
PLATE	47.	This	is	an	advanced	construction	stage	of	the	“wrapping.”	The



variable	thickness	“filling”	is,	again,	explained	in	Plate	70.
Observe	that,	contrary	to	Koch’s	original,	the	present	generator	is	symmetric

with	respect	to	its	center	point.	It	combines	peninsulas	and	bays	in	such	a	way
that	the	island’s	area	remains	constant	throughout	the	construction.	The	same	is
true	of	the	Koch	curves	up	to	Plate	57.
TILING.	The	plane	can	be	covered	using	Gosper	islands.	This	property	is

called	tiling.
PERTILING.	Moreover,	the	present	island	is	self-similar,	as	is	made	obvious

by	using	variable-widths	hatching.	That	is,	each	island	divides	into	seven
“provinces”	deducible	from	the	whole	by	a	similarity	of	ratio	r=1/√7.	I	denote
this	property	by	the	neologism	pertiling,	coined	with	the	Latin	prefix	per-,	as
used	for	example	in	“to	perfume”	=	“to	penetrate	thoroughly	with	fumes.”
Most	tiles	cannot	be	subdivided	into	equal	tiles	similar	to	the	whole.	For

example,	it	is	a	widespread	source	of	irritation	that	hexagons	put	together	do	not
quite	make	up	a	bigger	hexagon.	The	Gosper	flake	fudges	the	hexagon	just
enough	to	allow	exact	subdivision	into	7.	Other	fractal	tiles	allow	subdivision
into	different	numbers	of	parts.
FRANCE.	A	geographical	outline	of	unusual	regularity	often	described	as	the

Hexagon,	namely	the	outline	of	France,	resembles	a	hexagon	less	than	it
resembles	Plate	47	(although	Brittany	is	undernourished	here.)

	REASON	WHY	A	TANGENT	CANNOT	BE	DEFINED	AT	ANY	POINT
OF	THESE	COASTLINES.	Fix	any	point	that	the	coastline	attains	after	a	finite
number	of	stages	of	construction,	and	join	it	by	a	cord	to	a	moving	point	on	the
limit	coastline.	As	the	moving	point	approaches	the	fixed	point	along	the	limit
coastline,	either	clockwise	or	counter-clockwise,	the	cord’s	direction	winds
without	end	around	the	fixed	point.	Such	a	point	is	called	loxodromic.



Plate	49	ALTERNATIVE	KOCH	ISLANDS	AND	LAKES	(COASTLINE
DIMENSIONS	FROM	1	TO	D=log	3/log	√~1.3652)

	
Throughout	this	sequence	of	fractal	curves,	the	initiator	is	a	regular	polygon	with
M	sides,	and	the	generator	is	such	that	N=3	and	that	the	angles	between	the	first
and	second	and	second	and	third	legs	are	both	θ=2π/M.	Plates	46	and	47	had
involved	the	special	value	M=6	(not	repeated	here),	and	the	value	M=3	is
discussed	in	Plate	72.	The	present	plate	exhibits	advanced	teragons	for	the
values	M=4,	8,	16,	and	32,	in	the	form	of	nested	lakes	and	islands.	For	example,
M=4	corresponds	to	the	generator



The	shading	on	the	central	island	(M=4)	is	explained	in	Plates	72	and	73.
Were	this	pattern	extended	to	M=∞,	it	would	converge	to	a	circle.	As	we	move

in,	the	figures	“shrivel,”	first	gradually,	then	by	rapid	jumps.	The	next	stage	of
shriveling	would	lead	to	M=3,	but	the	corresponding	curve	is	no	longer	self-
avoiding.	We	meet	it	later,	in	Plates	72	and	73.
A	CRITICAL	DIMENSION.	When	the	initiator	is	[0,1],	the	angle	θ	may	take

any	value	from	180°	down	to	60°.	There	is	a	critical	angle	θcrit,	such	that	the
“coastline”	is	self-avoiding	if,	and	only	if,	θ>θcrit.	The	corresponding	Dcrit	is	a
critical	dimension	for	self-intersection.	The	angle	θcrit	is	close	to	60°.
GENERALIZATION.	The	constructions	of	Plates	46	to	57	are	easily

generalized	as	follows.	Let	the	generators	that	are	shown	be	called	straight	(S),
and	define	the	flipped	generator	(F)	as	the	mirror	image	of	the	straight	generator
in	the	line	y=0.	Each	stage	of	the	construction	must	use	the	same	generator
throughout,	either	S	or	F,	but	different	stages	may	select	different	generators.
These	plates,	and	more	which	follow,	use	S	throughout,	but	other	infinite
sequences	of	S	and	F	yield	immediate	variants.

	If	F	and	S	alternate,	the	formerly	loxodromic	points	become	hyperbolic,	as
in	the	Koch	curve.



Plate	51	A	QUADRIC	KOCH	ISLAND	(COASTLINE	DIMENSION
D=3/2=1.5000)

	
Plates	49	to	55	show	several	Koch	constructions	initiated	with	a	square	(hence
the	term	quadric).	One	advantage	is	that	one	can	experiment	with	these
constructions	even	when	the	available	graphic	systems	are	crude.
	Another	advantage	is	that	quadric	fractal	curves	lead	on	directly	to	the	original

Peano	curve	described	on	Plate	63.
PLATE	51.	Here,	the	initiator	is	a	square,	and	the	generator	is



As	in	Plates	46	to	49,	the	total	island	area	remains	constant	throughout	the
succession	of	stages.	Plate	51	shows	two	stages	on	a	small	scale,	and	the	next	on
a	larger	scale.
In	the	last	stage,	enlarged	even	further,	the	detail	shows	as	very	thin	and

barely	visible	whiskers,	but	much	would	be	lost	perceptually	if	the	graphics	were
less	excellent,	forcing	us	to	omit	this	detail.
Both	the	teragons	and	the	limit	curve	involve	no	self-overlap,	no	self-

intersection,	and	no	self-contact.	The	same	is	true	through	Plate	55.
	One	should	not	forget	that	the	fractal	in	Plates	51	to	55	is	the	coastline;	the

land	and	sea	are	conventional	shapes	that	have	positive	and	finite	areas.	Here
mentions	a	case	in	which	the	“sea”	alone	has	a	well-defined	area,	being	again	the
union	of	simple-shaped	tremas,	while	the	land	has	no	interior	point.
TILING	AND	PERTILING.	The	present	island	is	decomposable	into	16

islands	reduced	by	the	ratio	of	r=¼.	Each	is	the	Koch	island	built	on	one	of	the
16	squares	forming	the	first	stage	of	the	construction.

	Chapters	25	and	29	show	that	D=3/2	is	also	encountered	for	various	Brown
functions.	Hence	this	value	is	easy	to	obtain	with	random	curves	and	surfaces.



Plate	53	A	QUADRIC	KOCH	ISLAND	(COASTLINE	DIMENSION	D=log
18/log	6~1.6131)

	
The	initiator	is	again	a	square,	and	the	generator	is



The	fact	that	the	form	of	the	quadric	Koch	islands	in	the	present	portfolio	of
illustrations	depends	very	markedly	upon	D	is	significant.	However,	their	having
roughly	the	same	overall	outline	is	due	to	the	initiator’s	being	a	square.	When
the	initiator	is	an	M-sided	regular	polygon	(M>4),	the	overall	shape	looks
smoother,	increasingly	so	as	M	increases.	A	genuine	link	between	overall	form
and	the	value	of	D	will	not	enter	until	Chapter	28,	which	deals	with	random
coastlines	that	effectively	determine	the	generator	and	the	initiator	at	the	same
time.

	MAXIMALITY.	Another	fact	that	contributes	to	the	similarity	of	overall
outline	is	that	the	quadric	Koch	curves	in	Plates	49	to	55	possess	an	interesting
property	of	maximality.	Consider	all	Koch	generators	that	yield	self-avoiding
curves	are	traced	on	a	square	lattice	made	by	straight	lines	parallel	and
perpendicular	to	[0,1],	and	in	addition	can	be	used	with	any	initiator	on	the
square	lattice.	We	denote	as	maximal	the	generators	that	attain	the	highest
possible	value	of	N	and	hence	of	D.	One	finds	that	Nmax=b2/2	when	b	is	even,
while	Nmax=(b2+1)/2	when	b	is	odd.

	As	the	value	of	b	increases,	so	does	the	maximal	N,	and	so	also	does	the
number	of	alternative	maximal	polygons.	Therefore,	the	limit	Koch	curve
becomes	increasingly	influenced	by	the	original	generator.	It	also	looks
increasingly	contrived,	because	the	wish	to	achieve	a	maximal	dimension
without	contact	points	imposes	a	degree	of	discipline	that	increases	with	D.	It
reaches	its	paroxysm	in	the	next	chapter,	for	the	Peano	limit	D=2.

	LACUNARITY.	Fractal	curves	sharing	D	but	with	different	N	and	r	may
differ	qualitatively	from	each	other.	The	resulting	parameter	beyond	D	is
discussed	in	Chapter	34.



CAPTION	OF	PLATE	55,	CONTINUED

	In	fact,	the	value	of	D	is	likely	to	depend	on	the	fluid’s	initial	energy,	and
on	the	size	of	the	vessel	in	which	dispersion	is	contained.	A	low	initial	energy
would	wither	a	disc-shaped	blob	into	a	curve	with	D	close	to	1	(Plate	49).	A	high
initial	energy	in	a	small	vessel	might	lead	to	more	thorough	dispersion,	with
planar	sections	more	reminiscent	of	Plate	54	(D~1.7373)	or	even	of	the
dimension	D=2	(Chapter	8).	See	Mandelbrot	1976c.

	If	this	last	inference	is	valid,	the	next	step	would	be	to	investigate	the
relation	between	initial	energy	and	D,	and	to	seek	the	lowest	energy	that	yields
D=2	in	the	plane,	i.e.,	D=3	in	space.	When	we	examine	the	limit	case	D=2
(Chapter	7),	we	shall	see	that	it	differs	qualitatively	from	D<2	because	it	allows
ink	particles	that	start	far	apart	to	come	into	asymptotic	contact.	 	Thus,	I	would
not	be	at	all	surprised	if	it	turns	out	that	the	turbulent	dispersion	is	a	single	term
representing	two	sharply	distinct	phenomena.

	POSTSCRIPT.	Well	after	this	plate	had	first	appeared	in	the	1977	Fractals,
Paul	Dimotakis	photographed	thin	sections	of	a	turbulent	jet	dispersing	in	a
laminar	medium.	The	resemblance	with	the	present	plate	is	most	gratifying.



Plates	54	and	55	A	QUADRIC	KOCH	ISLANDS	(COASTLINE
DIMENSIONS	D=5/3~1.6667	AND	D=log	98/log	14~1.7373)

	
Now	the	same	construction	as	in	Plate	49	is	carried	out	with	the	following



generators.	In	Plate	55,

and	in	Plate	54,

The	causeways	and	the	channels	in	these	nightmarish	marinas	become
increasingly	narrow	as	one	proceeds	toward	the	peninsulas’	tips	or	the	bays’
deepest	points.	In	addition,	these	widths	tend	to	narrow	down	as	the	fractal
dimension	increases,	and	“wasp	waists”	appear	around	D~5/3.



	DIGRESSION	CONCERNING	TURBULENT	DISPERSION.	I	see	an
uncanny	resemblance	between	the	sequence	of	approximate	fractals	drawn	in
Plate	55,	and	the	successive	stages	of	turbulent	dispersion	of	ink	in	water.	Actual
dispersion	is	of	course	less	systematic,	a	feature	one	can	mimic	by	invoking
chance.

	One	can	almost	see	a	Richardsonian	cascade	at	work.	A	finite	pinch	of
energy	spreads	a	square	ink	blob	around.	Then	the	original	eddy	splits	into
smaller	scale	eddies,	the	effects	of	which	are	more	local.	The	initial	energy
cascades	down	to	ever	smaller	typical	sizes,	eventually	contributing	nothing	but
slight	fuzziness	to	the	outline	of	the	final	ink	blob,	just	as	in	the	following
diagram	from	Corrsin	1959b.



	The	conclusion	that	a	Richardsonian	cascade	leads	to	a	shape	bounded	by	a
fractal	is	inescapable,	but	the	conclusion	that	D=5/3	is	shaky.	This	value	of	D
corresponds	to	planar	sections	of	spatial	surfaces	with	D=8/3,	which	occur	often
in	turbulence.	In	the	case	of	isosurfaces	of	scalars	(studied	in	Chapter	30),	D=8/3
is	reducible	to	the	Kolmogorov	theory.	Nevertheless,	numerological	analogies
are	not	to	be	trusted.





Plates	56	and	57	GENERALIZED	KOCH	CURVES	AND	SELF-
SIMILARITY	WITH	UNEQUAL	PARTS	(D~1.4490,	D~1.8797,	D~1+∈)

	
These	plates	are	constructed	in	the	manner	of	Koch,	except	that	the	lengths	of
the	generators’	sides	take	different	values	rm.	Until	now,	we	assume	that	the	N
“parts”	into	which	our	“whole”	is	divided	all	involve	the	same	similarity	ratio	r.
Using	unequal	rm,	the	Koch	curve	becomes	less	relentlessly	regular.	Thus	Plate
56	adds	variety	to	the	triadic	Koch	curve.
Note	that	in	all	this	series	of	plates,	the	construction	continues	until	it	reaches

details	of	a	predetermined	small	size.	When	rm	≡	r,	this	goal	is	reached	after	a
predetermined	number	of	construction	stages,	but	here	we	need	a	variable
number	of	stages.
The	next	task	is	to	extend	the	notion	of	similarity	dimension	to	this

generalization	of	the	Koch	recursion.	In	a	search	for	suggestions,	let	ordinary
Euclidean	shapes	be	paved	with	parts	reduced	in	the	respective	ratios	rm.	When
D=1,	the	rm	must	satisfy	Σrm=1,	and,	more	generally,	Euclidean	shapes	require
ΣrmD=1.	Furthermore,	in	the	case	of	fractals	that	can	be	split	into	equal	parts,	the
familiar	condition	NrD=	1	can	be	rewritten	as	ΣrmD=1.	These	precedents	suggest
forming	the	dimension-generating	function,	namely	G(D)=ΣrmD,	and	defining	D
as	its	unique	real	root	of	G(D)=1.	It	remains	to	investigate	whether	or	not	said	D
coincides	with	the	Hausdorff	Besicovitch	dimension.	In	every	case	I	know	of,	it
does.



EXAMPLES.	Plate	56	has	a	D	above	Koch’s	original	log	4/log	3.	The	top	of
Plate	57	has	a	D	slightly	below	2.	As	D→2,	the	coastline	on	this	Figure	tends
toward	the	Peano-Pólya	curve,	a	variant	of	the	Peano	curves	examined	in	the
next	chapter.	The	resemblance	between	this	Figure	and	a	row	of	trees	is	not
accidental,	as	seen	in	Chapter	17.	Finally,	the	bottom	of	Plate	57	has	a	D	slightly
above	1.



7

Harnessing	the	Peano	Monster	Curves

When	the	end	of	Chapter	6	tackles	generalized	Koch	curves	that	do	not	self-
intersect,	there	is	good	reason	for	stopping	short	of	D=2.	When	D	reaches	D=2,	a
profound	qualitative	change	occurs.
We	shall	assume	that	the	teragons	do	not	self-intersect,	although	they	may

self-contact.	Then	one	symptom	of	reaching	D=2	is	that	points	of	self-contact
become	inevitable	asymptotically.	The	major	symptom	is	that	it	is	inevitable	that
the	limit	should	fill	a	“domain”	of	the	plane,	that	is,	a	set	that	contains	discs
(filled	in	circles).
This	double	conclusion	is	not	due	to	a	corrigible	lack	of	imagination	on	the

part	of	mathematicians.	It	involves	a	fundamental	principle,	central	to	the	1875-
1925	crisis	in	mathematics.



PEANO	“CURVES,”	MOTIONS,	SWEEPS

The	corresponding	limits,	exemplified	in	upcoming	plates,	are	called	Peano
curves,	because	the	first	is	found	in	Peano	1890.	They	are	also	called	plane-
filling	curves.	For	them,	the	formal	definition	of	dimension	by	log	N/log	(1/r)=2
is	justified,	but	for	a	disappointing	reason.	From	the	mathematical	viewpoint,	a
Peano	curve	is	merely	an	unusual	way	of	looking	at	a	domain	or	piece	of	plane,
a	set	for	which	all	the	classical	definitions	yield	the	dimension	2.	In	other	words,
the	term	plane-filling	curve	should	be	avoided	by	careful	writers.
Fortunately,	most	Peano	“curves,”	including	those	obtained	by	a	recursive

Koch	construction,	are	parametrized	naturally	by	a	scalar	t,	which	may	be	called
“time.”	In	their	case,	we	can	(with	no	fear	of	the	guardians	of	rigor)	use	the
terms	Peano	motions,	plane-filling	motions,	tile	sweeping	motions,	or	tile	sweeps
(tiles	are	discussed	later	in	the	chapter).	We	shall	do	so	when	it	seems
appropriate,	but	Essays	need	not	attempt	full	consistency	on	any	account.



THE	PEANO	CURVES	AS	MONSTERS

“Everything	had	come	unstrung!	It	is	difficult	to	put	into	words	the	effect	that
[Giuseppe]	Peano’s	result	had	on	the	mathematical	world.	It	seemed	that
everything	was	in	ruins,	that	all	the	basic	mathematical	concepts	had	lost	their
meaning”	(Vilenkin	1965).	“[Peano	motion]	cannot	possibly	be	grasped	by
intuition;	it	can	only	be	understood	by	logical	analysis”	(Hahn	1956).	“Some
mathematical	objects,	like	the	Peano	curve,	are	totally	non-intuitive...,
extravagant”	(Dieudonné	1975).



THE	PEANO	CURVES’	TRUE	NATURE

I	claim	that	the	preceding	quotes	merely	prove	that	no	mathematician	ever
examined	a	good	Peano	graph	with	care.	An	unkind	observer	could	say	these
quotes	demonstrate	a	lack	of	geometric	imagination.
I	assert	to	the	contrary	that,	after	Peano	teragons	are	observed	attentively,

letting	one’s	thoughts	wander	about,	it	becomes	very	difficult	not	to	associate
them	with	diverse	aspects	of	Nature.	This	chapter	takes	up	the	self-avoiding
curves,	those	whose	teragons	avoid	self-contact.	Chapter	13	takes	up	teragons
that	self-contact	moderately.	Teragons	that	fill	a	lattice	(e.g.,	lines	parallel	to	the
axes	and	having	integer	coordinates)	must	first	be	processed	to	eliminate	the
self-contacts.



RIVER	AND	WATERSHED	TREES

Examining	diverse	Peano	teragons,	I	saw	in	each	case	a	set	of	two	trees	(or	sets
of	trees)	possessing	an	endless	variety	of	concrete	interpretations.	They	are
particularly	conspicuous	on	the	“snowflake	sweep”	Peano	curve	I	designed,
Plate	69.	It	is,	for	example,	easy	to	visualize	this	Plate	as	a	collection	of	bushes
rooted	side	by	side	along	the	bottom	third	of	a	Koch	snowflake,	and	creeping	up
a	wall.	Alternatively,	one	may	choose	to	be	reminded	of	the	boldly	emphasized
outline	of	a	collection	of	rivers	meandering	around,	and	eventually	flowing	into
a	river	that	follows	the	snowflake’s	bottom.	This	last	interpretation	suggests
immediately	that	the	curves	that	separate	the	rivers	from	each	other	combine	into
watershed	trees.	And	of	course,	the	labels	river	and	watershed	can	be
interchanged.
This	new	rivers-watersheds	analogy	is	so	obvious	after	the	fact	that	it	lays	to

rest	any	notion	that	the	Peano	curve	is	necessarily	pathological.	As	a	matter	of
fact	if	a	tree	made	of	rivers	of	vanishing	width	is	to	drain	an	area	thoroughly,	it
must	penetrate	everywhere.	One	who	follows	the	rivers’	combined	bank
performs	a	plane-filling	motion.	Ask	any	child	for	confirmation!
Helped	by	the	intuition	garnered	from	Plate	68,	it	would	be	difficult	not	to	see

analogous	conjugate	networks	in	every	Peano	teragon.	Even	the	crude	island	of
Plate	63	begins	to	make	intuitive	sense.	The	thin	fingers	of	water	that	penetrate	it
cannot	be	viewed	as	a	marina,	however	exaggerated,	but	can	be	viewed	as
branching	rivers.
When	rivers	give	rise	to	a	proper	science,	it	should	be	called	potamology—

Maurice	Pardé’s	coinage	from	πoταµos	(=	river)	and	λoγos.	But	sober	usage
merges	the	study	of	rivers	into	the	science	of	water,	hydrology,	into	which	this
Essay	makes	many	incursions.



MULTIPLE	POINTS	ARE	UNAVOIDABLE	IN
TREES,	HENCE	IN	PEANO	MOTIONS

Suddenly	many	mathematical	properties	of	Peano	curves	become	obvious	too.
To	account	for	double	points,	assume	one	starts	on	a	river’s	shore	in	a	Peano
river	tree,	and	moves	upstream	or	downstream,	making	a	detour	for	the	slightest
branch	(moving	ever	faster	as	one	gets	to	finer	branches).	It	is	clear	that	one	will
eventually	face	the	point	of	departure	from	across	the	river.	And	since	the	limit
river	is	infinitely	narrow,	one	will	effectively	return	to	the	starting	point.	Thus,
double	points	in	a	Peano	curve	are	inevitable,	not	only	from	a	logical	but	also
from	an	intuitive	viewpoint.	Furthermore,	they	are	everywhere	dense.
Also,	it	is	inevitable	that	some	points	be	visited	more	than	twice,	because	a

point	where	rivers	join	is	one	where	at	least	three	points	of	the	bank	coincide.
When	all	points	of	confluence	involve	only	two	rivers,	there	is	no	point	of
multiplicity	above	three.	On	the	other	hand,	one	can	do	without	points	of
multiplicity	of	three	if	one	agrees	to	have	points	of	higher	multiplicity.
All	the	assertions	in	the	preceding	paragraphs	have	been	proven,	and,	since

the	proofs	are	delicate	and	led	to	controversy,	the	properties	themselves	seem
“technical.”	But	the	contrary	is	the	case.	Who	would	continue	to	argue	that	a
purely	logical	approach	toward	them	is	preferable	to	my	own	intuitive	one?
Typically,	a	Peano	curve’s	rivers	are	not	standard	shapes	but	fractal	curves.

This	is	fortunate	for	the	needs	of	modeling,	because	every	argument	in	Chapter	5
to	the	effect	that	geographic	curves	are	nonrectifiable	applies	equally	well	to
river	banks.	In	fact,	the	Richardson	data	include	frontiers	that	follow	rivers	or
watersheds.	And	rivers	are	involved	in	the	quote	from	Steinhaus	1954.	As	to
rivers’	drainage	basins,	they	are	surrounded	by	closed	curves	akin	to	island
coastlines,	made	of	portions	of	watershed.	Each	basin	is	the	juxtaposition	of
partial	basins	and	is	crisscrossed	by	the	rivers	themselves,	but	plane-filling
curves	that	are	bounded	by	fractal	curves	display	all	the	structure	we	need.



PEANO	MOTION	AND	PERTILING

Taking	the	original	Peano	curve	(Plate	63),	develop	t	in	the	counting	base	N=9,
in	the	form	O.τ1τ2....	Times	sharing	the	same	first	“digit”	are	mapped	on	the
same	ninth	of	the	initial	square,	those	with	the	same	second	digit	on	the	same	92-
th,	etc.	Thus,	the	tiling	of	[0,1]	into	9-th	maps	on	a	tiling	of	the	square.
Successive	9-ths	of	the	linear	tiles	map	on	successive	planar	subtiles.	And	the
interval’s	property	of	being	pertiling	(see	here),	i.e.	subdivisible	recursively	and
ad	infinitum	into	smaller	tiles	similar	to	[0,1],	is	mapped	on	the	square.
Alternative	Peano	motions,	due	to	E.	Cesàro,	G.	Pólya	and	others,	map	this
property	on	diverse	pertilings	of	the	triangle.
More	generally,	most	Peano	motions	generate	pertilings	of	the	plane.	In	the

simplest	case,	there	is	a	base	N,	and	one	starts	with	a	linear	pertiling	that	consists
of	successive	divisions	into	N-th.	But	the	snowflake	sweep	of	Plate	68-69
requires	an	irregular	division	of	the	[0,1]	interval	of	t,	into	four	subintervals	of
length	1/9,	then	four	of	length	1/9√3,	one	of	length	1/9,	two	of	length	1/9√3,	and
two	of	length	1/9.



ON	MEASURING	DISTANCE	BY	AREA

Exquisite	relationships,	wherein	length	and	area	interchange,	are	a	common
occurrence	in	Peano	motion,	especially	if	it	is	isometric.	meaning	that	a	time
interval	[t1,	t2]	maps	on	an	area	equal	to	the	length	|t1-t2|.	(Most	Peano	motions
are	both	isometric	and	pertiling,	but	these	are	distinct	notions.)	Calling	the	map
of	the	time	interval	[t1,t2]	a	planar	Peano	interval	implies	that,	instead	of
measuring	distances	through	a	time,	one	may	do	so	through	an	area.	But	we
encounter	a	vital	complication,	because	points	that	sit	across	from	each	other	on
different	banks	of	a	river	coincide	in	space	but	are	visited	repeatedly.
The	definition	of	“Peano	distance”	may	involve	only	the	order	of	the	visits.

Denoting	the	instants	of	first	and	last	visits	of	P1	and	P2	by	t‘1,	and	t’2	and	by	t“1
and	t”2,	the	left	Peano	interval	 {P1,	P2}	is	defined	as	the	map	of	[t‘1,	t’2]	and
the	right	Peano	interval	 {P1,	P2}	is	defined	as	the	map	of	[t“1,	t”2].	These
intervals’	lengths	define	the	left	distance	and	the	right	distance	as	| {P1,	P2}|	=
|t‘1-t’2|	and	| {P1,	P2}|	=	|t“1-t”2|.	Each	of	these	distances	is	additive,	meaning	for
example	that	if	three	points	P1,	P2,	and	P3	are	left	ordered	according	to	the	order
of	first	visits,	one	has

| (P1,	P3)|=| (P1,	P2)|+| (P2,	P3)|.

Alternate	definitions	of	interval	and	distance	distinguish	between	river	and
watershed	points.	Denote	by	t’	and	t”	the	instants	of	first	and	last	visit	of	P.	P	is	a
river	point	if	the	map	of	[t’,t”]	is	bounded	by	P	and	watersheds.	Successive	visits
of	P	face	each	other	across	rivers.	P	is	a	watershed	point	if	the	map	of	[t’,	t”]	is
bounded	by	P	and	rivers.
Furthermore,	once	a	Peano	curve	is	represented	as	the	common	shore	of	a

river	tree	and	a	watershed	tree,	the	paths	that	link	P1	and	P2	through	rivers	(resp.,
along	watersheds)	include	a	common	minimal	path.	It	is	reasonable	to	follow
this	path	in	order	to	measure	the	distance	between	P1	and	P2.	Save	for
exceptional	cases,	the	rivers’	and	watersheds’	dimension	D	is	strictly	below	2
and	strictly	above	1.	Hence	the	minimal	path	can	be	measured	neither	by	length
nor	by	area,	but	in	typical	cases	it	has	a	nontrivial	Hausdorff	measure	in	the



dimension	D.
	
MORE.	Very	important	additional	considerations	on	Peano	motions	are

detailed	in	the	captions	that	follow.

Plate	63	A	QUADRIC	KOCH	CONSTRUCTION	OF	DIMENSION
D=2:	THE	ORIGINAL	PEANO	CURVE,	A	SQUARE	SWEEP

The	Peano	plane-filling	curve	in	this	plate	is	the	original	one.	Giuseppe	Peano’s
incredibly	terse	algorithm	was	graphically	implemented	in	Moore	1900	(which
receives	undue	credit	in	my	1977	Fractals).	The	present	plate	rotates	Peano’s
curve	by	45°,	and	by	doing	so	brings	it	into	the	fold	of	Koch	curves	in	the	strict
sense:	the	generator	is	always	placed	in	the	same	way	on	the	sides	of	the	teragon
obtained	at	the	preceding	stage.
The	initiator	here	is	the	unit	square	(bounding	the	black	box)	and	the

generator	is

Because	this	generator	self-contacts,	the	resulting	finite	Koch	islands	are	sets	of
black	squares	on	a	chunk	from	an	infinite	chessboard.	And	the	nth	Koch	teragon
is	a	grid	of	lines,	a	distance	of	η=3-n	apart;	they	crisscross	a	square	of	area	equal
to	2	that	becomes	covered	increasingly	tightly	as	k→∞.	It	suffices	to	show	one
example	of	this	dull	design	(next	to	the	initial	black	box).
Three	illustrations	on	the	top	avoid	ambiguity	by	cutting	off	the	corners	while

leaving	the	total	area	invariant.
On	the	same	scale,	the	fourth	stage	of	this	sequence	would	merge	into	50%

gray,	but	a	larger	drawing	of	one-fourth	of	the	coastline	can	be	followed
unambiguously	(at	some	risk	of	becoming	seasick).	It	shows	graphically	what	is
meant	by	saying	that	the	limit	Koch	curve	fills	the	plane.
It	would	have	been	nice	to	be	able	to	define	a	limit	island	in	analogy	to	the

Koch	islands	of	Chapter	6,	but	in	the	present	case	it	is	impossible.	A	point
chosen	at	random	almost	surely	flips	between	being	inland	and	in	the	ocean,
without	end.	Advanced	teragons	are	penetrated	by	bays	or	rivers	so	deeply	and



uniformly	that	a	square	of	middling	side	x—such	that	η<<x<<1—divides
between	dry	land	and	water	in	near	equal	proportions!
INTERPRETATION.	The	limit	Peano	curve	establishes	a	continuous

correspondence	between	the	straight	line	and	the	plane.	The	fact	that	self-
contacts	are	mathematically	unavoidable	is	classical.	The	fact	that	they	are
valuable	in	modeling	Nature	is	new	to	this	work.
LONG-RANGE	ORDER.	Without	knowing	of	the	descending	cascades	that

built	our	finite	Peano	curves,	one	would	be	baffled	by	the	extraordinary	long-
range	order	that	allows	these	curves	to	avoid	not	only	self-intersection	but	also
self-contact.	Any	lapse	in	discipline	would	make	the	latter	very	likely.

	And	total	breakdown	of	discipline	makes	endlessly	repeated	self-
intersection	almost	certain,	since	a	totally	undisciplined	Peano	curve	is
Brownian	motion,	mentioned	in	Chapter	2	and	explored	in	Chapter	25.

	LIOUVILLE	THEOREM	AND	ERGODICITY.	Mechanics	represents	the
state	of	a	complex	system	by	a	single	point	in	a	“phase	space.”	Under	the
equations	of	motion,	every	domain	in	this	space	is	known	to	behave	as	follows:
its	measure	(hyper-volume)	remains	invariant	(Liouville	theorem),	but	its	shape
changes	and	it	disperses	and	fills	all	the	space	available	to	it	with	increasing
uniformity.	Clearly,	both	of	these	characteristics	are	echoed	by	the	behavior	we
impose	upon	the	black	domain	in	the	present	Peano	construction.	It	is
interesting,	therefore,	to	dig	deeper,	by	observing	that	in	many	simplified
“dynamical”	systems	that	allow	a	detailed	study	each	domain	disperses	by
transforming	into	an	increasingly	long	and	thin	ribbon.	It	would	be	interesting	to
see	whether	other	systems’	dispersion	proceeds	through	Peano-like	trees	instead
of	ribbons.



Plates	64	and	65	QUADRIC	KOCH	CONSTRUCTIONS	OF	DIMENSION
D=2:	CESÀRO’S	AND	POLYA’S	TRIANGLE	SWEEPS,	AND	VARIANTS
	
The	simplest	generator	one	could	imagine	is	made	of	N=2	equal	intervals
making	an	angle	θ	that	satisfies	90°≤θ≤180°.	The	limit	case	θ=180°	generates	a
straight	interval;	the	case	θ=120°	(illustrated	in	the	caption	of	Plate	43)	generates
the	triadic	Koch	curve	(among	others).	The	limit	case	θ=90°	is



This	generator	gives	rise	to	an	uncanny	number	of	different	Peano	curves,
according	to	the	initiator’s	shape,	and	the	rule	of	placement	of	the	generator
upon	the	preceding	teragon.	Plates	64	to	67	examine	a	few	notable	examples.

	In	addition,	Chapter	25	obtains	Brownian	motion	by	randomizing	the	class
of	all	Peano	curves	with	these	N	and	r
PÓLYA’S	TRIANGLE	SWEEP.	The	initiator	is	[0,1],	the	generator	is	as

above,	and	it	alternates	between	the	right	and	the	left	of	the	teragon.	The	first
position	also	alternates.	The	early	construction	stages	yield	the	following

The	teragons	are	pieces	of	square	graph	paper	contained	within	a	right	isosceles
triangle	whose	side	is	[0,1].	The	limit	curve	sweeps	this	triangle.
PLATE	64.	PÓLYA	SWEEP	OVER	A	RIGHT	NONISOSCELES

TRIANGLE.	The	generator	is	changed	to	be	made	of	two	unequal	orthogonal
intervals.	Guessing	the	processing	chosen	to	avoid	self-contact	is	left	to	the
reader	as	an	exercise.
CESARO’S	TRIANGLE	SWEEP.	The	initiator	is	[1,0],	the	generator	is	again

as	above,	and	the	next	two	construction	stages	are	as	follows	(for	the	sake	of
clarity,	the	drawing	refers	to	θ=85°	instead	of	θ=90°).



Thus,	in	all	the	odd-numbered	construction	stages,	the	generator	is	positioned
to	the	right,	yielding	as	teragon	a	grid	of	lines	parallel	to	the	initiator’s	diagonals.
And	in	all	the	even-numbered	stages,	the	generator	is	positioned	to	the	left,
yielding	as	teragon	a	grid	of	lines	parallel	to	the	initiator’s	sides.	Asymptotically,
this	curve	fills	a	right	isosceles	triangle	whose	hypotenuse	is	[0,1].

PLATE	65.	This	plate	represents	a	square	sweep	obtained	by	adding	the
Cesàro	sweeps	initiated	by	[0,1]	and	[1,0].	(Again,	θ=85°	instead	of	90°	for	the
sake	of	clarity.)
SELF-OVERLAP.	Each	interval	in	the	grids	covered	by	the	Cesàro	teragons	is

covered	twice.	Not	only	the	construction	is	self-contacting,	but	it	is	self-
overlapping.
ʺEFFICIENCYʺ	OF	PLANE	FILLING.	AN	EXTREMAL	PROPERTY	OF

THE	PEANO-CESÀRO	DISTANCE.	The	Peano	curve	of	Plate	63	maps	[0,1]	on



the	square	of	diagonal	[0,1]	and	area	½.	The	same	shape	is	covered	by	the	Pólya
curve.	But	the	Cesàro	curve	fills	a	right	isosceles	triangle	of	hypotenuse	[0,1]
and	area	¼.	To	cover	the	whole	square,	Cesàro	must	add	the	maps	of	[1,0]	and
[0,1].	Thus,	the	Cesàro	curve	in	the	less	“efficient,”	of	the	two.	As	a	matter	of
fact,	it	is	the	least	efficient	non-self-intersecting	Peano	curve	on	a	square	lattice.
But	this	fact	endows	it	with	a	redeeming	virtue:	the	left	or	right	Peano	distance
(see	p.	61)	between	two	points	P1	and	P2	is	at	least	equal	to	the	square	Euclidean
distance:

l (P1,	P2)l	≥	|P1P2|2;	|R(P1,	P2)|	≥	|P1P2|2

For	other	Peano	curves,	the	difference	between	Peano	and	Euclid	distance	may
take	either	sign.
KAKUTANI-GOMORY	PROBLEM.	After	selecting	M	points	Pm	in	the

square	[0,1]2,	Kakutani	(private	communication)	investigates	the	expression
infΣ|PmPm+1|2,	where	the	infinitum	is	taken	over	all	the	chains	that	join	the	Pm	in
sequence.	He	proves	that	inf≤8,	but	conjectures	that	this	bound	is	not	the	best
one.	Indeed,	R.	E.	Gomory	(private	communication)	obtains	the	improved	bound
inf≤4.	The	proof	uses	the	Peano-Cesàro	curve,	as	follows.	(A)	Add	the	square’s
corners	if	they	are	not	already	among	the	Pm.	(B)	Rank	the	M	points	Pm	in	the
order	they	are	first	visited	by	the	string	of	four	Peano-Cesàro	curves	drawn
inside	the	square,	along	its	sides.	(C)	Observe	that,	by	lengthening	the	chain	in
step	(A),	we	did	not	decrease	Σ|PmPm+1|2.	(D)	Observe	that	each	addend
|PmPm+1|2	is	not	decreased	if	replaced	by	| (Zm,Zm+1)|.	(E)	Observe	that	Σ|
(Zm,	Zm+1)|	=	4.	If	different	Peano	curves	were	used,	steps	(B)	and	(D)	would	be
invalid.



Plates	66	and	67	A	SQUARE	SWEEP	AND	THE	DRAGON	SWEEP
	
The	generator	is	the	same	here	as	in	Plates	64	and	65,	but	seemingly	slight
changes	in	other	rules	have	lasting	consequences.
A	LATER	SQUARE	SWEEP	BY	PEANO.	The	initiator	is	[0,1],	but	the

second,	fourth	and	sixth	construction	stages	are	changed	to



EFFICIENCY.	AN	EXTREMAL	PROPERTY.	This	curve	fills	a	domain	of
area	equal	to	1,	while	the	curves	of	Plates	64-65	and	the	dragon	curve	to	be
below	covers	½	or	¼.	When	the	teragons	lie	on	an	orthogonal	lattice,	the	covered
area	cannot	exceed	1.	It	reaches	this	maximum	whenever	the	teragons	are	self-
avoiding.	In	other	words,	absence	of	self-contact	is	more	than	a	matter	of
esthetics,	and	a	self-contacting	curve	whose	self-contacts	are	rounded	off,	as	in
Plate	63,	does	not	become	equivalent	to	a	self-avoiding	Koch	curve.
By	taking	the	odd	numbered	stages	of	the	present	square	sweep,	then	joining

the	midpoints	of	the	teragons’	successive	intervals	to	avoid	self-contact,	one	falls
back	on	a	Peano	curve	due	to	Hilbert.
PLATE	67.	A	CURVE	SWEEPING	A	RIGHT	TRAPEZOID.	The	generator	is

changed	to	be	made	of	two	unequal	orthogonal	intervals.	The	processing	to
avoid	self-contact	is	the	same	as	in	the	preceding	plate.
THE	HARTER-HEIGHTWAY	DRAGON.	(See	Gardner	1967,	Davis	&

Knuth	1970.)	Here	the	initiator	is	[1,0],	the	generator	is	as	above,	and	it
alternates	between	the	right	and	the	left	of	the	teragon.	The	only	difference	with
the	Polya	triangle	sweep	is	that	the	first	position	is	always	to	the	right	at	every
stage	of	construction,	early	stages	being	as	follows

The	consequences	of	this	change	are	dramatic,	since	a	mature	stage	looks	like
this



On	this	illustration,	the	curve	itself	has	become	indistinct,	and	we	see	only	its
boundary,	called	dragon	curve.	Thus,	this	Peano	curve	deserves	to	be	called
dragon	sweep.	As	any	Koch	curve	initiated	by	[0,1],	the	dragon	is	self-similar.
But	in	addition	it	is	seen	to	be	segmented	into	portions,	which	join	at	wasp
waists.	The	sections	are	similar	to	one	another,	but	not	to	the	dragon	itself.
TWINDRAGON.	The	1977	Fractals	points	out	that,	with	the	dragon’s	rules

of	construction,	a	more	natural	initiator	is	[0,1]	followed	by	[1,0],	and	terms	the
shape	that	is	swept	as	a	result,	a	twindragon.	This	shape	is	encountered	number
representations,	Knuth	1980.	It	looks	like	this	(one	component	dragon	is	in	black
and	the	other	is	in	gray).



TWINDRAGON	RIVER.	After	the	streams	near	the	source	are	erased	(for
legibility),	the	river	tree	of	a	twindragon	looks	like	this.



A	twindragon	can	be	tiled	by	reduced	size	replicas	of	itself,	like	this.

TWINDRAGON	SKIN.	This	is	a	Koch	curve	with	the	following	generator

The	short	and	long	intervals	here	are	of	lengths	r1=1/√2	and	r2	=	(½)(√2)	=	r13,
respectively.	Hence,	the	dimension	generating	function	is	(1/√2)D+2(2√2)D	=	1,
showing	that	the	quantity	2D/2	satisfies	x3-x2-2=0.
ALTERNATE	DRAGONS.	(Davis	&	Knuth	1970.)	Pick	any	infinite	sequence

x1,	x2...,	where	each	xk	can	be	either	0	or	1,	and	use	the	value	of	xk	to	determine
the	first	position	of	the	generator	during	the	k-th	stage	off	construction:	when
xk=1,	a	generator	is	first	positioned	to	the	right,	but	when	xk=0	it	is	first
positioned	to	the	left.	Each	sequence	generates	a	different	alternate	dragon.





Plates	68	and	69	THE	SNOWFLAKE	SWEEPS:	NEW	PEANO	CURVES
AND	TREES	(WATERSHED	AND	RIVER	DIMENSIONS	D~1.2618)

	
These	plates	illustrate	a	family	of	Peano	curves	I	designed.	They	fill	the	original
Koch	snowflake	(Plate	45),	hence	two	basic	monsters	of	circa	1900	are	brought
together.
A	more	important	virtue	is	that	a	glance	suffices	here	to	document	a	major

theme	of	the	present	Essay:	Peano	curves	are	far	from	being	mathematical



monsters	with	no	concrete	interpretation.	If	they	fail	to	self-contact,	they	involve
readily	visible	and	interpretable	conjugate	trees.	These	trees	are	good	first-order
models	of	rivers,	watersheds,	botanical	trees,	and	human	vascular	systems.
As	a	by-product,	we	obtain	here	a	method	for	tiling	the	snowflake	with

unequal	snowflakes.
SEVEN	INTERVAL	GENERATOR.	Let	the	initiator	be	[0,1],	and	the

generator	and	the	second	construction	stage	be

More	precisely,	let	the	above	generator	be	denoted	by	S	and	called	straight,
and	define	the	flipped	generator	F	as	the	mirror	image	of	S	in	the	line	x=½.	At
any	stage	of	the	construction	of	the	snowflake	sweep,	one	can	use	either	the	F,	or
the	S	generator,	at	will.	Hence,	each	infinite	sequence	of	F	and	S	yields	a
different	snowflake	sweep.



ROUNDED	OFF	TERAGONS.	Broken	lines	tend	to	look	raw,	and	the
snowflake	sweep’s	teragons	are	made	to	look	isotropic	and	otherwise	much	more
“natural”,	if	each	interval	is	rounded	off	into	one	sixth	of	the	circle.
PLATE	45.	An	advanced	teragon	of	a	seven	interval	snowflake	sweep,

rounded	off,	and	later	filled	in,	was	used	long	ago	in	Plate	45	to	provide	a	wavy
background	shading.	Looking	at	it	again,	we	are	reminded	of	a	liquid’s	flow	past
a	fractal	boundary,	and	of	the	shear	lines	between	two	roughly	parallel	flows	of
different	velocities.
THIRTEEN	INTERVAL	GENERATOR.	Now	change	the	above	7	interval

generator	by	replacing	5-th	leg	by	a	reduced	version	of	the	whole.	This	version
can	be	positioned	either	in	the	S	or	the	F	position.	The	latter	yields	the	following
generator	and	second	construction	stage

PLATE	68.	This	advanced	teragon,	shown	as	boundary	between	two
fantastically	intertwined	domains	serves	better	than	any	number	of	words	to
explain	what	plane-filling	means.
PLATE	69.	Let	the	above	13-interval	generator	be	rounded	off,	and	do	the

same	in	parallel	to	the	snowflake	curve.	The	resulting	first	few	stages	are	shown
in	Plate	69.
RIVER	DIMENSIONS.	In	Peano’s	original	curve,	each	individual	river	is	of

finite	length,	hence	of	dimension	1.	Here	individual	rivers	are	of	dimension	log
4/log	3.	To	achieve	the	dimension	D=2,	all	rivers	have	to	be	taken	together.



Plates	70	and	71	THE	PEANO-GOSPER	CURVE.	ITS	TREES,	AND
RELATED	KOCH	TREES	(WATERSHED	AND	RIVER	DIMENSIONS

D~1.1291)
	
BACK	TO	PLATE	46.	The	thin	broken	lines	on	this	plate,	unexplained	until
now,	represent	the	early	construction	stages	1	to	4	of	a	curve	due	to	Gosper
(Gardner	1976).	This	was	the	first	self-avoiding	Peano	curve	to	be	obtained	by
the	Koch	method	without	further	processing.
The	initiator	is	[0,1],	and	the	generator	is

By	turning	the	generator	counterclockwise	until	its	first	link	becomes	horizontal,
one	sees	that	it	is	drawn	as	a	triangular	lattice,	on	which	it	occupies	7	out	of	3x7
links.	This	feature	extends	to	triangular	lattices	a	property	which	here	discusses
for	square	lattices.
Now	we	see	that	the	present	Peano	curve	fills	the	Koch	curve	of	Plate	46.	The

variable	width	hatching	in	Plate	46	can	be	explained	now:	it	represents	the	fifth
stage	of	the	present	construction.
LEFT	OF	PLATE	70.	The	fourth	teragon	of	the	Gosper	curve	is	redrawn	as



the	boundary	between	a	black	and	a	white	region.
RIGHT	OF	PLATE	70.	RIVER	AND	WATERSHED	TREES.	Rivers	and

watersheds	are	drawn	along	the	midlines	of	the	white	and	black	“fingers”	of	the
figure	to	the	left	of	Plate	70.
TOP	OF	PLATE	71.	Starting	with	the	river	and	watershed	trees	to	the	right	of

Plate	70,	the	widths	of	the	links	are	redrawn	according	to	their	relative
importance	in	the	Horton-Strahler	scheme	(Leopold	1962).	In	this	instance,	the
river	or	watershed	links	are	given	widths	proportional	to	their	lengths	as	the
crow	flies.	The	rivers	are	in	black,	and	the	watersheds	in	gray.
DIMENSIONS.	Each	Peano	curve	determines	the	D	of	its	own	boundary.	In

Plates	63	and	64,	said	boundary	is	merely	a	square.	In	later	plates,	it	was	a
dragon’s	skin,	then	a	snow-flake	curve.	Here	it	is	a	fractal	curve	with	D~1.1291,
which	is	part	river	and	part	watershed.	And	every	other	river	and	watershed	also
converges	to	a	curve	of	fractal	dimension	D~1.1291.
FRANCE.	One	who	as	a	schoolboy	often	gazed	on	a	map	showing	the	rivers

Loire	and	Garonne	does	not	feel	far	from	home.
BOTTOM	OF	PLATE	71.	A	RIVER	TREE	CONSTRUCTED	DIRECTLY

BY	A	KOCH	CASCADE.	When	the	generator	is	itself	tree-shaped,	it	generates	a
tree.	For	example,	let	the	generator	be

Here	we	have	an	alternative	method	of	draining	the	Koch	curve	of	Plate	46.	(The
last	branches	near	the	“sources”	have	been	clipped	off.)



Plates	72	and	73	PLANE-FILLING	FRACTAL	TREES,	FUDGEFLAKE,
AND	QUARTET

	
The	plane-filling	“river”	trees	deduced	from	some	Peano	curves	can	also	be



obtained	by	a	direct	recursive	construction.	The	key	is	a	generator	that	is	itself
tree	shaped.	A	dull	example	is	obtained	if	the	tree	generator	is	made	up	of	4	legs
forming	a	+	sign.	One	obtains	the	river	tree	of	the	Peano	Cesàro	curve	(Plate	65).
FUDGEFLAKE.	A	better	example	results	from	taking	[0,1]	as	initiator,	and

using	the	following	generator

We	begin	by	observing	that	individual	rivers	are	generated	by	a	midpoint
displacement	shape	like	on	Plate	43.	Hence,	every	asymptotic	river	has	the
dimension	D	=	log	2/log	√3	=	log	4/log	3.	This	value	is	very	familiar	from	the
snowflake	curve,	but	the	curve	with	which	we	deal	here	is	not	a	snowflake,
because	the	positioning	of	the	generator	follows	a	different	rule.

In	order	to	leave	room	for	the	rivers,	the	generator	must	be	made	to	alternate
between	the	right	and	the	left.	Therefore,	the	snowflake’s	symmetry	is	fudged,
and	the	domain	these	rivers	drain	is	to	be	called	fudgeflake.
Now,	we	turn	to	the	river	tree.	Its	teragons	do	not	self-overlap,	but	they	self-

contact	badly.	This	feature’s	asymptotic	variant	is	unavoidable,	and	it	is	also
unobjectionable,	since	it	expresses	quite	properly	the	fact	that	several	rivers	can
originate	at	the	same	point.	But	we	shall	see	later	in	this	caption	that	river
teragons	may	avoid	self-contact.	Due	to	self-contacts,	the	present	river	teragon	is
an	illegible	chunk	of	hexagonal	graph	paper,	bounded	by	an	approximate	fractal.
	
TOP	OF	PLATE	73.	The	river	tree	is	made	more	transparent	by	erasing	all



river	intervals	that	touch	a	source,	and	using	a	bolder	pen	to	draw	the	principal
river.	The	area	drained	by	this	tree	is	√3/2~.8660.
FUDGEFLAKE	SWEEP.	Now	draw	a	Peano	curve	with	a	Δ	shaped	initiator,

and	a	generator	in	the	shape	of	a	Z	whose	legs	are	equal	and	make	angles	of	60°.
This	is	the	extreme	case	for	M=3	of	the	family	of	generators	used	in	Plates	46
and	47,	but	it	differs	profoundly	from	all	the	other	cases.	It	is	investigated	in
Davis	&	Knuth	1970.
One	can	verify	that	this	Peano	curve’s	river	tree	is	none	else	than	the	tree	we

just	drew	directly.	The	initiator’s	sides	are	of	length	1,	and	the	corresponding
Peano	curve	sweeps	an	area	equal	to	√3/6~.2886	(how	inefficient!).
QUARTET.	Next,	we	consider	a	different	Koch	curve,	together	with	three

curves	that	fill	it:	one	Peano	curve	and	two	trees.	These	shapes,	which	I
designed,	illustrate	a	further	theme	of	interest.
Take	[0,1]	as	initiator,	and	take	the	following	generator

This	curves’	boundary	converges	to	a	Koch	curve	of	dimension	D=log	3/log
√5=1.3652.	Advanced	teragons	of	the	boundary	and	of	the	Peano	curve	are	seen
in	the	center	of	Plate	49,	which	I	term	the	quartet.	Each	“player,”	and	the	table
between	them,	pertile.



The	quartet’s	interior	is	of	course	drained	by	its	own	intrinsic	river	tree.	But
totally	distinct	patterns	of	chainage	are	obtained	by	using	either	of	the	following
generators



With	the	generator	to	the	left,	the	teragons	self-contact,	as	with	the	first
example	in	this	caption.	And	the	drainage	area	turns	out	to	be	½.	With	the
generator	to	the	right,	the	teragons	avoid	self-contact.	And	the	drainage	area	is	1.
An	advanced	teragon	is	shown	in	the	bottom	figure	of	Plate	73.



8

Fractal	Events	and	Cantor	Dusts

This	chapter’s	principal	goal	is	to	acquaint	the	reader	concretely	and	painlessly
with	yet	another	mathematical	object	ordinarily	viewed	as	pathological,	the
Cantor	dust,	C.	This	and	related	dusts	we	shall	describe	have	fractal	dimensions
between	0	and	1.
Being	formed	by	points	on	a	straight	line,	they	are	easy	to	study.	In	addition,

they	help	introduce	in	simplest	form	several	concepts	that	are	central	to	fractals
but	that	have	been	so	underutilized	in	the	past	that	no	specific	terms	were
required	to	denote	them.	First,	the	term	dust	is	given	a	technical	meaning,	as	an
informal	equivalent	to	a	set	of	topological	dimension	DT=0,	just	as	“curve”	and
“surface”	denote	sets	of	topological	dimensions	DT=1	and	DT=2.	Other	new
terms	are	curd,	gap,	and	trema,	to	be	explained.



NOISE

For	the	layman,	a	noise	is	a	sound	that	is	too	strong,	has	no	pleasing	rhythm	or
purpose,	or	interferes	with	more	desirable	sounds.	Partridge	1958	proclaims	that
the	term	“derives	from	the	Latin	nausea	(related	to	nautes	=	sailor),	the	semantic
link	being	afforded	by	the	noise	made	by	an	ancient	shipful	of	passengers
groaning	and	vomiting	in	bad	weather.”	(The	Oxford	English	Dictionary	is	not
so	sure.)	As	to	contemporary	physics,	it	is	less	colorful,	and	not	nearly	so
precise:	it	uses	noise	as	a	synonym	of	chance	fluctuation	or	error,	irrespective	of
origin	and	manifestation.	This	chapter	introduces	C	through	the	case	study	of	an
esoteric	but	simple	noise.



ERRORS	IN	DATA	TRANSMISSION	LINES

A	transmission	channel	is	a	physical	system	capable	of	transmitting	electricity.
However,	electric	current	is	subject	to	spontaneous	noise.	The	quality	of
transmission	depends	on	the	likelihood	of	error	due	to	noise	distortion,	which
depends,	in	turn,	on	the	ratio	between	the	intensities	of	signal	and	noise.
This	chapter	is	concerned	with	channels	that	transmit	computer	data	and

involve	very	strong	signals.	An	interesting	fact	is	that	the	signal	is	discrete,
hence	the	distribution	of	errors	simplifies	the	distribution	of	noise	to	the	bone,	so
to	speak.	Noise	involves	a	function	having	several	possible	values,	while	errors
involve	a	function	that	has	only	two	possible	values.	For	example,	it	may	be	the
indicator	function,	which	is	0	when	there	is	no	error	at	time	t,	and	1	if	there	is	an
error.
Physicists	have	mastered	the	structure	of	the	noises	that	predominate	in	the

case	of	weak	signals,	e.g.,	thermal	noise.	In	the	problem	just	described,	however,
the	signal	is	so	strong	that	the	classical	noises	are	negligible.
The	nonnegligible	excess	noises	are	difficult	and	fascinating	because	little	is

known	about	them.	This	chapter	examines	an	excess	noise	that	was,	around
1962,	of	practical	importance	to	electrical	engineers,	so	that	diverse	talents	were
called	upon	to	investigate	it.	My	contribution	to	this	effort	was	the	first	concrete
problem	in	which	I	experienced	the	need	to	use	fractals.	No	one	remotely
imagined	at	that	time	that	a	careful	study	of	this	apparently	modest	engineering
difficulty	would	get	us	so	far.



BURSTS	AND	GAPS

Let	us	subject	the	errors	to	increasingly	refined	analysis.	A	rough	analysis
reveals	the	presence	of	periods	during	which	no	error	is	encountered.	Let	these
remission	periods	be	called	“gaps	of	rank	0”	if	their	duration	exceeds	one	hour.
By	contrast,	any	time	interval	flanked	by	gaps	of	rank	0	is	singled	out	as	being	a
”burst	of	errors	of	rank	0.”	As	the	analysis	is	made	three	times	more	accurate,	it
reveals	that	the	original	burst	is	itself	”intermittent.”	That	is,	shorter	gaps	”of
rank	1,”	lasting	20	minutes	or	more,	separate	correspondingly	shorter	bursts	“of
rank	1.”	Likewise,	each	of	the	latter	contains	several	gaps	“of	rank	2,”	lasting
400	seconds,	separating	bursts	“of	rank	2,”	and	so	on,	each	stage	being	based	on
gaps	and	bursts	that	are	three	times	shorter	than	the	previous	ones.	The	process
is	illustrated	very	roughly	by	Plate	80.	(Do	not	pay	attention	to	the	caption	yet.)
The	preceding	description	suggests	something	about	the	relative	positions	of

the	bursts	of	rank	k	within	a	burst	of	rank	k-1.	The	probability	distribution	of
these	relative	positions	seems	independent	of	k.	This	invariance	is	obviously	an
example	of	self-similarity,	and	fractal	dimension	cannot	be	far	behind,	but	let	us
not	rush.	This	Essay’s	diverse	case	studies	are	meant,	among	others,	to	elicit	new
themes	or	refine	old	ones.	With	this	in	mind,	it	seems	best	to	reverse	the
historical	order,	and	introduce	a	new	theme	through	a	rough	nonrandom	variant
of	the	Berger	&	Mandelbrot	stochastic	model	of	errors,	Chapter	31.



A	ROUGH	MODEL	OF	ERROR	BURSTS:	THE
CANTOR	FRACTAL	DUST	C

The	preceding	section	constructs	the	set	of	errors	by	starting	with	a	straight	line,
namely	the	time	axis,	then	cutting	out	shorter	and	shorter	error-free	gaps.	This
procedure	may	be	unfamiliar	in	natural	science,	but	pure	mathematics	has	used	it
at	least	since	Georg	Cantor	(Hawkins	1970,	especially	p.	58).
In	Cantor	1883,	the	initiator	is	the	closed	interval	[0,1].	The	term	“closed”	and

the	use	of	brackets	indicate	that	the	extreme	points	are	included;	this	notation
was	used	in	Chapter	6,	but	there	was	no	need	until	now	to	make	it	explicit.	The
first	construction	stage	consists	in	dividing	[0,1]	into	3	pieces,	then	removing	the
middle	open	third,	designated	]⅓,	⅔[.	The	term	“open”	and	the	use	of	reversed
brackets	indicate	that	the	extreme	points	are	excluded.	Next,	one	removes	the
open	middle	of	each	of	N=2	remaining	thirds.	And	so	on	to	infinity.
The	remainder	set	C	is	called	either	dyadic,	due	to	the	fact	that	N=2,	or	triadic

or	ternary,	due	to	the	fact	that	[0,1]	is	subdivided	into	3	pieces.
More	generally,	the	number	of	pieces,	called	base,	is	denoted	by	b,	the	ratio

between	each	N-th	of	the	set	and	the	whole	being	r=1	l	b.	C	is	also	called	Cantor
discontinuum,	and	I	shall	momentarily	suggest	the	term,	Cantor	fractal	dust.
Since	a	point	on	the	time	axis	marks	an	“event,”	C	is	a	fractal	sequence	of
events.



CURDLING,	TREMAS,	AND	WHEY

Cantor’s	procedure	is	a	cascade,	to	use	a	term	Lewis	Richardson	had	applied	to
turbulence,	and	we	first	borrowed	in	Chapter	6	to	describe	coastlines	and	the
Koch	curve.	“Stuff”	that	was	uniformly	distributed	over	an	initiator	[0,1]	is
subjected	to	a	centrifugal	eddy	which	sweeps	it	into	the	extreme	thirds.
The	middle	third	portion	cut	out	of	[0,1]	to	form	a	gap	is	henceforth	denoted

as	trema	generator.	This	neologism	is	being	coined	in	this	section	from	τρηµα
meaning	hole,	whose	distant	relative	is	the	Latin	termes	=	termite.	It	may	be	the
shortest	Greek	word	that	has	not	yet	been	put	to	work	with	a	significant
scientific	meaning.
In	this	context,	tremas	coincide	with	gaps,	but	in	different	instances	to	be

encountered	later	they	do	not,	which	is	why	two	different	terms	are	required.
While	a	“first-order	trema”	is	emptied,	the	total	stuff	is	conserved	and

redistributed	with	uniform	density	over	the	outer	thirds,	to	be	called	precurds.
Then	two	centrifugal	eddies	come	in	and	repeat	the	same	operation,	starting	with
the	two	intervals	[0,⅓]	and	[⅔,1].	The	process	continues	as	a	Richardsonian
cascade	converging	at	the	limit	to	a	set	to	be	called	curd.	If	a	stage’s	duration	is
proportional	to	the	eddy	size,	the	total	process	is	of	finite	duration.
In	parallel,	I	propose	whey	(a	term	Miss	Muffet	should	not	mind)	to	denote	the

space	outside	the	curd.
It	is	suggested	that	the	above	terms	be	used	not	only	in	a	mathematical	but

also	in	a	physical	meaning:	curdling	to	denote	any	cascade	of	instabilities
resulting	in	contraction,	and	curd	to	denote	a	volume	within	which	a	physical
characteristic	becomes	increasingly	concentrated	as	a	result	of	curdling.
ETYMOLOGY.	Curd	derives	from	the	old	English	crudan,	‘to	press,	to	push

hard.’	This	erudition	from	Partridge	1958	is	not	necessarily	irrelevant,	since	the
etymological	kin	of	curd	doubtless	include	fractal	kin	of	interest;	see	Chapter	23.
Note	the	following	free	associations:	curds	 	cheese	 	milk	 	Milky	Way

Galaxy	(γαλα	=	milk)	 	galaxies.	I	coined	curdling	while	working	on	galaxies,
and	the	etymological	undertones	of	“galactic	curdling”	did	not	escape	my	notice.



OUTER	CUTOFF	AND	EXTRAPOLATED
CANTOR	DUSTS

As	a	prelude	to	the	extrapolation	of	C,	let	us	recall	a	point	of	history.	When
Cantor	introduced	C,	he	had	barely	left	his	original	field,	the	study	of
trigonometric	series.	Since	such	series	are	concerned	with	periodic	functions,	the
only	extrapolation	they	involve	is	endless	repetition.	Now	recall	the	self-
explanatory	terms	of	inner	and	outer	cutoff,	which	Chapter	6	borrows	from	the
study	of	turbulence.	These	are,	respectively,	the	sizes	ε	and	Ω	of	the	smallest	and
the	largest	feature	present	in	a	set,	and	one	may	say	that	Cantor	restricted	himself
to	Ω	=	1.	The	k-th	construction	stage	yields	ε=3-k,	but	ε=0	for	C	itself.	To
achieve	any	other	Ω<∞,	for	example	the	value	of	2π	appropriate	in	a	Fourier
series,	one	enlarges	the	periodic	Cantor	dust	in	the	ratio	Ω.
However,	self-similarity,	which	this	Essay	views	as	valuable,	is	destroyed	by

repetition.	But	it	is	readily	saved,	if	the	initiator	is	used	only	for	extrapolation
and	if	extrapolation	follows	an	inverse	or	upward	cascade.	The	first	stage
enlarges	C	in	the	ratio	1/r=3	and	positions	it	on	[0,3].	The	result	is	C	plus	a
replica	translated	to	the	right	and	separated	from	C	by	a	new	trema	of	length	1.
The	second	stage	enlarges	the	outcome	of	the	first	stage	in	the	same	ratio	3	and
positions	it	on	[0,9].	The	result	is	C	plus	3	replicas	translated	to	the	right	and
separated	by	two	new	tremas	of	length	1,	and	one	new	trema	of	length	3.	The
upward	cascade	continues	to	enlarge	C	in	the	successive	ratios	of	the	form	3k.
If	one	prefers,	one	may	alternate	two	stages	of	interpolation,	then	a	stage	of

extrapolation,	etc.	In	this	fashion,	each	series	of	three	stages	multiplies	the	outer
cutoff	Ω	by	3	and	divides	the	inner	cutoff	ε	by	3.

	In	this	extrapolated	dust,	the	negative	axis	is	empty:	an	infinite	trema.	The
underlying	notion	is	discussed	further	in	Chapter	13,	where	we	tackle	the
(infinite)	continent	and	the	infinite	cluster.



DIMENSIONS	D	BETWEEN	0	AND	1

The	set	yielded	by	infinite	interpolation	and	extrapolation	is	self-similar,	and

D=log	N/log	(1/r)=log	2/log	3~0.6309,

a	fraction	between	0	and	1.
By	following	a	different	curdling	rule,	we	can	achieve	other	D’s,	in	fact	any

dimension	between	0	and	1.	If	the	first	stage	trema	is	of	length	1-2r,	where
0<r<½,	the	dimension	is	log	2/log	(1/r).
Further	variety	becomes	possible	if	N≠2.	For	the	sets	with	N=3	and	r=1/5,	we

find

D=log	3/log	5~0.6826.

For	the	sets	with	N=2	and	r=¼,	we	find

D=log	2/log	4=½.

For	the	sets	with	N=3	and	r=1/9,	we	also	find

D=log	3/log	9=½.

Although	their	D	are	equal,	these	last	two	sets	“look”	very	different.	This
observation	is	taken	up	again	and	extended	in	Chapter	34,	and	leads	to	the	notion
of	lacunarity.
Observe	also	that	there	is	at	least	one	Cantor	set	for	every	D<1,	but	it	follows

from	Nr≤1	that	N<1/r,	hence	D	is	never	above	1.



C	IS	CALLED	DUST	BECAUSE	DT=0

While	a	Cantor	set’s	D	can	vary	between	0	and	1,	from	the	topological	viewpoint
all	Cantor	sets	are	of	dimension	DT=0,	because	any	point	is	by	definition	cut
from	the	other	points,	without	anything	having	to	be	removed	to	cut	it.	From	this
viewpoint,	there	is	no	difference	between	C	and	finite	sets	of	points!	The	fact
that	DT=0	in	this	last	case	is	familiar	in	standard	geometry,	and	Chapter	6	uses	it
in	arguing	that	Koch’s	K	is	of	topological	dimension	1.	But	DT=0	for	all	totally
disconnected	sets.
In	the	absence	of	accepted	colloquial	counterparts	to	“curve”	and	“surface”

(which	are	connected	sets	with	DT=1	and	DT=2),	I	propose	that	sets	with	DT=0
be	called	dusts.



GAPS’	LENGTH	DISTRIBUTION

In	a	Cantor	dust,	let	u	be	a	possible	value	of	a	gap’s	length,	and	denote	by	U	the
length	when	it	is	unknown,	and	by	Nr(U>u)	the	number	of	gaps	or	tremas	of
length	U	greater	than	u.	 	This	notation	is	patterned	after	the	notation	Pr(U>u)
of	probability	theory.	►	One	finds	there	is	a	constant	prefactor	F,	such	that	the
graph	of	the	function	Nr(U>u)	constantly	crosses	the	graph	of	Fu-D.	Here	comes
dimension	again.	With	log	u	and	log	Nr	as	coordinates,	the	steps	are	uniform.



AVERAGE	NUMBERS	OF	ERRORS

As	in	the	case	of	a	coastline,	a	rough	idea	of	the	sequence	of	errors	is	obtained	if
Cantor	curdling	stops	with	intervals	equal	to	ε=3-k.	The	ε	may	be	the	length	of
time	required	to	transmit	a	single	symbol.	One	must	also	use	Cantor’s	periodic
extrapolation	with	a	large	but	finite	Ω.
The	number	of	errors	between	times	0	and	R,	denoted	by	M(R),	keeps	time	by

counting	only	those	instants	that	witness	something	noteworthy.	It	is	an	example
of	fractal	time.
When	the	sample	begins	at	t=0	(which	is	the	only	case	to	be	considered	here),

the	derivation	of	M(R)	proceeds	as	in	the	case	of	the	Koch	curve.	As	long	as	R	is
smaller	than	Ω,	the	number	of	errors	doubles	each	time	R	is	multiplied	by	3.	As
a	result,	M(R)∝RD.
This	expression	is	like	the	standard	expression	for	the	mass	of	a	disc	or	ball	of

radius	R	in	D-dimensional	Euclidean	space.	It	is	also	identical	to	the	expression
obtained	in	Chapter	6	for	the	Koch	curve.
As	a	corollary,	the	average	number	of	errors	per	unit	length	varies	roughly	like

RD-1	as	long	as	R	lies	between	the	inner	and	the	outer	cutoffs.	When	Ω	is	finite,
the	decrease	in	the	average	number	of	errors	continues	to	the	final	value	of	ΩD-1,
which	is	reached	with	R=Ω.	Thereafter,	the	density	remains	more	or	less
constant.	When	Ω	is	infinite,	the	average	number	of	errors	decreases	to	zero.
Finally,	the	empirical	data	often	suggest	that	Ω	is	finite	and	very	large,	but	fail	to
determine	its	value	with	any	accuracy.	If	this	is	the	case,	the	average	number	of
errors	has	a	lower	limit	that	does	not	vanish	but	that	is	so	ill-determined	as	to	be
of	no	practical	use.



TREMA	ENDPOINTS	AND	THEIR	LIMITS

	The	most	conspicuous	members	of	C,	the	trema	endpoints,	do	not	exhaust	C;
in	fact	they	constitute	but	a	tiny	portion	of	it.	The	other	points’	physical
importance	is	discussed	in	Chapter	19.	►



THE	CANTOR	DUSTS’	TRUE	NATURE

The	reader	who	has	followed	thus	far	and/or	has	heard	the	echo	of	the	rapidly
growing	literature	on	Devil’s	Staircases	(caption	of	Plate	83)	must	find	it	hard	to
believe	that,	when	I	started	on	this	topic	in	1962,	everyone	was	agreeing	that
Cantor	dusts	are	at	least	as	monstrous	as	the	Koch	and	Peano	curves.
Every	self-respecting	physicist	was	automatically	“turned	off”	by	a	mention	of

Cantor,	ready	to	run	a	mile	from	anyone	claiming	C	to	be	interesting	in	science,
and	eager	to	assert	that	such	claims	had	been	advanced,	tested,	and	found
wanting.	My	sole	encouragement	came	from	S.	Ulam’s	suggestions,	tantalizing
despite	their	failure	to	be	either	developed	or	accepted,	concerning	the	possible
role	for	Cantor	sets	in	the	gravitational	equilibrium	of	star	aggregates;	see	Ulam
1974.
To	publish	on	Cantor	dusts,	I	had	to	erase	every	mention	of	Cantor!
But	here	we	were	led	to	C	by	Nature’s	own	peculiarities.	And	Chapter	19

describes	a	second,	very	different,	physical	role	for	C.	All	this	must	mean	that
the	true	nature	of	the	Cantor	dust	is	very	different.
It	is	undeniable	that	in	most	cases	C	itself	a	very	rough	model,	requiring	many

improvements.	I	contend,	however,	that	the	very	same	properties	that	cause
Cantor	discontinua	to	be	viewed	as	pathological	are	indispensable	in	a	model	of
intermittency,	and	must	be	preserved	in	more	realistic	substitutes	for	C.



Plates	80	and	81	CANTORIAN	TRIADIC	BAR	AND	CAKE
(HORIZONTAL	SECTION	DIMENSION	D=log	2/log	3=0.6309)’.

SATURN’S	RINGS.	CANTOR	CURTAINS.
	
The	Cantor	dust	uses	[0,1]	as	initiator,	and	its	generator	is

PLATE	80.	The	Cantor	dust	is	extraordinarily	difficult	to	illustrate,	because	it
is	thin	and	spare	to	the	point	of	being	invisible.	To	help	intuition	by	giving	an
idea	of	its	form,	thicken	it	into	what	may	be	called	a	Cantor	bar.	 	In	technical
terms,	this	is	the	Cartesian	product	of	a	Cantor	dust	of	length	1,	by	an	interval	of
length	0.03.
CURDLING.	The	construction	of	the	Cantor	bar	results	from	the	process	I

call	curdling.	It	begins	with	a	round	bar	(seen	in	projection	as	a	rectangle	in
which	width/length=0.03).	It	is	best	to	think	of	it	as	having	a	very	low	density.
Then	matter	“curdles”	out	of	this	bar’s	middle	third	into	the	end	thirds,	so	that
the	positions	of	the	latter	remain	unchanged.	Next	matter	curdles	out	of	the



middle	third	of	each	end	third	into	its	end	thirds,	and	so	on	ad	infinitum	until	one
is	left	with	an	infinitely	large	number	of	infinitely	thin	slugs	of	infinitely	high
density.	These	slugs	are	spaced	along	the	line	in	the	very	specific	fashion
induced	by	the	generating	process.	In	this	illustration,	curdling	(which	eventually
requires	hammering!)	stops	when	both	the	printer’s	press	and	our	eye	cease	to
follow;	the	last	line	is	indistinguishable	from	the	last	but	one:	each	of	its	ultimate
parts	is	seen	as	a	gray	slug	rather	than	two	parallel	black	slugs.
CANTOR	CAKE.	When	curdling	starts	with	a	pancake,	much	less	thick	than

it	is	wide,	and	dough	curdles	into	thinner	pancakes	(while	exuding	an
appropriate	filling),	one	ends	up	with	an	infinitely	extrapolated	Napoleon,	which
one	might	call	Cantor	cake.
SATURN’S	RINGS.	Saturn	was	originally	believed	to	have	a	single	ring

around	it.	But	eventually	a	break	was	discovered,	then	two,	and	now	Voyager	I
has	identified	a	very	large	number	of	breaks,	mostly	very	thin	ones.	Voyager	also
established	that	the	rings	are	diaphanous:	they	let	sunlight	through	...	as	befits	a
set	we	called	“thin	and	spare.”
Thus,	the	rings’	structure	(see	Stone	&	Minen	1981,	especially	the	cover

illustration)	is	suggestive	of	a	collection	of	near	circles,	each	with	a	radius
corresponding	to	the	distance	from	some	origin	to	a	point	in	Cantor	dust.	 	The
technical	term	is	Cartesian	product	of	a	Cantor	dust	by	a	circle.	Actually,	it	may
be	that	a	closer	picture	is	given	by	a	circle’s	product	with	a	dust	with	positive
measure,	like	those	examined	in	Chapter	15.	Last	minute	insert:	The	same	idea	is
stated	independently	to	Avron	&	Simon	1981,	which	relates	it	to	Hill’s	equation;
their	Note	6	includes	many	other	relevant	references.
SPECTRA.	Harter	1979-1981	describes	some	spectra	of	organic	molecules

whose	resemblance	to	a	Cantor	dust	is	stunning.
PLATE	81.	Here,	the	Cantor	dust’s	shape	is	clarified	by	being	placed	among

generalized	dusts	with	N=2	and	variable	r.	The	vertical	coordinate	is	either	r
itself,	ranging	from	0	to	½	(bottom	figure),	or	D	ranging	from	0	to	1	(top	figure).
Both	theater	curtains	are	topped	by	the	full	interval	[0,1].	Every	horizontal	cut	of
either	figure	is	some	Cantor	dust,	with	the	arrows	pointing	out	r=⅓	and
D=06309.
A	FAMOUS	GREEK	PARADOX.	Greek	philosophers	believed	that,	in	order

to	be	indefinitely	subdivisible,	a	body	had	to	be	continuous.	They	had	not	heard
of	Cantor	dusts.



Plate	83	CANTOR	FUNCTION,	OR	DEVIL’S	STAIRCASE	(DIMENSION
D=1	THE	RISERS’	ABSCISSAS	ARE	OF	DIMENSION	D~0.6309).

CANTOR	MOTION
	



The	Cantor	function	describes	the	distribution	of	mass	along	the	Cantor	bar	of
Plate	80.	Many	writers	refer	to	its	graph	as	the	Devil’s	Staircase,	because	it	is
odd	indeed.	Set	both	the	bar’s	length	and	mass	as	equal	to	1,	and	for	every	value
of	the	abscissa	R	define	M(R)	as	the	mass	contained	between	0	and	R.	Since
there	is	no	mass	in	the	gaps,	M(R)	remains	constant	along	intervals	that	add	up
to	the	whole	length	of	the	bar.	However,	since	hammering	does	not	affect	the
total	mass	in	the	bar,	M(R)	must	manage	to	increase	somewhere	from	the	point
of	coordinates	(0,0)	to	the	point	of	coordinates	(1,1).	It	increases	over	infinitely
many,	infinitely	small,	highly	clustered	jumps	corresponding	to	the	slugs.	Hille
&	Tamarkin	1929	describes	this	function’s	odd	properties	in	detail.
REGULARIZING	MAPPINGS.	The	Devil’s	staircase	accomplishes	the	feat

on	mapping	the	drastic	nonuniformity	of	the	Cantor	bar	into	something	uniform
and	homogeneous.	Starting	with	two	different	intervals	of	the	same	length	on	the
vertical	scale,	the	inverse	function	of	the	Cantor	staircase	yields	two	collections
of	slugs	that	contain	the	same	mass—even	though	they	usually	look	very
different	from	each	other.
Since	science	thrives	on	uniformity,	it	often	happens	that	such	regularizing

transformations	make	fractal	irregularity	accessible	to	analysis.
FRACTAL	HOMOGENEITY.	It	is	convenient	to	describe	the	distribution	of

mass	in	the	Cantor	bar	as	fractally	homogeneous.
CANTOR	MOTION.	As	in	the	case	of	the	Koch	curve	reinterpreted	as	Koch

motion,	or	of	the	Peano	motion,	it	is	useful	to	reinterpret	the	ordinate	M(R)	as	a
time.	If	so,	the	inverse	function	R(M)	gives	the	position	of	a	Cantor	motion	at
time	t.	This	motion	is	most	discontinuous.	Chapters	31	and	32	describe	a
randomized	linear	and	spatial	generalizations.
FRACTAL	DIMENSION.	The	sums	of	the	widths	and	of	the	heights	of	the

steps	both	equal	1,	and	one	finds	in	addition	that	this	curve	has	a	well-defined
length	equal	to	2.	A	curve	of	finite	length	is	called	rectifiable	and	is	of	dimension
D=1.	This	example	demonstrates	that	the	dimension	D=1	is	compatible	with	the
presence	of	many	irregularities,	as	long	as	they	remain	sufficiently	scattered.

	One	would	love	to	call	the	present	curve	a	fractal,	but	to	achieve	this	goal
we	would	have	to	define	fractals	less	stringently,	on	the	basis	of	notions	other
than	D	alone.
SINGULAR	FUNCTIONS.	The	Cantor	staircase	is	a	nondecreasing	and

nonconstant	function	that	is	singular,	in	the	sense	that	it	is	continuous	but
nondifferentiable.	Its	derivative	vanishes	almost	everywhere,	and	its	continuous
variation	manages	to	occur	over	a	set	whose	length—i.e.,	linear	measure—



vanishes.
Any	nondecreasing	function	can	be	written	as	the	sum	of	a	singular	function,

of	a	function	made	of	discrete	jumps,	and	of	a	differentiable	function.	The	last
two	components	are	classical	in	mathematics	and	of	wide	use	in	physics.	On	the
other	hand,	the	singular	component	is	widely	regarded	in	physics	as	pathological
and	totally	devoid	of	uses.	A	principal	theme	of	this	Essay	is	that	this	last
opinion	is	totally	devoid	of	merit.
DEVIL’S	STAIRCASES	IN	STATISTICAL	PHYSICS.	The	publication	of

this	plate	in	my	1977	Essay	brought	the	Devil’s	staircase	to	the	physicists’
attention,	and	stimulated	an	extensive	literature.	Diagrams	analogous	to	the
“curtains”	of	Plate	81,	or	the	Fatou	curtain	of	Plate	185,	are	encountered	with
growing	frequency.	See	Aubry	1981.	Important	earlier	work	(Azbel	1964,
Hofstadter	1976),	which	used	to	be	isolated,	merges	with	this	new	development.





III

GALAXIES	AND	EDDIES



9

Fractal	View	of	Galaxy	Clusters

In	Chapters	6	and	7,	the	Koch	and	Peano	fractals	are	introduced	via
geomorphology,	but	the	most	significant	uses	of	fractals	are	rooted	elsewhere.
Inching	toward	the	mainstream	of	science,	this	chapter	and	the	next	two	tackle
two	issues	of	exceptional	antiquity,	importance	and	difficulty.
The	distribution	of	the	stars,	the	galaxies,	the	clusters	of	galaxies,	and	so	on

fascinates	the	amateur	as	well	as	the	specialist,	yet	clustering	remains	peripheral
to	astronomy	and	to	astrophysics	as	a	whole.	The	basic	reason	is	that	no	one	has
yet	explained	why	the	distribution	of	matter	falls	into	an	irregular	hierarchy,	at
least	within	a	certain	range	of	scales.	While	there	are	allusions	to	clustering	in
most	works	on	the	subject,	serious	theoretical	developments	hasten	to	sweep	it
under	the	rug,	claiming	that	on	scales	beyond	some	large	but	unspecified
threshold	galaxies	are	uniformly	distributed.
Less	fundamentally,	the	hesitation	in	dealing	with	the	irregular	arises	from	the

absence	of	tools	to	describe	it	mathematically.	Statistics	is	asked	to	decide
between	two	assumptions,	only	one	of	which	is	thoroughly	explored	(asymptotic
uniformity).	Is	it	surprising	that	the	results	are	inconclusive?
The	questions,	however,	refuse	to	be	set	aside.	In	parallel	with	efforts	to

explain,	I	think	it	indispensable	to	describe	clustering,	and	to	mimic	reality	by
purely	geometric	means.	The	fractal	treatment	of	this	subject,	scattered	over
several	chapters	of	this	Essay,	proposes	to	show	by	explicitly	constructed	models
that	the	evidence	is	compatible	with	a	degree	of	clustering	that	extends	far
beyond	the	limits	suggested	by	existing	models.
The	present	introductory	chapter	describes	an	influential	theory	of	the

formation	of	stars	and	galaxies,	due	to	Hoyle,	the	principal	descriptive	model	of
their	distribution,	due	to	Fournier	d’Albe	(also	known	as	the	Charlier	model),
and,	most	important,	sketches	some	empirical	data.	It	is	shown	that	both	theories
and	data	can	be	interpreted	in	terms	of	a	scaling	fractal	dust.	I	argue	that	the
distribution	of	galaxies	and	of	stars	includes	a	zone	of	self-similarity	in	which



the	fractal	dimension	satisfies	0<D<3.	Theoretical	reasons	for	expecting	D=1	are
sketched,	raising	the	question	of	why	the	observed	D	is	~1.23.
PREVIEW.	Chapter	22	uses	fractal	tools	to	improve	our	understanding	of

what	the	cosmological	principle	means,	how	it	can	and	should	be	modified,	and
why	the	modification	demands	randomness.	A	discussion	of	improved	model
clusters	is	withheld	until	Chapters	22,	23,	and	32	to	35.



IS	THERE	A	GLOBAL	DENSITY	OF	MATTER?

Let	us	begin	with	a	close	examination	of	the	concept	of	global	density	of	matter.
As	with	the	concept	of	the	length	of	a	coastline,	things	seem	simple,	but	in	fact
go	awry	very	quickly	and	most	interestingly.	To	define	and	measure	density,	one
starts	with	the	mass	M(R)	in	a	sphere	of	radius	R	centered	on	Earth.	The
approximate	density,	defined	as

M(R)/[(4/3)πR3),

is	evaluated.	After	that,	the	value	of	R	is	made	to	tend	toward	infinity,	and	the
global	density	is	defined	as	the	limit	toward	which	the	approximate	density
converges.
But	need	the	global	density	converge	to	a	positive	and	finite	limit?	If	so,	the

speed	of	convergence	leaves	a	great	deal	to	be	desired.	Furthermore,	the
estimates	of	the	limit	density	had	behaved	very	oddly	in	the	past.	As	the	depth	of
the	world	perceived	by	telescopes	increased,	the	approximate	density	diminished
in	a	surprisingly	systematic	manner.	According	to	de	Vaucouleurs	1970,	it	has
remained	∝RD-3.	The	observed	exponent	D	is	much	smaller	than	3,	the	best
estimate,	on	the	basis	of	indirect	evidence,	being	D=1.23.
The	thesis	of	de	Vaucouleurs	is	that	the	behavior	of	the	approximate	density

reflects	reality,	meaning	that	M(R)∝RD.	This	formula	recalls	the	classical	result
that	a	ball	of	radius	R	in	a	Euclidean	space	of	dimension	E	has	a	volume	∝RE.	In
Chapter	6	we	encounter	the	same	formula	for	the	Koch	curve,	with	the	major
difference	that	the	exponent	is	not	the	Euclidean	dimension	E=2	but	a	fraction-
valued	fractal	dimension	D.	And	Chapter	8	derives	M(R)∝RD	for	the	Cantor
dust	on	the	time	axis	(for	which	E=1).
All	these	precedents	suggest	very	strongly	that	the	de	Vaucouleurs	exponent	D

is	a	fractal	dimension.



ARE	STARS	IN	THE	SCALING	RANGE?

Obviously,	the	scaling	range	in	which	D	satisfies	0<D<3	must	end	before	one
reaches	objects	with	well-defined	edges,	such	as	planets.	But	does	it,	or	does	it
not,	include	stars?	According	to	data	by	Webbink	reported	in	Faber	&	Gallagher
1980,	the	mass	of	the	Milky	Way	interior	to	radius	R	may	very	well	be
represented	as	M(R)∝RD,	with	the	D	extrapolated	from	galaxies.	But	we
continue	our	discussion	exclusively	in	terms	of	galaxies.



IS	THERE	AN	UPPER	CUTOFF	TO	THE	SCALING
RANGE?

The	question	of	how	far	the	range	in	which	0<D<3	extends	in	the	direction	of
very	large	scales	is	controversial	and	the	subject	of	renewed	activity.	Many
authors	either	state	or	imply	that	the	scaling	range	admits	of	an	outer	cutoff
corresponding	to	clusters	of	galaxies.	Other	authors	disagree.	De	Vaucouleurs
1970	asserts	that	“clustering	of	galaxies,	and	presumably	of	all	forms	of	matter,
is	the	dominant	characteristic	of	the	structure	of	the	universe	on	all	observable
scales	with	no	indication	of	an	approach	to	uniformity;	the	average	density	of
matter	decreases	steadily	as	even	larger	volumes	of	space	are	considered,	and
there	is	no	observational	basis	for	the	assumption	that	this	trend	does	not
continue	out	to	much	greater	distances	and	lower	densities.”
The	debate	between	these	two	schools	of	thought	is	interesting	and	important

to	cosmology—but	not	for	the	purposes	of	this	Essay.	Even	if	the	range	in	which
0<D<3	is	cut	off	at	both	ends,	its	importance	is	sufficient	in	itself	to	warrant	a
careful	study.
In	either	case,	the	Universe	(just	like	the	ball	of	thread	discussed	in	Chapter	3)

appears	to	involve	a	sequence	of	several	different	effective	dimensions.	Starting
with	scales	of	the	order	of	Earth’s	radius,	one	first	encounters	the	dimension	3
(due	to	solid	bodies	with	sharp	edges).	Then	the	dimension	jumps	to	0	(matter
being	viewed	as	a	collection	of	isolated	points).	Next	is	the	range	of	interest,
ruled	by	some	nontrivial	dimension	satisfying	0<D<3.	If	scaling	clustering
continues	ad	infinitum,	so	does	the	applicability	of	this	last	value	of	D.	If,	on	the
contrary,	there	is	a	finite	outer	cutoff,	a	fourth	range	is	added	on	top,	in	which
points	lose	their	identity	and	one	has	a	uniform	fluid,	meaning	that	the
dimension	again	equals	3.
On	the	other	hand,	the	most	naive	idea	is	to	view	the	galaxies	as	distributed

near	uniformly	throughout	the	Universe.	Under	this	untenable	assumption,	one
has	the	sequence	D=3,	then	D=0,	and	again	D=3.

	The	general	theory	of	relativity	asserts	that	in	the	absence	of	matter,	the
local	geometry	of	space	tends	to	be	flat	and	Euclidean,	with	the	presence	of
matter	making	it	locally	Riemannian.	Here	we	could	speak	of	a	globally	flat



Universe	of	dimension	3	with	local	D<3.	This	type	of	disturbance	is	considered
in	Selety	1924,	an	obscure	reference	which	fails	to	refer	to	Koch	but	includes	(p.
312)	an	example	of	the	construction	of	Chapter	6.



THE	FOURNIER	UNIVERSE

It	remains	to	construct	a	fractal	that	satisfies	M(r)∝RD,	and	see	how	it	agrees
with	accepted	views	concerning	the	Universe.	The	first	fully	described	model	of
this	kind	is	due	to	E.	E.	Fournier	d’Albe	(Chapter	40).	While	Fournier	1907	is
largely	a	work	of	fiction	disguised	as	science,	it	also	contains	genuinely
interesting	considerations	to	which	we	come	momentarily.	It	is	best,	however,	to
first	describe	the	structure	it	proposes.
Its	construction	begins	with	the	centered	regular	octahedron	whose	projection

is	represented	near	the	center	of	Plate	95.	The	projection	reduces	to	the	four
corners	of	a	square	whose	diagonal	is	set	to	be	of	length	12	“units,”	and	to	this
square’s	center.	But	the	octahedron	also	includes	two	points	above	and	below
our	plane,	on	the	perpendicular	drawn	from	the	center	of	the	square,	and	at	the
same	distance	of	6	units	from	this	center.
Now,	each	point	is	replaced	with	a	ball	of	radius	1,	to	be	viewed	as	“stellar

aggregate	of	order	0.”	And	the	smallest	ball	including	the	basic	7	balls	is	to	be
called	a	“stellar	aggregate	of	order	I.”	An	aggregate	of	order	2	is	achieved	by
enlarging	an	aggregate	of	order	1	in	the	ratio	1/r=7	and	by	replacing	each	of	the
resulting	balls	of	radius	7	by	a	replica	of	the	aggregate	of	order	1.	In	the	same
way,	an	aggregate	of	order	3	is	achieved	by	enlarging	an	aggregate	of	order	2	in
the	ratio	1/r=7	and	by	replacing	each	ball	by	a	replica	of	the	aggregate	of	order
2.	And	so	on.
In	sum,	between	two	successive	orders	of	aggregation,	the	number	of	points

and	the	radius	are	enlarged	in	the	ratio	1/r=7.	Consequently,	whenever	R	is	the
radius	of	some	aggregate,	the	function	M0(R)	expressing	the	number	of	points
contained	in	a	ball	of	radius	R	is	M0(R)=R.	For	intermediate	values	of	R,	M0(R)
is	smaller	(reaching	down	to	R/7),	but	the	overall	trend	is	M0(R)∝R.
Starting	from	aggregates	of	order	0,	it	is	also	possible	to	interpolate	by

successive	stages	to	aggregates	of	orders	-1,	-2,	and	so	on.	The	first	stage
replaces	each	aggregate	of	order	0	with	an	image	of	the	aggregate	of	order	1,
reduced	in	the	ratio	1/7,	and	so	forth.	If	one	does	so,	the	validity	of	the
relationship	M0(R)∝R	is	extended	to	ever	smaller	values	of	R.	After	infinite
extra-	and	interpolation,	we	have	a	self-similar	set	with	D=log	7/log	7=1.



We	may	also	note	that	an	object	in	3-space	for	which	D=	1	need	not	be	a
straight	line	nor	any	other	rectifiable	curve.	It	need	not	even	be	connected.	Each
D	is	compatible	with	any	lesser	or	equal	value	of	the	topological	dimension.	In
particular,	since	the	doubly	infinite	Fournier	universe	is	a	totally	disconnected
“dust,”	its	topological	dimension	is	0.



DISTRIBUTION	OF	MASS;	FRACTAL
HOMOGENEITY

The	step	from	geometry	to	the	distribution	of	mass	is	obvious.	If	each	stellar
aggregate	of	order	0	is	loaded	with	a	unit	mass,	the	mass	M(R)	within	a	ball	of
radius	R	>	1	is	identical	to	M0(R),	hence	∝R.	Furthermore,	to	generate
aggregates	of	order	-1	from	aggregates	of	order	0	amounts	to	breaking	up	a	ball
that	had	been	viewed	as	uniform,	and	finding	it	to	be	made	of	seven	smaller
ones.	This	stage	extends	the	rule	M(R)∝R	below	R=1.
When	viewed	over	the	whole	3-space,	the	resulting	mass	distribution	is

grossly	inhomogeneous,	but	over	the	Fournier	fractal	it	is	as	homogeneous	as
can	be.	(Recall	Plate	80.)	In	particular,	any	two	geometrically	identical	portions
of	the	Fournier	universe	carry	identical	masses.	I	propose	that	such	a	distribution
of	mass	be	called	fractally	homogeneous.

	The	preceding	definition	is	phrased	in	terms	of	scaling	fractals,	but	the
concept	of	fractal	homogeneity	is	more	general.	It	applies	to	any	fractal	for
which	the	Hausdorff	measure	for	the	dimension	D	is	positive	and	finite.	Fractal
homogeneity	requires	the	mass	carried	by	a	set	to	be	proportional	to	the	set’s
Hausdorff	measure.



FOURNIER	UNIVERSE	VIEWED	AS	CANTOR
DUST.	EXTENSION	TO	D#1

I	trust	the	reader	was	not	distracted	by	the	casual	use	of	fractal	terminology	in
the	opening	sections	of	this	chapter.	It	is	obvious	that,	without	being	aware	of	the
fact,	Fournier	was	traveling	along	a	track	parallel	to	that	of	Cantor,	his
contemporary.	The	main	difference	is	that	the	Fournier	construction	is	imbedded
in	space	instead	of	the	line.	To	further	improve	the	resemblance,	it	suffices	to
change	Fournier’s	aggregates	from	being	balls	to	being	bricks	(filled-in	cubes).
Now,	each	aggregate	of	order	0	is	a	brick	of	side	1,	and	it	includes	7	aggregates
of	side	1/7:	one	of	them	has	the	same	center	as	the	initial	cube,	and	the	other	six
touch	the	central	subsquares	of	the	faces	of	the	original	cube.
Later	we	will	examine	how	Fournier	obtains	the	value	D=1	from	basic

physical	phenomena,	and	how	Hoyle	obtains	this	same	value.	Geometrically,
however,	D=1	is	a	special	case,	even	if	one	preserves	the	overall	octahedron	and
the	value	N=7.	Since	the	balls	do	not	overlap,	1/r	can	take	any	value	between	3
and	infinity,	yielding	M(R)∝RD,	with	D=log	7/log	(1/r)	anywhere	between	0	and
log	7/log	3=1.7712.
Further,	given	any	D	satisfying	D<3,	it	is	easy	by	changing	N	to	construct

variants	of	Fournier’s	model	having	this	dimension.



THE	CHARLIER	MODEL	AND	OTHER	FRACTAL
UNIVERSES

The	above	constructs	share	every	one	of	the	characteristic	defects	of	first	fractal
models.	Most	conspicuously,	just	like	the	Koch	curve	model	in	Chapter	6	and
the	Cantor	dust	model	in	Chapter	8,	the	Fournier	model	is	so	regular	as	to	be
grotesque.	As	a	corrective,	Charlier	1908,	1922	suggests	that	one	allow	N	and	r
to	vary	from	one	hierarchical	level	to	another,	taking	on	the	values	Nm	and	rm.
The	scientific	eminence	of	Charlier	was	such	that,	despite	the	praise	he

lavished	on	Fournier,	writing	in	the	leading	scientific	languages	of	the	day,	even
the	simple	model	soon	became	credited	to	its	famous	expositor	instead	of	its
unknown	author.	It	was	much	discussed	in	its	time,	in	particular	in	Selety	1922,
1923a,	1923b,	1924.	Furthermore,	the	model	attracted	the	attention	of	the	very
influential	Emile	Borel,	whose	comments	in	Borel	1922,	while	dry,	were
perceptive.	But	from	then	on,	aside	from	fitful	revivals,	the	model	fell	into
neglect	(for	not	very	convincing	reasons	noted	in	North	1965,	pp.	20-22	and
408-409).	Nevertheless,	it	refuses	to	die.	The	basic	idea	was	independently
reinvented	many	times	to	this	day,	notably	in	Levy	1930.	(See	the	LEVY	entry	in
Chapter	40.)	Most	important,	the	fractal	core	notion	of	the	Fournier	universe	is
implicit	in	the	considerations	about	turbulence	and	galaxies	in	von	Weizsäcker
1950	(see	Chapter	10),	and	in	the	model	of	the	genesis	of	the	galaxies	due	to
Hoyle	1953,	which	will	be	discussed	momentarily.
The	basic	fractal	ingredient	is	also	present	in	my	models,	Chapters	32	to	35.
In	this	light,	the	question	arises	of	whether	a	model	of	galaxy	distribution	can

fail	to	be	a	fractal	with	one	or	two	cutoffs.	I	think	not.	If	one	agrees	that	the
distribution	must	be	scaling	(for	reasons	to	be	elaborated	in	Chapter	11)	and	that
the	set	on	which	matter	concentrates	is	not	a	standard	scaling	set,	it	must	be	a
fractal	set.
Granted	the	importance	of	scaling,	Charlier’s	nonscaling	generalization	of	the

Fournier	model	is	ill-inspired.	 	Incidentally,	it	allows	log	Nm/log	(1/rm)	to	vary
with	m	between	two	bounds,	Dmin>0	and	Dmax<3.	We	have	here	yet	another
theme:	effective	dimension	need	not	have	a	single	value,	and	may	drift	between
an	upper	and	a	lower	limit.	This	theme	is	picked	up	again	in	Chapter	15.



FOURNIER’S	REASON	TO	EXPECT	D=1

We	now	describe	the	impressive	argument	that	leads	Fournier	1907,	p.	103,	to
conclude	that	D	must	be	equal	to	1.	This	argument	is	a	strong	reason	for	not
forgetting	its	author.
Consider	a	galactic	aggregate	of	arbitrary	order	with	mass	M	and	radius	R.

Using	without	misgivings	a	formula	applicable	to	objects	with	spherical
symmetry,	assume	that	the	gravitational	potential	on	the	surface	is	GM/R	(G
being	the	gravitational	constant).	A	star	falling	on	this	universe	impacts	with	the
velocity	V	equal	to	(2GM/R)½.
To	paraphrase	Fournier,	an	important	conclusion	may	be	drawn	from	the

observation	that	no	stellar	velocity	exceeds	1/300	of	the	velocity	of	light.	It	is
that	the	mass	comprised	within	a	world	ball	increases	as	its	radius,	and	not	as	its
volume,	or	in	other	words,	that	the	density	within	a	world	ball	varies	inversely	as
the	surface	of	the	ball...	To	make	this	clearer,	the	potential	at	the	surface	would
be	always	the	same,	being	proportional	to	the	mass	and	inversely	proportional	to
the	distance.	And	as	a	consequence,	stellar	velocities	approaching	the	velocity	of
light	would	not	prevail	in	any	part	of	the	universe.



HOYLE	CURDLING;	THE	JEANS	CRITERION
ALSO	YIELDS	D=1

A	hierarchical	distribution	also	arises	in	a	theory	advanced	in	Hoyle	1953,
according	to	which	galaxies	and	stars	form	by	a	cascade	process	starting	with	a
uniform	gas.
Consider	a	gas	cloud	of	temperature	T	and	mass	M0,	distributed	with	a

uniform	density	throughout	a	ball	of	radius	R.	As	shown	by	Jeans	a	“critical”
situation	prevails	when	M0/R0=JkRT/G.	(Here,	k	is	the	Boltzmann	constant	and	J
a	numerical	coefficient.)	In	this	critical	case,	the	primordial	gaseous	cloud	is
unstable	and	must	inevitably	contract.
Hoyle	postulates	(a)	that	M0/R0	takes	on	this	critical	value	at	some	initial

stage,	(b)	that	the	resulting	contraction	stops	when	the	volume	of	the	gas	cloud
drops	to	1/25-th,	and	(c)	that	each	cloud	then	splits	into	five	clouds	of	equal	size,
mass	M1=M0/5,	and	equal	radius	R1=R0/5.	Thus	the	process	ends	as	it	started:	in
an	unstable	situation	followed	by	a	second	stage	of	contraction	and	subdivision,
then	a	third,	and	so	on.	But	curdling	stops	as	clouds	become	so	opaque	that	the
heat	due	to	gas	collapse	can	no	longer	escape.
As	in	the	diverse	other	fields	where	the	same	cascade	process	is	encountered,	I

propose	that	the	five	clouds	be	called	curds,	and	that	the	cascade	process	be
called	curdling.	As	said	when	I	introduced	this	last	term,	I	could	not	resist	its
juxtaposition	with	galactic.
Fournier	injects	N=7	to	facilitate	the	graphical	illustration,	but	Hoyle	claims

that	N=5	has	a	physical	basis.	In	another	contrast	with	Fournier,	whose
geometrical	illustration	is	detailed	beyond	what	is	reasonable	or	needed,	Hoyle	is
vague	about	the	curds’	spatial	scatter.	An	explicit	implementation	has	to	wait
until	we	describe	random	curdling	in	Chapter	23.	But	these	discrepancies	do	not
matter:	the	main	fact	is	that	r=1/N,	so	that	D=1	must	be	part	of	the	design	if
curdling	is	to	end	as	it	began,	in	Jeans	instability.
Further,	if	the	duration	of	the	first	stage	is	taken	to	be	1,	gas	dynamics	shows

that	the	mth	stage’s	duration	is	5-m.	It	follows	that	the	same	process	could
continue	to	infinity	within	a	total	time	of	1.2500.



EQUIVALENCE	OF	THE	FOURNIER	AND	HOYLE
DERIVATIONS	OF	D=1

At	the	edge	of	an	unstable	gas	cloud	satisfying	the	Jeans	criterion,	the	velocity
and	the	temperature	are	linked	by	V2/2=JkT,	because	GM/R	is	equal	to	V2/2
(Fournier)	and	to	JkT	(Jeans).	Now	recall	that	in	statistical	thermodynamics	the
temperature	of	a	gas	is	proportional	to	the	mean	square	velocity	of	its	molecules.
Hence	the	combination	of	the	Fournier	and	Jeans	criteria	suggests	that	at	the
edge	of	a	cloud	the	velocity	of	the	fall	of	a	macroscopic	object	is	proportional	to
the	average	velocity	of	its	molecules.	A	careful	analysis	of	the	role	of
temperature	in	the	Jeans	criterion	is	bound	to	show	the	two	criteria	to	be
equivalent.	 	Most	likely,	the	analogy	extends	to	the	M(R)∝R	relationship
within	galaxies,	reported	in	Wallenquist	1957.



WHY	D=1.23	AND	NOT	D=1?

The	disagreement	between	the	empirical	D=1.23	and	the	Fournier	and	Hoyle
theoretical	D=1	raises	an	important	issue.	P.	J.	E.	Peebles	tackled	it	in	1974	by
relativity	theory.	See	Peebles	1980,	a	full	treatment	of	the	physics	and	of	the
statistics	(but	not	of	the	geometry)	of	this	topic.



THE	SKY’S	FRACTAL	DIMENSION

The	sky	is	a	projection	of	a	universe,	in	which	every	point	is	first	described	by
its	spherical	coordinates	p,	θ,	and	φ	and	then	replaced	by	the	point	of	spherical
coordinates	1,	θ,	and	φ.	When	the	universe	is	a	fractal	of	dimension	D,	and	the
origin	of	the	frame	of	references	belongs	to	the	universe	(see	Chapter	22),	the
structure	of	this	projection	is	“typically”	ruled	by	the	following	alternative:	D>2
implies	that	the	projection	covers	a	nonzero	proportion	of	the	sky,	while	D<2
implies	that	the	projection	is	itself	of	dimension	D.	 	As	exemplified	in	Plates
95	and	96,	typical	allows	for	exceptions,	due	to	the	structure	of	the	fractal	and/or
the	choice	of	origin.	It	often	means	“true	with	probability	1.”



ASIDE	ON	THE	BLAZING	SKY	EFFECT
(WRONGLY	CALLED	OLBERS	PARADOX)

The	rule	in	the	preceding	section	bears	directly	upon	the	motivation	that	led
diverse	writers	(including	Fournier)	to	variants	of	a	fractal	Universe.	They
recognized	that	such	universes	“exorcise”	geometrically	the	Blazing	Sky	Effect,
often	(but	wrongly)	called	Olbers	paradox.	Under	the	assumption	that	the
distribution	of	celestial	bodies	is	uniform,	meaning	that	D=3	for	all	scales,	the
sky	is	lit	near	uniformly,	during	the	night	and	during	the	day,	to	the	brighness	of
the	solar	disc.
This	paradox	is	no	longer	of	interest	to	physicists,	having	been	eliminated	by

relativity	theory	and	the	theory	of	the	expansion	of	the	Universe,	and	other
arguments.	But	its	demise	left	a	peculiar	by-product:	numerous	commentators
invoke	their	preferred	explanation	of	the	Blazing	Sky	Effect	as	an	excuse	for
neglecting	clustering,	and	even	as	an	argument	for	denying	its	reality.	This	is	a
truly	odd	viewpoint:	even	if	galaxies	need	not	be	clustered	to	avoid	the	Blazing
Sky	Effect,	they	are	clustered,	and	this	characteristic	demands	careful	study.
Furthermore,	as	seen	in	Chapter	32,	the	expansion	of	the	Universe	is	compatible
not	only	with	standard	homogeneity	but	also	with	fractal	homogeneity.
The	Blazing	Sky	argument	is	simplicity	itself.	When	the	light	emitted	by	a	star

is	proportional	to	its	surface	area,	the	amount	of	light	reaching	an	observer	at	a
distance	of	R∝1/R2,	but	the	star’s	apparent	surface	is	itself	∝1/R2.	Thus,	the
apparent	ratio	of	light	to	spherical	angle	is	independent	of	R.	Also,	when	the
distribution	of	stars	in	the	Universe	is	uniform,	almost	any	direction	in	the	sky
sooner	or	later	intersects	some	star.	Therefore,	the	sky	is	uniformly	bright,	and
seems	ablaze.	(The	Moon’s	disc	would	form	an	exceptional	dark	domain,	at
least,	in	the	absence	of	atmospheric	diffusion.)
On	the	other	hand,	the	assumption	that	the	universe	is	fractal	with	D<2

resolves	the	paradox.	In	that	case,	the	universe’s	projection	on	the	sky	is	a	fractal
with	the	same	D,	hence	a	set	of	zero	area.	Even	if	the	stars	are	given	a	nonzero
radius,	a	large	proportion	of	directions	go	to	infinity	without	encountering	any
star.	Along	these	directions,	the	night	sky	is	black.	When	the	range	in	which	D<3
is	followed	by	a	range	in	which	D=3,	the	sky’s	background	is	not	strictly	black



but	illuminated	extremely	faintly.
The	Blazing	Sky	Effect	was	noticed	by	Kepler	shortly	after	Galileo’s	Sidereal

Message	had	commented	favorably	on	the	notion	that	the	Universe	is
unbounded.	In	his	1610	Conversation	with	the	Sidereal	Messenger,	Kepler
rejoined:	“You	do	not	hesitate	to	declare	that	there	are	visible	over	10,000	stars...
If	this	is	true,	and	if	[the	stars	have]	the	same	nature	as	our	sun,	why	do	not	these
suns	collectively	outdistance	our	sun	in	brilliance?...	But	maybe	the	intervening
ether	obscures	them?	Not	in	the	least...	It	is	quite	clear	that...this	world	of	ours
does	not	belong	to	an	undifferentiated	swarm	of	countless	others.”	(Rosen	1965,
pp.	34-35.)
This	conclusion	remained	controversial,	but	the	argument	was	not	forgotten,

witness	the	comment	by	Edmund	Halley,	in	1720,	that:	“Another	Argument	I
have	heard	urged,	that	if	the	number	of	Fixt	Stars	were	more	than	finite,	the
whole	superficies	of	their	apparent	Sphere	would	be	luminous.”	Later,	this
conclusion	was	discussed	by	De	Chéseaux	and	J.	H.	Lambert,	but	came	to	be
credited	to	Gauss’s	great	friend,	Olbers.	The	term	“Olbers	paradox”	that	became
attached	to	it	is	scandalous	but	symptomatic.	Observations	that	had	been	rejected
into	the	“unclassified	residuum”	(see	here)	become	all	too	often	credited	to	the
first	Establishment	figure	who	decorates	them	by	a	classifiable	wrapping,
however	transient.	Historical	discussions	are	found	in	Gamow	1954,	Munitz
1957,	North	1965,	Dickson	1968,	Wilson	1965,	Jaki	1969,	Clayton	1975,	and
Harrison	1981.



ASIDE	ON	NEWTONIAN	GRAVITATION

The	Rev.	Bentley	kept	pestering	Newton	with	an	observation	closely	related	to
the	Blazing	Sky	Effect:	if	the	stars’	distribution	is	homogeneous,	the	force	they
exert	on	one	among	them	is	infinite.	One	may	add	that	their	gravitational
potential	is	infinite.	And	that	any	distribution	wherein	M(R)∝RD	for	large	R
yields	an	infinite	potential	unless	D	<	1.	The	modern	theory	of	potentials
(Frostman	theory)	confirms	that	there	is	a	privileged	link	between	Newton’s
gravitation	and	the	value	D=1.	The	Fournier	and	Hoyle	derivations	of	D=1
cannot	fail	to	be	related	to	this	link.	 	Fournier’s	theme	of	“the	gravitational
potential	at	the	surface	being	always	the	same”	is	central	to	modern	potential
theory.



ASIDE	ON	RELATIVITY	THEORY

	To	paraphrase	de	Vaucouleurs	1970:	“Relativity	theory	led	us	to	believe	that	to
be	optically	observable,	no	stationary	material	ball	can	have	a	radius	R	less	than
the	Schwarzchild	limit	Rm=2GM/c2,	where	C	is	the	velocity	of	light.	In	a	plot	of
the	mean	density	ρ	and	the	characteristic	radius	R	of	various	cosmical	systems,
ρm	=	3c2/8πGRm2	defines	an	upper	limit.	The	ratio	ρ/ρm	may	be	called	the
Schwarzchild	filling	factor.	For	most	common	astronomical	bodies	(stars)	or
systems	(galaxies),	the	filling	factor	is	very	small,	on	the	order	of	10-4	to	10-6.”
The	square	of	the	velocity	ratio	postulated	by	Fournier	is	(300)-2~10-5,	precisely
in	the	range	middle	of	the	above.



AN	AGGLUTINATED	FRACTAL	UNIVERSE?

Many	authors	think	one	may	explain	the	genesis	of	stars	and	other	celestial
objects	by	an	ascending	cascade	(i.e.,	the	agglutination	of	greatly	dispersed	dust
particles	into	increasingly	bigger	pieces)	rather	than	by	a	descending	cascade	à	la
Hoyle	(i.e.,	the	fragmentation	of	very	large	and	diffuse	masses	into	smaller	and
smaller	pieces).
An	analogous	alternative	arises	in	connection	with	the	cascades	postulated	in

the	study	of	turbulence,	Chapter	10.	Richardson’s	cascade	descends	toward	ever
smaller	eddies,	but	ascending	cascades	may	also	be	present;	see	Chapter	40,
under	RICHARDSON.	Thus	it	may	be	hoped	that	the	interrelations	between
descending	and	ascending	cascades	will	be	clarified	soon.



FRACTAL	TELESCOPE	ARRAYS

To	wind	up	this	discussion,	nothing	can	be	more	appropriate	than	a	comment
about	the	tools	used	to	observe	the	galaxies.	Dyson	1977	suggests	that	it	may	be
advantageous	to	replace	one	piece	telescopes	by	arrays	of	small	telescopes.	The
diameter	of	each	would	be	about	0.1	m,	equal	to	the	patch	size	of	the	smallest
optically	significant	atmospheric	disturbance,	their	centers	would	form	a
fractally	hierarchical	pattern,	and	they	would	be	linked	by	Currie
interferometers.	A	rough	analysis	leads	to	the	conclusion	that	a	suitable	value	for
the	dimension	would	be	⅔.	Dyson’s	conclusion:	“A	3-kilometer	array	of	1024
ten-centimeter	telescopes	connected	by	1023	interferometers	is	not	a	practical
proposition	today.	[It	is	offered]	as	a	theoretical	ideal,	to	show	what	can	be	done
in	principle.”



SURVEY	OF	RANDOM	FRACTAL	MODELS	OF
GALAXY	CLUSTERS

If	one	grants	the	claim	that	the	distribution	of	galaxies	is	described	usefully	by
unknowingly	fractal	models	of	limited	subtlety	and	versatility,	one	should	not	be
surprised	that	knowingly	fractal	random	models	provide	even	more	useful
descriptions.	To	begin	with,	our	understanding	of	Hoyle	curdling	improves	when
it	is	set	in	its	proper	context:	random	fractals	(Chapter	23).	Of	greater
significance,	I	think,	are	the	random	models	I	developed	and	discuss	in	Chapters
32	to	35.	One	reason	for	dwelling	on	several	models	is	that	improvement	in	the
quality	of	description	is	“paid	for”	by	increased	complication.	A	second	reason	is
that	each	model	involves	a	fractal	dust	that	deserves	attention.	Let	me	survey
these	models	here,	out	of	logical	order.
Around	1965,	my	ambition	was	to	implement	the	relationship	M(R)∝RD	with

D<3	with	a	model	in	which	there	is	no	“center	of	the	universe.”	I	first	achieved
this	goal	by	the	random	walk	model	described	in	Chapter	32.	Then,	as	an
alternative,	I	developed	a	trema	model,	which	consists	in	cutting	out	from	space
a	collection	of	mutually	independent	randomly	placed	tremas	of	random	radius,
ranging	up	to	an	upper	cutoff	L	that	may	be	either	finite	or	infinite.
Since	both	models	had	been	selected	solely	on	the	basis	of	formal	simplicity,

it	was	delightfully	surprising	to	discover	they	have	predictive	value.	My
theoretical	correlation	functions	(Mandelbrot	1975u)	agree	with	the	curve-fitted
ones	reported	in	Peebles	1980	(see	pp.	243-249).	 	More	precisely,	my	two
approaches	agree	on	the	2-point	correlation,	my	random	walk	yields	a	good	3-
point	correlation	and	a	bad	4-point	correlation,	and	my	spherical	tremas	model	is
very	good	for	all	known	correlations.
Unfortunately,	the	appearance	of	samples	generated	by	either	model	is	quite

unrealistic.	Using	a	notion	that	I	developed	for	this	very	purpose	and	describe	in
Chapter	35,	they	have	unacceptable	lacunarity	properties.	For	the	trema	model
this	defect	is	corrected	by	introducing	more	elaborate	trema	shapes.	For	the
random	walk	model,	I	use	a	less	lacunar	“subordinator.”
Thus,	the	study	of	galaxy	clusters	has	greatly	stimulated	the	development	of

fractal	geometry.	And	today	the	uses	of	fractal	geometry	in	the	study	of	galaxy



clusters	go	well	beyond	the	tasks	of	streamlining	and	house-cleaning
accomplished	in	the	present	chapter.



CUT	DIAMONDS	LOOK	LIKE	STARS

And	the	distribution	of	raw	diamonds	in	the	Earth’s	crust	resembles	the
distribution	of	stars	and	galaxies	in	the	sky.	Consider	a	large	world	map	on
which	each	diamond	mine	or	diamond	rich	site—past	or	present—is	represented
by	a	pin.	Where	examined	from	far	away,	these	pins’	density	is	extraordinarily
uneven.	A	few	are	isolated	here	and	there,	but	most	concentrate	in	a	few	blessed
(or	accursed)	areas.	However,	the	Earth’s	surface	in	these	areas	is	not	uniformly
paved	with	diamonds.	When	examined	more	closely,	any	of	these	areas	turns	out
itself	to	be	mostly	blank,	with	scattered	subareas	of	much	greater	diamond
concentration.	The	process	continues	over	several	orders	of	magnitude.
Is	it	not	irresistible	to	inject	curdling	in	this	context?	Indeed,	an	unknowingly

fractal	model	has	been	advanced	by	de	Wijs,	as	seen	under	NONLACUNAR
FRACTALS	in	Chapter	39.



Plate	95	PROJECTION	OF	FOURNIER’S	MULTIUNIVERSE
(DIMENSION	D~0.8270)

	
This	plate	represents	to	scale	both	the	projection	and	the	“equatorial”	section	of
a	Universe	of	dimension	D=1	described	in	the	text.	See	also	Plate	96.
To	paraphrase	the	caption	in	Fournier	1907:	“A	multiuniverse	constructed

upon	a	cruciform	or	octahedral	principle	is	not	the	plan	of	the	world	but	is	useful
in	showing	that	an	infinite	series	of	similar	successive	universes	may	exist
without	producing	a	‘blazing	sky.’	The	matter	in	each	world	sphere	is
proportional	to	its	radius.	This	is	the	condition	required	for	fulfilling	the	laws	of
gravitation	and	radiation.	In	some	directions	the	sky	would	appear	quite	black,
although	there	is	an	infinite	succession	of	universes.	The	‘world	ratio’	in	this



case	is	N=7	instead	of	1022,	as	in	reality.”
In	the	sense	described	in	Chapter	34,	a	universe	with	D=1	and	N=1022	is	of

very	low	lacunarity,	but	extraordinarily	stratified.

Plate	96	A	FLAT	FOURNIER	UNIVERSE	WITH	D=1
	
Plate	95,	being	drawn	to	exact	scale,	is	not	only	hard	to	print	and	to	see,	but
potentially	misleading.	Indeed,	it	is	not	a	universe	of	dimension	D=1	but	its
planar	projection,	whose	dimension	is	D=log	5/log	7~0.8270<	1.	Therefore,	in
order	to	avoid	leaving	the	wrong	impression,	we	hasten	to	exhibit	a	regular



Fournier-like	planar	pattern	of	dimension	D=1.	The	construction,	which	involves
1/r=5	instead	of	1/r=7,	is	carried	one	step	further	than	is	possible	in	Plate	95.



10

Geometry	of	Turbulence;	Intermittency

The	study	of	turbulence	is	one	of	the	oldest,	hardest,	and	most	frustrating
chapters	of	physics.	Common	experience	suffices	to	show	that	under	certain
circumstances	the	flow	of	a	gas	or	a	liquid	is	smooth,	the	technical	term	being
“laminar,”	while	under	different	circumstances	it	is	not	smooth	at	all.	But	where
should	we	draw	a	line?	Should	the	term	“turbulence”	denote	all	unsmooth	flows,
including	much	of	meteorology	and	oceanography?	Or	is	it	better	to	reserve	it
for	a	narrow	class,	and,	if	so,	for	which	one?	Each	scholar	seems	to	answer	these
questions	differently.
This	disagreement	does	not	matter	here,	because	we	focus	on	unquestionably

turbulent	flows,	whose	most	conspicuous	characteristic	resides	in	the	absence	of
a	well-defined	scale	of	length:	they	all	involve	coexistent	“eddies”	of	all	sizes.
This	feature	can	already	be	recognized	in	Leonardo’s	and	Hokusai’s	drawings.	It
demonstrates	that	turbulence	is	necessarily	foreign	to	the	spirit	of	the	“old”
physics	that	focused	upon	phenomena	having	well-defined	scales.	But	this	same
reason	makes	the	study	of	turbulence	of	direct	interest	to	us.
As	some	readers	know,	practically	all	investigations	of	turbulence	concentrate

upon	the	analytic	study	of	fluid	flow,	and	leave	the	geometry	aside.	I	like	to
think	that	this	lack	of	balance	does	not	reflect	a	perceived	lack	of	importance.	In
fact,	many	geometric	shapes	involved	in	turbulence	are	easily	seen	or	made
visible	and	cry	out	for	a	proper	description.	But	they	could	not	receive	the
attention	they	deserve	until	the	development	of	fractal	geometry.	Indeed,	as	I
immediately	surmised,	turbulence	involves	many	fractal	facets,	of	which	I
describe	a	few	in	this	and	later	chapters.
Two	disclaimers	are	necessary.	First	of	all,	we	leave	aside	the	problem	of	the

onset	of	turbulence	in	a	laminar	fluid.	There	is	strong	reason	to	believe	that	this
onset	has	fractal	aspects	of	great	importance,	but	they	have	not	been	clarified
enough	to	be	discussed	here.	Secondly,	such	periodic	structures	as	Bénard	cells
and	Kármán	streets	do	not	concern	us	here.



This	chapter	begins	with	pleas	for	a	more	geometric	approach	to	turbulence
and	for	the	use	of	fractals.	These	pleas	are	numerous	but	each	is	brief,	because
they	involve	suggestions	with	few	hard	results	as	yet.
After	that,	we	focus	on	the	problem	of	intermittency,	which	I	have

investigated	actively.	My	most	important	conclusion	is	that	the	region	of
dissipation,	namely	the	spatial	set	on	which	turbulent	dissipation	is	concentrated,
can	be	modeled	by	a	fractal.	Measurements	done	for	different	purposes	suggest
that	this	region’s	D	lies	around	2.5	to	2.6,	but	probably	below	2.66.
Unfortunately,	the	model	cannot	be	pinpointed	accurately,	until	we	determine

the	topological	properties	of	the	region	of	dissipation.	In	particular,	is	it	a	dust,
or	a	wiggly	and	branched	curve	(vortex	tube),	or	a	wiggly	and	layered	surface
(vortex	sheet)?	The	first	conjecture	is	unlikely,	while	the	second	and	third
suggest	models	akin	to	the	ramified	fractals	of	Chapter	14.	But	we	are	in	no
position	to	decide.	Progress	on	the	new	fractal	front	does	not	help	the	old
topological	front	at	all.	Our	knowledge	of	the	geometry	of	turbulence	remains
primitive	indeed.
The	bulk	of	this	chapter	requires	no	expertise.	 	But	the	specialist	will

observe	that	part	of	fractal	analysis	of	turbulence	is	the	geometric	counterpart	of
the	analytic	analysis	of	correlations	and	spectra.	The	relationship	between
turbulence	and	probability	theory	is	an	old	story.	Indeed,	G.	I.	Taylor’s	earliest
work	was,	after	Perrin’s	Brownian	motion,	the	second	major	influence	on
Norbert	Wiener’s	creation	of	a	mathematical	theory	of	stochastic	processes.
Spectral	analysis	has	long	since	“paid	back”	(with	accrued	interest)	what	it	once
borrowed	from	the	study	of	turbulence	and	now	it	is	time	for	the	theory	of
turbulence	to	take	advantage	of	the	development	of	a	sophisticated	stochastic
geometry.	In	particular,	the	Kolmogorov	spectrum	has	a	geometric	counterpart
examined	in	Chapter	30.



CLOUDS,	WAKES,	JETS,	ETC.

A	generic	problem	in	the	geometry	of	turbulence	concerns	the	shape	of	the
boundary	of	the	region	where	some	characteristic	of	the	fluid	is	encountered.
Striking	examples	are	the	billows	upon	billows	which	one	finds	in	the	ordinary
(water)	clouds,	as	well	as	in	the	clouds	provoked	by	volcanic	eruptions	and	in
nuclear	mushrooms.	At	this	stage	of	this	Essay,	it	is	indeed	difficult	to	escape	the
impression	that,	insofar	as	there	is	a	range	of	scales	wherein	a	cloud	can	be	said
to	have	a	well-defined	boundary,	cloud	boundaries	must	be	fractal	surfaces.	The
same	remark	applies	to	the	patterns	of	rain	squalls	seen	on	radar	screens.	(For	a
first	confirmation	of	this	hunch,	see	Chapter	12.)
But	I	prefer	to	deal	with	simpler	shapes.	Turbulence	may	be	restricted	to	a

portion	of	an	otherwise	laminar	fluid,	say	a	wake	or	a	jet.	In	the	roughest
approximation,	each	is	a	rod.	If,	however,	the	boundary	is	examined	in	detail,	it
reveals	a	hierarchy	of	indentations,	whose	depth	increases	with	the	value	of	the
classic	measure	of	hydrodynamic	scale,	called	Reynolds	number.	This	very
visible	and	complex	“local”	structure	does	not	evoke	a	rod	as	much	as	a	rope
with	many	loosely	attached	strings	floating	around.	Its	typical	cross	section	is
not	at	all	circular,	but	closer	in	shape	to	a	Koch	curve,	and	even	closer	to	the
most	rugged	among	the	coastlines	with	islands	investigated	in	Chapters	5	and
28.	In	any	event,	a	jet’s	boundary	seems	fractal.	When	vortex	rings	are	present,
their	topology	is	of	interest,	but	does	not	exhaust	the	structure.
The	next	comment	requires	the	reader	to	have	a	mental	picture	of	a	wake,	say,

the	lovely	shape	of	a	disabled	tanker’s	oil	spill.	The	“rod”	that	describes	such	a
wake	in	the	roughest	approximation	has	a	great	deal	of	structure:	it	is	not	at	all	a
cylinder,	since	its	cross	section	broadens	rapidly	away	from	the	ship,	and	its
“axis”	is	not	at	all	straight	but	shows	meanders	whose	typical	size	again
increases	away	from	the	ship.
Analogous	features	are	found	in	the	turbulence	due	to	the	shear	between	fluids

masses	rubbing	past	each	other,	as	shown	in	Browand	1966	and	Brown	&
Roshko	1974.	The	resulting	coherent	structures	(“animals”)	attract	wide
attention,	today.	Fractals	do	not	concern	their	overall	form,	but	I	think	it	is
equally	clear	that	the	hierarchy	of	fine	features	that	“ride”	on	the	meanders	is



strikingly	fractal	in	its	structure.
Jupiter’s	celebrated	red	eye	may	also	be	an	example	of	this	sort.
Related	but	different	problems	arise	when	studying	the	Gulf	Stream.	It	is	not	a

single	well-defined	sea	current	but	divides	into	multiple	wiggly	branches,	and
these	branches	themselves	subdivide	and	ramify.	An	overall	specification	of	its
propensity	to	branch	would	be	useful,	and	will	doubtless	involve	fractals.



ISOTHERMS,	DISPERSION	ETC.

Similarly,	it	is	interesting	to	study	the	shape	of	the	surfaces	of	constant
temperature	or	the	isosurfaces	of	any	other	scalar	characteristic	of	the	flow.	The
isotherms	may	be	delineated	by	the	surface	surrounding	proliferating	plankton
that	lives	only	in	water	at	T>45°,	and	fills	all	the	volume	available	to	it.	The
boundary	of	such	a	blob	is	extremely	convoluted;	in	the	specific	model	in
Chapter	30,	it	is	demonstrably	fractal.
A	broad	class	of	geometric	problems	occurs	when	a	medium	is	completely

filled	by	turbulence,	but	parts	are	marked	by	some	“passive”	or	inert
characteristic	that	does	not	affect	the	flow.	The	best	example	is	when	turbulence
disperses	a	blob	of	color.	Branches	of	all	kinds	shoot	off	in	all	directions,
endlessly,	but	existing	analyses	and	standard	geometry	are	of	little	help	in
describing	the	resulting	shapes.	Plate	55	and	Mandelbrot	1976c	argue	that	these
shapes	must	be	fractals.



OTHER	GEOMETRIC	QUESTIONS

CLEAR-AIR	TURBULENCE.	Some	scattered	evidence	I	examined	suggests
that	the	set	carrying	this	phenomenon	is	a	fractal.
FLOW	PAST	A	FRACTAL	BOUNDARY.	This	is	another	typical	case	where

fluid	mechanics	is	bound	to	involve	fractals	(Plates	45	and	68).
VORTEX	STRETCHING.	Fluid	motion	forces	vortices	to	stretch,	and	a

stretching	vortex	must	fold	to	accommodate	an	increasing	length	in	a	fixed
volume.	To	the	extent	that	the	flow	is	scaling,	I	conjecture	the	vortex	tends
toward	a	fractal.
THE	TRAJECTORY	OF	A	FLUID	PARTICLE.	In	a	crude	approximation,

inspired	by	the	Ptolemaic	model	of	planetary	motion,	let	our	particle	be	carried
up	vertically	by	an	overall	current	of	unit	velocity,	while	it	is	perturbed	by	a
hierarchy	of	eddies,	each	of	which	is	a	circular	motion	in	a	horizontal	plane.	The
resulting	functions	x(t)-x(0)	and	y(t)-y(0)	are	sums	of	cosine	and	of	sine
functions.	When	the	high	frequency	terms	are	very	weak,	the	trajectory	is
continuous	and	differentiable,	hence	it	is	rectifiable	and	D=1.	When,	however,
the	high	frequency	terms	are	strong	and	continue	down	to	0,	the	trajectory	is	a
fractal,	with	D>1.	Assuming	that	eddies	are	self-similar,	said	trajectory	happens
to	be	identical	to	a	famous	counterexample	of	analysis:	the	Weierstrass	function
(Chapters	2,	39,	and	41).	This	leads	one	to	wonder	whether	or	not	the	transition
of	all	the	fluid	to	being	turbulent	can	be	associated	with	the	circumstances	under
which	the	trajectory	is	a	fractal.



THE	INTERMITTENCY	OF	TURBULENCE

Turbulence	eventually	ends	in	dissipation:	due	to	the	fluid’s	viscosity,	the	energy
of	visible	motion	transforms	into	heat.	Early	theories	assume	that	the	dissipation
is	uniform	in	space.	But	the	hope	that	“homogeneous	turbulence”	would	be	a
sensible	model	was	dashed	by	Landau	&	Lifshitz	1953-1959,	which	notes	that
some	regions	are	marked	by	very	high	dissipation,	while	other	regions	seem	by
contrast	nearly	free	of	dissipation.	This	means	that	the	well-known	property	of
wind,	that	it	comes	in	gusts,	is	also	reflected—in	more	consistent	fashion—on
smaller	scales.
This	phenomenon,	intermittency,	was	first	studied	in	Batchelor	&	Townsend

1949,	p.	253.	See	also	Batchelor	1953,	Section	8.3,	and	Monin	&	Yaglom	1963,
1971,	1975.	Intermittency	is	particularly	clear-cut	when	the	Reynolds	number	is
very	large,	meaning	that	the	outer	cutoff	of	turbulence	is	large	relative	to	its
inner	cutoff:	in	the	stars,	the	ocean,	and	the	atmosphere.
The	regions	in	which	dissipation	concentrates	are	conveniently	described	as

carrying	or	supporting	it.
The	fact	that	this	Essay	brings	together	the	intermittency	of	turbulence	and	the

distribution	of	galaxies	is	natural	and	not	new.	A	while	ago,	physicists	(von
Weizäcker	1950)	attempted	to	explain	the	genesis	of	the	galaxies	by	turbulence.
Recognizing	that	homogeneous	turbulence	cannot	account	for	stellar
intermittency,	von	Weizäcker	sketched	some	amendments	that	are	in	the	spirit	of
the	Fournier	(“Charlier”)	model	(Chapter	9),	hence	of	the	theory	presented	here.
If	von	Weizsäcker’s	unifying	efforts	are	taken	up	again,	they	may	establish	a
physical	link	between	two	kinds	of	intermittency	and	the	corresponding	self-
similar	fractals.
One	goal	of	such	a	unifying	effect	would	be	to	relate	the	dimension	of	the

distribution	of	galaxies,	which	we	know	to	be	D~1.23,	with	the	dimensions
involved	in	turbulence,	which	we	noted	lies	around	2.5	to	2.7.



A	DEFINITION	OF	TURBULENCE

We	noted	that,	odd	as	it	may	seem,	the	same	term,	turbulence,	is	applied	to
several	different	phenomena.	This	continuing	lack	of	a	definition	becomes	easy
to	understand	if,	as	I	claim	and	propose	to	demonstrate,	a	proper	definition
requires	fractals.
The	customary	mental	image	of	turbulence	is	nearly	“frozen”	in	the	terms	first

isolated	by	Reynolds,	about	one	hundred	years	ago,	for	fluid	flow	in	a	pipe:
when	the	upstream	pressure	is	weak,	the	motion	is	regular	and	“laminar”;	when
the	pressure	is	increased	sufficiently,	everything	suddenly	becomes	irregular.	In
this	prototype	case,	the	support	of	turbulent	dissipation	is	either	“empty,”
nonexistent,	or	is	the	entire	tube.	In	either	case	there	is	not	only	no	geometry	to
study,	but	also	no	imperative	reason	to	define	turbulence.
In	wakes,	things	become	more	complicated.	There	is	a	boundary	between	the

turbulent	zone	and	the	surrounding	sea,	and	one	ought	to	study	its	geometry.
However,	this	boundary	is	again	so	clear	that	an	“objective”	criterion	to	define
turbulence	is	not	really	necessary.
In	fully	developed	turbulence	in	a	wind	tunnel,	matters	are	again	simple,	the

whole	appearing	turbulent	like	the	Reynolds	pipe.	Nevertheless,	the	procedures
used	to	achieve	this	goal	are	sometimes	curious,	if	we	are	to	believe	certain
stubbornly	held	stories.	It	is	rumored	that	wind	tunnels	when	first	“blown”	are
unfit	for	the	study	of	turbulence.	Far	from	filling	up	the	volume	offered	to	it,
turbulence	itself	seems	“turbulent,”	presenting	itself	in	irregular	gusts.	Only
gradual	efforts	manage	to	stabilize	the	whole	thing,	after	the	fashion	of	the
Reynolds	pipe.	Because	of	this	fact,	I	am	among	those	who	wonder	to	what
extent	the	nonintermittent	“laboratory	turbulence”	in	wind	tunnels	can	be
regarded	as	the	same	physical	phenomenon	as	the	intermittent	“natural
turbulence”	in	the	atmosphere.	Hence	we	must	define	the	terms.
We	approach	this	task	indirectly,	starting	from	an	ill-defined	concept	of	what

is	turbulent	and	examining	the	one-dimensional	records	of	the	velocity	at	a
point.	The	motions	of	the	center	of	gravity	of	a	large	airplane	illustrate	a	rough
analysis	of	such	records.	Every	so	often,	the	airplane	is	shaken	about,	which
shows	that	certain	regions	of	the	atmosphere	are	strongly	dissipative.	A	smaller



airplane	acts	as	a	more	sensitive	probe:	it	“feels”	turbulent	gusts	that	leave	the
large	airplane	undisturbed,	and	it	experiences	each	shock	received	by	the	large
airplane	as	a	burst	of	weaker	shocks.	Thus,	when	a	strongly	dissipative	piece	of
the	cross	section	is	examined	in	detail,	laminar	inserts	become	apparent.	And
further	smaller	inserts	are	seen	when	the	analysis	is	refined	further.
Each	stage	demands	a	redefinition	of	what	is	turbulent.	The	notion	of	a

turbulent	minute	of	record	becomes	meaningful	if	interpreted	as	“minute	of
record	that	is	not	completely	free	of	turbulence.”	On	the	other	hand,	the	more
demanding	notion	of	a	solidly	turbulent	minute	of	record	seems	devoid	of
observable	significance.	Proceeding	to	successive	stages	of	analysis,	turbulence
becomes	increasingly	sharp	over	an	increasingly	small	fraction	of	the	total
record	length.	The	volume	of	the	support	of	dissipation	seems	to	decrease.	Our
next	task	is	to	model	this	support.



ROLE	OF	SELF-SIMILAR	FRACTALS

As	already	said,	it	is	not	surprising,	in	my	view,	that	very	few	geometric	aspects
of	turbulence	have	actually	been	investigated,	because	the	only	available
techniques	have	been	Euclidean.	To	escape	their	limitations,	many	pre-Euclidean
terms	are	used.	For	example,	papers	on	intermittency	make	an	uncommonly
heavy	use	of	terms	such	as	spotty	and	lumpy,	and	Batchelor	&	Townsend	1949
envisions	“only	four	possible	categories	of	shapes:	blobs,	rods,	slabs,	and
ribbons.”	Some	lecturers	(but	few	writers)	also	use	the	terms	beans,	spaghetti,
and	lettuce,	an	imaginative	terminology	that	does	not	attempt	to	hide	the	poverty
of	the	underlying	geometry.
By	contrast,	the	investigations	I	carried	out	since	1964,	and	first	presented	at

the	1966	Kyoto	Symposium	(Mandelbrot	1967k),	augment	the	classical
geometric	toolbox	by	the	addition	of	self-similar	fractals.
To	advocate	the	use	of	fractals	is	a	radical	new	step,	but	to	restrict	the	fractals

of	turbulence	to	be	self-similar	is	orthodox,	because	the	very	notion	of	self-
similarity	was	first	conceived	to	describe	turbulence.	The	pioneer	was	the	Lewis
Fry	Richardson	whom	we	first	encounter	in	Chapter	5.	Richardson	1926
introduced	the	concept	of	a	hierarchy	of	eddies	linked	by	a	cascade.	(See
Chapter	40.)
It	is	also	in	the	context	of	turbulence	that	the	theory	of	cascades	and	of	self-

similarity	achieved	its	triumphs	of	prediction	between	1941	and	1948.	The	main
contributors	were	Kolmogorov,	Obukhov,	Onsager,	and	von	Weizsäcker,	but
tradition	denotes	the	developments	of	the	period	by	Kolmogorov’s	name.
However,	a	subtle	change	occurred	between	Richardson	and	Kolmogorov.
While	self-similarity	is	suggested	by	the	consideration	of	visually	perceived

eddies,	the	Kolmogorov	theory	is	purely	analytic.	Fractals,	on	the	other	hand,
make	it	possible	to	apply	the	technique	of	self-similarity	to	the	geometry	of
turbulence.
The	fractal	approach	should	be	contrasted	with	the	peculiar	fact	that	the	blobs,

ṙods,	slabs,	and	ribbons	involved	in	yesterday’s	four-way	choice	fail	to	be	self-
similar.	This	may	be	why	Kuo	&	Corrsin	1972	admit	that	this	choice	is
“primitive”	and	that	one	needs	in-between	patterns.



A	number	of	possible	ad	hoc	changes	in	the	standard	patterns	come	to	mind.
For	example,	one	might	split	rods	into	ropes	surrounded	with	loose	strands
(remember	the	analogous	situation	with	wakes	or	jets)	and	slice	slabs	into	sheets
surrounded	with	loose	layers.	Somehow	those	strands	and	layers	might	be	made
self-similar.
However,	an	ad	hoc	injection	of	self-similarity	has	never	been	implemented,

and	I	find	it	both	unpromising	and	unpalatable.	I	prefer	to	follow	an	entirely
different	tack,	allowing	the	overall	shapes	and	the	details	of	strand	and	layer	to
be	generated	by	the	same	process.	Since	the	basic	self-similar	fractals	are	devoid
of	privileged	direction,	our	study	leaves	aside	(for	now)	all	the	interesting
geometric	questions	that	combine	turbulence	with	strong	overall	motion.

	Obukhov	1962	and	Kolmogorov	1962	are	the	first	analytic	studies	of
intermittency.	In	immediate	influence,	they	nearly	matched	the	1941	papers	of
the	same	authors,	but	they	are	seriously	flawed,	and	their	long	run	influence
promises	to	be	small.	See	Mandelbrot	1972j,	1974f,	19760;	Kraichnan	1974.



INNER	AND	OUTER	CUTOFFS

Due	to	viscosity,	the	inner	cutoff	of	turbulence	is	positive.	And	wakes,	jets,	and
analogous	flows	clearly	show	a	finite	outer	cutoff	Ω.	But	the	widespread	current
belief	in	the	finiteness	of	of	Ω	should	be	subjected	to	criticism.	Richardson	1926
claims	that	“observation	shows	that	the	numerical	values	[presumed	to	converge
for	samples	of	size	about	Ω]	would	depend	entirely	upon	how	long	a	volume
was	included	in	the	mean.	Defant’s	researches	show	that	no	limit	is	attained
within	the	atmosphere.”	The	meteorologists	have	discounted,	then	forgotten,	this
assertion,	far	too	hastily	to	my	mind.	New	data	in	Chapter	11	and	the	study	of
lacunarity	in	Chapter	34	add	to	my	conviction	that	the	matter	is	not	yet	closed.



