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Preface to ”Mitochondrial Dysfunction in Aging and

Diseases of Aging”

Mitochondria are increasingly recognized as important players in the aging process. Most

aging-related diseases, particularly neurodegenerative diseases, involve the mitochondria.

A PubMed search for mitochondria and aging produced 348 articles from the first seven months of

2018. This is not surprising considering that mitochondria are not only involved in energy production

through oxidative phosphorylation, but also play an important role in intracellular homeostasis,

calcium balance, and the metabolism and interconversion of dietary substrates—fats, proteins, and

carbohydrates in the fed and fasting states. They signal their metabolic state to the nucleus, to other

cells and in response to stress. Mitochondria have their own protein synthetic apparatus and are able

to replicate the pathways readily disrupted in disease and aging. They are constantly involved in

fusion and fission, the balance of which is essential for cell health. These organelles participate in

apoptosis, make most of the cell’s free radicals, and are crucial for innate immunity. Mitochondrial

DNA has an estimated 10-fold greater mutation rate than nuclear DNA, and less repair capacity,

important factors in aging and cancer. Mitochondria are impacted by environmental factors and

toxins, and different mtDNA haplogroups that originally adapted to different geographic origins are

important contributors to disease. As mitochondria play a critical metabolic role in all organ systems,

they are particularly impacted by disease and contribute to the aging process itself. The invited

review articles in this supplement cover most of the common diseases of aging. This edition of Biology

aims to review the current state of knowledge about the role of mitochondria in the aging process.

The international group of contributing authors includes many leading experts in their fields.

Richard H. Haas

Special Issue Editor
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Mitochondria have been increasingly recognized as the important players in the aging process.
Most aging-related diseases, particularly, neurodegenerative diseases, have mitochondrial involvement.
A PubMed search for mitochondria and aging lists 704 articles in 2018. This is not surprising as
mitochondria are involved not only in energy production through oxidative phosphorylation but
also play an important role in intracellular homeostasis, calcium balance, and the metabolism and
interconversion of our dietary substrates, fats, proteins, and carbohydrates, in the fed and fasting
states. They have an important role in signaling their metabolic state to the nucleus and to other cells in
response to stress. Mitochondria have their own protein synthetic apparatus and replicate themselves,
pathways readily disrupted in disease and aging. They are constantly involved in fusion and fission,
the balance of which is essential for cell health. These organelles participate in apoptosis, they make
most of the cell’s free radicals, and they are crucially important for innate immunity. Mitochondrial
DNA has an estimated 10-fold greater mutation rate than nuclear DNA and less repair capacity, and this
plays an important role in aging and cancer. Mitochondria are impacted by environmental factors
and toxins, and different mtDNA haplogroups originally adapted to geographically different origins
make an important background contribution to disease. As mitochondria play a critical metabolic role
in all organ systems, they are particularly impacted by disease and contribute to the aging process
itself. The invited review articles in this special supplement cover most of the common diseases of
aging. Enthusiasm for this supplement in Biology was driven by the opportunity to review the current
state of knowledge about the role of mitochondria in the aging process. The international group of
contributing authors includes many of the leaders in their fields.

This special issue starts with the discussion on the role of mitochondria in a number of critical
organ systems; starting with the immune system, the cell danger response and healing, skin aging,
the role of coenzyme Q and vitamin D, mitochondria and the retina, and drug toxicity in the geriatric
population. The focus then moves to specific diseases of aging the role of mitochondria in diabetes,
cancer, cardiovascular disease, and neurodegenerative disorders;amyotrophic lateral sclerosis (ALS),
multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. Finally, an important paper focusing
on muscle and aging points out the important therapeutic role of exercise.

Increasingly the role of mitochondria in innate immunity has been studied but, as noted by
Peter McGuire [1], the importance of mitochondrial dysfunction in aging and immunity is less
discussed. He provides an overview of three main effects of aging on this system, inflammation
with aging, susceptibility to viral infections, and declining T-cell function. He points out the role
of mitochondrial damage associated molecular patterns (mtDAMPs), which when released from
mitochondria as a consequence of stress, apoptosis, or necrosis, trigger caspase-1 activation with the
release of pro-inflammatory cytokines. He discusses the increased susceptibility of older adults to viral
infections, and the role that mitochondria play in innate immune signaling against viruses and the
production of protective type I interferons. Finally, he discusses the hypothesis that T-cell dysfunction
in aging is due to a decline in mitochondrial function.

Biology 2019, 8, 48; doi:10.3390/biology8020048 www.mdpi.com/journal/biology1
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Robert Naviaux [2] discusses a holistic new model of incomplete healing and its role in aging.
He explores the role of mitochondria in the healing process and the effects of aging. He points out that
healing involves the cell danger response and that metabolic cross-talk between mitochondria and the
nucleus, between neighboring and distant cells via signaling metabokines regulates the completeness
of healing. He discusses the causes of cellular stress and the role of mitochondria in the cell danger
response, pointing out the critical roles of purinergic and sphingolipid signaling pathways. Finally,
this paper discusses that cellular arrest in the various phases of the cell danger response leads to chronic
inflammatory and pain syndromes, to susceptibility to bacterial and viral infections, to a variety of
aging-related diseases as well as autoimmune disorders, and to neurodegenerative diseases.

Isabella Peixoto de Barcelos and Richard H. Haas [3] review, from a translational perspective,
the data regarding the association of CoQ10 and aging. They discuss the changes in coenzyme Q levels
during the aging process and its putative contribution to aging diseases through a wide variety of
metabolic roles. CoQ10 functions in membranes throughout the cell where antioxidant and signaling
roles predominate. They explore the growing evidence that oxidative stress is a major component
of cellular senescence, a multifactorial process that involves DNA, protein, and lipid damage and
activation of signaling pathways associated with aging. They discuss the state of the evidence that
CoQ10 supplementation may be helpful for diseases of aging and aging itself.

Roisin Stout and Mark Birch-Machin [4] review the increasing evidence that mitochondrial
dysfunction and oxidative stress contribute to skin aging. They discuss the important mitochondrial
role and energy production in cell signaling, wound healing, pigmentation, vasculature homeostasis,
and hair growth, as well as defense against infection. They explore the free radical theory of aging in
the skin and point out that mtDNA deletions are increased in aged UV exposed epidermis. They review
the role of calorie restriction on skin models of aging and the role of mitochondria in the pigmentary
changes of aging. Finally, they discuss the role of mitochondria in photoaging, effects of pollution,
stress-induced skin wrinkle formation, and hair loss and greying.

Sunil J. Wimalawansa [5] explores the role of vitamin D and its metabolites in the aging process.
He discusses newly recognized functions of vitamin D as controllers of systemic inflammation, oxidative
stress, and mitochondrial respiratory function. He reviews the role of the active metabolite 1,25(OH)2D
as a gene regulator, inhibiting NF-κB expression, which is thought to play a role in many aging-related
disorders, including inflammation and cancer. He explores the evidence that the vitamin D modulates
mitochondrial function and functions as a powerful antioxidant. He points out that hypovitaminosis
D increases the incidence and severity of several age-related common diseases and metabolic disorders
that are linked to oxidative stress, including obesity, insulin resistance, type 2 diabetes, hypertension,
pregnancy complications, memory disorders, osteoporosis, autoimmune diseases, certain cancers,
and systemic inflammatory diseases. Finally, the importance of worldwide vitamin D supplementation
is emphasized.

Janis T. Eells [6] reviews the role of mitochondria in one of the body’s most bioenergetic organs,
the retina. The eye is exposed to visible light and has extensive antioxidant protective mechanisms.
Aging retinal pigment epithelial cells have impaired mitochondrial function with increased reactive
oxygen species production. She notes that aging-related mitochondrial dysfunction causes increased
oxidative injury, which, coupled with impaired repair mechanisms, results in retinal dysfunction and
retinal cell loss, leading to visual impairment. Janis T. Eells discusses the most common cause of
age-related blindness in developed countries, that is, age-related macular degeneration. She discusses
the relationship between mitochondrial function and complement factor H, mutations of which
are a putative risk factor for age-related macular degeneration. Finally, she discusses the role of
mitochondrial dysfunction in diabetic retinopathy and glaucoma.

Yvonne Will, Jefry E. Shields and Kendall B. Wallace [7] bring together extensive academic
and pharmaceutical research experience to discuss the role of mitochondria in drug toxicity in the
elderly. This is an under-explored topic despite its great importance. They note that ‘Drug-induced
mitochondrial toxicity has been described for many different drug classes and can lead to liver, muscle,
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kidney, and central nervous system injury and, in rare cases, to death’. They discuss the progressive loss
of mitochondrial function with age with decreased mitophagy as a cellular surveillance system failure.
They point out that drug mitochondrial toxicity has often not been identified in pre-clinical studies
because young healthy animals are used rather than aged animals with more susceptible mitochondria.
For the many drug classes, the particular drugs with most severe mitochondrial toxic effects can be
revealed by in vitro systems where cells are forced to use mitochondrial respiration. Polypharmacy
in the elderly, coupled with access to over the counter drugs, which inhibit mitochondrial function,
compounds the problem of mitochondrial toxicity. A very useful table of commonly used drugs and
their mitochondrial effects has been provided. Finally, the important effects of lifestyle and diet on
susceptibility to mitochondrial toxicity is discussed.

Magdalene K Montgomery [8] provides a valuable review of the role of mitochondria in obesity
and type 2 diabetes. A discussion of the role of mitochondria in diabetic organ damage focuses
on diabetic cardiomyopathy. A review of the role of mitochondria in insulin resistance finds that
while most of the antidiabetic drugs increase mitochondrial biogenesis with an improvement in
insulin efficacy, particularly, those that modulate peroxisome proliferator-activated receptors, there are
mitochondrial toxic effects caused by many antidiabetic drugs. Finally, she explores the beneficial or
detrimental role of intercellular exchange of mitochondria, mitochondrial DNA, and mitochondrial
fragments through the exchange of exosomes and through nanotubes.

Jason Duran, Armando Martinez and Eric Adler [9] discuss cardiovascular manifestations of
mitochondrial disease and the role of mitochondria in myocardial ischemia and diabetic cardiomyopathy.
Cardiomyocytes are among the most energy dependent cells in the body. They review the mitochondrial
changes with aging and the effects on the heart. They then discuss the cardiac and cardiovascular
manifestations of canonical mitochondrial syndromes. In these disorders, hypertrophic and dilated
cardiomyopathies are commonplace, and a variety of cardiac conduction defects can be life-threatening.
A discussion of mitochondrial dysfunction in cardiac ischemia details the role of mitochondrial
dysfunction and oxidative stress in reperfusion injury, which increases the size of myocardial infarction
through necrosis and mitochondrially mediated apoptosis. Finally, the mitochondrial role in diabetic
cardiomyopathy is discussed.

The next article by Nima B. Fakouri, Thomas Lau Hansen, Claus Desler, Sharath Anugula and
Lene Juel Rasmussen [10] addresses the interactions between mitochondria and cancer. The authors
focus their review on genomic instability, dysregulation of cellular energetics, and mitochondrial
function. They note that DNA damage, secondary to oxidative stress produced by reactive oxygen
and nitrogen species, activates the DNA damage response (DDR), which is an energy-dependent
process. They then elegantly discuss how the DDR can both activate and impair mitochondrial function,
the latter through poly (ADP-ribose) polymerase enzyme hyper-activation. They next discuss the
role of mitochondria-nuclear signaling in aging and cancer, along with the role of ROS. Mitochondria
have an epigenetic role, and, in cancer, mtDNA mutations are associated with a poor prognosis—and
they note a correlation between mitochondrial respiration, cytosolic dNTP pools, and chromosomal
instability. In summary, the connection between mitochondria and cancer is complex but, as the
authors note, ‘the hallmarks of cancer include genomic instability, dysregulation of cellular energetics,
and mitochondrial dysfunction, which also are common pathways important for cellular aging’.

Moving on to neurodegenerative diseases, the review, by Veronica Granatiero and
Giovanni Manfredi [11], discusses the role of mitochondrial dysfunction in the devastating disorder
amyotrophic lateral sclerosis (ALS). They note that neurons are very energy dependent, and
mitochondrial transport and turnover is critical for neuronal and axonal health. In both genetic
ALS and 90% of sporadic cases, mitochondrial dysfunction is manifest by changes in fusion, fission,
and transport. These protein ‘motors’ are ATP dependent. They note that in ALS, microtubular
kinesin anterograde mitochondrial transport and dynein retrograde transport are both disrupted. The
ATP/ADP ratio is an important component of the signaling system for mitochondrial transport. The
hypothesis that protein aggregates in ALS bind to and damage mitochondria causing dysfunction
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is discussed. Gene mutations linked to ALS are involved in mitochondrial quality control. The
authors note that a recent study shows that the actin cytoskeleton plays a part in isolating damaged
mitochondria from the rest of the network. Mitophagy is increased, and Parkin levels are decreased, in
animal models and human ALS, suggesting that the decline in Parkin protein is related to mitophagy.
Whether mitochondrial dysfunction in ALS is a cause or an effect remains unclear, but mitochondrial
fusion, fission, and transport have an important role in this disease.

Isabella Peixoto de Barcelos, Regina M. Troxell and Jennifer S. Graves [12] discuss the role of
mitochondria in multiple sclerosis (MS). Decreases in oxidative phosphorylation and mitochondrial
transport have been documented. MS is an inflammatory disorder with acute and chronic
phases, involving both mitochondrial innate immunity and chronic inflammation followed by
neurodegeneration. They note that mitochondrial dysfunction occurs as a consequence of inflammation
and oxidative stress with ROS production. Nucleic acid, protein, and lipid damage ensue. A fall in
ATP production ultimately triggers mitochondrially mediated apoptosis. Mitochondrial stress impairs
oligodendrocyte function. Studies in human cortex confirm increased levels of mtDNA mutations,
mtDNA depletion, and impairment in complex I and III enzyme activity. Mitochondrial changes in
animal models are reviewed. Experimental autoimmune encephalomyelitis, an animal model of MS,
shows mitochondrial swelling and dysfunction with some evidence for antioxidant rescue. The authors
note that some mtDNA diseases due to point mutations, such as Leber’s Hereditary Optic Neuropathy,
can have an MS phenotype, and MS-like demyelinating disease has been reported in a variety of
mitochondrial-nuclear gene defects, including PolG and OPA1. Large population studies have failed to
confirm an increased incidence of mtDNA mutations in the MS population, although the JT haplogroup
does have an increased MS risk. Finally, the authors discuss the role of mitochondrial therapies in MS.

Chun Chen, Doug M. Turnbull and Amy K. Reeve [13] provide a current review of the mitochondrial role
in Parkinson’s disease (PD). Evidence for mitochondrial involvement stretches back 40 years. They discuss
mitochondrial pathways involved in PD and the rapid growth of knowledge resulting from genomic
sequencing of familial cases. Evidence for complex I deficiency in animal models and human disease is
discussed. High levels of mtDNA clonal deletions are found in substantia nigra neurons in normal aging and
PD, with ROS as a likely contributing factor. This aging-related mtDNA pathology in substantia nigra likely
contributes to susceptibility to PD, and alpha-synuclein can increase mitochondrial membrane permeability,
ROS production, and cell death. The authors discuss recent data on cytosolic calcium oscillations with
the import of calcium into mitochondria, which likely plays a role in cell death. Mutations in two genes
VSP35 and CHCHD2, which impair the mitochondrial function, are responsible for autosomal dominant PD.
These and the roles of mutations in PINK1 and Parkin in mitophagy are discussed. Finally, we are treated to
a detailed discussion of mitochondrial turnover and dynamics and the putative role of protein aggregation
in PD. The authors conclude that mitochondrial complex I deficiency plays a key role in PD, and the likely
causes are elegantly discussed.

Ian Weidling and Russell H. Swerdlow [14] review the evidence for a mitochondrial role in
Alzheimer’s disease (AD). Starting with longstanding evidence of brain hypometabolism, they discuss
findings of mitochondrial electron transport enzyme deficiencies and, in particular, cytochrome oxidase
(COX) deficiency in Alzheimer’s brain. Recent studies confirm mitochondrial structural abnormalities
in Alzheimer’s brain, likely the result of a fusion-fission malfunction, which may be related to amyloid
beta accumulation. An interesting reciprocal relationship between mtDNA deletions and aging noted
in AD brain is discussed, and the evidence for increased oxidative injury in AD brain compared
to age-matched controls is reviewed. Cybrids created from AD mtDNA show similar changes to
the brain with COX deficiency. A mitochondrial interaction with Alzheimer’s protein aggregates is
discussed. Mitochondrial toxins can induce the formation of AD-like Tau alterations, and, in mouse
models, mitochondrial dysfunction precedes amyloid plaque accumulation. The authors note that it
is unclear whether mitochondrial changes are the cause or effect of abnormal protein accumulation
in AD. Amyloid beta inhibits COX activity, and Tau accumulation disrupts mitochondrial transport.
ApoE4 overexpression impairs electron transport complexes. The role of mitochondria in clearing

4



Biology 2019, 8, 48

protein aggregates is reviewed. Finally, the multiple effects of mitochondrial dysfunction and the
Integrated Stress Response (activated in AD) on gene expression are discussed. The authors conclude
that given the multiple lines of evidence of mitochondrial dysfunction in AD—this is a reasonable
therapeutic target.

This special edition on mitochondrial dysfunction in aging concludes with a discussion of treatment.
Sarcopenia is an inevitable consequence of aging. Mats I Nilsson and Mark A Tarnopolsky [15] detail
the role of exercise as a treatment for mitochondrial aging. An overview of mitochondrial evolution
leads on to a discussion of the homeostatic role of mitochondria and their role in defense against the
three main aging changes, oxidative injury, protein aggregation, and inflammation. An integrated
system’s hypothesis of aging is developed with mitochondria playing a central role. The role of
mitochondrial ROS is discussed, and the authors point out that oxidative phosphorylation decline is
an aging phenomenon in all species along with a variety of structural and functional mitochondrial
changes. Age-related protein aggregation and lipofuscin accumulation result in an accumulation of
cellular debris impervious to lysosomal and proteasomal degradation. The mitochondrial role in the
chronic inflammation of aging is explored. The authors then turn to the role of exercise in correcting the
cellular decline of aging. A convincing case is made for the benefit of exercise, slowing aging-related
changes, including reducing intracellular danger signals, rejuvenating mitochondria, assisting with
intracellular garbage clearance, and decreasing aging-related inflammation.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Mitochondria are ancient organelles that have co-evolved with their cellular hosts,
developing a mutually beneficial arrangement. In addition to making energy, mitochondria
are multifaceted, being involved in heat production, calcium storage, apoptosis, cell signaling,
biosynthesis, and aging. Many of these mitochondrial functions decline with age, and are the basis for
many diseases of aging. Despite the vast amount of research dedicated to this subject, the relationship
between aging mitochondria and immune function is largely absent from the literature. In this review,
three main issues facing the aging immune system are discussed: (1) inflamm-aging; (2) susceptibility
to infection and (3) declining T-cell function. These issues are re-evaluated using the lens of
mitochondrial dysfunction with aging. With the recent expansion of numerous profiling technologies,
there has been a resurgence of interest in the role of metabolism in immunity, with mitochondria
taking center stage. Building upon this recent accumulation of knowledge in immunometabolism,
this review will advance the hypothesis that the decline in immunity and associated pathologies are
partially related to the natural progression of mitochondrial dysfunction with aging.

Keywords: aging; mitochondria; inflammation; innate immunity; adaptive immunity; immunosenescence

1. Introduction

The ancestry of the mitochondrion originated ~2.5 billion years ago within the bacterial phylum
α-Proteobacteria, during the rise of eukaryotes [1]. The endosymbiotic theory, advanced with microbial
evidence by Dr. Lynn Margulis in the 1960s, proposed that one prokaryote engulfed another resulting
in a quid pro quo arrangement and survival advantage [2]. The ability of mitochondria to convert
organic molecules from the environment to energy led to the persistence of this pact.

Since most cells contain mitochondria, the clinical effects of mitochondrial dysfunction are
potentially multisystemic, and involve organs with large energy requirements [3]. In addition to
making energy, the basis of life, mitochondria are also involved in heat production, calcium storage,
apoptosis, cell signaling, biosynthesis, and aging—all important for cell survival and function [4–7]. A
decline in mitochondrial function and oxidant production has been connected to normal aging and
with the development of a variety of diseases of aging. These topics are explored more thoroughly in
other articles in this special edition. While the human immune system undergoes dramatic changes
during aging, eventually progressing to immunosenescence [8], the role of mitochondrial dysfunction
in this process remains largely absent in the literature. Consequently, the purpose of this review is
to highlight three important issues in the aging immune system: (1) inflammation with aging; (2)
susceptibility to viral infections; (3) impaired T-cell immunity. These clinical phenotypes will be related
to our current knowledge on the role of the mitochondria in immune function. As the associations
discussed are largely speculative, it is hoped that this review will serve as a stimulus for further
investigation into these issues.
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2. Is There a Mitochondrial Etiology for “Inflamm-Aging”?

The term “inflamm-aging” (IA) refers to a low-grade, chronic inflammatory state that can be
found in the elderly [9]. IA increases morbidity and mortality in older adults, and nearly all diseases
of aging share an inflammatory pathogenesis including Alzheimer’s disease, atherosclerosis, heart
disease, type II diabetes, and cancer [9]. Nevertheless, the precise etiology of IA and its causal role in
contributing to adverse health outcomes remain largely unknown.

The ability of the innate system to respond to a wide variety of pathogens lies in germline-encoded
receptors, whose recognition is based on repetitive molecular signatures. These pattern recognition
receptors (PRRs) are present on the cell surface and intracellular compartments. Toll-like receptors
(TLRs), retinoic acid-inducible gene I-like receptors (RLRs), nucleotide oligomerization domain-like
receptors (NLRs) and cytosolic DNA sensors (cGAS and STING) are prime examples [10]. Ligands
for these receptor systems comprise pathogen associated molecular patterns (PAMPs) and damage
associated molecular patterns (DAMPs) [11]. PAMPs are derived from components of microorganisms
and are recognized by innate immune cells bearing PRRs. In contrast to PAMPs, DAMPs are endogenous
“danger signals” that are released by cells during stress, apoptosis or necrosis. DAMPs can arise
from a variety of components normally sequestered to the mitochondria, when upon release, induce
inflammation via recognition by the same PRRs that recognize PAMPs [12,13]. Events downstream
of PRR engagement include caspase-1 activation with the release of pro-inflammatory cytokines [14].
Examples of mitochondrial DAMPs (mtDAMPs) include cardiolipin, n-formyl peptides (e.g., fMet),
mitochondrial transcription factor A (TFAM), adenosine triphosphate (ATP), reactive oxygen species
(mtROS), and mitochondrial DNA (mtDNA) (Figure 1). From an evolutionary standpoint, select
mitochondrial products produce inflammation due to their prokaryotic origins: e.g., cardiolipin (TLR),
fMet (formyl peptide receptor 1, FPR1), and mtDNA (TLR, NLR, cGAS) [15–22]. However, mtDAMPs
are not just limited to bacterial mimics. TFAM, a nuclear gene and key regulator of mtDNA transcription
and replication, activates immune cells via receptors for advanced glycation end products (RAGE) and
TLR9 [23,24]. Products of oxidative phosphorylation (OXPHOS) can also stimulate innate immune cells.
Released from apoptotic or necrotic cells, ATP binds to purigenic receptors initiating inflammation [25],
while mtROS modifies core immune signaling pathways involving hypoxia inducible factor 1 alpha
(HIF1α) and nuclear factor kappa light chain enhancer of activated B-cells (NFkB) [26,27].

mtDAMPs contribute to a host of inflammatory diseases, including sepsis, systemic inflammatory
response syndrome (SIRS), ischemic reperfusion injury, and aging [28]. One of the consequences of
failing mitochondria due to aging, beyond mtROS, is the release of mtDNA. Plasma levels of mtDNA
increase gradually after the fifth decade of life, correlating with elevated levels of pro-inflammatory
cytokines (i.e., TNF-α, IL-6, RANTES, and IL-1ra) [29]. These data indicate that mtDNA may promote
the production of pro-inflammatory cytokines in aging. Because cell stress, senescence and death are a
part of the pathophysiology of aging [30], designing new therapeutic strategies against circulating
mtDNA, or other mtDAMPs, or their cognate receptors (e.g., TLRs or FPR1) may be a viable strategy to
approaching IA and its associated conditions.
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Figure 1. Mitochondrial damage associated molecular patterns (DAMPs). DAMPs derived from
mitochondrial components may be released during cellular injury, apoptosis or necrosis. Once these
mitochondrial components are released into the extracellular space, they can lead to the activation of
innate and adaptive immune cells. The recognition of mitochondrial DAMPs involves toll-like receptors
(TLR), formyl peptide receptors (FPR) and purigenic receptors (P2RX7). By binding their cognate
ligands or by direct interaction (i.e., reactive oxygen species, ROS), intracellular signaling pathways
such as NFkB and the NLRP3 inflammasome become activated resulting in a proinflammatory response.
TLR4 = toll-like receptor 4, TLR9 = toll-like receptor 9, P2RX7 = purigenic receptor, FPR1 = formyl
peptide receptor 1, NLRP3 =NLR Family Pyrin Domain Containing 3, fMet =N-formylmethionine,
mtROS =mitochondrial reactive oxygen species, mtDNA =mitochondrial DNA, Tfam = transcription
factor A, mitochondrial, RAGE = receptors for advanced glycation end-products, NFkB = nuclear factor
kappa-light-chain-enhancer of activated B cells.

3. Is Increased Susceptibility to Viral Infections Related to Depressed Mitochondrial Anti-Viral
Signaling Pathways?

In general, older adults are more susceptible to a variety of viral infections, especially respiratory
viral infections, resulting in high morbidity and mortality. For example, adults over the age of 65 exhibit
a vulnerability to influenza A virus (IAV), and account for ≥90% of IAV-related deaths annually [31,32].
Type I interferons (e.g., IFN-α and IFN-β) are essential cytokines involved in the host antiviral response.
Secreted by numerous cell types such as lymphocytes, monocytes, macrophages, dendritic cells,
fibroblasts, endothelial cells, osteoblasts and others, type I interferons: (1) limit viral spread by inducing
antiviral states in infected and neighboring cells; (2) stimulate antigen presentation and natural killer
cell function; and (3) promote antigen-specific T and B cell responses and immunological memory.
Interestingly, mitochondria play a major part in innate immune signaling against viruses and the
production of type I interferons and will be discussed further.

RLRs (e.g., RIG-I and MDA5) are cytosolic receptors that recognize viral RNA. Consequent
to binding viral RNA, RIG-I and MDA5 mobilize the mitochondrial antiviral signaling protein
(MAVS) [33,34]. MAVS is a 56 kDa protein which contains an N-terminal caspase recruitment
domain (CARD), a proline-rich region and a C-terminal transmembrane domain. Anchored on
the outer membrane of the mitochondria, peroxisomes and mitochondrial associated membranes
(e.g., endoplasmic reticulum), MAVS assembles into prion-like aggregates following RIG-I or MDA5
binding (Figure 2). MAVS aggregates serve as a scaffold to recruit various TNF receptor associated
factors (TRAFs), resulting in phosphorylation and nuclear translocation of interferon regulatory factors
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(IRFs) [35]. Downstream of MAVS, IRF3, IRF5 and IRF7 bind to their cognate promoters, leading to the
production of type I interferons [36]. The localization of MAVS to the outer mitochondrial membrane is
not coincidental. MAVS activity has been found to be dependent upon intact mitochondrial membrane
potential, and by extension OXPHOS function [37].

 

Figure 2. Mitochondrial antiviral response. The recognition of viral nucleic acids involves mitochondria
and intact membrane potential (ψm). RIG-I and MDA5 recognize cytoplasmic viral nucleic acids,
leading to the oligomerization of MAVS. MAVS then sets in motion a signaling pathway that eventually
leads to the phosphorylation (*P) of IRF3/7 with subsequent induction of IFNα to offer antiviral cellular
protection. RIG-I = retinoic acid inducible gene I, MDA5 = melanoma differentiation-associated
protein 5, MAVS =mitochondrial antiviral-signaling protein, TRAFs = TNF receptor associated factors,
TBK1 = TANK binding kinase 1, IKKε = inhibitor of nuclear factor kappa-B kinase subunit epsilon, IRF
3 = interferon response factor 3, IRF 7 = interferon response factor 7, INFα = interferon alpha.

To date, studies addressing MAVS function during aging and its relationship to waning antiviral
immunity are lacking. Decreased mitochondrial membrane potential, mitochondrial dysfunction and
declining mitophagy occur in a variety of aging cell types [38,39], raising the question of whether
MAVS dysfunction can occur due to mitochondrial failure with aging. Mitochondrial respiratory
capacity is impaired in aging monocytes [40] as is phosphorylation of IRF3 and IRF7, suggesting a link
with MAVS [41]. As a result, type I IFN synthesis is significantly lower in dendritic cells and monocytes
from aging individuals [42,43]. In addition to a decline in mitochondrial respiration, oxidative stress,
another consequence of aging, may also be involved in this process [43].

4. Is Impaired T-Cell Immunity in Aging Related to a Decline in Mitochondrial Function?

Aging-related decline in immune function (i.e., immunosenescence) renders older individuals
more vulnerable to infectious diseases and cancer, resulting in increased morbidity and mortality.
Besides increased susceptibility to infection, vaccine efficacy is significantly reduced in the elderly,
limiting the utility of prophylaxis [44,45]. Undeniably, profound changes in T-cell function are evident
in older individuals, and these changes may be related to a decline in mitochondrial function.

T-cells play a central role in the coordination of adaptive immune responses and cell-mediated
immunity. The ability of T-cells to fulfill this role is dependent upon rapid cellular proliferation
and differentiation. In response to infection, T-cells proliferate every 4–6 h, generating >1012 cells
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in one week [46,47]. This is accompanied by an increase in size, DNA remodeling, up-regulation of
transcription factors and effector molecules, and increased expression of surface proteins [48,49], thus
necessitating a large metabolic demand. To accomplish this task, metabolic fuels including fats, sugars
and amino acids are actively transported across the cell membrane to feed the increase in energetic
demands [50,51]. Along with this increased transport, T-cells undergo metabolic reprogramming
during their transition from a naïve state to activated and differentiated cell types (e.g., effector,
regulatory and memory cells).

The diverse roles played by mitochondria in T-cell activation emphasizes the potential mechanisms
by which aging-related mitochondrial decline may contribute to immune dysfunction. Following
stimulation of the T-cell receptor, T-cells undergo substantial changes in intermediary metabolism
including an increase in glycolysis and OXPHOS [52–57]. In the presence of oxygen, pyruvate produced
via glycolysis is fully oxidized in the mitochondria for energy in many cell types [58,59]. In T-cells, a
significant proportion of glucose is not oxidized, but rather fermented to lactate from pyruvate via
lactate dehydrogenase. This is done despite the presence of oxygen, and is termed aerobic glycolysis or
Warburg metabolism [50,56,60]. Although Warburg metabolism is viewed as energetically inefficient,
the rate of glycolysis is 10–100 times faster than glucose oxidation by the mitochondria, yielding
equivalent amounts of ATP [61]. The additional payoff of Warburg metabolism lies in pathways that
are branch points off of glycolysis (e.g., pentose phosphate pathway) which yield reducing equivalents
for biosynthesis and nucleotides. Despite this adoption of the Warburg phenotype, OXPHOS is
still required for T-cell activation [57]. ATP derived from the mitochondrial respiration promotes
enhanced glycolysis as well as the initiation of proliferation in activated T-cells [62]. While pyruvate is
mostly diverted to lactate rather than acetyl-CoA via pyruvate dehydrogenase, TCA function and the
generation of reducing equivalents in highly proliferating cells is still maintained through anapleurosis:
glutamine is converted to α-ketoglutarate via glutaminolysis [63,64]. Bioenergetic studies of aging
tissues are consistent with a progressive decline in mitochondrial respiratory function due to a decrease
in respiratory complex activity, mitochondrial membrane potential, and impaired mitophagy [39,65].
As a result, impaired OXPHOS results in reduced ATP production, thus potentially limiting glycolysis,
biosynthesis and the attainment of biomass during T-cell activation and proliferation.

Besides engaging in bioenergetics, mitochondria also function in T-cell activation by modulating
secondary messengers including calcium (Ca2+) and reactive oxygen species (ROS). In activated T-cells,
mitochondria localize to the immune synapse, and where they regulate Ca2+ flux [5,6]. In response
to this calcium flux, ROS production via complex III of the respiratory chain is amplified, leading to
nuclear factor of activated T-cells (NFAT) activation and subsequent interleukin-2 (IL-2) production [66].
Aged T-cells show reduced Ca2+ signaling, which could be partly due to deficits in Ca2+ regulation
found in mitochondria of aged cells [67,68], theoretically yielding perturbations at the immune synapse
causing diminished T-cell signaling and activation.

Depending on the cytokine milieu, helper T-cells (Th), marked by the surface expression of CD4,
differentiate into various effector subsets comprising T-helper 1 (Th1), T-helper 2 (Th2), T-helper 17
(Th17), regulatory T-cells (Treg). Each of these T-cell subsets are unique in their responsibilities and are
identified by their cytokine signatures. Accompanying these functional distinctions are differences
in metabolic reprogramming (Figure 3). For example, for T-cells subsets involved in inflammation
(e.g., Th1 and Th17), the Warburg metabolism instituted at T-cell activation persists [69]. Despite
this primary use of glycolysis, intact OXPHOS is still necessary for their function [57]. The effects
of mitochondrial dysfunction may be more readily seen in regulatory (Treg) and memory (Tmem)
T-cells. Tregs, which serve to modulate the immune system and maintain tolerance, revert back to
OXPHOS as their main pathway for generating energy upon differentiation [69]. Tmem follow a
similar metabolic path. Tmem are critical for adaptive immune responses characterized by robust
responses to secondary immune challenges. Unlike effector T-cells, Tmem do not undergo extensive
proliferation and produce little or no cytokines. As such, the metabolic profile of Tmem are essentially
catabolic, relying on OXPHOS and fatty acid oxidation [70,71]. Therefore, it is not surprising to find
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that CD8+ cytotoxic memory T-cells have high respiratory capacity and increased mitochondrial mass,
which allows them to rapidly reactivate upon re-exposure to their cognate antigens [62,72]. Given the
age-related decline in mitochondrial function as described above, T-cell subsets which are critical for
immunosurveillance and the clearance of invading pathogens could be functionally impaired and
may partially explain the vulnerability to infection and cancer with aging [57]. Emerging data also
suggest that aging significantly affects Treg frequencies, subsets and function [73], potentially leading
to the increased incidence of autoimmunity, oftentimes seen with aging [74]. As noted above, Tmem
also rely heavily on OXPHOS. Therefore, aging-related deficiencies in Tmem may also be traced to
declining OXPHOS, manifesting as impaired immune memory to novel antigens and suboptimal
boosts to existing memory [75].

Figure 3. T-cell activation and differentiation involved metabolic reprogramming. At rest, naïve
T-cells primarily use OXPHOS to derive their energy. Following activation, T-cells switch to Warburg
metabolism and glutaminolysis to support their proliferative needs. Differentiation into T-helper
subsets can involve either the maintenance of the Warburg phenotype (i.e., Th17, Th1, Th2), or the
reversion to OXPHOS with FAO (i.e., Treg, Tm) as an important fuel. FAO = mitochondrial fatty
acid oxidation, OXPHOS = oxidative phosphorylation, Th17 = T-helper cell 17, Th1 = T-helper cell 1,
Th2 = T-helper cell 2, Treg = regulatory T-cells, Tm =memory T-cells.

5. Conclusions

Virtually every country in the world is experiencing the challenges associated with accelerated
growth in the aging population. With this graying of the population comes an increased incidence
in diseases of aging, many of which have an immune component. As a result, understanding
the pathophysiology of diseases of aging is now more important than ever. In this review, three
main immune issues prevalent in the aging population were addressed: (1) inflamm-aging; (2)
increased vulnerability to infection; and (3) declining T-cell immunity. The role of the mitochondria in
inflammation and immunity, combined with the knowledge of a decline in mitochondrial function
with aging, has been synthesized in this review in an effort to partially explain the immune phenotype
associated with aging. However, further examination of this relationship is needed. As the methods of
inquiry into mitochondrial biology continue to expand, so will investigations into the relationship
between this ancient organelle and immunity in the aging population.
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Abstract: The rate of biological aging varies cyclically and episodically in response to changing
environmental conditions and the developmentally-controlled biological systems that sense and
respond to those changes. Mitochondria and metabolism are fundamental regulators, and the cell is
the fundamental unit of aging. However, aging occurs at all anatomical levels. At levels above the cell,
aging in different tissues is qualitatively, quantitatively, and chronologically distinct. For example,
the heart can age faster and differently than the kidney and vice versa. Two multicellular features of
aging that are universal are: (1) a decrease in physiologic reserve capacity, and (2) a decline in the
functional communication between cells and organ systems, leading to death. Decreases in reserve
capacity and communication impose kinetic limits on the rate of healing after new injuries, resulting
in dyssynchronous and incomplete healing. Exercise mitigates against these losses, but recovery times
continue to increase with age. Reinjury before complete healing results in the stacking of incomplete
cycles of healing. Developmentally delayed and arrested cells accumulate in the three stages of the cell
danger response (CDR1, 2, and 3) that make up the healing cycle. Cells stuck in the CDR create physical
and metabolic separation—buffer zones of reduced communication—between previously adjoining,
synergistic, and metabolically interdependent cells. Mis-repairs and senescent cells accumulate,
and repeated iterations of incomplete cycles of healing lead to progressively dysfunctional cellular
mosaics in aging tissues. Metabolic cross-talk between mitochondria and the nucleus, and between
neighboring and distant cells via signaling molecules called metabokines regulates the completeness
of healing. Purinergic signaling and sphingolipids play key roles in this process. When viewed
against the backdrop of the molecular features of the healing cycle, the incomplete healing model
provides a new framework for understanding the hallmarks of aging and generates a number of
testable hypotheses for new treatments.

Keywords: cell danger response; healing cycle; mitochondria; purinergic signaling; metabokines;
sphingolipids; integrated cell stress response; de-emergence; crabtree effect; pasteur effect

1. Introduction

Some of the oldest [1], and the most recent [2,3] scientific publications on the biology of aging have
focused on nutrition and metabolism as prime drivers. Mitochondria are located at the hub of the wheel
of cellular metabolism. The mitochondrial proteome is transcriptionally and post-transcriptionally
regulated according to tissue-specific needs [4], consists of about 1300 proteins [5], responds to injury [6],
food quality [7], exercise [8], environmental pollution [9], and coordinates the cell danger response
(CDR) [10]. The CDR is a term that was coined in 2014 [10], but includes elements of inflammation and
healing that have been studied since before the time of Hippocrates (c. 460–370 BCE) [11]. The CDR is
an evolutionarily conserved, multi-system response of multicellular organisms that is used to manage
and heal from threat or injury. The CDR is a graded response that consists of nested layers that range
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from the molecular control of electron utilization and cellular oxygen consumption, through changes
in the microbiome, mast cells and immune system, to the autonomic nervous system, enteric nervous
system, and neuroendocrine circuits that are needed for whole-body integration of the response.
When analyzed at the molecular and single-cell level, a widely-studied component of the CDR is
known as the integrated cell stress response (ICSR) [12–14].

2. Defining Cellular Stress

In this paper, the word “stress” has a specific scientific meaning. Stress is any force,
condition, chemical, pathogen or other stimulus that acts to perturb cellular function, requiring
the expenditure of energy and resources to return the cell to its pre-stimulus or to a new steady
state. Remarkably, psychological stresses, particularly early life stresses (ELS), regulate some
of the same metabolic and gene expression networks used to defend the cell from microbial
pathogens, physical injury, poisoning, and adversity of many other types [15–17]. In the case of major
depressive disorder, innate immune/pro-inflammatory gene expression is increased, while adaptive
immune/anti-inflammatory/pro-resolving gene expression is decreased [18]. Greater stresses stimulate
proportionately more nucleotide and metabolite release through cell membrane channels [19], leading
to greater metabokine and purinergic signaling [20,21]. Learning and development emerge from both
conscious stresses and subconscious chemical stresses encountered throughout life. Stresses lead to
metabolic memories that help cells and tissues improve future responses to previously encountered
conditions [22]. Transient increases in the mitochondrial and cellular sources of reactive oxygen
species (ROS) such as superoxide and hydrogen peroxide, reactive nitrogen species (RNS) such as
nitric oxide (NO) and peroxynitrite (ONO2

−), reactive aldehydes (RAs), and dissolved oxygen itself,
help to regulate cellular redox. Redox, in turn, regulates the efflux of metabolites from the cell via
membrane channels and transporters that contain redox-responsive cysteine disulfide residues [23].
Pulses of dissolved oxygen occur with a carbohydrate-rich meal because of the transient inhibitory
effect of glucose on mitochondria produced by the Crabtree effect [24]. ROS, insulin, and IL1β are also
stimulated naturally by every meal and can vary in magnitude according to the nutrient content of the
meal [25]. As the dissolved oxygen concentration rises within the cell, glycolysis becomes inhibited by
the Pasteur effect, creating a natural brake on an unchecked inhibition of mitochondrial oxphos from
the meal-associated glucose and the Crabtree effect. However, glucose, oxygen, ROS, RNS, and RAs are
only a part of the multi-faceted metabolic signaling network that is used to control cellular reactivity,
epigenetic marking, and gene expression. Over 100 chemosensory G-protein coupled receptors respond
to metabokines and peptides released after stress and injury and regulate the healing cycle [11].

3. The Healing Cycle

The mitochondrial responses that initiate and maintain the CDR are used to control
cellular bioenergetics, oxygen utilization, redox signaling, and metabolism needed for healing [6]
and regeneration [26] after injury or threat. The stages of the CDR are illustrated in Figure 1.
Wakeful activity with nutrient intake, followed by restorative sleep are essential parts of health.
These activities stimulate an integrated mix of three metabolic states that are controlled locally by
metabolic signaling, and systemically by the central nervous system (CNS). Healthy whole-body
function requires the coordination and use of cell-specific (1) glycolysis, (2) aerobic glycolysis, and
(3) oxidative phosphorylation for energy and metabolism (Figure 1). Chemical activity associated
with nutrient intake, brain activity, and basal metabolism, and added physical activity from natural
child play or adult exercise lead to the graded release of extracellular ATP and related nucleotides,
and to glutamate release [27,28] through stress-gated P2X7-pannexin and other channels in the cell
membrane [19]. Once outside the cell, ATP and related nucleotides participate in purinergic signaling.
Receptor binding to ATP and ADP leads to IP3-gated intracellular calcium release [29] and contextual
changes in gene expression through autocrine and paracrine signaling pathways [30]. After extracellular
metabolism by CD73 and CD39, ATP is converted to ADP, AMP, and to adenosine that acts to inhibit

17



Biology 2019, 8, 27

excess chemical stimulation and plays a key role in initiating and maintaining sleep by binding to
P1/Adenosine /ADORA A2AR and A1R receptors [31]. This is illustrated as the restorative sleep cycle
in Figure 1.

Figure 1. The metabolic features of the health and healing cycles. Abbreviations: CDR—cell danger
response, eATP—extracellular ATP, CP1-3—checkpoints 1, 2, and 3, DAMP—damage-associated
molecular pattern, DARM—damage-associated reactive metabolites, SIGLEC—sialic acid binding
immunoglobulin-type lectin, e.g., CD33-related SIGLECs (CD33r-SIGLECs), Sia-SAMP—sialoglycan
self-associated molecular pattern.

When the stress is of sufficient magnitude to cause cell death, more ATP is released and acts as
a pro-inflammatory damage-associated molecular pattern (DAMP). Increased extracellular ATP triggers
entry into the CDR1 stage of the healing cycle (Figure 1). Once the CDR is triggered, three different
metabolic stages must be activated in sequence to heal. Healing cannot occur without activation of
this metabolically-controlled cycle. CDR1 is characterized by the upregulation of anaerobic glycolysis
and a reallocation of cellular resources for defense, damage containment, innate immunity, and repair
at the expense of normal differentiated tissue function. Gap junctions between cells are decreased or
lost as the tissue structure is disrupted by injury, and cell-autonomous functions become primary and
metabolic cooperation between neighboring cells is decreased or suspended. Platelets and neutrophils
are recruited to sites of injury or infection. CDR2 uses aerobic glycolysis to support stem cell recruitment
and cell division needed for biomass replacement of cells lost in CDR1. If cell loss is not replaced,
then age-related atrophy and sarcopenia occur. If excessive DNA damage is sustained by a cell in
CDR2, replicative senescence occurs [32]. If the blocks to senescence are broken, then cancer can occur.
If oxygen levels are high and significant mechanical strain is present, tissue fibrosis or wound scarring
is stimulated (Figure 1). Fibrosis is one of several different types of mis-repairs that contribute to the
symptoms of aging [33–35] (Figures 1–3).

In CDR3, cell-autonomous, aerobic metabolism by mitochondrial oxidative phosphorylation is
gradually restored as new cells born in CDR2 take up residence in the recovering tissue and establish
new tissue-specific contacts and gap junctions needed to extinguish the gene expression programs used
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for defense and growth in CDR1 and CDR2, and to restore normal differentiated cell, tissue, and organ
function. If damage-associated molecular pattern (DAMP) and damage-associated reactive metabolite
(DARM) release persists [36] or if ROS production is extinguished prematurely [37], autoimmunity can
develop [38]. The adaptive immune response is regulated in CDR3. Persistent DAMP and DARM
release can stimulate excitotoxicity in cells still in the CDR1 and CDR2 stages within a dyssynchronous
mosaic of healing cells. With the completion of CDR3, the concentration of metabokines and DAMPS
in the extracellular space is actively reduced to levels compatible with restoration of cell specialization
and reintegration of cells back into a metabolically optimized cellular network. Re-integration and
re-specialization are necessary for cells that have recently exited the CDR in order to re-establish their
responsiveness to circadian patterns of wakeful activity and restorative sleep (Figure 1).