CURDLING	AND	FRACTALLY	HOMOGENEOUS
TURBULENCE

In	a	rough	preliminary	stage,	we	may	represent	the	support	of	turbulence	by	one
of	the	self-similar	fractals	which	the	preceding	chapters	obtain	through	curdling.
This	curdling	is	a	crude	“de-randomized”	form	of	the	Novikov	&	Stewart	model
of	Chapter	23.	After	a	finite	number	m	of	stages	of	a	curdling	cascade,
dissipation	is	distributed	uniformly	over	N	=	r-mD	out	of	r-3m	mth-order
nonoverlapping	subeddies,	whose	positions	are	specified	by	a	generator.	After	a
cascade	has	continued	without	end,	the	limit	distribution	of	dissipation	spreads
uniformly	over	a	fractal	of	dimension	D<3.	I	propose	that	the	limit	be	called
fractally	homogeneous	turbulence.
G.	I.	Taylor’s	homogeneous	turbulence	is	obtained	for	D→3.	The	salient	fact

is	that	curdling	does	not	exclude	D=3,	but	it	allows	the	novel	possibility	D	<	3.



DIRECT	EXPERIMENTAL	EVIDENCE	THAT
INTERMITTENCY	SATISFIES	D>2

From	the	viewpoint	of	linear	sections,	wide	classes	of	unbounded	fractals	behave
very	simply:	the	section	is	almost	surely	empty	when	D<2	and	is	nonempty	with
positive	probability	when	D>2.	(Chapter	23	proves	this	result	for	a	simple	class
of	fractals.)
Had	the	set	that	supports	turbulent	dissipation	satisfied	D<2,	the	preceding

statement	should	imply	that	nearly	all	experimental	probes	would	slip	between
turbulent	regions.	The	fact	that	such	is	not	the	case	suggests	that	in	reality	D	>	2.
This	inference	is	extraordinarily	strong,	because	it	relies	upon	an	experiment	that
is	repeated	constantly,	and	for	which	the	possible	outcomes	are	reduced	to	an
alternative	between	“never”	and	“often.”
A	tentative	topological	counterpart	DT>2,	Mandelbrot	1976o,	is	tempting,	but

too	special	to	be	recounted	here.



GALAXIES	&	TURBULENCE	COMPARED

The	inequality	D>2	for	the	set	that	supports	turbulent	dissipation,	and	the
opposite	inequality	D<2	for	the	distribution	of	mass	in	the	cosmos,	Chapter	9,
spring	from	the	closely	related	effects	of	the	sign	of	D-2	on	the	typical	section	of
a	fractal	and	on	its	typical	projection	on	a	plane	or	the	sky.	For	the	phenomenon
studied	in	the	present	chapter,	the	section	has	to	be	nonempty.	In	Chapter	9,	on
the	contrary,	the	Blazing	Sky	Effect	is	“exorcised”	if	the	majority	of	straight
lines	drawn	from	the	Earth	never	meet	a	star.	This	requires	the	stars’	projection
on	the	sky	to	be	of	vanishing	area.
The	contrast	between	the	signs	of	D-2	in	these	two	problems	must	have	a	vital

bearing	on	a	constrast	between	their	structures.



(IN)EQUALITIES	BETWEEN	EXPONENTS
(MANDELBROT	1967k,	1976o)

Many	useful	characteristics	of	fractally	homogeneous	turbulence	depend	solely
upon	D.	This	topic	is	studied	in	Mandelbrot	1976o,	where	intermittent
turbulence	is	characterized	by	a	series	of	conceptually	distinct	exponents	linked
by	(in)equalities.	 	The	situation	is	reminiscent	of	critical	point	phenomena.
SPECTRUM	(IN)EQUALITIES.	The	(in)equality	first	stated	in	Mandelbrot

1967k	(which	uses	the	notation	θ=D-2),	is	ordinarily	expressed	in	terms	of	the
spectrum	of	the	turbulent	velocity,	but	is	here	stated	in	terms	of	variance.	In
fractally	homogeneous	turbulence,	the	velocity	v	at	point	x	satisfies

〈[v(x)-v(x+r)]2〉=	|r|⅔+B,

where	B=(3-D)/3.
In	Taylor	homogeneous	turbulence,	D=3,	and	B	vanishes,	leaving	the	classic

Kolmogorov	exponent	⅔,	which	we	meet	again	in	Chapter	30.
Mandelbrot	19760	also	shows	that	the	more	general	model	of	weighted

curdling,	as	described	in	Mandelbrot	1974f,	involves	the	inequality	B	≤	(3-D)/3.
THE	β	MODEL.	Frisch,	Nelkin	&	Sulem	1978	grafts	a	pseudo	dynamic

vocabulary	upon	the	geometry	of	fractally	homogeneous	turbulence,	as
described	in	Mandelbrot	1976o.	The	interpretation	has	proven	helpful,	but	the
mathematical	arguments	and	the	conclusions	are	identical	to	mine.	The	term	“β-
model”	given	to	their	interpretation	has	gained	some	currency,	and	is	often
identified	with	fractal	homogeneity.



THE	TOPOLOGY	OF	TURBULENCE	REMAINS
AN	OPEN	ISSUE

The	preceding	chapters	make	it	abundantly	clear	that	the	same	value	of	D	can	be
encountered	in	sets	that	differ	in	terms	of	topological	connectedness.	The
topological	dimension	DT	yields	a	lower	bound	to	the	fractal	dimension	D,	but
this	bound	is	frequently	exceeded	by	such	a	wide	margin	as	to	be	of	no	use.	A
shape	with	a	fractal	dimension	D	between	2	and	3	may	be	either	“sheetlike,”
“linelike,”	or	“dustlike,”	and	can	achieve	configurations	in	such	variety	as	to
make	it	hard	to	coin	or	find	names	for	them	all.	For	example,	even	in	fractal
shapes	that	are	most	nearly	ropelike,	the	“strands”	can	be	so	heavy	that	the	result
is	really	“more”	than	ropelike.	Similarly,	fractal	near	sheets	are	“more”	than
sheetlike.	Also,	it	is	possible	to	mix	sheetlike	and	ropelike	features	at	will.
Intuitively,	one	might	have	hoped	that	some	closer	relationship	should	exist
between	fractal	dimension	and	degree	of	connectedness,	but	this	is	a	hope
mathematicians	lost	between	1875	and	1925.	We	turn	to	a	special	problem	of
this	kind	in	Chapter	23,	but	it	may	be	said	that	the	actual	loose	relationship
between	these	structures	is	essentially	unexplored	territory.
The	question	of	ramification,	raised	in	Chapter	14,	is	also	vital,	but	its	impact

on	the	study	of	turbulence	is	as	yet	unexplored.
KURTOSIS	INEQUALITIES.	Using	a	measure	of	intermittency	called

kurtosis,	the	issue	of	connectedness	is	tackled	in	Corrsin	1962,	Tennekes	1968,
and	Saffman	1968.	Ostensibly,	those	models	deal	with	shapes	that	share	the
topological	dimension	of	the	plane	(sheets)	or	the	straight	line	(rods).	However,
they	test	the	topology	indirectly,	through	the	exponent	of	a	predicted	power	law
relationship	between	the	kurtosis	and	a	Reynolds	number.	Unfortunately,	this
attempt	fails	because	the	kurtosis	exponent	is	in	fact	dominated	by	diverse
additional	assumptions,	and	ultimately	depends	solely	on	the	fractal	dimension
D	of	the	shape	generated	by	the	model.	Corrsin	1962	predicts	a	value	of	D	equal
to	the	topological	dimension	it	postulates,	DT=2.	The	prediction	is	incorrect,
expressing	the	fact	that	the	data	involve	fractals,	but	this	model	does	not.	On	the
other	hand,	Tennekes	1968	postulates	DT=1	but	yields	the	fractional	value
D=2.6,	hence	does	involve	an	approximate	fractal.	Nevertheless,	the	attempted



inference	from	the	kurtosis	to	a	combination	of	intuitive	“shape”	and	topological
dimension	is	unwarranted.



11

Fractal	Singularities	of	Differential	Equations

The	present	chapter	concerns	a	first	connection	between	the	fractal	geometry	of
Nature	and	the	mainstream	of	mathematical	physics.	The	topic	is	so	vital	that	it
deserves	a	separate	chapter.	Readers	whose	interests	lie	elsewhere	should	forge
ahead.



A	SPLIT	IN	TURBULENCE	THEORY

A	major	defect	of	the	current	theoretical	study	of	turbulence	is	that	it	separates
into	at	least	two	disconnected	parts.	One	part	includes	the	successful
phenomenology	put	forth	in	Kolmogorov	1941	(examined	in	greater	detail	in
Chapter	30).	And	the	other	part	includes	the	differential	equations	of
hydrodynamics,	due	to	Euler	for	nonviscous	fluids,	and	to	Navier	(and	Stokes)
for	viscous	fluids.	These	two	parts	remain	unrelated:	If	“explained”	and
“understood”	mean	“reduced	to	basic	equations,”	the	Kolmogorov	theory	is	not
yet	explained	or	understood.	And	Kolmogorov	has	not	helped	solve	the
equations	of	fluid	motion.
My	assertion	in	Chapter	10,	that	turbulent	dissipation	is	not	homogeneous

over	the	whole	space,	only	over	a	fractal	subset,	may	seem	at	first	sight	to	make
the	gap	even	greater.	But	I	contended	that	the	opposite	is	the	case.	And	there	is
increasing	evidence	in	my	favor.



THE	IMPORTANCE	OF	SINGULARITIES

Let	us	review	the	procedure	that	allows	an	equation	of	mathematical	physics	to
be	solved	successfully.	Typically,	one	draws	up	a	list	that	combines	solutions
obtained	by	solving	the	equation	under	special	conditions,	and	solutions	guessed
on	the	basis	of	physical	observation.	Next,	neglecting	details	of	the	solutions,
one	draws	a	list	of	elementary	“singularities”	characteristic	of	the	problem.	From
then	on,	more	complex	instances	of	the	equation	can	often	be	solved	in	the	first
approximation	by	identifying	the	appropriate	singularities	and	stringing	them
together	as	required.	This	is	how	the	student	of	calculus	draws	the	graph	of	a
rational	function.	Of	course,	the	standard	singularities	are	standard	Euclidean
sets:	points,	curves,	and	surfaces.



CONJECTURE:	THE	SINGULARITIES	OF	FLUID
MOTION	ARE	FRACTAL	SETS	(MANDELBROT

1976c)

In	this	perspective,	I	interpret	the	difficulties	experienced	in	deriving	turbulence
from	the	Euler	and	Navier-Stokes	solutions	as	implying	that	no	standard
singularity	accounts	for	what	we	perceive	intuitively	to	be	the	characteristic
features	of	turbulence.
I	contend	instead	(Mandelbrot	1976c)	that	the	turbulent	solutions	of	the	basic

equations	involve	singularities	or	“near	singularities”	of	an	entirely	new	kind.
The	singularities	are	locally	scaling	fractal	sets,	and	the	near	singularities	are
approximations	thereto.
An	unspecific	motivation	for	this	contention	is	that,	standard	sets	having

proven	inadequate,	one	may	as	well	try	the	next	best	known	sets.	But	more
specific	motivation	is	available.



NONVISCOUS	(EULER)	FLUIDS

FIRST	SPECIFIC	CONJECTURE.	Part	of	my	contention	is	that	the	singularities
of	the	solutions	of	the	Euler	equations	are	fractal	sets.
MOTIVATION.	This	belief	relies	on	the	very	old	notion	that	the	symmetries

and	other	invariances	present	in	an	equation	“ought”	to	be	reflected	in	the
equation’s	solution.	(For	a	self-standing,	careful	and	eloquent	description,	see
Chapter	IV	of	Birkhoff	1960.)	Of	course,	preservation	of	symmetries	is	by	no
means	a	general	principle	of	Nature,	hence	one	cannot	exclude	the	possibility	of
“broken	symmetry”	here.	I	propose,	however,	that	one	try	the	consequences	of
symmetry	preservation.	Since	the	Euler	equations	are	scale-free,	the	equations’
typical	solutions	should	also	be	scale-free,	and	the	same	should	hold	of	any
singularities	they	may	possess.	If	the	failure	of	past	efforts	is	taken	as	evidence
that	the	singularities	are	not	standard	points	or	lines	or	surfaces,	they	must	be
fractals.
It	may	of	course	happen	that	a	scale	is	imposed	by	the	boundary’s	shape	and

the	initial	velocities.	It	is,	however,	likely	that	the	solutions’	local	behavior	is
ruled	by	a	“principle	of	not	feeling	the	boundary.”	Hence	the	solutions	should	be
locally	scaleless.
ALEXANDRE	CHORIN’S	WORK.	Chorin	1981	provides	strong	support	for

my	contention,	by	applying	a	vortex	method	to	the	analysis	of	the	inertial	range
in	fully	developed	turbulence.	The	finding	is	that	the	highly	stretched	vorticity
collects	itself	into	a	body	of	decreasing	volume,	and	of	dimension	D~2.5
compatible	with	the	conclusions	in	Chapter	10.	The	correction	to	the
Kolmogorov	exponents,	B=.17±0.03,	is	compatible	with	experimental	data.	The
calculations	suggest	that	the	solutions	of	Euler’s	equations	in	three	dimensions
blow	up	in	a	finite	time.
Unpublished	work	of	Chorin	comes	even	closer	to	experiment:	2.5<D<2.6.



VISCOUS	(NAVIER-STOKES)	FLUIDS

SECOND	SPECIFIC	CONJECTURE.	Furthermore,	I	contended	that	the
singularities	of	the	solutions	of	the	Navier-Stokes	equations	can	only	be	fractals.
DIMENSION	INEQUALITIES.	Furthermore,	we	have	the	intuitive	feeling

that	the	solutions	of	the	Navier-Stokes	equations	are	necessarily	smoother,	hence
less	singular,	than	those	of	the	Euler	equations.	Hence	the	further	conjecture	that
the	dimension	is	larger	in	the	Euler	than	in	the	Navier-Stokes	case.	The	passage
to	zero	viscosity	is	doubtless	singular.
NEAR	SINGULARITIES.	A	final	conjecture	in	the	implementation	of	my

overall	contention	concerns	the	peaks	of	dissipation	involved	in	the	notion	of
intermittency:	they	are	Euler	singularities	smoothed	out	by	viscosity.
V.	SCHEFFER’S	WORK.	The	examination	of	my	conjectures	for	the	viscous

case	was	pioneered	by	V.	Scheffer,	recently	joined	by	others	in	studying	in	this
light	a	finite	or	infinite	fluid	subject	to	the	Navier-Stokes	equations	with	a	finite
kinetic	energy	at	t=0.
Assuming	that	singularities	are	indeed	present,	Scheffer	1976	shows	that	they

necessarily	satisfy	the	following	theorems.	First,	their	projection	over	the	time
axis	has	at	most	the	fractal	dimension	½.	Second,	their	projection	on	the	space
coordinates	is	at	most	a	fractal	of	dimension	equal	to	1.
It	turns	out,	after	the	fact,	that	the	first	of	the	above	results	is	a	corollary	of	a

remark	in	an	old	and	famous	paper	Leray	1934	ends	abruptly	after	a	formal
inequality	of	which	Scheffer’s	first	theorem	is	a	corollary,	in	fact	merely	a
restatement.	But	is	it	fair	to	say	“merely”?	Restating	a	result	in	more	elegant
terminology	is	(for	sound	reasons)	rarely	viewed	as	a	scientific	advance,	but	I
think	that	the	present	instance	is	different.	The	inequality	in	Leray’s	theorem	was
nearly	useless	until	the	Mandelbrot-Scheffer	corollary	placed	it	in	proper
perspective.
The	almost	routine	uses	of	Hausdorff	Besicovitch	dimension	in	recent	studies

of	the	Navier-Stokes	equations	can	all	be	traced	back	to	my	conjecture.



SINGULARITIES	OF	OTHER	NONLINEAR
EQUATIONS	OF	PHYSICS

The	other	phenomena	which	this	Essay	claims	involve	scaling	fractals	have
nothing	to	do	with	either	Euler	or	Navier	and	Stokes.	For	example,	the
distribution	of	galaxies	is	ruled	by	the	equations	of	gravitation.	But	the
symmetry	preservation	argument	applies	to	all	scaling	equations.	As	a	matter	of
fact,	an	obscure	remark	by	Laplace	(see	the	entry	SCALING	IN	LEIBNIZ	AND
LAPLACE,	Chapter	41)	can	now	be	construed	(with	20/20	hindsight!)	as
pointing	toward	the	theme	of	Chapter	9.
More	generally,	the	singularities’	fractal	character	is	likely	to	be	traceable	to

generic	features	shared	by	many	different	equations	of	mathematical	physics.
Can	it	be	some	very	broad	kind	of	nonlinearity?	The	issue	is	joined	again,	in
different	terms,	in	Chapter	20.



IV

SCALING	FRACTALS
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Length-Area-Volume	Relations

Chapters	12	and	13	extend	the	properties	of	fractal	dimension	through	numerous
mini	case	studies	of	varying	importance	and	increasing	difficulty,	and	Chapter
14	shows	that	fractal	geometry	necessarily	involves	concepts	beyond	the	fractal
dimension.
The	present	chapter	describes,	and	applies	to	diverse	concrete	cases,	the

fractal	counterparts	I	developed	for	certain	standard	results	of	Euclidean
geometry.	They	can	be	viewed	as	parallel	to	the	fractal	relations	of	the	form
M(R)	∝	RD	obtained	in	Chapters	6,	8,	and	9.



STANDARD	DIMENSIONAL	ANALYSIS

From	the	facts	that	the	circumferential	length	of	a	circle	of	radius	R	is	equal	to
2πR,	and	the	area	of	the	disc	bounded	by	the	circle	is	πR2,	it	follows	that

(length)=	2π½	(area)½.

Among	squares,	the	corresponding	relation	is

(length)=4(area)½.

More	generally,	within	each	family	of	standard	planar	shapes	that	are
geometrically	similar	and	have	different	linear	extents,	the	ratio	(length)/(area)½
is	a	number	entirely	determined	by	the	common	shape.
In	space	(E=3),	length,	(area)½,	and	(volume)⅓	provide	alternative	evaluations

of	the	linear	extent	of	the	shape,	and	the	ratio	of	any	two	of	them	is	a	shape
parameter	independent	of	the	units	of	measurement.
The	equivalence	of	different	linear	extents	is	very	useful	in	many	applications.

And	its	extension	when	time	and	mass	are	added	lead	to	a	powerful	technique,
known	to	physicists	as	“dimensional	analysis.”	(Birkhoff	1960	is	a
recommended	exposition	of	its	basic	features.)



PARADOXICAL	DIMENSIONAL	FINDINGS

However,	in	increasingly	numerous	instances,	the	equivalence	between
alternative	linear	extents	proves	distressingly	elusive.	For	example,	mammalian
brains	satisfy

(volume)⅓∝(area)1/D,
with	D~3,	far	above	the	anticipated	value	of	2.	In	river	drainage	basins,	Hack
1957	measures	length	along	the	main	river,	and	finds

(area)½	∝	(length)1/D,
with	D	definitely	above	the	anticipated	value	of	1.	Early	writers	interpret	this	last
result	as	implying	that	river	basins	fail	to	be	self-similar,	large	ones	being
elongated	and	small	ones	being	chubby.	Unfortunately,	this	interpretation
conflicts	with	the	evidence.
The	present	chapter	describes	how	I	explain	these	and	related	findings	in	more

convincing	fashion.	My	tool	is	a	new,	fractal,	length-area-volume	relation.



FRACTAL	LENGTH-AREA	RELATION

To	pinpoint	the	argument,	consider	a	collection	of	geometrically	similar	islands
with	fractal	coastlines	of	dimension	D>	1.	The	standard	ratio	(length)/(area)½	is
infinite	in	this	context,	but	I	propose	to	show	it	has	a	useful	fractal	counterpart.
We	denote	as	G-length	the	coast	length	measured	with	a	yardstick	length	of	G,
and	as	G-area	the	island	area	measured	in	units	of	G2.	Knowing	the	dependence
of	G-length	upon	G	to	be	nonstandard,	while	the	dependence	of	G-area	is
standard,	we	form	the	generalized	ratio

(G-length)1/D	/(G-area)½.

I	claim	that	this	ratio	takes	the	same	value	for	our	geometrically	similar	islands.
As	a	result,	there	are	two	different	ways	of	evaluating	the	linear	extent	of	each

island	in	units	of	G:	the	standard	expression	(G-area)½	but	also	the	nonstandard
(G-length)1/D.
The	novel	feature	is	that	if	G	is	replaced	by	a	different	yardstick	length	G’	the

ratio	of	the	alternative	linear	extents	is	replaced	by

(G’-length)1/D/(G’-area)½,

which	differs	from	the	original	one	by	a	factor	of	(G’/G)1/D-1.
As	for	the	ratio	of	linear	extents,	it	varies	between	one	family	of	mutually

similar	bounded	shapes	and	another,	whether	they	are	fractal	or	standard.	Hence
it	quantifies	one	facet	of	the	shapes’	form.
Note	that	the	length-area	relation	may	be	used	to	estimate	the	dimension	of	a

fractal	curve	that	bounds	a	standard	domain.
PROOF	OF	THE	RELATION.	The	first	step	is	to	measure	each	coastline

length	with	the	intrinsic	area-dependent	yardstick

G*=(G-area)½/1000.

When	we	approximate	each	of	our	island	coastlines	by	a	polygon	of	side	G*,
these	polygons	are	also	mutually	similar,	and	their	lengths	are	proportional	to	the
standard	linear	extents	(G-area)½.
Next	replace	G*	by	the	prescribed	yardstick	G.	We	know	from	Chapter	6	that



the	measured	length	changes	in	the	ratio	(G/G*)1-D.	Hence,

Finally,	by	raising	each	side	to	the	power	1/D,	we	obtain	the	relation	I	claimed.



HOW	WINDING	IS	THE	MISSOURI	RIVER?

The	preceding	arguments	also	throw	light	on	the	measured	river	lengths.	To
define	a	length	for	the	leading	river	of	a	drainage	basin,	we	approximate	the
river’s	course	by	a	wiggly	self-similar	line	of	dimension	D	>1	going	from	a	point
called	source	to	a	point	called	mouth.	If	all	rivers	as	well	as	their	basins	are
mutually	similar,	the	fractal	length-area	argument	predicts	that

(river’s	G-length)1/D	is	proportional	to	(basin’s	G-area)½

Moreover,	standard	reasons	predict	that

(basin’s	G-area)½	is	proportional	to	(straight	distance	from	source	to
mouth).

Combining	the	two	results,	we	conclude	that

(river’s	G-length)1/D	is	proportional	to	(straight	distance	from	source	to
mouth).

Most	remarkably,	as	already	mentioned,	Hack	1957	finds	empirically	that	the
ratio

(river’s	G-length)/(basin’s	G-area).6

is	indeed	common	to	all	rivers.	This	indirect	estimate	of	D/2=.6	yields	D=1.2,
reminiscent	of	the	values	inferred	from	coastline	lengths.	If	one	measures	the
degree	of	irregularity	by	D,	the	degrees	of	irregularity	of	local	wiggles	of	the
banks	and	of	enormously	global	bends	turn	out	to	be	identical!
However,	for	basins	of	area>	104	km2	and	correspondingly	long	rivers,	J.	E.

Mueller	observes	that	the	value	of	D	goes	down	to	1.	The	two	different	values	of
D	suggest	that	if	one	maps	all	basins	on	sheets	of	paper	of	the	same	size,	maps	of
short	rivers	look	about	the	same	as	maps	of	long	rivers,	but	maps	of	extremely
long	rivers	are	more	nearly	straight.	It	may	be	that	nonstandard	self-similarity
breaks	around	an	outer	cutoff	Ω	whose	value	is	of	the	order	of	100	km.
CUMULATIVE	LENGTH	OF	A	RIVER	TREE.	The	preceding	argument	also

predicts	that	the	cumulative	length	of	all	the	rivers	in	a	drainage	basin	should	be
proportional	to	that	basin’s	area.	I	am	told	this	prediction	is	correct,	but	I	have	no



reference.
BACK	TO	GEOMETRY.	For	the	rivers	and	watersheds	relative	to	the

“snowflake	sweep”	curve	of	Plates	68	and	69,	D~1.2618,	somewhat	above	the
observed	value.	The	corresponding	dimensions	in	Plates	70	and	71	are
D∼1.1291,	on	the	low	side.
The	Peano	curves	of	Plates	63	and	64	are	well	off	the	mark,	since	D=1.
Note	that	the	identity	between	the	dimensions	of	the	rivers	and	of	the

watersheds	is	not	a	logical	necessity,	only	a	feature	of	certain	specific	recursive
models.	By	way	of	contrast,	a	river	network	linked	with	the	arrowhead	curve
(Plate	141)	and	described	in	Mandelbrot	1975m	involves	rivers	of	dimension
D=1,	which	is	too	small,	and	watersheds	of	dimension	D~1.5849,	which	is	too
large.



GEOMETRY	OF	RAIN	AND	OF	CLOUDS

See	here,	here,	here,	and	here	mention	the	possible	use	of	fractals	to	model
clouds.	This	hunch	has	now	been	confirmed	by	Lovejoy	1982,	via	the	fractal
area-perimeter	graph	in	Plate	115.	Very	few	graphs	in	meteorology	involve	all
the	available	data	over	an	enormous	range	of	sizes,	and	are	nearly	as	straight	as
this	one.
The	data	combine	radar	observations	from	tropical	Atlantic	rain	areas	(with

rainrate	above	.2	mm/hr),	with	geostationary	satellite	infrared	observations	of
cloud	areas	over	the	Indian	Ocean	(=	areas	where	the	top	of	the	cloud
temperature	is	below	-10°C).	The	areas	range	from	1	to	over	1,000,000	km2.	The
dimension	of	the	perimeter,	fitted	over	at	least	six	orders	of	magnitude,	is	4/3.
The	pleasure	of	providing	a	physical	explanation	is	left	to	Dr.	Lovejoy.
The	largest	cloud	extended	from	central	Africa	to	South	India,	a	distance	well

above	the	thickness	of	the	atmosphere,	to	which	the	outer	cutoff	L	of
atmospheric	turbulence	is	all	too	often	assimilated.	Richardson’s	quote	on	p.	103
may	prove	prophetic.



THE	AREA-VOLUME	RELATION.
CONDENSATION	BY	MICRO-DROPLETS

The	derivation	of	the	length	area	relationship	generalizes	easily	to	spatial
domains	bounded	by	fractal	surfaces,	and	leads	to	the	relation

(G-area)1/D	∝	(G-volume)⅓.
To	illustrate	this	relation,	consider	the	condensation	of	vapor	into	liquid.	This

is	a	very	familiar	physical	phenomenon,	yet	its	theory	is	a	recent	development.
To	paraphrase	Fisher	1967,	the	following	geometric	picture	was	put	forward
apparently	quite	independently	by	J.	Frenkel,	W.	Band,	and	A.	Bijl	in	the	late
1930’s.	A	gas	consists	of	isolated	molecules	well	separated	from	one	another,
except	for	occasional	clusters	which	are	bound	together	more-or-less	tightly	by
the	attractive	forces.	Clusters	of	different	sizes	are	in	mutual	statistical
equilibrium,	associating	and	disassociating,	but	even	fairly	large	clusters
resembling	“droplets”	of	liquid	have	a	small	chance	of	occurring.	For	a	large
enough	cluster	(which	is	not	too	“drawn	out,”	like	a	piece	of	seaweed	for
example!),	the	surface	area	is	fairly	well	defined.	The	surface	of	a	cluster	gives	it
stability.	If	the	temperature	now	is	lowered,	it	becomes	advantageous	for	clusters
to	combine	to	form	droplets	and	for	droplets	to	amalgamate,	thereby	reducing
the	total	surface	area	and	hence	lowering	the	total	energy.	If	conditions	are
favorable,	the	droplets	grow	rapidly.	A	macroscopic	droplet’s	presence	indicates
that	condensation	has	taken	place!
Building	on	this	picture,	M.	E.	Fisher	proposes	that	a	condensing	droplet’s

area	and	volume	are	related	by	a	formula	equivalent	to	area1/D	=	volume⅓.
Fisher	evaluates	D	analytically	without	concern	for	its	geometric	meaning,	but	it
is	unavoidable	that	one	should	now	conjecture	that	the	underlying	droplet
surfaces	are	fractals	of	dimension	D.



MAMMALIAN	BRAIN	FOLDS

To	illustrate	the	area-volume	relation	in	the	important	limit	case	D=3,	and	at	the
same	time	to	buttress	the	exorcism	of	Peano	shapes	presented	in	Chapter	7,	let	us
interpret	a	famous	problem	of	comparative	anatomy	in	terms	of	near-space-
filling	surfaces.
Mammalian	brain	volumes	vary	from	0.3	to	3000	ml,	small	animals’	cortex

being	relatively	or	completely	smooth,	while	large	animals’	cortex	tends	to	be
visibly	convoluted,	irrespective	of	the	animals’	positions	on	the	scale	of
evolution.	Zoologists	argue	that	the	proportion	of	white	matter	(formed	by	the
neuron	axons)	to	gray	matter	(where	neurons	terminate)	is	approximately	the
same	for	all	mammals,	and	that	in	order	to	maintain	this	ratio	a	large	brain’s
cortex	must	necessarily	become	folded.	Knowing	that	the	extent	of	folding	is	of
purely	geometric	origin	relieves	Man	from	feeling	threatened	by	Dolphin	or
Whale:	they	are	bigger	than	us	but	need	not	be	more	highly	evolved.
A	quantitative	study	of	such	folding	is	beyond	standard	geometry	but	fits

beautifully	in	fractal	geometry.	The	gray	matter’s	volume	is	roughly	equal	to	its
thickness	multiplied	by	the	area	of	the	brain’s	surface	membrane,	called	“pia.”	If
the	thickness	∈	were	the	same	in	all	species,	the	pia	area	would	be	proportional
not	only	to	the	gray	matter	volume	but	also	to	the	white	matter	volume,	hence	to
the	total	volume	V.	Therefore,	the	area-volume	relationship	would	yield	D=3,
and	the	pia	would	be	a	surface	that	comes	within	∈	of	filling	the	space.
The	empirical	area-volume	relation	is	better	fitted	by	A	∝	VD/3	with	D/3∼0.91

to	0.93	(Jerison,	private	communication,	based	on	the	data	of	Elias	&	Schwartz,
Brodman,	and	others).	The	most	immediate	interpretation	is	that	the	pia	is	only
partly	space	filling,	with	D	in	the	range	between	2.79	and	2.73.	A	more
sophisticated	argument	is	sketched	when	we	resume	this	topic	in	Chapter	17.



ALVEOLAR	AND	CELL	MEMBRANES

Will	a	biologist	kindly	stand	up	and	proclaim	that	the	preceding	section	brings
no	hard	result	and	no	unexpected	notion?	I	delight	at	hearing	this	objection
because	it	buttresses	further	the	argument	with	which	Chapter	7	begins.	Despite
the	fact	that	a	biologist	would	run	a	mile	from	a	Peano	surface	as	adorned	by
mathematicians,	I	claim	that	the	basic	idea	is	indeed	quite	familiar	to	the	good
theoretical	minds	in	this	field.
Thus,	the	main	novelty	of	the	preceding	sections	lies	with	surfaces	of	D<3,

which	(as	we	saw)	are	required	for	a	good	fit.	Let	us	pursue	their	novel
application	to	biology	by	sketching	how	they	help	unscramble	the	detailed
structure	of	several	living	membranes.
First,	a	paragraph	to	summarize	Weibel	1979,	section	4.3.7.	Estimates	of	the

human	lung’s	alveolar	area	are	conflicting:	light	microscopy	yields	80	m2,	while
electron	microscopy	claims	140	m2.	Does	this	discrepancy	matter?	The	fine
details	to	which	it	is	due	play	no	role	with	respect	to	gas	exchange,	being
smoothed	by	a	fluid	lining	layer	(resulting	in	an	even	smaller	functional	area),
but	they	are	important	with	respect	to	solute	exchanges.	Measurements
(triggered	by	my	Coast	of	Britain	paper)	indicate	in	the	first	approximation	that
over	a	wide	range	of	scales	the	membrane	dimension	is	D=2.17.
Paumgartner	&	Weibel	1979	examine	subcellular	membranes	in	liver	cells.

Again,	the	sharp	past	disagreement	between	different	estimates	of	area	per
volume	disappear	by	postulating	that	D=2.09	for	the	outer	mitochondrial
membrane	(which	wraps	the	cell,	and	departs	only	slightly	from	the	smoothness
characteristic	of	membranes	with	minimal	area/volume	ratio).	On	the	other	hand,
D=2.53	for	inner	mitochondrial	membranes,	and	D=1.72	for	the	endoplasmic
reticulum.
Also	let	it	be	noted	that	many	animals’	nasal	bone	structure	is	of	extraordinary

complication,	allowing	the	“skin”	that	covers	this	bone	to	have	a	very	large	area
in	a	small	volume.	In	Deer	and	Arctic	Fox,	this	membrane	may	serve	the	sense
of	smell,	but	(Schmidt-Nielsen	1981)	the	goal	of	an	analogous	shape	in	Camel	is
to	husband	scarce	water.



MODULAR	COMPUTER	GEOMETRY

To	illustrate	the	area-volume	relationship	further,	let	us	tackle	a	facet	of
computers.	Computers	are	not	natural	systems,	but	this	should	not	stop	us.	This
and	a	few	other	case	studies	help	demonstrate	that,	in	the	final	analysis,	fractal
methods	can	serve	to	analyze	any	“system,”	whether	natural	or	artificial,	that
decomposes	into	“parts”	articulated	in	a	self-similar	fashion,	and	such	that	the
properties	of	the	parts	are	less	important	than	the	rules	of	articulation.
Complex	computer	circuits	are	always	subdivided	into	numerous	modules.

Each	contains	a	large	number	C	of	components	and	is	connected	with	its
environment	by	a	large	number	T	of	terminals.	Within	an	error	of	a	few	percent,
one	finds	that	T1/D∝C1/E.	The	way	the	exponent	is	written	will	be	justified	in	a
moment.	Within	IBM,	the	above	rule	is	credited	to	E.	Rent;	see	Landman	&
Russo	1971.
The	earliest	raw	data	suggested	D/E=⅔,	a	value	that	Keyes	1981	extrapolates

to	huge	“circuits”	in	the	nervous	system	(optic	nerve	and	corpus	callosum).
However,	the	ratio	D/E	increases	with	the	circuit’s	performance.	Performance,	in
turn,	reflects	the	degree	of	parallelism	that	is	present	in	the	design.	In	particular,
the	designs	with	extreme	characteristics	lead	to	extreme	values	of	D.	In	a	shift
register,	the	modules	form	a	chain	and	T=2,	independently	of	C,	hence	D=O.
With	integral	parallelism,	each	component	requiring	its	own	terminal,	T=C,
hence	D=E.
To	account	for	D/E=⅔,	R.W.	Keyes	noted	that	components	are	typically

arranged	within	the	volume	of	the	modules,	while	the	connections	go	through
their	surfaces.	To	show	that	this	observation	demands	Rent’s	rule,	it	suffices	to
assume	that	all	the	components	have	roughly	the	same	volume	v	and	surface	σ.
Since	C	is	the	total	volume	of	the	module	divided	by	v,	C⅓	is	roughly
proportional	to	the	radius	of	the	module.	On	the	other	hand,	T	is	the	total	surface
of	the	module	divided	by	σ,	thus	T½	is	also	roughly	proportional	to	the	radius	of
the	module.	Rent’s	rule	simply	expresses	the	equivalence	of	two	different
measures	of	the	radius	in	a	standard	spatial	shape.	E=3	is	the	Euclidean
dimension	of	the	circuit	and	D=2	is	the	dimension	of	a	standard	surface.
Note	that	the	concept	of	the	module	is	ambiguous	and	almost	indefinite,	but



Rent’s	rule	is	quite	compatible	with	this	characteristic,	insofar	as	any	module’s
submodules	are	interconnected	by	their	surfaces.
It	is	just	as	easy	to	interpret	the	extreme	cases	mentioned	above.	In	a	standard

linear	structure,	E=1	and	the	boundary	reduces	to	two	points,	hence	D=0.	In	a
standard	planar	structure,	E=2	and	D=1.
However,	when	the	ratio	E/D	is	neither	3/2,	nor	2/1,	nor	1/0,	standard

Euclidean	geometry	does	not	make	it	possible	to	interpret	C	as	an	expression	of
volume	and	T	as	an	expression	of	surface.	Yet	such	interpretations	are	very
useful,	and	in	fractal	geometry	they	are	easy.	In	a	spatial	circuit	in	contact	with
the	outside	by	its	whole	surface,	E=3,	and	D	is	anywhere	between	2	and	3.	In	a
plane	circuit	in	contact	with	the	outside	by	its	whole	bounding	curve,	E=2	and	D
is	anywhere	between	1	and	2.	The	case	of	integral	parallelism,	D=E,	corresponds
to	Peano	boundaries.	Furthermore,	if	the	boundary	is	utilized	incompletely,	the
“effective	boundary”	may	be	any	surface	with	D	between	0	and	E.

Plate	115	LOG	(PERIMETER)	VERSUS	LOG	(AREA)	FOR	CLOUDS
(◯)	AND	RAIN	AREAS	(●)
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Islands,	Clusters,	and	Percolation;	Diameter-Number
Relations

This	chapter	is	devoted	to	fractal	σ-curves,	that	is,	to	fractals	that	decompose
into	an	infinity	of	disjoint	fragments,	each	of	them	a	connected	curve.	The
concrete	cases	range	from	the	coastlines	of	islands	in	an	archipelago	to	an
important	problem	of	physics:	percolation.	The	material	in	the	first	few	sections
was	new	to	the	1977	Fractals,	and	the	bulk	of	the	chapter’s	remainder	is	new.
To	begin,	let	us	echo	“How	Long	Is	the	Coast	of	Britain”	and	ask	how	many

islands	surround	Britain’s	coast?	Surely,	their	number	is	both	very	large	and	very
ill-determined.	As	increasingly	small	rock	piles	become	listed	as	islands,	the
overall	list	lengthens,	and	the	total	number	of	islands	is	practically	infinite.
Since	earth’s	relief	is	finely	“corrugated,”	there	is	no	doubt	that,	just	like	a

coastline’s	length,	an	island’s	total	area	is	geographically	infinite.	But	the
domains	surrounded	by	coastlines	have	well	defined	“map	areas.”	And	the	way
in	which	a	total	map	area	is	shared	among	the	different	islands	is	an	important
geographic	characteristic.	One	might	even	argue	that	this	“area-number	relation”
contributes	more	to	geographic	form	than	do	the	shapes	of	the	individual
coastlines.	For	example,	it	is	difficult	to	think	of	the	Aegean	Sea’s	shores
without	also	including	those	of	the	Greek	islands.	The	issue	clearly	deserves	a
quantitative	study,	and	this	chapter	provides	one,	by	generalizing	the	Koch
curves.
Next,	this	chapter	examines	diverse	other	fragmented	shapes	obtained	by

generalizing	the	familiar	fractal-generating	processes:	either	the	Koch	procedure
or	curdling.	The	resulting	shapes	are	called	contact	clusters	here,	and	the
diameter-number	distribution	is	shown	to	be	the	same	for	them	as	for	islands.
Special	interest	attaches	to	the	plane-filling	contact	clusters,	in	particular	those

clusters	generated	by	certain	Peano	curves,	whose	teragons	do	not	self-intersect
but	have	carefully	controlled	points	of	self-contact.	The	saga	of	the	taming	of
Peano	monsters	is	thereby	enriched	by	a	new	scene!



Last	but	not	least,	this	chapter	includes	the	first	part	of	a	case	study	of	the
geometry	of	percolation,	a	very	important	physical	phenomenon	also	studied	in
Chapter	14.



KORČAK	EMPIRICAL	LAW,	GENERALIZED

List	all	the	islands	of	a	region	by	decreasing	size.	The	total	number	of	islands	of
size	above	a	is	to	be	written	as	Nr(A>a)	 	patterned	after	the	notation	Pr(A>a)	of
probability	theory.	Here,	a	is	a	possible	value	for	an	island	map’s	area,	and	A
denotes	the	area	when	it	is	of	unknown	value.
B	and	F’	being	two	positive	constants,	to	be	called	exponent	and	prefactor,

one	finds	the	following	striking	area-number	relation:

Nr(A>a)=F’a-B

Korčak	1938	(the	name	is	pronounced	Kor’chak)	comes	close	to	deserving	credit
for	this	rule,	except	that	it	claims	that	B	=	½,	which	I	found	incredible,	and
which	the	data	showed	is	unfounded.	In	fact,	B	varies	between	regions	and	is
always	>½.	Let	me	now	show	that	the	above	generalized	law	is	the	counterpart
of	the	distribution	Chapter	8	obtains	for	the	gap	lengths	in	a	Cantor	dust.



KOCH	CONTINENT	AND	ISLANDS,	AND	THEIR
DIVERSE	DIMENSIONS

To	create	a	Koch	counterpart	to	the	Cantor	gaps,	I	let	the	generator	split	into
disconnected	portions.	To	insure	that	the	limit	fractal	remains	interpretable	in
terms	of	coastlines,	the	generator	includes	a	connected	broken	line	of	Nc<N
links,	joining	the	end	points	of	the	interval	[0,1].	This	portion	will	be	called	the
coastline	generator,	because	it	determines	how	an	initially	straight	coastline
becomes	transformed	into	a	fractal	coastline.	The	remaining	N-Nc	links	form	a
closed	loop	that	“seeds”	new	islands	and	will	be	called	island	generator.	Here	is
an	example:

In	later	stages,	the	sub-island	always	stays	to	the	left	of	the	coastline	generator
(going	from	0	to	1),	and	of	the	island	generator	(going	clockwise).
A	first	novelty	is	that	the	limit	fractal	now	involves	two	distinct	dimensions.

Lumping	all	the	islands’	coastlines	together,	D	=	log	N/log	(1/r),	but	for	the
coastline	of	each	individual	island	Dc	=	log	Nc/log	(1/r),	with	the	inequalities

1≤Dc<D.

The	cumulative	coastline,	not	being	connected,	is	not	itself	a	curve	but	an
infinite	sum	(Σ,	sigma)	of	loops.	I	propose	for	it	the	term	sigma-loop,	shortened
into	σ-loop.
Note	that	modeling	of	the	observed	relation	between	D	and	Dc	in	actual

islands	requires	additional	assumptions,	unless	it	can	be	derived	from	a	theory,
as	in	Chapter	29.



THE	DIAMETER-NUMBER	RELATION

The	proof	that	the	Korčak	law	holds	for	last	section’s	islands	is	simplest	when
the	generator	involves	a	single	island,	and	teragons	are	self-avoiding.	(Recall
that	the	teragons	are	the	approximating	broken	lines).	Then	the	first	stage	of
construction	creates	1	island;	let	its	“diameter,”	defined	by	√a,	be	λ0.	The	second
stage	creates	N	islands	of	diameter	rλ0,	and	the	mth	stage	creates	Nm	islands	of
diameter	λ=rmλ0.	Altogether,	as	λ	is	multiplied	byr,	Nr(Λ>λ)	is	multiplied	by	N.
Hence	the	distribution	of	A	(for	all	values	of	λ	of	the	form	rmλ0)	takes	the	form

Nr(Λ>λ)=Fλ-D,

in	which	the	crucial	exponent	is	the	coastline’s	fractal	dimension!	As	a	corollary

Nr(A>a)	=	F’a-B,	with	B=½D,

we	have	thus	derived	the	Korčak	law.	For	other	values	of	λ	or	a,	one	has	the
staircase	curve	familiar	from	the	distribution	of	Cantor	gaps’	lengths,	Chapter	8.
This	result	is	independent	of	Nc	and	Dc.	It	extends	to	the	case	when	the

generator	involves	two	or	more	islands.	We	note	that	the	empirical	B	regarding
the	whole	Earth	is	of	the	order	of	0.6,	very	close	to	one	half	of	D	measured	from
the	coastline	lengths.



GENERALIZATION	TO	E>2

In	the	same	construction	extended	to	space,	it	continues	to	be	true	that	the	E
dimensional	diameter,	defined	as	volume1/E,	is	ruled	by	a	hyperbolic	expression
of	the	form	Nr(volume1/E>λ)	=	FX-D,	wherein	the	crucial	exponent	is	D.
The	exponent	D	also	rules	the	special	case	of	Cantor	dusts	for	E=1,	but	there

is	a	major	difference.	The	length	outside	the	Cantor	gaps	vanishes,	while	the	area
outside	the	“Koch”	islands	can	be,	and	in	general	is,	positive.	We	return	to	this
topic	in	Chapter	15.



FRACTAL	DIMENSION	MAY	BE	SOLELY	A
MEASURE	OF	FRAGMENTATION

The	preceding	construction	also	allows	the	following	generator

The	overall	D	is	unchanged,	but	the	coastline	Dc	takes	the	smallest	allowable
value,	Dc=1.	In	the	present	model,	island	coastlines	are	allowed	to	be	rectifiable!
When	such	is	the	case,	the	overall	D	is	not	a	measure	of	irregularity,	but	solely
of	fragmentation.	Instead	of	the	wiggliness	of	individual	curves,	D	measures	the
number-area	relationship	for	an	infinite	family	of	rectangular	islands.
It	is	still	true	that,	when	the	length	is	measured	with	a	yardstick	of	∈,	the

result	tends	to	infinity	as	∈→0,	but	there	is	a	new	reason	for	this.	A	yardstick	of
length	∈	can	only	measure	islands	with	a	diameter	of	at	least	∈.	However,	the
number	of	such	islands	increases	as	∈→0,	and	the	measured	length	behaves	like
∈1-D,	exactly	as	in	the	absence	of	islands.
In	the	general	case	where	Dc>1,	the	value	of	Dc	measures	irregularity	alone,

while	the	value	of	D	measures	irregularity	and	fragmentation	in	combination.
A	FRAGMENTED	FRACTAL	CURVE	MAY	HAVE	TANGENTS

EVERYWHERE.	By	rounding	off	the	islands’	corners,	one	may	make	every
coastline	have	a	tangent	at	every	point,	while	the	areas,	hence	the	overall	D,	are
unaffected.	Thus,	being	a	fractal	σ-curve	and	being	without	tangent	are	not
identical	properties.



THE	INFINITY	OF	ISLANDS

AN	INNOCUOUS	DIVERGENCE.	As	a→0,	Nr(A>a)	=	Fa-B	tends	to	infinity.
Hence,	the	Korčak	law	agrees	with	our	initial	observation	that	islands	are
practically	infinite	in	numbers.
LARGEST	ISLANDS	RELATIVE	AREA.	This	last	fact	is	mathematically

acceptable	because	the	cumulative	area	of	the	very	small	islands	is	finite	and
negligible.	 	All	islands	of	area	below	∈	have	a	total	area	that	behaves	like	the
integral	of	a(Ba-B-1)=Ba-B	from	0	to	∈.	Since	B<1,	this	integral	converges,	and
its	value	B(1-B)-1e1-B	tends	to	0	with	∈
Consequently,	the	largest	island’s	relative	contribution	to	all	the	islands’

cumulative	area	tends	to	a	positive	limit	as	the	islands	increase	in	numbers.	It	is
not	asymptotically	negligible.
LONGEST	COASTLINE’S	RELATIVE	LENGTH.	On	the	other	hand,

assuming	Dc=1,	the	coastline	lengths	have	a	hyperbolic	distribution	with	the
exponent	D>1.	Hence	the	cumulative	coastline	length	of	small	islands	is	infinite.
And,	as	the	construction	advances	and	the	number	of	islands	increases,	the
coastline	length	of	the	largest	island	becomes	relatively	negligible.
RELATIVELY	NEGLIGIBLE	SETS.	More	generally,	the	inequality	Dc<D

expresses	that	the	curve	drawn	using	the	coastline	generator	alone	is	negligible
in	comparison	to	the	whole	coastline.	In	the	same	way,	a	straight	line	(D=1)	is
negligible	in	comparison	to	a	plane	(D=2).	Just	as	a	point	chosen	at	random	in
the	plane	almost	never	falls	on	the	x-axis,	a	point	chosen	at	random	on	the
coastline	of	a	“core”	island	surrounded	with	sub-islands	almost	never	falls	on	the
core	island’s	coastline.



SEARCH	FOR	THE	INFINITE	CONTINENT

In	a	scaling	universe,	the	distinction	between	the	islands	and	the	continent
cannot	be	based	on	tradition	or	“relative	size.”	The	only	sensible	approach	is	to
define	the	continent	as	a	special	island	with	an	infinite	diameter.	Let	me	now
show	that	the	constructions	at	the	beginning	of	this	chapter	practically	never
generate	a	continent.	 For	those	who	know	probability:	the	probability	of	a
continent	being	generated	is	zero.
In	a	sensible	search	for	a	continent,	we	must	no	longer	choose	the	initiator	and

the	generator	separately.	From	now	on,	the	same	generator	must	be	made	to
serve	both	for	interpolation	and	for	extrapolation.	The	process	runs	by
successive	stages,	each	subdivided	into	steps.	It	strongly	resembles	the
extrapolation	of	the	Cantor	set	in	Chapter	8,	but	deserves	to	be	described	even
more	thoroughly.
The	first	step	upsizes	our	chosen	generator	in	the	ratio	of	1/r.	The	second	step

puts	a	“mark”	on	one	of	the	links	of	the	upsized	generator.	The	third	step
displaces	the	upsized	generator,	to	make	its	marked	link	coincide	with	[0,1].	The
fourth	and	last	step	interpolates	the	upsized	generator’s	remaining	links.
The	same	process	is	repeated	ad	infinitum,	its	progress	and	outcome	being

determined	by	the	sequence	of	positions	of	the	“marked”	links.	This	sequence
can	take	diverse	forms.
The	first	form	requires	the	coastline	generator	to	include	a	positive	number

Nc-2	of	“nonextreme”	links,	defined	as	belonging	to	the	coastline	generator	but
not	ending	on	either	0	or	1.	If	the	mark	is	consistently	put	on	a	nonextreme	link,
each	stage	of	extrapolation	expands	the	original	bit	of	coastline,	and	eventually
causes	it	to	be	incorporated	into	a	fractal	coastline	of	infinite	extent	in	both
directions.	This	proves	that	it	is	indeed	possible	to	obtain	a	continental	coastline
in	this	setup.
Secondly,	always	mark	an	extreme	link	of	the	coastline	generator,	each

possibility	being	chosen	an	infinite	number	of	times.	Then	our	bit	of	coastline
again	expands	without	end.	If	we	always	choose	the	same	link,	the	coastline
expands	in	only	one	direction.
Thirdly,	always	mark	a	link	that	belongs	to	the	island	generator.	Then	the



biggest	island	before	extrapolation	is	made	to	lie	off	a	bigger	island’s	shore,	then
off-off	a	still	bigger	island’s,	and	so	on	ad	infinitum.	No	continent	is	ever
actually	reached.
The	next	comment	involves	a	bit	of	“probabilistic	common	sense,”	which

must	be	familiar	to	every	reader.	We	suppose	that	the	marks	fall	according	to	the
throws	of	an	N-sided	die.	In	order	for	the	extrapolation	to	generate	a	continent,	it
is	obviously	necessary	that	all	the	marks	beyond	a	finite	(kth)	stage	be	placed
upon	one	of	Nc-2	nonextreme	links	of	the	coastline	generator.	Call	them
“winning”	links.	To	know	one	has	reached	a	continent	after	k	stages,	one	must
know	that	thereafter	every	throw	of	our	die,	with	not	one	exception,	will	win.
Such	luck	is	not	impossible,	but	it	is	of	vanishing	probability.



ISLAND,	LAKE	AND	TREE	COMBINATION

The	Koch	islands	being	mutually	similar,	their	diameter	A	can	be	redefined	as
the	distance	between	any	two	specified	points,	best	chosen	on	the	coastline.
Next,	we	observe	that	the	derivation	of	the	diameter-number	relation	makes
specific	use	of	the	assumption	that	the	generator	includes	a	coastline	generator.
But	the	assumption	that	the	generator’s	remaining	links	form	islands,	or	are	self-
avoiding,	is	never	actually	used.	Thus,	the	relation

Nr(Λ>λ)=Fλ-D

is	of	very	wide	validity.	 	One	can	even	release	the	condition	the	teragons
initiated	by	two	intervals	must	not	intersect.	Let	us	now	show	by	examples	how
the	configuration	of	the	original	N-Nc	links	can	affect	the	resulting	fractal’s
topology.
COMBINATION	OF	ISLANDS	AND	LAKES.	Relieve	the	generator	from

the	requirement	of	being	placed	to	the	left,	going	clockwise.	When	it	is	placed	to
the	right,	it	forms	lakes	instead	of	islands.	Alternatively,	one	may	include	both
lakes	and	islands	in	the	same	generator.	Either	way,	the	final	fractal	is	a	σ-loop
whose	component	loops	are	nested	in	each	other.	For	example,	consider	the
generator

When	initiated	by	a	square,	this	generator	yields	the	following	advanced	teragon



THE	ELUSIVE	CONTINENT.	In	the	above	diagram,	the	length	of	the
initiator’s	side	injects	a	nonintrinsic	outer	cutoff.	A	more	consistent	approach	is
to	extrapolate	it	as	we	did	for	islands	without	lakes.	Again,	it	is	almost	sure	that
no	continent	is	ever	reached,	and	that	the	nesting	of	islands	within	lakes	within
islands	continues	without	bound.
AREA-NUMBER	RELATION.	In	order	to	define	the	area	of	an	island	(or

lake),	one	may	at	will	take	either	the	total	area,	or	the	area	of	land	(or	water),
within	its	coastline.	The	two	differ	by	a	fixed	numerical	factor,	hence	affect
Nr(A>a)	through	its	prefactor	F’,	not	its	exponent	½D.
COMBINATION	OF	INTERVALS	AND	TREES.	Now	assume	that	the	N-Nc

links	form	either	a	broken	line	with	two	free	ends,	or	a	tree.	In	either	case,	the
fractal	splits	into	an	infinite	number	of	disconnected	pieces,	each	of	them	a
curve.	This	σ-curve	is	no	longer	a	σ-loop;	it	is	either	a	σ-tree	or	a	σ-interval.



THE	NOTION	OF	CONTACT	CLUSTER

The	generator	may	also	combine	loops,	branches	and	diverse	other	topological
configurations.	If	so,	the	limit	fractals’	connected	portions	recall	the	clusters	of
percolation	theory	(as	seen	later	in	this	chapter)	and	of	many	other	areas	of
physics.	To	us,	this	usage	is	terribly	unfortunate,	due	to	the	alternative	meaning
of	cluster	in	the	study	of	dusts	(Chapter	9).	We	need	therefore	a	more	specific
and	cumbersome	term.	I	settled	on	“contact	cluster.”	Luckily,	the	term	σ-cluster
is	not	ambiguous.
(It	may	be	observed	that	contact	cluster	has	a	unique	and	natural	mathematical

definition,	while	the	notion	of	clustering	in	a	dust	is	diffuse	and	intuitive,	and	is
at	best	defined	via	arguable	statistical	rules.)
PLANE-FILLING	CONTACT	CLUSTERS.	As	D	reaches	its	maximum	D=2,

the	arguments	in	the	preceding	section	remain	valid,	but	additional	comments
become	necessary.	Each	individual	cluster	tends	to	a	limit,	which	may	be	a
straight	line,	but	in	most	cases	is	a	fractal	curve.	On	the	other	hand,	all	the
clusters	together	form	a	σ-curve,	whose	strands	fill	the	plane	increasingly	tightly.
The	limit	of	this	σ-curve	behaves	as	in	Chapter	7:	it	is	no	longer	a	σ-curve,	but	a
domain	of	the	plane.
THE	ELUSIVE	INFINITE	CLUSTER.	No	actually	infinite	cluster	is	involved

in	the	present	approach.	It	is	easy	to	arrange	the	generator’s	topology	so	that	any
given	bounded	domain	is	almost	surely	surrounded	by	a	contact	cluster.	This
cluster	is	in	turn	almost	surely	surrounded	by	a	larger	cluster,	etc.	There	is	no
upper	bound	to	cluster	size.	More	generally,	when	a	cluster	seems	infinite
because	it	spans	a	very	large	area,	the	consideration	of	an	even	larger	area	will
almost	surely	show	it	to	be	finite.



MASS-NUMBER	AND	WEIGHTED	DIAMETER-
NUMBER	RELATIONS.	THE	EXPONENTS	D-Dc

AND	D/Dc.

Now	let	us	reformulate	the	function	Nr(Λ>λ)	in	two	ways:	first	by	replacing	a
cluster’s	diameter	λ	by	its	mass	µ,	then	by	giving	increased	weight	to	large
contact	clusters.
Here,	a	cluster’s	mass	is	simply	the	number	of	links	of	length	b-k	in	the

clusters	itself	(do	not	count	the	links	within	a	looping	cluster!).	In	effect,
Chapters	6	and	12,	we	create	a	modified	Minkowski	sausage	(Plate	33),	by
centering	a	square	of	side	b-k	on	each	vertex,	and	adding	half	a	square	at	each
end-point.
The	mass	of	a	cluster	of	diameter	A	being	the	area	of	its	modified	sausage,

M∝(Λ/bk)Dc(bk)2	=	ΛDc/(bk)Dc-2.	Since	Dc<2,	M→0	as	k→∞.	The	mass	of	all
the	contact	clusters	taken	together	is	∝(bk)D-2;	if	D<2,	it	too	→0.	And	the
relative	mass	of	any	individual	contact	cluster	is	∝(bk)Dc-D;	it	tends	to	0	at	a	rate
that	increases	with	D-Dc.
MASS-NUMBER	RELATION.	Clearly,

Nr(M>µ)∝(bk)-D+2D/Dcµ-D/Dc,
DISTRIBUTION	OF	DIAMETER	WEIGHTED	BY	MASS.	Observe	that

Nr(∧>λ)	counts	the	number	of	lines	above	line	λ	in	a	list	that	starts	with	the
largest	contact	cluster,	continues	with	the	next	largest,	etc.	But	we	shall
momentarily	have	to	attribute	to	each	contact	cluster	a	number	of	lines	equal	to
its	mass.	The	resulting	relation	is	easily	seen	to	be

Wnr(∧>λ)	∝	λ-D+Dc.



THE	MASS	EXPONENT	Q=2Dc-D

Denote	by	 	a	fractal	of	dimension	D,	constructed	recursively	with	[0,Λ]	as
initiator,	and	take	its	total	mass	to	be	ΛD.	When	 	is	a	Cantor	dust,	Chapter	8
shows	that	the	mass	in	a	disc	of	radius	R<A	centered	at	0	is	M(R)	∝	RD.	 	The
quantity	log[M(R)R-D]	is	a	periodic	function	of	logb	(Λ/R),	but	we	shall	not
dwell	on	these	complications	because	they	vanish	when	the	fractal	is	modified	so
that	all	r>0	are	admissible	self-similarity	ratios.
We	know	that	M(R)	∝	RD	also	applies	to	the	Koch	curve	of	Chapter	6.

Furthermore,	this	formula	extends	to	the	recursive	islands	and	clusters	of	this
chapter,	with	D	replaced	by	Dc.	In	all	cases,	the	mass	in	a	disc	of	radius	R
centered	at	0	takes	the	form

M(R,A)	=	RDcφ(R/∧),
with	ø	a	function	deducible	from	the	shape	of	J.	In	particular,

M(R,Λ)∝RDc	when	R<<Λ,	and	M(R,Λ)∝ΛDc	when	R»A.

Now	consider	the	weighted	average	of	M(R),	to	be	denoted	by	(M(R)),
corresponding	to	the	case	when	Λ	is	variable	with	the	widely	spread-out
hyperbolic	distribution	Wnr(Λ>λ)	∝	λ-D+Dc,	We	know	that	1≤Dc<D≤2.
Excluding	the	combination	of	D=2	and	Dc=1,	O<D-Dc<Dc.	It	follows	that

〈M(R)〉	∝	RQ	with	Q=2Dc-D>0.

When	the	disc’s	center	is	a	point	of	 	other	than	0,	the	factor	of	proportionality
changes,	but	its	exponent	is	unchanged.	It	also	remains	unchanged	by	averaging
over	all	positions	of	the	center	in	 ,	and	by	the	replacement	of	[0,1]	by	a
different	initiator.	 Usually,	an	arc	of	random	size	Λ	is	also	of	random	shape.
But	the	above	formulas	for	M(R,A)	apply	to	〈M(R,Λ)〉	averaged	over	all	shapes.
The	final	result	is	unchanged.
REMARK.	The	preceding	derivation	does	not	refer	to	the	clusters’	topology:

they	can	be	loops,	intervals,	trees,	or	anything	else.
CONCLUSION.	The	formula	〈M(R)〉∝RQ	shows	that,	when	Λ	is



hyperbolically	distributed,	hence	of	very	wide	scatter,	one	of	the	essential	roles
of	dimension	is	taken	up	by	an	exponent	other	than	D.	The	most	natural
exponent	is	2Dc-D,	but	different	weighting	function	give	different	Q’s.
WARNING:	NOT	EVERY	MASS	EXPONENT	IS	A	DIMENSION.	The

combined	quantity	Q	is	important.	And,	since	it	is	a	mass	exponent,	it	is
tempting	to	call	it	a	dimension,	but	this	temptation	has	no	merit.	Mixing	many
clusters	with	identical	Dc	but	varying	A	leaves	Dc	unchanged,	because
dimension	is	not	a	property	of	a	mixed	population	of	sets,	but	a	property	of	an
individual	set.	Both	D	and	Dc	are	fractal	dimensions,	but	Q	is	not.
More	generally,	many	areas	of	physics	involve	relations	of	the	form	〈M(R)〉	∝

RQ,	but	such	a	formula	does	not	by	itself	guarantee	that	Q	is	a	fractal	dimension.
And	calling	Q	an	effective	dimension,	as	some	authors	propose,	is	an	empty
gesture	because	Q	does	not	possess	any	of	the	other	properties	that	characterize
D	(for	example,	sums	or	products	of	D’s	have	a	meaning	with	no	counterpart	in
the	case	of	Q).	Moreover,	this	empty	gesture	has	proven	a	source	of	potential
confusion.



NONLUMPED	CURDLING	CLUSTERS

We	now	proceed	to	describe	two	additional	methods	for	generating	contact
clusters.	One	is	based	on	curdling	and	applies	for	D<2,	while	the	other	is	based
on	Peano	curves	and	applies	for	D=2.	The	reader	interested	in	percolation	may
skip	this	section	and	the	next.
First,	let	us	replace	the	Koch	construction	by	the	natural	generalization	of

Cantor	curdling	to	the	plane.	As	illustration,	consider	the	following	five
generators,	with	the	next	construction	stage	drawn	underneath

In	all	these	cases,	the	limit	fractal	is	of	zero	area	and	contains	no	interior
point.	Its	topology	can	take	diverse	forms,	determined	by	the	generator.
With	generator	A,	the	precurd	of	every	stage	k	is	connected,	and	the	limit

fractal	is	a	curve,	an	example	of	the	very	important	Sierpiński	carpet	examined
in	Chapter	14.
With	generator	F,	the	precurd	splits	into	disconnected	portions,	whose

maximum	linear	scale	steadily	decreases	as	k→∞.	And	the	limit	fractal	is	a	dust,
akin	to	the	Fournier	model	of	Chapter	9.
The	generators	B,	C	and	E	are	more	interesting:	in	their	case,	the	precurd

splits	into	pieces	to	be	called	preclusters.	Each	stage	can	be	said	to	transform
every	“old”	precluster	by	making	it	thinner	and	wigglier,	and	to	give	birth	to
“new”	preclusters.	Nevertheless,	by	deliberate	choice	of	generators,	each
newborn	precluster	is	entirely	contained	in	a	single	smallest	cell	in	the	lattice
prevailing	before	its	birth.	By	contrast	with	the	“cross	lumped	clusters”	of	the
next	section,	the	present	ones	are	to	be	called	“nonlumped.”	It	follows	that	the
limit	contact	clusters	have	a	dimension	of	the	form	log	Nc/log	b,	where	Nc	is	an



integer	at	most	equal	to	the	number	of	cells	in	the	generator’s	largest	component.
This	maximum	is	attained	for	generators	B	and	C,	for	which	the	contact	clusters
are,	respectively,	intervals	with	Dc=1	and	fractal	trees	with	Dc=log	7/log	4.	But
the	fractal	based	on	the	generator	E	does	not	attain	this	maximum:	in	its	case,	the
F-shaped	preclusters	keep	splitting	into	parts,	and	the	limit,	again,	is	made	of
straight	intervals	with	Dc=1.
Replacing	the	pseudo-Minkowski	sausage	by	the	collection	of	cells	of	side	b-k

intersected	by	a	contact	cluster,	the	diameter-number	relation	and	the	other
results	of	the	preceding	sections	extend	unchanged.



CROSS	LUMPED	CURDLING	CLUSTERS

Next,	let	the	generator	of	plane	curdling	takes	either	of	the	following	shapes,
with	the	next	construction	stages	drawn	to	the	side

Both	cases	exhibit	massive	“cross	lumping,”	meaning	that	each	newborn
precluster	combines	contributions	coming	from	several	smallest	lattice	cells
prevailing	before	its	birth.
In	the	Koch	context,	an	analogous	situation	prevails	when	the	teragons	are

allowed	to	self-contact,	resulting	in	the	merger	of	small	cluster	teragons.	In
either	case,	the	analysis	is	cumbersome,	and	we	cannot	dwell	on	it.	But
Nr(Λ>λ)∝λ-D	remains	a	valid	relation	for	small	λ.

However,	if	one	attempts	to	estimate	D	from	this	relation,	without	excluding
the	large	λ’s,	the	estimate	is	systematically	biased	and	smaller	than	the	true
value.	
Novel	features	arise	concerning	the	quantity	bDc:	it	need	not	be	an	integer

deducible	from	the	generator	by	simple	inspection,	but	it	may	be	a	fraction.	The
reason	is	that	every	contact	cluster	combines:	(a)	an	integer	number	of	versions
of	itself,	downsized	in	the	ratio	1/b,	and	(b)	many	downsized	versions	due	to
lumping,	which	involve	smaller	ratios	of	the	form	rm=b-k(m).	The	dimension-
determining	equation	ΣrmD=	1	of	here,	when	rewritten	in	terms	of	x=b-D,	takes
the	form	Σamxm=1.	Cases	where	1/x	is	an	integer	can	only	occur	as	exceptions.



KNOTTED	PEANO	MONSTERS,	TAMED

A	plane-filling	collection	of	clusters	(D=2)	cannot	be	created	by	curdling,	but	I
found	an	alternative	approach,	using	Peano	curves	beyond	those	we	saw	being
tamed	in	Chapter	7.	As	the	reader	must	recall,	Peano	curves	with	self-avoiding
teragons	create	river	and	watershed	trees.	But	some	other	Peano	curve	teragons
(for	example	the	teragons	in	Plate	63,	assuming	that	the	corners	are	not	rounded
off)	are	simply	chunks	of	lattice.	As	the	construction	proceeds,	the	open	lattice
cells	separated	by	such	curves	“converge”	to	an	everywhere	dense	dust,	e.g.,	to
the	points	for	which	neither	x	nor	y	is	a	multiple	of	b-k.
Between	these	extremes	stands	a	new	interesting	class	of	Peano	curves.	Their

generators	are	exemplified	by	the	following,	shown	together	with	the	next	step
This	class	of	Peano	curves	is	now	ready	to	be	tamed.	We	observe	that	each	point
of	self-contact	“knots	off”	an	open	precluster,	which	may	acquire	branches	and
self-contacts,	sees	chunks	of	itself	“knotted	away,”	and	eventually	thins	down	to
a	highly	ramified	curve	that	defines	a	contact	cluster.	A	cluster’s	diameter	A,
defined	as	in	previous	sections	of	this	chapter,	is	fixed	from	the	moment	of	birth:
roughly	equal	to	the	side	of	the	square	that	“seeded”	this	cluster.	Its	distribution
is	ruled	by	the	familiar	relation	Nr(Λ>λ)∝λ-2.

Observe	in	passing	that,	while	Koch	contact	clusters	are	limits	of	recursively
constructed	curves,	the	present	clusters	are	limits	(in	a	peculiar	sense)	of	the
open	components	of	the	complement	of	a	curve.



BERNOULLI	PERCOLATION	CLUSTERS

Whichever	method	is	used	to	generate	fractal	contact	clusters	with	D=E	and
Dc<D,	they	provide	a	geometric	model	that	had	been	lacking	in	a	very	important
problem	of	physics:	Bernoulli	percolation	through	lattices.	J.	M.	Hammersley,
who	posed	and	first	investigated	this	problem,	did	not	inject	Bernoulli’s	name	in
this	context,	but	the	fractal	percolation	we	encounter	in	Chapter	23	makes	the
full	term	unavoidable	here.	(It	is	independently	adopted	by	Smythe	&	Wiermann
1975.)
LITERATURE.	Bernoulli	percolation	is	surveyed	in	Shante	&	Kirkpatrick

1971,	Domb	&	Green	1972-,	especially	a	chapter	by	J.	W.	Essam,	Kirkpatrick
1973,	deGennes	1976,	Stauffer	1979,	and	Essam	1980.
DEFINITIONS.	Percolation	involves	probabilistic	notions,	hence	would	not

be	discussed	at	this	stage	if	we	were	entirely	consistent.	But	an	occasional	lack
of	consistency	has	its	rewards.	The	simplest	percolation	problem	for	E=2	is	bond
percolation	on	a	square	lattice.	To	illustrate	it	in	homely	fashion,	imagine	we
construct	a	large	square	lattice	with	sticks	made	either	of	insulating	vinyl	or	of
conducting	copper.	A	Bernoulli	lattice	obtains	if	each	stick	is	selected	at	random,
independently	of	the	other	sticks,	the	probability	of	choosing	a	conducting	stick
being	p.	Maximal	collections	of	connected	copper	or	vinyl	sticks	are	called
copper	or	vinyl	clusters.	When	the	lattice	includes	at	least	one	uninterrupted
string	of	copper	sticks,	the	current	can	flow	through	from	one	side	of	the	lattice
to	the	other,	and	the	lattice	is	said	to	percolate.	(In	Latin,	per	=	through,	and
colare	=	to	flow.)	The	sticks	in	uninterrupted	electric	contact	with	the	top	and
bottom	sides	of	the	lattice	form	a	“percolating	cluster,”	and	the	sticks	actually
active	in	conducting	form	the	percolating	cluster’s	“backbone.”
The	generalization	to	other	lattices,	and	to	E>2,	is	immediate.
CRITICAL	PROBABILITY.	Hammersley’s	most	remarkable	finding	concerns

the	special	role	played	by	a	certain	threshold	probability:	the	critical	probability
pcrit.	This	quantity	enters	in	when	the	Bernoulli	lattice’s	size	(measured	in
numbers	of	sticks)	tends	to	infinity.	One	finds	that,	when	p>pcrit,	the	probability
that	there	exists	a	percolating	cluster	increases	with	lattice	size,	and	tends	to	1.
When	p<pcrit,	to	the	contrary,	the	probability	of	percolation	tends	to	0.



Bond	percolation	on	square	lattices	being	such	that	either	copper	or	vinyl	must
percolate,	pcrit	=	½,
ANALYTICAL	SCALING	PROPERTY.	The	study	of	percolation	long

devoted	itself	to	the	search	for	analytic	expressions	to	relate	the	standard
quantities	of	physics.	All	these	quantities	were	found	to	be	scaling,	in	the	sense
that	the	relations	between	them	are	given	by	power	laws.	For	p≠pcrit,	scaling
extends	up	to	an	outer	cutoff	dependent	on	p-pcrit	and	denoted	by	ξ.	As	p→pcrit,
the	cutoff	satisfies	ξ→∞.	Physicists	postulate	(see	Stauffer	1979,	p.	21)	that
〈M(R,Λ)〉	follows	the	rule	obtained	on	p.	123.



THE	CLUSTERS’	FRACTAL	GEOMETRY

THE	CLUSTERS’	SHAPE.	Let	p=pcrit,	and	let	individual	sticks	decrease	in	size
while	the	total	lattice	size	remains	constant.	The	clusters	become	increasingly
thin	(“all	skin	and	no	flesh”),	increasingly	convoluted,	and	increasingly	rich	in
branches	and	detours	(“ramified	and	stringy”).	Specifically,	Leath	1976,	the
number	of	sticks	situated	outside	of	the	cluster,	but	next	to	a	stick	within	the
cluster,	is	roughly	proportional	to	the	number	of	sticks	within	the	cluster.
HYPOTHESIS	THAT	CLUSTERS	ARE	FRACTALS.	It	is	natural	to

conjecture	that	the	property	of	scaling	extends	from	analytic	properties	to	the
clusters’	geometry.	But	this	idea	could	not	be	implemented	in	standard	geometry,
because	the	clusters	are	not	straight	lines,	Fractal	geometry	is	of	course	designed
to	eliminate	such	difficulties:	thus,	I	conjectured	that	clusters	are	representable
by	fractal	σ-curves	satisfying	D=2	and	1	<	Dc<	D.	This	claim	has	been	accepted,
and	found	to	be	fruitful.	It	is	elaborated	upon	in	Chapter	36.

To	be	precise,	scaling	fractals	are	taken	to	represent	the	clusters	that	are	not
truncated	by	the	boundary	of	the	original	lattice.	This	excludes	the	percolating
cluster	itself.	(The	term	cluster	has	a	gift	for	generating	confusion!)	To	explain
the	difficulty,	start	with	an	extremely	large	lattice,	pick	a	cluster	on	it,	and	a
smaller	square	that	is	spanned	by	this	cluster.	By	definition,	the	intersection	of
this	cluster	and	the	smaller	square	includes	a	smaller	percolating	cluster,	but	in
addition	it	includes	a	“residue”	that	connects	with	the	smaller	percolating	cluster
through	links	outside	the	square.	Note	that	neglect	of	this	residue	creates	a
downward	bias	in	the	estimation	of	Dc
VERY	ROUGH	BUT	SPECIFIC	NONRANDOM	FRACTAL	MODELS.	To

be	valid,	the	claim	that	any	given	natural	phenomenon	is	fractal	must	be
accompanied	by	the	description	of	a	specific	fractal	set,	to	serve	as	first
approximation	model,	or	at	least	as	mental	picture.	My	Koch	curve	model	of
coastlines,	and	the	Fournier	model	of	galaxy	clusters,	demonstrate	that	rough
nonrandom	picture	may	be	very	useful.	Similarly,	I	expect	recursively
constructed	contact	clusters	(like	those	introduced	in	this	chapter)	to	provide
useful	fractal	models	of	the	ill-known	natural	phenomena	that	are	customarily
modeled	by	Bernoulli	clusters.



However,	the	Bernoulli	clusters	themselves	are	fully	known	(at	least	in
principle),	hence	modeling	them	via	explicit	recursive	fractals	is	a	different	task.
The	Koch	contact	clusters	I	studied	are	not	suitable,	due	to	dissymetry	between
vinyl	and	copper,	even	when	there	are	equal	numbers	of	sticks	of	both	kinds.
Next	examine	the	knotted	Peano	curve	clusters.	Take	an	advanced	teragon,	and
cover	the	cells	to	the	left	of	the	curve	with	copper,	and	the	other	cells	with	vinyl.
The	result	involves	a	form	of	percolation	applied	to	lattice	cells	(or	to	their
centers,	called	sites).	The	problem	is	symmetric.	But	it	differs	from	the	Bernoulli
problem,	because	the	configuration	of	copper	or	vinyl	cells	are	not	the	same	as
in	the	case	of	independence:	for	example,	9	cells	forming	a	supersquare	can	all
be	of	copper	or	vinyl	in	the	Bernoulli	case,	but	not	in	the	knotted	Peano	curve
case.	(On	the	other	hand,	both	models	allow	groups	of	4	cells	forming	a
supersquare	to	take	any	of	the	possible	configurations.)	This	difference	has	far-
reaching	consequences:	for	example,	neither	copper	nor	vinyl	percolate	in	the
Bernoulli	site	problem	with	p=½,	while	both	percolate	in	knotted	Peano	clusters,
implying	that	½	is	a	critical	probability.
The	list	of	variants	of	Bernoulli	bond	percolation	is	already	long,	and	can

easily	be	lengthened	further.	And	I	have	already	examined	many	variants	of
recursively	constructed	fractal	contact	clusters.	The	detailed	comparison	of	these
lists	is	unfortunately	complicated,	and	I	shall	not	dwell	on	it	here.
Let	me	therefore	be	satisfied	with	stating	the	loose	conclusion	that	significant

fractal	essentials	of	the	Bernoulli	percolation	problem	seem	to	be	illustrated	by
nonrandom	space-filling	σ-clusters	defined	earlier	in	this	chapter.	This	model’s
principal	weakness	is	that	it	is	completely	indeterminate	beyond	what	has	been
said.	It	can	accommodate	any	observed	degree	of	irregularity	and	fragmentation.
On	the	matter	of	topology,	see	Chapter	14.
MODEL	OF	CRITICAL	CLUSTERS.	Specifically,	consider	the	critical

clusters,	defined	as	the	clusters	for	p=pcrit.	To	represent	them,	a	recursive	σ-
cluster	is	extrapolated	as	indicated	in	earlier	sections	of	this	chapter.	Then	it	is
truncated	by	stopping	the	interpolation	so	that	the	positive	inner	cutoff	is	the	cell
size	in	the	original	lattice.
MODELS	OF	NONCRITICAL	CLUSTERS.	To	extend	this	geometric	picture

to	noncritical	clusters,	that	is,	to	clusters	for	p≠pcrit,	we	seek	fractals	with	a
positive	inner	cutoff	and	a	finite	outer	cutoff.	Analysis	calls	for	the	largest
copper	cluster’s	extent	to	be	of	the	order	of	ξ	when	p<pcrit,	and	to	be	infinite
when	p>pcrit.	Either	outcome	is	readily	implemented.	For	example,	one	can	start



with	the	same	generator	as	in	the	preceding	subsection.	But,	instead	of
extrapolating	it	naturally,	one	initiates	it	with	either	of	the	following	shapes

SUBCRITICAL	CLUSTERS.	The	initiator	to	the	left,	which	is	geared	towards
p<pcrit,	is	made	of	squares	of	side	½ξ.	Now	let	the	chosen	generator	be
positioned	in	through	each	initiator’s	left	side,	and	out	through	the	other	sides.
The	initiator	square	will	transform	into	an	atypical	cluster	of	length	ξ,
surrounded	by	many	typical	clusters	of	length	<ξ.
SUPERCRITICAL	CLUSTERS.	The	initiator	to	the	right,	which	is	geared

towards	p>pcrit,	is	made	of	those	lines	of	the	initial	square	lattice,	whose	x	or	y
coordinates	are	even	integers.	Four	links	radiate	from	each	node	whose
coordinates	are	even	integers;	the	chosen	generator	is	always	positioned	to	the
left.	In	the	special	case	when	the	coastline	generator	involves	no	loops	nor
dangling	links,	the	resulting	picture	is	a	de-randomized	and	systematized	variant
of	a	crude	model	of	clusters	based	solely	on	“nodes	and	links.”
Observe	that	the	fractal	geometric	picture	deduces	the	noncritical	clusters

from	the	critical	ones,	while	physicists	prefer	to	consider	the	critical	clusters	as
limits	of	the	noncritical	clusters	for	ξ→∞.



CRITICAL	BERNOULLI	CLUSTERS’	Dc

The	value	of	Dc	is	immediately	inferred	from	either	the	exponent	D/Dc=E/Dc	in
the	formula	for	Nr(M>µ),	or	the	exponent	Q=2Dc-D=2Dc-E	in	the	formula	for
〈M(R)〉.	Using	the	Greek	letters	τ,	δ	and	η	with	the	meanings	customary	in	this
context,	we	find	that	E/Dc=τ-1	and	2Dc-E	=	2-η.	Hence,

Dc	=	E/(τ-1)	=	E/(1+δ-1).	and	Dc=1+(E-η)/2.

Due	to	relations	that	physicists	established	between	τ,	δ	and	η,	the	above
formulas	for	Dc	are	equivalent.	Conversely,	their	equivalence	does	not	reside	in
physics	alone,	because	it	follows	from	geometry.
Independently	of	each	other,	Harrison,	Bishop	&	Quinn	1978,	Kirkpatrick

1978,	and	Stauffer	1979	obtain	the	same	Dc.	They	start	from	the	properties	of
clusters	for	p>pcrit,	hence	express	their	result	in	terms	of	different	critical
exponents	(β,	γ,	ν	and	σ).	These	derivations	do	not	involve	a	specific	underlying
fractal	picture.	The	dangers	inherent	in	this	approach,	against	which	we	warned
earlier	in	this	chapter,	are	exemplified	by	the	fact	that	it	misled	Stanley	1977	into
advancing	Q	and	Dc	are	equally	legitimate	dimensions.
For	E=2,	the	numerical	value	is	Dc=1.89.	It	is	compatible	with	the	empirical

evidence,	as	obtained	by	a	procedure	familiar	in	other	guises.	Pick	r,	which	need
not	be	of	the	form	1/b	(b	an	integer).	Then	take	a	big	eddy,	which	is	simply	a
square	or	cubic	lattice	of	side	set	to	1.	Pave	it	with	subeddies	of	side	r,	count	the
number	N	of	the	squares	or	cubes	that	intersect	the	cluster,	and	evaluate	log
N/log	(1/r).	Then	repeat	the	process	with	each	nonempty	subeddy	of	side	r	by
forming	subsubeddies	of	side	r2.	Continue	as	far	as	feasible.	The	most
meaningful	results	obtain	when	r	is	close	to	1.	Some	early	simulations	gave	the
biased	estimate	D+~1.77	(Mandelbrot	1978h,	Halley	&	Mai	1979),	but	large
simulations	(Stauffer	1980)	confirm	D.

	The	biased	experimental	D+	is	very	close	to	Q,	hence	briefly	seemed	to
confirm	the	theoretical	arguments	in	Stanley,	Birgenau,	Reynolds	&	Nicoll	1976
and	Mandelbrot	1978h,	which	were	both	in	error	in	claiming	that	the	dimension
is	Q.	The	error	was	brought	to	my	attention	by	S.	Kirkpatrick.	A	different	and



even	earlier	incorrect	estimate	of	D	is	found	in	Leath	1976.



THE	CYPRESS	TREES	OF	OKEFENOKEE

When	a	forest	that	is	not	“managed”	systematically	is	observed	from	an	airplane,
its	boundary	is	reminiscent	of	an	island’s	coastline.	Individual	tree	patches’
outlines	are	extremely	ragged	or	scalloped,	and	each	large	patch	is	trailed	by
satellite	patches	of	varying	area.	My	hunch	that	these	shapes	may	follow	the
Richardson	and/or	Korčak	laws,	is	indeed	confirmed	by	an	unpublished	study	of
the	Okefenokee	swamp	(Kelly	1951)	by	H.	M.	Hastings,	R.	Monticciolo	&	D.
VunKannon.	The	patchiness	of	cypress	is	great,	with	D~1.6;	the	patchiness	of
broadleaf	and	mixed	broadleaf	trees	is	much	less	pronounced,	with	D	near	1.	My
informants	comment	on	the	presence	of	an	impressive	variety	of	scales	both	on
personal	inspection	and	on	examination	of	vegetation	maps.	There	is	an	inner
cutoff	of	about	40	acres,	probably	a	consequence	of	aerial	photography.
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Ramification	and	Fractal	Lattices

Chapter	6	investigates	planar	Koch	curves	that	satisfy	D<2	and	are	devoid	of
double	points,	hence	can	be	called	self-avoiding	or	nonramified.	And	Chapter	7
investigates	Peano	curves,	for	which	everywhere	dense	double	points	are
unavoidable	in	the	limit.	The	present	chapter	takes	the	next	step,	and	investigates
examples	of	deliberately	ramified	self-similar	shapes:	planar	curves	with	1	<	D	<
2,	spatial	curves	with	1	<	D	<	3,	and	surfaces	with	2	<	D	<	3.	In	a	ramified	self-
similar	curve,	the	number	of	double	points	is	infinite.
This	chapter’s	mathematics	is	old	(though	known	to	very	few	specialists),	but

my	applications	to	the	description	of	Nature	are	new.



THE	SIERPIŃSKI	GASKET	AS	MONSTER

Sierpihski	gasket	is	the	term	I	propose	to	denote	the	shape	in	Plate	141.	An
extension	to	space	is	shown	in	Plate	143.	The	constructions	are	described	in	the
captions.
Hahn	1956	comments	that	“A	point	on	a	curve	is	called	a	branch	point	if	the

boundary	of	any	arbitrarily	small	neighborhood	has	more	than	two	points	in
common	with	the	curve...	Intuition	seems	to	indicate	that	it	is	impossible	for	a
curve	to	be	made	up	of	nothing	but...	branch	points.	This	intuitive	conviction	had
been	refuted	[by	the]	Sierpiński...	curve,	all	of	whose	points	are	branch	points.”



THE	EIFFEL	TOWER:	STRONG	AND	AIRY

Again,	Hahn’s	view	is	totally	without	merit,	and	his	uncharacteristic	“seems	to
indicate”	is	a	wise	choice	of	words.	My	first	counter-argument	is	borrowed	from
engineering.	(As	argued	before	we	tackled	computers	at	the	end	of	Chapter	12,
there	is	nothing	illogical	about	including	articulated	engineering	systems	in	this
work	concerned	with	Nature.)
My	claim	is	that	(well	before	Koch,	Peano,	and	Sierpiński)	the	tower	that

Gustave	Eiffel	built	in	Paris	deliberately	incorporates	the	idea	of	a	fractal	curve
full	of	branch	points.
In	a	first	approximation,	the	Eiffel	Tower	is	made	of	four	A-shaped	structures.

Legend	has	it	that	Eiffel	chose	A	to	express	Amour	for	his	work.	All	four	A’s
share	the	same	apex	and	any	two	neighbors	share	an	ascender.	Also,	a	straight
tower	stands	on	top.
However,	the	A’s	and	the	tower	are	not	made	up	of	solid	beams,	but	of

colossal	trusses.	A	truss	is	a	rigid	assemblage	of	interconnected	submembers,
which	one	cannot	deform	without	deforming	at	least	one	submember.	Trusses
can	be	made	enormously	lighter	than	cylindrical	beams	of	identical	strength.
And	Eiffel	knew	that	trusses	whose	“members”	are	themselves	subtrusses	are
even	lighter.
The	fact	that	the	key	to	strength	lies	in	branch	points,	popularized	by

Buckminster	Fuller,	was	already	known	to	the	sophisticated	designers	of	Gothic
cathedrals.	The	farther	we	go	in	applying	this	principle,	the	closer	we	get	to	a
Sierpiński	ideal!	An	infinite	extrapolation	of	the	Eiffel	Tower	design	is	described
in	Dyson	1966,	p.	646,	wherein	a	former	student	of	Besicovitch	seeks	strong
interplanetary	structures	of	low	weight.



CRITICAL	PERCOLATION	CLUSTERS

Let	us	now	return	to	nature,	or	more	precisely	to	an	image	of	nature	provided	by
statistical	physics.	I	think	the	kin	of	the	Sierpiński	gasket	is	demanded	by	the
study	of	percolation	through	lattices.	Chapter	13,	which	began	our	case	study	of
this	topic,	claims	that	percolation	clusters	are	fractals.	Now	I	add	the	further
claim	that	the	Sierpiński	gasket’s	branching	structure	is	a	promising	model	of	the
structure	of	cluster	backbones.
The	physicists	will	mostly	judge	this	model	on	the	fact	that	it	rapidly	fulfilled

its	promise:	Gefen,	Aharony,	Mandelbrot	&	Kirkpatrick	1981	shows	the	model
allows	usual	calculations	to	be	carried	out	exactly.	But	the	details	are	much	too
technical	to	be	included	in	this	Essay,	and	the	original	reasons	for	my	claim
remain	of	interest.	It	arose	from	a	resemblance	I	perceived	between	the	gasket
and	the	cluster	backbones,	as	shown	in	this	diagram:

The	most	conspicuous	feature	resides	in	the	tremas	left	vacant	by	the	elimination



of	dangling	bonds	(when	a	cluster	was	reduced	to	its	backbone),	and	of	clusters
contained	entirely	within	the	cluster	of	interest.	Second,	the	fact	that	the
branching	is	self-similar	in	a	Sierpiński	gasket	is	shown	in	Chapter	13	to	be	an
eminently	desirable	property	in	a	geometric	model	of	the	percolation	cluster.
Finally,	the	dimensions	fit	to	a	degree	that	can	hardly	be	coincidental!	S.
Kirkpatrick	estimates	that	in	the	plane	D~1.6,	astonishingly	close	to	the	D	of	the
Sierpiński	gasket!	And	in	space,	D~2.00,	astonishingly	close	to	the	D	of	the
fractal	skewed	web	in	Plate	143.	Furthermore,	Gefen,	Aharony,	Mandelbrot	&
Kirkpatrick	1981	observes	that	the	identity	between	the	D	of	the	backbone	and
that	of	the	generalized	gasket	persists	in	 4.	An	additional	argument	in	favor	of
the	gasket	model	is	mentioned	later,	as	a	last	application	of	ramification.



THE	TRIADIC	SIERPIŃSKI	CARPET

Let	us	now	switch	from	triangular	to	orthogonal	lattices.	They	allow	great
versatility	in	design,	yielding	curves	in	the	plane	or	in	space,	or	surfaces	in
space.	And	the	curves	they	yield,	despite	a	superficial	resemblance	to	the
Sierpiński	gasket,	are	very	different	from	the	fundamental	viewpoint	of
ramification,	to	which	we	turn	after	defining	them.
The	literal	planar	extension	of	Cantor’s	method	of	deleting	mid-thirds	initiates

with	a	square,	and	is	described	in	the	caption	on	here.	The	fractal	obtained	by
continuing	ad	infinitum	is	widely	known	by	the	homely	term	triadic	Sierpiński
carpet.	Its	dimension	is	D=log	8/log	3=1.8927.



NONTRIADIC	FRACTAL	CARPETS

Given	an	integer	b>3,	and	writing	r=1/b	as	usual,	a	“large	centered	medallion”
carpet	is	obtained	by	taking	as	initiator	a	square,	as	trema	a	square	of	side	1-2r,
with	the	same	center,	and	as	generator	a	thin	ring	of	4(b-1)	squares	of	side	r.	The
dimensions	are	D=log[4(b-1)]/log	b.	Given	an	odd	integer	b>3,	a	“small	centered
medallion”	carpet	is	obtained	by	taking	as	trema	a	single	subsquare	of	side	r,
with	the	same	center	as	the	initiator,	and	as	generator	a	thick	ring	of	b3-1	small
squares.	The	dimensions	are	D=log	(b3-1)/log	b.	Thus,	any	D	between	1	and	2
can	be	approximated	arbitrarily	closely	in	a	centered	carpet.
Noncentered	carpets	can	be	defined	for	b≥2.	For	example,	when	b=2	and	N=3,

a	trema	made	of	one	subsquare	can	be	positioned	in	the	subsquare	on	the	top
right.	The	corresponding	limit	set	turns	out	to	be	the	Sierpinski	gasket	built	with
the	triangle	forming	the	bottom	left	half	of	the	square.



TRIADIC	FRACTAL	FOAM

The	literal	spatial	extension	of	the	triadic	carpet	consists	in	removing	a	cube’s
mid	27-th	subcube	as	trema,	leaving	a	shell	of	26	subcubes.	The	resulting	fractal
is	to	be	called	triadic	fractal	foam.	Its	dimension	is	D=log	26/log	3=2.9656.
Here,	every	trema	is	entirely	enclosed	by	an	uninterrupted	boundary	split	into

infinitely	many,	infinitely	thin	layers	of	infinite	density.	In	order	to	join	two
points	situated	in	different	tremas,	it	is	necessary	to	cross	an	infinite	number	of
layers.	One	is	reminded,	but	this	is	a	topic	I	do	not	master	thoroughly	enough	to
attempt	to	account	for	it	here,	of	the	“space-time	foam”	which	characterizes	the
finest	structure	of	matter	according	to	J.	A.	Wheeler	and	G.	W.	Hawking.



MENGER’S	TRIADIC	FRACTAL	SPONGE

Karl	Menger	selects	a	different	trema,	shaped	like	a	cross	with	spikes	front	and
back,	consisting	of	N=20	subcubes	of	side	⅓,	connected	to	one	another.	Among
them,	12	form	“rods”	or	ropes,	and	the	remaining	8	are	knots,	connectors,	or	ties.
The	limit	(Plate	145)	satisfies	D=log	20/log	3=2.7268.	I	call	it	a	sponge,	because
both	the	curd	and	the	whey	are	connected	sets.	One	can	conceive	of	water
flowing	between	any	two	points	in	the	whey.
To	obtain	a	mixture	of	ropes	and	sheets,	let	the	trema	be	a	triadic	cross

continued	by	a	single	spike	in	front.	By	changing	the	direction	of	the	spike	every
so	often,	one	may	end	up	with	punctured	sheets.	It	may	be	worth	mentioning	that
I	thought	of	all	these	shapes	before	reading	Menger,	while	looking	for	models	of
turbulent	intermittency.



NONTRIADIC	SPONGES	AND	FOAMS

Given	a	nontriadic	base	b>3,	generalized	Menger	sponges	are	obtained	when	the
trema	is	the	union	of	three	square	based	cylinders:	the	axis	of	each	coincides
with	an	axis	of	the	unit	cube,	its	length	is	1,	and	its	base	has	sides	parallel	to	the
other	axes.	The	sponge	is	called	“light”	when	the	bases’	sides	are	as	large	as
possible.	For	E=3,	they	are	of	length	1-2/b,	leaving	as	generator	a	collection	of
12b-16	cubes	of	side	r=1/b.	Hence	the	dimension	is	D=log	(12b-16)/log	b.
Similarly,	a	“heavy	sponge”	is	obtained,	but	only	in	case	b	is	odd,	when	the
cylinder	bases’	sides	are	of	length	1/b.	For	E=3,	they	leave	as	generator	a
collection	of	b3-3b+2	cubes	of	side	r=1/b.	Now	D=log	(b3-3b+2)/log	b.
Fractal	foams	generalize	in	analogous	fashion.	For	E=3,	“thick	wall”	foams

yield	D=log	(b3-1)/log	b,	and	“thin	wall”	foams	yield	D=log	(6b2-12b+8)/log	b.
With	big	holes	and	D	near	2,	the	foam	resembles	an	overly	airy	Emmenthaler.
With	small	holes	and	D	near	3,	it	resembles	a	different	cheese	delicacy,
Appenzeller.



GAPS’	SIZE	DISTRIBUTIONS

The	sponges’	tremas	merge	together	but	carpets’	and	foams’	tremas	remain	as
gaps	analogous	to	those	of	the	Cantor	dust	(Chapter	8).	The	distribution	of	their
linear	scale	A	satisfies

Nr(Λ>λ)∝Fλ-D,
where	F	is	a	constant.	We	know	this	rule	well	from	the	gaps	of	a	Cantor	dust,
and	the	islands	and	clusters	of	Chapter	13.



THE	NOTION	OF	FRACTAL	NET,	LATTICE

The	lattices	of	standard	geometry	are	formed	by	parallel	lines	bounding	equal
squares	or	triangles,	and	analogous	regular	designs.	The	same	term	seems
applicable	to	regular	fractals	in	which	any	two	points	can	be	linked	by	at	least
two	paths	that	do	not	otherwise	overlap.	When	the	graph	is	not	regular,	for
example	is	random,	I	replace	lattice	by	net.
However,	a	closer	comparison	of	standard	and	fractal	lattices	reveals

considerable	differences.	The	first	difference	is	that	the	standard	lattices	are
invariant	by	translation	but	not	by	scaling,	while	for	the	fractal	lattices	the
contrary	is	true.	A	second	difference	is	that	any	standard	lattice,	if	downsized,
converges	to	the	whole	plane.	Also,	several	standard	lattices	in	the	plane	can	be
interpolated	by	adding	lines	halfway	between	existing	parallel	lines,	and
repeating	ad	infinitum.	Again,	the	result	converges	towards	the	whole	plane.
Similarly,	when	a	standard	spatial	lattice	can	be	interpolated,	its	limit	is	the
whole	space.	Thus,	the	limit	is	not	a	lattice.	In	the	fractal	context,	to	the	contrary,
the	limit	of	an	approximate	fractal	lattice	is	a	fractal	lattice.
The	term,	ramified	fractal	lattices	can	also	be	applied	to	the	fractal	foams.



THE	SECTIONS’	FRACTAL	DIMENSIONS

A	BASIC	RULE.	In	many	studies	of	fractals,	it	is	important	to	know	the
dimensions	of	the	linear	and	planar	sections.	The	basic	fact	(used	in	Chapter	10
to	show	that	D>2	for	turbulence)	concerns	the	section	of	a	planar	fractal	shape
by	an	interval	“independent	of	the	fractal.”	One	finds	that	if	the	section	is
nonempty,	it	is	“almost	sure”	that	its	dimension	is	D-1.
The	corresponding	value	in	space	is	D-2.
EXCEPTIONS.	Unfortunately,	this	result	is	hard	to	illustrate	in	the	case	of

nonrandom	fractals	that	have	axes	of	symmetry.	The	intervals	that	impose
themselves	upon	our	consideration	are	parallel	to	these	axes,	hence	atypical,	and
nearly	every	simple	section	by	an	interval	belongs	to	the	exceptional	set	wherein
the	general	rule	fails	to	apply.
For	example,	take	the	Sierpinski	carpet,	the	triadic	Menger	sponge	and	the

triadic	foam.	D-1,	which	is	the	almost	sure	dimension	of	sections	by	intervals,	is,
respectively

log	(8/3)/log	3,	log	(20/9)/log	3,	and	log	(26/9)/log	3,

On	the	other	hand,	let	x	be	the	abscissa	of	an	interval	parallel	to	the	y-axis	of
the	Sierpinski	carpet.	When	x,	written	in	counting	base	3,	ends	up	by	an
uninterrupted	infinite	string	of	0’s	or	2’s,	the	sections	are	themselves	intervals,
hence	D=1,	larger	than	expected.	When	x	ends	up	by	an	uninterrupted	infinite
string	of	1’s,	to	the	contrary,	the	sections	are	Cantor	dusts,	hence	D=log	2/log	3
is	too	small.	And	when	x	terminates	by	a	periodic	pattern	of	period	M,	including
pM	times	1	and	(1-p)M	times	0	or	2,	the	sections	are	of	dimension	p(log	2/log
3)+(1-p).	The	expected	D	prevails	for	p~.29.	◁	The	same	holds	if	the	digits	of	x
are	random.	Thus,	three	dimensions	are	involved	here:	the	largest,	the	smallest
and	the	average.
Closely	analogous	results	apply	in	space.
As	to	the	Sierpiński	gasket,	the	almost	sure	D	is	log	(3/2)/log	2,	but	the	D’s

relative	to	“natural”	cuts	range	from	1	to	0.	For	example,	a	short	interval	through
the	midpoint	of	one	of	the	gasket’s	sides,	if	close	enough	to	the	perpendicular,
intersects	the	gasket	on	a	single	point,	with	D=0.
In	part,	the	variability	of	these	special	sections	is	traceable	to	the	regularity	of



the	original	shapes.	But	in	another	part,	it	is	inevitable:	the	most	economical
section	(not	necessarily	by	a	straight	line)	is	the	basis	of	the	notions	of
topological	dimension	and	of	order	of	ramification,	to	which	we	proceed	now.



THE	RAMIFIED	FRACTALS	VIEWED	AS
CURVES	OR	SURFACES

As	often	stated,	curve	is	used	in	this	Essay	as	a	synonym	of	“connected	shape	of
topological	dimension	DT=1.”	Actually,	this	phrase	is	not	fully	satisfactory	to	the
mathematicians,	and	the	precise	restatements	are	delicate.	Luckily,	Chapter	6
could	be	content	with	a	simple	reason	why	any	Koch	curve	with	[0,1]	as	initiator
deserves	to	be	called	a	curve:	like	[0,1]	itself,	it	is	connected,	but	becomes
disconnected	if	any	point	other	than	0	or	1	is	removed.	And	a	snowflake
boundary	is	like	a	circle:	it	is	connected,	but	becomes	disconnected	if	any	two
points	are	removed.
Restated	more	pedantically,	as	is	now	necessary,	the	topological	dimension	is

defined	recursively.	For	the	empty	set,	DT=-1.	For	any	other	set	S,	the	value	of
DT	is	1	higher	than	the	smallest	DT	relative	to	a	“cutset”	that	disconnects	S.
Finite	sets	and	Cantor	dusts	satisfy	DT	=	1-1	=	0,	because	nothing	(the	empty
set)	need	be	removed	to	disconnect	them.	And	the	following	connected	sets	are
all	disconnected	by	the	removal	of	a	cutset	that	satisfies	DT=0:	circle,	[0,1],
snowflake	boundary,	Sierpinski	gasket,	Sierpinski	carpets,	Menger	sponges.	(In
the	last	three	cases,	it	suffices	to	avoid	the	special	intersections	that	include
intervals.)	Hence,	all	these	sets	are	of	dimension	DT=	1.
By	the	same	token,	a	fractal	foam	is	a	surface,	with	DT=2.
Here	is	an	alternative	proof	that	DT=1	for	the	gasket,	all	carpets,	and	all

sponges	with	D<2.	Since	DT	is	an	integer	≤	D,	the	fact	that	D<2	means	that	DT	is
either	0	or	1.	But	the	sets	in	question	are	connected,	hence	DT	is	no	less	than	1.
The	only	solution	is	DT=1.



A	CURVE’S	ORDER	OF	RAMIFICATION

Topological	dimension,	and	the	corresponding	notions	of	dust,	curve,	and
surface,	yield	only	a	first	level	classification.	Indeed,	two	finite	sets	containing
M’	and	M”	points,	respectively,	have	the	same	DT=O,	but	they	differ
topologically.	And	Cantor	dust	differs	from	all	finite	dusts.
Let	us	now	see	how	a	parallel	distinction	based	on	the	number	of	points	in	a

set	◁	its	“cardinality”	carries	on	to	curves,	leading	to	the	topological	notion	of
order	of	ramification,	defined	by	Paul	Urysohn	and	Karl	Menger	in	the	early
1920’s.	This	notion	is	mentioned	in	few	mathematics	books	other	than	the
pioneers’,	but	is	becoming	indispensable	in	physics,	hence	becoming	better
known	after	being	tamed	than	in	the	wild.	It	shows	that	the	reasons	for
discussing	first	a	gasket,	then	a	carpet,	go	beyond	esthetics	and	the	search	for
completeness.
The	order	of	ramification	involves	the	cutset	containing	the	smallest	number

of	points,	that	must	be	removed	in	order	to	disconnect	the	set	S.	And	it	involves
separately	the	neighborhood	of	every	point	P	in	S.
THE	CIRCLE.	As	background	from	standard	geometry,	begin	by	taking	for	S

a	circle	of	radius	1.	A	circle	B	centered	on	P	cuts	S	in	R=2	points,	except	if	B	has
a	radius	exceeding	2,	in	which	case	R=0.	The	disc	bounded	by	B	is	called	a
neighborhood	of	P.	Thus,	any	point	P	lies	in	arbitrarily	small	neighborhoods
whose	boundaries	intersect	S	at	R=2	points.	This	is	the	best	one	can	do:	when	B
is	the	boundary	of	a	general	neighborhood	of	P,	not	necessarily	circular	but	“not
too	large,”	R	is	at	least	2.	The	terms	“not	too	large”	in	the	preceding	sentence	are
a	complication,	but	are	unfortunately	unavoidable.	R=2	is	called	the	order	of
ramification	of	the	circle.	We	note	that	it	is	the	same	at	all	points	of	the	circle.
THE	GASKET.	Next,	let	S	be	a	Sierpiński	gasket,	constructed	via	tremas.

Here	R	is	no	longer	the	same	for	every	P.	Let	me	show	after	Sierpiński	that,
excluding	the	initiator’s	vertices,	R	can	be	either	3=Rmin	or	4=Rmax.
The	value	R=4	applies	to	the	vertices	of	any	finite	approximation	of	S	by

triangles.	A	vertex	in	an	approximation	of	order	h	≥	k	is	the	common	vertex	P	of
two	triangles	of	side	2-k.	Again,	circles	of	center	P	and	radius	2-k,	with	h	>	k,
intersect	S	in	4	points,	and	bound	arbitrarily	small	neighborhoods	of	P.	And	if	B



bounds	a	“sufficiently	small”	neighborhood	of	P	(in	the	new	sense	that	the
initiator’s	vertices	lie	outside	B),	one	can	show	that	B	intersects	S	in	at	least	4
points.
The	value	R=3	applies	for	every	point	of	S	that	is	the	limit	of	an	infinite

sequence	of	triangles,	each	contained	in	its	predecessor	and	having	vertices
distinct	from	its	predecessor’s.	Circles	circumscribed	to	these	triangles	intersect
S	in	3	points,	and	bound	arbitrarily	small	neighborhoods	of	P.	Also	if	B	bounds	a
sufficiently	small	neighborhood	of	P	(again,	the	initiator’s	vertices	must	lie
outside),	one	can	show	that	B	intersects	S	at	3	points	at	least.
THE	CARPETS.	When	S	is	a	Sierpiński	carpet,	the	result	is	radically

different.	Any	neighborhood’s	boundary,	if	sufficiently	small,	intersects	S	in	a
nondenumerably	infinite	cutset,	regardless	of	the	parameters	N,	r,	or	D.
COMMENT.	In	this	finite	versus	infinite	dichotomy,	the	gasket	does	not	differ

from	the	standard	curves,	while	the	carpets	do	not	differ	from	the	whole	plane.
HOMOGENEITY.	UNICITY.	Denoting	by	Rmin	and	Rmax	the	smallest	and	the

largest	R	attained	on	a	point	of	S,	Urysohn	proves	that	Rmax≥2Rmin-2.	The
ramification	is	called	homogeneous	when	the	equality	Rmax=Rmin	holds;	this	is
the	case	when	R≡2,	as	in	simple	closed	curves,	and	when	R≡∞.
For	other	lattices	with	Rmax	=	2Rmin-2,	I	propose	the	term	quasi-

homogeneous.	One	simple	and	famous	example,	the	Sierpiński	gasket,	is	self-
similar.	The	other	nonrandom	examples	are	part	of	a	collection	set	up	by
Urysohn	1927,	and	are	not	self-similar.	Thus,	the	conditions,	of	being	quasi-
homogeneous	and	self-similar,	have	only	one	known	solution,	the	Sierpiński
gasket.	Could	this	seeming	unicity	be	confirmed	rigorously?
STANDARD	LATTICES.	Here	the	order	of	ramification	ranges	from	a

minimum	of	2	for	all	points	off	the	lattice	sites,	to	a	variable	finite	maximum
attained	on	the	lattice	sites:	4	(squares),	6	(triangles	or	cubes)	or	3	(hexagons).
However,	as	a	standard	lattice	of	any	kind	is	downsized,	it	transforms	from	a
curve	into	a	plane	domain,	and	its	ramification	becomes	R=∞.
This	last	fact	is	made	more	obvious	by	exchanging	the	infinitely	small	and	the

infinitely	large,	holding	to	a	lattice	of	fixed	cell	size,	and	observing	that	in	order
to	isolate	an	increasingly	large	portion	of	lattice,	one	must	cut	points	whose
number	has	no	finite	bound.
FORMAL	DEFINITION.	◁	See	Menger	1932	and	p.	442	of	Blumenthal	&

Menger	1970.



APPLICATIONS	OF	RAMIFICATION

Let	us	now	face	a	familiar	question.	Whatever	interest	the	Sierpinski	and
Menger	shapes,	and	their	kin,	may	have	for	the	mathematician,	is	it	not	obvious
that	the	order	of	ramification	can	be	of	no	interest	to	the	student	of	Nature?	The
response	is	as	familiar—to	us!—as	the	question.	The	order	of	ramification	is
already	meaningful	in	the	“real	world”	of	the	finite	approximations	which	obtain
when	the	interpolation	leading	to	a	fractal	is	stopped	at	some	positive	inner
cutoff,	∈.
Indeed,	given	an	approximate	Sierpiński	gasket	made	of	filled	triangles	of	side

∈,	a	domain	whose	linear	scale	is	above	∈	can	be	disconnected	by	removing	3
or	4	points,	each	of	which	belongs	to	2	neighboring	gaps’	boundaries.	This
number	(3	or	4)	does	not	change	as	this	approximation	is	refined.	Hence,	from
the	viewpoint	of	ramification,	all	approximate	gaskets	are	curve-like.
To	the	contrary,	all	carpets	have	the	property	that	the	boundaries	of	any	two

gaps	fail	to	overlap.	To	disconnect	a	finite	approximation	of	such	a	shape,	in
which	the	gaps	of	diameter	<∈	are	disregarded,	it	is	necessary	to	remove	whole
intervals.	And	these	intervals’	number	increases	as	∈	 	0.	Whyburn	1958	shows
that	all	the	fractal	curves	that	possess	this	property	are	topologically	identical	◁
homeomorphic,	and	are	characterized	by	the	fact	they	contain	no	part	that	can	be
disconnected	by	the	removal	of	a	single	point.
Due	to	the	preceding	comments,	it	is	not	surprising	that	the	finiteness	of

ramification	acquires	clearcut	implications	when	fractal	geometry	is	called	to
determine	in	detail	how	much	a	plane	fractal	curve	partakes	of	its	two	standard
limits:	the	straight	line	and	the	whole	plane.	In	general,	knowing	the	fractal
dimension	does	not	suffice.	For	example,	Gefen,	Mandelbrot	&	Aharony	1980
examines	critical	phenomena	for	Ising	models	on	a	fractal	lattice,	and	finds	that
the	most	important	issue	 	whether	the	critical	temperature	is	0	or	positive
depends	on	the	finiteness	of	R.
We	are	now	in	a	position	to	give	an	explanation	we	had	postponed.	The	reason

why	a	cluster	backbone	in	critical	Bernoulli	percolation	seems	better	modeled	by
a	gasket	than	by	a	carpet	lies	in	this	finding	reported	in	Kirkpatrick	197?.	Even
on	extremely	large	lattices,	a	critical	backbone	can	be	cut	by	removing	an



essentially	unvarying	small	number	of	bonds,	of	the	order	of	2.	Even	allowing
for	certain	biases	I	could	think	of,	this	points	out	very	strongly	toward	R<∞.



ALTERNATIVE	FORM	OF	RAMIFICATION

Two	variants	of	the	Koch	snowflake	achieve	ramification	through	branches
without	loops.	The	first	is	a	plane	curve	obtained	when	the	initiator	is	a	square
and	the	generator	is

The	resulting	shape	is	totally	different	from	the	snowflake,	as	shown	overleaf.

The	next	example	is	a	surface	of	zero	volume,	infinite	area,	and	a	dimension
equal	to	log	6/log	2=2.58497.	The	initiator	is	a	regular	tetrahedron.	On	the	mid-
quarter	of	each	face	(=	the	triangle	having	as	vertices	the	sides’	midpoints),	one
attaches	a	tetrahedron	reduced	in	the	ratio	½.	One	repeats	the	procedure	with
each	face	of	the	resulting	regular	(skew	and	nonconvex)	24-hedron,	and	so	on	ad



infinitum.	From	the	second	stage	on,	the	added	tetrahedrons	self-contact	along
lines,	without	self-intersecting.	And	eventually	they	swarm	all	over	the	initiator.
Let	each	fourth	of	this	shape,	growing	on	a	face	of	the	initiator,	be	called	a	Koch
pyramid.



SECRETS	OF	THE	KOCH	PYRAMID

A	Koch	pyramid	is	a	wondrous	shape—plain	when	seen	from	above,	but	with	a
wealth	of	hidden	chambers	to	defy	the	imagination.
Seen	from	above,	it	is	a	tetrahedron	whose	base	is	a	equilateral	triangle,	but

whose	three	other	faces	are	right	isosceles	triangles	joined	at	their	90°	vertices.
Three	Koch	pyramids,	if	put	together	on	the	sides	of	a	regular	tetrahedron,	add	to
a	plain	cubic	box.
Now	lift	such	a	pyramid	from	the	floor	of	the	desert.	From	a	distance,	we	see

its	base	subdivides	into	four	equal	regular	triangles.	But	in	place	of	the	middle
triangle	there	is	a	hole	opening	up	on	a	“chamber	of	order	1,”	shaped	like	a
regular	tetrahedron	whose	fourth	vertex	coincides	with	the	pyramid’s	top	vertex.
Next,	as	we	approach	and	perceive	finer	detail,	we	find	that	the	regular	triangles
that	form	the	peripheral	fourths	of	the	base	and	the	top	faces	of	the	chamber	of
order	1	are	not	smooth	either.	Each	is	broken	by	a	tetrahedral	chamber	of	order
2.	Similarly,	as	we	explore	the	chambers	of	order	2,	each	of	their	triangular	walls
reveals	a	chamber	of	order	3	in	its	middle	portion.	And	increasingly	tiny
chambers	appear	without	end.
All	the	chambers	together	add	up	precisely	to	the	Koch	pyramid’s	volume.	On

the	other	hand,	if	the	chambers	are	viewed	as	including	their	bases	but	not	their
three	other	faces,	they	do	not	overlap.	Were	our	pyramid	to	be	dug	from	a
mound,	the	chamber	diggers	would	have	to	scoop	out	all	its	volume,	leaving	a
mere	shell.	The	curve	along	wh’ch	this	surface	rests	on	the	base’s	plane,	ar	I	the
chamber	“walls,”	are	Sierpinski	gaske	.



SPHERICAL	TREMAS	AND	LATTICES

Lieb	&	Lebowitz	1972	makes	an	unwitting	contribution	to	fractal	geometry,	by
packing	RE	with	balls	whose	radii	are	of	the	form	ρk=ρ0rk,	with	r<1;	the	per-unit-
volume	number	of	balls	of	radius	ρk	is	of	the	form	nk=n0vk,	where	v	is	an	integer
and	is	of	form	ν=(1-r)r-E,	which	strongly	restricts	r.	Thus,	the	exponent	of	the
distribution	of	gap	sizes	is

D=log	if/log	(1	/r)=E-log	(1-r)/log	r.

First,	one	centers	big	spheres	of	radius	ρ1	on	a	lattice	of	side	2ρ1.	The	vertices	of
a	lattice	of	side	2ρ2	that	lie	outside	of	the	big	spheres	are	numerous	enough	to
serve	as	centers	for	the	next	smaller	spheres,	and	so	on.	The	construction
involves	these	upper	bounds	on	r:

for	E=1,	r	≤	1/3;
for	E=2,	r≤5	1/10;
for	E=3,	r≤	1/27;
as	E	 	∞,	r	 	0.

Packing	of	IR3	by	nonoverlapping	balls	can	proceed	more	rapidly.	For
example,	on	the	line,	the	maximum	r	is	⅓,	corresponding	to	the	triadic	dust	of
Cantor!	The	existence	of	Cantor	dusts	with	r>	⅓	demonstrates	that	one-
dimensional	packing	can	leave	a	remainder	of	arbitrarily	low	dimension.
However,	a	tighter	packing	involves	richer	structure.



PREVIEW	OF	LACUNARITY

Even	after	the	order	of	ramification	R	is	added	to	the	dimensions	DT	and	D,	a
fractal	remains	incompletely	specified	for	many	purposes.	Of	special	importance
is	the	additional	notion	of	lacunarity	that	I	developed.	A	very	lacunar	fractal’s
gaps	are	very	large,	and	conversely.	The	basic	definitions	could	have	been
described	here,	but	it	is	more	expedient	to	wait	until	Chapter	34.	▬



Plate	141,	OVERLEAF	⏎	SIERPINSKI	ARROWHEAD	(BOUNDARY
DIMENSION	D~1.5849)

	
In	Sierpiński	1915,	the	initiator	is	[0,1],	and	the	generator	and	second	teragon	are



This	construction’s	next	two	stages	are

And	an	advanced	stage	is	shown	as	the	“coastline”	of	the	upper	portion	of	Plate
141	(above	the	largest	solid	black	triangle).
SELF-CONTACTS.	Finite	construction	stages	are	free	of	points	of	self-

contact,	as	in	Chapter	6,	but	the	limit	curve	does	self-contact	infinitely	often.
TILING	ARROWHEADS.	The	arrowhead	in	Plate	141	(turned	sideways,	it

becomes	a	tropical	fish)	is	defined	as	a	piece	of	the	Sierpiński	curve	contained
between	two	successive	returns	to	a	point	of	self-contact,	namely	the	midpoint	of
[0,1].	Arrowheads	tile	the	plane,	with	neighboring	tiles	being	linked	together	by
a	nightmarish	extrapolation	of	Velcro.	(To	mix	metaphors,	one	fish’s	fins	fit
exactly	those	of	two	other	fish).	Furthermore,	by	fusing	together	four
appropriately	chosen	neighboring	tiles,	one	gets	a	tile	increased	in	the	ratio	of	2.
THE	SIERPIŃSKI	GASKET’S	TREMAS.	I	call	Sierpiński’s	curve	a	gasket,

because	of	an	alternative	construction	that	relies	upon	cutting	out	“tremas,”	a
method	used	extensively	in	Chapters	8	and	31	to	35.	The	Sierpiński	gasket	is
obtained	if	the	initiator,	the	generator,	and	next	two	stages	are	these	closed	sets:



This	trema	generator	includes	the	above	stick	generator	as	a	proper	subset.
(WATERSHED.	I	first	encountered	the	arrowhead	curve	without	being	aware

of	Sierpiński,	while	studying	a	certain	watershed	in	Mandelbrot	1975m.
This	web	obtains	recursively,	with	N=4	and	r=½,	using	a	closed	tetrahedron	as
initiator	and	a	collection	of	tetrahedrons	as	generator.
Its	dimension	is	D=2.	Let	us	project	it	along	a	direction	joining	the	midpoints

of	either	couple	of	opposite	sides.	The	initiator	tetrahedron	projects	on	a	square,
to	be	called	initial.	Each	second-generation	tetrahedron	projects	on	a	subsquare,
namely	(¼)th	of	the	initial	square,	etc.	Thus,	the	web	projects	on	the	initial
square.	The	subsquares’	boundaries	overlap.



Plate	143	A	FRACTAL	SKEWED	WEB	(DIMENSION	D=2)
	
SIERPINSKI	CARPET.	In	Sierpiński	1916,	the	initiator	is	a	filled	square,	while
the	generator	and	the	next	two	steps	are	N=8,	r=⅓,	D~1.8928.



This	carpet’s	area	vanishes,	while	the	total	perimeter	of	its	holes	is	infinite.
PLATE	145.	THE	MENGER	SPONGE.	The	principle	of	the	construction	is

evident.	Continued	without	end,	it	leaves	a	remainder	to	be	called	a	Menger
sponge.	I	regret	having	credited	it	wrongfully	in	earlier	Essays,	to	Sierpiński.
(Reproduced	from	Studies	in	Geometry,	by	Leonard	M.	Blumenthal	and	Karl
Menger,	by	permission	of	the	publishers,	W.	H.	Freeman	and	Company,
copyright	1970.)	The	intersections	of	the	sponge	with	medians	or	diagonals	of
the	initial	cube	are	triadic	Cantor	sets.
FUSED	ISLANDS.	The	carpet,	as	well	as	the	gasket	in	Plate	143,	may	also	be

obtained	by	yet	another	generalization	of	the	Koch	recursion,	wherein	self-
overlap	is	allowed,	but	overlapping	portions	count	only	once.
To	obtain	a	gasket,	the	initiator	is	a	regular	triangle,	and	we	take	the	generator

to	the	left.	To	obtain	a	carpet,	the	initiator	is	a	square,	and	we	take	the	generator
to	the	right	Two	phenomena	familiar	from	Chapter	13	are	encountered	again:
each	island’s	coastline	is	rectifiable	and	therefore	of	dimension	1,	and	the
dimension	of	the	gasket	or	the	carpet	expresses	the	degree	of	fragmentation	of
land	into	islands	rather	than	the	degree	of	irregularity	of	the	islands’	coastlines.

Otherwise,	the	result	is	unfamiliar:	in	Chapter	13	the	sea	is	connected,	which
seems	to	be	a	proper	topological	interpretation	of	nautical	openness.	It	is	also
open	in	the	set	topological	sense	of	not	including	its	boundary.	The	novelty
brought	in	by	the	present	construction	is	that	it	is	possible	for	the	Koch	islands	to
“fuse”	asymptotically	into	a	solid	superisland;	there	is	no	continent,	and	the
coastlines	combine	into	a	lattice.
◁	Topologically,	every	Sierpiński	carpet	is	a	plane	universal	curve,	and	the

Menger	sponge	is	a	spatial	universal	curve.	That	is,	see	Blumenthal	&	Menger
1970,	pp.	433	and	501,	these	shapes	are	respectively	the	most	complicated	curve
in	the	plane,	and	the	most	complicated	curve	in	any	higher	dimensional	space.



Plate	145	THE	SIERPINSKI	CARPET	(DIMENSION	D~1.8928),	AND
THE	MENGER	SPONGE	(DIMENSION	D~2.7268)

	



Plate	146	SPLIT	SNOWFLAKE	HALLS	(DIMENSION	D~1.8687)
	
Long	ago	and	far	away,	the	Great	Ruler	and	his	retinue	had	sat	their	power	in	the
splendid	Snowflake	Halls.	A	schism	occurs,	a	war	follows,	ending	in	stalemate,
and	finally	Wise	Elders	draw	a	line	to	divide	the	Halls	between	the	contenders
from	the	North	and	the	South.
RIDDLES	OF	THE	MAZE.	Who	controls	the	Great	Hall,	and	how	is	it

reached	from	outside?	Why	do	some	Halls	fail	to	be	oriented	toward	either	of	the



cardinal	points?	For	hints,	see	the	Monkeys	Tree	on	Plate	31.
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NON	SCALING	FRACTALS
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Surfaces	with	Positive	Volume,	and	Flesh

The	fractal	curves,	surfaces,	and	dusts	which	the	present	Part	describes	and
tames	for	the	purposes	of	science,	are	only	scaling	in	an	asymptotic	or	otherwise
limited	sense.
This	first	chapter	centers	on	surfaces	with	a	positive	(nonvanishing!)	volume.

What	a	mad	combination	of	contradictory	features!	Have	we	not	finally	come	to
mathematical	monsters	without	conceivable	utility	to	the	natural	philosopher?
Again,	the	answer	is	emphatically	to	the	negative.	While	believing	they	were
fleeing	Nature,	two	famous	pure	mathematicians	unknowingly	prepared	the
precise	tool	I	need	to	grasp	(among	others)	the	geometry	of	...	flesh.



CANTOR	DUSTS	OF	POSITIVE	MEASURE

A	preliminary	step	is	to	review	Cantor’s	construction	of	the	triadic	set	C.	Its
being	of	zero	length	(more	pedantically,	of	zero	linear	measure)	follows	from	the
fact	that	the	lengths	of	the	mid	third	tremas	add	to

1/3	+	2/32...	+2k/3k+1...	=	1.

But	the	fact	that	C	is	totally	disconnected,	hence	of	topological	dimension
DT=O,	is	independent	of	the	trema	lengths.	It	comes	from	the	basic	fact	that	each
construction	stage	bisects	every	interval	created	in	the	preceding	stage,	by
removing	a	trema	centered	on	the	“host”	interval’s	midpoint.	Denoting	the	ratio
of	the	trema	and	host	lengths	by	λk,	the	cumulative	length	of	the	intervals	that
remain	after	K	stages	is	II0k(1-λk).	It	decreases	as	K	 	∞	to	a	limit	denoted	by	P.
In	Cantor’s	original	construction,	λk	≡	⅔,	hence	P=0.	But	P>0	whenever
∑0

∞λk<∞.	In	that	case,	the	remainder	set	C*	has	the	positive	length	1-P.	This	set
is	not	self-similar,	hence	has	no	similarity	dimension,	but	the	Hausdorff
Besicovitch	definition,	Chapter	5,	concludes	that	D=1.	It	follows	from	D>DT
that	C*	is	a	fractal	set.	Since	D	and	DT	are	both	independent	of	the	trema	lengths
λk,	their	values	describe	C*	very	superficially.
The	construction	is	even	more	perspicuous	in	the	plane.	Cut	out	from	the	unit

square	a	cross	of	area	λ1,	leaving	four	square	tiles.	Next	cut	out	from	each	a
cross	of	relative	area	λ2.	This	cascade	generates	a	dust,	DT=0,	having	the	area
II0∞(1-λk).	When	this	area	does	not	vanish,	D=2.
In	E-dimensional	space,	one	can	similarly	achieve	a	dust	with	positive	volume,

satisfying	DT=0	and	D=E.



SLOWLY	DRIFTING	log	N/log	(1/r)

	Although	the	Cantor	dusts	with	positive	length,	area	or	volume	have	no
similarity	dimension,	it	is	useful	to	set	rk=(1-λk)/2,	and	to	investigate	the	formal
dimensions	defined	as	Dk=IogN/log(1/rk).

	When	Dk	drifts	slowly,	it	embodies	the	idea	of	effective	dimension
discussed	in	Chapter	3	when	describing	a	ball	of	thread.	On	the	line,	the
dimension	D=1	of	the	limit	set	C*	is	the	limit	of	log2/log(1/rk).	Furthermore,	the
conclusion	D=1	does	not	require	∑λk<∞,	only	the	weaker	condition	λk→0.
Consequently	there	are	three	classes	of	linear	Cantor	dusts:	(a)	0<D<1	and
length=0	(b)	D=1	and	length=0,	and	(c)	D=1	and	length>0.

	The	counterpart	of	the	above	category	(c)	can	occur	for	Koch	curves.	It
suffices	to	change	the	generator	at	each	construction	stage	and	to	let	its	D	tend	to
2.	For	example,	take	rk=½k	and	adopt	for	Nk,	hence	for	Dk,	the	maximal	value
discussed	in	the	caption	of	Plate	53.	The	limit	has	a	remarkable	combination	of
properties:	its	fractal	dimension	D=2	is	nonstandard	for	a	curve;	but	its
topological	dimension	is	standard:	it	is	DT=1,	and	its	area	is	standard:	it
vanishes.

	The	same	properties	coexist	in	Brownian	motion,	Chapter	25,	but	here	they
are	achieved	while	avoiding	double	points.

	The	formal	dimension	may	also	drift	away	from	D=2.	For	example,	k	stages
of	a	plane	filling	tree	construction	may	be	finished	off	by	stages	with	D<2.	The
result	may	be	of	use	in	modeling	certain	river	trees	that	seem	plane	filling	on
scales	above	the	inner	cutoff	 	but	crisscross	finer	scale	domains	less	thoroughly.
This	 	would	be	very	big	in	deserts,	and	very	small	in	soaked	jungles,	possibly
equal	to	0.	Such	rivers’	effective	dimension	would	be	D=2	for	scales	above	 ,
and	D<2	for	scales	below	 .



CURVES	WITH	POSITIVE	AREA

Our	intuition	of	dusts	being	imperfect,	it	is	not	bothered	by	dusts	of	positive
length	or	volume.	But	curves	of	positive	area	are	truly	hard	to	swallow.	Thus,
after	Lebesgue	1903	and	Osgood	1903	showed	that	swallow	them	we	must,	they
came	to	supersede	the	Peano	curve	as	supreme	monsters.	After	describing	an
example,	I	show	that	the	thought	is	worse	than	the	reality:	in	the	most	textual
sense,	surfaces	with	positive	volume	are	very	close	to	Man’s	heart.
The	idea	is	to	generalize	the	midpoint	displacement	construction	of	Plate	43.

We	hold	on	to	bays	and	promontories,	each	a	triangle	that	juts	through	a	triangle
of	marshland,	with	its	base	centered	on	the	midpoint	of	the	marshland’s	base.
The	new	element	is	that	the	relative	widths	λk	of	bays	and	promontories	are	no
longer	constant,	but	tend	to	0	as	k	increases,	in	such	a	way	that	II0∞(1-λk)	>	0.
Now,	the	area	covered	by	marshland	fails	to	tend	to	0,	hence	the	limit	of	the
marshland	satisfies	D=2.	On	the	other	hand,	it	is	totally	different	from	any
standard	set	of	dimension	2.	Not	only	has	it	no	interior	points,	but	it	is	a	curve
with	DT=1,	because	any	point’s	neighborhood	can	be	separated	from	the	set’s
remainder	by	removing	only	two	points.
The	preceding	construction	follows	Osgood	1903,	simplifying	his	fanciful

way	of	making	a	contrived	construction	easier	to	follow.	But	the	usefulness	of	a
discovery	must	not	be	judged	on	the	reasons	for	introducing	it.



GEOMETRY	OF	ARTERIES	AND	VEINS

To	quote	from	Harvey	1628,	“The	blood’s	motion	we	may	be	allowed	to	call
circular,	in	the	same	way	as	Aristotle	says	that	the	air	and	the	rain	emulate	the
circular	motion	of	the	superior	bodies...	And	similarly	in	the	body,	through	the
motion	of	the	blood,...	the	various	parts	are	nourished,	cherished,	quickened	by
the	warmer,	more	perfect,	vaporous,	spirituous,	and	alimentive	blood;	which,	on
the	other	hand,	owing	to	its	contact	with	these	parts,	becomes	cooled,
coagulated,	and	so	to	speak	effete.”
Harvey	led	to	a	view	of	the	circulation	of	blood	which	asserts	that	both	an

artery	and	a	vein	are	found	within	a	small	distance	of	nearly	every	point	of	the
body.	(See	also	The	Merchant	of	Venice.)	This	view	excludes	the	capillaries,	but
to	a	first	approximation	it	is	best	to	demand	that	there	should	be	both	an	artery
and	a	vein	infinitely	near	every	point—except	of	course	that	points	within	an
artery	(or	a	vein)	are	prevented	from	being	very	close	to	a	vein	(or	an	artery).
Stated	differently	(but	this	restatement	makes	the	result	sound	much	odder!):

every	point	in	nonvascular	tissue	should	lie	on	the	boundary	between	the	two
blood	networks.
A	second	design	factor	is	that	blood	is	expensive.	Hence	the	volume	of	all	the

arteries	and	veins	must	be	a	small	percentage	of	the	body	volume,	leaving	the
bulk	to	tissue.



LEBESGUE-OSGOOD	MONSTERS	ARE	THE
VERY	SUBSTANCE	OF	OUR	FLESH!

From	a	Euclidean	viewpoint,	our	criteria	involve	an	exquisite	anomaly.	A	shape
must	be	topologically	two-dimensional,	because	it	forms	the	common	boundary
of	two	shapes	that	are	topologically	three-dimensional,	but	it	is	required	to	have
a	volume	that	not	only	is	nonnegligible	compared	to	the	volumes	of	the	shapes	it
bounds,	but	is	much	larger!
A	virtue	of	the	fractal	approach	to	anatomy	is	that	it	shows	the	above

requirements	to	be	perfectly	compatible.	A	spatial	variant	of	the	Osgood
construction	described	in	the	section	before	last	fulfills	all	the	requirements	we
impose	upon	the	design	of	a	vascular	system.
In	this	construct,	veins	and	arteries	are	standard	domains,	since	small	balls

(the	blood	cells!)	can	be	drawn	entirely	within	them.	On	the	other	hand,	vessels
occupy	only	a	small	percent	of	the	overall	volume.	Tissue	is	very	different;	it
contains	no	piece,	however	small,	that	is	not	crisscrossed	by	both	artery	and
vein.	It	is	a	fractal	surface:	its	topological	dimension	is	2,	and	its	fractal
dimension	is	3.
As	restated,	these	properties	cease	to	sound	extravagant.	No	one	cares	that

they	first	arose	in	a	contrived	mathematical	flight	from	common	sense.	I	have
shown	that	they	are	intuitively	unavoidable,	that	Lebesgue-Osgood	fractal
monsters	are	the	very	substance	of	our	flesh!



OF	INTUITION,	OLD	AND	NEW

The	combination	of	a	lung’s	pipes	and	its	vasculature	also	proves	to	be	a	very
interesting	construct,	wherein	three	sets—arteries,	veins,	and	bronchiotes—have
a	common	boundary.	The	first	example	of	such	a	set	is	due	to	Brouwer.	When
introduced	in	this	way,	Brouwer’s	construct	agrees	perfectly	with	intuition.	But
to	put	it	in	historical	perspective,	we	must	return	to	our	spokesman	for	the
conventional	viewpoint,	Hans	Hahn.
“Intuition	seems	to	indicate	that	three-country	corners	occur	only	at	isolated

points...	Intuition	cannot	comprehend	the	Brouwer	pattern,	although	logical
analysis	requires	us	to	accept	it.	Once	more	[we	find]	that	in	simple	and
elementary	geometric	questions,	intuition	is	a	wholly	unreliable	guide.	It	is
impossible	to	[let	it]	serve	as	the	starting	point	or	basis	of	a	mathematical
discipline.	The	space	of	geometry	is...	a	logical	construct...
“[However,	if]	we	become	more	and	more	accustomed	to	dealing	with	these

logical	constructs;	if	they	penetrate	into	the	curriculum	of	the	schools;	if	we,	so
to	speak,	learn	them	at	our	mother’s	knee,	as	we	now	learn	three-dimensional
Euclidean	geometry—then	nobody	will	think	of	saying	that	these	geometries	are
contrary	to	intuition.”
This	Essay	demonstrates	that	Hahn	is	dead	wrong.	To	tame	his	own	examples,

I	find	it	necessary	to	train	our	present	intuition	to	perform	new	tasks,	but	it	does
not	suffer	any	discontinuous	change	of	character.	Hahn	draws	a	mistaken
diagnosis,	and	suggests	a	lethal	treatment.
Geometric	intuition	acknowledged	long	ago	that	it	needs	the	assistance	of

logic,	with	its	strange	and	tortuous	methods.	Why	should	logic	keep	trying	to
flee	from	intuition?
In	any	event,	the	typical	mathematician’s	view	of	what	is	intuitive	is	wholly

unreliable;	it	is	impossible	to	permit	it	to	serve	as	guide	in	model	making;
mathematics	is	too	important	to	be	abandoned	to	fanatic	logicians.
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Trees;	Scaling	Residues;	Nonuniform	Fractals

The	present	chapter	discusses	filiform	fractal	trees	and	other	fractals	that	are
almost	scaling,	that	is,	are	scaling	except	for	a	residue	that	is	fractally	negligible.
It	is	observed	that	these	fractals	are	nonuniform,	in	the	sense	that	D	and/or	DT
take	different	values	for	different	parts	of	these	sets.	By	contrast,	a	look	back
shows	that	all	the	fractals	discussed	until	now	can	be	characterized	as	uniform.



THE	NOTION	OF	SCALING	RESIDUE	SET

STANDARD	INTERVALS.	The	semi-open	interval	]0,	1],	including	its	right	but
not	its	left	end-point,	is	scaling	since	it	is	the	union	of	N=2	reduced	replicas	]0,
½]	and	]½.	1].	By	contrast,	the	open	interval	]0,	1[	fails	to	be	scaling,	since	in
addition	to	the	N=2	reduced	scale	replicas,	]0.	½[	and	]½.	1[,	it	includes	the
midpoint	x=	½.	I	propose	that	this	midpoint	be	called	a	scaling	residue.	For	the
calculation	of	D,	and	for	many	other	purposes,	it	is	negligible.	A	physicist	would
say	it	is	of	smaller	physical	order	of	magnitude	than	the	whole	and	the	parts.
The	preceding	example	tempts	one	to	view	all	residue	terms	as	pedantic

complications	that	do	not	affect	the	consequences	of	scaling.	But	in	analogous
examples	relative	to	fractals,	which	I	call	nonuniform	fractals,	the	residue	may
be	surprisingly	significant.	A	nonuniform	fractal	is	the	sum	(or	the	difference)	of
parts	of	varying	fractal	and	topological	dimensions.	None	of	these	parts	can	be
disregarded	completely,	even	if	it	is	both	fractally	and	topologically	negligible.
These	two	viewpoints	often	clash,	with	important	and	interesting	effects.
CANTOR	DUSTS	AND	ISOLATED	POINTS.	◁	Construct	a	Cantor	dust	by

dividing	[0,1]	into	b=4	parts,	and	preserving	[0,¼]	and	[¾,1].	The	alternative
construction	that	erases	]	¼,	½[	and	]½,	¾[	yields	the	same	dust,	plus	the	residue
point	x=½.	This	isolated	residue	is	not	a	fractal,	since	both	DT	and	D	equal	0.
In	the	spatial	generalization	to	RE,	the	Cantor	dust	satisfies	DT=0	and	D>0,

while	the	nonfractal	residue	set	satisfies	DT=D=E-1.	The	residue	may	well
dominate	the	dust	topologically	and/or	fractally.



FRACTAL	TREE	SKELETONS	WHOSE	RESIDUE
TERMS	ARE	INTERVALS

Plate	155	shows	examples	of	umbrella	trees	with	infinitely	thin	stems.	They	are
not	capable	of	life,	and	their	adequacy	as	models	of	plants	is	improved	upon	in
Chapter	17.	Yet,	tree	skeletons	are	of	great	interest	to	many	chapters	of
mathematics.	The	topologist	sees	them	as	identical,	because	he	views	any	tree	as
made	of	infinitely	elastic	threads,	and	our	trees	can	be	stretched,	or	pulled	back,
onto	one	another.	However,	these	trees	differ	from	each	other	intuitively,	and	as
fractals.
BRANCH	TIPS.	A	tree	is	the	sum	of	two	parts,	branch	tips	and	branches,

whose	dimensions	clash	in	very	interesting	fashion.	The	part	easier	to	study	is
the	set	of	the	branch	tips.	It	is	a	fractal	dust,	analogous	to	many	we	know	well.	It
is	scaling	with	N=2,	and	a	value	of	r	between	1/√2	and	0.	Hence	D	can	range
from	2	to	0,	though	the	plate’s	figures	are	limited	to	D	between	1	and	2.	The
inter-branch	angle	takes	the	same	value	θ	at	every	fork;	it	can	be	varied	over	a
wide	range	without	affecting	r	and	D.	Hence	the	same	D	allows	for	a	variety	of
tree	shapes.
When	1	<	D	<	2,	these	trees	self-overlap	when	θ<θcrit,	hence	self-avoidance

narrows	the	choice	of	θ.	The	trees	in	Plate	155	satisfy	θ=θcrit,	but	we	shall	first
argue	as	if	they	satisfied	θ=θcrit+∈.
TREES.	The	whole	trees	also	seem	self-similar	at	first	blink,	because	every

branch	plus	the	branches	it	carries	is	a	reduced	scale	version	of	the	whole.	But	in
fact,	the	two	branches	above	the	main	fork	do	not	add	up	to	the	whole,	unless
one	adds	a	residue:	a	trunk.	Intuitively,	this	residue	is	by	no	means	negligible.	As
a	matter	of	fact,	one	tends	to	give	more	importance	to	a	tree’s	trunks	and
branches	than	to	its	branch	tips.	Intuitively	the	branches	“dominate”	the	branch
tips.
Also,	irrespectively	of	the	value	of	D,	the	branch	tips	of	a	self-avoiding	tree

form	a	dust	with	DT=0,	but	the	branches	form	a	curve	with	DT=1,	whether	or	not
their	tips	are	included.	Hence,	the	branches	dominate	topologically.	◁	Indeed,	to
disconnect	a	point	P	and	its	neighborhood,	one	needs	to	erase	either	1	point	(if	P



is	a	branch	tip)	or	2	points	(if	P	lies	in	the	interior	of	a	branch)	or	3	points	(if	P	is
a	point	of	branching).
Now	to	the	fractal	viewpoint.	The	dimension	of	the	branch	tips	is	D,	and	the

dimension	of	each	branch	is	1.	As	to	the	whole,	it	is	not	scaling,	but	its	fractal
dimension	defined	by	the	Hausdorff	Besicovitch	formula	cannot	be	less	than
either	D	or	1,	and	it	turns	out	to	be	the	larger	of	the	two.	Let	us	restate	the
resulting	two	possibilities	separately.
FRACTAL	TREES.	When	D>1,	the	whole	tree’s	fractal	dimension	is	also	D.

Even	though	the	branches	predominate	intuitively	and	topologically,	they	are
fractally	negligible!	Since	D	>	DT,	the	tree	is	a	fractal	set	in	which	D	measures
the	abundance	of	branching.	Thus,	we	encounter	yet	another	facet	of	fractal
dimension,	to	be	added	to	its	roles	as	measure	of	irregularity	and	fragmentation.
When,	in	Chapter	17,	we	move	to	nonfiliform	trees,	we	find	that	a	surface	that	is
smooth	but	involves	enough	localized	sharp	“pimples”	may	become	“more”	than
a	standard	surface.
SUBFRACTAL	TREES.	When	0<D<1,	to	the	contrary,	the	whole	tree’s	linear

measure	(cumulative	length)	is	finite	and	positive,	so	its	fractal	dimension	is
necessarily	1.	Thus,	D=DT,	meaning	that	the	tree	is	not	a	fractal.
In	fact,	if	we	choose	the	units	so	that	the	trunk	is	of	length	1-2r,	the	branches

(viewed	as	open	intervals)	can	be	repositioned	along	the	gaps	of	a	linear	Cantor
dust	C	that	lies	on	[0,	1]	and	has	the	same	N=2	and	r	as	the	branch	tips.	And
similarly,	the	branch	tips	can	be	repositioned	on	C.	We	see	that	the	interval	[0,	1]
is	entirely	filled	by	maps	of	points	on	our	tree.	The	only	points	that	fail	to	be
mapped	are	those	which	hold	the	branches	together.	They	form	a	denumerable
residue.
We	are	reminded	of	the	comment	about	Plate	83,	that	the	Devil’s	Staircase

curve	is	peculiar	but	not	fractal.	If	such	shapes’	importance	increases,	they	may
need	a	carefully	chosen	name.	For	now,	subfractals	will	do.
For	a	last	comment,	replace	the	rectilinear	branches	by	fractal	curves	of

dimension	D	*	>	1.	When	D<D*,	the	tree’s	fractal	properties	are	dominated	by
the	branches,	and	the	tree	is	a	fractal	of	dimension	D*.	But	when	D>D*,	the	tree
is	a	fractal	of	dimension	D.



NONUNIFORM	FRACTALS,	ETC.

We	are	now	ready	for	a	new	definition.	A	fractal	F	is	to	be	called	uniform	if	any
set	obtained	as	the	intersections	of	F	with	a	disc	(or	ball)	centered	on	F	have
identical	values	of	DT	and	of	D	>	DT.
We	see	that	Koch	curves,	Cantor	dusts,	ramified	curves,	etc.,	are	uniform

fractals.	But	the	preceding	section’s	tree	skeletons	for	D>	1	are	nonuniform
fractals.
As	a	matter	of	fact,	trees	may	be	called	fractal	in	part:	their	intersection	with	a

small	enough	disc	centered	on	a	branch	is	not	a	fractal	but	is	made	of	one	or	a
few	intervals.



FRACTAL	CANOPIES

Thus	far,	Plate	155	has	been	viewed	as	illustrating	trees	that	are	barely	self-
avoiding.	But	in	reality	these	trees’	tips	self-contact	asymptotically.	As	a	result,
the	set	of	branch	tips	ceases	to	be	a	dust	with	DT=O,	and	becomes	instead	a
curve	with	DT=1,	with	no	change	in	its	fractal	dimension.	For	this	new	class	of
fractal	curves,	I	propose	the	term	extended	fractal	canopies.	Observe	that	their
vertical	shadow’s	length	increases	with	D.
The	curve	that	bounds	the	open	region	outside	the	resulting	shape	is	to	be

called	“fractal	canopy.”	Due	to	the	elimination	of	the	“folds”	of	the	extended
canopy,	the	canopy’s	dimension	falls	short	of	D,	by	an	amount	that	increases
with	D.
Since	light	is	a	vital	consideration	for	trees,	branches	ending	on	the	folds	of

the	extended	fractal	canopy	can	be	expected	to	wither	away.	A	tree	designer	may
either	allow	some	branches	to	grow,	then	wither	for	lack	of	sunshine,	or	write	a
more	complicated	program	that	instructs	these	branches	never	to	grow.	I	would
choose	the	simpler	program.
When	D<	1,	the	merger	of	a	dust	of	dimension	D	into	a	curve	is

inconceivable.	When	one	seeks	self-contact	by	diminishing	the	inter-branch
angle	θ,	the	goal	is	not	reached	until	this	angle	becomes	0,	and	the	tree	collapses
into	an	interval.	Alternatively,	if	one	keeps	the	tree’s	vertical	shadow	to	the	fixed
length	1,	and	seeks	self-contact	by	lengthening	the	branches,	the	goal	is	never
reached:	the	tree	tends	to	a	linear	Cantor	dust	C,	plus	half	lines	hanging	down
from	each	point	of	C.



TREES	WITHOUT	RESIDUE	TERM

Fractal	trees	are	not	limited	to	those	constructed	in	the	preceding	sections.	For
example,	recall	the	construction	on	here.	Alternatively,	take	as	Koch	generator	a
cross	with	branches	of	length	rt(top)	rb(bottom),	and	rs(sides),	such	that
rt2+rb2+2rs2<1.	In	the	resulting	fractal	tree,	every	branch,	however	short,	is
crowded	with	subbranches.	If	the	root	point	is	excluded,	such	trees	are	scaling
without	residue.



HIGH	ENERGY	PHYSICS:	JETS

Feynman	1979	reports	that	fractal	trees	made	it	possible	for	him	to	visualize	and
model	the	“jets”	that	arise	when	particles	collide	head	on	at	very	high	energy.
The	idea	is	explored	in	CERN	reports	by	G.	Veneziano.
The	trees	on	this	plate	have	infinitely	thin	stems,	and	the	same	angle	θ	between
the	branches	throughout.	D	ranges	from	1	to	2,	and	for	each	D,	θ	takes	the
smallest	value	that	is	compatible	with	self-avoidance.
For	D	barely	above	1	(top	left),	the	result	is	whisk-like,	then	broom-like.	As	D

increases,	the	branches	open	up,	and	the	outline	or	“canopy”	extends	into	folds
hidden	from	the	sunshine.	One	is	reminded	of	the	flowers	in	several	varieties	of
the	species	Brassica	oleracea:	cauliflower	(B.	o.	botrytis)	and	broccoli	(B.	o.
italica).	Could	it	be	significant	that	part	of	the	geometric	difference	between
cauliflower	and	broccoli	is	quantified	by	a	fractal	dimension?
For	larger	D	(bottom	left),	a	Frenchman	is	reminded	of	the	fortifications	by

Vauban.	The	values	D=2	and	θ=π	yields	a	plane-filling	tree.	To	allow	for	θ>π
(bottom	right),	one	must	again	decrease	D,	all	pretense	of	umbrella	being
replaced	by	a	contorted	pattern	worthy	of	classical	dance	sculptures	of	India.
In	one	of	the	best	known	figures	in	On	Growth	and	Form,	Thompson	1917,

the	skulls	of	different	species	of	fish	are	mapped	onto	each	other	by	continuous
and	smooth	transformations	in	the	spirit	of	Euclid.	The	transformations	that	map
the	present	trees	on	each	other	partake	of	the	same	inspiration,	but	in	very
different	spirit.



Plate	155	FRACTAL	UMBRELLA	TREES	AND	FRACTAL	CANOPIES
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Trees	and	the	Diameter	Exponent

The	present	chapter	investigates	the	geometrically	imbedded	thick	stemmed
“trees”	involved	in	lungs,	vasculatures,	botanical	trees,	river	networks,	and	the
like.
These	natural	objects	are	extremely	familiar,	in	fact,	no	other	object	illustrates

as	simply	as	they	do	the	idea	of	a	shape	having	a	large	number	of	different
elements	of	linear	scale.	Unfortunately,	trees	are	less	simple	than	they	seem.
They	were	not	tackled	earlier	because	of	a	complication	encountered	in	the
preceding	chapter:	trees	cannot	be	self-similar.	The	best	one	can	hope	is	that
self-similarity	holds	for	the	branch	tips,	as	will	be	assumed	in	this	chapter.	In
addition	to	the	tips’	fractal	dimension	D,	trees	involve	a	parameter	to	be	called
the	diameter	exponent,	Δ.	When	the	tree	is	self-similar	with	a	residue,	as	in
Chapter	16,	Δ	coincides	with	the	D	of	the	branch	tips.	Otherwise,	Δ	and	D	are
separate	characteristics,	and	we	deal	with	an	instance	of	the	phenomenon
biologists	call	“allometry.”	We	encounter	examples	of	both	Δ=D	and	Δ	<	D.



THE	DIAMETER	EXPONENT	Δ

Leonardo	da	Vinci	claims	in	his	Notebooks,	note	No.	394,	that	“All	the	branches
of	a	tree	at	every	stage	of	its	height	when	put	together	are	equal	in	thickness	to
the	trunk	(below	them).”	The	formal	expression	is	that	a	botanical	tree’s	branch
diameters	before	and	after	a	bifurcation,	d,	d1,	and	d2,

satisfy	the	relation

dΔ	=	d1Δ	+	d2Δ,

the	exponent	being	Δ=2.	The	implication	is	this:	if	branches’	thickness	is	taken
into	account,	botanical	trees	are	not	self-similar	with	near	space-filling	bark.
Indeed,	self-similarity	requires	Δ=D,	and	near	space-filling	requires	D	to	be	near
E=3.
In	other	words,	whenever	the	above	relation	is	satisfied,	Δ	is	a	new	parameter

to	be	added	to	D;	it	will	be	called	diameter	exponent.	It	has	been	considered	by
many	people,	often	unaware	of	each	other,	witness	the	references	in	Thompson
1917-1942-1961.	This	chapter	shows	that	for	bronchi,	Δ~3.	For	arteries,	Δ~2.7.
Botanical	trees	are	close	to	Leonardo’s	Δ=2.	And	Δ=2	for	the	rivers’	widths.
This	chapter	also	explores	a	few	physical,	physiological,	and	geometric
consequences	of	the	value	of	A.
	
	PARADIMENSION.	The	1977	Fractals	call	Δ	a	paradimension	(from	π	αpα	=

besides),	but	I	no	longer	advocate	this	term.	The	awkward	role	of	Δ—sometimes
a	dimension	and	other	times	not—is	shared	by	the	exponent	in	Besicovitch	&
Taylor	1954;	See	Chapter	39.



THE	LUNG’S	BRONCHIAL	TREE

As	a	first	example,	the	subdivision	of	the	lung’s	air	pipes	is	for	all	practical
purposes	self-similar,	with	Δ=D,	and	Δ~E=3.
The	inner	shape	of	the	lung	is	not	well	known,	hence	it	would	be	instructive	to

insert	an	actual	photograph	at	this	point	(examples	are	found	in	Weibel	1963	and
Comroe	1966).	However,	this	Essay’s	policy	(this	may	be	the	only	occasion	for
regretting	it)	is	to	keep	to	simulations.	Therefore,	a	brief	verbal	description	must
suffice.	After	the	lung’s	air	is	replaced	by	noncured	plastic,	then	the	plastic	cured
and	the	tissue	dissolved,	one	is	left	with	an	extremely	heavily	branched	tree	that
fills	the	outline	of	the	lung	with	a	degree	of	tightness,	uniformity,	and	visual
impenetrability	that	botanical	trees	never	achieve.	Between	the	first	two
bifurcations,	which	are	beyond	our	concern,	and	the	last	three,	which	lead	to
alveoli	(discussed	in	Chapter	12),	there	are	15	successive	bifurcations	of	striking
regularity.
From	the	data	in	Weibel	1963,	the	pipe	intervals	are	in	a	first	approximation

similar	to	each	other,	and	Δ~3.	The	airflow	is	a	concrete	quantity	divided
between	bifurcating	branches,	and	since	airflow	equals	pipe	cross-sectional	area
times	air	velocity,	we	see	that	the	velocity	varies	like	dΔ-2.	air	slows	down	as	it
moves	toward	thinner	bronchi.
The	precise	value	A=3	is	important.	A	first	interpretation	involves	an

argument	by	Murray	1927,	thus	presented	by	Thompson	1942,	p.	954,	or	1961,
p.	129:	“[T]	he	increasing	surface	of	the	branches	soon	means	increased	friction,
and	a	slower	pace	of	the	[fluid]	traveling	through;	and	therefore	the	branches
must	be	more	capacious	than	at	first	appears.	It	becomes	a	question	not	of
capacity	but	of	resistance;	and	in	general	terms	the	answer	is	that	the	ratio	of
resistance	to	cross	section	shall	be	equal	in	every	part	of	the	system,	before	and
after	bifurcation,	as	a	condition	of	least	possible	resistance	in	the	whole	system;
the	total	cross	section	of	the	branches,	therefore,	must	be	greater	than	that	of	the
trunk	in	proportion	to	the	increased	resistance.	An	approximate	result,	familiar	to
students	of	hydrodynamics	[for	a	modern	treatment,	see	Hersfield	&	Cummings
1967,	Wilson	1967],	is	that	the	resistance	is	a	minimum,	and	the	condition	an
optimum,”	when	he	branching	ratio	is	2⅓~	1.26	throughout.



Hence	Δ=3	is	the	best	value	that	either	a	goal-oriented	design	or	selective
evolution	could	strive	to	achieve.	Of	course,	Murray’s	optimality	criterion	is
purely	local,	and	the	designer	can	never	be	sure	whether	locally	optimal	pieces
can	be	made	to	fit	together.



PACKING	3-SPACE	WITH	BRONCHI

My	alternative	fractal	argument	for	Δ=3	is	very	different:	it	invokes	the	effect	of
nonwillful	geometric	constraints	upon	the	lung’s	prenatal	growth	and	upon	its
pipes’	fully	grown	shape.	An	obvious	advantage	is	that	here	the	branching	ratio
of	21/Δ	~	2⅓	need	not	be	part	of	the	genetic	code	(as	should	be	the	case	in	the
Murray	approach).
The	basic	datum	is	that	a	lung’s	prenatal	growth	starts	with	a	bud,	which

grows	into	a	pipe,	which	forms	two	buds,	each	of	which	behaves	as	above.
Furthermore,	this	growth	is	self-similar	(with	the	trunk	constituting	a	residue!).
To	account	for	self-similarity,	we	need	not	argue	that	it	is	best,	only	that	it	is
simplest:	the	growth-governing	program	is	shortest	when	each	step	repeats	the
previous	one	on	smaller	scale,	or	on	the	same	scale	after	the	previous	stage	had
grown.	If	so,	the	outcome	of	growth	is	determined	fully	by	the	branches’
width/length	ratio	and	the	diameter	exponent.	And	one	needs	in	addition	a	rule
that	indicates	when	growth	is	to	stop.
Now,	depending	on	the	value	of	A	(the	width/length	ratio	being	held	fixed),

growth	according	to	these	rules	achieves	one	of	three	outcomes:	(a)	after	a	finite
number	of	stages,	branches	run	out	of	space	in	which	to	grow;	(b)	branches
never	fill	more	than	a	part	of	the	available	space;	or	(c)	they	find	the	available
space	to	be	precisely	what	they	need.	When	one	wishes	the	limit	to	be	a	space-
filling	tree,	no	detailed	instructions	need	be	incorporated	into	the	growth
program,	because	competition	for	space	leaves	little	room	for	indeterminacy.	A
two-dimensional	reduction	of	the	process	is	illustrated	on	Plates	164	and	165,
where	we	see	that,	as	the	branches’	width/length	ratio	decreases	toward	0,	the
plane-filling	branching	ratio	increases	toward	2½,	yielding	Δ=E=2.	Similarly,	the
space-filling	branching	ratio	corresponding	to	infinitely	thin	branches	is	2⅓,
yielding	Δ=E=3.
Since	Δ=3	corresponds	to	the	limit	of	infinitely	thin	pipes,	it	cannot	be

actually	implemented.	What	a	pity,	since	a	tree	made	of	infinitely	thin
bifurcations	continuing	to	zero	has	a	space-filling	“skin.”	This	last	property
could	have	been	given	a	teleological	interpretation	to	rival	Murray’s:	it	would	be
best	from	the	viewpoint	of	allowing	the	largest	possible	surface	for	the	purpose



of	chemical	exchanges	between	air	and	blood.
But	actual	pipes	are	not	infinitely	thin,	so	the	best	one	can	achieve	is	a	value

of	D	and	Δ	a	bit	below	3,	quite	compatible	with	the	empirical	evidence.	This
involves	the	same	degree	of	imperfection	at	all	branch	points—but	this	property
is	obtained	as	a	side	consequence	of	self-similarity	with	a	residue,	and	need	not
be	set	up	as	a	goal.
DIMENSION.	The	branches	add	up	to	a	standard	set:	topologically	and

fractally	of	dimension	E.	When	each	branch’s	skin	is	smooth,	the	whole	skin	is
of	dimension	Δ.



ALVEOLAR	INNER	CUTOFF

As	usual,	the	interpolation	to	increasingly	thin	bronchi	is	interrupted	by	a	cutoff.
The	cutoff	is	gradual	after	the	15th	bifurcation,	and	I	find	it	to	be	of	excellent
geometric	design.
A	basic	remark	is	that,	while	infinite	self-similar	bifurcation	would	eventually

fill	all	the	available	space,	it	proceeds	slowly,	so	that	the	lung’s	first	15
bifurcation	stages	fill	only	a	small	proportion	of	the	lung’s	box.	To	fill	the
remaining	space	in	few	stages,	the	pipes	must	be	made	markedly	larger	than
suggested	by	self-similar	extrapolation.	Indeed,	Weibel	1963,	pp.	123-124,	can
be	interpreted	as	indicating	that,	in	stages	beyond	the	15th,	pipe	width	ceases	to
decrease	(Δ	is	no	longer	defined).	And	that	pipe	lengths	are	longer	than
suggested	by	similarity,	the	ultimate	multiplier	being	2.	Since	Plate	165	suggests
that	self-similar	branches	enter	about	half	way	into	the	nearest	available	gap,	a
multiplier	equal	to	2	is	eminently	sensible,	and	suggests	again	that	much	of	the
program	for	the	lung’s	design	is	imposed	by	the	properties	of	space	and	need	not
be	separately	encoded.



MORE	ABOUT	VASCULAR	GEOMETRY

Let	us	now	return	to	the	high	point	of	Chapter	15,	where	I	proclaim	that
Lebesgue-Osgood	fractal	monsters	are	the	very	substance	of	our	flesh.	Granted
that	a	branching	domain	A	(arteries)	has	a	volume	of	about	3%	of	the	volume	of
a	domain	B	(body),	but	is	supposed	to	come	infinitely	close	to	every	point	of	B,	I
argue	that	the	branches	of	B	must	thin	out	more	rapidly	than	in	self-similar	trees.
Now	that	we	have	established	that	in	some	cases	the	rate	of	thinning	is
measurable	by	A,	we	can	inquire	whether	or	not	Δ	is	defined	for	arteries.
Not	only	Δ	is	indeed	defined	in	a	wide	subrange	of	the	8	to	30	bifurcations

one	observes	between	the	heart	and	the	capillaries,	but	the	fact	has	been	known
for	nearly	a	century.	Indeed,	Thoma	1901	and	Groat	1948	summarized	their
experimental	findings	by	asserting	that	Δ=2.7.	Their	estimate	is	remarkably	well
confirmed	by	Suwa	&	Takahashi	1971.



BOTANICAL	TREES

After	playing	with	objects	to	which	the	term	tree	is	applied	figuratively,	we
return	to	the	trees	that	botanists	study.	The	“normal”	values	the	analysis	will
suggest	are	D=3	and	Δ=2.	They	are	hardly	universal,	however:	given	the
astounding	diversity	of	botanical	shape,	specific	deviations	may	be	more
interesting	than	the	“norm.”	A	consequence	of	Δ=2	is	that,	seen	next	to	the	near
self-similar	branches	of	lung	casts,	plant	branches	are	extremely	sparse;	one
cannot	see	through	a	lung	cast,	but	one	can	see	through	a	leafless	tree.
The	reason	behind	the	fact	that	D	and	Δ	take	up	the	integer	Euclidean

dimensions	of	solids	and	surfaces,	is	that,	in	the	words	of	D’Arcy	Thompson,	“a
tree	is	governed	by	the	simple	physical	rules	which	determine	relative	changes	in
volume	and	area.”	In	more	specific	terms,	Hallé,	Oldeman	&	Tomlinson	1978,
“The	problem	of	energy	interchange	in	trees	can	be	simplified	by	considering	the
tree	as	a	system	in	which	as	large	[an	area]	as	possible	must	be	irrigated	with	the
minimum	production	of	volume	while	at	the	same	time	guaranteeing	the
evacuation	of	absorbed	energy.”	Since	volumes	and	areas	are	incommensurable
within	the	framework	of	Euclid,	the	geometric	problem	of	the	architecture	of
trees	is	intrinsically	a	fractal	problem.	When	D	and/or	Δ	cease	to	be	integers,	the
problem’s	fractal	character	is	even	more	obvious.



BOTANICAL	TREES’	D	AND	Δ

THE	VALUE	D=3.	The	reader	knows	well	that	the	largest	possible	leaf	area	is
implemented	by	a	space	filling	surface—as	approximated	by	those	bushes	whose
leaves	or	needles	come	very	close	to	every	point	within	a	certain	outline	(except
perhaps	for	a	dead	core	we	overlook).	A	very	small	3-D	suffices	to	allow
sunlight	and	wind	to	enter.
UMBRELLAS.	However,	diverse	additional	constraints	imposed	upon	tree

architecture	may	prevent	D=3	from	being	implementable.	The	only	standard
alternative	is	a	standard	surface	of	dimension	D=2,	for	example	the	surface	of	a
spherical	“umbrella”	hiding	a	core	empty	of	leaves	but	crisscrossed	by	branches.
This	is	why	Horn	1971,	which	limits	itself	to	standard	geometry,	allows	for
either	D=3	or	D=2.	However,	there	is	no	clear	advantage	to	D=2;	in	fact,	in	order
to	terminate	on	a	spherical	umbrella,	the	branches	have	to	follow	very	peculiar
rules.
On	the	other	hand,	the	freedom	of	design	of	the	“tree	architect”	is	immensely

increased	by	fractals.	First	of	all,	the	repeatedly	scalloped	surfaces	of	many	large
trees	can	be	represented	by	scaling	fractals	of	dimension	D	between	2	and	3,	and
can	be	distinguished	by	the	value	of	D.	Broccoli	and	cauliflower	also	come	to
mind,	but	they	raise	a	different	issue,	to	which	we	turn	in	a	moment.	And	one
can	conceive	of	sparse	climbing	plants	of	dimension	below	2	(and	conjecture
that	bonzai	trees	well	contrived	to	be	“harmonious”	are	also	fractal	with	D<3.)
THE	VALUE	Δ=2.	The	Leonardo	da	Vinci	quote	at	the	beginning	of	this

chapter	is	invalid	for	lungs	(Δ=3)	and	for	arteries	(Δ=2.7).	But	plant	anatomy
differs	from	human	anatomy.	The	value	Δ=2	rests	on	the	mental	image	of	trees
as	bundles	of	nonbranching	vessels	of	fixed	diameter,	connecting	roots	to	the
leaves	and	occupying	a	fixed	proportion	of	each	branch’s	cross	section.
Zimmermann	tells	us	that	this	image	is	called	the	“pipe	model”	by	Japanese
workers.
MEASUREMENT	OF	Δ.	The	empirical	evidence	turns	out	to	be	astonishingly

scant	and	indirect.	Murray	1927,	quoted	in	Thompson	1917,	finds	empirically
that	branch	weight	is	proportional	to	(branch	diameter)M,	with	M	~2.5,	but	I
would	say	his	M	is	larger	than	that.	And	he	claims	that	M=Δ,	but	my	own



analysis	yields	M=2+Δ/D.	For	D=3,	Leonardo’s	value	of	Δ=2	would	correspond
to	M~2.66,	while	M~2.5	would	yield	Δ=1.5.	Recently,	the	data	concerning	3
“McMahon’s	trees”	used	in	writing	McMahon	&	Kronauer	1976	were	kindly
communicated	to	me	by	Prof.	McMahon,	and	they	have	been	analyzed.	Denoting
d1/d	by	x,	and	d2/d	by	y,	we	sought	a	value	of	Δ	such	that	X=xΔ	and	Y=yΔ	fall
along	the	line	X+Y=1.	Unfortunately,	the	empirical	scatter	is	extremely	large	for
every	Δ,	and	the	estimate	of	Δ	is	necessarily	unreliable.	Again,	the	value	Δ=2	is
not	disproved,	but	a	slightly	smaller	Δ	is	suggested.	The	safe	conclusion	at
present	is	that	Δ=2	is	a	reasonable	rough	value,	but	that	tree	architecture	is	on
the	conservative	side,	with	daughter	branches	thinner	than	strictly	necessary.
COROLLARIES	OF	D=3	AND	Δ=2.	A	first	corollary	is	that	a	branch’s	leaf

area	is	proportional	both	to	the	volume	of	the	branch’s	outline,	and	to	the	cross-
sectional	area	of	the	branch.	This	inference	is	indeed	empirically	correct,	having
been	made	by	Huber	in	1928.
Another	corollary	is	that	the	ratio	(tree	height)3/(trunk	diameter)2	is	constant

for	each	species,	and	that	it	is	equal	to	the	ratio	(linear	scale	of	a	branch’s
drainage	volume)3/(branch’s	diameter)2.	One	may	also	expect	this	ratio	to	vary
comparatively	little	between	species.	Observe	that	the	force	the	wind	exerts	on	a
bare	(respectively,	leaf-carrying)	tree	is	roughly	proportional	to	the	branch
(respectively,	branch	and	leaf)	area,	and	proportional	to	(height)3	in	this	model.
And	the	trunk’s	counterresistance	is	proportional	to	(diameter)2.	This	suggests
that	the	ratio	of	these	quantities	is	a	factor	of	safety.
In	an	umbrella	shaped	tree	with	A=2	and	D=2,	the	ratio	(height)2/(trunk

diameter)2	is	constant,	so	is	more	generally	the	ratio	(height)D/(trunk	diameter)A.
DIGRESSION	ON	HINDLEG	BONES.	The	relation	between	height	and

diameter	that	is	characteristic	of	botanical	trees	with	D=3	and	Δ=2	also	applies
to	animal	skeletons,	with	d	the	diameter	of	the	main	supporting	bone.



GREENHILL’S	ELASTIC	SCALING

While	pulmonary	and	vascular	trees	are	supported	from	the	outside,	most	plants
support	themselves.	Greenhill	(quoted	in	Thompson	1961)	injects	at	this	point
the	notion	of	elastic	as	opposed	to	geometric	similarity.	The	idea	of	static	elastic
similarity	is	that	a	tree	must	limit	its	overall	height	to	a	fixed	percent	of	the
critical	buckling	height	of	a	uniform	cylinder	of	the	same	base	diameter	loaded
under	its	own	weight.	This	requirement	yields	precisely	the	same	results	as
fractals	with	D=3	and	Δ=2.	Thus,	a	“pipe	model”	tree	with	space-filling	leaves
will	not	buckle.
McMahon	&	Kronauer	1976	elaborate	on	Greenhill’s	idea:	they	inject

dynamic	elastic	similarity,	and	again	obtain	the	same	result.



PLANTS	WITH	D=Δ<3

In	some	plants,	wood	is	not	specialized	to	bear	weight	and	carry	sap,	but	also
serves	to	store	nutrients.	If	so,	and	even	when	the	vasculature	obeys	the	“pipe
model,”	the	value	of	Δ=2	need	not	apply.
An	example	wherein	the	branch	tips	form	a	nonstandard	“umbrella”	with	D	<

3,	and	A=D,	is	illustrated	(in	plane	reduction	showing	D–1	and	Δ–1)	in	Plate
163.	One	observes	that	the	geometric	cauliflower	shape	has	empty	occlusions...,
just	like	the	botanical	cauliflowers.	Is	this	a	mere	coincidence?	Characteristics
preordained	by	geometry	need	not	burden	the	genetic	code.



MORE	ABOUT	THE	BRAINʹS	GEOMETRY

When	discussing	the	brain’s	surface	in	Chapter	12,	we	did	not	consider	the
network	of	axons	that	join	different	parts	together.	In	the	case	of	the	cerebellum,
the	axons	join	the	surface	to	the	outside,	and	one	deals	with	a	gray	matter	surface
that	envelops	a	white	matter	tree.	I	revised	the	argument	of	Chapter	12	to	take
account	of	this	tree,	and	found	that	the	resulting	corrective	terms	in	the	volume-
area	relation	yield	an	improved	fit	to	the	data.	But	the	story	is	too	long	to	be	told
here.
NEURON	BRANCHING.	The	Purkinje	cells	in	mammalian	cerebellum	are

practically	flat,	and	their	dendrites	form	a	plane-filling	maze.	From	mammals	to
pigeon,	alligator,	frog,	and	fish,	the	degree	of	filling	decreases	(Llinas	1969).	It
would	be	nice	if	this	corresponded	to	a	decrease	in	D,	but	the	notion	that	neurons
are	fractals	remains	conjectural.
THE	RALL	LAW.	Rall	1959	observes	that	neuronal	trees	which	preserve	the

quantity	dΔ	with	Δ=1.5	are	electrically	equivalent	to	cylinders,	hence	especially
convenient	to	study.	Further	detail	is	provided	by	Jack	et	al.	1975.



HOW	WIDE	IS	THE	MISSOURI	RIVER?

Now	let	us	turn	to	rivers.	Despite	its	conceptual	importance,	my	“Peano”	model
of	Chapter	7	can	only	be	a	first	approximation.	In	particular	it	implies	that	river
widths	vanish,	while	in	fact	they	are	of	positive	width.
An	important	empirical	question	is	whether	or	not	the	rivers’	bifurcations	have

the	same	diameter	exponent	Δ	throughout.	If	Δ	is	indeed	defined,	the	next
question	is	whether	2—Δ	is	=0	or	>0.	No	direct	test	is	known	to	me,	but	the
discharge	through	a	river,	Q,	is	preserved	in	bifurcation,	hence	could	stand	in	for
dΔ.	Maddock	(see	Leopold	1962)	finds	that	d~Q½,	hence	Δ	=	2.	Furthermore,	a
river’s	depth	is	proportional	to	Q0.4,	and	its	velocity	is	proportional	to	Q0.1.	The
exponents	duly	add	to	0.5+0.4+0.1=1.
G.	Lacey	observed	in	the	1930’s	that	Δ	=	2	also	holds	for	stabilized	irrigation

channels	in	India,	which	pose	a	well-defined	problem	of	hydraulics.	One	may
therefore	hope	for	a	fluid	mechanics	explanation	playing	the	role	that	Murray’s
argument	plays	for	the	lung.
Δ	=	2	has	an	interesting	implication:	if	rivers	are	drawn	on	a	map	as	ribbons	of

correct	relative	width,	guessing	a	map’s	scale	from	the	shape	of	the	river	tree	is
impossible.	(This	is	also	impossible	for	river	meanders,	but	that	is	a	totally
different	story.)
Those	who	believe	that	Leonardo	knew	everything	will	read	the	value	Δ	=	2	in

the	continuation	of	the	quote	with	which	this	chapter	begins:	“All	the	branches
of	a	water	(stream)	at	every	stage	of	its	course,	if	they	are	of	equal	rapidity,	are
equal	to	the	body	of	the	main	stream.”



Plate	163	FLATTENED	FRACTAL	MODELS	OF	PLANT	FLOWERS
	
Select	one	of	the	umbrella	trees	of	Plate	155,	with	θ<π,	and	replace	each	stick	by
an	isosceles	triangle	of	which	said	stick	is	a	side,	the	angles	at	this	stick’s	ends



being	½θ	(root	end)	and	π—θ.	Since	θ	is	the	smallest	value	that	avoids	self-
overlap	of	the	tree,	the	triangular	thickened	stems	do	not	overlap	either,	and	they
fill	in	the	umbrella’s	“insides.”	To	make	the	figures	more	transparent,	the
triangles	in	one	of	them	are	trimmed	slightly	on	one	side.
Observe	that	the	branches	thin	out	rapidly	as	D	approaches	either	1	or	2,	that

is,	as	the	spatial	D	approaches	2	or	3.	Do	actually	observed	D’s	correspond	to	the
thickest	possible	branches?

Plates	164	and	165	PLANE-FILLING	RECURSIVE	BRONCHI
	
PLATE	165.	In	Koch	recursion,	every	straight	interval	in	a	finite	approximation
is	eventually	broken	up	into	shorter	pieces.	In	many	applications,	it	is	useful	to
generalize	this	procedure	by	allowing	certain	intervals	to	be	“infertile,”	so	that	in
later	stages	they	remain	untouched.
Here,	this	generalized	procedure	is	used	to	grow	a	“tree.”	One	starts	with	a

trunk	having	barren	sides	and	a	fertile	“bud.”	The	bud	generates	two	“branches,”
on	which	again	only	two	terminal	“buds”	are	fertile.	And	so	on	ad	infinitum.	The



growth	is	asymmetric	to	insure	that	the	tree	fills	a	roughly	rectangular	portion	of
the	plane	with	no	gap	and	no	overlap.	However,	asymptotic	self-contact	is	not
avoided,	and	indeed	every	point	on	the	“bark”	line	can	also	be	obtained	as	a	limit
branch	tip.
The	“subtrees”	constructed	starting	with	the	main	leaders	are	similar	to	the

whole	tree	in	two	different	similarity	ratios,	r1	and	r2.	The	whole	tree	is	not	self-
similar	because	in	addition	to	the	subtrees	it	includes	a	trunk.	On	the	other	hand,
the	set	of	asymptotic	branch	tips	is	self-similar.	From	the	legend	of	Plates	56-57,
the	similarity	dimension	is	the	D	that	satisfies	the	equation	r1D+r2D	=	1.	In	the
top	Figure	of	Plate	165,	the	tips	are	nearly	plane-filling	and	2–D	is	small;	in	the
bottom	Figure	of	Plate	165,	D	is	much	below	2.
Incidentally,	the	diameter/length	ratio	having	been	set,	the	codimension	3–D

of	a	full	spatial	picture	is	smaller	than	the	codimension	2–D	of	this	planar
reduction.
PLATE	164.	This	composite	Figure	results	from	a	Koch	tree	construction	in

which	the	generator	is	changed	at	each	stage,	so	that	the	ratio	of	width	to	length
decreases	to	0.	On	the	left	side	of	the	composite	Figure,	this	ratio	decreases	even
faster	than	on	the	right	side.	The	result	is	that	the	branch	tips	are	no	longer	self-
similar.	However,	the	tips	can	achieve	the	dimension	D=2.	This	is	a	new	way	of
achieving	the	same	goal	as	in	Chapter	15.





VI

SELF-MAPPING	FRACTALS



18

Self-Inverse	Fractals,	Apollonian	Nets,and	Soap

The	bulk	of	this	Essay	is	devoted	to	fractals	that	are	either	fully	invariant	under
similitudes	or,	at	least,	“nearly”	self-similar.	As	a	result,	the	reader	may	have
formed	the	impression	that	the	notion	of	fractal	is	wedded	to	self-similarity.	Such
is	emphatically	not	the	case,	but	fractal	geometry	must	begin	by	dealing	with	the
fractal	counterparts	of	straight	lines...	call	them	“linear	fractals.”
Chapters	18	and	19	take	the	next	step.	They	sketch	the	properties	of	fractals

that	are,	respectively,	the	smallest	sets	to	be	invariant	under	geometric	inversion,
and	the	boundaries	of	the	largest	bounded	sets	to	be	invariant	under	a	form	of
squaring.
Both	families	differ	fundamentally	from	the	self-similar	fractals.	Appropriate

linear	transformations	leave	scaling	fractals	invariant,	but	in	order	to	generate
them,	one	must	specify	a	generator	and	diverse	other	rules.	On	the	other	hand,
the	fact	that	a	fractal	is	“generated”	by	a	nonlinear	transformation,	often	suffices
to	determine,	hence	generate,	its	shape.	Furthermore,	many	nonlinear	fractals	are
bounded,	i.e.,	have	a	built-in	finite	outer	cutoff	Ω<∞.	Those	who	find	Ω	=	∞
objectionable	ought	to	be	enchanted	by	its	demise.
The	first	self-inverse	fractals	were	introduced	in	the	1880’s	by	Henri	Poincaré

and	Felix	Klein,	not	long	after	the	discovery	by	Weierstrass	of	a	continuous	but
not	differentiable	function,	roughly	at	the	same	time	as	the	Cantor	sets,	and	well
before	the	Peano	and	Koch	curves	and	their	scaling	kin.	The	irony	is	that	scaling
fractals	found	a	durable	niche	as	material	for	well-known	counterexamples	and
mathematical	games,	while	self-inverse	fractals	became	a	special	topic	of	the
theory	of	automorphic	functions.	This	theory	was	neglected	for	a	while,	then
revived	in	a	very	abstract	form.	One	reason	why	the	self-inverse	fractals	were
half-forgotten	is	that	their	actual	shape	has	remained	unexplored	until	the	present
chapter,	wherein	an	effective	new	construction	is	exhibited.
The	chapter’s	last	section	tackles	a	problem	of	physics,	whose	star	happens	to

be	the	simplest	self-inverse	fractal.



BIOLOGICAL	FORM	AND	“SIMPLICITY”

As	will	be	seen,	many	nonlinear	fractals	“look	organic,”	hence	the	present	aside
concerned	with	biology.	Biological	form	being	often	very	complicated,	it	may
seem	that	the	programs	that	encode	this	form	must	be	very	lengthy.	When	the
complication	seems	to	serve	no	purpose	(as	is	often	the	case	in	fairly	simple
creatures),	the	fact	that	the	generating	programs	were	not	rubbed	off	to	leave
room	for	useful	instructions	is	paradoxical.
However,	the	complications	in	question	are	often	highly	repetitive	in	their

structure.	We	may	recall	from	the	end	of	Chapter	6	that	a	Koch	curve	must	not
be	viewed	as	either	irregular	or	complicated,	because	its	generating	rule	is
systematic	and	simple.	The	key	is	that	the	rule	is	applied	again	and	again,	in
successive	loops.	Chapter	17	extends	this	thought	to	the	pre-coding	of	the	lung’s
structure.
In	Chapters	18	and	19	we	go	much	further	and	find	that	some	fractals

generated	using	nonlinear	rules	recall	either	insects	or	cephalopods,	while	others
recall	plants.	The	paradox	vanishes,	leaving	an	incredibly	hard	task	of	actual
implementation.



STANDARD	GEOMETRIC	INVERSION

After	the	line,	the	next	simplest	shape	in	Euclid	is	the	circle.	And	the	property	of
being	a	circle	is	not	only	preserved	under	similitude,	but	also	under	inversion.
Many	scholars	have	never	heard	of	inversion	since	their	early	teens,	hence	the
basic	facts	bear	being	restated.	Given	a	circle	C	of	origin	O	and	radius	R,
inversion	with	respect	to	C	transforms	the	point	P	into	P’	such	that	P	and	P’	lie
on	the	same	half	line	from	0,	and	the	lengths	|OP|	and	|OP‘|	satisfy	|	OP	∥	OP’	|	=
R	.	Circles	containing	O	invert	into	straight	lines	not	containing	O,	and
conversely	(see	below).	Circles	not	containing	O	invert	into	circles	(third	figure
below).	Circles	orthogonal	to	C,	and	straight	lines	passing	through	O	are
invariant	under	inversion	in	C	(fourth	figure).



Now	consider	jointly	the	three	circles	C1,	C2,	and	C3.	Ordinarily,	for	example
when	the	open	bounded	discs	surrounded	by	the	Cm	are	nonoverlapping,	there
exists	a	circle	Γ	orthogonal	to	every	Cm,	see	above.	When	Γ	exists,	it	is	jointly
self-inverse	with	respect	to	the	Cm.
The	preceding	bland	results	nearly	exhaust	what	standard	geometry	has	to	say

about	self-inverse	sets.	Other	self-inverse	sets	are	fractals,	and	most	are	anything
but	bland.



GENERATOR.	SELF-INVERSE	SETS.	As	usual,	we	begin	with	a	generator,
which	is	in	the	present	case	made	up	of	any	number	M	of	circles	Cm.	The
transformations	made	of	a	succession	of	inversions	with	respect	to	these	circles
form	what	algebraists	call	the	group	generated	by	these	inversions;	call	it	C.	The
formal	term	for	“self-inverse	set”	is	“a	set	invariant	under	the	operations	of	the
group	C.”
SEEDS	AND	CLANS.	Take	any	set	S	(call	it	a	seed),	and	add	to	it	the

transforms	of	S	by	all	the	operations	of	C.	The	result,	to	be	called	here	the	clan
of	S,	is	self-inverse.	But	it	need	not	deserve	attention.	For	example,	if	S	is	the
extended	plane	 *	(the	plane	 	plus	the	point	at	infinity),	the	clan	of	S	is
identical	to	 *	=	S.
CHAOTIC	INVERSION	GROUPS.	Furthermore,	given	a	group	C	based	upon

inversions,	it	may	happen	that	the	clan	of	every	domain	S	covers	the	whole
plane.	If	so,	the	self-inverse	set	must	be	the	whole	plane.	For	reasons	that
transpire	in	Chapter	20,	I	propose	that	such	groups	be	called	chaotic.	The
nonchaotic	groups	are	due	to	Poincaré,	but	are	called	Kleinian:	Poiocaré	had
credited	some	other	work	of	Klein’s	to	L.	Fuchs,	Klein	protested,	Poincaré
promised	to	label	his	next	great	discovery	after	Klein—and	he	did!
Keeping	to	nonchaotic	groups,	we	discuss	three	self-inverse	sets	singled	out

by	Poincaré,	then	a	fourth	set	of	uncertain	history,	and	a	fifth	set	whose
importance	I	discovered.



HYPERBOLIC	TESSELLATION	OR	TILING

Few	of	Maurits	Escher’s	admirers	know	that	this	celebrated	draftsman’s
inspiration	often	came	straight	from	“unknown”	mathematicians	and	physicists
(Coxeter	1979).	In	many	cases,	Escher	added	decorations	to	self-inverse
tessellations	known	to	Poincaré	and	illustrated	extensively	in	Fricke	&	Klein
1897.
These	sets,	to	be	denoted	by	J,	are	obtained	by	merging	the	clans	of	the	circles

Cm	themselves.
	G	being	assumed	nonchaotic,	the	complement	of	the	merged	clans	of	the

Cm	is	a	collection	of	circular	polygons	called	“open	tiles.”	Any	open	tile	(or	its
closure)	can	be	transformed	into	any	other	open	(closed)	tile	by	a	sequence	of
inversions	belonging	to	G.	In	other	words,	the	clan	of	any	closed	tile	is	 *.
More	important,	the	clan	of	any	open	tile	is	the	complement	of	J.	And	J	is,	so	to
speak,	the	“grout	line”	of	these	tiles.	 *	is	self-inverse.	J	and	the	complement	of
J	are	self-inverse	and	involve	a	“hyperbolic	tiling”	or	“tessellation”	of	 *.	(The
root	is	the	Latin	tessera	=	a	square,	from	the	Greek	τ∈σσαρ∈ς	=	four,	but	tiles
can	have	any	number	of	corners	greater	than	2.)	In	Escher’s	drawings,	each	tile
bears	a	fanciful	picture.



AN	INVERSION	GROUPʹS	LIMIT	SET

The	most	interesting	self-inverse	set	is	the	smallest	one.	It	is	called	the	limit	set,
and	denoted	by	L,	because	it	is	also	the	set	of	limit	points	of	the	transforms	of
any	initial	point	under	operations	of	the	group	G.	It	belongs	to	the	clan	of	any
seed	S.	To	make	a	technical	point	clearer:	it	is	the	set	of	those	limit	points	that
cannot	also	be	attained	by	a	finite	number	of	inversions.	Intuitively,	it	is	the
region	where	infinitesimal	children	concentrate.
L	may	reduce	to	a	point	or	a	circle,	but	in	general	it	is	a	fragmented	and/or

irregular	fractal	set.
	L	stands	out	in	a	tessellation,	as	the	“set	of	infinitesimally	small	tiles.”	It

plays,	with	respect	to	the	finite	parts	of	the	tessellation,	the	role	the	branch	tips
(Chapter	16)	play	with	respect	to	the	branches.	But	the	situation	is	simpler	here:
like	L,	the	tesselation	J	is	self-inverse	without	residue.



APOLLONIAN	NETS	AND	GASKETS

A	set	L	is	to	be	called	Apollonian	if	it	is	made	of	an	infinity	of	circles	plus	their
limit	points.	In	this	case,	its	being	fractal	is	solely	the	result	of	fragmentation.
This	case	was	understood	(though	in	diffuse	fashion)	at	an	early	point	of	the
history	of	the	subject.
First	we	construct	a	basic	example,	then	show	it	is	self-inverse.	Apollonius	of

Perga	was	a	Greek	mathematician	of	the	Alexandrine	school	circa	200	B.C.	and
close	follower	of	Euclid,	who	discovered	an	algorithm	to	draw	the	five	circles
tangent	to	three	given	circles.	When	the	given	circles	are	mutually	tangent,	the
number	of	Apollonian	circles	is	two.	As	will	be	seen	momentarily,	there	is	no
loss	of	generality	in	assuming	that	two	of	the	given	circles	are	exterior	to	each
other	but	contained	within	the	third,	as	follows:

These	three	circles	define	two	circular	triangles	with	angles	of	0°.	And	the	two
Apollonian	circles	are	the	largest	circles	inscribed	in	these	triangles,	as	follows:



The	Apollonian	construction	concludes	with	five	circles,	three	given	and	two
Apollonian,	which	together	define	six	circular	triangles.	Repeating	the	same
procedure,	we	draw	the	largest	inscribed	circle	in	each	triangle.	Infinite	further
repetition	is	called	Apollonian	packing.	To	the	resulting	infinite	collection	of
circles	one	adds	its	limit	points,	and	one	obtains	a	set	I	call	Apollonian	net.	A
portion	of	net	within	a	circular	triangle,	as	exemplified	to	the	right,	is	to	be
called	Apollonian	gasket.
If	one	of	the	first	generation	Apollonian	circles	is	exchanged	for	either	of	the

inner	given	circles,	the	limit	set	is	unchanged.	 	If	said	Apollonian	circle	is
made	to	replace	the	outer	given	circle,	the	construction	starts	with	three	given
circles	exterior	to	each	other,	and	one	of	the	first	stage	Apollonian	circles	is	the
smallest	circle	circumscribed	to	the	three	given	circles.	After	this	atypical	stage,
the	construction	proceeds	as	above,	proving	that	our	figures	involve	no	loss	of
generalities.
LEIBNIZ	PACKING.	Apollonian	packing	recalls	a	construction	I	call	Leibniz

packing	of	a	circle,	because	Leibniz	described	it	in	a	letter	to	de	Brosses:
“Imagine	a	circle;	inscribe	within	it	three	other	circles	congruent	to	each	other
and	of	maximum	radius;	proceed	similarly	within	each	of	these	circles	and
within	each	interval	between	them,	and	imagine	that	the	process	continues	to
infinity....”





APOLLONIAN	NETS	ARE	SELF-INVERSE

Let	us	now	return	to	the	starting	point	of	the	construction	of	Apollonian	net:
three	circles	tangent	to	each	other.	Add	either	one	of	the	corresponding
Apollonian	circles,	and	call	the	resulting	4	circles	Γ	circles.	Here	they	are	shown
by	bold	curves.

There	are	4	combinations	of	the	Γ	circles	3	by	3,	to	be	called	triplets,	and	to
each	corresponds	a	circle	orthogonal	to	each	circle	in	the	triplet.	We	take	these
new	circles	as	our	generator,	and	we	label	them	as	C1,	C2,	C3,	and	C4,	(the
diagram	below	shows	them	as	thin	curves).	And	the	Γ	circle	orthogonal	to	Ci,	Cj,
and	Ck	will	be	labeled	as	Γijk.



Having	set	these	tedious	labels,	here	is	the	payoff:	Simple	inspection	shows
that	the	smallest	(closed)	self-inverse	set	with	respect	to	the	4	generating	circles
Cm	is	the	Apollonian	net	constructed	on	the	4	circles	Γ.	Curiously,	this
observation	is	nowhere	explicit	in	the	literature,	but	it	must	be	widely	known.
A	more	careful	inspection	shows	that	each	circle	in	the	net	transforms	into	one

of	the	Γ	circles	through	a	unique	sequence	of	inversions	with	respect	to	the	C
circles.	In	this	way,	the	circles	in	the	Apollonian	net	can	be	sorted	out	into	4
clans;	the	clan	descending	from	Γijk	will	be	denoted	as	G	Γijk.



NET	KNITTING	WITH	A	SINGLE	THREAD

The	Apollonian	gasket	and	the	Sierpiński	gasket	of	Plate	141	share	an	imporant
feature:	the	complement	of	the	Sierpiński	gasket	is	a	union	of	triangles,	a	σ-
triangle,	and	the	complement	of	an	Apollonian	net	or	gasket	is	a	union	of	discs,	a
σ-disc.
But	we	also	know	that	the	Sierpiński	gasket	admits	of	an	alternative	Koch

construction,	in	which	finite	approximations	are	teragons	(broken	lines)	without
self-contact,	and	double	points	do	not	come	in	until	one	goes	to	the	limit.	This
shows	that	the	Sierpiński	gasket	can	be	drawn	without	ever	lifting	the	pen;	the
line	will	go	twice	over	certain	points	but	will	never	go	twice	over	any	interval	of
line.
To	change	metaphors,	the	Sierpinski	gasket	can	be	knitted	with	a	single	loop

of	thread!
The	same	is	true	of	the	Apollonian	net.



NON-SELF-SIMILAR	CASCADES,	AND	THE
EVALUATION	OF	THE	DIMENSION

The	circular	triangles	of	Apollonian	packing	are	not	similar	to	each	other,	hence
the	Apollonian	cascade	is	not	self-similar,	and	the	Apollonian	net	is	not	a	scaling
set.	One	must	resort	to	the	Hausdorff	Besicovitch	definition	of	D	(as	exponent
used	to	define	measure),	which	applies	to	every	set,	but	the	derivation	of	D
proves	surprisingly	difficult.	Thus	far	(Boyd	1973a,b),	the	best	one	can	say	is
that

1.300197	<	D	<	1.314534,

but	Boyd’s	latest	(unpublished)	numerical	experiments	yield	D~1.3058.
In	any	event,	since	D	is	a	fraction	while	DT=1,	the	Apollonian	gasket	and	net

are	fractal	curves.	In	the	present	context,	D	is	a	measure	of	fragmentation.
When,	for	example,	the	discs	of	radius	smaller	than	∈	are	“cut	off,”	the
remaining	interstices	have	a	perimeter	proportional	to	∈1–D	and	a	surface
proportional	to	∈2–D



LIN	NON-FUCHSIAN	POINCARÉ	CHAINS

Inversions	with	respect	to	less	special	configuration	of	the	generating	circles	Cm,
lead	to	self-inverse	fractals	that	are	less	simple	than	any	Apollonian	net.	A
workable	construction	of	mine,	to	be	presented	momentarily,	characterizes	L
suitably	in	most	cases.	It	is	a	great	improvement	over	the	previous	method,	due
to	Poincaré	and	Klein,	which	is	cumbersome	and	converges	slowly.
But	the	older	method	remains	important,	so	let	us	go	through	it	in	a	special

case.	Let	the	Cm	form	a	configuration	one	may	call	Poincaré	chain,	namely	a
collection	of	M	circles	Cm	numbered	cyclically,	so	that	Cm	is	tangent	to	Cm–1
and	to	Cm+1	(modulo	M),	and	intersects	no	other	circle	in	the	chain.	In	that	case,
L	is	a	curve	that	separates	the	plane	into	an	inside	and	an	outside.	(As	homage	to
Camille	Jordan,	who	first	saw	that	it	is	not	obvious	that	the	plane	can	thus	be
subdivided	by	a	single	loop,	such	loops	are	called	Jordan	curves.)
When	all	the	Cm	are	orthogonal	to	the	same	circle	Γ,	L	is	identical	to	Γ.	This

case,	called	Fuchsian,	is	excluded	in	this	chapter.
POINCARÉ′S	CONSTRUCTION	OF	L.	The	customary	construction	of	L	and

my	alternative	will	be	fully	described	in	the	case	of	the	following	special	chain
with	M=4:



To	obtain	L,	Poincaré	and	Fricke	&	Klein	1897	replace	the	original	chain,	in
stages,	by	chains	made	of	an	increasing	number	of	increasingly	small	links.	The
first	stage	replaces	every	link	Ci	by	the	inverses	in	Ci	of	the	links	Cm	other	than
Ci,	thus	creating	M(M–1)	=	12	smaller	links.	They	are	shown	in	the	facing
column,	superimposed	on	a	(gray)	photographic	negative	of	the	original	links.
And	each	stage	takes	the	chain	with	which	it	started	and	inverts	it	in	each	of	the
original	Cm.	Here	several	stages	are	shown	in	black,	each	being	superposed	on
the	preceding	one,	shown	in	white	on	gray	background.	Ultimately,	the	chain
thins	out	to	its	thread,	which	is	L.
Unfortunately,	some	links	remain	of	substantial	size	after	large	numbers	of

stages,	and	even	fairly	advanced	approximate	chains	give	a	poor	idea	of	of	L.
This	difficulty	is	exemplified	in	horrid	fashion	in	Plate	179.





THE	NOTION	OF	FRACTAL	OSCULATION

My	alternative	construction	of	L	involves	a	new	fractal	notion	of	osculation	that
extends	an	obvious	facet	of	the	Apollonian	case.
STANDARD	OSCULATION.	This	notion	is	linked	to	the	concept	of

curvature.	To	the	first	order,	a	standard	curve	near	a	regular	point	P	is
approximated	by	the	tangent	straight	line.	To	the	second	order,	it	is	approximated
by	the	circle,	called	osculating,	that	has	the	same	tangent	and	the	same
curvature.
To	index	the	circles	tangent	to	the	curve	at	P,	a	convenient	parameter,	u,	is	the

inverse	of	the	(arbitrarily	oriented)	distance	from	P	to	the	circle’s	center.	Write
the	index	of	the	osculating	circle	as	u0.	If	u<u0,	a	small	portion	of	curve	centered
at	P	lies	entirely	on	one	side	of	the	tangent	circle,	while	if	u>u0	it	lies	entirely	on
the	other	side.
This	u0	is	what	physicists	call	a	critical	value	and	mathematicians	call	a	cut.

And	|u0|	defines	the	local	“curvature.”
GLOBAL	FRACTAL	OSCULATION.	For	the	Apollonian	net,	the	definition

of	osculation	through	the	curvature	is	meaningless.	However,	at	every	point	of
the	net	where	two	packing	circles	are	tangent	to	each	other,	they	obviously
“embrace”	the	rest	of	L	between	them.	It	is	tempting	to	call	both	of	them
osculating.
To	extend	this	notion	to	a	non-Apollonian	sets	L,	we	take	a	point	where	L	has

a	tangent,	and	start	with	the	definition	of	ordinary	osculation	based	on	criticality
(=	cut).	The	novelty	is	that,	as	u	varies	from—∞	to	+∞,	the	single	critical	u0	is
replaced	by	two	distinct	values,	u’	and	u“>u’,	defined	as	follows:	For	all	u<u′,	L
lies	entirely	to	one	side	of	our	circle,	while	for	all	u<u”,	L	lies	entirely	to	the
other	side,	and	for	u’	<	u	<	u”,	parts	of	L	are	found	on	both	sides	of	the	circle.	I
suggest	that	the	circles	of	parameters	u’	and	u”	both	be	called	fractally
osculating.
Any	circle	bounds	two	open	discs	(one	includes	the	circle’s	center,	and	the

other	includes	the	point	at	infinity).	The	open	discs	bounded	by	the	osculating
circles	and	lying	outside	L	will	be	called	osculating	discs.
It	may	happen	that	one	or	two	osculating	circles	degenerate	to	a	point.



LOCAL	VERSUS	GLOBAL	NOTIONS.	Returning	to	standard	osculation,	we
observe	that	it	is	a	local	concept,	since	its	definition	is	independent	of	the	curve’s
shape	away	from	P.	In	other	words,	the	curve,	its	tangent,	and	its	osculating
circle	may	intersect	at	any	number	of	points	in	addition	to	P.	By	contrast,	the
preceding	definition	of	fractal	osculation	is	global,	but	this	distinction	is	not
vital.	Fractal	osculation	may	be	redefined	locally,	with	a	corresponding	split	of
“curvature”	into	2	numbers.	However,	in	the	application	at	hand,	global	and
local	osculations	coincide.
OSCULATING	TRIANGLES.	 	Global	fractal	osculation	has	a	counterpart

in	a	familiar	context.	To	define	the	interior	of	our	old	friend	the	Koch	snowflake
curve	K	as	a	sigma-triangle	(σ-triangle),	it	suffices	that	the	triangles	laid	at	each
new	stage	of	Plate	42	be	lengthened	as	much	as	is	feasible	without	intersecting
the	snowflake	curve.



σ-DISCS	THAT	OSCULATE	L

Osculating	discs	and	σ-discs	are	the	key	of	my	new	construction	of	L,	which	is
free	from	the	drawbacks	listed	on	p.	173.	This	construction	is	illustrated	here	for
the	first	time	(though	it	was	previewed	in	1980,	in	The	1981	Springer
Mathematical	Calendar!).	The	key	is	to	take	the	inverses,	not	of	the	Cm
themselves,	but	of	some	of	circles	Γijk,	which	(as	defined	on	here)	are	orthogonal
to	triplets	Ci,	Cj,	and	Ck.	Again,	we	assume	that	the	Γijk	are	not	all	identical	to	a
single	Γ.
RESTRICTION	TO	M=4.	The	assumption	M=4	insures	that,	for	every	triplet

i,j,k,	either	one	or	the	other	of	the	two	open	discs	bounded	by	Γijk—namely,
either	its	inside	or	its	outside—contains	none	of	the	points	γmn	which	we	define
on	here.	We	shall	denote	this	γ-free	disc	by	Δijk.
My	construction	of	L	is	rooted	in	the	following	observations:	every	γ-free	Δijk

osculates	L;	so	do	their	inverses	and	repeated	inverses	in	the	circles	Cm;	and	the
clans	built	using	the	Δijk	as	seeds	cover	the	whole	plane	except	for	the	curve	L.
Plate	177	uses	the	same	Poincaré	chain	as	already	used	on	here,	but	is	drawn

on	larger	scale.	As	is	true	in	most	cases,	the	first	stage	outlines	L	quite
accurately.	Later	stages	add	detail	very	“efficiently,”	and	after	few	stages	the
mind	can	interpolate	the	curve	L	without	the	temptation	of	error	present	in	the
Poincaré	approach.



GENERALIZATIONS

CHAINS	WITH	FIVE	OR	MORE	LINKS.	When	the	number	of	original	links	in
a	Poincaré	chain	is	M	>	4,	my	new	construction	of	L	involves	an	additional	step:
it	begins	by	sorting	the	Γ	circles	into	2	bins.	Some	Γ	circles	are	such	that	each	of
the	open	discs	bounded	by	Γ	contains	at	least	one	point	γmn;	as	a	result,	Δijk	is
not	defined.	Such	Γ	circles	intersect	L	instead	of	osculating	it.	But	they	are	not
needed	to	construct	L.
The	remaining	circles	Γijk	define	osculating	discs	Δijk	that	fall	into	two

classes.	Adding	up	the	clans	of	the	Δijk	in	the	first	class,	one	represents	the
interior	of	L,	and	adding	up	the	clans	of	the	Δijk	in	the	second	class,	one
represents	the	exterior	of	L.
The	same	is	true	in	many	(but	not	all)	cases	when	the	Cm	fail	to	form	a

Poincaré	chain.
OVERLAPPING	AND/OR	DISASSEMBLED	CHAINS.	When	Cm	and	Cn

have	two	intersection	points	γ’mn	and	γ”mn,	these	points	jointly	replace	γ.	When
Cm	and	Cn	are	disjoint,	γ	is	replaced	by	the	two	mutually	inverse	points	γ’mn	and
γ”mn.	The	criterion	for	identifying	Δijk	becomes	cumbersome	to	state,	but	the
basic	idea	is	unchanged.
RAMIFIED	SELF-INVERSE	FRACTALS.	L	may	borrow	features	from	both

a	crumpled	loop	(Jordan	curve),	and	an	Apollonian	net,	yielding	a	fractally
ramified	curve	akin	to	those	examined	in	Chapter	14,	but	often	much	more
baroque	in	appearance,	as	in	Plate	C7.
SELF-INVERSE	DUSTS.	It	may	also	happen	that	L	is	a	fractal	dust.



THE	APOLLONIAN	MODEL	OF	SMECTICS

This	section	outlines	the	part	that	Apollonian	packing	and	fractal	dimension	play
in	the	description	of	a	category	of	“liquid	crystals.”	In	doing	so,	we	cast	a	glance
toward	one	of	the	most	active	areas	of	physics,	the	theory	of	critical	points.	An
example	is	the	“point”	on	a	temperature-pressure	diagram	that	describes	the
physical	conditions	under	which	solid,	liquid,	and	gaseous	phases	can	coexist	at
equilibrium	in	a	single	physical	system.	The	analytic	characteristics	of	a	physical
system	in	the	neighborhood	of	a	critical	point	are	scaling,	therefore	governed	by
power	laws,	and	specified	by	critical	exponents	(Chapter	36).	Many	of	them	turn
out	to	be	fractal	dimensions;	the	first	example	is	encountered	here.
Since	liquid	crystals	are	little	known,	we	describe	them	by	paraphrasing	Bragg

1934.	These	beautiful	and	mysterious	substances	are	liquid	in	their	mobility	and
crystalline	in	their	optical	behavior.	Their	molecules	are	relatively	complicated
structures,	lengthy	and	chain-like.	Some	liquid	crystal	phases	are	called	smectic,
from	the	Greek	σµηγµα	signifying	soap,	because	they	constitute	a	model	of	a
soaplike	organic	system.	A	smectic	liquid	crystal	is	made	of	molecules	that	are
arranged	side	by	side	like	corn	in	a	field,	the	thickness	of	the	layer	being	the
molecules’	length.	The	resulting	layers	or	sheets	are	very	flexible	and	very
strong	and	tend	to	straighten	out	when	bent	and	then	released.	At	low
temperatures,	they	pile	regularly,	like	the	leaves	of	a	book,	and	form	a	solid
crystal.	When	temperatures	rise,	however,	the	sheets	become	able	to	slide	easily
on	each	other.	Each	layer	constitutes	a	two-dimensional	liquid.
Of	special	interest	is	the	focal	conics	structure.	A	block	of	liquid	crystal

separates	into	two	sets	of	pyramids,	half	of	which	have	their	bases	on	one	of	two
opposite	faces	and	vertices	on	the	other.	Within	each	pyramid,	liquid	crystal
layers	fold	to	form	very	pointed	cones.	All	the	cones	have	the	same	peak	and	are
approximately	perpendicular	to	the	plane.	As	a	result,	their	bases	are	discs
bounded	by	circles.	Their	minimum	radius	∈	is	the	thickness	of	the	liquid
crystal’s	layers.	Within	a	spatial	domain	such	as	a	square-based	pyramid,	the
discs	that	constitute	the	bases	of	the	cones	are	distributed	over	the	pyramid’s
base.	To	obtain	an	equilibrium	distribution,	one	begins	by	placing	in	the	base	a
disc	of	maximum	radius.	Then	another	disc	with	as	large	a	radius	as	possible	is



placed	within	each	of	the	four	remaining	pieces,	and	so	on	and	so	forth.	If	it
were	possible	to	proceed	without	end,	we	would	achieve	exact	Apollonian
packing.
The	physical	properties	of	of	this	model	of	soap	depend	upon	the	surface	and

perimeter	of	the	sum	of	interstices.	The	link	is	affected	through	the	fractal
dimension	D	of	a	kind	of	photographic	“negative,”	the	gasket	that	the	molecules
of	soap	fail	to	penetrate.	Details	of	the	physics	are	in	Bidaux,	Boccara,	Sarma,
Sèze,	de	Gennes	&	Parodi	1973.
This	Plate	illustrates.
TOP	FIGURE.	In	Poincaré	chains	with	M=4,	at	least	one	of	the	discs	Δijk	is

always	unbounded,	call	it	Δ123,	and	it	intersects	the	disc	Δ341.	(Here,	Δ341	is	also
unbounded,	but	in	other	cases	it	is	not.)	The	union	of	Δ123	and	Δ341,	shown	in
gray,	provides	a	first	approximation	of	the	outside	of	L.	It	is	analogous	to	the
approximation	of	the	outside	of	Koch’s	K	by	the	regular	convex	hexagon	in	Plate
43.
The	discs	Δ234	and	Δ412	intersect,	and	their	union,	shown	in	black,	provides	a

first	approximation	of	the	inside	of	L.	It	is	analogous	to	the	approximation	of	the
inside	of	K	by	the	two	triangles	that	form	the	regular	star	hexagon	in	Plate	43.
MIDDLE	FIGURE.	A	second	approximation	of	the	outside	of	L	is	achieved

by	adding	to	Δ123	and	Δ341	their	inverses	in	C4	and	C2,	respectively.	The	result,
shown	in	gray,	is	analogous	to	the	second	approximation	of	the	outside	of	K	in
Plate	43.
The	corresponding	second	approximation	of	the	inside	of	L	is	achieved	by

adding	to	Δ234	and	Δ412	their	inverses	in	C1	and	C3,	respectively.	The	result,
shown	in	black,	is	analogous	to	the	second	approximation	of	the	inside	of	K	in
Plate	43.
BOTTOM	FIGURE.	The	outside	of	L,	shown	in	gray,	is	the	union	of	the	clans

of	Δ123	and	Δ341.	And	the	inside	of	L,	shown	in	black,	is	the	union	of	the	clans	of
Δ234	and	Δ412.	The	fine	structure	of	the	inside	of	L	is	seen	in	the	bottom	Plate
179,	using	a	different	Poincaré	chain.	Together,	the	black	and	gray	open	regions
cover	the	whole	plane,	minus	L.



PLATE	177	A	SELF-INVERSE	FRACTAL	(MANDELBROT
CONSTRUCTION)

	



Plate	178	SELF-HOMOGRAPHIC	FRACTAL,	NEAR	THE	PEANO
LIMIT

	
To	the	mathematician,	the	main	interest	of	groups	based	upon	inversions	resides
in	their	relation	with	certain	groups	of	homographies.	An	homography	(also
called	Möbius,	or	fractional	linear	transformation)	maps	the	z-plane	by	z
(az+b)/(cz+d),	where	ad—bc=1.	The	most	general	homography	can	be	written	as
the	product	of	an	inversion,	a	symmetry	with	respect	to	a	line	(which	is	a
degenerate	inversion),	and	a	rotation.	This	is	why,	in	the	absence	of	rotation,	the
study	of	homographies	learns	much	from	the	study	of	groups	based	on
inversions.	But	it	is	obvious	that	allowing	the	rotations	brings	in	new	riches.



Here	is	an	example	of	limit	set	L	for	a	group	of	homographies.	David
Mumford	devised	it	(in	the	course	of	investigations	inspired	by	the	new	results
reported	in	this	chapter),	and	kindly	allowed	its	publication	here.	This	shape	is
almost	plane-filling,	and	shows	uncanny	analogies	and	differences	with	the
almost	plane-filling	shape	in	Plate	191.
The	fact	that	the	limit	set	of	a	group	of	homographies	is	a	fractal	has	been

proven	under	wide	conditions	by	T.	Akaza,	A.	F.	Beardon,	R.	Bowen,	S.	J.
Patterson,	and	D.	Sullivan.	See	Sullivan	1979.



Plate	179	A	CELEBRATED	SELF-INVERSE	FRACTAL,	CORRECTED
(MANDELBROT	CONSTRUCTION)

	
The	top	left	reproduces	Figure	156	of	Fricke	&	Klein	1897,	which	claims	(in	my
terminology)	to	represent	the	self-inverse	fractal	whose	generator	is	made	of	the
5	circles	that	bound	the	blackened	central	region.	This	Figure	has	been
reproduced	very	widely.
The	outline	of	the	black	shape	on	the	top	right	shows	the	actual	shape	of	this

fractal,	as	given	by	my	osculating	σ-disc	construction.	The	discrepancy	is	horrid.
Fricke	knew	that	L	incorporates	circles,	and	he	instructed	his	draftsman	to
include	them.	But	otherwise	Fricke	did	not	know	what	sort	of	very	irregular
shape	he	should	expect.
The	actual	L	includes	the	boundary	L*	of	the	shape	drawn	on	the	bottom	right

using	my	algorithm.	This	L*	is	the	self-inverse	fractal	corresponding	to	the	four
among	the	generating	circles	that	form	a	Poincaré	chain.	Transforms	of	L*	by
other	inversions	are	clearly	seen	to	belong	to	L.	Mandelbrot	1982i	elaborates
upon	this	plate.



19

Cantor	and	Fatou	Dusts;	Self-Squared	Dragons

This	chapter	takes	up	two	very	simple	families	of	nonlinear	transformations
(mappings)	and	investigates	certain	fractal	sets	which	these	transformations
leave	invariant,	and	for	which	they	can	serve	as	generators.
First,	a	broken	line	transformation	of	the	real	line	deepens	our	understanding

of	an	old	acquaintance,	the	Cantor	dust.	These	remarks	could	have	been
squeezed	into	Chapter	8,	but	they	are	better	appreciated	at	this	point.
In	particular,	they	help	appreciate	the	effect	of	the	real	and	complex	quadratic

transforms,	of	the	form	x f*(x)	=	x2—µ,	where	x	and	µ	are	real	numbers,	or	z
f*(z)	=	z2—µ,	where	z=x+iy	and	µ	are	complex	numbers.
The	elementary	case	µ	=	0	is	geometrically	dull,	but	other	values	of	µ	involve

extraordinary	fractal	riches,	many	of	them	first	revealed	in	Mandelbrot	1980n.
The	invariant	shapes	in	question	are	best	obtained	as	a	by-product	of	the	study

of	iteration,	that	is,	of	the	repeated	application	of	one	of	the	above
transformations.	The	initial	values	will	be	denoted	by	x0	or	z0,	and	the	k	times
iterated	transforms	by	f*	will	be	denoted	by	xk	or	zk.
Iteration	was	studied	in	three	rough	stages.	The	first,	concerned	with	complex

z,	was	dominated	by	Pierre	Fatou	(1878-1929)	and	by	Gaston	Julia	(1893-1978).
Their	publications	are	masterpieces	of	classic	complex	analysis,	greatly	admired
by	the	mathematicians,	but	exceedingly	difficult	to	build	upon.	In	my	work,	of
which	this	chapter	is	a	very	concise	sketch,	some	of	their	basic	findings	are
made	intuitive	by	combining	analysis	with	physics	and	detailed	drawing.	And
innumerable	new	facts	emerge.
The	resulting	revival	makes	the	properties	of	iteration	essential	to	the	theory

of	fractals.	The	fact	that	the	Fatou-Julia	findings	did	not	develop	to	become	the
source	of	this	theory	suggests	that	even	classical	analysis	the	needs	intuition	to
develop,	and	can	be	helped	by	the	computer.
The	intermediate	stage	includes	P.	J.	Myrberg’s	studies	of	iterates	of	real

quadratic	mappings	of	 	(e.g.,	Myrberg	1962),	Stein	&	Ulam	1964,	and	Brolin



1965.
The	current	stage	largely	ignores	the	past,	and	concentrates	on	self-mappings

of	[0,1],	as	surveyed	in	Gurel	&	Rössler	1979,	Helleman	1980,	Collet	&	Eckman
1980,	Feigenbaum	1981,	and	Hofstadter	1981.	This	chapter’s	last	section
concerns	the	exponent	δ	due	to	Grossmann	&	Thomae	1977	and	Feigenbaum
1978:	the	existence	of	δ	is	proven	to	follow	from	a	more	perspicuous	(fractal)
property	of	iteration	in	the	complex	plane.



THE	CANTOR	DUST	CAN	BE	GENERATED	BY	A
NONLINEAR	TRANSFORMATION

We	know	from	Chapter	8	that	the	triadic	Cantor	dust	C	is	invariant	by
similitudes	whose	ratio	is	of	the	form	3–k.	This	self-similarity	is	a	vital	property,
but	it	does	not	suffice	to	specify	C.	In	sharp	contrast,	C	is	entirely	determined	as
the	largest	bounded	set	that	is	invariant	under	the	following	nonlinear	“inverted
V”	transformation:

x f(x)	=	{½—|x—½|}/r,	with	r=⅓.

More	precisely,	we	apply	this	self-mapping	of	the	real	axis	repeatedly,	with	x0
spread	out	over	the	x-axis,	and	the	final	values	reduce	to	the	point	x=—∞,	plus
the	Cantor	dust	C.	The	fixed	points	x=0	and	x=¾	belong	to	C.
SKETCH	OF	A	PROOF	OF	THE	INVARIANCE	OF	C.	Since	f(x)=3x	when

x<0,	the	iterates	of	all	the	points	x0<0	converge	to—∞	directly,	that	is,	without
ceasing	to	satisfy	xn<0.	For	the	points	x0>1,	direct	convergence	is	preceded	by
one	preliminary	step,	since	xk<0	for	all	k≥1.	For	the	points	in	the	gap	⅓<x0<⅔,
there	are	2	preliminary	steps,	since	x1>0	but	xk<0	for	all	k≥2.	For	the	points	in
the	gaps	1/9<x0<2/9	or	7/9<x0<8/9,	there	are	3	preliminary	steps.	More
generally,	if	an	interval	is	bounded	by	a	gap	that	is	sent	to—∞	after	k
preliminary	steps,	this	interval’s	(open)	mid	third	will	proceed	directly	to—∞
after	the	(k+1)st	step.	But	all	the	points	of	C	are	found	to	fail	to	converge	to—∞.



FINITENESS	OF	THE	OUTER	CUTOFF

To	extend	these	results	to	the	general	Cantor	dust	with	N=2	and	r	between	0	and
½,	it	suffices	to	plug	in	the	desired	r	in	f(x)=	{½—|x—½|}/r.	To	obtain	any	other
Cantor	dust,	the	graph	of	f(x)	must	be	an	appropriate	zigzag	curve.
However,	no	comparable	method	is	available	for	the	Cantor	dust	extrapolated

to	the	whole	real	axis.	This	is	a	special	case	of	a	very	general	feature:	Typically,
a	nonlinear	f(x)	carries	within	itself	a	finite	outer	cutoff	Ω.	To	the	contrary,	as	we
know	well,	all	linear	transformations	(similarities	and	affinities)	are
characterized	by	Ω=∞,	and	a	finite	Ω	(if	one	is	required)	must	be	imposed
artificially.



ANATOMY	OF	THE	CANTOR	DUST

We	know	from	Chapter	7	that	C	is	a	very	“thin”	set,	yet	the	behavior	of	the
iterates	of	f(x)	leads	to	a	better	understanding	of	fine	distinctions	between	its
points.
Everyone	must	be	tempted,	at	first	acquaintance,	to	believe	that	C	reduces	to

the	end	points	of	the	open	gaps.	But	this	is	very	far	from	being	the	case,	because
C	includes	by	definition	all	the	limits	of	sequences	of	gap	end	points.
This	fact	is	not	reputed	intuitive.	With	many	fellow	students,	I	would	have

agreed	if	our	battered	acquaintance	Hans	Hahn	had	listed	these	limit	points
among	the	concepts	whose	existence	must	be	imposed	by	cold	logic.	But	the
present	discussion	yields	intuitive	proof	that	these	limit	points	have	strong	and
diverse	personalities.
For	example,	the	point	x=¾,	which	f(x)	leaves	unchanged,	lies	neither	within

any	mid	third	interval,	nor	on	its	boundary.	Points	of	the	form	x=(¼)/3k	have
iterates	that	converge	to	x=¾.	In	addition,	there	is	an	infinity	of	limit	cycles,
each	made	up	of	a	finite	number	of	points.	And	C	also	contains	points	whose
transforms	run	endlessly	around	C.



THE	SQUARING	GENERATOR

The	inverted	V	generating	function	f(x)	used	in	the	preceding	sections	was
chosen	to	yield	a	familiar	result.	But	it	makes	the	Cantor	dust	seem	contrived.
Now	we	replace	it	by

x f(x)=λx(1—x),

whose	unexpected	wealth	of	properties	was	first	noted	in	Fatou	1906.	Changing
the	origin	and	the	scale	of	the	x,	and	writing	µ=λ2/4—λ/2,	this	function	can	be
written	as

x f*(x)	=	x2—µ.

Convenience	is	served	by	using	sometimes	f(x),	and	sometimes	f*(x).
It	is	nice	to	call	f(x)	or	f*(x)	the	squaring	generator.	Squaring	is,	of	course,	an

algebraic	operation,	but	it	is	given	a	geometric	interpretation	here,	so	that	the
sets	it	leaves	invariant	can	be	called	self-squared.	Strict	squaring	replaces	the
point	of	abscissa	x	by	the	point	of	abscissa	x2.	Thus,	the	self-squared	points	on
the	line	reduce	to	x=oo,	x=0,	and	x=1.	The	addition	of—µ	may	seem	totally
innocuous,	but	in	fact	it	introduces	totally	unexpected	possibilities	we	now
consider.



FATOUʹS	REAL	SELF-SQUARED	DUSTS

Having	yielded	a	familiar	end	product,	the	Cantor	dust,	the	V	transformation
makes	an	extraordinary	but	never	widely	known	discovery	of	Pierre	Fatou	easier
to	state.	Fatou	1906	assumes	that	λ	is	real	and	satisfies	λ>4,	and	he	investigates
the	largest	of	the	bounded	sets	on	 ,	that	are	left	invariant	under	f(x).	This	is	a
close	relative	to	the	Cantor	dust,	which	I	call	real	Fatou	dust.	It	requires	no
further	explanation,	and	is	illustrated	in	Plate	192.
In	the	complex	plane,	the	largest	bounded	self-squared	set,	for	the	above	λ’s,

remains	the	real	Fatou	dust.



SELF-SQUARED	JULIA	CURVES	IN	THE	PLANE
(MANDELBROT	1980n)

The	simplest	self-squared	curve	is	obtained	for	µ=0:	it	is	the	circle	|z|	=	1.	By	the
transformation	z z2,	a	belt	wound	once	around	the	circle	stretches	into	a	belt
wound	twice,	the	“buckle”	at	z=1	remaining	fixed.	The	corresponding	largest
bounded	self-squared	domain	is	the	disc	|z|≤1.
However,	introducing	a	real	µ≠0	(Plates	186	and	187),	then	a	complex	µ

(Plates	190	and	191),	opens	Pandora’s	boxes	of	possibilities,	the	Julia	fractal
curves.	They	satisfy	the	eye	no	less	than	they	satisfy	the	mind.
THE	SEPARATOR	S.	The	topology	of	the	largest	bounded	self-squared	set

depends	on	where	µ	lies	with	respect	to	a	ramified	curve	S,	which	I	discovered
and	now	call	separator.	It	is	the	connected	boundary	of	the	black	shape	in
bottom	Plate	188;	it	is	a	“limit	lemniscate,”	namely	the	limit	for	n ∞	of	the
algebraic	curves	called	lemniscates,	defined	by	 (0)|=R	for	some	large	R.	See
Plate	189	for	the	structure	of	S.
THE	ATOMS.	The	open	domain	within	S	splits	into	an	infinity	of	maximal

connected	sets	I	now	propose	to	call	“atoms.”	Two	atoms’	boundaries	either	fail
to	overlap,	or	have	in	common	one	point,	to	be	called	“bond,”	that	belongs	to	S.
TOPOLOGICAL	DIMENSION.	When	µ	lies	outside	S,	the	largest	bounded

self-squared	set	is	a	(Fatou)	dust.	When	µ	lies	within	S,	or	is	a	bond,	the	largest
such	set	is	a	domain	bounded	by	a	self-squared	curve.	At	least	some	µ	on	S	yield
a	tree-like	curve.
SELF-SQUARED	FRACTALS.	These	dusts	and	curves	being	fractal	when

µ≠0	is	rumored	to	have	been	proven	fully	in	some	further	cases	by	Dennis
Sullivan,	and	I	harbor	no	doubt	it	will	be	proven	in	all	cases.
The	shape	of	a	self-squared	dust	or	curve	varies	continuously	with	µ,	hence	D

is	bound	to	be	a	smooth	function	of	µ.
RAMIFICATION.	When	X	lies	in	one	of	the	open	empty	discs	of	top	Plate

189,	the	self-squared	curve	is	a	closed	simple	curve	(not	ramified,	a	loop),	as	in
Plates	186	and	187.
When	λ	lies	on	the	circles	|λ|=1	or	|λ–2|=1,	or	in	the	surrounding	open

connected	region,	the	self-squared	curve	is	a	ramified	net,	with	tremas	bounded



by	fractal	loops,	like	the	dragons	in	Plate	191.
When	λ	lies	in	the	very	important	island	molecules,	which	will	soon	prove	to

be	regions	of	nonconfluence	to	1,	the	self-squared	curve	is	either	a	σ-loop,	or	a	σ-
dragon,	as	in	bottom	Plate	190.	The	σ	introduces	no	new	loop.



µ-ATOMS	AND	µ-MOLECULES

To	dissect	the	parameter	map	further	is	easier	when	the	parameter	is	µ.	A	µ-atom
may	be	heart-shaped,	in	which	case	it	is	the	“seed”	to	which	an	infinity	of	oval-
shaped	atoms	bind	either	directly	or	through	intermediate	atoms.	Mutually
bound	atoms,	plus	their	bonds,	form	a	“molecule.”	A	seed’s	cusp	is	never	a	bond.
To	each	atom	is	attached	an	integer	w,	its	“period.”	When	µ	lies	in	an	atom	of

period	w,	the	iterates	 (z)	converge	to	∞	or	to	a	stable	limit	cycle	containing	w
points.	Within	an	atom	of	period	w,	| (zµ)|<1,	where	zµ	is	any	point	of	the	limit
cycle	corresponding	to	µ.	On	the	atom’s	boundary,	| ‘(zµ)|	=	1,	with	 ’(zµ)	=	1
characterizing	a	cusp	or	a	“root.”	Each	atom	contains	a	point	to	be	called
“nucleus,”	satisfying	 ’(zµ)	=	0	and	 (0)	=	0.
The	nuclei	on	the	real	axis	were	introduced	by	Myrberg	(see	Myrberg	1962),

and	rediscovered	in	Metropolis,	Stein	&	Stein	1973.	The	corresponding	maps	are
often	called	“superstable”	(Collet	&	Eckman	1980).
Viewed	as	algebraic	equation	in	µ,	 (0)	=	0	is	of	order	2W-1.	Hence,	there

could	be	at	most	2w-1	atoms	of	period	w,	but	there	are	fewer,	except	for	w=1.	For
w=2,	 (0)	=	0	has	2	roots,	but	one	of	them	is	already	the	nucleus	of	an	“old”
atom	of	period	1.	More	generally,	all	the	roots	of	 (0)	=	0	are	also	roots	of	 (0)
=	0	where	k	is	an	integer	>	1.	Next,	observe	that	each	rational	boundary	point	on
the	boundary	of	an	atom	of	period	w,	defined	as	satisfying	 ’(zµ)	=	exp(2πim/n),
where	m/n	is	an	irreducible	rational	number	<1,	carries	a	“receptor	bond”	ready
to	connect	to	an	atom	of	period	nw.	As	a	result,	some	new	atoms	bind	to	existing
receptor	bonds.	But	not	all	new	atoms	are	thereby	exhausted,	and	the	remaining
ones	have	no	choice	but	to	seed	new	molecules.	The	molecules	are	therefore
infinite	in	number.
When	µ	varies	continuously	in	a	molecule,	each	outbound	traversal	of	a	bond

leads	to	bifurcation:	w	is	multiplied	by	n.	Example:	increasing	a	real-valued	µ
leads	to	Myrberg’s	period	doubling.	The	inverse	of	bifurcation,	which
Mandelbrot	1980n	investigates	and	calls	confluence,	must	stop	at	the	period	of
the	molecule’s	seed.	The	continent	molecule	is	the	region	of	confluence	to	c=1,
and	each	island	molecule	is	a	region	of	confluence	to	c>1.	The	dragon’s	or	sub-



dragon’s	shape	is	ruled	by	the	values	of	 ’(zµ)	and	w/c.



THE	SEPARATOR	IS	A	FRACTAL	CURVE;
FEIGENBAUM’S	δ	AS	A	COROLLARY

I	conjecture	 	via	a	“renormalization”	argument	that	atoms	increasingly
removed	from	their	molecule’s	seed	come	increasingly	close	to	being	identical
in	shape.
A	corollary	is	that	the	boundary	of	each	molecule	is	locally	self-similar.	Since

it	is	not	smooth	on	small	scales,	it	is	a	fractal	curve.
This	local	self-similarity	generalizes	a	fact	concerning	Myrberg	bifurcation,

due	to	Grossmann	&	Thomae	and	to	Feigenbaum.	The	widths	of	increasingly
small	sprouts’	intercepts	by	the	real	axis	of	λ	or	µ,	converge	to	a	geometrically
decreasing	sequence,	of	ratio	δ=4.66920...	(Collet	&	Eckman	1980).	In	its
original	form,	the	existence	of	δ	seems	a	technical	analytic	result.	Now	it	proves
to	be	an	aspect	of	a	broader	property	of	fractal	scaling.
Each	bifurcation	into	m	>	2	introduces	an	additional	basic	ratio.



Plate	185	SELF-SQUARED	FRACTAL	CURVES	FOR	REAL	λ
	
The	shapes	in	Plates	185	to	192	are	presented	here	for	the	first	time,	except	for	a
few	that	are	reproduced	from	Mandelbrot	1980n.
The	left	side	of	this	plate	represents	the	maximal	bounded	self-squared

domains	for	λ	=	1,	1.5,	2.0,	2.5	and	3.0.	The	central	black	shape	spans	the
segment	[0,1].
λ=1:	SCALLOP	SHELL.
λ=3:	SAN	MARCO	DRAGON	CURVE.	This	is	a	mathematician’s	wild

extrapolation	of	the	skyline	of	the	Basilica	in	Venice,	together	with	its	reflection
in	a	flooded	Piazza;	I	nicknamed	it	the	San	Marco	dragon.
The	right	side	of	this	plate	is	relative	to	λ=3.3260680.	This	is	the	nuclear	λ	(as

defined	on	p.	184)	corresponding	to	w=2.	The	corresponding	self-squared	shape
is	turned	by	90°	to	make	it	fit	in.
TOP	PLATE	188.	This	is	part	of	the	inverse	of	the	λ-map	with	respect	to	λ=1.

Examining	on	the	λ-map	the	sprouts	whose	roots	are	of	the	form	λ=exp(2πi/n),



one	gains	the	impression	that	“corresponding	points”	lie	on	circles.	The	present
plate	provides	confirmation.	Other	perceived	circles	are	confirmed	by	different
inversions.
ISLAND	MOLECULES.	Many	of	the	“spots”	around	the	maps	are	genuine

“island	molecules,”	first	reported	in	Mandelbrot	1980n.	They	are	shaped	like	the
whole	µ	map,	except	for	a	nonlinear	distortion.
SEPARATOR,	SPINES	AND	TREES.	The	boundary	of	the	filled-in	black

domain	in	the	λ-	or	µ	map	is	a	connected	curve	I	discovered	and	call	separator
S.	The	set	within	S	decomposes	into	open	atoms	(see	text).	When	the	atom’s
period	is	w,	let	us	define	its	spine	as	the	curve	where	 ’(zµ)	is	real.
The	spines	lying	on	the	real	axis	are	known	in	the	theory	of	self-mapping	as

[0,1],	and	their	closure	is	known	to	be	[-2,4].
I	discovered	more	generally	that	the	closure	of	the	other	atom	spines

decomposes	into	a	collection	of	trees,	each	rooted	on	a	receptor	bond.	The	list	of
orders	of	ramification	at	different	points	of	such	a	tree	is	made	up	of	1	for	the
branch	tips,	plus	the	orders	of	bifurcation	leading	to	the	tree’s	root.	Furthermore,
when	the	tree	is	rooted	on	an	island	atom,	one	must	add	the	orders	of	bifurcation
leading	from	|λ-2|≤1	or	|λ|≤1	to	this	atom.
BOTTOM	LEFT	PLATE	189.	This	is	a	detailed	λ	map	near	λ=2-exp(-2πi/3).

The	set	within	S	is	the	limit	of	domains	of	the	form	|fn(½)|	<	R,	whose
boundaries	are	algebraic	curves	called	lemniscates.	A	few	such	domains	are
shown	here	in	superposition.	For	large	n,	these	domains	seem	disconnected,	and
so	does	the	λ	map,	but	in	fact	they	connect	outside	the	grid	used	in	the
computation.
BOTTOM	RIGHT	PLATE	189.	This	is	a	detailed	λ	map	near	λ=2-

exp(-2πi/100).	This	hundred-fold	branching	tree	shares	striking	features	with	the
z	map	in	Plate	191.
	
This	draped	“sculpture”	was	made	within	a	computer’s	memory,	by	a	process
that	amounts	to	whittling	away	all	points	in	an	initial	cube,	whose	iterates	by	z
λz(1-z)	converge	to	infinity.	The	parameter	λ	is	a	real	number	ranging	from	1	to
4.	The	λ	axis	runs	vertically	along	the	sculpture’s	side.	And	x	and	y	form	the
complex	number	z=x+iy.
Each	horizontal	section	is	a	maximal	bounded	self-squared	shape	of	parameter

µ.
For	the	special	value	λ=2,	this	section’s	boundary	is	a	circle:	the	drape’s



“belt.”
For	all	other	values	of	λ,	the	self-squared	shape’s	boundaries	are	fractal

curves,	including	those	shown	in	Plate	185.	One	perceives	striking	“pleats”
whose	position	varies	continuously	with	λ;	they	are	pressed	in	below	the	belt,
and	pressed	out	above	the	belt.
Of	special	interest	are	the	blobs	on	the	wall	holding	the	drape.	This	sculpture

cannot	possibly	do	justice	to	the	complication	of	the	top	of	the	drape.	A)	For
every	value	of	λ,	the	drape	includes,	as	“backbone,”	a	fractal	tree	formed	by	the
iterated	pre-images	of	the	x-interval	[0,1].	For	all	small,	and	some	high	values	of
λ<3,	this	tree’s	branches	are	completely	“covered	by	flesh.”	For	other	high
values	of	λ,	however,	there	is	no	flesh.	The	branches	along	either	x=½	or	y=0	are
visible	here,	but	the	graphic	process	unavoidably	misses	the	rest.	B)	Certain
horizontal	stripes	of	the	wall	behind	the	drape	are	entirely	covered	with	tiny
“hills”	or	“corrugations,”	but	only	a	few	of	the	largest	ones	can	be	seen.	These
stripes	and	hills	concern	the	“island	molecules”	(Plates	188	and	189)	intersected
by	the	real	axis.	Observations	A)	and	B)	generalize	the	Myrberg-Feigenbaum
theory.



Plate	187	 	COMPOSITE	OF	SELF-SQUARED	FRACTAL	CURVES	FOR
REAL	λ

	
BOTTOM	PLATE	188.	µ-MAP.The	µ	in	the	closed	black	area	(bounded	by	a



fractal	curve)	are	such	that	the	iterates	of	z0=0	under	z z2-µ	fail	to	converge	to
∞.	The	large	cusp	is	µ=-¼,	and	the	right-most	point	is	µ=2.
TOP	PLATE	189.	λ-MAP.	The	λ	in	the	closed	black	area,	plus	the	empty	disc,

satisfy	Reλ>	1	and	are	such	that	the	iterates	of	Z0=½	under	z λz(1-z)	fail	to
converge	to	oo.	The	full	λ	map	is	symmetric	with	respect	to	the	line	Reλ=	1.
THE	DISC	|λ-2|	≤	1,	AND	THE	DISC	|λ|	≤	1	LESS	λ=0.	The	λ	in	these

domains	are	such	that	the	iterates	of	z0=½	converge	to	a	bounded	limit	point.
CORONA	AND	SPROUTS.	The	λ-map	outside	the	empty	discs	forms	a

“corona.”	It	splits	into	“sprouts,”	whose	“roots”	are	“receptor	bonds”	defined	as
the	points	of	the	form	λ=exp(2πim/n)	or	λ=2-exp(2πim/n),	with	m/n	an
irreducible	rational	number	<	1.



Publisher’s	Note	(Fall	1985).	The	filament	structure	of	the	µ	map	(now	known	as
the	Mandelbrot	set)	was	not	visible	on	the	rendering	that	was	used	in	earlier
printings.	We	have	therefore	substituted	a	new	variant,	due	to	J.	Milnor	and	I.
Jungreis,	which	thickens	the	filaments	so	they	can	be	seen.



Plates	188	and	189	THE	SEPARATORS	OF	z λz(1-z)	AND	OF	z z2-µ
	

Plates	190	and	191	SELF-SQUARED	DRAGONS;	APPROACH	TO	THE
“PEANO”	LIMIT

	
Each	self-squared	curve	is	attractive	in	its	own	way.	And	the	most	attractive	ones
to	me	are	the	“dragons”	shown	in	the	present	figures	and	in	Plate	C5.
DRACONIC	MOLTING.	To	watch	a	dragon	in	the	process	of	self-squaring

would	be	a	fascinating	sight!	A	monstrous	“molting”	detaches	the	skins	of	a
dragon’s	belly	and	back	from	their	innumerable	folds.	Then,	it	stretches	each
skin	to	twice	its	length,	which	of	course	remains	infinite	all	along!	Next,	it	folds
each	skin	around	the	back	as	well	as	the	belly.	And	finally,	it	re-attaches	all	the
folds	neatly	in	their	new	positions.
FRACTAL	HERALDRY.	The	self-squared	dragons	must	not	be	confused	with

the	self-similar	one	of	Harter	&	Heightway,	Plates	66	and	67.	The	reader	may
find	it	amusing	to	detail	the	similarities	and	the	many	differences.





SUCCESSIVE	BIFURCATIONS.	The	best	self-squared	dragons	obtain	where
λ	lies	in	a	sprout	of	Plate	189	that	corresponds	to	θ/2π=m/n,	with	small	integers
n	and	m.	Given	the	bifurcation	order	n,	the	number	of	dragon	heads	or	tails	(or
whatever	these	domains	should	be	called)	around	each	articulation	point	is	n.	A



second	bifurcation	of	order	m‘/n’	splits	each	of	these	domains	into	n’	“sausage
links,”	and	thins	them	down.
Dragons	with	a	nice	heft,	neither	obese	nor	skinny,	obtain	when	λ	lies	within	a

sprout,	at	some	distance	away	from	the	root.	Dragons	with	a	nice	twist	obtain
when	λ	lies	near	one	of	the	2	subsprouts	corresponding	to	an	order	of	bifurcation
of	4	to	10:	one	subsprout	yields	a	leftward,	the	other	a	rightward,	twist.
RIGHT	TOP	OF	PLATE	190.	“STARVED	DRAGON.”	A	dragon	subjected	to

infinitely	many	bifurcations	loses	all	flesh	and	collapses	into	a	skeletal	branched
curve.
The	topological	dimension	of	the	set	that	fails	to	go	to	∞	is	0	for	the	Fatou

dusts,	1	for	starved	dragons,	and	2	for	other	dragons.
BOTTOM	OF	PLATE	190.	σ-DRAGON.	This	shape	is	connected;	its	λ	lies	in

the	large	“offshore	island”	in	bottom	right	Plate	189.
PLATE	191.	THE	SINGULAR	LIMIT	λ=1.	PEANO	DRAGONS.	Let	λ	lie	in

an	island	offshore	of	the	bond	at	θ=2π/n.	As	n ∞,	θ 0,	hence	λ	tends	to	1.
The	corresponding	dragon	must	necessarily	converge	to	the	scallop	shape	at	the
base	of	the	drape	in	Plate	187.	But	a	qualitative	difference	separates	n=oo	from	n
large	but	finite.
As	n 	∞,	the	dragon’s	arms	grow	in	number,	the	skin	crumples,	and	the

skin’s	dimension	increases.	The	whole	really	attempts	to	converge	to	a	“hermit-
dragon”	that	would	fill	the	shell	of	a	λ=1	scallop	to	the	brim,	i.e.,	to	the
dimension	D=2.	A	self-squared	Peano	curve?	Yes,	but	we	know	from	Chapter	7
that	Peano	curves	are	not	curves:	as	it	attains	D=2,	our	dragon	curve	dies	as	a
curve	to	become	a	plane	domain.



Plate	192	REAL	SELF-SQUARED	FATOU	DUSTS	ON	[0,1]
	
Fatou	1906	is	a	masterpiece	of	an	odd	literary	genre:	the	Comptes	Rendus	Notes
of	the	Paris	Academy	of	Sciences.	In	many	cases,	the	purpose	is	to	reveal	little,
but	to	squirrel	evidence	that	the	author	had	thought	of	everything.
Among	other	marvelous	remarks	best	understood	after	long	self-study,	Fatou

1906	points	out	the	following.	When	λ	is	real	and	either	λ>4	or	λ<-2,	the	largest
bounded	set	that	the	transformation	x f(x)	=	λx(1-x)	leaves	invariant	is	a	dust
contained	in	[0,1].	This	plate	illustrates	this	dust’s	shape	for	λ>4.	Along	the
vertical	coordinate,	-4/λ	varies	from	-1	to	0.	The	black	intervals	mark	the	end
points	of	the	tremas	of	order	1	to	5.	The	end	points	x1	and	x2	of	the	mid	trema
are	solutions	of	the	equation	λx(1-x)=1;	they	draw	a	parabola.	Second-order
tremas	end	at	the	points	x1,2,	x1,2,	x2,1,	and	x2,2,	such	that	λxm,n(1-xm,n)	=	xm,	etc.
The	remarkable	relation	between	Cantor-like	dusts	and	one	of	the	most

elementary	among	all	functions	deserves	to	be	known	beyond	the	circle	of
specialists.



20

Fractal	Attractors	and	Fractal	(“Chaotic”)	Evolutions

This	chapter	seeks	to	acquaint	the	reader	with	a	theory	that	evolved
independently	of	fractals,	but	is	being	penetrated	by	them.	Its	most	common
name	is	“theory	of	strange	attractors	and	of	chaotic	(or	stochastic)	evolution,”
but	reasons	for	giving	it	the	new	name	in	the	title	will,	I	hope,	emerge	in	this
chapter.
Its	involvement	with	fractals	would	suffice	to	justify	mentioning	this	theory	in

this	Essay,	and	I	see	reasons	for	devoting	a	full	chapter	to	it.	A	practical	reason	is
that	little	special	exposition	is	required,	because	several	major	themes	can	be
presented	by	merely	reinterpreting	the	results	of	Chapters	18	and	19.
Secondly,	several	features	of	the	fractal	geometry	of	nature	become	clarified

when	contrasted	with	the	theory	of	fractal	attractors.	Indeed,	my	work	is
concerned	primarily	with	shapes	in	the	real	space	one	can	see,	at	least	through
the	microscope,	while	the	theory	of	attractors	is	ultimately	concerned	with	the
temporal	evolution	in	time	of	points	situated	in	an	invisible,	abstract,
representative	space.
This	contrast	is	especially	striking	in	the	context	of	turbulence:	turbulent

intermittency	was	the	first	major	problem	I	attacked	(starting	in	1964)	using
early	forms	of	fractal	techniques,	and	(quite	independently)	the	theory	of	strange
attractors	took	off	for	earnest	with	the	study	of	turbulence	in	Ruelle	&	Takens
1971.	Thus	far,	the	two	approaches	have	not	met,	but	they	are	bound	to	meet
soon.
Those	interested	in	the	sociology	of	science	will	savor	the	fact	that,	while	my

case	studies	that	linked	the	mathematical	monsters	to	real	physical	shapes
encountered	resistance,	the	abstract	attractors’	being	monstrous	shapes	was
accepted	with	equanimity.
A	third	reason	for	mentioning	fractal	attractors	is	suggested	by	the	fact	that	the

corresponding	evolutions	look	“chaotic”	or	“stochastic.”	As	seen	in	Chapters	21
and	22,	many	scholars	question	the	use	of	randomness	in	science;	now	the	hope



has	arisen	that	it	will	be	justified	via	fractal	attractors.
Finally,	those	who	have	accepted	many	chapters	ago	(or	one	or	two	Essays

ago)	my	contention	that	many	facets	of	nature	can	only	be	described	with	the
help	of	certain	sets	previously	reputed	pathological	may	be	impatient	to	move
from	“how”	to	“why.”	Expository	accounts	have	demonstrated	in	several	cases
that	it	is	not	difficult	to	sugar-coat	the	geometric	frames	in	previous	chapters,
making	them	more	immediately	palatable.	But	a	taste	for	fractals	is	one	I	wanted
the	reader	to	acquire,	however	bitter	it	may	first	seem	to	most	grown	scientists.
Furthermore,	pseudo-explanation	via	sugar-coating	is	never	compelling,	in	my
opinion,	as	explained	in	Chapter	42.	Therefore,	explanation	was	downplayed,
except	when	a	compelling	one	is	available,	as	in	Chapter	11.	In	addition,	I
suspect	that	many	further	genuine	explanations	will	come	forth	when	fractal
attractors	become	a	foundation	of	the	fractal	geometry	of	visible	natural	shapes.
Since	the	transforms	that	have	attractors	are	nonlinear,	the	visible	fractals	are

likely	not	to	be	self-similar.	This	is	fine:	there	was	a	paradox	in	my	use	of	the
fractal	counterpart	of	the	straight	line	to	handle	phenomena	ruled	by	nonlinear
equations.	The	scaling	fractals	that	account	well	for	a	natural	phenomenon
would	be	local	approximations	to	nonlinear	fractals.



THE	NOTION	OF	ATTRACTOR

The	present	chapter	centers	around	a	long	neglected	observation	due	to	Henri
Poincaré:	The	“orbits”	of	nonlinear	dynamical	systems	may	be	“attracted”	to	odd
sets	that	I	identify	as	nonlinear	fractals.
Let	us	first	examine	the	simplest	attractor:	a	point.	The	“orbit”	followed	by	the

motion	of	a	small	ball	put	inside	a	funnel	begins	with	wiggles	that	depend	on	its
initial	position	and	velocity,	but	converges	eventually	to	the	funnel’s	tip;	if	the
ball	is	bigger	than	the	funnel	aperture,	it	comes	to	rest	at	the	tip.	The	tip	is	a
stable	equilibrium	point,	or	stable	fixed	point,	for	the	ball.	In	a	nice	alternative
descriptive	terminology	(which	one	must	be	careful	not	to	interpret	in
anthropocentric	terms),	the	funnel’s	tip	is	called	an	attractor	point.
A	physical	system	may	also	have	a	stable	attracting	circle	or	ellipse.	For

example,	it	is	believed	(and	fervently	hoped,	though	no	one	will	live	long
enough	to	care)	that	the	solar	system	is	stable,	meaning	that	Earth’s	orbit,	if
perturbed,	would	eventually	be	“attracted	back”	into	its	present	rut.
More	generally,	a	dynamical	system	is	customarily	defined	as	follows:	Its

state	at	time	t	is	a	point	σ(t)	on	the	line,	in	the	plane,	or	in	some	higher
dimensional	Euclidean	“phase	space”	RE,	and	its	evolution	between	the	times	t
and	t+Δt	is	determined	by	rules	in	which	the	value	of	t	does	not	enter	explicitly.
Each	point	in	phase	space	can	be	taken	as	the	initial	state	σ(0)	at	t=0,	and	it	is
followed	by	an	orbit	defined	by	the	σ(t)	for	all	t>0.
The	major	distinction	between	such	systems	concerns	the	geometric

distribution	of	σ(t)	for	large	t’s.	A	dynamical	system	is	said	to	have	an	attractor
if	there	exists	a	proper	subset	A	of	the	phase	space	RE,	such	that	for	almost	all
starting	points	σ(0),	and	t	large	enough,	σ(t)	is	close	to	some	point	of	A.



THE	NOTION	OF	REPELLER

On	the	other	hand,	a	ball	can	be	poised	in	unstable	equilibrium	on	a	pencil’s
point.	When	the	initial	position	is	near	this	equilibrium,	the	ball	seems	to	be
pushed	away,	before	converging	to	stable	equilibrium	elsewhere.
The	set	of	all	unstable	equilibrium	states,	plus	their	limit	points,	is	called

repeller.
In	many	cases,	the	repellers	and	attractors	exchange	roles	by	turning	the

equations	around.	When	the	force	is	gravitation,	it	suffices	to	invert	the	direction
of	gravity.	For	example,	consider	a	largely	horizontal	sheet	with	a	dip	in	both
directions.	When	a	ball	is	positioned	on	the	sheet’s	upper	side	and	gravity	points
down,	let	A	denote	the	attractor	dip	and	R	the	repeller	dip.	When	the	ball	is
repositioned	on	the	sheet’s	lower	side	and	gravity	points	up,	A	and	R	exchange
roles.	Such	exchanges	play	a	central	role	in	this	chapter.



FRACTAL	ATTRACTORS.	“CHAOS”

Much	of	textbook	mechanics	concerns	dynamical	systems	whose	attractors	are
points,	near-circles,	or	other	shapes	from	Euclid.	But	these	are	rare	exceptions,
and	the	behavior	of	most	dynamic	systems	is	incomparably	more	complicated:
their	attractors	or	repellers	tend	to	be	fractals.	The	next	few	sections	describe
examples	where	time	is	discrete,	with	Δt=1.
AN	ATTRACTOR	THAT	IS	A	DUST.	THE	α	OF	FEIGENBAUM.	The

simplest	example	is	obtained	through	squaring	(Chapter	19).	As	prelude,
consider	yet	another	representation	of	the	Cantor	dust	C	with	N=2	and	r<½,
spanning	[-r/(1-r),	r/(1-r)].	This	C	is	the	limit	of	Cn,	defined	as	the	set	of	points
of	the	form	±r±r2±...	±rn.	As	n n+1,	each	point	of	Cn	bifurcates	into	2,	and	C	is
the	outcome	of	an	infinity	of	bifurcations.
Interpreting	P.	Grassberger	(preprint),	the	attractor	Aλ	of	x λx(1-x)	for	real	λ

is	analogous	to	Cn,	but	with	2	distinct	ratios	of	similarity,	one	of	which	is
Feigenbaum’s	1/α~.3995...	(Feigenbaum	1981).	After	an	infinity	of	bifurcations,
this	attractor	is	a	fractal	dust	A	with	D	~	.538.
“CHAOS”.	No	point	of	A	is	visited	twice	in	finite	time,	Many	authors

describe	evolutions	on	fractal	attractors	as	“chaotic.”
	SELF-AFFINE	TREES.	Juxtaposing	the	Aλ	in	the	(x,λ)	plane,	one	obtains	a

tree.	Since	δ~4.6692	≠	α,	this	tree	is	asymptotically	self-affine	with	a	residue.
COMMENT.	The	theory	should	ideally	focus	upon	intrinsically	interesting

and	realistic	(but	simple)	dynamical	systems,	whose	attractors	are	fully
understood	fractals.	The	strange	attractors	literature—though	extremely
important—is	far	from	this	ideal:	its	fractals	are	usually	incompletely
understood,	few	are	intrinsically	compelling,	and	most	fail	to	be	solutions	to
well-motivated	problems.
I	was	therefore	led	to	devise	“dynamical	systems”	that	amount	to	seeking	new

questions	to	obtain	old	and	pleasant	answers.	That	is,	I	contrived	problems	so
that	their	solutions	are	familiar	fractals.	Somewhat	surprisingly,	these	systems
are	of	interest.



SELF-INVERSE	ATTRACTORS

Chapter	18	describes	the	L	sets	of	Poincaré	chains	as	being	both	the	smallest
self-inverse	sets	and	limit	sets.	To	restate	this	last	property:	given	an	arbitrary
starting	point	P0,	every	point	of	L	is	approached	arbitrarily	closely	by	transforms
of	P0	by	sequences	of	inversions.	Now	suppose	that	this	sequence	of	inversions
is	selected	by	a	separate	process,	independent	from	the	present	and	past	positions
of	P.	Under	wide	conditions,	the	resulting	sequences	of	P’s	can	always	be
expected,	and	is	often	actually	shown,	to	be	attracted	by	L.	In	this	fashion,	the
enormous	literature	concerning	the	groups	based	upon	inversions	is	interpreted
in	terms	of	dynamical	systems.



“TIME”	REVERSAL

My	search	for	further	systems	with	interesting	fractal	attractors	moved	on	to	the
trove	of	known	systems	with	geometrically	standard	attractors	but	interesting
repellers.	To	invert	the	roles	of	these	two	sets,	thus	making	time	run	backward,	is
possible	as	long	as	the	operations	of	the	dynamical	systems	have	inverses	(orbits
never	join	or	cross)	so	that	knowledge	of	σ(t)	determines	all	σ(t’)	for	t’<t.
However,	the	specific	systems	in	which	we	want	to	reverse	time,	are	different.
Their	orbits	are	like	rivers:	the	path	is	uniquely	determined	in	the	downhill
direction,	but	in	the	uphill	direction	each	fork	involves	a	special	decision.
For	example,	let	us	try	and	invert	the	V-transformation	f(x)	that	gives	the

Cantor	dust	in	Chapter	19.	Two	different	inverse	functions	are	defined	for	x>
1.5,	and	one	may	agree	to	transform	all	x>	1.5	into	x=½.	Similarly,	x λx(1-x)
has	two	possible	inverses.	In	either	case,	a	meaningful	inversion	requires
choosing	between	two	functions.	In	other	examples,	the	number	of	possibilities
is	even	larger.	Again,	we	want	them	to	be	selected	by	a	separate	process.	These
thoughts	point	to	generalized	dynamical	systems,	to	be	introduced	and	described
in	the	following	section.



DECOMPOSABLE	DYNAMIC	SYSTEMS
(MANDELBROT	1980n)

We	demand	that	one	of	the	coordinates	of	the	state	σ(t)—call	it	determining
index,	and	denote	it	by	σ†(t)—evolves	independently	of	the	state	of	the	other	E-1
coordinates—call	it	σ*(t)—while	the	transformation	from	σ*(t)	to	σ*(t+1)	is
determined	by	both	σ*(t)	and	σ†(t).	In	the	examples	I	studied	most,	the
transformation	σ*(t) σ*(t+1)	is	chosen	in	a	finite	collection	of	G	different
possibilities	 g,	which	may	be	selected	according	to	the	value	of	some	integer-
valued	function	g(t)	=	γ[σ†(t)].	Thus,	I	studied	dynamics	in	the	product	of	the	σ*-
space	by	a	finite	index	set.
In	fact,	in	the	examples	that	motivate	this	generalization,	the	sequence	g(t)

either	is	random	or	behaves	as	if	it	were.	This	Essay	does	not	tackle	randomness
until	the	next	chapter,	but	I	doubt	this	is	a	serious	difficulty.	More	serious	is	the
fact	that	dynamical	systems	are	the	very	model	of	fully	deterministic	behavior,
hence	are	forbidden	to	accommodate	randomness!	However,	one	can	inject	its
effects	without	actually	postulating	it,	by	taking	for	g(t)	the	value	of	a
sufficiently	mixing	ergodic	process.	For	example,	one	can	take	an	irrational
number	β,	and	make	g(t)	the	integer	part	of	σ†(t)	=	β†σ†(0).	The	necessary
statements,	being	easy	in	principle	but	cumbersome,	will	not	be	written	here.



THE	ROLE	OF	“STRANGE”	ATTRACTORS

Students	of	“strange”	attractors	advance	the	following	two-part	argument:	A)
Granted	that	dynamic	systems	with	standard	attractors	cannot	explain
turbulence,	perhaps	it	can	be	explained	by	topologically	“stranger”	attractors.
(This	recalls	my	independent	argument,	Chapter	11,	that	when	a	differential
equation	has	no	standard	singularities,	one	ought	to	try	fractal	singularities.)	B)
The	attractors	of	absurdly	simple	systems,	such	as	z λz(1-z)	for	real	λ	and	z	in
[0,1],	are	strange	and	in	many	ways	characteristic	of	more	complex	and	more
realistic	systems.	Therefore,	there	can	be	no	doubt	that	topologically	strange
attractors	are	the	rule.



THE	TERMS	“FRACTAL”	VS.	“STRANGE’

EVERY	KNOWN	“STRANGE”	ATTRACTOR	IS	A	FRACTAL.	D	has	been
evaluated	for	many	“strange”	attractors.	In	all	cases,	D>DT.	Hence,	these
attractors	are	fractal	sets.	For	many	strange	attractor	fractals,	D	is	not	a	measure
of	irregularity	but	of	the	way	smooth	curves	or	surfaces	pile	upon	each	other—a
variant	of	fragmentation	(Chapter	13).
A	famous	attractor,	called	solenoid,	was	introduced	in	two	stages	by	S.	Smale.

The	original	definition	was	purely	topological,	leaving	D	undefined,	but	a
revision	was	made	metric	(Smale	1977,	p.	57).	For	this	revision,	D	was
evaluated	in	Mandelbrot	1978b	which	injected	D	into	the	study	of	strange
attractors.	For	the	Saltzman-Lorenz	attractor	with	u=40,	σ=	16,	and	b=4,	the
value	D=2.06	was	obtained	independently	by	M.	G.	Velarde	and	Ya.	G.	Sinai,
(private	conversations).	This	D	is	above	2,	but	not	by	much,	meaning	that	this
attractor	is	definitely	not	a	standard	surface,	but	that	it	is	not	far	from	being	one.
Mori	&	Fujisaka	1980	confirms	my	D	for	the	Smale	attractor	and	the	D	for	the
Saltzman-Lorenz	attractor.	For	the	Hénon	mapping.	with	a=	1.4	and	b=0.3,	they
find	D=1.26.	Many	other	articles	to	the	same	effect	are	on	the	way.
CONVERSE.	Whether	or	not	all	fractal	attractors	are	strange	is	a	matter	of

semantics.	Increasing	numbers	of	authors	agree	with	me	that	for	most	purposes
an	attractor	is	strange	when	it	is	a	fractal.	This	is	a	healthy	attitude,	if	“strange”
is	taken	to	be	a	synonym	to	“monstrous,”	“pathological,”	and	other	epithets	once
applied	to	individual	fractals.
But	“strange”	is	sometimes	given	a	technical	sense,	 	once	so	exclusive	that

the	Saltzman-Lorenz	attractor	is	not	“strange,”	but	“strange-strange.”	In	this
light,	an	attractor’s	“strangeness”	involves	nonstandard	topological	properties,
with	nonstandard	fractal	properties	coming	along	as	an	“overhead.”	A	closed
curve	without	double	points	is	not	“strange”	in	this	sense,	however	crumpled	it
may	be;	hence,	many	fractal	attractors	I	examined	are	not	strange.
With	this	definition	of	“strange,”	the	argument	in	the	preceding	section	ceases

to	be	compelling.	But	it	becomes	compelling	again	if	strangeness	is	modified
from	being	a	topological	to	being	a	fractal	notion.	Thus,	I	think	that	those	who
define	“strange”	as	“fractal”	deserve	to	win.	Since	indeed	they	are	winning,	there



is	little	reason	to	preserve	a	term	whose	motivation	vanished	when	I	showed	that
fractals	are	no	stranger	than	coastlines	or	mountains.	Anyhow,	I	cannot	conceal	a
personal	dislike	for	the	term	“strange.”

Plates	198	and	199	ATTRACTION	TO	FRACTALS
	
These	two	shapes	illustrate	long	orbits	of	successive	positions	of	two
decomposable	dynamical	systems.	The	Pharaoh’s	Breastplate	in	Plate	199	is
self-inverse	(Chapter	18),	being	based	upon	4	inversions	selected	to	insure	that
the	limit	set	L	is	a	collection	of	circles.	The	San	Marco	dragon	in	Plate	198	is
self-squared	(Chapter	19),	being	based	upon	the	two	inverses	of	x 3x(1-x).
The	determining	index	is	chosen	among	4,	respectively	2,	possibilities,	using	a

pseudo-random	algorithm	repeated	64,000	times.	The	first	few	positions	are	not
plotted.
Regions	in	the	neighborhoods	of	cusps	and	self-intersections	are	very	slow	to

fill.





VII

RANDOMNESS
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Chance	as	a	Tool	in	Model	Making

Although	the	basic	fractal	themes	involve	exclusively	deterministic
constructions,	the	full	meaning	and	practical	relevance	of	these	themes	are	not
apparent	until	one	tackles	random	fractals.	And	conversely,	the	study	of	fractals
seems,	at	least	to	this	writer,	to	increase	one’s	understanding	of	randomness.
A	first	reason	to	inject	chance	is	familiar	to	every	scientist,	yet	deserves

comment	in	this	chapter,	among	less	generally	familiar	remarks	of	a	general
nature.	The	following	chapter	opens	new	vistas	and	shows	that	chance	is	also
needed	for	reasons	specific	to	the	study	of	fractals.



(X)	DENOTES	AN	EXPECTATION;	THE
ABBREVIATION	FOR	PROBABILITY	IS	Pr

Each	discipline	seems	to	denote	the	expectation	of	the	random	variable	X
differently.	The	physicists’	notation	(X)	is	adopted	in	this	Essay,	because	it	has
the	virtue	of	including	its	own	portative	parentheses.
Given	a	function	B(t),	and	its	ΔB(t)	=	B(t+Δt)-B(t),	I	call	〈ΔB(t)〉	the	delta

mean,	and	〈[ΔB(t)-〈ΔB(t)〉]2〉	the	delta	variance.



RANDOM	MODELS’	STANDARD	ROLE

Let	us	go	back	to	the	question	“How	long	is	the	coast	of	Britain?”	Much	as	it
reminds	us	of	real	maps,	the	Koch	curve	has	major	defects	which	we	encounter
almost	unchanged	in	early	models	of	every	other	phenomenon	studied	in	this
Essay.	Its	parts	are	identical	to	each	other,	and	the	self-similarity	ratio	r	must	be
part	of	a	scale	of	the	form	b-k,	where	b	is	an	integer,	namely,	⅓,	(⅓)2,	and	so	on.
One	might	improve	the	model	by	invoking	more	complicated	deterministic

algorithms.	However,	this	approach	would	be	not	only	tedious,	but	doomed	to
failure,	because	each	coastline	is	molded	throughout	the	ages	by	multiple
influences	that	are	not	recorded	and	cannot	be	reconstituted	in	any	detail.	The
goal	of	achieving	a	full	description	is	hopeless,	and	should	not	even	be
entertained.
In	physics,	for	example	in	the	theory	of	Brownian	motion,	the	key	out	of	this

difficulty	lies	in	statistics.	In	geomorphology,	statistics	is	even	harder	to	avoid.
Indeed,	while	the	laws	of	mechanics	affect	molecular	motion	directly,	they	affect
geomorphological	patterns	through	many	ill-explored	intermediates.	Hence,
even	more	than	the	physicist,	the	geo-morphologist	is	compelled	to	forsake	a
precise	description	of	reality	and	to	use	statistics.	In	other	fields	which	we	shall
explore,	the	current	knowledge	of	local	interactions	lies	somewhere	between
physics	and	geomorphology.



SEARCH	FOR	THE	RIGHT	AMOUNT	OF
CHANCE	IRREGULARITY

Can	chance	bring	about	the	strong	degree	of	irregularity	encountered,	say,	in
coastlines?	Not	only	does	it,	but	in	many	cases	it	goes	beyond	the	desired	goal.
In	other	words,	the	power	of	chance	is	widely	underestimated.	The	physicists’
concept	of	randomness	is	shaped	by	theories	in	which	chance	is	essential	at	the
microscopic	level,	while	at	the	macroscopic	level	it	is	insignificant.	Quite	to	the
contrary,	in	the	case	of	the	scaling	random	fractals	that	concern	us,	the
importance	of	chance	remains	constant	on	all	levels,	including	the	macroscopic
one.



A	PRAGMATIC	USE	OF	CHANCE

The	relationship	between	statistical	unpredictability	and	determinism	raises
fascinating	questions,	but	this	Essay	has	little	to	say	about	them.	It	makes	the
expression	“at	random”	revert	to	its	intuitive	connotation	at	the	time	when
medieval	English	borrowed	it	from	French.	The	phrase	“un	cheval	a	randon”	is
reputed	to	have	been	unconcerned	with	either	mathematical	axiomatics	or	equine
psychology,	and	merely	denoted	irregular	motion	the	horseman	could	not
predict.
Thus,	while	chance	evokes	all	kinds	of	quasi-metaphysical	anxieties,	this

Essay	is	determined	to	be	little	concerned	with	whether	or	not,	in	Einstein’s
words,	“the	Lord	plays	with	dice.”	The	theory	of	probability	is	the	only
mathematical	tool	available	to	help	map	the	unknown	and	the	uncontrollable.	It
is	fortunate	that	this	tool,	while	tricky,	is	extraordinarily	powerful	and
convenient.



FROM	RECURSIVITY	TO	RANDOMNESS

Furthermore,	probability	theory	can	be	introduced	to	fit	smoothly	within	the
recursive	methods	that	predominate	in	this	Essay.	In	other	words,	this	Essay’s
second	half	follows	the	first	half	without	discontinuity.	We	shall	continue	to
concentrate	on	cases	where	both	the	mathematical	definition	and	the	graphics
algorithm	can	be	written	in	the	form	of	a	“processor	program”	with	an	internal
loop,	and	each	run	around	the	loop	adds	fresh	detail	to	what	has	been	drawn	on
previous	runs.
The	familiar	loop	that	generates	the	triadic	Koch	curve	reduces	to	this

processor	program.	But	other	nonrandom	fractals	involve	in	addition	a	“control
program,”	which	we	must	now	emphasize,	and	whose	functions	evolve
interestingly	but	progressively	toward	increased	generality.	In	a	first	step,	the
caption	of	Plate	46	observes	that	certain	Koch	generators	can	be	used	either	in
straight	(S)	or	flipped	(F)	variants,	hence	their	processor	needs	a	controller	to	tell
it	before	each	loop	whether	to	use	S	or	F.	In	general,	different	control	sequences
yield	different	fractals.	Hence,	for	each	choice	of	M	and	of	the	corresponding	D,
the	fractal	loop	of	Plate	46	is	not	really	one	curve	but	an	infinite	(denumerable)
family	of	curves,	one	for	each	control	sequence.	The	controller	may	either	read
his	sequence	from	a	tape,	or	interpret	a	compact	instruction	of	the	form
“alternate	S	and	F,”	or	“let	the	k-th	stage	use	S	(or	F)	whenever	the	k-th	decimal
of	π	is	even	(or	odd).”



RANDOMNESS/PSEUDORANDOMNESS

Many	random	fractals	involve	precisely	the	same	pattern:	an	interpreting
controller	followed	by	a	processor.	This	fact	is	often	hidden	(sometimes	to	make
things	look	harder),	but	is	clearcut	in	the	desirable	cases	whose	definition	is
explicitly	recursive.
The	very	simplest	controller	is	called	“sequence	of	throws	of	a	fair	coin,”	but	I

have	never	used	one.	In	today’s	computer	environment,	the	controller	is	a
“random	number	generator.”	Its	input,	called	seed,	is	an	integer	with	a	prescribed
number	M	of	binary	digits.	(M	is	determined	by	the	equipment;	when	fewer	than
M	digits	are	typed	in,	the	front	is	filled	in	with	zeros.)	The	controller’s	output	is
a	sequence	of	0	and	1.	In	simulations	of	a	Bernoulli	game,	each	digit	stands	for
the	result	of	the	toss	of	a	fair	coin.	And	a	game	of	1,000	coin	tosses	is	really	a
sequence	of	1,000	individual	pseudo-random	digits.
But	one	can	also	imagine	that	there	exists	somewhere	a	big	book	of	21000

pages,	in	which	each	possible	outcome	of	1,000	coin	tosses	is	recorded	on	a
separate	page.	Thus,	any	game	of	1,000	tosses	can	be	specified	by	selecting	a
page	in	this	book.	The	parameter	of	chance	is	simply	the	page	number,	i.e.,	the
seed.
More	generally,	the	controller’s	output	is	often	sliced	into	chunks	of	A

integers.	Then,	by	adding	a	decimal	point	in	front,	each	chunk	is	made	into	a
fraction	U,	and	this	fraction	is	called	“random	variable	uniformly	distributed
between	0	and	1.”
The	output	of	a	practical	random	set	generator	is	not	a	single	function	or

shape,	but	a	virtual	“grand	portfolio”	of	2A	pages,	each	devoted	to	a	single
shape.	Again,	the	page	numbers	are	the	seeds.
The	botanical	analogy	implies	of	course	that	the	seeds	are	all	of	the	same

species	and	variety.	One	allows	for	“defective	seeds”	that	produce	very	atypical
plants,	but	one	expects	the	overwhelming	majority	of	plants	to	differ	in	detail	but
be	the	same	on	essentials.
The	random	number	generator	is	the	hinge	of	any	simulation.	Upstream	are

operations	that	involve	in	every	case	the	same	interface	between	number	theory
and	probability	theory,	and	are	independent	of	the	program’s	goals.	They	are



exemplary	of	deterministic	transformations	that	mimic	randomness	as	described
by	the	theory	of	probability.	Downstream	lie	steps	which	vary	according	to	the
simulation’s	objective.
The	move	from	this	practical	environment	to	full-fledged	recursive	probability

is	a	natural	one.	The	main	change	is	that	fractions	with	a	finite	number	of	digits
are	replaced	by	real	numbers.	The	seeds	become	the	mysterious	“elementary
events”	which	mathematical	probabilists	denote	by	the	letter	ω. 	To	“interpret”
ωinto	an	infinite	sequence	of	real	control	variables,	Paley	&	Wiener	1934
suggests	converse	Cantor	diagonalization.



EMPTY	INVOCATION	OF	CHANCE	VERSUS
ACTUAL	DESCRIPTION

The	preceding	section	argues	that	the	theory	of	chance	is	not	really	difficult.
Unfortunately,	it	is	not	really	easy.	One	is	tempted	to	say	that,	to	achieve	a	model
of	coastlines	free	of	the	defects	of	the	Koch	curve	but	preserving	its	assets,	it
suffices	to	deform	the	different	portions	of	the	curve	and	to	modify	their	sizes,
all	at	random,	then	string	them	together	in	random	order.
Such	an	invocation	of	chance	is	allowable	in	preliminary	investigations,	and

our	early	chapters	indulge	in	it	freely.	It	is	not	sinful,	unless	it	is	hidden	from	the
reader	or	is	not	recognized	by	the	writer.	And	in	some	cases	it	can	be
implemented.	In	other	cases,	merely	to	invoke	chance	is	an	empty	gesture.
Indeed,	rules	that	generate	acceptable	random	curves	are	very	hard	to	describe,
because	geometric	sets	are	imbedded	in	a	space.	By	merely	varying	at	random
the	shapes,	the	sizes,	and	the	order	of	a	coastline’s	parts,	one	tends	to	be	left	with
pieces	that	will	not	fit	together.



NONCONSTRAINED	AND	SELF-CONSTRAINED
CHANCE

Thus	we	hit	immediately	upon	an	informal	distinction	of	great	practical	impact.
Sometimes	our	controller	followed	by	a	processor	may	go	through	their	loops
without	having	to	inspect	the	earlier	loops’	effects,	because	there	is	no	fear	of	a
resulting	mismatch.	One	can	say	such	models	involve	a	nonconstrained	form	of
chance.	Otherwise,	late	stages	of	the	construction	are	constrained	by	the
outcome	of	earlier	stages,	and/or	chance	is	strongly	self-constrained	by	the
geometry	of	space.
To	exemplify	the	contrast,	the	2n-sided	polygons	on	a	lattice,	including	the

self-intersecting	ones,	raise	an	easy	problem	of	combinatorics.	And	one	can
generate	such	a	polygon	by	nonconstrained	chance.	But	coastlines	must	not	self-
intersect,	and	counting	the	numbers	of	polygonal	approximations	of	coastlines	is
a	problem	of	strongly	self-constrained	chance,	that	continues	to	elude	the	best
minds.
Since	the	problems	involving	self-constrained	chance	are	hard	ones,	they	are

avoided	except	in	Chapter	36.



HYPERBOLIC	RANDOM	VARIABLES

A	nonuniform	random	variable	X	is	simply	a	monotone	nondecreasing	function
x=F-1(u).	The	inverse	function	U=F(x)	is	called	the	probability	Pr(X<x).
(Discontinuities	in	F(x)	or	F-1(u)	require	careful	wording.)
The	expression	Nr(U>u)∝u-D	stars	in	Chapters	6,	13,	and	14.	Its	probabilistic

counterpart,	Pr(U>u)∝u-D,	is	called	hyperbolic	distribution	and	stars	in	many	of
this	Essay’s	remaining	chapters.	The	property	that	Pr(U>O)=∞	is	curious	but
must	not	provoke	panic.	It	turns	out	to	be	just	as	desirable	and	manageable	as
Nr(U>0)=∞	was	in	Chapter	13.	It	will	have	to	be	handled	carefully,	but	the
technicalities	can	and	will	be	avoided.



A	RANDOM	SET’S	TYPICAL	D	AND	DT

When	a	set	is	random,	the	notions	of	dimension	demand	elaboration.	In	our
“grand	portfolio”	that	brings	together	a	population	of	random	sets,	each	page	is	a
set,	hence	has	values	of	D	and	DT	attached	to	it,	as	in	earlier	chapters.	These
values	vary	between	samples	(=	pages),	but	in	all	the	cases	we	encounter	their
distribution	is	simple.
There	is	a	batch	of	aberrant	samples	(“defective	seeds”)	for	which	D	takes	all

kinds	of	values,	but	this	batch	has	a	vanishing	overall	probability.	All	other
samples	are	characterized	by	some	common	D	called	“almost	sure	value.”
I	believe	the	same	holds	for	Dr	and	hope	that	the	topic	will	draw	the	attention

of	the	mathematicians.
The	almost	sure	values	are	in	every	way	“typical”	of	the	population.	For

example,	the	expected	value	of	D	is	identical	to	the	almost	sure	value.
On	the	other	hand,	one	should	avoid	even	thinking	of	the	dimension	of	the

“average	set.”	For	example,	assuming	the	reader	has	a	mental	picture	of	a
symmetric	random	walk,	let	us	try	to	define	the	average	walk.	If	it	is	a	process
whose	positions	are	the	averages	of	all	the	walks	in	a	population,	then	the
average	does	not	walk	but	sits:	it	never	leaves	its	initial	position,	hence	D=0,	
while	for	almost	every	walk,	Chapter	25	implies	that	D=2.	The	only	average	set
that	is	“safe”	for	purposes	of	handling	dimensions	is	the	set	characterized	by	the
average	D;	this	definition	is	safe	because	it	is	circular.
Any	method	applicable	to	nonrandom	fractals	can	serve	to	evaluate	D.	But

recall	a	warning	made	in	Chapter	13:	when	the	portion	of	a	fractal	set	contained
within	a	ball	of	radius	R	centered	on	the	set	tends	to	have	a	measure	(“mass”)
satisfying	M(R)	∝	RQ,	the	exponent	Q	need	not	be	a	dimension.
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Conditional	Stationarity	and	Cosmographic
Principles

The	preceding	chapter’s	retelling	of	the	usual	reasons	for	favoring	randomness
does	not	distinguish	between	the	standard	and	the	fractal	models.	In	the	former
context,	randomization	brings	considerable	improvements,	but	nonrandom
models	remain	acceptable	for	many	purposes.	Let	us	now	show	that	in	the	fractal
context,	randomness	is	necessary	for	a	model	to	be	really	acceptable.



TRANSLATION	INVARIANCE,	SYMMETRY

The	argument	involves	the	old	philosophical	notion	of	symmetry.	It	is	not
understood	here	as	in	“bilateral”	symmetry	with	respect	to	a	line,	but	in	a
combination	of	the	original	meaning	of	σvµµ∈τρ α	in	Greek,	as	“resulting	from
the	commensuration	of	the	various	constituent	parts	with	the	whole”	(Weyl
1952),	and	of	the	physicists’	current	use,	which	makes	symmetry	a	synonym	of
invariance.
The	nonrandom	fractals’	essential	failing	is	that	they	are	not	symmetric

enough.	A	first	failing,	stated	in	the	vocabularies	of	different	sciences,	is	that	it	is
inconceivable	for	a	nonrandom	fractal	to	be	translationally	invariant,	or
stationary,	and	that	it	cannot	satisfy	the	cosmological	principle.
Second,	a	nonrandom	fractal	cannot	be	uniformly	scaling,	in	the	sense	that	it

only	allows	for	a	discrete	scale	of	similarity	ratios	of	the	form	rk.
The	problem	of	galaxy	clusters	is	so	important	that	the	present	discussion	will

center	around	it,	making	this	chapter	the	second	stage	of	this	Essay’s
contribution	to	astronomy.



THE	COSMOLOGIC	PRINCIPLE

The	postulate	that	time	and	our	position	on	Earth	are	neither	special	nor	central,
that	the	laws	of	Nature	must	everywhere	and	always	be	the	same,	is	called
cosmologic	principle.
This	assertion,	formalized	by	Einstein	and	E.A.	Milne	(North	1965,	p.	157),	is

discussed	at	length	in	Bondi	1952.



STRONG	COSMOGRAPHIC	PRINCIPLE

A	brutal	application	of	the	cosmologic	principle	demands	that	the	distribution	of
matter	follow	precisely	the	same	laws	regardless	of	the	system	of	reference
(origin	and	axes)	used	to	examine	it.	In	other	words,	the	distribution	must	be
translationally	invariant.
One	must	be	careful	in	selecting	a	term	to	denote	this	corollary.	Since	it	does

not	deal	with	theory	(λoγos),	but	with	description	(γραφη),	and	since	we	shall
momentarily	propose	series	of	a	weakened	versions,	it	is	best	to	speak	of	the
strong	cosmographic	principle.
The	underlying	idea	can	already	be	read	into	the	doctrine	of	“learned

ignorance”	of	Nicholas	of	Cusa	(1401-1464):	“Wherever	one	is,	one	thinks	is	the
center;”	“The	world	has	its	center	everywhere,	and	thus	nowhere,	and	its
circumference	is	nowhere.”



COSMOGRAPHIC	PRINCIPLE

However,	the	distribution	of	matter	is	not	strictly	homogeneous.
The	most	obvious	weakening	of	the	principle	is	to	introduce	chance,	in	the

standard	framework	described	in	the	preceding	chapter.	The	resulting	assertion	is
called	statistical	stationarity	by	probabilists,	but	for	the	sake	of	consistency	we
shall	call	it	uniform	statistical	cosmographic	principle:	The	distribution	of
matter	follows	the	same	statistical	laws	regardless	of	the	system	of	references.



A	QUANDARY

The	application	of	the	above	principle	to	galactic	clustering	poses	hard
problems.	The	Fournier	universe	of	Chapter	9	is	of	course	grossly
nonhomogeneous,	but	one	may	have	hoped	to	be	able	to	randomize	it	in	order	to
satisfy	the	uniform	statistical	cosmographic	principle.	To	preserve	the	model’s
spirit,	however,	the	randomization	must	preserve	the	property	that	the
approximate	density	M(R)R-3	in	a	sphere	of	radius	R	tends	toward	0	when	R
tends	toward	infinity.	Unfortunately,	this	last	feature	and	the	uniform	statistical
cosmographic	principle	are	incompatible.
It	is	tempting	to	attach	less	weight	to	mere	data	than	to	a	general	principle,

and	to	conclude	that	hierarchical	clustering	must	end	at	a	finite	upper	cutoff,	so
that	all	fluctuations	are	local	in	extent,	and	the	overall	density	of	matter	is
nonzero,	after	all.
To	implement	this	idea,	one	may	for	example	take	infinitely	many	Fournier

universes,	and	scatter	them	around	in	statistically	uniform	fashion.	A	variant
proposed	by	R.	M.	Soneira	is	discussed	in	Peebles	1980.



CONDITIONAL	STATIONARITY

However,	I	believe	that	the	uniform	statistical	cosmographic	principle	goes
beyond	what	is	reasonable	and	desirable,	and	that	it	should	be	replaced	by	a
weaker	form,	to	be	called	conditional,	which	does	not	refer	to	all	observers,	only
to	material	ones.	Astronomers	should	find	this	weaker	form	acceptable,	and
might	have	studied	it	long	ago	had	they	known	it	had	the	slightest	substantive
interest.	And	indeed	it	does:	the	conditional	form	implies	no	assumption
concerning	the	global	density,	and	it	allows	M(R)	∝	RD-3.
To	restate	my	point	less	assertively,	it	is	either	difficult	or	impossible	to

reconcile	the	strong	cosmographic	principle	with	the	notion	that	the	actual
galaxies’	distribution	is	extremely	far	from	uniform.	On	the	one	hand,	if	the
global	density	of	matter	δ	in	the	Universe	vanishes,	the	strong	cosmographic
principle	must	be	wrong.	On	the	other	hand,	if	δ	is	small	but	positive,	the	strong
cosmographic	principle	holds	asymptotically,	but	for	the	scales	in	which	we	are
interested	it	is	of	no	use.	One	may	like	to	keep	it	in	the	background,	if	it	is
reassuring.	One	may	prefer	to	avoid	it	as	being	potentially	misleading.	Finally,
one	may	settle	on	replacing	it	with	a	statement	that	is	meaningful	for	all	scales,
and	is	independent	of	whether	δ=0	or	δ>0.	This	last	approach	amounts	to
subdividing	the	strong	cosmographic	principle	into	two	parts.



THE	CONDITIONAL	COSMOGRAPHIC
PRINCIPLE

CONDITIONAL	DISTRIBUTION.	When	the	frame	of	reference	satisfies	the
condition	that	its	origin	is	itself	a	material	point,	the	probability	distribution	of
mass	is	called	conditional.
PRIMARY	COSMOGRAPHIC	ASSUMPTION.	The	conditional	distribution

of	mass	is	the	same	for	all	conditioned	frames	of	reference.	In	particular,	the
mass	M(R)	contained	within	a	ball	of	radius	R	is	a	random	variable	independent
of	the	frame	of	reference.
The	statement	of	the	conditional	cosmographic	principle	involves	precisely

the	same	words	regardless	of	whether	δ>0	or	δ=0.	This	is	esthetically	pleasing
and	has	the	philosophical	advantage	of	satisfying	the	spirit	of	contemporary
physics.	By	subdividing	the	strong	cosmographic	principle	into	two	parts,	we
can	highlight	a	statement	that	concerns	everything	that	is	observable,	and	we
downgrade	a	statement	that	constitutes	an	act	of	faith	or	a	working	hypothesis.