Figure 2. Repeated cycles of incomplete healing lead to aging and age-related disease. The spiral
represents sequential turns of the healing cycle throughout life. Colored cells in the boxes on the
right represent cells that have been delayed or arrested in a stage of the healing cycle. The decreased
size of some boxes represents the loss in tissue volume from cell loss and atrophy. In this example,
most arrested or delayed cells in the merge on the right after 60 and 90 years are in CDR2 (green).
This will create an increased risk of proliferative disorders such as diabetes, heart disease, and cancer.
Color code: CDR1 cells—red; CDR2 cells—green; CDR3 cells—yellow. Abbreviations: A—wakeful
activity and nutrient intake. M1—mitochondria adapted for cell defense, reactive oxygen, nitrogen,
and aldehyde production; M0—mitochondria adapted for cell growth and Warburg metabolism;
M2—mitochondria adapted for oxidative phosphorylation (oxphos).

The sequence and stages of the healing cycle are highly conserved and tightly choreographed.
Once pathological stress or cell death occurs, the same stages of the healing cycle are activated and
restore normal function after any recoverable injury (Figure 2). Inevitably, some cells fail to complete
the healing cycle and are left behind with each turn of the cycle. These arrested or delayed cells are
unable to return to a normal metabolism and the gene expression pattern that is needed for peak
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differentiated cell and organ function (Figure 2). As non-specialized cells and mis-repairs such as
fibrosis accumulate in incomplete stages of the healing cycle, the peak performance of tissues is
degraded over time, and the risk for age-related disease is increased.

 

Figure 3. The hallmarks of aging as natural products of incomplete healing and the cell danger
response [3,39]. Black font: hallmarks that oppose aging. Red font: hallmarks that promote aging.
Abbreviations: CDR—cell danger response, ICSR—integrated cell stress response, DDR—DNA damage
response, BMR—basal metabolic rate, T◦—basal body temperature, HIF1α—hypoxia inducible factor 1α,
PARP—poly ADP ribose polymerase, NAD+—nicotinamide adenine dinucleotide, ADPR—adenosine
diphosphate ribose, SAM—S-adenosyl methionine, AcCoA—acetyl CoA, α-KG—alpha ketoglutarate,
SAH—S-adenosyl homocysteine, PPi—pyrophosphate, NUDIX—nucleoside diphosphate X hydrolases,
e.g., NUDT5, ECM—extracellular matrix.

4. Three Functionally-Polarized Forms of Mitochondria Are Used by the CDR

For over 60 years, mitochondria have been thought of as “damaged” or “dysfunctional” if they shift
from energy production by oxidative phosphorylation to ROS production or shift from burning carbon
skeletons to CO2 and water to synthesizing new carbon skeletons for export as building blocks needed
for cell growth. Yet mitochondria shift regularly and necessarily between these states throughout
life. A simplified way of understanding the alternative differentiation states of mitochondria is to
see the organelles as the metabolic gate-keepers of the electrons harvested by breaking down the
carbon–carbon bonds in food. In this scheme, electrons can be used in mitochondria: (1) to fully reduce
oxygen (O2) to water (H2O) while capturing the released chemical energy to make ATP by oxidative
phosphorylation in the third stage of the cell danger response, CDR3 and in health, (2) to partially
reduce oxygen to superoxide radicals (O2

−) and hydrogen peroxide (H2O2) while relying on anaerobic
glycolysis for ATP synthesis in CDR1 and cell defense, or (3) to use the electrons to synthesize new
carbon–carbon bonds to produce and export building blocks such as citrate for cell membrane lipid
synthesis or orotic acid for pyrimidine synthesis, while still consuming oxygen to make water and
making ATP by aerobic glycolysis in CDR2 and cell growth (Figure 1).

A new nomenclature was introduced in 2017 to describe these three, functionally-polarized forms
of mitochondria of the CDR [11,29]. All three “species” of mitochondria co-exist in different proportions
in cells throughout development and aging in all multicellular organisms. The transition between
states is determined by the interaction between nutrition and metabolism, the developmental and
chronological age of the organism, the recent state of cell danger signaling and healing, and ambient
environmental conditions. The naming of the differentiation states of mitochondria was based on the
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recognition that the pro-inflammatory state of macrophages known as M1 macrophages corresponded
with the ROS producing capacity of their mitochondria and energy production by glycolysis [40].
The anti-inflammatory/pro-resolving M2 macrophages were found to contain mitochondria adapted
for oxidative phosphorylation (oxphos). M0 macrophages are not yet committed to a fully M1 or
M2 phenotype and contain mitochondria that are intermediate between M1 and M2. In the healing
cycle, three different mitochondrial differentiation states are used to meet the specialized needs of each
stage of the CDR. M1 mitochondria are used in CDR1. M0 mitochondria are used in CDR2, and M2
mitochondria are used in CDR3 (Figures 1 and 2, Table 1).

In vitro protocols have recently been developed that distinguish between M1, M0, and M2
macrophages experimentally based on mitochondrial phenotypes [41]. M1 mitochondria consume small
amounts of oxygen, have a low spare respiratory capacity (SRC, or physiologic reserve capacity), can use
fatty acids for ROS production and NLRP3 assembly [42], are not dependent on glutamine, and the
cells containing M1 mitochondria produce large amounts of lactic acid. In contrast, M2 mitochondria
consume more oxygen at baseline, can use both glucose oxidized to pyruvate and fatty acids for oxphos,
have a higher SRC, are dependent on glutamine for the fully differentiated phenotype, and the cells
produce small amounts of acid. M0, uncommitted or multipotential mitochondria have a low basal
oxygen consumption similar to M1, shunt some glucose down the pentose phosphate pathway (PPP)
for NADPH and building block production, have an SRC that is intermediate between M2 and M1
organelles, and produce small amounts of extracellular acid, similar to M2 [41] (Table 1).

Table 1. Phenotypic characteristics of animal cell mitochondria.

No. Trait
Mitochondrial Phenotype [40,41,43]

M0 M1 M2

1 Cellular energy metabolism Aerobic glycolysis Glycolysis Oxidative
phosphorylation

2 Mitochondrial DNA copy number Intermediate Low High

3 Predominant morphology Intermediate Punctate Filamentous

4 Cell replicative potential High (Warburg) Intermediate Low

5 Cell multilineage
regenerative potential High Low Low

6 Cell differentiation potential Low Intermediate High

7 Cell cancer potential High Intermediate Low

8 Inflammatory potential Intermediate High Low

9 Cell susceptibility to
killing by apoptosis Low Intermediate High

10 Inducible organellar quality control Intermediate Low High

11 Baseline oxygen consumption Low Low High

12
Stressed (uncoupled) oxygen
consumption above baseline
(spare respiratory capacity)

Intermediate Low High

13 ROS production Intermediate High Low

14 NLRP3 inflammasome assembly Low High Low

15 Lactate release from cells Intermediate High Low

16 Pentose phosphate pathway (PPP)
High—NADPH for

biosynthesis and
cell growth

Intermediate—
NADPH for NOX

Intermediate—
NADPH
for redox

21



Biology 2019, 8, 27

Table 1. Cont.

No. Trait
Mitochondrial Phenotype [40,41,43]

M0 M1 M2

17 Use of fatty acid oxidation (FAO) Fatty acid synthesis
for growth > FAO

For ROS and
NLRP3 activation For oxphos

18 Use of glucose Glycolysis and PPP Glycolysis and
lactate release

PPP and
pyruvate for

oxphos

19 Use of glutamine
High: citrate for
ATP citrate lyase
and Acetyl-CoA

Low High: oxphos via
alpha-ketoglutarate

20 Stage of greatest use in the healing
cycle and cell danger response CDR2 CDR1 CDR3

M0, M1, and M2 mitochondrial phenotypes also occur in solid tissues and can be recognized in
part by morphological criteria. Mitochondria can be described informally as being distributed along
a spaghetti (filamentous) and meatball (punctate) gradient. M2 mitochondria are filamentous and
interconnected, and predominate in post-mitotic or slowly regenerating tissues. M1 mitochondria
are punctate, and M0 mitochondria are intermediate in form, with both short filaments and punctate
organelles reminiscent of the coccobacillary forms of their proteobacterial ancestors [44]. Mitochondrial
fusion–fission dynamics naturally regulate the balance between fused and elongated mitochondria,
and fragmented/fissioned mitochondria according the growth and metabolic characteristics of the
cell [45]. M0, uncommitted, or stem-like mitochondria predominate in cells that survive after exposure
to chemotherapeutic agents or toxins [46]. M2 mitochondria under these conditions are depleted by
DRP1-dependent fission/fragmentation, and conversion to M1 organelles prior to cell removal by
apoptosis. Similar transitions in mitochondrial structure and function are readily demonstrated in
brain astroglia before and after treatment with pro-inflammatory triggers such as lipopolysaccharide
(LPS) and interferon gamma (IFN-γ) [43].

The total mitochondrial biomass is decreased naturally after triggering the cell danger response
(CDR) with toxins [46], physical injury [6], infection, or any trigger that activates the healing cycle [11].
Mitochondrial biomass can also be reduced experimentally by the dominant-negative expression
of the D1135A allele of the mitochondrial polymerase gamma (POLG1) to deplete mitochondrial
DNA copy numbers by about 50% [47]. This mouse model mimics the mitochondrial defects that
are a well-established hallmark of aging [48]. The phenotypes of aging found in this model included
increased NFkB and matrix metalloproteinase 9 (MMP9) expression, increased inflammation, age spots,
wrinkled skin, and premature hair loss. These transcriptional and anatomical signs of aging were
reversed within 1 month of treatment in mice by unblocking mtDNA synthesis and restoring normal
mtDNA copy numbers [47].

5. The Importance of Nucleotides and Purinergic Signaling

Of an estimated 1300 mitochondrial protein coding genes, 1158 are catalogued in MitoCarta
v2.0 [5]. Only 13 mitochondrial proteins are encoded by mitochondrial DNA (mtDNA). The remaining
1145 are encoded by nuclear genes that are subject to tissue-specific gene expression programs. At least
789 mitochondrial proteins (68% of 1158) are enzymes with catalytic functions that have been assigned
enzyme commission (EC) numbers, or encode subunits of multi-protein enzyme complexes such as
those in respiratory chain complexes I, II, III, IV, and V, or are transporters, or kinases that use ATP
(Table S1). At least 433 (55% of 789) of these proteins are regulated by the availability of purine and
pyrimidine nucleotides such as ATP, GTP, UTP, NAD(P)+, or FAD either as substrates, or as allosteric
regulators (Table S1). No other single class of molecules regulates more of the mitochondrial proteome
than the nucleotides. In addition, an unknown fraction of nuclear mitochondrial genes is regulated
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transcriptionally and post-transcriptionally by purinergic signaling via the 12 G-protein coupled
receptors (GPCRs; 4 P1R and 8 P2YR) and seven ionotropic receptors (P2XR) that are widely distributed
in all tissues [49]. Some purinergic receptors are also expressed in intracellular compartments such
as mitochondria, lysosomes, and the nucleus [50]. For example, P2X6 receptors are translocated to
the nucleus in an age-dependent manner, interact with mRNA splicing factor 3A1, decrease mRNA
processing, and contribute to aging [51].

6. The Importance of Nutrition in Healing and Aging

Different stages in child development, human aging, and athletic performance have different
specific nutrients and calories that produce the best outcomes at each stage [52–54]. Based on measured
differences in mitochondrial substrate preferences between M1, M0, and M2 organelles (Table 1),
it is hypothesized that each stage of the healing cycle—CDR 1, 2, and 3 in Figure 1, and even certain
chronic illnesses stuck in one of the three stages of the CDR [11]—will also have different stage-specific
nutritional needs for optimal outcomes. Both chemical mass action from substrate supply and
metabolite signaling via metabokines [11] are likely to be important mechanistically. Some of the
broadest clues that connect nutrition with aging, mitochondria, and healing come from studies of caloric
restriction [3]. Natural aging results in a reduction in the rate of turnover of mitochondria (mitochondrial
biogenesis, or “mitochondriogenesis”), and a decrease in mitochondrial protein synthesis, standing
mitochondrial biomass, respiratory reserve capacity, and oxphos function [55] (Figure 3). Caloric
restriction, on the other hand, stimulates mitochondrial turnover through pathways associated with
AMPK-stimulated autophagy and mitophagy [56]. This leads to improved mitochondrial quality
control, oxphos function, and reserve capacity, but does not increase overall mitochondrial biomass
measured as mtDNA copy number [57]. Caloric restriction also leads to a decrease in circulating
thyroid hormone, decreased resting energy expenditure (REE), and a decrease in circulating anabolic
hormones such as IGFI, insulin, human growth hormone, and testosterone [58]. From an evolutionary
point of view, this hypometabolic response allows fewer calories to be consumed while opposing
weight loss during periods of seasonal hardship.

Caloric restriction is a classical trigger of a reversible, stress-resistant, non-reproductive stage in the
nematode Caenorhabditis elegans called dauer. Dauer has been the source of discovery of many longevity
genes and has stimulated a productive discussion of the difference between lifespan and healthspan
extension [59]. Dauer permits animals to live for up to 4 months under harsh conditions instead of
their normal lifespan of 2 weeks. However, longevity in dauer comes at the cost of much reduced
function and many changes associated with altered sensory anatomy [60], repetitive behaviors [61]
and metabolism [62]. When calories are restored to animals in dauer, they exit the stage and re-enter
their normal life-cycle, picking up where they left off, as if little or no biological aging had occurred
during the time they spent in dauer [63].

More specific changes in nutrient supply also play an important role in aging and healing. Dietary
supplementation with branch chain amino acids at a level of 1.5 g/kg/day, corresponding to about 1% of
daily calorie intake in mice, has been shown to extend lifespan by about 10% [64]. This effect required
normal production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) [64]. The selective
addition of a stoichiometric mix of essential amino acids (EAAs) including branch chain amino acids,
also has anti-cancer effects by promoting growth inhibition and apoptosis in transformed but not in
normal cells [65]. EAAs also promoted wound healing by moderating inflammation in the early stages,
and maintaining TGFβ needed for tissue remodeling in the later stages of healing [66]. This later effect
is in what would be called CDR3 in the model presented here (Figure 1). Interestingly, TGF β (DAF-7)
signaling also plays a key role in recovery from dauer and the re-establishment of normal development
in C. elegans [67].
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7. Progressively Dysfunctional Cellular Mosaics

The number of nucleated cells in a 70-kg adult male is about 5 × 1012. Non-nucleated red blood
cells are 5-times more abundant (2.5 × 1013), but make up just 6.5% of the total mass of an adult [68].
The total number of human cells in an adult is 3.0 × 1013. There are also 3.8 × 1013 bacterial cells in
a typical adult body [68]. Cells die every day and must be replaced. It is estimated that an adult turns
over about 1 × 1010 (10 billion; about 10 grams of) cells/day by apoptosis [69]. This is equivalent to
about 1 in 500 nucleated cells/day removed by apoptosis. The distribution of cell turnover is highly
heterogeneous. Most spontaneous, or physiologic cell death with replacement occurs in short-lived
cells such as those in bone marrow, intestines, skin, and hair follicles whose function is tolerant to
spatial changes in tissue architecture produced by continuous cell growth and use-dependent removal
or exit of cells from the compartment of origin. These rapidly dividing and structurally malleable
tissues can turn over several times per year, with nearly 100% of the cells in these compartments
turning over in a few days to weeks or months. Other tissues turn over more slowly. Adipose tissue is
replaced at a rate of 10% of the cells per year [70], turning over completely in about 10 years. Skeletal
muscle turns over at a rate of 6.6% per year [71]. Muscle fiber loss accelerates after age 60, leading to
sarcopenia [72]. The kidneys weigh about 150 grams each, shed about 1.7 × 106 epithelial cells/day into
the urine [73], and replace this loss and other losses by cell division and remodeling from recruited stem
cells [74]. The adult liver weighs about 1400 grams and consists of about 2.4 × 1011 cells and replaces
about 1.8% per year as a young adult, but fewer as liver size decreases with age [75]. Heart cells are
replaced at a rate of 1% per year at age 25, falling to 0.45% per year at age 75 [76], and pancreatic islet
β-cells are long-lived and not replaced after age 30 years [77].

Exposure to physical injury, toxins, or infection adds pathological cell death to the basal level of
physiologic cell death described above. When a cell dies physiologically by apoptosis, the inflammatory
reactions associated with CDR1 are avoided. Instead, the tissue skips to CDR2 and CDR3 to replace
the lost cell and restore normal metabolism and tissue-specific gene expression patterns (Figure 1).
The number of cells that die pathologically during a typical viral or bacterial infection will be dependent
on the type of microbial pathogen and the severity of the infection, but the exact cell numbers lost
in the course of a typical infection are not known. An average child has 5–6 recognized viral or
bacterial infections each year for the first 5 years of life, then 2–3 per year throughout adult life [78].
Pathological cell death caused by infection, toxins, or injury will trigger inflammation and entry into
the healing cycle by activating CDR1. As a thought experiment, one can imagine a systemic viral
infection that might kill 1 × 1010 cells (about 10 grams, or 2 teaspoons), a number equal to the basal
loss per day by apoptosis. Somatic DNA mutation rates are about 2.7 × 10−5 per typical 10,000 bp,
protein-coding locus per cell division [79]. In this example, one turn of the healing cycle would result
in 270,000 cells (1010 cells replaced × 2.7 × 10−5 mutations/gene/division = 270,000 cells) sustaining
a mutation that marks that cell as different from neighboring cells in the tissue. Mitotic recombination
errors and chromosomal microaneuploidy [80], mobilization of retroelements [81] and endogenous
retroviruses [82] in recruited stem cells, and reactivation and suppression cycles of latent DNA virus
infections [83] will contribute to genetic variation produced by repetitive activation of the CDR over
a lifetime. In addition to DNA mutations, there will also be an even larger number of induced and
stochastic changes in transcription, post-transcriptional, and metabolic features that lead to changes in
cell development.

With each turn of the healing cycle, cells such as neutrophils move out of capillaries and
into tissues, releasing ROS via activated NADPH oxidases such as NOX2. Over time, this cyclic
process creates tides of reactive oxygen, metabolic, innate immune, and inflammatory defenses
that rise with injury and fall during wellness, ebbing and flowing with each turn of the healing
cycle. Sialic acid binding immunoglobulin-type lectins (SIGLECs) include the CD33-related molecules
expressed on neutrophils, natural killer (NK), macrophages, and T-cells that modulate ROS production,
innate immune cell, and adaptive T-cell activity upon binding to sia-SAMPs (sialoglycan self-associated
molecular patterns) [84]. Across species, the number of CD33r-SIGLEC genes is associated with
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healthy aging in the “wellderly”, and decreased numbers accelerate age-related symptoms in mouse
models [85]. Many cancers emerge from hypersialated cellular fields that have the effect of dampening
the immune response by engaging inhibitory SIGLECs such as Siglec-9 [86]. The ceaseless tides or
waves of innate immune cell migration into and out of tissue compartments continues throughout life
with each turn of the healing cycle (Figures 1 and 2), and contributes to the progressively dysfunctional
mosaics illustrated in Figure 2.

In the brain, a compensatory system of glial–lymphatic (glymphatic) tidal flows occurs by regulated
changes in cell volume that are controlled by circadian changes in metabolism [87]. This daily cycle of
glympahtic flow helps to remove aggregates of tau and beta amyloid that would otherwise accumulate
as the byproducts of CDR activation both from normal learning and from microglial and synaptosomal
innate immune activation that increase progressively with aging. Interestingly, a number of molecules
that regulate mTOR and other metabolic aspects of the CDR, have recently been found to slow the
aging process and extend longevity, while simultaneously protecting against age-related markers of
Alzheimer dementia in animal models [88]. These “geroneuroprotecting” drugs were plant-based
natural products similar to curcumin and polyphenols such as fisetin. The healing cycle-promoting
properties of these drugs prevented the accumulation of tau and beta amyloid markers of Alzheimer
dementia even though the drugs were not directed at the protein markers specifically [88].

The importance of innate immune activation and healing in aging is underscored by a recent
discovery in Werner syndrome. Werner syndrome is a recessively inherited adult progeria syndrome
caused by mutations in the Werner helicase (WRN). In addition to genomic instability caused by WRN
mutations, the protein was recently found to play a key role in innate immunity as a transcriptional
coactivator of the NFkB-dependent expression of the chemokine IL8 [89]. Werner mutations inhibit
NFkB- and IL8-dependent ROS production. ROS production is not only an essential component of
an effective CDR1 (Figure 1), but is important for NRF2 induction of long-term anti-oxidant and
detoxification defenses [90]. In addition, the WRN protein is important for HIF1 stabilization [91]
needed for tissue regeneration [26] during CDR2 (Figure 1).

With each turn of the healing cycle, the induced combination of transcriptional and metabolic
changes and the DNA damage response will result in some injured and newly replaced cells being
unable to complete the normal stages of the cycle. Perhaps 0.1–1 million cells of the 1010 cells that
must be replaced after pathological cell death may be left behind, stuck or delayed in one of the three
stages, CDR1, CDR2, and CDR3. An even larger number of cells whose function was transiently
changed by injury, but were not killed, will contribute to the cells that are left behind in stages of the
healing cycle. This process is illustrated as progressively dysfunctional mosaics on the right of the
spiral in Figure 2. The ecogenetic interaction of inherited genotype of a given individual with the
particular environmental insult (nutritional stress, pathogen, toxin, or physical injury) will determine
how many cells are delayed or lost in the three different stages of the CDR. Examples of aging cellular
mosaics are illustrated at age 20, 40, 60, and 90 years (Figure 2). Delayed and arrested cells that
are incompletely differentiated create physical and metabolic separation—buffer zones—that act like
control rods in a nuclear reactor that absorb signals and inhibit communication between previously
adjoining, synergistic, and metabolically interdependent cells. Loss of cellular connectivity through
functional gap junctions decreases the physiologic reserve capacity and increases vulnerability to
stress-related cell death [92].

The propagation of calcium waves from cell to cell in a tissue via the inositol trisphosphate
(IP3)-gated release of intracellular calcium stores is a common example of the cooperative response to
neuroendocrine signaling, and is highly dependent on fully differentiated mitochondrial function [93].
CD38 increases with age [94] and is used by the cell to synthesize cyclic adenosine diphosphate
ribose (cADPR) from NAD+ and nicotinic acid adenine dinucleotide phosphate (NAADP) from
NADP+ as IP3-responsive calcium signaling declines [95]. cADPR and NAADP are intracellular
ligands that stimulate IP3-independent release of calcium from the endoplasmic reticulum (ER) and
lysosomes, respectively [29]. NAD+ and NADP+ are depleted by CD38 in the course of aging [94].
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Cellular depletion of NAD+ and NADH leads to a decrease in mitonuclear communication [96], and to
progressive declines in mitochondrial electron transport that contribute to aging [97]. Supplementation
with the NAD+ precursor, nicotinamide riboside (NR), in animal models improves cell differentiation,
restores laminin scaffolding and a more normal cellular mosaic in tissues, attenuates senescent cell
formation, and increases longevity by about 10% [98]. In a recent study of the effect of transplanted
senescent cells, the authors found that ≥ 1 senescent cell among 10,000 total cells in the body (0.01%),
or ≥ 1 in 350 normal cells in a specific tissue (≥0.28%) was enough to produce a dysfunctional cellular
mosaic and measurable functional defects such as decreased grip strength and exercise capacity [99].

8. De-Emergence as a Cause of Dysfunction

Complex living systems are comprised of at least seven discrete subsystems: (1) molecules;
monomers, metabolites, and other building blocks, (2) polymers requiring energy for synthesis,
such as proteins, polysaccharides, nucleic acids, and lipids made of amino acid, monosaccharide,
nucleotide, acetyl and isoprene monomers, respectively, (3) polymers that assemble spontaneously such
as charged and neutral lipids and hydrophobic proteins that form membranes, lipid droplets, and other
lowered free energy structures in aqueous matrices, (4) organelles, (5) cells, (6) tissues, (7) organs.
Many of the phenotypes associated with normal development, health, disease, and aging are emergent
properties that depend on the function, arrangement, and interaction of the subsystems, but are
qualitatively, quantitatively, and chronologically distinct from any single subsystem. For example,
long-term memory is an emergent property that requires new protein synthesis that alters several
aspects of all the subsystems that make up the brain, but knowledge of any one of the subsystems
is insufficient to explain long-term memory. Other emergent properties of health include the ability
to walk, talk, think, eat, excrete, mount an immune response, reproduce, detect and respond to
a toxin or injury, and to heal. Aging degrades each of these abilities. If health is thought of as
a collection of emergent phenotypes, then illness and aging can be thought of the gradual fading
away, or de-emergence of the emergent properties that results from the degradation of metabolic and
cellular order and the interactions of the subsystems that define health and resilience to environmental
change. The images of progressively dysfunctional cellular mosaics shown in Figure 2 illustrate just
one level—the cellular level—of the problem. Dysfunctional mosaics occur in every one of the seven
subsystems, and mis-repairs accumulate at each level with each turn of the healing cycle.

9. The Hallmarks of Aging Emerge as a Result of Incomplete Healing

The molecular, cellular [2,3,48] and gene expression hallmarks [39] of aging can be organized
according to their usage during the healing cycle and the stages of the multisystem CDR [10,11,29]
(Figure 3). These hallmarks have been identified in studies of aging that have led naturally to
an improved molecular understanding of mitochondrial stress [13,17,100], the integrated cell stress
response (ICSR) [12,101,102], and the CDR [10,11,29,103]. Each trait associated with these hallmarks
arises naturally from the activation of a molecular feature needed in the healing cycle, followed by
the failure to extinguish this normal function or gene expression state of the CDR once it is no longer
needed. Persistence of an aging hallmark after a turn of the healing cycle (Figure 2) can also occur in
five other ways: (1) when a cell sustains too much genetic damage and becomes senescent, (2) when
a cell that has been removed is not replaced and leads to tissue atrophy, (3) when a cell is replaced
but fails to re-specialize according to the differentiated needs of the tissue, (4) when a mis-repair such
as fibrosis or scarring [104] cannot be removed by remodeling, and (5) when genetic and metabolic
changes bypass senescence and lead to cancer (Figure 1). The legacy of each of these events is to add to
the dysfunctional mosaic illustrated in Figure 2.

Brain, muscle, nerve, and endocrine tissues are particularly susceptible to the incomplete
replacement of lost cells once they have died and have been removed because of their limited
regeneration capacity and the high degree of spatial organization required for optimal organ
function. The function of these tissues is highly dependent on the spatial organization and metabolic
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complementarity of the cellular mosaic. This complementarity can only be achieved through cell
specialization and chemical cooperativity between neighboring cells, which in turn, depends on the
relative position and architecture of layers and columns of cells that must remain fixed over long
periods of time. The cost of removing a cell from a chain of connected cells in the cerebral cortex or
any other part of the brain has a high price that cannot easily be repaid by recruiting stem cells from
another location. However, the cost of converting a cell to the hypersecretory phenotype of a senescent
cell [105] is even higher, since just one senescent cell in 350 normal cells is enough to decrease the
function of a tissue [99]. The smaller collective volume of cells that occurs in most tissues with age is
illustrated in Figure 2. The decreasing volume of tissues in the columns labeled “Merge” and “CDR3”
represents the effect of cell loss (atrophy) that occurs with incomplete progress through the healing
cycle (Figures 1 and 2). In the example illustrated in Figure 2, more cells have accumulated in CDR2
(illustrated in green) by the ages of 60 and 90 years. Accumulation of cells in CDR2 will increase the
risk of diseases such as diabetes, heart disease, and cancer because cells arrested or delayed in CDR2
maintain their proliferative capacity [11] (Figure 1). Proliferative capacity is maintained in part because
cells in CDR2 contain more multipotential M0 mitochondria adapted for Warburg metabolism (Table 1).
Inherited mutations in the RECQL4 helicase, which interacts with p53 and POLG in mitochondria,
increase aerobic glycolysis associated with CDR2, lead to an increased risk of cancer, and to a form of
progeria known as Rothmund–Thomson syndrome [106–108].

10. Conclusions

A new model is presented that reframes aging as the result of repeated cycles of incomplete
healing. In this model, cycles of incomplete healing stack over time, leading to cellular mosaics
that become progressively dysfunctional with age (Figure 2). Cells that accumulate in one of
the three stages of the cell danger response (CDR) lead to specific risks of age-related disease.
The accumulation of cells in CDR1 leads to chronic inflammatory and pain syndromes, and to
susceptibility to chronic viral, bacterial, and fungal infections that require adaptive T-cell immunity
for eradication [11]. The accumulation of cells in CDR2 leads to diabetes, heart disease, congestive
heart failure, peripheral vascular disease, fibrotic disorders, and cancer risk. The accumulation of
cells in CDR3 leads to autoimmune disorders, immune suppression or deficiency, neuropathic pain
syndromes, behavioral and mental health disorders, or neurodevelopmental and neurodegenerative
disease [11]. It is currently unknown what drugs, devices, or procedures can unblock arrested cells in
the mosaic and permit the completion of the healing cycle. However, specific nutritional interventions
such as nicotinamide riboside or essential amino acids have been found to facilitate healing [66],
longevity [98] or both [64,66] in animal models. A prediction of the incomplete healing model is that
differentiation checkpoints exist at each stage of the CDR (Figure 1) and that the molecular signals
that are used naturally by cells to facilitate completion of healing may provide fresh clues for both
preventing and treating age-related symptoms and disease. One procedure that is well-known to
improve physical and psychological well-being, decrease mortality, and decrease the risk of age-related
disease, is exercise [109,110]. The effects of exercise are multifaceted, but the increase in autophagy
and remodeling of the mitochondrial network, leading to adaptive improvements in quality control
and increased reserve capacity, may play key roles [111]. The search for geroneuroprotectants [88]
and chemical exercise mimetics [112] has already begun. However, a deeper understanding of the
role of natural metabolites as signaling molecules—metabokines [11]—and molecules regulated by
exercise—exerkines and exosomes [113–115]—that regulate the completion of the healing cycle holds
promise for preventing, slowing, and perhaps reversing [47] some of the effects of aging. Interventions
that exploit purinergic [20] and sphingolipid [116] signaling pathways may be particularly powerful
since over half of all mitochondrial proteins are regulated by ATP, NAD+, and related nucleotides
(Table S1), and many of the molecular hallmarks of aging trace to or regulate the interplay between
purines, mitochondria, sphingolipids [117,118], and the nucleus [119].
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Abstract: The aging process includes impairment in mitochondrial function, a reduction in anti-oxidant
activity, and an increase in oxidative stress, marked by an increase in reactive oxygen species (ROS)
production. Oxidative damage to macromolecules including DNA and electron transport proteins
likely increases ROS production resulting in further damage. This oxidative theory of cell aging
is supported by the fact that diseases associated with the aging process are marked by increased
oxidative stress. Coenzyme Q10 (CoQ10) levels fall with aging in the human but this is not seen in all
species or all tissues. It is unknown whether lower CoQ10 levels have a part to play in aging and
disease or whether it is an inconsequential cellular response to aging. Despite the current lay public
interest in supplementing with CoQ10, there is currently not enough evidence to recommend CoQ10

supplementation as an anti-aging anti-oxidant therapy.

Keywords: coenzyme Q10; aging; age-related diseases; mitochondrial dysfunction

1. Introduction

CoQ10 was first described in 1955, named ubiquitous quinone, a small lipophilic molecule located
widely in cell membranes [1], and in 1957 its function as an electron carrier in the mitochondrial electron
transport chain was reported [2]. The role in human disease was unknown for 20 years until in 1986
a benefit of CoQ10 treatment was reported in Kearns–Sayre syndrome [3]. Initially, therapeutic use of
CoQ10 was focused on the oxidative phosphorylation (OXPHOS) defects in which there is documented
CoQ10 deficiency [4] and in the group of CoQ10 synthesis disorders [5]. These conditions provided
evidence for efficacy and safety of treatment with CoQ10 [6]. Subsequent larger-scale trials in Parkinson
disease [7] and other neurodegenerative diseases have shown safety but no convincing benefit.

In the last decade, CoQ10 functions in membranes throughout the cell where antioxidant and
signaling roles predominate have been of increasing interest [8]. There is growing evidence that
oxidative stress is a major component of cellular senescence [9]. This multifactorial process involves
DNA injury [10], protein and lipid damage, and activation of signaling pathways associated with
aging [11]. Recently, the CoQ10 antioxidant effect has been shown to reduce markers for cardiovascular
disease (CVD) and inflammation, the main components of atherosclerotic vascular disease [12].

It is suggested that CoQ10 supplementation can improve the symptoms of mitochondrial diseases
and of aging because of an improvement in bioenergetics [12,13].

Our objective is to review, from a translational perspective, data regarding the association of
CoQ10 and aging. Are the aging process and mitochondrial progressive failure related and can CoQ10

supplementation decelerate aging?

Biology 2019, 8, 28; doi:10.3390/biology8020028 www.mdpi.com/journal/biology34
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2. CoQ10

2.1. What Is It?

Coenzyme Q10, CoQ10 or ubiquinone (2,3 dimethoxy-5-methyl-6-decaprenyl-1,4-benzoquinone)
is a small lipophilic structure, composed of a benzoquinone ring and an isoprenoid side-chain and it is
found universally in cell membranes. In humans, synthesis occurs utilizing a collection of enzymes
(complex Q) located in the mitochondrial matrix membrane [14]. The benzoquinone ring is derived
from 4-hydroxybenzoic acid, while 10 isoprenes are derived from mevalonic acid (from the cholesterol
synthesis pathway). The quinone ring is the functional group in the molecule, responsible for carrying
electrons to complex III. CoQ10 (ubiquinone) is reversely reduced to ubiquinol. The polyisoprenoid
tail is very lipophilic and localizes to hydrophobic membranes. The length of the isoprenyl chain is
variable between species with 10 isoprenes forming human CoQ10 whilst rodents predominantly have
CoQ9 [15].

2.2. Function

CoQ10 is widely distributed in all cell membranes and forms a critical component of the electron
transport chain (ETC) transporting electrons between complexes I/II and III [13]. In rat liver the largest
ubiquinone (CoQ9) concentration is found in the Golgi vesicles (2.62 μg/mg) followed by mitochondrial
matrix membrane and lysosomes (with levels of 1.86 in each structure) [16].

The major function of ubiquinone is in the mitochondrial ETC. CoQ10 accepts electrons from
different donors, including complex I (reduced nicotinamide adenine dinucleotide [NADH]-coenzyme
Q oxidoreductase), complex II (succinate dehydrogenase), the oxidation of fatty acids and
branched-chain amino acids via flavin-linked dehydrogenases and electron transfer factor Q
oxidoreductase (ETF-QO) to complex III (ubiquinone-cytochrome c oxidoreductase) [17,18]. CoQ10

cycles between its three chemical forms: completely oxidized (ubiquinone), a semi-oxidized
intermediate free radical (semiquinone) and a completely reduced form (ubiquinol) as shown in
Figure 1 [19,20]. By moving within the mitochondrial membrane, the proton-motive Q cycle allows
proton pumping at complex III helping to generate the proton motive force for adenosine triphosphate
(ATP) production.

 
Figure 1. Redox forms of CoQ10. ubiquinone (oxidized form), ubiquinol (reduced form),
and semiquinone (semi-oxidized). The Q cycle within the matrix membrane allows proton transfer
from the mitochondrial matrix to the intermembrane space helping to generate the electrochemical
gradient for ATP production.

The interaction of the CoQ pool with the ETC has in recent years been shown to be more complex
with the recognition that mitochondrial supercomplexes composed mostly of complexes I/III, I/III/IV,
and III/IV interact physically forming respirasomes. It seems likely that both single complexes within
the matrix membrane and supercomplexes coexist in a dynamic state. The factors controlling assembly
and disassembly of supercomplexes are not known although cardiolipin appears to play a role. There
is evidence that in the I/III supercomplex intercomplex binding of CoQ shuttles electrons from complex
I to III. This bound CoQ may be in equilibrium with the free CoQ pool. [21].
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CoQ10 supplementation has been shown to have epigenetic effects in genes involved with
signaling, intermediary metabolism, transport, transcription control, disease mutation, phosphorylation,
and embryonal development indicating a role in modulation of gene expression [22,23].

In addition to its major function in the ETC, CoQ10 has an important anti-oxidant role stabilizing
the plasma membrane and other intracellular membranes protecting membrane phospholipids from
peroxidation [13]. Ubiquinone and semiquinone are also involved with recycling of other anti-oxidant
molecules, reducing α-tocopherol and ascorbate contributing to redox balance in the cell. Diminished
CoQ10 levels in aging likely contribute to membrane peroxidation injury. There is evidence that
part of its anti-oxidant effect occurs by enhancing the enzymatic activity of the antioxidant proteins
superoxide dismutase and glutathione peroxidase [24]. Recent publications associate ubiquinol with
protection of plasma low density lipoproteins (LDL) from oxidation, an important anti-atherogenic
effect [25]. The pro-oxidant role of CoQ10 is a signaling function involved in gene expression but the
mechanism of this function is not fully understood [26,27]. Other functions include modulation of
the permeability transition pore, thus playing a role in apoptosis [28]. CoQ10′s main functions are
summarized in Figure 2.
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Figure 2. The Multiple Roles of Ubiquinone in the Cell.

Chronic inflammation is a frequent aging-related problem. CoQ10, by reduction of free radicals,
reduces the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) cells
and consequently reduces the release of pro-inflammatory cytokines mainly tumor necrosis factor
alpha (TNF-α) and interleukin 6 (IL-6) [29]. Aging-related reduced CoQ10 levels may contribute to
inflammation and there is accumulating evidence of secondary anti-inflammatory effects of CoQ10

supplementation. A recent meta-analysis provided evidence that CoQ10 supplementation significantly
reduced the inflammatory markers CRP (C-reactive protein), IL-6 and TNF-α [30]. Another recent
publication reported that patients with metabolic diseases (obesity, type 2 diabetes, metabolic syndrome,
cardiovascular disease, and nonalcoholic fatty liver disease) had a significant decrease in TNF-α
plasma levels with CoQ10 supplementation but not CRP or IL-6 [31]. CoQ10 was found to have
an anti-inflammatory function via epigenetic effects on expression of genes related to NFkappaB1
(NFk-B1) [32]. CoQ10 has a hepatoprotective and neuroprotective effect in a rat model of non-alcoholic
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steatohepatitis [33] apparently through an adenosine 5′ monophosphate-activated protein kinase
(AMPK) activation mechanism and in humans a randomized trial showed that supplementation of
CoQ10 improved biomarkers for inflammation in nonalcoholic fatty liver disease (NAFLD) [34]. CoQ10

supplementation in patients with antiphospholipid syndrome has been found to attenuate levels of
pro-inflammatory and thrombotic markers, with evidence of endothelial and mitochondrial function
improvement [35]. In Down syndrome patients, chronic neuro-inflammatory changes have been
proposed as a possible accelerator of Alzheimer disease [36]. These include high levels of interleukin
6 and tumor necrosis factor α along with decreased levels of CoQ10. A positive correlation between
CoQ10 and intelligence quotient levels was also reported [37]. CoQ10 treatment in Down syndrome
cells is associated with improved DNA repair mechanisms and DNA protection [38].

Cardiovascular disease is a common aging-related problem. There is a considerable body of
evidence supporting a role for CoQ10 in cardiovascular function including a correlation of low
endomyocardial levels with severity of heart failure and an improvement in cardiac contractility with
CoQ10 treatment [39]. Improvement in lipid profiles (a major contributor to cardiovascular disease)
has been reported with CoQ10 treatment [40].

CoQ10 has other important functions, participating in metabolic pathways as an electron receptor:
(1) CoQ10 is a co-factor for dihydro-orotate dehydrogenase, an enzyme involved in the de novo
pyrimidine biosynthesis [41]. (2) During the process of sulfide oxidation CoQ10 accepts electrons
from the enzyme sulfide-quinone reductase to convert sulfide into thiosulfate [42]. (3) The oxidation
from choline to glycine is catalyzed by choline dehydrogenase in the inner mitochondrial membrane,
and CoQ10 is proposed to be the electron acceptor for this reaction [43]. (4) Proline dehydrogenase
donates electrons from FAD and NAD+ to CoQ10 during process of synthesis of proline and
arginine [21,44].

2.3. Sources of CoQ10

2.3.1. Internal Biosynthesis

CoQ10 is the only lipid-soluble antioxidant synthetized by the human body [13]. The majority of
CoQ10 comes from the internal synthesis, from tyrosine or phenylalanine (benzoquinone ring) and
mevalonic acid (isoprenoid side-chain). Synthesis occurs in all tissues studied. In humans synthesis
occurs utilizing a collection of enzymes (complex Q) located in the mitochondrial matrix membrane
and in the endoplasmic reticulum The mevalonic acid pathway is responsible for cholesterol synthesis
with 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase (the site of statin inhibition)
as the regulatory step. CoQ10 derived from dietary intake becomes more important with aging as
endogenous production decreases [13].

At least 14 genes are involved in CoQ10′s biosynthesis in yeast with 18 genes so far reported
in humans. Many are homologues of genes identified in c. cerevisiae. These synthetic proteins are
nuclear encoded and require mitochondrial targeting sequences for entry into the matrix or the inner
mitochondrial membrane [14]. There is assembly of many of the components into a ‘supercomplex’
termed Complex Q in the mammal. Mitochondrial synthesis is thought to occur in all cells containing
mitochondria but also in other organelles including the endoplasmic reticulum and peroxisomes [45].
Figure 3 summarizes the mammalian CoQ10 biosynthesis pathway.
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Figure 3. Schematic representation of CoQ biosynthesis. The isoprenoid side-chain derives from the
cholesterol and dolichol synthetic pathway from mevalonate, the benzoquinone ring is derived from
tyrosine metabolism. The star symbolizes the genes involved in the final synthesis of CoQ10.

2.3.2. External Sources

CoQ10 is widely found in many animal protein sources (pork, lamb, beef, chicken, fish), vegetables
(spinach, pea, broccoli, cauliflower), fruits (orange, strawberry, apple) and cereals (rye, wheat) [13].
Heart, chicken leg, herring, and trout contain particularly high amounts of CoQ10. Daily intake
between 3 and 5 mg is considered adequate and whilst external supplementation increases plasma
levels, supplementation was not thought to increase tissue levels of CoQ10 in tissues with normal
synthetic capacity [46], although evidence of treatment efficacy in a variety of human diseases does
suggest that tissue uptake can occur [13,47].

2.3.3. Absorption and Transport

CoQ10 absorption is slow and occurs in the small intestine; in its reduced form, ubiquinol is 3
to 4 times better absorbed than the oxidized form, ubiquinone [48]. The absorption of CoQ10 can be
increased if administered with food intake, mainly with lipids because of its lipophilic structure [13,49].
After absorption by the enterocytes, CoQ10 passes through lymphatic vessels and reaches the plasma,
where it circulates bound to lipoproteins (LDL). Because of this, plasma measurements of CoQ10 should
be corrected for lipoproteins levels. Between 80 and 95% of plasma circulating CoQ10 is in the reduced
ubiquinol form. [48,50].

2.4. Tissue Levels and Distribution of CoQ10

Although the major CoQ10 plasma form is ubiquinol, laboratory measurements, in general, report
the CoQ10 total level [50]. Lymphocyte and platelet levels may give some insight into levels in less
accessible tissues such as heart, muscle, and brain [51]. The CoQ10 level varies in different tissues.
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Tissues with a higher metabolic rate and mitochondrial content (heart, kidney, liver, and muscle) have
high levels of CoQ10, for example the level is 8 μg/g in lung and 114 μg/g in heart [13]. Tissue levels
largely reflect the results of synthesis and degradation of CoQ10. Following intestinal absorption,
liver and lipoprotein concentrations increase, but without a change in the level in heart and kidney
noted in early studies [52]. However, there is some evidence that chronic administration can increase
tissue levels [53]. In a study where rats were chronically fed a large dose of 150 mg/kg/day of CoQ10

for 13 weeks, small but significant increases in both CoQ9 and CoQ10 were found in all tissues
measured [54]. No such data exist for young or aged human tissues; however, the accumulated
evidence of benefit of CoQ10 therapy in human disease states does suggest that tissue levels can be
increased by oral administration. The number, size, and structure of the mitochondria in each cell
determines the tissue level of CoQ10 with highest levels found in tissues with high energy demands
and a high mitochondrial content [13,48].

The gold standard for the diagnosis of CoQ10 deficiency is based on the measurement of muscle
level by high-performance liquid chromatography (HLPC) [55,56]. Plasma levels of CoQ10 range
between 0.40 and 1.91μmol/L (0.34–1.65μg/mL) in controls [57] but do not match tissue levels, reflecting
consumption much more than endogenous synthesis. The diagnosis of CoQ10 deficiency requires
tissue measurement [58]. There is evidence suggesting that the CoQ10 level in mononuclear cells can be
correlated to muscle measurements [45,56]. Plasma CoQ10 levels are increased in some physiological
conditions (cold adaptation and exercise) and in some diseases (paraneoplastic nodules, Alzheimer’s
disease, and prion disease). Levels are decreased in aging. [45].

2.5. Causes of Reduction

Conditions associated with CoQ10 deficiency can be divided into three main groups: (1) CoQ10

nutritional deficiency, including intake of CoQ10 itself and nutrients and vitamins necessary for its
synthesis (vitamin B6 is a cofactor in the pathway of CoQ10 biosynthesis); (2) CoQ10 synthesis genes
(COQ family genes: COQ1 and the Complex Q genes including the mammalian homolog of the yeast
Coq11 gene; the Complex I subunit NDUFA9), and acquired disorders impairing CoQ10 synthesis
(statin use) [59–61]; and (3) medical conditions associated with decreased levels of CoQ10 [45,46]. In this
last category, a variety of conditions have been reported with low CoQ10 including neurodegenerative
disorders Friedreich’s ataxia, Nieman–Pick type C disease, and Parkinson Disease. In other disorders
such as Alzheimer disease, diabetes, cancer, fibromyalgia, and cardiovascular diseases, elevations in
plasma CoQ10 levels may be a stress response. [45,46]. Defects in genes which may be associated with
reduced CoQ10 levels can be included in this group (APTX, ETFDH, BRAF).

Special attention should be given to the important observation that CoQ10 deficiency is potentially
reversible if the supplementation starts before the appearance of the symptoms, when brain and kidney
have not sustained permanent damage [46,62].