THE	AUXILIARY	ASSUMPTION	OF	POSITIVE
OVERALL	MATTER	DENSITY

AUXILIARY	COSMOGRAPHIC	ASSUMPTION.	The	quantities

lim	R→∞M(R)R-3	and	lim	R→∞〈M(R»〉R-3

exist,	are	almost	certainly	equal,	and	are	positive	and	finite.



THE	STANDARD	CASE	WHERE	δ>0

The	statistical	laws	of	distribution	of	matter	can	be	stated	in	different	ways.	One
can	use	the	absolute	probability	distribution,	which	is	relative	to	an	arbitrary
frame	of	reference.	Alternatively,	one	can	use	the	conditional	probability
distribution	relative	to	a	frame	centered	on	a	material	point.	In	case	the	above
auxiliary	assumption	is	verified,	the	conditional	probability	distribution	derives
from	the	absolute	distribution	by	the	usual	Bayes	rule.	And	the	absolute
probability	derives	from	the	conditional	probability	by	taking	the	average
relative	to	origins	that	are	uniformly	distributed	over	space.

	The	uniform	distribution	of	origins	integrated	over	the	whole	space	results
in	an	infinite	mass.	The	nonconditional	distribution	may	be	re-normalized	to	add
up	to	1,	if,	and	only	if,	the	global	density	be	positive.	See	Mandelbrot	1967b.



THE	NONSTANDARD	CASE	WHERE	δ=0

Suppose	to	the	contrary	that	the	auxiliary	assumption	is	not	valid,	more
precisely,	that	lim	R→∞M(R)R-3	vanishes.	If	so,	the	absolute	probability
distribution	merely	states	that	a	ball	with	a	finite	radius	R	chosen	at	random	is
almost	certain	to	be	empty.	Hence,	one	who	could	peek	around	from	a	point
selected	at	random	would	almost	surely	see	nothing.	However,	Man	is	only
interested	in	the	probability	distribution	of	mass	in	the	case	of	the	actual
Universe,	where	it	is	known	that	mass	does	not	vanish	in	Man’s	neighborhood.
After	an	event	has	occurred,	its	absolute	probability	of	occurrence	is	of	limited
interest.
The	very	fact	that	the	nonconditional	distribution	automatically	disregards

such	cases	implies	it	is	grossly	inadequate	when	δ=0.	Not	only	is	it	compatible
with	mass	carried	by	any	fractal	satisfying	D<3,	but	tells	absolutely	nothing
beyond	δ=0.
The	conditional	probability	distribution,	on	the	contrary,	distinguishes	among

fractals	having	different	fractal	dimensions,	among	fractals	that	are	or	are	not
scaling,	and	among	other	alternative	assumptions.



NONSTANDARD	“NEGLIGIBLE	EVENTS”

The	nonstandard	case	δ=0	faces	the	physicist	with	an	almost	sure	event	which
can	be	disregarded,	and	an	event	of	zero	probability	which	not	only	cannot	be
disregarded	but	must	be	analyzed	into	finer	subevents.
This	contrast	is	precisely	inverse	of	the	one	to	which	one	is	accustomed.	The

average	number	of	heads	in	an	increasing	sequence	of	tosses	of	a	fair	coin	may
fail	to	converge	to	½,	but	the	cases	of	nonconvergence	are	of	zero	probability
and	therefore	devoid	of	interest.	When	a	statistical	mechanics	conclusion	(such
as	the	principle	of	the	increase	of	entropy)	holds	almost	surely,	the	opposite
conclusion	has	a	vanishing	probability	and	is	therefore	negligible.	Clearly,	the
therefore	in	the	preceding	two	sentences	yields	the	precise	opposite	of	what	I
propose	in	cosmography.



AVOIDANCE	OF	STRATIFICATION

A	second	form	of	symmetry	concerns	scaling.	When	the	reduction	ratios	of	the
parts	of	a	nonrandom	fractal	all	equal	r,	the	admissible	scaling	ratios	are	of	the
form	rk.	When	the	parts’	reduction	ratios	are	r1,	r2...,	the	admissible	overall	ratios
are	less	restricted,	but	still	cannot	be	chosen	freely.
In	other	words,	nonrandom	fractals	embody	a	strong	hierarchical	structure	or,

as	I	prefer	to	say,	are	strongly	stratified.	Some	stratified	models	look	good	to	the
physicists,	because	they	are	very	manageable	computationally.	Nevertheless,	this
characteristic	is	philosophically	unpalatable,	and	in	the	case	of	galaxies	there	is
no	direct	evidence	of	the	clusters’	reality.	This	is	why	the	call	is	heard,	notably	in
de	Vaucouleurs	1970,	for	“the	extension	of	Charlier’s	work	to	quasi-continuous
models	of	density	fluctuations	that	would	replace	the	original	oversimplified
discrete	hierarchical	model.”
This	desire	cannot	be	fulfilled	by	a	nonrandom	fractal,	but	random	ones	can

fulfill	it,	as	I	shall	show.



NONSTRATIFIED	CONDITIONALLY
COSMOGRAPHIC	FRACTAL	WORLDS

As	previously	indicated,	astronomers	are	unlikely	to	object	a	priori	to	the	idea	of
conditioning,	and	this	idea	would	be	commonplace,	were	it	acknowledged	as
having	consequences	worthy	of	attention.	I	propose	to	prove	that	it	is	indeed	an
authentic	generalization,	and	not	merely	a	formal	refinement	with	this	goal	in
mind,	Chapters	32	to	35	describe	explicit	constructions	with	the	following
properties:
•	They	induce	a	zero	global	density.
•	They	satisfy	the	conditional	statistical	cosmographic	principle.
•	They	fail	to	satisfy	any	other	form	of	the	cosmographic	principle.
•	They	are	scaling	with	respect	to	every	r.
•	They	are	not	stratified	by	design,	but	instead	induce	an	apparent	hierarchical

structure	as	a	corollary	of	a	dimension	<2.
•	Finally,	they	fit	the	quantitative	data.
All	these	properties	but	the	last	are	satisfied	by	every	one	of	my	models.	As	to

the	quantitative	fit,	it	improves	from	Chapter	32	to	Chapter	35.	Thus,	it	suffices
to	order	my	models	naturally	by	increasing	complication,	to	achieve	increasingly
perfect	fit	to	the	best	analyses	of	the	data.



PREVIEW

Having	hailed	the	splendid	vistas	opened	by	thoroughly	random	fractals,	we
cannot	rush	to	contemplate	those	models,	because	they	exhibit	mathematical
complications	that	are	best	postponed.	Chapters	23	to	30	keep	to	comparatively
familiar	probabilistic	ground.



VIII

STRATIFIED	RANDOM	FRACTALS



23

Random	Curds:	Contact	Clusters	and	Fractal
Percolation

This	group	of	chapters	shows	that	diverse	devices	of	almost	ridiculous	simplicity
lead	to	effective	random	fractals.	Chapter	23	randomizes	curdling,	a	procedure
used	to	rough	out	a	Cantor	model	of	noise	(Chapter	8),	a	spatial	Cantor	dust
model	of	galaxies	(Chapter	9),	one	of	turbulent	intermittency	(Chapter	10),	etc.
Chapter	24	is	primarily	meant	to	introduce	my	squigs,	a	new	randomized	form	of
Koch	curve.	Chapter	25	concerns	Brownian	motion	and	Chapter	26	defines	other
“random	midpoint	displacement”	fractals.
The	term	“stratified”	in	the	title	of	this	group	of	chapters	expresses	that	in	all

these	case	studies	we	deal	with	fractals	constructed	by	a	superposition	of	layers
(=	strata	in	Latin),	each	involving	finer	detail.	In	many	cases,	the	strata	are
hierarchical.	Without	saying	so,	all	the	earlier	chapters	deal	exclusively	with
stratified	fractals.	But	later	chapters	establish	that	random	fractals	need	not	be
stratified.
The	fractals	in	this	chapter	involve	a	grid	or	lattice,	made	of	intervals,	squares,

or	cubes,	each	divided	into	bE	subintervals,	subsquares,	or	subcubes;	b	is	the
lattice	base.



RANDOMIZED	LINEAR	DUSTS

The	simplest	random	dust	on	the	line,	which	may	improve	upon	the	Cantorian
model	of	errors	of	Chapter	8,	starts	as	the	simplest	form	of	Cantor	curdling:	with
a	lattice	of	intervals	of	base	b	and	an	integer	N<b.	But,	instead	of	a	specific
generator,	one	is	given	the	list	of	all	possible	Cantor	generators,	that	is,	of	all	the
distinct	rows	of	N	full	and	b-N	empty	boxes.	Each	time,	one	chooses	one	of
these	generators	at	random,	with	equal	probabilities.
Any	point	P	of	the	curd	is	defined	by	a	sequence	of	imbedded	“precurd”

intervals	of	lengths	Rk=b-k.	If	the	total	initial	mass	is	1,	each	precurd	contains	the
same	mass	RkD.	The	mass	in	the	interval	of	length	2Rk,	centered	as	P,	is	RkD

multiplied	by	a	random	variable	lying	between	1	and	2,	independent	of	k.
Observe	that	D	is	bound	to	the	sequence	log	(b-1)/log	b,	log	(b-2)/log	b,	....

This	restriction	is	often	inconvenient.	More	important,	the	above	definition	of
curdling	is	awkward	to	implement	on	the	computer	and	to	manipulate
analytically.	Since	the	main	virtue	of	curdling	resides	in	its	simplicity,	an
alternative	definition	given	in	the	next	sections	should	be	preferred.	To
distinguish	this	section’s	definition,	let	us	call	it	constrained.	(Mandelbrot	1974f
calls	it	microcanonical.)



CURDLED	RANDOM	LINEAR	DUSTS

A	better	definition	of	curdling,	found	in	Mandelbrot	1974f,	which	calls	it
canonical,	is	obtainable	by	a	sequence	of	binary	random	choices,	each	of	them
ruled	by	mere	coin	tossing.	By	throws	of	a	coin,	the	first	stage	of	a	cascade
decides	the	later	fate	of	each	of	b	subintervals.	When	the	coin	falls	on	heads,	an
event	of	probability	p<1,	the	subinterval	“survives”	as	part	of	a	precurd;
otherwise,	it	dies	off.	After	each	stage,	the	isolated	points	left	between	two	dead
subintervals	of	any	length	are	erased.	They	are	only	a	small	nuisance,	but	their
plane	or	spatial	counterparts,	(isolated	lines,	etc.),	would	introduce	spurious
connections	in	the	set.	The	expected	number	of	surviving	subintervals	is
<N>=pb=p/r.	Then	the	process	resumes	with	each	subinterval,	independently	of
all	others.
BIRTH	PROCESS	FORMALISM.	Calling	the	subintervals	“children,”	and

the	whole	cascade	a	“family,”	shows	that	the	distribution	of	the	number	of
children	is	ruled	by	the	well-known	birth	and	death	process	(Harris	1963).
The	fundamental	result	is	the	existence	of	a	critical	value	for	(N):	this	fact	was

discovered	by	Irénée	Bienaymé	in	1845	(see	Heyde	&	Seneta	1977),	and
deserves	to	be	called	the	Bienaymé	Effect.
The	value	〈N〉=1	is	critical	in	the	sense	that	the	number	N(m)	of	offspring

present	after	the	mth	generation	is	ruled	by	the	following	alternative.	When	〈N〉
≤1,	it	is	almost	certain	that	the	family	line	eventually	dies	out,	meaning	in	the
present	interpretation	that	the	cascade	yields	an	empty	set.	When	(N)>1,	to	the
contrary,	the	family	line	of	each	curd	has	a	nonzero	probability	of	extending	to
an	infinite	number	of	generations.	In	this	case,	random	curdling	yields	a	random
dust	on	the	line.
MEANING	OF	SIMILARITY	DIMENSION.	The	ratio	log	N(m)/log	(1/r)

being	random	here,	similarity	dimension	requires	fresh	thinking.	The	almost	sure
relation,

lim	m→∞log	N(m)/log	(1/rm)	=log	〈N〉/log	(1/r),

suggests	a	generalized	similarity	dimension

D*=log	〈N〉/log	(1/r)=E-log	p/log	r.



With	this	D*,	the	condition	for	the	existence	of	a	nonempty	limit	set,	(N)>1,
takes	a	very	sensible	form:	D*>0.	When	D*>0,	one	has	D=D*.	Formally	applied
when	〈N〉≤1,	this	formula	would	yield	D≤0,	but	in	fact	the	empty	set	is	always
of	dimension	D=0.



IMBEDDED	CURDS	OF	DECREASING	D

Let	us	construct	a	series	of	random	curds	of	decreasing	dimension	D,	each
imbedded	in	the	preceding	one.
A	preliminary	step	is	independent	of	D:	it	attaches	to	each	eddy	of	any	order	a

random	number	U	between	0	and	1.	We	know	(Chapter	21)	that	all	these
numbers	taken	together	are	equivalent	to	a	single	number	that	measures	the
contribution	of	chance.	Next,	D	is	selected,	and	the	last	written	formula	uses	it	to
yield	a	probability	threshold	p.	Finally,	curdling	involves	the	following	“fractal
decimation	process.”	Whenever	U>p,	the	eddy	“dies	off”	as	whey,	taking	along
all	its	subeddies.	When	U≤p,	the	eddy	survives,	to	curdle	again.
This	method	makes	it	possible	to	follow	all	the	characteristics	of	curd,	whey,

and	all	other	sets	of	interest	as	functions	of	a	continuously	varying	dimension.	It
suffices	to	hold	all	the	random	numbers	U	fixed,	while	p	decreases	from	1	to	0,
and	D	decreases	from	3	to	0.
Given	the	curds	Q1	and	Q2	corresponding	to	the	probabilities	p1	and	p2<p1

and	having	the	dimensions	D1	and	D2<D1,	the	transformation	from	Q1	to	Q2⊂Q1
can	be	called	“relative	fractal	decimation”	of	relative	probability	p2/p1	and
relative	dimension	D2-D1.	To	perform	relative	decimation	directly,	one	seeks	the
eddies	of	side	1/b	that	belong	to	Q1,	and	one	lets	them	live	on	with	the	new
probability	p2/p1.	Then	one	proceeds	likewise	with	the	surviving	eddies	of	side
1/b2	etc.	If	the	sequence	Q1,	Q2,...,	Qg	is	obtained	by	successive	decimations,	the
relative	probabilities	multiply,	and	the	relative	dimensions	add...until	their	sum
falls	below	0,	and	Q	becomes	empty.



HOYLE	CURDLING	OF	GALAXIES

Constrained	curdling	has	a	spatial	counterpart	that	can	serve	to	implement	the
Hoyle	curdling	model	of	galaxy	distribution,	Plates	218	and	219.



NOVIKOV-STEWART	TURBULENT	DISSIPATION
INVOLVES	CURDLING

Spatial	random	curdling	also	arises	unwittingly	in	a	very	early	model	of	the
intermittency	of	turbulence.	Novikov	&	Stewart	1964	assume	that	the	spatial
distribution	of	dissipation	is	generated	by	a	cascade;	each	stage	takes	the	precurd
of	the	preceding	stage	and	curdles	it	further	into	N	pieces	smaller	in	the	ratio	r.
See	Plates	220	through	223.
This	is	a	very	crude	model,	even	cruder	than	the	model	that	Berger	&

Mandelbrot	1963	give	for	certain	excess	noises	(Chapter	8	and	31).	It	attracted
little	favorable	attention,	and	failed	to	be	pursued	and	developed.	But	the	scorn
directed	toward	it	turns	out	to	be	unwarranted.	My	investigations	reveal	that
many	features	of	refined	but	complicated	models	are	already	present	in	curdling.
CHEESE.	The	image	incorporated	in	the	term	curdling,	and	in	the	term	whey

to	denote	its	complement,	should	not	be	taken	literally,	but	the	formation	of	real
cheese	may	result	from	biochemical	instability	in	the	same	way	Novikov	&
Stewart	curdling	is	presumed	to	result	from	hydrodynamical	instability.
However,	I	have	no	data	to	tell	whether	or	not	any	edible	cheese	is	also	a	fractal
cheese.



CONSEQUENCES	OF	RANDOM	CURDS’	BEING
“IN-BETWEEN”	SHAPES

The	standard	shapes	in	space	for	which	D<3	(points,	lines,	and	surfaces)	are
known	to	have	a	vanishing	volume.	The	same	is	true	for	random	curds.
The	area	of	the	precurds	also	behaves	very	simply.	When	D>2,	it	tends	to

infinity.	When	D<2,	it	tends	to	zero.	When	D=2,	curdling	leaves	it	essentially
constant.
Similarly,	when	m→∞,	the	cumulative	length	of	the	edges	of	the	precurds

tends	to	infinity	when	D>1,	and	to	zero	when	D<1.
These	volume	and	area	properties	confirm	that	curds	with	a	fractal	dimension

satisfying	2<D<3	lie	somewhere	between	an	ordinary	surface	and	a	volume.
	PROOFS.	They	are	simplest	when	curdling	is	constrained.	The	volume	of

the	mth	precurd	is	L3r3mNm	=	L3(r3–D)m	which	→0	with	the	inner	scale	n=	rm.
For	the	area,	the	case	D<2	is	settled	on	the	basis	of	an	upper	bound.	The	area	of
the	mth	order	precurd	at	most	equals	the	sum	of	the	areas	of	the	contributing
eddies,	because	the	latter	sum	also	includes	subeddy	sides	that	neutralize	each
other	by	being	common	to	adjacent	curds.	The	area	of	each	mth	order	eddy
being	6L2r2m,	the	total	area	is	at	most	6L2r2mNm	=	6L2(r2-D)m.	When	D<2,	the
upper	bound	tends	to	0	with	m→∞,	which	proves	our	assertion.	In	the	case	D>2,
a	lower	bound	is	obtained	by	noting	that	the	surface	of	the	union	of	mth	order
eddies	contained	in	the	mth	order	precurd	includes	at	least	one	square	of	side	rm

and	area	r2m	that	is	contained	in	said	(m-1)th	order	precurd	and	cannot	possibly
be	erased.	Hence	the	total	area	is	at	least	L2r2mNm–1=(L2/N)(r2–D)m,	which	→∞
with	m.	Finally,	when	D=2,	both	bounds	are	finite	and	positive.



THE	D’S	OF	FRACTALS’	SECTIONS:	RULE	THAT
THE	CODIMENSIONS	ADD

Our	next	topic	is	mentioned	in	several	earlier	chapters.	Now	we	are	ready	to
tackle	it	explicitly	and	fully	in	a	special	case.
As	background,	recall	that	it	is	a	standard	property	of	Euclidean	plane

geometry	that,	if	a	shape’s	dimension	D	satisfies	D≥1,	its	section	by	a	line,	if
nonempty,	is	“typically”	of	dimension	D–1.	For	example,	a	nonempty	linear
section	of	a	square	(D=2)	is	an	interval,	of	dimension	1=D–1.	And	the	linear
section	of	a	line	(D=1)	is	a	point,	of	dimension	0=1-1,	except	when	the	two	lines
coincide.
More	generally,	the	standard	geometric	rules	concerning	the	behavior	of

dimension	under	intersection	are	summarized	as	follows:	If	the	sum	of	the
codimensions	C=E–D	is	smaller	than	E,	this	sum	is	the	codimension	of	the
typical	intersection;	otherwise,	the	intersection	is	typically	empty.	(The	reader	is
encouraged	to	check	this	claim	for	diverse	configurations	of	planes	and	lines	in
space.)
It	is	fortunate	that	this	rule	extends	to	fractal	dimensions.	Thanks	to	it,	many

arguments	about	fractals	are	far	simpler	than	one	may	have	feared.	The
numerous	exceptions	must,	however,	be	kept	in	mind.	In	particular	we	saw	in
Chapter	14	that	when	a	nonrandom	fractal	J	is	cut	by	a	specially	positioned	line
or	plane,	the	section’s	dimension	cannot	always	be	deduced	from	the	dimension
of	J.	But	random	fractals	are	simpler	from	this	viewpoint.



THE	D’S	OF	RANDOM	CURDS’	SECTIONS

To	prove	the	basic	rule	in	the	case	of	fractal	curds,	consider	the	traces	(squares
and	intervals)	that	the	eddies	and	subeddies	of	the	curdling	cascade	leave	upon
either	a	face	or	an	edge	of	the	original	eddy	of	side	L.	Each	cascade	stage
replaces	a	piece	of	precurd	by	pieces	whose	number	is	determined	by	a	birth	and
death	process.	Denote	by	N1(m)	the	number	of	mth	generation	offspring	aligned
along	an	edge	of	the	original	eddy.	Classical	results,	already	used	earlier	in	this
chapter,	show	that	N1(m)	is	ruled	by	the	following	alternative.	When	〈N1〉
=Nr2≤1,	that	is,	D≤2,	it	is	almost	certain	that	the	family	eventually	dies	out,
meaning	that	the	edge	eventually	becomes	empty,	hence	of	zero	dimension.
When	(N1)>1,	that	is,	D>2,	the	family	line	of	each	edge	has,	to	the	contrary,	a
nonzero	probability	of	extending	to	an	infinite	number	of	generations.	And	the
similarity	dimension	is	D–2,	due	to	the	almost	sure	relation

Two-dimensional	eddy	traces	obey	the	same	argument,	after	replacement	of
N1	by	a	random	N2	such	that	(N2)=Nr.	When	〈N2〉≤1,	that	is,	D≤1,	each	eddy
face	eventually	becomes	empty.	When	(N2)>1,	that	is,	D>1,	the	similarity
dimension	is	D–1,	due	to	the	almost	sure	relation

Constrained	curdling	yields	identical	conclusions.
As	a	further	confirmation	that	fractal	dimension	behaves	under	intersection	in

the	same	way	as	Euclidean	dimension,	the	intersection	of	several	curdled	fractals
of	respective	dimensions	Dm,	carried	by	the	same	grid,	satisfies	E–D=∑(E–Dm).



THE	CURDS’	TOPOLOGY:	CLUSTERS

Although	this	disclaimer	may	become	tiresome,	the	basic	inequalities	D<2	for
galaxies	(Chapter	9)	and	D>2	for	turbulence	(Chapter	10)	are	not	topological	but
fractal.
In	nonrandom	curdling,	for	E≥2,	Chapters	13	and	14,	the	designer	also

controls	the	topology.	Connected	plane	curds	include	the	Sierpiński	carpets
(D>DT=1),	and	connected	spatial	curds	include	the	sponges	(D>DT=1)	and
foams	(D>DT=2).	Other	curds	are	 -clusters	or	dusts.	Thus,	when	E=3	and	D>2,
which	is	the	case	of	interest	in	the	study	of	turbulence,	a	nonrandom	cascade	can
yield	either	DT=0	(dust)	or	DT=1	(curves	or	 -curves)	or	DT=2	(surfaces	or	 -
surfaces).	When	E=3	and	D<2,	which	is	the	case	of	interest	in	astronomy,	DT	can
be	0	or	1.
A	random	curdling	cascade,	to	the	contrary,	amounts	to	a	statistically	mixed

generator	that	almost	surely	imposes	a	certain	determined	topology	(end	of
Chapter	21).	By	its	very	crudeness,	curdling	is	so	simple	that	it	is	essential	to
examine	its	predictions	on	this	account.	The	present	knowledge	combines
proven	facts	with	inferences	from	circumstantial	evidence.
CRITICAL	DIMENSIONS.	The	curd’s	DT	changes	discontinuously	as	D

crosses	certain	critical	thresholds,	to	be	denoted	by	Dcrit.	D2crit....,	D(E-1)crit.	In
other	words,	mixed	curds	that	split	into	portions	with	different	values	of	DT	are
almost	never	encountered.
The	most	important	threshold	is	Dcrit.	It	is,	at	the	same	time,	an	upper	bound

for	the	D’s	such	that	the	curd	is	almost	surely	a	dust,	and	a	lower	bound	for	the
D’s	such	that	the	curd	almost	surely	separates	into	an	infinite	collection	of
disjoint	pieces,	each	a	connected	set.	For	reasons	explained	in	Chapter	13,	these
pieces	are	called	contact	clusters.
The	next	threshold,	D2crit,	separates	the	D’s	where	the	curd	is	a	 -curve	from

those	where	it	is	a	 -surface,	etc.	If	and	when	the	whey’s	topology	becomes	of
interest,	it	too	may	lead	to	new	critical	thresholds.
CLUSTERS’	DIMENSION.	When	D>Dcrit,	the	contact	clusters	have	a	fractal

dimension	Dc<D.	As	D	decreases	from	E	to	Dcrit,	Dc	decreases	from	E	to



Dcmin>1,	then	crashes	to	0.
SIZE	NUMBER	DISTRIBUTIONS.	Pr(∧>λ),	Pr(A>a),	etc.	obtain	by

replacing	Nr	by	Pr	in	the	formulas	in	Chapter	13.
BOUNDS	ON	Dcrit	AND	D2crit.	Obviously,	Dcrit≥1	and	D2crit≥2,	And	it	is

proven	in	the	next	section	that	Dcrit	has	an	upper	bound	less	than	E,	showing	that
the	above	definitions	have	actual	content.
In	addition,	tighter	lower	bounds	apply	regardless	of	b.	It	is	shown

momentarily	that	a	sufficient	condition	for	DT=0	is	D<½(E+1).	Hence
Dcrit>½(E+1)>1.	And	a	sufficient	condition	for	DT	to	be	either	0	or	1	is
D<½E+1.	Hence,	D2crit>½E+1>2.
For	E=3,	we	find	D<½(E+1)=2,	which	is	satisfied	(with	room	to	spare)	by	the

Fourier-Hoyle	value	D=1,	and	by	the	empirical	galaxy	value	of	D~1.23.	Thus,	a
random	curd	with	either	D	is	a	dust,	as	we	want	it	to	be.
The	condition	D<½E+1	yields	D<2.5	when	E=3.	This	threshold	value	also

happens	to	be	the	estimated	dimension	of	the	carrier	of	turbulent	intermittency.
Past	experience	with	sufficient	conditions	obtained	by	crude	means	suggests	that
they	are	rarely	optimal.	So,	it	would	follow	that	the	curdling	model	carrier	of
turbulence	is	less	than	sheetlike.
DERIVATION	OF	THE	LOWER	BOUNDS.	Their	background	resides	in	the

fact	stressed	in	Chapter	13,	that	curd	contact	clusters	arise	where	the	content	of
neighboring	cells	becomes	lumped	together.	Consider	therefore	the	intersection
of	the	curd	with	a	plane	perpendicular	to	an	axis,	with	a	coordinate	of	the	form
αbˉβ,	where	α	and	β	are	integers.	We	know	that,	if	D>1,	this	intersection	has	a
positive	probability	of	being	nonempty.	However,	lumping	demands	an	overlap
between	the	partial	contributions	to	the	intersection	coming	from	opposite	sides
of	a	side	of	length	b-β.	If	nonempty,	these	contributions	are	statistically
independent,	hence	their	overlap	is	formally	of	dimension	D*	=	E-1-2(E-D)	=
2D-E-1.
When	D☼<0,	i.e.,	when	D<½(E+1),	the	contributions	fail	to	overlap.	Hence,

the	curd	cannot	possibly	contain	a	continuous	curve	crossing	our	plane,	and	DT<
1.
When	D☼<1,	i.e.	when	D<½E+1,	the	overlap,	if	there	is	one,	cannot	contain	a

curve.	Hence,	the	curd	cannot	contain	a	continuous	surface	crossing	our	plane,
and	DT<2.
When	D☼<F,	with	F>1,	i.e.,	when	D<½(E+1+F),	the	same	argument	excludes



an	hypersurface	of	dimension	DT=F.
Granted	these	results,	the	remainder	of	the	proof	of	the	above	inequalities	is

straightforward	:	when	the	curd	contains	a	curve	(or	surface),	any	point	P	on	this
curve	(or	surface)	is	contained	in	a	box	of	side	of	the	form	b-β,	which	the	curve
(or	surface)	intersects	at	some	point	(or	curve).	One	ascertains	that	it	is	almost
sure	no	such	point	(or	curve)	exists	when	D<½(E+1)	(or	D<½E+1).



PERCOLATING	FRACTAL	CLUSTERS

The	discussion	of	topology	is	best	continued	using	percolation	vocabulary.
According	to	the	definition	in	Chapter	13,	a	shape	drawn	on	a	square	or	a	cube	is
said	to	percolate	if	it	includes	a	connected	curve	joining	opposite	sides	of	the
square	or	cube.	Percolation	is	ordinarily	tackled	in	the	Bernoulli	context
discussed	in	Chapters	13	and	14.	But	the	same	problem	arises	in	the	context	of
random	fractal.	Here	we	tackle	it	for	random	curds.
The	basic	fact	is	that,	when	a	shape	is	a	σ-cluster,	it	percolates	if	and	only	if

one	of	its	contact	clusters	percolates.	When	the	contact	clusters	are	fractals	and
their	lengths	follow	a	scaleless	hyperbolic	distribution,	the	probability	of
percolation	is	independent	of	the	square’s	side,	and	does	not	degenerate	to	either
0	or	1.	In	Bernoulli	percolation,	the	“when”	in	the	preceding	sentence	is	satisfied
under	the	narrow	condition	P=Pcrit-	In	percolation	through	fractal	curds,	the
condition	broadens	to	D>Dcrit.	This	is	a	considerable	difference.	Nevertheless,	to
understand	Bernoulli	percolation	helps	us	understand	curds’	percolation,	and
vice	versa.
AN	UPPER	BOUND	ON	Dcrit.	Let	me	argue	that,	if	b≥3,	Dcrit	satisfies

bDcrit>bE+½bE-1.	More	precisely,	when	N	is	fixed	(constrained	curdling),	this
condition	makes	percolation	almost	certain.	In	nonconstrained	curdling,	this
condition	insures	that	failure	to	percolate	has	a	positive	but	small	probability.
First	of	all,	consider	the	case	of	nonrandom	N.	Under	the	stronger	condition

bE-N≥½bE-1_1,	there	is	no	way	that	any	given	face	between	two	precurd	cells
can	fail	to	survive.	Even	if	the	worst	happens,	and	all	the	nonsurviving	subeddies
crowd	along	said	face,	these	eddies	are	so	insufficient	in	numbers	that	it	is	sure
(not	almost,	but	absolutely)	that	no	path	becomes	disconnected.	Under	the
weaker	condition	bE−N≥½bE−1,	the	same	result	is	not	absolutely,	but	almost,
certain.	The	resulting	curd	is	made	of	sheets	surrounding	separate	gaps	filled
with	whey.	Two	points	of	the	whey	can	be	linked	only	when	they	are	in	the	same
gap.	The	topology	is	almost	surely	that	of	Sierpinski	carpet,	or	of	foam;	Chapter
14.
With	the	same	condition	applied	to	unconstrained	curdling,	failure	to	percolate

is	no	longer	an	impossibility,	but	an	unlikely	event.



Let	us	examine	numerical	examples	for	E=2.	When	b=3,	the	weaker	and	more
useful	of	the	above	conditions	become	N>7.5,	which	has	only	one	solution	N=8
(its	value	for	the	Sierpinski	carpet)!	As	b→∞,	the	above	upper	bound	on	Dcrit
gets	increasingly	closer	to	2.
LOWER	BOUND	TO	Dcrit.	When	b>>	1,	Dcrit>E+logbpcrit,	where	Pcrit	is	the

critical	probability	in	Bernoulli	percolation.	The	background	to	this	bound	is	that
the	first	stage	of	random	fractal	curdling	amounts	to	building	a	Bernoulli	floor
with	a	tile	having	the	probability	bD−E	of	being	conducting.	If	this	probability	is
less	than	pcrit,	a	floor’s	being	conductive	is	an	event	of	small	probability.	And,	if
it	does	occur,	it	is	likely	to	be	due	to	a	single	string	of	conductive	tiles.	The
second	stage	of	random	fractal	curdling	builds	a	Bernoulli	floor	with	the	same
probability	bD−E	on	each	conductive	first	stage	tile.	This	step	is	very	likely	to
destroy	the	percolating	link.
As	b→∞,	the	new	bound	tends	to	E,	and	in	its	domain	of	validity	(b>>	1),	it

exceeds	the	bound	½(E+1).	Thus,	Dcrit→E.

Plates	218	and	219	IMPLEMENTATION	OF	HOYLE’S	MODEL



(DIMENSION	D=1)	USING	RANDOM	CURDLING	IN	A	GRID
	
In	Hoyle’s	model	(Chapter	9),	a	very	low	density	gas	cloud	collapses	repeatedly
to	form	clusters	of	galaxies,	then	galaxies,	and	so	on.	Hoyle’s	description,
however,	is	extremely	schematic,	and	actual	geometric	implementation	requires
specific	assumptions.	Those	plates	show	a	plane	projection	of	the	simplest
implementation.
PLATE	219.	An	initiator	cube	of	side	1	is	subdivided	into	53=125	subcubes	of

side	5-1,	and	so	on	successively	into	125k	subcubes	of	the	kth	order,	each	of	side
5-k.	In	the	kth	cascade	stage,	the	matter	contained	in	a	(k–1)th	order	subcube
collapses	into	a	set	of	5	subcubes	of	the	kth	order,	to	be	called	k-precurd.	Hoyle
curdling	always	reduces	the	dimension	from	D=3	down	to	D=1.
In	this	plate,	the	first	three	stages	are	illustrated	in	superposition,	using

increasingly	dark	shades	of	gray	to	represent	increasing	gas	density.	Compared
to	Hoyle	1975,	p.	286,	this	plate	may	seem	crude.	But	it	is	carefully	drawn	to
scale,	because	questions	relative	to	dimension	demand	accuracy.
Because	we	present	a	plane	projection	of	a	curd,	it	is	not	rare	that	two

contributing	cubes	should	project	on	the	same	square.	In	the	limit,	however,	the
projections	of	two	points	almost	never	coincide.	The	dust	is	so	sparse	as	to	leave
space	essentially	transparent.
PLATE	218.	Here,	the	fourth	stage	of	curdling	(with	a	different	seed)	is

represented	alone.	There	is	little	evidence	of	the	underlying	grid,	which	is
fortunate,	because	there	is	no	evidence	of	such	grids	in	nature	(Chapter	27).	The
top	part	of	the	eddy,	which	is	cut	by	the	edge	of	the	page,	is	empty	in	this
instance.

	CONTROL	OF	LACUNARITY.	The	notion	of	lacunarity,	presented	in
Chapter	34,	applies	directly	to	random	curdling	on	the	line	and	to	Hoyle
curdling.	If	Hoyle’s	N=5	is	replaced	by	Fournier’s	“real”	value	of	N=1022	(Plate
95),	a	random	curd’s	lacunarity	becomes	very	small	indeed.





Plates	220	through	223	NOVIKOV-STEWART	RANDOM	CURDS	IN	A
PLANE	GRID	(DIMENSIONS	D=1.5936	TO	D=1.9973)	FOLLOWED	BY

PERCOLATION
	
The	Novikov-Stewart	cascade	provides	a	useful	general	idea	of	how	turbulent
dissipation	in	a	fluid	curdles	into	a	small	relative	volume.	Conceptually,	it	is	very
similar	to	the	Hoyle	cascade	illustrated	in	the	preceding	plates,	but	the	values	of
the	fractal	dimension	D	are	very	different.	For	galaxies,	D~1,	while	in	turbulence
D>2,	and	D~2.5	to	2.6	is	a	good	guess.	The	present	plates	illustrate	several
different	values	of	dimension,	for	the	sake	of	a	general	understanding	of	the
process	of	curdling.	Throughout,	r=1/5,	and

N=5x24,	N=5x22,	N=5x19,	N=5x16,	and	N=5x13,



respectively.	Hence	the	dimensions	take	the	values

D=1+log	24/log	5=2.9973,	D=2.9426,	D=2.8505,	D=2.7227,	and
D=2.5936.

The	whey	is	represented	in	gray,	while	the	curd	is	drawn	in	either	black	or
white.	The	white	portion	is	a	percolating	contact	cluster,	namely,	the	connected
portions	touching	both	the	upper	and	the	lower	sides	of	the	graph.	The	black
portion	combines	all	the	other	contact	clusters.



Because	turbulence	satisfies	D>2,	these	curds	are	essentially	opaque,	and
(contrary	to	Hoyle	curds)	these	plates	illustrate	their	plane	cross	sections,	whose
dimensions	are

D=1.9973,	D=1.9426,	D=1.8505,	D=1.7227,	and	D=1.5936.

In	Plate	220,	the	lower-right	corner	illustrates	D~1.9973,	a	case	barren	of
interesting	detail,	and	the	remainder	illustrates	D~1.9426.



The	generating	program	and	the	seed	are	the	same	throughout,	and	one	can
follow	the	progressive	disappearance	of	the	grays.	One	began	by	stacking	at
random	the	25	subeddies	of	each	eddy.	Then	for	successive	integer	values	of
5D=N,	the	top	25−N	subeddies	in	the	stack	were	“grayed	away.”
For	the	two	smaller	dimensions,	there	is	no	percolation.	For	N=19,	there	is	a

bit	of	black	and	much	of	white.	A	few	seeds	percolate	already	for	N=18.	But	the
numbers	of	stages	in	this	illustration	is	to	small	for	reliable	estimation	of	Dcrit.



24

Random	Chains	and	Squigs

The	preceding	chapter	shows	that	curdling	can	be	randomized	without	disturbing
the	underlying	spatial	grid	of	base	b.	In	random	curdling,	the	“stuff”	present	in	a
lattice	cell	at	stage	k	remains	within	it	forever,	while	its	distribution	becomes
less	and	less	uniform.	This	process	is	very	simple,	because	the	evolution	of	each
cell	is	independent	from	what	happens	in	other	cells.	However,	the	resulting
fractals’	topology	must	be	allowed	to	be	determined	by	chance	and	the	properties
of	space.
The	present	chapter	shows	how	curdling	can	be	constrained	to	force	the

resulting	fractal	to	have	specified	connectedness	properties.	For	example,	a	"self-
avoiding”	curve	is	needed	when	the	goal	is	to	model	a	coastline,	or	river’s
course.	A	different	example	arises	in	the	totally	different	field	of	polymer
science:	an	immensely	long	molecule	floating	in	a	good	solvent	wanders	around
but	is	obviously	prevented	from	occupying	the	same	portion	of	space	more	than
once.
In	the	recursive	methods	that	insure	that	the	set	created	by	curdling	is

connected	and	self-avoiding,	the	initiator	continues	to	be	a	plane	domain,	say	a
square,	and	the	generator	continues	to	be	a	collection	of	smaller	domains
contained	in	the	initiator.	In	Chapter	23,	the	only	condition	on	these	smaller
domains	is	that	they	must	not	overlap,	except	that	common	vertices	or	sides	are
permissible.	In	the	present	chapter,	to	the	contrary,	the	presence	of	common
vertices	or	sides	is	imposed.
Common	vertices,	which	are	examined	first,	involve	“random	chains”	that

yield	a	direct	generalization	of	certain	Koch	or	Peano	curves.
Common	sides	turn	out	to	yield	a	much	more	attractive	and	interesting	family

of	fractals,	introduced	in	Mandelbrot	1978r,	1979c.	Some	are	self-avoiding	and
nonbranching	“simple	curves”,	others	are	loops	or	trees;	and	the	process	extends
to	surfaces.	From	now	on,	I	propose	to	call	these	new	shapes	squigs.
The	main	reason	for	preferring	them	to	random	chains	is	that	their	being	less



versatile	seems	to	reflect	a	basic	property	of	space.
Linear	squigs	are	rough	models	of	linear	polymers	and	river	courses,	looped

squigs	model	coastlines,	and	tree	squigs	model	river	trees.



RANDOM	CHAINS	AND	CHAIN	CURVES

The	white	domains	in	Plate	43	can	be	viewed	as	forming	a	chain	of	triangles
joined	by	vertices.	The	next	construction	stage	replaces	every	triangle	by	a
substring	entirely	contained	within	it	and	yields	a	chain	made	of	smaller
triangles	joined	by	single	points.	This	sequence	of	imbedded	chains	converges	to
the	Koch	curve.	(The	procedure	recalls	the	Poincaré	chains	of	Chapter	18.)
Many	other	Koch	curves	can	be	constructed	in	this	fashion,	for	example	the

Sierpinski	gasket,	Plate	141,	whose	chain	is	the	shape	obtained	after	removal	of
the	central	triangular	tremas.
This	method	of	construction	is	readily	randomized,	for	example	a	triangle	can

be	replaced	either	by	two	triangles	with	r=1/√3,	as	in	Plate	43,	or	by	three
triangles	with	r=⅓.



SIMPLEST	SQUIGS	(MANDELBROT	1978r)

The	simplest	“squig	curve”	is	a	random	fractal	curve	designed	in	Mandelbrot
1978r,	1979c,	and	studied	further	in	Peyrière	1978,	1979,	1981.	It	is	a	model	of	a
river’s	course,	patterned	after	the	well-known	pictures	in	geology	or	geography
that	show	the	successive	stages	of	a	river	that	burrows	into	its	valley,	defining	its
course	with	increasing	precision.
Before	the	kth	stage	of	burrowing,	the	river	flows	within	a	“pre-squig”	valley

made	of	cells	in	a	regular	triangular	lattice	of	side	2−k.	Of	course,	no	lattice	cell
can	be	visited	more	than	once,	and	each	link	in	the	valley	must	be	in	contact
with	2	neighbors,	through	a	shared	side,	while	the	third	side	is	“locked.”
The	k-th	stage	of	burrowing	replaces	this	pre-squig	by	a	finer	one,	drawn	on

an	interpolated	lattice	of	side	2−k−1.	Clearly,	the	pre-squig	of	order	(k+1)
necessarily	incorporates	one	half	of	every	side	shared	between	two	neighboring
links	of	order	k.	And	a	strong	converse	holds,	namely:	the	position	of	the	shared
(unlocked)	halves	determines	the	pre-squig	of	order	(k+1)	without	ambiguity.
SYMMETRICALLY	RANDOM	SQUIGS.	Pick	the	half	side	to	be	locked	at

random,	the	alternatives	having	equal	probabilities.	The	number	of	links	of	order
k+1	within	a	link	of	order	k	is	1	with	a	probability	of	¼,	and	3	with	a	probability
of	¾.	The	average	number	is	2.5.
The	valley	narrows	down	at	every	stage,	and	it	converges	asymptotically	to	a

fractal	curve.	Naturally,	I	conjectured	that	the	limit	is	of	dimension	D=log
2.5/log2=1.3219.	The	proof	(which	is	delicate)	is	provided	in	Peyrière	1978.
ASYMMETRICALLY	RANDOM	SQUIGS.	After	a	side	has	been	split	into	2

halves,	let	p#½	be	the	probability	that	the	subvalley	crosses	the	“half	to	the	left.”
One	can	define	this	notion	with	respect	to	either	an	observer	looking
downstream,	or	an	observer	standing	at	the	center	of	the	triangle	being
subdivided.	In	the	first	case,	D	=	log	[3–p2–(1–p2)]/log	2,	which	ranges	from	1	to
log	2.5/log	2.	And	in	the	second	case,	D	=	log	[3-2p(1-p)]/log	2,	which	ranges
from	log	2.5/log	2	to	log	3/log	2.	Altogether,	all	the	D’s	for	1	to	log	3/log	2	are
attainable.



ALTERNATIVE	LATTICES	AND	SQUIGS

Alternative	squig	curves	are	obtained	by	using	different	interpolated	lattices.	The
generalization	is	straightforward	whenever	knowing	the	intervals	where	a	pre-
squig	of	order	(k+1)	crosses	the	sides	between	the	cells	of	order	k	suffices	to
identify	the	pre-squig	of	order	(k+1).	An	example	is	the	rectangular	lattice
wherein	the	ratio	of	the	long	to	the	short	sides	is	of	the	form	√b,	and	cells
interpolate	into	b	cells	placed	across.
But	such	is	not	the	case	for	triangular	lattices	whose	cells	interpolate	into	b2≥9

triangles,	or	for	square	lattices	whose	cells	interpolate	into	b2≥4	squares.	In
either	case,	the	interpolation	of	the	pre-squigs	requires	additional	steps.
When	b=3	in	the	case	of	triangles,	or	b=2	in	the	case	of	squares,	one	very

natural	extra	step	suffices.	Consider	indeed	the	4	“rays”	that	radiate	from	a
square’s	center	and	divide	it	into	4,	or	the	6	rays	that	help	divide	a	triangle	into
9.	As	soon	as	one	of	these	rays	is	locked,	the	subvalley	becomes	fully
determined.	In	my	definition	of	the	squigs,	the	ray	to	be	locked	is	chosen	at
random,	with	equal	probabilities.	The	D~1.3347	for	the	triangles	split	into	9,	and
D~1.2886	for	the	squares	split	into	4.	Recalling	that	the	simplest	squigs	yield
D~1.3219,	we	see	that	a	squig’s	D	is	near	universal:	in	the	neighborhood	of	4/3.
When	a	triangle	is	divided	into	b2	parts,	with	b>3,	or	a	square	is	divided	into

b2	parts,	with	b>2,	further	decisions	are	needed	to	specify	the	subvalley,	and	the
construction	becomes	increasingly	arbitrary.	In	the	spirit	of	the	next	section’s
discussion,	the	merits	of	the	squig	construction	becomes	lost.



CHAIN	AND	SQUIG	CURVES,	COMPARED

Let	us	stop	to	recall	that,	when	a	fractal	curve	is	obtained	by	either	the	chain
method	of	Cesàro	or	the	original	method	of	Koch,	the	error	committed	by
truncating	the	process	is	very	nonuniform	along	the	curve.	The	fact	that	certain
points	are	attained	with	infinite	precision	after	a	finite	number	of	stages	may	be
advantageous.	For	example,	it	helped	in	Koch’s	search	for	the	simplest	curve
devoid	of	tangent	at	all	points.	But	the	essential	meaning	of	the	notion	of	curve
becomes	far	clearer	when	the	curve	is	the	limit	of	a	strip	of	uniform	width.	My
squig	curves	satisfy	this	desideratum.
Another	element	of	comparison	involves	the	number	of	arbitrary	decisions

each	approach	demands	from	its	“designer.”	The	Koch	approach	to	nonrandom
or	random	fractals	is	very	powerful	(in	particular,	achieves	any	D	one	may	wish,
by	a	simple	curve),	but	it	involves	on	the	part	of	the	designer	a	large	number	of
specific	choices	for	which	there	is	no	independent	motivation.	The	base	b	is
especially	nonintrinsic.
Science	having	long	suffered	from	Euclid’s	barrenness	in	models	for	the

unsmooth	patterns	of	nature,	the	fact	that	fractals	release	us	from	unquestionable
inappropriateness	was	reason	to	rejoice.	But	at	the	present	stage	of	the	theory,	we
must	sober	up	and	do	with	fewer	arbitrary	decisions.
In	this	light,	the	fact	that	the	squig	construction	is	very	much	constrained	by

the	geometry	of	the	plane	(meaning	that	it	is	less	versatile	than	the	chain	model)
is	a	virtue.



THE	DIMENSION	D~4/3

In	particular,	the	squigs’	dimension	D~4/3	must	be	kept	in	mind.	The	fact	that
this	value	is	also	encountered	in	Chapter	25	(Plate	243)	and	Chapter	36	cannot
be	coincidental,	and	may	eventually	lead	to	basic	insights	about	the	geometric
structure	of	the	plane.



BRANCHING	SQUIG	CURVES

Let	us	return	to	the	construction	of	a	river’s	course.	After	a	triangular	interval	of
a	valley	has	been	replaced	by	a	bit	of	subvalley	made	of	either	1	or	3
subtriangles,	imagine	that	the	remaining	3	or	1	subtriangles	drain	into	the	new
subvalley.	Their	pattern	of	drainage	is	fully	determined.	The	points	where	the
subrivers	cross	the	divides	between	triangles	are	selected	by	the	same	system	as
for	the	main	river.	The	resulting	construction	converges	to	a	tree	that	fills	a
triangle	at	random,	as	seen	in	the	facing	column.



TWO	LIGHTNING	CASE	STUDIES

It	is	interesting	and	possibly	significant	that	a	model	as	crude	as	my	linear	squig
curves	should	suffice	to	account—albeit	only	roughly—for	rivers’	observed
dimensions.
And	it	also	yields	the	dimension	of	the	usual	model	of	highly	diluted	linear

polymers,	the	self-avoiding	random	walk	on	a	lattice	(SARW)	(Chapter	36).
The	reason	why	the	constraints	due	to	the	geometry	of	the	plane	are	far	easier

to	manage	for	the	squig	curves	than	for	SARW	clearly	resides	in	that	squigs	are
constructed	by	interpolation.



SQUIG	SURFACES

They	are	defined	on	a	cube	subdivided	into	b3	subcubes,	I	identified	appropriate
“locking”	procedures	to	determine	uniquely	a	kind	of	comforter	of	constant	but
decreasing	thickness.	The	algorithm	is	unfortunately	too	lengthy	to	be	given
here.



Plate	228	RANDOM	KOCH	COASTLINE	(DIMENSION	D=1.6131)
	
In	many	instances,	a	Koch	curve	with	prescribed	D	and	no	self-contact	can	be
achieved	in	several	different	ways	by	using	the	same	overall	grid,	and	the	same
initiator.	Suppose	in	addition	that	at	least	two	different	generators	can	fit	within
the	same	overall	outline.	Then	it	is	easy	to	randomize	the	construction	by
selecting	among	said	generators	by	chance.	For	example,	one	can	alternate
between	the	following	generators



The	result	is	shown	above.
The	overall	form	of	a	random	Koch	island	constructed	in	this	fashion	is	very

dependent	on	the	initial	shape.	In	particular,	all	the	initial	symmetries	remain
visible	throughout.	For	this	reason,	and	other	reasons	described	in	Chapter	24,
random	shuffling	of	the	parts	of	a	Koch	curve	is	a	method	of	limited	scope.



Plate	229	RANDOM	PEANO	CURVE	(DIMENSION	D=2)
	
The	following	generator,	acting	on	the	initiator	[0,1],	yields	a	way	of	sweeping	a
triangle



The	generator’s	position	depends	on	the	parity	of	the	teragon	interval.	On	odd-
numbered	intervals,	the	above	(straight)	generator	is	positioned	to	the	right.	On
even	numbered	intervals,	its	flipped	form	(Plate	68)	is	positioned	to	the	left.	The
method	of	randomization	used	here	consists	in	selecting	these	focal	points	at
random.	In	this	instance,	the	distribution	is	symmetric	with	respect	to	the
midpoint.	Each	subtriangle	is	later	subdivided	into	four,	independently	of	its
neighbors,	ad	infinitum.
To	make	the	teragon	easier	to	follow,	each	contributing	interval	is	replaced	by

two,	the	added	end	point	being	the	center	of	this	interval’s	shelter.



Plate	230	a	TRIANGLE	&	SQUIG	CURVE
	
The	simplest	squig	construction	is	illustrated	here	by	a	superposition	of	several
diagrams,	each	shade	of	gray	being	viewed	as	continuing	under	those	of	darker
hue.	The	illustration	begins	with	the	triangle	drawn	in	light	gray,	and	stops	with
a	curve	in	black.	The	scale	is	larger	for	stages	6	to	10	than	for	stages	0	to	5.	The
steps	are	described	in	the	text.



Plate	231	A	HEXA-SQUIG	COASTLINE
	
This	plate	strings	six	squigs	together	into	a	self-avoiding	loop.	The	dimension	is
very	close	to	D=4/3.	This	value	also	occurs	in	numerous	other	instances	of	self-
avoidance,	for	example	in	the	boundary	of	the	Brownian	hull	of	Plate	243,
whose	resemblance	to	a	hexa-squig	is	particularly	worth	of	notice.



25

Brownian	Motion	and	Brown	Fractals

The	position	of	the	present	chapter	in	this	Essay	is	the	child	of	compromise.	It
would	belong	more	obviously	in	the	following	Part,	but	some	of	it	is	a
prerequisite	to	Chapter	26.



THE	ROLES	OF	BROWNIAN	MOTION

As	seen	in	Chapter	2,	Jean	Perrin	had	the	brilliant	idea	of	comparing	physical
Brownian	motion	with	continuous	nondifferentiable	curves.	He	thus	inspired	the
young	Norbert	Wiener,	around	1920,	to	define	and	study	a	mathematical
implementation	often	called	Wiener	process.	Much	later,	it	became	known	that
the	same	process	had	been	considered	in	detail,	though	without	rigor,	in
Bachelier	1900	(Chapters	37	and	39).
Oddly,	given	its	extraordinary	importance	elsewhere,	Brownian	motion	itself

finds	no	new	application	in	this	Essay.	On	occasion,	it	helps	rough	out	a
problem,	but	even	in	those	cases	the	next	stage	of	investigation	must	supersede	it
by	a	different	process.	However,	one	can	go	surprisingly	far	in	many	cases
modifying	Brownian	motion,	while	making	sure	the	modifications	remain
scaling.
For	this	and	other	reasons,	other	random	fractals	cannot	be	appreciated

without	a	thorough	understanding	of	the	concrete	properties	of	this	prototype.
However,	the	millions	of	pages	devoted	to	this	topic	either	slight	or	neglect	the
issues	to	be	tackled	in	this	chapter.	If	the	reader	finds	the	going	becomes	rough,
he	should—as	usual—forge	ahead	to	the	next	section	or	the	next	chapter.



BROWN	FRACTALS:	FUNCTION	&	TRAIL

Unfortunately,	the	term	Brownian	motion	is	ambiguous.	It	can,	first	of	all,
designate	the	graph	of	B(t)	as	function	of	t.	When	B(t)	is	the	ordinate	of	a	point
in	the	plane,	the	graph	is	a	plane	curve	like	in	Plate	241.	When	B(t)	is	a	point	in
E-space,	the	graph	is	a	curve	in	a	(1+E)-space	(the	time	coordinate	being	added
to	the	E	coordinates	of	B).	In	many	instances,	however,	one	is	only	interested	in
the	curve	in	E-space,	which	a	motion	leaves	behind	as	its	trail.	When	the	trail
bends	at	uniformly	spaced	instants	of	time,	the	function	and	the	trail	deduce
from	each	other.	However,	in	a	continuous	Brownian	motion,	the	two	aspects	are
not	equivalent,	and	to	designate	both	by	the	same	term	is	confusing.
When	ambiguity	threatens,	I	use	either	Brown	function	or	Brown	trail.	The

same	ambiguity	exists	for	Koch	curves,	but	it	is	more	apparent	here	because	of
the	term	“motion.”
In	addition,	the	variable	of	the	Brown	functions	of	Chapters	28	to	30	is

multidimensional.	For	example,	one	of	the	models	of	Earth’s	relief	in	Chapter	28
assumes	that	the	altitude	is	a	Brown	function	of	latitude	and	longitude.
Therefore,	further	specification	of	the	terminology	is	often	required.	When
necessary,	we	speak	of	Brown	line-to-line,	or	line-to-space,	or	space-to-line,	or
line-to-E-space,	etc.,	functions	or	trails.
BROWN	"FIELDS.”	A	“random	field”	is	not	a	randomized	(algebraic)	field,

but	a	fashionable	synonym	(e.g.,	Adler	1981	)	for	“random	function	of	several
variables.”	This	term	cannot	be	justified,	and	ought	to	be	banished	before	it
becomes	entrenched.	It	seems	an	incompetent	translation	from	the	Russian,	 	as
automodel	(whose	spread	I	stopped	in	time)	was	an	incompetent	translation	from
the	Russian	word	for	self-similar.



PLANAR	BROWN	TRAIL,	CONSTRUCTED	AS
RANDOM	PEANO	CURVE	WITH	N=2

The	Brown	trail	casts	fresh	light	on	the	Peano	curves,	of	which	it	turns	out	to	be
a	randomized	variant.	This	construction	was	not	identified	as	such	by	a
haphazard	group	of	scholars	that	I	polled,	nor	is	it	mentioned	as	such	in	a
haphazard	pile	of	books	on	the	subject	that	I	scanned.	Anyhow,	mathematicians
shun	this	approach,	because	its	basic	ingredient	(a	hierarchy	of	strata	with
increasingly	fine	detail,	controlled	by	a	dyadic	time	grid)	is	not	intrinsic	to	the
construction’s	outcome.	Hence,	this	approach	is	called	artificial	by
mathematicians,	but	for	this	very	same	reason	it	fits	beautifully	in	this	Essay.
The	procedure	starts	with	any	Peano	curve	with	N=2	and	r=1/√2.	The	trick	is

to	release	various	constraints	in	successive	steps.
The	intermediate	fractals,	“Peano-Brown	hybrids,”	deserve	to	be	studied	in

their	own	right	on	more	suitable	occasions.
TRANSVERSAL	MIDPOINT	DISPLACEMENT.	In	the	Plates	64	to	67,	the

(k+1)st	stage	transforms	the	kth	teragon	by	displacing	each	side’s	midpoint
transversally	by	∣ΔM∣=	√2−k−1	to	the	left	or	the	right,	according	to	specific	rules,
e.g.,	the	parity	of	k.
Now	let	a	Peano	curve’s	displacements	over	a	time	span	Δt=t−k,	and	over	its

two	halves	Δ1t	and	Δ2t,	be	denoted	by	ΔP,	Δ1P,	and	Δ2P.	We	have	the
Pythagorean	identity

|AP|2	=	∣A1P∣2+∣Δ2P∣2.

ISOTROPIC	DISPLACEMENT	DIRECTIONS.	In	a	first	deparature	from	any
Peano	curve’s	rules,	we	randomize	the	displacement	directions.	One	approach	is
to	go	left	or	right	with	equal	probabilities,	leading	to	a	“random	flip-flop	curve.”
A	different	approach	consists	in	throwing	a	point	at	random	(with	uniform
density)	on	a	circle	graduated	in	degrees,	and	reading	off	an	angle.	This
procedure	defines	the	displacements	as	being	isotropic.
Either	form	of	randomization	preserves	the	Pythagorean	identity:	the	isotropic

motion’s	increments	over	dyadic	subintervals	of	a	dyadic	interval	are
geometrically	orthogonal.



RANDOM	DISPLACEMENT	LENGTHS.	Our	second	departure	from	the
nonrandom	rules	is	to	allow	the	displacement	length	to	be	random	:	from	now
on,	2−k−1	will	not	be	the	square	of	a	nonrandom	∣ΔM∣,	but	the	mean	square	of	a
random	∣ΔM∣.	The	resulting	displacements	ΔP*	satisfy

RANDOM	INITIATOR.	The	next	step	is	to	take	the	initiator	itself	to	be
random	of	mean	square	length	equal	to	1.	It	follows	necessarily	that	〈∣ΔP*∣2〉	=
2–k–1,	and	we	have	the	mean	Pythagorean	identity

〈∣Δ1P*∣2+∣Δ2P*∣2—|ΔP*∣2〉	=	0

In	other	words,	geometrically	orthogonal	sides	are	replaced	by	sides	that
probabilists	call	statistically	orthogonal,	or	uncorrelated.
INDEPENDENT	INCREMENTS.	The	midpoint	displacements	are	made

statistically	independent,	both	within	and	between	the	stages.
GAUSSIAN	INCREMENTS.	The	randomized	Peano	curve	becomes	the

Brown	trail	B(t)	when	the	midpoints’	displacements	are	made	to	follow	an
isotropic	Gaussian	distribution.

In	the	plane,	this	variable’s	square	modulus	is	exponentially	distributed.
Hence	a	direct	construction	picks	U	uniformly	on	[0,1	]	and	draws	∣ΔM∣	=	[-2
logeU]½.
GENERALIZATION	TO	SPACE.	The	final	construction	remains	meaningful

when	E>2.
THE	DIMENSION	D=2.	The	mean	Pythagorean	identity	is	a	generalized

definition	of	similarity	dimension.	It	is	suitable	for	the	Brown	trail,	because	the
Hausdorff	Besicovitch	dimension	is	also	equal	to	2.	Its	suitability	in	case	the
midpoint	displacement	is	not	Gaussian	remains	to	be	studied.



BROWN	FRACTAL	NETS	(LATTICES)

MULTIPLE	POINTS.	Even	if	randomization	stops	after	the	first	stage	described
in	the	last	section,	it	results	in	the	utter	destruction	of	the	exquisite	long	and
short	range	orders	that	make	the	Peano	curves	avoid	self-intersection.	The
randomized	teragons	self-intersect	after	few	steps,	and	the	limit	trail	almost
surely	self-intersects	ceaselessly.
BROWN	GAPS.	It	is	widely	known	that	a	Brown	trail	extrapolated	for	all	t’s

from—∞	to	+∞	covers	the	plane	densely.	This	property	will	be	rederived
momentarily.	However,	a	trail	drawn	during	a	unit	time	span	has	its	own	most
peculiar	geometry—which	I	do	not	recall	seeing	described	anywhere.
In	apparent	compensation	for	points	that	are	covered	repeatedly	when	t	ϵ	[0,1],

B(t)	leaves	other	points	uncovered.	The	uncovered	points	form	an	open	set	that
splits	into	an	exterior	set	containing	the	point	at	infinity,	and	an	infinite	number
of	disjoint	Brown	gaps.	The	exterior	set	and	each	gap	are	bounded	by	fractal
curves	which	are	subsets	of	the	trail.	The	Brown	trail	is	therefore	a	fractal	net.
Examples	are	shown	in	Plates	242	and	243.

Chapter	14	describes	nets	of	dimension	D,	for	which	the	number	of	gaps
with	area	U	exceeding	u	is	Nr(U>u)	∝	u–b/E.	In	a	random	context	with	D=E=2,	a
formal	extension	is	P(u)	=	Pr(U>u)	∝	u–1.	However,	this	would	not	do,	because
fϵoP(U>u)du	must	converge.	Hence	I	conjecture	that	Pr(U>u)	∝	u–1L(u),	where
L(u)	is	a	slowly	varying	function	that	decreases	fast	enough	for	the	above
integral	to	converge.	Because	of	the	need	for	a	nonconstant	L(u),	the	dimension
D=2	is	not	achievable	in	a	self-similar	ramified	net,	just	as	Chapter	15	shows
D=2	is	not	achievable	in	a	self-similar	simple	curve.
THE	BROWN	NET’S	AREA	VANISHES.	Despite	the	value	of	its	dimension,

D=2,	a	Brown	net	has	a	vanishing	area.	The	same	must	be	true	of	the	Peano-
Brown	hybrids.
THE	UNBOUNDED	TRAIL	IS	DENSE	IN	THE	PLANE.	This	property

hinges	on	the	fact,	to	be	established	in	a	later	section	concerned	with	zerosets,
that	the	unbounded	trail	“recurs”	infinitely	often	into	any	prescribed	plane
domain	D,	such	as	a	disc.	By	making	D	arbitrarily	small	and	centered	on	any
point	P,	we	see	that	the	unbounded	trail	comes	infinitely	often	arbitrarily	close	to



every	point	in	the	plane.
However,	as	we	shall	also	see	when	we	examine	the	zerosets,	the	probability

that	an	individual	trail	hits	a	prescribed	point	exactly	is	zero,	hence	a	prescribed
point	is	almost	surely	not	hit	by	the	unbounded	trail.
The	portion	of	an	unbounded	trail	within	a	domain	D)	can	be	mentally

approximated	by	a	denumerable	infinity	of	independent	bounded	nets	suitably
thrown	upon	2).	The	result	recalls	a	denumerable	infinity	of	points	thrown	at
random	upon	[0,1],	independently	of	one	another.	As	is	well-known,	the
resulting	set	is	everywhere	dense,	but	its	length	vanishes.



DEPENDENCE	OF	MASS	ON	RADIUS

Scaling	by	√t	is	characteristic	of	most	aspects	of	Brownian	motion.	For	example,
the	distance	it	covers	in	time	t,	measured	as	the	crow	flies,	is	a	random	multiple
of	√t.	Also,	the	total	time	spent	in	a	circle	of	radius	R	around	B(0)=0	is	a	random
multiple	of	R2.
Weighting	the	different	pieces	of	a	Brown	trail	by	“masses”	proportional	to

the	time	it	takes	to	run	through	them,	one	finds	that,	in	the	plane	or	in	the	space
(E≥2),	the	total	mass	in	a	circle	of	radius	R	is	M(R)	α	R2.
Formally,	this	relationship	is	precisely	the	same	as	in	the	case	of	the	Koch

curve	examined	in	Chapter	6	and	the	Cantor	dust	examined	in	Chapter	8.	It	is	a
fortiori	the	same	as	in	the	classical	cases	of	an	interval,	disc,	or	sphere	of
uniform	density.



THE	BROWN	TRAIL	IS	“CREASELESS,”	HAS
STATIONARY	INCREMENTS

As	the	result	of	what	may	be	described	as	a	windfall,	randomizing	the	Peano
curve	achieves	more	than	has	been	bargained	for.	As	a	preliminary	comment,
observe	that	the	nonrandom	Koch	and	Peano	curves	exhibit	permanent	“creases”
at	the	time	instants	of	the	form	N−k.	For	example,	if	we	break	one-third	of	the
snowflake	boundary	into	quarters,	the	angle	between	quarters	1	and	2	differs
from	the	angle	between	quarters	2	and	3.	Hence	the	left	half	cannot	be	mistaken
for	the	mid	half.
But	the	Brown	trail	is	“creaseless.”	Given	an	interval	corresponding	to	the

time	span	t,	one	cannot	tell	this	span’s	position	along	the	time	axis.	Probabilists
say	that	Brown	trail	has	“stationary	increments.”
This	property	is	noteworthy	because	a)	it	is	the	foundation	stone	of	the

alternative	grid-free	definition	described	later	in	this	chapter,	and	b)	it	has	no
counterpart	among	the	analogous	randomized	forms	of	simple	fractal	curves	or
surfaces.



THE	BROWN	TRAIL	IS	SELF-SIMILAR

A	corollary	of	creaselessness	is	a	strong	form	of	statistical	self-similarity.	Setting
B(0)=0	and	picking	two	positive	numbers	h	and	h’,	a	chapter	of	probability
called	theory	of	weak	convergence	shows	that	the	functions	h−½B(ht)	and
h’−½S(h’t)	are	statistically	identical.	Also,	setting	T<∞	and	h<1,	and	varying	t
from	0	to	T,	we	find	that	h’½B(ht)	is	a	rescaled	form	of	a	portion	of	B(t).	This
portion’s	being	statistically	identical	to	the	whole	is	a	form	of	self-similarity.
Self-similarity	as	applied	to	random	sets	is	less	demanding	than	the	notion

introduced	in	Chapter	5,	since	the	parts	need	no	longer	be	precisely	similar	to	the
whole.	It	suffices	that	the	parts	and	the	whole	reduced	by	similarity	should	have
identical	distributions.
Observe	that	the	Koch	curves	require	similarity	ratios	of	the	form	r=b−k,

where	b	is	the	base,	a	positive	integer,	but	any	r	is	acceptable	for	Brown	trail.
This	feature	is	valuable.



THE	BROWN	ZEROSET	IS	SELF-SIMILAR

Of	special	importance	to	the	study	of	Brown	functions	are	the	sets	of	constancy,
or	isosets,	of	its	coordinate	functions	X(t)	and	Y(t).	For	example,	the	zeroset	is
defined	as	those	instants	t	for	which	X(t)=0.
The	isosets	are	self-similar,	and	the	obvious	fact	that	they	are	extremely	sparse

is	confirmed	by	their	having	the	fractal	dimension	D=1/2.	They	are	a	special	case
of	the	Levy	dusts	to	be	investigated	in	Chapter	32.
BROWN	ZEROSETS’	GAP	DISTRIBUTION.	The	lengths	of	a	Brown

zeroset’s	gaps	satisfy	Pr(U>u)=u−D	with	D=½.	This	is	the	counterpart	of	the
relation	Nr(U>u)=u−D	we	know	to	be	applicable	to	Cantor	gaps.	However,	Nr	is
replaced	by	Pr,	and	the	stairs	are	eliminated	due	to	randomization.



THE	BROWN	FUNCTION	IS	SELF-AFFINE

By	contrast,	the	graphs	of	X(t)	and	Y(t),	and	of	the	vector	function	B(t),	are	not
self-similar,	merely	self-affine.	That	is,	the	curve	from	t=0	to	t=4	can	be	paved
by	M=4	portions	obtained	if	the	space	coordinate(s)	continue	to	be	reduced	in
the	ratio	r=½,	while	the	time	coordinate	is	reduced	in	the	different	ratio	r2=1/M.
Hence,	similarity	dimension	is	not	defined	for	the	graphs	of	either	X(t),	Y(t),	or
B(t).
Furthermore,	affine	spaces	are	such	that	distances	along	t	and	X	or	Y	cannot

be	compared	to	each	other,	hence	discs	cannot	be	defined.	As	a	result,	the
formula	M(R)∝RD	has	no	counterpart	that	could	serve	to	define	D	for	the	Brown
functions.
On	the	other	hand,	the	Hausdorff	Besicovitch	definition	does	extend	to	them.

This	example	agrees	with	the	assertion	in	Chapters	5	and	6	that	the	Hausdorff
Besicovitch	dimension	is	the	most	general	way	of	catching	the	intuitive	content
of	fractal	dimension	(and	the	most	unwieldy!).	The	value	of	D	is	3/2	for	X(t),
and	2	for	B(t).

	ROUGH	PROOF.	During	a	time	span	Δt,	max	X(t)-min	X(t)	is	of	the	order
of	√Δt.	Covering	this	subgraph	of	X(t)	by	squares	of	side	At	requires	on	the
order	of	1/√Δt	squares.	Therefore,	covering	the	graph	from	t=0	to	t=1	requires	on
the	order	of	(Δt)−3/2	squares.	This	number	being	(Δt)−D	(Chapter	5),	it	follows
heuristically	that	D=3/2.



THE	SECTIONS’	FRACTAL	DIMENSIONS

The	zeroset	of	the	Brown	line-to-line	function	is	a	horizontal	section	of	a	Brown
function	X(t).	Applying	again	a	rule	stated	in	Chapter	23,	the	zeroset’s
dimension	is	expected	to	be	3/2-1=1/2,	as	we	know	is	the	case.	Other
applications	of	this	rule	are	also	of	extraordinary	heuristic	value,	as	we	now
proceed	to	show.	This	rule	suffers	exceptions,	however,	especially	for	fractals
that	are	not	isotropic.	For	example,	the	section	of	the	Brown	line-to-line	function
by	a	vertical	line	is	simply	a	point.
Similarly,	a	linear	section	of	a	Brown	line-to-plane	trail	should	have	the

dimension	2-1=1,	and	such	is	indeed	the	case.
More	generally	stated,	the	standard	rule	is	this:	excluding	special

configurations,	the	codimensions	E−D	add	under	intersection.	Hence,	the
codimension	of	the	intersection	of	k	planar	Brown	trails	is	k.0=0.	In	particular,	a
Brown	trail’s	self-intersections	are	expected	to,	and	do,	form	a	set	of	dimension
2.	(However,	just	like	the	Brown	trail	itself,	the	trail’s	multiple	points	fail	to	fill
the	plane.)
The	rule	of	addition	of	codimensions	can	be	used	to	argue	that	(as	asserted

earlier)	Brownian	motion	almost	surely	does	not	return	to	its	point	of	departure
B(0)=0,	but	almost	surely	returns	infinitely	often	to	the	neighborhood	of	O.	To
add	generality	to	these	arguments,	and	make	them	usable	again	without	change
in	Chapter	27,	the	dimension	of	the	Brown	zeroset	will	be	written	as	H.
The	time	instants	where	B(t)	returns	to	0	are	those	when	X(t)=0	and	Y(t)=0

simultaneously.	Hence,	they	belong	to	the	intersection	of	the	zerosets	of	X(t)	and
Y(t),	which	are	independent	sets.	The	intersection’s	codimension	is	1-2H,	with
H=½,	hence	their	dimension	is	D=0.	Hence,	the	strong	hint	(but	a	full	proof	is
more	involved!)	that	B(t)	almost	surely	fails	to	return	to	B(0)=0.
On	the	other	hand,	consider	the	set	of	instants	when	B(t)	returns	to	the

horizontal	square	of	side	2ϵ	centered	on	O.	This	is	approximately	the	intersection
of	the	sets	where	t	is	within	the	distance	of	ϵ1/H	from	a	point	in	the	zeroset	of
X(t),	resp.,	of	Y(t).	For	each	of	these	sets,	the	mass	in	the	time	span	[0,t]	is
∝ϵ1/Ht1−H,	and	the	probability	of	this	span’s	containing	the	instant	t	is	∝ϵ1/Ht−H.
Hence,	the	probability	of	t	being	contained	in	these	sets’	intersection	is	∝ϵ(2/Ht



−2H.	Since	H=½,	we	have	 ∞t−2Hdt=∞;	hence	a	theorem	due	to	Borel	and	Cantelli
concludes	that	the	number	of	returns	to	the	square	around	O	is	almost	surely
infinite.	But	one	may	call	it	“barely”	infinite.	As	a	result,	the	gaps	in	bounded
Brownian	nets	become	filled	slowly	and	with	seeming	reluctance.



DOWNSIZED	LATTICE	RANDOM	WALKS

One	can	also	generate	Brownian	motion	through	a	random	walk	on	a	lattice.	We
mention	this	approach	here,	but	diverse	complications	postpone	a	discussion	to
Chapter	36.
A	point	P(t)=	{X(t),	Y(t)	}	in	IR2	performs	a	lattice	random	walk	if,	at

successive	instants	of	time	separated	by	the	interval	At,	it	moves	by	steps	of
fixed	length	∣ΔP∣	in	randomly	selected	directions	restricted	to	a	lattice.
When	the	lattice	is	made	of	the	points	in	the	plane	whose	coordinates	are

integers,	the	quantities	(X+Y)/√2	and	(X-Y)/√2	both	change	by	±	1	at	every	step.
Each	is	said	to	perform	a	random	walk	on	the	line;	an	example	is	shown	as	Plate
241.	On	rough	scale,	that	is,	when	Δt	is	small	and	ΔP=√Δt,	the	walk	is
indistinguishable	from	a	Brownian	motion.



GRID-FREE	DIRECT	DEFINITIONS	OF	B(t)

The	preceding	definitions	of	Brownian	motion	begin	with	either	a	time	grid	or
with	time	and	space	lattices,	but	these	“props”	are	absent	from	the	final	result.
And	it	is	possible	to	characterize	the	final	result	without	them.
The	direct	characterization	in	Bachelier	1900	postulates	that,	over	an	arbitrary

succession	of	equal	time	increments	At,	the	displacement	vectors	ΔB(t)	are
independent,	isotropic,	and	random,	with	a	Gaussian	probability	distribution.
Thus,

〈ΔB(t)〉=0	and	〈[ΔB(t)]2〉=	∣Δt∣	.
Hence	the	root	mean	square	of	ΔB	is	√∣Δt∣.	This	definition	is	independent	of	the
coordinate	system,	but	the	projection	of	ΔB(t)	on	any	axis	is	a	Gaussian	scalar
random	variable,	with	zero	mean	and	a	variance	equal	to	½∣Δt∣.
The	definition	favored	by	mathematicians	goes	further	and	dispenses	with	the

division	of	time	into	equal	steps.	It	requires	isotropy	for	the	motions	between
any	pair	of	instants	t	and	t0>t.	It	requires	independence	of	future	motion	with
respect	to	the	past	position.	Finally,	it	requires	the	vector	from	B(t)	to	B(to),
divided	by	√∣t0-t∣,	to	have	the	reduced	Gaussian	probability	density	for	all	t	and
t0.



DRIFT	AND	THE	CROSSOVER	TO	D=1

The	motion	of	a	colloid	particle	in	a	uniformly	flowing	river,	or	of	an	electron	in
a	conducting	copper	wire,	can	be	represented	as	B(t)+δt.	This	function’s	trail	is
indistinguishable	from	that	of	B(t)	when	t<<1/δ2,	and	from	that	of	δt	when	t≫1/
δ2.	Thus,	the	trail’s	dimension	crosses	over	from	D=2	to	D=1	for	tc∝1/δ2	and
rc∝1/δ.	 	In	the	terminology	of	critical	phenomena,	δ	is	the	distance	from	a
critical	point,	and	the	exponents	in	the	formulas	for	tc	and	rc	are	critical
exponents.



ALTERNATIVE	RANDOM	PEANO	CURVES

The	randomizing	of	Peano	curves	through	midpoint	displacement	benefits
from	exceptional	circumstances.	Analogous	constructions	starting	with	a	Peano
curve	for	which	N>2	are	much	more	complicated.	Also,	a	closer	parallelism	with
nonrandom	scaling	is	achieved	if	the	midpoint’s	displacement	follows	a
Gaussian	distribution	of	root	mean	square	equal	to	½∣ΔB∣,	implying	that	r1	and
r2	are	Gaussian	and	independent	with	the	more	familiar	relation	(r12+r22	-1)	=	0.
The	resulting	process	is	very	interesting.	But	it	is	not	Brownian	motion.	It	is	not
creaseless.



DIMENSION	OF	PARTICLE	PATHS	IN	QUANTUM
MECHANICS

This	discussion	can	close	by	mentioning	a	new	fractal	wrinkle	to	the
presentation	of	quantum	mechanics.	Feynman	&	Hibbs	1965	notes	that	the
typical	path	of	a	quantum	mechanical	particle	is	continuous	and
nondifferentiable,	and	many	authors	observe	similarities	between	Brownian	and
quantum-mechanical	motions	(see,	for	example,	Nelson	1966	and	references
herein).	Inspired	by	these	parallels	and	by	my	early	Essays,	Abbot	&	Wise	1980
shows	that	the	observed	path	of	a	particle	in	quantum	mechanics	is	a	fractal
curve	with	D=2.	The	analogy	is	interesting,	at	least	pedagogically.
The	longest	running	(and	least	demanding!)	of	all	games	of	chance	started
around	1700,	when	the	Bernoulli	family	was	ruling	over	probability	theory.
When	an	eternally	fair	coin	comes	up	heads,	Henry	wins	a	penny;	when	it	comes
up	tails,	Thomas	wins.	(They	used	to	be	called	Peter	and	Paul,	but	I	never
remembered	which	one	bets	on	heads.)
Some	time	ago,	William	Feller	came	by	to	observe	this	game,	and	he	reported

Henry’s	cumulative	wins	on	the	upper	Figure	of	this	plate,	which	is	from	Feller
1950.	(Reproduced	from	An	Introduction	to	Probability	Theory	and	Its
Applications,	Volume	I,	by	William	Feller,	by	kind	permission	of	the	publishers,
J.	Wiley	and	Sons,	copyright	1950.)
The	middle	and	bottom	Figures	represent	Henry’s	cumulative	winnings	during

a	longer	game,	using	data	at	intervals	of	200	tosses.
When	increasingly	long	sets	of	data	are	reported	on	increasingly	fine	graph

paper,	one	obtains	asymptotically	a	sample	of	values	of	a	Brown	line-to-line
function.
Feller	has	confided	in	a	lecture	that	these	Figures	are	“atypical,”	and	were

selected	in	preference	to	several	others	that	looked	too	wild	to	be	believable.	Be
that	as	it	may,	seemingly	endless	contemplation	of	these	Figures	played	a
decisive	part	in	elaborating	two	theories	incorporated	into	this	Essay.
WHOLE	GRAPH.	Mandelbrot	1963e	observes	that	the	whole	graph’s	shape	is

reminiscent	of	a	mountain’s	silhouette	or	of	a	vertical	section	of	Earth’s	relief.
Through	several	generalizations,	this	observation	led	to	the	successive	models



described	in	Chapter	28.
GRAPH’S	ZEROSET.	The	graph’s	zeroset	is	the	set	of	moments	when

Henry’s	and	Thomas’	fortunes	come	back	to	what	they	were	when	we	started
reporting	them.	By	construction,	the	time	intervals	between	the	zeros	are
mutually	independent.	However,	it	is	clear	that	the	positions	of	the	zeros	are	far
from	independent.	They	are	very	distinctly	clustered.	For	example,	when	the
second	curve	is	examined	in	the	same	detail	as	the	first	curve,	almost	every	zero
is	replaced	by	a	whole	cluster	of	points.	When	dealing	with	mathematical
Brownian	motion,	one	can	subdivide	these	clusters	in	a	hierarchical	manner,	ad
infinitum.
When	asked	to	help	model	the	distribution	of	telephone	errors,	I	was	fortunate

to	think	of	Feller’s	diagram.	Although	such	errors	were	known	to	be	grouped	in
bursts	(this	being	the	gist	of	the	practical	problem	being	raised),	I	suggested	that
the	intervals	between	the	errors	might	be	independent.	A	detailed	empirical	study
did	confirm	this	conjecture	and	led	to	the	models	discussed	in	Chapters	8	and	31.

	The	Brownian	zeroset	constitutes	the	simplest	Levy	dust,	namely,	a	random
Cantor	dust	of	dimension	D=	½.	Any	other	D	between	0	and	1	may	likewise	be
obtained	through	the	zeros	of	other	random	functions.	Through	this	model	it	is
possible	to	define	the	fractal	dimension	of	a	telephone	channel.	Actual	D’s
depend	on	the	precise	characteristics	of	the	underlying	physical	process.

Plate	241	A	SAMPLE	RANDOM	WALK,	APPROXIMATING	A	BROWN
LINE-TO-LINE	FUNCTION	(DIMENSION	D=3/2)	AND	ITS	ZEROSET



(DIMENSION	D=1/2)
	

Plate	242	and	243	BROWN	HULLS/ISLANDS;	SELF-AVOIDING
BROWNIAN	MOTION

	
BROWN	LOOP.	By	this	term,	I	denote	a	trail	that	is	covered	in	a	finite	time	At,
by	a	planar	Brownian	motion	that	returns	to	its	point	of	departure.	This	is	a
random	Peano	curve	whose	initiator	is	of	zero	length.
PLATE	243.	BROWN	HULL.	Being	(almost	certainly)	bounded,	a	Brown

loop	separates	the	plane	into	two	parts:	an	exterior	which	can	be	reached	from	a
distant	point	without	intersecting	the	loop,	and	an	interior	which	I	propose	to	call
Brown	hull	or	Brown	island.
PLATE	242.	This	plate	represents	the	hull	of	a	nonlooping	Brown	trail.



COMMENT.	I	am	not	aware	of	any	investigation	of	the	Brown	hull,	but	I
think	it	very	much	deserves	attention.	The	samples	shown	to	the	right	involve
200,000	Brownian	steps,	each	drawn	on	a	raster	of	(1,200)2.
By	construction,	Brown	hulls	corresponding	to	different	values	of	Δt	are

statistically	identical,	except	for	scale.	And	there	is	every	reason	(short	of	actual
proof)	to	believe	that	the	fine	details	of	the	hull’s	boundary	are	asymptotically
self-similar.	The	boundary	cannot	be	strictly	scaling,	because	a	loop	cannot	be
subdivided	into	pieces	having	the	same	structure,	but	small	subpieces	become
increasingly	close	to	scaling.
SELF-AVOIDING	BROWNIAN	MOTION.	For	reasons	detailed	in	Chapter

36,	when	we	examine	the	self-avoiding	random	walk,	I	propose	for	the	Brown
hull’s	boundary	the	term	self-avoiding	Brownian	motion.

THE	DIMENSION	OF	SELF-AVOIDING	BROWNIAN	MOTION.	Having
interpreted	certain	known	relationships	(to	be	quoted	in	Chapter	36)	as	implying
that	a	self-avoiding	random	walk	is	of	dimension	4/3,	I	conjecture	that	the	same
is	true	of	self-avoiding	Brownian	motion.
An	empirical	test	of	this	conjecture	provides	an	excellent	opportunity	to	test



also	the	length-area	relation	of	Chapter	12.	The	plate	is	covered	by	increasingly
tight	square	lattices,	and	we	count	the	numbers	of	squares	of	side	G	intersected
by	a)	the	hull,	standing	for	G-area,	and	b)	its	boundary,	standing	for	G-length.
Graphs	relating	G-length	to	G-area,	using	doubly	logarithmic	coordinates,	were
found	to	be	remarkably	straight,	with	a	slope	indistinguishable	from	D/2=
(4/3)/2=2/3.
The	resemblance	between	the	curves	in	Plates	243	and	231,	and	their

dimensions,	is	worth	stressing.
NOTE.	In	Plate	243,	the	maximal	open	domains	that	B(t)	does	not	visit	are

seen	in	gray.	They	can	be	viewed	as	tremas	bounded	by	fractals,	hence	the	loop
is	a	net	in	the	sense	of	Chapter	14.

The	question	arises,	of	whether	the	loop	is	a	gasket	or	a	carpet	from	the
viewpoint	of	the	order	of	ramification.	I	conjectured	that	the	latter	is	the	case,
meaning	that	Brown	nets	satisfy	the	Whyburn	property,	as	described	on	p.	133.
This	conjecture	has	been	confirmed	in	Kakutani	&	Tongling	(unpublished).	It
follows	that	the	Brown	trail	is	a	universal	curve	in	the	sense	defined	on	here.



26

Random	Midpoint	Displacement	Curves

This	chapter’s	logical	thread	starts	back	in	the	middle	of	Chapter	25,	after	the
section	where	Brownian	motion	is	generated	by	randomizing	a	Peano	curve.
Recall	that	the	kth	teragon	of	a	Brownian	B(t)	is	linear	between	successive

instants	of	the	form	h2−k.	And	that	the	(k+1)st	teragon	is	obtained	by	displacing
at	random	the	midpoints	of	the	kth	teragon’s	sides.	The	same	words	apply	to	the
teragons	Xk(t)	and	Yk(t)	of	the	coordinate	processes	X(t)	and	Y(t)	of	B(t).
The	midpoint	displacement	procedure	being	completely	successful	for	D=2,

one	can	hardly	wait	to	adapt	it	to	the	original	snowflake	and	to	other	Koch
curves	with	N=2	and	then	to	use	it	to	construct	surfaces.	This	is	what	we	now
proceed	to	do.
The	same	general	approach	has	been	taken	by	numerous	authors	of	computer

generated	films	and	graphics	who	attempted	to	duplicate	and	improve	the
graphics	in	the	1977	Fractals,	and	in	addition	sought	a	more	direct	and	less
costly	procedure.	These	authors	failed	to	recognize	that	the	method	of	random
midpoint	displacement	yields	a	result	substantially	different	from	the	goal	they
were	seeking.	It	has	the	advantage	of	simplicity,	but	also	many	undesirable
features.



SPATIALLY	UNCONSTRAINED	RANDOM	KOCH
CURVES	WITH	TIME	GRID

Recall	that	one	can	construct	the	Koch	snowflake	curve	in	the	base	N=2,	using	a
generator	made	of	two	intervals	of	length	1/√3.	In	this	case,	and	more	generally
whenever	the	generator	is	made	up	of	two	intervals	of	length	2−1/D,	with	D<2,
the	construction	tells	whether	to	displace	the	midpoint	of	the	kth	teragon’s	sides
to	the	left	or	to	the	right.	The	displacement	is	always	orthogonal	to	the	side	and
its	length	squared	is	given	by

2-2(k+1)/D_2−2(k/D+1)

The	randomization	of	this	construction	proceeds	as	the	transformation	of	a
Peano	curve	into	a	Brownian	motion.	The	displacement’s	direction	is	made
random	and	isotropic,	independently	of	anything	that	came	before,	the
displacement	length’s	distribution	is	made	Gaussian,	and	the	above	formula	is
made	to	apply	to	the	mean	square	displacement.	Nothing	is	done	to	prevent	self-
intersection,	and	the	limit	fractal	curve	is	rife	with	self-intersections.	We	denote
it	as	B*H(t),	using	the	notation	H=1/D,	which	will	be	justified	momentarily.
As	a	result,	the	relation	between	the	displacement	AB*H	over	the	time	space

2-k	and	the	two	interpolated	displacements	Δ1B*H	and	Δ2B*H	now	takes	the
form

<|Δ1B*H|D	+	|A2B*H|D-|ΔB*H|D)	=	0,

with	an	arbitrarily	prescribed	D<2.
A	corollary	is	that	when	the	time	interval	[t’,t“]	is	dyadic,	that	is,	if	t’=h2-k	and

t”=(h+1)2-k,	we	have

(|ΔB*H|2)	=	Δt2/D	=	lΔt|2H.

We	selected	H	as	parameter	because	it	is	the	exponent	of	the	root	mean	square
displacement.
It	can	also	be	shown	that,	if	B*H(0)=0,	the	function	B*H(t)	is	statistically	self-

similar	with	respect	to	reduction	ratios	of	the	form	2-k.	This	is	a	desirable



generalization	of	what	we	know	for	D=2.



NONSTATIONARY	INCREMENTS

We	must	not	rejoice	too	hard,	however.	Except	in	the	Peano-Brown	case	D=2,
when	it	reduces	to	B(t),	B*H(t)	is	not	statistically	self-similar	with	respect	to
reduction	ratios	other	than	2-k
A	more	serious	problem	develops	whenever	the	interval	[t’,	t“]	is	nondyadic

though	of	the	same	length	Δt=2-k,	for	example,	if	it	is	the	interval	from	t’	=	(h-
0.5)2-k	to	t”	=	(h+0.5)2-k.	Over	such	intervals,	the	increment	ΔB*H	has	a
different	and	smaller	variance,	dependent	on	k.	A	lower	bound	to	this	variance	is
21-2HΔt2H.	Moreover,	if	one	knows	At	but	not	t,	the	distribution	of	the
corresponding	ΔB*H	is	not	Gaussian,	but	is	a	random	mixture	of	different
Gaussian.
As	a	result,	the	creases	that	characterize	the	dyadic	points	of	the

approximating	teragon	remain	forever.	With	D	barely	below	2,	hence	H	barely
above	½,	the	creases	are	slight.	However,	with	H	nearly	1	(Chapter	28	shows
that	modeling	of	Earth’s	relief	involves	H~.8	to	.9),	the	creases	are	very
important	and	can	be	seen	on	the	sample	functions.	The	only	way	to	avoid	them
is	to	give	up	the	recursive	midpoint	displacement	scheme,	as	we	do	in	the	next
section	and	in	Chapter	27.



RANDOMLY	POSITIONED	STRATA

	To	trace	the	reason	for	the	nonstationarity	of	the	midpoint	displacement	curves
and	surfaces,	consider	the	coordinate	function	X(t)	of	a	curve	B*H(t).	Each	stage
contributes	a	broken	line	function	ΔkX(t)	=	Xk(t)-Xk-1(t)	whose	zeroset	a)	is
periodic	of	period	2-k,	and	b)	includes	the	zeroset	of	Δk-1X(t).	Thus,	each
contribution	can	be	said	to	be	in	synchrony	with	all	the	following	ones.

	The	fact	that	the	zerosets	are	periodic	and	synchronous	(“hierarchical”)
prevents	the	increments	from	being	stationary.	Conversely,	one	may	seek
stationarity	by	destroying	these	features.

	One	approach	is	to	construct	the	broken-line	function	ΔBk†(t)	as	follows.
Select	a	Poisson	sequence	of	time	instants	tn(k),	with	an	average	number	of
points	per	unit	time	equal	to	2k,	then	let	the	ΔBk†(tn(k))	be	independent	and
identically	distributed	random	values,	and	finally	interpolate	linearly	between
the	tn(k).	The	infinite	sum	BH†(t)	of	such	contributions	is	a	stationary	random
function,	pioneered	in	the	Ph.D.	dissertation	of	the	hydrologist	O.	Ditlevsen	(
1969).	See	Mejia,	Rodriguez-Iturbe	&	Dawdy	1972	and	Mandelbrot	1972w.

	Looking	back,	we	see	that	this	generalization	no	longer	requires	the	average
number	of	zeros	per	unit	time	to	be	2k.	It	may	be	of	the	form	bk,	with	b	any	real
base	>	1.

	The	admissible	reduction	ratios	of	the	corresponding	fractal	are	given	by
the	discrete	sequence	r=b-k.	As	b→1,	this	sequence	becomes	increasingly	tight,
and	asymptotically	it	becomes,	in	effect,	as	good	as	continuous.	Thus,	BH†(t)
becomes	increasingly	acceptable	to	those	who	seek	stationarity	and	a	wide
choice	of	scaling	ratios.	But	in	the	process	BH†(t)	loses	its	specificity.	The
argument	in	Mandelbrot	1972w	implies	that	BH†(t)	converges	to	the	random
function	BH(t)	studied	in	next	chapter.



Plate	246	THE	COMPUTER	“BUG”	AS	ARTIST,	OPUS	1
	
This	plate	can	be	credited	in	part	to	faulty	computer	programming.	The	“bug”
was	promptly	identified	and	corrected	(but	only	after	its	output	had	be	recorded,
of	course!),	and	the	final	outcome	was	Plates	306	to	309.
The	change	that	had	been	wrought	by	a	single	tiny	bug	in	a	critical	place	had

gone	well	beyond	anything	we	had	expected.
It	is	clear	that	a	very	strict	order	had	been	designed	into	the	correct	plates.

Here,	this	order	is	hidden,	and	no	other	order	is	apparent.
The	fact	that,	at	least	at	first	blush,	this	plate	could	pass	for	High	Art,	cannot

be	an	accident.	My	thoughts	on	this	account	are	sketched	in	Mandelbrot	19811,
and	are	to	be	presented	fully	in	the	near	future.



IX

FRACTIONAL	BROWN	FRACTALS



27

River	Discharges;	Scaling	Nets	and	Noises

Moving	on	to	the	fractional	Brown	fractals	marks	a	major	turning	point	of	this
Essay.	Until	now,	we	have	kept	to	fractals	that	involve	grids	of	time	and/or
space,	with	resulting	restrictions	on	a	fractal’s	invariance	properties,	i.e.,	on	the
admissible	translations	and	similarities	that	map	this	fractal	upon	itself.
Such	restrictions	contradict	the	second	reason	for	randomizing	fractals,	as

expounded	in	Chapter	22.	Moreover,	in	most	cases	of	interest	they	have	no
physical	reality.	Chapters	27	to	35,	to	the	contrary,	move	on	to	fractals	whose
translational	and	scaling	invariances	are	both	unrestricted.
This	chapter	investigates	a	generalized	Brownian	motion,	to	be	denoted	BH(t),

which	Mandelbrot	&	VanNess	1968	calls	fractional	Brownian	motion	(fBm	for
short).	The	motivation	resides	in	annual	river	discharges,	but	scaling	nets	and
scaling	(“1/f”)	noises	are	also	mentioned.	And	Chapters	28	to	30	investigate
related	surfaces.



THE	IMPORTANCE	OF	BEING	GAUSSIAN

A	first	feature	shared	by	Chapters	27	to	30,	is	that	they	all	involve	Gaussian
processes	exclusively.	To	statisticians,	being	Gaussian	is	something
extraordinarily	special,	but	I	have	long	ceased	to	share	this	view.	(See	my
comments	in	Chapter	42	on	this	account.)	Nevertheless,	Gaussian	processes
remain	a	benchmark,	and	demand	to	be	investigated	with	great	care	before	one
steps	beyond	them.



NONRECURSIVE	DEFINITIONS

Chapters	27	to	30	also	share	a	feature	that	is	not	present	anywhere	else	in	this
Essay.
All	the	other	chapters’	constructions,	whether	random	or	not,	proceed

recursively,	by	adding	increasing	detail	to	less	detailed	shapes	obtained	earlier	in
the	construction.	The	resulting	fractals’	properties	are	derived	from	the
generating	rules.
Now,	to	the	contrary,	we	begin	by	declaring	certain	properties	to	be	desirable,

and	only	after	that	do	we	seek	generating	rules	that	fulfill	our	desires.
Unfortunately,	while	the	desirable	properties	are	easy	to	state	and	look	simple,
the	implementing	rules	are	not	recursive,	in	fact	are	rather	disagreeable.
If	so,	why	should	we	insist	upon	these	properties?	The	answer	is	that	they

include	self-similarity	and	creaselessness,	that	is,	stationarity,	which	lie	at	the
very	heart	of	science,	and	also	of	the	theory	of	fractals.
The	relative	cost	of	the	“axiomatic”	approach	in	this	chapter	is	especially

apparent	when	its	outcome	is	paralleled	by	a	fractal	obtained	recursively.	For
example,	anyone	investigating	a	concrete	case	that	calls	for	a	plane	fractal	curve
of	dimension	D	between	1	and	2	may	hesitate	between	a	midpoint	displacement
process	from	Chapter	26	and	a	process	to	be	described	in	this	chapter.	The
former	is	not	creaseless,	which	is	a	drawback	the	latter	avoids.	And	the	sequence
of	discrete	stages	that	makes	recursive	constructions	so	attractive	is	in	most
cases	reflected	in	strata	that	are	meaningless	and	undesirable.



JOSEPH	AND	NOAH	EFFECTS

The	claim	made	in	Chapter	1,	that	many	unsmooth	patterns	of	Nature	have	long
attracted	Man’s	attention,	is	in	many	cases	difficult	to	document	precisely.	But
the	Bible	offers	two	marvelous	exceptions:

...were	all	the	fountains	of	the	great	deep	broken	up,	and	the	windows
of	heaven	were	opened.	And	the	rain	was	upon	the	earth	forty	days	and
forty	nights.	Genesis,	6:	11-12.
...there	came	seven	years	of	great	plenty	throughout	the	land	of	Egypt.

And	there	shall	arise	after	them	seven	years	of	famine.	Genesis,	41:	29-
30.

It	is	hard	not	to	view	the	story	of	Noah	as	a	parable	about	the	unevenness	of
Middle	Eastern	precipitation,	and	the	story	of	Joseph	as	a	parable	about	the
tendency	of	wet	and	of	dry	years	to	cluster	into	wet	periods	and	droughts.	In
lectures	on	New	Forms	of	Chance	in	the	Sciences	(not	published,	but	sketched	in
part	in	Mandelbrot	&	Wallis	1968	and	Mandelbrot	1973f),	I	pinned	upon	these
stories	the	terms	Noah	Effect	and	Joseph	Effect.
As	controllable	data	confirm,	the	Biblical	“seven	and	seven”	is	a	poetic

oversimplification	of	reality,	and	(not	so	obvious)	any	appearance	of	periodicity
in	actual	Nile	records	is	an	illusion.	On	the	other	hand,	it	is	a	well-established
fact	that	successive	yearly	discharges	and	flood	levels	of	the	Nile	and	many
other	rivers	are	extraordinarily	persistent.
This	persistence	is	as	fascinating	to	diverse	scholars	as	it	is	vital	to	those

involved	in	the	design	of	dams.	For	a	long	time,	however,	it	remained	beyond
the	scope	of	measurement,	hence	of	analysis.	Like	every	field	taking	its	first	step
into	statistics,	hydrology	first	assumed	that	every	river’s	successive	discharges
are	independent,	identically	distributed	Gaussian	variables,	a	white	Gaussian
noise.	The	traditional	second	step	assumed	Markov	dependence.	Both	models,
however,	are	grossly	unrealistic.	A	breakthrough	occurred	with	Mandelbrot
1965h,	based	upon	empirical	results	in	Hurst	1951,	1955.	(Hurst’s	story	is	told	in
Chapter	40.)



HURST	PHENOMENON.	H	EXPONENT

Denote	by	X*	(t)	a	river’s	cumulated	discharge	between	the	beginning	of	year	0
and	the	end	of	year	t.	Adjust	by	subtracting	the	sample	average	discharge
between	the	years	0	and	d,	and	define	R(d)	as	the	difference	between	the
maximum	and	the	minimum	of	the	adjusted	X*	(t)	as	t	ranges	from	0	to	d.	After
the	fact,	R(d)	is	the	capacity	one	should	have	attributed	to	a	reservoir	to	insure
ideal	performance	over	the	d	years	in	question.	A	reservoir	performs	ideally	if	it
ends	as	full	as	it	begins,	never	empties	and	never	overruns,	and	produces	a
uniform	outflow.	This	ideal	is	obviously	unattainable,	but	R(d)	is	the	basis	of	a
method	of	reservoir	design,	due	to	Rippl,	which	was	to	be	used	for	the	Aswan
High	Dam.	Hurst	realized	that	one	can	use	R(d)	as	a	tool	to	investigate	the	actual
behavior	of	river	discharge	records.	For	reasons	of	convenience,	he	divided	R(d)
by	a	scaling	factor	S(d)	and	examined	the	dependence	of	R(d)/S(d)	upon	d.
Under	the	assumption	that	the	annual	discharges	follow	a	white	Gaussian

noise,	the	factor	S	is	not	significant,	and	a	known	theorem	shows	that	the
cumulated	discharge	X*	(t)	is	approximately	a	line-to-line	Brown	function	B(t).
Hence	R(d)	is	proportional	to	the	root	mean	square	of	X*	(d),	which	is	∝√d.	This
argument	yields	R/S∝√d	(Feller	1951).	The	same	result	holds	if	the	yearly
discharges	are	dependent	but	Markovian	with	a	finite	variance,	or	if	their
dependence	takes	any	of	the	forms	described	in	elementary	books	of	probability
or	statistics.
However,	the	evidence	led	Hurst	to	the	sharply	different	and	totally

unexpected	conclusion	that	R/S∝dH,	with	H	nearly	always	above	½.	The	annual
discharges	of	the	Nile,	being	furthest	from	independent,	show	H=0.9.	For	the
rivers	Saint	Lawrence,	Colorado,	and	Loire,	H	is	between	0.9	and	½.	The	Rhine
is	an	exceptional	river,	with	no	Joseph	legend	and	no	Hurst	phenomenon,	and	for
it	H=	½	within	experimental	error.	Diverse	data	are	collected	in	Mandelbrot	&
Wallis	1969b.



HURST	NOISE	AS	A	SCALING	NOISE

When	a	fluctuation	or	noise	X(t)	is	such	that	R/S∝dH,	I	propose	that	X(t)	be
called	a	Hurst	noise.	Mandelbrot	1975w	shows	that	one	must	have	O H 1.
Challenged	by	H.	A.	Thomas	Jr.	to	account	for	the	Hurst	phenomenon,	I

conjectured	it	is	a	symptom	of	scaling.	To	define	a	scaling	noise	in	intuitive
fashion,	let	us	recall	that	any	natural	fluctuation	can	be	processed	to	be	heard—
as	implied	by	the	term	noise.	Tape	it,	and	listen	to	it	through	a	speaker	that
reproduces	faithfully	between,	say,	40	Hz	to	14,000	Hz.	Then	play	the	same	tape
faster	or	slower	than	normal.	In	general,	one	expects	the	character	of	what	is
heard	to	change	considerably.	A	violin,	for	example,	no	longer	sounds	like	a
violin.	And	a	whale’s	song,	if	played	fast	enough,	changes	from	inaudible	to
audible.	There	is	a	special	class	of	sounds,	however,	that	behave	quite
differently.	After	the	tape	speed	is	changed,	it	suffices	to	adjust	the	volume	to
make	the	speaker	output	“sound	the	same”	as	before.	I	propose	that	such	sounds
or	noises	be	called	scaling.
White	Gaussian	noise	remains	the	same	dull	hum	under	these	transformations,

hence	it	is	scaling.	But	other	scaling	noises	can	be	made	available	for	model
making.



FRACTIONAL	DELTA	VARIANCE

Chapter	21	defines	a	random	function’s	delta	variance	as	the	variance	of	the
function’s	increment	during	the	time	increment	Δt.	The	ordinary	Brown
function’s	delta	variance	is	|Δt|	(Chapter	25).	To	account	for	Hurst’s	R(d)	/
S(d)∝dH,	with	any	desired	H,	Mandelbrot	1965h	observes	that	it	would	suffice
that	the	cumulative	process	X*	be	Gaussian	with	a	vanishing	delta	expectation
and	a	delta	variance	equal	to	|Δt|2H.	These	conditions	determine	a	unique	scaling
Gaussian	random	process.	And,	the	exponent	2H	being	a	fraction,	this	unique
process	is	entitled	to	be	termed	(reduced)	fractional	Brown	line-to-line	function.
For	detail	and	illustrations,	see	Mandelbrot	&	Van	Ness	1968,	Mandelbrot	&
Wallis	1968,	1969abc.
Moving	from	a	line-to-line	to	a	line-to-plane	BH(t),	an	alternative	definition

by	way	of	desiderata	is	this:	Among	the	curves	of	dimension	D	=	1	/	H
parametrized	by	time,	the	trail	of	BH(t)	is	the	only	one	whose	increments	are
Gaussian,	stationary	with	respect	to	any	translation,	hence	“creaseless,”	and
scaling	with	respect	to	any	ratio	r>0.
The	value	H	=	½,	hence	D=2,	yields	the	ordinary	Brownian	motion,	which	we

know	is	a	process	without	persistence	(independent	increments).	The	remaining
fBm’s	fall	into	two	sharply	distinct	subfamilies.	The	values	½	<	H	<	1
correspond	to	persistent	fBm,	whose	trails	are	curves	of	dimension	D	=	1	/	H
lying	between	1	and	2.	The	values	0	<	H	<	½	correspond	to	antipersistent	fBm.



FRACTIONAL	INTEGRODIFFERENTIATION

Having	pinpointed	a	desirable	delta	variance,	it	remains	to	implement	it.	If	one
starts	with	Brownian	motion,	one	must	inject	persistence.	A	standard	method	is
to	integrate,	but	it	injects	more	persistence	than	is	needed.	By	luck,	there	is	a
way	of	achieving	only	a	fraction	of	the	standard	effects	of	integration.	When	0	<
H	<	½,	the	same	applies	to	differentiation.	The	idea	hides	in	one	of	the	many
“classical	but	obscure”	corners	of	mathematics.	It	harks	back	to	Leibniz	(Chapter
41),	and	was	implemented	by	Riemann,	Liouville	and	H.	Weyl.
As	background,	recall	from	calculus	that,	m	being	an	integer	>0,	one

transforms	the	function	x 	into	x 	by	m	repeated	differentiations,	and	into	x
	by	m	repeated	integrations	(followed	in	each	case	by	multiplication	by	a

constant).	The	Riemann-Liouville-Weyl	algorithm	generalizes	this
transformation	to	the	case	where	m	is	not	an	integer.	And	fractional
integrodifferentiation	of	order	1	/	D- 	applied	to	Brownian	motion	yields	fBm.
Thus,	the	usual	Brownian	formula,	displacement	∝√	time,	is	replaced	by	the
generalization	displacement	∝	(time)1/D,	with	1	/	D	≠	½.	Our	goal	is	reached!
The	relevant	formulas	are	given	in	Mandelbrot	&	VanNess	1968,	and	(honest)

approximations	are	described	in	Mandelbrot	and	Wallis	1969c	and	Mandelbrot
1972f.

	Here	is	yet	another	complication	and	potential	pitfall.	The	Riemann-
Liouville-Weyl	algorithm	involves	a	convolution,	hence	it	is	tempting	to
implement	it	through	fast	Fourier	techniques	(fFt).	This	approach	yields	a
periodic	function,	hence	a	function	adjusted	to	have	no	systematic	trend.	In
investigations	of	standard	time	series,	detrending	hardly	matters,	because
dependence	is	limited	to	the	short	term.	In	the	case	of	fBm,	on	the	contrary,
detrending	does	matter,	to	an	extent	that	increases	with	|	H	-	 	|,	and	may	be	very
significant.	This	effect	is	illustrated,	in	an	expanded	context,	by	comparing
diverse	pictures	of	mountains	in	the	next	chapter.	Plates	264	and	265,	being
obtained	by	fFt,	show	no	overall	trend,	hence	mimic	mountain	tops,	while	Plate
268,	being	obtained	without	shortcuts,	shows	a	clearcut	overall	trend.

	Given	the	favorable	economics	of	fFt,	it	is	often	best	to	use	them	anyhow,
but	one	must	take	a	period	much	longer	than	the	desired	sample	size,	and	allow



wastage	that	increases	as	H	 	1.



H	>	½:	LONG	(=	INFINITE)	TERM	PERSISTENCE
&	NONPERIODIC	CYCLES

In	the	case	H	>	½,	the	vital	property	of	the	function	BH(t)	is	that	its	increments’
persistence	takes	a	very	special	form:	it	extends	forever.	Therefore,	the	link
between	fBm	and	the	Hurst	phenomenon	suggests	that	the	persistence
encountered	in	river	discharge	records	is	not	limited	to	short	time	spans	(like	the
term	in	office	of	Pharaoh’s	ministers),	but	extends	over	centuries	(some	are	wet,
others	are	dry)	and	even	millennia.	The	strength	of	persistence	is	measured	by
the	parameter	H.
Persistence	manifests	itself	very	clearly	on	graphs	of	increments	of	BH(t),	and

of	the	yearly	river	discharges	that	these	increments	model.	Nearly	every	sample
looks	like	a	“random	noise”	superposed	upon	a	background	that	performs
several	cycles,	whichever	the	sample’s	duration.	However,	these	cycles	are	not
periodic,	that	is,	cannot	be	extrapolated	as	the	sample	lengthens.	In	addition,	one
often	sees	an	underlying	trend	that	need	not	continue	in	the	extrapolate.
The	interest	of	these	observations	is	expanded	by	the	fact	that	analogous

behavior	is	often	observed	in	economics,	where	economists	like	to	decompose
any	set	of	data	into	a	trend,	a	few	cycles,	and	noise.	The	decomposition	purports
to	help	understand	the	underlying	mechanism,	but	the	example	of	fBm
demonstrates	that	the	trend	and	the	cycles	may	be	due	to	a	noise	that	signifies
nothing.

	INTERPOLATION.	When	the	ordinary	Brown	B(t)	is	known	at	the	instants
t1,	t2,..	not	necessarily	equidistant	ones,	the	expected	values	of	B(t)	between
these	instants	are	obtained	by	linear	interpolation.	In	particular,	the	interpolate
on	[tj,	tj+1]	depends	solely	on	the	values	of	BH	at	the	instants	tj	and	tj+1.	Quite	to
the	contrary,	in	all	cases	H	≠	½,	the	interpolate	of	BH(t)	is	nonlinear,	and	it
depends	on	all	the	tm	and	all	the	BH(tm).	As	tm-tj	increases,	the	influence	of
BH(tm)	decreases,	but	slowly.	Therefore,	the	interpolation	of	BH	can	be	described
as	being	global.	The	random	midpoint	displacement	curves	investigated	in
Chapter	26	behave	very	differently,	since	their	interpolates	are	linear	over	certain
time	intervals.	This	is	the	crux	of	the	difference	between	these	two	processes.



THE	FUNCTION’S	&	THE	ZEROSET’S	D

The	persistence	in	the	increments	is	synonymous	with	a	graph	of	BH(t)	being
less	irregular	at	all	scales	than	the	ordinary	Brown	graph	B(t).	This	is	expressed
by	its	dimension	being	2	-	H.	Its	zeroset’s	dimension	is	1	-	H.



H	>	½:	FRACTIONAL	BROWN	TRAILS

When	we	move	on	to	two-dimensional	vector-valued	BH(t),	we	seek	motions
whose	direction	tends	to	persist	at	all	scales.	Persistence	includes	an
appropriately	intense	tendency,	but	not	an	obligation,	to	avoid	self-intersection.
Since	we	also	want	to	preserve	self-similarity	in	the	present	Essay,	we	assume
that	the	coordinate	functions	XH(t)	and	YH(t)	are	two	fractional	Brown	line-to-
line	functions	of	time,	statistically	independent	with	the	same	parameter	H.	In
this	way,	one	obtains	a	fractional	Brown	line-to-plane	trail.	(Plate	255).
Its	fractal	dimension	is	D	=	1	/	H;	it	is	at	least	1	/	1	=	1,	as	must	be	the	case	for

a	curve,	and	at	most	1	/	(½)	=	2.	This	last	result	suggests	that	the	trail	of	BH(t)
fills	the	plane	less	“densely”	than	the	ordinary	Brown	trail.	To	confirm	this
suggestion,	we	examine	bounded	and	unbounded	trails	separately.
The	effect	of	H	on	bounded	trails	is	one	of	degree.	For	H	>	½	just	as	for	H=

½,	a	bounded	Brown	trail	is	a	fractal	net	pierced	by	an	infinite	number	of	gaps.
Strong	heuristic	considerations	suggest	that	the	gaps’	areas	satisfy	Pr(U	>	u)∝u	-
D/E	=	u½H.
Furthermore,	I	investigated	empirically	the	boundaries	of	bounded	trails	of

varying	D,	looking	for	departure	from	the	value	of	4/3	which	plate	242	reports	is
observed	in	the	Brownian	case.	No	clearcut	departure	was	found!
On	the	other	hand,	the	unbounded	trails	are	affected	by	H	qualitatively.	When

a	trail	starts	at	O	at	time	0,	its	expected	number	of	returns	to	a	small	box	around
O	was	found	to	be	infinite	for	the	Brown	prototype,	but	it	is	finite	when	H	>	½.	
	The	reason	is	that	the	integral	∫1	∞t-2Hdt,	derived	in	the	last	but	one	section	of

Chapter	25,	diverges	when	H	=	½,	but	converges	when	H	>	½.	When	a	finite
number	of	fractal	nets	are	superposed	upon	a	box,	it	becomes	covered	in	less
lacunar	fashion,	but	dense	covering	is	almost	surely	not	achieved.	The	number	of
superposed	lattices	is	small	when	H	is	near	1	and	grows	to	infinity	for	H	=	½.



H	<	½.	ANTIPERSISTENT	FRACTIONAL
BROWNIAN	MOTIONS

The	fractional	Brownian	motions	with	0	<	H	<	½	yield	antipersistent	functions
and	trails.	To	be	antipersistent	is	to	tend	to	turn	back	constantly	toward	the	point
one	came	from,	hence	to	diffuse	more	slowly	than	the	Brown	counterparts.
The	formula	D	=	1	/	H	is	valid	only	if	E	>	1	/	H.	When	E	<	1	/	H,	(in

particular,	in	the	case	of	the	plane,	E	=	2),	the	fractal	dimension	attains	its
greatest	conceivable	value,	D=E.	We	are	reminded	that	the	highest	possible
dimension	for	a	Brown	trail	is	D=2,	and	that	this	maximum	can	only	be
implemented	when	E	≥	2.	When	squeezed	into	a	real	line	with	E	=	1,	a	Brown
trail	must	accommodate	itself	to	D	=	1.	When	H	=	⅓,	the	fBm	trail	barely	fills
the	ordinary	3-space.
Returning	to	the	plane,	E=2,	dimensional	analysis	shows	that	the	unbounded

trail	with	H	<	½	almost	surely	visits	any	prescribed	point	infinitely	often.	Thus,
contrary	to	B(t),	which	fails	to	measure	up	to	what	is	expected	from	D=2,	and
fills	the	plane	densely	but	not	completely,	any	excess	of	1	/	H	over	2	achieves
complete	filling.	To	prove	that	BH(t)	almost	surely	returns	infinitely	often	to	its
point	of	departure,	recall	from	Chapter	25	that	the	dimension	of	the	instants	of
return	is	1	-	2H,	hence	is	positive	when	H	<	½.	The	argument	extends	to	points
other	than	0.	Thus,	the	intersection	of	an	unbounded	fractional	Brown	trail	for	H
<	½	with	a	box	of	side	1	is	of	unit	area.
A	bounded	trail	is	a	net	with	gaps,	but	has	a	positive	area	(shades	of	Chapter

15!).



FRACTIONAL	BROWNIAN	MODEL	OF	RIVER
DISCHARGE,	“MOTIVATED”

Again,	the	initial	motivation	for	introducing	BH	had	resided	in	this	geometer’s
personal	experience	of	which	mathematical	and	graphical	tricks	are	likely	to
work.	I	am	prepared	to	argue	that	a	lack	of	serious	motivation	in	a	model	that	fits
and	works	well	is	much	preferable	to	a	lack	of	fit	in	a	model	that	seems	well
motivated,	but	scientists	are	greedy	for	both.	Unfortunately,	present
“explanations”	are	contrived,	in	my	opinion,	and	carry	less	conviction	than	the
fact	to	be	explained.
To	understand	why	successive	yearly	discharges	of	rivers	are	interdependent,

one	begins	by	taking	into	account	the	water	which	natural	reservoirs	carry	over
from	one	season	to	the	next.	However,	natural	storage	yields	short-term
smoothing	of	the	records,	and	can	at	best	introduce	short-term	persistence.	From
the	long-term	viewpoint,	the	graph	of	the	cumulative	discharge	continues	in
“effect”	(as	defined	in	Chapter	3)	to	be	of	dimension	equal	to	3/2.
To	go	further,	many	writers	are	more	prepared	than	I	am	to	invoke	a	whole

hierarchy	of	processes,	each	with	its	own	different	scale.	In	the	simplest	case,	the
contributions	are	additive.	The	first	component	takes	account	of	natural
reservoirs,	the	second	takes	account	of	microclimatic	changes,	the	third	of
climatic	changes,	and	so	forth.
Unfortunately,	an	infinite	range	of	persistence	demands	an	infinite	number	of

components,	and	the	model	ends	up	with	infinitely	many	parameters.	It	remains
necessary	to	explain	why	the	sum	of	various	contributions	is	scaling.
At	one	point	of	the	discussion,	a	function	(the	correlation)	is	written	as	an

infinite	sum	of	exponentials.	I	spent	endless	hours	pointing	out	that	showing	this
sum	to	be	hyperbolic	is	no	easier	than	explaining	why	the	original	curve	is
hyperbolic,	and	arguing	that	an	invocation	of	possible	causes	can	only	be	if
magical	(not	scientific)	value,	as	long	as	it	remains	empty.	What	a	pleasure	it
was,	therefore,	to	discover	that	I	had	been	working	alongside	James	Clerk
Maxwell;	see	the	entry	SCALING:	DURABLE	ANCIENT	PANACEAS	in
Chapter	41.
Of	course,	the	practicing	hydrological	engineer	can	impose	on	every	process	a



finite	outer	cutoff	of	the	order	of	magnitude	of	the	horizon	of	the	longest
engineering	project.



OTHER	SCALING	NOISES.	1	/	f	NOISES

FORMAL	DEFINITION.	A	noise	X(t)	is	to	be	called	scaling	if	X	itself	or	its
integral	or	derivative	(repeated,	if	need	arises)	is	self-affine.	That	is,	if	X(t)	is
statistically	identical	to	its	transform	by	contraction	in	time	followed	by	a
corresponding	change	in	intensity.	Thus,	there	must	exist	an	exponent	α	>	0	such
that	for	every	h	>	0,	X(t)	is	statistically	identical	to	h-∝X(ht).	More	generally,	and
especially	in	case	t	is	discrete,	X(t)	is	to	be	called	asymptotically	scaling	if	there
exists	a	slowly	varying	function	L(h)	such	that	h-∝L-1(h)X(ht)	tends	to	a	limit	as
h	→	∞.
This	definition	requires	that	one	check	every	mathematical	characteristic	of

X(t)	and	h-∝X(ht).	Thus,	scaling	can	never	be	proved	in	empirical	science,	and	in
most	instances	the	scaling	property	is	inferred	from	a	single	test	that	is	only
concerned	with	one	facet	of	sameness,	for	example	the	distribution	of	gap
lengths	(Chapter	8)	or	Hurst’s	R/S.

	The	most	widely	used	test	of	scaling	is	based	on	spectra.	A	noise	is
spectrally	scaling	if	its	measured	spectral	density	at	the	frequency	f	is	of	the
form	1	/	fβ	with	β	a	positive	exponent.	When	β	is	close	enough	to	1	to	justify	1	/
fβ	being	abbreviated	into	1	/	f,	one	deals	with	a	“1	/	f	noise.”
Many	scaling	noises	have	remarkable	implications	in	their	fields,	and	their

ubiquitous	nature	is	a	remarkable	generic	fact.



Plate	255	FRACTIONAL	BROWN	TRAILS	(DIMENSIONS	D~1.1111,
D~1.4285)

	
The	Figure	on	the	left	constitutes	an	example	of	a	statistically	self-similar	fractal
curve	with	D	=	1	/	0.9000	~	1.1111.	Its	coordinate	functions	are	independent
fractional	Brown	functions	of	exponent	H=0.9000,	which	accounts	for	the
Joseph	Effect	for	the	Nile.	The	fact	that	H	is	close	to	1	does	not	suffice	to
prevent	self-intersections,	but	greatly	discourages	them	by	forcing	the	curve’s
“trend”	to	persist	in	any	direction	upon	which	it	has	embarked.	Thinking	of
complicated	curves	as	the	super-impositions	of	large,	medium,	and	small
convolutions,	it	may	be	said	that	in	the	case	of	high	persistence	and	dimension
close	to	1,	small	convolutions	are	barely	visible.
The	Figure	to	the	right	uses	the	same	computer	program	with	D	~

1/0.7000~1.4285.	The	pseudo-random	seed	is	not	changed,	hence	the	overall
shape	is	recognizable.	But	the	increase	in	the	value	of	D	increases	the	relative
importance	of	the	small	convolutions,	and	to	a	lesser	extent,	of	the	medium	ones.
Previously	invisible	details	become	very	apparent.



28

Relief	and	Coastlines
This	chapter,	whose	prime	exhibits	reside	in	thoroughly	artificial	pictures	that
mimic	maps	and	photographs	of	mountains	and	islands,	proposes	to	show	that
mountains	like	the	Alps	are	usefully	modeled	in	a	first	approximation	by
appropriately	selected	fractal	surfaces	ruled	by	Brownian	chance.	And	we
encounter,	at	last,	a	sensible	model	of	the	natural	patterns	with	which	this	Essay
begins,	but	which	have	so	far	eluded	us:	coastlines.
The	point	of	departure	is	the	notion	that	mountain’s	surfaces	are	scaling

shapes.	Is	this	a	new	idea?	Certainly	not!	It	had	failed	to	be	stated	and	explored
scientifically,	but	it	is	a	literary	commonplace.	For	an	example	to	add	to	the
quote	that	opens	Chapter	2,	we	read	on	p.	88	of	Edward	Whymper’s	Scrambles
Amongst	the	Alps	in	1860-1869	that	“It	is	worthy	of	remark	that	...	fragments	of
...	rock	...	often	present	the	characteristic	forms	of	the	cliffs	from	which	they
have	been	broken	...	Why	should	it	not	be	so	if	the	mountain’s	mass	is	more	or
less	homogeneous?	The	same	causes	which	produce	the	small	forms	fashion	the
large	ones:	the	same	influences	are	at	work—the	same	frost	and	rain	give	shape
to	the	mass	as	well	as	to	its	parts.”
One	need	not	take	Whymper’s	poetic	view	literally	to	agree	that	it	is

worthwhile	to	explore	its	consequences.	In	this	chapter,	I	do	so	within	the	most
manageable	mathematical	environment	I	can	think	of:	Brownian	and	fractional
Brownian	surfaces.
Even	with	my	first	simulations	of	fractional	Brownian	mountains	(Plates	70

and	71	),	“to	see	is	to	believe.”	As	the	quality	of	the	graphics	began	to	improve,
so	did	the	quality	of	belief.	But	eventually	discrepancies	between	the	model	and
our	experience	became	very	clear,	and	a	new	model	had	to	be	introduced,	as	is
seen	in	the	following	chapter.



BROWN	RELIEF	ON	A	FLAT	EARTH
(MANDELBROT	1975w)

We	approach	the	relief	by	way	of	the	vertical	sections.	As	already	indicated	in
Chapter	4	and	Plate	241,	one	of	the	sources	of	this	Essay	was	a	feeling	reported
in	Mandelbrot	1963e	that	a	scalar	random	walk	is	a	rough	first	approximation	of
a	mountain’s	cross	section.	Hence,	I	searched	for	a	random	surface	whose
vertical	sections	are	Brown	line-to-line	functions.	The	tool	box	of	the	builder	of
statistical	models	contained	no	such	surface,	but	a	somewhat	obscure	candidate
turned	up	for	adoption.
It	is	the	Brown	plane-to-line	function	of	a	point,	B(P),	as	defined	in	Levy

1948.	In	order	to	become	familiar	with	it	on	short	acquaintance	and	to	apply	it
concretely,	there	is	no	substitute	for	a	careful	examination	of	the	actual
simulation	in	Plate	264.	The	Brown	imaginary	landscape	is	of	fractal	dimension
D	=	5/2,	and	it	is	definitely	rougher	than	most	of	Earth’s	relief.
Therefore,	it	is	a	crude	model,	begging	to	be	returned	to	the	bench.	But	is	it

not	a	beautiful	long	jump	forward!
WARNING.	DO	NOT	BE	CONFUSED	BY	THE	BROWNIAN	SHEET.	The

proliferation	of	variants	of	Brownian	motion	is	endless,	and	terminology	is
casual.	The	Brown	plane-to-line	function	used	here	must	not	be	confused	with
the	Brownian	sheet.	The	latter	is	an	entirely	different	process	that	vanishes	along
the	coordinate	axes	and	is	strongly	isotropic.	See	Adler	1981,	especially	the
illustrations	found	on	pp.	185	and	186.



A	BROWN	RELIEF’S	COASTLINES

Let	us	stop	and	check	for	progress	in	the	study	of	ocean	coastlines,	defined	as
zerosets:	points	located	at	ocean	level,	inclusive	of	points	situated	on	offshore
islands.	The	Brown	coastline	included	in	Plate	270	was	the	first	example	I
encountered	of	a	curve	that	(a)	is	devoid	of	self-intersections,	(b)	is	practically
devoid	of	self-contacts,	(c)	has	a	fractal	dimension	clearly	greater	than	1,	and	(d)
is	isotropic.	A	more	recent	variant	is	included	in	Plate	267.
More	precisely,	the	dimension	is	3/2.	This	value	being	higher	than	most	of

Richardson’s	values	from	Plate	33,	a	Brown	coastline	is	of	limited	applicability.
It	does	recall	northern	Canada,	Indonesia,	perhaps	western	Scotland	and	the
Aegean,	and	is	applicable	to	many	other	examples,	but	certainly	not	to	all.
Because	of	the	Richardson	data,	it	would,	anyhow,	be	foolish	to	expect	any
single	D	to	apply	universally.



GENERATING	A	BROWN	RELIEF
(MANDELBROT	1975c)

It	is	a	pity	that	the	simple	Brown	relief	of	dimension	D=5/2	and	coastlines	of
dimension	D=3/2	do	not	suffice,	because	they	would	be	easy	to	account	for.
Indeed,	the	Brown	function	is	an	excellent	approximation	to	the	“Poisson”	relief
that	is	created	by	superimposing	independent	rectilinear	faults.	A	horizontal
plateau	is	broken	along	a	straight	line	chosen	at	random.	Then	the	difference
between	the	levels	on	the	two	sides	of	the	resulting	cliff	is	also	chosen	at
random:	for	example	±1	with	equal	probabilities,	or	Gaussian.	Then	we	start	all
over	again,	and	follow	the	kth	stage	by	division	by	✓k	(thus	making	each
individual	cliff	become	negligible	in	size,	compared	to	the	cumulative	sum	of	the
other	cliffs).
The	result	obtained	by	continuing	ad	infinitum	generalizes	the	usual	Poisson

process	in	time.	With	no	need	for	mathematical	or	physical	details,	we	can	see
that	the	argument	seizes	at	least	one	aspect	of	tectonic	evolution.
Because	of	the	simplicity	of	this	mechanism,	it	would	be	comforting	to

believe	that	in	some	early	and	especially	“normal”	state	of	affairs,	Earth	had	a
Brownian	relief	with	D=5/2	throughout.	But	this	topic	must	be	withheld	for	a
later	section.



GLOBAL	EFFECTS	IN	BROWN	RELIEF

Levy	found	that	the	Brown	space-to-line	function	has	a	property	that	surprises	at
first	blush	and	has	very	direct	practical	implications.	Loosely	stated,	this
property	asserts	that	the	different	parts	of	a	Brown	relief	are	far	from	being
statistically	independent.	Thus,	in	order	to	imbed	the	Brown	line-to-line	function
in	a	Brown	plane-to-line	function,	it	is	necessary	to	give	up	one	aspect	that	until
now	had	been	the	characteristic	virtue	of	Brownian	chance:	independence	of	the
parts.
Consider	two	points	located,	respectively,	east	and	west	of	a	meridian	section

of	the	relief.	Along	the	meridian,	relief	is	a	Brown	line-to-line	function,	hence
“slopes”	at	different	points	are	independent.	Furthermore,	one	may	expect	our
meridian	to	act	as	screen,	in	such	a	way	that	knowledge	of	the	relief	at	the
eastern	point	does	not	affect	the	reliefs	distribution	at	the	western	point.	 	If
such	were	the	case,	the	relief	would	be	Markovian.	In	fact,	the	west	does	affect
the	east,	meaning	that	the	generative	process	involves	inevitably	a	strong	overall
dependence.
This	dependence	implies	that	a	Brown	surface	is	much	harder	to	construct

than	a	Brown	line-to-line	function.	The	random	midpoint	displacement	process
of	Chapter	25,	whose	failure	to	extend	to	the	fractional	Brown	line-to-line
function	is	documented	in	Chapters	26	and	27,	also	fails	to	extend	to	the
ordinary	Brown	plane-to-line	function.	That	is,	one	cannot	proceed	by	first
pinning	this	function	down	on	a	rough	grid,	and	then	filling	in	its	values	within
each	cell,	independently	of	the	other	cells.	It	is	also	impossible	to	construct	it
layer	by	layer:	first	for	x	=	0,	then	for	x	=	ϵ	without	regard	for	its	values	for	x<0,
then	for	x	=	2ϵ,	without	regard	for	the	values	for	x	<	ϵ,	etc.
More	generally,	every	algorithm	that	promises	an	easy	step-by-step

generalization	of	the	Brown	line-to-line	function	to	“multidimensional	time”
inevitably	turns	out	to	lead	to	a	function	that	differs	systematically	from	what
was	intended.
As	mentioned	in	this	chapter’s	last	section,	the	simulations	in	which	I	had	a

part	rephrase	the	unmanageable	theoretical	definitions	in	ways	that	involve
successive	approximations	with	known	error	terms.	But	I	cannot	vouch	for	those



who,	stimulated	by	reading	my	earlier	Essays,	have	joined	us	in	this	game.



BROWN	RELIEF	ON	A	SPHERE

Next,	let	the	base	surface	of	Earth’s	relief	be	a	sphere.	Fortunately,	the
corresponding	Brown	sphere-to-line	function	B0(P)	has	also	been	provided	by
my	mentor;	see	Levy	1959.	It	is	easy	to	describe,	it	is	fun,	and	it	may	even	be
significant.	But	we	shall	see	that	it	is	not	realistic	either,	because	it	too	predicts
coastlines	with	D	=	3	/	2,	a	serious	drawback.
The	simplest	definition	of	B0(P)	uses	noise	theory	terms,	which	we	cannot

stop	to	define,	but	which	are	familiar	to	many	readers.	One	lays	on	the	sphere	a
blanket	of	white	Gaussian	noise,	and	B0(P)	is	the	integral	of	this	white	noise
over	the	hemisphere	centered	at	P.
Within	angular	distances	less	than	60°,	B0(P)	looks	very	much	like	a	Brown

plane-to-line	function.	Globally,	however,	it	does	not.
For	example,	B0(P)	has	the	striking	property	that,	when	P	and	P’	are	antipodal

points	on	the	sphere,	the	sum	B0(P)	+	B0(P’)	is	independent	of	P	and	P’.	Indeed,
this	sum	is	simply	the	integral	taken	over	the	whole	sphere	of	the	white	noise
used	to	build	B0(P).
Thus,	a	big	hill	at	the	point	P	corresponds	to	every	big	hole	at	the	antipodal

point	P’.	Such	a	distribution	has	a	center	of	gravity	distinct	from	the	center	of	the
base	surface,	and	it	could	hardly	be	in	a	stable	equilibrium.	But	we	need	not
worry:	it	is	saved	from	static	instability—hence	from	early	dismissal	as	a	model
—thanks	to	the	theory	of	isostasy.	This	theory	claims	that	Earth’s	near-solid
crust	is	very	thin	at	the	ocean’s	deepest	points	and	very	thick	below	the	highest
mountains,	in	such	a	way	that	a	sphere	concentric	to	Earth	and	drawn	a	bit	below
the	Ocean’s	deepest	point	nearly	bisects	the	crust.	After	it	is	agreed	that	a
mountain’s	visible	crest	must	always	be	considered	in	conjunction	with	its
invisible	root	under	the	reference	sphere,	the	constancy	of	B0(P)	+	B0(P’)	does
not	cease	to	surprise,	but	does	not	necessarily	imply	gross	static	unbalance.



BROWN	PANGAEA	AND	PANTHALASSIA

How	well	does	the	above	variant	of	Brown	relief	fit	the	evidence?	On	the	basis
of	today’s	continents	and	oceans,	D	is	wrong,	hence	the	fit	is	poor.
On	the	other	hand,	plate	tectonics	(the	theory	of	continental	split	and	drift)

suggests	that	the	test	of	adequacy	be	carried	out	on	the	primeval	Earth	as	it
appeared	200	million	years	ago.	The	evidence	being	flimsier,	the	test	is	less
certain	to	fail	in	this	case.	Wegener	told	us,	and	his	account	has	become	accepted
(for	example,	see	Wilson	1972),	that	once	upon	a	time	the	continents	were	linked
within	a	Pangaea,	while	the	oceans	formed	a	super-ocean,	Panthalassia.
Like	Pangaea,	the	relief	in	Plate	269	is	a	blob	of	land,	dented	here	and	there

by	broad	sinuses.	But	this	first-glance	resemblance	is	misleading.	It	tends	to
over-emphasize	the	very	large-scale	detail	due	to	the	combination	of	the
geometry	of	the	sphere	and	the	fact	that	on	the	sphere	the	Brownian	rules	of
dependence	involve	a	strong	positive	correlation	for	angles	below	60°,	and	a
strong	negative	correlation	between	antipodal	points.	Under	a	more	attentive
second	glance	focused	on	less	global	features,	the	fit	deteriorates;	for	angles
below	30°	(say),	a	Brown	coastline	on	the	sphere	becomes	indistinguishable
from	a	Brown	coastline	on	the	plane.	All	the	defects	of	the	latter	float	back	to	the
surface.
A	fractal	flake	in	which	the	altitude	function	is	the	same	as	in	the	above

Pangaea,	but	with	a	scale	of	the	order	of	magnitude	of	half	the	radius	looks	like
one	of	the	irregular	moons	of	the	outer	planets.	In	contrast	to	Plates	10	and	11,	it
is	not	accompanied	by	flotsam	or	jetsam,	hence	its	D	is	a	measure	of	irregularity
alone	and	not	of	fragmentation.



FRACTIONAL	BROWN	RELIEF	ON	A	FLAT
EARTH	(MANDELBROT	1975w)

The	trouble	with	either	of	the	above	two	Brownian	models	of	the	relief	is	that
D=3/2	is	too	high	for	coastlines.	As	a	consequence,	our	search	for	a	more	widely
applicable	model	acquires	an	unexpected	flavor.	Long	ago,	Chapters	5	and	6
determined	that	D>1,	and	we	started	looking	for	ways	to	force	D	to	rise	above	1.
Now	we	must	squeeze	D	below	3/2.	To	obtain	less	unsmooth	coasts,	we	must
have	a	less	unsmooth	relief	and	less	unsmooth	vertical	sections.
Fortunately,	the	preceding	chapter	prepared	us	well.	To	achieve	a	model	of

vertical	sections,	I	replaced	the	Brown	line-to-line	function	by	its	fractional
variant.	Random	plane-to-line	functions	BH(P)	possessing	such	sections	do
indeed	exist.	The	D	of	their	surfaces	is	3-H	(Adler	1981),	and	the	D	of	their	level
lines	and	vertical	sections	is	2—H.
Therefore,	there	is	no	longer	any	difficulty	in	modeling	and	simulating	any

dimension	that	the	empirical	data	may	require.
DETERMINATION	OF	D.	Richardson’s	data	(Chapter	5)	makes	us	expect

coastline	dimensions	to	be	“typically”	around	1.2,	and	relief	dimensions	to	be
around	2.2.	We	can	therefore	go	a	long	way	with	H=0.8—a	value	that	justifies
Plate	265.	However,	other	values	are	needed	to	account	for	specific	areas	of
Earth.	Values	of	D~2.05	or	so	account	for	relief	dominated	by	very	slowly
varying	components.	When	this	component	is	a	big	slope,	the	relief	is	an
inclined	uneven	table	and	the	coastline	differs	from	a	straight	line	by	no	more
than	mild	irregularities.	Near	a	summit,	the	relief	is	an	uneven	cone	and	the
coastline	a	mildly	irregular	oval.
Reliefs	with	a	D	near	to	3	are	also	potentially	useful	but	hard	to	illustrate	in

rewarding	fashion.	It	suffices	to	observe	that	in	Plate	270,	the	coastline	with	D
near	3	is	reminiscent	of	a	flooded	alluvial	plain.	Therefore,	all	values	of	H	will
find	a	place	in	the	tool	box	of	the	builder	of	statistical	models.



COSMOGRAPHIC	PRINCIPLES

The	cosmographic	principles	of	Chapter	21	can	be	rephrased	in	terms	of	relief.
The	strong	cosmographic	principle	combines	the	probabilistic	notions	of
stationarity	and	isotropy.	Hence	the	relief	Z(x,y)	on	the	flat	Earth	may	be	said	to
be	strongly	cosmographic,	if	the	rules	generating	relief	are	the	same	in	every
frame	of	reference	in	which	the	origin	(x0,y0,z0)	satisfies	z0=O	and	the	z-axis	is
vertical.	In	particular,	said	rules	must	be	left	invariant	by	change	in	x0	and	y0	and
by	rotation	of	the	horizontal	axes.	My	Brown	relief	on	a	flat	Earth,	and	its
fractional	version,	both	fail	to	satisfy	this	principle.
But	they	satisfy	a	“conditional”	version,	in	which	the	origin	is	conditioned	to

satisfy	z0	=	B(x0,y0)	so	that	it	lies	upon	Earth’s	surface.
Attempts	to	fit	the	relief	by	a	stationary	process	have	been	made.	They	cover

the	z=0	plane	with	a	regular	lattice,	and	take	altitudes	within	distinct	lattice	cells
to	be	independent	random	variables.	Such	models	cannot	account	for	any	of	the
scaling	laws	examined	throughout	this	chapter.
Brown	relief	on	a	spherical	Earth	fulfills	the	cosmographic	principle	in	its

strong	form,	which	deals	usefully	with	large	portions	of	the	Earth,	the	strong
form	is	the	more	useful	one.	A	fortiori,	the	conditional	form	holds,	and	it	is
preferable	when	dealing	with	local	effects.