2.6. Supplementation

2.6.1. Dosing

A recent trend over the last few years has been to supplement adult patients with mitochondrial
diseases with high doses of oral CoQ10 or ubiquinol, up to 1200 mg/day or higher. For the pediatric
population, doses between 5 and 10 mg/kg/day of ubiquinol are recommended [63]. For a dose of
10 mg/kg/day, plasma levels range between 5 and 10 μg/mL 3–4 weeks after the beginning of the
supplementation [53,63,64]. As explained above, there are important differences in bioavailability of
the different formulations of CoQ10 used; ubiquinol (the reduced form) is 3 to 4 times better absorbed
than ubiquinone (oxidized form) [48]. Primary CoQ10 diseases tend to respond to supplementation but
may require very high doses. Also, some patients with secondary CoQ10 dysfunction were reported
to improve some symptoms with CoQ10 supplementation. Examples are cardiomyopathy in organic
acidurias (25 mg/kg/day with improvement in the cardiomyopathy) [65], glutaric acidemia type II
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(500 mg per day of CoQ10 along with riboflavin with improvement in strength, lactate, and creatine
kinase levels) [59], ataxia oculomotor apraxia type 1 (200–600 mg with reported improvement in
strength, ataxia, and cessation of seizures in one patient) [60], GLUT-1 deficiency (30 mg/kg/day with
improvement in the ataxia and nystagmus) [66].

Exogenous administration of CoQ10 reportedly does not raise tissue levels above normal in healthy
young individuals, except for two tissues (liver and spleen) [13]; however, this traditional view may be
wrong given the improvement in multi-organ symptoms in a variety of disorders with mitochondrial
dysfunction when treated with CoQ [67].

2.6.2. Safety and Adverse Events

Although the majority of studies have not shown convincing enough scientific evidence to support
treatment with CoQ10 in specific diseases, they do provide evidence that oral supplementation is
safe and well tolerated. One of the largest trials was a phase III randomized, placebo-controlled,
double-blind clinical trial at 67 North American sites by the Parkinson Study Group using doses of CoQ10

up to 2400 mg/day demonstrated the safety of this dose [7]. Evidence suggests that supplementation
does not inhibit endogenous production [13]. Previous studies had reported only mild side effects
such as gastrointestinal symptoms, mainly nausea, with CoQ10 supplementation [13,68].

3. Aging

3.1. Physiology of Mitochondrial Involvement in the Process of Aging

Human aging is a normal multifactorial process resulting from the interaction of genetic and
environmental factors. It is characterized by multi-organ system functional decline in association
with the risk of age-related diseases (dementia, neurodegenerative disorders, osteoporosis, arthritis,
diabetes, cardiovascular disease, age-related hearing loss, and cancer) [13,68–71].

A common hypothesis to explain some of the pathophysiology of age and degenerative diseases is
an oxidative imbalance between the production of reactive oxygen species (hydrogen peroxide: H2O2,
the oxygen-derived free radicals superoxide: O2•−, and hydroxyl radical: HO•), and antioxidant
mechanisms such as superoxide dismutase, catalase, glutathione peroxidase, ascorbic acid, tocopherol,
glutathione, and CoQ10, leading to a state of oxidative stress [72–80]. A number of animal models
support this theory with shortened survival in mice lacking superoxide dismutase 1 (SOD1) and a lethal
phenotype in mice lacking superoxide dismutase 2 (SOD2) [81,82].

As mitochondria are the main source of reactive oxygen species (ROS) production though OXPHOS
supercomplex activity in the cristae of the inner mitochondrial membrane (mainly at complex I and
III), this organelle is the major target of ROS damage. Mitochondrial DNA (mtDNA) is particularly
vulnerable with a high mutation rate and limited mtDNA repair mechanisms [69,74]. The continuous
production and accumulation of mitochondrial ROS is the basis for “the free radical theory of
aging” [70,71]. Although the accumulation of ROS has a major effect on DNA (strand breaks, oxidation
of bases, damage in sites coding for ETC proteins), other structures of the cell are also damaged: lipids,
membranes, proteins (leading to dysfunction of the ETC, inadequate ATP production, and further ROS
production) [72–75]. There is evidence that impaired mitochondrial machinery produces more oxidative
stress and more ROS production, resulting in a vicious cycle [76,83]. Electrons leaking from impaired
OXPHOS react with oxygen molecules to form the free radical superoxide [80]. There is also an effect on
mitochondrial dynamics with impairment of fission, contributing to mitochondrial enlargement, which
reduces recycling through mitophagy leading to a reduction in ATP generation [73]. Impairment of the
mitochondrial–lysosomal axis occurs with aging, with accumulation of lipofuscin inside lysosomes
with senescence. Lipofuscin accumulation is postulated to limit the ability of lysosomes to participate
in mitophagy [73].

Considerable evidence supports the relationship between ROS accumulation and mitochondrial
dysfunction leading to aging (the mitochondrial free radical theory of aging): ROS production increases
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in aged humans and animals [70,84], imbalance in the levels of pro and anti-oxidant substances
occurs [85] with high levels of oxidized and damaged macromolecules (proteins, lipids, and DNA) [86].
There seems to be a convincing relationship between high ROS levels and longevity in humans and
animals [87]; however, the exact role of ROS remains unclear as some animal models report a failure to
increase longevity with ROS reduction and others link high levels of ROS and longevity. It remains
unclear what the contribution of ROS generation is versus epigenetic factors modulating genes related
to the protection from effects of aging [77,88,89]. Evidence against the oxidative theory of aging comes
from some animal models where longevity is unaffected by increased ROS production. Some of these
studies are detailed below.

Growing evidence supports the idea that increased levels of ROS are associated with the specific
biochemical pathway that improves longevity, at least in some species [90]. C. elegans, a nematode
mutant model clk-1 (COQ7 equivalent gene in humans), has higher longevity associated with higher
ROS production. C. elegans with a point mutation in the gene isp-1, responsible for an iron-sulfur
mitochondrial complex, also demonstrate an increase in life span [91]. These observations point out
the multiple roles of ROS particularly as signaling molecules triggering protective pathways. Some
mouse models of defective CoQ synthesis are difficult to square with the oxidative theory of aging.
Mice with only one copy of the gene Mclk1 (equivalent of mammals COQ7 and C. elegans clk-1 model)
have higher production of ROS in the mitochondria (although a normal level of total ROS in the body),
a higher level of protection of the immune system (from some infections and also tumorigenesis) and
increased longevity [92]. Homozygous knockout of the Mclk1 gene is embryonic lethal but utilizing
a Tamoxifen dependent transgene mouse KO activated at 2 months of age a multisystemic disorder
(heart, kidneys, and skeletal muscles) with a decline in ubiquinol levels is produced. At 8 months
this “ubiquinol deficit” animal presented normal levels of some factors associated with oxidative
stress (catalase, F2-isoprostanes, DNA oxidative damage, SOD1, and SOD2). Diet supplementation
at 9 months with an analogue of the ubiquinol precursor 4-hydroxybenzoic acid rescued the clinical
phenotype [93]. Another mouse model heterozygous for the Sod2 gene (with decreased Mn-superoxide
dismutase activity) does show oxidative injury (increased tumor incidence and DNA damage) but
does not decrease longevity [94]. The concept that mitochondrial dysfunction may be a consequence of
aging factors rather than a cause is also supported by observations of sarcopenia in rat and human
muscles with other factors such as denervation playing a role [95].

Further studies are needed to understand the balance of ROS as an agent of oxidative injury and
its signaling epigenetic role modulating genes related to the protection of effects of aging. It may be
that after the saturation of the mechanisms of protection, the ROS-stress protective cascade can no
longer prevent oxidative damage [88].

It is not surprising that given the contradictory evidence for a central role for ROS in aging,
evidence supporting the utility of anti-oxidant therapies in aging (such as CoQ10) remains unclear.

3.2. CoQ10 and Aging, CoQ10 Deficiency in Advanced Age, Evidence for Beneficial Supplementation

Published results from various research groups about CoQ levels and lifespan are often at variance,
model dependent and do not support a similar pattern in all species [96–98].

3.2.1. C. elegans

Studies in the nematode C. elegans have produced unexpected results compared to mammals.
As discussed above, a nematode mutant model clk-1 (mammals COQ7 equivalent gene), with low
production of CoQ8, has an extension in longevity compared with the wild strain but requires dietary
Q supplementation [99]. This diet does trigger a Dauer long-lived larval anerobic state. Other studies
with CoQ gene knockouts confirm that deficiency in CoQ (less than 50%) also leads to an increase in
lifespan, and a possible explanation is that less ROS production occurs in the case of moderate CoQ
deficiency [100,101], but with more severe depletion of CoQ, longevity would be affected [100,102].
This finding was also confirmed in human cells, with two different studies from the same group
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reporting that fibroblasts with mutations on PDSS2 (homologue of yeast coq1) with less than 12 and
20% of CoQ10 of control cells had decreased synthesis of ATP without increase in the levels of ROS.
However, when the defect was of 30%, with partial defect in the synthesis of ATP the levels of ROS
were higher. The explanation proposed centered on the severity of the deficiency of coenzyme Q as
an oxphos modulator [103,104].

3.2.2. Rodent Models

A diet supplemented with Ubiquinol-10 in the senescence-accelerated mouse prone 1 (SAMP1)
reduced markers of oxidative stress (ratio of reduced and oxidized glutathione—GSH/GSSG),
decelerated the normal decline in expression of genes (Sirt1, Sirt3, and Pgc-1a, and Ppara), and their
respective proteins related to mitochondrial function during aging [105]. This treatment also increased
auditory brainstem response hearing loss. The proposed mechanism of CoQ10 benefit as an anti-oxidant
agent in this aging mouse is through cyclic adenosine monophosphate (cAMP). There is an enhancement
in sirtuin genes, and PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha)
with increased complex I and IV activity and reduce oxidative stress. Despite all these beneficial
effects, there was no significant change in the overall lifespans compared to the control animals [105].
These findings of increased cAMP, SIRT1 (sirtuin 1) expression, and PGC-1α in reducing parameters of
oxidative stress and increasing mitochondrial function were also confirmed in other experiments with
ubiquinol supplementation in senescence-accelerated mice, with added benefits in obesity, insulin
resistance, and metabolic syndrome, (hypothesized mechanism in Figure 4 [106]). PPARα (peroxisome
proliferator-activated receptors) signaling and lipid metabolism gene expression changes in liver of
C57BL6J mice was reported after one-week supplementation with ubiquinol (250 mg/kg BW/day) [23].

 

Figure 4. Proposed mechanism by which ubiquinol improves metabolic function and inhibits insulin
resistance in KKAy mice (a mouse model of obesity and diabetes). Ubiquinol inhibited phosphorylation
of CaMKII (Ca2+/calmodulin-dependent protein kinase II) in the liver resulting in inhibition of C-FOS
transcriptional activity and inhibition of PDE4 gene expression. Increased cAMP increases AMPK
(AMP-activated protein kinase) activity resulting in SIRT1 and PGC-1α increased mitochondrial
function and inhibition of lipid synthesis. (Adapted from Xu H. et al. 2017 [106] with permission).

Interestingly mice with a single copy of the Coq7 synthesis gene demonstrated increased
longevity [107]. However the mechanism is unclear and several studies report that dietary
supplementation with CoQ10 or ubiquinol in various rat models improves mechanisms involved with
mitochondrial biogenesis, including parameters of oxidative stress [105,108–111].
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3.2.3. Mammals and Tissue CoQ levels

In mammals there is a tendency to ubiquinone to be reduced with age, but this finding depends on
the tissue investigated and also the species [97]. Early studies suggested that tissue levels of ubiquinol
were endogenously produced with little change with dietary supplementation except in liver and
spleen; however, subsequent studies in rodents confirm that oral supplementation with CoQ10 does
increase tissue levels of both CoQ10 and CoQ9 in skeletal muscle, heart, and kidney [26], and when high
doses (200 mg/kg) are used for 2 months in rats, brain levels are increased and are neuroprotective [112].

In humans, there is also a lack of consistent data. One study did not find a relationship between
aging and CoQ10 plasma levels in elderly women [113]. Others report that plasma and tissue levels
change over time, with a peak in pancreas and adrenal by 1 year of age and in the brain, heart, and lung
by 20 years. After this peak, levels decrease over time [114]. A decrease in brain CoQ10 was confirmed
in other studies [115,116]. Only 50% of the myocardial CoQ10 endogenous production remains by the
age of 80 [114]. Serum total CoQ10 and ascorbic acid levels were decreased in centenarians compared
with 76-year-old controls. An elevation of the CoQ10 binding protein prosaposin was also noted
presumably in an attempt to compensate for low CoQ10 levels [117]. The authors conclude that CoQ10

supplementation could be beneficial for centenarians. However, it is not known if low tissue and
plasma CoQ10 levels contribute to or are a side effect of aging.

Reduction of CoQ10 with age is postulated to result from reduction in biosynthesis coupled
with an increase in degradation attributed to age-related modification in lipid membranes, which
alters quinone behavior [118]. This reduction of CoQ10 levels has a tissue/organ specificity with
reported high levels of CoQ10 in the brain mitochondria from old rats [26], and reduced level in the
muscle [98]. A recent paper showed age-related reduction in mitochondrial respiration parameters
and ATP production in epithelial cells, rescued with CoQ10 administration. Both cited that parameters
decrease as age increases, as seen in Figure 5, with the estimate of 10% reduction in mitochondrial
respiration every ten years [70].

Figure 5. Age-related decline in the oxygen consumption rate in epithelial tissue measured 16 h after
collection in a Seahorse XF analyzer. The gray circles show treated samples, the white circles untreated
samples, and the connected circles represent samples from the same donor. Significant improvement
with 100 μM CoQ10 incubation. (Adapted from Schniertshauer et al. 2018 [70] with permission).
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High CoQ10 concentration was reported to be associated with higher physical activity, lipid
peroxidation, and lower oxidized LDL levels in elderly people. The same publication describes higher
levels of plasma CoQ10 in elderly (more than 50 years old) people compared with young (less than
30 years) [119]. The same group confirmed lower lipid peroxidation and lower oxidized LDL in young
adults and also showed that CoQ10 is lower in obese elderly patients [120].

In another study, prolonged CoQ10 supplementation for 4 years in community-dwelling elderly
was associated not only with an improvement in health-related quality of life but more importantly
with a lower “more days out of hospital“ rate. In this study, subjects were co-supplemented with
selenium [121].

Although the association between CoQ10 and muscle power is not well established, one study
showed a positive relation between CoQ10/cholesterol levels and hand grip, and lower ubiquinol levels
in patients with less muscle strength. This study was undertaken to evaluate a possible relationship
between low levels of CoQ10 and ubiquinol in sarcopenia [122].

Despite the multiple reports on the effects of CoQ10 supplementation on aging-related oxidative
markers, reduction in biomarkers related to inflammation and in DNA repair mechanisms reports
there is a great need for more controlled studies in an older population to determine effectiveness of
CoQ10 as an anti-aging therapy [97] and also to determine the tissue CoQ10 levels in the human species
during senescence.

3.3. CoQ10 and Specific Conditions Associated with Age

The case for beneficial effects of CoQ10 or ubiquinol supplementation is stronger for a number
of aging-related diseases many of which have documented mitochondrial dysfunction or CoQ10

deficiency. Despite this, the majority of studies proving therapeutic effects of CoQ10 supplementation
were carried out in animal models [25].

Early studies were carried out with CoQ10 although often information on the formulation used
is lacking (it is known that ubiquinol can be 3 to 4 times better absorbed than ubiquinone). Also,
the doses used in most of the studies were lower than the doses studied for primary CoQ10 deficiency
(up to 1200 mg/day) and in secondary CoQ10 deficiency studies. The formulation and absorption
will affect studies of treatment efficacy. A colloidal-Q10 formulation has been shown to have a better
enteral absorption and bioavailability in human tissues, and also the vehicle of the active ingredient
can impact the results of trials [123].

3.3.1. Neurodegenerative Disorders

Neurodegenerative diseases involve neuro-inflammation and oxidative stress, with ROS
accumulation and mitochondrial dysfunction [83,124,125].

The data supporting mitochondrial cofactor supplementation in aging and the aging-related
diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple
sclerosis, are addressed in focused review articles in this supplement. A systematic review published in
2014 reviewed 16 articles and concluded that there is no available data from randomized controlled trials
(RCTs) to support the use of mitochondrial supplements for Parkinson disease, atypical Parkinsonism,
Huntington disease, and Friedreich ataxia [126].

Previous studies have shown that patients with Lewy’s body disease and amyotrophic lateral
sclerosis have lower CoQ10 plasma levels and Alzheimer disease patients have reduced levels of CoQ10

in the cerebral spinal fluid [127,128].
In Huntington disease, increased levels of cortical lactate were observed, which were normalized

after 2 months of Coenzyme Q10 oral supplementation at a dose of 360 mg/day. In another publication,
after discontinuation of the supplement, the lactate levels rose again [67,124]. This study does provide
evidence for CNS penetration of administered CoQ10 in humans. These and other data lead to
a multicenter RCT with 609 patients, which could not identify a benefit in Functional Capacity Score
and time to death after 60 months of 2400 mg per day of CoQ10 supplementation compared to
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placebo [129]. Thus, currently, there is insufficient evidence to support CoQ10 supplementation as
a treatment to delay neurodegeneration in Huntington disease even in the early stages of the disease.

A similar situation occurred in Parkinson disease. An early study found that patients had decreased
levels of α-tocopherol and CoQ10 in plasma and cerebrospinal fluid with increased levels of lipoprotein
oxidation compared to controls in a 2004 study of 161 subjects. [130]. Mitochondrial complexes I
and II/III were reduced in platelet mitochondria from early Parkinson disease patients [131]. A more
recent study confirmed the association of Parkinson’s disease and CoQ10 deficiency using Functional
Intracellular Assay, when compared to matched controls for age and gender [132]. A phase 2 study in
80 subjects at early or mid-stage Parkinson disease showed a beneficial effect from supplementation
with CoQ10 in progressive doses of 300, 600, 1200 mg/day for 16 months. There was an improvement
in the ADL UPDRS (Activity Of Daily Living Unified Parkinson Disease Rating Scale) and Schwab and
England scales compared to placebo (+11.99), with highest dose (+6.69) having the best effect [133].
This lead to a phase III randomized, placebo-controlled, double-blind clinical trial at 67 North American
sites by the Parkinson Study Group which used doses up to 2400 mg/day of CoQ10 vitamin E in the
dose of 1200 IU/d (to enhance the absorption of the lipophilic coenzyme) however this large study did
not find convincing evidence to support CoQ10 treatment for this disease [7]. A systematic review and
meta-analysis from 2016 could not find sufficient evidence in five selected RCTs to support the use
of ubiquinone (300 mg/day to 2400 mg/day) to decelerate the progression of Parkinson’s disease or
improve symptoms [134].

In aged, cognitively impaired mice, CoQ10 supplementation does improve special learning and
attenuates oxidative damage [135]. In Alzheimer Disease, the Alzheimer’s Disease Cooperative Study
could not identify benefits in the levels of oxidative stress and neurodegeneration biomarkers in CSF
(cerebrospinal fluid) with a dose of 400 mg of CoQ10 3 times/day for 16 weeks for patients [136]. To date,
chronic large-scale trials of CoQ10 have not been carried out in Alzheimer disease.

3.3.2. Cardiovascular Disease

A meta-analysis reviewed randomized controlled trials in healthy adults; two trials reported
reduction in systolic blood pressure, and no evidence for reduction in diastolic blood pressure was
reported. Another trial included in this meta-analysis failed to show an effect of CoQ10 supplementation
on the lipid profile (LDL: low-density lipoprotein cholesterol, HDL: high-density lipoprotein cholesterol,
and triglycerides) [137]. Another meta-analysis from 2016 concluded that there is not enough evidence
to support CoQ10 use to treat hypertension [138]. For dyslipidemia, no relationship was found
between CoQ levels in hyperlipidemic and normolipidemic, older women and no association with
body mass index was found [139]. Statins are well known to reduce CoQ10 levels because of inhibition
of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme is the first step in
the mevalonic acid synthesis pathway, which is necessary for the synthesis of cholesterol but also the
isoprenoid side-chain of CoQ10 [140].

Patients with mitochondrial myopathy do not tolerate statin treatment, often developing exercise
intolerance and myalgia when treated with statins. These symptoms may improve with CoQ10 oral
supplementation [141–143]. Statins were also found related to a reduction in complex III activity.
However, the exact mechanism for the mitochondrial myotoxicity of statins is not well understood and
other factors than CoQ10 can be involved, such as genetic polymorphisms [144].

There is evidence that cardiac function in the elderly may be improved by CoQ10 treatment.
This effect may be related to the documented fall in cardiac CoQ10 levels in the aged heart [114].
A meta-analysis reviewed eight clinical trials and concluded that patients submitted to cardiopulmonary
bypass have a decreased requirement for ionotropic drugs and a reduced chance of ventricular
arrhythmia if receiving CoQ10 supplementation [145].

The best case for CoQ10 supplementation is in cardiovascular disease. It was recently reported
that 12 years after a 4-year double-blind treatment protocol in the elderly co-supplemented with
selenium (200 μg) and CoQ10 (200 mg/day) (ubiquinone in a softgel vehicle of vegetable oils) the treated
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subjects still had a reduced cardiovascular mortality (38.7% in placebo-treated group versus 28.1% in
CoQ-treated group) [146]. The Q-SYMBIO trial enrolled 420 patients and showed that CoQ10 100 mg
3 times daily for 2 years plus standard therapy reduced the risk of cardiovascular events, in this study
measured as cardiovascular mortality (16% in placebo and 9% in the treated group) and hospitalization
for heart failure compared to placebo, and also a positive change in the New York Heart Association
(NYHA) functional classification (26% in placebo and 15% in the treated group) [147]. A recent review
of the use of CoQ10 in heart failure is recommended [39].

3.3.3. Endothelial Dysfunction

Endothelial function may be a risk factor for coronary artery disease and atherosclerosis. CoQ10

together with a Mediterranean diet was shown to improve markers of endothelial function in elderly
patients [148,149].

3.3.4. Renal Disease

Although ubiquinol can improve the endothelial dysfunction associated with the diabetic kidney
disease (systolic blood pressure and urinary albumin) [150], and a trial with CoQ10 supplementation
(1200 mg/day in dialysis patients) identified a reduction in a plasma indicator of oxidative stress
(F2-isoprostane) [151], a meta-analysis failed to prove CoQ10 efficacy in avoiding the progression of
diabetic kidney disease [152].

3.3.5. Inflammation

Many aging-related diseases share a common physiologic pathway of chronic inflammation
leading to oxidative stress, such as cardiovascular diseases, diabetes, cancer, and chronic kidney disease.

A recent meta-analysis reports a reduction in the plasma inflammatory biomarkers, C-reactive
protein, IL-6, and TNF-α, after CoQ10 supplementation (60 to 500 mg/day, formulations described as
CoQ10 or ubiquinol), for 1 week to 4 months in different inflammatory disorders (cardio and cerebral
vascular disease, multiple sclerosis, obesity, renal failure, rheumatoid arthritis, diabetes, and fatty
liver disease). The same review reports that CoQ10 decreases other biomarkers for inflammation
and inflammatory cytokines [30]. Although CoQ10 treatment has been shown to improve markers of
inflammation, a benefit of chronic treatment for the diseases associated with inflammation has not
been demonstrated.

CoQ10 (100 mg/day) supplementation for 2 months decreased the levels of TFN-α in rheumatoid
arthritis patients compared to placebo, [153]. A more recent systematic review and meta-analysis
reported CoQ10 supplementation between 60 to 300 mg/day (no extra information about formulations)
was associated with a slightly drop in C-reactive protein levels and a significant decrease in in IL-6
levels [154].

Down syndrome patients have an abnormal pro-inflammatory profile (increased IL-6 and
TNF-α) [36,37] and reduced CoQ10 levels, and supplementation reduced markers of oxidative stress
and mitochondrial dysfunction [38,155].

3.3.6. Osteoporosis

Animal and human studies have demonstrated that benefits of CoQ10 supplementation have
a beneficial profile for osteoporosis [156–158].

3.3.7. Cancer

There is evidence of the relationship between some cancers and reduced CoQ10 levels in blood,
particularly breast cancer [159], myeloma [160], melanoma [161], and follicular and papillary thyroid
carcinomas [162]. There is also evidence that CoQ10 supplementation modulates phospholipid
hydroperoxide glutathione peroxidase gene expression, free radical production, and can decelerate the
growth of tumor cells in a prostate cancer line (PC3 line) [163].
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4. Conclusions

There is still much to be learned about the pathophysiology of the process of aging. There are
well documented reductions of tissue CoQ10 in senescence. It is not known if low CoQ10 is an effect
of aging, perhaps matching the fall in mitochondrial electron transport function or a contributing
cause to the aging process. There is accumulating evidence that some diseases of aging may benefit
from supplemental ubiquinol or CoQ10 treatment. Studies to date have supported the safety and
the potential of CoQ10 in reducing oxidative stress biomarkers. There remains a lack of adequate
large-scale clinical trials preferably utilizing ubiquinol as the better absorbed form of CoQ10. Despite
the lack of evidence, large numbers of people in the population are taking CoQ10 and other vitamins
and cofactors in the hope that these agents will slow senescence and expand longevity.
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Abstract: Skin ageing is the result of a loss of cellular function, which can be further accelerated by
external factors. Mitochondria have important roles in skin function, and mitochondrial damage
has been found to accumulate with age in skin cells, but also in response to solar light and pollution.
There is increasing evidence that mitochondrial dysfunction and oxidative stress are key features
in all ageing tissues, including skin. This is directly linked to skin ageing phenotypes: wrinkle
formation, hair greying and loss, uneven pigmentation and decreased wound healing. The loss of
barrier function during skin ageing increases susceptibility to infection and affects wound healing.
Therefore, an understanding of the mechanisms involved is important clinically and also for the
development of antiageing skin care products.

Keywords: mitochondria; skin; ageing; reactive oxygen species; photoageing

1. Skin Structure

Skin is the largest organ of the human body and made up of three distinct layers: the epidermis,
the dermis and subcutaneous fat. It functions as a barrier against the environment, providing protection
against microbes as well as fluid and temperature homeostasis. The epidermis is a thin layer of densely
packed keratinised epithelial cells (keratinocytes) which contains no nerves or blood vessels and
relies on the thick dermal layer underneath for metabolism. The dermis is the main living tissue in
the skin, consisting of fibroblast cells in an extracellular matrix interspersed with sweat glands, hair
follicles, muscle, capillaries and nerve endings. The epidermal basal layer is the innermost layer of
the epidermis dispersed with melanocytes [1]. It separates the outer layers of the epidermis from the
nutrient-providing papillary dermis and the thick supporting reticular dermis layer below, all of which
rest on a layer of subcutaneous fat. With skin taking a large environmental insult, the keratinocytes
undergo constant turnover by epidermal stem cells to replace damaged cells [2]. Melanocytes produce
melanin, which is transported to keratinocytes to produce skin pigmentation and provide some solar
protection. Structural integrity, repair and strength within the dermal layer of the skin are provided by
type I collagen fibres, produced from procollagen bodies. Collagen regulation occurs through synthesis
promotion by cytokine TGF-β, inhibition by transcription factor AP-1 and active degradation by the
collagenase enzymes matrix metalloproteinases (MMPs) [3].

2. Mitochondria’s Role in Skin

Mitochondria play a vital role in the skin. While the energy requirement may not be as great
as other organs, such as skeletal muscle, it is still integral for processes like cell signalling, wound
healing, pigmentation, vasculature homeostasis and hair growth. They are critical in microbial defence;
glycolysis and ATP production have been found to rapidly increase in response to Staphylococcus
aureus infection on the skin, in response to hypoxia induced metabolic stress [4]. This implements
mitochondrial reactive oxygen species (ROS) signalling in the defence against skin infection through
hypoxia-inducible factor 1-alpha (HIF1α) activation and immune cell recruitment [5]. Mitochondrial
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function and ROS production aid the regulation of stem cell differentiation, and have further been
specifically linked to epidermal homeostasis and hair follicle development [6]. Reactive oxygen species
signalling via mitochondria is therefore specifically involved in skin structure and function.

In patients with genetic mitochondrial disease, skin manifestations are often neglected as the
disease predominantly affects the neuromuscular system, due to its high energy requirements. Various
abnormalities in mitochondrial function, such as mutations of mitochondrial repair genes and haem
synthesis, have been directly linked to a multitude of skin aberrations [7]. Lipomas and pigmentation
disorders are the most commonly recorded skin complaints in mitochondrial disease patients [7,8].
This is likely due to mitochondrial defects in brown fat [9] and the direct effect of mitochondrial
function in pigment production, respectively. Skin complaints can therefore be directly linked to
genetic mitochondrial dysfunction and through complex ROS signalling. However, the correlation
between the skin and mitochondria should be approached with caution, many other skin disorders are
a result of secondary factors in diseases which do not primarily affect the mitochondrion itself, such as
skin blistering in epidermolysis bullosa simplex [10].

3. Hallmarks of Skin Ageing

Wrinkles are one of the first features thought of when considering facial appearance and ageing.
Intrinsic ageing is the result of chronological, inevitable senescence of the skin cells which varies
depending on ethnicity, hormones and the anatomical region of affected skin. Extrinsic skin ageing is a
result of all the external factors that can induce skin ageing, such as lifestyle, smoking, UV exposure
and the environment, which have a cumulative effect over time [11]. Fine lines, breakdown of the skin
structure, reddening due to increased visible vasculature and a reduction of elasticity are the main
clinical features of intrinsic ageing; extrinsic ageing produces much deeper wrinkles, dryer skin, spider
veins and uneven pigmentation [12].

As skin is constantly defending against environmental insult, it is important to maintain its
integrity: ageing skin has reduced wound healing capacity and increased water loss. This increases
susceptibility to cuts and infection, and makes it more prone to irritation and dermatoses [13]. It is
essential to maintain an adequate skin barrier and understand the mechanisms involved in its loss to
protect against age related dysregulation.

4. Mitochondria and Ageing

The “Free Radical Theory of Ageing” was first proposed by Harman in the 1950s [14]. It states that
mutations acquired in mitochondrial DNA (mtDNA) during life, both spontaneously and through stress,
can disrupt cellular metabolism like oxidative phosphorylation in the mitochondria and ultimately
increase ROS. This, in turn, results in the oxidation of cellular components including proteins, lipids,
DNA and RNA, which creates a cycle of altered metabolism and further damage. Ultimately, this
results in the subsequent decline of cellular function seen in ageing and degenerative diseases.

Since it was first proposed, there have been a multitude of studies attempting to corroborate
this theory by analysing mtDNA damage in ageing. As of yet there is no consensus, but there is a
correlation between mtDNA damage, increasing oxidative stress and ageing. In skin samples, an
accumulation of mtDNA deletions has been found to not only increase with age, but also in sun
exposed areas compared to protected areas [15]. In this study by Ray et al., epidermal skin had a
significantly greater increase in mtDNA deletions with chronic sun exposure compared to dermal
skin, which had no significant change in mtDNA deletion quantity to protected skin. This was higher
than those found in normal ageing. Additionally, an increase in point mutations has been observed in
aged human fibroblasts which suggest that there are different types of mtDNA damage that could
contribute to skin ageing [16]. Mitochondrial mutations and deletions have also been found to increase
with ageing in other tissues. An accumulation of somatic mtDNA point mutations has been observed
in the noncoding region of muscle tissue [17,18], and an increase in the frequency of a common 4977 bp
deletion has been observed with increasing age in both breast and brain tissue [19,20]. This specific
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deletion has been found to increase in an age dependent manner in whole human skin [21], however
more recent studies suggests that this increase only correlates with sun exposure [22] and particularly
in the dermis [23]. The T414G transversion mutation in the mtDNA promoter region has a strong
correlation with dermal fibroblast ageing, which is significantly increased in UV exposed regions [24].
This mutation has been found in tissues affected by age-related conditions such as in the brain of
Alzheimer’s patients [25], precancerous cells in the colon [26] and an age-dependent increase in this
mutation has also been found in muscle tissue [27]. This demonstrates that mtDNA damage increases
with age in a variety of tissues and UV stress can accelerate this damage in the skin. However, it has
been difficult to determine whether these mutations are generated by or induce ROS production, which
is the centre of many debates surrounding this theory [28,29].

UV-induced oxidative stress and its role in signalling during extrinsic ageing have been well
documented in the skin [30], but oxidative stress can also have ageing effects elsewhere. Reducing
calorie intake by 10 to 50% is believed to decrease metabolic stress and scavenge ROS. It has been
shown to increase lifespan in many organisms, including yeast [31] and mice [32], and decrease ageing
biomarkers in nonhuman primates [33], making it a good candidate as a model to test Harman’s theory.
Altogether, tissue-specific increase in mitochondrial efficiency and the oxidative stress response [34]
and consequential reduction in ROS and oxidative stress have been shown following CR; and while
not all CR study models increased in lifespan, there is evidence to suggest improved ageing health [35].
The focus of these studies is primarily lifespan and effects on organs other than the skin. However,
a report on CR in Rhesus monkeys presented with subjective increase in hair loss in the ad libitum
control compared to the CR monkey [36], therefore CR and the resulting metabolic changes could also
have an impact on the skin.

Skin changes with CR were further investigated by Forni et al. [37] in mice. Caloric restriction
resulted in increased mitochondrial function in the dermis, but not the epidermis, and fur remodelling
and impaired vasoconstriction relating to thermoregulation. This implicates mitochondria as energy
providers for cold adaptation in the skin, which agrees with previous observations of mitochondrial
uncoupling as a preventative mechanism to cold stress [38]. In terms of skin ageing, CR promotes
epidermal thickening and increases hair follicle stem cell pool which could indicate a rejuvenation of
the skin by preventing skin thinning and hair loss indicative of skin ageing. This is coupled by evidence
that mice without mitochondrial matrix antioxidant superoxide dismutase SOD2, which converts
superoxide anon to hydrogen peroxide for further metabolism, exhibit normal ageing phenotypes at a
younger age, particularly cellular senescence in the skin [39]. Therefore, the reduced capacity to break
down superoxide anion results in higher oxidative stress and accelerated skin ageing in this model.

Another important discovery in mice looked at the induction of mtDNA depletion by an amino
acid substitution in POLG1. Mice with this mutation showed a significant reduction in all OXPHOS
complex activities in the skin and phenotypical ageing symptoms such as hair greying and loss,
curvature of the spine, reduced movement and wrinkling of the skin [40]. The skin and hair changes
are attributed to deformities of the hair follicle, increased epidermal cell proliferation causing deep
wrinkles and epidermal thickening. Skin is not often commented on when addressing symptoms of
POLG mutations in humans, so a satisfactory comparison cannot yet be made.

So far, research has demonstrated an increase of mtDNA mutations in ageing and a link between
lower metabolic stress and increased ageing health, but does not show cause and effect. The problem
with these models is two-fold. Firstly, is the amount of mutant mtDNA present in the cell enough
to cause a pathogenic effect and secondly, do the observed age-related mutations dysregulate the
respiratory chain? This can be partially answered with an observed decrease in mitochondrial function
and metabolism in ageing muscle tissue in parallel with an increasing mutation load with ageing [41,42].
This does not rule out other mechanisms of mitochondrial dysfunction unrelated to the observed
mutations [43], nor does it prove that ROS is a confounding factor in the pathogenesis.
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5. Pigmentation

Melanin pigment is formed in response to oxidation reactions in melanocytes. Pheomelanin
is the yellow-red pigment associated with red head and freckles and eumelanin which is more
prevalent in dark haired individuals, the ratio of these is regulated by the melanocortin 1 receptor
(MCR1) gene which has been previously reviewed [44]. Pheomelanin has been shown to have
higher prooxidant effects on the cell as it sequesters cysteine and glutathione antioxidant during
synthesis, and the loss-of-function in MCR1 results in the inability to produce eumelanin in response
to α-melanocyte-stimulating-hormone (α-MSH), the process of which produces some antioxidant
properties [45]. In terms of skin ageing, loss of MCR1 function has been linked to increased perceived
age by an average of two years and heterozygous variants without complete loss-of-function had
an increased perceived age of one year on average [46]. It has been suggested that this could be the
effect of oxidative effects of pheomelanin production or changes to fibroblast function in the absence
of MCR1 activity. In relation to mitochondrial function, melanocytes pretreated with α-MSH have
been shown to have a protective effect on mtDNA copy number in response to UVB light. This could
infer that stimulation of eumelanin rather than pheomelanin could have photoprotective properties;
however, no quantification pheomelanin/eumelanin was performed [47]. Links between mitochondrial
function, mtDNA and pheomelanin/eumelanin ratio have not yet been formally researched, which
could provide an insight into the mechanisms involved in skin ageing though oxidative stress.

Uneven pigmentation is one of the hallmarks of skin ageing. Mitochondria have even been
implicated in the biosynthesis of melanin in melanocytes, required to create pigmentation in response
to UV light. Prohibitin proteins found localised in the inner mitochondrial membrane were found
to bind directly to melanogenin, a synthetic pigmentation promotor. Prohibitin silencing directly
interfered with melanogenin activity and is thought to be involved in the regulation of rate limiting
melanin enzyme tyrosinase [48]. In addition to this, mitochondria in melanocytes have been shown
to interact with melanosomes, suggesting a functional role in melanosome biogenesis and therefore
melanin production [49].

Melatonin is a hormone predominantly produced in the brain to regulate sleep, and its metabolism
relies heavily on mitochondria and ROS signalling [50]. It exhibits antioxidant effects and can inhibit
melanogenesis in animal models at high concentrations, which can help modulate coat colour [51].
Studies observing changes in human skin pigmentation with intake of oral melatonin found no effects
over a 30-day period in patients with hyperpigmentation of varying causes [52], melanoma patients
or a control group [53]. However, melatonin and its metabolites have been detected in human skin
in vivo, and all were found to inhibit melanocyte proliferation and tyrosinase activity in vitro [54].
All of the above suggests that mitochondrial function is a modulator of skin pigmentation, and also that
dysfunction could interfere with melanin production both directly and indirectly through excessive
ROS signalling and melatonin production.

These findings correspond with the observation from individuals with vitiligo—a condition which
results in areas of the skin with inactive melanocytes—of reduced energy production in cultured
melanocytes with depleted skin pigmentation, compared to healthy melanocytes [55], and the increased
presence of vitiligo in patients with genetic mitochondrial dysfunction [56].

6. Photoageing

Sun damage is a well-known cause of skin cancer and ageing, and photoageing is the process of
chronic sun exposure leading to extrinsic skin ageing. Solar light is composed of ultraviolet radiation
(UVR) (10–380 nm), visible light (380–780 nm) and infrared radiation (IR) (above 780 nm). UVR is the
most notorious for causing skin damage, so protection against both UVA and UVB is found in most
sunscreens. UVB radiation was once believed to be the only contributor to photoageing due to higher
energy levels than UVA, but it is now proven that UVA is the key player, though each can affect skin in
different ways. UVA makes up the majority of solar UVR but only affects DNA indirectly, whereas
UVB radiation represents a small portion but causes direct DNA damage [57].
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The epidermis is the first line of defence against UVB damage and absorbs the majority of the
radiation. The level of which depends on ethnicity, site of skin, hydration and many other factors [58].
Pigmentation from melanin plays a large part in the initial protection against UVR [59], and higher
melanin has an inverse correlation with DNA lesions in humans [60] and this is also seen in other
species, such as whales [61]. UVA, visible and infrared light can penetrate deeper into the skin than
UVB (Figure 1), and it has been shown that dermal fibroblasts are in fact more susceptible to DNA
damage from longer wavelengths of light (>300 nm) [62]. There is also evidence of visible and infrared
light induced skin damage, and even a synergistic effect of all wavelengths [63].

 

Figure 1. Penetration of UVB, UVA and infrared radiation into the skin.

Ageing is a natural process, and even without UV insult would occur over time due to the gradual
shortening of telomere caps in nuclear DNA, loss-of-functionality in ageing and consequent cellular
senescence [64]. This ageing damage profile has been found in a number of age related diseases
including dementia and atherosclerosis [65,66]. It can also be induced in vitro in skin fibroblasts
using UVA radiation [67] and in keratinocytes using UVB exposure [68], which further demonstrates
a role for UVR in ageing. In addition to this, mtDNA damage is repeatedly seen in higher levels in
photoexposed skin leading to an accumulation of cellular damage and a decrease in mitochondrial
activity in the skin [24,69–71].

Although the precise mechanisms of photoageing are still being researched, collagen, mtDNA
damage and increased ROS production are all key features. Inflammation induces the breakdown of
matrix proteins to help the recruitment and migration of immune cells, therefore chronic inflammation
can result in detrimental breakdown of tissues [72]. Inflammation due to UVA and UVB exposure
has been shown to induce the enzymatic activity of MMPs in the dermis and epidermis, respectively,
through ROS signalling and the activation of transcription factor AP-1 and NFκB [73–76]. AP-1
production reduces synthesis of procollagen type I and III, thereby disrupting the formation of new
collagen at the same time as degrading it [77]. This is supported by the presence of ultrastructural
changes and degradation of collagen fibre bundles from the dermis in photoexposed areas of human
skin and UV irradiated mouse models [78]. Infrared radiation can also induce MMPs in dermal
fibroblasts [79]. Therefore, sun exposure is directly linked to the active breakdown of collagen and the
reduction of collagen synthesis through ROS signalling, leading to the formation of deep wrinkles
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and extrinsic skin ageing. Hypothetically, the mtDNA damage observed in photoexposed areas could
cause dysregulation of OXPHOS and an increase in ROS production, as theorised in the ‘Free Radical
Theory of Ageing’, and this could then lead to accelerated skin ageing.

The process of photodegradation of melanin results in singlet oxygen production, which has been
shown in synthetic models [80], and UVA irradiation of pheomelanin exhibited conformational changes
in catalase antioxidant which was attenuated with a singlet oxygen quencher [81]. In humans, a six-fold
increase in photoageing was observed in those with homozygous loss of MC1R gene variants compared
to those with wild type gene [82]. This all suggests that photodegradation of melanin could also be an
important mechanism in the oxidative stress and mtDNA damage exhibited in photoexposed skin.

7. Pollution

With climate change a major danger to human health, research into the effects of air pollution
has received growing attention. Outdoor pollutants predominantly originate from vehicle emissions,
combustion of fossil fuels and industrial processes. Small particulate matter (PM2.5) and ozone has been
shown to increase DNA and protein damage through ROS and oxidative stress in vitro and in mouse
models [83,84], and have a positive association with skin ageing though pigmentation spots and skin
wrinkling in Chinese [85] and German populations [86]. Activation of the aryl hydrocarbon receptor
(AhR) is key in modulating the effects of pollution. Its activation by ligands, including ozone and
PM2.5 [87,88], increases the expression of cytochrome P450, which can metabolise polycyclic aromatic
hydrocarbons into carcinogenic substances capable of inducing DNA damage. These mechanisms
have been further reviewed elsewhere [12,89,90].

Lentigines are hyperpigmented lesions in the skin as a consequence of excess melanocytes, which
often become more abundant during ageing. Solar lentigines are associated with the level of sun
exposure of the skin [91], and are the product of excess melanin production. Traffic-associated particles
and soot have also been associated with the formation of these pigment spots on the forehead and
cheeks [86,92], suggesting a common mechanism between UVR and pollution stressors. It has been
suggested that one factor in this could be due to the age-dependent decline of mitochondrial complex II:
succinate dehydrogenase [93]. Complex II is entirely transcribed by nuclear DNA and has been shown
to decrease it’s activity in comparison to complex I and IV in an age dependent manner in senescent
cells, predominantly in the epidermis [69]. Inducing hyperpigmentation in melanoma cells results in
the inhibition of complex II activity and an initial increase in superoxide ROS formation, and increasing
melanin concentration was capable of attenuating further formation [94]. Therefore, lentigine formation
could be a protective mechanism against the increase ROS production from senescent skin cells, due to
a decline in complex II function.

8. Hair Follicles

Hair loss and greying is another key observable ageing phenotype. Unfortunately, this is one
ageing phenotype which is poorly understood and as yet cannot be prevented. Hair follicles are
situated within the dermis, and melanocytes and keratinocytes are responsible for the colour and
growth of hair; it is therefore important to mention hair within the context of skin and ageing.

One theory of hair greying involves the acquisition of mitochondrial DNA damage with increased
oxidative stress; the ‘common’ 4977 bp deletion has been discovered in higher levels in greying and
unpigmented hair follicles (40% and 20%, respectively) than in pigmented (5%) [95]. Greying hair can
be characterised by the gradual loss of melanocytes in the pigmentary units by apoptosis, until the hair
follicle is unpigmented [96]. This pigmentary unit in greying hair was found to have the highest level
of oxidative stress in melanocytes and a loss of ROS scavenging Bcl-2 activity. Bcl-2 is an inhibitor
of the mitochondrial pathway of apoptosis, so the diminished expression can explain the increased
apoptosis of melanocytes in response to cell stressors. These findings are in line with the grey hair
phenotype of Bcl2−/−mice [97]. This details the mechanisms associated with mitochondrial function;
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but all of three theorised mechanisms, as reviewed by SK Jo et al. (2018) [98], point to a role of oxidative
or genotoxic stress induced damage, which supports mitochondrial involvement.

Hair loss can occur though ageing, nutrient deficiency and temporary or permanent alopecia, all of
which present differently. Like hair greying, hair loss is little understood. Mice with PolgA mutations
leading to a faulty mtDNA repair mechanism, have an increased mtDNA mutation abundance and an
accelerated ageing phenotype which exhibits a reduction in hair density [99]. Age-related hair loss in
humans is predominantly androgenic with a higher prevalence in men [100]. Dermal papilla cells from
balding regions have been found to express higher levels of senescence markers and have antioxidant
superoxide dismutase expression localised in the nuclear region. This is in contrast to the cytoplasmic
or mitochondrial localisation found in nonbalding counterparts [101]. This translocation of superoxide
dismutase in response to oxidative stress in the cell is a protective mechanism as it is suggested to
promote oxidative resistance and repair and function as a transcription factor [22].

Mice with mitochondrial transcription factor A (TFAM) knockdown, which causes mtDNA
depletion and loss of electron transport chain (ETC) complexes, in the epidermis and hair follicle
epithelium show a reduction in proliferation, increase in apoptosis and exhibit abnormalities in melanin
production and function in the hair follicles [102]. ROS signalling from mitochondrial function is
required for hair growth, as shown by high mitochondrial membrane potential and a burst of ROS
production at the matrix epidermal cell and hair shaft interface in growing cultured bovine and human
hair follicles [103]. These epithelial cells subsequently underwent mitochondrial de-polarisation as
they converted to hair shaft matrix. Both these studies demonstrate critical mitochondrial function and
ROS signalling in the morphogenesis of hair follicles and hair shaft elongation, and the importance of
functional ETC in these processes.