THE	HORIZON

For	an	observer	sited	at	a	finite	distance	above	Earth’s	surface,	the	horizon	is
made	up	of	the	nonhidden	points	of	greatest	apparent	height,	along	every
direction	of	the	compass.
When	the	relief	is	a	perturbation	upon	a	spherical	Earth,	the	horizon	is

obviously	at	a	finite	distance	from	the	observer.
When	the	relief	is	a	Brownian	or	fractional	Brownian	perturbation	upon	a	flat

horizontal	plane,	the	horizon’s	existence	is	not	obvious:	each	mountain	might	be
backed	at	a	distance	by	a	higher	mountain,	and	so	forth	ad	infinitum.	In	fact,	a
mountain	located	at	the	distance	R	from	an	observer	has	a	relative	height	of	the
order	of	RH,	so	the	tangent	of	its	apparent	height	in	degrees	above	the	horizontal
plane	is	about	RH-1,	and	tends	to	0	as	R→∞.	Hence,	the	horizon	is	again	defined.
To	gain	further	insight,	divide	the	distance	from	observer	to	the	horizon	by	its

average.	On	a	flat	Earth,	this	function	is	statistically	independent	of	the
observer’s	height.	On	a	round	Earth,	to	the	contrary,	the	horizon	tends	to	a	circle
as	the	observer	grows	taller.	Also,	a	flat	Earth’s	horizon	lies	above	a	plane
passing	through	the	observer,	independent	of	the	observer’s	height.	But	a	round
Earth	horizon	falls	below	such	a	plane	if	the	observer	is	tall	enough.	In	summary,
the	observed	properties	of	the	horizon	confirm	that	Earth	is	round.	The	opposite
conclusion	would	have	been	devastating.



FRACTIONAL	BROWNIAN	MODEL	OF	EARTH’S
RELIEF,	“MOTIVATED”

As	usual,	one	wonders	why	models	selected	on	their	virtues	of	simplicity	prove
so	attractively	applicable.	I	have	suggestions,	but	cannot	claim	they	are
convincing	(Chapter	42).

	First	of	all,	one	can	construct	BH(P)	as	was	done	for	B(P),	by
superimposition	of	rectilinear	faults	(Mandelbrot	1975f).	However,	the	faults’
profile	must	no	longer	be	a	sharp	cliff;	its	slope	must	increase	as	one	approaches
the	fault.	Sadly,	the	appropriate	profile	is	contrived,	so	this	is	not	a	good
approach.

	It	seems	preferable	to	begin	with	a	Brownian	model,	and	then	to	try	and
decrease	the	dimension	as	Chapter	27	did	for	rivers.	Exclusively	local	smoothing
transforms	a	surface	whose	area	is	infinite	into	a	surface	whose	area	is	finite.	On
the	other	hand,	it	leaves	large	features	completely	unaffected.	Therefore,	local
smoothing	replaces	an	object	having	the	same	well-defined	dimension	on	all
scales	by	an	object	that	exhibits	a	global	effective	dimension	of	5/2,	and	a	local
effective	dimension	of	2.

	More	generally,	K	distinct	smoothings	having	different	fundamental	scales
end	up	with	K	+	1	zones	of	distinct	dimensions	connected	by	transition	zones.
However,	the	whole	may	become	indistinguishable	from	a	fractal	of	intermediate
dimension.	In	other	words,	a	superposition	of	phenomena	with	well-defined
scales	may	mimic	scaling.

	On	the	other	hand,	a	scaling	phenomenon	is	often	spontaneously	analyzed
by	the	mind	into	a	hierarchy	in	which	each	level	has	a	scale.	For	example,	the
galaxy	clusters	of	Chapter	9	need	not	be	real,	as	will	be	shown	in	Chapters	32	to
35.	Therefore,	one	must	not	hasten	to	follow	Descartes’s	recommendation	and
begin	to	subdivide	every	difficulty	into	parts.	While	our	mind	spontaneously
analyzes	geomorphological	configurations	into	superpositions	of	features	having
sharply	distinct	scales,	these	features	need	not	be	real.

	Fortunately,	Earth’s	relief	has	an	intrinsic	finite	outer	cutoff,	because	its
base	surface	is	round.	Therefore,	it	is	safe	to	assume	that	the	various	planings
undergone	throughout	geological	history	involve	spatial	scales	that	stop	at	the



order	of	magnitude	of	the	continents.	The	realistic	assumption	that	H	varies	from
place	to	place	allows	this	planing	to	vary	in	relative	intensity.



BROKEN	STONES,	AIRPORT	STRIPS,	AND
TRIBOLOGY

As	mentioned	long	ago,	in	Chapter	1,	I	coined	fractal	from	the	Latin	fractus,
which	describes	the	appearance	of	a	broken	stone:	irregular	and	fragmented.
Etymology	cannot	force	an	actual	stone’s	surface	to	be	fractal,	but	it	is	surely	not
a	standard	surface,	and	it	should	be	a	fractal	if	it	is	scaling.
The	argument	for	scaling	is	that	stone	is	made	of	grains	stuck	together	into

domains	organized	hierarchically,	bigger	domains	sticking	less	strongly	together
than	their	smaller	components.	The	energy	generated	when	a	stone	is	hit	would
dissipate	itself	easiest	by	separating	big	domains,	but	there	is	no	reason	to	expect
such	separation	to	be	allowable	geometrically,	therefore	the	break	is	likely	to
combine	portions	belonging	to	interdomain	walls	of	diverse	hierarchical	levels.
The	science	of	wear	and	of	friction	styles	itself	tribology,	from	the	Greek

τριβω	=	to	rub,	to	grind.	The	evidence	in	Sayles	&	Thomas	1978	(after
correction	of	a	flawed	analysis;	see	Berry	&	Hannay	1978)	supports	the	belief
that	fractional	Brown	surfaces	provide	first	approximation	representations	for
airport	strips,	and	for	many	natural	rough	surfaces.	The	empirical	values	of	D
(deduced	from	a	plot	of	7	-	2D	in	Sayles	&	Thomas,	Figure	1)	range	from	2	to	3.



SPATIAL	DISTRIBUTION	OF	OIL	AND	OTHER
NATURAL	RESOURCES

Now	that	my	“principle”	that	the	relief	is	scaling	has	been	tested	in	various
ways,	let	us	examine	a	corollary.	As	shown	in	Chapter	38,	we	may	expect	every
quantity	associated	with	the	relief	to	follow	a	hyperbolic	probability	distribution
(“Zipf	law”,	“Pareto	law”).	Such	is	indeed	often	the	case.	As	a	matter	of	fact,	my
study	of	coastlines	(Chapter	5),	which	suggested	that	the	relief	is	scaling,	had
been	preceded	by	Mandelbrot	1962n,	which	found	the	distributions	related	to	oil
and	other	natural	resources	to	be	hyperbolic.	This	finding	disagrees	with	the
dominant	opinion,	that	the	quantities	in	question	are	lognormally	distributed.
The	difference	is	extremely	significant,	the	reserves	being	much	higher	under	the
hyperbolic	than	under	the	lognormal	law.	My	conclusion	did	not	get	much
hearing	in	1962,	but	I	shall	try	again.
Minerals	are	discussed	again	in	Chapter	39,	in	the	entry	on	NONLACUNAR

FRACTALS.



SHORTCUTS:	PERIODIC	SURFACES	AND
MIDPOINT	DISPLACEMENT	SURFACES

Since	my	Brown	or	fractional	Brown	reliefs	are	based	on	involved	algorithms,
approximations	or	shortcuts	are	needed.	Thus,	Plates	268,	270	and	271	involve	a
Poisson	approximation	to	our	Gaussian	process.	And	Plates	264	to	267,	and	C5
to	C13	replace	a	nonperiodic	function	of	x	and	y	by	a	periodic	function
computed	by	fast	Fourier	methods,	then	“cropped”	to	keep	to	a	central	portion
unaffected	by	periodicity.
In	addition,	I	used	midpoint	displacement,	as	in	Chapter	26,	to	generate	fractal

surfaces	to	be	denoted	by	B*H(x,y).	Such	a	surface	is	most	easily	implemented
using	as	initiator	an	equilateral	triangle	J.	The	values	of	B*H(x,y)	being
prescribed	at	the	vertices	of	 ,	the	first	stage	interpolates	this	function	separately
on	the	3	midpoints	of	the	sides	of	 ,	using	the	same	process	as	for	the	coordinate
functions	of	B*H(t).	The	next	stage	interpolates	at	9	second-order	midpoints.	And
so	on.
The	outcome	is	more	realistic,	to	be	sure,	than	any	nonfractal	surface,	or	most

nonrandom	fractal	surfaces.	But	is	it	stationary?	ΔB*H	=	B*H(x,y)-
B*H(x+Ax,y+Ay)	should	depend	only	on	the	distance	between	the	points	(x,y)
and	(x+Δy,	y+Δy).	In	fact,	the	present	ΔB*H	depend	explicitly	on	x,	y,	Δx,	and
Δy.	Thus,	B*H	is	not	stationary,	even	if	H	=½.
I	have	also	examined	and	compared	a	dozen	shortcuts	that	are	stationary,	and

some	day	I	hope	to	publish	the	comparison.



Plates	264	and	265	⁇BROWN	LAKE	LANDSCAPES,	ORDINARY	AND
FRACTIONAL	(DIMENSIONS	D~2.1	TO	D=5/2,	PROCEEDING

CLOCKWISE)
	
The	figure	on	top	of	Plate	265	is	an	example	of	fractional	Brown	relief	of
dimension	fairly	close	to	2,	which	is	my	model	of	Earth’s	landscape.	The	other
Figures	extrapolate	this	model	to	higher	D’s,	ending	on	top	of	Plate	264,	with	an
ordinary	plane-to-line	Brown	relief.	The	latter	has	as	defining	characteristic	that
every	vertical	cut	is	an	ordinary	Brown	line-to-line	function,	as	in	Plate	241.	A
Brownian	relief	is	a	poor	model	of	Earth	because	it	is	conspicuously	too
irregular	in	its	detail.	The	poor	fit	is	quantified	by	the	fact	that	its	surface
dimension	D=5/2	and	its	coastline	dimension	D=3/2	are	too	large.



For	each	landscape	the	attitude	is	computed	for	latitudes	and	longitudes
forming	a	square	grid.	The	computer	is	programmed	to	simulate	lighting	from	a
source	located	60°	over	the	left,	while	the	viewer	is	located	25°	over	the	base
level.	For	further	details,	see	the	captions	of	the	color	illustrations.



Plates	266	and	267	⁇BROWN	COASTLINES,	AND	ISLAND	“STRINGS”
	
These	plates	are	primarily	meant	to	underline	an	important,	newly	discovered
effect.	When	the	relief	D	reaches	and	exceeds	2.5,	there	is	a	strong	and
increasing	tendency	for	the	ocean	to	split	into	roundish	separate	“seas.”	These
seas	intercommunicate,	nevertheless	each	has	a	sharp	individuality.	On	the	other
hand,	the	islands	seem	to	come	in	“strings.”	The	same	effect	is	also	visible	(but
not	quite	so	clearly)	in	the	ridges	present	in	all	the	“landscapes”:	Plates	264,	265,
and	271.
This	lack	of	isotropy	in	the	samples	is	entirely	compatible	with	the	fact	that

the	generating	mechanism	is	isotropic.
These	plates	are	equivalent	(except	for	the	seed)	to	planar	sections	of	the

flakes	in	Plates	10	and	11	(which	are	explained	at	the	end	of	Chapter	29).	Here,
as	in	Plates	10	and	11,	we	use	a	trimmed	version	of	one	period	of	a	periodic
variant	of	the	desired	process.	This	diminishes	the	overall	shape’s	dependence
upon	D.	The	actual	Brownian	coastlines’	overall	shapes	differ	more	than	shown
on	these	plates.
An	effect	related	to	the	present	strings	is	discussed	in	Chapters	34	and	35.





Plate	268	CONTOUR	LINES	IN	FRACTIONAL	BROWN	LANDSCAPES
	
Both	the	figures	in	this	plate	combine	two	or	three	contour	lines	(the	bold	lines
being	coastlines)	for	fractional	Brown	functions.	The	figures	involve	different
dimensions	but	the	same	program	and	seed:	the	top	figure	uses	D~1.3333,	and
the	bottom	figure	uses	D~1.1667.	By	inspection,	both	dimensions	are	credible
from	the	viewpoint	of	geography,	but	one	is	on	the	high	and	the	other	on	the	low
side.
These	curves	seem	much	less	“rugged”	than	those	in	Plate	267	having	the

same	D.	The	reason	is	that	in	the	earlier	plates	each	section	exhibits	a	very
strong	maximum;	there	is	little	systematic	slope	there.	Here,	by	contrast,	we	see
the	side	of	a	huge	mountain,	with	a	strong	overall	slope.	This	plate	is	close	in	its
“generic”	appearance	to	a	blown-up	version	of	some	particularly	rugged	small
piece	of	Plate	267.
By	comparing	these	different	contour	lines,	we	become	better	aware	of	the

wide	margin	left	for	the	interplay	between	irregularity	and	fragmentation	even
after	D	is	fixed.



Plates	269	and	C9	(top)	⁇BROWNIAN	PANGAEA	(COASTLINE
DIMENSION	D=3/2)

	
The	“distant	planet”	in	Plate	C9	represents	a	fictitious	fractal	Pangaea	seen	from
far	away	in	space.	Its	relief	was	generated	by	implementing	on	the	computer	(to
the	best	of	my	knowledge,	for	the	first	time)	a	random	surface	due	to	Paul	Levy:
a	Brown	function	from	the	points	of	a	sphere	(the	latitude	and	the	longitude)	to
scalars	(the	altitude).	Sea	level	was	adjusted	so	that	three-quarters	of	the	total
area	is	underwater.	The	coastline	was	obtained	by	interpolation.
This	plate	shows	the	same	Pangaea	on	a	Hammer	map—a	projection	favored

by	students	of	Wegener’s	theory	of	continental	drift.
How	closely	does	this	model	Pangaea	resemble	the	“real”	one?	The	specific

local	detail	is	not	expected	to	be	right,	only	the	degrees	of	wiggliness,	both	local
and	global.	The	resemblance	is	imperfect,	as	expected.	Indeed	this	model
Pangaea’s	coastline	satisfies	D=3/2,	while	the	imaginative	drawings	in	books	of
geology	attribute	to	the	real	Pangaea	the	same	D	as	observed	for	today’s
continents,	D~1.2.	If	new	evidence	turns	out	to	be	compatible	with	D=3/2,	one
could	account	for	the	geometry	of	Pangaea	with	the	help	of	rather	elementary
tectonic	assumptions.
	
FRACTALS	IN	NON-EUCLIDEAN	SPACE.	In	Riemann’s	non-Euclidean

geometry,	the	role	of	the	plane	is	played	by	the	sphere.	Thus,	the	non-Euclidean



geometries	go	half	way:	they	study	Euclidean	shapes	in	a	non-Euclidean
substratum.	The	bulk	of	this	Essay	also	goes	half	way,	since	it	studies	non-
Euclidean	shapes	in	a	Euclidean	substratum.	The	present	Pangaea	unites	both
departures:	it	is	an	example	of	non-Euclidean	shape	in	a	non-Euclidean
substratum.



Plate	270	THE	FIRST	KNOWN	EXAMPLES	OF	BROWN	COASTLINES
(ORDINARY	AND	FRACTIONAL)

	
My	claim	that	appropriately	selected	fractional	Brown	functions	are	reasonable



models	of	Earth’s	relief	was	originally	founded	upon	these	four	model
coastlines.	They	are,	like	Plate	269,	a	sentimental	carry-over	from	my	1975
French	Essay,	except	that	the	black	areas	were	filled	in	more	carefully,	thus
extracting	more	detail	from	the	original.
When	D	is	near	1,	top	Figure,	the	coastline	is	too	straight	to	be	realistic.
On	the	other	hand,	the	coastline	corresponding	to	D=1.3000,	second	Figure

from	the	top,	strongly	reminds	us	of	the	real	Atlas.	We	see	unmistakable	echos
of	Africa	(big	island	to	the	left),	of	South	America	(big	island	to	the	left,	as	seen
in	mirror	image),	and	of	Greenland	(big	island	to	the	right,	after	the	top	of	the
page	is	turned	from	twelve	o‘clock	to	nine	o’clock).	Finally,	if	the	page	is	turned
to	three	o’clock,	both	islands	together	simulate	a	slightly	undernourished	New
Zealand,	together	with	a	double	Bounty	Island.
When	D	rises	to	3/2,	third	Figure	from	the	top,	the	Atlas	guessing	game	is

harder	to	play.
When	D	increases	again,	closer	to	2,	bottom	Figure,	the	geographic	game

becomes	even	more	difficult,	or	at	least	more	specialized	(Minnesota?	Finland?).
Eventually	it	becomes	impossible.
Other	seeds	yield	the	same	result.	However,	the	same	tests	based	on	finer

graphics	favor	D~1.2000.
Including	this	plate	may	involve	sentimental	overkill,	because	it	does	not	say
anything	that	is	not	better	expressed	by	other	plates.	But	these	views	of	an	island
with	varying	sea	level	were	featured	in	Mandelbrot	1975w	and	in	my	1975
Essay,	and	I	am	fond	of	them.	They	were	part	of	a	more	complete	sequence	of
fractional	Brown	islands	of	varying	D	and	varying	sea	levels,	the	first	such
islands	to	be	drawn	anywhere.	(In	1976,	we	made	a	film	of	this	special	island
emerging	from	the	sea;	in	1981,	the	film	looks	ridiculously	primitive,	but	it	may
acquire	antiquarian	value.)
Constantly,	I	lapse	into	wondering	during	which	trip	I	actually	saw	the	bottom

vista,	with	its	small	islands	scattered	like	seeds	at	the	tip	of	a	narrow	peninsula.
The	original	illustration	had	been	photographed	from	a	cathode	ray	tube	that

lacked	sharpness;	the	data	have	therefore	been	reprocessed.	Here	(as	opposed	to
Plates	264	and	265,	and	C9	through	C15),	no	deliberate	simulation	of	side-
lighting	is	required.	As	luck	will	have	it,	the	ancient	graphic	process	creates	the
impression	that	the	sea	shimmers	toward	the	horizon.
The	reader	will	observe	that,	compared	with	the	most	recent	landscapes,	this

plate	involves	a	surprisingly	high	dimension.	The	reason	is	that	early	graphic
techniques	were	incapable	of	representing	small	details,	hence	the	early



landscapes’	dimension	seemed	smaller	than	the	D	that	had	been	fed	into	the
generating	programs.	To	compensate,	we	increased	D	beyond	the	range
suggested	by	the	bulk	of	the	evidence.	As	graphics	improved,	however,	the	bias
became	conspicuous,	hence	counter-productive.	Today,	we	are	at	the	point	where
the	D’s	suggested	by	Richardson’s	data	yield	perfectly	acceptable	landscapes.



Plate	271	THE	FIRST	KNOWN	EXAMPLES	OF	FRACTIONAL	BROWN
ISLANDS	(DIMENSION	D=2.3000)
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The	Areas	of	Islands,	Lakes,	and	Cups

We	further	explore	my	Brownian	model	of	the	relief,	as	advanced	in	the
preceding	chapter.	The	consequences	concerning	island	areas	prove	acceptable,
but	the	consequences	concerning	lakes	and	cups	are	not	acceptable.	To	correct
this	discrepancy,	an	improved	model	is	put	forward.



PROJECTIVE	ISLAND	AREAS

As	pointed	out	in	Chapter	13,	the	variability	of	the	projective	areas	A	of	ocean
islands	is	an	obvious	characteristic	of	maps,	often	more	striking	than	the	shape
of	coastlines.	We	report	that	Korčak	1938	gives	the	distribution	of	A	as
hyperbolic:	Pr(A>a)=Fa-B.	(We	arc	now	in	a	position	to	replace	Fr	by	Pr.)
Finally,	we	show	that	this	empirical	result	holds	when	the	coastline	is	self-
similar.	We	are	now	in	a	position	to	add	that	it	is	a	fortiori	sufficient	to	assume
that	the	relief	is	self-similar.
There	can	be	no	doubt	that	the	relationship	2B=D	extends	from	the

nonrandom	Koch	coastlines	examined	in	Chapter	13	fractional	Brown	zerosets.
But	the	argument	is	still	partly	heuristic	as	of	now.	The	distribution
corresponding	to	the	fractional	Brown	relief	with	H=0.800	comes	really	very
close	to	the	empirical	data	regarding	all	of	Earth.
The	dimension	Dc	of	each	fractional	Brown	island	taken	by	itself	is	not	known

yet.



PROJECTIVE	LAKE	AREAS

The	areas	of	lakes	also	are	claimed	to	follow	the	hyperbolic	distribution,	hence
one	might	be	tempted	to	dismiss	lakes	as	involving	no	new	element.	At	second
thought,	however,	the	definitions	of	lakes	and	ocean	islands	are	by	no	means
symmetric.
A	special	analysis	sketched	in	this	chapter	clarifies	many	issues	concerning

two	lake	surrogates,	“deadvalleys”	and	“cups.”	And	it	makes	us	face	the	fact	that
river	and	watershed	trees	are	asymmetric	in	Nature,	but	in	none	of	my	Brown
models.	Hence	it	leads	to	a	suggested	improvement	of	the	latter.
But	the	distribution	of	lake	areas	remains	mysterious.	Perhaps	its	being

hyperbolic	is	merely	due	to	the	“robustness”	of	the	hyperbolic	distribution	under
diverse	forms	of	torture	(Mandelbrot	1963e,	and	Chapter	38).	For	example,	the
product	of	a	hyperbolic	random	multiplicand	and	a	largely	arbitrary	multiplier	is
itself	hyperbolic.	The	multiplicand	may	be	due	to	a	primeval	state	in	which	the
relief	and	everything	about	it	is	hyperbolic.	And	the	multiplier	may	be	due	to	the
thousand	geological	and	tectonic	factors	that	affect	lake	shapes.	But	this
“explanation”	is	really	nothing	more	than	hand	waving.



THE	NOTION	OF	DEADVALLEY

The	concept	symmetrical	to	an	ocean	island	is	an	area,	enclosed	by	a	continent,
whose	altitude	is	below	the	level	of	the	ocean.	We	shall	denote	such	areas	by	the
self-explanatory	mixed	term	deadvalleys.	Some	contain	water—ordinarily	at	a
level	below	that	of	the	ocean,	e.g.,	the	areas	centered	upon	the	Dead	Sea	(filled
to	-1280	ft.),	the	Caspian	Sea	(-92	ft.),	and	the	Salton	Sea	(-235	ft.).	Other
deadvalleys	are	dry,	like	Death	Valley	(bottoming	at	-282	ft.)	or	the	Qattara
Depression	(-436	ft.).	There	is	also	the	borderline	case	of	the	Lowlands.
Information	concerning	the	projective	areas	within	deadvalleys’	contour	lines

at	the	ocean	level	is	not	available	to	me.	But	inspection	of	maps	suggests	that
deadvalleys	are	fewer	in	number	than	islands.,	In	the	context	of	the	model	that
assumes	Earth	to	be	flat	except	for	an	added	Brown	plane-to-line	relief,	this
asymmetry	is	to	be	expected.	The	fact	that	the	distributions	of	islands	and
deadvalleys	have	the	same	exponent	means	that	the	10th	largest	island	or	lake
areas	are	in	about	the	same	ratio	to	the	20th	largest	island	or	lake	areas.	But
Korcak’s	law	also	involves	a	“prefactor”	F	that	sets	the	absolute	value	of	the
10th	largest	island	or	lake	area.	A	comparative	inspection	of	the	various	plates
clearly	shows	that	in	the	case	of	a	continent	surrounded	by	an	ocean	(and
conversely)	the	prefactor	is	greater	for	islands	than	for	deadvalleys	(and
conversely).	And	within	the	Brown	sphere-to-line	model,	the	lesser	area
(Pangaea)	is	more	cut	up	in	pieces	than	the	greater	one	(Panthalassia).
However,	the	preceding	argument	tells	us	nothing	about	lakes:	save	for	rare

and	irrelevant	exceptions	(such	as	areas	near	the	sea-shore	filled	by	salt	water
seepage),	deadvalleys	and	lakes	are	distinct	notions.	The	altitude	of	a	lake’s
bottom	need	not	satisfy	z<0,	and	the	altitude	of	its	surface	need	not	be	z=0.
Further	complications:	most	lakes	fill	to	just	above	the	brim,	which	is	a	saddle
point,	but	this	rule	suffers	exceptions	(e.g.,	Great	Salt	Lake	and	the	lakes	that
cover	the	deadvalley	bottoms	listed	in	the	preceding	section).



THE	NOTION	OF	CUP

Now	we	examine	a	second	lake	surrogate,	to	be	denoted	by	the	neutral	geometric
term	cup.
To	define	this	notion,	think	of	an	impermeable	landscape,	in	which	every	dip

is	filled	exactly	to	the	brim.	In	order	to	move	out	of	a	dip,	a	drop	of	water	has	to
move	up,	then	down.	But	a	drop	added	upon	this	landscape	can	conceivably
escape	along	a	path	that	never	goes	up,	but	proceeds	either	horizontally	or	down.
Each	dip	has	a	positive	area,	hence	the	number	of	dips	is	either	finite	or	infinite
but	denumerable.	It	is	safe	to	assume	that	the	different	outlets	have	different
altitudes.	At	the	precise	altitude	of	an	outlet,	the	reliefs	contour	line	is	made	of	a
certain	number	of	self-avoiding	loops,	plus	a	loop	having	a	point	of	self-contact.
At	slightly	higher	altitudes,	this	self-contact	vanishes.	And	at	slightly	lower
altitudes,	the	loop	divides	into	2	loops	nested	within	each	other.
Once	filled,	the	dips	according	to	the	above	contruction	will	be	called	cups.



THE	DEVIL’S	TERRACES

Now	assume	that	the	relief	is	Brownian	with	0<	H	<	1.	Because	of	self-
similarity,	individual	cups’	areas	are	doubtless	hyperbolically	distributed.	When
D	is	not	much	above	2,	the	exponent	of	the	distribution	of	areas	is	doubtless
close	to	1.
More	specifically,	I	conjecture	that	a	drop	of	water	falling	at	random	is	almost

certain	to	fall	within	a	cup.	If	this	conjecture	is	correct,	the	cups’	surfaces	are	a
wild	extrapolate	of	the	terraced	fields	in	southeast	Asia.	I	call	them	Devil’s
terraces.	The	points	which	fail	to	fall	within	cups	form	the	cups’	cumulative
coastline,	and	add	up	to	a	ramified	net,	a	random	form	of	the	Sierpinski	gasket.
If	I	am	wrong	and	the	cups’	cumulative	coastline	is	in	fact	of	positive	rather	than
zero	area	(Chapter	15),	my	fallback	conjecture	is	that	there	is	a	cup	arbitrarily
close	to	every	point	that	does	not	lie	in	a	cup.



ERODED	BROWN	MODEL:	MIXTURE	OF
RIDGES	AND	FLAT	PLAINS

One	is	now	irresistibly	drawn	to	modify	my	Brownian	models	by	imagining	that
every	cup	of	a	Brown	mainland	BH	is	filled	with	dirt	and	made	into	a	flat	plain.
We	need	not	illustrate	the	resulting	function	B*H	graphically,	because,	in	the
interesting	cases	when	D	is	not	much	above	2,	filling	the	small	cups	makes	little
visible	difference.
To	obtain	the	dirt	with	which	it	will	fill	the	cups,	erosion	must	wear	off	the

hills;	but	we	shall	see	that	(if	D	is	not	much	above	2)	one	does	not	need	an
overwhelming	quantity	of	dirt,	hence	it	is	useful	to	assume	that	the	hills’	shape	is
little	changed.	The	fact	that	erosion	wears	off	the	saddle	points	by	which	cups
empty	cannot	be	handled	here.
From	this	Essay’s	viewpoint,	a	major	virtue	of	the	proposed	modification	is

that	if	ocean	level	is	chosen	appropriately,	the	eroded	Brown	relief	on	a	flat
Earth	continues	to	be	scaling.	What	about	the	effect	of	such	an	erosion	upon
dimension?	There	is	evidence	that	the	dimension	of	B*H	lies	between	2	and	the
dimension	3-H	of	BH.
Let	us	now	argue	that	the	relative	amount	of	dirt	needed	to	fill	in	all	the	cups

is	not	large	when	D=2+∈.	Mainland’s	volume	is	of	the	order	of	magnitude	of
(mainland	projection’s	typical	length)2+H	∝	(mainland	area)1+H/2,	and	a	cup’s
volume	relative	to	mainland’s	is	(cup’s	relative	area)1+H/2.	Since	relative	area	is
hyperbolically	distributed	with	an	exponent	near	1	and	Σ(relative	area)	=	1,	it
follows	that	Σ(relative	area)1+H/2	is	fairly	small.	The	exceptions	concern	cases
where	the	largest	cup	is	extremely	large;	such	cups	need	not	be	filled,	as	in	the
case	of	Great	Salt	Lake.



RIVERS	AND	WATERSHEDS

In	a	first	approximation	that	plays	a	central	role	in	Chapter	7,	I	suggest	that
rivers	and	watersheds	form	conjugate	plane-filling	trees.	Actually,	this
characterization	may	only	apply	to	maps;	as	soon	as	altitude	is	introduced,	the
beautiful	symmetry	between	the	river	and	watershed	trees	is	destroyed.	Indeed,
neglecting	lakes,	the	points	on	a	watershed	tree	are	always	either	local	maxima
(hills)	or	saddle	points	(passes),	while	the	points	on	a	river	tree	are	never	either
local	minima	or	saddle	points.	The	fact	that	Brownian	and	fractional	Brownian
models	do	have	local	minima	implies	they	do	not	have	river	trees.	This	is	a	fresh
strike	against	my	Brownian	models.
After	the	cups	are	filled,	there	are	no	rivers	as	such,	only	branching	strings	of

(infinitely	shallow)	lakes,	reminiscent	of	cacti	with	disc-shaped	branches.	The
watersheds	form	a	tree;	I	believe	it	is	a	branching	curve	with	D	<	2,	but	it	may
be	a	curve	of	positive	area,	hence	of	dimension	D=2.	Diverse	further	variants
impose	themselves,	but	are	better	reserved	for	a	more	suitable	occasion.



PROPERTIES	OF	THE	CUPS

To	put	in	perspective	the	claims	made	in	an	earlier	section,	we	first	examine	the
one-dimensional	reduction,	namely	a	line-to-line	fractional	Brown	function
BH(x).	Here,	an	island	is	merely	an	interval	[x’,x“]	wherein	BH(x)>0	when
x’<x<x”,	while	BH(X’)	=	BH(X”)	=	0.	Denote	by	x=xo	the	point	where	B
reaches	its	maximum	(cases	where	there	are	several	maxima	xo	are	of	zero
probability),	and	define	B*H(x)	as	follows:

for	x	in	[x’,xo],	B*H(x)	=	maxx’≤	u	≤	xBH(x)	for	x	in	[x0,x”],	B*H(x)	=
maxx≤	u	≤	x”BH(x),

It	is	clear	that	z≥B*H(x),	is	the	necessary	and	sufficient	condition	for	a	droplet
starting	at	the	point	(x,z)	to	find	its	way	to	the	ocean	along	a	nonascending	path.
Droplets	that	satisfy	BH(X)	<	z	<	B*H(x)	remain	trapped	forever,	and	z	=	B*H(x)
is	the	water	level	attained	when	all	the	cups	have	been	filled.	This	function	B*	is
simply	a	Levy	Devil’s	staircase	(Plates	286	and	287),	going	up	from	x’	to	x0,
followed	by	a	staircase	going	down	from	X0	to	x”.	It	is	continuous	but	not
differentiable	and	varies	over	a	set	of	length	zero.	Any	drop	of	water	added	near
mainland’s	highest	point	will	rejoin	the	ocean	through	flat	regions	alternating
with	”white	water”	regions.
The	droplets	that	cannot	escape	fill	the	domain	BH(x)<z≤B*H(x).	This	domain

is	disconnected,	since	it	contains	no	point	for	which	B*H	=	BH,	and	its	connected
portions	are	the	mainland’s	cups.	A	cup’s	length	is	the	distance	between
consecutive	zeros	of	B*H	-	BH.	Its	distribution	is	hyperbolic	because	of	scaling;
its	exponent	is	known	to	be	½	when	H=½,	and	I	am	convinced	it	is	always	H.
The	longest	cup’s	length,	divided	by	|t’-t”|,	is	largest	when	H	is	close	to	0,	and	is
smallest	when	H	is	close	to	1.
Now	we	return	to	a	Brownian	mainland	BH(x,y)	on	a	flat	Earth,	the	function

B*H(x,y)	is	again	defined	by	the	condition	that	a	water	droplet	that	starts	at	a
height	z>B*H(x,y)	can	escape	to	the	ocean	following	a	nonascending	path	that
keeps	above	mainland.	As	before,	the	spatial	domain	in	which	BH(x,y)



<z≤B*H(x,y)	decomposes	into	connected	open	domains	that	define	the	cups.
Now	compare	these	cups	to	those	of	a	very	thin	slice	of	mainland,	retained	by

parallel	walls	at	y=0	and	y=∈.	We	apply	to	them	the	preceding	notations	BH(x)
and	B*H(x).	The	definition	of	B*H(x)	restricts	water	escape	to	paths	lying
between	the	above	walls,	while	the	definition	of	B*H(x,	0)	allows	a	much	wider
choice	of	escape	paths.	It	follows	that	B*H(x,	0)<B*H(x)	for	almost	every	x.
Hence	the	function	B*H(x,	0),	and	any	other	vertical	cut	of	B*H(x,y),	are	much
more	interesting	than	B*H(x).	They	are	devilishly	terraced	singular	function	with
(an	infinity	of)	peaked	local	maxima	and	flat	local	minima.	If	my	strongest
conjecture	is	valid,	the	latter	cover	almost	every	point	of	mainland.
Since	the	cup	areas’	sum	is	at	most	equal	to	mainland’s	area,	the	cups	can	be

ranked	by	decreasing	area,	hence	are	denumerable.	A	consequence	is	that	the
coastline	of	BH	that	corresponds	to	a	random	value	of	z0	is	almost	surely	without
double	point.
The	cumulative	boundary	of	all	the	cups	can	therefore	be	obtained	as	follows.

Take	a	denumerable	set	of	values	Zm—which	will	almost	surely	fail	to	include	a
value	for	which	the	coastline	involves	a	loop.	Censor	the	coastlines	by	erasing
the	deadvalley	coastlines	from	all	z0=zm.	Take	the	union	of	the	censored
coastlines,	and	add	its	limit	points.
For	any	M	>	2,	the	generalization	to	Brown	function	of	M-dimensional	x=

{x1...xm}	is	straightforward.	Given	BH(x),	the	argument	already	used	for	M=2
shows	that	the	difference	between	B*H	and	BH	decreases	as	M	increases.	In	the
limit	case	where	M=oo	and	BH	is	a	Brown	function	in	Hilbert	space,	it	follows
from	classical	results	of	Paul	Levy	that	B*H-BH≡0.	Does	this	identity	hold	for	all
M>Mcrit	with	Mcrit<∞?



HERE	GOD	CREATES	CIRCLES,	WAVES,	AND	FRACTALS
	
This	signature	is	a	book-within-the-book	and	is	dedicated	to	the	proposition	that
if	“to	see	is	to	believe,”	then	to	see	in	color	may	lead	to	an	even	higher	intensity



of	belief,	however	awkward	our	first	efforts	in	this	medium.	Of	course,	the
reader	is	supposed	to	open	this	book	on	here,	not	on	page	C1,	nevertheless	the
captions	in	this	signature	are	somewhat	independent	of	the	rest.
The	Fractal	Geometry	of	Nature	was	first	set	forth	by	this	author.	This

geometry	combines	the	mathematics	and	the	science	necessary	to	tackle	a	certain
broad	and	widespread	class	of	natural	shapes.
Many	of	these	shapes	are	very	familiar,	but	the	problems	they	raise	had	been

rarely	mentioned	by	writers	of	the	past.	On	the	other	hand,	Plates	C1,	C3,	and
C16	are	ready	examples	of	old	works	of	art	that	exemplify	the	issues	tackled	by
fractal	geometry.
PLATE	C1.	THE	FRONTISPIECE	OF	A	BIBLE	MORALISÉE.	The	period

of	Western	European	history	centered	at	1200,	while	stagnant	in	science	and
philosophy,	was	exuberantly	active	in	engineering.	In	the	age	that	built	the
Gothic	cathedrals,	to	be	a	master	mason	was	a	very	high	calling.	Thus,	the
“Bibles	Moralisées	illustrées”	of	that	time	(“comic	strip”	Bibles)	often	represent
the	Lord	holding	mason’s	dividers	(Friedman	1974).
Plate	C1	is	an	example.	It	is	the	frontispiece	of	a	famous	Bible	Moralisée,

written	between	1220	and	1250,	in	the	Eastern	Champagne	dialect	of	French.	It
now	resides	in	the	Austrian	National	Library	in	Vienna	(codex	2554),	and	is
reproduced	with	the	Library’s	kind	permission.	The	legend	reads:



ICI	CRIE	DEX	CIEL	ET	TERRE	SOLEIL	ET	LUNE
ET	TOZ	ELEMENZ.

(HERE	CREATES	GOD	SKY	AND	EARTH	SUN
AND	MOON	AND	ALL	ELEMENTS.)

We	perceive	three	different	kinds	of	form	in	this	newly	created	world:	circles,
waves,	and	“wiggles.”	The	studies	of	circles	and	waves	benefited	from	colossal
investments	of	effort	by	man,	and	they	form	the	very	foundation	of	science.	In
comparison,	“wiggles”	have	been	left	almost	totally	untouched.
The	goal	of	the	present	Essay	is	to	face	the	challenge	of	building	a	Natural

Geometry	of	certain	“wiggles,”	to	be	called	“fractals.”
A	most	attractive	feature	of	this	plate	is	that	it	begs	the	scientist	to	“take	the

measure	of	the	universe.”	To	apply	dividers	to	circles	and	waves	had	long
proven	an	easy	task.	But	what	if	we	apply	dividers	to	the	wiggles	on	this	plate,	...
or	to	coastlines	on	Earth?	The	result	is	unexpected;	it	is	discussed	in	Chapter	5,
and	later	chapters	explore	its	consequences,	and	thereby	guide	the	reader	along	a
path	one	may	describe	as	science-filling.
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Plates	C1,	C3,	and	C16	 	THREE	GREAT	ARTISTS	OF	THE	PAST
ILLUSTRATE	NATURE,	AND	THEREBY	BRING	THE	READER	TO

THE	THRESHOLD	OF	FRACTALS
	
PLATE	C3.	THE	DELUGE	BY	LEONARDO	DA	VINCI.	(From	the	Windsor

Castle	Collections.	Reproduced	by	gracious	permission	of	Her	Majesty	the
Queen.)
This	is	one	of	many	drawings	in	which	Leonardo	represented	water	flow	as

the	superposition	of	eddies	of	many	diverse	sizes.	Awareness	of	this	eddy
structure	entered	science	belatedly,	becoming	partly	formalized	by	Lewis	F.
Richardson	in	the	1920’s	into	the	“scaling”	view	of	the	nature	of	turbulence.
However,	this	view	promptly	drifted	into	a	search	for	formulas,	losing	all
geometric	flavor,	and	also	(this	may	not	be	a	coincidence!)	proving	of	limited
effectiveness.
The	theory	expounded	in	this	book	allows	a	return	of	geometry	into	the	study

of	turbulence,	and	shows	that	many	other	fields	of	science	are	very	analogous



geometrically	and	can	be	handled	by	related	techniques.
Flamboyant	this	design	may	be,	but	its	black	background	must	be	viewed	as	an
example	of	extreme	minimal	art.	Indeed,	the	formula

{z:limn→∞|fn(z)|=∞,	where	f(z)=λz(1-z)},

is	all	that	is	needed	to	duplicate	the	background	in	question	with	complete
accuracy.	Let	me	explain	this	formula:	having	chosen	the	complex	number	λ
determining	the	“generating	function”	f(z),	we	construct	f2(z)=f(f(z)),	then
f3=f(f2(z)),	that	is,	f3(z)=f(f(f(z))),	and	so	on	ad	infinitum.
The	complex	number	λ	yielding	this	plate	is	~	1.64+.96i.	Clearly,	it	was	not

hit	by	random	fire.	The	dragon’s	shape	is	very	sensitive	to	λ,	but	a	special	theory
I	developed	(and	sketch	in	Chapter	19)	allows	one	to	choose	λ	so	as	to	obtain	the
dragon	one	wishes	among	many	very	varied	possibilities.
THE	“STONES.”	As	to	the	design	that	stands	out	from	the	black	background,

it	is	made	of	25	kinds	of	“stones,”	each	defined	by

{z:	limn→∞f25n(z)=Zg},

where	the	25	complex	numbers	zg	are	roots	of	the	equation	f25(Z)	=	z,	and	in
addition	satisfy	|(d/dz)f25(z)|<1.
Looking	carefully,	one	sees	5	different	reds,	5	different	blues,	etc.	This

coloring	scheme	is	chosen	because	25	values	of	zg	fall	into	5	“genera,”	each
made	up	of	5	“species.”	We	attach	a	color	to	each	genus,	and	a	hue	or	intensity
to	each	species.	For	example,	all	5	species	of	gold	are	strung	along	the	dragon’s
golden	main	body,	and	they	come	together	at	this	body’s	wasp’s	waists.
A	PREVIOUSLY	HIDDEN	FACE	OF	CLASSICAL	MATHEMATICS.	The

formula	for	f(z)	is	so	short,	and	looks	so	uninteresting	(because	it	comes	from	an
elementary	chapter	of	calculus),	that	little	was	expected	from	it.	Thus,
previewing	this	kind	of	design	on	the	computer	screen	provoked	surprise	as	well
as	a	deep	esthetic	shock.
Classical	mathematical	analysis	(which	is	the	most	advanced	form	of	calculus)

had	played	a	joke	on	all	those	who	either	loved	or	hated	it.	It	is	now	revealed
that	analysis	has	two	very	different	faces.	The	face	it	had	been	showing	us	for
centuries,	and	which	became	its	pride	(or	its	curse),	was	unremittingly	austere.
But	I	show	that	analysis	also	has	a	hidden	face	that	is	often	strikingly	attractive
and	playful.
Respect	and	admiration	for	the	Great	Masters	of	austere	analysis	make	one



hasten	to	say	that	the	extreme	complication	of	the	outline	of	this	black	velvet
was	not	a	surprise	to	the	handful	of	mathematicians	(of	whom	I	had	the	good
fortune	of	being	one)	aware	of	“ancient”	(mostly	circa	1920)	works	by	Pierre
Fatou	and	Gaston	Julia.	But	such	shapes’	complication	had	contributed	to
enhancing	the	starkness	of	analysis,	and	nothing	had	made	us	expect	that	so
many	witnesses	would	perceive	this	complication	as	beautiful.
ALGORITHMS	THAT	INCLUDE	A	LOOP.	Fatou’s	and	Julia’s	discoveries

confirm,	in	effect,	that	a	very	complex	artifact	can	be	made	with	a	very	simple
tool	(think	of	it	as	a	sculptor’s	chisel),	as	long	as	the	tool	can	be	applied
repeatedly.	Here,	the	tool	is	the	function	f(z)	from	which	one	generates	the
functions	fn(z).
Therefore,	one	does	not	deal	here	with	an	operation	that	is	performed	once,

then	stops	when	completed,	but	with	an	operation	that	is	performed,	then
repeated,	etc.	Such	iterated	functions	are	examples	of	treadmills	or	loops,	each
turn	of	which	can	deal	with	a	fresh	task.
The	simplest	loop	programs	are	linear,	which	means	that	they	add	detail	that

merely	echoes	the	overall	shape	on	a	smaller	scale.	The	resulting	shapes	are
called	self-similar.
In	this	instance,	to	the	contrary,	the	detail	becomes	deformed	as	it	becomes

smaller,	because	the	function	f(z)	is	not	linear.	This	function	being	quadratic,	the
boundary	of	the	velvet	background	is	denoted	in	Chapter	19	by	the	term,	self-
squared.



Plate	C5	SELF-SQUARED	FRACTAL	DRAGON
	
This	hanging	is	patched	of	six	different	kinds	of	transparent	cloth.	A	multitude	of
open	discs	(that	is,	of	interiors	of	circles)	are	cut	from	cloth	of	6	different	colors,
and	sewn	upon	a	transparent	scrim,	either	singly	or	in	superposition.	Most	of
these	discs	are	too	far	away	or	too	small	to	be	seen.
This	shape	is	a	more	intricate	variant	of	one	discussed	in	Chapter	18.	Its

construction	begins	by	selecting	a	generator,	which	in	this	instance	is	a
collection	of	4	circles	and	4	straight	lines,	arranged	as	follows



For	many	reasons	explained	in	Chapter	18,	a	great	deal	of	interest	is	attached
to	the	shape	L	that	is	the	smallest	shape	to	remain	completely	unchanged	if	one
performs	a	symmetry	with	respect	to	any	of	the	generating	straight	lines,	or	an
inversion	with	respect	to	any	of	the	generating	circles.
In	theory,	the	difference	between	the	notions	of	line	and	circle	is	not	basic

here;	indeed,	if	the	above	lines	and	circles	are	subjected	to	geometric	inversion
with	respect	to	a	point	that	lies	on	none	of	them,	they	transform	into	8	circles.
Therefore,	instead	of	calling	L	“self-inverse	and	self-symmetric,”	it	suffices	to
call	it	“self-inverse.”
But	the	fact	that	this	figure	involves	4	symmetries,	across	lines	that	form	a

rectangle,	is	advantageous,	and	was	built-in	to	insure	that	the	present	set	L	is
periodic.	The	first	period	is	bounded	by	our	rectangle,	and	the	others	are
obtained	by	translation	along	either	axis.
The	problem	of	determining	the	structure	of	L	is	an	old	and	famous	one,	to

which	I	give	the	workable	solution	illustrated	here.	This	new	solution	shows	that
L	is	made	up	of	the	points	where	disc-shaped	cloth	patches	are	in	contact	along
the	circles	that	bound	them.	Points	within	a	disc	never	count	as	part	of	L	even
when	they	are	on	the	boundary	of	a	different	disc	of	the	same	or	a	different	color.
Now	to	the	explanation	of	how	these	disc-shaped	patches	are	selected.

Starting	with	the	generating	shape,	one	draws	6	circles,	call	them	Γ-circles,	each
of	which	is	orthogonal	to	3	of	the	8	generating	shapes.	There	are	many	other
circles	orthogonal	to	3	of	the	generator’s	8	shapes,	but	only	the	present	6	are
needed	as	Γ-circles.



Each	Γ-circle	bounds	a	disc	associated	with	a	different	color	of	cloth,	then	the
same	color	is	also	used	in	every	disc	obtained	by	transforming	one	of	the	Γ-discs
by	inversion	in	the	4	circles,	or	by	symmetry	in	the	6	lines	in	the	generator.	The
discs	in	the	central	“medallion”	overlap	with	each	other,	but	neither	overlaps
with	any	of	its	inverses.	The	corner	discs,	to	the	contrary,	overlap	with	certain	of
their	inverses.



Plate	C7	SELF-INVERSE	FRACTAL	PATCHWORK
	
Plates	C9	to	C15	may	look	“realistic.”	And,	in	their	own	way,	some	are	works	of
art.	However,	these	plates	are	not	photographs	and	were	not	intended	to	be
artistic.	Furthermore,	they	are	not	examples	of	the	popular	fake	landscapes	one
can	obtain	by	processing	actual	landscapes,	in	the	same	way	as	one	synthesizes	a
chemical	by	transforming	other	chemicals.	The	present	plates	are	exactly	as
artificial	as	Plates	C5	and	C7.	They	are	the	fractal	equivalent	of	the	“complete”
synthesis	of	hemoglobin	from	the	component	atoms	and	(a	great	deal	of)	time
and	energy.
Plate	C9	combines	the	implementations	of	two	of	my	theories	of	the	surfaces



of	planets,	first	advanced	in	Mandelbrot	1975w	on	the	basis	of	Plates	270	and
271,	and	explored	in	Chapters	28	and	29	of	this	Essay.	Various	features	of	the
present	plate	fail	to	fit	reality,	but	the	chapters	in	question	show	how	some	of
these	defects	can	be	improved.
A	planet	on	which	water	concentrates	in	oceans	and	snow	(e.g.,	in	polar	caps),

while	the	sky	remains	completely	cloudless,	is—to	put	it	mildly—a	rough
approximation.	Color	is	added	after	the	fact	to	the	best	of	our	present	abilities,
and	the	color	selection	is	completely	independent	of	my	theories.	A	first	stage
algorithm	showed	altitude	using	the	same	colors	as	The	Times	Atlas.	Then	it
became	clear	that	a	slight	refinement	in	the	coloring	scheme	would	yield
considerably	better	results,	without	requiring	a	multiplicity	of	separate	decisions.
This	art	cannot	claim	to	be	as	minimal	as	that	in	Plates	C5	and	C7,	because

the	definitions	of	the	two	“planets”	cannot	reduce	to	a	single	line	without	undue
artificiality.
A	second	reason	this	art	cannot	be	called	minimal	is	that	implementing	the

shadows	involves	great	ingenuity;	one	would	need	tomes	to	explain	every	detail.
In	addition,	the	algorithm	is	very	much	influenced	by	the	available	tools,	hence
to	duplicate	this	work	one	would	have	to	use	exactly	the	same	computer
equipment.
Since	an	earlier	version	of	this	“Planetrise”	appeared	on	the	back	jacket,	and

other	fractal	landscapes	appeared	in	the	Plates	of	the	1977	Fractals,	they	have
been	honored	by	innumerable	imitations.	The	low	relative	quality	of	the
imitations	is	further	proof	of	the	nonminimality	of	this	art.
Nevertheless,	the	main	feature	of	either	planet	can	be	characterized	uniquely

by	a	very	small	number	of	very	basic	properties	of	continuity	and	invariance,	to
be	explored	in	the	following	captions.
DEDICATION.	Labelgraph	Hill	is	named	in	memory	of	“lblgraph,”	an

independent-minded	and	often	very	ill-mannered	heap	of	graphics	programs	that
originated	in	work	by	Alex	Hurwitz	and	Jack	Wright	of	IBM	Los	Angeles.	It
graced	the	T.	J.	Watson	Research	Center	from	1974	to	1981,	responded	when
treated	with	consideration,	and	(with	its	lively	successor,	“yogi”)	made	it
possible	to	illustrate	my	Essays.	R.I.P.



Plate	C9	PLANETRISE	OVER	LABELGRAPH	HILL	(SOUVENIR
FROM	A	SPACE	MISSION	THAT	NEVER	WAS)

	
The	name	of	Carl	Friedrich	Gauss	(1777-1855)	appears	in	nearly	every	chapter
of	mathematics	and	of	physics,	making	him	the	first	(princeps)	among	the
mathematicians	(including	the	physicists)	of	his	time.	But	these	imaginary	hills
being	called	Gaussian	is	motivated	by	a	probability	distribution	for	which	Gauss
receives	undeserved	credit.	It	is	the	distribution	whose	graph	is	the	famous	“bell-
shaped	curve”	or	“Galton	ogive.”	On	Plates	C9	to	C15,	this	distribution	rules	the
difference	in	altitude	between	any	two	prescribed	points	on	the	map,	at	least
after	a	suitable	transformation.
Many	scholars	resort	to	the	Gaussian	probability	distribution	in	their

disquisitions,	without	feeling	that	this	choice	has	to	be	justified.	Either	it	is	the
only	distribution	they	know	intimately	and	trust,	or	they	believe	it	accounts	for



the	distribution	of	every	random	quantity	in	Nature,	from	conscripts’	heights	to
astronomers’	errors	of	measurement.
Actually,	this	last	belief	is	quite	without	foundation.	This	Essay	includes	many

examples	that	show	the	world	to	be	full	of	grossly	non-Gaussian	phenomena.
Therefore,	the	resort	to	the	Gaussian	distribution	requires	a	different	and	less
controversial	justification.	To	me,	the	only	sound	justifications	are	based	on	the
fact	that	the	Gaussian	is	the	only	distribution	that	possesses	certain	properties	of
scale	invariance,	yet	leads	to	continuously	varying	reliefs.	The	conclusion	is	that
the	simplest	possible	reliefs	are	ruled	by	a	“Brown	function,”	or	at	least	by	a
variant	thereof	which	I	called	“fractional	Brown	function.”
The	only	parameter	that	these	desiderata	leave	indeterminate,	so	that	it

remains	to	be	selected	on	independent	grounds,	is	called	fractal	dimension	of	the
relief,	and	is	denoted	by	D.
When	D	attains	its	minimum	value	of	D=2,	the	relief	is	extremely	smooth.	As

D	increases,	the	relief	becomes	increasingly	“corrugated,”	and	begins	to
resemble	high	Earth	mountains.	Eventually,	it	becomes	too	corrugated	to	be
mountain-like,	and	ultimately	it	becomes	near	space-filling.
A	Brown	function’s	defining	characteristic	is	that	every	vertical	cut	is	an

ordinary	Brown	line-to-line	function.
For	every	landscape	other	than	the	distant	planet	in	Plate	C9,	the	attitude	is

computed	for	latitudes	and	longitudes	forming	a	square	grid.	Then	a	semblance
of	roundness	is	injected	by	rolling	this	relief’s	flat	base	surface	around	a	cylinder
whose	axis	runs	from	left	to	right.	The	computer	is	programmed	to	simulate
lighting	from	a	source	located	60°	over	the	left.
Oddly	enough,	several	observers,	after	commenting	briefly	that	a

characterization	of	relief	based	solely	on	invariance	and	continuity	criteria	is
ingenious	and	effective,	proceed	to	criticize	this	approach	at	length,	because	its
criteria	are	too	abstract	and	fail	to	be	deduced	from	explicit	“models”	or
generating	mechanisms,	either	before	or	after	the	fact.
I	am	reluctant	to	reply	(heavy-handedly)	by	criticizing	the	concrete

“mainstream”	theories	of	relief	for	failure	to	come	forth	with	fake	landscapes
anywhere	close	in	realism	to	those	due	to	my	“abstract”	theories.	It	seems	better
to	point	out	that	many	among	the	finest	theories	of	science	did	start	with
exquisite	combinations	of	pistons,	strings,	and	pulleys,	only	to	end	(several
generations	later)	with	bare-bones	invariance	principles.	From	this	viewpoint,
the	work	that	led	to	the	present	illustrations,	and	other	case	studies	in	this	Essay,
start	at	the	finish	line.	Is	this	sufficient	reason	for	unhappiness?



Plate	C11	GAUSSIAN	HILLS	THAT	NEVER	WERE
	
The	bottoms	of	all	the	Gaussian	landscapes	in	this	Essay,	including	those	in
Chapter	28,	are	flattened	to	form	an	arbitrarily	set	reference	level.	This
procedure	was	first	used	to	generate	islands.	And	in	mountain	landscapes,	it	was
originally	meant	to	help	the	eye	distinguish	between	different	surfaces.
Let	me	elaborate.	When	preparing	my	1975	Essay,	we	did	not	want	to	waste

any	data	and	we	plotted	all	we	had,	but	the	result	was	distressing:	Our	eyes
found	it	surprisingly	hard	to	discriminate	between	landscapes	we	knew	to	be
characterized	by	significantly	different	values	of	D.	Then	the	desire	to	represent
island	coastlines	together	with	the	relief	led	us	to	introduce	a	flat	reference
surface	into	the	same	picture,	and	suddenly	the	differences	in	D	became
extremely	conspicuous.	We	should	have	remembered	that,	in	order	to	assess
motion,	one	needs	a	standard	to	be	called	rest.	The	same	is	true	of	roughness.
Now	we	find	that,	when	the	same	procedure	was	applied	to	valleys	as	well	as

to	mountains,	it	also	had	a	second	effect,	an	unplanned	but	most	fortunate	one.
Creating	the	flats	(reminiscent	of	lakes	or	banks	of	snow	or	alluvia)	hides	the
valley	bottoms,	hence	forces	us	to	concentrate	on	high	mountains,	where	the



model	proves	powerful	beyond	expectation.	Had	we	looked	too	soon	at	the
whole	relief,	we	would	have	been	sorely	disappointed,	because	in	the	Gaussian
models	the	valley	bottoms	are	as	“unsmooth”	as	the	mountain	tops,	while	real
valleys	are	much	smoother.	At	present,	there	is	no	way	I	like	for	accounting	for
this	difference.
But	there	are	ways	of	“fixing”	the	Gaussian	model	of	mountains	to	account

better	for	the	valleys.	The	simplest	fix	assumes	that	the	sole	differences	between
the	various	portions	of	the	relief	concern	vertical	scale,	the	value	of	D	being	the
same	throughout.	To	justify	this	assumption,	let	us	reduce	the	vertical	scale	of
the	Gaussian	Sierras	in	Plate	C11.	Amazingly,	they	turn	into	rolling	terrain!
Conversely,	consider	almost	any	near-flat	surface,	like	that	of	an	airport	strip,
and	magnify	its	asperities.	In	a	first	approximation,	the	result	turns	out	to	be	very
often	like	the	Gaussian	Hills	of	Plate	C11,	with	a	dimension	that	depends	upon
detailed	circumstances.	There	is	no	reason	that	I	know	for	thinking	that	this
result	fails	to	apply	to	valley	bottoms.	Hence,	one	cannot	help	being	curious	of
the	consequences	of	assuming	that	the	D	valid	for	the	mountain	tops	also	applies
in	a	first	approximation	to	the	valley	bottoms.
A	more	specific	idea	is	to	restrict	scaling	to	apply	in	small	domains,	with	the

same	dimension	throughout,	while	the	vertical	scale	increases	with	the	altitude
above	the	valley’s	bottom.	To	achieve	this	goal	in	the	top	of	this	plate,	and	in	the
Labelgraph	Hill	of	Plate	C9,	the	altitudes	above	either	lake	level	or	valley
bottom	are	raised	to	the	third	power.
When,	to	the	contrary,	the	vertical	scale	is	made	to	decrease	with	the	altitude

above	the	bottom	(by	raising	the	altitude	to	a	power	below	1),	one	obtains	the
mesa	and	canyon	at	the	bottom	of	the	present	plate.
The	trick	may	be	crude,	but	it	is	astonishingly	effective.



Plate	C13	NON-GAUSSIAN	HILLS	THAT	NEVER	WERE
	
The	algorithm	used	in	the	bottom	of	Plate	C9,	and	in	Plates	C	11	to	C	15,	is
based	on	numerical	Fourier	methods,	hence	yields	a	periodic	smooth	surface,
whereas	a	fractal	surface	is	by	definition	extremely	rough.	One	can	imagine,
however,	that	we	inspect	our	mountains	using	light	whose	wavelength	is	the



width	of	the	cells	in	the	grid.	Under	such	light,	all	the	finer	details	remain	totally
invisible.
In	order	to	obtain	islands	we	center	the	relief	around	a	maximum,	and	omit	to

plot	the	altitudes	below	a	certain	reference	level	taken	as	0.
The	top	archipelago	corresponds	to	an	ordinary	Brown	relief.	This	is	a	poor

model	of	Earth,	because	it	is	clearly	too	irregular	in	its	detail.	The	fit	is-poor
because	a	surface	fractal	dimension	of	D=5/2	and	a	coastline	dimension	of
D=3/2	are	too	large.
In	the	bottom	archipelago,	the	ordinary	Brownian	function	is	replaced	by	a

persistent	fractional	Brownian	function	of	dimension	D=2.200,	and	the	coastline
takes	the	sensible	dimension	D=1.200.	The	clearcut	ridges	in	the	Figure	are
entirely	compatible	with	the	fact	that	it	was	generated	by	an	isotropic
mechanism.
The	resemblance	with	Hawaii	is	better	than	deserved,	because	there	is	no

reason	why	the	model	should	be	valid	for	volcanic	archipelagoes.
The	coastlines’	perceived	form	is	much	influenced	by	how	tightly	they	fill	the

picture.	This	facet	of	form	is	not	totally	determined	by	D:	because	Plates	C11
and	C15	relate	to	a	region	near	a	minimum	or	a	maximum,	the	reference	level
plays	a	central	role.



Plate	C15	FRACTAL	ISLANDS	THAT	NEVER	WERE,	SEEN	FROM	THE
ZENITH

	
PLATE	C16.	THE	GREAT	WAVE	BY	HOKUSAI.	Katsushika	Hokusai	(1760-



1849)	was	a	painter	and	engraver	of	extraordinary	power	and	versatility,	a	giant
by	any	standard.	He	was	fascinated	by	eddies	and	whorls	of	every	kind,	as
exemplified	by	one	engraving	that	reached	such	fame	that	a	stamp-size
reproduction	will	suffice.

THE	NOTION	OF	FRACTAL.	I	put	together	certain	geometric	shapes	whose
form	is	very	irregular	and	very	fragmented,	and	coined	the	term	fractal	to	denote
them.	Fractals	are	characterized	by	the	coexistence	of	distinctive	features	of
every	conceivable	linear	size,	ranging	between	zero	and	a	maximum	that	allows
for	two	cases.	When	a	fractal	is	bounded,	the	maximal	feature	size	is	of	the	order
of	magnitude	of	the	fractal’s	overall	size.	When	a	portion	of	an	unbounded
fractal	is	drawn	within	a	box	of	side	Ω,	the	picture	has	a	maximal	feature	size	of
the	order	of	Ω.	Examples	of	mathematically	constructed	fractals	are	found	in
Plates	C5	to	C15.
Fractals	star	in	two	distinct	stories,	separated	in	time	by	nearly	a	century,

between	which	they	underwent	a	total	role	reversal.
In	the	first	stage,	some	fractals	(not	those	illustrated	in	this	signature)	were

deliberately	designed	from	1875	to	1925	to	eat	away	at	the	foundations	of	the
prevailing	mathematics.	Everyone	viewed	these	sets	as	“monsters.”
While	the	rest	of	mathematics	was	regarded	as	a	potentially	promising	hunting

ground	for	physicists	in	need	of	new	tools,	everyone	agreed	that	the	monsters
could	safely	be	assumed	to	be	totally	irrelevant	to	the	description	of	Nature.
Hardly	any	variant	of	these	monsters	was	created	for	fifty	years.
The	role	reversal	started	as	I	began	to	find	in	my	research	work	that	one	of



these	monsters	after	another	could	serve	as	the	central	conceptual	tool	to	answer
some	old	question	that	Man	had	been	asking	about	the	shape	of	his	world.	This
led	to	the	emergence	of	many	new	examples	and	to	the	formulation	of	fractal
geometry,	in	my	Essays	on	this	topic.
THE	ROLE	OF	GRAPHICS.	Computer	graphics	played	a	central	role	in	the

acceptance	of	fractal	geometry,	but	a	peripheral	role	in	its	genesis.	That	is,
granted	the	fascination	that	fractals	now	hold	for	the	computer	practitioners,	one
is	tempted	to	credit	the	emergence	of	the	new	geometry	to	the	availability	of	this
new	tool.	Actually,	I	formulated	the	theory	of	fractals	when	computer	graphics
was	in	its	infancy.	However,	I	let	its	development	be	biased	toward	topics	that
lend	themselves	to	intuition-building	illustrations.
CLASSICAL	PICTORIAL	COMPOSITION.	Now	examine	Plates	C1	and	C3

again.	Here,	as	in	almost	any	other	classically	“composed”	picture,	it	is
strikingly	easy	to	identify	at	least	one	“feature”	for	nearly	every	scale	between
the	total	picture	size	and	an	inner	cutoff	below	which	details	become	invisible.
Thus,	the	property	of	scaling	that	characterizes	fractals	is	not	only	present	in
Nature,	but	in	some	of	Man’s	most	carefully	crafted	creations.
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Isothermal	Surfaces	of	Homogeneous	Turbulence

The	present	chapter	culminates	in	an	explanation	of	Plates	10	and	11.	The	text	is
primarily	devoted	to	fractional	Brown	functions	of	3	variables	with	an
antipersistent	exponent	H	<	½.	The	case	H	=	⅓	receives	special	emphasis,	with
H=½	serving	again	as	point	of	departure.



TURBULENT	SCALARS’	ISOSURFACES

When	a	fluid	is	turbulent,	the	isothermal	surface	where	the	temperature	is
exactly	45°F	is	topologically	a	collection	of	spheres.	However,	it	is	intuitively
obvious	that	this	surface	is	by	far	more	irregular	than	a	sphere	or	the	boundary	of
any	solid	described	in	Euclid.
It	reminds	us	of	Perrin’s	quote	in	Chapter	2	that	describes	the	form	of	a

colloid	flake	obtained	by	salting	a	soap	solution.	The	resemblance	may	extend
beyond	mere	geometric	analogy.	It	may	be	that	a	flake	fills	the	zone	in	which	the
soap	concentration	exceeds	some	threshold,	and	that	in	addition	this
concentration	acts	as	an	inert	marker	of	very	mature	turbulence.
Anyhow,	the	analogy	with	colloid	flakes	suggests	that	the	isothermal	surfaces

are	approximate	fractals.	We	wish	to	know	whether	or	not	this	is	the	case,	and	if
it	is,	to	evaluate	the	fractal	dimension.	To	do	so,	we	need	to	know	the
distribution	of	temperature	changes	in	a	fluid.	Corrsin	1959d,	among	others,
reduces	this	question	to	a	classical	one,	which	Kolmogorov	and	others	had	faced
in	the	1940s.	In	part,	these	early	authors	had	triumphed	to	an	extraordinary
extent;	in	part,	they	had	failed.	A	review	of	these	classical	results	is	inserted	here
for	the	sake	of	the	nonspecialist.



BURGERS	DELTA	VARIANCE

The	delta	variance	of	X	is	defined	in	Chapter	21	as	the	variance	of	an	increment
of	X.	J.M.	Burgers	assumed	that	the	delta	variance	of	velocity	between	two
given	points	P	and	P0=P+ΔP	is	proportional	to	|ΔP|.	This	crude	but	simple
postulate	defines	Burgers	turbulence.
A	precise	mathematical	model	of	a	Burgers	function	is	the	Poisson	function

which	results	from	an	infinite	collection	of	steps	with	directions,	locations,	and
intensities	given	by	three	infinite	sequences	of	mutually	independent	random
variables.	This	description	should	ring	a	bell.	Except	for	the	addition	of	the
variable	z	to	x	and	y,	and	the	replacement	of	the	altitude	(which	is	one-
dimensional)	by	a	velocity	(which	is	three-dimensional),	a	Gaussian	Burgers
function	served	in	my	ordinary	Brownian	model	of	Earth’s	surface	described	in
Chapter	28.



KOLMOGOROV	DELTA	VARIANCE

As	a	model	of	turbulence,	the	Burgers	delta	variance	suffers	from	deadly	defects,
the	worst	being	that	it	is	incorrect	from	the	viewpoint	of	standard	dimensional
analysis.	A	correct	dimensional	argument,	advanced	by	Kolmogorov	and
simultaneously	by	Obukhov,	Onsager,	and	von	Weiszäcker,	shows	that	only	two
possibilities	exist	for	the	delta	variance.	Either	it	is	universal,	that	is,	the	same
regardless	of	the	conditions	of	experiment,	or	it	is	an	unholy	mess.	To	be
universal,	the	delta	variance	must	be	proportional	to	|ΔP|⅔.	Derivations	are	found
in	many	books;	the	geometric	nature	of	the	result	is	underlined	in	Birkhoff	1960.
After	initial	doubts,	it	was	established	that	the	Kolmogorov	delta	variance

accounts	surprisingly	well	for	turbulence	in	the	ocean,	the	atmosphere,	and	all
large	vessels.	(See	Grant,	Stewart	&	Moillet	1959.)	This	verification	constitutes
a	striking	triumph	of	abstract	a	priori	thought	over	the	messiness	of	raw	data.	It
deserves	(despite	numerous	qualifications,	to	which	Chapter	10	adds	fresh	ones)
to	be	known	outside	of	the	circle	of	specialists.
The	Gaussian	function	with	the	Kolmogorov	delta	variance	also	rings	a	bell.

In	the	present	context,	concerned	with	a	scalar	(one-dimensional)	temperature,
this	Gaussian	function	is	a	fractional	Brown	3-space-to-line	function,	with	H	=
⅓.	Thus	the	Kolmogorov	field	involves	antipersistence,	while	Earth’s	relief
favors	persistence.	A	more	basic	difference	is	that,	while	the	H	required	to
represent	Earth’s	data	is	purely	phenomenological	so	far,	the	Kolmogorov	H=⅓
is	rooted	in	the	geometry	of	space.



IN	HOMOGENEOUS	TURBULENCE,	THE
ISOSURFACES	ARE	FRACTALS	(MANDELBROT

1975f)

Despite	its	triumph	in	predicting	that	H=⅓,	the	Kolmogorov	approach	has	a
major	shortcoming:	the	distribution	of	the	differences	of	velocity	or	of
temperature	in	a	fluid	remains	unknown,	except	that	it	cannot	be	Gaussian.
Such	negative	results	are	awkward,	but	rarely	force	a	convenient	assumption

to	be	abandoned.	At	most,	the	students	of	turbulence	must	be	cautious	when
investigating	a	Gaussian	model:	if	and	when	a	calculation	yields	a	logical
impossibility,	they	abandon	the	model.	Otherwise,	they	forge	ahead.
In	particular—and	now	we	return	to	temperature—Mandelbrot	1975f

combines	the	Gaussian	assumption	with	the	Burgers	and	the	Kolmogorov	delta
variances.	One	can	hope	that	the	conclusions	would	remain	correct	without	the
Gaussian	assumption,	because	they	use	little	more	than	continuity	and	self-
similarity.
In	the	4-dimensional	space	of	coordinates	x,y,z,T,	the	temperature	T	defines	a

function	T=T(x,y,z).	The	graph	of	a	fractional	Brown	function	is	a	fractal	of
dimension	4-H,	and	many	of	its	lower-dimensional	sections	are	the	following
fractals	we	know	well.
LINEAR	SECTIONS.	The	isotherm	for	fixed	yo,	zo,	and	To	is	made	of	the

points	along	a	spatial	axis	where	a	certain	value	of	T	is	observed.	They	form	a
fractional	Brown	zeroset,	and	their	fractal	dimension	is	1-H.
PLANAR	SECTIONS.	For	fixed	yo	and	zo,	the	curve	representing	the

variation	of	temperature	along	the	x	axis	is	a	fractional	Brown	line-to-line
function,	and	its	dimension	is	2-H.	For	fixed	Z0	and	T0,	the	implicit	equation
T(z0,x,y)=Tp	defines	isotherm	in	a	plane.	These	isotherms	are	of	dimension	2-H.
Except	for	the	value	of	D,	they	are	identical	to	the	coastlines	studied	in	Chapter
28.
SPATIAL	SECTIONS.	For	fixed	z0,	the	section	is	the	graph	of	T(x,y,z0),	a

fractal	of	dimension	3-H.	For	H=½,	it	is	identical	in	definition	to	the	Brownian
relief	in	the	plates	of	Chapter	28.	For	H=⅓,	it	is	a	fractional	Brown	relief	in	the



same	plates.



EXPLANATION	OF	PLATES	10-11

For	fixed	To,	the	isosurface	defined	by	the	implicit	equation	T(x,y,z)=T0	is	a
three-dimensional	generalization	of	a	coastline	and	introduces	us	to	a	new	kind
of	fractal	with	D=3-H.	Thus,	D=3-½	in	Gauss	Burgers	nonpersistent	turbulence
and	D=3-⅓	in	Gauss	Kolmogorov	antipersistent	turbulence.
Such	surfaces	are	illustrated	on	Plate	11,	whose	origin	can	at	long	last	be

explained.	For	the	sake	of	contrast,	Plate	10	adds	the	isosurface	of	a	persistent
function	T(x,	y,	z),	with	H=.75.	Due	to	the	cost	of	this	huge	computation,	the
surfaces	had	to	be	smoothed	out	to	excess.	The	fact	that	differences	due	to	D
affect	the	overall	form	less	drastically	than	expected	is	explained	on	here.



X

RANDOM	TREMAS;	TEXTURE
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Interval	Tremas;	Linear	Levy	Dusts

The	structure	of	this	group	of	chapters	is	a	bit	involved.	The	two	themes	of
random	trema	and	texture	do	not	converge	until	Chapter	35,	when	it	is	shown
how	texture	can	be	controlled.	And	Chapter	34	introduces	texture	without	much
reference	to	tremas;	it	describes	facts	that	might	have	been	scattered	over	several
earlier	chapters	but	are	better	collected	together	to	provide	a	unified	treatment.
As	to	Chapters	31	to	33,	they	do	not	involve	texture	but	use	the	notion	of

trema	to	construct	random	fractals,	many	of	them	new.	Like	those	of	the
preceding	(Brown)	chapters,	the	new	fractals	are	free	from	time	and/or	space
grids.
This	chapter	describes	random	dusts	constrained	to	the	line,	applies	them	to

the	noise	problem	first	tackled	in	Chapter	8,	and	grooms	them	to	become	the
basis	of	two	distinct	extensions	to	the	plane	and	to	space	described,	respectively,
in	Chapters	32	and	33.
The	primary	concrete	goal	of	Chapters	32,	33,	and	35	is	to	help	model	the

galaxy	clusters,	a	challenge	first	described	in	Chapter	9.



CONDITIONALLY	STATIONARY	ERRORS
(BERGER	&	MANDELBROT	1963)

We	were	exhilarated	in	Chapter	8	to	find	in	Cantor	dust	a	reasonable	first	model
of	the	principal	features	of	certain	excess	noises.	But	we	did	not	even	attempt	an
actual	fit	of	the	model	to	the	data.	The	reason	is,	obviously,	that	the	fit	is
expected	to	be	terrible.	Cantor	dusts	are	much	too	regular	to	be	precise	models
of	any	irregular	natural	phenomenon	I	can	think	of.	In	particular,	their	self-
similarity	ratios	are	restricted	to	values	of	the	form	rk.	Furthermore,	a	Cantor
dust’s	origin	plays	a	privileged	role	that	cannot	be	justified	but	has	a	most
unfortunate	effect:	the	set	fails	to	be	superposable	upon	itself	by	translation;	in
technical	terms,	it	is	not	translation	invariant.
Irregularity	is	easy	to	inject—through	randomness.	As	to	invariance	by

translation,	our	hoped-for	substitute	for	the	Cantor	dust	will	only	be	required	to
match	up	with	its	translation	in	a	statistical	sense.	In	probabilistic	terminology,
this	means	that	a	set	has	to	be	stationary,	or	at	least	satisfy	a	suitably	weakened
condition	of	stationarity.
A	simple	means	of	accomplishing	part	of	this	goal	is	proposed	in	Chapter	23.

The	present	chapter	takes	three	further	steps	forward.
The	first	step	is	involved	in	the	earliest	realistic	random	model	of

intermittency.	Berger	&	Mandelbrot	1963	starts	out	from	a	finite	approximation
of	the	Cantor	dust,	with	scales	satisfying	ε	>	0	and	Ω	<	∞,	and	shuffles	its	gaps
at	random	to	make	them	statistically	independent	of	one	another.	The	intervals	of
length	ε	between	successive	gaps	are	left	untouched.	Chapter	8	shows	that	in	a
Cantor	dust	the	relative	number	of	gaps	of	length	exceeding	u	is	given	by	a	near
hyperbolic	stairlike	function.	Randomization	reinterprets	this	function	as	a	tail
probability	distribution	Pr(U	>	u).
This	yields	a	randomized	Cantor	dust,	with	ε	>	0.	Unfortunately,	the	stairs	of

Pr(U>u)	bear	the	trace	of	the	original	values	of	N	and	r.	This	is	why	Berger	&
Mandelbrot	1963	smoothes	these	stairs	out:	the	successive	gaps	measured	in
units	of	ε	are	taken	to	be	statistically	independent	integers	≥	1,	the	distribution	of
their	lengths	being

Pr(U	>	u)=u-D.



The	model’s	fit	is	surprisingly	good:	the	German	Federal	telephones	yield
D~0.3,	and	follow-up	studies	of	different	channels	by	various	authors	find	D’s
from	0.2	to	nearly	1.
In	the	Berger	&	Mandelbrot	model,	the	durations	of	successive	gaps	are

independent,	hence	errors	constitute	what	probabilists	call	a	“renewal”	or
“recurrent”	process	(Feller	1950).	Each	error	is	a	point	of	recurrence,	where	the
past	and	the	future	are	statistically	independent	of	each	other	and	follow	the
same	rules	as	from	other	errors.



LINEAR	LEVY	DUSTS

Unfortunately,	the	set	obtained	by	shuffling	the	gaps	of	the	truncated	Cantor	dust
(and	smoothing	their	distribution)	remains	defective	in	several	ways:	(a)	the	fit
of	the	formula	to	the	data	on	excess	noises	remains	imperfect	in	details,	(b)	the
restriction	to	ε	>	0	may	be	acceptable	to	the	physicist	but	is	annoying	from	the
esthetic	point	of	view,	(c)	the	construction	is	awkward	and	arbitrary,	and	(d)	it	is
too	far	removed	in	spirit	from	Cantor’s	original	construction.
Mandelbrot	1965c	uses	a	set	due	to	Paul	Levy	to	construct	a	more	refined

model	that	avoids	defects	(a)	and	(b).	Let	me	call	this	set	the	Lévy	dust.	Once	D
is	prescribed,	the	Levy	dust	is	the	only	set	that	combines	two	desirable
properties.	As	in	the	randomized	truncated	Cantor	dust,	the	past	and	the	future
are	independent	if	seen	from	a	point	in	this	set.	Like	the	Cantor	dust,	it	is	a	self-
similar	fractal.	Better	than	the	Cantor	dust,	this	Levy	dust	is	statistically	identical
to	itself	reduced	in	an	arbitrary	ratio	r	between	0	and	1.
The	zeroset	of	Brownian	motion,	Chapter	25,	turns	out	to	be	the	Levy	dust

with	D=½.
Unfortunately,	the	method	Levy	uses	to	introduce	this	set	preserves	defects	(c)

and	(d)	listed	above.	And	it	is	technically	delicate:	Instead	of	constraining	u	to
be	an	integcr	≥	1,	one	must	let	it	be	a	positive	real	number	with	Pr(U	>	u)	=	u-D

extended	down	to	u=0.	Because	0-D=∞,	the	total	“probability”	is	infinite.	The
method	used	to	exorcise	this	seemingly	ridiculous	implication	is	important	and
interesting,	but	of	no	other	use	in	this	work.
Fortunately,	these	difficulties	vanish	if	one	adopts	a	more	natural	“trema”

construction	proposed	in	Mandelbrot	1972z.



ACTIVE	AND	VIRTUAL	TREMAS

As	a	preliminary,	I	claim	it	is	useful	to	describe	the	original	Cantor	dust	by
means	of	a	combination	of	“active”	and	“virtual”	tremas.	Again,	one	starts	from
[0,1]	and	cuts	out	its	open	mid-third	]⅓,	⅔[.	From	then	on,	the	construction’s
substance	remains	the	same	but	the	formal	description	changes.	One	makes
believe	that	the	second	stage	cuts	out	the	mid-thirds	of	each	third	of	[0,1].	While
cutting	out	the	mid-third	of	the	already	vanished	midthird	has	no	perceivable
effect,	virtual	tremas	will	momentarily	prove	convenient.	In	the	same	way,	one
cuts	out	the	mid-third	of	each	ninth	of	[0,1],	of	each	27th,	and	so	on.	Note	that
the	distribution	of	the	number	of	tremas	of	length	exceeding	u	is	now	given	by	a
step	function,	whose	overall	behavior	is	proportional	to	u-1,	instead	of	u-D.	The
same	dependence	upon	u	holds	with	different	rules	of	curdling,	except	that	the
positions	of	the	steps	and	the	factor	of	proportionality	both	depend	on	the
method	of	construction.



INTERVAL	TREMAS	&	THE	RESULTING	GAPS
(MANDELBROT	1972z)

Next,	Mandelbrot	1972z	randomizes	the	Cantor	construction	by	smoothing	the
steps	of	the	distribution,	and	selecting	the	lengths	and	positions	of	the	tremas	at
random,	independently	of	one	another.	Finally,	to	implement	the	proportionality
to	u-1,	it	is	assumed	that	the	number	of	tremas	which	are	centered	in	an	interval
of	length	At	and	have	a	length	above	u	has	an	expectation	equal	to	(1-D*)Δt/u
and	a	Poisson	distribution.	The	reason	for	the	notation	1-D*	will	soon	become
clear.
Being	independent,	the	tremas	are	allowed	to	intersect,	and	they	do	so	with

gusto:	the	probability	of	a	trema’s	being	intersected	by	no	other	trema	is	zero.	In
other	words,	the	notions	of	trema	and	of	gap	cease	to	coincide:	the	term	gap	will
be	reserved	for	the	intervals	created	by	overlapping	tremas.	And	the	question
arises	of	whether	all	the	tremas	eventually	coalesce	into	one	huge	gap,	or	leave
some	points	uncovered.	We	state	the	answer,	then	the	next	section	justifies	it	by
an	intuitive	birth	process	argument,	and	shows	that	the	uncovered	points	form
unforced	clusters.
Consider	an	interval	that	fails	to	be	wholly	covered	by	tremas	of	length	above

ε0,	then	introduce	smaller	tremas	above	a	moving	threshold	ε	that	decreases	from
ε0	to	0.	When	D*≤	0,	letting	ε→0	makes	it	almost	certain	(the	probability	tends
to	1)	that	no	point	is	left	uncovered.	When	0	<	D*	<	1,	the	same	outcome	may
also	happen,	but	it	ceases	to	be	almost	certain.	With	some	positive	probability,
there	is	an	uncovered	“trema	fractal”	even	at	the	limit.	Mandelbrot	1972z	proves
that	it	is	a	Levy	dust	of	dimension	D=D*
In	summary,	D=max(D*,	0).



A	BIRTH	PROCESS	AND	UNFORCED
CLUSTERING	IN	LEVY	DUSTS

By	the	construction	of	Chapter	8,	Cantor	errors	come	in	hierarchical	bursts	or
“clusters,”	the	intensity	of	clustering	being	measured	by	the	exponent	D.	This
property	is	preserved	when	the	gaps	are	shuffled	at	random,	but	the	proof	is
neither	perspicuous	nor	illuminating.
The	proof	of	the	same	result	for	the	random	trema	dust	is,	to	the	contrary,

simple	and	of	intrinsic	interest.
The	key,	again,	is	to	begin	with	tremas	of	length	above	a	threshold	ε,	then	to

multiply	ε	repeatedly	by	some	r<	1,	say	r=	⅓,	so	that	its	value	tends	to	0.	We
start	with	a	trema-free	intergap	interval	bounded	by	two	“ε-gaps.”	Adding	tremas
of	length	between	ε/3	and	ε	occasionally	has	the	devastating	effect	of	erasing
everything.	But	there	is	a	good	probability	of	seeing	a	much	milder	effect:	(a)	the
bounding	ε-gaps	extend	into	longer	(ε/3)-gaps,	and	(b)	small	additional	(ε/3)-
gaps	appear	within	our	intergap.	The	newly	redefined	intergaps	are	unavoidably
perceived	as	clustered.	And	in	the	same	fashion,	subclusters	are	generated	by
replacing	ε/3	by	ε/9	....	3-nε,...
These	clusters’	evolution	as	n	→	∞	is	ruled	by	a	novel	birth	and	death	process.

As	in	the	classical	theory	used	in	Chapter	23,	clusters	die	or	multiply
independently	of	other	clusters	with	the	same	n,	and	of	their	family	histories.	A
long	intergap	has	a	smaller	probability	of	being	erased	than	a	short	one,	and
generates	more	children	on	the	average.	When	1-D*	increases,	the	intervals
between	ε-gaps	become	shorter.	And	in	addition	some	intervals	between	(ε/3)-
gaps	disappear	completely.	Therefore,	the	expected	number	of	offspring
decreases	in	two	ways.	The	value	D*=0	is	a	critical	value	in	the	sense	that	for	D*
≤	90	the	family	line	almost	surely	dies	off,	while	for	D*>	0	there	is	a	positive
probability	of	seeing	the	family	line	survive	forever.



MEAN	NUMBERS	OF	ERRORS	IN	THE	BERGER
&	MANDELBROT	MODEL

	This	technical	digression	proposes	to	show	that	the	main	results	relative	to	the
numbers	of	errors	in	the	Cantor	dust	model	remain	valid	after	randomization.	In
fact	the	arguments	and	conclusions	are	considerably	simplified,	particularly	if	Ω
=	∞.	The	topic	exemplifies	the	uses	of	conditional	expectation	in	self-similar
processes.

	Suppose	that	there	is	at	least	one	error	in	the	interval	[0,R],	the	value	of	R
being	in	the	range	where	R»η	and	R«Ω.	This	condition	reads	M(R)>0.	The
reason	why	the	Berger	&	Mandelbrot	model	is	called	conditionally	stationary	is
this:	if	[t,t+d]	is	entirely	within	[0,R],	the	conditioned	number	of	errors,	denoted
by	{M(t+d)-M(t)|M(R)>0},	has	a	distribution	independent	of	t.	Hence	it	suffices
to	study	it	for	t=0.	Also,	given	that	expectations	are	additive,	conditional
stationarity	alone	implies

(M(d)	|M(R)>0)	=	(d/R)〈M(R)	M(R)>0〉.

As	to	self-similarity,	it	implies	that

Pr{M(d)>0	|M(R)>0}	=	(d/R)1-D*,

where	D*	is	some	constant	to	be	determined	by	the	process	under	study.	To
prove	this	assertion,	it	suffices	to	introduce	an	intermediate	d’	satisfying	d	<	d’	<
R,	and	to	decompose	our	conditional	Pr	as

Pr{M(d)>0	M(d’)>0}Pr{M(d’)>0|	M(R)>0}.

Combining	the	last	two	equalities,	we	see	that

(M(d)	M(d)>0)=(d/R)D*(M(R)|M(R)>0〉.

Therefore,	combining	conditional	stationarity	and	self-similarity	suffices	to	show
that

〈M	(d)	M(d)>0〉d-D*=constant.

The	specific	model	under	study	determines	the	exponent	as	being	D*=D.
Furthermore,	self-similarity	alone	implies	that	the	ratios



{instant	of	first	error	|M(R»0}/R,
	

and	{M(R)	|M(R)>0}/(M(R)	|	M(R)>0〉

are	random	variables	that	depend	on	D	but	are	independent	of	R	and	of	Ω.
	By	contrast	with	the	conditional	probabilities,	the	absolute	probability	of	the

conditioning	event	M(R)>0	depends	strongly	on	Ω.	However,	if	the	truncation	to
Ω	<	∞	is	done	properly,	one	finds	that

Pr{M(R)>0}=(R/Ω)1-D	.

Since	this	last	expression	can	be	deduced	from	an	expression	in	the	preceding
paragraph	by	replacing	R	by	L	and	d	by	R,	the	event	“M(R)>0	knowing	that
L<oo”	can	be	treated	like	the	event	“M(R)>0	knowing	that	M(L)>0.”	In	the	limit
Ω	→	∞,	the	probability	that	[0,	R]	falls	completely	within	a	very	long	gap
converges	to	1,	so	that	the	probability	of	observing	an	error	becomes	infinitely
small.	But	the	previously	derived	conditional	probability	of	the	number	of	errors
is	unaffected.

	The	preceding	argument	adds	to	the	discussion	of	the	conditional
cosmographic	principle	in	Chapter	22.



Plate	285	RANDOM	PATTERN	OF	STREETS
	
As	noted	in	Chapter	8,	it	is	regrettable	that	the	Cantor	dust	should	be	so	hard	to
illustrate	directly.	However,	it	can	be	visualized	indirectly	as	the	intersection	of
the	triadic	Koch	curve	with	its	base.	And	in	the	same	way	the	Levy	dust	can	be
imagined	indirectly.	On	this	plate,	the	black	street-like	stripes	are	placed	at
random,	and	in	particular	their	directions	are	isotropic.	Their	widths	follow	a
hyperbolic	distribution	and	rapidly	become	so	thin	that	they	cannot	be	drawn.
Asymptotically,	the	white	remainder	set	(the	“blocks	of	houses”)	is	of	zero	area
and	of	dimension	D	less	than	2.
As	long	as	the	remaining	blocks	of	houses	have	a	dimension	D>1,	their

intersection	by	an	arbitrary	line	is	a	Levy	dust	of	dimension	D-	1.	On	the	other
hand,	if	D	<	1,	the	intersection	is	almost	certainly	empty.	This	result	is,	however,
not	very	apparent	here	because	the	construction	could	not	be	carried	far	enough.
Chapter	33	provides	a	better	illustration.	When	the	tremas	subtracted	from	the

plane	are	random	discs	as	exemplified	by	Plates	306	to	309,	the	trema	fractals’
intersections	with	straight	lines	are	Levy	dusts.



Plates	286	and	287	PAUL	LEVY’S	DEVILISH	STAIRCASES
(DIMENSION	1;	THE	RISERS’	ABSCISSAS	HAVE	THE	DIMENSIONS

D=9/10,	D=3/10,	AND	D=.6309,	RESPECTIVELY)
	
These	graphs	are	randomized	analogs	of	the	Cantor	function,	or	Devil’s
Staircase,	in	Plate	83.	In	the	largest	of	these	Levy	staircases,	the	dimension	is	the
same	as	in	the	Cantor	original,	and	in	the	two	small	ones	it	is	either	much
smaller	or	much	larger.
To	draw	a	Levy	staircase,	one	evaluates	the	abscissa	as	function	of	the

ordinate.	In	a	first	stage,	whenever	the	ordinate	increases	by	an	amount	Δy	(in



these	instances,	Δy	=.002),	the	abscissa	increases	by	a	random	amount	having
the	distribution	Pr(ΔX>u)=u-D.	In	a	second	stage,	the	abscissa	is	rescaled	so	that
the	staircase	terminates	at	the	point	of	coordinates	(1,1).	The	small	staircase	for
D=.3	seems	reduced	to	a	small	number	of	steps,	due	to	the	overwhelming
clustering	of	the	risers’	abscissas.



32

Subordination;	Spatial	Levy	Dusts;	Ordered	Galaxies

The	central	concern	of	this	chapter	and	the	next	is	with	galaxy	clusters,	a	topic
already	touched	in	Chapters	9,	22,	and	23.	The	underlying	techniques	generalize
last	chapter’s	dusts	to	the	plane	and	the	space.	This	chapter	is	primarily
concerned	with	the	spatial	Levy	dusts.	Following	Bochner,	we	introduce	these
fractals	by	“processing”	Brownian	motion	by	the	method	of	“subordination.”
Under	the	Levy	dust,	one	encounters	the	Levy	flight,	a	nonstandard	random
walk.	The	chapter	begins	with	an	informal	preview	of	random	walk	clusters.
Then	subordination	is	explained	and	justified,	by	being	extended	to	a	nonrandom
context.	The	claims	made	in	the	preview	are	justified	in	the	final	section.



PREVIEW:	RANDOM	WALK	CLUSTERS

The	goal	of	my	early	model	of	galaxy	clusters	was	to	exhibit	a	distribution	of
mass	with	the	following	features.	(a)	The	mass	M(R)	in	a	sphere	centered	on	the
distribution	satisfies	M(R)∝	RD	with	D<2.	(b)	The	distribution	satisfies	the
conditional	cosmographic	principle	in	its	statistical	form.
RAYLEIGH	FLIGHT	STOPOVERS.	A	preliminary	is	provided	by	a	construct

that	has	neither	the	fractal	nor	the	topological	dimension	of	galaxy	clusters.
Starting	from	a	point	II(0)	in	space,	a	Rayleigh	flight	rocket	jumps	in	an
isotropic	random	direction.	The	duration	of	each	jump	is	Δt	=1,	and	the	distance
U	to	the	next	stopover	Π(1)	is	random	Gaussian	with	〈[Π(1)-Π(0)]2〉	=	1.	The
rocket	then	jumps	off	to	Π(2),	such	that

U1	=	Π(1)-Π(0)	and	U2	=	Π(2)-Π(1)

are	independent	and	identically	distributed	vectors.	And	so	on.
In	order	to	view	the	rocket	as	going	on	forever,	we	add	its	previous	stopovers

Π(-1),	Π(-2)....	But	a	change	in	the	direction	of	time	does	not	affect	a	random
walk,	hence	it	is	sufficient	to	draw	two	independent	trajectories	starting	from
Π(0).
Our	rocket’s	trail	(including	the	“contrails”	it	leaves	as	it	jumps)	is	a	random

set.	So	is	the	collection	of	its	stopovers	considered	without	taking	into	account
the	order	in	which	they	were	reached.	Both	sets	follow	exactly	the	same
distribution	when	examined	from	any	of	the	points	Π(t).	In	the	terms	introduced
in	Chapter	22,	both	sets	satisfy	the	conditional	cosmographic	principle	in	its
proper	statistical	form.
LOADING.	Identically	distributed	and	statistically	independent	masses	are

assigned	at	random	to	each	stopover	of	a	Rayleigh	flight,	extending	conditional
stationarity	to	mass.
THE	DIMENSION	D=2.	As	is	widely	known,	the	distance	the	flight	covers	in

K	jumps	increases	like	√K.	A	consequence	is	that	in	a	ball	with	radius	R	and
center	Π(t)	the	number	of	stopovers	is	M(R)∝R2.	The	exponent	in	the	last
formula	conforms	to	the	idea	that	the	dimension	of	the	set	of	stopovers	Π(t)	is
D=2.	In	particular,	the	global	density	vanishes.



BROWNIAN	MOTION.	By	interpolating	the	Rayleigh	flight	in	continuous
time,	one	obtains	a	Brown	trail,	which	(Chapter	25)	is	a	continuous	curve	with
D=2.	Thus	the	Rayleigh	flight	model	is	essentially	a	fractal	curve	(DT	=	1	and
D=2)	satisfying	the	conditional,	but	not	the	strong,	cosmographic	principle.	The
last	conclusion	is	satisfactory,	but	the	values	of	DT	and	D	are	unacceptable.
GENERALIZED	DENSITY.	If	we	load	a	Brown	trail	between	the	points	Π(t0)

and	Π(t)	by	the	mass	δ|t0-t|,	the	mass	M(R)	becomes	the	time	spent	in	the	ball	of
radius	R,	multiplied	by	the	uniform	generalized	density	δ.
EXPANSION	OF	THE	UNIVERSE.	In	standard	discussions,	the	initial

distribution	has	a	uniform	density	δ.	As	the	Universe	expands	uniformly,	δ
decreases,	but	the	distribution	remains	uniform.	On	the	other	hand,	it	is	generally
believed	that	every	other	distribution	changes	by	expansion.	The	uniformly
loaded	Brown	trail	shows	constructively	that	this	conclusion	is	incorrect:	again,
δ	changes	with	expansion,	but	it	remains	defined	and	uniform.
Therefore	Rayleigh	stopovers	are	neutral	with	respect	to	the	question	of

whether	our	Universe	does	or	does	not	expand.	This	property	is	preserved	when
D	is	decreased	through	the	use	of	the	Levy	flight,	to	be	surveyed	now.
LEVY	FLIGHT	STOPOVERS;	NONINTEGER	DIMENSIONS	<2.	My

random	walk	model	of	the	distribution	of	galaxies	implements	any	desired
fractal	dimension	D<2	using	a	dust,	i.e.,	a	set	of	correct	topological	dimension
DT=	0.	To	achieve	this	goal,	I	use	a	random	walk	wherein	the	mathematical
expectation	〈U2(t)〉	is	infinite,	because	U	is	a	hyperbolic	random	variable,	with
an	inner	cutoff	at	u=1.	Thus,	for	u	≤	1.	Pr(u	>	u)=	1,	while	for	u	>	1,	Pr(U	>	u)∝
u-D,	with	0<D<2.
A	major	consequence	is	that	〈M(R)〉∝	RD	when	R	>>	1.	This	is	the

relationship	we	had	set	out	to	implement.	It	allows	any	dimension	likely	to	be
suggested	by	fact	or	theory.

	ASIDE	ON	LÉVY	STABILITY.	As	t	→	∞,	the	mass	carried	over	a	time
span	t	(properly	scaled)	converges	to	a	random	variable	independent	of	t,	first
investigated	by	Paul	Levy	and	best	called	“Lévy	stable”	(Chapter	39).	Hence	the
term	“Lévy	flight”	proposed	for	the	process	underlying	my	model.

	Due	to	〈U2〉=	∞,	the	standard	central	limit	theorem	ceases	to	be	valid,	and	a
special	central	limit	theorem	must	be	used	instead.	This	replacement	has
considerable	consequences.	The	standard	theorem	is	“universal,”	in	the	sense
that	the	limit	depends	only	on	the	quantities	(U)	and	〈U2〉.	The	nonstandard
theorem	is	not	universal.	Through	D,	the	distribution	of	M(R)	depends	explicitly



upon	the	distribution	of	the	jumps.
The	remainder	of	this	chapter	constructs	a	dust	that	plays	relative	to	the	Levy

flight	the	same	role	as	Brownian	motion	plays	relative	to	Rayleigh	flight.	A
direct	interpolation	is	tediously	technical,	because	it	must	give	a	meaning	to	the
distribution	Pr(U>u)	=	u-D	applied	down	to	u	=	0,	where	it	diverges.	An	indirect
approach,	to	the	contrary,	can	be	made	both	simple	and	precise,	through	the	use
of	the	process	of	subordination.	This	process	is	of	independent	interest	and
opens	up	numerous	obvious	generalizations.



CAUCHY	FLIGHT	AND	D=1

We	introduce	subordination	through	an	example.	To	generate	a	dimension	equal
to	D	=	1	starting	with	the	Brown	trail	of	dimension	D=2,	we	must	seek	to
decrease	D	by	1.	In	the	case	of	classical	shapes	from	Euclid,	such	a	decrease	is
easy	to	achieve.	In	the	plane,	it	suffices	to	take	the	section	by	a	line;	in	3-space,
it	suffices	to	take	the	section	by	a	plane;	and	in	4-space,	to	take	a	section	by	a	3-
space.	We	also	saw	in	Chapter	23	that	the	same	rule	holds	for	random	fractal
curds,	and	in	Chapter	25	that	the	Brown	line-to-line	function	has	the	dimension
3/2,	while	its	zeroset	and	all	sections	that	are	not	perpendicular	to	the	t-axis	have
the	dimension	½.
Extended	by	formal	analogy,	this	method	for	subtracting	1	from	D	leads	us	to

suspect	that	appropriately	selected	sections	of	a	Brown	trail	are	typically	of
dimension	2-1=1.	This	hunch	is	indeed	verified	(Feller,	1971,	p.	348).	Moreover,
it	should	extend	to	plane	sections	of	a	trail	in	the	ordinary	3-space	and	to	3-
dimensional	sections	of	a	trail	in	4-space,	in	which	the	coordinates	are	x,	y,	z,
and	humor.
Starting	from	a	line-to-4-space	Brownian	trail,	consider	the	points	where

humor=0.	These	“humorless”	sites	can	be	viewed	as	generated	in	the	order	in
which	they	are	visited	by	the	underlying	Brownian	motion,	and	the	distances
between	such	visits	are	independent	and	isotropic.	As	a	result,	the	humorless
sites	can	be	viewed	as	the	stopovers	of	a	random	flight	whose	steps	follow	rules
very	different	from	those	of	Brownian	motion.	This	walk	will	be	called	Cauchy
motion	or	flight.	Given	two	time	instants	0	and	t,	one	finds	that	the	probability
density	of	the	vector	from	Π(0)	to	Π(t)	is	a	numerical	multiple	of

t-E[1+|Π(t)–Π(0)|2t-2]-E/2.

The	formal	hunch	that	D=1	is	confirmed	in	S.	J.	Taylor	1966,	1967.	The
Cauchy	flight	is	illustrated	in	one	of	the	views	of	Plate	298.



THE	IDEA	OF	SUBORDINATION

Let	us	ponder	the	preceding	construction.	A	line-to-E-space	Brownian	motion
hits	the	humorless	points	at	the	times	when	one	of	its	line-to-line	coordinate
functions	vanishes.	But	each	of	the	coordinates	is	a	one-dimensional	Brownian
motion.	Not	only	(Chapter	25)	do	this	function’s	zerosets	form	a	set	of
dimension	D=½,	but	the	fact	that	interzero	intervals	are	mutually	independent
implies	that	this	zeroset	is	a	linear	Levy	dust.	In	summary,	the	Cauchy	motion	is
the	map	on	a	Brownian	motion	of	a	linear	Levy	dust.	Recalling	that	decimation
was	the	Romans’	charming	way	of	punishing	a	hostile	group	by	killing	every
tenth	member,	we	see	that	Cauchy	motion	is	obtained	by	a	fractal	form	of
decimation.	It	was	pioneered	in	Bochner	1955,	who	called	it	subordination.
(Feller	1971	includes	scattered	nonelementary	comments	on	this	notion.)
For	future	reference,	let	us	note	that

DCauchy	trail	=	DBrown	trailXDBrown	zeroset.



SUBORDINATION	CAN	BE	EXTENDED	BACK	TO
NONRANDOM	FRACTALS

To	elaborate	on	the	nature	of	fractal	subordination,	we	apply	it	to	some	Koch	and
Peano	fractal	curves.	(Oddly	enough,	the	present	discussion	seems	to	be	the	first
mention	of	subordination	in	a	nonrandom	context.)
The	idea	is	that	one	can	modify	these	curves	by	leaving	the	initiator

unchanged	but	replacing	the	generator	by	a	subset	of	the	original.	This	replaces
the	limit	fractal	set,	to	be	called	the	subordinand,	by	a	subordinate	subset.	First
we	describe	examples,	then	we	introduce	the	important	rule	of	multiplication	of
dimensions.
EXAMPLE	WITH	D<2.	Take	the	four-legged	generator	of	the	triadic	Koch

curve,	as	used	in	Plate	42.	Erasing	the	second	and	third	legs	yields	the	classic
generator	of	the	triadic	Cantor	dust,	Plate	78.	Thus,	the	Cantor	dust	is
subordinate	to	a	third	of	a	snowflake.	A	different	subordinate	dust,	not	restricted
to	the	line,	results	if	one	erases	the	first	and	third	of	the	N=4	sides	of	the	Koch
generator.	In	either	case,	subordination	changes	the	dimension	from	log4/log3	to
log2/log3.	If	only	one	leg	of	the	generator	is	erased,	the	subordinate	dust	is	not	a
subset	of	the	line,	although	it	is	of	dimension	log3/log3=1.
EXAMPLE	WITH	D=2.	Take	the	four-legged	second	stage	of	the	Peano-

Cesàro	curve	of	Plate	64,	and	erase	the	second	and	third	leg.	The	new	generator
is	the	interval	[0,1]	itself!	Thus,	the	straight	interval	is	a	(most	trivial!)
subordinate	of	the	Peano-Cesàro	curve.	Erasing	a	different	set	of	two	legs	yields
a	fractal	dust	with	D=1.	Erasing	one	leg	leaves	a	set	of	dimension	log3/log2.



MULTIPLICATION	OF	DIMENSIONS

Recall	from	Chapters	6	and	7	that	the	Koch	and	Peano	curves	can	be	viewed	as
the	trails	of	“motions”	whose	time	parameter	t	lies	in	[0,1].	This	time	is	defined
in	such	a	way	that,	to	take	an	example,	a	snowflake	generator’s	four	legs	are
covered	during	the	instants	whose	expansion	in	the	base	4	begin	respectively
with	0,	1,	2,	and	3.	For	example,	the	second	fourth	of	the	third	fourth	is	covered
during	the	instants	whose	expansion	in	the	base	4	begins	with	0.21.	Viewed	as
motions,	our	Koch	or	Peano	curves	are	themselves	“fractal	maps”	of	the	interval
[0,1].	In	this	framework,	the	effect	of	the	first	mentioned	decimation	of	generator
legs	is	to	eliminate	the	values	of	t	that	include	the	digits	1	or	2	(or	0	and	3),	thus
limiting	t	to	belong	to	a	certain	Cantor	dust	of	[0,1].
We	can	therefore	describe	our	subordinate	subsets	of	the	Koch	or	Peano

curves	as	fractal	maps	of	a	fractal	subset	of	time.	This	subset	is	clearly	a	Cantor
dust,	and	it	is	called	subordinator.	Its	dimension	is	logN/logN’	=	log2/log4	=	½.
More	generally,	we	find	the	self-explanatory	relation

Dsubordinate	=	Dsubordinand	×	Dsubordinator.

This	generalizes	the	relation	we	saw	characterizes	Cauchy	motion.	As	we
know,	sums	of	dimensions	occur	in	the	study	of	sections	and	intersections.	Now
we	discover	a	lovely	“calculus,”	giving	a	meaning	to	products	of	dimensions	as
well	as	to	sums.
Of	course,	this	rule	suffers	exceptions,	analogous	to	those	applicable	to	the

rule	that	codimensions	add	under	intersection.



LINEAR	LÉVY	DUST	AS	SUBORDINATOR

The	linear	Levy	dust	of	Chapter	31	is	the	first	subordinate	used	by	Bochner,	and
it	continues	to	be	so	widely	used	as	subordinator	by	pure	mathematicians	that	the
related	Levy	staircase	is	often	called	the	stable	subordinator	function.	To	obtain
self-similar	subordinate	sets,	one	uses	a	self-similar	subordinand,	e.g.,	Brownian
or	fractional	Brownian	motion.
Observe	that,	while	Brownian	motion’s	intrinsic	dimension	is	2,	Brownian

motion	restricted	to	the	line	is	of	dimension	1.	Therefore,	last	section’s	rule	is
replaced	by

Dsubordinate	=	min	{	E,	2×Dsubordinator	}.

More	generally,	a	fractional	Brownian	motion’s	intrinsic	dimension	is	1/H,	but

Dsubordinate	=	min	{	E,	Dsubordinator/H	}.

Thus,	the	largest	space	that	the	subordinate	set	can	fill	to	the	hilt	corresponds	to
E=integer	part	of	1/H.
BROWNIAN	MOTION	AS	SUBORDINAND.	The	most	important

subordinand	is	the	Brown	trail.	The	Brownian	map	of	time	instants	restricted	to	a
linear	Levy	dust	of	dimension	D/2	between	0	and	1	is	a	spatial	dust	with
arbitrary	dimension	D	between	0	and	2.	It	deserves	to	be	called	spatial	Levy
dust.
Granted	that	the	subordinator	dust’s	gaps	and	the	subordinand’s	increments

are	both	statistically	independent,	the	subordinate	process	also	has	statistically
independent	increments.	Granted	that	the	subordinator’s	gap	lengths	satisfy
Pr(W>w)=w–D/2,	and	that	during	a	gap	of	duration	w	the	Brownian	motion
moves	by	an	amount	of	the	order	of	u=✓w,	the	spatial	dust’s	gaps	seem	to	satisfy
Pr(U>u)	=	Pr(W>u2)	=	u–D.	It	can	be	shown	that	such	is	indeed	the	case.



ORDERED	GALAXY	CLUSTERS

The	formula	Pr(U>u)=u–D	shows	that	the	subordinate	dust	implements	the
process	previewed	at	the	beginning	of	this	chapter.
DIMENSIONS.	The	dust	itself	is	of	dimension	D.	If	the	maps	of	each	linear

gap’s	endpoints	are	joined	by	intervals,	one	obtains	a	Levy	trail;	its	dimension	is
max(1,D)—as	in	the	study	of	trees	in	Chapter	16.
CORRELATIONS.	A	Levy	trail	induces	a	linear	ordering	among	the	galaxies

it	generates,	implying	that	each	galaxy	only	interacts	with	its	immediate
neighbors.	And	each	couple	of	neighbors	interacts	independently	of	the	other
couples.	In	this	sense,	a	Levy	flight	is	equivalent	to	the	unjustified	replacement
of	an	unsolvable	N-body	problem	by	a	manageable	combination	of	many	two-
body	problems.	The	result	might	have	been	atrociously	unrealistic,	but	is	not.
Mandelbrot	1975u	(described	fully	in	Peebles	1980,	pp.	243-249)	shows	that
Levy	flight	leads	to	two-	and	three-point	correlations	on	the	celestial	sphere	that
are	identical	to	those	that	P.	J.	E.	Peebles	and	Groth	obtained	in	1975	by	curve
fitting;	see	Peebles	1980.



Plate	293	a	THE	COMPUTER	“BUG”	AS	ARTIST,	OPUS	2
	
This	plate	can	be	credited	in	part	to	faulty	computer	programming.	The	“bug”
was	promptly	identified	and	corrected	(but	only	after	its	output	had	been
recorded,	of	course!),	and	the	final	outcome	was	Plate	69.
The	change	that	had	been	wrought	by	a	single	tiny	bug	in	a	critical	place	had

gone	well	beyond	anything	we	had	expected.
It	is	clear	that	a	very	strict	order	is	designed	into	Plate	69.	Here,	this	order	is

hidden,	and	no	other	order	is	apparent.
The	fact	that,	at	least	at	first	blush,	this	plate	could	pass	for	High	Art,	cannot

be	an	accident.	My	thoughts	on	this	account	are	sketched	in	Mandelbrot	19811,
and	are	to	be	presented	fully	in	the	near	future.



A	Levy	flight	is	roughly	a	sequence	of	jumps	separated	by	stopovers.	Only	the
latter	are	of	direct	interest	in	this	chapter,	but	jumps	are	a	necessary	part	of	the
construction.
Therefore,	the	top	(black	on	white)	figures	in	these	plates	include,	as	part	of

the	motion’s	trail,	the	“contrails”	created	during	actual	flights.	The	trail	in	three-
dimensional	space	is	shown	through	its	projections	on	two	perpendicular	planes.
The	original	can	be	visualized	by	holding	the	book	half	open.
To	proceed	to	the	bottom	(white	on	black)	figures,	one	wipes	away	the

intervals	that	represent	the	jumps.	Then	one	takes	a	photographic	negative.	Each
stopover	is	a	star,	a	galaxy,	or	a	more	general	blob	of	matter.
More	precisely,	the	straight	intervals	of	the	black-on-white	top	figures	have

the	following	characteristics.	Their	direction	in	space	is	random	and	isotropic
(that	is,	parallel	to	the	vector	joining	the	origin	of	space	to	a	point	chosen	at
random	on	a	sphere).	The	different	intervals	are	statistically	independent,	and
their	lengths	follow	the	probability	distribution	Pr(U>u)	=	u–D,	except	that
P(U>u)	=	1	when	u<1.	The	value	of	D=1.2600	is	close	to	the	D~1.23	found	for
actual	galaxies.
The	overwhelming	majority	of	the	intervals	are	too	small	to	be	perceived.	In

fact,	we	lined	the	plane	with	a	uniform	grid	and	marked	the	cells	containing	one
or	more	stopovers.	In	other	words,	each	point	stands	for	a	whole	mini-cluster.
In	addition,	regardless	of	D,	the	miniclusters	are	themselves	clustered.	They

exhibit	such	clear-cut	hierarchical	levels	that	it	is	hard	to	believe	that	the	model
involves	no	explicit	hierarchy,	only	a	built-in	self-similarity.
Let	us	elaborate	by	mentioning	that	all	the	plates	in	the	present	portfolio

represent	the	beginning	of	two	distinct	flights,	forward	and	reverse,	and	such
flights	are	nothing	but	two	statistically	independent	replicas	of	the	same	process.
Clearly,	if	the	origin	is	displaced	to	some	other	stopover,	the	two	halves	are
again	independent.	Hence,	every	stopover	has	precisely	the	same	claim	to	be
called	the	Center	of	the	World.	This	feature	is	the	essence	of	the	conditional
cosmographic	principle	I	pro-pound	in	this	Essay.
The	present	method	does	not	claim	to	account	for	the	way	the	galaxies	had

actually	been	generated,	but	it	brings	home	my	theme	that	the	conditional
cosmographic	principle	is	compatible	with	ostensible	multilevel	clustering.	A
great	variety	of	such	configurations	may	be	present	even	when	none	has	been
inserted	“to	measure.”



Plates	296	and	297,	AFTER	PLATE	295	MANDELBROT	EARLY	MODEL
CLUSTERS	OF	DIMENSION	D=1.2600.	LEVY	FLIGHT	AND	ITS

STOPOVERS
	
One	can	modify	the	method	of	recursion	basic	to	the	Koch	construction	so	that	it
breaks	a	line	systematically	and	leads	to	a	dust	that	has	the	same	dimension	D=1
as	the	line,	but	is	entirely	different	in	topology	and	appearance.
Imagine	that	a	rubber	band,	initially	laid	along	[0,1],	is	extended	to	follow	the

Koch	generator	that	is	used	in	Plate	49	to	yield	a	fractal	curve	of	dimension	3/2.
Then	the	corners	are	pinned	down	permanently,	and	each	of	the	8	straight
intervals	of	the	band	is	cut	in	its	middle,	leaving	16	pieces	that	snap	back	to	their
original	lengths	1/16.	These	pieces’	free	ends	are	then	pinned	down,	and	the
process	is	repeated.	The	end	result	is	a	self-similar	hierarchically	clustered	dust
with	r=	1/16	and	N=16,	hence	D=1.
This	construction	amounts	to	allowing	us	to	mark	a	generator’s	side	so	it	is

erased	at	the	next	stage	of	the	Koch	construction.	This	process	is	called
subordination	in	the	text.	The	only	points	we	keep	are	the	positions	of	a	Koch
motion	when	time	belongs	to	a	subset	of	fractal	dimension	log16/log64	=	4/6.
And	the	fact	that	(4/6)x(3/2)	=	1	is	a	special	case	of	the	rule	of	multiplication	of
dimensions	discussed	in	the	text.
Note	that	all	the	points	on	this	plate	are	ordered	intrinsically	by	the	Koch

curve	of	which	the	generator	is	a	subset.	Furthermore,	it	is	easy	to	derive	the



frequency	distribution	of	the	snap-back	distances	between	successive	pinned-
down	points.	Roughly,	the	number	of	distances	≥	u	is	proportional	to	u–D	with
D=1,	Plates	296	and	297	use	the	same	frequency	distribution	differently.

Plate	295	NONRANDOM	SUBORDINATION:	CLUSTERED	FRACTAL
DUST,	OF	DIMENSION	D=1,	SUBORDINATE	TO	A	KOCH	CURVE	OF

DIMENSION	D=1.5
	





Plate	298	DECREASE	OF	D	BY	SUBORDINATION.	MAKING	THE
LÉVY	CLUSTERS	BECOME	INCREASINGLY	SEPARATE

	
A	planar	Levy	dust’s	degree	of	clustering	depends	upon	its	D.	Here,	this	effect	is
illustrated	by	processing	a	planar	Brownian	trail,	with	D=2,	using	successive
linear	Levy	subordinations,	each	riding	on	its	predecessor.	Throughout,



Dsubordinator	=	2–1/6	=	.89,	hence	the	subordinate	dusts	have	the	dimensions:	1.78
(=	2x.89),	1.59,	1.41,	1.26,	1.12,	1,	and	.89.	The	Levy	staircases	next	to	most
dusts	show	how	time	was	decimated	to	generate	this	dust	from	the	dust	with
D=1.78.	A	“ghost”	of	the	subordinand,	a	continuous	Brown	trail,	is	perceived
clearly	for	D	close	to	2,	but	becomes	increasingly	faint	as	D	decreases	(see
Chapter	35).	Increasing	clustering	is	not	provoked	by	the	concentration	of	all
points	around	a	few	of	them	but	by	the	disappearance	of	most	points,	leading	to
an	increasing	number	of	apparent	hierarchic	levels.



Plate	299	ZOOMING	TOWARD	A	LÉVY	DUST	WITH	D=1.2600
	
The	first	figure	on	the	top	left	represents	a	cluster	of	12,500,000	positions	of	a
Levy	motion,	as	seen	through	the	square	window	from	a	far	away	spaceship.



Between	each	view	and	the	view	that	follows	in	clockwise	direction,	the	distance
from	the	spaceship	to	the	center	of	the	cluster	and	the	field	of	vision	are	divided
by	b=3.	The	structure	seen	through	the	window	changes	in	detail,	but	remains
unchanged	in	broad	lines.	This	is	expected,	due	to	the	fact	that	the	set	is	self-
similar.



Plates	300	CIRCUMNAVIGATION	OF	LEVY	CLUSTERS	OF
DIMENSION	D=1.3000

	
The	shape	of	clusters	generated	as	sites	of	a	Levy	flight	in	the	plane	is	highly



sample	dependent,	meaning	that	if	one	simulates	clusters	again	and	again	while
keeping	the	same	dimension,	one	must	expect	to	obtain	a	great	variety	of
different	shapes.
The	same	is	true	of	a	small	isolated	spatial	Levy	cluster	when	viewed	from

many	different	directions—by	following	the	present	“strip”	clockwise	from	the
top	of	this	plate.



33

Disc	and	Sphere	Tremas:	Moon	Craters	and	Galaxies

Having	introduced	the	linear	Levy	dust	as	a	trema	fractal,	via	interval	shaped
random	tremas	(Chapter	31),	we	promptly	sidetracked	in	Chapter	32:	we
generalized	this	dust	to	the	plane	and	the	space	via	the	process	of	subordination.
In	this	chapter	and	the	next,	we	generalize	the	random	tremas	directly.
In	this	chapter,	the	planar	and	spatial	tremas	are	discs	and	balls,	hence	the

generalization	bears	directly	upon	the	shapes	of	Moon	craters	and	of	meteorites.
But	the	spatial	tremas’	most	important	application	is	a	different	and	less	obvious
one.	When	D	is	close	to	1,	a	trema	fractal	is	a	dust,	hence	a	candidate	to	replace
Levy	flight	stopovers	in	modeling	the	galaxy	clusters.	The	main	novelty,
compared	with	the	random	walks	model,	is	that	here	galaxies	are	not	ordered
along	a	trail.	Hence	a	gain	in	a	priori	verisimilitude,	a	resulting	loss	in
computational	convenience,	and	an	ultimate	gain	in	quality	of	fit:	the	predicted
covariance	properties	are	even	closer	to	the	empirical	evidence.	The
nonspherical	tremas	in	Chapter	35	improve	the	fit	further.



PLANAR	AND	SPATIAL	TREMAS

As	background	for	the	random	and	overlapping	tremas,	let	planar	curdling	in	a
grid,	Chapters	13	and	14,	be	restated	in	terms	of	virtual	tremas.	The	first	cascade
stage	consists	in	marking	N	out	of	b2	squares,	and	keeping	them	as	curds.
Alternatively,	one	may	say	that	the	first	stage	cuts	out	b2—N	square	tremas.	The
next	stage	cuts	out	second-order	square	tremas	numbering	b2(b2—N),	(including
N(b2—N)	genuinely	new	tremas	and	(b2—N)2	tremas	that	are	“virtual”:	they
eliminate	again	something	that	had	already	been	eliminated	in	the	first	stage.
And	so	on.
Counting	both	genuine	and	virtual	tremas,	we	find	that	the	number	of	tremas

with	an	area	in	excess	of	s	is	proportional	to	1/s.	The	corresponding	result
relative	to	curdling	in	3-space	is	that	the	number	of	tremas	with	a	volume	in
excess	of	v	is	proportional	to	1	/v.
Similarly,	the	bulk	of	this	chapter	and	of	Chapter	35	concerns	the	case	in

which	the	numbers	of	independent	tremas	centered	in	a	box	of	sides	dx	and	dy,
or	dx,	dy,	and	dz,	is	a	Poisson	random	variable	of	expectation

〈Nr(area>a)〉	=	(C/2a)dx	dy,
〈Nr(volume>v)〉	=	(C/3v)dx	dy	dz.

The	corresponding	expectation	in	IRE	is

(C/Ev)dx1	...	dxE.

The	fractal	properties	of	the	resulting	trema	set	are	as	simple	as	in	the	linear
case	tackled	in	Chapter	31.	When	C	<	1,	these	properties	can	be	derived	from
those	of	the	linear	case,	and	the	predecessor	Essays	conjectured	they	held	for	all
C.	This	was	confirmed	by	El	Hélou	1978.
When	C	>	E,	the	trema	set	is	almost	surely	empty.	When	C	<	E,	it	is	a	fractal

of	dimension	D=E—C.
As	to	the	trema	fractals’	topology,	general	principles	show	that	a	trema	set

with	D<	1	is	a	dust	with	DT=0.	When	D>1,	on	the	other	hand,	general	principles
do	not	suffice,	the	topology	being	determined	by	the	trema’s	shape.	The	problem
of	percolation	arises	here,	in	yet	another	fractal	context.



LUNAR	CRATERS	AND	DISC	TREMAS

We	begin	with	a	side	issue	that	provides	an	easier	two-dimensional	preparation
and	is	amusing:	the	geometric	nature	of	the	set	that	lunar	craters	leave
uncovered.	While	the	Greek	κρατηρ	denotes	a	bowl	or	drinking	vessel,	almost	all
of	Earth’s	craters	are	of	volcanic	origin.	But	it	is	generally	believed	that	the
craters	observed	on	Earth’s	Moon,	Mars,	the	Jovian	satellite	Callisto,	and	other
planets	and	their	satellites,	are	overwhelmingly	due	to	the	impact	of	meteorites.
The	larger	the	meteorite,	the	larger	and	deeper	the	crater	resulting	from	its

impact.	Furthermore,	a	large	crater	due	to	the	late	impact	of	a	heavy	meteorite
may	wipe	out	several	previously	formed	small	craters,	while	a	small	crater	due
to	the	late	impact	of	a	light	meteorite	may	“dent”	the	rim	of	a	large	older	crater.
As	for	the	sizes,	there	is	solid	empirical	evidence	that	at	the	moment	of	meteorite
impact	the	crater	areas	follow	a	hyperbolic	distribution:	the	number	of	craters
with	an	area	exceeding	s	km2	and	such	that	their	centers	are	located	within	a
square	of	1	km2	can	be	written	as	C/s,	with	C	a	constant.	This	evidence	is
discussed	in	Marcus	1964,	Arthur	1954,	and	Hartmann	1977.
To	simplify	the	argument	(with	no	change	in	the	main	result),	we	approximate

the	lunar	surface	by	a	plane,	and	the	lunar	craters	by	disc-shaped	tremas.	If	the
Moon	went	on	perpetually	scooping	up	meteorites	from	a	statistically	invariant
environment,	every	point	of	its	surface	would	obviously	be	covered	again	and
again	ad	infinitum.	However,	it	may	be	that	craters	are	wiped	clean	every	so
often,	say	by	volcanic	lava,	in	which	case	the	trema	set	they	fail	to	cover	at	a
given	moment	may	be	nontrivial.	Alternatively,	it	may	be	that	the	solar	system
evolved	in	such	a	fashion	that	our	Moon	was	only	bombarded	during	a	finite
period	of	time.	The	parameter	C	may	measure	either	the	time	since	the	last
attrition	of	craters	or	the	total	duration	of	the	bombardment.
To	assess	its	effect	upon	the	trema	fractal’s	shape,	let	us	keep	the	seed

invariant,	and	vary	C.	As	C	increases	from	0	to	2,	the	Moon’s	surface	becomes
increasingly	saturated,	and	the	result	stated	in	the	preceding	section	shows	that	D
decreases	and	reaches	0	for	C≥2.	The	trema	fractal’s	dependence	upon	D	is
illustrated	by	Plates	306	through	309.
APPENZELLER	AND	EMMENTHALER.	When	C	is	very	small,	other



lovers	of	Swiss	cheese	may	join	me	in	thinking	that	the	shape	we	deal	with
resembles	a	slice	of	cheese	that	is	almost	entirely	pierced	by	very	small	pin
holes.	It	is	a	wild	extrapolation	of	the	structure	of	Appenzeller.	When	C
increases,	we	turn	progressively	to	a	wildly	extrapolated	Emmenthaler,	with
large	overlapping	holes.
(Thus,	the	English	nursery	rhyme	about	the	Moon	being	made	of	green	cheese

proves	correct,	except	for	color.)
TOPOLOGY.	CRITICAL	D’S.	Either	of	the	above	extrapolations	of	cheese

must	be	called	“wild,”	because	the	trema	fractal	“cheese	slices”	are	of	vanishing
area.	I	conjecture	the	following.	As	long	as	C	is	small	enough,	the	trema	fractal
is	a	σ-cluster,	each	contact	cluster	being	a	web	of	connected	filaments	and
having	the	topological	dimension	DT=1.	When	D	reaches	a	certain	critical
dimension,	Dcrit,	the	value	of	DT	drops	to	0,	and	the	σ-web	collapses	into	dust.
The	next	critical	dimension	is	D=O.	When	C	>	2,	the	Moon’s	surface	is

oversaturated,	every	point	being	almost	certainly	covered	by	at	least	one	crater.
In	particular,	such	would	be	the	case	if	the	Moon’s	surface	were	never	wiped
clean	and	continued	scooping	up	meteorites	endlessly.
NONSCALING	CRATERS.	Some	planets	other	than	Earth’s	Moon	are

characterized	by	a	density	of	craters	of	the	form	Ws–γ	with	γ	≠	1.	The	problem
these	craters	raise	is	tackled	in	the	appendix	to	this	chapter.



GALAXIES	AND	INTERGALACTIC	VOIDS
GENERATED	VIA	SPHERICAL	TREMAS

While	the	Moon’s	tremas	have	an	independently	recognized	existence	as	craters,
ball-shaped	tremas	with	a	scaling	distribution	began	as	a	natural	extension	of	the
same	geometric	device	to	space.	I	thought	they	may	yield	an	alternative	to	the
galaxy	model	of	Chapter	32.	Thus,	I	postulated	the	existence	of	intergalactic
voids	that	combine	many	tremas,	and	may	range	up	to	very	large	size.	The	good
fit	of	the	resulting	model	was	a	very	pleasant	surprise,	and	demands	further
theory	(Chapter	35)	and	experiment.
COVARIANCES.	Because	the	statisticians	and	the	physicists	trust

correlations	and	spectra,	the	first	test	of	the	trema	fractals	as	models	of	galaxy
clusters	relies	upon	their	correlation	properties.	The	covariance	between	two
points	in	space	is	the	same	as	in	my	random	walk	model,	as	it	should	be,	since
the	latter	fitted	the	data	well.	The	same	is	true,	as	it	should	be,	of	the	covariance
between	two	directions	in	the	sky.	The	predicted	covariances	between	three	and
four	directions	fit	better	than	those	predicted	by	the	random	walk	model,	but	the
improvements	are	technical	and	are	better	discussed	elsewhere.	Basically,	once
D	is	known,	the	various	models	give	the	same	correlations.
Now	recall	that	Gaussian	phenomena,	including	Brown	or	fractional	Brown

fractals,	are	fully	characterized	by	the	covariance	properties.	When	they	are
scaling,	they	are	fully	characterized	by	D.	Given	the	influence	of	the	Gaussian
phenomena	on	the	statisticians’	thinking,	one	may	be	tempted	to	stop	at	the
covariances.	But	fractal	dusts	are	not	Gaussian	phenomena,	and	their	D	fails	to
specify	many	important	facts	about	them.
CRITICAL	DIMENSIONS.	More	basic	than	the	correlation	is	the	question	of

whether	the	trema	fractals	have	the	right	topology.	To	check,	it	is	best,	as	in	the
preceding	section,	to	keep	a	fixed	seed	and	let	C	increase	from	0	to	3.	As	long	as
C	is	small,	DT=2,	and	our	fractal	is	made	of	ramified	veils.	When	D	traverses	a
certain	value	D2crit,	called	upper	critical	dimension,	the	veils	split	into	filaments,
with	DT=1.	And	when	D	traverses	a	smaller	value	Dcrit	called	lower	critical
dimension,	the	filaments	collapse	into	dust,	with	DT=0.	Since	the	modeling	of



galaxy	clusters	requires	dusts,	it	is	important	to	verify	that	Dcrit	exceeds	the
observed	D~1.23.	My	computer	simulations	confirm	this	inequality.
PERCOLATION.	The	hope	that	the	world	is	not	more	complicated	than	need

be	makes	me	believe	that	D>Dcrit	is	the	necessary	and	sufficient	condition	for	the
trema	fractal	to	percolate,	in	the	sense	described	in	Chapter	13.



METEORITES

The	mass	distribution	of	Earth	impacting	meteorites	has	been	studied	carefully,
for	example	in	Hawkins	1964.	Mid-size	meteorites	are	made	of	stone,	and	1	km3

in	space	contains	roughly	P(v)=10–25/v	meteorites	of	volume	exceeding	v	km3

This	claim	is	ordinarily	expressed	differently,	using	the	following	very	mixed
units.	During	each	year,	each	km2	of	Earth’s	surface	is	on	the	average	host	to
0.186/m	meteorites	of	mass	above	m	grams.	Their	average	density	being	3.4	g
cm–3,	this	relation	boils	down,	in	more	consistent	units,	to	5.4	10–17/v	meteorites
of	volume	exceeding	v	km3.	Moreover,	Earth	moves	on	by	roughly	1	km	during
10–9	years—the	inverse	of	the	order	of	magnitude	of	Earth’s	trajectory	around
the	Sun	in	km.	Hence,	using	consistent	units,	and	keeping	to	orders	of	magnitude
so	that	5.4	becomes	10,	we	find	that	while	Earth	moves	on	by	1	km	in	space,
each	km2	of	Earth’s	surface	is	host	to	10–25/v	meteorites	of	volume	exceeding	v
km3.	Assuming	that	the	meteorites	impacting	Earth	as	it	sweeps	through	space
are	a	representative	sample	of	the	meteorites’	distribution	in	space,	we	obtain	the
result	that	has	been	asserted.
This	10–25/v	law	is	formally	identical	to	the	C/s	law	for	lunar	craters,	but	there

is	a	difference:	craters	can	overlap,	while	meteorites	cannot.
Nevertheless,	it	is	fun	to	see	what	would	happen	if	P(v)=10–25/v	held	down	to

v=0	and—wild	thought!—if	meteorites	could	overlap.	Adding	the	innocuous
assumption	that	meteorites	are	spherical,	the	trema	set	can	be	investigated
directly	(with	no	need	of	the	results	in	El	Hélou	1978).	The	sections	of
meteorites	by	straight	lines	randomly	thrown	in	space	are	rectilinear	tremas,	and
it	can	be	shown	that	the	number	of	such	intervals	centered	within	1	km	and	of
length	exceeding	u	km	is	C‘10–25/u.	(C’	is	a	numerical	factor	of	the	order	of
magnitude	of	1,	unimportant	in	this	context.)	Hence	a	result	in	Chapter	32	shows
that	the	dimension	of	the	trema	set’s	linear	section	is	1–10–25.	Adding	2	when	we
go	back	from	the	linear	sections	to	the	full	shape,	we	find	3—D=10–25.
This	result	is	inane,	since	it	implies	in	particular	that	meteorites	nearly	fill

space,	even	after	one	allows	for	overlap.	Nevertheless,	the	codimension	3—
D=10–25	deserves	just	another	glance.	Let	us	assume	in	a	first	approximation	that



the	10–25/v	relationship	holds	down	to	a	positive	cutoff	η	>	0	and	that	there	is	no
meteorite	of	smaller	size.	The	argument	we	have	sketched	asserts	that	if	one
could	actually	pass	to	the	limit	η	→	0,	the	set	outside	of	all	meteorites	would
converge	to	a	trema	set	of	dimension	D=3–10–25.	Fortunately,	this	limit	set
would	be	attained	so	extraordinarily	slowly	that	in	the	observable	range	allowing
meteorite	overlap	can	pose	no	problem.	Unfortunately,	the	value	of	D	can	have
no	practical	importance	whatsoever.



APPENDIX:	NONSCALING	CRATERS

The	Moon’s	crater	distribution	is	best	written	for	the	present	purpose	as	Pr(A>a)
=	Fa–γ,	with	γ	=	1.	The	same	γ	seems	to	hold	for	Mars,	but	for	Jovian	satellites
one	finds	different	values	of	γ	(Soderblom	1980).	Similarly,	γ	<	1	for	small
volume	meteorites.	The	resulting	trema	sets	are	not	scaling.
THE	CASE	WHEN	γ	>	1.	In	this	first	nonscaling	case,	any	given	point	of

planetary	surface,	regardless	of	the	value	of	W,	almost	surely	falls	into	an
infinity	of	craters.	The	surface	texture	is	overwhelmingly	dominated	by	small
craters.	The	Jovian	satellite	Callisto	has	such	a	texture,	and	indeed	it	is
characterized	by	γ	>	1.	When	discussed	in	predecessors	to	this	Essay,	before	the
Voyager	mission,	γ	>	1	was	merely	a	theoretical	possibility.
THE	CASE	WHEN	γ	<	1	AND	CRATER	AREAS	ARE	BOUNDED.

Denoting	this	bound	by	1,	the	probability	for	a	point	to	remain	outside	all	craters
is	positive	 	because	the	integral	∫01Pr(A>a)da	converges,	but	it	decreases	as	W
increases.	The	resulting	pocked	surface	is	(even	more	than	in	the	scaling	case)
reminiscent	of	a	slice	of	Swiss	cheese.	The	greater	the	value	of	γ,	the	smaller	the
number	of	small	holes,	and	the	more	“chunky”	the	resulting	cheese.	However,
regardless	of	the	value	of	γ,	the	slice	is	of	positive	area,	hence	it	is	a	(non-self-
similar)	set	of	dimension	2.	On	the	other	hand,	I	have	no	doubt	that	its
topological	dimension	is	1,	meaning	it	is	a	fractal.
In	space	(meteorites)	this	trema	fractal’s	dimensions	are	D=3	and	DT=2.



Plates	306	and	307	SMALLISH	ROUND	TREMAS,	IN	WHITE,	AND
RANDOM	SLICES	OF	“SWISS	CHEESE”	(DIMENSIONS	D=1.9900	AND

D=1.9000)
	
The	tremas	are	white	circular	discs.	Their	centers	are	distributed	at	random	on
the	plane.	For	the	disc	of	rank	p,	the	area	is	K(2-D)/ρ,	the	numerical	constant
then	being	chosen	suitably	to	fit	the	trema	model	described	in	the	text.	Plate	306
shows	a	sort	of	Appenzeller	wherein	the	black	portion	is	of	dimension
D=1.9900,	and	Plate	307	a	sort	of	Emmenthaler	with	a	black	portion	of
dimension	D=1.9000.





Plates	308	and	309	LARGER	ROUND	TREMAS,	IN	BLACK,	AND
RANDOM	FORKED	WHITE	THREADS	(DIMENSIONS	D=1.7500	AND

D=1.5000)
	
The	construction	proceeds	as	in	Plates	307	and	308,	but	the	tremas	are	bigger,	so
hardly	anything	is	left	out,	and	they	are	represented	in	black.	The	D’s	are	the
dimensions	of	the	remaining	white	fractal.





34

Texture:	Gaps	and	Lacunarity;	Cirri	and	Succolarity

Texture	is	an	elusive	notion	which	mathematicians	and	scientists	tend	to	avoid
because	they	cannot	grasp	it.	Engineers	and	artists	cannot	avoid	it,	but	mostly
fail	to	handle	it	to	their	satisfaction.	There	are	many	indications,	however,	that
several	individual	facets	of	texture	are	about	to	be	mastered	quantitatively.
In	fact,	much	of	fractal	geometry	could	pass	as	an	implicit	study	of	texture.	In

this	and	the	next	chapter,	two	specific	facets	are	approached	explicitly,	with
stress	on	galaxy	clusters.	Remarks	on	texture	could	have	been	scattered	between
earlier	chapters,	beginning	with	Chapters	8	and	9,	but	it	seemed	preferable	(at
the	cost	of	interrupting	the	discussion	of	tremas!)	to	collect	all	my	comments	on
texture	in	one	place.
As	stated	repeatedly,	my	search	for	models	of	galaxy	clusters	proceeded	by

stages.	Early	ones,	described	in	Chapters	32	and	33,	fit	the	desired	D	while
preserving	the	conditional	cosmographic	principle.	Later	ones,	described	in
Chapter	35,	also	fit	texture.
This	chapter’s	several	introductory	sections	present	the	basic	observations

about	galaxies	that	led	me	to	distinguish	two	aspects	of	texture,	calling	them
lacunarity	and	succolarity.	Lacuna	(related	to	lake)	is	Latin	for	gap,	hence	a
fractal	is	to	be	called	lacunar	if	its	gaps	tend	to	be	large,	in	the	sense	that	they
include	large	intervals	(discs,	or	balls).	And	a	succolating	fractal	is	one	that
“nearly”	includes	the	filaments	that	would	have	allowed	percolation;	since
percolare	means	“to	flow	through”	in	Latin	(Chapter	13),	succolare	(sub-colare)
seems	the	proper	neo-Latin	for	“to	almost	flow	through.”
The	remainder	of	this	chapter	introduces	several	measures	of	lacunarity,	but

measures	of	succolarity	are	beyond	the	present	elementary	discussion.
Chapter	35	proceeds	to	show	how	lacunarity	and	succolarity	can	both	be

controlled	through	tremas.
Up	to	now,	a	predominant	role	in	measuring	fractals	was	given	to	the

topological	and	fractal	dimensions.	Chapter	14	was	an	exception	(without	follow



up),	since	the	order	of	ramification	injects	finer	distinctions	between	fractals	that
share	the	same	values	of	DT	and	of	D.	We	encountered	many	different
expressions	of	the	form

prefactor	x	(quantity)exponent,

but	so	far	we	only	considered	the	exponent.	The	study	of	texture	forces	us	to
extend	our	attention	to	the	prefactor.	Since	it	could	not	be	neglected	forever,	we
cannot	be	surprised	that	neither	Nature	(science)	nor	human	thought
(mathematics)	are	simple!



GALAXIES’	“CIRRIFORM”	FILAMENTS

A	mysterious	empirical	finding	was	brought	to	my	attention	in	Paris,	in	1974,
after	my	first	lecture	on	the	model	described	in	Chapter	32.	My	sole	purpose	had
been	to	achieve	the	desired	value	of	D	in	a	fractal	(actually,	I	had	not	yet	coined
the	term	fractal).	But	an	unidentified	astronomer	pointed	out	during	the
discussion	that	there	was	a	further,	unexpected,	element	of	verisimilitude:	on	the
samples	generated	by	my	model,	the	points	often	seem	to	fall	along	nearly
straight	lines,	and	more	generally	seem	scattered	along	narrow	“near-streams”	or
“near-filaments.”	The	unidentified	astronomer	informed	me	that	the	galaxies
shared	this	property	in	even	clearer	form	and	that	a	“near-stream”	of	galaxies
observed	more	closely	decomposes	into	thinner	“near-streams.”	The	astronomer
stressed	that	streams	was	a	very	poor	term,	the	structures	in	question	being
disconnected.
To	avoid	being	confused	by	terminology,	I	recalled	that	filmy	fleecy	clouds

are	called	cirri	by	meteorologists,	and	filed	away	the	information	that	galaxies
have	a	cirriform	structure,	and	that	it	would	be	desirable	to	improve	the	model	to
make	the	cirri	even	more	apparent.
Actual	references	came	forth	much	later:	Tombaugh	had	observed	“cirri”	in

1937,	in	the	Perseus	Supergalaxy,	and	de	Vaucouleurs	had	confirmed	them	in	the
1950’s,	in	the	Local	and	Southern	Supergalaxies.	Further	confirmation	came
from	Peterson	1974	(concerning	the	Zwicky	catalog),	from	Joẽveer,	Einasto	&
Tago	1978,	and	from	Soneira	and	Peebles	in	1978	(concerning	the	Lick
Observatory	catalog	of	Shane	and	Wirtanen;	see	Peebles	1980).