Although there is a limited understanding of hair ageing, there is evidence to support mitochondrial
involvement in both, predominantly through the increase of oxidative stress and a reduced capacity to cope.

9. Summary

Mitochondria are important for skin function and mtDNA mutations; functional decline is linked
to skin ageing through stress-induced wrinkle formation, pigmentation and hair greying and loss.
Many of the mechanisms contributing to skin ageing are not fully understood, and it is likely that
mitochondrial function is part of a complex set of processes that lead to tissue functional decline and
ageing. It is important scientifically to understand the mechanisms behind skin ageing to clinically
develop prevention strategies, but it is also useful in industry to improve antiageing formulas and
those targeted to mature skin.
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Abbreviations

UVA Ultraviolet A
UVB Ultraviolet B
IR Infrared
MMPs Matrix metalloproteinases
ROS Reactive oxygen species
AP-1 activator protein-1
NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells
TGF-β Transforming growth factor beta
PM2.5 Small particulate matter
AhR Aryl hydrocarbon receptor
Bcl-2 B-cell lymphoma 2
ETC Electron transport chain
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Abstract: Recent advances in vitamin D research indicate that this vitamin, a secosteroid hormone,
has beneficial effects on several body systems other than the musculoskeletal system. Both 25 dihydroxy
vitamin D [25(OH)2D] and its active hormonal form, 1,25-dihydroxyvitamin D [1,25(OH)2D] are
essential for human physiological functions, including damping down inflammation and the excessive
intracellular oxidative stresses. Vitamin D is one of the key controllers of systemic inflammation,
oxidative stress and mitochondrial respiratory function, and thus, the aging process in humans.
In turn, molecular and cellular actions form 1,25(OH)2D slow down oxidative stress, cell and tissue
damage, and the aging process. On the other hand, hypovitaminosis D impairs mitochondrial
functions, and enhances oxidative stress and systemic inflammation. The interaction of 1,25(OH)2D
with its intracellular receptors modulates vitamin D–dependent gene transcription and activation
of vitamin D-responsive elements, which triggers multiple second messenger systems. Thus, it is
not surprising that hypovitaminosis D increases the incidence and severity of several age-related
common diseases, such as metabolic disorders that are linked to oxidative stress. These include
obesity, insulin resistance, type 2 diabetes, hypertension, pregnancy complications, memory disorders,
osteoporosis, autoimmune diseases, certain cancers, and systemic inflammatory diseases. Vitamin D
adequacy leads to less oxidative stress and improves mitochondrial and endocrine functions, reducing
the risks of disorders, such as autoimmunity, infections, metabolic derangements, and impairment
of DNA repair; all of this aids a healthy, graceful aging process. Vitamin D is also a potent
anti-oxidant that facilitates balanced mitochondrial activities, preventing oxidative stress-related
protein oxidation, lipid peroxidation, and DNA damage. New understandings of vitamin D-related
advances in metabolomics, transcriptomics, epigenetics, in relation to its ability to control oxidative
stress in conjunction with micronutrients, vitamins, and antioxidants, following normalization of
serum 25(OH)D and tissue 1,25(OH)2D concentrations, likely to promise cost-effective better clinical
outcomes in humans.

Keywords: 25(OH)D; 1,25(OH)2D; aging; cytokines; inflammation; morbidity and mortality;
prevention; reactive oxygen species; ultraviolet

1. Introduction

Vitamin D is a micronutrient that is metabolized into a multifunctional secosteroid hormone that
is essential for human health. Globally, its deficiency is a major public health problem affecting all
ages and ethnic groups; it has surpassed iron deficiency as the most common nutritional deficiency
in the world. The increasing prevalence of vitamin D deficiency and its associated complications are
prominent in countries furthest from the equator. However, incidence is also high among those who
live within 1,000 km of the equator (e.g., in Sri Lanka, India, and Far Eastern, Middle Eastern, Central
American, and Persian Gulf countries) because of a combination of climatic conditions, ethnic and
cultural habits, and having darker skin color [1–4].
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Most of the vitamin D the human body requires can be generated by an individual’s exposure
to summer-like sunlight, with dietary sources playing a supporting role when sunlight exposure is
limited or ineffective for vitamin D production. Despite the above, more than 50% of the population in
the group of countries mentioned has vitamin D deficiency [5,6]. If effective public health guidelines
are implemented, vitamin D deficiency can be easily and cost-effectively treated and prevented, saving
millions of dollars and lives. Although excessive sun exposure does not cause hypervitaminosis D,
it can cause other harm because of dermal cell DNA damage [7–9]. Thus, guidelines for safe sun
exposure are needed for each country.

During the past decade, many advances in the understanding of the physiology and biology
of vitamin D and its receptor ecology have emerged [10]. Vitamin D metabolism and functions are
modulated by many factors. Accumulating evidence supports biological associations of vitamin D with
disease risk reduction and improved physical and mental functions. The field is rapidly advancing,
including the knowledge of the physiology of vitamin D-vitamin D receptor (VDR) interactions and the
biology and metabolism of vitamin D and their effects on vitamin D axis and gene polymorphisms [11].
Together these data have facilitated our understanding of new pathways to intervene to prevent and
treat human diseases.

However, what is lacking is the adequately powered, conducted for sufficient duration,
well-designed randomized controlled clinical studies (RCTs) conducted in an unbiased manner
with the nutrient vitamin D as the key intervention and having predefined hard endpoints/primary
outcomes [12]. Moreover, such studies must recruit persons with vitamin D deficiency [i.e., serum
25(OH)D concentrations less than 20 ng/mL (50 nmol/L)] and achieve a pre-determined target serum
25(OH)D concentration through daily oral administration and/or safe exposure to ultraviolet rays; not
merely by relying on oral administered doses. The goal of this review is to explore the effects from
vitamin D-modulated gene interactions and the effects of hypovitaminosis-induced, mitochondria-based
oxidative stress on aging.

1.1. Extrarenal Generation of 1,25(OH)2D

The active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)2D], is generated not only
in renal tubular cells (endocrine functions as a hormone) but also in extrarenal target tissue cells,
providing autocrine and paracrine functions. However, because it remains within the target tissue
cells, the intra-cellular concentrations achieved are unclear. In addition, the catabolic activity of
24-hydroxylase in target tissues plays an important part in regulating both 25-hydroxy vitamin D
[25(OH)D; calcidiol], and 1,25(OH)2D (calcitriol) concentrations and their availability.

The amounts of 1,25(OH)2D generated in renal tubules and target cells can vary from person to
person and day to day and are hard to quantify. Although the calcitriol in the circulation is modulated
by parathyroid hormone (PTH) and serum ionized calcium concentrations [13], the intracellular content
is regulated largely through serum 25(OH)D availability and calcidiol and calcitriol catabolism through
hydroxylation at the molecular positions C-24 and C-23 by a specific 24-hydroxylase (CYP24A1) [14].

1.2. Excess Sun Exposure Does Not Cause Hypervitaminosis D

After exposure to ultraviolet B (UVB) rays, dermal cells actively synthesize vitamin D. As a
feedback mechanism, excess precursors produced are catabolized within the dermal cells by the
same UVB rays. In addition, skin also contains the inactivating enzyme 24-hydroxylase, which
also prevents over-production of vitamin D by 24-hydroxylation of vitamin D [15]. This process of
homeostasis is regulated by UVB, PTH, and serum ionized calcium concentrations [16]. When an
individual is overexposed to ultraviolet rays, the mentioned built-in protective mechanism prevents
excessive retention of vitamin D in the skin. Therefore, sun exposure does not raise serum 25(OH)D to
pathological levels, cause hypervitaminosis D or its complications, such as hypercalcemia.

In addition, vitamin D synthesized in the skin from UVB exposure in excess of need is catabolized
in part through 20-hydroxylation by the cholesterol side chain cleavage enzyme CYP11A1 [17]. Thus,
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there are multiple intrinsic mechanisms present to prevent excess vitamin D from reaching the
circulation. The efficiency of vitamin D synthesis in the skin is affected by many factors, including the
density of melanin pigment, condition of the skin and age, and the use of sunscreen and UV-blocking
makeup, creams, and ointments and clothing. In addition, older age or scarred skin, as well as time of
day or year and the duration of sun exposure affect vitamin D synthesis in the skin [18–21].

Although solar radiation is the source of vitamin D generation in the skin, excessive exposure,
particularly in those who are genetically vulnerable, may cause skin cancers [22–24]. On the other
hand, optimal vitamin D status protects against several types of internal cancers, melanoma, and
several other diseases. Therefore, one needs to balance sun exposure in favor of benefits while avoiding
potential harmful effects [25–27].

2. Vitamin D and Gene Regulation

1,25(OH)2D regulates many genes within the human genome [28]. Tissue vitamin D concentrations
and its receptor gene polymorphisms, not only influence mechanism of actions and modulate second
messenger systems, but also modulate the ability of the ligand-bound VDR to bind to vitamin D
response elements (VDREs) on promoter regions in genes and initiate second messenger systems [29].
The National Human Genome Research Institute (NHGRI) launched a public research consortium,
ENCODE [Encyclopedia of DNA Elements; http://www.genome.gov/10005107] to answer pertinent
questions [30].

ENCODE has demonstrated the genome-wide actions of 1,25(OH)2D3 on the formation rates of
proteins, such as the insulator protein CTCF (transcriptional repressor CTCF; 11-zinc finger protein,
CCCTC-binding factor, etc.) and the VDR [31,32]. These findings suggest the presence of numerous
functional VDRE regions across the human genome [29,33]. In addition, it has been suggested that
the expression of these genes could be used as biomarkers for different actions of vitamin D in varied
tissues and cells and assessment of vulnerabilities [34].

Hormone, 1,25(OH)2D modulates cell proliferation through direct and indirect pathways. For
example, vitamin D inhibits the pathways related to transcription factor NF-κB [35]. People with
chronic non-communicable diseases, such as cardiovascular disease, type 2 diabetes, autoimmune
diseases, arthritis, and osteoporosis are reported to have chronically elevated NF-κB [36]. NF-κB
enhances the oxidative stress and cellular responses to inflammation and injury; including following
head injury [37]. Whereas, 1,25(OH)2D (calcitriol) suppresses NF-κB and thereby reduces chronic
diffuse somatic inflammation [38,39]. In addition, calcitriol also reduce cell proliferation and enhance
cell differentiation—key anti-cancer effects of vitamin D [40].

2.1. Epigenetic Mechanisms Influence Cancer Genesis

Epigenetic mechanisms influence cancer genesis, growth, dissemination, and aging phenomena [41–44].
For example, the epigenetic modifications of VDR–1,25(OH)2D effects can be mediated through complex
processes involving CYP27A1 and CYP27B1 and via the vitamin D-catabolizing enzyme CYP24 [14,44].
These actions can be favorably influenced by modifications of VDREs across the genome modulated by
both histone acetylases and deacetylases [28,29,45].

Epigenetic regulation of vitamin D metabolism influences several physiological mechanisms and
modulate outcomes of some human diseases. Example of diseases include adenocarcinoma of the
lung [44], specific gene mutations in Asians with advanced non-small cell lung cancer [41], and genetic
alterations in the effectiveness of systemic therapy for lung cancer induced by cigarette smoking [42].
In severely obese children, low 25(OH)D concentrations are associated with increased markers of
oxidative and nitrosative stress, inflammation, and endothelial over-activation [46].

CYP27B1-mediated target tissue production of 1,25(OH)D is critically important for the paracrine
and autocrine functions of calcitriol to obtain the full biological potential of vitamin D. Taken together,
the benefits of having adequate serum 25(OH)D concentrations and maintaining vitamin D repletion
in the long run and considering the overall health benefits of vitamin D, there is an urgent need to
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create national policies to combat hypovitaminosis D. The savings derived from reducing the risks and
severity of infectious and parasitic diseases alone would pay-off the cost of this public health approach.
This can be achieved through targeting to raise the population serum 25(OH)D concentration, leading to
a tangible positive impact on humans and on the economy.

2.2. Epigenetics and Molecular Genetics of Vitamin D

Molecular and genetic studies confirm that vitamin D also modulates risks of several other human
diseases, including autoimmune disorders such as multiple sclerosis [47]. Although the predominant
cause of cancer is modulation of the underlying metabolic abnormalities through genes, such as p53
and c-myc modifying the metastatic risks, the responsiveness to therapy is in part determined by
epigenetic modifications of genes.

Tumor-related key metabolic abnormalities include imbalance between glucose fermentation and
oxidative phosphorylation (under aerobic and anaerobic conditions—the Warburg effect); dysregulation
of metabolic enzymes, such as pyruvate kinase, fumarate hydratase, and succinate dehydrogenase;
isocitrate dehydrogenase mutations; and alterations of gene expression levels linked to tumorigenesis
that are influenced by the vitamin D status [48].

Examples related to activity of the vitamin D axis include epigenetic changes that affect the
expression of the CYP24A1 gene and VDR polymorphisms. Although epigenetic enhancement can
occur through methylation and repression by histone-modifications of DNA, vitamin D markedly
influences the regulation of cell replication [42,44]. This substantiates targeting of CYP24A1 to optimize
the antiproliferative effects of 1,25(OH)2D in a target-specific manner [49].

In addition, gene activation following the interaction of 1,25(OH)2D with VDR is important for
mitochondrial integrity and respiration, and many other physiological activities. Moreover, the vitamin
D signaling pathway plays a central role in protecting cells from elevated mitochondrial respiration
and associated damage and overproduction of reactive oxygen species (ROS), which can lead to cellular
and DNA damage [50].

3. Vitamin D–Oxidative Stress

1,25(OH)2D is involved in many intracellular genomic activities and biochemical and enzymatic
reactions, whereas 25(OH)D concentrations are important in overcoming inflammation, the destruction
of invading microbes and parasites, the minimization of oxidative stress following the day-to-day
exposure to toxic agents, and controlling the aging process [51,52].

For example, the presence of a physiologic 25(OH)D concentration enhances the expression
of the nuclear factor, erythroid-2(Nf-E2)-related factor 2(Nrf2) [53–55] and enhances Klotho, a
phosphate regulating hormone and also an antiaging protein [56,57]. It also facilitates protein
stabilization [11]. Klotho also regulates cellular signaling systems, including the formation of
antioxidants [58]. Consequently, in mice, functional abnormalities of the Klotho gene or removal of
it through gene knock-out procedures induce premature aging syndrome [59]. In animal studies,
inefficient FGF23 and/or Klotho expression have shown to cause premature aging. Figure 1 is a
schematic representation of various key factors and their interactions that influence aging and death.
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Figure 1. Environmental, microbial, biological and chemical interactions that modify the DNA and
mitochondrial functions and epigenetics, which modifies the aging process. Vitamin D deficiency
is one of the factors that enhances this oxidative-stress cycle and accelerating premature cell death
[abbreviations used: DNA = deoxyribonucleic acid; iNOS = inducible nitric oxide enzyme].

Influences of Vitamin D on Oxidative Stress

When vitamin D status is adequate, many of the intracellular oxidative stress-related activities are
downregulated. Having suboptimal concentrations of serum 25(OH)D fails to subdue oxidative stress
conditions, augment intracellular oxidative damage and the rate of apoptosis. The intracellular Nrf2
level is inversely correlated with the accumulation of mitochondrial ROS [51,60] and the consequent
escalation of oxidative stress. Thus, Nrf2 plays a key role in protecting cells against oxidative stress;
this is modulated by vitamin D [61,62].

In addition, vitamin D supports cellular oxidation and reduction (redox) control by maintaining
normal mitochondrial functions [63–65]. Loss in the redox control of the cell cycle may lead to
aberrant cell proliferation, cell death, the development of neurodegenerative diseases, and accelerated
aging [65–68]. Peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α) is bound to
mitochondrial deacetylase (SIRT3). PGC-1α directly couples to the oxidative stress cycle [69] and
interacts with Nrf2. This complex regulates the expression of SIRT3; this process is influenced by
vitamin D metabolites [70]. In addition, the activation of the mitochondrial Nrf2/PGC-1α-SIRT3 path is
dependent on intracellular calcitriol concentrations.

Calcitriol has overarching beneficial effects in upregulating the expression of certain antioxidants
and anti-inflammatory cytokines [71], thereby protecting the tissues from toxins, micronutrient
deficiency-related abnormalities, and parasitic and intracellular microbe-induced harm [72]. It regulates
ROS levels through its anti-inflammatory effects and mitochondrial-based expression of antioxidants
through cell-signaling pathways [67,73].

4. Role of Vitamin D in Neutralization of Toxins and Aging-Related Compounds

Following 1,25(OH)2D—VDR interaction, the transcription factor Nrf2 translocates from the
cytoplasm to the nucleus. Nrf2 activates the expression of several genes that have antioxidant
activity [52,54,67]. When Nrf2 activity is insufficient, risks from oxidative stress-related tissue damage
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increases [61,74]. The resultant excessive ROS formation by dysregulated mitochondria leads to a
pathologic oxidative stress cycle, a key cause of toxin-induced and age-related cell death [68,75,76].

Meanwhile, the Nrf2 activity in part is controlled by the cytosolic protein Keap1 [77], another
transcription factor and a negative regulator of Nrf2 [55,61]. Keap1 also controls the subcellular
distribution of Nrf2 that correlates with its antioxidant activity [53,54]. When confronted with
intracellular oxidative and/or electrophilic stresses, as a protective mechanism, the Nrf2-antioxidant
response path is activated. This response enhances gene transcription and translation of protein
products that are necessary to eliminate and/or neutralize toxins, ROS, and cumulating aging-related
products through conjugation [78,79].

4.1. The Concept and the Process of Aging

Aging generally refers to the biological process of growing older, also known as cellular senescence,
and is a complex process. Advancing age is, especially after adulthood, is associated with a gradual
decline of physiological functions and capacities [80]. Aging has also been quantified from mortality
curves using mathematical modeling; for example, by using Gompertz equation m(t) =AeGt, for which,
m(t) = the mortality rate as a function of time or age (t); A = extrapolated constant to birth or maturity;
G = the exponential (Gompertz) mortality rate coefficient] [79].

Moreover, efficiency and the functions of the body decline after sexual maturity, suggesting a
connection between the aging process after fulfilling the procreation needs. Most age-related functions are
irreversible, in part due to accumulation of oxidative stress-related toxic products, methylation of DNA,
and mitochondrial damage, leading to reduced viability of cells and consequent accelerated cell death [81].
There is also a parallel decline in the immune system functions (i.e., immune-senescence) and an increase
in inflammation, demonstrable with increased circulating pro-inflammatory cytokines [82,83]. These are
likely to contribute to several age-related disorders, such as Alzheimer’s disease, cardiovascular and
pulmonary diseases, and susceptibility to autoimmunity and infections [82,83].

Many bodily functions slow with aging, including response and reaction time; access to and the
capacity of memory; pulmonary, gastrointestinal, and cardiovascular capacities; and even the ability to
generate vitamin D in the skin. While age is perhaps the strongest risk factors for death, age-related
disorders are the number one cause of death among the adults. This scenario is aggravated in the
presence of vitamin D deficiency.

Chronic hypovitaminosis D is associated with cardiovascular and metabolic dysfunctions and
premature deaths [84], even among children [85]. Overall data suggest that vitamin D deficiency could
be considered an important comorbidity or a risk factor for premature death [84–87]. In fact, inverse
relationships have been reported with vitamin D adequacy, with reduced all-cause mortality [88–90],
and cancer [90–93].

4.2. Effects of Vitamin D on Apoptosis and Aging

The generalized inflammatory process is known to cause cellular damage and increase
apoptosis [94], as in the case of interstitial tubular cell damage in chronic kidney disease, and
thus is a part of the aging process [52,55,95]. In addition, hypovitaminosis D and dysfunctional
mitochondrial activity increase inflammation [73,96,97]. Thus, the anti-inflammatory effects from
having adequate, physiological vitamin D concentrations are important [95,98]. Hypovitaminosis D
increases the expression of inflammatory cytokines [71,99] such as tumor necrosis factor-α (TNF-α),
increasing the expression of the InsP3Rs and resulting in increased intracellular Ca2+ and accelerating
cellular damage, apoptosis, and aging [66,75].

Many of the genes in the Klotho–Nrf2 regulatory system have multiple functions that are regulated
by calcitriol [57,62,65]. These include, increasing intracellular antioxidant concentration, maintaining
the redox homeostasis and, normal intracellular-reduced environment by removing excess ROS, and
thereby down-regulating the oxidative stress [100]. In addition, the vitamin D-dependent expression
of γ-glutamyl transpeptidase, glutamate cysteine ligase, and glutathione reductase contribute to
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the synthesis of the key redox agent glutathione (an essential antioxidant of low–molecular-weight
thiol) [99,101].

Vitamin D also upregulates the expression of glutathione peroxidase that converts the ROS
molecule H2O2 to water [101]. Vitamin D also effect the formation of glutathione through activation of
the enzyme glucose-6-phosphate dehydrogenase [101]—which downregulates nitrogen oxide (NOx),
a potent precursor for generating ROS that converts O2

− to H2O2 and upregulating superoxide
dismutase (SOD). These vitamin D-related actions collectively reduce the burden of intracellular ROS.

Telomeres are repetitive DNA sequences that caps end of linear chromosomes protecting DNA
molecules [102]. Aging is associated with shortening of telomeres, including in stem cells. The amount
of telomerase present is gradually become too short to maintain its protective effects on DNA during
cell division, and thus cell apoptosis. While vitamin D deficiency increases inflammation and the
intracellular oxidative stress, the latter enhances the rate of telomere shortening during cell proliferation,
resulting in genomic instability [36].

4.3. Hypovitaminosis D Leads to Deranged Mitochondrial Respiration

Activated vitamin D is an essential component for maintaining physiological respiratory chain
activity in mitochondria, facilitating the generation of energy [103,104]. In addition, 25(OH)D regulates
the expression of the uncoupling protein that is attached to the inner membrane of mitochondria that
regulates thermogenesis [105–107]. Chronic vitamin D deficiency reduces the capacity of mitochondrial
respiration through modulating nuclear mRNA [108–110]. The latter also downregulates the expression
of complex I of the electron transport chain and thus reduces the formation of adenosine triphosphate
(ATP) [67,75], another mechanism that increases cancer risks. Consequently, a low level of electron
transport chain increases the formation of ROS and oxidative stress, a common phenomenon following
acute and chronic exposure to toxins and many chronic diseases and seen in aging [66,111,112].

The accumulation of intracellular toxins and/or age-related products disrupts signaling pathways,
including the G protein–coupled systems, caspases, mitochondria, and the death receptor-linked
mechanisms, triggering cell apoptosis and causing premature cell death [113,114]. The process is
aggravated by stimulating G proteins, leading to activation of downstream pathways, including
protein kinase A and C (PKA and PKC), phosphatidylinositol 3 kinase (PI3-kinase), Ca2+ and MAP
kinase-dependent systems, tyrosine phosphorylation [75,114], and work additively, aiding cancer
genesis [93] and accelerating the aging process.

4.4. Calcitriol Protects Mitochondrial Functions

Toxins, chronic metabolic abnormalities, and the aging process are known to cause mitochondrial
dysfunction [66,106–108,115]. Abnormal mitochondria produce suboptimal amounts of ATP while
generating excess ROS, creating a vicious cycle of enhanced and persisting the effects from excessive
oxidative stress [106,107,116]. These events cause DNA damage (and impair DNA repair systems),
premature cell death, and accelerated aging [62,66]. Data are accumulating that suggest that
mitochondrial dysfunction is likely fueled by sustained intracellular inflammation, as in the case with
vitamin D deficiency [79,95,97,117].

Based on animal studies, researchers have reported that mitochondrial decay, a part of the
aging process, can be slowed by micronutrient supplementation (e.g., by lipoic acid, acetyl carnitine,
vitamin K, and vitamin D) and by boosting coenzyme levels through high doses of vitamin B, such
as pantothenic acid [118]. The NAD+-dependent protein deacetylases sirtuins function as antiaging
proteins that also neutralize excess ROS [11]. For example, sirtuin 1 (SIRT) is essential to maintaining
normal mitochondrial functions; meanwhile, calcitriol and SIRT1 work synergistically to regenerate
mitochondria [119,120]. Their actions facilitate the removal and neutralization of toxins and thereby
reduce the rate and the effects of aging [121,122].

Dysfunctional mitochondria also have reduced intracellular Ca2+ buffering capacity, resulting in
increased (and fluctuating) intracellular Ca2+ levels, which are cytotoxic and contribute to sustenance
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of several chronic diseases [108,115]. Sub physiological concentrations of calcitriol, at least in part,
enhance and maintain oxidative stress, autophagy, inflammation, mitochondrial dysfunction, epigenetic
changes, DNA damage, intracellular Ca2+, and generation and signaling of ROS. Therefore, sustained,
adequate serum 25(OH)D concentrations should allow target tissues to keep many of these harmful
processes under control [68,71,73]. Multiple benefits of controlling excessive oxidative stress are
illustrated in Figure 2.

 

Figure 2. Oxidative stress is harmful to cells. Controlling oxidative stresses through vitamin D adequacy
leads to cellular and organ protection and reduces the effects of aging [abbreviations used: CNS =
central nervous system; DNA = deoxyribonucleic acid; MI =myocardial infarction; PVD = peripheral
vascular diseases].

5. Discussion

The proper functioning of the vitamin D endocrine, paracrine, and autocrine systems is essential
for many human physiological functions. Vitamin D deficiency, as determined by serum 25(OH)D
concentrations of less than 30 ng/mL, is associated with increased risks of illnesses and disorders
and increased all-cause mortality even among apparently healthy individuals, including those with
normal serum 1,25(OH)2D. Some of the key functions of vitamin D include subduing oxidative
stress and chronic inflammation and maintaining mitochondrial respiratory functions. Through its
targeted mitochondrial activity and subduing of ROS through multiple mechanisms, vitamin D has
key beneficial effects on controlling oxidative stress, inflammation, and energy metabolism.

Normal serum concentrations of both 25(OH)D and 1,25(OH)2D are essential for optimal cellular
function and protect from the excessive oxidative stress-related DNA damage. However, increased
risk for illnesses and reduced longevity can occur despite the presence of physiologic concentrations of
calcitriol because this is not the only mechanism protecting cells from oxidative stress. Physiologic serum
25(OH)D and 1,25(OH)2D levels in target tissues allow exertion of the homeostatic modulatory effects
on enzymatic reactions, mitochondrial activities, and functioning of optimal second messenger systems.
These are essential parts of the actions of vitamin D mediated through the mentioned mechanisms.

Vitamin D metabolism and functions are modulated by many factors, including physical activities
and lifestyles, certain medications, environmental pollutants, and epigenetics, all of which also modify
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the balance between energy intake and expenditure through mitochondrial metabolic control [123].
For reductions in the incidence of diseases, longer-term maintenance of a steady state of the serum
25(OH)D concentration is necessary [124]. The minimal level is considered to be 30 ng/mL (50 nmol/L).

After correction of vitamin D deficiency through loading doses of oral vitamin D (or safe sun
exposure), adequate maintenance doses of vitamin D3 are needed. This can be achieved in approximately
90% of the adult population with vitamin D supplementation between 1000 to 4000 IU/day, 10,000 IU
twice a week, or 50,000 IU twice a month [10,125]. On a population basis, such doses would allow
approximately 97% of people to maintain their serum 25(OH)D concentrations above 30 ng/mL [19,126].
Others, such as persons with obesity, those with gastrointestinal disorders, and during pregnancy and
lactation, are likely to require doses of 6,000 IU/day [127,128].
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UVB Ultraviolet B
VDR Vitamin D receptor
VDRE Vitamin D response element
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Abstract: Mitochondria are central in retinal cell function and survival and they perform functions
that are critical to cell function. Retinal neurons have high energy requirements, since large amounts
of ATP are needed to generate membrane potentials and power membrane pumps. Mitochondria
over the course of aging undergo a number of changes. Aged mitochondria exhibit decreased rates
of oxidative phosphorylation, increased reactive oxygen species (ROS) generation and increased
numbers of mtDNA mutations. Mitochondria in the neural retina and the retinal pigment epithelium
are particularly susceptible to oxidative damage with aging. Many age-related retinal diseases,
including glaucoma and age-related macular degeneration, have been associated with mitochondrial
dysfunction. Therefore, mitochondria are a promising therapeutic target for the treatment of
retinal disease.

Keywords: aging; mitochondria; retina; optic nerve; diabetic retinopathy; age-related macular
degeneration; glaucoma

1. Retinal Anatomy and Physiology

The fundamental organization of the retina is conserved across vertebrates. The retina contains
five major neuronal cell classes (photoreceptors, bipolar cells, amacrine cells, horizontal cells, and
retinal ganglion cells) with Müller glial cells and retinal pigment epithelial cells providing metabolic
and homeostatic support [1] (Figure 1). The interaction of light with light-sensitive pigments in the
outer segments of rod and cone photoreceptors initiates signaling mechanisms that convert light energy
to neural activity. Photoreceptors synapse with bipolar cells. Bipolar cells synapse with the retinal
ganglion cells that transmit the visual signal along their axons (optic nerve) and, ultimately, to the
brain. The retinal pigment epithelium envelopes the photoreceptors, which facilitates the diffusion of
nutrients, key metabolites, and oxygen from the choroidal vessels. Horizontal cells, amacrine cells,
and Muller cells mediate and support the synapses between the retinal neurons. Unique to the Muller
cell, its processes span the inner retina and most of the outer retina, assisting in the maintenance of
multiple synapses throughout the retina. Pericytes surround the vascular endothelial cells in all retinal
layers, forming the blood-retinal barrier.

The retina is the highest oxygen-consuming organ in the human body [2–6]. The inner retinal
neurons have the highest metabolic rate of all central nervous tissue, and the oxygen consumption
rate of the photoreceptors is several times higher again. The inner segments of the photoreceptor cells
are rich in mitochondria providing the ATP that are required by the ionic pumps that drive the ‘dark
current’. In addition, photoreceptors also metabolize glucose through aerobic glycolysis [2–6].

The key role of aerobic glycolysis in the vertebrate retina has been long recognized and well
established [2,5,6]. The majority of aerobic glycolysis occurs in the photoreceptors. Although aerobic
glycolysis dominates energy production in the photoreceptors, the retina requires both glycolysis
and oxidative phosphorylation to initiate vision [4]. This has been demonstrated in studies showing
that the responses of neurons downstream of photoreceptors are abolished by inhibiting glycolysis
or by removing O2 [2]. Recent studies have proposed a model in which glucose from the choroidal
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blood passes through the retinal pigment epithelium to the retina, where photoreceptors convert it to
lactate [6]. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for
neighboring Müller glial cells. Aerobic glycolysis not only enables enhanced anabolic metabolism in
photoreceptors, but also maximizes their function and adaptability to nutrient stress conditions.

Photoreceptors consume more oxygen per gram of tissue weight than any cell in the body [2,5].
This intense degree of oxidative phosphorylation in their inner segments, coupled with high
concentrations of polyunsaturated fatty acids in their outer segments, renders the retina susceptible
to oxidative stress and lipid peroxidation [2–4]. The retina is exposed to visible light and it contains
abundant photosensitizers [1]. Normally, endogenous antioxidants and repair systems minimize
oxidative damage. However, with aging and retinal disease, there is an increase in mitochondrial
dysfunction and oxidative damage and corresponding decrements in antioxidants and repair systems,
resulting in retinal dysfunction and retinal cell loss, which leads to visual impairment [7–13].

 

Figure 1. Anatomy of the retina and the structure of rod and cone photoreceptors.

2. Mitochondrial Dysfunction with Aging and Disease

2.1. Age-Related Mitochondrial Changes

Mitochondria are central to retinal cell function and survival and they perform a variety of
functions critical to cell metabolism, including oxidative phosphorylation, beta-oxidation of fatty acids,
calcium homeostasis, and the regulation of neuronal excitability [7–13]. Retinal neurons have high
energy requirements and large amounts of ATP are needed to generate membrane potentials and
power membrane pumps. It has been estimated that 90% of mitochondria-generated ATP is used to
maintain transmembrane ion gradients [10].

Mitochondria in the aging retina show a decline in the function of the electron transport chain and
a significant increase in the generation of reactive oxygen species (ROS) (Figure 2). This increased ROS
production leads to increased oxidative damage to mitochondrial DNA, lipids, and proteins [5,6,14–16].
With aging, there is an accumulation of mtDNA mutations and a disruption of mitochondrial structure.
Mitochondrial genomic instability has been postulated to play an important role in age-related retinal
pathophysiology [16]. However, murine studies have shown that the majority of mtDNA mutations in
aged cells appear to be caused by replication errors early in life, rather than by oxidative damage [15].
Mitochondrial DNA repair pathways are limited and they begin to fail with aging, leading to additional
mtDNA damage and contributing to the development of retinal degenerative diseases [8,9].
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Figure 2. Mitochondria in the aging retina. Mitochondria are essential for many cellular functions
including: (1) the synthesis of ATP by oxidative phosphorylation, (2) the regulation of intracellular
calcium homeostasis, (3) anterograde and retrograde signaling between the nucleus and mitochondria,
(4) the generation of reactive oxygen species (ROS) from the electron transport chain (ETC). ROS act as
signaling molecules in low concentrations or as toxic molecules in higher concentrations. ROS oxidize
mitochondrial lipids, proteins and DNA and (5) the regulation of apoptosis. Excess ROS or
intramitochondrial calcium can lead to the activation of cell death pathways by opening the
mitochondrial permeability transition pore (PTP).

2.2. Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is the leading cause of blindness in individuals over 65
in developed countries [17]. As the name implies, AMD primarily affects the central retina or macula.
It is characterized by the development of drusen, extracellular lipoprotein deposits under the retinal
pigment epithelium (RPE), in the early stages of the disease, followed by the loss of photoreceptors and
RPE. Choroidal neovascularization (CNV) develops during later stages of the disease (wet AMD) [17].
Choroidal neovascularization (CNV) is the growth of new blood vessels that originate from the choroid
through a break in Bruch’s membrane into the subretinal space or sub-retinal pigment epithelium.
Dry or atrophic AMD is the most common form of AMD and there are no treatments for this form
of AMD.

Aging is a recognized factor that is associated with mitochondrial dysfunction in the outer retina.
Other important risk factors for the development of AMD are genetics and environmental stressors,
including smoking and exposure to ultraviolet and blue light [18–24]. All of these factors are likely to
result in mtDNA damage in the RPE.

Genetic risk factors also contribute to the development of AMD. Genetic polymorphisms of
complement factor H (CFH) contribute to AMD pathology. An important relationship between
mitochondrial dysfunction and CFH has been recently established [24,25]. These studies have
demonstrated mitochondrial abnormalities in Complement factor H null (Cfh−/−) mice that are
characterized by disrupted mitochondrial morphology and decreased ATP production [24,25].
These findings suggest that CFH plays an important role in retinal oxidative metabolism. Genome wide
associated studies have implicated several genes in the cholesterol pathway, including apolipoprotein
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E (APOE), in the development of AMD [17]. Recent studies by Lee et al. (2016) have shown that
mutations in the transmembrane 135 (Tmem 135) gene that codes for a mitochondrial protein located
in RPE and photoreceptors results in accelerated retinal aging in a mouse model of AMD [26].

Although in vitro studies have unequivocally demonstrated that either UV or blue light damage
RPE cells [22], epidemiological evidence of the association between exposure to sunlight and AMD is
mixed [23]. The ability of the ocular media (cornea, lens, and vitreous humor) to block UV and blue
light and the protection of the retina by antioxidant systems, including superoxide dismutase and
glutathione peroxidase and macular pigments, including melanin and flavoproteins likely explain
these differences [17].

Recent studies suggest that a bioenergetic crisis in the RPE contributes to the pathology of AMD, as
illustrated in Figure 3 [20]. Analysis of retinal tissue from human donors with AMD have documented
a reduction in the mitochondrial number, a disruption in mitochondrial structure and an increase
in mtDNA damage in the RPE that correlates with the severity of disease [15–18]. Recent studies
in the primary cultures of RPE derived from human donors with and without AMD have shown
decreased rates of ATP synthesis from oxidative phosphorylation and glycolysis in AMD donors
consistent with a bioenergetic crisis. Fisher and Ferrington (2018) have suggested that mitochondrial
damage is limited to the RPE, because these cells rely nearly exclusively on mitochondrial oxidative
phosphorylation, whereas photoreceptors utilize aerobic glycolysis [4–7]. In addition to disruptions in
mitochondrial bioenergetics, mitochondrial dysfunction has been shown to disrupt calcium homeostasis
and mitochondrial nuclear signaling. Several studies have suggested that therapeutic approaches that
target RPE mitochondria may provide an effective early treatment strategy for AMD [18–22].

Figure 3. Mitochondrial involvement in dry age-related macular degeneration (AMD).

2.3. Diabetic Retinopathy

Diabetic Retinopathy (DR) is the most common complication of diabetes mellitus. DR is a leading
cause of blindness in many developed countries [27]. Chronic hyperglycemia coupled with other risk
factors, including hypertension and dyslipidemia, are postulated to trigger a cascade of biochemical and
pathophysiological changes that lead to microvascular damage and retinal dysfunction. Mitochondrial
dysfunction is a key component of this cascade.

The pathogenesis of diabetic retinopathy is complex, involving the disruption of multiple
intracellular pathways [27]. Early pathologic changes that were observed in diabetic retinopathy
include mitochondrial dysfunction, oxidative stress, and inflammation [27–30]. Oxidative stress results
from the increased production of reactive oxygen species (ROS), including superoxide and hydrogen
peroxide. ROS oxidize intracellular proteins, lipids, and nucleic acids, disrupting normal signaling and
culminating in disease. Under physiological conditions, small amounts of superoxide leak from the
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electron transport chain and they are converted to hydrogen peroxide by mitochondrial superoxide
dismutase. Hydrogen peroxide diffuses out of the mitochondria into the cytosol and it serves an
important signaling molecule. Intracellular ROS concentrations are regulated by a complex array of
antioxidant systems to maintain low intracellular ROS concentrations [29]. Under hyperglycemic
conditions, the excess production of ROS overwhelms the antioxidant systems, resulting in oxidative
damage [11,28,29].

Hyperglycemia is known to disrupt several metabolic pathways that are involved in the
pathogenesis of diabetic retinopathy. These pathways include protein kinase C (PKC) activation,
accumulation of advanced glycation products (AGEs), the polyol pathway, and activation of the
hexosamine pathway [27,28]. Experimental models have shown that, in the etiology of this progressive
disease, the activation of NADPH oxidase (Nox) increases cytosolic ROS and this sustained accumulation
of ROS damages mitochondria, which further increases oxidative stress [30]. Superoxide radicals (O2

−)
that are produced by the mitochondrial electron transport chain activate these major pathways, and
activation, in turn, can damage the mitochondria propagating the vicious cycle of ROS.

A major source of the excess ROS production under hyperglycemic conditions is the mitochondrial
electron transport chain (ETC) [28–30]. Under normal physiological conditions, the electrons are
donated to complex I or complex II of the ETC and are then passed on to coenzyme Q, complex III,
cytochrome C, complex IV, and ultimately to molecular oxygen, the final electron acceptor. The transfer
of electrons generates a proton gradient across the mitochondrial intermembrane, which drives the
synthesis of ATP by ATP synthase. During this process, small amounts of superoxide are produced,
but the cell via antioxidant defense mechanisms easily clears them [20–30].

Complex I of the ETC is generally regarded as the primary source of superoxide production.
However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase
(BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable
superoxide/H2O2 production. Moreover, mitochondria can generate ROS, superoxide, or hydrogen
peroxide, from at least ten distinct sites on the ETC or associated pathways [31–34].

The precise cause of mitochondrial dysfunction in a diabetic state is unclear. Some studies suggest
that the increased glucose concentration overwhelms the electron transport chain by increasing the rate
of oxidative phosphorylation [16–19], thus generating ROS. Other studies suggest that mitochondrial
DNA is damaged, which results in dysfunctional proteins that are required for ETC complexes, also
causing excess ROS and mitochondrial dysfunction [27,28].

Mitochondrial function, structure, and mtDNA are damaged in the retina in diabetic
retinopathy [29]. Mitochondrial biogenesis and mtDNA repair mechanisms are compromised [35,36].
The ETC becomes dysfunctional and the import of nuclear DNA encoded proteins is disrupted. These
diabetes-induced abnormalities in mitochondria persist after the removal of the hyperglycemic
insult and they are implicated in the metabolic memory phenomenon associated with the
continued progression of diabetic retinopathy [36,37]. Hyperglycemic insult also results in epigenetic
modifications [38]. These epigenetic changes in histones and DNA methylation can be passed to
the next generation. Epigenetic modifications also contribute to mitochondrial damage and disrupt
mitochondrial homeostasis [38]. Therapeutic strategies directed at mitochondrial homeostasis and
epigenetic modifications have the potential to halt or slow the progression of diabetic retinopathy.

2.4. Glaucoma

Glaucoma is a leading cause of blindness, which is characterized by the accelerated death of retinal
ganglion cells (RGC), leading to vision loss [39–42]. Age and elevated intraocular pressure (IOP) are
two major risk factors in developing glaucoma. Therapies reducing IOP have been shown to slow the
progression of glaucoma in many but not all patients. Aging may increase the vulnerability of the optic
nerve to various stressors, ultimately resulting in RGC death and optic nerve degeneration [39–41].

A growing body of evidence supports a key role for mitochondrial dysfunction in the pathogenesis
of glaucoma [39–51]. Mitochondrial dysfunction has been demonstrated in RGC loss in animal and
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cultured cell experimental models of glaucoma [47,51]. Mutations in mitochondrial and nuclear genes
encoding mitochondrial proteins are known to cause primary optic neuropathies, including Leber's
Hereditary Optic Neuropathy (LHON) and Autosomal Dominant Optic Atrophy (AODA) [51]. Recent
studies indicate that the bioenergetic consequences of mtDNA and nuclear DNA mutations contribute
to the development of Primary Open Angle Glaucoma (POAG) and Normal Tension Glaucoma
(NTG) [40–43].

In addition to genetic factors, retinal ganglion cells are profoundly susceptible to mitochondrial
dysfunction [42,51]. A combination of the acute energy demand of RGCs and their unique morphology
appears to underlie the susceptibility of these neurons to mitochondrial dysfunction. The RGC cell body
is located in the ganglion cell layer of the retina. RGCs possess elaborate dendritic arbors that project
into the inner plexiform layer to synapse with other retinal neurons. These dendritic arbors are packed
with mitochondria that are needed to supply the ATP required to maintain these connections. The long
axons of the RGCs form the optic nerve and extend into the brain. The RGC axons make a 90-degree
turn at the optic nerve head and pass through the lamina cribrosa, a series of perforated collagen
plates, before forming the optic nerve. After passing through the lamina cribrosa, the optic nerve
becomes laminated and continues to the visual cortex. The optic nerve has one of the highest oxygen
consumption rates and energy demands of any tissue in the body [51]. The mitochondrial density is
greater in the unmyelinated region of the optic nerve than in the myelinated region. The unmyelinated
prelaminar and laminar regions of the optic nerve require more energy than the myelinated segment of
the optic nerve due to the absence of saltatory conduction. This region of the optic nerve has a high
density of voltage gated sodium channels and it requires more energy to restore ion gradients.

The combination of genetic susceptibility due to inherited or acquired mutations, energy demand,
and unique morphology of retinal ganglion cells in an aging population all contribute to the pathogenesis
and incidence of glaucoma (Figure 4).

Figure 4. Mitochondrial dysfunction in glaucoma.

3. Conclusions

Experimental evidence has shown a link between mitochondrial dysfunction and the loss of vision.
Most mitochondrial diseases exhibit some form of visual impairment. Many retinal and optic nerve
diseases, including AMD, diabetic retinopathy, and glaucoma are also characterized by mitochondrial
dysfunction. The development of therapeutic approaches that target retinal mitochondrial dysfunction
has the potential to profoundly impact the treatment of retinal and optic nerve disease.
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Abstract: Mitochondrial function declines with age, leading to a variety of age-related diseases
(metabolic, central nervous system-related, cancer, etc.) and medication usage increases with age
due to the increase in diseases. Drug-induced mitochondrial toxicity has been described for many
different drug classes and can lead to liver, muscle, kidney and central nervous system injury and,
in rare cases, to death. Many of the most prescribed medications in the geriatric population carry
mitochondrial liabilities. We have demonstrated that, over the past decade, each class of drugs that
demonstrated mitochondrial toxicity contained drugs with both more and less adverse effects on
mitochondria. As patient treatment is often essential, we suggest using medication(s) with the best
safety profile and the avoidance of concurrent usage of multiple medications that carry mitochondrial
liabilities. In addition, we also recommend lifestyle changes to further improve one’s mitochondrial
function, such as weight loss, exercise and nutrition.

Keywords: drug-induced mitochondrial toxicity; polypharmacy; aging

1. Introduction

Known as the powerhouse of the cell, mitochondria are recognized for their ability to produce
large amounts of a cell’s energy currency, ATP (Adenosine Triphosphate), as well as being the only
other organelle that contains DNA apart from the nucleus. Virtually all eukaryotic cells employ
mitochondria to produce the majority of ATP needed to perform cellular functions (e.g., replication,
protein synthesis, muscle contraction, etc.) and maintain cellular viability. The electron transport
chain (ETC) and ATP synthase are interdependent systems in the mitochondria that generate ATP by
coupling the electrochemical potential across the inner mitochondrial membrane created by the ETC to
the phosphorylation of ADP by ATP synthase. The protein complexes comprising the ETC shuttle
electrons down an energy gradient to ultimately reduce molecular oxygen to water, driving oxidative
phosphorylation for ATP synthesis. Compromising the function of any of these protein complexes
reduces the efficiency of ATP production and endangers the cell’s ability to perform its function and
can lead to cell death. Additionally, uncoupling the membrane potential from ATP synthesis through
the loss of the inner mitochondrial membrane impermeability dissipates the harvested energy as heat
and bypasses ATP synthesis and greatly impairs the cell’s viability. Mitochondria contain their own
DNA (mtDNA) and both inherited and acquired mutations in mtDNA have been linked to well over
100 mitochondrial syndromes such as Leber’s hereditary optic neuropathy, mitochondrial myopathy,
encephalomyopathy, lactic acidosis, stroke-like symptoms and myoclonic epilepsy with ragged red
fibers [1]. MtDNA is susceptible to oxidative stress due to its proximity to the ETC and the fact that it
does not contain histones or a repair mechanism.