CIRRIFORM	FRACTALS

Clearly,	a	cirriform	structure	can,	but	need	not,	be	present	in	a	nonrandom	fractal
dust.	It	is	absent	from	the	Fournier	model	in	Chapter	9,	which	generates	a
collection	of	“lumps.”	By	contrast,	cirri	are	readily	created	by	taking	a	Sierpiński
carpet	of	Chapter	14	and	disconnecting	its	generator	without	brutality.	Since	the
resulting	fractal’s	dimension	can	take	essentially	any	value,	we	have	made	the
important	point	that	being	cirriform	is	not	a	matter	of	dimension.	Nevertheless,
specifically	built-in	nonrandom	cirri	are	too	artificial	to	warrant	attention.
This	is	why	it	was	noteworthy	that	an	unintended	but	unquestionable	cirriform

structure	should	be	present	in	a	random	model	for	D	close	enough	to	2.
This	led	me	to	a	careful	examination	of	other	families	of	random	fractals.

Particularly	immediate	and	interesting	configurations	are	observed	in	the	plates
of	Chapter	28	and	in	Plate	C15,	wherein	the	archipelagoes,	into	which	many	of
the	islands	seem	to	coalesce,	are	more	often	atoll-shaped	than	clump-shaped.



CIRRI	ARE	EXPECTED	IN	FRACTALS	THAT
“NEARLY”	PERCOLATE

Plates	308	to	309	reveal	that	an	accentuated	cirriform	structure	is	present	in
fractals	constructed	as	in	Chapter	33,	by	removing	random	disc-shaped	tremas.	It
suffices	that	the	dimension	be	close	to,	but	“slightly	below,”	the	critical
percolation	dimension,	Dcrit.	The	reason	for	the	cirriform	structure	is	obvious	in
this	case.	Let	D	decrease	through	Dcrit.	as	we	go	through	a	sequence	of	fractals,
each	imbedded	in	its	predecessors.	We	know	that	topological	dimension	crashes
discontinuously	from	1	to	0,	but	this	discontinuity	is	exceptional:	most	facets	of
form	vary	continuously.	For	example,	the	out-of-focus	picture	obtained	by
replacing	each	point	by	a	ball	of	radius	p	varies	continuously.	This	out-of-focus
picture	is	streamlike,	not	only	when	D>Dcrit	but	also	when	Dcrit—D	is	positive
but	small.
Observe	that	Dcrit	can	also	be	said	to	be	defined	for	the	fractals	of	Chapter	32,

but	its	value	is	degenerate,	equal	to	max	D=2.



GALAXIES’	OBSERVED	LACUNARITY

A	second	skeleton	rattles	in	the	closets	of	most	models	of	the	distribution	of
galaxies.	To	avoid	invidious	(even	when	justified)	criticism	of	others,	consider
either	of	my	own	early	models,	as	analyzed	in	Chapters	32	and	33.	When	D	is
matched	to	experiment	(D~1.23),	the	limited	portions	of	space	shown	in	my
plates	look	reasonable	at	first	glance.	But	overall	sky	maps	are	completely
wrong.	Their	gaps	include	immense	domains	(one-tenth	of	the	sky	or	more)	that
are	totally	empty	of	galaxies	within	any	prescribed	distance.	In	devastating
contrast,	actual	maps	(e.g.,	the	processed	Lick	Observatory	map,	Peebles	1980)
seem	fairly	homogenous	or	isotropic,	except	on	rather	fine	scales.	I	say	that	the
sky	is	of	low,	and	the	models	are	of	high,	lacunarity.
APPARENT	COSMOLOGICAL	IMPLICATION.	This	last	circumstance

tempted	me,	circa	1970,	to	interpret	the	sky’s	appearance	wrongly,	as	due	to	a	D
much	larger	than	the	value	D~1.2	suggested	by	de	Vaucouleurs	1970.	As	to
cosmologists,	we	know	they	are	enamored	of	a	homogeneous	Universe,	and
expect	homogeneity,	with	D=3,	to	prevail	above	a	small	outer	cutoff.	They	might
hasten	to	interpret	the	above	discrepancy	as	supporting	the	notion	that	fractals
with	D~1.23	(more	generally,	with	D<3)	are	only	applicable	to	the	description	of
a	small	region	of	the	universe.
LACUNARITY	IS	A	PARAMETER	DISTINCT	FROM	D.	Actually,	I	am

about	to	show	that	it	is	often	possible	to	preserve	a	fractal’s	D,	while	modifying
the	perceived	lacunarity.	The	main	idea	is	illustrated	in	Plate	318,	by	two
different	Sierpiński	carpets	of	identical	D	but	very	different	appearance.	The	one
to	the	left	has	the	bigger	gaps,	and	it	is	the	more	lacunar	one,	both	intuitively	and
according	to	the	measures	I	shall	propose.
COSMOLOGICAL	IMPLICATION.	The	customary	inference,	that	the

perceived	low	lacunarity	implies	a	“small”	outer	cutoff	Ω,	may	be	overly	hasty.
The	Devil’s	Advocate	is	prepared	to	argue	that	the	small	scale	evidence	in	favor
of	D~1.23	and	the	large	scale	evidence	in	favor	of	near	isotropy	are	not
incompatible	with	a	properly	designed	fractal	model	in	which	Ω=∞.	To	win	this
argument	is	not	to	disprove	that	Ω<∞,	but	merely	to	demonstrate	that	the
determination	of	Ω	requires	additional	care	and	data.



THE	LACUNARITY	OF	TURBULENCE

The	issue	of	whether	the	outer	cutoff	Ω	is	small	or	large	also	affects	the	study	of
turbulence.	As	mentioned	in	Chapter	10,	Richardson	1926	proclaims	that	Ω	is
extremely	large	in	the	atmosphere,	while	most	meteorologists	think	it	is	small.
Therefore	most	of	the	comments	in	the	preceding	section	have	their	turbulence
counterpart.
There	being	few	vocal	living	proponents	of	Ω=	∞,	the	issue	is	less	acute	for

turbulence	than	for	galaxies,	and	is	better	discussed	in	the	latter	context.



A	CANTOR	DUST’S	LACUNARITY

The	notion	of	lacunarity	(contrary	to	the	notion	of	succolarity)	makes	sense	on
the	line,	hence	previous	sections’	claims	are	most	readily	justified	for	linear
dusts.	We	recall	from	Chapter	8	that	a	Cantor	dust	C	on	[0,1]	may	achieve	any
given	D	between	0	and	1	(limits	excluded)	in	many	different	ways,	and	that	the
results	need	not	look	alike.
This	is	the	case	even	if	C	decomposes	into	a	prescribed	number	N	of	equal

parts.	Indeed,	D	and	N	determine	r=N-1/D,	the	parts’	common	length,	but	not	the
parts’	positions	within	[0,1].	As	a	result,	the	same	values	of	D	and	N	(hence	of	r)
are	compatible	with	markedly	different	distributions	for	the	parts.
At	one	extreme,	one	may	collect	the	parts	into	two	clumps	terminating	near	0

and	near	1,	respectively.	This	leaves	in	the	middle	a	big	gap,	whose	relative
length	1-Nr	=	1-N1-1/D	is	very	close	to	1.	An	example	is	seen	in	the	horizontal
mid	section	of	the	Sierpiński	gasket	to	the	left	in	Plate	318.	Essentially	the	same
effect	is	achieved	by	placing	a	single	big	clump	anywhere	between	0	and	1.
At	the	other	extreme,	one	may	separate	the	N	parts	by	N-1	gaps	of	the	same

length	(1-Nr)/(N-1).	An	example	is	seen	in	the	horizontal	mid	section	of	the
Sierpińki	gasket	to	the	right	in	Plate	318.	When	curdling	is	random,	as	in
Chapter	23,	the	gaps	are	nearly	of	the	same	length.
When	N	>>	1,	the	outcome	of	the	first	extreme	construction	looks	like	a	few

points,	hence	“mimics”	the	dimension	D=0,	while	the	outcome	of	the	second
extreme	construction	looks	like	a	“full”	interval,	hence	mimics	the	dimension
D=1.	And	of	course,	one	can	mimic	any	D	between	0	and	1,	by	choosing	for	the
N-1	gaps	an	appropriate	collection	of	intervals,	whose	relative	lengths	add	to	1-
Nr.
The	contrast	between	the	extremes	increases	with	N,	1/r,	and	b.	The	fractal

dimension	is	hard	to	guess	from	the	appearance	of	a	minimally	lacunar	fractal
with	large	N.	However,	it	is	clear-cut	for	small	N.	Therefore,	the	game	of
guessing	D	by	just	looking	at	a	fractal	has	limitations.	It	is	not	an	idle	game	(and
we	are	correct	in	dwelling	upon	it	in	earlier	chapters),	but	for	galaxies	it	is
misleading.

	This	issue	is	clarified	by	a	topic	which	necessity	“exiled”	into	Chapter	39.



The	inspection	of	a	nonlacunar	fractal	reveals	its	similarity	dimension,	which
we	shall	see	is	1,	and	not	its	Hausdorff	dimension.	In	this	case,	the	two
dimensions	differ,	and	the	latter	is	the	more	suitable	embodiment	of	fractal
dimension.



GAPS	VERSUS	CIRRI	FOR	N	>>	1	AND	D	>	1

When	N	>>	1	and	D	>	1,	a	judicious	choice	of	the	generator	can	yield	either	of
four	outcomes:	lacunarity	can	be	either	high	or	low,	and	cirri	can	either	be
arbitrarily	close	to	percolation	or	absent.	Thus,	our	two	aspects	of	texture	can	in
principle	vary	independently	of	each	other.



ALTERNATIVE	LACUNARITY	MEASURES

In	the	short	time	since	I	started	examining	lacunarity,	several	distinct	approaches
proved	worthy	of	examination.	Unfortunately,	one	must	not	expect	the	resulting
alternative	measures	to	be	monotone	functions	of	one	another.	They	are	real
numbers	chosen	to	summarize	the	shape	of	a	curve,	hence	they	participate	of	the
notions	of	“average	man”	and	of	“typical	value	of	a	chance	variable.”	The	fact	is
sad	but	unchangeable	(notwithstanding	many	statisticians’	willingness	to	risk
everything	in	defense	of	their	favorite)	that	typical	values	are	by	nature
indeterminate.



THE	GAP	DISTRIBUTION’S	PREFACTOR

One	is	tempted	to	measure	a	Cantor	dust’s	degree	of	lacunarity	by	the	largest
gap’s	relative	length.	Alternatively,	in	plane	shapes	as	those	in	Plate	318,
lacunarity	tends	to	vary	inversely	with	the	ratio	between	the	trema’s	perimeter
and	the	square	root	of	its	area.	But	a	more	promising	measurement	is	deduced
from	the	distribution	of	gap	sizes.
From	Chapter	8,	a	Cantor	dust’s	gap	lengths	satisfy	Nr(U>u)∝Fu-D,	in	the

sense	that	log	Nr(U>u)	viewed	as	function	of	log	u	has	a	regular	stair-shaped
graph.	The	present	discussion	changes	nothing	to	this	last	result,	but	the
prefactor	F,	which	was	not	significant	till	now,	comes	to	the	fore.
We	must	face	the	fact	that	the	definition	of	F	is	somewhat	arbitrary.	For

example	F	may	be	taken	as	relative	to	the	line	joining	either	the	left,	or	the	right
endpoints	of	the	stair’s	risers,	or	their	midpoints.	Fortunately	such	detail	does	not
matter.	As	lacunarity	goes	up,	one	observes	that	any	sensibly	defined	prefactor
goes	down.	The	same	result	holds	for	the	volume	or	area	scale	factors	relative	to
the	Sierpiński	carpets	and	the	fractal	foams.	In	all	cases,	lacunarity	increase	is
due	to	the	collapse	of	many	gaps	into	a	single	bigger	one.	This	makes	the	graph
of	the	stairs	slide	toward	4:30	o’clock,	a	direction	that	is	steeper	than	the	stairs’
own	overall	slope	of	-D/E,	provoking	the	decrease	in	F	that	is	claimed	above.
Thus,	we	see	that,	within	the	broad	nevertheless	special	class	of	fractals	that

include	the	Cantor	dusts	and	Sierpiński	carpets,	lacunarity	can	be	measured,
hence	defined,	by	F.
But	this	is	a	definition	of	limited	validity.	It	already	ceases	to	be	compelling

when	a	carpet’s	large	central	medallion	is	interrupted	in	its	midst	by	a	smaller
carpet.	Hence	we	need	alternative	definitions.	The	best	is	to	substitute	for	F	the
more	broadly	valid	prefactor	of	the	relation	M(R)∝RD.



LACUNARITY	AS	2ND	ORDER	EFFECT
CONCERNING	THE	MASS	PREFACTOR

When	a	fractal	is	not	constructed	recursively	(e.g.,	when	it	is	random)	lacunarity
stand-ins	are	needed.	Those	described	in	this	and	the	following	sections	are
statistical	averages,	even	in	the	case	of	the	Cantor	dust,	which	is	nonrandom.
First,	ponder	the	Cantor	dusts	obtained	as	horizontal	mid	sections	of	the	two

figures	in	Plate	318.	Take	the	total	mass	of	either	dust	to	be	1,	and	consider	the
mass	in	diverse	subintervals	of	lengths	2R=2/7.	In	the	more	lacunar	example	to
the	left,	this	mass	ranges	widely,	from	0	to	½,	while	in	the	less	lacunar	example
to	the	right,	it	ranges	only	a	little	around	its	mean	value.	Unfortunately,	the
precise	distribution	of	mass	is	complicated	in	the	Cantor	dust	case,	and	it	is	best
to	switch	to	the	simpler	case	of	a	fully	random	Cantor	dust,	D.
We	take	it	that	D	intersects	[0,1],	and	we	denote	the	expected	mass	in	this

interval	as	(W)	(the	reason	for	this	notation	will	transpire	in	a	moment).	When	a
small	interval	[t,t+2R]	is	chosen	in	[0,1],	the	expected	mass	in	it	is	2R(W),	as	it
should	be.	But	if	one	excludes	the	uninteresting	cases	where	the	mass	vanishes,
the	expected	mass	increases	to	(2R)D	(W).	Its	value	depends	on	D—but	nothing
else.	(This	shows	that	our	dust’s	probability	of	intersecting	[0,1]	is	(2R)1-D.)	In
other	words,	the	mass	itself	comes	out	as	W(2R)D,	where	W	is	a	random
variable:	sometimes	large	and	in	other	cases	small,	but	on	the	average	equal	to
(W),	irrespective	of	lacunarity.
Now	let	us	dig	deeper,	and	seek	how	far	the	actual	values	of	W/〈W〉–1	differ

from	0.	The	conventional	measure	of	discrepancy	is	the	expected	value	of	the
second	order	expression	(W/〈W〉–1)2,	denoted	〈(W/〈W〉–1)2〉.	This	second
order	lacunarity	is	small	when	lacunarity	is	intuitively	viewed	as	low,	and	large
when	lacunarity	is	intuitively	viewed	as	high.	Therefore	〈(W/〈W〉-1)2〉	is	a
candidate	to	define	lacunarity.	Alternatives	such	as	〈|W/〈W〉–1|〉	are	tempting,
but	they	are	far	harder	to	evaluate	than	the	mean	square.
To	summarize,	we	have	moved	beyond	the	relation	“mass	∝	RD”	to	give

individual	attention	to	the	prefactor	of	proportionality	of	mass	to	RD.	Observe
that	the	notion	of	lacunarity	has	nothing	to	do	with	topology,	and	that	it	concerns
comparisons	at	given	D;	its	possible	use	for	inter-D	comparisons	remains



unexplored.



LACUNARITY	AS	1ST	ORDER	EFFECT
CONCERNING	THE	MASS	PREFACTOR

An	alternative	approach	to	lacunarity	involves	the	distribution	of	the	mass	in
[t,t+2R]	when	its	midpoint	t+R	is	conditioned	to	belong	to	D.	This	condition
implies	that	[t,	t+2R]	intersects	D,	but	the	converse	need	not	be	true:	if	[t,t+2R]
intersects	D,	the	midpoint	t+R	need	not	be	in	D.	The	tighter	conditioning	we	are
now	imposing	on	[t,t+2R]	has	a	greater	tendency	to	eliminate	the	cases	where
the	mass	is	well	below	the	average,	therefore	results	in	an	increased	expected
mass.	In	other	words,	W	is	replaced	by	W*	satisfying	〈W*〉>〈W〉.	And	the	ratio
(W*)/(W)	is	large	for	very	lacunar	D,	and	small	for	less	lacunar	ones.	Hence	we
find	an	alternative	candidate	to	define	and	measure	of	lacunarity:	〈W*〉/〈W〉.



CROSSOVER	AT	CUTOFF,	&	LACUNARITY

The	approaches	to	lacunarity	discussed	up	to	this	point	are	intrinsic,	that	is,	do
not	involve	any	external	point	of	comparison.	We	know,	however,	that	many
physical	systems	involve	a	finite	outer	cutoff	Ω.	These	systems	allow	yet	another
approach	to	lacunarity,	of	slightly	decreased	generality	than	the	two	preceding
ones	but	of	very	much	greater	convenience.
Let	us	indeed	replace	our	fractal	set	D,	for	which	Ω=	∞,	by	a	fractal	set	DΩ

which	is	“like	D”	on	scales	below	Ω	and	near	homogeneous	on	scales	above	Ω.
An	example	of	Ω	is	the	crossover	radius	where	the	galaxies’	distribution	changes
from	D<E=3	to	D=3.	This	crossover	could	be	left	without	precise	definition	until
now,	but	no	longer.	The	idea	is	that	an	observer	who	sits	on	a	point	of	D	views	Ω
as	the	size	of	the	smallest	chunk	he	must	investigate	to	obtain	a	fair	idea	of	the
whole.	To	an	inhabitant,	the	less	lacunar	world	should	seem	to	become
homogeneous	very	rapidly,	and	the	more	lacunar	world	should	seem	to	become
homogeneous	very	slowly.
A	first	impulse	is	to	write

(M(R))	=	αRD	for	R	<<	Ω	and	(M(R))	=	βRE	for	R	>>	Ω,

and	to	argue	that	the	crossover	occurs	when	αRD	=	βRE,	i.e.,	ΩE–D	=	α/β.
Hence

〈M(R)〉	=	αΩD—ERE	for	R>>Ω.

A	minor	variant	picks	the	point	where	the	two	formulas	have	equal
derivatives,	hence	Ω*E–D	=	Dα/Eβ.	When	lacunarity	(i.e.,	α)	increases	but	β	and
D	remain	fixed,	Ω	and	Λ*	both	increase.	Both	are	fresh	candidates	to	define	and
measure	lacunarity.



IMPROVED	TRANSLATION	INVARIANCE

The	fact	that	a	straight	line	can	slide	upon	itself	is	expressed	by	saying	it	is
translation	invariant.	By	contrast,	Chapter	22	stressed	that	Cantor	dusts	have	the
eminently	undesirable	property	that	they	are	not	translation	invariant.	For
example,	the	original	triadic	dust	C	and	its	translate	by	1/3	do	not	even	intersect.
On	the	other	hand,	C	and	its	translate	by	2/3	have	one-half	of	C	in	common.
In	the	case	of	maximally	lacunar	Cantor	dusts	with	N	>>	1,	the	only

admissible	translations	yielding	a	significant	overlap	are	of	length	close	to	1	or
close	to	0.	In	the	minimally	lacunar	case,	on	the	other	hand,	the	admissible
translation	length	may	be	(approximately)	any	multiple	of	1/N.
In	other	words,	translation	invariance	must	be	weakened	in	order	to	apply	to

Cantor	dusts,	but	one	gets	away	with	lesser	weakening	when	the	lacunarity	is
low.
The	conclusion	of	Chapter	22	was	that	one	can	extend	translation	invariance

and	the	cosmologic	principle	to	fractals,	by	making	them	random	and	recasting
the	invariances	in	“conditional”	form.	This	recasting	provides	a	major	reason	for
introducing	random	fractals.



FROM	STRATIFIED	TO	NONSTRATIFIED
TEXTURE

The	process	used	in	this	chapter	to	vary	the	succolarity	in	a	Sierpiński	carpet,
and	the	lacunarity	in	a	Cantor	dust	and	a	Sierpiński	carpet	involves	a	return	to
the	strata	characteristic	of	the	nonrandom	and	the	early	random	fractals.	This
method	is	powerful	but	artificial.	In	particular,	the	restriction	of	the	scaling	ratios
to	the	form	rk	buys	lacunarity	by	narrowing	the	scope	of	self-similarity.	With	a
high	value	of	N	(e.g.,	N=1022,	see	the	caption	of	Plate	114),	and	a
correspondingly	low	r,	the	stratification	is	pronounced	and	conspicuous.
This	way	of	controlling	succolarity	and	lacunarity	is	obviously	undesirable.

Therefore,	it	is	fortunate	that	I	found	one	can	do	much	better	by	extending	the
method	of	tremas:	replacing	intervals,	discs,	and	balls	by	the	more	general
shapes	discussed	in	the	chapter	that	follows.



NONLACUNAR	FRACTALS

A	fractal	may	be	of	vanishing	lacunarity,	as	shown	in	an	entry	in	Chapter	39.

Plate	318	CARPETS’	LACUNARITY
	
Consider	the	following	Sierpiński	carpets	constructed	using	the	generators

Both	generators	satisfy	b=1/r=7	and	N=40,	hence	D~1.8957.	The	fact	that
N=40	may	not	be	obvious,	but	it	becomes	obvious	by	inspection	of	the	next
stages,	as	shown	above	on	7	times	larger	scale.
Clearly,	D	being	the	same	in	both	cases	is	not	obvious.	This	is	overwhelmed

by	the	fact	that	the	carpet	to	the	left	gives	the	impression	of	having	definitely



larger	gaps,	that	is,	of	being	much	more	lacunar	(lacuna	=	hole,	gap).	Chapter	34
advances	several	alternative	methods	to	pin	this	impression	down.
This	dimension	D~1.8957	is	remarkably	close	to	that	of	Bernoulli	percolation

(end	of	Chapter	13),	but	the	resemblance	is	misleading,	because	the	topologies
are	very	different	in	these	two	cases.



35

General	Tremas,	and	the	Control	of	Texture

In	agreement	with	this	Essay’s	method,	Chapters	31	and	33	introduced	the	trema
fractals	through	the	simplest	examples,	based	upon	intervals,	discs,	and	balls.
The	results	were	gratifyingly	varied,	but	the	use	of	more	general	tremas	brings	in
even	greater	riches.
It	is	true	that	El	Hélou	(1978)	shows	that	a	trema	fractal’s	dimension	is	solely

determined	by	the	distribution	of	the	trema	length	(area	or	volume).	But	the	days
when	D	was	the	sole	numerical	parameter	of	a	fractal	ended	when	Chapter	34
introduced	succolarity	and	lacunarity.	The	present	chapter	shows	how	these
characteristics	are	affected	by	the	trema	shape.	Again,	the	demand	from	the	case
studies	and	the	supply	from	geometry	are	uncannily	matched.
From	the	viewpoint	of	succolarity,	the	tremas’	shape	affects	Dcrit,	hence	for	a

given	D,	it	affects	the	sign	and	magnitude	of	the	difference	D—Dcrit.
From	the	viewpoint	of	lacunarity,	the	simplest	improvements	upon	earlier

chapters	are	achieved	as	follows.	In	the	case	of	linear	trema	fractals	(Chapter
31),	the	Levy	dusts	are	the	most	lacunar,	and	any	lesser	degree	of	lacunarity	can
be	achieved	most	simply	and	naturally	by	taking	as	trema	the	union	of	many
intervals.	In	the	case	of	spatial	trema	fractals	obtained	directly	(Chapter	33),	the
simplest	is	to	take	each	trema	to	be	other	than	a	disc	or	ball.	In	the	case	of	spatial
trema	fractals	subordinated	to	Brownian	or	fractional	Brownian	motion	(Chapter
32),	the	simplest	is	to	take	as	subordinator	a	fractal	dust	less	lacunar	than	Levy
dust.
Unfortunately,	deadlines	are	closing	in	(this	being	the	last	chapter	of	this

Essay	to	be	written),	and	the	arguments	concerning	trema	fractals	would	take
much	reworking	to	make	them	suitable	for	inclusion	in	this	Essay.	Therefore,	the
chapter	must	be	a	mere	sketch.



TREMA	GENERATORS;	ISOTROPY

The	term	trema	shape	used	in	the	preceding	introductory	section	involves	the
notion	of	trema	generator.	Of	course,	the	term	generator	is	already	used	in
several	early	chapters.	We	remember	that	the	stick	generators	of	the	Cantor	or
Koch	shapes,	and	the	trema	generator	of	the	Sierpiński	shapes,	determine	both	a
fractal’s	shape	and	its	D.	Here,	to	the	contrary,	the	trema	generator	determines
everything	except	D.
NONRANDOM	TREMA	GENERATOR.	This	is	an	open	set	within	which	an

arbitrary	point	is	singled	out	as	the	center,	and	whose	length	(respectively,	area
or	volume)	is	equal	to	2	(respectively,	π	or	4π/3).	The	tremas	are	rescaled
versions	of	this	generator.	Their	positions	and	sizes	are	random,	with	the	same
distribution	as	in	Chapters	31	and	33.
For	example,	in	the	case	E=1,	the	number	of	tremas	having	a	length	above	τ

and	centered	in	an	interval	of	length	Δt	continues	to	be	a	Poisson	random
variable	of	expectation	(E—D*Δt/τ.	And	the	familiar	formula	for	the	dimension,
D=max(D*,	0),	is	shown	in	El	Hélou	1978	to	apply	under	mild	restrictive
assumptions	about	the	trema	generator’s	shape.	(The	question	of	whether	these
restrictive	assumptions	are	intrinsic	or	due	to	the	method	of	proof	deserves
investigation.)
BOUNDEDNESS	OF	THE	GENERATOR.	Since	the	philosophical	goal	of

the	trema	construction	is	to	create	global	structures	from	local	interaction,	it	is
sensible	to	include	the	assumption	that	the	tremas	are	local,	that	is,	bounded.	But
unbounded	tremas	may	bring	interesting	surprises.	A	further	generalized	trema
model	is	embodied	in	Plate	285.
DEFINITION	OF	GAPS.	A	gap	is	no	longer	the	union	of	tremas,	but	the

union	of	maximal	open	components	of	tremas.
NONRANDOM	ISOTROPY.	For	the	generator	to	be	isotropic,	one	must	be

able	to	choose	the	origin	so	that	the	generator	is	the	set	of	points	whose	distance
from	the	origin	falls	within	some	set	of	the	positive	real	line	(usually,	a
collection	of	prescribed	intervals).	The	isotropic	case	is	the	simplest	and	most
thoroughly	investigated.
However,	nonisotropy	is	not	excluded.	In	particular,	we	see	that	a	fractal	dust



can	be	made	asymmetric	with	respect	to	the	past	and	the	future.
RANDOM	TREMA	GENERATOR.	This	is	a	partly	or	fully	random	set	of

length	(area	or	volume)	equal	to	1.	A	careful	check	of	the	applicability	of	the
theorem	in	El	Hélou	1978	would	be	welcome.
The	least	level	of	randomness	consists	in	picking	a	single	sample	from	a

process	that	generates	random	sets,	and	in	making	all	the	tremas	identical	to	this
sample	(up	to	displacement	and	size).	The	next	useful	level	of	randomness	adds
a	random	rotation,	chosen	independently	for	each	trema.	Even	more	generally,
the	tremas	may	be	obtained	by	taking	independent	samples	from	a	process	that
generates	random	sets.	The	sample	sets	need	not	all	have	the	same	volume,
because	volume	is	pinned	down	during	resizing.	Then	the	resized	samples	are
rotated.	Nonindependent	rotations	or	samples	are	conceivable,	but	I	have	not
used	them	thus	far.
RANDOM	ISOTROPY.	In	the	first	of	the	above	alternatives,	isotropy	requires

the	sample	to	be	rotation	invariant.	In	the	second	alternative,	the	rotation	sample
must	be	distributed	uniformly.	In	the	third	alternative,	only	the	process	must	be
rotation	invariant.
STRATIFICATION.	The	preceding	definitions	would	allow	the	trema	length

(area,	volume)	to	be	stratified,	i.e.,	restricted	to	values	of	the	form	rk.	But	this
would	confuse	the	distinct	effects	of	stratification	and	of	general	trema	shapes,
there	is	no	stratification.



CONTROL	OF	SUCCOLARITY	THROUGH	THE
Dcrit	OF	GENERAL	TREMA	FRACTALS

A	section	of	Chapter	34	shows	that	a	cirriform	structure	is	expected	if	a	fractal
“nearly”	percolates,	that	is,	if	it	belongs	to	a	family	with	a	well-defined	Dcrit,	and
if	its	D	is	“only	a	little”	below	Dcrit.	In	other	words,	D	and	the	intensity	of
cirriform	structure	can	be	fitted	jointly	if	the	model	involves	both	D	and	Dcrit	as
parameters.
In	a	trema	fractal,	the	parameters	are	the	real	number	D	and	a	function	that

specifies	the	trema	generator.	Let	me	show	that	Dcrit	is	a	function	of	this	last
functional	parameter:	it	can	be	brought	arbitrarily	close	to	E,	and	if	E>2,	Dcrit
can	be	made	arbitrarily	close	to	1.
A	CASE	WHERE	Dcrit	IS	ARBITRARILY	CLOSE	TO	E.	It	suffices	to	take

as	generator	an	arbitrarily	thin	needle	or	flat	pancake	with	fixed	shape	but
isotropically	oriented	axes	(Plate	323).	To	prove	this	assertion	in	the	plane	(E=2)
observe	that,	given	an	arbitrary	D<2,	the	trema	centers,	sizes,	and	direction	can
be	selected	inspective	of	the	generator’s	flatness	ratio.	Next,	consider	a	square	of
side	L,	and	subdivide	the	tremas	into	3	ranges:	a	mid	range	with	areas	below
πL2/10	and	above	πη2,	a	high	range,	and	a	low	range.	When	D	is	much	above	the
Dcrit	relative	to	disc	shaped	tremas,	and	the	tremas	are	barely	flattened	discs,	the
situation	is	as	in	Chapter	33:	the	mid	range	tremas	mostly	form	separate	holes
surrounded	by	a	highly	connected	set.	But	if	the	tremas	nearly	flatten	into	lines,
they	almost	surely	cut	up	our	square	into	small	disconnected	polygons.	The
added	effect	of	flattened	low	range	tremas	can	only	be	to	cut	these	polygons
further.	Adding	high	range	tremas	can	erase	our	square,	or	dissect	it	into	pieces,
or	leave	it	alone.	When	it	is	left	alone,	it	can	no	longer	percolate.	In	other	words,
I	showed	that	flattening	the	tremas	can	force	Dcrit	to	become	larger	than	any
prescribed	D<2.
The	generalization	to	E	>	2	is	obvious.
The	same	effect	is	achieved	for	E≥2,	and	also	extends	to	E=1,	by	taking	as

trema	generator	the	domain	contained	between	a	ball	(or	sphere)	of	radius	well



above	1,	and	a	suitably	smaller	ball	(or	sphere).
A	CASE	WHERE	Dcrit	IS	ARBITRARILY	CLOSE	TO	1.	A	heuristic

argument	suggests	that	when	E	≥	3	and	the	tremas	are	nearly	needle	shaped,	Dcrit
is	arbitrarily	close	to	1.



CONTROL	OF	LACUNARITY	THROUGH	THE	L
OF	GENERAL	TREMAS	FRACTALS

A	section	in	Chapter	34	shows	how	one	can	control	lacunarity	where	the	trema
lengths	are	stratified.	Now	let	us	put	into	the	record	(without	detail)	the	fact	that
the	same	goal	can	be	achieved	via	the	trema	generator.	We	focus	on	the	measure
of	lacunarity	that	is	mentioned	last	in	Chapter	34,	and	involves	an	outer	cutoff	Ω.
As	a	matter	of	fact,	we	first	go	a	step	further	and	perform	a	double	cutoff	by

constraining	the	linear	scale	of	the	trema	to	lie	between	ε	>	0	and	A<oo.
It	is	easy	to	see	that	an	arbitrarily	picked	point	continues	to	have	the

probability	(ε/Λ)E–D	of	belonging	to	the	resulting	truncated	trema	fractal.	Next
spread	mass	on	this	set	with	the	density	εD—E.	We	find	that	the	prefactor	β=αΩD

—E	of	Chapter	34	becomes	ΛD—E.	Performing	the	passage	to	ε→0	properly,	this
expression	continues	to	hold	for	ε=0.	Hence,	Ω=Λα1/(E—D).
(If	Ω	is	defined	through	the	variant	defintion,	Ω=Λα1/(E—D)	(D/E)1/(E—D).)
It	remains	to	evaluate	α.	One	finds	that	it	depends	on	the	trema	generator’s

whole	shape.	It	is	largest	when	the	generator	is	an	interval	(disc,	ball)	and	can
take	arbitrarily	low	values.	The	threshold	Ω	is	correspondingly	low.
When	the	trema	is	contained	between	concentric	spheres	of	radii	α	>>	1	and	β

>>	1,	the	result	is	very	simple:	Ω∝1/α.
Thus,	it	is	possible	to	arrange	for	(M(R)),	hence,	for	the	covariance	of	the

distribution	of	mass,	to	go	over	arbitrarily	fast	to	its	behavior	in	the	asymptotic
region,	meaning	that	the	densities	at	two	points	separated	by	more	than	Ω
become	effectively	independent.
It	is	odd	that	a	decrease	in	lacunarity,	through	a	decrease	in	α,	should	be

accomplished	by	spreading	out	the	generator.	We	would	rather	expect	an
increasingly	spread	generator	to	lead	to	an	increase	in	the	size	of	the	pre-
asymptotic	region.	This	fact	underlines	again	that	the	behavior	of	(M(R)),	hence
of	the	relative	covariance	of	a	distribution	of	mass,	gives	but	a	partial	view	of	a
set’s	structure.	Higher	moments	of	M(R)	carry	much	additional	information,	but
we	cannot	dwell	on	this	issue.



CONTROL	OF	LACUNARITY	IN	DUSTS
SUBORDINATED	TO	BROWN	TRAILS

Once	we	control	a	linear	dust’s	lacunarity,	we	can	map	the	result	into	space,	via
the	process	of	subordination	examined	in	Chapter	32.	Working	in	the	plane,	and
using	as	subordinand	a	Brown	net	as	in	Plate	243,	one	can	achieve	a	dust	that	is
arbitrarily	close	to	seeming	itself	to	be	net-like,	and	to	having	an	infinite	order	of
ramification.	Starting	with	E=2,	let	the	subordinand	be	a	fractional	Brown	net
with	H>½	whose	gaps	are	smaller	than	for	H=½.	When,	in	addition,	the
subordinator’s	dimension	satisfies	D/H<E=2,	and	the	subordinator	is	of	low
lacunarity,	the	subordinate	can	be	made	to	seem	arbitrarily	close	to	plane-filling.
When	E=3	and	H=⅓,	the	subordinand	is	a	space-filling	curve.	When	D/	H	<	E,
and	the	subordinator	is	of	low	lacunarity,	the	subordinate	dust	can	be	made	to	fill
space	to	as	low	a	degree	of	lacunarity	as	one	wishes,	irrespective	of	D.

Plate	323	EFFECT	OF	THE	TREMA	GENERATOR	UPON	THE
LACUNARITY	OF	A	TREMA	FRACTAL

	



These	two	illustrations	ought	to	give	an	idea	of	the	effect	of	the	trema
generator’s	shape	upon	lacunarity.	While	both	trema	generators	are	diamond-
shaped,	one	is	nearly	a	square,	and	the	other	is	a	sharp	needle.	Isolated	small
black	diamonds	are	seen	against	the	white	areas.
Both	constructions	involve	the	same	parameter	D	and	the	same	areas	for	the

largest	and	the	smallest	diamonds.	One	can	show	that	it	follows	that	the	white
remainders	have	identical	areas	in	both	cases,	except	for	statistical	variability.
Nevertheless,	it	is	obvious	by	inspection	that	one	of	the	white	remainders
spreads	out	very	much	more	than	the	other.	The	measures	of	lacunarity	that	I
introduced	attribute	to	the	more	spread	out	remainder	a	much	lower	value	of	the
coefficients	lacunarity.
For	a	most	embarrassing	reason,	not	only	is	this	not	the	illustration	intended	for
this	spot,	but	the	precise	specification	of	this	plate	escapes	me	at	the	moment.
Indeed,	illustrations	of	fractals	with	D~1.23	and	varying	and	controlled	degrees
of	lacunarity	and	succolarity	had	been	produced	by	us	in	large	numbers	around
January	1,	1979.	But	the	file	containing	the	bulk	of	the	output	is	misplaced	(or
lost),	and	the	few	preliminary	runs	that	survive	in	other	files	carry	inadequate
labels.	Lacking	time	to	reactivate	the	program,	I	can	only	show	what	is	available.
As	I	recall	it,	the	computation	begins	with	a	periodic	pattern,	whose	period	is

a	6003	cubic	lattice.	In	other	words,	the	computation	is	carried	on	a	6003	lattice,
whose	opposite	faces	are	identified	to	create	a	torus.	The	distribution	of	trema
volumes	is	truncated.	The	tremas	having	been	removed,	the	origin	is	moved	to	a
nonremoved	point,	chosen	either	arbitrarily	or	within	a	region	of	high	density.
Points	close	to	the	origin	are	not	plotted,	and	other	points	are	sorted	into	shells

defined	by	R12<x2+y2+z2<R22	corresponding	to	decreasing	brightness	ranges.
Each	shell	is	projected	on	the	spherical	sky.
The	goal	is	to	process	the	available	data,	so	as	to	extract	the	maximum	of

independent	information.	For	small	R2,	one	can	map	the	whole	sky,	but	for	larger
R2,	one	must	not	process	more	than	some	suitable	fraction	of	one	period	of	the
initial	periodic	pattern.	The	value	of	R2	in	the	outer-most	shell	is	greatest	when
the	map	is	limited	to	a	single	octant	of	the	sky,	for	example	the	domain	where
x>0,	y>0,	z>0.	In	spherical	coordinates,	one	can	define	this	octant	as
corresponding	to	positive	latitudes	(northern	hemisphere)	and	longitudes
between–45°	and	45°.	Under	the	Hammer	projection	used	here,	this	octant	maps
on	the	“gothic	ogive	window”	in	the	following	diagram.



When	R2	reaches	600,	the	data	in	the	neighborhoods	of	the	three	vertices
become	statically	dependent,	and	the	neighborhoods	of	the	bottom	vertices	are
best	disregarded.	In	this	fashion,	the	data	beyond	R2	=	600,	and	the	data	near	x	=
z	=	0,	y	=	600,	and	near	y	=	z	=	0,	x	=	600,	are	sacrificed	to	the	task	of	avoiding
the	statistical	dependence	induced	by	periodicity.	On	the	other	hand,	to	plot	the
antipodal	region	x<0,	y<0,	z<0,	i.e.,	southern	latitudes	and	longitudes	θ
satisfying	|θ–180°|	<	45°,	does	not	require	a	fresh	computation,	and	the	outcome
may	look	sufficiently	different	to	be	viewed	as	providing	additional	information.
In	a	final	stage	of	processing,	meant	to	erase	the	trace	of	the	original	cubic

lattice,	every	point	is	moved	along	a	vector	whose	coordinates	are	uniformly
distributed	on	[0,1].	Unfortunately,	this	procedure	generates	solid	grey	areas	of
various	degrees	of	blackness,	which	misrepresent	the	underlying	fractal:	what
we	see	are	smoothed	out	versions	of	areas	of	great	nonuniformity.
In	the	present	Plate,	R2	=	600	and	R1	=	R2/1.5,	hence	the	magnitudes	lie	in	a

narrow	range	of	width	2.5log10(1.5)2~.88.
Figure	7	of	Mandelbrot	1980b	shows	another	fractal	dust	(also	incompletely

labeled)	obtained	via	a	different	choice	of	f	tremas.



Plate	325	FRACTAL	DUST	OBTAINED	WHEN	THE	TREMAS	ARE
NONSPHERICAL:	ONE	OCTANT’S	PROJECTION	ON	A	SPHERICAL

SKY
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Logic	of	Fractals	in	Statistical	Lattice	Physics

From	the	viewpoint	of	fractals,	most	problems	of	physics	are	not	specifically
different	from	those	raised	by	other	fields,	which	is	why	case	studies	from
physics	are	scattered	throughout	this	Essay,	with	only	a	few	kept	aside	to	be
discussed	in	this	chapter.
Some	readers,	however,	may	have	started	on	this	Essay	with	the	present

chapter,	because	its	title	is	the	only	one	containing	the	word	physics.	Let	me
encourage	these	readers	to	scan	the	index,	but	first	let	me	draw	their	attention	to
the	following	extensive	case	studies	in	physics	that	do	not	show	in	chapter	titles.
Chapters	13	and	14	include	a	case	study	of	percolation.
The	Apollonian	“soap”	in	Chapter	18	is	a	smectic	liquid	crystal.
Texture	(Chapters	34	and	35)	is	bound	to	find	many	new	applications	in

physics	in	the	very	near	future.
Finally,	a	few	references	will	be	of	interest.	The	term	diffractals	was	coined	in

Berry	1979	to	denote	waves	that	are	either	reflected	by	a	fractal	surface	or
refracted	by	a	slab	of	transparent	material	with	fractally	turbulent	refractive
index.	Diffractals	are	a	new	wave	regime	in	which	ever	finer	levels	of	structures
are	explored	and	geometrical	optics	is	never	applicable.	Berry	calculates	some	of
their	properties	explicitly.
Berry	1978	calculates	the	distribution	of	modes	of	fractal	drums:	resonators

whose	boundary	is	a	fractal.



ON	TWO	KINDS	OF	CONVERGENCE

Now	to	this	chapter’s	goal.	By	scattering	the	preceding	topics	around,	a	very
important	issue	was	either	neglected	or	swept	under	the	rug	when	encountered.
In	many	areas	of	physics,	a	basic	step	in	the	construction	of	mathematical
fractals	is	impossible	as	a	matter	of	principle.
As	a	prelude,	let	us	recall	again	that	the	bulk	of	this	Essay	is	devoted	to

fractals	that	involve	recursive	interpolation,	either	as	a	matter	of	definition,	or	at
least	through	an	after-the-fact	explicit	construction.	Each	construction	stage
begins	with	a	geometrically	standard	shape,	for	example	a	broken	line	“teragon,”
and	interpolates	it	a	bit	further.	The	fractal	is	the	limit	of	these	teragons,	in	the
sense	that	the	distance	between	the	teragon	and	the	limit	(defined	by	suitable
generalization	of	the	usual	notion	of	distance	between	points)	tends	to	zero.	Such
a	limit	is	called	“strong”	by	mathematicians.
By	contrast,	other	limits	that	occur	in	the	statistical	context,	are	called	“weak”

(or	“vague”).	As	ordinarily	presented,	the	distinction	between	the	two	sorts	of
limit	seems	yet	another	hairsplitting	nicety.	But	the	theme	of	weak	convergence
permeates	all	the	cases,	both	old	and	new	ones,	where	random	fractals	enter	into
“lattice	physics,”	which	is	the	customary	practice	of	present	statistical	physics.
The	discussion	hangs	on	some	fresh	examples	of	fractals	in	physics,	and	on	an

important	problem	in	lattice	hydrology	that	falls	into	the	same	mold.



THE	RANDOM	WALK’S	FRACTAL	LIMIT

As	a	prelude,	let	us	note	the	role	of	weak	convergence	in	the	context	of
Brownian	motion.	As	mentioned	fleetingly	in	Chapter	25,	a	random	walk	on	a
lattice	(for	example,	on	the	points	whose	coordinates	are	integers)	can	be
“downsized”	as	it	walks	on,	until	the	lattice	step	becomes	invisible,	and	its
effects	on	the	observables	become	negligible.
Everybody	knows	that	this	procedure	“generates”	Brownian	motion,	but	the

term	“generates”	has	a	new	meaning	here.	The	sequence	of	teragons	which
Chapter	6	uses	to	generate	a	Koch	curve	behaves	like	a	picture	to	which	detail	is
continually	added	by	sharper	focusing.	By	contrast,	a	sequence	of	downsized
random	walks	moves	around,	first	seeming	to	be	at	a	small	distance	from	some
Brownian	motion,	then	even	closer	to	a	different	one,	then	still	closer	to	yet
another	one,	and	so	on	...	without	ever	settling	down.	There	is	good	reason	for
mathematicians	to	describe	this	process	as	a	weak	or	vague	convergence.	And
there	is	good	reason	for	considering	a	finitely	downsized	random	walk	as	a
fractal	curve	with	an	inner	cutoff	equal	to	the	lattice	spacing.	But	this	is	a	novel
kind	of	cutoff.	In	earlier	chapters,	an	inner	cutoff	was	superposed	after	the	fact
upon	defined	geometric	constructions	which	in	theory	involve	no	cutoff,	and	can
be	interpolated	to	infinitesimal	scales	and	generate	fractals.	On	the	contrary,
there	is	no	way	of	interpolating	random	walk.



FRACTALS	IN	“LATTICE	PHYSICS”

The	preceding	description’s	scope	goes	well	beyond	Brownian	motion.	Indeed,
statistical	physics	has	imperative	reasons	for	replacing	many	of	the	actual
problems	it	faces	by	analogs	constrained	to	a	lattice.	One	may	therefore	describe
the	bulk	of	statistical	physics	as	forming	a	part	of	“lattice	physics.”
As	my	early	Essays	pointed	out,	and	many	writers	have	confirmed,	lattice

physics	is	rife	with	fractals	and	almost	fractals.	The	former	are	shapes	in	a
parameter	space,	such	as	the	Devil’s	Staircase	shapes	mentioned	in	the	caption
of	Plate	83.	The	latter	are	shapes	in	real	space	that	are	not	fractals,	because	they
cannot	conceivably	be	interpolated	to	the	infinitely	small,	but	are	fractal-like
insofar	as	their	medium	and	large	scale	properties	are	those	of	fractals.	A	notable
example	is	encountered	in	Chapters	13	and	14,	when	we	tackle	Bernoulli
percolation.
Needless	to	say,	I	am	utterly	convinced	that	these	shapes’	downsized	versions

converge	weakly	to	fractal	limits.	And	the	arguments	in	Chapters	13	and	14	are
based	on	this	conviction.	Physicists	find	it	totally	persuasive,	despite	the	fact
that,	insofar	as	I	know,	the	only	case	where	a	full	mathematical	proof	is	available
is	Brownian	motion.	Thus,	I	tend	to	think	of	these	nonfractal	shapes	with
presumed	fractal	limits	as	latticed	fractals.	Major	additional	examples	are
discussed	later	in	the	chapter.
A	related	but	different	inference	is	that	the	actual	problems,	of	which	lattice

physics	is	a	manageable	simplification,	involve	the	same	(or	nearly	the	same)
fractals.	In	the	case	of	polymers	(to	be	studied	momentarily),	Stapleton,	Allen,
Flynn,	Stinson	&	Kurtz	1980	supports	this	inference.



LOCAL	INTERACTION/GLOBAL	ORDER

A	fascinating	discovery	of	lattice	physics,	and	one	that	deserves	to	be	known
widely,	is	that	under	certain	conditions	it	happens	that	purely	local	interactions
snowball	into	global	effects.	To	take	a	basic	example,	interactions	between
neighboring	elementary	spins	can	generate	magnets	one	can	hold	in	one’s	hand.
One	should	be	allowed	to	dream	that	the	phenomena	that	I	represented	by

fractional	Brownian	fractals	will	one	day	be	explained	in	this	manner.



A	FICTITIOUS	EXAMPLE

Let	me	describe	an	example	that	differs	in	fundamental	ways	from	the	physical
mechanism	of	ordering,	but	has	the	virtue	of	being	simple	and	of	bringing	back
our	old	fractal	friend	the	Sierpiński	gasket	(Chapter	14)	as	example	of
demonstrable	weak	limit.	Spins	are	placed	at	the	points	with	integer	valued
coordinate,	so	that	at	even	(resp.,	odd)	times,	they	sit	on	even	(resp.	odd)	points.
The	rule	of	change	is	that	the	spin	S(t,n)	at	time	t	and	position	n	is–1	if	S(t–1,	n–
1)	and	S(t–1,	n+1)	are	identical,	and	is	+1	otherwise.
A	line	uniformly	covered	with–1	spins	is	left	invariant	by	this	process.	Now

let	us	follow	the	effects	of	the	introduction	of	an	+1	“impurity”	at	n=0	and	t=0.
The	spins	S(1,	n)	are	all–1	except	for	n=–1	and	n=+1,	and	later	configurations
are	as	follows:

Many	readers	recognize	here	a	Pascal	triangle	that	has	been	summarized	by
marking	by	+	the	positions	of	odd	valued	binomial	coefficients.	The	tth	line	of
the	complete	Pascal	triangle	gives	the	coefficients	in	the	development	of	the
binomial	(a+b)t.



And	everyone	who	read	Chapter	14	sees	that	if	we	join	each	+	to	the
neighboring	+’s,	we	obtain	a	graph	with	obvious	kinship	to	the	Sierpinski	gasket
(Rose	1981).	In	fact,	by	downsizing	this	graph,	we	make	it	converge	to	the
Sierpinski	gasket.



SELF-AVOIDING	RANDOM	WALK	AND	LINEAR
POLYMERS’	GEOMETRY

We	now	return	to	an	important	specific	problem.	The	self-avoiding	random	walk
(SARW)	goes	forward	with	no	regard	to	its	past	positions,	except	that	it	is
prohibited	from	passing	through	a	point	more	than	once,	and	from	entering	a
region	from	which	it	will	find	it	impossible	to	exit.	All	the	permissible	directions
are	given	equal	probabilities.
On	the	straight	line,	such	a	motion	poses	no	problem:	it	necessarily	continues

in	either	direction	and	never	reverses	itself.
In	the	plane	and	space,	to	the	contrary,	the	problem	is	interesting	and	very

difficult,	so	difficult	that	to	date	no	analytical	study	has	been	successful.	Yet	its
practical	importance	in	the	study	of	macromolecules	(polymers)	is	such	that	it
has	become	the	object	of	careful	heuristics	and	detailed	computer	simulations.
The	result	that	interests	us	most,	due	to	C.	Domb	and	described	in	Barber	&
Ninham	1970,	is	as	follows:
After	n	>>	1	steps,	the	root	mean	square	displacement	Rn	is	of	the	order	of

magnitude	of	n	raised	to	a	power	we	denote	by	1	/D.
This	result	strongly	suggests	that,	within	a	circle	or	sphere	with	radius	R

surrounding	a	site,	the	number	of	other	sites	is	approximately	RD.	This	is	a	good
reason	for	checking	whether	or	not	D	is	a	fractal	dimension.
Its	value	on	a	straight	line	is	(trivially)	D=1.	A	theoretical	argument	due	to

Flory,	and	computer	simulations	for	E=2	and	3,	agree	on	D=(E+2)/3	(de	Gennes
1979,	Section	1.3,	which	denotes	D	by	1/ν,	is	a	good	survey).	The	fractal
dimension	DB=2	of	Brownian	motion	exceeds	this	value	for	E=2	and	3,	but
coincides	with	it	for	E=4.
Only	in	the	limit	E→∞	does	a	limit	argument	due	to	Kesten	establish	that

D→2.	However,	the	value	D=2	for	E≥4	is	suggested	by	delicate	physics
arguments,	and	also	by	the	simple	fractal	argument	that	runs	as	follows:	When
E≥4,	the	codimension	of	Brownian	motion	is	2,	hence	the	codimension	of	its
double	points	is	0,	meaning	that	Brownian	motion	has	no	double	points.
Therefore	it	is	self-avoiding	with	no	further	ado.
The	values	of	D	happen	to	be	sensitive	to	the	details	of	the	underlying



assumptions.	If	a	polymer	in	3-space	is	made	of	two	different	types	of	atoms	(so
that	the	walk	is	not	constrained	to	a	lattice),	Windwer	finds	that	D=2/1.29,	which
he	claims	is	significantly	below	Domb’s	value	D=1.67∼2/1.2.	In	a	polymer
dissolved	in	a	reacting	solvent,	the	imbedding	space	is	even	less	inert,	in
particular,	D	becomes	interaction-dependent.	The	 -point	is	defined	as	the	point
when	D	takes	the	Brownian	value	DB=2.	In	good	solvents	D	<	2,	and	D
decreases	with	the	solvent’s	quality	;	in	particular,	a	perfect	solvent	yields
D=2/1.57	if	E=2	and	D=2/1.37	if	E=3.	Even	the	worst	solvent	in	2-space	can
never	lead	beyond	D=2,	but	a	bad	solvent	in	3-space	yields	D>2.	Coagulation
and	phase	separation	set	in,	and	a	nonbranching	chain	is	no	longer	a	satisfactory
model.
The	preceding	paragraphs	do	nothing	but	transcribe	known	results	into	fractal

terminology,	but	I	feel	that	this	transcription	helps	to	clarify	their	statement.
Nevertheless,	it	must	be	restated	that,	by	calling	D	a	dimension,	we	assume	that
repeatedly	downsized	SARW	converge	weakly	toward	some	family	of	fractals
with	the	empirically	observed	D	as	their	dimension.	The	physicist	has	no	doubt
on	this	account,	but	a	demanding	mathematician	insists	that,	as	of	now,	this
assertion	remains	a	conjecture.	The	following	section	sketches	a	direction	the
proof	may	take.
Observe	that	the	downsized	fractal	limit	is	not	expected	to	be	self-avoiding,

because	points	where	a	SARW	is	“reflected”	on	its	distant	past	become	double
points.	Their	dimension	is	indeed	(4-E)/3>0.	However,	triple	points	can	be
expected	not	to	occur,	and	indeed	their	dimension	is	max(0,2-E)=0.
Sequences	that	converge	strongly	to	fractals	are	incomparably	easier	to	study,

both	analytically	and	computationally,	than	downsized	SARW.	Hence	it	is	useful
—so	to	say—to	“shadow”	SARW	by	a	sequence	blessed	with	ordinary	(strongly)
convergent	approximations.	This	goal	is	achieved	by	my	“squig	curves,”	Chapter
25.	One	striking	result	is	that	the	least	contrived	and	most	isotropic	squigs	have	a
dimension	extraordinarily	close	to	the	value	D=4/3	characteristic	of	plane
SARW.	A	second	“shadow”	is	the	self-avoiding	Brownian	motion,	defined	in
Plate	243	as	the	boundary	of	the	hull	of	a	bounded	Brown	trail.	It	may	be
recalled	that	it	also	yields	D=4/3.	This	bunching	of	values	can	hardly	be	a
coincidence;	it	must	tell	us	something	profound	about	the	structure	of	the	plane.
It	is	interesting	to	sidetrack	here	to	examine	whether	a	self-avoiding	random

walk	satisfies	the	cosmological	principle	(Chapter	22).	Its	first	few	steps	do	not.
A	conditionally	cosmographic	steady	state	seems	certain	to	prevail	(but	I	do	not
know	of	a	proof).



RENORMALIZATION	ARGUMENTS

The	analytic	study	of	scaling	in	lattice	physical	systems	(pursued	in	a	tradition
distinct	from	mine)	relies	greatly	on	the	powerful	tool	called	(inaccurately)	the
“renormalization	group	(RG)	technique.”	Wilson	1979	is	a	readily	available
survey	by	the	originator.	When	an	early	version	of	this	Essay	and	an	early	RG
paper	were	still	in	preprint	form,	H.	G.	Callen	drew	my	attention	to	an	obvious
conceptual	kinship	between	them.
To	investigate	this	kinship,	let	us	ponder	the	following	quotes	from	Wilson

1975,	p.	774:	(a)	“The	crucial	feature	of	the	statistical	continuum	limit	is	the
absence	of	characteristic	length	or	energy	or	time	scales.”	(b)	“[The	RG]	is	the
tool	that	one	uses	to	study	the	statistical	continuum	limit	in	the	same	way	that
the	derivative	is	the	basic	procedure	for	studying	the	ordinary	continuum	limit....
[Universality,	an	additional	hypothesis]	has	an	analogue	in	the	case	of	an
ordinary	derivative.	Normally,	there	are	many	different	finite	difference
approximations	to	a	single	derivative.”	(c)	“One	is	still	a	long	way	from	the
simple	and	yet	explicit	nature	of	the	derivative.”	(d)	“A	divergent	integral	is	a
typical...	symptom	of	a	problem	lacking	a	characteristic	scale.”	(e)	“[An	earlier]
renormalization	theory	...	eliminates	the	divergences	of	quantum
electrodynamics....	[Its]	worst	feature...	is	that	it	is	a	purely	mathematical
technique	for	subtracting	out	the	divergent	parts	of	integrals.”	(f)	“The	basic
physical	idea	underlying	the	RG	approach	is	...	that	there	is	a	cascade	effect....
[The	first]	principal	feature	of	the	cascade	picture	is	scaling.”	(g)	“[The	second
principal	feature]	is	amplification	or	deamplification.”
Now	a	few	comments.	Quote	(a)	states	that	RG	and	fractals	address	the	same

class	of	concrete	problems,	and	quote	(d)	that	they	encounter	the	same	first
difficulty.	Quote	(b)	becomes	by	far	more	accurate	when	applied	to	the	theory	of
fractals.	In	the	fractal	context,	the	complaint	stated	in	quote	(c)	is	unwarranted	:
there	is	now	a	simple	and	explicit	replacement	for	the	derivative,	the	first
element	of	which	is	fractal	dimension.	Quote	(d)	brings	back	familiar	memories
to	the	reader	of	this	Essay:	we	start	in	Chapter	5	by	arguing	that	the	integral	that
is	supposed	to	give	the	length	of	a	coastline	is	divergent.	Elsewhere	we	manage
to	live	with	infinite	variance,	infinite	expectation,	or	infinite	probability	(as



when	we	deal	with	the	distribution	Pr(U	>	u)=u-D	for	O	<	u	<	∞,	despite	the	fact
that	O-D=	∞).	Quote	(e)	gives	us	a	cosy	feeling	:	we	always	manage	to	avoid
divergences	without	recourse	to	purely	mathematical	techniques.	Quote	(f)	is
also	totally	familiar.
In	sum,	there	is	indeed	no	question	that	RG	and	fractals	draw	on	the	same

inspiration,	and	lead	to	the	analytic	and	the	geometric	face	of	the	same	coin.	But
there	is	no	fractal	counterpart	of	(g),	hence	the	parallelism	is	not	complete.

	One	of	the	outputs	of	RG	is	a	fixed-point	Hamiltonian	H0.	To	be	a	physicist
is	to	believe	that	a	physical	system’s	Hamiltonian	H	implies	in	principle
everything	there	is	to	know	concerning	the	system’s	structure.	If	so,	one	should
also	be	able	to	use	Hamiltonians	to	derive	the	various	random	shapes’	joint
probability	distributions.	The	finitely	renormalized	H	should	yield	a	downsized
shapes’	distributions,	and	the	fixed	point	H0	should	yield	the	limits’	distribution
—and	in	particular	their	D.	The	program	of	research	implied	in	this	sketch	may
be	hard	to	implement,	but	I	am	fully	confident	it	will	work	out.



SELF-AVOIDING	POLYGONS

Let	a	polygon	be	chosen	at	random	among	all	the	n-sided	self-avoiding	polygons
whose	sides	are	links	of	a	plane	(E=2)	square	lattice.	Sometimes	it	is	squarish,
with	an	area	about	(n/4)2.	Sometimes	it	is	spindly	and	skinny,	with	an	area	about
n/2.	If	one	averages	by	giving	to	each	polygon	the	same	weight,	numerical
simulations	indicate	that	the	average	area	is	about	n2/D	with	D∼4/3	(Hiley	&
Sykes	1961).	Hence	from	the	fractal	viewpoint	a	polygon	behaves	like	a	self-
avoiding	random	walk	biting	its	tail.



BACK	TO	COASTLINE	MODELS

Their	dimension	being	D∼4/3	seems	to	qualify	self-avoiding	polygons	as
models	of	coastlines	of	above	average	irregularity.	We	may	rejoice	at	this
finding,	but	the	question	concerning	the	shape	of	coastlines,	raised	in	Chapter	5,
is	not	settled	thereby.
First	of	all,	there	is	the	problem	of	islands.	The	concept	of	dimension	should

at	the	same	time	account	for	the	coastlines’	irregularity,	their	fragmentation,	and
the	relationship	between	irregularity	and	fragmentation.	But	self-avoiding
polygons	have	no	offshore	islands.
Second,	I	think	that	no	single	value	of	D	could	suffice	for	all	of	Earth’s

coastlines.
Last	but	not	least,	when	a	very	large	self-avoiding	random	walk	or	polygon	is

downsized,	so	that	the	lattice	step	decreases	from	1	to	a	small	value	η,	two	points
that	used	to	be	distant	by	1	converge	to	the	same	limit	point.	The	limit
downsized	walk	or	polygon	is	therefore	no	longer	self-avoiding:	it	does	not	self-
intersect	but	it	self-contacts.	I	do	not	wish	to	see	such	points	in	a	model	of	a
coastline.	For	example,	they	imply	the	existence	of	a	strict	interpretation	of	the
etymology	of	peninsulas	(almost-islands	that	touch	the	mainland	at	a	single
point)	and	the	existence	of	almost-lakes.



RIVERS’	FAILURE	TO	RUN	STRAIGHT

Chapter	12	mentions	Hack’s	empirical	finding	that	it	is	typical	for	a	river’s
length	to	increase	like	the	power	of	D/2	of	its	drainage	area.	Were	it	true	that
rivers	flow	straight	through	round	drainage	areas,	stream	lengths	would	be
proportional	to	the	square	root	of	the	drainage	area,	so	the	value	of	D	would	be
D=1.	In	fact,	D	is	the	range	from	1.2	to	1.3.	In	response,	Chapter	12	describes	a
model	based	on	a	plane-filling	rivers	network,	in	which	the	rivers	are	fractal
curves.
In	a	very	different	stochastic	attempt	to	explain	the	Hack	effect,	Leopold	&

Langbein	1962	reports	computer	simulations	of	the	development	of	drainage
patterns	in	regions	of	uniform	lithology.	The	model	involves	an	original	two-
dimensional	random	walk	in	a	square	lattice,	which	ought	to	interest	the
physicist.	It	is	assumed	that	both	source	locations	and	directions	of	propagation
are	chosen	by	chance.	The	source	of	the	first	stream	is	a	square	chosen	at
random,	and	a	channel	is	generated	by	a	SARW	into	adjacent	squares,	until	it
goes	off	the	boundary	area.	Then	a	second	source	is	chosen	at	random	and
another	stream,	generated	as	before,	terminates	either	by	going	off	the	boundary
or	by	joining	the	first	stream.	Often	the	second	stream,	the	“Missouri,”	is	longer
than	the	portion	of	the	Mississippi	above	their	junction.	It	is	possible	that	the
junction	should	occur	at	the	first	stream’s	source.	The	same	procedure	continues
until	all	squares	are	filled	in.	In	addition	to	these	general	rules,	various	rather
arbitrary	decisions	avoid	loops,	snags,	and	inconsistencies.
Computer	simulation	indicates	that,	in	this	random	walk	model,	river	length

increases	as	the	0.64	power	of	the	drainage	area.	Hence	D∼1.28.	The
discrepancy	between	this	value	and	Domb’s	D∼4/3	may	be	a	statistical	variation
due	to	insufficiently	extensive	simulations.	But	I	am	tempted	to	view	the
discrepancy	as	genuine:	the	cumulative	interference	from	other	streams	seems
more	accentuated	than	the	interference	from	a	SARW’s	past	values,	hence	we
would	expect	a	small	D	for	the	Leopold	&	Langbein	model.
Compared	to	actual	maps,	Leopold	&	Langbein	rivers	wander	excessively.	To

avoid	this	defect,	numerous	alternatives	have	been	proposed.	The	model	due	to
Howard	1971	postulates	headward	growth,	according	to	various	perfectly



artificial	schemes,	from	mouths	placed	on	the	boundary	of	a	square	toward
sources	placed	inside.	This	procedure	generates	rivers	that	are	markedly
straighter	than	in	the	Leopold	&	Langbein	scheme,	and	hence	presumably
involve	a	smaller	D.
Thus	far,	the	study	of	random	networks	such	as	those	of	Leopold	&	Langbein

and	of	Howard	is	limited	to	a	few	computer	simulations.	It	is	a	shame,	and	I
wish	to	bring	these	very	interesting	problems	to	the	attention	of	mathematicians.
The	fact	that	the	SARW	has	proven	extremely	resistant	to	analysis	should	serve
to	warn	off	seekers	of	easy	problems	with	a	large	payoff,	but	the	Leopold	&
Langbein	variant	might	be	easier.
To	repeat:	the	mathematical	difficulties	encountered	in	the	study	of	SARW	are

rooted	in	the	fact	that	local	changes	may	have	global	effects.	Similarly,	a	local
change	in	a	Leopold	&	Langbein	network	may	result	in	a	big	river	breaking
through	a	dividing	line	into	the	neighboring	basin.	One	would	be	happy	to	be
able	to	measure	the	intensity	of	the	resulting	long-term	interaction
macroscopically.	Naturally,	I	expect	this	parameter	to	be	a	fractal	dimension.



37

Price	Change	and	Scaling	in	Economics

Only	half	in	jest,	the	variation	of	prices	on	stock	and	commodity	exchanges	may
be	said	to	raise	a	geometric	problem,	since	the	newspapers’	financial	pages	are
full	of	advertisements	by	self-styled	“chartists,”	who	plot	the	past	suitably	and
proclaim	they	can	predict	the	future	from	those	charts’	geometry.
The	basic	counterclaim,	first	asserted	in	1900	by	Louis	Bachelier,	is	that

charting	is	useless.	The	most	assertive	statement	is	that	successive	price	changes
are	statistically	independent.	A	milder	statement	is	that	every	price	follows	a
“martingale”	stochastic	process,	meaning	that	the	market	is	“perfect”:	everything
in	its	past	has	been	discounted	fully.	An	even	milder	statement	is	that
imperfections	remain	only	as	long	as	they	are	smaller	than	transaction	costs;
such	markets	are	called	“efficient.”	Bachelier’s	notion	of	efficiency	has	proved
extraordinarily	accurate.
A	more	specific	assertion	by	Bachelier	is	that	any	competitive	price	follows,

in	the	first	approximation,	a	“one-dimensional	Brownian	motion”	B(t).	The	fact
that	a	process	so	fundamental	to	physics	has	been	invented	by	a	maverick
mathematician	is	worth	remembering,	see	Chapter	40.	Sad	to	report,	when	actual
data	became	available,	B(t)	turned	out	to	represent	them	very	poorly.	The	present
chapter	describes	an	alternative	description,	which	I	constructed	on	the	basis	of	a
scaling	assumption	(one	of	the	earliest	to	be	made	in	any	field).	It	proves
astonishingly	accurate.



THE	DISCONTINUITY	OF	PRICES

My	simplest	anti-Brown	argument	is	based	on	an	experimental	observation	that
is	so	plain	and	direct	that	one	may	be	surprised	that	it	should	prove	fundamental.
But	the	arguments	which	earlier	chapters	use	to	show	that	D>2	for	galaxies	and
D>2	for	turbulence	are	also	surprisingly	plain	and	direct.	The	unsophisticated
observation	is	that	a	continuous	process	cannot	account	for	a	phenomenon
characterized	by	very	sharp	discontinuities.	We	know	that	Brownian	motion’s
sample	functions	are	 almost	surely,	almost	everywhere	continuous.	But	prices
on	competitive	markets	need	not	be	continuous,	and	they	are	conspicuously
discontinuous.	The	only	reason	for	assuming	continuity	is	that	many	sciences
tend,	knowingly	or	not,	to	copy	the	procedures	that	prove	successful	in
Newtonian	physics.	Continuity	should	prove	a	reasonable	assumption	for	diverse
“exogenous”	quantities	and	rates	that	enter	into	economics	but	are	defined	in
purely	physical	terms.	But	prices	are	different:	mechanics	involves	nothing
comparable,	and	gives	no	guidance	on	this	account.
The	typical	mechanism	of	price	formation	involves	both	knowledge	of	the

present	and	anticipation	of	the	future.	Even	when	the	exogenous	physical
determinants	of	a	price	vary	continuously,	anticipations	change	drastically,	“in	a
flash.”	When	a	physical	signal	of	negligible	energy	and	duration,	“the	stroke	of	a
pen,”	provokes	a	brutal	change	of	anticipations,	and	when	no	institution	injects
inertia	to	complicate	matters,	a	price	determined	on	the	basis	of	anticipation	can
crash	to	zero,	soar	out	of	sight,	do	anything.



FALLACIES	OF	FILTER	TRADING
(MANDELBROT	1963b)

The	idea	that	price	can	be	discontinuous	hardly	seems	to	have	any	predictive
value	by	itself.	But	it	proved	basic	to	the	fall	and	the	burial	of	the	method	of
trading	using	“filters,”	due	to	Alexander	1961.	In	principle,	a	p%	filter	is	a
device	that	monitors	price	continuously,	records	all	the	local	maxima	and
minima,	gives	a	buy	signal	when	price	first	reaches	a	local	minimum	plus
exactly	p%,	and	gives	a	sell	signal	when	a	price	first	reaches	a	local	maximum
minus	exactly	p%.	Since	continuous	monitoring	is	impractical,	Alexander
monitored	the	sequence	of	daily	highs	and	lows.	He	took	it	for	granted	that	a
price	record	can	be	handled	like	a	continuous	function.	The	algorithm	seeks	the
days	when	the	high	first	exceeds	an	earlier	day’s	low	plus	p%.	The	assumption	is
that	at	some	time	during	the	day	d,	the	price	was	exactly	equal	to	said	low	plus
p%,	at	which	point	the	filter	triggered	a	buy	signal.	Similarly	for	sell	signals.
Alexander’s	empirical	conclusion	is	that	a	filter’s	buy	or	sell	signals	bring	higher
returns	than	“buy	and	hold.”
In	fact,	Mandelbrot	1963b,	p.	417,	points	out	that	the	24-hour	days	on	which

the	filter	gives	a	buy	signal	are	very	likely	to	be	days	of	strong	overall	upward
price	motion.	On	many	such	days,	price	actually	jumps,	either	overnight	or	while
trading	is	stopped	on	the	Exchange’s	initiative.	Thus,	as	the	moments	when
Alexander’s	filter	ought	to	emit	a	buy	signal,	it	is	likely	to	be	turned	off!	It	will
emit	a	buy	signal	as	soon	as	it	turns	on	again,	but	the	resulting	buy	price	is	often
significantly	higher	than	Alexander	assumed.
Additional	possibility:	on	many	days,	price	variation	is	made	reasonably

continuous	by	the	deliberate	actions	of	a	market	specialist,	performing	his
assigned	functions	of	matching	buyers	and	sellers,	and	of	“insuring	the
continuity	of	the	market”	by	buying	or	selling	from	his	own	holdings.	Whenever
the	specialist	fails	to	insure	continuity,	he	must	file	a	written	explanation,	and	he
often	prefers	to	smooth	out	the	discontinuity	artificially.	Obviously,	the	resulting
bargains	are	reserved	to	friends,	while	the	bulk	of	customers	has	to	buy	at	a
higher	price.
Third	possibility:	certain	daily	price	changes	are	subjected	to	limits,	and	can



move	the	daily	limit	for	several	days	with	no	trading,	preventing	“stop	limit”
moves	from	being	executed.
Theoretical	and	experimental	studies	(to	be	described	momentarily)	convinced

me	that	the	above	biases	are	significant,	and	that	the	computed	advantage	of
filter	trading	over	buy	and	hold	was	spurious.	Upon	rechecking,	Alexander	1964
found	my	prediction	to	be	correct,	and	the	method	of	filters	to	be	no	better	than
“buy	and	hold.”	Fama	and	Blume	1966	carried	out	a	thorough	“post-mortem”
check,	replacing	Alexander’s	price	indices	by	individual	price	series;	the	method
of	filters	is	now	buried	for	good.	This	episode	underlines	the	risk	of	error
inherent	in	what	I	call	the	“fallacy	of	price	continuity.”
Winning	“martingales”	resemble	perpetual	motion	machines.	It	is	to	the	credit

of	Bachelier’s	efficient	market	hypothesis	that	it	had	predicted	in	advance	that
filters	should	not	work,	but	to	the	discredit	of	Bachelier’s	Brownian	motion
model	that	it	could	not	explain	why	filters	seemed	to	work.	Therefore,	it	is	to	the
credit	of	my	specific	models	that	they	permit	an	analysis,	and	pinpoint	the	flaws
of	this	and	other	explicitly	described	paths	to	sure	wealth.



STATISTICAL	“FIXES”

The	failure	of	the	Brownian	motion	as	a	model	of	price	variation	elicited	two
very	different	responses.	On	the	one	hand,	there	is	a	plethora	of	ad	hoc	“fixes.”
Faced	with	a	statistical	test	that	rejects	the	Brownian	hypothesis	that	price
changes	are	Gaussian,	the	economist	can	try	one	modification	after	another	until
the	test	is	fooled.
A	popular	fix	is	censorship,	hypocritically	labeled	“rejection	of	statistical

outliers.”	One	distinguishes	the	ordinary	“small”	price	changes	from	the	large
price	changes	that	defeat	Alexander’s	filters.	The	former	are	viewed	as	random
and	Gaussian,	and	treasures	of	ingenuity	are	devoted	to	them...,	as	if	anyone
cared.	The	latter	are	handled	separately	as	“nonstochastic.”	A	second	popular	fix
is	a	mixture	of	several	random	populations:	when	X	is	not	Gaussian,	maybe	it	is
a	mixture	of	two,	three,	or	more	Gaussian	variables.	Yet	another	fix	is	nonlinear
transformation	:	when	X	is	positive	and	grossly	non-Gaussian,	maybe	log	X	is
Gaussian;	when	X	is	symmetric	and	non-Gaussian,	maybe	tan-1x	will	fool	the
test.	Yet	another	procedure	(which	I	view	as	suicidal	coming	from	a	statistician)
proclaims	that	price	follows	Brownian	motion,	but	the	motion’s	parameters	vary
uncontrollably.	This	last	fix	can	never	be	falsified,	hence	the	philosopher	Karl
Popper	proclaims	it	cannot	be	a	scientific	model.



A	SCALING	PRINCIPLE	IN	ECONOMICS
(MANDELBROT	1963b)

At	the	opposite	of	the	fixes	stands	my	own	work.	It	applies	to	diverse	data	of
economics,	but	the	principle	is	best	expressed	in	the	context	of	price.
SCALING	PRINCIPLE	OF	PRICE	CHANGE.	When	X(t)	is	a	price,	log	X(t)

has	the	property	that	its	increment	over	an	arbitrary	time	lag	d,	log	X(t+d)-log
X(t),	has	a	distribution	independent	of	d,	except	for	a	scale	factor.
Before	exploring	this	principle’s	consequences,	let	us	run	through	a	checklist

of	properties.
A	scientific	principle	must	yield	predictions	that	can	be	checked	against	the

evidence.	This	one	does	so,	as	will	be	seen	momentarily,	and	the	fit	is	very	good.
It	is	nice	for	scientific	principles	to	be	deducible	from	other	theoretical

considerations	in	their	respective	fields.	The	scaling	principle	of	price	change
can	be	based	on	the	general	(not	necessarily	standard)	form	of	the	probabilistic
“central	limit”	argument,	but	it	has	not	yet	been	deduced	from	standard
economics.	The	only	“explanatory”	arguments	(Mandelbrot	1966b,	1971e)
support	it	as	the	consequence	of	scaling	in	exogenous	physical	variables.	These
arguments	are	less	well	established	than	the	result	they	claim	to	justify.
Finally,	even	when	no	actual	explanation	is	available,	it	is	pleasant	if	a

scientific	principle	does	not	actually	clash	with	earlier	presuppositions.	The
present	scaling	principle	seems	innocent	enough.	The	question	it	answers	has	not
previously	been	raised,	so	that	contrary	opinions	could	not	be	expressed.	All	that
scaling	seems	to	assert	is	that	in	competitive	markets	no	time	lag	is	really	more
special	than	any	other.	It	asserts	that	the	obvious	special	features	of	the	day	and
the	week	(and	the	year	in	case	of	agricultural	commodities)	are	compensated	or
arbitrated	away.	Since	all	the	usual	“fixes”	of	Brownian	motion	involve
privileged	time	scales,	my	principle	seems	simply	to	affirm	that	there	is	no
“sufficient	reason”	to	assume	that	any	time	scale	is	more	privileged	than	any
other.



THE	INFINITE	VARIANCE	SYNDROME

However,	we	want	the	actual	implementation	of	the	scaling	principle	to	yield	a
result	distinct	from	Brownian	motion.	To	achieve	this	goal,	I	took	the	radical
step	of	assuming	that	log	X(t+d)-log	X(t)	has	an	infinite	variance.	Before	my
papers,	no	one	hesitated	to	write	“denote	the	variance	by	V.”	The	underlying
assumption	that	V	is	finite	was	not	even	mentioned	...	rightly	so,	because	science
writing	collapses	when	one	lists	every	assumption	irrespective	of	established
significance.	My	reasons	for	taking	the	opposite	view	are	discussed	later	in	this
section.	Needless	to	say,	the	success	of	assuming	V=oo	made	it	easier	for	me	to
allow	curves	to	have	infinite	length	and	surfaces	to	have	infinite	area.
THE	OBSERVED	MISBEHAVIOR	OF	THE	SAM	PLE	VARIANCE	OF

PRICE	CHANGES.	“Typical	values”	used	to	summarize	data	are	the	least
sophisticated	level	of	descriptive	statistics,	but	in	the	case	of	price	changes,	the
usual	summaries	turn	out	to	be	tricky	and	wholly	unreliable.	Indeed,	the
motivation	for	using	a	sample	average	to	measure	location,	and	a	sample	root
mean	square	to	measure	dispersion,	resides	in	the	belief	that	these	are	“stable”
characteristics	which	eventually	converge	to	population	values.	But	the	figure	in
Mandelbrot	1967b	shows	that	their	behavior	in	the	case	of	prices	proves
extraordinarily	elusive:
(A)	Values	of	the	mean	square	corresponding	to	different	long	subsamples

often	have	different	orders	of	magnitude.
(B)	As	sample	size	increases,	the	mean	square	fails	to	stabilize.	It	goes	up	and

down,	with	an	overall	tendency	to	increase.
(C)	The	mean	square	tends	to	be	influenced	predominantly	by	a	few

contributing	squares.	When	these	so-called	outliers	are	eliminated,	the	estimate
of	dispersion	often	changes	in	its	order	of	magnitude.
THE	HYPOTHESIS	OF	NONSTATIONARITY.	These	properties	taken

together,	or	even	any	one	of	them	taken	singly,	used	to	suggest	to	everyone	that
the	process	is	nonstationary.	My	preliminary	counterproposal	is	that	the	process
is	in	fact	stationary	but	the	unknown	theoretical	second	moment	is	extremely
large.	Under	the	assumption	of	large	but	finite	moment,	sample	moments
converge	according	to	the	law	of	large	numbers,	but	the	convergence	is



extremely	slow	and	the	value	of	the	limit	matters	very	little	in	practice.
THE	INFINITE	VARIANCE	PRINCIPLE.	My	further	counterproposal	is	that

the	population	mean	square	is	infinite.	The	choice	between	“very	large”	and
“infinite”	is	of	course	familiar	to	anyone	who	has	plowed	this	far	in	this	Essay,
but	those	who	are	starting	here	may	be	differently	disposed,	and	so	were	all	my
readers	of	1962.	To	anyone	with	the	usual	training	in	statistics,	an	infinite
variance	seems	at	best	scary	and	at	worst	bizarre.	In	fact,	“infinite”	does	not
differ	from	“very	large”	by	any	effect	one	could	detect	through	the	sample
moments.	Also,	of	course,	the	fact	that	a	variable	X	has	an	infinite	variance	in	no
way	denies	that	X	is	finite	with	a	probability	equal	to	1.	For	example,	the
Cauchy	variable	of	density	1/π(1	+x2)	is	almost	surely	finite,	but	has	an	infinite
variance	and	an	infinite	expectation.	Thus,	the	choice	between	variables	with
very	large	and	infinite	variances	should	not	be	decided	a	priori,	and	should	hinge
solely	on	the	question	of	which	is	the	more	convenient	to	handle.	I	accept
infinite	variance	because	it	makes	it	possible	to	preserve	scaling.



STABLE	LEVY	MODEL	(MANDELBROT	1963b)

Mandelbrot	1963b	combines	the	scaling	principle	with	the	acceptable	idea	that
successive	price	changes	are	independent	with	vanishing	expectation,	and
furthermore	allows	the	variance	of	price	changes	to	be	infinite.	A	brief
mathematical	argument	leads	to	the	conjecture	that	price	change	is	ruled	by	a
Levy	stable	distribution,	which	also	enters	in	Chapters	32,	33,	and	39.
This	conjecture	proves	to	be	of	very	broad	validity.	The	first	tests	(Mandelbrot

1963b,	1967b)	applied	to	many	commodity	prices,	some	interest	rates	and	some
19th	century	security	prices.	Later,	Fama	1963	studied	recent	security	prices,	and
Roll	1970	studied	other	interest	rates.	Here	we	must	be	content	with	a	single
illustration,	Plate	340.



THE	MODEL’S	PREDICTIVE	POWER

The	predictive	value	of	the	scaling	principle	of	price	change	resides	in	the
following	finding.	One	starts	with	the	distribution	of	daily	price	changes	over	a
period	of	five	years	of	middling	price	variability.	And	one	finds	that	if	this
distribution	is	extrapolated	to	monthly	price	changes,	its	graph	goes	right	through
the	data	from	various	recessions,	depression,	etc.	It	accounts	for	all	the	most
extreme	events	of	nearly	a	century	in	the	history	of	an	essential	and	most	volatile
commodity.
In	particular,	Plate	340,	the	process	that	rules	the	changes	in	the	price	of

cotton	has	remained	approximately	stationary	over	the	very	long	period	under
study.	This	amazing	finding	is	best	presented	in	two	steps.
FIRST	TEST	OF	STATIONARITY.	Plate	340	indicates	that	the	analytic	form

of	the	process	of	price	changes,	and	the	value	of	D,	both	remain	constant.	There
is	no	disputing	the	major	changes	in	the	value	of	currency,	etc.,	but	overall	trends
are	negligible	in	comparison	with	the	fluctuations	with	which	we	deal	here.
SECOND	TEST	OF	STATIONARITY:	CORRECTION	OF	AN	ERROR	IN

PLATE	340.	A	fluke	gave	rise	to	a	second	test	of	stationarity.	On	the	plate,	the
curves	(a+)	and	(b+)	(similarly,	(a)	and	(b-))	differ	by	a	horizontal	translation.
Since	translation	on	doubly	logarithmic	coordinates	corresponds	to	a	change	of
scale	in	natural	coordinates,	this	discrepancy	led	Mandelbrot	1963b	to	concur
with	the	economists’	opinion	that	the	price	change	distribution	had	changed
between	1950	and	1900.	I	thought	the	distribution	preserved	the	same	shape,	but
its	scale	had	become	smaller.
However,	this	concession	to	opinion	turns	out	to	have	gone	beyond	necessity.

The	data	behind	the	curves	(a+)	and	(a-)	had	been	read	incorrectly	(Mandelbrot
1972b).	Once	this	error	is	corrected,	one	is	led	to	curves	near	identical	with	the
curves	(b+)	and	(b-).
One	cannot	deny	that	the	data	give	at	casual	glance	the	impression	of	being

grossly	nonstationary,	but	this	is	so	only	because	casual	impressions	are	formed
against	the	background	of	a	belief	that	the	underlying	process	is	Gaussian.	My
alternative	to	the	nonstationary	but	Gaussian	process	is	a	stationary	but	non-
Gaussian	stable	process.



CONCLUSION

I	know	of	no	other	comparably	successful	prediction	in	economics.

Plate	340	ORIGINAL	EVIDENCE	FOR	SCALING	IN	ECONOMICS
	
This	old	plate,	reproduced	from	Mandelbrot	1963b,	is	one	to	which	I	am
attached	(as	I	later	became	attached	to	Plate	271).	It	combines	doubly
logarithmic	graphs	of	positive	and	negative	tails	for	the	recorded	changes	in	the
logarithm	of	cotton	price,	together	with	the	cumulated	density	function	of	the
symmetric	stable	distribution	of	exponent	D=1.7,	which	is	actually	a	slightly
overestimated	value	of	D.	The	ordinate	gives	the	relative	frequency	of	cases
where	the	change	of	one	of	the	quantities	X	defined	below	exceeds	the	change	in
abscissa.
Copy	this	plate	on	a	transparency,	and	move	it	horizontally.	You	will	see	that



the	theoretical	curve	superimposes	on	either	of	the	empirical	graphs	with	slight
discrepancies	of	general	shape.	This	is	precisely	what	my	scaling	criterion
postulates!
The	discrepancies	are	largely	due	to	a	slight	asymmetry	in	the	distribution.

This	is	an	important	observation	that	requires	skew	variants	of	the	stable
distribution.
The	following	series	of	data	are	plotted,	the	positive	and	negative	values	of	X

being	treated	separately	in	both	cases.
(a)	X=logeZ(t	+	1	day)	-	logeZ(t),	where	Z	is	the	daily	closing	price	at	the	New

York	Cotton	Exchange,	1900-1905	(Data	communicated	by	the	U.S.	Department
of	Agriculture).
(b)	X=logeZ(t	+	1	day)	-	logeZ(t)	where	Z	is	an	index	of	daily	closing	prices	of

cotton	on	various	Exchanges	in	the	U.S.,	1944-1958	(communicated	by	Hendrik
S.	Houthakker).
(c)	X=logeZ(t	+	1	month)	-	logeZ(t),	where	Z	is	the	closing	price	on	the	15th

of	each	month	at	the	New	York	Cotton	Exchange,	1880-1940	(communicated	by
the	U.	S.	Department	of	Agriculture).



38

Scaling	and	Power	Laws	Without	Geometry

If	monographs	or	textbooks	on	fractals	come	to	be	written,	the	discussion	of
random	geometric	shapes,	which	is	mathematically	delicate,	will	come	after	the
less	difficult	topic	of	random	functions,	and	these	books	will	begin	with	random
variables.	On	the	other	hand,	this	Essay	plunges	straight	into	the	most
complicated	topic,	because	it	is	the	most	interesting	one,	and	gives	play	to
geometric	intuition.
Most	closely	related	to	fractals	are	the	hyperbolic	probability	distributions.

Many	examples	of	their	use	are	encountered	in	earlier	chapters,	beginning	with
hyperbolic	functions	Nr(U	>	u).	But	much	remains	to	be	said.	This	chapter
begins	with	general	comments	and	continues	with	certain	phenomena	of
linguistics	and	economics	in	which	empirical	evidence,	both	abundant	and
sound,	is	very	well	represented	by	hyperbolic	laws.	The	argument	is	the	same	in
both	cases	and	spotlights	scaling	and	similarity	dimension	in	wholly
“disincarnated”	forms.
The	example	from	linguistics	was	the	object	of	my	first	paper	(Chapter	42).	It

familiarized	me	with	certain	manipulations	that	are	straightforward	but	of	wide
applicability.	The	example	from	linguistics	also	has	a	thermodynamic	facet,
involving	my	independent	discovery	of	a	counterpart	to	negative	temperature.



MORE	ON	HYPERBOLIC	DISTRIBUTIONS

In	a	definition	we	know	well,	a	random	variable	(r.v.)	U	is	called	hyperbolic
when	P(u)=Pr(U>u)=Fu-D.	This	definition	is	bizarre,	insofar	as	every	finite
prefactor	σ	leads	to	the	conclusion	that	P(O)	=	∞,	which	seems	absurd,	and
certainly	indicates	that	special	care	must	be	taken—as	we	know	well.	For
example,	we	saw	in	Chapter	12	that	when	a	Koch	generator	includes	an	island
the	resulting	curve	includes	an	infinity	of	islands,	with	those	of	area	above	a
numbering	Nr(A>a)=Fa-B.	Let	us	rank	them	by	decreasing	area,	islands	of
identical	areas	being	ordered	arbitrarily.	To	select	such	an	island	at	random	with
uniform	probability	is	to	select	the	island’s	rank	at	random.	Achieving	this	goal
would	authorize	the	replacement	of	Nr(A>a)	by	Pr(A>a).	But	in	fact	an	island’s
rank	is	a	positive	integer,	and	it	is	not	possible	to	choose	a	positive	integer	at
random.
Another	familiar	story:	the	hyperbolic	distribution	leads	to	straightforward

conditional	distributions.	For	example,	the	conditional	r.v.	{U,	knowing	that	U	>
u0},	written	as	{U|U>u0},	satisfies



EXPECTATION	PARADOXES

When	D>1,	the	corresponding	expectation	is

(U|U>u0>=D(D-1)-1u0

This	result	suggests	endless	paradoxical	stories.	Sober	readers	are	urged	to
forge	ahead.
THE	LINDY	EFFECT.	The	future	career	expectation	of	a	television	comedian

is	proportional	to	his	past	exposure.	Source:	The	New	Republic	of	June	13,	1964.
For	a	key,	see	the	next	story.
PARABLE	OF	THE	YOUNG	POETS’	CEMETERY.	In	the	cemetery’s	most

melancholy	section,	among	the	graves	of	poets	and	scholars	who	had	fallen
unexpectedly	in	the	flower	of	their	youth,	each	monument	is	surmounted	by	a
symbol	of	loss:	one	half	of	a	book,	of	a	column,	or	of	a	tool.	The	old
groundskeeper,	himself	a	scholar	and	a	poet	in	his	youth,	urges	visitors	to	take
these	funereal	symbols	most	literally:	“Anyone	who	lies	here,”	he	proclaims,
“had	accomplished	enough	to	be	viewed	as	full	of	promise,	and	some
monuments’	sizes	reflect	the	accomplishments	of	those	whose	remains	they
shelter.	But	how	can	we	assess	their	broken	promise?	A	few	of	my	charges	may
have	lived	to	challenge	Leonhard	Euler	or	Victor	Hugo	in	fecundity,	if	perhaps
not	in	genius.	But	most	of	them,	alas,	were	about	to	be	abandoned	by	their
Muses.	Since	promise	and	accomplishments	are	precisely	equal	in	young	life,	we
must	view	them	as	equal	at	the	moment	of	sudden	death.”
The	key.	ANYONE	WHO	STOPS	YOUNG	STOPS	IN	THE	MIDDLE	OF	A

PROMISING	CAREER.	“Proof.”	According	to	A.	Lotka,	the	distribution	of	the
number	of	scientific	papers	due	to	any	single	author	is	hyperbolic	with	the
exponent	D=2.	This	rule	incorporates	the	qualitative	fact	that	most	people	write
nothing	or	little,	but	a	few	write	an	awful	lot.	If	so,	however	long	a	person’s	past
collected	works,	it	will	on	the	average	continue	for	an	equal	additional	amount.
When	it	eventually	stops,	it	breaks	off	at	precisely	half	of	its	promise.
Comments.	The	only	way	of	avoiding	apparent	disappointment	is	to	be	so	old

that	age	corrections	must	be	considered	when	computing	the	expected	future.
The	coefficient	of	proportionality	in	the	Lindy	Effect	is	doubtless	equal	to	1.



PARABLE	OF	THE	RECEDING	SHORE.	Far,	far	away,	there	is	a	country
called	the	Land	of	Ten	Thousand	Lakes,	affectionately	known	as	Big,	Second
Biggest,...,	Nth	Biggest,	etc.,	down	to	10,000th	Biggest.	Big	is	an	uncharted	sea,
nay,	a	wide	ocean	at	least	1600	miles	across,	the	width	of	N-th	Biggest	1600N-

0.8,	and	so	the	smallest	has	a	width	of	1	mile.	But	each	lake	is	always	covered
with	a	haze	that	makes	it	impossible	to	see	beyond	a	mile	to	identify	its	width.
The	land	is	unmarked,	and	has	no	inhabitants	to	help	the	traveler.	As	a	traveler
who	believes	in	mathematical	expectation	stands	on	an	unknown	shore,	he
knows	he	has	before	him	a	stretch	of	water	of	expected	width	equal	to	5	miles.	If
he	sails	on	for	a	few	miles	m,	finds	he	has	not	yet	reached	his	goal	and	calculates
the	new	expected	distance	to	the	next	shore,	he	obtains	the	value	5m.	Do	spirits
inhabit	these	lakes,	and	actually	move	the	shore	away?
The	key.	The	above	distribution	of	lake	widths	merely	restates	the	Korčak

distribution	encountered	in	Chapters	12	and	30.



SCALING	PROBABILITY	DISTRIBUTIONS

Now	we	return	to	serious	matters.	To	be	able	to	speak	of	scaling	random
variables,	the	term	scaling	must	be	defined	without	geometry.	The	reason	is	that
the	only	geometric	shape	associated	with	a	random	variable	is	a	point,	which
cannot	be	subdivided.	As	a	substitute,	say	that	a	random	variable	X	is	scaling
under	the	transformation	I(X)	if	the	distributions	of	X	and	I(X)	are	identical
except	for	scale.
Transformation	is	understood	here	in	a	broad	sense:	e.g.,	the	sum	of	two

independent	realizations	of	X	is	viewed	as	a	transform	of	X.	The	corresponding
variables	should	be	called	scaling	under	addition,	but	are	called	Levy	stable
(they	enter	in	Chapters	31,	32	and	39).	Chapter	39	(pp.	373a	and	379a)	goes	on
to	scaling	under	weighted	addition.
ASYMPTOTIC	SCALING.	ASYMPTOTICALLY	HYPERBOLIC	R.V.	Most

fortunately,	the	above	definition	is	less	indeterminate	than	may	seem	the	case.
For	many	transformations,	invariance	turns	out	to	demand	an	asymptotically
hyperbolic	distribution.	This	means	that	there	must	exist	an	exponent	D>0	such
that

limu→∞Pr(U<u)uD	and	limu→∞cPr(U>u)u	D

are	defined	and	finite,	and	one	of	the	limits	is	positive.
PARETO	DISTRIBUTION.	“Asymptotically	hyperbolic”	can	be	viewed	as

synonymous	with	a	term	familiar	to	economic	statisticians,	Paretian.	Vilfredo
Pareto	was	an	Italian	economist	who	hoped	to	translate	the	laws	of	mechanical
equilibrium	into	terms	of	economic	equilibrium,	but	is	likely	to	be	remembered
more	durably	for	having	discovered	a	basic	statistical	regularity:	he	found	that	in
certain	societies	the	number	of	individuals	with	a	personal	income	U	exceeding	a
large	value	u	is	approximately	hyperbolically	distributed,	i.e.,	proportional	to	u-
D.	(We	turn	to	the	distribution	of	income	later	in	this	chapter.)



“NEW	METHODS	OF	STATISTICAL
ECONOMICS”	(MANDELBROT	1963e)

Hyperbolic	laws	similar	to	Pareto’s	were	later	discovered	in	many	areas	of
economics,	and	many	efforts	have	been	directed	at	explaining	their	prevalence.
But	let	us	first	describe	a	heretical	approach	to	this	problem.
A	field	such	as	economics	can	never	forget	that	its	“data”	are	an	awfully

mixed	bag.	Therefore,	the	distribution	of	the	data	is	the	joint	effect	of	a	fixed
underlying	“true	distribution,”	and	of	a	highly	variable	“filter.”	Mandelbrot
1963e	observes	that	asymptotically	hyperbolic	distributions	with	D	<	2	are	very
“robust”	in	that	respect,	meaning	that	a	wide	variety	of	filters	leave	their
asymptotic	behavior	unchanged.	On	the	other	hand,	practically	all	other
distributions	are	highly	nonrobust.	Therefore,	an	hyperbolic	true	distribution	can
be	observed	with	consistency	:	different	sets	of	distorted	data	suggest	the	same
distribution	with	the	same	D.	But	the	same	treatment	applied	to	most	other
distributions	leads	to	“chaotic”	incompatible	results.	In	other	words,	the	practical
alternative	to	the	asymptotically	hyperbolic	distribution	is	not	any	other
distribution	but	chaos.	Since	chaotic	results	tend	not	to	be	published	or	noticed,
the	fact	that	asymptotically	hyperbolic	distributions	are	very	widespread	was	to
be	expected,	and	tells	us	little	about	their	actual	prevalence	in	nature.



ZIPF	LAW	OF	WORD	FREQUENCIES

A	word	is	simply	a	sequence	of	proper	letters	terminating	with	an	improper	letter
called	space.	We	rank	the	words	in	a	text	by	decreasing	frequency	in	a	sample	of
one	individual’s	discourse,	the	words	of	identical	frequency	being	ordered
arbitrarily.	In	this	classification,	p	designates	the	rank	assumed	by	a	word	of
probability	P,	and	the	term	distribution	of	word	frequencies	denotes	the
relationship	between	ρ	and	P.
One	might	expect	this	relationship	to	vary	wildly	according	to	the	language

and	the	speaker,	but	in	fact	it	does	not.	An	empirical	law	made	known	by	Zipf
1949	(on	G.	K.	Zipf,	see	Chapter	40)	asserts	that	the	relation	between	ρ	and	P	is
“universal,”	i.e.,	parameter-free,	and	takes	the	form

P∝	1/ρ.
And	in	a	second	approximation,	which	I	obtained	theoretically	during	an
unsuccessful	attempt	to	derive	the	parameter	free	law	P∝1	/ρ,	all	the	differences
between	languages	and	subjects	boil	down	to

P=F(ρ+V)-1/D.

Since	∑P	=	1,	the	three	parameters	D,	F	and	V	are	related	by	F-1	=	∑(ρ+V)-1/D.
Together,	these	parameters	measure	how	rich	is	a	subject’s	vocabulary	use.
The	main	parameter	is	D.	It	is	sensible	to	measure	how	rich	is	a	subject’s	use

of	vocabulary	through	the	relative	frequency	of	his	use	of	rare	words;	for
example,	through	the	frequency	of	the	word	of	rank	ρ	=	1000	compared	to	that
of	the	word	of	rank	ρ	=	10.	This	relative	frequency	increases	with	D.
Why	is	the	above	law	of	such	universality?	Since	it	is	near	perfectly

hyperbolic,	and	granted	all	we	have	learned	so	far	in	the	Essay,	it	is	eminently
sensible	to	try	and	relate	Zipf’s	law	to	some	underlying	scaling	property.	(The
procedure	seemed	highly	nonobvious	in	1950,	when	I	first	tackled	this	topic.)	As
suggested	by	the	notation,	the	exponent	plays	the	usual	role	of	dimension.	The
prefactor	F	(recall	Chapter	34)	comes	second.



LEXICOGRAPHIC	TREES

An	“object”	that	could	be	scaling	does	indeed	exist	in	the	present	case:	it	is	a
lexicographical	tree.	We	first	define	it	and	describe	what	scaling	means	in	its
context.	Then	we	prove	that	when	the	lexicographical	tree	is	scaling,	word
frequencies	follow	the	two-parameter	law	written	above.	We	discuss	the	validity
of	the	explanation.	Then	we	point	out	the	interpretation	of	D	as	a	dimension.
TREES.	A	lexicographical	tree	has	N+1	trunks,	numbered	from	0	to	N.	The

first	trunk	corresponds	to	the	“word”	constituted	by	the	improper	letter	“space”
taken	by	itself,	and	each	of	the	other	trunks	corresponds	to	one	of	N	proper
letters.	The	“space”	trunk	is	barren,	but	each	of	the	other	trunks	carries	N+1
leaders	corresponding	to	the	space	and	to	N	proper	letters.	The	next	generation
space	leader	is	barren	and	the	others	branch	out	into	N+1	as	before.	Hence	the
barren	tip	of	each	space	leader	corresponds	to	a	word	made	of	proper	letters
followed	by	a	space.	And	the	construction	continues	ad	infinitum.	Each	barren
tip	is	inscribed	with	the	corresponding	word’s	probability.	And	the	tip	of	a
nonbarren	branch	is	inscribed	with	the	total	probability	of	the	words	that	begin
with	the	sequence	of	letters	that	determines	said	branch.
SCALING	TREES.	A	tree	can	be	termed	scaling	if	each	branch	taken	by	itself

is	in	some	way	a	reduced-scale	version	of	the	whole	tree.	To	truncate	such	a	tree
is	near-literally	to	cut	a	branch	from	it.	Hence	our	first	conclusion	is	that	a
scaling	tree	must	branch	out	without	bound.	In	particular,	contrary	to	untrained
intuition,	the	total	number	of	different	words	is	not	a	sensible	way	of	measuring
richness	of	vocabulary.	(Nearly	everyone	“knows”	so	many	more	words	than	he
uses	that	his	vocabulary	is	practically	infinite.)	A	further	argument	(which	we
skip)	determines	the	form	that	must	be	observed	for	the	probability	P	of	a	barren
branch	at	the	kth	level,	i.e.,	growing	on	top	of	k	live	ones.
DERIVATION	OF	THE	GENERALIZED	ZIPF	LAW	IN	THE	SIMPLEST

CASE.	(Mandelbrot	1951,	1965z,	1968p.)	The	simplest	scaling	tree	corresponds
to	discourse	that	is	a	sequence	of	statistically	independent	letters,	the	probability
of	each	proper	letter	being	r	<	1/N,	and	that	of	the	improper	letter	“space”	being
the	remainder	(1-Nr).	In	this	case,	the	kth	level	has	the	following	properties

P=(1-Nr)rk	=	P0rk,



and	p	varies	between	the	bound

1+N+N2+...+Nk-1=(Nk-1)/(N-1)

(excluded)	and	the	bound

(Nk+1-1)/(N-1)

(included).	Writing

D=logN/log(1/r)<1	and	V=1/(N-1),

and	inserting

k=log(P/P0)/logr

in	each	bound,	we	have

P-DP0D-1	<ρ/V	≤	N(P-DP0D)-1.

The	desired	result	is	obtained	by	approximating	p	through	the	average	of	its
bounds.
GENERALIZATION.	Less	simple	scaling	trees	correspond	to	letter	sequences

generated	by	other	stationary	random	processes,	for	example	by	Markov	chains,
and	later	cut	into	words	by	the	recurrences	of	the	space.	The	argument	becomes
more	complex	(Mandelbrot	1955b),	but	the	final	result	is	the	same.
CONVERSE.	Does	it	conversely	follow	from	Zipf’s	data	that	the

lexicographical	tree	using	ordinary	letters	is	scaling?	Of	course	not:	many	short
sequences	of	letters	never	occur	and	many	long	sequences	are	fairly	common,
hence	actual	lexicographical	trees	are	far	from	being	strictly	scaling,	but	it	is
generically	felt	that	the	above	argument	suffices	to	explain	why	the	generalized
Zipf	law	holds.	Also,	one	might	mention	that	it	had	originally	been	hoped	that
Zipf’s	law	would	contribute	to	the	field	of	linguistics,	but	my	explanation	shows
this	law	is	linguistically	very	shallow.

	The	generalized	Zipf	law	also	holds	within	certain	restricted	vocabularies.
For	example,	the	esoteric	discipline	styling	itself	hagioanthroponymy,	which
investigates	the	uses	of	names	of	saints	as	surnames	of	humans	(Maître	1964),
establishes	that	the	Zipf	law	applies	to	such	surnames.	Also,	Tesnière	1975	finds
it	applies	to	family	names.	Does	this	suggest	that	the	corresponding	trees	are
scaling?
D	IS	A	FRACTAL	DIMENSION.	The	new	observation	that	D	is	formally	a

similarity	dimension	is	not	as	shallow	as	one	may	fear.	Indeed,	if	one	precedes	it



with	a	decimal	point,	a	word	as	we	defined	it	is	nothing	but	a	number	between	0
and	1	written	in	the	counting	basis	(N+1)	and	containing	no	zero	except	at	the
end.	Mark	such	numbers	on	the	interval	[0,1]	and	add	the	limit	points	of	this	set.
The	construction	amounts	in	effect	to	cutting	out	of	[0,1]	all	the	numbers	that
include	the	digit	0	otherwise	than	at	the	end.	One	finds	that	the	remainder	is	a
Cantor	dust,	the	fractal	dimension	of	which	is	precisely	D.
As	to	the	scaling	lexicographical	trees	other	than	the	simplest	ones,	to	which

we	have	alluded	as	providing	a	generalized	proof	of	the	Zipf	law,	they
correspond	in	the	same	way	to	generalized	Cantor	dusts	of	dimension	D.	The
equation	for	D	in	Mandelbrot	1955b	is	a	matrix	generalization	of	the	definition
of	the	similarity	dimension	through	NrD=1.
FURTHER	GENERALIZATION:	THE	CASE	D	>	1.	Curiously,	the	condition

D	<	1	is	not	universally	fulfilled.	The	instances	where	the	generalized	Zipf	law
holds	but	the	estimated	D	satisfies	D	>	1,	are	rare	but	unquestionable.	To
describe	the	role	of	the	special	value	D	=	1	let	us	assume	that	the	law	P=F(ρ
+V)-1/D	holds	only	up	to	ρ=ρ*	≤	∞.	If	D<1,	there	is	no	difficulty	with	the	infinite
dictionaries	suggested	by	the	theoretical	argument.	But	the	infinite	series	∑(ρ
+V)-1/D	diverges	when	D	≥	1.	Hence	∑P=1	and	F	>	0	demand	that	ρ*	<	∞:	the
dictionary	must	contain	a	finite	number	of	words.
It	turns	out,	indeed,	that	D	>	1	is	only	encountered	in	cases	where	the

vocabulary	is	unnaturally	limited	by	artificial	extraneous	means	(e.g.,	Latin
inserts	in	a	non-Latin	text).	These	special	cases	are	discussed	in	my	papers	on
this	subject.	Since	a	construction	limited	to	a	finite	number	of	points	never	leads
to	a	fractal,	D	>	1	is	not	interpretable	as	a	fractal	dimension.



TEMPERATURE	OF	DISCOURSE

The	above	deviations	allow	for	a	second,	very	different	interpretation,	patterned
after	statistical	thermodynamics.	The	counterparts	of	physical	energy	and
physical	entropy	are	a	cost	of	coding	and	Shannon’s	information.	And	D	is	the
“temperature	of	discourse.”	The	“hotter”	the	discourse,	the	higher	the	probability
of	use	of	rare	words.
The	case	D	<	1	corresponds	to	the	standard	case	where	there	is	no	upper

bound	for	the	formal	equivalent	of	energy.
On	the	other	hand,	the	case	when	words	are	so	“hot”	as	to	lead	to	D	>	1

involves	the	highly	unusual	imposition	of	a	finite	upper	bound	on	the	energy.
Shortly	after	I	described	this	sharp	dichotomy	in	terms	of	language	statistics,	a

counterpart	was	independently	recognized	in	physics.	The	inverse	physical
temperature	1/θ	is	smallest—it	vanishes—when	a	body	is	hottest,	and	Norman
Ramsey	recognized	that	if	the	body	is	to	become	hotter	still,	1/θ	must	become
negative.	See	Mandelbrot	1970p	for	a	discussion	of	this	parallelism.
Thermodynamics	deduces	the	bulk	properties	of	objects	from	microcanonial

equiprobability.	Since	molecules	are	not	known	individually,	assumptions	about
their	possible	states	elicit	little	emotion,	but	we	do	have	an	individual	knowledge
of	words,	so	in	the	study	of	language	the	assumption	of	equiprobability	is	hard	to
swallow.

	The	preceding	analogy	becomes	particularly	natural	within	certain	more
general	approaches	to	thermodynamics.	At	the	risk	of	overquoting	items	that	are
peripheral	to	this	Essay,	one	such	formalism	is	given	in	Mandelbrot	1962t,
1964t.



THE	PARETO	LAW	FOR	SALARIES

Another	example	of	a	scaling	abstract	tree	is	found	in	the	organization	charts	of
hierarchic	human	groups.	We	deal	with	the	simplest	scaling	hierarchy	if	(a)	its
members	distribute	among	levels	in	such	a	way	that	(except	on	the	lowest	level)
each	member	has	the	same	number	N	of	subordinates	and	(b)	all	his	subordinates
have	the	same	“weight”	U,	which	is	equal	to	r	<	1	times	the	weight	of	the
immediate	superior.	It	is	most	convenient	to	consider	this	weight	to	be	a	salary.
When	diverse	hierarchies	are	to	be	compared	from	the	point	of	view	of	the

inequality	of	incomes,	one	can	classify	their	members	in	the	order	of	decreasing
income	(the	order	within	a	level	is	arbitrary),	designate	each	individual	by	his
rank	p,	and	evaluate	the	rate	of	decrease	of	income	as	a	function	of	rank,	or	vice
versa.	The	more	rapid	the	decrease	in	income	when	rank	increases,	the	greater
the	inequality.
The	formalism	used	for	Zipf’s	law	applies	without	change:	the	rank	p	of	an

individual	of	income	U	is	approximately

ρ=	-V+U-DFD.

The	present	derivation	is	due	to	Lydall	1959.
The	degree	of	inequality	is	mostly	determined	by

D	=	log	N/log(1/r),

which	does	not	seem	to	have	any	fractal	interpretation	worth	writing	down.
The	greater	the	formal	D,	the	greater	the	value	of	r	and	the	lower	the	degree	of
inequality.
It	is	possible	(as	in	the	case	of	word	frequencies)	to	generalize	the	model	by

assuming	that	within	a	given	level	k	the	value	of	U	varies	between	individuals,
so	that	U	is	equal	to	the	product	of	rk	by	a	random	factor,	the	same	for	everyone.
This	generalization	modifies	the	parameters	V	and	P0	and	hence	D,	but	it	leaves
the	basic	relationship	unchanged.
Note	that	the	empirical	D	is	ordinarily	near	2.	In	cases	where	it	is	exactly	2,	let

inverse	income	be	plotted	on	an	axis	pointing	downward.	One	obtains	an	exact
pyramid	(base	equal	to	the	square	of	the	height).	In	this	case,	the	income	of	a



superior	is	the	geometric	mean	of	the	income	of	all	his	subordinates	taken
together	and	of	that	of	each	subordinate	taken	separately.
CRITIQUE.	When	D=2,	the	smallest	1/r	occurs	for	N=2	and	equals	1/r=√2.

This	value	seems	unrealistically	high,	suggesting	that	Lydall’s	model	can	only
hold	in	hierarchies	in	which	D>2.	If	so,	the	fact	that	the	overall	D	in	a	population
is	about	2	may	mean	that	income	differences	within	hierarchies	pale	in
comparison	with	the	differences	between	hierarchies,	and	the	differences	within
groups	that	involve	no	hierarchical	trees.



OTHER	INCOMES’	DISTRIBUTION

A	broader	study	of	the	distribution	of	income	in	Mandelbrot	1960i,	1961e,
1962q,	inspired	the	work	described	in	Chapter	37.



39

Mathematical	Backup	and	Addenda

Complicated	formulas	and	mathematical	definitions	and	references,	avoided
elsewhere,	are	brought	together	in	this	chapter,	together	with	several
mathematical	and	other	addenda.
	

LIST	OF	ENTRIES

•	Affinity	and	self-similarity	(Self-)
•	Brown	fractal	sets
•	Dimension	and	covering	of	a	set	(or	of	its	complement)	by	balls
•	Dimension	(Fourier)	and	heuristics
•	Fractals	(On	the	definition	of)
•	Hausdorff	measure	and	Hausdorff	Besicovitch	dimension
•	Indicator/coindicator	functions
•	Lévy	stable	random	variables	and	functions
•	Lipschitz-Hölder	heuristics
•	Music:	Two	properties	of	scaling
•	Nonlacunar	fractals
•	Potentials	&	capacities.	Frostman	dimension
•	Scaling	under	truncation
•	Similarity	dimension:	its	pitfalls
•	Stationarity	(Degrees	of)
•	Statistical	analysis	using	R/S
•	Weierstrass	function	and	kin.

Ultraviolet	and	infrared	catastrophes



AFFINITY	AND	SELF-SIMILARITY	(SELF-)

In	the	text,	the	terms	self-similar	and	self-affine	(a	neologism)	are	applied	to
either	bounded	or	unbounded	sets	(without,	I	hope,	introducing	ambiguity).
Many	discussions	of	turbulence,	and	earlier	papers	of	mine,	also	use	self-similar
in	a	“generic”	sense	that	incorporates	setf-affine.	but	in	this	Essay	the	generic
meaning	is	implemented	by	scaling.



1.	SELF-SIMILARITY

In	the	Euclidean	space	RE,	a	real	ratio	r>0	determines	a	transformation	called
similarity.	It	transforms	the	point	x	=	(x1,...xδ,...xE)	into	the	point	r(x)	=
(rx1,...rxδ,...rxE),	and	hence	transforms	a	set	S	into	the	set	r(S).	See	Hutchinson
1981.
BOUNDED	SETS.	A	bounded	set	S	is	self-similar,	with	respect	to	the	ratio	r

and	an	integer	N,	when	S	is	the	union	of	N	nonoverlapping	subsets,	each	of
which	is	congruent	to	r(S).	Congruent	means	identical	except	for	displacement
and/or	rotation.
A	bounded	set	S	is	self-similar,	with	respect	to	the	array	of	ratios	r(1)...r(N),

when	S	is	the	union	of	N	nonoverlapping	subsets,	respectively	congruent	to	r(n)
(S).
A	bounded	random	set	S	is	statistically	self-similar,	with	respect	to	the	ratio	r

and	an	integer	N,	when	S	is	the	union	of	N	nonoverlapping	subsets,	each	of
which	is	of	the	form	r(Sn)	where	the	N	sets	Sn	are	congruent	in	distribution	to	S.
UNBOUNDED	SETS.	An	unbounded	set	S	is	self-similar	with	respect	to	the

ratio	r,	when	the	set	r(S)	is	congruent	to	S.



2.	SELF-AFFINITY

In	the	Euclidean	space	of	dimension	E,	a	collection	of	positive	real	ratios	r	=
(r1...rδ...rE)	determines	a	affinity.	It	transforms	each	point	x	=	(x1...xδ...xE)	into
the	point

r(x)=	r(x1...xδ..,xE)=(x1r1...xδrδ...xErE),

hence	transforms	a	set	S	into	the	set	r(S).
BOUNDED	SETS.	A	bounded	set	S	is	self-affine,	with	respect	to	the	ratio

vector	r	and	an	integer	N,	when	S	is	the	union	of	N	nonoverlapping	subsets,	each
of	which	is	congruent	to	r(S).
UNBOUNDED	SETS.	An	unbounded	set	S	is	self-affine,	with	respect	to	the

ratio	vector	r,	when	the	set	r(S)	is	congruent	to	S.
The	preceding	definition	is	often	applied	under	the	following	conditions:	(a)	S

is	the	graph	of	a	function	X(t)	from	scalar	time	t	to	an	E-1	dimensional
Euclidean	vector;	(b)	r1	=	...rδ...	=	rE-1	=	r;	(c)	rE	≠	r.	In	this	case,	a	direct
definition	runs	as	follows:	A	time-to-vector	function	X(t)	is	self-affine,	with
respect	to	the	exponent	α	and	the	focal	time	to,	if	there	exists	an	exponent	log
rE/log	r	=	a	>	0	such	that	for	every	h	>	0	the	function	h-αX[h(t-t0)]	is	independent
of	h.
LAMPERTI	SEMI-STABILITY.	Random	unbounded	self-affine	sets	are

called	semi-stable	in	Lamperti	1962,	1972.
ALLOMETRY.	Chapter	17	observes	that	when	a	botanical	tree’s	height

changes	by	r,	its	trunk	diameter	changes	by	r3/2.	In	fact,	the	representative	points
whose	coordinates	are	diverse	linear	measures	of	trees	relate	to	each	other	by	an
affinity.	Biologists	call	such	figures	allometric.



BROWN	FRACTAL	SETS

Due	to	the	proliferation	of	different	Brown	sets,	the	terminology	is	necessarily
pedantic,	and	sometimes	even	leaden.



1.	BROWN	LINE-TO-LINE	FUNCTION

This	term	denotes	the	classical	ordinary	Brownian	motion,	also	called	Wiener
function,	Bachelier	function,	or	Bachelier-Wiener-Levy	function.	The	following
cumbersome	definition	allows	an	easy	classification	of	various	generalizations.
ASSUMPTIONS.	(a)	The	time	variable	t	is	a	real	number.	(b)	The	space

variable	x	is	a	real	number.	(c)	The	parameter	H	is	H	=	½.	(d)	The	probability
Pr(X<x)	is	given	by	the	error	function	erf(x),	which	is	the	distribution	of	the
reduced	Gaussian	random	variable	with	(X)=0	and	(X2)=1.
DEFINITION.	The	line-to-line	Brownian	function	B(t)	is	a	random	function

such	that,	for	all	t	and	Δt,

Pr([B(t+Δt)-B(t)]/lΔtlH	<	x)=erf(x).

WHITE	GAUSSIAN	NOISE	REPRESENTATION.	The	function	B(t)	is
continuous	but	nondifferentiable,	meaning	that	B‘(t)	does	not	exist	as	an
ordinary	but	as	a	generalized	function	(Schwartz	distribution).	This	B’(t)	is
called	white	Gaussian	noise.	One	can	write	B(t)	as	the	integral	of	B’(t).
SELF-AFFINITY.	The	notion	of	probability	distribution	extends	from	random

variables	to	random	functions.	Setting	B(0)=0,	the	rescaled	function	t-½B(ht)	has
a	probability	distribution	independent	of	t.	This	property	of	scaling	is	an
example	of	self-affinity.
SPECTRUM.	In	terms	of	spectral	or	harmonic	analysis,	the	spectral	density	of

B(t)	is	proportional	to	f-1-2H,	that	is,	to	f-2.	However,	the	meaning	of	the	spectral
density	f-2	requires	a	special	argument,	because	the	function	B(t)	is	not
stationary,	while	the	customary	Wiener-Khinchin	theory	of	covariance	and
spectrum	is	relative	to	stationary	functions.	This	discussion	is	therefore
postponed	to	the	entry	WEIERSTRASS.
NONDIFFERENTIABILITY.	The	function	B(t)	is	continuous	but	is	not

differentiable.	Again,	the	topic	is	best	analyzed	in	the	entry	WEIERSTRASS.
REFERENCES.	Levy	1937-1954	and	1948-1965	have	a	well-deserved

reputation	for	cryptic	elegance	and	very	personal	style	(see	Chapter	40).
However,	they	are	unmatched	for	intuitive	depth	and	simplicity.
Businesslike	recent	references,	tailored	to	the	needs	of	very	diverse	groups	of

mathematicians,	scientists,	and	engineers,	are	too	numerous	to	list,	but	the	recent
Knight	1981	looks	promising.	(Unfortunately,	it	chooses	not	to	include	“results



on	the	Hausdorff	dimension	or	measure	of	the	sample	paths,	however	elegant
they	may	be,	because	they	do	not	seem	to	have	any	known	applications	[!]	and
[do]	not	...	seem	really	necessary	for	a	general	understanding	of	the	directly
applicable	material.	On	the	other	side	...	such	topics	as	the	everywhere
nondifferentiability	of	the	sample	paths	...	do	seem	to	say	something	definite
about	the	extreme	irregularity	of	the	paths”.)



2.	GENERALIZED	BROWN	FUNCTIONS

Every	assumption	in	the	preceding	section	has	a	natural	generalization,	and
every	process	obtained	by	generalizing	one	assumption	or	more	is	significantly
different	from	the	original	B(t),	and	has	significant	applications.
(a)	The	real	(scalar)	time	t	may	be	replaced	by	a	point	in	Euclidean	space	RE,

with	E	>	1,	on	a	circle,	or	on	a	sphere.
(b)	The	real	(scalar)	X	may	be	replaced	by	a	point	P	in	Euclidean	space	RE,

with	E>1,	a	point	on	a	circle,	or	on	a	sphere.
(c)	The	parameter	H	may	be	given	a	value	other	than	½.	With	the	Gaussian

distribution	erf,	H	can	be	allowed	to	lie	anywhere	in	the	range	0	<	H	<	1.
(d)	The	Gaussian	distribution	erf	may	be	replaced	by	a	non-Gaussian

distribution	discussed	in	the	entry	LEVY	STABLE.
Furthermore,	B(t)	can	be	generalized	via	its	white	noise	representation.	This

procedure	yields	substantially	different	results.



3.	DETRENDlNG

The	variation	of	the	Brown	line-to-line	function	B(t)	between	t=0	and	t=2π
decomposes	into	(a)	the	trend	defined	by	B*(t)	=	B(0)	+	(t/2π)[B(2π)-B(0)],	and
(b)	an	oscillatory	remainder	BB(t).	In	the	case	of	the	Brownian	B(t),	these	terms
happen	to	be	statistically	independent.
THE	TREND.	The	graph	of	the	trend	B*(t)	is	a	straight	line	with	a	random

Gaussian	slope.
BROWN	BRIDGE.	The	“detrended”	oscillatory	term	BB(t)	is	identical	in

distribution	to	a	Brown	bridge,	defined	as	a	Brown	line-to-line	function	that	is
constrained	to	satisfy	B(2π)=B(0).
ABUSE	OF	DETRENDING.	Faced	with	a	samples	of	unknown	origin,	many

applied	statisticians,	working	in	economics,	meteorology	and	the	like,	hasten	to
decompose	it	into	a	trend	and	an	oscillation	(and	added	periodic	terms).	They
assume	implicitly	that	the	addends	are	attributable	to	distinct	generating
mechanisms,	and	are	statistically	independent.
This	last	implicit	assumption	is	quite	unwarranted,	except	when	the	sample	is

generated	by	B(t).



4.	BROINN	ClRCLE-TO-LlNE	FUNCTIONS

LOOPED	BROWN	BRIDGE.	Take	the	periodic	function	of	t	which	coincides
over	the	time	span	0<t≤2π	with	a	Brown	bridge	BB(t),	and	select	At	at	random
(uniformly)	over	[0,2π].	The	function	BB(t+Δt)	is	statistically	stationary	(see	the
entry	STATIONARITY...),	and	can	be	represented	as	a	random	Fourier-Brown-
Wiener	series.	The	coefficients	are	independent	Gaussian	random	variables,
having	wholly	random	phases	and	moduli	proportional	to	n-1.	In	other	words,	the
discrete	spectrum	is	proportional	to	n-2,	that	is,	to	f-2,	and	the	cumulative	spectral
energy	above	the	frequency	f	is	∼f-1.
PRACTICAL	CONSEQUENCE.	The	simulation	of	B(t)	is	necessarily	carried

out	over	a	finite	time	span.	If	this	span	is	viewed	as	[0,2π[,	the	simulation	can
rely	on	discrete	finite	Fourier	methods.	One	computes	a	Brown	bridge	using	a
fast	Fourier	transform,	and	the	required	random	trend	is	added.
REFERENCES.	Paley	&	Wiener	1934	deserves	its	reputation	for	relentless

algebra.	However,	the	profound	expository	paragraphs	in	its	Chapters	IX	and	X
still	deserve	to	be	read.	Kahane	1968	is	recommended,	but	only	to
mathematicians;	the	results	are	never	stated	in	their	simple	original	context.
ODD	LOOPED	BROWN	BRIDGE.	The	functions	BO(t)=½[BB(t)-BB(t+π)]

and	BE(t)	=	½[BB(t)+BB(t+π)],	are	(respectively)	the	sums	of	the	odd	and	the
even	numbered	harmonic	components	of	the	bridge	function	BB(t).	The	odd
component	has	the	virtue	of	being	obtained	directly	in	terms	of	a	white	Gaussian
noise	B’(t)	laid	along	the	circle:

BROWN	LINE-TO-CIRCLE	FUNCTION.	Starting	with	B(t),	drop	its	integer
part	and	multiply	the	fractional	remainder	by	2π.	The	result	determines	a	point’s
position	on	the	unit	circle.	This	Brownian	line-to-circle	function	is	mostly
mentioned	to	warn	against	confusing	it	with	either	of	the	preceding,	very
different,	functions.



5.	FRACTIONAL	BROWN	LlNE-TO-LlNE	FUNCTIONS

To	define	this	function,	denoted	by	BH(t),	start	with	the	ordinary	Brown	line-to-
line	function	and	change	the	exponent	from	H=½	to	any	real	number	satisfying
0<H<1.	Cases	where	H≠½	are	properly	fractional.
All	the	BH(t)	are	continuous	and	nondifferentiable.	The	earliest	mention	of

them	I	could	locate	is	in	Kolmogorov	1940.	Other	scattered	references	and
various	properties	are	listed	in	Mandelbrot	&	Van	Ness	1968.	See	also	Lawrance
&	Kottegoda	1977.
CORRELATION	AND	SPECTRUM.	Clearly,	([BH(t+Δt)	-	BH(t)]2)	=	|Δt|2H.

The	spectral	density	of	BH(t)	is	proportional	to	f-2H-1.	The	exponent	is	not	an
integer,	which	is	one	of	several	reasons	why	I	proposed	to	denote	BH(t)	as	being
fractional.
DISCRETE	FRACTIONAL	GAUSSIAN	NOISE.	It	is	defined	as	the

sequence	of	increments	of	BH(t)	over	successive	unit	time	spans.	Its	correlation
is

2-1[|d+1|2H-2|d|2H+|d-1|2H].

LONG-RUN	CORRELATIONS.	PERSISTENCE	AND
ANTIPERSISTENCE.	Set	BH(O)=O,	and	define	the	past	increment	as	-BH(-t)
and	the	future	increment	as	BH(t).	One	has:

Dividing	by	(BH(t)2)	=	t2H,	one	obtains	the	correlation,	which	one	finds	to	be
independent	of	t:	it	equals	22H-1-1.	In	the	classical	case	H=	½,	the	correlation
vanishes,	as	expected.	For	H	>	½,	the	correlation	is	positive,	expressing
persistence,	and	it	becomes	1	when	H=1.	For	H	<	½,	the	correlation	is	negative,
expressing	antipersistence,	and	it	becomes—½	when	H=0.
The	fact	that	this	correlation	should	be	independent	of	t	even	in	cases	when	it



does	not	vanish	is	an	obvious	corollary	of	the	self-affinity	of	BH(t).
However,	most	students	of	randomness	begin	by	being	surprised	and/or

disturbed	that	the	correlation	of	past	and	future	may	be	independent	of	t	without
reducing	to	0.
PRACTICAL	CONSEQUENCE	CONCERNING	SIMULATION.	To	generate

a	random	function	for	all	integer	times	between	t=0	and	t=T,	it	is	customary	to
select	an	algorithm	in	advance	with	no	regard	to	T,	and	then	to	let	it	run	for	a
time	T.	The	algorithms	needed	to	generate	the	fractional	Brown	functions	are
very	different:	they	necessarily	depend	on	T.
A	fast	generator	for	the	discrete	increments	of	BH(t)	is	described	in

Mandelbrot	1971f.	(That	paper	is	marred	by	a	potentially	very	disturbing
misprint:	in	the	first	fraction	on	p.	545,	1	must	be	subtracted	from	the	numerator
and	added	to	the	whole	fraction.)
FRACTAL	DIMENSIONS.	For	the	graph,	one	has	D	=	2-H.	For	the	zeroset

and	other	level	sets,	one	has	D	=	1-H.	See	Adler	1981.



6.	FRACTIONAL	BROWN	ClRCLE-OR	TORUS--TO-LlNE	FUNCTION

Fractional	Brown	circle-to-line	functions	are	far	less	intrinsic	than	the	functions
of	subentry	4.	The	simplest	is	the	sum	of	the	fractional	Fourier-Brown-Wiener
series,	defined	as	having	independent	Gaussian	coefficients,	wholly	random
phases,	and	coefficient	moduli	proportional	to	n-H-½.	A	fractional	Brown	torus-
to-line	function	is	the	sum	of	a	double	Fourier	series	with	the	same	properties.
WARNING.	A	superficial	analogy	would	suggest	that	the	fractional	Brown

circle-to-line	function	might	be	obtained	by	the	process	that	is	applicable	in	the
nonfractional	case:	by	forming	the	trend	 	of	a	fractional	Brown	line-to-line
function,	then	detrending	BH(t)	and	forming	a	periodic	function	by	repetition.
Unfortunately,	the	periodic	function	obtained	in	this	fashion	and	the	sum	of

the	Fourier	series	with	coefficients	n-H-½	are	different	random	functions.	In
particular,	the	Fourier	series	is	stationary,	while	the	repeated	detrended	BH(t)	is
not.	For	example,	over	a	small	interval	on	both	sides	of	t=0,	the	repeated
detrended	bridge	joins	together	two	nonconsecutive	subpieces	of	BH(t).	The
pinning	down	involved	in	the	definition	of	the	bridge	is	sufficient	to	make	the
combined	piece	continuous	but	is	not	sufficient	to	make	it	stationary.	For
example,	it	is	not	identical	in	distribution	to	a	small	piece	made	of	consecutive
subpieces	on	both	sides	of	t	=	π.
REMARKS	ON	SIMULATION.	To	compute	a	fractional	Brown	line-to-line

function	by	finite	discrete	Fourier	methods	is	theoretically	impossible	and	in
practice	is	workable	but	very	tricky.	The	most	straightforward	procedure	is	to	(a)
compute	the	appropriate	circle-to-line	function,	(b)	discard	it	except	for	a	limited
portion	corresponding	to	a	small	subinterval	of	the	period	2π,	say	from	0<t<t*,
and	(c)	add	a	separately	computed	very	low	frequency	component.	As	H→	1,
this	t*	must	tend	to	0.
FRACTAL	DIMENSIONS.	For	the	whole	graph,	D	=	2-H	(Orey	1970).	When

the	level	set	is	nonempty,	D	=	1-H.	This	result	is	in	Marcus	1976	(strengthening
Theorem	5,	p.	146,	in	Kahane	1968).
CRITICAL	TRANSITION	THROUGH	H	=	1.	The	fractional	Fourier-Brown-

Wiener	series	with	independent	Gaussian	coefficients	proportional	to	n-½-H
converges	to	a	continuous	sum	for	all	H	>	0.	When	H	crosses	the	value	H	=	1,
the	sum	becomes	differentiable.	By	contrast,	the	fractional	Brownian	process	is



only	defined	up	to	H	=	1.	This	difference	in	the	range	of	admissible	values	of	H
confirms	that	these	two	processes	are	quite	different.	It	also	suggests	that	critical
transition	phenomena	of	physics	might	be	modeled	by	the	line-to-line,	but	not
the	circle-to-line,	Brown	function.



7.	FRACTIONAL	BROWN	LINE	(OR	CIRCLE)-TO-SPACE	TRAILS

In	the	circle-to-space	case	with	H	<	1,	the	trail’s	dimension	is	min(E,1/H).This	is
part	of	Theorem	1,	p.	143,	in	Kahane	1968.



8.	DIFFERENT	FORMS	OF	FRACTIONAL	lNTEGRO-
DlFFERENTlATlON

To	transform	the	Brown	line-to-line	function	B(t)	into	BH(t),	the	simplest	is	to
write

This	integral	diverges,	but	increments	like	BH(t)-BH(0)	are	convergent.	This	is	a
moving	average	of	kernel	(t-s)H-½.	A	classical,	albeit	rather	obscure
transformation,	it	is	known	to	pure	mathematicians	as	the	Riemann	Liouville
fractional	integral	or	differential	of	order	H+½.
HEURISTICS.	The	idea	that	the	order	of	integration	and/or	differentiation

need	not	be	an	integer	is	best	understood	in	spectral	terms.	Indeed,	ordinary
integration	of	a	periodic	function	is	equivalent	to	the	multiplication	of	the
function’s	Fourier	coefficients	by	1/n,	and	ordinary	integration	of	a	nonperiodic
function	is	equivalent	to	the	multiplication	of	its	Fourier	transform	(when
defined)	by	1/f.	Hence,	the	operation	that	multiplies	the	Fourier	transform	by	the
fractional	power	(1/f)H+½	can	reasonably	be	called	fractional	integro-
differentiation.	Since	the	spectrum	of	white	noise	is	f-0,	the	spectrum	of	BH(t)	is
(1/f)2(H+½)	=	f-2H-1	(as	announced).
REFERENCES.	The	Riemann-Liouville	transform	has	many	other	scattered

applications	(Zygmund	1959,	II,	p.	133,	Oldham	&	Spanier	1974,	Ross	1975,
Lavoie,	Osler	&	Tremblay	1976).	The	less	well-known	application	to	probability
(with	references	back	to	Kolmogorov	1940)	is	discussed	in	Mandelbrot	&	Van
Ness	1968.
EFFECT	ON	SMOOTHNESS.	When	its	order	H-½	is	positive,	the	Riemann

Liouville	transform	is	a	fractional	form	of	integration,	because	it	increases	a
function’s	smoothness.	Smoothness	equals	local	persistence,	but	smoothness
obtained	by	integration	extends	to	function’s	global	properties.	When	H-½<0,
the	Riemann	Liouville	transform	is	a	fractional	form	of	differentiation,	because
it	enhances	irregularity	that	depends	on	local	behavior.
APPLICATION	TO	BROWN	FUNCTIONS.	For	a	fractional	Brown	circle-to-



line	function,	H	has	no	upper	bound.	Fractional	integration	of	order	H-½	>	½
applied	to	a	Brown	circle-to-line	function	creates	a	differentiable	function.	On
the	contrary,	Brown	line-to-line	functions,	H-½	can	at	most	equal	½,	and	BH(t)	is
not	differentiable.
For	both	the	Brown	circle-to-line	and	line-to-line	functions,	local	irregularity

prohibits	differentiation	beyond	H=0,	hence	beyond	the	order	-½.
BILATERAL	EXTENSION	OF	FRACTIONAL	INTEGRO-

DIFFERENTIATION.	The	fact	that	the	classical	Riemann	Liouville	definition	is
strongly	asymmetric	in	t	is	quite	acceptable	when	t	is	time.	But	cases	when	the
coordinate	t	may	“run”	in	either	direction	require	a	symmetric	definition.	I
propose



9.	BROWN	SPACE-TO-LINE	FUNCTIONS

Levy	1948,	1957,	1959,	1963,	1965	introduced	Brown	functions	from	a	space
Ωto	the	real	line,	where	Ω	is	either	IRE	with	the	ordinary	distance	|PP0|,	or	a
sphere	in	IRE+1	with	distance	defined	along	a	geodesic,	or	a	Hilbert	space.	For
each	of	these	Brown	functions,	B(P)-B(P0)	is	a	Gaussian	random	variable	of	zero
mean	and	variance	G(IPP0|),	with	G(x)=x.	The	literature	includes	McKean	1963
and	Cartier	1971.
WHITE	GAUSSIAN	NOISE	REPRESENTATION	WHEN	Ω	IS	A	SPHERE.

This	B(P)	is	constructed	as	described	in	Chapter	28:	throw	a	white	noise	blanket
on	the	sphere,	and	take	for	B(P)	this	integral	of	this	noise	over	the	half	sphere
whose	North	Pole	is	P.	Actually,	I	prefer	the	variant	that	takes	½	of	the	integral
over	the	half	sphere,	minus	½	of	the	integral	on	the	other	half	sphere.	This
generalizes	the	second	process	in	subentry	4	above.
WHITE	GAUSSIAN	NOISE	REPRESENTATION	WHEN	Ω	IS	IRE

(CHENTSOV	1957).	This	case	involves	a	more	complicated	algorithm,	due	to
Chentsov,	which	is	easiest	to	visualize	when	Ω	is	IR2	and	B(0,0)=0.	Take	an
auxiliary	cylinder	of	radius	1	and	coordinates	u	and	θ,	and	place	a	blanket	of
white	noise	on	it.	As	modified	in	Mandelbrot	1975b,	the	algorithm	begins	by
integrating	this	noise	over	the	rectangle	from	θ	to	θ+dθ	and	from	0	to	u.	One
obtains	a	line-to-line	Brown	function	that	vanishes	for	u=0	and	that	will	be
denoted	by	B(u,θ,dθ).	For	each	(x,y)	in	the	plane,	the	line-to-line	Brown
components	B(xcosθ	+	ysinθ,	θ,	dθ)	are	statistically	independent,	and	their
integral	over	θ	is	B(x,y).



10.	FRACTIONAL	BROWN	SPACE-TO-LINE	FUNCTIONS

Gangolli	1967,	anticipated	on	certain	points	by	Yaglom	1957,	generalizes	B(P)
to	the	case	where	G(x)	=	x2H	in	the	preceding	subentry.	But	he	fails	to	include	an
explicit	algorithm	to	construct	the	resulting	function.	To	do	so,	Mandelbrot
1975b	generalizes	the	Chentsov	construction	by	replacing	each	B(u,	θ,	dθ)	by	a
bilaterally	defined	fractional	Brown	line-to-line	function.
For	D,	see	Yoder	1974,	1975.
For	simulation	via	FFT,	see	Voss,	1982.



11.	NONLINEAR	TRANSFORMS	OF	FRACTIONAL	GAUSS/AN	NOISES

Given	a	G(x)	different	from	G(x)	=	x,	form	 	G{BH(t)	-	BH(t-l)},	and
interpolate	linearly	for	noninteger	T’s.	The	result,	to	be	denoted	by	BG(T)-
BG(O),	is	asymptotically	scaling	if	there	exists	a	function	A(T)	such	that
limT→∞A(T){BG(hT)	-	BG(0)}	is	nondegenerate	for	every	h	∈	(0,1	).	Murray
Rosenblatt	had	studied	the	case	G(x)	=	x2-1.	Taqqu	1975	shows	the	problem
hinges	on	the	Hermite	rank	of	G,	defined	as	the	order	of	the	lowest	term	in	the
development	of	G	in	Hermite	series.	More	recent	results	along	these	lines	are	in
Taqqu	1979	and	Dobrushin	1979.



DIMENSION	AND	COVERING	OF	A	SET	(OR	OF
ITS	COMPLEMENT)	BY	BALLS

The	fractal	dimension	I	advocate	and	all	its	acceptable	variants	are	not
topological	but	metric	notions.	They	involve	a	metric	space	Ω,	that	is,	a	space	in
which	the	distance	between	any	two	points	is	defined	suitably.	A	closed
(respectively,	open)	ball	of	centers	ω	and	radius	p	is	the	set	of	all	points	whose
distance	to	ω	is	≤	p	(respectively	<	p).	(Balls	are	solids,	and	spheres	are	their
surfaces.)
Given	a	bounded	set	S	in	Ω,	there	are	many	methods	of	covering	it	with	balls

of	radius	ρ.	Often,	as	in	the	examples	examined	in	this	entry,	these	methods
involve	naturally	a	notion	of	dimension.	In	the	basic	case	studies,	these	notions
yield	identical	values.	In	other	instances,	however,	their	values	differ.



1.	CANTOR	AND	MINKOWSKI

The	crudest	method	of	covering,	pioneered	by	Cantor,	centers	a	ball	on	every
point	in	S,	and	uses	these	balls’	union	as	a	smoothed-out	version	of	S,	to	be
called	S(p).
Add	the	assumption	that	Ω	is	an	E-dimensional	Euclidean	space.	In	this	case,

the	concept	of	volume	(vol)	is	defined,	and

vol	{d-dimensional	ball	of	radius	p}=γ(d)pD,

with

γ(d)=[Γ(½)d/Γ(1+d/2).

When	S	is	a	cube	of	volume	much	greater	than	p3,

vol	[S(p)]	~	vol	[S].

When	S	is	a	square	having	an	area	much	greater	than	p2,

vol[S(p)]~2p	area	[S].