As we age, mitochondrial function declines and it is described as the “mitochondrial theory of
aging”, leading to a variety of age-related diseases (Figure 1).
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Figure 1. Mitochondrial dysfunction is implicated in many age-related diseases such as metabolic
diseases (T2DM, obesity, cardiovascular and cerebrovascular disease, Non-Alcoholic Fatty Liver
Disease (NAFDL)) [2–7], CNS-related diseases (Parkinson’s, Alzheimer’s and Huntington’s disease,
hearing loss, cataracts) [8–11], inflammation (osteoarthritis) [12], cancer [13,14], sarcopenia [15] and
chronic obstructive pulmonary disease (COPD) [16].

These age-related diseases are often treated with multiple medications, some of which are
known to cause drug-induced mitochondrial toxicity. In this review, we postulate that drug-induced
mitochondrial dysfunction can increase in frequency and severity in the geriatric population due to two
independent factors associated with aging, compromised mitochondrial function and polypharmacy.

2. The Mitochondrial Theory of Aging

The “Mitochondrial Theory of Aging” has gained considerable prominence in discussions of
longevity, inherent vitality and the biology of mortality. First proposed in his book published in 1928,
Raymond Pearl provided a lengthy account of the evidence leading him to posit that longevity is
inversely proportional to “the rate of living”; by that, he is referring to the expenditure of energy.
His theory is that one is born with a finite quantum of energy, the expenditure of which defines his or
her mortality [17]. Although the tenants of this association may hold well for drosophila and perhaps
other poikilotherms, in mammals this theory is essentially the antithesis for vitality. There is an
abundance of evidence, much of which is current and clinical, demonstrating that energy expenditure
is actually vital to delaying mortality and extending one’s longevity [18–20]. This is all summarized in
the pronouncements that exercise and diet are fundamental to a long and healthy life, perhaps delaying
the natural biological regression that is associated with aging.

It is a well-established fact that mitochondrial numbers, function and bioenergetic capacity decline
progressively with age [21,22]; Harman summarized this when he coined the term “Mitochondrial
Clock” in 1972 [23], which is rooted in his seminal thesis dating from 1956 on the free radical theory
of aging [24,25]. This theory is based on the demonstrated accumulation of oxidative damage to
lipid, protein, and nucleic acids in aged tissues [26], which Harman attributed to the increased free
radical generation observed with aging. The thought is that as biochemical efficiency and physiological
function secede with age, the rate of free radical generation increases, leading to increased levels of
oxidative damage. This line of thinking continues by prospecting that increased oxidative damage to
the ETC within the mitochondrial compartment leads to a progressive loss of coupling efficiency and
increased rates of free radical liberation from the electron transport chain. Accordingly, rather than
being the consequence of aging, mitochondria are also implicated as the progenitor of the aging
process [25]. It becomes quite apparent that the “Mitochondrial Theory of Aging” and the “Free Radical
Theory of Aging” are closely intertwined, and it is subject to debate as to which is the cause and which
is the consequence of aging (the chicken vs. egg conundrum).
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Regardless of whether it is the cause or consequence, hallmarks of mitochondrial aging [19]
include a decrease in the number and an increase in the size of mitochondria [27], a net decrease in the
cellular mitochondrial membrane potential, a decreased ADP:O ratio (oxidative phosphorylation) and
respiratory control index (RCI), and a loss of individual ETC enzyme activities [21,22]; the steady-state
[ATP] concentration, however, tends to be unaffected.

Although each of these factors can individually contribute to the progressive loss of mitochondrial
function with age, it is far more plausible that they reflect a much broader and concerted decline in
homeostatic regulation directed from a molecular level [28]. Molecular hallmarks associated with
mitochondrial aging include a decreased mtDNA copy number [29] accompanied by the accumulation of
mutations to the mitochondrial genome [30,31], reduced abundance of both nuclear and mitochondrial
encoded mRNA [22,32], decreased mitochondrial protein synthesis [33–36], and the dysregulation of
the homeostatic balance between mitochondrial biogenesis, fission and mitophagy [19,28].

Ristow and Zarse [20] were first to apply the term “mitohormesis” to conceptualize the loss of the
adaptive response of mitochondria by means of regulating mitochondrial homeostasis, contributing to
cell and organismal senescence. This has been followed by a number of reviews suggesting that the
age-related accumulation of defective mitochondria, accompanied by the loss of ability to clear these
from the cell by way of mitophagy and replace them with healthy mitochondria through mitochondrial
fission and biogenesis, underpins the mitochondrial theory of aging [19,28,37–39]. This loss of hormesis
or mitochondrial homeostasis is equated to a progressive decline in the processes devoted to quality
control (QCmt) to sustain mitochondrial fidelity and capacity within the aging cell [19,28,40].

Two major surveillance mechanisms exist within the cell for sensing dysfunctional mitochondria:
(1) bioenergetic or nutrient signaling and (2) mitochondrial proteostasis [19,28]. Nutrient sensing is
largely by way of activating AMP kinase (AMPK), SIRT1, and the sestrins for a negative nutrient
balance, and mTOR for nutrient surplus (Figure 2).

Figure 2. Flow diagram illustrating the interrelationships governing mitochondrial homeostasis in
response to the loss of mitochondrial function, such as that which occurs with aging. The Sirt1-dependent
regulation of both PGC1α and AMPK provides a well-controlled integration of the disposal of
dysfunctional mitochondria (mitophagy) and their replacement with new, supposedly fully functional,
mitochondria (biogenesis).

Pyridine nucleotide redox status (NAD+/NADH) is a key factor linking the nutritional status
of the cell to both free radical generation and mitochondrial homeostasis. Nutritional deficiency
(i.e., mitochondrial dysfunction) is associated with a high NAD+/NADH ratio and low rates of free
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radical generation. Under these same conditions, the accumulation of high [NAD+] is also associated
with high rates of mitochondrial proliferation (biogenesis) and disposal of defective mitochondria
(mitophagy), both of which occur by way of the NAD+-dependent activation of SIRT1. The activation
of SIRT1 by NAD+ stimulates mitochondrial biogenesis, both by stimulating the PGC1α-dependent
activation of mitochondrial biogenesis combined with the AMPK-dependent inhibition of the negative
regulator mTOR. The second surveillance pathway, mitochondrial proteostasis, actuates the unfolded
protein response (UPRmt) indigenous to mitochondria, where AMPK and mTOR are competing
regulators. Collectively, these nutrient sensor pathways regulate both the disposal of defective
mitochondria and their replenishment with supposedly fully functional mitochondria.

There is growing evidence that these various mitochondrial signaling pathways are compromised
with aging. It may be as simple as the age-associated decrease of [NAD+] [41,42] that is responsible for
the lower rates of both mitochondrial biogenesis and mitophagy in aged tissues. Likewise, AMPK and
the sirtuins are down-regulated with aging [43–45] as are the concentrations of PGC1α and the rate of
mitophagic elimination of dysfunctional mitochondria [46]. These changes suggest loss of molecular
mechanisms regulating quality control as being responsible for the ineffective nutrient sensing of
mitochondria in aging tissues.

Regardless of the cause, the bioenergetic phenotype of mitochondria from most tissues of aged
individuals is very different from that of young adults, which may be a significant factor accounting for
the higher rates of drug-induced adverse events in geriatric populations. There is growing appreciation
of the possibility that the decline in molecular regulation of mitochondrial hormesis is the primary
factor that impedes the ability of aging mitochondria to withstand or adapt to external inputs [26,28,47].
It may be this loss of homeostatic regulation that underlies the sometimes-greater susceptibility of
elderly patients to drug-induced adverse events.

3. Drug-Induced Mitochondrial Toxicity

Drug-induced mitochondrial toxicity has been studied in academic settings for well over 50 years.
Indeed, many such studies relied on xenobiotic inhibitors, such as rotenone, antimycin and oligomycin,
to deduce the function of the ETC, and uncouplers such as 2,4 dinitrophenol, to understand how
mitochondria generate ATP. As a result, we should not be surprised that pharmaceutical xenobiotics
intended to be therapeutics could also have deleterious ‘side effects’ on mitochondrial function.
Drugs can inhibit mitochondrial function in many different ways such as through the inhibition of ETC
protein complexes, inhibition of ATP synthase, inhibition of enzymes of the citric acid cycle, inhibition of
various mitochondrial transporters, inhibition of the mitochondrial transcription and translational
machinery, as well as through the uncoupling of the ETC from ATP synthase. However, most of these
side effects were not detected in preclinical animal studies. This is due to the fact that in vivo toxicity
studies are usually done in drug-naïve, young adult animals that have robust mitochondrial reserves;
lack of sufficient genetic diversity to allow for idiosyncratic responses; absence of environmental factors;
co-medication; insensitivity of histopathology for revealing mitochondrial failure. Much progress
has been made in the past decade to develop a variety of high-throughput applicable organelle
based and in vitro cell models preclinically [48]. Whereas, traditionally, cells were cultured in high
glucose and were unresponsive to mitochondrial toxicity due to shifting to glycolysis for energy
production, recently developed cell models grown in galactose can correctly identify potential
drug-induced mitochondrial toxicity with greater sensitivity [49,50]. Drugs can also now be tested for
potentially causing mitochondrial toxicity in 96- and 384-well formats using solid and soluble oxygen
sensors [51,52].

Drug-induced mitochondrial toxicity has been recognized to cause organ toxicity to the
liver, skeletal muscle, kidney, heart and the central nervous system. Drug classes identified
to cause mitochondrial toxicity are anti-diabetic drugs (thiazolidinediones, fibrates, biguanides),
cholesterol lowering drugs (statins), anti-depressants (SARIs), pain medications (NSAIDs),
certain antibiotics (fluroquinolones, macrolide), and anti-cancer drugs (kinase inhibitors and
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anthracyclins) [48]. Most of these observations have been made through studies in isolated mitochondria
and cell lines [48].

Over the past decade, our laboratories examined the effects of many different drug classes and
found that in each drug class, some members of the class displayed greater potency for adverse effects
in vitro than others and the rank order of toxicity observed mimicked the safety profile reported in
patients. For example, the anti-diabetic drug Resulin (triglitazone), which was discontinued from the
market for liver toxicity, caused greater mitochondrial toxicity when tested in isolated mitochondria
than Actos (pioglitazone), which is on the market with a much better safety profile [53]. The same is
true for the anti-depressant Zerzone (nefazadone), which belongs to the class of serotonin antagonist
reuptake inhibitors. Whereas Zerzone was attrited due to liver toxicity caused at least in part by
mitochondrial toxicity, Buspar (buspirone) is still on the market and is well tolerated [54]. Another class
of anti-diabetic drugs is the biguanides. Phenformin was discontinued because it caused death by
lactic acidosis which is considered a hallmark of mitochondrial toxicity. Glucophage (metformin),
which causes much less mitochondrial toxicity is widely used in the clinic and only in rare occasions
causes lactic acidosis in most likely already predisposed patients [55]. Table 1 provides additional
examples of drugs and drug classes studied by our labs.

Table 1. Each drug class contains drugs with more and less observed mitochondrial toxicity.

Drug Class
Rank order of Toxicity Observed

(High to Low)
Target Organ

Anti-diabetic (thiazolidinediones)
Trovan * (troglitazone),
Avandia (rosiglitazone),

Actos (pioglitazone)
Liver [53]

Cholesterol lowering (statins)

Baycol * (cerivastatin),
Zocor (simvastatin),

Lipitor (atorvastatin),
Lescol (fluvastatin)

Muscle [53]

Anti-diabetic (biguanides)
Phenformin * (N-phenethylbiguanide),

Buformin *(1-butylbiguanide),
Glucophage (metformin)

Lactic acidosis [55]

Anti-depressant/anxiety (SARIs)
Zerzone * (nefazodone),

Desyrel (trazodone),
Buspar (buspirone)

Liver [54]

Anti-lipidemic (fibrates)
Lopid (gemfibrozil),

Lipanor (ciprofibrate),
Trilepix (fenofibrate)

Liver [53]

Pain medication (NSAIDs)

Avalanche * (celebrex),
Mobic (meloxicam),

Voltaran (dichlofenac),
Felden (piroxicam),

Aspirin (acetylsalicylic acid)

Liver, intestine [56]

Antibiotics (fluoroquinolones)
Trovan * (trovafloxicin),
Levaquin (levafloxicin),
Cetraxal (ciprofloxicin)

Liver [57]

Anti-cancer (topoisomerase inhibitors) Adriamycin (doxorubicin) Heart [58–61]

* withdrawn from the market.

4. Polypharmacy in the Geriatric Population

Geriatric patients are not only predisposed by having lower mitochondrial function due to age
but are often also experiencing one or more of the age-related diseases mentioned above (Figure 1).
In addition, they are also often taking multiple medications (polypharmacy). In the United States,
a 2010 and 2011 survey found that 87% of a representative sampling of 2206 adults aged 62 through 85,
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used at least one prescription medication and that more than one-third of the group were taking five or
more prescription medications [62]. Additionally, it was found that 38% of those surveyed were using
over-the-counter medications. A further study by Saraf et al. showed that following acute illness or
injury, an average of 14 prescriptions were given to geriatric patients discharged from hospitals to
skilled nursing facilities and that over one-third of these prescriptions included side-effects that could
aggravate underlying geriatric conditions [63].

Of the most commonly used prescription and over-the-counter drugs in the US for older
adults [64], many are known to cause mitochondrial toxicity such as the cholesterol lowering drugs
(Zocor, Lipitor, Pravacol, Crestor), pain medication (Aspirin, Tylenol, Aleve) and heartburn medication
(Prilosec). Table 2 lists references for mitochondrial dysfunction reported for these prescription and
over-the-counter (OTC) medications.

It is important to note that most studies have been conducted using isolated mitochondria and cell
systems and often these systems are not of human nature. Also, it is important to understand that the
safety margin for a particular drug will depend on exposure (Cmax) [54,97] as well as other contributing
mechanistic toxicities [98]. For example, Trovan and Serzone (troglitazone and nefazodone) not only
have inhibitory effects on mitochondrial function, but also cause additional toxicities through inhibition
of the bile salt efflux pump (BSEP) and the formation of reactive metabolites.

Cholesterol lowering statins are the most commonly prescribed drugs in the geriatric population.
Almost 50% of the geriatric population was taking a statin in 2011–2014 versus only 20% in 1999–2002.
Statins can cause myopathy in 10–15% of the patients. The adverse events range from mild myalgia
and fatigue, to life threatening rhabdomyolysis. Baycol was removed from the market in 2001
because it caused death in 52 patients by rhabdomyolysis, which led to kidney failure [99]. Women,
frail individuals and those with low body index as well as patients with increased alcohol consumption
are at higher risk. Harper and Jacobson, 2010, noted that Zocor (simvastatin) has greater muscle
toxicity and drug interactions and should be avoided if the patient has had adverse events and should
be substituted with Lescol (fluvastatin) or Crestor (rosuvastatin) [100].

Mitochondrial toxicity has been postulated as a contributing, if not causal, factor of the observed
muscle toxicity. It has been postulated that a deficit in CoQ10 is the cause. CoQ10 is an essential electron
carrier in the ETC and the pathway for its synthesis has commonality with that of the cholesterol
pathway. A decrease in circulatory CoQ10 levels of 27–50% has been reported [101]. However,
since circulating CoQ10 is carried by low-density lipoproteins (LDL) the observed decrease may simply
reflect the decrease in circulating levels of LDL [101]. Very few studies have actually examined the level
of CoQ10 in muscle, probably due to the invasive nature of human muscle biopsies. While these studies
did demonstrate significant decreases (30%) in muscle CoQ10 levels, they failed to demonstrate a
decrease in ATP synthesis and no myopathic side effects were reported [102,103]. Since muscle toxicity
seems to be patient specific and somewhat rare (the same is true for liver toxicity caused by troglitazone
and nefazodone), it is most likely that patients will have either underlying mitochondrial dysfunction
(for example, a silent mitochondrial disease) or have different levels of transporter expression (MCT4 in
the case of statin accumulation) due to polymorphism in enzymes involved in statin metabolism [104].
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Beyond the effect on CoQ10, statins have been reported to have direct effects on the ETC,
especially the lipophilic statins, simvastatin and fluvastatin. In addition, statins have the ability
to uncouple oxidative phosphorylation, inhibit fatty acid beta oxidation, induce mitochondrial
permeability transition, and cause oxidative stress and decrease mtDNA levels by thus far unidentified
mechanisms [105].

It has been reported that elderly patients taking cholesterol lowering drugs (Zocor, Lipitor,
etc.) have shown drug–drug interactions (DDI), particularly with the anti-lipidemic drug Lopid
(gemfibrozil [53,106]), but also with certain antibiotic classes, such as macrolides [107,108] and
fluoroquinolones [109,110] and the heart medication, Nexteron (amiodarone) [64,111]. All of these
drugs have been shown to cause mitochondrial toxicity by targeting a variety of, as well as multiple,
mitochondrial mechanisms/targets.

While it is well documented that this is mainly due to changes in the drug metabolizing function
in elderly patients, we hypothesize that polypharmacy with multiple drugs affecting mitochondrial
function could contribute to the toxicities observed. We already spoke of the general mitochondrial
decay with age and in age-related diseases.

How do we imagine an individual’s lifestyle affects their mitochondrial health and energy
production, or their response to medications that carry a potential mitochondrial liability (Table 3)?
Differences in body mass index (BMI) have shown that obesity correlates with mitochondrial
dysfunction [112]. Additionally, diets of high fat and high sucrose have been shown to be detrimental
to mitochondrial function [113,114]. Mitochondria are also weakened by inactive lifestyles and
can be revitalized with exercise [115,116]. Studies by DiNicolantonio et al. show deleterious
effects on mitochondrial function when consuming large quantities of sugar-containing foods and
drinks [117], while other labs have shown that imbibing red wine in moderation [118] and drinking
green tea [119] have an advantageous effect on mitochondrial function. Even the choice of area of
residency can lead to mitochondrial impairment. Lim et al. have studied the effects of incidental
ingestion of pesticides/herbicides and have shown a correlation between the area of residence and
increased exposure to exogenous agricultural chemicals which have adverse effects on mitochondrial
function [120].

Table 3. Comparison of two geriatric people.

Variable Patient 1 Patient 2

Age 75 75
Body Mass Index 18 28

Breakfast Yogurt with granola, fresh fruit,
poached egg, green tea Eggs, bacon and potatoes

Exercise 1 h walk daily, swimming once a week From the car to the house, around
the grocery store

Lunch Hummus and vegetables, banana, oat
meal cookie

French fries and hot dogs, ice
cream sundae

Medications None Zocor, Lopid, Prilosec, Voltaren
(oral), Lasix, Nexteron

Dinner Wild caught salmon and salad Pasta with sausage and cheese
Drink Consumption Red wine Coke

Now, we imagine how different individuals with ideal vs. less than ideal lifestyles might tolerate
mitochondrial insults from medications. “Patient 1” has a lifestyle that promotes mitochondrial health
while “Patient 2’s” lifestyle predisposes them to mitochondrial decay and toxicity in a number of ways.
Taking medications that impair mitochondria is far more concerning for Patient 2 than for Patient
1. Patient 2’s healthcare providers could examine their lifestyle and medication regiment and act in
unison to come up with a medication plan that minimizes mitochondrial liabilities with the drugs
they are prescribing for them, opting for drugs with the best safety profile. As mentioned previously,
the combination of Zocor with Lopid should at least be substituted with Crestor. An improvement
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in Patient 2’s diet could eliminate the daily use of Prilosec and Patient 2’s pain medication of choice
should be Aspirin or Tylenol in moderation.

The question arises if mitochondrial dysfunction/toxicity caused by these medications could be
prevented or counteracted by natural compounds or drugs recently developed to treat mitochondrial
diseases. A recent review by Rai et al., 2016, provides an overview of a variety of pharmaceuticals
which either target mitochondria or maintain its homeostasis [121]. While the majority of these drugs
target diseases caused by mutations (MELAS, LHON, MERFF, etc.), one therapy is being developed for
improving skeletal muscle function in elderly patients. Elamipretide (MTP-131) has been shown to
prevent peroxidation of cardiolipin by binding to the molecule and preventing its interaction with
cytochorme c, which prevents the latter from functioning as a peroxidase rather than an electron
carrier. The drug is currently in Phase III [121]. Another compound is Idebenone, which is based
structurally upon CoQ10. Idebanone is currently being explored for LHON and MELAS [121], but not
as a supplemental drug in statin therapy. There are a host of natural products and supplements that
have been discussed to improve mitochondrial function such as resveratrol, curcumin, NAD and
N-acetyl cysteine (NAC), but there is no clinical evidence of clear success.

5. Conclusions

As patient treatment is often essential, we suggest using medication(s) with the best safety profile
and the avoidance of concurrent usage of multiple medications that carry mitochondrial liabilities.
Our hope is that future therapies will be devoid of mitochondrial liabilities as screening paradigms can
be deployed preclinically. In addition, we also recommend lifestyle changes to further improve one’s
mitochondrial function, such as weight loss, exercise and nutrition. Another major point is that the
cause for mitochondrial dysfunction with age appears to be one of molecular homeostatic control of
mitochondrial integrity or functional capacity, not simply an acute depletion of bioenergetic substrates,
such as ATP. Consequently, bolus supplementation with mitochondrial cofactors has less potential
than long-term lifestyle changes in extending vitality and drug tolerance in aging populations.
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Abstract: Obesity, insulin resistance and type 2 diabetes are accompanied by a variety of systemic and
tissue-specific metabolic defects, including inflammation, oxidative and endoplasmic reticulum stress,
lipotoxicity, and mitochondrial dysfunction. Over the past 30 years, association studies and genetic
manipulations, as well as lifestyle and pharmacological invention studies, have reported contrasting
findings on the presence or physiological importance of mitochondrial dysfunction in the context
of obesity and insulin resistance. It is still unclear if targeting mitochondrial function is a feasible
therapeutic approach for the treatment of insulin resistance and glucose homeostasis. Interestingly,
recent studies suggest that intact mitochondria, mitochondrial DNA, or other mitochondrial factors
(proteins, lipids, miRNA) are found in the circulation, and that metabolic tissues secrete exosomes
containing mitochondrial cargo. While this phenomenon has been investigated primarily in the
context of cancer and a variety of inflammatory states, little is known about the importance
of exosomal mitochondrial transfer in obesity and diabetes. We will discuss recent evidence
suggesting that (1) tissues with mitochondrial dysfunction shed their mitochondria within exosomes,
and that these exosomes impair the recipient’s cell metabolic status, and that on the other hand,
(2) physiologically healthy tissues can shed mitochondria to improve the metabolic status of recipient
cells. In this context the determination of whether mitochondrial transfer in obesity and diabetes is
a friend or foe requires further studies.

Keywords: mitochondrial dysfunction; insulin resistance; type 2 diabetes; mitochondrial transfer;
exosomes

1. Introduction

The dysregulation of carbohydrate and lipid metabolism due to unbalanced diets (i.e., ‘fast food’)
in western societies has led to a dramatic rise in the worldwide prevalence of obesity, with more than
1.9 billion adults worldwide considered overweight or obese in 2016 [1]. Undoubtedly, this number
has increased even further within the last three years. Obesity is one of the most common causes of the
development of insulin resistance, type 2 diabetes (T2D), and other related cardio-metabolic risk factors.
As outlined by the National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK), T2D is
characterized by hyperglycaemia and is predominantly prevalent in middle-aged and older individuals
(>45 years of age) [2]. Insulin resistance (i.e., pre-diabetes) and T2D are accompanied by a multitude of
systemic and tissue-specific metabolic defects, including inflammation, oxidative and endoplasmic
reticulum stress, and lipotoxicity (i.e ectopic lipid accumulation in peripheral tissues), as well as
mitochondrial dysfunction [3]. Whether these metabolic aspects are a cause or consequence of insulin
resistance remains a matter of debate, with studies pointing towards both scenarios, as reviewed
in detail in [4–6]. This review will focus on mitochondrial dysfunction in T2D, with a special focus
on the systemic implications of mitochondrial dysfunction occurring in peripheral metabolic tissues.
Specifically, we will review evidence suggesting that dysfunctional mitochondria and/or mitochondrial
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DNA can be packaged into extracellular vesicles, secreted from the respective tissue and can impact
other tissues in a paracrine or endocrine manner.

2. Mitochondrial Function and Dysfunction

Mitochondria have a multitude of roles, with the most prominent one being the generation of
ATP for the maintenance of cellular processes. In addition, mitochondria play a role in reactive oxygen
species (ROS)-mediated signalling [7–10], apoptosis [11,12], calcium signalling [8,13], and haem [14,15]
and steroid synthesis [16], just to name a few. Due to the importance of mitochondria in cellular
energy metabolism, defects in the processes mentioned above have significant outcomes on tissue and
systemic level. In this respect, the term ‘mitochondrial dysfunction’ was firstly mentioned in 1975
in the context of glucose intolerance [17]. While the term ‘mitochondrial dysfunction’ is nowadays
commonly used in the scientific literature, the definitions and methods of assessment vary between
studies. Mitochondrial dysfunction has been assessed as changes in gene expression of mitochondrial
markers [18,19], protein content, or enzymatic activities of mitochondrial proteins [18,20], changes
in mitochondrial size and shape [20,21], as well as functional assessment of mitochondrial oxidative
capacity [22] and ROS generation [23]. For details on these studies and for mechanistic insights into
possible causes of mitochondrial dysfunction, please refer to our recent review on ‘mitochondrial
dysfunction and insulin resistance’ [24].

3. Mitochondrial Dysfunction in Obesity and Type 2 Diabetes

Since the first mention of mitochondrial dysfunction in the context of glucose intolerance in
1975 [17], the importance of mitochondrial function/dysfunction in insulin resistance has been
disputed for many years. While some studies in both humans and rodents describe a decrease in
mitochondrial function (decreased mitochondrial enzyme activities, decreased lipid metabolism,
reduced mitochondrial size and number) in obese and insulin resistant individuals [25,26], others show
no correlation [27,28] or even a compensatory increase in mitochondrial capacity with lipid
oversupply [29,30], with most studies focusing on skeletal muscle (reviewed in detail in [24]).
The discrepancies between studies in both rodents and humans suggest that mitochondrial dysfunction
is not a requisite feature of insulin resistance and T2D, and that study outcomes (i.e., if mitochondrial
dysfunction is present) are likely dependent on methodological approaches, the model system
examined (human or rodent) and the definition of the term mitochondrial dysfunction in the context
of each study. In addition, differences in mitochondrial defects between metabolic tissues need to be
considered. While skeletal muscle is the most common tissue examined in the context of T2D and
mitochondrial function [31], the importance of mitochondrial function in other tissues, such as heart,
liver and pancreas, and the impact on systemic homeostasis, should not be underestimated.

4. Tissue-Specific Effects of Mitochondrial Function and T2D

Skeletal muscle is packed with mitochondria, which are required for ATP generation during
muscle contraction. With the number of mitochondria in a cell being proportional to the energy demand
of the cell, it is not surprising that skeletal muscle and heart are the two tissues with the highest
mitochondrial abundance [32]. We have reviewed changes in mitochondrial function in skeletal muscle
in the presence of insulin resistance and T2D in detail previously [24], with the major ‘conclusion’
being that skeletal muscle-related investigations into changes in mitochondrial function in the presence
of insulin resistance or T2D have been ‘inconclusive’ (i.e., decreased, unchanged, or compensatory
increased in mitochondrial function in insulin resistance have been suggested). Here we briefly
describe changes in mitochondrial function and capacity in the heart, due to the hearts high rate of
ATP production and turnover, and its reliance on mitochondrial metabolism to produce energy.

A large number of studies points towards mitochondrial defects being present in the heart
in individuals with insulin resistance and diabetes [33–37] as well as in rodent models [38–43].
Markers examined in these studies included mitochondrial oxygen consumption, ROS and ATP
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generation, changes in mitochondrial size, and structure and calcium handling, as well as mRNA,
protein, or enzymatic activity levels of markers of mitochondrial biogenesis, content, and oxidative
capacity. Of note, whereas studies in humans are of an associative nature and limit investigations
of cause-or-consequence scenarios, a majority of rodent models investigating cardiac function in
the presence of diabetes use streptozotocin, a compound that shows high toxicity towards the
pancreas and destruction of insulin-producing beta cells, and that is used for the generation of type 1
diabetes phenotypes [44]. The use of dietary interventions that more closely mimic human obesity
and insulin resistance, as well as rapid improvements in generation and accessibility to transgenic
rodent models are crucial for delineating cause-and-consequence relationships. For example, Turkieh
and colleagues showed recently that apolipoprotein O (APOO) is overexpressed in diabetic hearts,
and, using transgenic APOO mice, show that APOO links impaired mitochondrial function and the
onset of cardiomyopathy [45]. Furthermore, using genetic approaches a recent study showed that
myocardial function depends on balanced mitochondrial fusion and fission, and defined a critical
regulator of cardiomyocyte survival, the mitochondrial metalloendopeptidase OMA1 [46]. In addition,
expression of extracellular signal-regulated protein kinase 5 (Erk5) was shown to be lost in diabetic
hearts, and cardiac-specific deletion of Erk5 in mice substantiated mitochondrial abnormalities and
decreased fuel oxidation [47]. Lastly, epigenetic regulation of metabolic functions was shown to be
important in the preservation of cardiac function. Specifically, an N-terminal proteolytically derived
fragment of histone deacetylase 4 (HDAC4) was shown to be decreased in failing mouse hearts and
that overexpression of this HDAC4 fragment improved calcium handling and contractile function [48].

While diving into the topic of cardiac dysfunction, I noticed that alterations in mitochondrial
energy metabolism are a common feature of various forms of heart disease [49,50]. Most predominantly,
diabetic cardiomyopathies (ventricular dysfunction in patients with diabetes mellitus) are associated
with dysregulated oxidative substrate selection. In humans and rodents, obesity and insulin
resistance are associated with increased myocardial fatty acid uptake and fatty acid oxidation [51,52],
with a simultaneous decrease in glucose oxidation [53,54]. As fatty acid oxidation produces less ATP
(per mol oxygen consumed), this scenario makes the heart less energy efficient [52]. In addition,
increased fatty acid supply to the heart is also associated with oxidative stress [55] and accumulation
of bioactive lipid intermediates that directly interfere with insulin signalling [56], and lead to a greater
decline in heart function with age [57]. Of interest, therapeutic approaches to increase glucose
utilization of the diabetic heart, either actively through activation of pyruvate dehydrogenase [58–60]
or passively by inhibiting fatty acid oxidation [61,62], were shown to improve heart function.

5. Can Mitochondrial Dysfunction be Reversed?—Insight into Genetic and
Pharmacological Interventions

Targeting mitochondrial oxidative capacity as a means to improve insulin sensitivity is
questionable with contradicting findings in various genetic mouse models. For example, inhibition of
mitochondrial fatty acid uptake (through inhibition of CPT1) improves insulin sensitivity in muscle of
diet-induced obese mice, healthy male subjects and in primary human myotubes [63,64]. In addition,
activating heat shock protein 72 (HSP72) in skeletal muscle was found to improve mitochondrial
oxidative capacity and insulin sensitivity in the setting of lipotoxicity [65], whereas cardiac-specific
overexpression showed no metabolic improvements [66]. Furthermore, increasing the capacity of fatty
acid transport protein (FATP) 1 in skeletal muscle resulted in increased channelling of fatty acids into
oxidative pathways, however without changes in muscle or systemic insulin sensitivity [67].

Similarly, contradicting findings come from lifestyle or pharmacological intervention studies.
The major lifestyle interventions are diet and exercise, with both dietary restriction and physical activity
shown to reduce the risk of developing insulin resistance and T2D [68,69], and to improve/restore
muscle mitochondrial function [70,71]. While the impact of exercise on mitochondrial biogenesis
and oxidative capacity is well accepted (as recently reviewed in [72]), the picture is not that clear in
respect to mitochondrial improvements after dietary interventions. In addition to the studies above,
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other reports suggest that caloric restriction improves insulin sensitivity without changes (or even
with decreases) in skeletal muscle mitochondrial oxidative capacity [73,74].

Although exercise and dietary interventions represent a good and some might say ‘easy’ way
to improveinsulin sensitivity, long-term adherence to these lifestyle interventions is problematic
and remains a public health challenge. In this respect, finding an ideal pharmacological agent
that improves metabolic health, by improving mitochondrial function, has shown some promise
in rodent models and in the clinic. One of the most well described modulators of oxidative
metabolism are peroxisome proliferator-activated receptors (PPARs). For example, PPAR agonists
were shown to increase mitochondrial content and oxidative capacity, in the livers of pre-diabetic
mice [75], in adipose tissue [76] and skeletal muscle of insulin resistant and T2D patients [76,77] and
mice [78], and these mitochondrial adaptations were accompanied by improvements in systemic
insulin sensitivity. According to the NIH Clinial Trials register, PPAR agonists are now being trialled
for cardiovascular disease, hypertension, pre-diabetes, and diabetes, and various PPAR agonists
(e.g. pioglitazone, rosiglitazone, fibrates) have been FDA-approved for such therapeutic applications.
In addition to PPAR ligands, a variety of other common anti-diabetic drugs have pronounced effects
on mitochondrial function, with improvements in mitochondrial metabolism likely contributing to
the systemic improvements in insulin sensitivity and glycaemic control [79]. While insulin therapy
has been shown to improve mitochondrial oxidative phosphorylation [80] and ATP synthesis [81],
SGLT2 inhibitors, which primarily act on inhibiting glucose reuptake in the kidney, also improve
mitochondrial function in the heart [82–84] and in the brain [85]. However, the positive mitochondrial
effects have not been supported by other studies, pointing towards potential inhibitory effects of SGLT2
inhibitors on the mitochondrial respiratory chain [86,87]. Furthermore, conflicting findings have also
been reported for one of the most commonly prescribed anti-diabetic agents, the biguanide metformin.
While some studies point towards metformin having beneficial effects on mitochondrial oxidative
capacity [88] and mitochondrial fission [89], others show the opposite [90–93], with metformin being
named ‘an energy disruptor’ [90]. Lastly, thiazolidinediones (TZDs) such as rosiglitazone have
been shown to increase mitochondrial biogenesis [94,95]. For a detailed summary of the effects of
anti-diabetic drugs on mitochondrial function, please refer to [79,96].

6. Intercellular Mitochondrial Transfer

In addition to ‘boosting’ mitochondrial oxidative capacity in the presence of mitochondrial
dysfunction through genetic, lifestyle of pharmacological interventions, would it be possible to
improve mitochondrial function in a target cell or tissue through mitochondrial transfer? Recent
evidence suggests that intact mitochondria, mitochondrial DNA or other mitochondrial components
(proteins, lipids or metabolites) can be found in the circulation [97–100] and can be transferred
between cells or tissues [101–103]. Mitochondrial transfer between cells was shown in the context
of leukaemia [101], acute lung injury [104], asthma [105], and acute respiratory distress syndrome
(ARDS) [103], through the use of tunnelling nanotube-like structures between donor and recipient
cells. Most importantly, recipient cells showed metabolic impairments which were improved upon
transfer of functional mitochondria; e.g., acute myeloid leukaemia (AML) cells were less prone to
mitochondrial depolarization after chemotherapy [101]. Other researchers turned to intravenous
injections of intact mitochondria as a therapeutic approach for mitochondrial replenishment after
cardiac injury [106]. While these studies highlight the protective effects of mitochondrial transfer
in a variety of disease conditions, other studies point towards exogenous mitochondria having
pro-inflammatory effects [107,108]. In the context of cancer, mitochondrial transfer from benign
donor to recipient carcinoma cells elicited a chemo-resistant phenotype [109] and contributed to
tumour proliferation [110]. Little is known about mitochondrial transfer in conditions of mitochondrial
dysfunction and insulin resistance. Could transfer of intact mitochondria or mitochondrial DNA
be a potential therapeutic means to improve mitochondrial dysfunction and subsequently insulin
resistance? Could mitochondrial transfer on the other hand further worsen already substantiated
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metabolic defects? While intercellular transfer using nanotubes-like structures (as described above) is
a potential transfer mechanism for cells in close proximity, this pathway is unlikely to ‘remodel’ whole
organs and tissues, as would be required for example for skeletal muscle mitochondrial dysfunction.
However, of interest, mitochondrial DNA and mitochondrial proteins have also been shown to be
present in extracellular vesicles, particularly exosomes, and the significance of these findings will be
discussed below.

7. Exosomes

It has been known for more than 40 years that cells secrete vesicles during apoptosis [111].
More recent studies suggest that also healthy cells have the capacity to release vesicles into the
extracellular environment, with exosomes having received substantial attention over the past couple
of years, primarily due to early findings such as that dendritic cells secrete antigen-presenting
exosomes [112] and that tumour cells can transfer exosomes to dendritic cells to subsequently induce
potent antitumor effects [113]. The term exosome is used to distinguish extracellular vesicles with
a diameter of 50 to 150 nm, that originate from the late endosomal pathway and are released in the
extracellular space upon fusion of multivesicular bodies (MVBs) with the plasma membrane [114]
(Figure 1). For detailed info on biogenesis of exosomes, mechanisms of exosome secretion and detailed
information on cargo, please refer to a recent review on this topic [115]. Exosomes are lipid-bound
vesicles that carry lipids, proteins and nucleic acids. Interestingly, up to 10 percent of exosomal
proteins have been described as mitochondrial proteins [116]. However, it should be noted that the
relative high number of mitochondrial proteins identified within exosomal preparations could be also
due to “contamination” during the preparation procedure. Exosomes are released from a multitude
of tissues and cell types, including metabolic tissues, such as skeletal muscle [117], liver [118] and
adipose tissue [119,120]. The amount and cargo of released microvesicles differs in obesity and type 2
diabetes [121–124], with adipose-derived exosomes from obese individuals and mouse models being
associated with insulin resistance [125,126] and plasma exosomes in obese, T2D individuals showing
enrichment in molecules involved in inflammation and immune efficiency [127]. Also, plasma exosomes
from obese rats, but not lean rats, induced significant oxidative stress and vascular cell adhesion protein
1 (VCAM-1) expression in endothelial cells, indicative of a pro-inflammatory vesicle phenotype [123].

Figure 1. Exosomal secretion of intact mitochondria or mitochondrial factors. Mitochondria or mitochondrial
components are packaged into autophagosomes for intracellular degradation. Autophagosomes can fuse
with multi-vesicular bodies (MVBs) carrying exosomes, forming amphisomes. Amphisome contents can be
either shuttled towards degradation in lysosomes or towards the cell surface where exosomes are released.

110



Biology 2019, 8, 33

Importantly, obesity-associated exosomes released from adipose tissue, macrophages or
erythrocytes can transform healthy cells into metabolically defective cells, with robust effects on
tissue-specific and systemic insulin sensitivity and overall glucose homeostasis [124,126,128]. Overall,
it seems that extracellular vesicles reflect the diverse functional and dysfunctional states of the
releasing cells, and it is therefore not surprising that specific vesicle/exosomal signatures are present
in distinctive disease states, making exosomes useful biomarkers in the future [129].

8. Exosomes with Mitochondrial Cargo

As mentioned above, up to 10% of exosomal proteins are mitochondria-derived [116]. Initially,
vesicles containing mitochondrial cargo were described as being transported within the cytosol towards
peroxisomes (i.e., inter-organellar communication) [130], however other vesicle sub-types were also
shown fuse with the late endosome or with multi-vesicular bodies for degradation [131], with selective
enrichment of oxidized cargo [132]. Of interest, the stress-induced mitochondria-associated proteins
Parkin and Pink1 are involved in the generation of these particular multi-vesicular bodies [133],
highlighting increased vesicle generation upon autophagy-related stress signals, potentially as a means
of mitochondrial quality control. While these studies suggest that these vesicle sub-types and
mitochondrial components are destined for degradation, they can also be routed towards the cell
surface and fuse with the plasma membrane [134] (Figure 1). It is unclear if increased mitophagy is
associated with increased exosomal secretion of mitochondrial components, potentially as a means to
get rid of oxidized proteins, in addition to lysosomal degradation.

9. Exosomes with Mitochondrial Cargo—Friend of Foe?

Exosomes containing increased content of mitochondrial lipids, proteins and nucleic acids
were found to be released from adipose tissue of obese diabetic and obese non-diabetic rats [135],
from pulmonary cells after cigarette smoke injury [136], and are found in plasma upon infection with
the human T-lymphotropic retrovirus type 1 (HTLV-1) [99] and in circulating exosomes of breast cancer
patients [137], highlighting the broad range of pathological states that are characterized by increased
circulating exosomes carrying mitochondrial cargo. Some studies suggest that the cells and tissues
releasing these particular exosomes show mitochondrial impairments. For example, it has been shown
that mesenchymal stem cells target depolarized mitochondria to the plasma membrane, and that
they similarly shed microRNA-containing exosomes, which have the capacity to inhibit macrophage
activation, thereby de-sensitizing macrophages to the ingested mitochondria [138]. Cells might use
exosomal secretion as a way of quality control, to restore cellular homeostasis and preserve cell
viability, to some extent in the presence of mitochondrial dysfunction [139]. This would suggest that
mitochondrial cargo within circulating exosomes is largely metabolically defective, and when fusing
with recipient cells could either transfer these mitochondrial defects to the recipient cells, or could
induce a physiologically adverse response. In support of this hypothesis, it has been shown that
leukaemia cells, when challenged with chemotherapeutic drugs that induce oxidative stress, transfer
their dysfunctional mitochondria to neighbouring bone marrow mesenchymal stem cells, leading
to chemo-resistance [140]. In addition, exosomes can carry mitochondrial electron transport chain
(ETC) complexes. Some of these ETC subunits are encoded by mitochondrial DNA. Translation within
mitochondria occurs using a formylated initiating methionine (a mechanism still conserved from
bacterial origins), and presence of extracellular formylated proteins can lead to an immune response
and cytokine release [107].

While mitochondrial proteins are most commonly investigated in the context of exosomal
transport, exosomes also carry lipids (a recent paper identified 1,961 lipid species in an exosomal and
microvesicle screen [141]), with exosomes from hepatocellular carcinoma cells (Huh7) and human
bone marrow-derived mesenchymal stem cells (MSC) specifically enriched in the mitochondrial inner
membrane lipid cardiolipin [141]. This enrichment of cardiolipin, but exclusion of other lipid species,
such as sphingolipids, within these particular exosomes suggests that cardiolipin might be actively
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sorted into exosomes of Huh7 cells and MSCs [141]. While the reason for this phenomenon is unknown,
the authors suggest that the high concentration of cardiolipin might help in the stability and curvature
of the vesicle membrane bilayer. On the other hand, increased secretion of cardiolipin (or other
mitochondrial lipids) could impair mitochondrial function of the donor cells, as cardiolipin plays
an important role in maintaining optimal mitochondrial function. In this respect, a loss of cardiolipin
has been described in the diabetic heart [142–144] and during heart failure [145], while exercise leads
to increased cardiolipin content in skeletal muscle [146]. If this is due to differences in synthesis,
degradation or exosomal secretion requires further investigation. As mentioned above, exosomal
secretion has been considered a way of quality control [139], with the donor cells ‘getting rid’
of damaged or oxidized cellular components. During conditions of increased mitochondrial ROS
production and oxidative stress, as is the case in the presence of insulin resistance and T2D [147],
polyunsaturated fatty acids in mitochondrial membranes (such as cardiolipins) are the primary targets
of oxidative damage, which may lead to mitochondrial dysfunction [148]. While oxidized cardiolipin
can be repaired enzymatically [149], exosomal export is also a likely pathway for clearance of oxidized
cellular factors.

Looking at the other side of the coin, a recent study published in the journal Blood investigated the
metabolic cross-talk between cancer cells and their microenvironment, and found that ‘healthy’ bone
marrow stromal cells (BMSC) were made to transfer their mitochondria to neighbouring acute myeloid
leukaemia (AML) cells, supporting the cancer cells’ growth [102]. An associated press release in Science
Daily termed this phenomenon quite adequately as “Stealing from the body: How cancer recharges its
batteries” [150]. A different study identified the complete mitochondrial genome within circulating
extracellular vesicles from metastatic breast cancer patients, and showed that these extracellular
vesicles can in turn transfer their mtDNA to cells with impaired metabolism, leading to restoration of
metabolic activity [151]. The authors suggested that the transfer of mtDNA plays a role in mediating
resistance to hormone therapy in these patients.

It seems that, depending on the tissue/cell type and the pathological state examined,
mitochondrial cargo can be either transferred from a cell with mitochondrial dysfunction to a cell
with ‘healthy’ metabolic state, leading to metabolic deterioration of the recipient cells; or, on the other
hand mitochondrial cargo can be transferred from a ‘healthy’ cell to a recipient cell with mitochondrial
dysfunction, leading to the recipient’s metabolic improvement (Figure 2). The impact or physiological
importance of exosomal transfer of mitochondrial cargo in the context of mitochondrial dysfunction
in insulin resistant and T2D individuals is not known. Does skeletal muscle, heart or liver (or major
metabolic tissues in general) have the capacity to shed mitochondria in the presence of mitochondrial
dysfunction to rescue the donor’s cell energetic state? Could on the other hand mitochondrial cargo
be transferred to metabolically deficient cells, to improve mitochondrial dysfunction in the recipient
tissue (Figure 2)?
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Figure 2. Is mitochondrial transfer in states of insulin resistance and mitochondrial dysfunction a friend
or foe? In other pathological conditions, it has been shown that cells with mitochondrial impairments
have the capacity to secrete mitochondrial cargo within exosomes that then impairs metabolic state
of the recipient cells (i.e., foe). Other studies suggest that ‘healthy’ cells secrete mitochondrial cargo
to improve the recipients cell metabolism (i.e., friend). Future studies will have to show if these
phenomena are present states of mitochondrial dysfunction and insulin resistance.

10. Mitochondrial Dysfunction, T2D and Exosomal Transfer of Mitochondrial Cargo

Very little is known about exosomal transfer of mitochondrial cargo in the presence of
mitochondrial dysfunction during the development of insulin resistance and T2D. It has been shown
that in obese diabetic rats adipose-derived exosomes carry more mitochondrial lipids, proteins and
nucleic acids [135]. Furthermore, lower circulating mtDNA content is associated with T2D [152]
and severe proliferative diabetic retinopathy [153], with reduced peripheral blood mtDNA content
potentially increasing the risk of impaired glucose-stimulated β cell function [152]. In addition, HbA1c,
fasting plasma glucose and age of T2D onset are the major factors affecting mtDNA content [154].
While these studies assessed changes in mtDNA content in the circulation, this was not investigated in
the context of exosomal transport. In a related matter, point mutations in the mitochondrial genome and
decreases in mtDNA copy number have been linked to the pathogenesis of type 2 diabetes [155,156].
Compared with nuclear DNA repair, mtDNA repair mechanisms are significantly less efficient [157]
and mtDNA is more susceptible to oxidative stress and mutations [158]. While the secretion of mtDNA
within microvesicles has been described previously [159], little is known if mutated mtDNA can be
secreted within exosomes and taken up by other cells.

Future studies will have to determine whether metabolic tissues, such as skeletal muscle or liver,
have the capacity to shed defective mitochondrial components within exosomes, and if this process is
affected in obese T2D individuals. Could on the other hand mitochondrial transfer be used as a means
to improve mitochondrial defects (Figure 2)? It would be of interest to assess if targeted transfer of
mitochondrial proteins or metabolites, or even fully functioning intact mitochondria, could improve
mitochondrial dysfunction and have effects on insulin sensitivity and glucose homeostasis.

11. Conclusions and Future Directions

Mitochondrial impairments have been described in the context of obesity, insulin resistance and
T2D, in a variety of metabolic tissues. However, as studies reported opposing findings ranging from
decreased mitochondrial function, to unaffected mitochondrial capacity, and even to an increase in
mitochondrial oxidative metabolism in individuals and rodent models with insulin resistance or T2D,
the requisite for the presence of mitochondrial dysfunction in these pathological states is unclear.
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In addition, genetic manipulations of mitochondrial proteins, as well as lifestyle and pharmacological
interventions resulted in contradicting findings, and it is still unclear if targeting mitochondrial capacity
is a useful therapeutic approach for the treatment of insulin resistance and glycaemic control. In the
past years, it has become evident that metabolic tissues secrete microvesicles, such as exosomes,
containing mitochondrial cargo, and that these exosomes have the capacity to fuse in a selective
targeted manner with recipient cells and tissues, and influence the recipients’ cell metabolic status.
Future studies will have to show if tissues with mitochondrial impairments in states of obesity and
T2D have the capacity to ‘shed’ their dysfunctional mitochondria to improve their metabolic status,
or if dysfunctional tissues have the capacity to ‘ingest’ exosomes with mitochondrial cargo to improve
their oxidative metabolism.
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Abstract: Genetic mitochondrial cardiomyopathies are uncommon causes of heart failure that may
not be seen by most physicians. However, the prevalence of mitochondrial DNA mutations and
somatic mutations affecting mitochondrial function are more common than previously thought. In
this review, the pathogenesis of genetic mitochondrial disorders causing cardiovascular disease is
reviewed. Treatment options are presently limited to mostly symptomatic support, but preclinical
research is starting to reveal novel approaches that may lead to better and more targeted therapies
in the future. With better understanding and clinician education, we hope to improve clinician
recognition and diagnosis of these rare disorders in order to improve ongoing care of patients with
these diseases and advance research towards discovering new therapeutic strategies to help treat
these diseases.

Keywords: mitochondrial; genetic mutations; cardiovascular disease; heart failure; cardiomyopathy

1. Introduction

Mitochondrial diseases affect nearly 1 in 5000–10,000 births [1–3] and genetic mutations in
mitochondrial DNA (mtDNA) are even more commonly found, with studies on umbilical cord blood
reporting mutations in as many as 1 in 200 samples [3,4]. Although relatively common, mitochondrial
diseases have a wide array of clinical presentations and their dysfunction affects a wide variety of
organs and tissues [5] including the heart [6]. As such the diagnosis of a mitochondrial disorder can be
complex and easily overlooked. Thus, physician exposure to mitochondrial disorders is quite limited
despite its relatively common incidence.

Normal mitochondria serve to supply energy in the form of adenosine triphosphate (ATP), generate
and regulate radical oxygen species (ROS), buffer cytosolic calcium ions, and regulate cellular apoptosis
via the mitochondrial permeability pore complex [1]. Mitochondria are more richly expressed in tissues
with high energy demand, including the heart, brain, skeletal muscle and endocrine system, and
their dysfunction will disproportionately affect these systems [7]. Tissues that are more metabolically
active will typically have greater vulnerability to defects in mtDNA [8] and they will be affected earlier
and more severely than less metabolic tissues [9]. Cardiomyopathy is common and usually increases
mortality, with one study reporting that 17% of infants and children hospitalized with an array of
mitochondrial diseases had cardiac manifestations, and patients with cardiomyopathy had markedly
increased mortality (71%) compared to those without a cardiac phenotype (26%) [10]. Mitochondrial
mutations can have variable expression in tissues, and cells can exhibit heteroplasmy in which a single
cell can have a mixed population mitochondria with either wild-type or mutant-type mtDNA [8].

The variability of expression of a mutation to mtDNA coupled with the wide variety of symptoms
and characteristics of each disorder can make these diseases difficult to identify and diagnose. The
diagnostic gold standard of mitochondrial disorders continues to be muscle biopsy, however this is only
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achieved if physicians are aware of mitochondrial disorders and thinking about them in their differential
when diagnosing a patient. In this review, we discuss the pathophysiology of mitochondrial disorders
and seek to provide a comprehensive clinical resource on mitochondrial cardiomyopathies and their
treatment options. We begin by discussing mitochondrial dysfunction in normal aging, followed by a
review of primary (congenital) and secondary mitochondrial disorders with cardiovascular phenotypes.
We seek to improve physician recognition and identification of patients with mitochondrial disorders
so that we can improve future recognition, diagnosis and treatments of these diseases.

2. Mitochondrial Dysfunction in Normal Aging

The heart is one of the most metabolically active tissues in the human body, relying heavily on
mitochondrial ATP production to maintain the high energy demand of individually contracting cardiac
myocytes. Cardiac aging, or senescence, is coupled with a decline in mitochondrial function, increased
production of reactive oxygen species (ROS) and suppressed mitophagy [11,12]. The mitochondrial
free radical theory of aging supposes that, with time, free radicals produced as unwanted byproducts
of normal mitochondrial metabolism from the respiratory chain on the inner mitochondrial membrane
build up in the cell where they are converted to hydrogen peroxide by superoxide dismutase. These
hydrogen peroxides are then converted by the Fenton reaction to damaging free radicals that are toxic
to nearly all molecules in the cell [12,13]. On the microscopic level, it has been well-established that
cells progressively accumulate damage to peptides and lipid molecules with time [14].

In addition to damaging proteins and lipids, free radicals also produces mutations in mitochondrial
DNA. Over time, and especially in highly metabolic cells like cardiomyocytes that have high cellular
concentrations of mitochondria, ROS-induced molecular damage leads to progressive accumulation of
mitochondrial DNA mutations [15–17]. This ultimately leads to increasingly greater mitochondrial
dysfunction, and, in damaged cells, dysfunctional mitochondria divide and produce more dysfunctional
mitochondria that contain greater number of mtDNA mutations [11,17]. Over time, this leads to
progressive cellular dysfunction at the organellar level. In metabolically active and mitochondria-rich
cells like cardiomyocytes, the cumulation of damaged peptides, lipids and organelles is more
pronounced and has a more pronounced contribution to cellular dysfunction and aging [11].

Maintaining protein homeostasis is also central to the normal function of any cell. When peptides
get damaged or degraded, the ability to continue normal cellular function relies on the ability to break
down and dispose of damage proteins. The cell must also then replace these damage peptides with
normally functioning new proteins [11]. The limited ability to remove damaged proteins or replace
them can be damaging to normal cell function [18]. Experimental mechanisms that enhance protein
homeostasis include reducing insulin-like growth factor-1 (IGF-1) signaling [19,20], caloric restriction
or inhibiting mammalian target of rapamycin (mTOR) signaling with rapamycin treatment [21,22]. As
the cellular proteome ages, damaged proteins start to build up, protein degradation slows, and cells
progressively accumulate more damaged molecules and become progressively more dysfunctional.
This is consistent with experimental results that have demonstrated increased levels of protein
ubiquitination in the aging heart, [21] but without increased rates of protein turnover [11,21]. On the
cellular level, these microscopic changes lead to changes on the organellar and cellular level, with
increasingly dysfunctional autophagy with age.
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3. Primary Mitochondrial Disorders

3.1. Mitochondrial Encephalopathy with Lactic Acidosis and Stroke-Like Episodes (MELAS)

First described by Pavlakis et al. in 1984, [23] MELAS has a reported prevalence of 0.18 per
100,000 [24]. Typically presenting in childhood, with 76–80% presenting before 20 years old, the
disease rapidly progresses after presentation [25,26]. It has a wide-ranging phenotype that includes
stroke-like symptoms (weakness, aphasia, vision loss), encephalopathy (manifesting often as seizures
or dementia), lactic acidosis and myopathy [24,26,27]. Additional symptoms include coma, vomiting,
fever, headaches, ataxia, external opthalmoplegia, diabetes, hearing impairment, developmental delay,
and short stature (Table 1) [26,27].

Cardiac dysfunction has been reported to occur in approximately 30–32% of cases, [24,28] with both
hypertrophic and dilated cardiomyopathies having been reported [29]. Conduction abnormalities have
also been reported, most notably Wolff–Parkinson–White syndrome [26,30]. The most common genetic
mutation involved is A3243G, which has been reported in up to 80% of MELAS presentations [25]. Other
mutations that have been identified include T3271C, A3252G, T9957C, 14787del4, G14453A, A13084T,
A13045C, A12770G, A11084G, T3949C, G3946A, G3697A, G3376A, T3308C, A13514G, G13513A, G3697,
and it is likely several others have yet to be identified (Table 2) [31,32].

Studies have shown treatment with nitric oxide (NO) precursors increase NO production and
reportedly reduce stroke-like symptoms [33,34]. One study found plasma lactate decreased significantly
after citrulline supplementation [35]. Though no studies have looked directly at the effects of NO
precursor therapy on cardiac manifestations, some have theorized they may work by increasing NO
production and decreasing cellular damage in cardiac tissue [36]. One case report found improvement
in seizure control and reduction in stroke-like episodes after initiation of a ketogenic diet [37]. Reports
have shown possible benefits from creatine, CoQ10, and lipoic acid therapy including improvement in
symptoms of body composition, strength, and lactate level [38].
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3.2. Leigh Syndrome

Leigh Syndrome (LS), or subacute necrotizing encephalomyelopathy, was first described by
Dr. Denis Leigh, a British neuropsychiatrist, in 1951 [39]. It is a mitochondrial disorder that causes
symmetric necrotic lesions in subcortical areas of the brain, particularly the brain stem and basal
ganglia. Prevalence is thought to be between 1 per 32,000 and 1 per 40,000 [40,41]. Symptom
onset occurs early in life, with initial presentation in infancy or adolescence, and with a majority of
presentations before age 1 and 81% by age 2 [42,43]. Initial presentation is often some combination
of signs and symptoms of progressive encephalopathy with cognitive and behavioral dysfunction,
seizures, hypotonia, oculomotor abnormalities, ataxia, and respiratory dysfunction (Table 1) [40,42,44].

Patients often present with late-stage disease, with 39% of patients dying by the age of 21 years,
at a median age of 2.4 years [42,43]. Atypical and slowly progressing presentations have also been
described with more rare mutations. Lactate levels are often elevated and diagnosis is usually
confirmed by radiologic findings of characteristic bilateral symmetric subcortical hypodensities
on computed tomography (CT) or hyperintense signal abnormalities on T2-weighted magnetic
resonance imaging (MRI) [42,45,46]. Cardiac manifestations can occur in up to 18–21% of cases,
including cardiomyopathy, pericardial effusion, and conduction abnormalities [42,43,47,48]. Of those,
hypertrophic cardiomyopathy was found in 50% of patients with cardiac manifestations (Table 1) [43].
One particular study associated the G13513A mutation with development of Wolff–Parkinson–White
and hypertrophic cardiomyopathy [48]. One of the major identified causes of LS is Cytochrome c
oxidase (COX) deficiency secondary to mutations in the SURF1 gene [49,50]. Over 35 other gene
mutations have been identified in association with LS, some of the more studied mutations include
312del10/insAT, T8993C, T8993G, C688T, 772delCC, 751C>T, 845delCT, 868insT, G385A, G618C, T751C,
A8344G, A3243G, G13513A, and C1177A (Table 2) [49–54].

As with other mitochondrial disorders, treatment options for LS are limited. One case series
showed improvement in life-expectancy with Thiamine therapy in patients whose LS was secondary to
a SLC19A3 mutation [31]. High dose biotin should be administered to every patient with suspected LS,
given similarities with biotin-responsive basal ganglia disease. Some case reports have shown positive
results for treating with Coenxyme Q10.

3.3. Myoclonic Epilepsy with Ragged Red Fibers (MERRF)

In 1921 Dr. Ramsey Hunt, an American neurologist, first published in the journal Brain a syndrome
afflicting 6 patients that resembled Freidrich’s ataxia which he described as “dyssynergia cereballaris
myoclonica.” It was not until 1973 that Tsairis et al. discovered mitochondrial abnormalities in a
family with this disorder, and not until 1980 until Dr. Fukuhara discovered these symptoms associated
with ragged red muscle fibers [55]. Finally in 1990 Schoffner et al. first identified a mitochondrial
mutation associated with this disease [56]. Myoclonic epilepsy with ragged red fibers (MERRF) has a
heterogeneous phenotype that most commonly includes myoclonus, lactic acidosis, cerebellar ataxia,
muscle weakness, and ragged red fibers on muscle biopsy [55,57]. Less common symptoms include
generalized seizures, short stature, hearing impairment, peripheral neuropathy, headaches, multiple
lipomas, vomiting, cognitive dysfunction, and dementia [55,57,58]. Age of onset is typically the second
decade of life, and the time of disease progression ranges from 2 to 15 years with a mean time of
8.5 years [58,59]. Reports of the exact incidence of MERRF vary widely, but according to the National
Organization for Rare Disorders, the disease occurs in less than 0.9/100,000 patients. Patients often
report frequent myoclonic seizures with rare episodes of generalized tonic–clonic seizures, often
only partially controlled by anti-epileptic drugs [58]. Reported cardiac abnormalities include Wolff
Parkinson White (WPW), supraventricular tachycardia (SVT), right bundle branch block (RBBB), and
both dilated and hypertrophic cardiomyopathy (Table 1) [55,59–61].

The A8344G mutation is the most commonly identified mutation in patients with MERRF,
occurring in 83–90% of cases [57,58]. One case series found cardiac abnormalities in 53% of MERRF
patients with this mutation [61]. T8356C has been reported in one patient to be associated with MERRF
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(Table 2) [62]. G8363A was reported in a case series of 9 patients with clinic presentations fitting
MERRF and 4/9 patients were found to cardiac abnormalities [60]. This mutation involves coding for
the same tRNA gene as other mutations associated with MERRF. Symptomatic treatment of MERRF is
focused on symptomatic management of myoclonus and epilepsy with antiepileptic drugs [58].

3.4. Maternally Inherited Diabetes and Deafness (MIDD)

Maternally inherited diabetes and deafness (MIDD), is a mitochondrial disease first characterized
in 1992 [63]. Approximately 0.5–2.8% of all diabetic patients have MIDD, with incidences varying
by ethnic origin [64,65]. As the name suggests the defining clinical features are diabetes (both type
1 and 2) and bilateral neurosensory hearing loss, each one being equally likely to be the presenting
symptom [66]. Typically diabetes develops at a relatively younger age (with half of all patients
presenting before age 35), often in a patient with a low or normal BMI [65–68]. Majority of MIDD
patients are non-insulin dependent at presentation however approximately half will have relatively
rapid progression to inulin dependence within the first several years of diagnosis [65,66,69,70]. Studies
have found macular pattern dystrophy in up to 85% of patients [66,71]. Other less frequent findings
include myopathy, neuropsychiatric symptoms, short stature and renal disease [66,69]. Brain atrophy,
ptosis, constipation, diarrhea, and pseudo-obstruction have also been reported [72–74]. Several case
reports have shown a possible association with histories of spontaneous abortion, preterm pregnancy,
and placenta accrete (Table 1) [74,75].

Other studies have found left ventricular hypertrophy in up to 55% of patients and cardiomyopathy
in up to 15–30% [66,67,76,77]. One study found myocyte hypertrophy and vacuolization, an
increased number of mitochondria and evidence of large mitochondria on endomyocardial biopsy [77].
Conduction disorders including WPW, sick sinus syndrome and atrial fibrillation have been found in
up to 27% of cases (Table 1) [66–69]. Another study has shown diabetics with the A3243G mutation
had more impairment in autonomic nervous function when compared to other diabetics [78]. The
mitochondrial mutation A3243G causes a majority of the cases of MIDD, however other mutations
have been identified in rare cases, including point mutations at 568 and 8281 (Table 2) [63,64,79].

Treatment of MIDD is primarily symptomatic. MIDD diabetes is managed similarly to other
forms with the exception of avoidance of metformin and low threshold for insulin initiation [65,80].
Hearing impairment is closely followed and patients often benefit from cochlear implantation [65,81].
Case reports have shown treatment with Coenzyme Q10 appeared to improve left ventricular function
in patients with MIDD [77,82]. One open trial study conducted on 28 patients in Japan found that
treatment with CoQ10 reduced progression of insulin secretion defects, exercise intolerance, and
hearing loss [83]. Visual symptoms, like acuity loss, are rare in MIDD [71].

3.5. Neuropathy, Ataxia and Retinitis Pigmentosa (NARP)

Classically the syndrome of neuropathy, ataxia, and retinitis pigmentosa (NARP) has been
described as a combination of deafness, a myoclonic epilepsy, muscle weakness, retinal pigmentosa,
and ataxia [84]. The disease was first described by Fryer et al. in 1994 in a family with seven children
who presented with a heterogenous phenotype of Leigh’s syndrome [85]. Further investigations
however have shown NARP to be phenotypically variable ranging from mild or late-onset symptoms
like retinal dystrophy to a more severe multisystemic phenotype that can include developmental delay,
dementia, seizures, muscle weakness, sensory neuropathy, ataxia, and retinal pigmentosa and with
typical age of onset in the first year of life [84,86]. NARP is estimated to effect about 1/12,000–40,000
according to the National Organization of Rare Disorders and the National Institutes of Health. Several
studies have shown a correlation between mutation load and severity of symptoms, especially in
the more common mutations at 8993 [87]. Individuals with 80% or more are more likely to have the
classic presentation, those below 70% have milder symptoms, and below 50% is often asymptomatic or
late onset [86,88–90]. Individuals with >90% mutation load appear to present with Leigh syndrome,
indicating clinical presentations are on a NARP/Leigh spectrum (Table 1) [91,92].
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Further studies have shown that factors other than mutation load affect a patient’s phenotype.
Proposed variables for further investigation include mtDNA background, environmental, autosomal,
tissue-specific factors, and nuclear modifier genes likely play a role in determining clinical picture and
disease severity [93–95]. One case report followed a patient with NARP who developed peripartium
dilated cardiomyopathy, ventricular pre-excitation, and non-sustained ventricular tachycardia during
4 years of follow up [96]. However this patient had a A8344G, which has been associated with MERRF and
not NARP. Though the 8993 mutation has been linked to cases of hypertrophic cardiomyopathy, cases have
been in patients with the more severe Leigh syndrome phenotype [97]. More studies focused on long term
follow up to determine late sequelae of NARP are needed to determine cardiac outcomes. NARP is caused
by mutations in the MT-ATP6 gene, most commonly T8993G and occasionally T8993C [84,86,88]. Other
reported mutations include G8839C, G8989C, 8618insT, T9185C, and a 2-bp microdeletion 9127e9128 del
AT [89,91,98–100]. Other mutations in the MT-ATP6 gene have been documented but have been observed
to cause the more severe presentations seen in Leigh syndrome [95,101]. A recent study demonstrated
the promise of using mitochondrially targeted obligate heterodimeric zinc finger nucleases to target
mitochondrial DNA with the NARP T8993G mutation in cell models [102]. Otherwise treatment has
primarily been on symptom improvement (Table 2).

3.6. GRACILE

First described in 1998, GRACILE syndrome is a severe mitochondrial disease named after the
significant clinical features: growth restriction, aminoaciduria, cholestasis, iron overload, and early
death [103]. Incidence is approximated to be at least 1/47,000 based on a study conducted in Finland,
however its global prevalence may actually be lower as Finland reports the highest number of cases
of GRACILE worldwide [104]. Onset begins with growth restriction at the end of the first trimester,
with patient’s average birth weight at standard deviations below predicted normal [105]. A study of
29 GRACILE cases found a median lactate of 12.8 mmol/L, pH of 7.00, and all patients had elevated
transaminases [106]. The liver develops macrovesicular steatosis, cholestasis with iron accumulation,
rapidly progressive fibrosis and cirrhosis [107]. Lactic acidosis is present and often refractory to
treatment, further contributing to failure to thrive. Cause of death appears to occur due to energy
depletion, with approximately half of all patients dying within the first two weeks of life and the
remainder die by 4 months of life [104,106,107]. One patient was found to have prolonged QT [105].
Autopsy-derived myocardial tissue samples showed higher respiratory chain enzyme activity when
compared to autopsy controls [104]. Another study on isolated complex III from GRACILE patients
found reduced levels and activity of complex III in myocardial tissues, however no cardiac dysfunction
or histopathological abnormalities were found (Table 1) [108].

GRACILE is caused by the homozygous point mutation A232G within the BCS1L gene [104].
BCS1L is a mitochondrial chaperone protein that guides the assembly of complex III of the mitochondrial
respiratory chain [104]. It is the most common and severe BCS1L disorder, however multiple mutations
within the BCS1L gene have been identified and are linked to a variety of phenotypes [109,110].
Identified exclusively in Finland and included as part of the Finnish disease heritage, it is postulated
to have accumulated in the Finnish population through founder effect and genetic drift [105,106].
Patients with the homozygous A232G have shown a strong consistency in the resulting phenotype [111].
BCS1L deficiency did not result in decreased complex III activity in tissues from Finnish GRACILE
patients, but patients with BCSL1 deficiency did demonstrate reduced Rieske FeS levels [104]. While
the pathophysiology is still largely unknown, a recent study showed tissue specific deficiencies in
BCS1L and Rieske FeS proteins in the liver, kidney, and heart tissues were associated with decreased
levels of assembled complex III (Table 2) [108]. This pathology was identified only in kidney and
liver samples, so despite cardiac tissue also having decreased levels/activity of complex III, there
appears to still be adequate respiratory chain enzyme activity [107,108]. Given rapid mortality in these
patients, treatment is often symptomatic or palliative [112]. Different methods have been implemented
to attempt to correct acidosis without clear success [112]. One study in a mouse model of GRACILE
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syndrome found decreased survival in mice fed a high carbohydrate diet, despite improved levels of
several amino acids and urea cycle intermediates [113].

3.7. Mitochondrial Neurogastrointestinal Encephalopathy (MNGIE)

Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is an autosomal recessive disease
of multiple organ systems characterized by chronic intestinal dysmotility, leukoencephalopathy,
failure to thrive, ptosis, ophthalmoparesis, and peripheral neuropathy [114–116]. Gastrointestinal (GI)
symptoms are the most prominent manifestation and include recurrent nausea, vomiting, diarrhea,
abdominal pain, gastroparesis, and intestinal pseudo-obstruction with dymotility [117,118]. Brain
leukoencephalopathy is present in nearly all cases, but is largely asymptomatic [119]. Brain MRI
typically shows symmetric T2 hyperintensities of cerebral white matter [119]. Reported in only ~100
cases, patients classically present between the second and fifth decades of life and die in early adulthood
as symptoms progress, with mean age at onset around 18 years of age and mean age at death of about
35 years [117,120,121]. One study found abnormal electrocardiogram (ECG) findings, with 16% of
patients in one study demonstrating left ventricular hypertrophy (LVH), and there are single case
reports of prolonged QT, cardiac arrest, and SVT (Table 1) [120,121].

MNGIE is caused by loss of function mutations to the thymidine phosphorylase (TP) gene
located on chromosome 22q13.32-qter (Table 2) [116]. TP catabolizes thymidine to thymine and loss
of enzymatic activity causes accumulation of thymidine and deoxyuridine creating an imbalance
in reservoir of cellular nucleosides and nucleotides [117]. This results in impaired mitochondrial
DNA replication that can lead to further deletions and mutations [122]. TP is expressed in the GI
system, brain, peripheral nerves, spleen and bladder, [120] a distribution pattern that accounts for most
clinical findings. Despite low expression in muscles, muscle biopsies show mitochondrial dysfunction
with abnormal mtDNA, COX deficiency, and ragged-red fibers [120,121,123]. Given the variability
of symptom severity and progression without clear correlation between genotype and phenotype, it
is hypothesized that environmental factors and genetic modifiers may play a role in determining a
patient’s clinical course [121].

Relative to other mitochondrial diseases, significant advancements have been made towards the
treatment of MNGIE, but early diagnosis and treatment is crucial to avoid disease progression and
accumulation of mutations [124]. Given significant GI manifestations and malnutrition, preventative
treatment with nutritional therapy is vital but challenging [125]. Allogeneic hematopoietic stem cell
transplant has shown to be a viable treatment option [124,126–128]. Stem cell transplantation can restore
TP activity and normalizes the pool of nucleotide and nucleoside [126,127]. Despite these molecular
improvements, there remains a high complication rate in transplanted patients, with one study
showing only 37.5% of patients alive at time of study follow up [128]. Other treatments that have been
studied include platelet infusions, peritoneal dialysis, hemodialysis, and carrier erythrocyte entrapped
recombinant TP all of which were shown to partially and temporarily restore TP activity levels to
varying degrees [129–132]. Liver transplantation has succeeded in producing lasting restoration of TP
activity and symptom improvement in a single case report, though further investigation is needed [133].
Gene therapy-based models for restoration of normal TP enzyme expression has been studied in
murine models with promising initial findings [134].

3.8. Barth Syndrome

Barth syndrome, first described in 1983 by Dutch neurologist Dr. Peter Barth, [135] is an X-linked
mitochondrial disorder causing congenital dilated cardiomyopathy, skeletal myopathy (predominantly
proximal), neutropenia (can be intermittent), and growth retardation in young male infants [135–138].
Prevalence has been estimated to be approximately 1:300,000–400,000 live births, though this is likely
an underestimation due to relatively high numbers of spontaneous abortions and still births of male
fetuses observed in known Barth syndrome families [139,140]. Disease symptoms typically present
within the first year of life with failure to thrive and cardiac abnormalities with or without severe
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infections, and some studies have even shown cardiac abnormalities in utero [141–143]. Mortality is
highest within the first four years of life with most deaths due to either cardiac failure secondary to
dilated cardiomyopathy or severe sepsis in the setting of neutropenia [136,137,143]. Reported overall
survival rate is 49% at age 5, but this has been steadily increasing in recent years, improving from 20%
in patients born before 2000 to 70% in patients born after 2000, likely due to increasing awareness
leading to earlier diagnosis and treatment [143]. Despite the high mortality rates in childhood, patients
can live into their late 40s (Table 1) [141].

As many as 91–94% of patients develop structural cardiac manifestations including
dilated cardiomyopathy, endocardial fibroelastosis, or left-ventricular non-compaction
(hypertrabeculation) [137,143–148]. Conduction abnormalities are also common and include
prolonged QT, WPW, SVT, and ventricular tachyarrhythmias [143,146,147]. Neutropenia occurs in
70–84% of patients with variable severity and can be persistent or intermittent [148,149]. Elevations in
urine 3-methylglutaconic acid and abnormally low cholesterol levels are less common but still present
in a significant percentage of patients (Table 1) [143,147,150].

Barth syndrome is an X-lined recessive disorder caused by mutations in the G4.5 gene (TAZ
gene) on Xq28, which encodes a highly conserved ascyltransferase (Table 2) [138,151,152]. The
TAZ gene encodes an enzyme important in remodeling of cardiolipin [153,154]. Cardiolipin is
exclusive to the mitochondrial membrane and plays a key role in proper structure and function
of the mitochondria [153,155]. Loss of this enzyme leads to a relative excess of monolysocardiolipin.
Measurement of monolysocardilipin/cardiolipin ratio is an important diagnostic test with high
sensitivity and specificity for Barth syndrome [156,157]. Though there is currently no curative
treatment for Barth syndrome, early recognition and diagnosis can allow for aggressive and prophylactic
management [140,158]. Treatment entails typical heart-failure medication regimens and antibiotics
during periods of neutropenia or infection [158]. Despite medical management, approximately 12% of
patients require cardiac transplantation, with mean age 3.8 years at time of transplant [148].

3.9. Leber’s Hereditary Optic Neuropathy (LHON)

This disorder was first described by Dr. Albrecht von Graefe in 1858, but was named after
Dr. Theodore Leber who published a case series in 1871 of 15 patients from 4 families afflicted
with LHON [159]. LHON classically presents as acute or subacute, painless vision loss typically
in young adulthood although symptom onset varies widely and has been reported as early as 2
and as late as 87 years [160–163]. One study showed 11.5% of cases occurring before age 10 [161].
Vision loss typically starts in one eye starting with central vision loss and then progresses to the
second eye often days to months later [162,163]. Vision loss is due to degeneration of retinal ganglion
cells [164]. Other non-visual, neurologic clinical findings have been reported including: dystonia,
peripheral neuropathy, resting tremor, wide spread multiple sclerosis-like white matter lesions and
Leigh-like encephalopathy [165–172]. European studies have estimated the prevalence to be between
1:31,000–50,000 with a 80–90% of cases occurring in males [173–175]. Case reports have found left
ventricular hypertrabeculation in patients with LHON [176,177]. Another study showed a statistically
significant longer QTc in LHON subjects from one American family when compared to controls [178,179].
Other cardiac associations reported include WPW (~9% of LHON subjects) and myocardial thickening
(Table 1) [177,179–181].

Approximately 90% cases are caused by one of three mtDNA mutations: G11778A (ND4 gene),
G3460A (ND1 gene), and the T14484C (NG6 gene) all of which cause dysfunction in complex I of
the mitochondrial respiratory chain (Table 2) [182–185]. Other mutations have been reported in
rare cases [186–189]. A majority of mutation carriers do not develop clinical LHON, with 50% of
male and 10% of female carriers affected [190]. The reason for this pattern is unclear, but several
hypotheses of additional determining factors have emerged including varying levels of oxidative stress,
environmental factors, mtDNA haplogroups, and hormones [191–195]. Earlier onset of symptoms and
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the 14484 mutation have relatively higher rates of spontaneous recovery of vision and are associated
with better prognosis [196,197].

Several promising therapies are under investigation. A small, open-label, prospective trial
looking at drug EPI-743, which targets glutathione production, showed arrest and reversal of disease
progression in 4 of 5 subjects [198]. Some case reports, one double-blinded RCT, and one retrospective
study have pointed to beneficial effects on vision with a strong antioxidant, idebenone [199–202].
Given the observed gender bias in disease penetration, studies have begun to investigate the role of
estrogen-like molecules on LHON cell-lines with promising preliminary results [203]. A handful of
gene-therapy clinical trials are currently underway after promising findings in pre-clinical trials with
adeno-associated viral vectors, [204–208] but no studies have evaluated the efficacies of these treatment
on cardiac manifestations of this disease.

3.10. Pearson Syndrome

Pearson syndrome (PS), first described by pediatric hematologist-oncologist Dr. Howard Pearson
in 1979, is a rare disease affecting the liver, kidney, pancreas, bone marrow and CNS, and more rarely
can present with cardiovascular findings. This disease presents initially with transfusion-dependent
anemia that may improve, but affected patients develop increasingly severe infections [209]. Incidence
was estimated to be roughly 1/1,000,000 in a case series of 11 Italian children, [209] and mortality was
high with most infants dying by 3 years of age, [210] although later studies have reported survival of
one patient to 6.6 years of age [209]. Multiple cases have been reported of both phenotypic and genetic
transformation of the disease from PS to Leigh syndrome (with development of dysphagia, ataxia,
peripheral neuropathy and ophthalmoparesis) [211,212] or Kearn’s sayre syndrome (with development
of progressive external ophtalmoplegia, retinopathy and ataxia) [212–215]. Cardiac abnormalities,
while not hallmark symptoms of the disease, have been reported including increased ventricular wall
thickness, depolarization abnormalities and prolonged QT. Mortality likely results from failure of other
organ symptoms, as most patients die before any severe cardiac abnormalities can result (Table 1) [209].

Genetic deletions of mtDNA in this disorder is widely variable, and may account for why PS can
transform into other mitochondrial spectrum disorders like Kearns Sayre Syndrome (KSS), progressive
external ophthalmoplegia (PEO) or Leigh Syndrome (LS) [214]. In a study of 15 patients diagnosed
with PS, large mitochondrial DNA deletions were typical, with 9 patients having 4.9 kb deletions and 6
having deletions ranging from 9 to 14 kb (Table 2) [210]. Treatment of this disease primarily involves
treatment of anemia with transfusions, erythropoietin (EPO) or granulocyte colony stimulating factor
(GCSF), and replacement of pancreatic enzymes has been reported in patients with exocrine pancreatic
insufficiency [209].

3.11. Kearns–Sayre Syndrome

Kearns–Sayre syndrome (KSS) is a rare mitochondrial disorder that primarily affects the eyes
among many other organs including the heart, was first reported by Dr. Kearns with a case series
involving nine patients in 1965, and has more recently been described on the spectrum of PEO
and PS [212–215]. Most patients with KSS develop the hallmark symptom of progressive external
ophthalmoplegia which causes ptosis and weakness or paralysis of the muscles of the eye and some
patients may also develop retinopathy [216]. Cardiac conduction defects are common, as are ataxia and
abnormally high cerebrospinal fluid (CSF) protein levels (Table 1). This disorder is very rare, effecting
only 1–3 per 100,000 individuals and are caused by large deletions in mtDNA ranging from 1000 to
10,000 base pairs that results in loss of genes involved in oxidative phosphorylation (Table 2) [216].
For cardiac manifestations, AV block is a common complication, with case reports of cardiac arrest
and conduction abnormalities including complete heart block requiring permanent cardiac pacemaker
implantation (Table 1) [217–220]. All patients with KSS or KSS spectrum disorders should be regularly
screened with ECGs to monitor for progressive AV block, and there should be low threshold for
monitoring in any KSS patient presenting with syncope.
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3.12. Chronic Progressive External Ophthalmoplegia

First reported by Zeviani et al. in 1989, [221] chronic progressive external opthalmoplegia (PEO)
is an inherited mitochondrial disorder characterized by loss of motor function of the muscles of the eye
an eyelid [222–224]. Other associated symptoms include skeletal and cardiac myopathy and dysphagia
(Table 1) [223]. Cardiac arrhythmias may also develop. PEO results from large scale mtDNA deletions
can occur as part of a spectrum of other large deletion mitochondrial disorders including Kearns–Sayre
syndrome [222,223] and Pearson Syndrome, [225–227] as mentioned above. Disease incidence of large
mtDNA deletions ranges from 1.2–2.9/100,000 [228,229]. Autosomal dominant PEO [230] has also been
reported with mutations reported to 3 nuclear encoded genes mutations have been identified in three
nuclear encoded genes: ANT1, C10orf2 and POLG (Table 2). As with KSS and other large deletion
spectrum disorders, symptomatic supportive care remains the only treatment option [224].

3.13. Friederich’s Ataxia

Friederich’s ataxia (FA), first described by German physician Dr. Nikolaus Freiderich in 1863,
is a neurodegenerative disease that presents with progressive ataxia and areflexia, and progressive
life-threatening cardiomyopathy, and both hypertrophic and dilated cardiomyopathies have been
reported [231,232]. FA has an incidence of 1–47:1,000,000 [233] that typically presents in childhood,
with a mean life expectancy is 40 years of age [234]. About two-thirds of patients will die from
cardiac causes (Table 1) [234–236]. FA is an autosomal recessive disease caused by expansion of DNA
triplet intron repeat GAA in the frataxin (FXN) gene (Table 2) [233,234,237]. Frataxin is a protein
found on the inner mitochondrial membrane and is involved in oxidative phosphorylation, and its
deficiency can lead to decreased cellular ATP production and disruption of iron chelation within
mitochondria [237]. Treatment relies on antioxidant therapy to reduce buildup of reactive oxygen
species and decrease oxidative damage. One novel drug, idebenone, an antioxidant that is similar to
coenzyme Q, has been suggested for treatment of FA cardiomyopathy early in disease course based
on preclinical studies, [238] and has been shown in randomized blinded trial to reduce measures of
cardiac hypertrophy in FA-cardiomyopathy patients [239].

4. Secondary Mitochondrial Myopathies

4.1. Mitochondrial Dysfunction in Ischemia

During myocardial infarction, rupture of an atherosclerotic plaque leads to occlusion of a coronary
artery and downstream myocardial ischemia. Endocardial myocytes are the most sensitive to cardiac
ischemia, as this segment of the myocardium has the highest imbalance of energy, with cell death
starting as early as 20 minutes after occlusion of the infarct related artery [240]. The ischemic insult
then moves transmurally from the endocardium to the epicardium. In the era of cardiac catheterization,
prompt revascularization has served to rapidly restore blood flow to these damaged tissues, however
the consequence of this early restoration of blood flow is reperfusion injury, which produces an
additional wave of cell death after the primary insult. The combination of ischemia and reperfusion
leaves individual cells in three states of injury: dead cardiomyocytes, reversibly injured cells, and
hypoperfused but viable cardiomyocytes [240]. Prompt reperfusion has been successful at saving
hypoperfused viable cardiomyocytes, but studies have shown that few reversibly injured cells are
rescued after reperfusion [240,241]. Additionally, reperfusion causes a second wave of cell death from
altered metabolism of cells damaged by ischemia-reperfusion injury, which results in destruction of
mitochondria and release of excessive ROS into damaged cells [240–242]. In animal studies, as many
as 38% of cell death results solely from the reperfusion phase of injury, [242] and reperfusion injury
accounts for up to 50% of the final infarct size [241].
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Damaged mitochondria can continue to propagate myocyte cell death through activation of
programmed cell death pathways. Mitochondrial electron transport chains are damaged during the
ischemic phase of injury [243]. This results in excessive production and release of ROSs, dysregulation of
calcium handling, and abnormal mitochondrial swelling leads to mitochondrial membrane disruption
by the mitochondrial permeability transition pore in the inner mitochondrial membrane, [244–246]
or via mitochondrial outer membrane permeabilization [246]. Formation of these pore complexes
leads to release of toxic mitochondrial ROSs and proteins that activate programmed cell death
mechanisms [240,242–244,246,247]. Thus, widespread cell death occurs in several stages following
coronary artery occlusion, resulting from the ischemic phase, reperfusion phase, and mitochondrial
dysfunction phase resulting in cell death both through necrosis and activation of programmed cell
death pathways [240,242,244,247].

4.2. Mitochondrial Dysfunction in Diabetic Cardiomyopathy

There is growing clinical and preclinical evidence that mitochondrial dysfunction is central to
cardiomyopathy observed in diabetic patients [248]. The pathogenesis of mitochondrial dysfunction
in diabetes may be similar to that of ischemia-reperfusion, but the exact molecular mechanisms
of this dysfunction remain poorly understood [248]. Clinically, diabetic cardiomyopathy was first
described over 40 years ago in a case series of four patients with heart failure and diabetes, but with
normal coronary arteries [249]. Subsequent studies have confirmed these observations [250,251] and
more recent studies estimate the prevalence of diastolic heart failure in as many as 60% of type 2
diabetics [252]. While the exact molecular mechanisms of diabetic cardiomyopathy remains unknown,
it is likely a multifactorial process involving disruption of normal respiration via the electron transport
chain. This leads to increased ROS production and disrupted fatty acid oxidation.

As outlined by the mitochondrial free radial theory of aging, higher levels of ROS lead to
hydroxylation and damage of cellular peptides and lipids [248]. These pathologic changes also result in
impaired respiration. Normal hearts primarily generate ATP from mitochondrial fatty acid oxidation
(60–70% of ATP generated) and less so from glucose, lactate or other substrates (30–40%) [248,253].
However, in the diabetic hearts, mitochondria are more reliant on fatty acid oxidation and suffer from
impaired mitophagy, with greater inability to break down oxidative fatty acids, further perpetuating
accumulation of oxygen free radical species. This disrupts mitochondrial calcium handling and
myocardial E-C coupling, and elevated levels of cellular ROS can lead to disrupted mitochondrial
biogenesis, increased mitochondrial permeability and ultimately increased cell death [248].