When	S	is	an	interval	having	a	length	much	greater	than	p,

vol[S(p)]~πp2	length	[S].

More	precisely,	let	“content”	stand	for	either	volume,	area	or	length,	whichever
is	appropriate,	and	let	d	be	the	standard	dimension.	Letting	V	denote	the
expression

V=vol[(S)]/γ(E-d)pE-d,

we	see	that	cubes,	squares,	and	lines	satisfy

content	[S]	=	limp→0V.

This	formula	is	not,	as	might	seem,	a	hairsplitting	relation	between	equally
innocuous	notions.	An	example	due	to	H.	A.	Schwarz	(reported	in	1882)	shows
that,	when	a	circular	cylinder	is	triangulated	and	the	triangulation	is	made
increasingly	fine,	the	sum	of	the	triangles’	areas	does	not	necessarily	converge	to
the	cylinder’s	area.	To	avoid	this	paradoxical	behavior,	Minkowski	1901	sought
to	reduce	length	and	area	to	the	sound	and	simple	concept	of	volume,	through
the	above	method	of	covering	S	by	balls.



However,	a	slight	complication	enters	from	the	outset:	the	expression	V	may
fail	to	have	a	limit	as	ρ	tends	to	0.
When	such	is	the	case,	the	notion	of	lim	is	replaced	by	the	twin	notions	of	lim

sup	and	lim	inf.	To	every	real	number	A	in	the	open	interval	]	lim	inf,	lim	sup	[,
corresponds	at	least	one	sequence	pm→O	such	that

limm→∞vol	{	[S(pm)]/γ(E-d)pmE-d	}	=A.

But	no	such	sequence	exists	if	either	A<lim	inf	or	A	>	lim	sup.	These	definitions
being	granted,	Minkowski	1901	calls

lim	supp→0vol[S(p)]/γ(E-d)pE-d

and

lim	infp→0vol[-S(p)]/γ(E-d)pE-d

the	upper	and	the	lower	d-content	of	S.	When	they	are	equal,	their	value	is	the	d-
content	of	S.	Minkowski	observes	that	for	standard	Euclidean	shapes	there	exists
a	D	such	that	if	d	>	D	the	upper	content	of	S	vanishes,	and	if	d	<	D	the	lower
content	of	S	is	infinite.



2.	BOULlGAND

The	extension	of	Minkowski’s	definition	to	noninteger	d’s	is	due	to	Bouligand
1928,	1929.	In	particular,	the	above	lim	inf,	which	may	be	a	fraction,	deserves	to
be	called	the	Minkowski-Bouligand	dimension	DMB.
Bouligand	recognized	that	DMB	is	sometimes	counterintuitive,	and	more

generally	is	less	desirable	than	the	Hausdorff	Besicovitch	D.	But	it	is	often
identical	to	D	and	easier	to	evaluate,	hence	is	useful.	The	case	E=1	is	discussed
in	Kahane	&	Salem	1963,	p.	29,	which	confirms	that	DMB	is	often	equal	to	D,
cannot	be	smaller,	and	can	be	greater.



3.	PONTRJAGlN	&	SCHNIRELMAN;	KOLMOGOROV	&	TIHOMIROV

Among	all	collections	of	balls	of	radius	p	that	cover	a	set	S	in	the	metric	space
Ω,	the	most	economical	is	by	definition	one	that	requires	the	smallest	number	of
balls.	When	S	is	bounded,	this	smallest	number	is	finite	and	can	be	denoted	by
N(ρ).	Pontrjagin	&	Schnirelman	1932	advances	the	expression

lim	infp→0logN(p)/log(1/p)

as	an	alternative	definition	of	dimension.
This	approach	is	developed	in	Kolmogorov	&	Tihomirov	1959,	whose	authors

were	inspired	by	Shannon’s	information	theory	to	label	log	N(p)	the	p-entropy	of
S.	Hawkes	1974	calls	the	corresponding	dimension	the	lower	entropy	dimension,
and	the	variant	obtained	by	replacing	lim	inf	by	lim	sup	the	upper	entropy
dimension.	Hawkes	shows	that	the	Hausdorff	Besicovitch	dimension	is	at	most
equal	to	the	lower	entropy	dimension;	they	often	coincide	but	may	fail	to	do	so.
Kolmogorov	&	Tihomirov	1959	also	studies	M(p),	defined	as	the	largest

number	of	points	in	S,	such	that	their	mutual	distances	exceed	2p.	For	sets	on	the
line,	N(p)=M(p).	But	for	other	sets,

lim	infp→0log	M(p)/log	(1	/p)

is	still	another	dimension.
◁	Kolmogorov	&	Tihomirov	1959	calls	log	M(ρ)	a	capacity,	which	is	most

unfortunate,	because	of	an	entirely	different,	older,	and	better-justified	meaning
for	this	term	in	potential	theory.	In	particular,	one	must	avoid	the	temptation	of
designating	the	dimension	in	the	preceding	paragraph	as	a	capacity	dimension.
See	POTENTIALS,	3.



4.	BESlCOVlTCH	&	TAYLOR;	BOYD

When	Ωis	[0,1]	or	is	the	real	line,	we	saw	in	Chapter	8	that	a	dust	S	is	fully
determined	by	its	complement,	which	is	the	union	of	the	maximal	open	intervals,
the	gaps	(in	some	constructions,	each	gap	is	a	trema).
TRIADIC	CANTOR	DUST	C	IN	[0,1].	The	lengths	of	the	gaps	add	up	to	1,

and	follow	the	hyperbolic	distribution	Pr(U	>u)=Fu-D.	Hence,	the	length	Xn	of
the	nth	gap	by	decreasing	size	has	an	order	of	magnitude	of	n-1/D.
GENERAL	LINEAR	SETS	OF	ZERO	LEBESGUE	MEASURE.	The

behavior	of	the	λn	for	n→∞	is	studied	in	Besicovitch	&	Taylor	1954.	There
exists	a	real	exponent	DBT	such	that	the	series	∑	λnd	converges	when	d>DBT
(and	in	particular	converges	to	1	when	d=1).	Thus	DBT	is	the	infimum	of	the	real
numbers	d	such	that	∑	λnd<∞.	It	can	be	shown	that	DBT≥D.	Hawkes	1974	(p.
707)	proves	that	DBT	coincides	with	the	upper	entropy	dimension,	but	may	be
easier	to	evaluate.
WARNING.	When	S’	is	not	of	zero	measure,	DBT	is	not	a	dimension.	It	relates

to	an	exponent	in	Chap.	15,	and	to	the	Δ	in	Chap.	17.
APOLLONIAN	PACKING	EXPONENT.	DBT	has	a	counterpart	in	the	case	of

Apollonian	packing	(Chapter	18).	It	was	introduced	in	1966	by	Z.	A.	Melzak,
and	Boyd	1973b	showed	that	(as	expected)	it	is	the	residual	set’s	Hausdorff-
Besicovitch	dimension.



DIMENSION	(FOURIER)	AND	HEURISTICS

Let	µ(x)	be	a	nondecreasing	function	of	x∈[0,1].	If	the	maximal	open	intervals
where	µ	is	constant	add	up	to	the	complement	of	the	closed	set	S,	dµ(x)	is	called
supported	by	S.	The	Fourier-Stieltjes	transform	of	µ	is

û(f)	=	∫exp(ifx)dµ	(x).

The	smoothest	µ’s	yield	the	fastest	possible	rate	of	decrease	of	û.	Let	DF	be	the
largest	real,	such	that	at	least	one	function	µ(x)	supported	by	S	satisfies

û(f)	=	o(|f|-DF/2+∈),	as	f→∞,	for	all∈>0,

but	no	µ(x)	satisfies

û(f)	=	o(|f|-DF/2-ε),	as	f→∞	for	some	ε>0.

Here,	“a=o(b),	as	f→	∞,”	means	that	limf→∞(a/b)=O.	When	S	is	the	whole
interval	[0,1],	DF	is	infinite.	On	the	contrary,	when	S	is	a	single	point,	DF=O.
More	interestingly,	whenever	S	is	of	zero	Lebesgue	measure,	DF	is	finite	and	at
most	equal	to	the	Hausdorff	Besicovitch	dimension	D	of	S.	The	inequality	DF≤D
shows	that	the	fractal	and	harmonic	properties	of	a	fractal	set	are	related,	but	are
not	necessarily	identical.
To	prove	that	these	dimensions	can	differ,	suppose	that	S	is	a	set	on	a	line	for

which	D=DF.	When	the	same	S	is	viewed	as	a	set	in	the	plane,	D	is	unchanged
but	DF	becomes	0.
DEFINITION.	A	convenient	way	of	summarizing	some	of	the	harmonic

properties	of	S	is	to	call	DF	the	Fourier	dimension	of	S.
SALEM	SETS.	The	equality	DF=D	characterizes	a	category	of	sets	called	sets

of	unicity	or	Salem	sets	(Kahane	&	Salem	1963,	Kahane	1968).
RULE	OF	THUMB	AND	HEURISTICS.	The	fractals	of	interest	in	case

studies	tend	to	be	Salem	sets.	Since	DF	is	often	easy	to	estimate	from	data,	it	can
serve	as	estimate	of	D.
NONRANDOM	SALEM	SETS.	A	nonrandom	Cantor	dust	is	a	Salem	set	only

if	r	satisfies	certain	number	theoretic	properties.



RANDOM	SALEM	SETS.	A	random	Cantor	dust	is	a	Salem	set	when
randomness	is	sufficient	to	break	up	every	arithmetic	regularity.
The	original	example,	due	to	R.	Salem,	is	very	complex.	The	next	example	is

the	Levy	dust:	Denoting	the	Levy	staircase	(Plate	286)	by	L(x),	Kahane	&
Mandelbrot	1965	shows	that	the	spectrum	of	dL(x)	is	near	identical	on	the
average	to	the	spectrum	of	the	fractional	Brownian	line-to-line	function,	and	is	a
smoothed	form	of	the	spectrum	of	the	Gauss-Wierstrass	function.

	Kahane	1968	(Theorems	1,	p.	165	and	5,	p.	173)	shows	that	the	image	of
compact	set	S	of	dimension	δ	by	a	fractional	Brown	line-to-line	function	of
exponent	H	is	a	Salem	set	with	D=min(1,δ/H).
THE	CANTOR	DUST	IS	NOT	A	SALEM	SET.	The	triadic	Cantor	dust	had

originally	emerged	out	of	Georg	Cantor’s	search	for	a	set	of	unicity	(See
Zygmund	1959,	I,	p.	196),	but	this	search	failed.	(Cantor	then	abandoned
harmonic	analysis,	and—as	second	best!—founded	the	theory	of	sets).	For
example,	denote	the	Cantor	staircase	(Plate	83)	by	C(x).	The	spectrum	of	dC(x)
has	the	same	overall	shape	as	that	of	dL(x),	but	it	includes	occasional	sharp
peaks	of	nondecreasing	size,	which	implies	that	DF=0.	See	Hille	&	Tamarkin
1929.
These	peaks	make	all	the	difference	in	the	theory	of	sets	of	unicity,	but	in

practice	they	are	unlikely	to	be	significant.	Most	estimators	of	spectral	density
will	tend	to	miss	the	peaks	and	to	pick	the	background	ruled	by	D.



FRACTALS	(ON	THE	DEFINITION	OF)

Although	the	term	fractal	is	defined	in	Chapter	3,	I	continue	to	believe	that	one
would	do	better	without	a	definition	(my	1975	Essay	included	none).
The	immediate	reason	is	that	the	present	definition	will	be	seen	to	exclude

certain	sets	one	would	prefer	to	see	included.
More	fundamentally,	my	definition	involves	D	and	DT,	but	it	seems	that	the

notion	of	fractal	structure	is	more	basic	than	either	D	or	DT.	Deep	down,	the
importance	of	the	notions	of	dimension	is	increased	by	their	unexpected	new
use!
In	other	words,	one	should	be	able	to	define	fractal	structures	as	being

invariant	under	some	suitable	collection	of	smooth	transformations.	But	this	task
is	unlikely	to	be	an	easy	one.	To	exemplify	the	difficulty	in	a	standard	context,
let	us	recall	that	certain	definitions	of	complex	number	fail	to	exclude	the	real
numbers!	At	the	present	stage,	the	main	need	is	to	differentiate	the	basic	fractals
from	the	standard	sets	in	Euclid.	This	is	a	need	my	definition	does	satisfy.
My	obvious	lack	of	enthusiasm	must	be	shared	by	numerous	prominent

mathematicians	who	failed	to	notice	the	definition	in	my	1977	Essay.
Nevertheless,	let	us	elaborate	on	it.



1.	DEFINITION

A	fractal	set	was	defined	for	the	first	time	in	the	Introduction	of	my	1977	Essay
as	a	set	in	a	metric	space,	for	which
	
Hausdorff	Besicovitch	dimension	D
>	topological	dimension	DT.

	
With	one	exception,	the	fractals	in	this	book	are	sets	in	a	Euclidean	space	of

dimension	E<∞.	They	may	be	called	Euclidean	fractals.	The	exception	is	in
Chapter	28:	the	Brown	coastline	on	the	sphere	may	be	viewed	as	a	Riemannian
fractal.



2.	CRITIQUE.	PARTLY	ARITHMETIC	VERSUS	PURELY	FRACTAL
DIMENSIONS

The	above	mathematical	definition	is	rigorous	but	tentative,	and	it	would	be	nice
to	improve	it,	but	several	seemingly	natural	changes	would	be	ill-inspired.
Long	ago,	when	fumbling	for	a	measure	for	the	properties	later	to	be	called

fractal,	I	had	settled	on	the	Hausdorff	Besicovitch	dimension	D,	because	it	has
been	studied	most	carefully.	The	fact	that	treatises	such	as	Federer	1969	find	it
necessary	to	introduce	innumerable	variants,	separated	from	D	by	details,	is
unsettling.	Nevertheless,	there	is	good	reason	at	present	to	postpone	the
examination	of	these	details.
Furthermore,	given	several	possible	dimensions	to	choose	between,	one	must

avoid	those	that	involve	clearly	extraneous	features.	Most	important,	D	involves
no	arithmetic	facet,	by	contrast	with	either	the	Fourier	dimension	DF	(p.	360)	or
the	Besicovitch	&	Taylor	exponent	(p.	359	and	Kahane	1971,	p.	89).



3.	HAUSDORFF	BORDERLINE	CASES

Borderline	cases	are	always	a	problem.	A	priori,	a	nonrectifiable	curve	for	which
D=1	may	be	called	either	fractal	or	nonfractal,	and	the	same	holds	for	any	set
such	that	D=DT,	but	the	Hausdorff	measure	using	the	test	function	h(p)	=	γ(D)pD

is	infinite	(it	cannot	vanish).	More	irritatingly,	the	Devil’s	staircase	of	Cantor
(Plate	83)	is	intuitively	a	fractal,	since	it	exhibits	many	length	scales	in	obvious
fashion.	Hence,	one	hates	to	have	to	call	it	nonfractal,	even	though	D=1=DT.	See
p.	373.	Lacking	other	criteria,	I	set	the	border	in	such	a	way	as	to	achieve	a	short
definition.	If	and	when	a	good	reason	arises,	this	definition	ought	to	be	changed.
See	HAUSDORFF,	8.



4.	RESTATED	DEFINITION

The	“capacitary	dimension”	(see	the	subentry	POTENTIALS,	4)	satisfies	the
criteria	set	in	subentry	2	above,	merely	because	its	value	is	identical	to	D.
Hence,	a	fractal	can	be	defined	alternatively	as	a	set	for	which
	
Frostman	capacitary	dimension
>	topological	dimension.



5.	FRACTAL	TIMES,	INTRINSIC	AND	LOCAL

Some	raw	material	on	this	topic	is	found	in	Chapter	XII	of	the	1977	Fractals.



HAUSDORFF	MEASURE	AND	HAUSDORFF
BESICOVITCH	DIMENSION

Convenient	general	references	on	this	topic	are	Hurewicz	&	Wallman	1941,
Billingsley	1967,	Rogers	1970,	and	Adler	1981.



1.	CARATHÉODORY	MEASURE

The	thought	that	“the	general	notion	of	volume	or	magnitude	is	indispensable	in
investigations	on	the	dimensions	of	continuous	sets”	occurred	to	Cantor,	in
passing.	Given	the	problem’s	difficulty,	Lebesgue	doubts	that	Cantor	could	reach
any	significant	result.	The	idea	is	furthered	in	Carathéodory	1914	and
implemented	in	Hausdorff	1919.
A	classical	method	for	evaluating	the	area	of	a	planar	shape	begins	by

approximating	S	by	a	collection	of	very	small	squares	and	by	adding	these
squares’	sides	raised	to	the	power	D=2.	Carathéodory	1914	extends	this
traditional	approach.	It	avoids	reliance	on	coordinate	axes	by	replacing	squares
by	discs,	and	strives	not	to	use	in	advance	the	knowledge	that	S	is	a	standard
Euclidean	shape	of	known	dimension	imbedded	in	a	known	IRE.
Observe	therefore	that	when	a	planar	shape	imbedded	in	three-space	is

covered	by	discs,	it	is	a	fortiori	covered	by	balls	of	which	these	discs	are
equators.	Hence,	to	avoid	prejudging	the	fact	that	S	is	planar,	it	suffices	to	cover
it	by	balls	instead	of	discs.	When	S	is	indeed	a	surface,	one	obtains	its
approximate	contents	by	adding	expressions	of	the	form	πp2	corresponding	to	all
the	covering	balls.	More	generally,	a	d-dimensional	standard	shape	requires	us	to
add	expressions	of	the	form	h(p)	=	γ(d)pd,	where	the	function	γ(d)	=	[Γ(½)]d/
Γ(1+d/2)	is	defined	early	in	this	chapter	as	the	contents	of	a	ball	of	unit	radius.
On	this	basis,	Carathéodory	1914	extends	the	ideas	of	“length”	or	“area”	to	some
nonstandard	shapes.



2.	HAUSDORFF	MEASURE

Hausdorff	1919	goes	beyond	Carathéodory	by	allowing	d	to	be	fractional	(the
function	γ(d)	was	written	in	such	a	way	that	it	continues	to	be	meaningful).
Thus,	instead	of	limiting	oneself	to	powers	of	p,	one	can	use	any	positive	test
function	h(p)	that	tends	to	0	with	p.
Furthermore,	a	ball	being	merely	the	set	of	points	whose	distance	from	a

center	ω	does	not	exceed	a	prescribed	radius	p	continues	to	be	defined	when	the
space	Ω	is	not	Euclidean,	as	long	as	a	distance	is	defined.	As	has	been	noted,
such	spaces	are	called	metric,	hence	the	Hausdorff	measure	is	a	metric	concept.
Given	a	test	(or	“gauge”)	function	h(p),	a	finite	covering	of	the	set	S	by	balls

of	radii	pm	can	be	said	to	have	the	measure	Σh(pm).	To	achieve	economy	in
covering,	one	considers	all	the	coverings	by	balls	of	radius	less	than	p,	and	one
forms	the	infimum

infPm<pΣh(pm).

As	p→0,	the	constraint	pm<p	becomes	increasingly	stringent.	Hence	the
expression	infΣh(pm)	can	only	increase;	it	has	a	limit

limp→0infPm<pΣh(Pm).

This	limit	may	be	either	finite	and	positive,	or	infinite,	or	zero.	It	defines	the	h-
measure	of	the	set	S.
When	h(p)=γ(d)pd,	the	h-measure	is	called	d-dimensional.	More	precisely,	due

to	the	prefactor	γ(d),	it	is	the	normalized	d-dimensional	measure.
When	h(p)=	1/log	|p|,	the	h-measure	is	called	logarithmic.



3.	A	SET’S	INTRINSIC	TEST	FUNCTION

The	function	h(ρ)	may	be	called	intrinsic	for	S	and	denoted	by	h	S	(p)	if	the	h	S-
measure	of	S	is	positive	and	finite.	This	measure	may	be	called	the	fractal
measure	of	S.
For	the	standard	shapes	in	Euclid,	the	intrinsic	test	function	is	always	of	the

form	hS(p)=γ(D)pD,	with	some	integer	value	of	D.	Hausdorff	showed	that
hS(p)=γ(D)pD,	with	noninteger	D’s,	are	intrinsic	for	the	Cantor	dusts	and	the
Koch	curves.
On	the	other	hand,	in	the	case	of	typical	random	fractals,	even	where	they	are

statistically	self-similar,	the	intrinsic	hS(p)	exists	but	is	more	complicated,	for
example	of	the	form	hS(p)=pD|log	p|.	If	so,	the	h-measure	of	Swith	respect	to
h(p)	=γ(D)pD	vanishes,	hence	the	shape	has	less	“substance”	than	if	it	were	D-
dimensional,	but	more	substance	than	if	it	were	(D—ε)-dimensional.	An
example	is	provided	by	Brownian	motion	in	the	plane,	for	which	Levy	finds	h	S
(p)	=	p2loglog	(1/p).	See	Taylor	1964.
The	2-dimensional	measure	of	any	bounded	set	in	the	plane	being	finite,	test

functions	such	as	p2/log	(1/p)	are	not	intrinsic	for	any	planar	set.
Much	work	on	determining	hS	(p)	for	random	sets	is	coauthored	or	authored

by	S.	J.	Taylor;	a	reference	is	Pruitt	and	Taylor	1969.



4.	HAUSDORFF	BESICOVITCH	DIMENSION:	DEFINITION

If	one	knows	that	S	is	two-dimensional,	it	suffices	to	evaluate	the	Hausdorff	h-
measure	for	h(p)=πp2.	However,	the	definition	of	Hausdorff	measure	is
formulated	to	insure	that	advance	knowledge	of	D	is	not	needed.	If	one	deals
with	a	standard	shape	of	unknown	dimension,	one	will	evaluate	the	measure	for
all	test	functions	h(p)=γ(d)pd	with	d	an	integer.	If	length	is	infinite	and	volume	is
zero,	the	shape	can	only	be	two-dimensional.
Besicovitch	extended	the	core	of	this	last	conclusion	to	cases	where	d	is	not	an

integer	and	S	is	not	standard	shape.	He	showed	that	for	every	set	S	there	exists	a
real	value	D	such	that	the	d-measure	is	infinite	for	d	<	D	and	vanishes	for	d	>	D.
This	D	is	called	the	Hausdorff	Besicovitch	dimension	of	S.
To	a	physicist,	this	definition	means	that	D	is	a	critical	dimension.
The	D-dimensional	Hausdorff	measure	of	a	D-dimensional	set	S	may	be	either

zero,	or	infinite,	or	positive	and	finite.	Hausdorff	had	considered	only	this	third
and	simplest	category	and	showed	it	includes	the	Cantor	sets	and	the	Koch
curves.	If,	in	addition,	the	set	S	is	self-similar,	it	is	easy	to	see	that	its	similarity
dimension	must	equal	D.	On	the	other	hand,	we	saw	that	typical	random	sets
have	zero	measure	in	their	intrinsic	dimension.
For	a	long	time,	Besicovitch	was	the	author	or	the	co-author	of	nearly	every

paper	on	this	subject.	While	Hausdorff	is	the	father	of	nonstandard	dimension,
Besicovitch	made	himself	its	mother.
CODIMENSION.	When	Ω	is	the	space	IRE,	D≤E,	and	E-D	is	called

codimension.



5.	DIRECT	PRODUCTS	OF	SETS	(ADDITIVE	DIMENSIONS)

Let	S1	and	S2	belong	respectively	to	an	E1-space	and	an	E2-space,	and	denote	by
S	the	set	in	E-space,	with	E=E1	+E2’	which	is	obtained	as	the	product	of	S1	and
S2.	(If	E1=E2=1,	S	is	the	set	of	points	(x,y)	in	the	plane,	such	that	x∈S1	and
y∈S2.)
The	rule	of	thumb	is	that	if	S1	and	S2	are	“independent”	the	dimension	of	S	is

the	sum	of	the	dimensions	of	S1	and	S2.
The	notion	of	“independence”	embodied	in	this	rule	proves	unexpectedly

difficult	to	state	and	prove	generally.	See	Marstrand	1954a,	1954b;	Hawkes
1974;	Mattila	1975.	Luckily,	intuition	is	usually	a	good	guide	in	the	case	studies
for	example	in	those	tackled	in	this	Essay.



6.	INTERSECTIONS	OF	SETS	(ADDITIVE	CODIMENSIONS)

The	rule	of	thumb	is	the	following.	When	S1	and	S2	are	independent	sets	in	E-
space	and

codimension(S1	)+codimension(S2)<E,

the	term	on	the	left	is	almost	surely	equal	to

codimension(S1	1	∩	S2).

When	the	sum	of	codimensions	is	>E,	one	finds	typically	that	the	intersection	is
almost	surely	of	dimension	0.
In	particular,	two	sets	of	the	same	dimension	miss	one	another	if	D≤E/2.	The

dimension	E=2D	can	be	called	critical.
Most	notably,	given	that	Brown	trails	have	the	dimension	D=2,	two	Brown

trails	hit	one	another	when	E<4,	and	miss	when	E≤4.
The	rule	extends	in	obvious	fashion	to	the	intersection	of	more	than	two	sets.
SELF-INTERSECTIONS.	The	set	of	k-multiple	points	of	S	can	be	viewed	as

the	intersection	of	k	replicas	of	S.	One	is	tempted	to	test	the	assumption	that,
from	the	viewpoint	of	the	intersection’s	dimension,	said	k	replicas	can	be	viewed
as	independent.	In	one	example	at	least,	this	guess	turns	out	to	be	correct.	S.	J.
Taylor	1966	(generalizing	upon	results	by	Dvoretzky,	Erdös	&	Kakutani)	studies
the	trails	of	Brownian	and	Levy	motion	in	IR1	and	IR2.	The	trail’s	dimension	is
D,	and	the	sets	of	its	k-multiple	points	are	of	dimension	max[O,E-k(E-D)].
Taylor’s	guess	is	that	the	result	holds	in	IRE	for	all	k’s	up	to	k=oo.



7.	PROJECTIONS	OF	SETS

The	rule	of	thumb	is	that,	when	a	fractal	S	of	dimension	D	is	projected	along	a
direction	independent	of	S	upon	a	Euclidean	subspace	of	dimension	E0,	the
projection	S*	satisfies

dimension	S	=	min	(E0,	D).

APPLICATION.	Let	x1	∈	S1	and	X2	∈	S2,	where	S1	and	S2	are	two	fractals	in
IRE,	of	dimensions	D1	and	D2.	Let	a1	and	a2	be	nonnegative	real	numbers	and
define	the	set	S	as	made	up	of	the	points	of	the	form	x=a1x1+a2x2.	This	set	S	has
a	D	satisfying

max(D1,D2)≤D≤min(E,D1+D2).

The	proof	consists	in	taking	a	direct	product	of	1RE	by	IRE,	then	projecting.
In	case	of	independence,	the	upper	bound	tends	to	apply.	When	D=E=1,	S

may	be	either	a	fractal	or	a	set	that	includes	intervals.



8.	SUBORDINATION	OF	SETS	(MULTIPLICATIVE	DIMENSIONS)

See	Chapter	32.



9.	SUBDIMENSIONAL	SEQUENCE

When	the	intrinsic	test	function	of	S	is	hS(ρ)=-y(O)ρD,	the	fractal	properties	are
fully	described	by	its	D.	When

hS(ρ)=ρD[log	(1	/ρ)]Δ1[loglog(1	/ρ)]Δ2,

the	description	of	the	fractal	properties	of	S	is	more	cumbersome.	It	requires	the
sequence	D,	Δ1,	Δ2.	The	Δm	may	be	called	subordinate	dimensions,	or
subdimensions.
The	subdimensions	may	bear	on	the	question	of	whether	the	borderline	sets

discussed	in	the	subentry	FRACTAL,	3	are	or	are	not	to	be	called	fractal.	It	may
become	useful	to	include	among	the	fractals	all	the	S	such	that	D=DT	but	at	least
one	Δ	is	nonzero.



INDICATOR/COINDICATOR	FUNCTIONS

Given	a	set	S,	the	indicator	function	J(x)	is	classically	defined	as	being	such	that
J(x)=1	1	when	x∈S,	and	J(x)=0	when	x∉S.	When	S	is	a	Cantor	set,	a	Sierpiński
lattice	(gasket	or	carpet),	a	fractal	net,	or	any	one	of	several	other	classes	of
fractals,	J(x)	is	inconvenient.	I	often	find	it	more	convenient	to	replace	J(x)	by	a
different	function	C(x),	which	I	introduced	and	now	propose	to	call	coindicator.
C(x)	is	a	randomly	weighted	average	of	the	indicator	functions	of	the	gaps	of

S.	In	other	words,	C(x)	is	constant	in	each	gap,	and	its	values	in	different	gaps
are	independent	random	variables	of	identical	distribution.
Under	the	older	(and	misleading)	term,	core	function,	C(x)	is	introduced	and

investigated	in	Mandelbrot	1965c,	1967b,	and	1967i.



LEVY	STABLE	RANDOM	VARIABLES	AND
FUNCTIONS

The	hyperbolic	distribution	is	of	unbeatable	formal	simplicity,	and	is	invariant
under	truncation	(see	the	entry	SCALING	UNDER	TRUNCATION).	But	the
other	transformations	that	leave	it	invariant	are	not	important.	Far	more
important	are	the	distributions	invariant	under	addition.	They	are	only
asymptotically	hyperbolic,	and	Paul	Levy	burdened	them	with	a	frightfully
overworked	term:	“stable	distributions.”	He	also	introduced	stable	processes,	in
which	both	the	hyperbolic	and	the	stable	distributions	play	a	role.
Until	my	work,	the	stable	variables	were	deemed	“pathological”	or	even

“monstrous,”	with	the	sole	exception	of	the	Holtsmark	random	vector	discussed
in	subentry	9.	My	main	applications	are	discussed	in	Chapters	31,	32,	and	37,
and	an	application	to	genetics	is	mentioned	below,	in	subentry	4.
REFERENCES.	They	are	numerous,	but	none	is	satisfactory.	In	Feller	1966

(Volume	11),	the	material	on	stability	is	complete	but	scattered,	hence	hard	to
find	when	needed.	Lamperti	1966	is	a	good	introduction.	Gnedenko	&
Kolmogorov	1954	is	still	recommended.	Lukacs	1970	collects	many	useful
details.	The	original	great	treatises,	Levy	1925,	1937-1954,	are	not	to	everyone’s
taste,	as	they	exhibit	the	distinctive	characteristics	of	their	author’s	style	(see
Chapter	40).



1.	THE	GAUSSIAN	R.V.	IS	SCALING	UNDER	ADDITION

The	Gaussian	distribution	is	known	to	have	the	following	property.	Let	G1	and
G2	be	two	independent	Gaussian	random	variables,	with

(G1)=(G2)=0;	(G1
2)=σ12,(G2

2)=σ22.

Their	sum	G1+G2	satisfies

(G1+G2)=0;	〈(G1+G2)σ12〉+σ22.

More	important,	G1+G2	is	itself	Gaussian.	Thus	the	Gaussian	property	is
invariant	under	the	addition	of	independent	random	variables.	In	other	words,
the	functional	equation

(L)
	
combined	with	the	auxiliary	relation

(A:2)
	
has	the	Gaussian	as	a	possible	solution.	In	fact,	except	for	scale,	the	Gaussian	is
the	only	distribution	satisfying	both	(L)	and	(A:2).
Furthermore,	if	(L)	is	combined	with	the	alternative	auxiliary	relation	〈X2〉

<∞,	the	Gaussian	is	again	the	unique	solution.
(L)	was	the	object	of	profound	study	in	Levy	1925,	which	calls	it	stability.

Whenever	ambiguity	threatens,	I	use	the	cumbersome	Lévy	stability.



2.	THE	CAUCHY	RANDOM	$VARIABLE

Since	practically-minded	scientists	tend	to	take	〈X2〉<∞	for	granted,	the
Gaussian	is	widely	believed	to	be	the	only	stable	distribution.	Such	is	definitely
not	the	case,	as	first	recognized	in	Cauchy	1853,	p.	206.	Cauchy’s	example	is	a
certain	random	variable	first	considered	by	Poisson	and	now	called	“reduced
Cauchy	variable.”	It	satisfies

Pr(X>-x)=Pr(X<x)=	½	+π-1tan-1x,

hence

Cauchy	density	=	1/[π(1+x2)].

Cauchy	showed	this	variable	to	be	a	solution	of	the	combination	of	(L)	with	the
alternative	auxiliary	relation

(A:1)
	
For	the	Cauchy	variable,	〈X2〉=∞,	in	fact	〈X〉=∞.	Hence,	in	order	to	express	the
obvious	notion	that	the	scale	of	the	product	of	X	by	a	nonrandom	s	equals	s
times	the	scale	of	X,	one	must	measure	scale	by	some	quantity	other	than	the
root	mean	square.	One	candidate	is	the	distance	between	the	quartiles	Q	and	Q’,
where	Pr(X<Q’)	=	Pr(X>Q)	=	¼.
The	Cauchy	variable	most	often	serves	as	a	counterexample,	as	in	Bienaymé

1853,	pp.	321-323.	See	also	Heyde	&	Seneta	1977.
GEOMETRIC	GENERATING	MODEL.	The	above	formula	Pr(X<x)	=	½+π-1

tan-1x	is	implemented	geometrically	by	positioning	the	point	W	with	a	uniform
probability	distribution	over	the	circle	u2+v2	-	1	and	defining	X	as	the	abscissa
of	the	point	where	the	line	from	O	to	W	intersects	the	line	v=1.	By	the	same
token,	the	variable	Y,	defined	as	the	ordinate	of	the	point	where	the	line	from	O
to	W	intersects	the	line	u=1,	has	the	same	distribution	as	X.	Since	Y=1/X,	we
find	that	the	inverse	of	Cauchy	is	Cauchy.
Furthermore,	whenever	OW=(X,Y)	is	an	isotropically	distributed	random

vector	in	the	plane,	Y/X	is	a	Cauchy	variable.	In	particular,	the	ratio	of	two



independent	Gauss	variables	is	a	Cauchy	variable.



3.	BROWNIAN	MOTION’S	RECURRENCES

Now	combine	the	equation	(L)	with

(A:0.5)
	
The	solution	is	the	random	variable	whose	density	is	0	for	x<0,	and	otherwise
equals

p(x)	=	(2π)-½	exp(-1/2x)x-3/2.

The	quantity	p(x)dx	is	the	probability	of	finding	that	a	Brown	function	satisfying
B(0)=0	also	satisfies	B(t)=0	for	some	t	in	[x,x+dx].



4.	GENERAL	LEVY	STABLE	VARIABLES

Cauchy	also	considered	the	generalized	auxiliary	relation

(A:D)
	
SYMMETRIC	SOLUTIONS.	Cauchy	asserted	on	the	basis	of	formal

calculations	that	for	every	D	the	combination	of	(L)	with	(A:D)	has	one	solution,
the	random	variable	of	density

π-2 ∞
0exp(-uD)cos(ux)du.

Pólya	and	Levy	showed	that	in	the	case	0<D≤2,	Cauchy’s	assertion	is	indeed
justified,	the	Gauss	and	Cauchy	distributions	being	two	special	cases.	But	in	the
case	D>2,	Cauchy’s	assertion	is	invalid	because	the	above-written	formal	density
takes	on	negative	values,	which	is	an	absurdity.
EXTREME	NONSYMMETRIC	SOLUTIONS.	Levy	showed	moreover	that

the	combination	of	(L)	and	(A:D)	allows	for	nonsymmetric	solutions.	For	the
most	extremely	asymmetric	ones,	the	generating	function	(Laplace	transform)	is
defined	and	equal	to	exp(gD).
OTHER	NONSYMMETRIC	SOLUTIONS.	The	general	solution	of	the

combination	of	(L)	and	(A:D)	is	a	weighted	difference	of	two	independent	and
identically	distributed	solutions	with	extreme	asymmetry.	The	custom	is	to
denote	the	weights	by	½(1	+	β)	and	½(1-β).
FINAL	GENERALIZATION	OF	(L).	Leaving	(A:D)	unchanged,	replace	the

condition	(L)	by

(L*)
	

When	D#1,	this	change	makes	no	difference,	but	when	D=1	it	allows	for
additional	solutions,	called	asymmetric	Cauchy	variables.



BACTERIAL	MUTANTS.	Mandelbrot	1974d	shows	that	the	total	number	of
mutants	in	an	old	culture	of	bacteria	(the	Luria-Delbrück	problem)	is	a	Levy
stable	variable	with	extreme	asymmetry.



5.	LEVY	STABLE	DENSITIES’	SHAPE

Aside	from	three	exceptions:	D=2	with	β=0,	D=1	with	β=0,	and	D=½	with	β=1,,
Levy	stable	distributions	are	not	known	in	closed	analytic	form,	but	the
properties	of	the	three	simple	exceptions	generalize	to	other	cases.
In	all	extreme	asymmetric	cases	with	0<D<1,	the	density	vanishes	for	x<0.
The	fact	that	the	Gaussian	density	is	exp(-½x2)	generalizes	to	the	short	tail	of

all	the	extreme	asymmetric	cases	with	1	<	D	<	2.	The	density	is	∝exp(——
c|x|D/(D–1)).
For	x→∞,	the	Cauchy	density	is	∝(π)–1x–D–1,	and	the	Brown	recurrence

density	is	∝(2π)—½x–D–1.	More	generally,	for	all	D≠2,	the	density	in	the	long
tail(s)	is	∝x–D–1.
Otherwise,	the	behavior	of	p(u)	must	be	obtained	numerically.	Graphs	for

1<D<2	are	given	in	Mandelbrot	1960e	for	the	extreme	asymmetric	case,	with
added	comment	in	Mandelbrot	1962p	concerning	the	values	of	D	very	close	to	2,
and	in	Mandelbrot	1963b	for	the	symmetric	case.	Fast	Fourier	transform
techniques	make	this	task	much	lighter,	see	Dumouchel	1973,	1975.



6.	INEQUALITY	BETWEEN	ADDENDS,	AND	THE	RESULTlNG
CLUSTERING

Let	X1	and	X2	be	independent	random	variables	with	the	same	probability
density	p(u).	The	probability	density	of	X	=	X1+X2	is

If	the	sum	u	is	known,	the	conditional	density	of	either	addend	y	is	p(y)ṗ(u—
y)/p2(u).	Let	us	examine	this	density’s	shape	in	detail.
EXAMPLES.	When	p(u)	is	Gaussian	of	unit	variance,	hence	a	unimodal

function	(=	it	has	a	single	maximum),	the	conditional	distribution	is	Gaussian
centered	on	½u	and	has	the	variance	½,	which	is	independent	of	u	(see	Brown
fractal	sets,	3).	As	u→∞,	the	addends	become	increasingly	close	to	being	equal
in	relative	values.
When	p(u)	is	a	reduced	Cauchy	density,	which	is	again	unimodal,	two	very

different	cases	must	be	distinguished.	When	|u|≤2,	which	happens	half	of	the
time,	the	conditional	distribution	is	again	unimodal,	and	the	most	likely	value	is
also	½u.	On	the	contrary,	when	|u|>2,	the	value	½u	becomes	the	least	likely
(locally).	For	(u)=2,	the	conditional	distribution	bifurcates	into	two	separate
“ogives”	centered	respectively	near	y=0	and	y=u.	As	U→±∞,	these	ogives
become	increasingly	hard	to	distinguish	from	Cauchy	ogives	centered	on	0	and
u.
When	p(u)	is	a	Brown	recurrence	density,	the	situation	is	like	in	the	Cauchy

case	but	even	more	extreme,	the	conditional	density	being	bimodal	with	a
probability	>	½.
Corollary:	consider	three	successive	zero	crossings	of	a	random	walk	Tk–1,	Tk

and	Tk+1.	If	Tk+1—Tk–1	is	large,	the	middle	crossing	is	most	likely	to	cluster
extremely	close	to	either	Tk–1	or	Tk+1,	and	least	likely	to	fall	halfway	in	between.	
	This	result	is	related	to	a	celebrated	counterintuitive	result	of	probability,

Levy’s	arc	sine	law.
Next,	consider	the	conditional	distribution	of	U,	given	that	the	sum	of	M

variables	Ug	takes	a	very	large	value	u.	In	the	Gaussian	case,	the	most	likely
outcome	is	that	each	addend	Ug	is	nearly	u/M.	In	the	Cauchy	case,	and	in	the



Brown	recurrence	case,	on	the	contrary,	the	most	likely	outcome	is	that	all
addends,	except	one,	are	smallish.
THE	HIDDEN	PITFALL	IN	THE	IDEA	OF	“IDENTICAL”

CONTRIBUTIONS	TO	A	SUM.	The	addends	being	a	priori	identical,	in	the
sense	of	having	the	same	distribution,	allows	their	a	posteriori	values	to	be	either
near	equal	(as	in	the	Gaussian	case),	or	unequal	to	varying	degrees	(as	in	the
stable	Levy	case	when	the	sum	is	very	large).



7.	NONSTANDARD	CENTRAL	LIMITS.	ROLE	OF	HYPERBOLIC
VARIABLES

Given	an	infinite	sequence	Xn	of	independent	and	identically	distributed	random
variables,	the	central	limit	problem	inquires	whether	or	not	it	is	possible	to	select
the	weights	an	and	bn	so	that	the	sum	aNΣ Xn—bN	has	a	nontrivial	limit	for
N→∞.
In	the	standard	case	(Xn

2)<∞,	the	answer	is	standard	and	affirmative:	aN	=	1	/
√N	and	bN~(Xn)√N,	and	the	limit	is	Gaussian.
The	nonstandard	case	〈Xn

2〉	=	oo	is	by	far	more	complex:	(a)	The	selection	of
aN	and	bN	is	not	always	possible.	(b)	When	it	is	possible,	the	limit	is	stable	non-
Gaussian.	(c)	In	order	that	the	exponent	of	the	limit	be	D,	a	sufficient	condition
on	the	Xn	is	that	the	distribution	be	asymptotically	hyperbolic	of	exponent	D
(Chapter	38).	(d)	The	necessary	and	sufficient	condition	is	found	in	the
references	at	the	beginning	of	this	entry.



8.	LEVY	STABLE	LlNE-TO-LlNE	FUNCTIONS

These	are	random	functions	having	stationary	independent	increments	and	such
that	the	incremental	random	variable	X(t)-X(0)	is	Levy	stable.	The	scaling	factor
a(t)	that	makes	[X(t)-X(0)]a(t)	independent	of	t	must	take	the	form	a(t)=t–1/D.
This	process	generalizes	the	ordinary	Brownian	motion	to	D≠2.
The	most	striking	property	of	X(t)	is	that	it	is	discontinuous	and	includes

jumps.
THE	CASE	D<1.	Here,	X(t)	includes	nothing	but	jumps;	the	number	of	those

occurring	between	times	t	and	t+Δt	and	having	an	absolute	value	exceeding	u	is
a	Poisson	random	variable	of	expectation	equal	to	|Δt|u–D.
The	relative	numbers	of	positive	and	negative	jumps	are	½(1+β)	and	½(1—β).

The	extreme	asymmetric	case	β=1	involves	positive	jumps	only;	it	is	called
stable	subordinator	and	serves	to	define	the	Levy	staircase	in	Plates	286	and
287.
PARADOX.	Since	u–D→∞	as	u→0,	the	total	expected	number	of	jumps	is

infinite,	however	small	the	length	of	Δt.	The	fact	that	the	associated	probability
is	infinite	seems	paradoxical.	But	this	feeling	ceases	when	one	notes	that	the
jumps	for	which	u<1	add	to	a	finite	cumulative	total.	This	conclusion	becomes
natural	after	it	is	noted	that	a	small	jump’s	expected	length	is	finite.	It	is

THE	CASE	1	<	D<	2.	Now,	the	last-written	integral	diverges,	hence	the	total
contribution	of	the	small	jumps	is	infinite.	As	a	result,	X(t)	includes	a	continuous
term	and	a	jump	term;	both	are	infinite	but	they	have	a	finite	sum.



9.	STABLE	LEVY	VECTORS	AND	FUNCTIONS

Let	the	functional	equation	(L)	in	the	definition	of	stability	be	changed	by
making	X	into	a	random	vector	X.	Given	a	unit	vector	V,	it	is	clear	that	the
combined	equations	(L)	and	(A:D)	have	an	elementary	solution	that	is	the
product	of	V	by	a	scalar	stable	variable.
Levy	1937-1954	shows	that	the	general	solution	is	merely	the	sum	of

elementary	solutions	that	correspond	to	all	directions	in	space	and	are	weighted
by	a	distribution	over	the	unit	sphere.	These	contributions	may	be	either	discrete
(finite	or	denumerably	infinite),	or	infinitesimal.	In	order	that	the	vector	X	be
isotropic,	the	elementary	contributions	must	be	distributed	uniformly	over	all
directions.
STABLE	LEVY	VECTOR	FUNCTIONS	OF	TIME.	These	functions	admit

the	same	sort	of	decomposition	as	a	stable	scalar	function,	into	a	sum	of	jumps
following	the	hyperbolic	distribution.	The	jumps’	sizes	and	directions	are	ruled
by	a	distribution	over	the	unit	sphere.
HOLTSMARK	DISTRIBUTION.	Holtsmark’s	work	in	spectroscopy	survived

by	being	restated	in	terms	of	Newtonian	attraction	(Chandrasekhar	1943);	until
my	work,	it	involved	the	only	concrete	occurrence	of	a	Levy	stable	distribution.
Suppose	there	is	a	star	at	O	and	other	stars	of	unit	mass	are	distributed
throughout	space,	independently	of	each	other	and	with	the	expected	density	δ.
What	is	the	total	attraction	these	stars	exert	upon	O?	Soon	after	Newton’s
discovery	of	the	r–2	law	of	attraction,	the	Reverend	Bentley	wrote	to	him	to	point
out	(in	effect)	that	the	attraction	of	the	stars	within	a	thin	pencil	dΩ’	with	its	apex
at	O	has	an	infinite	expectation,	and	so	does	the	attraction	of	the	stars	within	the
pencil	dΩ”	symmetric	of	dΩ’	with	respect	to	O.	Bentley	concluded	that	the
difference	between	these	infinities	is	undetermined.
The	Holtsmark	problem,	as	it	is	usually	restated,	avoids	this	difficulty	by

concerning	itself	with	the	excess	of	the	actual	attractions	over	their	expectations.
We	begin	with	the	stars	within	a	domain	bounded	by	the	above	pencil	of	angular
angle	dΩ	and	the	spheres	of	radii	r	and	r+dr.	Each	exerts	the	attraction	u=r–2	and
their	number	is	a	Poisson	variable	of	expectation	δ|dΩ|d(r3)	=	5|dΩ|	|d(u–3/2)|.
Hence	the	attraction	in	excess	of	the	expectation	has	the	characteristic	function

exp{δ|dΩ|	 	[exp(iξu)-1-iξu]|d(u–3/2)|}.



This	turns	out	to	correspond	to	a	Levy	stable	variable	of	exponent	D=3/2	and
β=1.	By	the	above	subentry	6,	a	large	positive	u	is	very	likely	to	be	due	to	the
presence	of	a	single	star	near	0,	irrespective	of	the	density	of	stars	elsewhere;
and	the	distribution	of	U	behaves	for	very	large	u	as	the	distribution	of	the
attraction	of	the	nearest	star.
The	overall	excess	attraction	is	therefore	an	isotropic	Levy	stable	vector	with

D=3/2.
The	meaning	of	stability	is	that	if	there	are	two	uniformly	distributed	clouds

of	red	and	blue	stars,	the	forces	exerted	on	O	by	red	stars	alone,	or	by	blue	stars
alone,	or	by	both	together,	differ	only	by	a	scale	factor	and	not	in	the	analytic
form	of	their	distributions.



10.	SPACE-TO-LINE	STABLE	RANDOM	FUNCTIONS

The	construction	of	the	space-to-line	Brown	function	given	by	Chentsov	1957
was	generalized	to	the	stable	case	in	Mandelbrot	1975b.



11.	DIMENSIONS

In	the	non-Gaussian	case,	the	earliest	calculations	of	the	dimension	of	a	stable
process	are	found	in	McKean	1955	and	Blumenthal	&	Getoor	1960c,	1962.	A
reference	with	full	bibliography	is	Pruitt	&	Taylor	1969.



12.	SCALING	UNDER	WEIGHTED	ADDITION	(MANDELBROT	1974c,f)

As	discussed	in	this	chapter	in	the	subentry	NONLACUNAR	FRACTALS	4,
Mandelbrot	1974c,f	advances	a	family	of	generalizations	of	the	Levy	stable
variables.	They	involve	a	generalization	of	Levy’s	stability	condition	(L),
wherein	the	weights	siµ	become	random.



LIPSCHITZ-HÖLDER	HEURISTICS

Fractal	dimension	is	originally	a	local	property,	notwithstanding	the	fact	that	in
this	Essay	the	local	properties	are	reflected	in	the	global	ones.	Therefore,	in	the
case	of	the	graph	of	an	otherwise	arbitrary	continuous	function	X(t),	D	must	be
related	to	other	local	properties.	One	of	the	most	useful	is	the	Lipschitz	Hölder
(LH)	exponent	α.	The	LH	condition	at	t+	is	a	way	of	expressing	that

X(t)-X(to)-|t—to|,	for	0<t—t0<ε,

and	similarly	for	t—.	The	global	LH	exponent	in	[t’,t“]	is	λ[t’,t”]	=	inft’≤t≤t“α.
Unless	X(t)	is	a	constant,	λ≤1.
LH	HEURISTICS	AND	D.	Given	α,	the	number	of	squares	of	side	r	necessary

to	cover	the	graph	of	X	between	times	t	and	t+r	is	roughly	equal	to	rα–1.	In	this
fashion,	one	can	cover	the	graph	of	X(t)	for	t [0,1]	by	N	squares,	and	a	rough
dimensional	argument	yields	D=logN/log(1/r).	This	way	of	guessing	D	will	be
denoted	here	as	Lipschitz-Hölder	heuristics.	It	is	robust	and	effective.
EXAMPLES.	When	X	is	differentiable	for	every	t	between	0	and	1,	and	we

neglect	the	points	where	X’(t)=0,	one	has	α=1	throughout,	and	the	number	of
squares	needed	to	cover	the	graph	is	N~rα–1(1/r)	=	r–1.	It	follows	that	D=1,	as	is
of	course	the	case.
When	X(t)	is	a	Brown	function,	ordinary	or	fractional,	one	can	show	that

α≡λ=H.	The	heuristic	N	is	N~rH–1–1,	hence	D=2—H,	which	again	agrees	with
the	known	D.

	For	the	functions	in	the	entry	WEIERSTRASS...,	Hardy	1916	shows	that
α≡H.	Hence	the	conjecture	that	the	Hausdorff	Besicovitch	dimension	is	2-H.
The	case	of	the	Cantor	staircase	(Plate	101)	is	quite	different.	Here	X	varies

only	for	t’s	that	belong	to	a	fractal	dust	with	fractal	dimension	δ<1,	and	α
depends	on	t.	Divide	[0,1]	into	1/r	time	spans	of	length	r.	In	r–δ	of	these	spans,
α=δ,	and	in	the	other	spans,	α	is	undefined,	but	if	the	coordinate	axes	are	rotated
a	bit,	one	finds	α=1.	Hence	the	heuristic	value	of	the	number	of	covering	squares
is	r–1+rδ–1r–δ	=	2r–1,	and	the	heuristic	dimension	is	D=1.	Such	is	indeed	the	case,
as	noted	in	the	caption	of	Plate	101.
Furthermore,	the	sum	of	a	Brown	function	and	a	Cantor	staircase	with	δ<H



yields	D	=	2—H	and	λ=δ,	hence	1<D<2—λ.
SUMMARY.	The	heuristic	inequality	1≤D≤2—λ.	This	guess	is	confirmed	in

Love	&	Young	1937	and	Besicovitch	&	Ursell	1937.	See	also	Kahane	&	Salem
1963,	p.	27.
ON	THE	DEFINITION	OF	“FRACTAL”.	The	entry	FRACTALS...	mentions

that	it	would	be	desirable	to	extend	the	scope	of	the	term	fractal	to	include	the
Cantor	staircase.	Should	we	say	a	curve	is	fractal	when	λ<1	and	α	is	near	λ	for
“sufficiently	many”	t’s?	I	prefer	not	to	follow	this	path,	because	such	extensions
are	cumbersome	and	distinguish	between	DT=0	and	DT>0.
LINE-TO-PLANE	FUNCTIONS.	Let	X(t)	and	Y(t)	be	continuous	functions

with	the	LH	exponents	λ1	and	λ2.	The	heuristic	suggests	that	covering	the	graph
for	tε[0,1]	of	the	vector	function	of	coordinates	X(t)	and	Y(t)	requires	at	most	

	cubes	of	side	r,	hence	1≤D≤3—(λ1+λ2).	For	the	ordinary	Brown	line-to-
plane	trail,	this	yields	the	correct	D=2.
PROJECTIONS.	Now,	form	a	continuous	trail,	by	projecting	{X(t),Y(t)}	on

the	(x,y)	plane.	When	λ1=λ2=λ,	the	heuristic	suggests	that	one	needs	up	to	1/r
squares	of	size	rλ,	hence	1≤D≤min(2,1/λ).	Similarly,	consider	the	continuous	trail
of	a	function	{X(t),	Y(t),	Z(t)}	whose	coordinates	have	identical	LH	exponents
λ.	The	heuristic	suggests	1≤D≤min(3,1/λ).	When	λ1≠λ2,	the	continuous	trail	of
{X(t),	Y(t)}	must	be	covered	by	squares	of	side	rmaxλ,	hence

1≤D≤2—max{0,(λ1+λ2–1)/max(λ1,λ2)}.

All	this	is	confirmed	by	Love	&	Young	1937.



MEDIAN	AND	SKIP	POLYGONS

Material	on	this	topic	(related	to	Peano	curves)	is	found	in	Chapter	XII	of	the
1977	Fractals.



MUSIC:	TWO	PROPERTIES	OF	SCALING

Music	has	at	least	two	scaling	properties	worth	mentioning.
TEMPERED	MUSICAL	SCALES	AND	THEIR	RELATIONSHIP	WITH

THE	FREQUENCY	SPECTRUM	OF	THE	MODIFIED	WEIERSTRASS
FUNCTION.	The	most	widespread	use	of	the	Latin	root	scala	=	ladder	is	of
course	not	found	in	the	term	scaling	encountered	throughout	this	Essay,	but	in
the	notion	of	musical	scale,	which	implies	a	discrete	spectrum	that	is	preserved
by	multiplication	of	the	frequencies.	In	a	tempered	scale,	the	frequencies	are
spread	logarithmically.	For	example,	the	twelve-tone	scale	corresponds	to	the
base	b=21/12.	As	a	result,	the	fundamental	notes	of	each	musical	instrument	make
up	a	high	proportion	of	the	low	frequencies	within	its	overall	frequency	band,
but	a	low	proportion	of	the	high	frequencies.
Extrapolated	to	inaudibly	high	and	low	frequencies,	such	a	frequency

spectrum	becomes	identical	to	that	of	the	Weierstrass	(modified)	function	(p.
389b)	with	the	same	value	of	b.	Consequently,	in	order	to	add	low	frequencies	to
a	piece	of	music,	it	suffices	to	add	new	instruments	capable	of	the	desired	low
tones.
Since	the	Euler-Fourier	theorem	represents	the	most	general	periodic	function

as	a	series	of	linearly	spaced	harmonics,	the	functions	that	represent	the
sequence	of	the	fundamental	notes	in	the	most	general	piece	of	music	are	very
restricted	functions.
MUSIC	AS	A	SCALING	(1/f)	NOISE	(R.	F.	VOSS).	A	second	scaling	facet

of	music	concerns	the	variation	in	time	of	diverse	measures	of	the	audio	signal:
for	example	its	power	(measured	by	square	of	its	intensity),	or	its	instantaneous
frequency	(measured	by	the	rate	of	zero	crossings	of	the	audio	signal).	Voss	&
Clarke	1975	and	Voss	1978	(see	also	Gardner	1978)	observe	that	in	the	works	of
such	diverse	composers	as	Bach,	Beethoven,	and	the	Beatles,	both	of	the	above
measures	of	the	audio	signal	are	scaling	noises,	1/f	noises,	as	described	on	p.
254.
Conversely,	if	random	music	is	triggered	by	an	outside	physical	noise	source,

with	1/fB	spectrum	and	varying	scaling	exponents,	Voss	&	Clarke	1975,	and
Voss	1978	find	that	the	resulting	sound	is	closest	to	being	“music-like”	when	the



trigger	is	an	1/f	noise.
This	was	a	totally	unexpected	finding,	but,	like	many	findings	in	the	body	of

this	Essay,	it	becomes	“natural”	after	the	fact.	The	argument	I	favor	is	that
musical	compositions	are,	as	indicated	by	their	name,	composed:	First,	they
subdivide	into	movements	characterized	by	different	overall	tempos	and/or
levels	of	loudness.	The	movements	subdivide	further	in	the	same	fashion.	And
teachers	insist	that	every	piece	of	music	be	“composed”	down	to	the	shortest
meaningful	subdivisions.	The	re-suit	is	bound	to	be	scaling!
However,	this	scaling	range	does	not	extend	below	time	spans	of	the	order	of

one	note.	Higher	frequencies	are	ruled	by	entirely	different	mechanisms
(including	the	resonance	of	lungs,	of	fiddle	bodies,	and	of	wood-wind	pipes),
therefore	the	high	energy	spectrum	is	more	like	f–2	than	f–1.



NONLACUNAR	FRACTALS

Given	the	definitions	of	lacunarity	in	Chapter	34,	a	nonlacunar	set	in	the	space	
E	should	intersect	every	cube	or	sphere	in	said	space.	In	mathematical	terms,	it

should	be	everywhere	dense,	hence	nonclosed.	(The	only	everywhere	dense
closed	set	is	 E	itself!)	This	entry	shows	that	such	fractals	do	exist,	but	“feel”
very	different	from	the	closed	fractals	in	the	rest	of	this	Essay.	A	key	symptom	is
that	the	Hausdorff	Besicovitch	dimension	remains	workable,	but	the	similarity
and	Minkowski	Bouligand	dimensions	are	equal	to	E,	rather	than	to	the
Hausdorff	Besicovitch	D.



1.	RELATIVE	INTERMITTENCY

The	phenomena	to	which	nonlacunar	fractals	are	addressed	are	scattered
throughout	this	Essay,	in	the	sense	that	many	of	my	case	studies	of	natural
fractals	negate	some	unquestionable	knowledge	about	Nature.
We	forget	in	Chapter	8	that	the	noise	that	causes	fractal	errors	weakens

between	errors	but	does	not	desist.
We	neglect	in	Chapter	9	our	knowledge	of	the	existence	of	interstellar	matter.

Its	distribution	is	doubtless	at	least	as	irregular	as	that	of	the	stars.	In	fact,	the
notion	that	it	is	impossible	to	define	a	density	is	stronger	and	more	widely
accepted	for	interstellar	than	stellar	matter.	To	quote	deVaucouleurs	1970,	“it
seems	difficult	to	believe	that,	whereas	visible	matter	is	conspicuously	clumpy
and	clustered	on	all	scales,	the	invisible	intergalactic	gas	is	uniform	and
homogeneous...[its]	distribution	must	be	closely	related	to	...	the	distribution	of
galaxies.”	Other	astronomers	write	of	intergalactic	wisps	and	cobwebs.
And	in	Chapter	10	the	pastrylike	sheets	of	turbulent	dissipation	are	an

obviously	oversimplified	view	of	reality.
The	end	of	Chapter	9	mentions	very	briefly	the	fractal	view	of	the	distribution

of	minerals.	Here,	the	use	of	closed	fractals	implies	that,	between	the	regions
where	copper	can	be	mined,	the	concentration	of	copper	vanishes.	In	fact,	it	is
very	small	in	most	places,	but	cannot	be	assumed	to	vanish	anywhere.
In	each	case,	some	areas	of	less	immediate	interest	were	artificially	emptied	to

make	it	possible	to	use	closed	fractal	sets,	but	eventually	these	areas	must	be
filled.	This	can	be	done	using	a	fresh	hybrid,	nonlacunar	fractals.	To	take	an
example,	a	nonlacunar	mass	distribution	in	the	cosmos	will	be	such	that	no
portion	of	space	is	empty,	but,	for	every	set	of	small	thresholds	θ	and	λ,	a
proportion	of	mass	at	least	1—λ	concentrates	on	a	portion	of	space	of	relative
volume	at	most	θ.



2.	QUOTE	FROM	DE	WIJS,	AND	COMMENT

The	basic	intuitive	circumstances	that	call	for	nonlacunar	fractals	are	described
in	de	Wijs	1951,	which	makes	a	“Working	Hypothesis”	that	is	worth
summarizing.
“Consider	a	[body	of	ore]	with	a	tonnage	W	and	an	average	grade	M.	With	an

imaginary	cut	we	slash	this	body	into	two	halves	of	equal	tonnage	½W,	differing
in	average	grade.	Accepting	for	the	grade	of	the	richer	half	(1+d)M,	the	grade	of
the	poorer	half	has	to	be	(1—d)M	to	satisfy	the	condition	that	the	two	halves
together	average	again	M....	A	second	imaginary	cut	divides	the	body	into	four
parts	of	equal	tonnage	¼	W,	averaging	(1+d)2M,	(1+d)(1—d)M,	(1+d)(1—d)M,
and	(1—d)2M.	A	third	cut	produces	23=8	blocks,	namely	1	block	with	an
average	grade	of	(1+d)3M,	3	blocks	of	(1+d)2(1—d)M,	3	blocks	of	(1+d)(1—
d)2M,	and	one	block	of	(1—d)3M.	One	can	visualize	the	continued	division	into
progressively	smaller	blocks....
“The	coefficient	d	as	a	measure	of	variability	adequately	replaces	the

collective	intangibles	[dear	to	those	who	feel	that	ore	estimation	is	an	art	rather
than	a	science],	and	statistical	deductions	based	upon	this	measure	can	abolish
the	maze	of	empirical	rules	and	intuitive	techniques.”
COMMENT.	De	Wijs	did	not	even	begin	to	explore	the	geometric	aspects	of

this	model,	and	neither	he	nor	his	otherwise	notable	followers	(including	G.
Matheron)	had	an	inkling	of	fractals.	However,	if	one	assumes	that	the	ore
density	is	independent	of	grade,	making	tonnage	equivalent	to	volume,	precisely
the	same	scheme	had	been	investigated	for	totally	different	purposes	by	the	pure
mathematician	A.S.	Besicovitch	and	his	disciples.
Anticipating	the	next	subentry,	if	the	(reinterpreted)	scheme	of	de	Wijs	is

continued	ad	infinitum,	the	ore	curdles	into	a	nonlacunar	fractal.	To	write	its
dimension	in	the	customary	form,	D=log	N*/log	2,	it	is	necessary	to	define	log
N*	by

log	N*=Σπilog	πi,

where	π1	=	(1+d)3,	π8	=	(1—d)3,	π2	=	π3	=	π4	=	(1+d)2(1-d),	and	π5	=	π6	=	π7	=
(1+d)(1—d)2.
CONCLUSION.	De	Wijs’s	hunch	was	well-inspired,	but	the	coefficient	d	is



an	unsuitable	measure,	because	it	only	applies	to	one	model.	The	proper	measure
of	ore	variability	is	D.



3.	BESICOVITCH	WEIGHTED	CURDLING

To	appreciate	the	results	of	Besicovitch,	it	is	best	to	restate	them	on	[0,1]	with
b=3.
ASSUMPTIONS.	We	start	with	mass	distributed	over	[0,1]	with	density	equal

to	1,	and	share	it	among	the	thirds	through	nonrandom	multiplication	by	three
weights	W0,	W1,	W2,	satisfying	the	following	conditions.
(A)	⅓W0+⅓W1+⅓W2	=	1.	This	expresses	the	conservation	of	mass,	and

implies	that	each	Wi	is	bounded	by	b.	The	quantity	⅓W¡,	which	is	the	mass	in
the	ith	third,	will	be	denoted	by	πj.
(B)	The	uniform	distribution	Wi	≡	⅓	is	excluded.
(C)	W0W1W2	>	0.	In	particular,	the	Cantor	construction—corresponding	to

W0	=	½,	W1	=	0	and	W2	=	½—is	excluded.
Further	stages	of	the	cascade	proceed	similarly;	for	example,	the	densities

over	the	subeddies	are	W0
2,	W0W1,	W0W2,	W1W0,	W1

2,	W1W2,	W2W0,	W2W1,
W2

2.
CONCLUSIONS.	Iterating	ad	infinitum,	we	reach	the	following	results,

mostly	due	to	Besicovitch	and	Eggleston.	(Billingsley	1965	is	a	valuable
exposition.)
(A)	Singularity.	The	Besicovitch	fractal.	The	density	at	almost	every	point	is

asymptotically	zero.	The	set	of	points	where	the	asymptotic	density	is	not	zero
(it	is	infinite	there)	is	to	be	called	Besicovitch	fractal,	B.	It	is	the	set	of	points	of
[0,1]	whose	ternary	development	is	such	that	the	ratio

k–1	(number	of	i’s	in	the	first	k	“digits”)

converges	to	πi.	Such	points	form	an	open	set:	the	limit	of	a	sequence	of	such
points	need	not	be	in	the	set.
(B)	Nonlacunarity.	The	limit	distribution	of	mass	is	everywhere	dense:	even

asymptotically,	no	open	interval	(however	small)	is	entirely	empty.	The	mass
between	0	and	t	strictly	increases	with	t.	While	the	points	where	IIW	fails	to
converge	to	0	are	very	few	in	relative	numbers,	their	absolute	number	insures
that	the	mass	within	any	interval	[t’,t“]	has	a	nonzero	limit	for	k→∞.
(C)	The	Hausdorff	Besicovitch	dimension	of	B.	It	is



D	=—(π1	logπ1	+	π2logπ2	+	π3logπ3).

Formally,	D	is	an	“entropy”	as	defined	in	thermodynamics,	or	else	an
“information”	as	defined	by	Shannon	(see	Billingsley	1965).
(D)	The	similarity	dimension	of	B.	It	is	1.	Indeed,	B	is	self-similar	with	N=3

and	r=⅓,	hence	Ds	=	log	3/log	3	=	1;	the	reason	for	adding	the	index	S	will
transpire	momentarily.	Similarly,	three-dimensional	variants	have	the	dimension
3.	In	this	instance	Ds	cannot	have	much	physical	significance:	firstly,	it	does	not
depend	on	the	Wi’s,	as	long	as	they	fulfill	the	conditions	we	impose	on	them;
secondly	it	jumps	from	1	to	log	2/log	3	if	B	is	replaced	by	its	Cantor	dust	limit.
Furthermore,	a	fractally	homogeneous	distribution	can	no	longer	be	founded

upon	self-similarity.	Indeed,	if	we	attribute	equal	weights	to	all	pieces	of	length
3–k,	the	resulting	distribution	is	uniform	on	[0,1].	It	is	unrelated	to	the	values	of
the	Wi’s,	and	it	differs	from	the	measure	by	which	the	set	itself	has	been
generated.	Also,	passing	to	the	Cantor	dust	limit,	this	uniform	distribution
changes	discontinuously	into	a	very	nonuniform	one.
(E)	The	similarity	dimension	of	the	“set	of	concentration”	of	B.	It	is	D.	The

point	is	that	the	Besicovitch	measure	is	closely	approximated	by	a	fractally
homogeneous	measure	whose	similarity	dimension	is	equal	to	the	Hausdorff
Besicovitch	D.	To	be	precise,	after	a	large	number	k	of	cascade	stages,	the
overwhelming	bulk	of	an	initially	uniform	mass	becomes	concentrated	upon	3kD

triadic	intervals	of	length	3–k.	These	intervals’	distribution	is	not	uniform	over
[0,1],	but	its	largest	gap	tends	to	0	as	k→∞.
COMMENT.	One	must	distinguish	between	the	“full	set”	necessary	to	include

the	whole	mass	and	the	“partial	set”	in	which	the	bulk	of	the	mass	concentrates.
Both	are	self-similar,	but	their	self-similarity	dimensions	DS	and	D	are	different.
See	subentry	5	below.



4.	RANDOM	WEIGHTED	CURDLING	(MANDELBROT	1974f	c)

A	natural	and	rich	generalization	of	the	Besicovitch	scheme	is	introduced	in
Mandelbrot	1974f	c	and	developed	in	Kahane	&	Peyrière	1976.
The	effect	of	each	cascade	stage	is	to	multiply	the	densities	in	the	b3	eddies	of

each	eddy	by	identically	distributed	statistically	independent	random	weights
Wi.
After	k	stages	of	a	weighted	curdling	cascade,	the	overwhelming	bulk	of	the

mass	becomes	concentrated	in	a	number	of	eddies	of	the	order	of	magnitude	of
bkD*	out	of	a	total	of	b3k,	where

D*=—〈Wlog	b(r3W)〉=3—〈Wlog	bW〉.

In	particular,	if	W	is	discrete	and	its	possible	values	Wi	have	the	respective
probabilities	Pi,	one	has

D*=3—∑piwilogbwi.

IN	THE	CASE	D*>0,	D=D*.	The	measure	generated	by	weighted	curdling	is
approximated	by	a	fractally	homogeneous	measure	of	dimension	D=D*,
obtained	as	in	Chapter	23.
IN	THE	CASE	D*<0,	D=0.	The	number	of	nonempty	cells	tends

asymptotically	to	0,	therefore	the	limit	is	almost	surely	empty.
In	summary,	the	carrier	of	mass	is	approximated	by	a	closed	set	with

D=max(O,D*).
SECTIONS.	Similarly,	the	mass	within	the	planar	or	linear	sections

concentrates	in	relatively	small	numbers	of	eddies,	respectively	b(D*–1)	out	of	a
total	of	b2,	and	b(D*–2)	out	of	a	total	of	b.	Therefore,	the	sections	are
nondegenerate	if,	respectively,	D*>1	or	D*>2,	and	they	are	approximated	by
fractals	having	the	respective	dimensions	D*–1	or	D*–2.	Thus,	the	dimensions
of	the	sections	follow	the	same	rule	as	for	lacunar	fractals.
NEW	RANDOM	VARIABLES,	INVARIANT	UN	DER	WEIGHTED

ADDITION.	Denote	by	X	the	random	variable	that	rules	the	asymptotic	mass
within	an	eddy	of	any	order	k,	or	its	section	by	a	line	or	plane	of	dimension	Δ.	I
showed	that	the	X	satisfy	the	functional	equations



where	C=bΔ,	the	r.v.	Wg	and	Xg	are	independent,	and	the	equality	expresses
identity	of	distribution.	This	equation	generalizes	the	equation	(L)	discussed	in
the	subentry	LEVY	STABLE....	The	solutions	generalize	the	Levy	stable
variables;	they	are	discussed	in	the	op.	cit.	of	Mandelbrot	and	Kahane	&
Peyrière.



5.	LIMIT	LOGNORMAL	RANDOM	CURDLING	AND	FUNCTION
(MANDELBROT	1972j)

Mandelbrot	1972j	gives	up	the	eddy	grid	which	both	absolute	and	weighted
curdling	borrow	from	Cantor.	The	eddies	are	not	prescribed	in	advance,	but	are
generated	by	the	same	statistical	mechanism	as	the	distribution	of	mass	within
them.	And	in	addition	the	discrete	eddy	strata	merge	into	a	continuum.
LIMIT	LOGNORMAL	FUNCTION,	MOTIVATED.	We	proceed	by

successive	modifications	of	weighted	curdling,	performed	(for	simplicity)	on	a
function	L(t)	of	one	variable.
After	the	nth	stage,	the	density	of	weighted	curdling	is	a	function	Yn(t)	such

that	Δlog	Yn(t)	=	log	Yn+1(t)—log	Yn(t)	is	a	step	function;	it	varies	when	t	is	an
integral	multiple	of	b–n	=	rn,	and	its	values	between	such	instants	are
independent	random	variables	of	the	form	log	W.	Now	let	Δlog	W	be	lognormal
with	the	mean—½(log	b)	and	the	variance	µlog	b.	One	finds	that	the	covariance
between	ΔlogYn(t)	and	Δlog	Yn(t+τ)	takes	the	value	µ(log	b)(1—|τ|/rn)	in	the
interval	|τ|<rn,	and	vanishes	outside	of	this	interval.	This	Δlog	Yn(t)	is	not
Gaussian,	because	the	joint	distribution	of	its	values	for	two	(or	more)	t’s	fails	to
be	a	multidimensional	Gaussian	random	variable.
First	modification.	Replace	each	ΔlogYn(t)	by	Δlog	Y (t),	defined	as	the

Gaussian	random	function	with	the	barely	different	covariance	µ(log	b)exp(—|
τ|/rn).	The	result	retains	the	same	“range	of	dependence”	as	the	original,	but	it
breaks	up	the	discrete	boundaries	between	eddies	of	duration	rn.
Second	modification.	Replace	the	discrete	parameter	nlog	b	by	a	continuous

parameter	λ.	The	sum	of	finite	differences	Δlog	Y (t)	changes	to	an	integral	of
infinitesimal	differentials	dlog	Lλ(t),	of	mean—½µdλ	and	variance	µdλ,	and	the
eddies	become	continuous.
DEFINITION	OF	L(t).	Consider	the	limit

L(t)=L∞(t)=limλ→∞Lλ(t).

The	random	variable	log	Lλ(t)	is	Gaussian	with	the	mean	(log	Lλ(t)〉	=—½λµ
and	the	variance	σ2log	Lλ(t)	=	λµ.	This	insures	that	(Lλ(t))=1	for	all	λ.	But	the
limit	of	Lλ(t)	may	be	either	nondegenerate	or	almost	surely	vanishing.	This



question	has	not	been	settled	mathematically,	but	the	following	heuristic
arguments	can	doubtless	be	made	rigorous.	They	are	stated	for	the	more
interesting	functions	L(x)	of	a	three	dimensional	variable.
THE	CONCENTRATION	SET	OF	A	LIMIT	LOGNORMAL	MEASURE.	In

order	to	obtain	an	idea	of	the	set	where	Lλ(x)	it	is	not	small	but	extremely	large,
it	is	convenient	to	use	reference	squares	of	side	rn.	They	are	not	imposed
subeddies,	merely	a	measuring	device.	When	n»1	and	x	is	fixed,	the	lognormal
Lnlogb(x)	has	an	extremely	high	probability	of	being	extremely	close	to	0,	hence,
is	extremely	small	over	most	of	its	domain.
Since	Lnlogb(×)	is	continuous,	it	varies	little	over	a	cell	of	side	rn,	hence	the

derivation	of	the	set	of	concentration	for	weighted	curdling	with	a	lognormal	W
also	applies	to	the	present	model.	Neglecting	logarithmic	terms,	the	number	of
cells	that	contribute	the	bulk	of	the	integral	of	Lnlogb(×)	has	the	expectation	Q=
(r–n)D*,	with	D*=3—µ/2.
When	µ>6,	so	that	D*<0,	Q→0	as	λ→∞,	L(x)	is	almost	surely	degenerate.
When	4<µ<6,	so	that	0<µ<1,	L(x)	is	nondegenerate	with	D=D*,	but	its	traces

on	planes	and	straight	lines	are	almost	surely	degenerate.
When	2<µ<4.	so	that	1<D*<2,	L(x)	and	its	traces	on	planes	are	nondegenerate

with	dimensions	D*	and	D*–1,	but	its	traces	on	straight	lines	are	almost	surely
degenerate.
When	0<µ<2,	so	that	2<D*<3,	L(x)	and	its	traces	on	both	planes	and	straight

lines	are	nondegenerate	with	the	dimensions	D*,	D*–1	and	D*–2.



6.	DIMENSION	OF	A	MEASURE’S	CONCENTRATE

The	study	of	relative	intermittency	suggests	yet	other	definitions	of	dimension.
Instead	of	a	set	in	a	metric	space,	consider	a	measure	µ(S)	that	is	defined	over	a
bounded	subspace	Ω	(in	a	suitable	σ-field	including	the	balls),	and	has	the
following	properties.	(A)	When	S	is	a	ball,	µ(S)>0	and	also	µ(Ω)	=	1,	hence	“the
set	in	which	µ>0”	is	identical	to	Ω.	(B)	However,	intuition	suggests	that	µ
“concentrates”	over	a	very	small	portion	of	Ω.	We	seek	fresh	ways	of
quantifying	B).
Given	ρ>0	and	O<λ<1,	consider	the	sets	∑λ	for	which	µ(∑—∑λ)	<	λ.	Let

N(ρ,∑λ)	denote	the	inf	of	the	number	of	balls	of	radius	p	needed	to	cover	∑λ.
Define

N(ρ,λ)=infN(ρ,∑λ).

The	dimensionlike	expressions

lim	infα↓0log	N(α,α)/log	(1	/α)	
lim	infρ↓0|log	N(ρ,λ)/log(1/ρ)	

lim	infλ↓0lim	infρ↓0	log	N(ρ,λ)/log	(1	/ρ)

lurk	behind	certain	heuristic	estimates	I	found	useful,	and	a	rigorous	exploration
would	be	welcome.	Of	course,	heuristic	estimates	replace	infN(δ,λ)	by	the	actual
N(δ,∑λ)	relative	to	some	sensible	covering	∑λ.



PEANO	CURVES

Additional	material	on	this	topic,	and	on	noninteger	counting	bases,	is	found	in
Chapter	XII	of	the	1977	Fractals.



POTENTIALS	&	CAPACITIES.	FROSTMAN
DIMENSION

The	Hausdorff	Besicovitch	dimension	D	plays	the	central	role	in	the	modern
theory	of	classical	potentials	and	of	generalized	(Marcel	Riesz)	potentials	using
kernels	of	the	form	|u|–F,	where	F≠E–2.	Among	recent	nonelementary
mathematical	treatments	of	potential	theory,	I	favor	duPlessis	1970,	Chapter	3,
and	the	more	detailed	Landkof	1966–1972.



1.	CONJECTURE

We	shall	see	that	the	special	value	D=1	is	intimately	linked	with	the	Newtonian
potential	in	 3.	This	link	underlies	the	comments	in	Chapter	10	concerning	the
various	cosmological	theories	that	predict	D=1,	such	as	the	Fournier	and	Jeans-
Hoyle	theories.
It	should	be	possible	to	rephrase	these	theories	as	corollaries	of	Newtonian

gravitation.
Thus,	the	departure	of	the	observed	value	D~1.23	from	1	should	be	traceable

to	non-Newtonian	(relativistic)	effects.



2.	DIMENSION	&	POTENTIALS:	HEURISTICS

As	mentioned	in	Chapter	10,	Bentley	and	Newton	knew	that	Kepler’s	Blazing
Sky	Effect	(“Olbers	paradox”)	has	a	counterpart	in	terms	of	gravitational
potential.	Suppose	that	E=3,	that	the	mass	M(R)	within	a	sphere	of	radius	R
around	the	origin	ω	is	∝RD	with	D=3,	and	that	the	potential’s	kernel	is	the
Newtonian	R–F	with	F=1.	The	mass	in	a	shell	of	thickness	dR	and	radius	R	is
∝RD–1,	hence	the	total	potential	at	ω,	which	is	given	by	∝∫R–FRD–1	dR=	∫R	dR,
diverges	at	infinity.	There	is	no	divergence	at	infinity	when	D=3	but	F>3,
implying	a	non-Newtonian	potential.	The	same	result	is	achieved	in	the
Fournier-Charlier	model	with	F=1	and	D<1.
For	the	general	integral	∫RD–1–F	dR,	the	condition	of	convergence	at	infinity	is

clearly	D<F.	And	the	condition	of	convergence	at	the	origin	is	D>F.	This
argument	establishes	a	one-to-one	link	between	D	and	F,	and	in	particular	it
relates	D=1	to	F=1.



3.	POTENTIAL	AND	CAPACITY

This	link	was	tightened	by	G.	Pólya	and	G.	Szegö	and	put	in	final	form	in
Frostman	1935.	The	major	advance	is	that	the	argument	goes	beyond	a	single
origin	ω	to	all	points	in	a	(compact)	set	S.	Consider	a	unit	mass	distributed	on	S
so	that	the	domain	du	contains	the	mass	dµ(u).	At	the	point	t,	the	kernel	|u|–F
yields	the	potential	function

Π(t)=∫	I	u—t	|–Fdµ(u).

The	physical	concept	of	electrostatic	capacity	was	used	by	de	la	Vallée	Poussin
to	measure	the	“contents”	of	sets.	The	idea	is	that	if	S	has	a	high	capacity	C(S),
the	total	mass	µ	can	be	shuffled	to	insure	that	the	maximum	potential	is	as	small
as	possible.
Definition:	Take	the	supremum	of	the	potential	over	all	points	t,	then	the

infimum	of	the	result	with	respect	to	all	the	distributions	of	a	unit	mass	over	S,
and	finally	set

C(S)=	{inf[suptΠ(t)]}–1.

If	the	1/r	kernel	is	used,	this	minimal	potential	is	actually	achieved	by	electric
charges	on	a	conducting	set.
Equivalent	definition:	[C(S)]–1	is	the	infimum,	among	all	the	distributions	of

mass	supported	by	S,	of	the	energy	defined	by	the	double	integral

∫∫	|t—u	|–F	dµ(s)dµ(t).



4.	D	AS	THE	FROSTMAN	DIMENSION

There	is	a	simple	relationship	between	C(S)	and	F.	When	the	exponent	F	used	in
defining	C(S)	is	greater	than	the	Hausdorff	Besicovitch	D,	the	capacity	of	C(S)
vanishes,	meaning	that	even	the	“most	efficient”	distribution	of	mass	over	S
leads	to	a	potential	that	is	infinite	somewhere.	When	F	is	less	than	D,	on	the
other	hand,	the	capacity	of	S	is	positive.	Thus	the	Hausdorff	Besicovitch
dimension	is	also	a	capacity	dimension	in	the	sense	due	to	Pólya	and	Szegö.	This
identity	is	proved	in	full	generality	in	Frostman	1935.
The	detailed	relation	between	the	capacity	measure	and	the	Hausdorff

measure	in	the	dimension	D	is	involved;	see	Taylor	1961.



5.	“ANOMALOUS”	DIMENSION

The	kernels	|u|–F	with	F≠E–2	are	associated	in	the	physicist’s	mind	with	an
imbedding	space	having	the	“anomalous	Euclidean”	dimension	2–F.	(I	do	not
believe	this	usage	is	meant	to	imply	any	actual	generalization	of	E	to	positive
reals	other	than	integers.)	Given	(a)	the	link	between	D	and	F	(Frostman),	and
(b)	the	role	of	D	in	describing	galaxy	clusters	(established	in	Chapter	10	of	this
Essay),	the	terminology	of	anomalous	dimension	leads	to	the	following
statements.	A	fractal	dimension	D=1	for	galaxies	is	not	anomalous,	but	the
observed	fractal	dimension	D∼1.23	seems	to	involve	an	imbedding	space	of
anomalous	dimension.



SCALING	UNDER	TRUNCATION

Underlying	its	link	with	scaling,	the	hyperbolic	distribution	is	the	only
distribution	such	that	the	rescaled	truncated	variable	“U/u0,	knowing	that	U/u0>
1”	has	a	distribution	independent	of	u0.
PROOF.	Assume	that	there	is	an	underlying	distribution	P(u),	with	the

rescaled	truncated	r.v.	W=U/u0	following	the	usual	conditional	distribution
P(wu0)/P(u0).	We	want	this	conditional	distribution	to	be	the	same	for	u0=h’	and
u0=h”.	Write	v’	=	log	h’	and	v”	=	log	h”	and	consider	R	=	log	P(u)	as	a	function
of	v	=	log	u.	The	desired	identity	P(uh’)/P(h’)	=	P(uh”)/P(h”)	demands	that
R(v’+v)-R(v’)	=	R(v”+v)-R(v”)	for	all	choices	of	v,	v’,	and	v”.	This	requires	that
R	be	a	linear	function	of	v.



SIMILARITY	DIMENSION:	ITS	PITFALLS

Certain	open	sets	(not	containing	their	limit	points)	involve	a	serious
discrepancy	between	dimensions.
The	set	of	trema	endpoints	of	the	Cantor	dust	set	is	self-similar	with	the	same

N	and	r	as	the	whole	Cantor	dust,	hence	it	has	the	same	similarity	dimension.
But	it	is	denumerable,	hence	its	Hausdorff	Besicovitch	dimension	is	0.	By
adding	the	limit	points	of	this	dust,	one	falls	back	on	the	Cantor	dust,	and	the
discrepancy	vanishes	“to	the	benefit”	of	similarity	dimension,	which	is	the	more
important	characteristic	for	this	set.
A	second	simplest	example,	which	I	call	Besicovitch	set,	is	investigated	in	the

entry	NONLACUNAR	FRACTALS,	3.



STATIONARITY	(DEGREES	OF)

Ordinary	words	used	in	scientific	discourse	combine	(a)	diverse	intuitive
meanings,	dependent	on	the	user,	and	(b)	formal	definitions,	each	of	which
singles	out	one	special	meaning	and	enshrines	it	mathematically.	The	terms
stationary	and	ergodic	are	fortunate	in	that	mathematicians	agree	about	them.
But	my	experience	indicates	that	many	engineers,	physicists,	and	practical
statisticians	pay	only	lip	service	to	the	mathematical	definition,	and	hold
narrower	views.	And	I	prefer	an	even	broader	view.	These	misunderstandings	or
preferences	are	revealing.
THE	MATHEMATICAL	DEFINITION.	A	process	X(t)	is	stationary	if	the

distribution	of	X(t)	is	independent	of	t,	the	joint	distribution	of	X(t1+τ)	and
X(t2+τ)	is	independent	of	τ,	and	similarly—for	all	k—for	the	joint	distributions
of	X(t1+τ)	...	X(tk+τ).
FIRST	MISUNDERSTANDING	(PHILOSOPHY).	It	is	a	platitude	that	there

can	be	no	science,	except	of	phenomena	that	follow	unchanging	rules.
Stationarity	is	often	misunderstood	in	this	light:	many	think	that	it	merely
demands	that	the	rules	governing	the	process	be	invariant	in	time.	But	this
summary	is	invalid.	For	example,	the	Brownian	motion’s	increment	B(t1+τ)-
B(t2+τ)	is	Gaussian	with	mean	and	variance	independent	of	τ.	This	rule,	and	also
the	rule	of	the	Brownian	motion’s	set	of	zeros,	are	independent	of	τ.	However,
stationarity	refers	specifically	to	the	rules	governing	the	values	of	the	process
itself.	For	Brownian	motion,	those	rules	are	not	time	invariant.
SECOND	MISUNDERSTANDING	(PRACTICAL	STATISTICIANS).

Numerous	techniques	(and	canned	computer	programs)	that	are	billed	as	“the
analysis	of	stationary	time	series”	are	far	narrower	in	their	scope	than	indicated
by	this	label.	This	is	unavoidable,	due	to	the	fact	that	mathematical	stationarity	is
too	general	a	notion	for	any	single	technique	to	apply	in	all	cases.	But	as	a	result
the	statisticians	foster	among	their	customers	the	opinion	that	the	notion	of
“stationary	time	series”	is	identical	to	the	much	narrower	notions	grasped	by	the
current	techniques.	Even	when	they	take	the	trouble	of	checking	that	their
techniques	are	“robust,”	they	envision	minimal	departures	from	the	simplest
hypothesis,	not	the	drastic	departures	that	stationarity	does	allow.



THIRD	MISUNDERSTANDING	(ENGINEERS	AND	PHYSICISTS).	Many
investigators	(partly	due	to	the	previous	misunderstanding)	believe	that
stationarity	asserts	that	the	sample	processes	“may	move	up	and	down,	but	sort
of	stay	statistically	the	same.”	This	summary	applied	at	an	early	informal	stage,
but	now	it	is	also	invalid.	The	mathematical	definition	refers	specifically	to	the
generating	rules,	not	to	the	objects	they	generate.	When	mathematicians	first
encountered	stationary	processes	having	extremely	erratic	samples,	they
marvelled	that	the	notion	of	stationarity	could	encompass	such	wealth	of
unexpected	behavior.	Unfortunately,	this	is	a	kind	of	behavior	that	many
practitioners	insist	is	not	stationary.
A	GRAY	ZONE.	There	is	no	question	that	the	boundary	between	stationary

and	nonstationary	processes	lies	somewhere	between	white	Gaussian	noise	and
Brownian	motion,	but	its	precise	location	is	disputed.
SCALING	NOISES	AS	A	BENCHMARK.	The	Gaussian	scaling	noises	of

Chapter	27	are	a	convenient	benchmark	to	refine	this	boundary,	their	spectral
density	being	of	the	form	f-B	with	B≥0.	For	white	noise,	B=0;	for	Brownian
motion,	B=2;	and	for	different	purposes,	the	boundary	between	stationary	and
nonstationary	processes	falls	at	different	values	of	B.
Mathematicians	seeking	to	avoid	the	“infrared	catastrophe”	place	the

boundary	at	B=1,	because	 	f-Bdf	<	∞	is	equivalent	to	B	<	1.
But	the	behavior	of	a	sample	of	scaling	noise	changes	continuously	at	B=	1.

As	a	matter	of	fact,	there	is	more	of	a	visible	change	between	B=0	and	B>0,	so
much	so	that	practitioners	faced	with	any	sample	for	which	B>0	tend	to	call	it
nonstationary.	And	they	tend	to	be	consistent,	and	claim	that	data	that	look	like	a
sample	with	B>0	require	a	nonstationary	model	to	represent	them.
On	the	other	hand,	I	found	that	excluding	B	>	1	makes	the	definition	of

stationarity	insufficiently	general	in	many	case	studies.
CONDITIONALLY	STATIONARY	SPORADIC	PROCESSES.	For	example,

the	theory	of	fractal	noises	(Chapter	8)	suggests	that	the	process	of	Brownian
zeros	is	stationary	in	a	weakened	form.	Indeed,	assume	that	there	is	at	least	one
zero	anywhere	between	t=0	and	t=T.	The	result	is	a	random	process	depending
on	T	as	an	additional	extrinsic	parameter.	I	observed	that	the	joint	distribution	of
the	values	X(τ+tm)	is	independent	of	t	as	long	as	all	the	instants	 +tm	lie	between
0	and	T.	Thus,	the	nonstationary	Brownian	zeros	process	incorporates	latently	a
whole	class	of	random	processes,	each	satisfying	a	conditional	form	of
stationarity,	which	often	suffices.
The	processes	in	this	class	are	so	intimately	interrelated	that	Mandelbrot



1967b	argues	that	they	must	be	viewed	as	one	generalized	stochastic	process,	to
be	called	sporadic	process.	Compared	to	a	standard	random	process,	the	novelty
is	that	the	measure	of	the	whole	sample	space	Ω	is	μ(Ω)=∞.	Thus,	it	cannot	be
normalized	to	μ(Ω)=	1.	The	acceptance	of	μ(Ω)=∞	for	random	variables	goes
back	at	least	to	Rényi	1955.	To	prevent	μ(Ω)=∞	from	leading	to	catastrophe,	the
theory	of	generalized	variables	assumes	they	never	observed	directly,	only	as
conditioned	by	some	event	C	such	that	0<μ(C)<∞.
While	Rényi	random	variables	are	of	limited	importance,	sporadic	functions

are	important	:	In	particular,	they	allow	Mandelbrot	1967b	to	exorcize	some
instances	of	infrared	catastrophe,	thus	accounting	for	certain	scaling	noises	with
B	∈	[1,2].
ERGODICITY,	MIXING.	A	second	notion	that	is	subject	to	differing

interpretations	is	ergodicity.	In	the	mathematical	literature,	ergodicity	splits	into
multiple	forms	of	mixing.	Some	processes	mix	strongly,	while	others	mix	weakly.
As	presented	in	books	of	mathematics,	the	distinction	hardly	seems	to	affect	the
study	of	nature.	But	in	fact	it	does,	with	a	vengeance!	In	particular,	scaling
noises	with	0	<	B	<	1	are	weakly	but	not	strongly	mixing.
FOURTH	MISUNDERSTANDING	(CONCERNING	THE	VALIDITY	OF

LIMIT	CONVERGENCE	TO	B(t)).	It	is	widely	believed	that	to	say	that	X(t)	is
stationary	is	the	same	as	to	say	that	its	running	sum	X*(t)	=	 X(s)	can	be
normalized	so	as	to	converge	to	Brownian	motion.	Mathematicians	have	long
known	that	this	belief	is	unwarranted	(Grenander	&	Rosenblatt,	1957).	And
many	of	the	case	studies	in	this	Essay	involve	functions	X(t)	that	contradict	this
belief,	because	of	either	the	Noah	Effect	((X2(t))	=	oo)	or	the	Joseph	Effect
(infinite	dependence,	as	in	f-B	noises	with	B>0).	However,	nearly	all	of	my	case
studies	have	at	some	stage	been	dismissed	a	priori	by	an	“expert”	maintaining
that	the	underlying	phenomena	are	patently	nonstationary,	hence	my	stationary
models	are	foredoomed.	This	argument	is	wrong,	but	is	psychologically
significant.
CONCLUSION.	The	frontier	between	mathematically	stationary	and

nonstationary	process	encourages	disputes	over	semantics.	In	practice,	this
frontier	is	straddled	by	processes	that	differ	from	the	intuitively	stationary	ones,
nevertheless	can	be	the	object	of	science.	They	also	happen	to	be	needed
throughout	the	present	Essay	and	the	rest	of	my	research	work.
QUESTIONS	OF	VOCABULARY:	“LAPLACIAN,”	“BENIGN,”	OR

“SETTLED”	VS.	“VAGRANT”.	Again,	new	terms	become	indispensable.	Let
me	hereby	recommend	settled	as	(a)	a	synonym	of	what	mathematicians	call



“stationary	and	such	that	X*(t)	converges	to	B(t),”	and	(b)	a	term	for	the	intuitive
idea	certain	practitioners	tend	to	call	“stationarity.”	The	alternative	antonyms
would	be	unsettled	and	vagrant.
An	early	paper,	Mandelbrot	1973f,	uses	(instead	of	settled)	the	terms

Laplacian	and	benign.	The	latter	means	“harmless,	readily	controllable;”	it
applies	because	this	kind	of	chance	can	be	trusted	not	to	generate	any	of	the	wild
and	varied	configurations	which	make	vagrant	chance	so	much	more	difficult,
and	so	much	more	interesting.



STATISTICAL	ANALYSIS	USING	R/S

Two	assumptions	concerning	time	series	were	a	matter	of	course	in	practical
statistics:	that	(X2)<∞,	and	that	X	is	short-run	dependent.	However,	I	showed
(Chapter	37)	that	long-tailed	empirical	records	are	often	best	interpreted	by
accepting	(X2)=∞.	And	the	question	of	whether	a	record	is	weakly	(short-run)	or
strongly	(long-run)	dependent	was	first	faced	where	I	injected	long-run
dependence	to	interpret	the	Hurst	phenomenon	(Chapter	27).
The	mixture	of	long-tailedness	and	very	long-run	dependence	might	have

been	statistically	unmanageable,	because	the	standard	second-order	techniques
geared	towards	dependence	(correlation,	spectra)	invariables	assume	(X2)<∞.
But	there	is	an	alternative.
One	can	disregard	the	distribution	of	X(t),	and	tackle	its	long-run	dependence

with	the	help	of	rescaled	range	analysis,	also	called	R/S	analysis.	This	statistical
technique,	introduced	in	Mandelbrot	&	Wallis	1969c	and	given	mathematical
foundation	in	Mandelbrot	1975w,	concerns	the	distinction	between	the	short	and
the	very	long	run.	The	constant	it	introduces	is	denoted	by	J	and	called	Hurst
Coefficient	or	R/S	Exponent,	and	can	lie	anywhere	between	0	and	1.
Even	before	defining	J,	one	can	describe	its	significance.	The	special	value

J=½	is	characteristic	of	independent,	Markov	and	other	short-run	dependent
random	functions.	Therefore,	the	absence	of	very	long-run	nonperiodic	statistical
dependence	in	empirical	records	or	in	sample	functions	can	be	investigated	by
testing	whether	the	hypothesis	that	J=½	is	statistically	acceptable.	If	not,	the
intensity	of	very	long-run	dependence	is	measured	by	J-½,	whose	value	can	be
estimated	from	the	data.
The	principal	virtue	of	this	approach	is	that	the	exponent	J	is	robust	with

respect	to	the	marginal	distribution.	That	is,	not	only	is	it	effective	when	the
underlying	data	or	random	functions	are	near	Gaussian,	but	it	continues	to	be
effective	when	X(t)	is	so	far	from	Gaussian	that	(X2(t))	diverges,	in	which	case
all	second	order	techniques	are	invalid.
DEFINITION	OF	THE	STATISTIC	R/S.	In	continuous	time	t,	define	X*(t)	=	
X(u)du,	X2*(t)	=	 X2(	u)du,	and	X*2	=	(X*)2.	In	discrete	time	i,	define	X*(0)	=

0,	X*(t)	=	Σ 	X(i),	with	[t]	the	integer	part	of	t.	For	every	d>0,	called	the	lag,



define	the	adjusted	range	of	X*(t)	in	the	time	interval	0	to	d,	as

Then	evaluate	the	sample	standard	deviation	of	X(t),

S2(d)	=	X2*(d)/d-X*2(d)/d2.

The	expression	Q(d)	=	R(d)/S(d)	is	the	R/S	statistic,	or	self-rescaled	self-
adjusted	range	of	X*(t).
DEFINITION	OF	THE	R/S	EXPONENT	J.	Suppose	there	exists	a	real

number	J	such	that,	as	d→∞,	(1/dJ)[R(d)/S(d)]	converges	in	distribution	to	a
nondegenerate	limit	random	variable.	Mandelbrot	1975w	proves	this	implies	that
O≤J≤1.	The	function	X	is	then	said	to	have	the	R/S	exponent	J	with	a	constant
R/S	prefactor.
Suppose,	more	generally,	that	the	ratio	[1/djL(d)][R(d)/S(d)]	converges	in

distribution	to	a	nondegenerate	random	variable,	where	L(d)	denotes	a	slowly
varying	function	at	infinity,	that	is,	a	function	which	satisfies	L(td)/L(d)	→	1	as
d→∞	for	all	t>0.	The	simplest	example	is	L(d)	=	log	d.	The	function	X	is	then
said	to	have	the	R/S	exponent	J,	and	the	R/S	prefactor	L(d).
PRINCIPAL	RESULTS	(MANDELBROT	1975w).	When	X(t)	is	a	white

Gaussian	noise,	one	finds	J=½	with	a	constant	prefactor.	More	precisely,	e-
δJR(eδ)/S(eδ)	is	a	stationary	random	function	of	δ	=	log	d.
More	generally,	J=½	whenever	S(d)	→	〈X2〉	and	the	rescaled	a-½X*(at)

converges	weakly	to	B(t)	as	a	→	∞.
When	X(t)	is	the	discrete	fractional	Gaussian	noise,	that	is	the	sequence	of

increments	of	BH(t)	(see	p.	353),	one	finds	J=H,	with	H∈	]0,1[.
More	generally,	in	order	to	obtain	J=H#½	with	a	constant	prefactor,	it	suffices

that	S(d)	→	〈X2〉and	that	X*(t)	be	attracted	by	BH(t),	with	〈X*(t)〉∼t2H

Still	more	generally,	J=H≠½	with	the	prefactor	L(d)	prevails	if	S(d)	→	(X2),
and	X*(t)	is	attracted	by	BH(t)	and	satisfies	(X*(t)2)∼t2H	L(t).
Finally,	J≠½	when	S(d)	→	(X2),	and	X*(t)	is	attracted	by	a	non-Gaussian

scaling	random	function	of	exponent	H=J.	Examples	are	given	in	Taqqu	1975,
1979a,b.



On	the	other	hand,	when	X	is	a	white	Levy	stable	noise,	hence	〈X2〉=∞,	one
finds	J=½.
When	X	becomes	stationary	when	differenced	(or	differentiated),	one	finds

J=1.



WEIERSTRASS	FUNCTIONS	AND	KIN.
ULTRAVIOLET	AND	INFRARED

CATASTROPHES

The	complex	Wierstrass	function	is	the	sum	of	the	series

W0(t)=(1-W2)-½	 wnexp(2πibnt),

where	b	is	a	real	number	>	1,	and	w	is	written	either	as	w=bH,	with	0<	H	<	1,	or
as	w=bD-2,	with	1	<	D	<	2.	The	real	and	imaginary	parts	of	W0(t)	are	called
Weierstrass	cosine	and	sine	functions.
The	function	W0(t)	is	continuous	but	nowhere	differentiable.	But	its	formal

extension	to	D<	1	is	continuous	and	differentiable.
In	addition	to	W0(t),	this	entry	discusses	several	variants	that	I	found	it

indispensable	to	introduce,	due	to	the	new	role	the	theory	of	fractals	gives	to
W0(t).
FREQUENCY	SPECTRUM	OF	W0(t).	The	term	“spectrum”	is	overloaded

with	meanings.	Frequency	spectrum	designates	the	set	of	admissible	values	of
the	frequency	f,	irrespective	of	the	corresponding	terms’	amplitudes.
A	periodic	function’s	frequency	spectrum	is	the	sequence	of	positive	integers.

A	Brown	function’s	frequency	spectrum	is	IR	+.	And	Weierstrass	function’s
frequency	spectrum	is	the	discrete	sequence	bn	from	n=1	to	n=∞.
ENERGY	SPECTRUM	OF	W0(t).	Energy	spectrum	designates	the	set	of

admissible	values	f	together	with	the	corresponding	energies	(amplitudes
squared).	For	each	frequency	of	the	form	f=bn,	W0(t)	has	a	spectral	line	of
energy	(1-w2)-1W2n.	Hence,	the	cumulative	energy	in	frequencies	f≥bn	is
convergent	and	∝w2n	=	b-2nH	=	f-2H.
COMPARISON	WITH	FRACTIONAL	BROWNIAN	MOTION.	The

cumulative	energy	is	also	f-2H	in	several	previously	encountered	cases.	(A)	The
fractional	Fourier-	Brown-	Wiener	periodic	random	functions,	for	which	the
acceptable	frequencies	are	of	the	form	f=n,	and	the	corresponding	Fourier
coefficients	are	nH-½.	(B)	The	random	processes	with	the	continuous	population



spectral	density	∝2Hf-2H-1.	These	are	the	fractional	Brown	functions	BH(t)	in
Chapter	27.	For	example,	if	H=½,	the	Weierstrass	cumulative	spectrum	∝f-1	is
encountered	for	ordinary	Brownian	motion	B(t),	whose	spectral	density	is	f-2.	An
essential	difference	is	that	the	Brown	spectrum	is	absolutely	continuous,	while
the	Fourier-Brown-Wiener	and	Weierstrass	spectra	are	discrete.
NONDIFFERENTIABILITY.	To	prove	that	W0(t)	does	not	have	a	finite

derivative	for	any	value	of	t,	Weierstrass	had	to	add	two	conditions	:	(a)	b	is	an
odd	integer,	hence	W0(t)	is	a	Fourier	series,	and	(b)	logb	(1+3π/2)<D<2.	The
necessary	and	sufficient	conditions,	b>1	and	1	<	D	<	2,	are	from	Hardy	1916.
DIVERGENCE	OF	ENERGY.	To	a	physicist	accustomed	to	spectra,	Hardy’s

conditions	are	intuitively	obvious.	Applying	the	rule	of	thumb	that	a	function’s
derivative	is	obtained	by	multiplying	its	kth	Fourier	coefficient	by	k,	the
physicist	finds	for	the	formal	derivative	of	W0(t)	that	the	Fourier	coefficient	with
k=bn	has	an	amplitude	squared	equal	to	(1-w2)-1w2nb2n.	The	cumulative	energy
in	frequencies	≥bn	being	infinite,	the	physicist	agrees	that	Wo’(t)	cannot	be
defined.
It	is	interesting	to	note	that	Riemann’s	search	for	a	counterexample	to

differentiability	led	him	to	R(t)	=	 n-2sin(2πn2t),	whose	energy	in	frequencies
≥f=n2	is	∝n-3	=	f-2H,	with	H=¾.	Thus,	the	same	heuristic	argument	suggests	that
R‘(t)	is	not	definable,	hence	R(t)	is	not	differentiable.	This	conclusion	is
“almost”	correct,	but	R’(t)	does	exist	for	certain	t’s	(Gerver	1970,	Smith	1972).
ULTRAVIOLET	DIVERGENCE/CATASTROPHE.	The	term	“catastrophe”

first	entered	physics	around	1900,	after	Rayleigh	and	Jeans	devised	a	theory	of
blackbody	radiation	predicting	that	the	frequency	band	of	width	df	near	the	f
contains	an	energy	proportional	to	f-4.	The	implication,	that	the	total	high
frequency	energy	is	infinite,	is	catastrophic	for	the	theory.	Since	the	trouble
comes	from	frequencies	beyond	the	ultraviolet,	it	was	described	as	an	ultraviolet
(UV)	catastrophe.
Everyone	knows	that	Planck	built	quantum	theory	upon	the	ruins	created	by

the	UV	catastrophe	of	radiation.
HISTORICAL	ASIDE.	Note	(the	point	must	have	been	made	by	others,	but	I

have	no	reference)	that	the	same	divergence	killed	the	old	physics	(†1900),	and
the	old	mathematics	(†1875)	that	believed	that	continuous	functions	must	be
differentiable.	The	physicists’	reaction	was	to	change	the	rules	of	the	game,	but
the	mathematicians’	reaction	was	to	learn	to	live	with	nondifferentiable	functions
and	their	formal	differentials.	(The	latter	are	the	only	examples	of	Schwartz



distribution	of	frequent	use	in	physics.)
SEARCH	FOR	A	SCALING	DISCRETE	SPECTRUM.	INFRARED

DIVERGENCE.	While	the	frequency	spectrum	of	the	Brown	function	is
continuous,	is	scaling,	and	extends	to	f=0,	the	frequency	spectrum	of	the
Weierstrass	function	fitted	to	the	same	H	is	discrete	and	is	bounded	below	by
f=1.	The	presence	of	this	lower	bound	is	solely	due	to	the	fact	that	Weierstrass’s
original	b	was	an	integer	and	the	function	was	periodic.	Now	we	would	like	to
eliminate	this	feature,	and	the	obvious	procedure	is	to	allow	n	to	run	from	-∞	to
+∞.	To	let	the	scaling	property	extend	to	the	energy	spectrum,	it	suffices	to
attribute	to	the	component	of	frequency	bn	the	amplitude	wn.
Unfortunately,	the	resulting	series	is	divergent,	due	to	low	frequency

components.	This	defect	is	called	infrared	(IR)	divergence	(or	“catastrophe”).
However,	the	divergence	must	be	faced,	because	the	lower	bound	f=1	clashes
with	the	self-similarity	otherwise	embodied	in	the	energy	spectrum	f-2H.
WEIERSTRASS	FUNCTION,	MODIFIED	TO	BE	SELF-AFFINE	WITH

RESPECT	TO	THE	FOCAL	TIME	t=0.	To	extend	the	Weierstrass	frequency
spectrum	f-2H	down	to	f=0	without	dreadful	consequences,	it	is	simplest	to	first
form	the	expression	W0(0)-W0(t),	and	then	to	let	n	run	from	-∞	to	∞.	The	added
terms	corresponding	to	n	<0	converge	if	0<	H	<	1,	and	their	sum	is	continuous
and	differentiable.	The	function	thus	modified,

W1(t)-W1(0)	=(1-W2)-½ Wn[exp(2‚πibnt)-1]

is	still	continuous	but	nowhere	differentiable.	In	addition	it	is	scaling	in	the
sense	that

Thus,	the	function	wm[W1(bmt)	-	W1(0)]	is	independent	of	m.	Alternatively,	as
long	as	r=bm,	r-H[W1(rt)-W1(0)]	is	independent	of	h.	That	is,	W1(r)-W1(0),	and
its	real	and	complex	parts,	are	self-affine	with	respect	to	r’s	of	the	form	b-m	and
the	focal	time	t=0.
An	extensive	study	of	the	Weierstrass	(modified)	functions	W1(t),	with

enlightening	graphics,	is	found	in	Berry	&	Lewis	1980.
GAUSS	RANDOM	FUNCTIONS	WITH	AN	EXTENDED	WEIERSTRASS



SPECTRUM.	The	next	step	toward	realism	and	applicability	is	taken	when	the
extended	Weierstrass	function	is	randomized.	The	simplest	and	most	intrinsic
method	consists	in	multiplying	its	Fourier	coefficients	by	independent	complex
Gaussian	factors	of	zero	mean	and	unit	variance.	The	real	and	imaginary	parts	of
the	result	deserve	to	be	called	Weierstrass	(modified)-Gauss	functions.	In	several
ways,	they	are	approximate	fractional	Brown	functions.	When	the	values	of	H
match,	their	spectra	are	as	close	to	being	the	same	as	allowed	by	one	being
discrete	and	the	other	continuous.	Moreover,	the	result	of	Orey	1970	and	Marcus
1976	remains	applicable	and	shows	that	their	level	sets	have	the	same	fractal
dimension.
FRACTAL	PROPERTIES.	By	a	theorem	in	Love	&	Young	1937	and

Besicovitch	&	Ursell	1937	(see	LIPSCHITZ...,),	the	graph	of	a	function
satisfying	for	all	x	the	Lipschitz	condition	of	exponent	H	has	a	fractal	dimension
between	1	and	2-H.	For	the	fractional	Brown	function	having	the	same
cumulative	spec	trum	f-2H,	the	dimension	is	known	to	take	the	largest	possible
value	2-H=D.	I	conjecture	that	the	same	holds	for	the	Weierstrass	curve.	And
that	its	zeroset	is	of	dimension	1-H.
ZEROSETS	OF	RELATED	FUNCTIONS.	The	Rademacher	functions	are

squared-off	variants	of	the	sine	functions	of	the	form	sin(2πbnt)	in	which	b=2.
Where	the	sine	is	positive	(respectively,	negative	or	vanishing),	the	Rademacher
function	is	equal	to	1	(respectively,	to	-1,	or	0)	(Zygmund	1959	I,	p.	202.)	The
natural	generalization	of	the	Weierstrass	function	is	a	series	in	which	the	nth
term	is	the	product	of	wn	by	the	nth	Rademacher	function.	This	function	is
discontinuous,	but	its	spectral	exponent	continues	to	be	2H.	Intuitively,	the
precedent	of	fractional	Brownian	motion	suggests	that	the	zerosets	of	the
Weierstrass-Rademacher	function	are	of	dimension	1-H.	This	is	confirmed	in
Beyer	1962,	but	only	under	the	restriction	that	1/H	is	an	integer.
Singh	1935	refers	to	numerous	other	variants	of	the	Weierstrass	function.	In

some	cases,	the	zeroset’s	D	is	easy	to	evaluate.	The	topic	deserves	a	fresh	look.



XII

OF	MEN	AND	IDEAS



40

Biographical	Sketches

As	a	prelude	to	this	chapter	devoted	to	bits	of	biography,	note	that	a	life	story
that	is	interesting	to	tell	is	rarely	the	reward	(or	is	it	a	punishment?)	of	those	who
keep	to	the	mainstream	of	science.	As	an	example,	take	John	William	Strutt,
third	Baron	Rayleigh.	A	steady	flow	of	triumphs	made	his	name	recognizable	in
almost	every	province	of	science.	Yet,	with	one	exception,	his	life	appears
uneventfully	subordinated	to	his	evolution	as	a	scientist.	The	unexpected	occurs
when,	having	been	admitted	to	Trinity	College	as	a	birth-right,	being	the	elder
son	of	a	landowning	lord,	he	decides	to	become	a	scholar.
Science	does	have	its	great	Romantic,	Evariste	Galois,	whose	story	fits	the

canons	of	French	Court	tragedy	since	it	combines	within	the	confines	of	one	day
his	eclosion	as	scientist	and	his	death	in	a	duel.	But	most	scientists’	stories	are
like	Rayleigh’s:	hardly	touched	even	by	extreme	uprooting	(witness	A.	S.
Besicovitch),	and	ultimately	almost	predictable,	except	for	the	occasionally
colorful	circumstances	of	the	revelation	of	their	talent,	and	of	their	entry	into	the
mainstream.	The	three-year-old	Carl	Friedrich	Gauss	corrects	the	arithmetic	of
his	father.	The	adolescent	Srinivasa	Ramanujan	reinvents	mathematics.	Harlow
Shapley,	upon	finding	that	he	must	wait	out	a	term	before	he	can	register	in	a
school	of	journalism,	selects	a	department	from	an	alphabetical	list.	He	skips
archaeology	because	he	does	not	know	the	word’s	meaning,	proceeds	to
astronomy,	and	meets	his	fate.	More	atypical	is	the	story	of	Felix	Hausdorff.
Until	the	age	of	35,	he	devotes	most	of	his	time	to	philosophy,	poetry,	writing
and	directing	plays,	and	similar	endeavors.	Then	he	settles	down	to	mathematics
and	soon	produces	his	masterpiece,	Hausdorff	1914.
Tales	according	to	the	typical	pattern	are	legion,	but	the	stories	selected	for

this	chapter	are	entirely	different.	Entry	into	the	mainstream	is	postponed,	and	in
many	cases	it	is	even	posthumous.	Strong	feelings	persist	of	really	belonging	to
other	times.	The	hero	is	a	loner.	Like	certain	painters,	he	might	be	called	a	naive
or	a	visionary,	but	there	is	a	better	term	in	American	English:	maverick.	When



the	curtain	falls	on	the	prologue	of	his	life	story,	he	is	still,	by	choice	or	by
chance,	unbranded.
Mavericks’	work	frequently	exhibits	a	peculiar	freshness.	Even	those	who	fail

to	achieve	greatness	tend	to	share	with	the	giants	a	sharply	personal	style.	The
key	seems	to	be	time	to	spare.	In	the	words	of	the	daughter	of	D’Arcy
Thompson,	speaking	about	his	book	On	Growth	and	Form	(Thompson	1917),	“It
is	a	matter	of	speculation	whether	[such	a	work]	would	ever	have	been	written	if
[its	author]	had	not	spent	thirty	years	of	his	early	life	in	the	wilderness.”	Indeed,
he	was	57	when	he	published	it,	and	many	other	mavericks	do	their	best	very
late:	the	cliché	that	science	is	very	largely	a	young	man’s	game	is	definitely	not
true	in	their	case.
I	find	such	stories	appealing	and	wish	to	share	the	emotions	a	few	of	them

evoke.
As	mavericks	should,	our	heroes	differ	greatly	from	one	another.	Paul	Lévy

lived	long	enough	to	set	his	mark	deeply	in	his	province	of	science,	but	his
admirers	(and	I	am	one)	think	that	he	deserves	even	better;	call	it	true	fame.	(So
did	D‘Arcy	Wentworth	Thompson,	who	would	not	be	out	of	place	in	this
company,	but	whose	life	is	fully	documented	in	the	abridged	edition	of	his	book,
Thompson	1962.)	Lewis	F.	Richardson	also	made	it—barely.	But	Louis
Bachelier’s	story	was	sadder;	no	one	read	through	his	books	and	papers,	and	he
stood	as	a	perennially	unsuccessful	applicant	until	all	his	work	had	been
duplicated	by	others.	Hurst	had	better	luck,	and	his	story	is	intriguing.	And
Fournier	d’Albe	and	Zipf	deserve	lasting	footnotes.	Thus	each	of	the	stories	in
this	chapter	brings	some	insight	into	the	psychology	of	a	peculiar	kind	of	strong
mind.
In	cases	where	standard	biographies	exist,	they	are	not	repeated	unless

necessary.	The	great	Dictionary	of	Scientific	Biography	(Gillispie	1970-1976)
includes	bibliographies.	Its	omissions	are	also	significant.



LOUIS	BACHELIER	(1870-1946)

The	story	of	the	beginnings	of	the	theory	of	Brownian	motion	is	worth	knowing
and	is	touched	upon	in	the	next	chapter.	However,	physics	might	have	been
preceded	in	this	context	by	mathematics—and	also	(a	most	unusual	sequence	of
events)	by	economics.
The	fact	is	that	a	truly	incredible	proportion	of	the	results	of	the	mathematical

theory	of	Brownian	motion	had	been	described	in	detail	five	years	before
Einstein.	The	precursor	was	Louis	Bachelier	(Dictionary	of	Scientific	Biography,
I,	366-367).
Our	story	centers	on	a	doctoral	dissertation	in	the	mathematical	sciences,

defended	in	Paris	on	March	19,	1900.	Sixty	years	later	it	received	the	rare
compliment	of	an	English	translation,	with	extensive	comments.	However,	it
started	badly:	the	committee	that	examined	it	was	not	overly	impressed	and	gave
it	the	unusual	and	near-insulting	mention	honorable	at	a	time	when	no	one	stood
for	the	French	doctorate	unless	he	foresaw	an	academic	opening	and	felt	sure	of
receiving	the	required	mention	très	honorable.
It	is	not	surprising	therefore	that	this	dissertation	had	no	direct	influence	on

anyone	else’s	work.	Bachelier,	in	turn,	was	not	influenced	by	anything	written	in
this	century,	even	though	he	remained	active	and	published	(in	the	best	journals)
several	papers	filled	with	endless	algebraic	manipulations.	In	addition,	his
popular	book,	Bachelier	1914,	enjoyed	several	printings	and	even	now	bears
being	read.	It	is	not	to	be	recommended	to	just	anyone,	because	its	subject	matter
has	changed	profoundly,	and	because	it	is	not	clear	whether	short	sentences
summarize	established	knowledge	or	outline	problems	yet	to	be	explored.	The
cumulative	effect	of	such	ambiguity	is	rather	disconcerting.	Only	very	late,	after
repeated	failures,	was	Bachelier	finally	appointed	to	a	University	professorship,
in	the	tiny	University	of	Besançon.
In	view	of	his	slow	and	mediocre	career	and	of	the	thinness	of	the	personal

trace	he	left	(my	search,	though	diligent,	has	discovered	only	some	odd	scraps	of
recollections	by	students	and	colleagues,	and	not	a	single	photo),	the
posthumous	fame	of	his	dissertation	makes	him	an	almost	romantic	personality.
Why	the	sharpness	of	this	contrast?



To	begin	with,	his	life	might	have	been	brighter	were	it	not	for	a	certain
mathematical	error.	The	story	is	told	in	Levy	1970	(pp.	97-98)	and	in	greater
detail	in	a	letter	Paul	Levy	wrote	me	on	January	25,	1964.
“I	first	heard	of	him	a	few	years	after	the	publication	of	my	Calcul	des

Probabilites,	that	is,	in	1928,	give	or	take	a	year.	He	was	a	candidate	for	a
professorship	at	the	University	of	Dijon.	Gevrey,	who	was	teaching	there,	came
to	ask	my	opinion	of	a	work	Bachelier	published	in	1913	(Annales	de	/’Ecole
Normale).	In	it,	he	had	defined	Wiener’s	function	(prior	to	Wiener)	as	follows:
In	each	of	the	intervals	[nτ,(n+1)τ],	he	considered	a	function	X(t|τ)	that	has	a
constant	derivative	equal	to	either	+v	or	-v,	the	two	values	being	equiprobable.
He	then	proceeded	to	the	limit	(v	constant,	and	τ→0),	and	claimed	he	was
obtaining	a	proper	function	X(t)!	Gevrey	was	scandalized	by	this	error.	I	agreed
with	him	and	confirmed	it	in	a	letter	which	he	read	to	his	colleagues	in	Dijon.
Bachelier	was	black-balled.	He	found	out	the	part	I	had	played	and	asked	for	an
explanation,	which	I	gave	him	and	which	did	not	convince	him	of	his	error.	I
shall	say	no	more	of	the	immediate	consequences	of	this	incident.
“I	had	forgotten	it	when	in	1931,	reading	Kolmogorov’s	fundamental	paper,	I

came	to	‘der	Bacheliers	Fall.’	I	looked	up	Bachelier’s	works,	and	saw	that	this
error,	which	is	repeated	everywhere,	does	not	prevent	him	from	obtaining	results
that	would	have	been	correct	if	only,	instead	of	v=constant,	he	had	written	V=Cτ-
½,	and	that,	prior	to	Einstein	and	prior	to	Wiener,	he	happens	to	have	seen	some
important	properties	of	the	so-called	Wiener	or	Wiener-Levy	function,	namely,
the	diffusion	equation	and	the	distribution	of	max0≤τ≤tX(t).
“We	became	reconciled.	I	had	written	him	that	I	regretted	that	an	impression,

produced	by	a	single	initial	error,	should	have	kept	me	from	going	on	with	my
reading	of	a	work	in	which	there	were	so	many	interesting	ideas.	He	replied	with
a	long	letter	in	which	he	expressed	great	enthusiasm	for	research.”
That	Levy	should	have	played	this	role	is	tragic,	for	his	own	career,	as	we	will

see	very	soon,	also	nearly	foundered	because	his	papers	were	not	sufficiently
rigorous.
We	now	reach	the	second	and	deeper	reason	for	Bachelier’s	career	problems.

It	is	revealed	by	the	title	of	his	dissertation,	which	(on	purpose)	I	have	not	yet
mentioned:	“Mathematical	theory	of	speculation.”	The	title	did	not	by	any	means
refer	to	(philosophical)	speculation	on	the	nature	of	chance,	rather	to	(money-
grubbing)	speculation	on	the	ups	and	downs	of	the	market	for	consolidated	state
bonds	(“la	rente”).	The	function	X(t)	mentioned	by	Levy	stood	for	the	price	of
these	bonds	at	time	t.



The	professional	difficulties	that	Bachelier	was	to	experience	as	a	result	were
foreshadowed	in	the	delicately	understated	comment	by	Henri	Poincaré,	who
wrote	the	official	report	on	this	dissertation,	that	“the	topic	is	somewhat	remote
from	those	our	candidates	are	in	the	habit	of	treating.”	One	may	argue	that
Bachelier	should	have	avoided	seeking	the	judgment	of	unwilling
mathematicians	(the	idea	of	assigning	thesis	subjects	was	totally	foreign	to
French	professors	of	that	period),	but	he	had	no	choice:	his	lower	degree	was	in
mathematics	and,	while	Poincaré	did	little	research	in	probability,	he	was	in
charge	of	teaching	it.
Bachelier’s	tragedy	was	to	be	a	man	of	the	past	and	of	the	future	but	not	of	his

present.	He	was	a	man	of	the	past	because	he	worked	on	the	historical	roots	of
probability	theory:	the	study	of	gambling.	He	chose	to	introduce	continuous	time
stochastic	processes	through	the	continuous	form	of	gambling,	La	Bourse.	He
was	a	man	of	the	future,	both	in	mathematics	(witness	the	above	letter	by	Levy)
and	in	economics,	where	he	is	acknowledged	as	the	creator	of	the	probabilistic
concept	of	“martingale”	(this	is	the	proper	formulation	of	the	notion	of	a	fair
game	or	of	an	efficient	market,	see	Chapter	37),	and	he	was	well	ahead	of	his
time	in	understanding	many	specific	aspects	of	uncertainty	as	related	to
economics.	He	owes	his	greatest	fame	to	the	concept	that	prices	follow	the
Brownian	motion	process.	Unfortunately,	no	organized	scientific	community	of
his	time	was	in	a	position	to	understand	and	welcome	him.	To	gain	acceptance
for	his	ideas	would	have	required	supreme	political	skills	that	he	evidently	did
not	possess.
To	survive	and	go	on	producing	new	works	under	these	circumstances,

Bachelier	had	to	feel	strongly	about	the	importance	of	his	work.	In	particular,	he
knew	very	well	that	he	was	the	originator	of	the	theory	of	the	diffusion	of
probability.	In	an	unpublished	Notice	that	he	wrote	in	1921	(while	applying	for
some	unspecified	academic	position),	he	stated	that	his	principal	scholarly
contribution	had	been	to	provide	“images	taken	from	natural	phenomena,	like
the	theory	of	radiation	of	probability,	in	which	[he]	likens	an	abstraction	to
energy—a	strange	and	unexpected	linkage	and	a	starting	point	for	great	progress.
It	was	with	this	concept	in	mind	that	Henri	Poincaré	had	written,	‘Mr.	Bachelier
has	evidenced	an	original	and	precise	mind.”’
The	preceding	sentence	is	taken	from	the	already-mentioned	report	on	the

dissertation,	which	deserves	further	excerpting:	“The	manner	in	which	the
candidate	obtains	the	law	of	Gauss	is	most	original,	and	all	the	more	interesting
as	the	same	reasoning	might,	with	a	few	changes,	be	extended	to	the	theory	of



errors.	He	develops	this	in	a	chapter	which	might	at	first	seem	strange,	for	he
titles	it	‘Radiation	of	Probability.’	In	effect,	the	author	resorts	to	a	comparison
with	the	analytical	theory	of	the	propagation	of	heat.	A	little	reflection	shows
that	the	analogy	is	real	and	the	comparison	legitimate.	Fourier’s	reasoning	is
applicable	almost	without	change	to	this	problem,	which	is	so	different	from	that
for	which	it	had	been	created.	It	is	regrettable	that	[the	author]	did	not	develop
this	part	of	his	thesis	further.”
Poincaré,	therefore,	had	seen	that	Bachelier	had	advanced	to	the	threshold	of	a

general	theory	of	diffusion.	However,	Poincaré	was	notorious	for	lapses	of
memory.	A	few	years	later,	he	took	an	active	part	in	discussions	concerning
Brownian	diffusion,	but	had	forgotten	Bachelier’s	1900	dissertation.
Other	comments	in	Bachelier’s	Notice	are	also	worth	summarizing:	“1906:

Théorie	des	probabilités	continues.	This	theory	has	no	relation	whatsoever	with
the	theory	of	geometric	probability,	whose	scope	is	very	limited.	This	is	a
science	of	another	level	of	difficulty	and	generality	than	the	calculus	of
probability.	Conception,	analysis,	method,	everything	in	it	is	new.	1913:
Probabilités	cinématiques	et	dynamiques.	These	applications	of	probability	to
mechanics	are	the	author’s	own,	absolutely.	He	took	the	original	idea	from	no
one;	no	work	of	the	same	kind	has	ever	been	performed.	Conception,	method,
results,	everything	is	new.”
The	hapless	authors	of	academic	Notices	are	not	called	upon	to	be	modest,	and

Louis	Bachelier	did	exaggerate	to	some	extent.	Moreover,	he	gave	no	evidence
of	having	read	anything	written	in	the	twentieth	century.	Unfortunately,	his
contemporaries	discounted	everything	he	said	and	refused	him	the	position	he
was	seeking!
Does	anyone	know	more	about	him?
Poincare’s	statements	are	paraphrased,	with	permission,	from	a	report	filed	in

the	Archives	of	the	Pierre	and	Marie	Curie	University	(Paris	VI),	heir	to	the
archives	of	the	former	Faculty	of	Sciences	of	Paris.	This	fascinating	document,
in	the	lucid	style	characteristic	of	Poincare’s	popular	writings,	suggests	that	more
extensive	selections	from	Poincare’s	letters	and	confidential	reports	to
universities	and	academies	ought	to	be	made	available.	As	of	today,	a	broad	and
intriguing	aspect	of	his	personality	is	near	absent	from	his	books	and	his
Collected	Works.



EDMUND	EDWARD	FOURNIER	D‘ALBE	(1868-
1933)

Fournier	d’Albe	(Who’s	Who	in	Science,	p.	593)	chose	to	live	as	a	free-lance
science	journalist	and	inventor:	he	constructed	a	prosthesis	to	enable	the	blind	to
“hear”	letters	and	was	the	first	to	transmit	a	television	signal	from	London.
His	name	was	witness	to	Huguenot	ancestry.	Despite	his	partly	German

education	and	his	eventual	residence	in	London,	where	he	obtained	his	A.B.	by
attending	evening	college,	a	stint	in	Dublin	transformed	him	into	an	Irish	patriot
and	a	militant	in	a	Pan-Celtic	movement.	He	was	a	believer	in	spiritualism	and	a
religious	mystic.
He	is	remembered	for	his	book	Two	New	Worlds.	It	received	very	good

reviews	in	Nature,	which	called	its	arguments	“simple	and	reasonable,”	and	The
Times,	which	called	its-	speculations	“curious	and	attractive.”	However,	the
obituaries	for	Fournier	d’Albe	that	appeared	in	Nature	and	The	Times	somehow
failed	to	mention	this	book.	It	has	become	almost	impossible	to	find	and	is	rarely
mentioned	without	sarcastic	comments.
True,	it	is	the	kind	of	work	in	which	a	physicist	is	surprised	to	find	anything	of

permanent	technical	value.	In	fact,	I	had	been	advised	against	attracting	attention
to	it,	lest	the	disputable	bulk	of	the	material	be	taken	seriously.	But	should	one
use	against	Fournier	an	argument	one	would	not	consider	using	against	Kepler?
This	is	not	to	say	Fournier	was	a	Kepler;	he	hardly	rose	to	the	level	of,
accomplishment	of	others	in	this	chapter.	Yet	a	critic’s	claim	that	“scientifically
the	work	of	the	self-styled	‘Newton	of	the	soul’	is	worthless”	is	too	sweeping	by
far.
Indeed,	Fournier	was	the	first	to	restate	an	old	intuition	about	galactic

clustering	(dating	back	to	Kant	and	to	Kant’s	contemporary	Lambert)	in	terms
sufficiently	precise	to	allow	us	today	to	conclude	that	the	galaxies	should	satisfy
D=1.	Thus,	we	are	indebted	to	him	for	something	of	lasting	value.



HAROLD	EDWIN	HURST	(1880-1978)

Hurst,	hailed	as	perhaps	the	foremost	Nilologist	of	all	time	and	spoken	of	as
“Abu	Nil,”	the	Father	of	the	Nile,	spent	the	bulk	of	his	career	in	Cairo	as	a	civil
servant	of	the	British	Crown,	then	of	Egypt.	(Who’s	Who,	1973,	p.	1625,	and
Who’s	Who	of	British	Scientists	1969/70,	pp.	417-418.)
His	early	training,	as	he	and	Mrs.	Marguerite	Brunel	Hurst	described	to	me,	is

worth	retelling.	The	son	of	a	village	builder	of	limited	means,	whose	family	had
lived	near	Leicester	for	almost	three	centuries,	he	left	school	at	age	15.	He	had
been	trained	mostly	in	chemistry,	and	also	in	carpentry	by	his	father.	He	then
started	as	a	pupil	teacher	at	a	school	in	Leicester,	attending	evening	classes	to
continue	his	own	education.
At	age	20,	he	won	a	scholarship	that	enabled	him	to	go	to	Oxford	as	a

noncollegiate	student.	After	a	year,	he	became	an	undergraduate	at	the	recently
reestablished	Merit-ford	College,	and	soon	switched	to	a	major	in	physics	and
worked	at	Clarendon	Laboratory.
His	lack	of	preparation	in	mathematics	was	a	handicap,	but	thanks	to	the

interest	that	Professor	Glazebrook	took	in	an	unusual	candidate	who	was	very
strong	in	practical	work,	he	won	a	first-class	honors	degree,	to	everyone’s
surprise,	and	was	asked	to	stay	for	three	years	as	a	lecturer	and	demonstrator.
In	1906,	Hurst	went	to	Egypt	for	a	short	stay	that	was	to	last	62	years,	of

which	the	most	fruitful	were	after	he	had	turned	65.	His	first	duties	included
transmitting	standard	time	from	the	Observatory	to	the	Citadel	of	Cairo,	where	a
gun	was	to	be	fired	at	midday.	However,	he	became	increasingly	fascinated	with
the	Nile,	and	his	study	and	exploration	of	the	Nile	basin	made	him	well	known
internationally.	He	traveled	extensively	by	river	and	on	land—on	foot	with
porters,	using	a	bicycle,	later	by	car,	and	later	still	by	plane.	The	low	Aswan
Dam	had	been	build	in	1903,	but	he	realized	how	important	it	was	to	Egypt	that
provision	should	be	made	not	only	for	the	dry	years	but	for	a	series	of	dry	years.
Irrigation	storage	schemes	should	be	adequate	for	every	situation,	very	much,	as
in	the	Old	Testament,	Joseph	stored	grain	for	the	lean	years.	He	was	one	of	the
first	to	realize	the	need	for	the	“Sudd	el	Aali,”	the	High	Dam	and	Reservoir	at
Aswan.



Hurst’s	name	is	likely	to	survive	because	of	a	statistical	method	he	initiated
and	used	to	discover	a	major	empirical	law	concerning	long	run	dependence	in
geophysics.	At	first,	it	seems	surprising	that	anything	of	the	kind	could	come
from	an	author	so	poorly	prepared	in	mathematics	and	working	so	far	from	any
major	center	of	learning,	but	at	second	thought	these	circumstances	may	have
been	vital	to	both	the	birth	of	his	idea	and	its	survival.	He	investigated	the	Nile
using	a	peculiar	method	of	analysis	of	his	own	design,	one	that	might	be	termed
narrow	and	ad	hoc,	but	in	fact	has	turned	out	to	be	eminently	intrinsic.	Not	being
pressed	by	time	and	having	exceptionally	abundant	data	at	his	disposal,	he	was
in	a	position	to	compare	them	with	the	standard	model	of	stochastic	variability
(white	noise)	through	their	respective	effects	upon	the	design	of	the	High	Dam.
This	led	him	to	the	expression	Chapters	28	and	39	(p.	387)	denote	by	R(d)/S(d).
One	can	imagine	the	amount	of	hard	work	implied	in	such	research	before	the

advent	of	computers—but	of	course	the	Nile	is	sufficiently	important	to	Egypt	to
justify	comparatively	large	expenditures	(and	to	preclude	forcing	Hurst	to	retire).
Hurst	adamantly	maintained	that	his	finding	was	significant,	despite	the	fact

that	no	test	existed	by	which	such	significance	could	be	assessed	objectively.
Finally,	at	the	ages	of	71	and	75,	he	read	two	long	papers	on	his	discovery,	and
its	potential	importance	became	recognized.
In	E.	H.	Lloyd’s	words	(but	my	notation),	Hurst	put	us	“in	one	of	those

situations,	so	salutary	for	theoreticians,	in	which	empirical	discoveries
stubbornly	refuse	to	accord	with	theory.	All	the	researches	described	above	lead
to	the	conclusion	that	in	the	long	run	R(d)	should	increase	like	d0.5,	whereas
Hurst’s	extraordinarily	well-documented	empirical	law	shows	an	increase	like
dH,	where	H	is	about	0.7.	We	are	forced	to	the	conclusion	that	either	the
theorists’	interpretation	of	their	work	is	inadequate	or	their	theories	are	falsely
based;	possibly	both	conclusions	apply.”	Similarly,	in	the	words	of	Feller	1951:
“We	are	here	confronted	with	a	problem	which	is	interesting	from	both	a
statistical	and	a	mathematical	point	of	view.”
My	fractional	Brownian	motion	model	(Chapter	28)	arose	as	a	direct	response

to	the	Hurst	phenomenon,	but	this	is	not	the	end	of	the	Hurst	story.	It	is	hard	to
quibble	with	the	glowing	comments	in	the	last	paragraph	...	but	both	were
unwittingly	based	upon	an	incorrect	reading	of	Hurst’s	claims.	Lloyd	neglected
the	division	of	R	by	S,	and	Feller	knew	Hurst’s	work	from	a	third	party’s	verbal
report	(as	he	acknowledged),	and	failed	to	realize	that	a	division	by	S	had	been
performed.	The	value	of	Feller’s	work	was	not	affected.	For	the	importance	of
the	division	by	S,	see	Mandelbrot	&	Wallis	1969c	and	Mandelbrot	1975w.



We	see	again	in	this	instance	that	when	a	result	is	truly	unexpected	it	is	hard	to
comprehend,	even	by	those	best	disposed	to	listen.