5. Conclusions

In this review, we seek to improve clinician awareness and recognition of mitochondrial disorders
affecting the cardiovascular system. Because of the wide variability of presentations and their relative
infrequency in the global population, recognition and diagnosis of these disorders can be challenging.
Treatment options for primary mitochondrial diseases are limited and primarily involve support
care, although some early studies suggest a role for antioxidant therapy. Future research will be
needed to discover novel therapeutic approaches to advance our care of these diseases, including
breakthroughs in gene therapy and improved understanding of the genetic expression and penetrance
of these mutations. It is our hope that with better recognition of these disorders by clinicians that we
can improve diagnosis of these disorders and advance long-term patient care and research into new
and more viable treatment options.
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113. Rajendran, J.; Tomašić, N.; Kotarsky, H.; Hansson, E.; Velagapudi, V.; Kallijärvi, J.; Fellman, V. Effect of
High-Carbohydrate Diet on Plasma Metabolome in Mice with Mitochondrial Respiratory Chain Complex III
Deficiency. Int. J. Mol. Sci. 2016, 17, 1824. [CrossRef] [PubMed]

114. Bardosi, A.; Creutzfeldt, W.; DiMauro, S.; Felgenhauer, K.; Friede, R.L.; Goebel, H.H.; Kohlschütter, A.;
Mayer, G.; Rahlf, G.; Servidei, S. Myo-, neuro-, gastrointestinal encephalopathy (MNGIE syndrome) due to
partial deficiency of cytochrome-c-oxidase. A new mitochondrial multisystem disorder. Acta Neuropathol.
1987, 74, 248–258. [CrossRef] [PubMed]

115. Hirano, M.; Silvestri, G.; Blake, D.M.; Lombes, A.; Minetti, C.; Bonilla, E.; Hays, A.P.; Lovelace, R.E.; Butler, I.;
Bertorini, T.E. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Clinical, biochemical, and
genetic features of an autosomal recessive mitochondrial disorder. Neurology 1994, 44, 721–727. [CrossRef]
[PubMed]

116. Nishino, I.; Spinazzola, A.; Hirano, M. Thymidine phosphorylase gene mutations in MNGIE, a human
mitochondrial disorder. Science 1999, 283, 689–692. [CrossRef] [PubMed]

117. Nishino, I.; Spinazzola, A.; Papadimitriou, A.; Hammans, S.; Steiner, I.; Hahn, C.D.; Connolly, A.M.;
Verloes, A.; Guimarães, J.; Maillard, I.; et al. Mitochondrial neurogastrointestinal encephalomyopathy: An
autosomal recessive disorder due to thymidine phosphorylase mutations. Ann. Neurol. 2000, 47, 792–800.
[CrossRef]

142



Biology 2019, 8, 34

118. Blondon, H.; Polivka, M.; Joly, F.; Flourie, B.; Mikol, J.; Messing, B. Digestive smooth muscle mitochondrial
myopathy in patients with mitochondrial-neuro-gastro-intestinal encephalomyopathy (MNGIE). Gastroenterol.
Clin. Biol. 2005, 29, 773–778. [CrossRef]

119. Scarpelli, M.; Ricciardi, G.K.; Beltramello, A.; Zocca, I.; Calabria, F.; Russignan, A.; Zappini, F.; Cotelli, M.S.;
Padovani, A.; Tomelleri, G.; et al. The role of brain MRI in mitochondrial neurogastrointestinal
encephalomyopathy. Neuroradiol. J. 2013, 26, 520–530. [CrossRef]

120. Hirano, M.; Nishigaki, Y.; Martí, R. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE):
A disease of two genomes. Neurologist 2004, 10, 8–17. [CrossRef]

121. Garone, C.; Tadesse, S.; Hirano, M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal
encephalomyopathy. Brain 2011, 134, 3326–3332. [CrossRef]

122. Viscomi, C.; Zeviani, M. MtDNA-maintenance defects: Syndromes and genes. J. Inherit. Metab. Dis. 2017, 40,
587–599. [CrossRef] [PubMed]

123. Filosto, M.; Tomelleri, G.; Tonin, P.; Scarpelli, M.; Vattemi, G.; Rizzuto, N.; Padovani, A.; Simonati, A.
Neuropathology of mitochondrial diseases. Biosci. Rep. 2007, 27, 23–30. [CrossRef]

124. Halter, J.; Schüpbach, W.; Casali, C.; Elhasid, R.; Fay, K.; Hammans, S.; Illa, I.; Kappeler, L.; Krähenbühl, S.;
Lehmann, T.; et al. Allogeneic hematopoietic SCT as treatment option for patients with mitochondrial
neurogastrointestinal encephalomyopathy (MNGIE): A consensus conference proposal for a standardized
approach. Bone Marrow Transplant. 2011, 46, 330–337. [CrossRef] [PubMed]

125. Wang, J.; Chen, W.; Wang, F.; Wu, D.; Qian, J.; Kang, J.; Li, H.; Ma, E. Nutrition Therapy for Mitochondrial
Neurogastrointestinal Encephalopathy with Homozygous Mutation of the TYMP Gene. Clin. Nutr. Res.
2015, 4, 132–136. [CrossRef] [PubMed]

126. Hirano, M.; Martí, R.; Casali, C.; Tadesse, S.; Uldrick, T.; Fine, B.; Escolar, D.M.; Valentino, M.L.; Nishino, I.;
Hesdorffer, C.; et al. Allogeneic stem cell transplantation corrects biochemical derangements in MNGIE.
Neurology 2006, 67, 1458–1460. [CrossRef] [PubMed]

127. Filosto, M.; Scarpelli, M.; Tonin, P.; Lucchini, G.; Pavan, F.; Santus, F.; Parini, R.; Donati, M.A.; Cotelli, M.S.;
Vielmi, V.; et al. Course and management of allogeneic stem cell transplantation in patients with mitochondrial
neurogastrointestinal encephalomyopathy. J. Neurol. 2012, 259, 2699–2706. [CrossRef] [PubMed]

128. Halter, J.P.; Michael, W.; Schüpbach, M.; Mandel, H.; Casali, C.; Orchard, K.; Collin, M.; Valcarcel, D.;
Rovelli, A.; Filosto, M.; et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial
neurogastrointestinal encephalomyopathy. Brain 2015, 138, 2847–2858. [CrossRef] [PubMed]

129. Lara, M.C.; Weiss, B.; Illa, I.; Madoz, P.; Massuet, L.; Andreu, A.L.; Valentino, M.L.; Anikster, Y.; Hirano, M.;
Martí, R. Infusion of platelets transiently reduces nucleoside overload in MNGIE. Neurology 2006, 67,
1461–1463. [CrossRef]

130. Yavuz, H.; Ozel, A.; Christensen, M.; Christensen, E.; Schwartz, M.; Elmaci, M.; Vissing, J. Treatment of
mitochondrial neurogastrointestinal encephalomyopathy with dialysis. Arch. Neurol. 2007, 64, 435–438.
[CrossRef]

131. Bax, B.E.; Bain, M.D.; Scarpelli, M.; Filosto, M.; Tonin, P.; Moran, N. Clinical and biochemical improvements
in a patient with MNGIE following enzyme replacement. Neurology 2013, 81, 1269–1271. [CrossRef]

132. Röeben, B.; Marquetand, J.; Bender, B.; Billing, H.; Haack, T.B.; Sanchez-Albisua, I.; Schöls, L.; Blom, H.J.;
Synofzik, M. Hemodialysis in MNGIE transiently reduces serum and urine levels of thymidine and
deoxyuridine, but not CSF levels and neurological function. Orphanet J. Rare Dis. 2017, 12, 135. [CrossRef]
[PubMed]

133. De Giorgio, R.; Pironi, L.; Rinaldi, R.; Boschetti, E.; Caporali, L.; Capristo, M.; Casali, C.; Cenacchi, G.;
Contin, M.; D’Angelo, R.; et al. Liver transplantation for mitochondrial neurogastrointestinal
encephalomyopathy. Ann. Neurol. 2016, 80, 448–455. [CrossRef] [PubMed]

134. Torres-Torronteras, J.; Cabrera-Pérez, R.; Barba, I.; Costa, C.; de Luna, N.; Andreu, A.L.; Barquinero, J.;
Hirano, M.; Cámara, Y.; Martí, R. Long-Term Restoration of Thymidine Phosphorylase Function and
Nucleoside Homeostasis Using Hematopoietic Gene Therapy in a Murine Model of Mitochondrial
Neurogastrointestinal Encephalomyopathy. Hum. Gene Ther. 2016, 27, 656–667. [CrossRef] [PubMed]

135. Barth, P.G.; Scholte, H.R.; Berden, J.A.; Van der Klei-Van Moorsel, J.M.; Luyt-Houwen, I.E.; Van ‘t
Veer-Korthof, E.T.; Van der Harten, J.J.; Sobotka-Plojhar, M.A. An X-linked mitochondrial disease affecting
cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci 1983, 62, 327–355. [CrossRef]

143



Biology 2019, 8, 34

136. Lev, D.; Nissenkorn, A.; Leshinsky-Silver, E.; Sadeh, M.; Zeharia, A.; Garty, B.Z.; Blieden, L.; Barash, V.;
Lerman-Sagie, T. Clinical presentations of mitochondrial cardiomyopathies. Pediatr. Cardiol. 2004, 25,
443–450. [CrossRef] [PubMed]

137. Adès, L.C.; Gedeon, A.K.; Wilson, M.J.; Latham, M.; Partington, M.W.; Mulley, J.C.; Nelson, J.; Lui, K.;
Sillence, D.O. Barth syndrome: Clinical features and confirmation of gene localisation to distal Xq28.
Am. J. Med. Genet. 1993, 45, 327–334. [CrossRef]

138. D’Adamo, P.; Fassone, L.; Gedeon, A.; Janssen, E.A.; Bione, S.; Bolhuis, P.A.; Barth, P.G.; Wilson, M.; Haan, E.;
Orstavik, K.H.; et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies.
Am. J. Hum. Genet. 1997, 61, 862–867. [CrossRef] [PubMed]

139. Steward, C.G.; Newbury-Ecob, R.A.; Hastings, R.; Smithson, S.F.; Tsai-Goodman, B.; Quarrell, O.W.; Kulik, W.;
Wanders, R.; Pennock, M.; Williams, M.; et al. Barth syndrome: An X-linked cause of fetal cardiomyopathy
and stillbirth. Prenat. Diagn. 2010, 30, 970–976. [CrossRef]

140. Clarke, S.L.; Bowron, A.; Gonzalez, I.L.; Groves, S.J.; Newbury-Ecob, R.; Clayton, N.; Martin, R.P.;
Tsai-Goodman, B.; Garratt, V.; Ashworth, M.; et al. Barth syndrome. Orphanet J. Rare Dis. 2013, 8, 23.
[CrossRef]

141. Barth, P.G.; Valianpour, F.; Bowen, V.M.; Lam, J.; Duran, M.; Vaz, F.M.; Wanders, R.J. X-linked cardioskeletal
myopathy and neutropenia (Barth syndrome): An update. Am. J. Med. Genet. A 2004, 126A, 349–354.
[CrossRef] [PubMed]

142. Brady, A.N.; Shehata, B.M.; Fernhoff, P.M. X-linked fetal cardiomyopathy caused by a novel mutation in the
TAZ gene. Prenat. Diagn. 2006, 26, 462–465. [CrossRef] [PubMed]

143. Rigaud, C.; Lebre, A.S.; Touraine, R.; Beaupain, B.; Ottolenghi, C.; Chabli, A.; Ansquer, H.; Ozsahin, H.; Di
Filippo, S.; De Lonlay, P.; et al. Natural history of Barth syndrome: A national cohort study of 22 patients.
Orphanet J. Rare Dis. 2013, 8, 70. [CrossRef] [PubMed]

144. Bleyl, S.B.; Mumford, B.R.; Thompson, V.; Carey, J.C.; Pysher, T.J.; Chin, T.K.; Ward, K. Neonatal, lethal
noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am. J. Hum. Genet. 1997,
61, 868–872. [CrossRef] [PubMed]

145. Chin, T.K.; Perloff, J.K.; Williams, R.G.; Jue, K.; Mohrmann, R. Isolated noncompaction of left ventricular
myocardium. A study of eight cases. Circulation 1990, 82, 507–513. [CrossRef]

146. Pignatelli, R.H.; McMahon, C.J.; Dreyer, W.J.; Denfield, S.W.; Price, J.; Belmont, J.W.; Craigen, W.J.; Wu, J.; El
Said, H.; Bezold, L.I.; et al. Clinical characterization of left ventricular noncompaction in children: A relatively
common form of cardiomyopathy. Circulation 2003, 108, 2672–2678. [CrossRef]

147. Spencer, C.T.; Bryant, R.M.; Day, J.; Gonzalez, I.L.; Colan, S.D.; Thompson, W.R.; Berthy, J.; Redfearn, S.P.;
Byrne, B.J. Cardiac and clinical phenotype in Barth syndrome. Pediatrics 2006, 118, e337–e346. [CrossRef]

148. Roberts, A.E.; Nixon, C.; Steward, C.G.; Gauvreau, K.; Maisenbacher, M.; Fletcher, M.; Geva, J.; Byrne, B.J.;
Spencer, C.T. The Barth Syndrome Registry: Distinguishing disease characteristics and growth data from a
longitudinal study. Am. J. Med. Genet. A 2012, 158A, 2726–2732. [CrossRef]

149. Steward, C.G.; Groves, S.J.; Taylor, C.T.; Maisenbacher, M.K.; Versluys, B.; Newbury-Ecob, R.A.; Ozsahin, H.;
Damin, M.K.; Bowen, V.M.; McCurdy, K.R.; et al. Neutropenia in Barth syndrome: Characteristics, risks, and
management. Curr. Opin. Hematol. 2019, 26, 6–15. [CrossRef]

150. Kelley, R.I.; Cheatham, J.P.; Clark, B.J.; Nigro, M.A.; Powell, B.R.; Sherwood, G.W.; Sladky, J.T.; Swisher, W.P.
X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria.
J. Pediatr. 1991, 119, 738–747. [CrossRef]

151. Bolhuis, P.A.; Hensels, G.W.; Hulsebos, T.J.; Baas, F.; Barth, P.G. Mapping of the locus for X-linked
cardioskeletal myopathy with neutropenia and abnormal mitochondria (Barth syndrome) to Xq28.
Am. J. Hum. Genet. 1991, 48, 481–485. [PubMed]

152. Bione, S.; D’Adamo, P.; Maestrini, E.; Gedeon, A.K.; Bolhuis, P.A.; Toniolo, D. A novel X-linked gene, G4.5. is
responsible for Barth syndrome. Nat. Genet. 1996, 12, 385–389. [CrossRef] [PubMed]

153. Vreken, P.; Valianpour, F.; Nijtmans, L.G.; Grivell, L.A.; Plecko, B.; Wanders, R.J.; Barth, P.G. Defective
remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem. Biophys. Res. Commun.
2000, 279, 378–382. [CrossRef] [PubMed]

154. Gaspard, G.J.; McMaster, C.R. Cardiolipin metabolism and its causal role in the etiology of the inherited
cardiomyopathy Barth syndrome. Chem. Phys. Lipids 2015, 193, 1–10. [CrossRef] [PubMed]

144



Biology 2019, 8, 34

155. Houtkooper, R.H.; Turkenburg, M.; Poll-The, B.T.; Karall, D.; Pérez-Cerdá, C.; Morrone, A.; Malvagia, S.;
Wanders, R.J.; Kulik, W.; Vaz, F.M. The enigmatic role of tafazzin in cardiolipin metabolism. Biochim. Biophys.
Acta 2009, 1788, 2003–2014. [CrossRef] [PubMed]

156. Valianpour, F.; Mitsakos, V.; Schlemmer, D.; Towbin, J.A.; Taylor, J.M.; Ekert, P.G.; Thorburn, D.R.; Munnich, A.;
Wanders, R.J.; Barth, P.G.; et al. Monolysocardiolipins accumulate in Barth syndrome but do not lead to
enhanced apoptosis. J. Lipid Res. 2005, 46, 1182–1195. [CrossRef] [PubMed]

157. Kulik, W.; van Lenthe, H.; Stet, F.S.; Houtkooper, R.H.; Kemp, H.; Stone, J.E.; Steward, C.G.; Wanders, R.J.;
Vaz, F.M. Bloodspot assay using HPLC-tandem mass spectrometry for detection of Barth syndrome. Clin. Chem
2008, 54, 371–378. [CrossRef] [PubMed]

158. Jefferies, J.L. Barth syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2013, 163C, 198–205. [CrossRef]
159. Meyerson, C.; Van Stavern, G.; McClelland, C. Leber hereditary optic neuropathy: Current perspectives.

Clin. Ophthalmol 2015, 9, 1165–1176.
160. Giraudet, S.; Lamirel, C.; Amati-Bonneau, P.; Reynier, P.; Bonneau, D.; Miléa, D.; Cochereau, I. Never too old

to harbour a young man’s disease? Br. J. Ophthalmol. 2011, 95, 887–896. [CrossRef]
161. Barboni, P.; Savini, G.; Valentino, M.L.; La Morgia, C.; Bellusci, C.; De Negri, A.M.; Sadun, F.;

Carta, A.; Carbonelli, M.; Sadun, A.A.; et al. Leber’s hereditary optic neuropathy with childhood onset.
Invest. Ophthalmol. Vis. Sci. 2006, 47, 5303–5309. [CrossRef]

162. Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Mitochondrial dysfunction as a cause of optic neuropathies.
Prog. Retin. Eye Res. 2004, 23, 53–89. [CrossRef]

163. Newman, N.J. Leber’s hereditary optic neuropathy. New genetic considerations. Arch. Neurol. 1993, 50,
540–548. [CrossRef] [PubMed]

164. Chao de la Barca, J.M.; Simard, G.; Amati-Bonneau, P.; Safiedeen, Z.; Prunier-Mirebeau, D.; Chupin, S.;
Gadras, C.; Tessier, L.; Gueguen, N.; Chevrollier, A.; et al. The metabolomic signature of Leber’s hereditary
optic neuropathy reveals endoplasmic reticulum stress. Brain 2016, 139, 2864–2876. [CrossRef]

165. Jun, A.S.; Brown, M.D.; Wallace, D.C. A mitochondrial DNA mutation at nucleotide pair 14459 of the NADH
dehydrogenase subunit 6 gene associated with maternally inherited Leber hereditary optic neuropathy and
dystonia. Proc. Natl. Acad. Sci. USA 1994, 91, 6206–6210. [CrossRef]

166. Harding, A.E.; Sweeney, M.G.; Miller, D.H.; Mumford, C.J.; Kellar-Wood, H.; Menard, D.; McDonald, W.I.;
Compston, D.A. Occurrence of a multiple sclerosis-like illness in women who have a Leber’s hereditary
optic neuropathy mitochondrial DNA mutation. Brain 1992, 115 (Pt. 4), 979–989. [CrossRef]

167. Funalot, B.; Reynier, P.; Vighetto, A.; Ranoux, D.; Bonnefont, J.P.; Godinot, C.; Malthièry, Y.; Mas, J.L.
Leigh-like encephalopathy complicating Leber’s hereditary optic neuropathy. Ann. Neurol. 2002, 52, 374–377.
[CrossRef] [PubMed]

168. Nikoskelainen, E.K.; Marttila, R.J.; Huoponen, K.; Juvonen, V.; Lamminen, T.; Sonninen, P.; Savontaus, M.L.
Leber’s “plus”: Neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J. Neurol.
Neurosurg. Psychiatry 1995, 59, 160–164. [CrossRef] [PubMed]

169. Perez, F.; Anne, O.; Debruxelles, S.; Menegon, P.; Lambrecq, V.; Lacombe, D.; Martin-Negrier, M.L.; Brochet, B.;
Goizet, C. Leber’s optic neuropathy associated with disseminated white matter disease: A case report and
review. Clin. Neurol. Neurosurg. 2009, 111, 83–86. [CrossRef]

170. Kellar-Wood, H.; Robertson, N.; Govan, G.G.; Compston, D.A.; Harding, A.E. Leber’s hereditary optic
neuropathy mitochondrial DNA mutations in multiple sclerosis. Ann. Neurol. 1994, 36, 109–112. [CrossRef]

171. Meire, F.M.; Van Coster, R.; Cochaux, P.; Obermaier-Kusser, B.; Candaele, C.; Martin, J.J. Neurological
disorders in members of families with Leber’s hereditary optic neuropathy (LHON) caused by different
mitochondrial mutations. Ophthalmic Genet. 1995, 16, 119–126. [CrossRef] [PubMed]

172. Pfeffer, G.; Burke, A.; Yu-Wai-Man, P.; Compston, D.A.; Chinnery, P.F. Clinical features of MS associated with
Leber hereditary optic neuropathy mtDNA mutations. Neurology 2013, 81, 2073–2081. [CrossRef] [PubMed]

173. Yu-Wai-Man, P.; Griffiths, P.G.; Brown, D.T.; Howell, N.; Turnbull, D.M.; Chinnery, P.F. The epidemiology
of Leber hereditary optic neuropathy in the North East of England. Am. J. Hum. Genet. 2003, 72, 333–339.
[CrossRef]

174. Puomila, A.; Hämäläinen, P.; Kivioja, S.; Savontaus, M.L.; Koivumäki, S.; Huoponen, K.; Nikoskelainen, E.
Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur. J. Hum. Genet. 2007, 15,
1079–1089. [CrossRef] [PubMed]

145



Biology 2019, 8, 34

175. Mascialino, B.; Leinonen, M.; Meier, T. Meta-analysis of the prevalence of Leber hereditary optic neuropathy
mtDNA mutations in Europe. Eur. J. Ophthalmol. 2012, 22, 461–465. [CrossRef] [PubMed]

176. Finsterer, J.; Stöllberger, C.; Prainer, C.; Hochwarter, A. Lone noncompaction in Leber’s hereditary optic
neuropathy. Acta Cardiol. 2004, 59, 187–190. [CrossRef]

177. Finsterer, J.; Stöllberger, C.; Michaela, J. Familial left ventricular hypertrabeculation in two blind brothers.
Cardiovasc. Pathol. 2002, 11, 146–148. [CrossRef]

178. Ortiz, R.G.; Newman, N.J.; Manoukian, S.V.; Diesenhouse, M.C.; Lott, M.T.; Wallace, D.C. Optic disk cupping
and electrocardiographic abnormalities in an American pedigree with Leber’s hereditary optic neuropathy.
Am. J. Ophthalmol. 1992, 113, 561–566. [CrossRef]

179. Finsterer, J.; Stollberger, C.; Gatterer, E. Wolff-Parkinson-White syndrome and noncompaction in Leber’s
hereditary optic neuropathy due to the variant m.3460G>A. J. Int. Med. Res. 2018, 46, 2054–2060. [CrossRef]

180. Nikoskelainen, E.K.; Savontaus, M.L.; Huoponen, K.; Antila, K.; Hartiala, J. Pre-excitation syndrome in
Leber’s hereditary optic neuropathy. Lancet 1994, 344, 857–858. [CrossRef]

181. Mashima, Y.; Kigasawa, K.; Hasegawa, H.; Tani, M.; Oguchi, Y. High incidence of pre-excitation syndrome
in Japanese families with Leber’s hereditary optic neuropathy. Clin. Genet. 1996, 50, 535–537. [CrossRef]
[PubMed]

182. Wallace, D.C.; Singh, G.; Lott, M.T.; Hodge, J.A.; Schurr, T.G.; Lezza, A.M.; Elsas, L.J.; Nikoskelainen, E.K.
Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988, 242,
1427–1430. [CrossRef] [PubMed]

183. Huoponen, K.; Vilkki, J.; Aula, P.; Nikoskelainen, E.K.; Savontaus, M.L. A new mtDNA mutation associated
with Leber hereditary optic neuroretinopathy. Am. J. Hum. Genet. 1991, 48, 1147–1153.

184. Johns, D.R.; Neufeld, M.J.; Park, R.D. An ND-6 mitochondrial DNA mutation associated with Leber hereditary
optic neuropathy. Biochem. Biophys. Res. Commun. 1992, 187, 1551–1557. [CrossRef]

185. Riordan-Eva, P.; Harding, A.E. Leber’s hereditary optic neuropathy: The clinical relevance of different
mitochondrial DNA mutations. J. Med. Genet. 1995, 32, 81–87. [CrossRef]

186. Valentino, M.L.; Barboni, P.; Ghelli, A.; Bucchi, L.; Rengo, C.; Achilli, A.; Torroni, A.; Lugaresi, A.; Lodi, R.;
Barbiroli, B.; et al. The ND1 gene of complex I is a mutational hot spot for Leber’s hereditary optic neuropathy.
Ann. Neurol. 2004, 56, 631–641. [CrossRef]

187. Valentino, M.L.; Avoni, P.; Barboni, P.; Pallotti, F.; Rengo, C.; Torroni, A.; Bellan, M.; Baruzzi, A.; Carelli, V.
Mitochondrial DNA nucleotide changes C14482G and C14482A in the ND6 gene are pathogenic for Leber’s
hereditary optic neuropathy. Ann. Neurol. 2002, 51, 774–778. [CrossRef]

188. Chinnery, P.F.; Brown, D.T.; Andrews, R.M.; Singh-Kler, R.; Riordan-Eva, P.; Lindley, J.; Applegarth, D.A.;
Turnbull, D.M.; Howell, N. The mitochondrial ND6 gene is a hot spot for mutations that cause Leber’s
hereditary optic neuropathy. Brain 2001, 124, 209–218. [CrossRef] [PubMed]

189. Achilli, A.; Iommarini, L.; Olivieri, A.; Pala, M.; Hooshiar Kashani, B.; Reynier, P.; La Morgia, C.;
Valentino, M.L.; Liguori, R.; Pizza, F.; et al. Rare primary mitochondrial DNA mutations and probable
synergistic variants in Leber’s hereditary optic neuropathy. PLoS ONE 2012, 7, e42242. [CrossRef]

190. Yu-Wai-Man, P.; Turnbull, D.M.; Chinnery, P.F. Leber hereditary optic neuropathy. J. Med. Genet. 2002, 39,
162–169.

191. Battisti, C.; Formichi, P.; Cardaioli, E.; Bianchi, S.; Mangiavacchi, P.; Tripodi, S.A.; Tosi, P.; Federico, A.
Cell response to oxidative stress induced apoptosis in patients with Leber’s hereditary optic neuropathy.
J. Neurol. Neurosurg. Psychiatry 2004, 75, 1731–1736. [CrossRef] [PubMed]

192. Giordano, C.; Montopoli, M.; Perli, E.; Orlandi, M.; Fantin, M.; Ross-Cisneros, F.N.; Caparrotta, L.;
Martinuzzi, A.; Ragazzi, E.; Ghelli, A.; et al. Oestrogens ameliorate mitochondrial dysfunction in Leber’s
hereditary optic neuropathy. Brain 2011, 134, 220–234. [CrossRef] [PubMed]

193. Sadun, A.A.; Carelli, V.; Salomao, S.R.; Berezovsky, A.; Quiros, P.A.; Sadun, F.; DeNegri, A.M.; Andrade, R.;
Moraes, M.; Passos, A.; et al. Extensive investigation of a large Brazilian pedigree of 11778/haplogroup J
Leber hereditary optic neuropathy. Am. J. Ophthalmol. 2003, 136, 231–238. [CrossRef]

194. Kirkman, M.A.; Yu-Wai-Man, P.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; De Coo, I.F.; Klopstock, T.;
Chinnery, P.F. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 2009, 132, 2317–2326.
[CrossRef]

195. Khan, N.A.; Govindaraj, P.; Soumittra, N.; Sharma, S.; Srilekha, S.; Ambika, S.; Vanniarajan, A.; Meena, A.K.;
Uppin, M.S.; Sundaram, C.; et al. Leber’s Hereditary Optic Neuropathy-Specific Mutation m.11778G>A

146



Biology 2019, 8, 34

Exists on Diverse Mitochondrial Haplogroups in India. Invest. Ophthalmol. Vis. Sci. 2017, 58, 3923–3930.
[CrossRef]

196. Majander, A.; Bowman, R.; Poulton, J.; Antcliff, R.J.; Reddy, M.A.; Michaelides, M.; Webster, A.R.;
Chinnery, P.F.; Votruba, M.; Moore, A.T.; et al. Childhood-onset Leber hereditary optic neuropathy.
Br. J. Ophthalmol. 2017, 101, 1505–1509. [CrossRef]

197. Johns, D.R.; Heher, K.L.; Miller, N.R.; Smith, K.H. Leber’s hereditary optic neuropathy. Clinical manifestations
of the 14484 mutation. Arch. Ophthalmol. 1993, 111, 495–498. [CrossRef]

198. Sadun, A.A.; Chicani, C.F.; Ross-Cisneros, F.N.; Barboni, P.; Thoolen, M.; Shrader, W.D.; Kubis, K.; Carelli, V.;
Miller, G. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic
neuropathy. Arch. Neurol. 2012, 69, 331–338. [CrossRef]

199. Klopstock, T.; Yu-Wai-Man, P.; Dimitriadis, K.; Rouleau, J.; Heck, S.; Bailie, M.; Atawan, A.; Chattopadhyay, S.;
Schubert, M.; Garip, A.; et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary
optic neuropathy. Brain 2011, 134, 2677–2686. [CrossRef]

200. Mashima, Y.; Hiida, Y.; Oguchi, Y. Remission of Leber’s hereditary optic neuropathy with idebenone. Lancet
1992, 340, 368–369. [CrossRef]

201. Mashima, Y.; Kigasawa, K.; Wakakura, M.; Oguchi, Y. Do idebenone and vitamin therapy shorten the time
to achieve visual recovery in Leber hereditary optic neuropathy? J. Neuroophthalmol. 2000, 20, 166–170.
[CrossRef]

202. Carelli, V.; La Morgia, C.; Valentino, M.L.; Rizzo, G.; Carbonelli, M.; De Negri, A.M.; Sadun, F.; Carta, A.;
Guerriero, S.; Simonelli, F.; et al. Idebenone treatment in Leber’s hereditary optic neuropathy. Brain 2011,
134, e188. [CrossRef]

203. Pisano, A.; Preziuso, C.; Iommarini, L.; Perli, E.; Grazioli, P.; Campese, A.F.; Maresca, A.; Montopoli, M.;
Masuelli, L.; Sadun, A.A.; et al. Targeting estrogen receptor β as preventive therapeutic strategy for Leber’s
hereditary optic neuropathy. Hum. Mol. Genet. 2015, 24, 6921–6931. [CrossRef] [PubMed]

204. Guy, J.; Qi, X.; Koilkonda, R.D.; Arguello, T.; Chou, T.H.; Ruggeri, M.; Porciatti, V.; Lewin, A.S.;
Hauswirth, W.W. Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I
subunit in the mouse visual system. Invest. Ophthalmol. Vis. Sci. 2009, 50, 4205–4214. [CrossRef]

205. Ellouze, S.; Augustin, S.; Bouaita, A.; Bonnet, C.; Simonutti, M.; Forster, V.; Picaud, S.; Sahel, J.A.;
Corral-Debrinski, M. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness
in a rat model of mitochondrial dysfunction. Am. J. Hum. Genet. 2008, 83, 373–387. [CrossRef] [PubMed]

206. Yang, S.; Ma, S.Q.; Wan, X.; He, H.; Pei, H.; Zhao, M.J.; Chen, C.; Wang, D.W.; Dong, X.Y.; Yuan, J.J.; et al.
Long-term outcomes of gene therapy for the treatment of Leber’s hereditary optic neuropathy. EBioMedicine
2016, 10, 258–268. [CrossRef] [PubMed]

207. Koilkonda, R.D.; Yu, H.; Chou, T.H.; Feuer, W.J.; Ruggeri, M.; Porciatti, V.; Tse, D.; Hauswirth, W.W.;
Chiodo, V.; Boye, S.L.; et al. Safety and effects of the vector for the Leber hereditary optic neuropathy gene
therapy clinical trial. JAMA Ophthalmol. 2014, 132, 409–420. [CrossRef] [PubMed]

208. Guy, J.; Feuer, W.J.; Davis, J.L.; Porciatti, V.; Gonzalez, P.J.; Koilkonda, R.D.; Yuan, H.; Hauswirth, W.W.;
Lam, B.L. Gene Therapy for Leber Hereditary Optic Neuropathy: Low- and Medium-Dose Visual Results.
Ophthalmology 2017, 124, 1621–1634. [CrossRef]

209. Farruggia, P.; Di Cataldo, A.; Pinto, R.M.; Palmisani, E.; Macaluso, A.; Valvo, L.L.; Cantarini, M.E.;
Tornesello, A.; Corti, P.; Fioredda, F.; et al. Pearson Syndrome: A Retrospective Cohort Study from the
Marrow Failure Study Group of A.I.E.O.P. (Associazione Italiana Emato-Oncologia Pediatrica). JIMD Rep.
2016, 26, 37–43. [PubMed]

210. Rotig, A.; Bourgeron, T.; Chretien, D.; Rustin, P.; Munnich, A. Spectrum of mitochondrial DNA rearrangements
in the Pearson marrow-pancreas syndrome. Hum. Mol. Genet. 1995, 4, 1327–1330. [CrossRef] [PubMed]

211. Santorelli, F.M.; Barmada, M.A.; Pons, R.; Zhang, L.L.; DiMauro, S. Leigh-type neuropathology in Pearson
syndrome associated with impaired ATP production and a novel mtDNA deletion. Neurology 1996, 47,
1320–1323. [CrossRef]

212. Lee, H.F.; Lee, H.J.; Chi, C.S.; Tsai, C.R.; Chang, T.K.; Wang, C.J. The neurological evolution of Pearson
syndrome: Case report and literature review. Eur. J. Paediatr. Neurol. 2007, 11, 208–214. [CrossRef] [PubMed]

213. McShane, M.A.; Hammans, S.R.; Sweeney, M.; Holt, I.J.; Beattie, T.J.; Brett, E.M.; Harding, A.E. Pearson
syndrome and mitochondrial encephalomyopathy in a patient with a deletion of mtDNA. Am. J. Hum. Genet.
1991, 48, 39–42. [PubMed]

147



Biology 2019, 8, 34

214. Mancuso, M.; Orsucci, D.; Angelini, C.; Bertini, E.; Carelli, V.; Comi, G.P.; Donati, M.A.; Federico, A.;
Minetti, C.; Moggio, M.; et al. Redefining phenotypes associated with mitochondrial DNA single deletion.
J. Neurol. 2015, 262, 1301–1309. [CrossRef] [PubMed]

215. Crippa, B.L.; Leon, E.; Calhoun, A.; Lowichik, A.; Pasquali, M.; Longo, N. Biochemical abnormalities in
Pearson syndrome. Am. J. Med. Genet. A 2015, 167A, 621–628. [CrossRef] [PubMed]

216. Yamashita, S.; Nishino, I.; Nonaka, I.; Goto, Y. Genotype and phenotype analyses in 136 patients with single
large-scale mitochondrial DNA deletions. J. Hum. Genet. 2008, 53, 598–606. [CrossRef] [PubMed]

217. Puri, A.; Pradhan, A.; Chaudhary, G.; Singh, V.; Sethi, R.; Narain, V.S. Symptomatic complete heart block
leading to a diagnosis of Kearns-Sayre syndrome. Indian Heart J. 2012, 64, 515–517. [CrossRef]

218. Gobu, P.; Karthikeyan, B.; Prasath, A.; Santhosh, S.; Balachander, J. Kearns Sayre Syndrome (KSS) - A Rare
Cause For Cardiac Pacing. Indian Pacing Electrophysiol. J. 2011, 10, 547–550.

219. van Beynum, I.; Morava, E.; Taher, M.; Rodenburg, R.J.; Karteszi, J.; Toth, K.; Szabados, E. Cardiac arrest in
kearns-sayre syndrome. JIMD Rep. 2012, 2, 7–10.

220. Kabunga, P.; Lau, A.K.; Phan, K.; Puranik, R.; Liang, C.; Davis, R.L.; Sue, C.M.; Sy, R.W. Systematic review of
cardiac electrical disease in Kearns-Sayre syndrome and mitochondrial cytopathy. Int. J. Cardiol. 2015, 181,
303–310. [CrossRef]

221. Zeviani, M.; Servidei, S.; Gellera, C.; Bertini, E.; DiMauro, S.; DiDonato, S. An autosomal dominant disorder
with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 1989, 339, 309–311.
[CrossRef]

222. Kearns, T.P.; Sayre, G.P. Retinitis pigmentosa, external ophthalmophegia, and complete heart block: Unusual
syndrome with histologic study in one of two cases. AMA Arch. Ophthalmol. 1958, 60, 280–289. [CrossRef]

223. Akaike, M.; Kawai, H.; Yokoi, K.; Kunishige, M.; Mine, H.; Nishida, Y.; Saito, S. Cardiac dysfunction in
patients with chronic progressive external ophthalmoplegia. Clin. Cardiol. 1997, 20, 239–243. [CrossRef]

224. Aure, K.; Ogier de Baulny, H.; Laforet, P.; Jardel, C.; Eymard, B.; Lombes, A. Chronic progressive
ophthalmoplegia with large-scale mtDNA rearrangement: Can we predict progression? Brain 2007,
130, 1516–1524. [CrossRef]

225. Poulton, J.; Deadman, M.E.; Ramacharan, S.; Gardiner, R.M. Germ-line deletions of mtDNA in mitochondrial
myopathy. Am. J. Hum. Genet. 1991, 48, 649–653.

226. Bernes, S.M.; Bacino, C.; Prezant, T.R.; Pearson, M.A.; Wood, T.S.; Fournier, P.; Fischel-Ghodsian, N. Identical
mitochondrial DNA deletion in mother with progressive external ophthalmoplegia and son with Pearson
marrow-pancreas syndrome. J. Pediatr. 1993, 123, 598–602. [CrossRef]

227. Shanske, S.; Tang, Y.; Hirano, M.; Nishigaki, Y.; Tanji, K.; Bonilla, E.; Sue, C.; Krishna, S.; Carlo, J.R.; Willner, J.;
et al. Identical mitochondrial DNA deletion in a woman with ocular myopathy and in her son with pearson
syndrome. Am. J. Hum. Genet. 2002, 71, 679–683. [CrossRef]

228. Remes, A.M.; Majamaa-Voltti, K.; Karppa, M.; Moilanen, J.S.; Uimonen, S.; Helander, H.; Rusanen, H.;
Salmela, P.I.; Sorri, M.; Hassinen, I.E.; et al. Prevalence of large-scale mitochondrial DNA deletions in an
adult Finnish population. Neurology 2005, 64, 976–981. [CrossRef]

229. Chinnery, P.F.; Johnson, M.A.; Wardell, T.M.; Singh-Kler, R.; Hayes, C.; Brown, D.T.; Taylor, R.W.; Bindoff, L.A.;
Turnbull, D.M. The epidemiology of pathogenic mitochondrial DNA mutations. Ann. Neurol. 2000, 48,
188–193. [CrossRef]

230. Kiechl, S.; Horvath, R.; Luoma, P.; Kiechl-Kohlendorfer, U.; Wallacher-Scholz, B.; Stucka, R.; Thaler, C.;
Wanschitz, J.; Suomalainen, A.; Jaksch, M.; et al. Two families with autosomal dominant progressive external
ophthalmoplegia. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1125–1128. [CrossRef]

231. Harding, A.E. Friedreich’s ataxia: A clinical and genetic study of 90 families with an analysis of early
diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981, 104, 589–620. [CrossRef]

232. Durr, A.; Cossee, M.; Agid, Y.; Campuzano, V.; Mignard, C.; Penet, C.; Mandel, J.L.; Brice, A.; Koenig, M.
Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 1996, 335, 1169–1175.
[CrossRef] [PubMed]

233. Koeppen, A.H. Friedreich’s ataxia: Pathology, pathogenesis, and molecular genetics. J. Neurol. Sci. 2011, 303,
1–12. [CrossRef] [PubMed]

234. Jensen, M.K.; Bundgaard, H. Cardiomyopathy in Friedreich ataxia: Exemplifying the challenges faced by
cardiologists in the management of rare diseases. Circulation 2012, 125, 1591–1593. [CrossRef]

148



Biology 2019, 8, 34

235. Tsou, A.Y.; Paulsen, E.K.; Lagedrost, S.J.; Perlman, S.L.; Mathews, K.D.; Wilmot, G.R.; Ravina, B.;
Koeppen, A.H.; Lynch, D.R. Mortality in Friedreich ataxia. J. Neurol. Sci. 2011, 307, 46–49. [CrossRef]

236. Schultz, J.C.; Hilliard, A.A.; Cooper, L.T., Jr.; Rihal, C.S. Diagnosis and treatment of viral myocarditis.
Mayo Clin. Proc. 2009, 84, 1001–1009. [CrossRef]

237. Drinkard, B.E.; Keyser, R.E.; Paul, S.M.; Arena, R.; Plehn, J.F.; Yanovski, J.A.; Di Prospero, N.A. Exercise
capacity and idebenone intervention in children and adolescents with Friedreich ataxia. Arch. Phys. Med.
Rehabil. 2010, 91, 1044–1050. [CrossRef]

238. Rustin, P.; von Kleist-Retzow, J.C.; Chantrel-Groussard, K.; Sidi, D.; Munnich, A.; Rotig, A. Effect of idebenone
on cardiomyopathy in Friedreich’s ataxia: A preliminary study. Lancet 1999, 354, 477–479. [CrossRef]

239. Mariotti, C.; Solari, A.; Torta, D.; Marano, L.; Fiorentini, C.; Di Donato, S. Idebenone treatment in Friedreich
patients: One-year-long randomized placebo-controlled trial. Neurology 2003, 60, 1676–1679. [CrossRef]

240. Lesnefsky, E.J.; Chen, Q.; Tandler, B.; Hoppel, C.L. Mitochondrial Dysfunction and Myocardial
Ischemia-Reperfusion: Implications for Novel Therapies. Annu. Rev. Pharmacol. Toxicol. 2017, 57,
535–565. [CrossRef]

241. Yellon, D.M.; Hausenloy, D.J. Myocardial reperfusion injury. N. Engl. J. Med. 2007, 357, 1121–1135. [CrossRef]
242. Murphy, E.; Steenbergen, C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion

injury. Physiol. Rev. 2008, 88, 581–609. [CrossRef] [PubMed]
243. Chen, Q.; Camara, A.K.; Stowe, D.F.; Hoppel, C.L.; Lesnefsky, E.J. Modulation of electron transport protects

cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am. J. Physiol. Cell
Physiol. 2007, 292, C137–C147. [CrossRef] [PubMed]

244. Lesnefsky, E.J.; Chen, Q.; Hoppel, C.L. Mitochondrial Metabolism in Aging Heart. Circ. Res. 2016, 118,
1593–1611. [CrossRef] [PubMed]

245. Halestrap, A.P.; Clarke, S.J.; Javadov, S.A. Mitochondrial permeability transition pore opening during
myocardial reperfusion–a target for cardioprotection. Cardiovasc. Res. 2004, 61, 372–385. [CrossRef]

246. Kubli, D.A.; Gustafsson, A.B. Mitochondria and mitophagy: The yin and yang of cell death control. Circ. Res.
2012, 111, 1208–1221. [CrossRef]

247. Kung, G.; Konstantinidis, K.; Kitsis, R.N. Programmed necrosis, not apoptosis, in the heart. Circ. Res. 2011,
108, 1017–1036. [CrossRef]

248. Bugger, H.; Abel, E.D. Mitochondria in the diabetic heart. Cardiovasc. Res. 2010, 88, 229–240. [CrossRef]
[PubMed]

249. Rubler, S.; Dlugash, J.; Yuceoglu, Y.Z.; Kumral, T.; Branwood, A.W.; Grishman, A. New type of cardiomyopathy
associated with diabetic glomerulosclerosis. Am. J. Cardiol. 1972, 30, 595–602. [CrossRef]

250. Hamby, R.I.; Zoneraich, S.; Sherman, L. Diabetic cardiomyopathy. JAMA 1974, 229, 1749–1754. [CrossRef]
251. Regan, T.J.; Lyons, M.M.; Ahmed, S.S.; Levinson, G.E.; Oldewurtel, H.A.; Ahmad, M.R.; Haider, B. Evidence

for cardiomyopathy in familial diabetes mellitus. J. Clin. Investig. 1977, 60, 884–899. [CrossRef] [PubMed]
252. Bell, D.S. Diabetic cardiomyopathy. Diabetes Care 2003, 26, 2949–2951. [CrossRef] [PubMed]
253. Duncan, J.G. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim. Biophys. Acta 2011, 1813,

1351–1359. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

149



biology

Review

From Powerhouse to Perpetrator—Mitochondria in
Health and Disease

Nima B. Fakouri 1, Thomas Lau Hansen 2, Claus Desler 2, Sharath Anugula 2

and Lene Juel Rasmussen 2,*

1 Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore,
MD 21224, USA; nima.borhanfakouri@nih.gov

2 Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen,
2200 Copenhagen, Denmark; tlhansen@sund.ku.dk (T.L.H.); cdesler@sund.ku.dk (C.D.);
sharath@sund.ku.dk (S.A.)

* Correspondence: lenera@sund.ku.dk

Received: 2 January 2019; Accepted: 5 March 2019; Published: 11 May 2019

Abstract: In this review we discuss the interaction between metabolic stress, mitochondrial
dysfunction, and genomic instability. Unrepaired DNA damage in the nucleus resulting from
excess accumulation of DNA damages and stalled replication can initiate cellular signaling responses
that negatively affect metabolism and mitochondrial function. On the other hand, mitochondrial
pathologies can also lead to stress in the nucleus, and cause sensitivity to DNA-damaging agents.
These are examples of how hallmarks of cancer and aging are connected and influenced by each other
to protect humans from disease.
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1. Introduction

It has been almost two decades since Hanahan and Weinberg for the first time classified the
hallmarks of cancer [1]. Ten years later, they updated that list and introduced genomic instability and
dysregulation of cellular energetics and mitochondrial function as emerging hallmarks [2]. Recently,
both genomic instability and mitochondrial dysfunction are considered as two of the key hallmarks of
aging [3]. Both of these have been implicated in several pathologies, as reviewed in References [4–6].
There are other hallmarks that are common between cancer and aging, such as epigenetic changes and
altered cellular communication. Moreover, other hallmarks are in opposition to each other in cancer
and aging. These include the dysregulation of apoptosis and senescence, which are stimulated in aging
cells and suppressed in cancer cells [2,3]. Whether we can consider cancer as the disease of aging is a
topic that is beyond the scope of this review, but age is the largest risk factor in the development of
cancer [7].

One of the key questions that remain to be answered is, how are these hallmarks are connected
and influenced by each other [3]? As these pathologic cellular changes occur gradually, understanding
the connection between them would help to develop more effective therapeutic strategies to treat
cancer or rather prevent it.

It has long been known that byproducts of cellular metabolism such as reactive oxygen and
nitrogen species (ROS and RNS) can damage cellular components and macromolecules including
DNA [8,9]. Damage to DNA can have severe effects on cells by blocking replication, transcription,
generation of DNA double and single strand breaks, as well as chromosome rearrangements [10,11].
Activation of the DNA damage response (DDR) following DNA damage is an energy-demanding
process [12], and can deplete cells of substrates such as NAD+ and ATP, which can in turn lead to
additional metabolic stress and mitochondrial dysfunction (Figure 1) [13–15].
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Figure 1. Illustration of the mitochondrial-nuclear interactions in aging or cancer. Abnormal metabolism
and/or metabolic defects lead to metabolic stress and mitochondrial dysfunction. This is followed by
the increased generation of reactive oxygen and nitrogen species (ROS and RNS) as well as reactive
aldehydes. These reactive species can react and damage macromolecules such as proteins and DNA.
Damage to DNA causes genomic instability via stalled replication and transcription, and the generation
of double- and single-strand breaks (DSBs and SSBs, respectively) within the genome. Increased
activities of the DNA damage response (DDR) deplete cells of key cellular substrates and cofactors,
mainly ATP and NAD+. This generates a positive feedback that enhances metabolic stress and
mitochondrial dysfunction.

In this review, we aim to discuss the interaction between metabolic stress and mitochondrial
dysfunction with genomic instability. Stress in the nucleus, such as the accumulation of DNA damage
and stalled replication, negatively affects metabolism and mitochondrial function [13–17], while
mitochondrial pathologies lead to stress in the nucleus [18] and cause sensitivity to DNA-damaging
agents [19], as reviewed by Desler et al. in 2012 [20].

First, we explain how the accumulation of DNA damages and the activation of the DDR leads to
mitochondrial dysfunction. Next, we explain how the dysregulation of mitochondrial function and
metabolism contributes to the epigenetic changes, imbalanced dNTP pools, and genomic instability.

2. From DNA Damage to Mitochondrial Dysfunction

Activation of the main components of the DDR, including poly (ADP-ribose) polymerase
(PARP) enzymes (mainly PARP1 and PARP2) as well as ataxia telangiectasia mutated (ATM) [21],
DNA-dependent protein kinase (DNA-PK) [22,23] and P53 [24–27], is able to influence mitochondrial
function and cellular metabolism. Chronic activation of PARP1 negatively affects cellular physiology
and mitochondrial function [28]. Activation of ATM, DNA-PK, and P53 can influence mitochondrial
and cellular metabolism to promote either cell survival or death (Figure 2). Here, we briefly describe
how each of these enzymes are able to influence mitochondrial function.
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Figure 2. Core DNA damage response proteins are able to influence mitochondrial activity and
quality control via multiple pathways. Abnormal DNA structure and certain genomic lesions, such
as strand breaks, activate poly (ADP-ribose) polymerase (PARP) enzymes, mainly PARP1. Chronic
activation of PARP1 can deplete the cell of NAD+, which is a rate-limiting substrate for SIRT1. SIRT1
together with AMP-activated kinase (AMPK) can enhance metabolism and mitochondrial function
by enhancing mitochondrial biogenesis and mitophagy. Activation of ataxia telangiectasia mutated
(ATM), Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK) following DNA damage
can promote the activation AKT and P53. Activation of AKT rewires cellular metabolism by inhibiting
Forkhead box (FOXO) enzymes. Deacetylation of P53 by SIRT1 targets P53 for degradation. Decrease
in SIRT1 activity stabilizes P53. P53 decreases mitophagy via inhibition of PTEN-induced kinase 1
(PINK1) and PARKIN transcription. SIRT1 promotes AMPK activity indirectly. Decrease in SIRT1
activity is followed by the decrease in activated AMPK.

3. PARP Modulates Mitochondrial Function and Cellular Metabolism

PARPs are a group of enzymes (16 in mice and 17 in humans) that are the main constituent
of the cellular stress response [29]. PARPs cleave NAD+ to nicotinamide (NAM) and ADP-ribose
(ADPR), and the ADPR is subsequently transferred to certain amino acids within the target protein.
The attachment of poly ADP-ribose (PAR) to the target proteins is referred to as PARylation, and it
can affect protein–protein and protein–DNA interaction as well as protein localization [30]. PAR has a
short half-life and is degraded almost directly after its formation by the activity of the PAR-degrading
enzyme, poly(ADP-ribose) glycohydrolase (PARG) [31]. PARylation modulates several key cellular
processes such as chromatin structure, transcription, translation, cell cycle, DNA repair, mitochondrial
homeostasis, apoptosis, and metabolism [29,32]. PARP1 is activated by several mechanisms, including
mono(ADP-ribosyl)ation, phosphorylation, and acetylation [29]. PARP1 possesses a DNA-binding
domain that recognizes abnormal DNA structures such as gapped DNA, single- and double strand
breaks, cruciform structures, and nucleosome linker DNA [33,34]. In the initial steps of the repair,
PARP1 PARylates histones and facilitates the chromatin relaxation that provides more space for the
recruitment of DNA repair proteins. Subsequent PAR generation recruits the DNA repair proteins via
their PAR-binding domains [35,36]. Under mild genotoxic stress, PARP activation results in repair and
survival. However, in response to DNA damage, PARP hyper-activation results in decrease in NAD+

and ATP levels, mitochondrial dysfunction, and eventually cell death [32,35,37].
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4. DNA Damage can Activate Both Pro-Survival and Pro-Death Pathways That Involve the
Mitochondria

DNA damage and DDR can activate pathways that promote cell survival or death depending on
the extent and type of DNA damages [38]. In addition to PARP1, other immediate sensors of DDR
are enzymes belonging to the superfamily of phosphatidylinositol 3-kinase-related kinases (PIKKs),
including ATM, ataxia telangiectasia and Rad3-related (ATR), and DNA-PK. Activated ATR and ATM, in
turn, activate P53 through CHK1 and CHK2, respectively. Apart from preventing cell cycle progression
and the recruitment of DNA repair proteins, these enzymes can modulate mitochondrial function and
survival [23,39]. ATM, ATR, and DNA-PK are able to promote survival via the direct phosphorylation
of AKT (also known as protein kinase B, PKB) independently of growth factor signaling [22,40–43].
However, the mechanism of this interaction is not fully understood [44]. This is particularly interesting,
as in many cancer cells, the AKT is activated independently of growth factors [45]. Activated AKT
stimulates glucose uptake and ATP production through glycolysis, one of the main hallmarks of cancer,
also known as the Warburg effect [46]. In addition, activated AKT inhibits Forkhead box (FOXO)
transcription factors [47,48]. FOXO proteins regulate the expression of key genes that are involved in
mitochondrial biogenesis and homeostasis, such as peroxisome proliferator-activated receptor gamma
co-activator 1alpha (PGC1a) and PTEN-induced kinase 1 (PINK1). Decrease in FOXO activity results
in the decrease of mitochondrial biogenesis, mitophagy, autophagy, and lipolysis [49].