PAUL	LÉVY	(1886-1971)

Paul	Levy,	who	acknowledged	no	pupil	but	came	closest	to	being	my	mentor,
achieved	goals	that	Bachelier	only	saw	from	afar.	Levy	lived	long	enough	to
gain	recognition	as	possibly	the	greatest	probabilist	of	all	time,	and	(when	nearly
80	years	old)	he	finally	came	to	occupy,	at	the	Paris	Académie	des	Sciences,	the
seat	that	had	been	Poincaré’s,	then	Hadamard’s.	See	World	Who’s	Who	in
Science,	p.	1035.
And	yet,	almost	to	the	end	of	his	active	life,	Levy	had	been	kept	at	arm’s

length	by	the	Establishment.	Not	only	did	Poincaré’s	former	University	chair
elude	him	repeatedly,	but	his	repeated	offers	to	give	noncredit	lectures	were
accepted	with	reluctance,	for	fear	they	might	disrupt	the	curriculum.
His	life,	thoughts,	and	opinions	are	documented	at	length	in	Levy	1970,	a

book	well	worth	reading	because	of	a	lack	of	self-conscious	attempt	to	appear
better	or	worse	than	life.	The	end	is	best	skipped,	but	the	best	passages	are
splendid.	In	particular,	he	describes	in	touching	terms	both	his	fear	of	being	“a
mere	survivor	of	the	last	century,”	and	his	feeling	of	being	a	mathematician
“unlike	all	the	others.”	This	feeling	was	widely	shared.	I	recall	John	von
Neumann	saying	in	1954,	“I	think	I	understand	how	every	other	mathematician
operates,	but	Levy	is	like	a	visitor	from	a	strange	planet.	He	seems	to	have	his
own	private	methods	of	arriving	at	the	truth,	which	leave	me	ill	at	ease.”
He	had	few	obligations	to	distract	him,	aside	from	a	score	of	lectures	each

year	as	a	professor	of	mathematical	analysis	at	the	Ecole	Polytechnique.
Working	alone,	he	transformed	probability	theory	from	a	small	collection	of	odd
results	into	a	discipline	in	which	rich	and	varied	results	could	be	obtained
through	methods	so	direct	as	to	be	classical.	He	became	interested	in	the	topic
when	asked	for	a	lecture	on	errors	in	the	firing	of	guns.	He	was	near	40	at	the
time,	a	brilliant	man	short	of	fulfilling	his	promise	and	a	professor	at
Polytechnique	at	a	time	when	the	school’s	appointments	favored	him	as	an
alumnus.	His	major	books	were	written	at	ages	50	and	60,	and	much	of	his	work
on	Hilbert	space-to-line	Brownian	functions	came	much	later.
Of	the	countless	interesting	tales	in	his	autobiography,	one	relates	to	the	short

paper	he	devoted	to	the	Bentley	paradox,	relative	to	the	Newtonian	gravitation



potential	(Chapter	9).	In	1904,	when	a	19-year-old	student,	Levy	independently
discovered	the	Fournier	model	of	the	universe.	However,	he	believed	that	“the
argument	was	so	simple	that	I	would	not	have	thought	of	publishing	it	if,	25
years	later,	chance	had	not	made	me	overhear	a	conversation	between	Jean
Perrin	and	Paul	Langevin.	These	illustrious	physicists	agreed	that	one	could	only
escape	the	paradox	by	assuming	the	universe	to	be	finite.	I	spoke	up	to	point	out
their	error.	They	did	not	seem	to	see	my	point,	but	Perrin	was	shaken	by	my	self-
assurance	and	asked	me	to	write	down	my	ideas,	which	I	did.”
Apropos	of	results	being	“too	simple	to	publish,”	the	phrase	appears	often	in

Levy’s	recollections.	Many	creative	minds	overrate	their	most	baroque	works,
and	underrate	the	simple	ones.	When	history	reverses	such	judgments,	prolific
writers	come	to	be	best	remembered	as	authors	of	“lemmas,”	of	propositions
they	had	felt	to	be	“too	simple”	in	themselves	and	had	published	solely	as
preludes	to	forgotten	theorems.
The	remarks	that	follow	paraphrase	part	of	what	I	said	at	a	ceremony	in

Lévy’s	memory:	“The	trace	left	in	my	memory	by	his	spoken	lectures	at
Polytechnique	has	become	very	blurred,	because	chance	had	assigned	me	to	the
rear	of	a	large	lecture	hall,	and	Lévy’s	voice	was	weak	and	not	amplified.	The
most	vivid	recollection	is	that	of	the	resemblance	some	of	us	noticed	between	his
figure—long,	gray,	and	well	groomed—and	the	somewhat	peculiar	way	he	had
of	tracing	on	the	blackboard	the	symbol	of	integration.
“But	his	written	course	notes	were	quite	another	matter.	They	were	not	the

traditional	well-ordered	procession,	beginning	with	a	regiment	of	definitions	and
of	lemmas	followed	by	theorems,	every	assumption	being	clearly	stated,	this
majestic	flow	being	perhaps	interrupted	by	the	statement	of	a	few	unproven
results,	clearly	emphasized	as	such.	Rather,	the	recollection	I	have	is	of	a
tumultuous	flood	of	remarks	and	observations.
“In	his	autobiography,	Levy	suggests	that	in	order	to	interest	children	in

geometry,	one	should	proceed	as	quickly	as	possible	to	theorems	they	are	not
tempted	to	consider	evident.	His	method	at	Polytechnique	was	not	all	that
different.	To	give	an	account	of	it,	we	are	irresistibly	attracted	to	images
borrowed	from	geography	and	mountaineering.	We	are	thus	reminded	of	an	old
review	of	an	earlier	great	Cours	d‘Analyse	de	l’Ecole	Polytechnigue.	The	course
had	been	taught	by	Camille	Jordan,	and	the	reviewer	was	Henri	Lebesgue.
Because	Lebesgue’s	disdain	for	Levy’s	work	was	strong	and	public,	it	is	ironic
that	his	comments	in	praise	of	Jordan	apply	so	well	to	Levy.	He	was	unlike	‘a
person	who	would	attempt	to	reach	the	peak	of	an	unknown	region,	but	who



would	not	allow	himself	to	look	around	before	reaching	his	goal.	If	led	there	by
someone	else,	perhaps	he	may	be	able	to	look	down	upon	many	things,	but	he
could	not	know	what	they	are.	In	fact,	one	cannot	generally	see	anything	from	a
very	high	peak;	mountaineers	climb	them	only	for	the	sake	of	the	effort.’
“Needless	to	say,	Levy’s	course	notes	were	not	popular.	To	many	excellent

Polytechnique	students,	they	were	a	source	of	worry	when	cramming	for	the
general	examination.	In	the	ultimate	rewrite,	which	I	had	to	study	in	1957	as	his
Maitre	de	Conferences,	all	those	features	had	become	even	more	strongly
accentuated.	For	example,	the	treatment	of	the	theory	of	integration	was	frankly
no	more	than	an	approximation.	No	one,	he	had	written,	can	do	a	good	job	by
trying	to	force	his	talent.	It	would	seem	that	in	his	last	course	notes,	his	talent
had	been	forced.
“But	my	recollection	of	the	course	he	had	taught	to	the	class	admitted	in	1944

remains	extraordinarily	positive.	Intuition,	though	it	cannot	be	taught,	can	only
too	easily	be	thwarted.	I	believe	that	this	is	what	Levy	was	trying	above	all	to
avoid,	and	I	think	he	had	mostly	succeeded.
“At	Polytechnique,	I	had	heard	many	references	to	his	creative	work.	One

would	praise	it	as	being	very	important,	then	promptly	add	the	comment	that	it
did	not	contain	a	single	faultless	mathematical	proof,	and	included	infuriatingly
many	arguments	of	uncertain	footing.	In	conclusion,	the	most	urgent	thing	was
to	make	everything	rigorous.	This	task	has	been	performed,	and	today	the
intellectual	grandchildren	of	Levy	rejoice	in	being	accepted	as	full-fledged
mathematicians.	As	one	of	them	put	it	a	moment	ago,	they	see	themselves	as
‘probabilists	turned	bourgeois.’
“I	fear	that	far	too	much	may	have	been	paid	for	this	acceptance.	In	every

branch	of	knowledge,	there	seem	to	be	many	successive	levels	of	precision	and
generality.	Some	are	unsuited	to	attack	any	but	the	most	trivial	problems.	More
and	more,	however,	and	in	almost	every	branch	of	knowledge,	one	is	able	to
push	precision	and	generality	to	excess.	For	example,	a	hundred	pages	of
preliminaries	may	be	needed	to	prove	one	theorem	in	a	form	that	is	hardly	more
general	than	its	predecessors,	and	discloses	no	new	horizon.	But	some	fortunate
branches	of	knowledge	allow	an	intermediate	level	of	precision	and	generality
that	may	be	termed	classical.	Paul	Lévy’s	almost	unique	greatness	lies	in	the	fact
that	he	was,	at	the	same	time,	a	forerunner	and	the	classic	in	his	field.
“Lévy	rarely	concerned	himself	with	anything	but	pure	mathematics.	Also,

those	who	have	to	solve	a	problem	that	has	already	been	well-posed	rarely	find
in	his	work	a	formula	ready	to	serve	them	with	no	further	effort.	On	the	other



hand,	if	I	can	believe	my	personal	experience,	Levy’s	approach	to	more	basic
issues	of	formulation	of	chance	makes	him	stand	out	more	and	more	as	a	giant.
“Whether	in	the	diverse	topics	to	which	the	present	Essay	is	devoted	or	in

those	I	examine	in	other	works,	a	proper	mathematical	formalization	seems	to
demand	very	quickly	either	a	conceptual	tool	that	Levy	had	provided	or	a	tool
wrought	in	the	same	spirit	and	possessing	the	same	degree	of	generality.	More
and	more,	the	inner	world	which	Levy	explored	as	if	he	were	its	geographer
reveals	itself	as	sharing	with	the	world	which	surrounds	us	a	kind	of	premonitory
accord	that	is,	without	doubt,	a	token	of	his	genius.”



LEWIS	FRY	RICHARDSON	(1881-1953)

Even	by	the	standards	of	the	present	chapter,	the	life	of	L.	F.	Richardson	is
unusual,	its	strands	failing	to	become	integrated	in	any	predominant	direction.
He	was,	incidentally,	the	uncle	of	Sir	Ralph	Richardson,	the	actor.	See	World
Who’s	Who	in	Science,	p.	1420,	Obituary	Notices	of	Fellows	of	the	Royal
Society,	9,	1954,	217-235—summarized	in	Richardson	1960a	and	1960s,	and	a
story	by	M.	Greiser	in	Datamation,	June	1980.	Personal	tidbits	were	kindly
contributed	by	a	relation	of	Richardson,	David	Edmundson.
In	the	words	of	his	influential	contemporary	G.	I.	Taylor,	“Richardson	was	a

very	interesting	and	original	character	who	seldom	thought	on	the	same	lines	as
did	his	contemporaries,	and	often	was	not	understood	by	them.”	To	paraphrase
E.	Gold,	his	scientific	work	was	original,	sometimes	difficult	to	follow,
sometimes	illuminated	by	lucid	unexpected	illustrations.	In	his	studies	of
turbulence	and	in	the	publication	that	led	to	Richardson	1960a	and	1960s,	he	was
occasionally,	and	not	unnaturally,	groping,	perhaps	with	a	little	confusion.	He
was	breaking	new	ground	and	had	to	find	his	way	with	the	assistance	of	a
knowledge	of	advanced	mathematics	gained	as	he	went—not	drawn	from	a	stock
obtained	in	his	university	career.	In	view	of	his	inclination	to	explore	new
subjects—or	even	“bits	of	subjects”—his	achievement	might	seem	surprising	if
one	did	not	realize	his	amazing	and	orderly	industry.
Richardson	attended	Cambridge	on	a	scholarship	and	earned	his	B.A.	in

physics,	mathematics,	chemistry,	biology,	and	zoology,	for	he	was	uncertain	as
to	the	career	he	should	follow.	Helmholtz,	who	had	been	a	physician	before
becoming	a	physicist,	seemed	to	Richardson	to	have	partaken	of	the	feast	of	life
in	reverse	order.
For	some	reason	he	had	quarreled	with	Cambridge,	and	when	he	wanted	a

Doctor’s	degree	many	years	later,	he	refused	to	proceed	to	his	M.A.,	which	cost
10	pounds.	Instead,	he	matriculated	at	London	University,	where	he	was	then
lecturing,	sat	with	his	own	pupils,	and	obtained	his	doctorate	at	age	47,	in
mathematical	psychology.
He	had	begun	his	career	at	the	Meteorological	Office,	but	being	an	austere

Quaker	and	a	conscientious	objector	during	the	War	of	1914-1918,	he	resigned



when	the	Meteorological	Office	joined	the	new	Air	Ministry	after	the	War.
Weather	prediction	by	numerical	process	is	the	topic	of	Richardson	1922-

1965,	clearly	the	work	of	a	practical	visionary.	It	was	reprinted	after	33	years	as
a	classic,	but	for	20	years	it	was	viewed	as	disreputable.	It	turns	out	that,	while
approximating	the	differential	equations	of	the	evolution	of	the	atmosphere	with
equations	of	finite	differences,	Richardson	had	selected	unsuitable	values	of	the
elementary	steps	of	space	and	time.	Since	the	need	for	care	in	the	selection	of
these	steps	had	not	yet	been	perceived,	his	mistake	was	hardly	avoidable.
Nevertheless,	this	work	soon	won	him	election	to	the	Royal	Society.	And	five

lines	from	Richardson	1922,	p.	66,	are	widely	quoted:

Big	whorls	have	little	whorls,	
Which	feed	on	their	velocity;	

And	little	whorls	have	lesser	whorls,	
And	so	on	to	viscosity	
(in	the	molecular	sense),

In	fact,	these	lines	reach	the	highest	level	of	fame	by	being	often	quoted
anonymously.	Seeing	them,	a	scholar	of	English	literature	pointed	out	to	me	their
kinship	to	some	classics.	It	is	clear	that	Richardson	parodied	the	following	verse
from	Jonathan	Swift	1733,	lines	337-340:

So,	Nat’ralists	observe,	a	Flea	
Hath	smaller	Fleas	that	on	him	prey,	

And	these	have	smaller	Fleas	to	bit	’em,	
And	so	proceed	ad	infinitum.

But	Richardson	avoided	the	alternative	statement	in	deMorgan	1872,	p.	377:
	
Great	fleas	have	little	fleas	upon	their	backs	to	bite	’em
And	little	fleas	have	lesser	fleas,	and	so	ad	infinitum,
And	the	great	fleas	themselves,	in	turn,	have	greater	fleas	to	go	on,
While	these	again	have	greater	still,	and	greater	still,	and	so	on.
	
The	difference	between	these	variants	is	not	as	slight	as	it	may	seem.	In	fact,	it

gives	one	a	nice	feeling	to	believe	that	Richardson	was	careful	in	matching	his
literary	models	to	his	notions	about	physics.	Indeed	he	thought	that	turbulence
only	involves	a	“direct”	cascade	of	energy	from	large	to	small	eddies—hence
Swift.	Had	he	also	believed	in	an	“inverse”	cascade	of	energy	from	small	to



large	eddies—as	some	believe	today—one	hopes	he	might	have	parodied	De
Morgan!
In	a	somewhat	analogous	light	vein,	the	second	section	of	Richardson	1926	is

titled	“Does	the	Wind	Possess	a	Velocity?”	and	begins	as	follows:	“The	question,
at	first	sight	foolish,	improves	on	acquaintance.”	He	then	goes	on	to	show	how
wind	diffusion	may	be	studied	with	no	need	to	mention	its	velocity.	In	order	to
give	an	idea	of	the	degree	of	irregularity	of	the	motion	of	air,	a	fleeting	mention
is	made	of	the	Weierstrass	function	(which	is	continuous	but	has	nowhere	a
derivative;	it	is	mentioned	in	Chapter	2	and	studied	in	Chapters	39	and	41).
Unfortunately,	the	matter	is	dropped	immediately.	What	a	pity	he	failed	to	notice
that	the	Weierstrass	function	is	scaling.	Also,	as	pointed	out	by	G.	I.	Taylor,
Richardson	defined	the	law	of	turbulent	mutual	dispersion	of	particles,	but
missed	the	Kolmogorov	spectrum	by	a	hair’s	breadth.	However,	each	fresh
glance	at	his	papers	seems	to	show	some	angle	that	had	passed	unnoticed.
Richardson	was	also	a	careful	and	thrifty	experimenter.	His	earliest

experiments	consisted	in	measuring	wind	velocity	within	clouds	by	shooting	into
them	diverse	steel	marbles	ranging	from	the	size	of	a	pea	to	that	of	a	cherry.	A
late	experiment	in	turbulent	diffusion	(Richardson	&	Stommel	1948)	required	a
large	number	of	buoys,	which	had	to	be	highly	visible,	hence	preferably	whitish
in	color,	while	remaining	almost	totally	immersed	so	as	not	to	catch	the	wind.
His	solution	was	to	buy	a	large	sack	of	parsnips,	which	were	thrown	from	one
bridge	on	the	Cape	Cod	Canal	while	he	made	his	observations	from	another
bridge	downstream.
He	spent	many	years	as	teacher	or	administrator	off	the	beaten	path.	Then	an

inheritance	enabled	him	to	retire	early	to	devote	himself	fully	to	the	study	of	the
psychology	of	armed	conflicts	between	states,	which	he	had	been	pursuing	on
the	side	since	1919.	Two	books	appeared	after	his	death,	Richardson	1960a,s
(Newman	1956,	pp.	1238-1263	reprints	the	author’s	summaries).	Posthumous
articles	include	Richardson	1961,	the	investigation	of	the	length	of	coastlines
that	is	described	in	Chapter	5	and	that	had	such	an	influence	on	the	genesis	of
the	present	Essay.



GEORGE	KINGSLEY	ZIPF	(1902-1950)

Zipf,	an	American	scholar,	started	as	a	philologist	but	came	to	describe	himself
as	a	statistical	human	ecologist.	He	was	for	twenty	years	a	Lecturer	at	Harvard,
and	died	just	after	having	published,	apparently	at	his	own	expense,	Human
Behavior	and	the	Principle	of	Least	Effort,	(Zipf	1949-1965).
This	is	one	of	those	books	(Fournier	1907	is	another)	in	which	flashes	of

genius,	projected	in	many	directions,	are	nearly	overwhelmed	by	a	gangue	of
wild	notions	and	extravagance.	On	the	one	hand,	it	deals	with	the	shape	of
sexual	organs	and	justifies	the	Anschluss	of	Austria	into	Germany	because	it
improved	the	fit	of	a	mathematical	formula.	On	the	other	hand,	it	is	filled	with
figures	and	tables	that	hammer	away	ceaselessly	at	the	empirical	law	that,	in
social	science	statistics,	the	best	combination	of	mathematical	convenience	and
empirical	fit	is	often	given	by	a	scaling	probability	distribution.	Some	examples
are	studied	in	Chapter	38.
Natural	scientists	recognize	in	“Zipf’s	laws”	the	counterparts	of	the	scaling

laws	which	physics	and	astronomy	accept	with	no	extraordinary	emotion—when
evidence	points	out	their	validity.	Therefore	physicists	would	find	it	hard	to
imagine	the	fierceness	of	the	opposition	when	Zipf—and	Pareto	before	him—
followed	the	same	procedure,	with	the	same	outcome,	in	the	social	sciences.	The
most	diverse	attempts	continue	to	be	made,	to	discredit	in	advance	all	evidence
based	on	the	use	of	doubly	logarithmic	graphs.	But	I	think	this	method	would
have	remained	uncontroversial,	were	it	not	for	the	nature	of	the	conclusion	to
which	it	leads.	Unfortunately,	a	straight	doubly	logarithmic	graph	indicates	a
distribution	that	flies	in	the	face	of	the	Gaussian	dogma,	which	long	ruled
uncontested.	The	failure	of	applied	statisticians	and	social	scientists	to	heed	Zipf
helps	account	for	the	striking	backwardness	of	their	fields.
Zipf	brought	encyclopedic	fervor	to	collecting	examples	of	hyperbolic	laws	in

social	sciences,	and	unyielding	stamina	to	defending	his	findings	and	analogous
findings	by	others.	However,	the	present	Essay	makes	it	obvious	that	his	basic
belief	was	without	merit.	It	is	not	true	that	frequency	distributions	are	always
hyperbolic	in	the	social	sciences,	and	always	Gaussian	in	the	natural	sciences.
An	even	more	serious	failing	was	that	Zipf	tied	his	findings	together	with	empty



verbal	argument,	and	came	nowhere	close	to	integrating	them	into	a	body	of
thought.
At	a	critical	point	in	my	life	(Chapter	42),	I	read	a	wise	review	of	Human

Behavior	by	the	mathematician	J.	L.	Walsh.	By	only	mentioning	what	was	good,
this	review	influenced	greatly	my	early	scientific	work,	and	its	indirect	influence
continues.	Therefore,	I	owe	a	great	deal	to	Zipf	through	Walsh.
Otherwise	Zipf’s	influence	is	likely	to	remain	marginal.	One	sees	in	him,	in

the	clearest	fashion—even	in	caricature—the	extraordinary	difficulties	that
surround	any	interdisciplinary	approach.
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Historical	Sketches
Gauss’s	dictum,	“when	a	building	is	completed	no	one	should	be	able	to	see	any
trace	of	the	scaffolding,”	is	often	used	by	mathematicians	as	an	excuse	for
neglecting	the	motivation	behind	their	own	work	and	the	history	of	their	field.
Fortunately,	the	opposite	sentiment	is	gaining	strength,	and	numerous	asides	in
this	Essay	show	to	which	side	go	my	own	sympathies.	However,	I	am	left	with
several	longer	stories	with	which	to	educate	and	entertain	the	reader.	They
include	odds	and	ends	gathered	in	library	forays	prompted	by	my	current	passion
for	Leibniz	and	Poincaré.



ARISTOTLE	AND	LEIBNIZ,	GREAT	CHAIN	OF
BEING,	CHIMERAS	AND	FRACTALS

A	reference	to	Aristotle	and	Leibniz	has	long	ceased	to	be	required	in	serious
books.	But	the	present	entry	is	not	a	joke,	however	unexpected	it	may	be	even	to
its	author.	Several	basic	ideas	of	fractals	might	be	viewed	as	mathematical	and
scientific	implementations	of	loose	but	potent	notions	that	date	back	to	Aristotle
and	Leibniz,	permeate	our	culture,	and	affect	even	those	who	think	they	are	not
subject	to	philosophical	influences.
My	first	clue	came	from	a	remark	in	Bourbaki	1960:	the	idea	of	fractional

integro-differentiation,	described	in	Chapter	27,	had	occurred	to	Leibniz,	as	soon
as	he	had	developed	his	version	of	calculus	and	invented	the	notations	dk	F/dxk

and	(d/dx)kF.	In	free	translation	of	Leibniz’s	letter	to	de	l’Hospital	dated
September	30,	1695	(Leibniz	1849-,	II,	XXIV,	197ff.):	“John	Bernoulli	seems	to
have	told	you	of	my	having	mentioned	to	him	a	marvelous	analogy	which	makes
it	possible	to	say	in	a	way	that	successive	differentials	are	in	geometric
progression.	One	can	ask	what	would	be	a	differential	having	as	its	exponent	a
fraction.	You	see	that	the	result	can	be	expressed	by	an	infinite	series.	Although
this	seems	removed	from	Geometry,	which	does	not	yet	know	of	such	fractional
exponents,	it	appears	that	one	day	these	paradoxes	will	yield	useful
consequences,	since	there	is	hardly	a	paradox	without	utility.	Thoughts	that
mattered	little	in	themselves	may	give	occasion	to	more	beautiful	ones.”	Further
elaborations	were	communicated	to	John	Bernoulli	on	December	28,	1695
(Leibniz	1849-,	III.1,	226ff.).
While	Leibniz	devoted	much	thought	to	such	matters,	they	never	enter	in

Newton’s	thoughts	about	calculus,	and	there	was	good	reason	for	this	difference
of	approach.	Indeed	(see	The	Great	Chain	of	Being,	Lovejoy	1936),	Leibniz
believed	deeply	in	what	he	called	the	“principle	of	continuity”	or	of	“plenitude.”
Aristotle	had	already	believed	that	the	gap	between	any	two	living	species	can
be	bridged	continuously	by	other	species.	He	was	therefore	fascinated	by	“in-
between”	animals,	which	he	denoted	by	a	special	term	(of	which	I	heard	from	G.
E.	R.	Lloyd),	∈παμφ0τ∈ρ ζ∈ ν.	See	also	this	chapter’s	entry	on	NATURA
NONFACIT	SALTUS.



This	principle	of	continuity	reflected	(or	justified?)	the	belief	in	“missing
links”	of	all	sorts,	including	chimeras	in	the	sense	this	term	had	in	Greek
mythology:	beasts	having	a	lion’s	head	and	a	goat’s	body—and	also	having	the
tail	of	a	dragon	and	spitting	fire	from	their	mouths!.	(Should	chimeras	be
mentioned	in	this	book?	If	I	come	to	read	that	it	is	a	fractally	written	account	of
chimeric	notions,	I	shall	know	whom	to	blame.)
Of	course,	modern	atomic	theory’s	search	for	distant	origins	has	tended	to

draw	greater	attention	to	the	opposite	tradition	of	Greek	philosophy,	that	of
Democritus.	And	the	tension	between	these	two	contrary	forces	continues	to	play
a	central	creative	role	in	our	thought.	Note	that	the	Cantor	dust	may	be	seen	as
defusing	an	ancient	paradox:	it	is	divisible	without	end	but	is	not	continuous.
Incidentally,	in	the	ancient	Hebrew	cultural	tradition,	chimeras	were	either
ignored	or	rejected,	as	demonstrated	from	a	surprising	angle	in	Soler	1973.
The	belief	in	biological	chimeras	became	discredited,	but	this	does	not	matter.

In	mathematics,	Aristotle’s	idea	finds	an	application	in	the	interpolation	of	the
sequence	of	integers	by	ratios	of	integers,	then	by	limits	of	ratios	of	integers.	In
such	a	tradition,	every	phenomenon	defined	by	a	sequence	of	integers	is	a
candidate	for	interpolation.	Thus,	Leibniz’s	haste	to	talk	about	fractional
differentials	was	spurred	on	by	an	idea	that	sat	at	the	very	core	of	his	thought
(and	underlay	his	packing	of	the	circle,	Chapter	18).
Now	what	about	Cantor,	Peano,	Koch,	and	Hausdorff?	In	creating	their

monster	sets,	were	not	the	first	three	genuinely	engaged	in	actual	implementation
of	mathematical	chimeras?	And	should	we	not	view	the	Hausdorff	dimension	as
a	scale	allowing	chimeras	to	be	ordered?	Today’s	mathematicians	do	not	read
Leibniz	or	Kant,	but	the	scholars	of	1900	did.	Thus,	having	read	the	verse	by
Jonathan	Swift	in	the	preceding	chapter’s	entry	on	RICHARDSON,	we	can
fantasize	Helge	von	Koch	constructing	his	snowflake	curve	to	the	following
tune.	He	defines	a	“big	flea”	as	being	the	original	triangle	drawn	in	Plate	36.
Then	he	centers	a	smaller	triangular	“flea”	on	the	middle	of	each	back	of	the	big
flea;	then	smaller	triangular	fleas	wherever	possible	on	the	backs	of	old	or	new
fleas.	And	thus	he	too	proceeds	ad	infinitum.	This	fantasy	is	not	based	on
evidence,	but	it	should	make	my	point.	Koch	could	not	fail	to	be	nourished	by
the	cultural	currents	that	descend	from	Leibniz.	And	Swift’s	parody	reflects
some	popular	expositions	of	Leibniz’s	thought.
Next,	we	turn	from	mathematicians	concerned	with	Art	for	Art’s	sake	(and

convinced,	in	Cantor’s	words,	that	“the	essence	of	mathematics	is	freedom”)	to
men	who	celebrate	Nature	by	trying	to	imitate	it.



They	would	not	dream	of	chimeras,	would	they?	In	fact,	many	among	them
do.	Chapter	10	refers	to	practical	students	of	turbulence,	thwarted	in	efforts	to
decide	whether	the	process	they	study	concentrates	on	“peas,	spaghetti,	or
lettuce,”	irritated	that	different	ways	of	asking	the	question	should	seem	to	yield
different	answers,	and	ending	with	a	call	for	“in-between”	shapes	whose	nature
partakes	of	both	lines	and	surfaces.	Chapter	35	mentions	a	different	band	of
seekers	of	the	“in-between,”	found	among	students	of	galactic	clustering	who
have	to	describe	the	texture	of	certain	shapes	that	“look	streamlike”	even	though
they	are	clearly	composed	of	isolated	points.	Would	it	be	artificial	to	proclaim	to
these	sober	seekers,	unaware	of	being	concerned	with	ancient	scribblings	and	old
Greek	nightmares,	that	they	follow	the	well-worn	path	toward	chimeras?
Yet	another	clue	pointing	to	common	roots	between	the	Cantorians	and	the

Richardsonians	is	found	in	the	study	of	stellar	and	galactic	clustering.	Here	is	a
sensitive	topic	for	those	who	search	for	conceptual	roots,	because	professional
astronomers	are	loath	to	acknowledge	any	influence	from	the	stargazing	riffraff,
“however	attractive	their	conceptions	may	be	in	their	grandeur”	(to	quote	Simon
Newcomb).	This	disinclination	may	explain	why	it	is	customary	to	credit	the
first	fully	described	hierarchical	model	to	Charlier,	an	astronomer,	instead	of
Fournier	d’Albe	(discussed	in	Chapter	40)	or	Immanuel	Kant.
Kant’s	comments	on	the	lack	of	homogeneity	in	the	distribution	of	matter	are

eloquent	and	clear-cut.	Witness	these	highlights	(which	should	encourage	one	to
savor	Kant	1755-1969	or	Munitz	1957):	“That	part	of	my	theory	which	gives	it
its	greatest	charm	...	consists	of	the	following	ideas	...	It	is	...	natural	...	to	regard
[the	nebulous]	stars	as	being	...	systems	of	many	stars...	[They]	are	just	universes
and,	so	to	speak,	Milky	Ways...	It	might	further	be	conjectured	that	these	higher
universes	are	not	without	relation	to	one	another,	and	that	by	this	mutual
relationship	they	constitute	again	a	still	more	immense	system	...	which	perhaps,
like	the	former,	is	yet	again	but	one	member	in	a	new	combination	of	numbers!
We	see	the	first	members	of	a	progressive	relationship	of	worlds	and	systems;
and	the	first	part	of	this	infinite	progression	enables	us	already	to	recognize	what
must	be	conjectured	of	the	whole.	There	is	no	end	but	an	abyss	...	without
bound.”
Kant	brings	us	back	to	Aristotle	and	Leibniz,	and	the	above	case	stories	may

explain	why	Cantor	and	Richardson	so	often	sound	alike,	at	least	to	me.	To
heighten	the	drama,	allow	me	to	paraphrase,	from	Verdi’s	opera	II	Trovatore,
some	of	the	last	words	of	Azucena	to	Luna	Egl’era	tuo	fratello.
These	great	traditions’	leaders	grew	scorning	and	fighting	each	other,	but	in



their	intellectual	roots	they	were	brothers.
Of	course,	history	cannot	explain	the	mystery	of	the	unreasonable

effectiveness	of	mathematics,	Chapter	1.	The	mystery	merely	moves	on	and
changes	character.	How	can	it	be	that	the	mixture	of	information,	observation,
and	search	for	introspectively	satisfying	structures	that	characterize	our	ancient
scribblers	should	repeatedly	yield	themes	so	potent	that,	long	after	many	details
have	been	found	to	contradict	better	observation	and	the	themes	themselves	have
seemingly	faded	away,	they	continue	to	inspire	effective	developments	in	both
physics	and	mathematics?



BROWNIAN	MOTION	AND	EINSTEIN

Natural	Brownian	motion	is	“the	chief	of	those	fundamental	phenomena	which
the	biologists	have	contributed	or	helped	to	contribute	to	the	science	of	physics”
(Thompson	1917).	A	biologist	discovered	this	phenomenon	(well	before	1800),
and	another	biologist,	Robert	Brown,	found	in	1828	that	this	phenomenon	is	not
biological	but	physical	in	nature.	This	second	step	was	vital,	hence	the	adjective
Brownian	is	not	as	undeserved	as	some	critics	make	it	appear.
Brown	had	other	claims	to	fame,	and	Brownian	motion	is	not	mentioned	in	his

biography	in	the	Encyclopaedia	Britannicas	ninth	edition,	1878.	In	the	eleventh
to	thirteenth	editions,	1910	to	1926,	it	receives	a	few	words	in	passing.	It	is	of
course	treated	fully	in	the	editions	published	since	Perrin’s	1926	Nobel	Prize.
The	slow	acceptance	of	the	physical	nature	of	Brownian	motion	is	recounted	in
Brush	1968	and	Nye	1972.	Outlines	are	given	in	recent	Britannica’s,	Perrin	1909
and	1913,	Thompson	1917,	and	Nelson	1967.
The	developments	started	by	Brown	culminated	in	1905-1909	with	theories

mostly	due	to	Einstein,	and	with	experiments	mostly	due	to	Perrin.	One	could
think	that	Einstein	set	out	to	explain	old	nineteenth	century	observations,	but	in
fact	he	did	not.
Einstein	1905	(reprinted	in	Einstein	1926)	begins	with	the	words:	“In	this

paper,	it	will	be	shown	that	according	to	the	molecular-kinetic	theory	of	heat,
bodies	of	microscopically	visible	size	suspended	in	a	liquid	will	perform
movements	of	such	magnitude	that	they	can	be	easily	observed	in	a	microscope,
on	account	of	the	molecular	motions	of	heat.	It	is	possible	that	the	movements	to
be	discussed	here	are	identical	with	the	so-called	‘	Brownian	molecular	motion’;
however,	the	information	available	to	me	regarding	the	latter	is	so	lacking	in
precision,	that	I	can	form	no	judgment	in	the	matter.”
Then	we	read	in	Einstein	1906	(reprinted	in	Einstein	1926):	“Soon	after	the

appearance	of	[Einstein	1905,	I	was]	informed	[that]	physicists—in	the	first
instance,	Gouÿ	(of	Lyons)—had	been	convinced	by	direct	observation	that	the
so-called	Brownian	motion	is	caused	by	the	irregular	thermal	movements	of	the
molecules	of	the	liquid.	Not	only	the	qualitative	properties	of	the	Brownian
motion	but	also	the	order	of	magnitude	of	the	paths	described	by	the	particles



correspond	completely	with	the	results	of	the	theory.	I	will	not	attempt	here	a
comparison	[with]	the	slender	experimental	material	at	my	disposal.”
Much	later,	in	a	January	6,	1948,	letter	to	Michele	Besso,	Einstein	reminisces

that	he	had	“deduced	[Brownian	motion]	from	mechanics,	without	knowing	that
anyone	had	already	observed	anything	of	the	kind.”



“CANTOR”	DUSTS	AND	HENRY	SMITH

A	wit	observed	that	crediting	Brownian	motion	to	Roger	Brown	violated	a	basic
law	of	eponymy,	because	fame	is	incompatible	with	a	plain	name	like	Brown.
This	may	be	why	I	had	been	writing	on	Cantor	dusts	for	twenty	years	before
chancing	on	the	fact	that	they	should	be	credited	to	a	Henry	Smith.
H.	J.	S.	Smith	(1826-1883)	was	long	the	Savilian	professor	of	geometry	at

Oxford,	and	his	Scientific	Papers	were	published	and	reprinted,	Smith	1894.	In	a
bizarre	episode	managed	by	Hermite,	he	starred	posthumously	by	sharing	a	prize
with	Hermann	Minkowski.	He	also	became	an	early	critic	of	Riemann’s	theory
of	integration.	A	(different)	wit	observed	that,	while	the	integration	theories	of
Archimedes,	Cauchy	and	Lebesgue	are	God-given,	Riemann’s	theory	is
unmistakably	an	awkward	human	invention.	Indeed,	Smith	1875	(Chapter	XXV
of	Smith	1894)	showed	it	fails	to	apply	to	functions	whose	discontinuities	fall	on
certain	sets.	Which	counterexamples	did	he	invoke?	He	invoked	the	Cantor	dust
used	in	Chapter	8,	and	the	dust	of	positive	measure	used	in	Chapter	15.
Vito	Volterra	(1860-1940)	reconstituted	Smith’s	second	counterexample	in

1881.
Of	course,	Smith	and	Volterra	did	not	do	much	with	their	examples,	but

neither	did	Cantor!	All	this	being	described	in	Hawkins	1970,	why	is	Smith
never	(to	my	knowledge)	mentioned	as	claimant	for	the	honor	of	inventing	the
“Cantor”	dusts?



DIMENSION

EUCLID.	(circa	300	B.C.)	Dimension	underlies	the	definitions	that	begin
Euclid’s	Book	I	on	plane	geometry:

1.A	point	is	that	which	has	no	part.
2.A	line	is	breadthless	length.
3.The	extremities	of	a	line	are	points...
5.A	surface	is	that	which	has	length	and	breadth	only.
6.The	extremities	of	a	surface	are	lines.

The	theme	is	developed	in	the	definitions	that	begin	his	short	Book	XI	on	spatial
geometry:

1.	A	solid	is	that	which	has	length,	breadth,	and	depth.
2.	An	extremity	of	a	solid	is	a	surface.

(Heath	1908	comments	on	this	topic.)
These	ideas’	roots	are	murky	indeed.	Guthrie	(1971-I)	sees	traces	of	the	notion

of	dimension	in	Pythagoras	(582-507	B.C.),	but	van	der	Waerden	thinks	that
these	traces	must	be	discounted.	On	the	other	hand,	Plato	(427-347	B.C.)
comments	to	Socrates,	in	Book	VII	of	The	Republic,	that	“after	plane	surfaces...
the	right	way	is	next	in	order	after	the	second	dimension	to	take	the	third...,	the
dimension	of	cubes	and	of	everything	that	has	depth.”	It	would	be	good	to	know
more	about	other	studies	of	dimension	before	Euclid.
RIEMANN.	The	lack	of	any	study	of	the	concept	of	dimension	was	noted	by

Riemann	in	his	1854	dissertation,	“On	the	Hypotheses	which	Form	the
Foundations	of	Geometry.”
CHARLES	HERMITE.	Hermite’s	reputation	of	being	a	mathematical	arch-

conservative	(as	documented	by	his	letter	to	Stieltjes	quoted	in	Chapter	6)	is
confirmed	by	his	letters	to	Mittag-Leffler	(Dugac	1976c).
April	13,	1883:	“To	read	Cantor’s	writings	seems	a	veritable	torture	...	and	no

one	among	us	is	tempted	to	follow....	The	mapping	between	a	line	and	a	surface
leaves	us	absolutely	indifferent	and	we	think	that	this	observation,	as	long	as	one
will	not	have	deduced	something	from	it,	results	from	considerations	of	such
arbitrariness	that	the	author	would	have	been	better	inspired	to	wait	...	[But



Cantor	may]	find	readers	who	will	study	him	with	interest	and	a	pleasure,	which
we	do	not.”
May	5,	1883:	“The	translation	[of	a	paper	by	Cantor]	was	edited	with	utmost

care	by	Poincaré...[His]	view	is	that	almost	all	French	readers	will	be	alien	to
investigations	which	are	at	the	same	time	philosophical	and	mathematical,	and	in
which	there	is	too	much	arbitrariness,	and	I	think	this	view	is	correct.”
POINCARÉ,	An	eloquent	and	ultimately	very	fruitful	elaboration	of	Euclid’s

views	was	given	by	Poincaré	in	1903	(Poincaré	1905,	Chapter	III,	Section	3)	and
1912	(Poincaré	1913,	Part	9).	Here	is	a	free	translation:
“When	we	say	that	space	has	the	dimension	three,	what	do	we	mean?	If	to

divide	a	continuum	C	it	suffices	to	consider	as	cuts	a	certain	number	of
distinguishable	elements,	we	say	that	this	continuum	is	of	dimension	one....	If,
on	the	contrary,...	to	divide	a	continuum	it	suffices	to	use	cuts	which	form	one	or
several	continua	of	dimension	one,	we	say	that	C	is	a	continuum	of	dimension
two.	If	cuts	which	form	one	or	several	continua	of	at	most	dimension	two
suffice,	we	say	that	C	is	a	continuum	of	dimension	three;	and	so	on.
“To	justify	this	definition	it	is	necessary	to	check	how	geometers	introduce	the

notion	of	dimension	at	the	beginning	of	their	works.	Now,	what	do	we	see?
Usually	they	begin	by	defining	surfaces	as	the	boundaries	of	solids	or	pieces	of
space,	curves	as	the	boundaries	of	surfaces,	points	as	the	boundaries	of	curves,
and	they	state	that	the	same	procedure	cannot	be	carried	further.
“This	is	just	the	idea	given	above:	to	divide	space,	cuts	that	are	called	surfaces

are	necessary;	to	divide	surfaces,	cuts	that	are	called	curves	are	necessary;	and	a
point	cannot	be	divided,	not	being	a	continuum.	Since	curves	can	be	divided	by
cuts	which	are	not	continua,	they	are	continua	of	dimension	one;	since	surfaces
can	be	divided	by	continuous	cuts	of	dimension	one,	they	are	continua	of
dimension	two;	and	finally	space	can	be	divided	by	continuous	cuts	of	two
dimensions,	it	is	a	continuum	of	dimension	three.”

	The	preceding	words	are	inapplicable	to	fractal	dimension.	For	the	interiors
of	the	various	islands	in	this	Essay,	D	and	DT	coincide	and	both	equal	two,	but
the	coastlines	are	an	entirely	different	matter:	they	are	topologically	of
dimension	1,	but	fractally	of	dimension	above	1.
BROUWER	TO	MENGER.	Now	to	a	free	quote	from	Hurewicz	&	Wallman

1941:	“In	1913	Brouwer	constructed	on	Poincaré’s	intuitive	foundation	a	precise
and	topologically	invariant	definition	of	dimension,	which	for	a	very	wide	class
of	spaces	is	equivalent	to	the	one	we	use	today.	Brouwer’s	paper	remained
unnoticed	for	several	years.	Then	in	1922,	independently	of	Brouwer	and	of	each



other,	Menger	and	Urysohn	recreated	Brouwer’s	concept,	with	important
improvements.
“Before	then	mathematicians	used	the	term	dimension	in	a	vague	sense.	A

configuration	was	called	E-dimensional	if	the	least	number	of	real	parameters
needed	to	describe	its	points,	in	some	unspecified	way,	was	E.	The	dangers	and
inconsistencies	in	this	approach	were	brought	into	clear	view	by	two	celebrated
discoveries	in	the	last	part	of	the	19th	century:	Cantor’s	one-to-one
correspondence	between	the	points	of	a	line	and	the	points	of	a	plane,	and
Peano’s	continuous	mapping	of	an	interval	on	the	whole	of	a	square.	The	first
exploded	the	feeling	that	a	plane	is	richer	in	points	than	a	line,	and	showed	that
dimension	can	be	changed	by	a	one-to-one	transformation.	The	second
contradicted	the	belief	that	dimension	can	be	defined	as	the	least	number	of
continuous	real	parameters	required	to	describe	a	space,	and	showed	that
dimension	can	be	raised	by	a	one-valued	continuous	transformation.
“An	extremely	important	question	was	left	open:	Is	it	possible	to	establish	a

correspondence	between	Euclidean	space	of	dimensions	E	and	Eo	combining	the
features	of	both	Cantor’s	and	Peano’s	constructions,	that	is,	a	correspondence
which	is	both	one-to-one	and	continuous?	The	question	is	crucial	since	the
existence	of	a	transformation	of	the	stated	type	between	Euclidean	E-space	and
Euclidean	E0-space	would	signify	that	dimension	(in	the	natural	sense	that
Euclidean	E-space	has	dimension	E)	has	no	topological	meaning	whatsoever!
The	class	of	topological	transformations	would	in	consequence	be	much	too
wide	to	be	of	any	real	geometric	use.
“The	first	proof	that	Euclidean	E-space	and	Euclidean	E0-space	are	not

homeomorphic	unless	E	equals	E0	was	given	by	Brouwer	in	1911	[Brouwer
1975-2,	pp.	430-434;	the	special	case	E≤3	and	E0>E	had	previously	been	settled
in	1906	by	J.	Luroth.]	However,	this	proof	did	not	explicitly	reveal	any	simple
topological	property	of	Euclidean	E-space	distinguishing	it	from	Euclidean	E0-
space	and	responsible	for	the	nonexistence	of	a	homeomorphism	between	the
two.	More	penetrating,	therefore,	was	Brouwer’s	procedure	in	1913	when	he
introduced	an	integer-valued	function	of	a	space	which	was	topologically
invariant	by	its	very	definition.	In	Euclidean	space,	it	is	precisely	E	(and
therefore	deserves	its	name).
“Meanwhile	Lebesgue	had	approached	in	another	way	the	proof	that	the

dimension	of	a	Euclidean	space	is	topologically	invariant.	He	had	observed	in
1911	[Lebesgue	1972-,	4,	169-210]	that	a	square	can	be	covered	by	arbitrarily



small	‘bricks’	in	such	a	way	that	no	point	of	the	square	is	contained	in	more	than
three	of	these	bricks;	but	that	if	the	bricks	are	sufficiently	small	at	least	three
have	a	point	in	common.	In	a	similar	way	a	cube	in	Euclidean	E-space	can	be
decomposed	into	arbitrarily	small	bricks	so	that	not	more	than	E+1	of	these
bricks	meet.	Lebesgue	conjectured	that	this	number	E+1	could	not	be	reduced
further;	that	is,	for	any	decomposition	in	sufficiently	small	bricks	there	must	be	a
point	common	to	at	least	E+1	of	the	bricks.	[The	proof	was	given	by	Brouwer	in
1913.]	Lebesgue’s	theorem	also	displays	a	topological	property	of	Euclidean	E-
space	distinguishing	it	from	Euclidean	E0-space	and	therefore	it	also	implies	the
topological	invariance	of	the	dimension	of	Euclidean	spaces.”
Concerning	the	relative	contributions	of	Poincaré,	Brouwer,	Lebesgue,

Urysohn,	and	Menger,	see	the	notes	by	H.	Freudenthal	in	Brouwer	1975-,	2,
Chapter	6,	and	a	response	in	Menger	1979,	Chapter	21.
FRACTIONAL	DIMENSION	AND	DELBOEUF.	The	story	of	fractal

dimension	is	much	simpler:	it	emerges	near	fully	armed	from	the	work	of
Hausdorff.	But	a	bit	of	mystery	is	present	anyhow.	Indeed,	Russell	1897,	p.	162
ignores	the	raging	controversies	aroused	by	Cantor	and	Peano,	but	includes	the
following	footnote:	“Delboeuf,	it	is	true,	speaks	of	Geometries	with	m/n
dimensions,	but	gives	no	reference	(Rev.	Phil.	T.	xxxxvi,	p.	450).”	Delboeuf
turns	out	to	deserve	attention	(see	the	entry	on	SCALING	IN	LEIBNIZ	AND
LAPLACE);	but	my	search	(done	with	the	assistance	of	F.	Verbruggen)	through
his	works	uncovers	no	further	lead	about	fractional	dimension.
BOULIGAND.	The	Cantor-Minkowski-Bouligand	definition	of	dimension

(Chapters	5	and	39)	is	much	less	satisfactory	than	the	Hausdorff	Besicovitch
definition,	but	I	would	like	to	include	here	a	word	in	praise	of	Georges
Bouligand	(1889-1979).	His	many	books	are	not	read	much	today,	even	in	Paris,
but	they	were	prominent	when	I	was	a	student	and	was	examined	by	him.
Skimming	through	his	works,	I	am	reminded	that	they	initiated	me	to	“modern”
mathematics.	I	wonder	whether	other	presentations,	less	soft	and	humane	though
perhaps	pedagogically	more	durable,	would	have	provided	equal	intuitive
understanding,	to	be	filed	away	for	use	when	the	need	arose.	I	think	not.	Had
Bouligand	lived	to	witness	the	present	conquests	of	the	geometry	he	loved	so
gently,	I	hope	that	he	would	view	them	as	personally	fulfilling.



NATURA	NON	FACIT	SALTUS	AND	“THE	TRUE
STORY	OF	THEUTOBOCUS”

Natura	non	facit	saltus	is	the	best	known	statement	of	the	“principle	of
continuity,”	which	is	discussed	in	this	chapter’s	first	entry,	and	was	viewed	by
Leibniz	as	being	“one	of	[his]	best	and	best	verified.”	And	it	is	the	tenuous
distant	precursor	of	the	“in-between”	geometric	shapes:	fractals.	However,
Bartlett	1968	credits	this	statement	to	Linné.	Surprised	by	a	credit	that	seemed
unfair,	I	investigated	and	unearthed	a	few	facts	and	a	story.
True,	the	celebrated	eighteenth	century	botanist	and	taxonomist	Linné	did

write	this	phrase,	but	only	in	passing,	not	as	a	weighty	new	pronouncement	but
as	conventional	wisdom.	He	was	translating	La	nature	ne	fait	jamais	de	sauts,
due	to	Leibniz.	The	latter	also	penned	innumerable	variants,	including:	Nulla
mutatio	fiat	per	saltum,	Nullam	transitionem	fieri	per	saltum,	Tout	va	par	degrés
dans	la	nature	et	rien	par	saut.	But	Linné’s	exact	Latin	words	may	not	be	in
Leibniz.
Secondly,	funny	and	intriguing,	Linné’s	exact	Latin	had	been	anticipated	well

before	Leibniz,	in	1613,	in	the	phrase,	Natura	in	suis	operationibus	non	facit
saltum.	(The	singular	saltum	instead	of	the	plural	saltus	is	preferred	by	the	surly
minority	for	whom	zero	is	singular.)	Who	wrote	this	phrase?	Stevenson	1956,	p.
1382,	No.	18,	credits	Jacques	Tissot.	Who	was	Tissot?	The	fact	that	no	one
seemed	to	know	gave	me	an	excuse	to	crash	the	Bibliothèque	Nationale	in	Paris.
The	phrase	is	found	in	a	fifteen	page	pamphlet	with	a	very	long	title	that

begins	thus:	True	Story	of	the	Life,	Death,	and	Bones	of	the	Giant	Theutobocus,
King...,	who	was	Defeated	in	105	(B.C.)	by	Marius	the	Roman	Consul	and
Buried	...	near	Romans.	The	account	follows,	in	French	intermixed	with	Latin,
of	the	discovery	near	Grenoble	of	bones	of	gigantic	size,	and	of	reasons	for
attributing	them	to	said	King	Theutobocus,	a	human.
There	is	a	reprint	of	the	True	Story	in	Variétés	historiques	et	littéraires,	recueil

de	pièces	volantes	rares	et	curieuses,	annotées	par	M.	Edouard	Fournier,	Tome
IX,	1859,	pp.	241-257.	My	curiosity	was	rewarded.	In	an	extremely	long
footnote,	Fournier	describes	the	following	durable	imposture.	On	January	11,
1613,	workers	digging	under	17	or	18	feet	of	sand	unearth	a	number	of	very



large	bones,	and	rumors	circulate	that	the	pit	was	the	tomb	of	a	giant,	and	was
marked	by	a	medal	of	Marius	and	a	stone	bearing	the	name	of	Theutobocus.	The
bones	are	“authenticated”	by	two	local	worthies,	featured	in	newspapers,	and
shown	to	King	Louis	XIII.	Controversy	ensues	concerning	their	origin,	then
peters	out,	to	resume	only	at	a	time	when	other	old	bones	were	being	credited	to
vanished	species.	Paleontologists	enter	the	discussion,	and	identify	“King
Theutobocus”	as	a	mastodon.
The	footnote	also	says	that	no	Jacques	Tissot	was	in	fact	involved,	the	“True

Story”	having	been	published	under	a	pseudonym	by	the	two	worthies
mentioned	above	...	as	the	prospectus	for	a	proposed	circus	attraction.
But	the	Natura	non...	remains	mysterious.	Its	being	first	uttered	by	small-town

charlatans	pretending	to	quote	Aristotle	would	be	anticlimactic.	More	likely,
they	were	merely	repeating	a	standard	phrase	of	their	time,	and	the	question	of
origins	is	not	yet	closed.



POINCARÉ	AND	FRACTAL	ATTRACTORS

Contrary	to	the	other	entries	in	this	chapter,	the	present	one	is	devoted	to
findings	that	were	not	merely	amusing	but	had	an	immediate	and	durable	effect
upon	my	work.	Certain	texts	by	Henri	Poincaré	(1854-1912)	came	to	my
attention	when	the	1977	Fractals	was	in	proof,	and	led	to	new	lines	of	research
sketched	in	Chapters	18	to	20,	and	scheduled	to	be	fully	presented	elsewhere.
Let	me	answer	some	questions	inevitably	raised	by	these	and	related	works	of
Poincaré.
Yes	and	No:	He	definitely	was	the	first	student	of	fractal	(“strange”)	attractors.

But	nothing	I	know	of	his	work	makes	him	even	a	distant	precursor	of	the	fractal
geometry	of	the	visible	facets	of	Nature.
Yes:	The	fact	had	been	forgotten,	but	within	a	year	of	Cantor	1883	sets	close

to	the	triadic	dust	and	the	Weierstrass	function	arose	in	orthodox	mathematics,
well	before	the	creation	of	the	revolutionary	theories	of	sets	and	of	functions	of	a
real	variable.
No:	Those	applications	did	not	go	unnoticed	in	their	time.	The	first	was	in	the

theory	of	automorphic	functions	(Chapter	18),	which	made	Poincaré	and	Felix
Klein	famous.	Those	applications	were	pursued	by	Paul	Painlevé	(1863-1933),	a
scholar	influential	well	beyond	the	realm	of	pure	mathematics.	He	was
fascinated	with	engineering	(he	was	Wilbur	Wright’s	first	passenger	after	Orville
Wright’s	accident)	and	eventually	entered	politics,	rising	to	the	post	of	Prime
Minister	of	France.	Incidentally,	finding	that	Perrin	had	been	a	close	friend	of
Painlevé,	the	“daydream”	described	in	Chapter	2	seems	less	isolated.
Yes:	Cantor	and	Poincaré	ended	on	opposite	sides	of	various	intellectual

battles,	with	Cantor,	as	Peano,	the	victim	of	Poincaré’s	sarcasm,	such	as	the
famous	comment	that	“Cantorism	[promises]	the	joy	of	a	doctor	called	to	follow
a	fine	pathological	case.”	See	also	the	subentry	HERMITE.	It	is	useful	therefore
to	know	that,	when	need	arose,	Poincaré	recognized	that	the	classic	monsters
could	enter,	not	into	descriptions	of	visible	Nature,	but	into	abstract
mathematical	physics.	I	translate	freely	from	New	Methods	in	Celestial
Mechanics,	Poincaré	1892-III,	pp.	389-390.
“Let	us	try	to	visualize	the	pattern	formed	by	the	two	curves	[C’	and	C”]



which	correspond	to	a	doubly	asymptotic	solution	[to	the	three-body	problem].
Their	intersection	points	form	a	sort	of	infinitely	tight	...	grid.	Each	curve	never
intersects	itself,	but	must	fold	upon	itself	in	very	complex	fashion	so	as	to
intersect	infinitely	often	each	apex	of	the	grid.
“One	must	be	struck	by	the	complexity	of	this	shape,	which	I	do	not	even

attempt	to	illustrate.	Nothing	can	give	us	a	better	idea	of	the	complication	of	the
three-body	problem,	and	in	general	of	all	problems	of	dynamics	for	which	there
is	no	uniform	integral...
“Diverse	hypotheses	come	to	mind:
“1)	[The	set	S’	(or	S”)	defined	as	C’	(or	C”)	plus	the	limit	points	of	this	curve]

fills	a	half-plane.	If	so,	the	solar	system	is	unstable.
“2)	[S’	or	S”]	is	of	[positive	and]	finite	area,	and	occupies	a	bounded	region	of

the	plane,	with	possible	‘gaps’...
“3)	Finally,	[S’	or	S”]	is	of	vanishing	area.	It	is	the	analog	of	a	[Cantor	dust].”
To	bolster	the	impression	left	by	these	undeservedly	neglected	comments,	here

are	free	translations	of	excerpts	from	Hadamard	1912,	Painlevé	1895,	and
Denjoy	1964,	1975.
First	Hadamard:	“Poincaré	was	a	precursor	of	set	theory,	in	the	sense	that	he

applied	it	even	before	it	was	born,	in	one	of	his	most	striking	and	most	justly
celebrated	investigations.	Indeed	he	showed	that	the	singularities	of	the
automorphic	functions	form	either	a	whole	circle	or	a	Cantor	dust.	This	last
category	was	of	a	kind	which	his	predecessors’	imagination	could	not	even
conceive.	The	set	in	question	is	one	of	the	most	important	achievements	of	set
theory,	but	Bendixson	and	Cantor	himself	did	not	discover	it	until	later.
“Examples	of	curves	without	tangent	are	indeed	classical	since	Riemann	and

Weierstrass.	Anyone	can	grasp,	however,	that	deep	differences	exist	between,	on
the	one	hand,	a	fact	established	under	circumstances	arranged	for	the	enjoyment
of	the	mind,	with	no	other	aim	and	no	interest	other	than	to	show	its	possibility,
an	exhibit	in	a	gallery	of	monsters,	and	on	the	other	hand,	the	same	fact	as
encountered	in	a	theory	that	is	rooted	in	the	most	usual	and	the	most	essential
problems	of	analysis.”
Now	to	Painlevé:	“I	must	insist	on	the	relations	that	exist	between	function

theory	and	Cantor	dusts.	The	latter	kind	of	research	was	so	new	in	spirit	that	a
mathematical	periodical	had	to	be	bold	to	publish	it.	Many	readers	viewed	it	as
philosophical	rather	than	scientific.	However,	the	progress	of	mathematics	soon
invalidated	this	judgment.	In	the	year	1883	(which	will	remain	doubly
memorable	in	the	history	of	mathematics	in	this	century),	Acta	Mathematica



alternated	between	Poincaré’s	papers	on	Fuchsian	and	Kleinian	functions	and
Cantor’s	papers.”
Cantor’s	papers,	found	on	pp.	305-414	of	Vol.	2	of	the	Acta	(the	Cantor	set	on

p.	407),	were	French	translations	that	Mittag-Leffler,	the	editor	of	Acta,
sponsored	to	help	Cantor	fight	for	recognition.	Some	(see	the	subentry
HERMITE	on	p.	410)	were	edited	by	Poincaré.	However,	Poincaré’s	results	had
already	been	sketched	in	Comptes	Rendus	before	Cantor’s	work	appeared	in
German.	Poincaré	adopted	one	of	Cantor’s	innovations	so	promptly	that	in	his
first	Acta	paper	he	denoted	sets	by	the	German	Mengen,	without	taking	time	to
seek	a	French	equivalent.
Next	to	Denjoy	1964:	“Some	scientists	view	certain	truths	as	being	in	good

taste,	well-educated,	and	properly	brought	up,	while	to	others	the	gentleman’s
door	must	forever	remain	closed.	I	think	mostly	of	set	theory,	which	is	a	whole
new	universe,	incomparably	vaster	and	less	artificial,	simpler	and	more	logical,
apter	to	model	the	physical	universe;	in	a	word,	truer	than	the	old	universe.	The
Cantor	dust	shares	many	properties	of	continuous	matter,	and	seems	to
correspond	to	a	very	deep	reality.”
In	Denjoy	1975,	p.	23,	we	read	the	following:	“I	think	it	obvious	that

discontinuous	models	account	in	a	much	more	satisfactory	manner	and	more
successfully	than	the	present	ones	for	a	host	of	natural	phenomena.	Therefore,
the	laws	of	the	discontinuous	being	much	less	well	elucidated	than	those	of	the
continuous,	they	should	be	investigated	broadly	and	in	depth.	Insuring	that	the
degrees	of	knowledge	of	the	two	orders	are	comparable	will	enable	the	physicist
to	use	one	or	the	other	approach	according	to	need.”
Unfortunately,	Denjoy	could	not	buttress	this	“daydream”	by	any	specific

development	beyond	the	broad	hints	by	Poincaré	and	Painlevé.	An	exception
involves	Denjoy’s	1932	paper	on	differential	equations	on	the	torus.	Answering
a	question	raised	by	Poincaré,	he	shows	that	the	intersection	between	a	solution
and	a	meridian	could	be	the	whole	meridian	or	any	prescribed	Cantor	dust.	The
former	behavior,	but	not	the	latter,	agrees	with	the	physicist’s	notion	of	ergodic
behavior.	An	analogous	example	had	been	given	by	Bohl	in	1916.
Jacques	Hadamard	(1865-1963)	was	a	famous	mathematician	and

mathematical	physicist,	and	Arnaud	Denjoy	(1884-1974)	a	prominent	very	pure
mathematician,	but	one	to	whom	no	physicist	would	think	of	listening.	In	any
event,	their	remarks	found	no	echo	in	their	time.	Both	occur	in	eulogies	for
Poincaré	and	Painlevé,	and	revive	ideas	the	originators	had	never	refreshed	by
repetition.



POINCARÉ	AND	THE	GIBBS	DISTRIBUTION

The	current	Poincaré	revival	may	serve	as	an	excuse	for	referring	here	to	a
technical	tidbit	unrelated	to	the	rest	of	this	Essay.
It	concerns	what	is	known	to	physicists	as	the	Gibbs	canonical	distribution

and	to	statisticians	as	distribution	of	exponential	type.	Poincaré	1890	seeks	the
probability	distributions	such	that	the	maximum	likelihood	estimate	of	a
parameter	p,	based	on	the	M	sample	values	x1,...,	xm,...,	xM,	is	of	the	form	G[
=1F(xm)/M].	In	other	words,	they	are	such	that	the	scale	of	x	and	p	can	be
changed	by	the	functions	F(x)	and	G-1(p),	so	that	the	maximum	likelihood
estimate	of	p	is	the	sample	average	of	the	x.	This	is	of	course	the	case	if	p	is	the
expectation	of	a	Gaussian	variable,	but	Poincaré	gives	a	more	general	solution,
now	called	Gibbs	distribution.
This	fact	was	rediscovered	independently	by	Szilard	in	1925.	Then,	around

1935,	Koopman,	Pitman,	and	Darmois	asked	the	same	question	concerning	the
most	general	estimation	procedure,	without	being	restricted	to	maximum
likelihood.	This	property	of	the	Gibbs	distribution,	called	sufficiency	by
statisticians,	plays	a	central	role	in	the	Szilard-Mandelbrot	axiomatic
presentation	of	statistical	thermodynamics,	Mandelbrot	1962t,	1964t.	In	this
approach,	the	arbitrariness	that	is	intrinsic	to	statistical	inference	is	present	in	the
definition	of	a	closed	system’s	temperature,	but	is	absent	from	the	derivation	of
the	canonical	distribution.	(A	later	axiomatic	presentation	based	on	the
“maximum	information	precept”	grounds	the	canonical	distribution	itself	in
statistical	inference,	which	I	think	misrepresents	its	significance.)



SCALING:	OLD	EMPIRICAL	EVIDENCE

SCALING	IN	ELASTIC	SILK	THREADS.	The	earliest	empirical	observation
that	can	now	be	reinterpreted	as	evidence	of	scaling	in	a	physical	system	was
made,	extraordinarily	enough,	a	hundred	and	fifty	years	ago.	On	the	urging	of
Carl	Friedrich	Gauss,	Wilhelm	Weber	set	out	to	investigate	the	torsion	of	the	silk
threads	used	to	support	moving	coils	in	electric	and	magnetic	instruments.	He
found	that	applying	a	longitudinal	load	provokes	an	immediate	extension	which
is	followed	by	a	further	lengthening	with	time.	On	removal	of	the	load,	an
immediate	contraction	equal	to	the	initial	immediate	extension	takes	place.	This
is	followed	by	a	gradual	further	decrease	of	length	until	the	original	length	is
reached.	The	aftereffects	of	a	perturbation	follow	a	law	of	the	form	t-γ:	they
decay	hyperbolically	in	time,	not	exponentially	as	everyone	expected	then,	and
expects	to	this	day.
The	next	work	on	this	topic	is	Kohlrausch	1847,	and	the	elastic	torsion	of

glass	fibers	is	further	studied	by	William	Thomson,	later	Lord	Kelvin,	in	1865,
by	James	Clerk	Maxwell	in	1867,	and	by	Ludwig	Boltzmann,	in	a	1874	paper
that	Maxwell	viewed	as	important	enough	to	discuss	in	the	ninth	(1878)	edition
of	Encyclopaedia	Britannica.
These	names	and	dates	should	be	pondered	carefully.	They	prove	that,	in	order

to	make	a	problem	worth	studying,	a	show	of	interest	by	the	likes	of	Gauss,
Kelvin,	Boltzmann,	and	Maxwell	is	not	enough.	A	problem	that	fascinated	but
defeated	them	could	fall	into	extreme	obscurity.
SCALING	IN	ELECTROSTATIC	LEYDEN	JARS.	The	background,	in	the

words	of	E.T.	Whittaker,	is	as	follows:	“In	1745	Pieter	van	Musschenbrock
(1692-1761),	Professor	at	Leyden,	attempted	to	find	a	method	of	preserving
electric	charges	from	the	decay	which	was	observed	when	the	charged	bodies
were	surrounded	by	air.	With	this	purpose	he	tried	the	effect	of	surrounding	a
charged	mass	of	water	by	an	envelope	of	some	nonconductor,	for	example,	glass.
In	one	of	his	experiments,	a	phial	of	water	was	suspended	from	a	gun	barrel	by	a
wire	let	down	a	few	inches	into	the	water	through	the	cork;	and	the	gun	barrel,
suspended	on	silk	lines,	was	applied	so	near	an	excited	glass	globe	that	some
metallic	fringes	inserted	into	the	gun	barrel	touched	the	globe	in	motion.	Under



these	circumstances	a	friend	named	Cunaeus,	who	happened	to	grasp	the	phial
with	one	hand,	and	touch	the	gun	barrel	with	the	other,	received	a	violent	shock;
and	it	became	evident	that	a	method	of	accumulating	or	intensifying	the	electric
power	had	been	discovered.	This	discovery	was	named	Leyden	phial	by	Nollet.”
Kohlrausch	1854	found	for	the	speed	of	discharge	by	the	Leyden	jar	the	same

result	as	in	his	work	on	silk	threads:	the	charge	decays	hyperbolically	in	time.
Dielectrics	other	than	glass	are	investigated	in	detail	in	the	Ph.D.	thesis	of
Jacques	Curie	(Pierre	Curie’s	brother	and	his	first	collaborator),	who	finds	that	in
some	dielectrics	the	decay	is	exponential,	but	in	others	it	is	hyperbolic,	with
varying	values	of	the	exponent	γ.



SCALING:	DURABLE	ANCIENT	PANACEAS

Innumerable	explanations	of	the	scaling	decays	or	noises	are	scattered	over	a
hundred	years	of	the	most	diverse	journals.	All	make	for	sad	reading.	Their	lack
of	success	is	consistent	and	monotonous,	since	dead-ends	recognized	in	the
1800’s	keep	being	explored	again	and	again,	in	different	contexts	and	words.
HOPKINSON’S	MIXTURE	PANACEA.	Faced	with	the	hyperbolic	decay	of

the	charge	of	a	Leyden	jar,	Hopkinson	(a	student	of	Maxwell)	advances	in	1878
the	“rough	explanation	[that]	glass	may	be	regarded	as	a	mixture	of	a	variety	of
different	silicates	that	behave	differently.”	It	would	follow	that	a	decay	function
that	seems	to	be	a	hyperbola,	is	in	fact	a	mixture	of	two	or	more	different
exponentials	of	the	form	exp(-s/τm),	each	of	them	characterized	by	a	different
relaxation	time	τm.	However,	even	the	early	data	suffices	to	show	that	two	to
four	exponentials	do	not	suffice,	and	the	argument	is	abandoned.
But	it	keeps	popping	out	wherever	data	are	not	sufficiently	abundant	to

disprove	it.
DISTRIBUTED	RELAXATION	TIMES	PANACEA.	When	data	cover	many

decades	and	cannot	be	fitted	unless	the	mixture	involves	exponentials	in
ridiculous	number,	say	17	or	23,	one	is	tempted	to	go	all	the	way	to	a	mixture	of
an	infinite	number	of	exponentials.	The	definition	of	Euler’s	gamma	function
yields

t-γ	=	[Γ(γ)]-1 	τ	-(γ+1)exp(-t/τ)dτ.

This	identity	shows	that,	if	the	exponential	relaxation	time	τ	has	the	“intensity”
τ-(γ+1),	the	mixture	is	hyperbolic.	However,	this	argument	is	logically	circular.	A
scientific	explanation’s	output	is	supposed	to	be	less	obvious	a	priori	than	its
input,	but	t-γ	and	τ-(γ+1)	are	functionally	identical.
TRANSIENT	BEHAVIOR	PANACEA.	Upon	hearing	of	the	diverse

symptoms	of	scaling	listed	in	the	preceding	entry,	a	second	near-universal	first
reaction	is	this:	Surely,	these	hyperbolic	functions	t-γ	are	only	transient
complications	that	will	be	cut	off	exponentially	when	decays	are	observed	long
enough.	The	first	systematic	search	for	the	cutoff	is	in	von	Schweidler	1907,
who	measured	Leyden	jars’	decay,	first	at	intervals	of	100	seconds,	then	less



frequently,	for	a	total	time	of	16	million	seconds	(200	days,	through	summer	and
winter!).	The	hyperbolic	decay	continues	on	the	dot.	More	recent	experiments	on
electric	1	/f	noises	had	started	by	lasting	a	few	hours,	then	a	night,	then	a
weekend,	then	a	short	vacation.	In	surprisingly	many	cases,	the	1/f	behavior
continues	on	the	dot.
Earlier	chapters,	for	instance	the	study	of	galaxy	clusters	in	Chapter	9,	note

that	scientists	can	become	so	engrossed	in	the	search	for	a	cutoff	as	to	neglect
the	need	for	describing	and	explaining	the	phenomena	characteristic	of	the
scaling	range.	Oddly,	an	overinvolvement	with	the	cutoff	can	be	even	stronger
among	engineers.	To	take	an	example,	discussed	in	Chapter	27,	many
hydrologists	hesitate	to	use	my	model	because	it	involves	an	infinite	cutoff	to
scaling.	In	an	engineering	project,	the	finiteness	of	the	cutoff	is	immaterial,
nevertheless	a	finite	cutoff	is	fervently	desired	by	presumably	practical	people.



SCALING	IN	LEIBNIZ	AND	LAPLACE

To	sample	Leibniz’s	scientific	works	is	a	sobering	experience.	Next	to	the
calculus,	and	to	other	thoughts	that	have	been	carried	out	to	completion,	the
number	and	variety	of	premonitory	thrusts	is	overwhelming.	We	saw	examples
in	“packing,”	Chapter	17,	and	in	this	chapter’s	first	entry.	In	addition,	Leibniz
started	formal	logic,	and	was	the	first	(in	a	1679	letter	to	Huygens)	to	suggest
that	geometry	should	include	the	branch	that	came	to	be	called	topology.	(On	a
less	exalted	level,	he	pioneered	Hebrew	letters	in	mathematical	notation...,	in
addition	to	Zodiac	symbols!)
My	Leibniz	mania	is	further	reinforced	by	finding	that	for	one	moment	its

hero	attached	importance	to	geometric	scaling.	In	“Euclidis	πρωτα”	(Leibniz
1849—II.1,	pp.	183-211),	which	is	an	attempt	to	tighten	Euclid’s	axioms,	he
states,	on	p.	185,	“IV(2):	I	have	diverse	definitions	for	the	straight	line.	The
straight	line	is	a	curve,	any	part	of	which	is	similar	to	the	whole,	and	it	alone	has
this	property,	not	only	among	curves	but	among	sets.”	This	claim	can	be	proved
today.	Later	Leibniz	describes	the	more	restricted	self-similarity	properties	of	the
plane.
The	same	thought	occurred	independently	in	1860	to	Joseph	Delboeuf	(1831-

1896),	a	Belgian	writer	whose	views	Russell	1897	criticizes	kindly.	He	turns	out
to	have	been	a	truly	unusual	scientific	personality,	moving	his	amateurish
enthusiasm	from	classics	to	the	philosophy	of	geometry.	However,	his
“similitude	principle”	adds	little	mathematically	to	the	above	Leibniz	quote
(which	he	did	not	know	when	he	did	his	work,	and	to	which	he	refers—and
steered	me—with	a	nice	mixture	of	generosity	and	pride).	Delboeuf	also	stars
(dimly)	on	p.	412.
A	different	encounter	with	scaling	may	be	read	(by	those	ready	to	be	generous

toward	the	very	rich)	into	Maxims	64	and	69	of	Leibniz’s	Monadology,	where	it
is	stated	that	minute	portions	of	the	world	are	precisely	as	complex	and
organized	as	large	portions.
A	thought	related	to	scaling	also	occurred	to	Laplace.	In	the	fifth	edition	of	his

System	of	the	World,	published	in	1842	and	translated	into	English	(but	not	in	the
fourth	edition	of	1813),	one	finds	in	Chapter	V	of	Book	V	the	following	remark



(Laplace	1879,	Vol.	VI).	“One	of	[the]	remarkable	properties	[of	Newtonian
attraction]	is,	that	if	the	dimensions	of	all	the	bodies	in	the	universe,	their	mutual
distances	and	their	velocities	were	to	increase	or	diminish	proportionately,	they
would	describe	curves	entirely	similar	to	those	which	they	at	present	describe;	so
that	the	universe	reduced	to	the	smallest	imaginable	space	would	always	present
the	same	appearance	to	observers.	The	laws	of	nature	therefore	only	permit	us	to
observe	relative	dimensions...	[The	text	continues	in	footnote]	Geometers’
attempts	to	prove	Euclid’s	axiom	about	parallel	lines	have	been	hitherto
unsuccessful....	The	notion	of	...	a	circle	does	not	involve	anything	which
depends	on	its	absolute	magnitude.	But	if	we	diminish	its	radius,	we	are	forced
to	diminish	also	in	the	same	proportion	its	circumference,	and	the	sides	of	all
inscribed	figures.	This	proportionality	seems	to	be	much	more	natural	an	axiom
than	that	of	Euclid.	It	is	curious	to	observe	this	property	in	the	results	of
universal	gravitation.”



WEIERSTRASS	FUNCTIONS

The	continuous	but	nowhere	differentiable	functions	of	Weierstrass	had	such	an
impact	on	the	development	of	mathematics,	that	one	is	curious	to	know	whether
their	story	followed	the	pattern	which	Farkas	Bolyai	described	to	his	son,	János:
“There	is	some	truth	in	this,	that	many	things	have	an	epoch,	in	which	they	are
found	at	the	same	time	in	several	places,	just	as	violets	appear	on	every	side	in
spring.”	One	also	expects	to	see	the	co-inventors	rush	to	print.
But	in	the	present	case,	events	unfolded	very	differently.	The	nearly

unbelievable	fact	is	that	Weierstrass	never	published	his	discovery,	though	he
read	it	at	the	Berlin	Academy	on	July	18,	1872.	The	talk’s	manuscript	did	make
it	to	the	Collected	Works,	Weierstrass	1895,	but	the	world	was	informed,	and	the
claim	staked	in	Weierstrass’s	name,	in	DuBois	Reymond	1875.	Thus,	1875	is	but
a	convenient	symbolic	date	for	the	beginning	of	the	great	crisis	of	mathematics.
DuBois	Reymond	wrote	that	“the	metaphysics	of	these	functions	seems	to

hide	many	puzzles,	as	far	as	I	am	concerned,	and	I	cannot	get	rid	of	the	thought
that	[they]	will	lead	to	the	limit	of	our	intellect.”	However,	one	gets	the	distinct
feeling	that	no	one	was	in	a	hurry	to	explore	those	limits.	Some	contemporaries
who	dabbled	with	this	task	for	a	moment	(for	example,	Gaston	Darboux)
promptly	turned	back	to	extreme	conservatism,	but	the	others	were	hardly
bolder.	One	is	also	forcibly	reminded	of	the	more	famous	story	of	Gauss	hiding
his	discovery	of	non-Euclidean	geometry,	as	he	wrote	to	Bessel	on	January	27,
1829,	“for	fear	of	the	uproar	of	the	Boeotians.”	(But	later	he	revealed	it	to	János
Bolyai—with	disastrous	consequences	on	the	latter’s	mind—after	this	son	of	a
friend	had	published	his	independent	discovery).	Finally,	one	thinks	of	the
advice	Mittag-Leffler	was	later	to	give	to	Cantor,	that	he	should	not	fight	editors,
but	withhold	his	more	daring	findings	until	the	world	is	ready	for	them.	Rarely
has	the	avant-garde	been	so	extraordinarily	reluctant	as	in	these	various	cases.
In	addition	to	Weierstrass,	three	names	must	be	mentioned	here.	It	has	long

been	rumored,	and	is	documented	in	Neuenschwander	1978,	that	Riemann	told
his	students	around	1861	that	R(t)	=	Σ	n-2	cos	(n2t)	is	a	continuous	and
nondifferentiable	function.	But	no	precise	statement	and	proof	is	known.	In	fact,
if	“nondifferentiable”	meant	“nowhere	differentiable,”	any	purported	proof	had



to	be	flawed,	since	Gerver	1970	and	Smith	1972	show	that	R(t)	does	have
positive	and	finite	derivatives	at	certain	points.	Kronecker	also	was	concerned
about	the	Riemann	function,	an	interest	that	underlines	the	importance	the
question	held	at	the	time.	(Manheim	1969,	T.	Hawkins	1970,	and	Dugac	1973,
1976	add	to	our	knowledge	of	this	background.)
Bolzano,	whose	name	is	hyphenated	with	that	of	Weierstrass	in	a	different	and

better-known	context,	also	enters	in	this	story.	Bern-hard	Bolzano	(1781-1848)
was	one	of	the	few	underground	heroes	of	mathematics,	most	of	whose	work	lay
dormant	until	the	1920’s.	He	discovered	in	1834	a	close	analog	of	the
Weierstrass	function,	but	he	failed	to	notice	the	property	that	makes	the	function
of	interest	to	us	(Singh	1935,	p.	8).
The	third	man,	unknown	in	his	lifetime	as	in	ours,	matters	more	in	the	present

story	than	anyone	but	Weierstrass.	Charles	Cellérier	(1818-1890)	had	taught	in
Geneva	and	published	little	of	note,	but	the	files	opened	after	his	death	included
a	“revelation.”	An	undated	folder	marked	“Very	important	and	I	think	new.
Correct.	Can	be	published	as	is”	contained	a	text	in	his	hand	describing	the	limit
case	D=1	of	the	Weierstrass	function	and	using	it	for	the	familiar	purpose.	The
yellowed	pages	were	shown	to	a	scholar	named	Cailler,	who	added	a	footnote
(from	which	the	preceding	comments	are	excerpted)	and	promptly	published	the
paper	as	Cellérier	1890.	Scattered	evidence	of	interest	ensued,	especially	on	the
part	of	Grace	C.	Young.	Raoul	Pictet	remembered	in	1916	that	Cellérier	had
mentioned	this	work	in	class	when	Pictet	was	among	his	students,	around	1860.
But	no	written	evidence	came	forth.	And	eventually	Cellérier’s	claim	proved	to
be	flawed.
Thus	Weierstrass	remains	alone	and	un-challenged	in	the	claim	made	in	his

name,	but	we	are	left	with	truly	odd	events	to	ponder.	A	certain	expression	was
actually	published	by	Bolzano	who	thought	it	innocuous,	but	the	two	later
scholars	who	knew	better,	the	modest	provincial	with	no	reputation	that	could	be
tarnished	and	the	great	master	who	might	have	felt	untarnishable,	both	chose	to
sit,	wait,	and	see.	“Publish	or	Perish”	could	not	be	farther	from	their	minds.
Since	the	Weierstrass	function	is	often	used	to	argue	for	a	divorce	by	mutual

consent	between	mathematics	and	physics,	it	may	be	of	interest	to	mention	its
discoverer’s	attitude	toward	the	relationship	between	these	two	endeavors.	His
name	found	its	way	into	geometric	optics	(through	the	Young-Weierstrass	points
of	a	spherical	lens).	Also,	in	his	inaugural	lecture	for	1857	(quoted	in	Hilbert
1932,	3,	pp.	337-338),	Weierstrass	stressed	that	the	physicist	should	not	see	in
mathematics	a	simple	auxiliary	discipline,	and	the	mathematician	should	not



consider	the	physicist’s	questions	as	a	simple	collection	of	examples	for	his
methods.	“To	the	question	of	whether	it	is	really	possible	to	extract	something
useful	from	the	abstract	theories	that	modern	[=1857]	mathematics	seems	to
favor,	one	could	answer	that	it	was	only	on	the	basis	of	pure	speculation	that
Greek	mathematicians	derived	the	properties	of	conic	sections,	long	before	one
could	guess	that	they	represent	the	planets’	orbits.”	AMEN.



42

Epilog:	The	Path	to	Fractals
The	Essays	on	fractals	I	wrote	in	1975	and	1977	start	without	Preface	and	end
without	conclusion.	The	same	is	true	of	the	present	work,	but	a	few	things
remain	on	my	mind.	Now	that	fractal	geometry	is	taking	ominous	steps	towards
becoming	organized,	it	is	a	good	time	to	sketch	its	improbable	genesis	on	the
record.	And	to	add	a	few	words	on	its	relative	contributions	to	scientific
understanding,	description	and	explanation.	As	the	new	geometry	marches	on	all
fronts	from	description	to	explanation	(either	generic,	as	in	Chapters	11	and	20,
or	geared	to	specific	case	studies),	it	is	good	to	recall	why	it	had	long	benefited
from	an	uncommon	(and	unpopular)	disregard	for	explanation	through	“models.”
By	now,	the	reader	knows	well	that	the	probability	distribution	characteristic

of	fractals	is	hyperbolic,	and	that	the	study	of	fractals	is	rife	with	other	power
law	relationships.	By	accepting	the	validity	of	scaling	and	exploring	its
geometric-physical	implications	with	care,	we	find	so	much	to	occupy	us,	that	it
seems	strange	indeed	that,	as	of	yesterday,	I	felt	I	had	this	rich	new	land	all	for
myself.	Many	populated	clearings	surrounded	it,	and	many	authors	had	peeked
in	once,	but	no	one	else	had	stayed	in.
This	lifetime	involvement	was	triggered	in	1951,	by	a	casual	side	interest	in

Zipf’s	law	(Chapters	38	and	40).	This	empirical	regularity	concerning	word
frequencies	had	come	to	my	attention	through	a	book	review.	The	event	seems
too	symbolic	to	be	true,	but	the	review	in	question	had	been	retrieved	from	a
“pure”	mathematician’s	wastebasket,	for	light	reading	on	the	Paris	subway.
Zipf’s	law	proved	easy	to	account	for,	and	the	birth	of	mathematical	linguistics
was	helped	along	by	my	work.	But	the	study	of	word	frequencies	was	a	self-
terminating	enterprise.
However,	its	aftereffects	linger	on.	Having	recognized	that	(using	present

vocabulary)	my	work	had	been	a	case	study	of	the	usefulness	of	scaling
assumptions,	I	became	sensitive	to	analogous	empirical	regularities	in	diverse
fields,	beginning	with	economics.	Though	astonishingly	numerous,	these
regularities	were	viewed	as	of	little	consequence	to	established	fields.	The	more
successful	I	was	in	accounting	for	them,	the	more	they	loomed	as	visible
symptoms	of	a	widespread	phenomenon	which	the	sciences	had	failed	to	face,



and	to	which	I	could	devote	my	energies	for	a	while.
My	way	of	investigating	these	regularities	started	with	the	usual	search	for

generating	models	but	gradually	changed,	because	I	kept	observing	instances
where	minor	changes	in	seemingly	insignificant	assumptions	of	a	model
provoked	drastic	changes	in	its	predictions.	For	example,	many	occurrences	of
the	Gaussian	distribution	are	customarily	“explained”	through	the	standard
central	limit	theorem	of	probability,	as	resulting	from	the	addition	of	many
independent	contributions.	This	argument’s	explanatory	value	hinged	on	the	fact
that	the	numerous	other	central	limit	theorems	were	not	even	known	to	the
research	scientists,	and	were	viewed	by	Paul	Levy	and	the	other	pioneers	as
“pathological.”	But	the	study	of	scaling	laws	led	me	to	recognize	that
nonstandard	central	limit	behavior	is	in	fact	part	of	nature.	Unfortunately,	as
soon	as	the	central	limit	theorem	argument	is	recognized	to	have	more	than	one
possible	outcome,	it	ceases	to	be	persuasive.	An	explanation	hardly	brings
understanding,	if	it	is	more	complicated	than	its	outcome,	and	if	equally
plausible	variants	yield	totally	different	predictions.
Anyhow,	exploring	the	consequences	of	self-similarity	was	proving	full	of

extraordinary	surprises,	helping	me	to	understand	the	fabric	of	nature.	By
contrast,	the	muddled	discussion	of	the	causes	of	scaling	had	few	charms.	It
seemed,	on	certain	days,	hardly	better	than	Zipf’s	ravings	on	the	principle	of
least	effort	(p.	403).
This	mood	was	strengthened	by	a	spike	of	renewed	interest	in	the	model	of

near	scaling	in	taxonomy	presented	in	Yule	1922.	The	revival’s	claim	of
providing	an	all-purpose	explanation	of	every	occurrence	of	scaling	in	the	social
sciences	was	based	upon	a	technical	error	(as	I	showed),	but	many	of	my	readers
of	that	time	somehow	became	convinced	that	the	scaling	relationships	in	social
science	have	a	universal	and	straightforward	explanation,	hence	(!)	do	not
deserve	attention.
My	existing	bent	towards	stressing	consequences	before	causes	was

reinforced	as	a	result.	It	soon	proved	a	godsend,	and	in	particular	helped	the	full
strength	of	scaling	methods	become	apparent,	when	(in	1961)	I	turned	to	the
variation	in	time	of	commodity	prices	on	competitive	markets	(Chapter	37).
Economists	complain	about	the	paucity	and	low	quality	of	their	data,	but	data
about	prices	and	incomes	come	in	a	flood.	However,	economic	theory	and
econometrics,	which	claim	they	can	elucidate	the	relationships	between
hundreds	of	ill-defined	variables,	dare	make-no	prediction	about	the	structure	of
price	records.	And	the	common	statistical	techniques	prove	incapable	of



extracting	any	order	from	the	data.	This	illustrates	W.	Leontief’s	observation:
that	“in	no	field	of	empirical	enquiry	has	so	massive	and	sophisticated	a
statistical	machinery	been	used	with	such	indifferent	results.”	But	descriptions
deduced	by	scaling	methods	worked	amazingly	well.	The	scaling	property
incorporates	the	two	most	striking	characteristics	of	competitive	market	prices:
their	being	highly	discontinuous,	and	their	being	“cyclic”	but	nonperiodic.	This
investigation	may	well	be	the	only	example	of	the	use	in	economics	of	an
invariance-symmetry	in	the	style	of	physics.
In	1961,	I	extended	the	notion	of	scaling	to	tackle	several	noise	phenomena.

All	these	diverse	efforts	were	carried	out	in	near	total	isolation	from	physicists
and	mathematicians.	But,	during	my	visiting	professorship	at	Harvard	in	1962-
1964,	Garrett	Birkhoff	pointed	out	analogies	between	my	approach	and	the
theory	of	turbulence	pioneered	by	Richardson	and	highlighted	by	Kolmogorov
1941.	While	I	had	heard	of	this	theory	as	a	student,	its	influence	was	not
necessarily	stronger	than	that	of	the	philosophical	tradition	described	in	Chapter
40,	in	the	entry	on	ARISTOTLE.	In	any	event,	all	this	was	happening	well
before	physicists	became	enamored	of	scaling!
Furthermore,	G.	W.	Stewart’s	lectures	on	the	intermittency	of	turbulence

introduced	me	to	Kolmogorov	1962.	The	preprint	of	that	work	and	of	Berger	&
Mandelbrot	1963	had	come	out	within	weeks	of	each	other!	While	Kolmogorov
tackled	a	more	interesting	problem,	my	tools	were	more	powerful,	and	in	no
time	I	adapted	them	to	turbulence,	obtaining	the	substance	of	Chapters	10	and
11.
Finally,	I	became	aware	of	1	/f	noises,	of	Hurst	1951,	1955,	of	Richardson

1961,	and	of	the	issue	of	galactic	clustering.	Again,	I	felt	in	each	instance	that
understanding	was	helped	by	a	good	description	and	the	exploration	of	its
consequences.	By	contrast,	the	early	models	I	conceived	seemed	but	idle
decorations	added	to	the	description.	They	distracted	from	the	basic	geometric
ideas	I	was	in	the	process	of	formulating,	and	actually	hindered	understanding,
in	my	opinion.	I	kept	withholding	them,	even	when	my	papers	failed	to	be
accepted	for	publication.	Again,	the	explanations	in	Chapters	11	and	20,	and
passim,	are	an	entirely	different	story,	and	I	rejoice	in	them.
Thus,	the	pursuit	of	scaling	kept	being	revitalized,	and	enriched	by	fresh	tools

and	ideas,	thanks	to	changes	in	the	field	of	study,	and	led	to	the	gradual
emergence	of	an	overall	theory.	In	no	way	did	this	theory	follow	the	“top-to-
bottom”	pattern	of	being	first	revealed	and	formulated	and	then	“applied.”	It
kept	surprising	everyone,	including	myself,	by	growing	from	a	modest	bottom	to



an	increasingly	(dizzyingly!)	ambitious	top.	Early	overviews	were	given	at	the
International	Congress	of	Logic	and	Philosophy	of	Science	(1964),	in	Trumbull
Lectures	at	Yale	(1971),	and	at	the	Collège	de	France	(1973	&	1974).
The	geometric	face	of	this	theory	of	scaling	grew	in	importance,	and	gave	size

to	fractal	geometry.	Given	the	strong	geometric	flavor	of	the	early	studies	of
turbulence	and	of	critical	phenomena,	one	may	have	expected	a	theory	of
fractals	to	develop	in	either	of	these	contexts.	But	none	developed.
Instances	where	new	concepts	and	techniques	come	into	science	through

branches	of	low	competitiveness	are	rare	today,	hence	anomalous.	Fractal
geometry	is	a	new	example	of	such	an	historical	anomaly.
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Chorin,	A.
circumnavigation
*cirri
Clarke,	J.
Clayton,	D.	D.
clouds
clustered	*dusts	on	the	line
-Cantor
-random	walk’s	zeros
clustered	*dusts	in	space
-agglutinated
-Cauchy
-Fournier
-of	galaxies
-Lévy
-Lévy	(circumnavigation	of	a)	dust
coastline
coastline	of	Brittany,	of	Britain
coastline	generator
cobwebs	(intergalactic)



codimension
*coindicator	function
Collet,	P.
colloid	flake
complexity	of	a	set
computer	geometry
Comroe,	J.	H.
condensation	of	water
conditional
-*cosmographic	principle
-probability
-*stationarity
connectedness,	topological
-Bernoulli	percolation
-circular	tremas
-in	random	*curdling
-*succolarity
*contact	clusters,	esp.
continuum,	Cantor	(see	Cantor	dust)
convergence,	strong	vs.	weak	or	vague
corrective	terms
correlation	of	galaxies’	projections	on	the	sky
Corrsin,	S.
*cosmographic	principles
-conditional
-for	Earth’s	relief
-strong
cosmologic	principle
covering	of	a	set	or	of	its	conplement
covering	dimensions
Coxeter,	H.	S.	M.
craters
*creases/creaselessness
critical	clusters	-noncritical	clusters
critical	dimension
-Bernoulli	percolation



-fractal	percolation
-Koch	curves
critical	exponents
-for	smectics	A
critical	probability	in	Bernoulli	percolation
crossover
Cummings,	G.
*cups
*curd/curdling
-on	the	line	(Cantor)
-of	galaxies	(Hoyle)
-random
-of	turbulence	(Novikov	&	Stewart)
-weighted
Curie,	J.
curves(See	also	under	dragon,	fractal	and	Koch)
-self-avoiding
-without	tangent
-with	positive	area
Cusa,	Nicholas	of
cutoffs,	see	inner	cutoff	and	outer	cutoff
cutout,	see	*trema



Darboux,	G.
data	transmission	lines
Davis,	C.
daydream,	Perrin’s
*deadvalleys
de	Chéseaux,	J.	P.	L.
decomposable	dynamical	systems
Dedekind,	R.
de	Gaulle,	C.
de	Gennes,	P.	G.
de	la	Vallée	Poussin
Delboeuf,	J.
Delbrück,	M.
de	I’Hospital,	Marquis
*delta	mean
*delta	variance
Democritus
de	Morgan,	A.
Denjoy,	A.
density
-average
-generalized
-of	matter
depressions
derivative	(functions	without)
detrending	and	its	abuses
de	Vaucouleurs,	G.
Devil’s	staircases/terraces
de	Wijs,	H.	J.
diameter	exponent
diameter-number	relation
diamonds
Dickson,	F.



Dieudonné	J.
Dietrich,	H.	C.	ix
diffusion	(radiation	of	probability)
*digression	brackets	 	and
dimension
-Besicovitch	&	Taylor
-between	one	and	two
-between	zero	and	one
-Bouligand
-Boyd
-broken
-Cantor-Minkowski
-convention	for	differentiating	between	empirical	and	theoretical	values
-covering
-critical
-different	facets	of
-discourse
-effective
-Euclid
-Fourier
-·fractal
-fractional	dimension
-generating	function
-Hausdorff-Besicovitch
-historical	sketch
-idea	of
-Kolmogorov	&	Tihomirov
-measure’s	concentrate
-Menger-Urysohn
-Minkowski-Bouligand
-Poincaré	on
-Pontrjagin	&	Schnirelman
-products
-similarity
-subordinate
-topological



-typical	for	random	sets
dimensional	analysis
-*fractal
-standard
dimensionally	concordant	sets
dimensionally	discordant	sets
Dimotakis,	P.
Dirac,	P.	A.	M.
discontinuity	of	prices
discontinuum,	Cantor,	(see	Cantor	dust)
dispersion	(turbulent)
distribution
distribution	of	galaxies
Ditlevsen,	O.
divergence
-coastline	lengths
-number	of	islands
-number	of	branch	points
-variance	of	price	change
Dobrushin,	R.	L.
Domb,	C.
double	points
-avoidance	of
-inevitability	of
downsized/downsizing
draconic	molting
dragon	curve
-Harter-Heightway
-*self-squared
-*twindragon
drainage	divides,	see	watershed
drifting	Brownian	motion
droplets	of	condensation
DuBois	Reymond,	P.
Dugac,	P.	4
Dumouchel,	W.	H.



du	Plessis,	N.
*dust
-Cantor
-Fatou
-linear	Lévy
-randomized	linear
-subordinated
Dvoretzky,	A.
dyadic	set	(=	Cantor	dust)
dynamical	systems
Dyson,	F.	J.



Earth’s	relief	see	relief
Eckman,	J.
economics
eddies
effects
-Bienayméb
-*Joseph
-*Lindy
-*Noah
-*Richardson
Effel,	J.
efficiency	of	Peano	filling
efficient	markets	(prices	on)
Eiffel	tower
Einasto,	J.
Einstein,	A.
elasticity	and	scaling
electronic	contact	noises
electrostatics	and	scaling
El	Hélou,	Y.
Elias,	H.
επαµφoτερ ξε ν
Erdös,	P.
ergodicity
eroded	terrain
error	bursts
erudition
Escher,	M.	C.
Essam,	J.	W.
Euclid
Euler	equation	of	fluid	motion
excess	noise
expansion	of	the	Universe



expectation
-notation
-paradoxes
exponents	other	than	D
exposition
extrapolation
-Cantor	set
-Koch	curve



Faber,	S.	M.
Fama,	E.	F.
Fatou,	P.
*Fatou	dust
faults
fear	and	horror
Feigenbaum,	M.	J.
Feller,	W.
Feynman,	R.
filaments	(intergalactic)
filter	trading
Fisher,	M.	E.
flakes
fleas
*flight’s	stopovers
-Cauchy
-	Lévy
-Rayleigh
flipped	generator
Flory,	P.	J.
*foam	(fractal)
form
Fourier
-analysis,	passim	in
-dimension
-Brown-Wiener	series
Fournier	d’Albe,	E.	E.
*fractal
-attractors
-clusters
-curves
-definition	of
-dimension



-dust
-errors
-etymology
-events
-flake
-homogeneity
-lattice
-natural
-net
-noise
-nonlacunar
-nonuniform
-percolation
-pronounciation
-set
-zones
*fractally	homogeneous
-Cantor	bar
-stellar	distributions
-turbulence
*fractional	Brown
-contour	lines
-functions
-model	of	river	discharge
-planar	trails
-relief
-trails
*fractional	Brownian	motion
*fractional	delta	variance
fractional	dimension
fractional	integro-differentiation
fragmentation
-measured	by	fractal	dimension
-in	Nature
Frenkel,	J.
Frisch,	U.



Frostman,	O.
Fuchs,	L./Fuchsian
*fudgeflake
Fujisaka,	H.
functions
-continuous	without	derivative
-*fractional	Brown
-opposed	to	trails
-random,	and	stationarity



G-lengths
galaxies/galaxy	clusters
Gallagher,	J.	S.
Gallery	of	Monsters
Galois,	E.
Gamow,	G.
Gangolli,	R.
*gaps
gaps’	distribution	prefactor
Gardner,	M.
*gasket
-Apollonian
-Sierpinski
Gauss,	C.	F.
Gauss	random	functions	with	a	Weierstrass	spectrum
Gaussian	process,	C10
Gefen,	Y.
*generator
-Cantor
-coastline
-flipped
-island
-random	Cantor
-self-avoiding	Koch	curve
-straight
geometric	art
geometric	illustrations
Gerver,	J.
Getoor,	R.	K.
Gevrey,	M.
Gibbs	distribution
global	density	of	matter
global	effects



-in	Brown	surfaces
-due	to	self-constrained	chance
Gnedenko,	B.	V.
Gomory,	R.	E.
Gosper,	W.
Grand	Masters	paintings
granular	structure
Grant,	H.	L.
graphics	(role	of)
Grassberger,	P.
gravity	and	the	dimension	D=1	for	galaxies
Green,	M.	S.
Greenhill,	G.
Greiser,	M.
Grenander,	U.
Groat,	R.	A.
Grossman,	P.
Groth,	E.
Gulf	Stream
Gurel,	O.
gusts	of	turbulence



Hack,	J.	T.
Hadamard,	J.
Hahn,	H.
Hallé,	E.
Halley,	E.
Halley,	J.	W.
Hammersley,	J.	M.
Handelman,	S.	W.
Hardy,	G.	H.
harmonic	analysis,	passim	in
Harris,	T.	E.
Harrison,	E.	R.
Harrison,	R.	J.
Harter,	W.	G.
Hartmann,	W.	K.
Harvey,	W.
Hastings,	H.	M.
Hausdorff,	F.
-Besicovitch	dimension
-measure
Hawkes,	J.
Hawking,	G.	W.
Hawkins,	G.	S.
Hawkins,	T.
Helleman,	R.	H.	G.
Helmholtz,	H.
Henon	attractor
Hermite,	C.
Hersfield,	K.
*hexa-squig
Heyde,	C.	C.
Hibbs,	A.	R.
hierarchical



-clustering
-river	model
-trees
Hilbert,	D.
Hiley,	B.	J.
Hille,	E.
Hofstadter,	D.	R.
Hokusai,	K.
Hblder-Lipschitz	heuristics
Holtsmark,	J.
homogeneity
-classical
-*fractal
homogeneous	turbulence
Hopkinson
horizon
Horton,	R.	E.
Howard,	A.	D.
Hoyle,	F.
Huber
Hurewicz,	W.
Hurst,	H.	E.
-noise
-phenomenon
Hurwitz,	A.
Hutchinson,	J.
hydrology,	see	river
hyperbolic	distribution
-in	central	limit	theorems
-its	prefactor
hyperbolic	points
hyperbolic	tesselation/tiling



//	Trovatore
imbedding	of	fractals
in-between	shapes
income	distribution
indentations
index,	orientation
inequality	of	addends
infinity/divergence
-coastline	length
-number	of	islands
-number	of	branch	points
-price	changes’	variance
infrared	catastrophe
initiator
inner	cutoff
-Cantor	dusts
-coastlines
-graphics
-turbulence
inner	infinity
instability,	Jeans
intergalactic	medium
intermittency
-relative
-of	turbulence
intersections	of	fractals,	see	sections
intuition
inversion	(geometric)
irregularity
-and	fragmentation	in	Nature
islands
-ambiguity	of	definition	of	coastline
-areas	and	the	generalized	Korčak	law



-area-number	relationship
-coastline	length
-generator
-generated	as	(fractional)	Brown	surface	zerosets
-landscapes
-offshore,	contribution	to	the	dimension
-quadric	Koch
-strings
-triadic	Koch
isothermal	surfaces	of	scalars



Jack,	J.	J.	B.
Jaki,	S.	L.
James,	W.
Jeans	instability	criterion
Jerison,	H.	J.
jets,	turbulent
Joẽveer,	M.
Jordan,	C.
*Joseph	Effect
Julia,	G.
Julia	curves



Kahane,	J.
Kakutani,	S.
Kant,	I.
Kármán	streets
Kasner,	E.
Kelly,	Walt
Kelvin,	Lord
Kepler
Kesten,	H.
Keyes,	R.	W.
Kirkpatrick,	S.
Klein,	F./Kleinian
Knight,	F.
knitting
Knuth,	D.	E.
Koch,	H.	von
Koch	arc
Koch	archipelago
Koch	curve
-arrowhead	(Sierpiński)
-continent/island
-generalization
-Peano-
-quadric
-randomized
-triadic
Koch	half-line
Koch	motion
Koch	pyramid
Kohlrausch,	R.
Kolmogorov,	A.	N.
-deltavariance
-exponent	5/3	or	2/3



-spectrum
-&	Tihomirov	dimension
Korčak,	J.
Kottegoda,	N.	T.
Kraichnan,	R.	H.
Kronauer,	R.	E.
Kuo,	A.	Y.	S.
kurtosis	of	turbulence



Lacey,	G.
*lacunarity
Laff,	M.	R.
Lagrangian	picture	of	turbulence
lake	landscapesto
lakes
*λ-set	(map)
Lambert,	H.
lamentable	plague
laminar	(=nonturbulent)
Lamperti	semi-stability
Landau,	L.	D.
Landkof,	N.	S.
Landman,	B.	S.
landscapes,	Brown	to
Langbein,	W.	B.
Langevin,	P.
Laplace,	P.	S.	de
laplacian
lattice	(fractal)
lattice	physics
Lavoie,	J.	L.
Lawrance,	A.	J.
Iblgraph
learned	ignorance
Leath,	P.	L.
Lebesgue,	H.
-*Osgood	“monsters”
Lebowitz,	J.	L.
Leibniz,	G.	W.
length
-arbitrariness
--area	relation	for	river	basins



-of	coastlines
-measurement
-true
--yardstick	relation
Leonardo	da	Vinci
Leontief,	W.
Leopold,	L.	B.
Leray,	J.
Levy,	P.
-Devil’s	staircase
-*dust
-dust	as	subordinator
-*flight
-*motion	in	space
-stability
Lewis,	Z.
lexicographic	tree
Leyden	jars
Lieb,	E.	H.
Lifshitz,	E.	M.
*limit	lognormal	curdling
limit	set	(Kleinian)
Lindy	effect
linguistics
Liouville	(Riemann-)	integral
Liouville	theorem
Lipschitz-Hölder	heuristics
liquid	crystals
Lloyd,	E.	H.
Lloyd,	G.	E.	R.
Loch	Ness	monster
logistics,	points	of
*Iognormal	(limit-)	curdling
Lorenz,	E.	N.
Love,	E.	R.
Lovejoy,	A.	D.



Lovejoy,	S.
loxodromic	points
Lukacs,	E.
*lumped	curdling	clusters
lunar	craters
lung
Luria,	S.
Lusin,	N.
Lydall,	H.	F.



Maddock,	T.
Mai,	T.
Maitre,	J.
Manheim,	J.	H.
manifesto
map	of	Brittany
Marcus,	A.
Marcus,	M.	B.
marina
Marstrand,	J.	M.
martingale
mass-radius	exponents	other	than	D
mass-radius	prefactor
mass-radius	relation
-Brownian	motion
-Cantor	dusts	(errors)
-Fournier	universe
-galaxies
-Koch	curves
Matheson,	G.
Mattila,	P.
maverick
Max,	N.	L.
maximal	dimension
Maxwell,	J.	C.
McKean,	H.	P.,	Jr.
McKenna,	D.	M.
McMahon,	T.	A.
measure
-Carathéodory
-dependence	on	radius	(M(R))
-Hausdorff
measurement



-arbitrariness	of	results	of
-coastlines’	lengths
-multiplicity	of	methods	of
-total	global	density	of	matter
Mejia,	J.	M.
Melzak,	Z.	A.
Menger,	K.
*Menger	sponge
Merchant	of	Venice
meteorites
Metropolis,	N.
midpoint	displacement
Milne,	E.	A.
Miner,	E.	D.
Minkowski,	H.
-covering
-sausage
Missouri	River’s	width
Missouri	River’s	winding
mixing
models	(random)
Moillet,	A.
Monin,	A.	S.
monkeys	tree
monsters
Monticciolo,	R.
Moon	craters
Moore,	E.	W.
Mori,	H.
*µ-atom/molecules
*µ-set	(map)
Mueller,	J.	E.
multiple	points
-avoidance	of
-inevitability	of
multiplication	of	dimension



Mumford,	D.
Munitz,	M.	K.
Murray,	C.	D.
music
Myrberg,	P.	J.



Natura	non	facit	saltus
natural	philosophy	passim
Navier-Stokes	equations
N-body	problem
negative	temperatures
negligible	events	(nonstandard)
Nelkin,	M.
Nelson,	E.
*net
Neuenschwander,	E.
neurons
Newman,	J.	R.
Newton,	I.
Newtonian	attraction
Nicoll,	J.	F.
Nile	River
Ninham,	B.	W.
*Noah	Effect
noise(s)
-affine
-discrete	fractional	Gaussian
-excess
-Hurst
-scaling
-with	spectrum
nondifferentiable	continuous	functions
non-Euclidean
non-Gaussian	hills
nonlacunar	fractals
nonlooping	see	self-avoiding
nonscaling	fractals
non-self-contacting	polygons,	see	self-avoiding
non-self-similar	fractals



nonstationarity
nonuniform	fractals
North,	J.	D.
Norton,	V.	A.
Novikov,	E.	A.
Novikov	&	Stewart	cascade
nucleus	of	a	µ-atom
number-area	relation	for	islands
number-size	relation	for	gaps
Nye,	M.	J.



observer’s	role
Obukhov,	A.	M.
Occam,	W.	of
offshore	islands,	see	islands
Olbers	paradox
Oldeman,	R.	A.	A.
Oldham,	K.	B.
1/f	noise
Onsager,	L.
order	of	ramification
-homogeneous	ramification
-quasi-homogeneous	ramification
Orey,	S.
orientation	index
Osgood,	W.	F.
-*Lebesgue-Osgood	monsters
Osier,	T.	J.
outer	cutoff
-Cantor	dusts
-coastlines
-Earth’s	relief
-engineering	projects
-fractal	errors
-galaxy	clustering
-graphics
-and	lacunarity
-turbulence



packing
-circles,	Apollonian
-nonoverlapping	spheres
-triangles,	Sierpiński
Painlevé	P.
Paley,	R.	E.	A.	C.
panacea
Pangaea/Panthalassia
*paradimension
paradoxical	dimensional	findings
Pardé,	M.
Pareto	distribution	-see	also	hyperbolic	distribution	-law	for	incomes
Parodi,	O.
Partridge,	E.
Pascal,	B.
*pastry	shell	(fractal),	=	foam
patchwork
pathological
Paumgartner,	D.
Peano,	G.
Peano-Brown	hybrids
Peano	curves
-Cesàro
-distance
-dragon
-Gosper
-intervals
-Koch
-lengths
-monsters
-	Moore
-	motion
-	Pölya



-random
-their	true	nature
Peebles,	P.	J.	E.
percolation
-	Bernoulli
-fractal
Perrin,	J.
persistence
*pertiling
Peterson,	B.	A.
Peyrière,	J.
Pharaoh’s	breastplate
philosophy,	passim
physicsand	passim
plane-filling	contact	clusters
plane-filling	curves,	see	Peano	curves
plane-filling	fractal	trees
plankton
Plato
Poincaré	H.
Poisson	surface
Pólya,	G.
polymer	geometry
Polytechnique	(Ecole)
Pontrjagin	&	Schnirelman	dimension
Popper,	K.
potamology
potentials	and	dimension
power	laws
power	distributions,	see	hyperbolic	distributions
*precurds
prefactor
price	variation
primitive	four-way	choice
projections	of	fractal	galaxies	on	the	sky
Pruitt,	W.E.



pseudo-random
pulmonary	anatomy
Pythagoras



quadric	Koch	island
quantum	mechanics
*quartet
Quinn,	G.



*R/S	analysis
Rademacher	series
radius-measure	relations
-	Koch	curves
-Cantor	dusts
rain
Rall,	W.
Ramanujan,	S.
ramification
Ramsey,	N.
random
-chains
-	models
-pseudo-random	seeds
-	*squigs
random	walk
-	fractal	limit
-	self	avoiding
range	(R(d))
Rayleigh	Lord
-	flight
Receding	Shore
*receptor	bond	for	λ	map	atoms
recessions
recursivity/nonrecursivity
recursivity	and	randomness
regularity
relative	intermittency
relativity	theory
relaxation	times	(distributed)
relief	of	the	Earth
relief,	Brown
renewal/recurrent	process



renormalization	argument
Rent’s	rule
Rényi,	A.
Reynolds,	P.	J.
Reynolds	number
Richardson,	L.	F.	3
-cascade
-data	on	coastlines
-eddies/cascade
-	effect
Richardson,	Sir	Ralph
Riemann,	B.
Riemann-Liouville	integral
Riesz	(Marcel)	potentials
rings	(Saturn’s)
Rippl
river	discharge
-fractional	Brown	model
-persistence	of
river	geometry
-bank,	length	of	a
-departure	from	straight	course
-tree
-watershed
-width
Riznychok,	J.	T.
rod
Rogers,	C.	A.
Roll,	R.
rope
Rose,	N.	J.
Rosen,	E.
Rosenblatt,	M.
Roshko,	A.
Ross,	B.
Rossler,	O.	E.



Ruelle,	D.
ruler
Russell,	B.
Russo,	R.	L.



Saffman,	P.	G.
Salem,	R.
-sets
Saltzmann-Lorenz	model
*San	Marco	dragon
Sarma,	G.
Saturn’s	rings
sausage	(Minkowski)
scaling
scaling	noise
scaling	principle	in	economics
scaling	range
scallop	shell
Scheffer,	V.
Schnirelman,	L.
Schwartz,	D.
Schwartz,	H.	A.
Schwarzchild	limit
sections’	dimension
-the	basic	rule
-Cauchy	flight
-curds
-	ramified	fractals
seeds,	pseudo-random
Selety,	F.
*self-affinity
self-avoiding
-	Brownian	motion
-	Koch	curves
-polygon
-random	walk
*self-inverse	fractals
self-similar	zone



self-similarity,	passim
*self-squared	fractals
semi-stability
Seneta,	E.
*separator	curve
settled
Séze,	L.
Shante,	V.	K.	S.
sheet,	self	similar	layered
shores,	see	islands	and	river
Sierpiński,	W.
-	*arrowhead/gasket
-carpet
-	*gasket
-	*sponge	=	Menger	sponge
*sigma	sets
-σ-disc
-σ-loop
silk	threads
similarity	dimension
Simon,	B.
simplicity
Sinai,	la.	O.
Singh,	A.	N.
singular	functions
singularities	of	equations
sky
Smale,	S.
smectic	liquid	crystals
Smith
Smith,	H.	J.	S.
Smythe,	R.	T.
snowflake	curve
•snowflake	halls
*snowflake	sweeps
soap



soapflakes
Soderblom,	L.	A.
solenoid
Soler,	J.
Soneira,	R.	M.
space-filling	curves,	=	Peano	curves
Spanier,	J.
spectral	analysis
*sponge	(Sierpiński)	=	Menger	sponge
*sporadic	functions/processes
square	sweeps
squaring
*squigs	(random)
stable	(Levy)
Staircases	(see	Devil’s)
standard	usually	=	Euclidean
Stanley,	H.	E.
Stapleton,	H.	B.
starved	dragon
stationarity
-	conditional
-counterintutitive
-degrees	of
-ordinary
statistical	analysis	(R/S)
Stauffer,	D.
steel	ball	(smooth)
Stein,	M.	L.
Stein,	P.	R.
Steinhaus,	H.
Stent,	G.
Stewart,	R.	W.
Stieltjes,	T.	J.
stock	market	variability
Stommel,	H.
Stone,	E.	C.



stopovers	of	a	*flight
-Cauchy
-Lévy
-	Rayleigh
Strahler-Horton	scheme
strange	attractors
stratified/stratification
streams	(of	galaxies)
streets,	random
subdimensions/subordinate	dimensions
subordination
*succolarity
Sulem,	P.	L.
Suwa,	N.
*sweeps	=	Peano	curves
Swift,	J.
Sykes,	M.	F.
symmetry
Szegö,	G.
Szpilrajn	inequality



Tago,	E.
Takahashi,	T.
Takens,	F.
Tamarkin,	J.	D.
taming	of	the	monsters
-Cantor	dust
-	Koch	curve
-	*Lebesgue-Osgood	monster
-	Peano	curve
-	*Sierpinski	gasket
tangent	(absence	of)
Taqqu,	M.
Taylor,	G.	I.
-homogeneous	turbulence
Taylor,	S.	J.
telescope	arrays
temperature
-of	discourse
-thermodynamical
tempered	music	scale
Tennekes,	H.
*teragon
ternary	set	(=	Cantor	dust)
Tesnière,	M.
tesselation
test	(Hausdorff)	function
texture
thermodynamics
Theutobocus	(King)
Thoma,	R.
Thomae,	S.
Thomas,	H.	A.
Thompson,	d’A.	W.



thread	(ball	of)
Tihomirov,	V.	M.
tiling
time
Tissot,	J.
Tomlinson,	P.	B.
to	see	is	to	believe
Tongling
topological	connectedness	see	connectedness
topological	dimension
topology
-	limitations	of
-of	random	curds
-of	turbulence
Townsend,	A.	A.
*trails
-	fractional	Brownian
-opposed	to	functions
transient	behavior	panacea
transition	zones
translation	invariance
trees
-	botanical
-clusters
-	hierarchical
-	lexicographic
-river
-	space-filling,	esp.
*tremas,	nonoverlapping	and	nonrandom
*tremas,	overlapping	random
-circle/disc
-	intervals
-nonscaling
-sphere	(ball)
-street
-virtual



Tremblay,	R.
triadic	Cantor	set	(=	Cantor	dust)
triadic	curve,	(see	original	Koch	snowflake)
tribology
truncation
turbulence
-definition	of
-lacunarity	of
turbulent	dispersion
·twindragon
typical	sections	of	fractals
-by	fractals
-by	lines



Ulam,	S.	M.
ultraviolet	catastrophe
unbounded,	opposed	to	bounded,	fractals
Unclassified	Residuum
unconstrained	chance
unicity,	sets	of
upper	(see	outer)	cutoff
Ursell,	H.	D.
Urysohn,	P.



*vagrant
van	der	Waerden,	B.	L.
Van	Ness,	J.	W.
variance	of	price	changes
vascular	geometry
veins	and	arteries
Velarde,	M.	G.
velocity
-of	the	wind
Verdi,	G.
Vilenkin,	N.	Ya.
*virtual	tremas
Vistula
Volterra,	V.
von	Koch,	see	Koch
von	Neumann,	J.
von	Schweidler,	E.
von	Weizsäcker,	C.	F.
vortex	stretching
Voss,	R.	F.
vun	Kannon,	D.



wakes,	turbulent
Wallenquist,	A.
Wallis,	J.
Wallis,	J.	R.
Wallman,	H.
Walsh,	J.	L.
water	droplets
watershed
*web	(fractal)
Webbink
Weber,	W.
Wegener,	A.
Weibel,	E.
Weierstrass,	K.
*weighted	curdling
Wheeler,	J.	A.
*whey
Whittaker,	E.	T.
Whyburn,	G.	T.
Whymper,	E.
widths	of	rivers
Wiener,	N.
Wiener-Khinchin	covariance
Wiermann,	J.	C.
wiggliness
Wigner,	E.
Wilson,	A.	G.
Wilson,	T.	A.
winding	of	rivers
Windwer
Wise,	M.	B.
wisps	(intergalactic)
wood’s	rough	surface



word	frequency	distribution
Wright,	J.
Wright	brothers



Yaglom,	A.	M.
yardstick
Yoder,	L.
Young,	G.	C.
Young	Poets’	cemetery



zero	overall	density
zerosets
-Brownian	function
-Weierstrass-related	functions
Zimmermann,	M.	H.
Zipf,	G.	K.
Zipf	law,	generalized
zones	of	transition
zoom
Zwicky,	F.
Zygmund,	A.



Update	added	in	the	second	printing	(XII	1982)



COURCHEVEL	WORKSHOP:	PREVIEW	OF	THE
FORTHCOMING	PROCEEDINGS

Between	the	delivery	of	this	book	to	the	publisher	and	its	actual	publication,	then
during	the	brief	period	before	the	first	printing	was	exhausted,	fractal	geometry
did	not	stand	still:	It	moved	on	at	increasing	speed	in	the	domains	where	it	was
already	accepted,	and	it	moved	into	a	number	of	new	domains.
In	particular,	I	organized	a	week-long	workshop	on	fractals	in	July,	1982,	at

Courchevel	(France),	and	many	new	developments	were	first	presented	there.
This	update’s	main	goal	is	to	summarize	these	results	and	closely	related	ones.
Some	supplementary	references	(marked	by	a	star	*)	call	attention	to	other	works
presented	at	the	workshop.
More	generally,	it	is	becoming	hard	to	believe	that	only	a	few	years	ago,	the

fractal	geometry	of	nature	was	near-exclusively	my	work	and	that	of	close
associates.	However,	I	can	at	best	draw	attention	to	some	new	actors,	via
additional	supplementary	references.
The	topics	are	placed	in	roughly	the	same	order	as	in	the	body	of	the	book.



THE	DEFINITION	OF	“FRACTAL”

This	dull	topic	is	unfortunately	unavoidable,	but	will	take	mercifully	little	space.
To	my	chagrin,	the	term	“Hausdorff	dimension”	has	started	being	applied

indiscriminately	to	either	of	the	dimensions	listed	in	Chapter	39,	and	to	further
variants	thereof.	The	same	is	true	of	“Minkowski	dimension,”	a	term	used	once
on	here	of	the	1975	Objets	fractals,	to	denote	Bouligand	dimension.	Apparently,
certain	foreign	language	articles,	whose	authors	and	topics	cease	to	be	feared	as
the	result	of	my	work,	acquire	prestige	value,	hence	are	credited—unseen!—
with	a	variety	of	achievements	...	or	crimes.
Other	writers	go	to	the	opposite	excess:	they	overstress	the	methods	most

often	used	to	estimate	D	in	practical	work,	such	as	the	similarity	dimension	as
used	on	pp.	130a	and	214,	the	exponent	in	the	mass-radius	relation	or	a	spectral
exponent,	and	they	proceed	to	enshrine	them	to	define	“the”	fractal	dimension.
It	is	a	pity	that	most	of	these	reactions	to	the	1977	Fractals	manifested

themselves	a	bit	too	late.	They	would	have	encouraged	me	to	return	in	the
present	book	to	the	well-inspired	approach	taken	in	the	1975	Objets	fractals:	to
leave	the	term	“fractal”	without	a	pedantic	definition,	to	use	“fractal	dimension”
as	a	generic	term	applicable	to	all	the	variants	in	Chapter	39,	and	to	use	in	each
specific	case	whichever	definition	is	the	most	appropriate.



HOMOGENEOUS	FRACTAL	TURBULENCE

My	major	conjecture	on	turbulence	is	the	object	of	Chapter	11:	it	asserts	that
turbulence	in	real	space	is	a	phenomenon	carried	by	a	fractal	set	of	dimension
D~2.5	to	2.6.
Numerical	work	in	support	of	this	conjecture	continues,	witness	Chorin

1982a,b.
In	addition,	a	totally	different	approach	has	been	recently	advanced	in

Hentschel	&	Procaccia	1982,	which	handles	the	lengthening	and	folding	vortices
of	Chapter	10	by	the	methods	developed	to	handle	the	polymers	of	Chapter	36,
and	suggests	a	relation	between	the	dimensions	of	turbulence	and	of	polymers.



METAL	FRACTURES	AND	FRACTALS	(B.B.M.,
PASSOJA	&	PAULLAY	1983)

Neologisms,	as	mentioned	in	Chapter	1,	demand	care,	and	one	should	avoid	bad
conflicts	of	meaning.	Casual	examination	suggested	that,	while	broken	glass
surfaces	are	most	likely	not	fractal,	many	stone	or	metal	fracture	surfaces	are
fractal.	This	informal	evidence	suggested	that	fractal	and	fracture	should	not
conflict	badly.
Mandelbrot,	Passoja	&	Paullay	1983	buttresses	this	informal	feeling	by

extensive	experimental	evidence	concerning	1040,	1095	and	Cor-99	steel	tensile
specimens	and	Maraging	steel	impact	specimens.	The	fractal	character	is	tested
and	the	value	of	the	dimension	D	is	estimated	using	methods	like	those	Chapters
5	and	28	use	for	relief.	These	methods’	success	is	noteworthy,	because	fracture
surfaces	are	conspicuously	non-Gaussian,	and	quite	unlike	the	relief.
Recall	that	Chapters	5	and	28	proceed	via	island	coastlines	and	vertical

sections.	Unfortunately,	fractures	do	not	naturally	exhibit	islands,	and	the
definition	of	the	vertical	(as	the	direction	such	that	the	altitude	is	a	single-valued
function	of	the	position	in	the	horizontal	plane)	is	seldom	satisfied	by	any
direction.
Nevertheless,	we	can	define	an	informal	vertical	by	the	condition	that	the

altitude	is	single-valued	for	“most”	points.	We	then	spectral-analyze	the	altitudes
along	rectilinear	horizontal	sections,	and	plot	log	(spectral	energy	above	the
frequency	f)	as	a	function	of	log	f.
In	addition,	we	find	it	useful	to	create	artificial	“slit	islands”	by	“slicing”	the

sample	along	near	horizontal	planes	(the	sample	is	first	plated	with	electroless
nickel,	and	mounted	in	an	epoxy	mount	by	vacuum	impregnation).	Then	we	use
a	fixed	yardstick	to	measure	each	island’s	area	and	perimeter	on	a	digitized
picture,	and	we	plot	the	logarithms	as	suggested	in	Chapter	12,	to	test	the
validity	of	fractal	dimensional	analysis.
As	exemplified	at	the	bottom	of	here,	very	many	fracture	surfaces	follow	the

fractal	model	admirably:	both	diagrams	are	very	nearly	straight	and	their	slopes
yield	essentially	identical	D’s.	Furthermore,	repeat	of	the	same	procedure	for
different	samples	of	the	same	metal	recovers	the	same	D.	In	contrast,	the
traditional	estimates	of	roughness	are	hard	to	repeat.



To	echo	a	comment	on	here	concerning	Plate	115,	very	few	graphs	in
metallurgy	involve	all	the	available	data	and	a	very	broad	range	of	sizes,	and	are
as	straight	as	ours.
The	data	are	so	good	that	we	can	proceed	immediately	to	a	finer	comparison.

We	observe	that	|D	(spectral)-D	(islands)|	is	systematically	of	the	order	of	a	few
hundreds.	A	first	possible	cause	resides	in	estimation	bias.	For	example,	the	high
frequency	spectrum	is	overwhelmed	by	measurement	noise,	hence	must	be
disregarded.	Furthermore,	we	handle	“lakes”	and	“offshore	islands”	the	easy
way:	including	the	former	and	neglecting	the	latter	because	they	are	ill-defined.
But	the	discrepancy	may	be	real.	As	a	matter	of	fact,	the	near-identity	of	the

D’s	suggested	that	the	materials	we	studied	were.	far	more	isotropic	than
expected.	And	for	samples	that	must	be	anisotropic	because	of	the	way	they	were
prepared,	D(spectral)	and	D(island)	are	indeed	clearly	different.
An	alternative	explanation	for	conflicting	D’s	is	that	the	fracture	may	be

isotropic	but	not	self-similar,	with	D	varying	with	scale	(Chapter	13).	Since	our
two	methods	give	different	weights	to	different	ranges	of	scales,	they	would
reflect	the	variation	of	D.	Indeed,	for	some	metals	we	examined	the	slit	island	or
spectral	diagrams	exhibit	two	clearly	distinct	straight	zones,	and	for	yet	other
metals	the	diagrams	are	even	more	complex.
To	relate	D	to	a	metal’s	other	characteristics,	we	took	300	Grade	Maraging

steel	Charpy	impact	specimens,	and	heat	treated	at	different	temperatures.	The
resulting	diagram,	also	shown	on	the	bottom,	exhibits	an	unmistakable	relation
between	the	impact	energy	and	the	value	of	D.
The	facts	having	been	established,	it	is	worth	pondering	their	possible	causes.

Our	view	is	that	fracture	involves	an	atypical	form	of	percolation.	Let	us	recall
that,	as	a	specimen	is	pulled	apart,	the	voids	that	are	inevitably	present	around
the	inclusions	increase	in	size,	and	eventually	they	coalesce	into	sheets	that
separate	the	specimen	into	parts.	If	the	growth	of	a	void	were	independent	of	its
position,	the	percolation	would	be	as	in	Chapter	13.	Consequently,	the	fracture’s
dimension	would	take	some	universal	value	independent	of	the	material.	In	fact,
as	soon	as	the	initial	void	growth	has	coalesced	into	small	local	sheets,	the
strains	increase	on	the	supporting	ligaments	and	a	void	grows	at	a	rate	that	varies
with	position.	There	is	no	doubt	this	variability	is	structure	dependent,	hence	the
D	need	not	be	universal.



CLOUD	AND	RAIN	AREA	SHAPES	(LOVEJOY
1981,	LOVEJOY	&	B.B.M.	1983)

Lovejoy’s	remarkable	area-perimeter	relation	(Plate	115)	is	a	challenge	to	do
what	Chapter	28	had	done	for	the	Earth’s	relief,	namely,	to	generate	fractal	maps
of	clouds	or	rain	areas	that	neither	the	eye	nor	measurement	could	distinguish
from	the	meteorological	maps.
A	vital	ingredient	in	the	case	of	rain	areas	is	provided	by	the	finding	in

Lovejoy	1981,	that	the	discontinuities	in	rainfall	follow	precisely	the	same
hyperbolic	probability	distribution	as	the	discontinuities	in	commodity	prices
according	to	Mandelbrot	1963b	(see	Chapter	37).
Lovejoy	&	Mandelbrot	1983	builds	on	this	finding.	Hyperbolically	distributed

discontinuities	are	shown	to	agree	with	the	well-known	observation	that	rain
discontinuities	occur	along	near	rectilinear	“fronts.”	To	preserve	scaling,	a
suitable	list	of	exponents	is	introduced,	reminiscent	of	those	of	the	theory	of
critical	phenomena,	and	even	more	of	the	turbulence	exponents	introduced	in
Mandelbrot	19760.	The	outcome	is	extremely	rewarding.



SCALING,	FRACTALS	&	EARTHQUAKES
(KAGAN	&	KNOPOFF	&	ANDREWS)

Recall	the	assertions	in	Chapter	28,	that	the	Earth’s	relief	is	a	scaling	fractal,	and
that	it	can	be	generated	as	a	superposition	of	crude	“faults.”	Belief	in	these
assertions	prepares	one	to	be	told	that	earthquakes,	which	are	dynamic	changes
in	the	relief,	are	self-similar,	i.e.,	no	particular	scale	is	connected	with	their	time-
distance-magnitude	patterns,	and	that	their	geometry	is	fractal.	These	are	indeed
the	main	messages	that	a	student	of	fractals	retains	from	reading	(as	he	is	hereby
advised	to)	Kagan	&	Knopoff	1978,	1980,	1981	and	Andrews	1980-1981.
It	is	chastening	to	be	told	that	Omori	discovered	scaling	in	earthquakes	nearly

a	hundred	years	ago,	yet	the	bulk	of	statistical	work	on	earthquakes	persisted	in
postulating	that	the	occurrences	are	Poissonian.	Again,	little	good	can	come	(as	I
argue	in	Chapter	42)	when	a	science	yields	to	the	social	pressures	that	reward
modeling	and	theorizing	while	scorning	“mere”	description	without	“theory.”



FRACTAL	INTERFACES	IN	LITHIUM
BATTERIES	(A.	LE	MÉHAUTÉ	&	al.)

An	electric	battery	is	to	store	electricity	in	large	amounts,	and	to	discharge	it
rapidly.	Everything	else	being	fixed,	storage	capacity	is	a	volume	characteristic,
but	discharge	velocity	is	a	surface	characteristic.	This	feature	is	familiar	to	the
student	of	fractals	(Chapters	12	and	15),	and	convinced	Alain	Le	Méhauté	that
the	balance	between	capacity	and	discharge	poses	a	fractal	problem.
A	battery	whose	planar	cross	section	is	a	Peano	teragon	(e.g.,	Plate	70)	being

irrealizable,	Le	Méhauté	et	al.	1982	study	realistic	designs	theoretically,	and	also
examine	actual	batteries.	The	effectiveness	of	fractal	geometry	is	very	striking.



CRITICAL	PERCOLATION	CLUSTERS

PERCOLATION	ON	LATTICES:	TESTING	THE	MODEL	OF	CHAPTER	13.
The	specified	fractal	model	of	contact	clusters	in	Bernoulli	percolation,	as
proposed	in	Chapter	13,	cries	out	to	be	verified	empirically.	This	has	now	been
done.
Kapitulnik,	Aharony,	Deutscher	&	Stauffer	1983	studies	the	number	of	sites	in

a	cluster	at	a	distance	less	than	R	from	an	origin,	and	recovers	the	correct	D~1.9.
In	addition,	it	recovers	ξ	from	the	crossover	between	the	fractal	region	and	the
region	of	homogeneity.
PERCOLATION	IN	THIN	FILMS	OF	GOLD	AND	LEAD.	Bernoulli

percolation	is	of	course	only	a	mathematical	process.	Hammersley	introduced	it
in	the	hope	that	many	natural	phenomena	can	be	illustrated	and	clarified	thereby.
The	applicability	of	the	fractal	geometry	of	Bernoulli	percolation	was	tested	for
vile	gold	in	Voss,	Laibowitz	&	Alessandrini	1982,	and	for	noble	lead	in
Kapitulnik	&	Deutscher	1982.	For	example,	the	students	of	Au	prepared	thin
films	at	room	temperatures	by	electron	beam	evaporation	onto	30	nm	thick
amorphous	Si3N4	windows	grown	on	a	Si	wafer	frame.	Sample	thickness	was
varied	to	produce	simultaneously	a	range	of	samples	that	varied	from	electrically
insulating	to	conducting.	The	predictions	of	Chapter	13	are	satisfied	on	the	dot.



LOW	LACUNARITY	FRACTAL	MODELS	OF
SOME	FORMAL	SPACES	IN	PHYSICS	(GEFEN,

MEIR,	B.B.M.	&	AHARONY	1983)

Statistical	physics	finds	it	useful	to	postulate	spaces	of	fractional	dimension.
Mathematicians	find	these	spaces	very	upsetting,	because	they	are	nowhere
constructed,	and	their	existence	and	unicity	are	nowhere	proven.	Nevertheless,
useful	physics	is	achieved	by	assuming	they	do	exist	and	possess	certain	strong
and	desirable	properties:	they	are	translationally	invariant	and	their	momentum
integrals	and	recursion	relations	are	obtainable	by	formal	analytic	continuations
from	Euclidean	spaces.
These	spaces	puzzle	the	student	of	fractals.	On	the	one	hand,	there	exist	many

alternative	fractal	interpolated	spaces,	hence	interpolation	should	have	been
indeterminate.	On	the	other	hand,	the	fractals	which	Gefen,	Mandelbrot	&
Aharony	1980	applies	to	physics	fail	to	be	translationally	invariant.	In	that
regard,	fractals	may	seem	inferior	to	the	postulated	fractional	spaces.
A	response	was	suggested	by	the	analogous	criticism	leveled	against	my	first

model	of	the	distribution	of	galaxies.	While	it	is	impossible	for	a	fractal	to	be
exactly	translationally	invariant,	Chapters	34	and	35	show	that	one	can	come	as
close	as	desired	by	giving	a	sufficiently	low	value	to	lacunarity.
In	this	light,	Gefen,	Meir,	Mandelbrot	&	Aharony	1983	considers	a	certain

sequence	of	Sierpiṅski	carpets	(Chapter	14),	whose	lacunarity	tends	to	0.	Certain
physical	properties	are	computed,	and	the	limits	for	zero	lacunarity	are	shown	to
be	identical	to	the	properties	of	the	postulated	fractional	spaces.



SIERPINSKI	GASKET:	PHYSICISTS’	TOY

Manageable	models	are	so	attractive	to	physicists	that	every	construction	that
promises	calculations	without	the	need	for	approximation	will	attract	wide
attention.
Among	the	ramified	shapes	examined	in	Chapter	14,	the	Sierpiński	carpet	is

the	more	important	one,	but	it	is	hard	to	work	with.	But	the	Sierpiṅski	gasket	is
easy	to	manipulate.	It	yields	fun	and	profit	in	Stephen	1981,	Rammal	&
Toulouse	1982,	1983	and	Alexander	&	Orbach	1982.

	Contrary	to	habit,	I	coined	“gasket”	without	a	French	equivalent.	The
authors	of	a	mathematics	dictionary	did	not	know	that	I	had	in	mind	the	part	that
prevents	leaks	in	motors,	and	a	standard	dictionary	led	them	to	ships	and	ropes,
hence	to	baderne	or	garcette.	Since	the	word	did	not	fit,	it	was	redefined	to
apply	to	the	complement	of	what	I	had	meant!	I	prefer	tamis	(sieve).



CELLULAR	AUTOMATA	&	FRACTALS

To	show	that	global	order	can	be	generated	by	forces	that	act	solely	between
neighbors,	I	cooked	up	the	example	on	p.	328.	Someone	soon	pointed	out	that
this	example	involves	a	“cellular	automaton”	according	to	John	von	Neumann
(Burks	1970).	It	had	been	shown	by	Ulam	(Burks	1970)	that	the	output	of	such
automata	can	be	very	involved	and	appear	random.	Willson	1982,	Wolfram
1983,	and	Vichniac	1983	observe	that	this	output	can,	in	fact,	be	fractal.



ITERATION	OF	z→z2-µ	IN	COMPLEX	NUMBERS:
NEW	RESULTS	AND	PROOFS

Mandelbrot	1983p	includes	many	illustrations	for	which	space	had	lacked	in
Chapter	19,	and	reports	additional	observations.	Mandelbrot	1982s	has	been
delayed,	and	is	expected	out	in	1983.
Two	major	observations	in	Chapter	19	have	now	been	confirmed

mathematically.
Douady	&	Hubbard	1982,	Douady	1983	prove	that	the	closed	set	M	is	indeed

connected.	They	map	the	exterior	of	M	on	that	of	a	circle.
Ruelle	1982	proves	that	the	Hausdorff	dimension	of	a	Julia	dragon	is	an

analytic	function	of	the	parameter	µ.



THE	SQUARING	MAPS	IN	QUATERNIONS

Chapter	19	established	that	the	properties	of	the	map	z→z2-µ	for	real	z	are	best
understood	as	special	cases	of	its	properties	for	complex	z	and	µ,	and	that
iteration	for	complex	z	generates	unexpected	and	exciting	graphics.	Therefore,	it
was	natural	to	seek	further	insight	and	further	beauty	via	a	further	generalization
of	z.	A.	Norton	suggested	that	a	next	most	natural	environment	is	Hamilton’s
quaternions.	Having	been	introduced	in	1847,	quaternions	are	a	familiar	notion
in	both	mathematics	and	physics,	but	their	role	had	remained	peripheral.	In	the
context	of	iteration,	however,	quaternions	have	proved	extremely	fruitful	from
both	the	mathematical	and	the	esthetic	viewpoints,	as	will	be	seen	in	detail	in
forthcoming	papers	by	Norton	and	myself.
One	objection	often	directed	against	quaternions	is	that,	while	complex

numbers	insert	a	space	with	E=1	into	a	space	with	E=2,	which	can	be	visualized,
quaternions	require	a	jump	to	a	space	with	E=4,	which	cannot	be	visualized.	A
second	objection	is	that	quaternion	multiplication	is	not	commutative:	in
particular,	the	maps	z→λz(1-z),	z→z2-µ,	z→µz2-1,	and	z→µαz2µ1-α,	differ	when
z	is	a	quaternion.
To	illustrate	the	topological	interconnections	of	the	fractal	repellers	of	the

quadratic	map	in	quaternions,	new	computer	graphics	techniques	were
developed	in	Norton	1982.	The	sets	of	all	quaternions	that	fail	to	iterate	to
infinity	were	examined	in	3-dimensional	sections.	Their	complex	plane	sections
are,	in	turn,	the	fractal	dragons	of	Chapter	19.
The	noncommutativity	of	quaternion	multiplication	has	turned	out	to

transform	into	a	fascinating	and	totally	unexpected	asset.	To	explain	it,	consider
Plate	C6.	Question:	do	all	or	some	of	the	dark	yellow	domains	link	in	quaternion
space?	Answer:	in	general,	each	variant	way	of	writing	z→z2-µ	or	z→λz(1-z)
(before	moving	on	to	quaternions)	induces	totally	different	links	between	the
dark	yellow	domains.	Hence,	additional	information	is	required	to	specify	the
topological	interconnections.
For	an	example	that	avoids	clutter,	examine	Plate	467,	which	is	adapted	from

Norton	1982	and	illustrates	a	simple	case	with	a	cycle	of	size	4.	Each	major
segment	of	the	dragon	obtained	by	complex	plane	section	is	imbedded	in	a	major
segment	of	the	spatial	shape.	In	this	instance,	the	major	spatial	sections	are



nearly	rotationally	invariant,	and	they	are	surrounded	by	multiple	loosely	fitting
belts	that	connect	the	dragon’s	minor	sections.	Plate	II	shows	a	different	spatial
fractal	obtained	in	roughly	the	same	fashion.	Stein	1983	reproduces	further
illustrations.



UNIVERSALITY	AND	CHAOS:	zλ(z-1/z)	AND
OTHER	MAPS

A	contemporary	of	Fatou	and	Julia,	S.	Lattès,	singled	out	a	fourth	order	ratio	of
polynomials	whose	iterates	are	“chaotic”	in	the	whole	plane,	that	is,	not	attracted
to	any	smaller	set.	This	example	challenges	us	to	search	for	chaotic	behavior	in
lower	order	mappings.	A	second	topic	handled	in	this	section	is	that	of
universality	classes	for	the	shape	of	islands	in	λ-maps.
z→λ(z-1/z)	AND	ITS	X-MAP.	In	the	special	case	X=½,	y=-iz	follows	the	rule

y→½(y+1/y),	which	also	results	from	the	application	of	Newton’s	method	to	the
search	of	the	roots	of	z2-1.	Note	that	one	can	write	z	=	cotan	θ,	and	½(z-1/z)
becomes	(cos2θ-sin2θ)/2cosθsinθ	=	cotan2θ.	Thus,	z→½(z-1/z)	is	a	funny	way
of	writing	θ→2θ.	To	study	other	λ’s,	a	map	analogous	to	Plates	188	and	189	was
drawn.	and	part	of	it	is	shown	on	Plate	X,
We	observe	a	very	interesting	form	of	“universality:”	the	“island	molecules”

in	Plate	X	take	precisely	the	same	form	as	for	the	quadratic	mapping.	Thus,
Plates	X	and	188-189	are	built	using	the	same	“building	blocks.”	In	the	open
disc	|λ|>1,	the	iteration	of	z→(z-1/z)	converges	to	infinity	except	for	points	z0
forming	a	dust.	In	the	white	disc	|λ+i/2|<1/2,	the	iteration	has	2	limit	points.
When	λ	falls	in	one	of	the	“sprouts”	of	the	black	“corona,”	there	is	a	limit	cycle
whose	size	is	above	2	but	not	very	large.	As	to	the	λ’s	inside	the	corona	of	the	λ-
map,	they	yield	chaotic	motion.

	The	actual	calculation	was	simplified	on	the	following	presumptions.	A)
When	X	leads	to	a	very	large	cycle,	it	falls	within	a	very	small	atom	that	is	not
worth	looking	for.	B)	All	usefully	small	cycles	lie	“near”	z=0.	Thus,	any	orbit
that	moves	“far”	from	z=0	is	presumed	to	be	chaotic.	The	approximation	lacks
specific	justification,	but	the	λ-map	it	yields	is	made	of	familiar	pieces,	hence	the
method	seems	reasonable.
JULIA	SETS	OF	λ(z-1/z).	When	|λ|>1,	infinity	is	an	attractive	point,	and	the

Julia	set	is,	as	in	Chapter	19,	the	boundary	of	the	set	of	the	z-points	that	do	not
converge	to	infinity.	An	example	of	Julia	set	defined	as	the	boundary	of	the
basins	of	attraction	of	z→λ(z-1/z)	is	drawn	on	Plate	VIII,	facing	the	foreword.
λ-MAP	“UNIVERSALITY”	CLASSES.	In	many	other	λ-maps,	one	finds	the



same	“island	molecules”	as	for	z2—µ,	except	that	specific	constraints	may	create
an	atypical	“continent.”
Furthermore,	the	λ-maps	of	z→zm—λ	also	divide	into	a	continent	and	islands.

However,	each	m	induces	a	very	characteristic	shape	for	the	atoms	and	for	the
island	molecules.
When	the	local	behavior	of	z→f(z)	is	the	same	near	every	critical	z	where

f’(z)	=	0,	the	islands’	shape	is	locally	determined.	When	f(z)	behaves	differently
near	different	critical	z’s,	the	λ-map	involves	more	than	one	kind	of	“universal”
building	block.	We	seek	a	“Mendeleyev	Table”	for	this	problem.
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