5. Mito-Nuclear Signaling in Aging and Cancer

For a long time, it was believed that mitochondria are regulated from the nucleus by the nuclear
genome, and changes in mitochondria follow changes in the nucleus [50,51]. However, during
recent years, accumulative evidence suggest that mitochondria and mitochondrial metabolites can
influence nuclear processes and gene expression in response to various stimuli and environmental
cues [52–54]. Mitochondrially generated ROS and intermediate metabolites are essential for several
processes, including proliferation, epigenetic modifications, and post-translational modifications [54,55].
In addition, mitochondria contribute to genomic stability by replenishing dNTP pools for replication
and repair of the genome (Figure 3) [56,57]. In this section we will discuss nuclear processes that are
dependent on mitochondrial function and intermediate metabolites.
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Figure 3. Mitochondrial function and metabolites influence nuclear processes. Mitochondrial ROS
and secondary metabolites act as signaling molecules and cofactors that regulate fundamental nuclear
processes. Mitochondrial ROS that are released into the cytosol stabilize hypoxia-inducible factor 1- α
(HIF1α) and activate the transcription of genes that are involved in proliferation. Citrate generated
through the TCA cycle is released into the cytosol and in the nucleus. It is further converted into
acetyl-coenzyme A (acetyl CoA) that is used for the acetylation of target proteins. Through a reverse
reaction, SIRT1 uses NAD+ to deacetylate the target proteins. S-adenosylmethionine (SAM) is a methyl
donor that is generated from methionine and ATP in the cytosol. Demethylases such as Jumonji
C (JMJC) family members and the ten-eleven translocation (TET) methylcytosine hydroxylases use
α-ketoglutarate (α-KG) as cofactor to remove methyl groups from proteins and DNA. AMPK stimulates
the activity of TET enzymes, and thus the inhibition of AMPK by glucose impairs the function TET
enzymes. The accumulation of fumarate and succinate due to impaired fumarate hydratase (FH) and
succinate dehydrogenase (SDH) can inhibit α-KG-dependent demethylases and even cause defects in
homologous recombination (HR) DNA repair.

6. Mitochondrial ROS Are Involved in Signaling and Determine Cell Fate

The mitochondrial electron transport chain (ETC) generates reactive oxygen species (ROS) as
the byproduct of oxidative phosphorylation (OXPHOS) from different complexes, though mainly
complexes I, II, and III. While complexes I and II exclusively create O2· in the mitochondrial matrix,
complex III produces O2· in both the matrix and intermembrane space [58]. However, the ROS that are
released outside of the matrix are converted into H2O2 by cytosolic superoxide dismutase 1 (SOD1)
and participate in mitochondrial signaling through reversible cysteine oxidation [59]. Mitochondrially
produced ROS can serve as second-messenger molecules. Mitochondrial ROS (mtROS) are required for
the stabilization of HIFα (hypoxia-inducible factor 1-α) and the activation of downstream pathways
that promote proliferation [60].

It is possible that the type of cell and energy demand determine the effect of ROS and mtDNA
mutation over the cell. Cells that mostly rely on glycolysis will probably not be affected by mutation
in mtDNA under physiological conditions. During the exposure to stress and stimuli, however,
these cells might not be able to trigger an adaptive response to an increase in demand for ATP and
NAD+ [61]. During stress and increased energy demand, cells respond by boosting cellular respiration
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and mitochondrial activity to provide the cells with ATP and NAD+ [12,62]. This is accompanied by
increased mitochondrial membrane potential and ROS above the physiological level [61,63]. Increased
ROS cause damage to macromolecules such as DNA, proteins, and lipids, which can cause cell death
or malignancy, as reviewed by Sies et al. in 2017 [64]. The inability to enhance ATP production in
response to stress and increased energy demand probably contributes to cellular deterioration during
aging [65].

In contrast to increased ROS generation, a decrease in ROS in metabolically active or proliferative
tissues interferes with cellular metabolism or proliferation that can promote senescence, as reviewed
by Diebold and Chandel in 2016 [66].

Hematopoietic stem cells (HSCs) represent an excellent example for both situations [67]. HSCs
are mainly quiescent, and they rely on glycolysis for ATP production [68]. While low levels of ROS
prevent the proliferation of HSCs and maintain their quiescent state, stress and increased energy
demand promote a shift toward ATP production by mitochondria and OXPHOS. This is accompanied
by increased ROS and proliferation [67]. Chronic stress followed by enhanced mitochondrial activity
and ROS generation leads to the depletion of HSCs, which is one of the hallmarks of aging [69–71].

7. Mitochondria Influence Post-Translational Modifications (PTMs) and Epigenetic Marks

Reversible acetylation and methylation are two frequently employed post-translational
modifications that regulate a variety of protein functions, protein stability, gene expression [72],
as well as DNA repair [73]. Epigenetic changes are also one of the main hallmarks of both aging and
cancer [2,3]. The modifications include alterations in DNA methylation, modifications of histones,
and chromatin remodeling. While DNA methylations show similar patterns in aging and cancer, the
histone modifications show distinct patterns, as reviewed by Zane et al. in 2014 [74].

The multiple enzymatic systems assuring the generation and maintenance of epigenetic patterns
include DNA methyltransferases, histone acetylases, deacetylases, methylases, and demethylases, as
well as protein complexes implicated in chromatin remodeling. Most PTMs, such as phosphorylation,
acetylation, methylation, and O-linked N-acetylglucosamine modification (O-GlcNAcylation), require
metabolites as substrates [75]. If not all, the majority of substrates required for PTMs are intermediate
metabolites generated by mitochondria [54]. Chromatin modifiers use metabolic intermediates as
cofactors or substrates, but are also regulated by their availability. These metabolites include NAD+

for deacetylation, acetyl-CoA for histone acetylation, S-adenosylmethionine (SAM) for histone as well
as DNA methylation, and α-ketoglutarate (α-KG) for demethylation [54].

Lysine acetyltransferases (KATs) add acetyl groups to proteins while lysine deacetylases (KDACs)
remove acetyl groups from proteins [76,77]. KATs such as GCN5, CBP/p300, and MYST use
acetyl-coenzyme A (acetyl CoA) as an acetyl group donor for protein acetylation [78]. KDACs are
classified into two groups with different catalytic mechanisms: Zn2+-dependent histone deacetylases
(HDAC1-11) and NAD+-dependent deacetylases (SIRT1-7) [76,77]. Acetyl CoA is generated in
mitochondria and converted to citrate through the TCA cycle. Citrate can then be exported from
mitochondria. In the cytoplasm and nucleus, citrate is converted back into acetyl CoA via the function
of ATP-citrate lyase (ACLY). Citrate is the major source of acetyl CoA in the cytoplasm and the nucleus.
Depletion of mtDNA and the subsequent decrease in NAD negatively affect the TCA cycle and lead
to a decrease in histone acetylation. This can be rescued by the restoration of electron flow and TCA
cycle [60,79]. The degree of acetylation directly correlates with the availability of cofactors such as
acetyl CoA and NAD+. While increased nuclear acetyl CoA promotes increased acetylation and
the formation of euchromatin, an increase in NAD+ promotes deacetylation and the formation of
heterochromatin, resulting in a decrease of gene expression [79]. MYC and AKT stimulate nutrient
uptake and promote acetyl CoA production via ACLY. AKT can directly phosphorylate and activate
ACLY to maintain the acetyl CoA levels, regardless of glucose concentrations [80].

Another key chromatin modification that is strongly interconnected with metabolism is
methylation [54,81]. Methylation is regulated by S-adenosylmethionine (SAM) abundance, whereby
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SAM serves as a universal methyl donor, synthesized from methionine and ATP by methionine
adenosyltransferases (MATs) [54,81]. Histone and DNA methylation is removed by demethylases
such as Jumonji C (JMJC) family members and the ten-eleven translocation (TET) methylcytosine
hydroxylases, which use a dioxygenation reaction that requires Fe2+, O2, and α-ketoglutarate (α-KG)
as cofactors [82]. α-KG is generated in the TCA cycle via the catabolism of glucose and glutamine.
The function of lysine-specific histone demethylase 1A (LSD1; KDM1A) and LSD2 (KDM1B), which
catalyze an amine oxidation reaction, is dependent on flavin adenine dinucleotide (FAD) [83,84].

The dysregulation of the TCA cycle and cellular metabolism affect PTMs, epigenetic changes, and
choice of DNA repair pathway. Accumulation of succinate or fumarate, which occurs respectively in
tumors deficient for succinate dehydrogenase (SDH) or fumarate hydratase (FH), similarly inhibits
α-KG-dependent enzymes, leading to defects in homologous recombination (HR) DNA repair [53].
Changes in nutrient availability can directly affect chromatin modifications. The tumor suppressor
ten-eleven translocation (TET) protein family of dioxygenases (TET1, TET2, and TET3) converts a 5mC
DNA methylation to a hydroxymethylation, 5hmC [85]. AMP-activated kinase (AMPK) phosphorylates
TET2 and stabilizes this tumor suppressor protein. However, increase in blood glucose levels impairs
AMPK activity, which leads to destabilization of TET2 and the subsequent dysregulation of 5mCs and
5hmCs [86].

8. Regulation of dNTP Pools

In humans, nucleotide levels are maintained by the nucleotide salvage and/or de novo synthesis
of ribo- and deoxyribonucleotide triphosphates (rNTPs and dNTPs).

It is generally accepted that the levels and especially the relative balance of the cytosolic dNTP pools
have great influence on the replication, repair, and stability of the nuclear genome [87–92]. The efficiency
and fidelity of most, if not all, polymerases and many repair enzymes are affected by the level of substrate
nucleotides [87]. Too low a concentration of a nucleotide results in poor incorporation frequency,
and a level which is too high risks the misincorporation of the high-concentration nucleotide [93–95].
Therefore, it is of no surprise that the process of synthesizing dNTPs in the right concentrations is
governed by a generous amount of regulation, feedback loops, and redundancy [96,97].

Mitochondrial dysfunction, due to mutations in the mitochondrial genome or a decrease in the
mitochondrial DNA (mtDNA) copy number, is associated with a poor prognosis of many types of
cancer [98–102], also reviewed by Chatterjee et al. in 2006 [103]. The accumulation of mutations
in mtDNA or impeded ETC have even been associated with tumor aggressiveness [99,101,104–106].
We have previously shown a relationship between mitochondrial respiration and the regulation of
cytosolic dNTP pools, and demonstrated a co-occurring decrease of chromosomal stability [51].

The de novo synthesis of nucleotides is split up into purine and pyrimidine synthesis, which go
through two distinct pathways.

Despite having separate synthesis pathways, both purine and pyrimidine-based ribonucleotides
occupy a central role in cellular metabolism. In addition to being basal components of DNA and RNA,
they function as phosphate donors in the transport of cellular energy and participate in enzymatic
reactions as well as intracellular and extracellular signaling [107].

Both the salvage and the de novo synthesis pathways utilize an activated sugar intermediate:
5-phosphoribosyl-1-pyrophosphate (PRPP). PRPP is generated by the action of PRPP synthetase and is
utilized in both purine and pyrimidine synthesis [108]. The purine nucleotides are synthesized from
PRPP, through inosine 5-monophosphate (IMP), and further into AMP and GMP, through two separate
but allosterically regulated pathways. Pyrimidines, on the other hand, originate from the precursor
pyrimidine nucleotide, UMP, which is used to synthesize all the cellular ribosyl and deoxyribosyl
pyrimidines including UTP, CTP, dUMP, and dTTP [108]. A key catalytic enzyme in this process is the
dihydroorotate dehydrogenase (DHODH) [109], located in the inner mitochondrial membrane and
functionally codependent with the OXPHOS [110]. The oxidation of dihydroorotate by DHODH, to
form orotate, is a bottleneck reaction of the de novo synthesis of pyrimidines and is electrochemically
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coupled with the reduction of ubiquinone to ubiquinol [56,111–113]. Mitochondrial respiration can
modulate the nucleotide synthesis at two separate steps. A decrease of the mitochondrial respiration is
therefore linked to an inhibition of the DHODH enzyme, which in turn modulates the synthesis of
pyrimidines [51,114]. Furthermore, the activity of the RNR complex is regulated by the binding of
ATP to its active site and inhibited by dATP. By affecting the levels of cytosolic ATP, the mitochondria
can influence the activity of RNR, and hence the levels of dNTPs. Furthermore, RNR is allosterically
regulated by the relative levels of individual NTPs and dNTPs, and so the de novo synthesis of
dNTPs and their relative balance is highly dependent on the mitochondrial supply of pyrimidines and
ATP [114–116].

The cytosolic pool of dNTPs, which supplies the replication of the nuclear genome, is cell
cycle-regulated. Synthesis is initiated at the beginning of the S-phase, and stopped upon reaching
G2. In the de novo pathway, this phase-dependent synthesis of dNTPs is mediated through the
RNR—specifically, through the cell cycle regulation of expression and degradation of the RNR
subunit RNR-R2 [117]. In the salvage pathway, the phase-dependent synthesis is controlled by the
translational regulation of constituents of the nucleotide salvage pathway [118]. Outside of S-phase, a
dNTP hydrolase called SAMHD1 (SAM and HD domain-containing deoxynucleoside triphosphate
triphosphohydrolase 1) depletes the dNTP pools by its hydrolase activity to block viral replication,
amongst other things [119]. In response to DNA damage, however, dNTP levels can increase by up to
4-fold [96]. In this case, both the RNR and SAMHD1 are then recruited to the site of damage to tightly
regulate the amount of dNTPs supplied to the DNA repair machinery [96,120].

Not only replication of the nuclear genome requires a balanced dNTP pool. Unlike the replication
of the nuclear genome, the replication of mitochondrial DNA is not regulated by the cell cycle,
but is carried out continuously in both mitotic and post-mitotic cells and tissue. Imbalance of the
mitochondrial dNTP pools affects the replication of mtDNA, resulting in the accumulation of point
mutations and deletions [121,122].

The dNTP pool of the mitochondrial compartment is somewhat separate from the much larger
pool supplying the nuclear genome [123,124]. However, cytosolic de novo synthesis of dNTP is
essential for mtDNA maintenance, even in post-mitotic cells and tissue [125–127].

P53R2 is a protein that substitutes RNR-R2 in post-mitotic cells in response to DNA damage.
P53R2 is transcribed by P53 and results, when forming the complex, in the activation of RNR and the
de novo synthesis of dNTPs intended as substrates for DNA repair mechanisms [128]. Mutations of the
RRM2B gene encoding P53R2 have been shown to induce mtDNA replication and repair deficiency in
post-mitotic, but not dividing, human fibroblasts [125]. In humans, mutations in the gene encoding the
RRM2B subunit have been correlated with severe mtDNA depletion of muscle tissue, and RRM2b−/−
mice further display a severe decrease of mtDNA content in liver, kidney, and muscle [126].

It is important to realize that balanced dNTP pools for mtDNA maintenance do not need to be of
mitochondrial origin. Imbalances of the nuclear dNTP pools resulting from genetic predisposition, age,
or even just diet [129] have the potential to start a vicious cycle, whereby failure to maintain mtDNA
integrity results in the decreased synthesis of pyrimidines and further dNTP pool imbalance.

Mitochondrial dysfunction is therefore not only a risk to the mitotic cell, but also fully differentiated
post-mitotic cells [130], and is involved in the etiology of a wide array of pathologies, including cancer
and Alzheimer’s disease [131–133].

9. Conclusions

According to recent advancements, hallmarks of cancer include genomic instability, dysregulation
of cellular energetics, and mitochondrial dysfunction, which also are common pathways important
for cellular aging. Mitochondrial dysfunction is associated with a poor prognosis of many types
of cancer, which could very well be linked to an imbalance of the cytosolic dNTP pools, as both of
these conditions are related to one of the hallmarks of cancer—chromosomal instability. A better
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understanding of these pathological cellular processes would advance the development of therapeutic
modalities in the prevention of cancer and at the same time help the understanding of biological aging.
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Abstract: Neurons are high-energy consuming cells, heavily dependent on mitochondria for
ATP generation and calcium buffering. These mitochondrial functions are particularly critical
at specific cellular sites, where ionic currents impose a large energetic burden, such as at
synapses. The highly polarized nature of neurons, with extremely large axoplasm relative to
the cell body, requires mitochondria to be efficiently transported along microtubules to reach
distant sites. Furthermore, neurons are post-mitotic cells that need to maintain pools of healthy
mitochondria throughout their lifespan. Hence, mitochondrial transport and turnover are essential
processes for neuronal survival and function. In neurodegenerative diseases, the maintenance
of a healthy mitochondrial network is often compromised. Numerous lines of evidence indicate
that mitochondrial impairment contributes to neuronal demise in a variety of neurodegenerative
diseases, including amyotrophic lateral sclerosis (ALS), where degeneration of motor neurons causes
a fatal muscle paralysis. Dysfunctional mitochondria accumulate in motor neurons affected by
genetic or sporadic forms of ALS, strongly suggesting that the inability to maintain a healthy pool of
mitochondria plays a pathophysiological role in the disease. This article critically reviews current
hypotheses on mitochondrial involvement in the pathogenesis of ALS, focusing on the alterations of
mitochondrial axonal transport and turnover in motor neurons.

Keywords: mitochondria; ALS; axonal transport; mitophagy; SOD1; Miro1; PINK1; Parkin

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that causes the
death of both upper and lower motor neurons. It is the most common among the motor neuron
diseases. Loss of motor neurons results in muscle denervation leading to progressive muscle weakness,
causing respiratory failure, difficulty in speaking and swallowing, and eventually paralysis and death,
typically between one and five years from the time of disease onset [1]. There are currently no effective
treatments for ALS, with only two food and drug administration (FDA) approved drugs, which only
extend survival by a few months [2]. Approximately, 10% of ALS cases are due to genetic causes,
the remaining 90% are sporadic with unknown etiology [3]. The last decade has brought tremendous
advances in the understanding of ALS genetics with over 20 different genes identified that account for
almost 80% of all familial forms [4].

The nature of the genes involved in ALS indicates that this is an etiologically heterogeneous
disease [5] with a multiplicity of initiating factors that trigger diverse pathogenic pathways, ultimately
converging in motor neuron toxicity. In the majority of genetic forms of ALS, motor neuron degeneration
is accompanied by the involvement of other neural systems, frequently resulting in frontotemporal
dementia (FTD). Some of the most prominent alterations observed in ALS/FTD involve protein
homeostasis, autophagy, RNA metabolism, axonal transport and mitochondrial abnormalities [5–12].
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Mitochondrial abnormalities have often been implicated as secondary mechanisms of disease,
because until recently no genetic forms of ALS have been ascribed to mutations in nuclear or
mitochondrial DNA encoded proteins. Only in 2014, the first mutation in a mitochondrial gene,
coiled–coiled helix containing domain 10 have been identified in pedigrees presenting with ALS,
FTD, and myopathy [13]. Despite the scarcity of primary mitochondrial forms of ALS, mitochondrial
alterations can be caused by mutant proteins that are not exclusively localized in mitochondria.
Notable examples are mutations in Cu, Zn superoxide dismutase (SOD1), the first genetic form of ALS
identified [14], and TAR DNA-binding protein (TDP43, [15]).

While motor neurons are the most affected cells in ALS, studies on the pathophysiology of the
disease have highlighted the importance of non-cell autonomous mechanisms, which implicate other
cell types in the central nervous system. Glial cells, including astrocytes [16–18], oligodendrocytes [19],
and microglia [20,21] play toxic roles in mutant SOD1 mouse models of ALS. Particularly in astrocytes,
mitochondria can play a significant role in causing toxicity to motor neurons. For example, failure
of astrocytes to clear synaptic glutamate as a result of altered mitochondrial glutamate intermediary
metabolism, can trigger neuronal excitotoxicity.

Importantly, in ALS neurons mitochondrial alterations are accompanied by defects of organelle
dynamics, involving fusion, fission, and transport [12]. These impairments result not only in
morphologically and functionally defective mitochondria, but also in mislocalized mitochondrial
network [22]. In excitable cells with large axoplasm, such as motor neurons, loss of viable mitochondria
at sites of high energy demand, such as the synapses that motor neurons form with muscle
(neuromuscular junctions, NMJ), can have catastrophic consequences leading to muscle denervation.

This review article focuses on the alterations of mitochondrial transport in neurons and the role of
mitochondrial quality control mechanisms in ALS.

2. Mitochondrial Axonal Transport in ALS

2.1. The Mitochondrial Transport Machinery

In neurons, mitochondria are highly dynamic organelles. They are characterized by fast transport
along neuronal axons, in both anterograde and retrograde directions (i.e., from the soma to the
periphery and vice versa). Mitochondria from the soma are anterogradely transported to sites where
metabolic demand is high, such as the synapse [23,24], while retrograde transport provides essential
information regarding the status and environment of distal sites. Thus, mitochondrial transport plays
an essential role in maintaining healthy motor neurons, and alterations of rate-limiting components
of the mitochondrial transport machinery may cause an imbalance of mitochondrial distribution in
neurons. Furthermore, as active lysosomes are mostly localized in the soma, damaged mitochondria
in axons are engulfed in autophagosomes and retro-transported to the soma to be degraded upon
fusion with lysosomes [25]. Defective retrograde transport of autophagosomes could result in a delay
of mitochondrial autophagy (mitophagy) fluxes and accumulation of damaged mitochondria. Thus,
axonal transport and mitophagy are intimately interconnected processes.

For long-range axonal transport mitochondria move along microtubules. The kinesin superfamily
of proteins and cytoplasmic dynein are the main microtubule-based motor proteins. They drive
long distance transport of mitochondria and other membranous organelles through ATP-dependent
mechanisms [26]. In axons, cytoplasmic dynein is responsible for the retrograde transport, moving
mitochondria towards the soma, whereas kinesin drives anterograde mitochondrial transport from the
soma to distal axonal regions and synaptic terminals. In dendritic spines, where microtubules exhibit
mixed polarity in proximal regions, kinesin and dynein motors can transport mitochondria in either
direction, depending on the microtubule polarity [26,27]. There are two main mechanisms by which
molecular motors connect with their cargoes, direct linkage through cargo motor proteins or indirect
linkage via linker/adaptor molecules. Several adaptor complexes have been identified, which ensure a
precise regulation of mitochondrial motility. Among them, the best studied linkers are Milton and
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Miro, first identified in Drosophila. Milton is a kinesin heavy chain-binding protein. In mammals,
there are two Milton orthologues, TRAK1 and 2. Milton is linked indirectly with the mitochondrial
outer membrane through interaction with an atypical Rho GTPase, Miro. Mammals have 2 orthologues
of Miro (Miro1 and 2) [28,29]. Together Miro, Milton and kinesin provide mitochondria-specific axonal
transport mechanisms.

The ATP/ADP ratio is part of the signaling involved in regulating mitochondrial transport.
In regions with high ATP level, mitochondrial velocity increases, while upon ATP depletion
mitochondrial velocity decreases [30]. Another important signal is provided by neuronal Ca2+

concentration. Miro contains two Ca2+-sensitive helix-loop-helix structural domain, also called EF
hand motifs, facing the cytosolic side, which sense cytosolic Ca2+ levels. Two different mechanisms
have been proposed to explain how Miro regulates mitochondrial motility in a Ca2+-dependent manner.
According to the “motor-Miro binding” model, when Ca2+ around mitochondria is low, the C-terminal
tail of kinesin is bound to the mitochondrion through its interaction with the Milton–Miro complex,
thereby allowing for mitochondrial transport. When Ca2+ is high, it binds to Miro EF hands, causing
a conformational change that results in the direct interaction of kinesin with Miro, which prevents
mitochondrial movement [31]. According to the “motor-releasing model”, upon Ca2+ increase, Miro
remains attached to Milton and the mitochondrion, but dissociates from the kinesin, thereby arresting
mitochondrial transport [32].

2.2. Alterations of the Mitochondrial Transport Machinery in ALS

There are two main hypotheses on the process of motor neuron degeneration in ALS,
the “dying-forward” and the “dying-back” hypotheses. The former proposes that ALS is mainly
a cortical motor neuron disorder, which mediates anterograde degeneration of anterior horn cells
via glutamate excitotoxicity [33]. On the other hand, the “dying-back” hypothesis proposes that
motor neurons degeneration in ALS starts distally at the nerve terminal or at the NMJ and progresses
towards the soma [34]. In support to the latter, it was shown that early degeneration of the NMJ
precedes the loss of neurons in the spinal cord of mutant SOD1 mice [35,36]. Mitochondrial transport
abnormalities could significantly contribute to dying-back processes, because the distal regions of motor
neurons may not be appropriately supplied with healthy, functional mitochondria, while damaged
mitochondria may not be correctly turned over. A significant body of evidence points towards a causal
relationship between deficits in axonal transport and degeneration of susceptible motor neurons in
ALS [37,38]. For example, defects in neuronal mitochondrial morphology and axonal mitochondrial
transport have been demonstrated in primary neuronal cultures from ALS mouse models [12,39,40].
Importantly, these abnormalities have also been observed in vivo in mutant SOD1 and TDP-43 ALS
mouse models [41,42] and in Drosophila models [43]. Other studies in primary neuronal cultures and
in vivo demonstrated that mutant FUS, a RNA-binding protein causative of familial ALS/FTD [44],
induces motor neuron degeneration preceded by abnormalities in synaptic transmission [45] and
mitochondrial abnormalities at the NMJ [46]. The common denominator of these studies was the
finding that mitochondrial abnormalities and the impairment of mitochondrial axonal transport
precede motor neuron degeneration. This evidence supports the “dying-back” hypothesis [34,47,48],
in which mitochondrial transport abnormalities may play an instrumental role. Indeed, in mutant
SOD1 mice deficits in bidirectional transport of mitochondria are described at the pre-symptomatic
disease stage [49], suggesting that these alterations play an early causative role in NMJ degeneration.

The causes of mitochondrial transport abnormalities in ALS motor neurons are not fully understood.
In some cases, alterations of the axonal transport machinery are directly involved. For example, studies
suggest that SOD1 mutations impair dynein functions, as mutant SOD1 directly interacts with the
dynein–dynactin complex, forming aggregates in the spinal cord and sciatic nerve of SOD1 transgenic
mice [50,51]. Furthermore, a large body of evidence in models of familial ALS with mutations in
SOD1 or TDP-43 indicates that mitochondrial damage and dysfunction is the result of the pathological
accumulation of aggregated mutant proteins inside or on the surface of mitochondria [42,52–58].
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Therefore, another possibility is that ALS mutant proteins damage mitochondria and impair their
bioenergetics [59–61], thereby decreasing ATP availability for axonal transport. This is an attractive
hypothesis, because it could provide a mechanism whereby unhealthy mitochondria are immobilized
to facilitate their removal by autophagy, similar to the Ca2+ dependent mitochondrial arrest described
above [31,32]. While it was shown that ATP levels affect mitochondrial motility [30], to our knowledge,
the question of whether subpopulations of energy defective mitochondria have a selective decrease in
transport, has not been addressed experimentally. This could be achieved, for example, by causing
a mild impairment in ATP synthesis in a targeted subset of mitochondria in the neuronal soma and
tracking their movement to neuronal processes over time, in comparison with healthy mitochondria.

Although long-range mitochondrial transport is microtubule-based, short range movement in
presynaptic terminals and dendritic spines, where actin filaments form the cytoskeletal architecture,
is mediated by actin-myosin motors. In cultured neurons, axonal mitochondria have been shown
to travel along microtubules and actin microfilaments with different velocities and mechanisms [62].
The actin cytoskeleton is especially relevant to motor neuron diseases with altered actin dynamics [63].
Profilin1 (PFN1) is one of four isoforms of profilin, and the first actin-binding protein associated
with familial ALS [64]. Initial studies suggested that the main function of profilin was to sequester
actin monomers, thereby inhibiting F-actin formation [65,66]. However, later studies revealed that
the amount of profilin present in cells is not sufficient to sequester abundant actin monomers, and a
different function for profilin was proposed, as a catalytic converter for actin monomer recycling [67,68].
There are several hypotheses on the pathogenic mechanisms of mutant PFN1 in ALS. Both gain and
loss of function have been proposed. The former is based on mutant PFN1 forming aggregates in motor
neurons [69,70]. The latter on studies showing that mutant PFN1 causes the formation of cavities in its
protein core structure, compromising protein stability and leading to misfolding and degradation [71].
Motor neurons of mutant PFN1 transgenic mice show aggregation of the protein and disruption of the
actin cytoskeleton, accompanied by elevated ubiquitin and p62/SQSTM levels in motor neurons [72].
Another transgenic mouse model of mutant PFN1 revealed alterations of actin dynamics and reduced
filamentous versus globular actin ratio [73]. Although mitochondrial transport and turnover have not
yet been investigated in these mouse models, alterations in mitochondrial ultrastructure was reported
in motor neuron axons [73], suggesting that cytoskeletal alterations in these mice affect mitochondria,
possibly through impairment of their dynamics.

Myosins allow for cargo movement along actin cytoskeleton. Myo19 is the only myosin localized
to mitochondria, and plays a physiological role in mitochondrial movement under conditions of
glucose-starvation [74]. Recently, a new intersection point between microtubule-dependent and
actin-dependent mitochondrial movement was described through Miro [75,76]. It was shown
that, upon activation of pathways of mitochondrial degradation, Myo19 was digested together
with Miro, thereby regulating mitochondrial movement and distribution. These findings raise the
possibility that detachment of mitochondria from the actin cytoskeleton may be an important step
in altering mitochondrial transport. Together these findings strongly suggest that microtubule- and
actin-dependent mitochondrial transport mechanisms may be connected and that both mechanisms
could be dysregulated in ALS.

3. Mitochondrial Turnover in ALS

3.1. Mitochondrial Quality Control Mechanisms

Mitochondrial quality control (MQC) is an important process in cellular homeostasis. Mitochondria
with loss of membrane potential or subject to protein oxidation and misfolding become targets of
MQC. There are three main known pathways of MQC: Protein degradation, vesicular degradation,
and mitophagy. The first involves proteostatic selective elimination of damaged proteins. Mitochondria
have internal proteases, such as the AAA-protease complex of the inner membrane [77] and the Lon
protease of the matrix [78]. Mitochondria are also endowed with their own unfolded protein response,
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which is activated when misfolded proteins accumulate in the matrix [79] or in the intermembrane
space [80]. Mitochondria rely on the cytosolic ubiquitin-proteasome system to eliminate damaged
proteins destined to the outer membrane or in the case of the intermembrane space, before they engage
in the mitochondrial import pathway [81,82]. Ubiquitin-ligases, such as Parkin, ubiquitinate oxidized
or misfolded outer membrane proteins [83]. Parkin recruitment has been ascribed to the kinase
PINK1, following its incomplete processing and import across the outer membrane of depolarized
mitochondria [84–86]. Instead, maintenance of Parkin cytosolic localization has been attributed to its
interaction with cleaved PINK1 released in the cytosol after processing by healthy mitochondria [87].
If its degradation fails in damaged mitochondria, PINK1 phosphorylates ubiquitin residues and Parkin,
thereby activating a cascade of ubiquitination of outer membrane proteins [88]. Ubiquitination of outer
membrane proteins is not exclusively performed by Parkin, as it can also be carried out by resident outer
membrane ligases, such as MULAN [89] and MITOL/MARCH5, which ubiquitinate outer membrane
proteins involved in mitochondrial fusion, Mfn1 and Mfn2, and fission, Drp1 [90,91]. Interestingly,
MARCH5 ubiquitinates and increases the turnover of mutant SOD1 on the outer membrane [92].

Ubiquitination of outer membrane proteins is one of the best characterized signals for the
activation of mitophagy and the regulation of mitochondrial motility through degradation of proteins
involved in mitochondrial fusion/fission and transport (reviewed in [93]). Fragmentation of the
network and immobilization facilitate the engulfment of damaged mitochondria in autophagic vesicles.
The regulation of PINK1 by phosphorylation of specific amino acid residues [94] could provide an
additional link between energetic defects in unhealthy mitochondria and the activation of MQC. What
drives the switch from proteostasis to mitophagy is unclear, but the extent of mitochondrial damage
is likely a discriminating factor: When proteostasis cannot repair mitochondria, mitophagy ensues.
However, in some cases, a Parkin-dependent vesicular degradation of sections of mitochondrial
membranes containing oxidized proteins, can be sufficient to repair the damage and prevent full-blown
mitophagy [95]. Mitophagy involves ubiquitin-binding adaptors that recruit mitochondria to the
autophagosome by binding to LC3 [88].

3.2. Mitochondrial Quality Control in ALS

The best characterized MQC pathway is mediated by the activation of PINK1 and Parkin [96].
Impairment of MQC is most commonly linked to Parkinson’s disease, due to the discovery of
inactivating mutations of these proteins in recessive forms of the disease [97–99]. However, MQC
disturbances have also been associated with ALS, for example through the involvement of the
mitophagy adaptor optineurin, which has been found to be mutated in familial forms of the disease [100].
Optineurin plays a role in PINK1-Parkin mediated mitophagy. After Parkin recruitment to the outer
membrane, optineurin binds to ubiquitinated mitochondria, inducing autophagosome nucleation
through LC3 recruitment [101]. ALS-associated optineurin mutations cause mitochondrial clearance
impairment [102]. The link between optineurin and LC3, which finalizes autophagic clearance
of damaged mitochondria, is Tank-binding kinase (TBK1). It was reported that TBK1 interacts
with optineurin and by phosphorylating it at specific serine residues regulates its ability to bind to
ubiquitinated mitochondrial proteins [103]. Therefore, TBK1-mediated phosphorylation of optineurin
amplifies and reinforces mitophagy. As a consequence, inhibition or depletion of TBK1 delays
mitophagy, resulting in accumulation of damaged mitochondria [104]. TBK1 mutations have been
causally linked to familial forms of ALS [105], further reinforcing the relevance of MQC in ALS
pathophysiology. Mutations in two additional genes involved in mitophagy were reported in familial
ALS, p62 and VCP. p62/SQSTMQ1 is an adaptor for the binding of ubiquitin to LC3, recruiting
mitochondria to the autophagosome [106,107]. Valosin-containing protein (VCP) is an ATPase with
segregase activity, which can extract ubiquitinated proteins from organelle membranes and target them
to proteasomal degradation [108]. Parkin-mediated outer membrane protein ubiquitination recruit
VCP to mitochondria [109]. Mutations in VCP are associated with ALS [110]. VCP mutations cause
mitochondrial structural changes in transgenic mice, and loss of VCP impairs the clearance of damaged
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mitochondria [109]. Overall, the genetics of familial ALS strongly emphasizes the relevance of MQC in
disease pathogenesis.

Mitochondrial damage with loss of mitochondrial membrane potential may result in
Parkin-mediated degradation of Miro [111]. Furthermore, it was reported that PINK1 directly
interacts with Miro and Milton [112], and that it phosphorylates Miro in response to mitochondrial
damage, thereby promoting its interaction with Parkin and its degradation [113]. Interestingly, Miro is
decreased in ALS models [114,115], which may contribute to impairing mitochondrial axonal transport.
Moreover, Miro overexpression in mutant SOD1 neurons restores mitochondrial axonal transport
deficits [116]. Taken together, these data point to a role for Miro as a converging point between the
mechanisms regulating MQC and axonal transport.

The actin cytoskeleton emerges as an additional converging point between mitochondrial turnover
and mitochondrial motility. A recent study showed that, after Parkin recruitment to depolarized
mitochondria, F-actin encapsulates damaged mitochondria through myosin VI (MYO6) complexing
with Parkin [117]. Hence, damaged mitochondria are completely isolated from the rest of the
mitochondrial network, and are prevented from fusing with healthy mitochondria. They also showed
that lack of MYO6 induces accumulation of damaged mitochondria, because of a severe impairment in
the clearance machinery, highlighting the importance of actin-related players in MQC and maintenance
of mitochondrial homeostasis.

The therapeutic value of modulating autophagy and mitophagy in ALS is the object of debate.
Stimulation of autophagy was attempted mostly in the SOD1 mouse model, using both pharmacological
and genetic approaches [118–123]. There were discrepancies in the outcomes, with either beneficial or
detrimental effects. This divergence of results could derive from the different approaches used and
their effects on different central nervous system (CNS) cell types. A genetic approach to test the cell
type specificity of autophagy modulation was implemented by deleting the critical autophagy gene
Atg7 specifically in motor neurons of mutant SOD1 mice [124]. Autophagy inhibition accelerated early
neuromuscular denervation and the onset of motor symptoms. Surprisingly, removal of Atg7 also
extended the lifespan of the animals. The authors proposed that motor neuron autophagy contributes
to maintaining neuromuscular innervation early on, but later causes a non-cell-autonomous effect that
promotes disease progression. Although mitophagy was not investigated specifically, the findings
raise the intriguing possibility of a phase-dependent involvement of MQC in ALS progression.

Mitophagy induction in ALS is supported by the finding of LC3 II increase in neurons of mutant
SOD1 mice [125,126], accompanied by the accumulation of p62 and optineurin [115,127]. Furthermore,
an increase in mitochondria-containing autophagosomes and autophagolysosomes was described
in human ALS spinal cord [128]. Currently, there are no pharmaceutical approaches to selectively
modulate MQC in ALS. However, it is possible to target genetically the main components of the
machinery, such as Parkin. Interestingly, a progressive decrease in Parkin levels was documented in both
cellular and animal models of ALS [115,129,130], suggesting that chronic activation of MQC secondary
to mitochondrial damage causes Parkin depletion. In cultured ALS neurons, it was demonstrated
that Parkin is responsible for Miro degradation and actively contributes to mitochondrial transport
impairment [116]. Overexpression of Miro or ablation of PINK1 rescued the mitochondrial axonal
transport deficits. However, genetic constitutive ablation of Parkin in mutant SOD1 mice delayed
the decline of Miro and other components of the mitochondrial dynamics machinery, and resulted in
a significant delay of neuromuscular degeneration and extension of lifespan [115]. Taken together,
these findings support the notion that MQC is involved in ALS pathophysiology. Importantly, they
also show that autophagy, and specifically MQC, may be a double-edge sword, with initial protective
effects, which can become maladaptive and detrimental in the chronic phase of the disease.

4. Conclusions

Mitochondrial dynamics, axonal transport, and MQC are tightly intertwined processes that play
a fundamental role in the homeostasis of neuronal mitochondrial network, in health and disease.
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The genetics of familial ALS strongly suggest that these processes are affected during the course
of the disease. Figure 1 summarizes the main molecular players of mitochondrial transport and
turnover, whose alterations have been proposed to participate in ALS pathogenesis. More work
is needed to achieve a detailed mechanistic understanding of the pathogenic pathways linking
mitochondria transport and turnover with mitochondrial dysfunction and motor neuron degeneration
in ALS. In particular, whether altered MQC in ALS motor neurons is the cause or the consequence of
impaired mitochondrial function remains to be elucidated. Nevertheless, a wealth of clues indicate that
alterations of these processes can be disease initiators or disease modifiers, with potentially interesting
therapeutic implications. Studies focused on these important aspects of ALS pathophysiology will
unveil novel disease mechanisms that could be addressed therapeutically by targeted approaches
aimed at modulating mitochondrial transport and MQC through pharmacological intervention.

 

Figure 1. Schematic representation of key players in mitochondrial transport and turnover in healthy and
amyotrophic lateral sclerosis (ALS) neurons. Mitochondria are transported in axons along microtubule
tracks by dynein and kinesins, which are connected to mitochondria through cargo adaptors Milton and
Miro. In ALS axons, the interactions between mitochondria and microtubules are disrupted, resulting
in impaired transport. At synapses, mitochondria interact with the actin cytoskeleton, and mutations in
proteins involved in actin dynamics, such as PFN1, can alter mitochondrial localization at this neuronal
site. Ubiquitination of unhealthy mitochondria by Ub-ligases, such as Parkin, target mitochondria
for degradation through the autophagy pathway. TBK1 and optineurin promote PINK1-Parkin
ubiquitination of mitochondrial dynamics proteins, such as Miro. In ALS neurons, the quality control
mechanisms are affected by dysfunction occurring at various steps of the mitophagy process.
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Abstract: In recent years, several studies have examined the potential associations between
mitochondrial dysfunction and neurodegenerative diseases such as multiple sclerosis (MS),
Parkinson’s disease and Alzheimer’s disease. In MS, neurological disability results from inflammation,
demyelination, and ultimately, axonal damage within the central nervous system. The sustained
inflammatory phase of the disease leads to ion channel changes and chronic oxidative stress. Several
independent investigations have demonstrated mitochondrial respiratory chain deficiency in MS,
as well as abnormalities in mitochondrial transport. These processes create an energy imbalance
and contribute to a parallel process of progressive neurodegeneration and irreversible disability.
The potential roles of mitochondria in neurodegeneration are reviewed. An overview of mitochondrial
diseases that may overlap with MS are also discussed, as well as possible therapeutic targets for the
treatment of MS and other neurodegenerative conditions.

Keywords: multiple sclerosis; mitochondria; neuroinflammation; neurodegeneration

1. Introduction

Neurodegenerative diseases are characterized by neurologic dysfunction with a progressive
course and consequent neuronal death [1]. Although these diseases, including multiple sclerosis,
Alzheimer’s disease, and Parkinson’s disease, have different physiopathologies in their onset, they
have a similar eventual course of gradual neurological decline and neuronal loss [2].

Multiple sclerosis (MS) is a leading cause of neurologic disability in young adults. MS is
characterized by focal areas of demyelination in the white matter of the central nervous system (CNS)
with secondary neuroaxonal degeneration [3,4]. The mean age of onset in females is approximately 30,
compared to 33 years in males [5]. The sex ratio is 3:1, female to male, though men often progress more
quickly and experience more rapid disability accumulation [3].

Among all patients with MS, about 85% present with a relapsing remitting form, which has
alternate periods of acute demyelination (relapses) and periods of neurological recovery and stability
(RRMS). For most patients, after 15–20 years the disease passes into a secondary progressive course
(SPMS) which is characterized by an insidious progression of worsened neurological function with
few or no acute relapses [3,4]. The remaining 10–15% of patients progress continuously from the first
clinical manifestation of symptoms [4]; this is called the primary progressive form of multiple sclerosis
(PPMS) and presents later in life, with a mean age of 45 years. The incidence of this form of the disease
is approximately equivalent for men and women [6].

At the pathophysiological level, MS is characterized by two phases: At the initiation of a new
lesion, there is a predominance of acute inflammation; subsequently, a state of chronic inflammation
ensues with neurodegeneration. During the former, there is penetration of the blood brain barrier by
activated immune cells against the myelin sheath. Inflammation in MS is due in part to components of
both the innate and adaptive immune systems [7,8]. In brief, there is proliferation and dysregulation
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of pro-inflammatory T lymphocytes (Th1 and Th 17), as well as activation of B cells and secretion of
inflammatory cytokines [9].

Pathognomonic inflammatory events in MS also activate neurodegenerative processes that lead to
the destruction of oligodendrocytes, axons, and ultimately, neurons [7,8]. Brain, spinal cord and retinal
atrophy are the result of the presence of neurodegeneration even at early stages of MS, meaning that
both processes of acute inflammation and neurodegeneration co-exist since the first symptoms of the
disease in the gray and white matter [3]. RRMS has a more prominent neuro-inflammatory phenotype,
while the SPMS and PPMS forms are largely characterized by neurodegeneration [3].

The current available treatments for MS are directed against the acute episodes of
neuroinflammation; this works well to prevent relapse events but is an approach with limited
efficacy for protection against neurodegeneration, particularly in progressive forms of the disease [4].
The recent advancements in the understanding of mitochondrial dysfunction in neurodegenerative
diseases, and in particular MS, bring new perspectives for future prevention of neuronal loss. We herein
review the multifaceted role of mitochondria in MS pathology and the unique genetic factors that may
contribute to the disease.

2. Mitochondria and Their Role in Neurodegeneration in Multiple Sclerosis

2.1. Mitochondria

Mitochondria uniquely have dual genomic expression of proteins that originate from both nuclear
and mitochondrial DNA (mtDNA) [10]. The multi-copy nature of mitochondria gives rise to the
concept of heteroplasmy (when both mutated and wild-type mtDNA molecules coexist in the same
cell) and homoplasmy (when only mutant mtDNA molecules are present in the mitochondria of the
cell). For a disease to manifest symptoms, the mutated mtDNA molecules in a tissue must increase
to a pivotal threshold beyond which oxidative phosphorylation (OXPHOS) is impaired, thereby
demonstrating a critical ratio of mutant to wild-type mtDNA [11–13]. The mitochondrial genome
(5-μm circles, or 16.569 kilobases) is smaller than the nuclear genome, is highly compacted, and has
only one DNA polymerase (polymerase γ) without any introns [13,14]. The lack of protective histones
facilitates the accumulation of mtDNA mutations in an environment with a high concentration of
reactive oxygen species (ROS) [15].

Mitochondria are organelles which are responsible for cellular bioenergetics via the Krebs
cycle (with the production of NADH and FADH) and oxidative phosphorylation (OXPHOS), for
cellular bioenergetics with secondary ATP production [16,17]. The mitochondria’s main functions
in bioenergetics include acting upon the electron transport chain (ETC) on the inner mitochondrial
membrane, which is composed by four complexes (complex I, II, III and IV). They are also involved in
the sequential reaction of reduction, OXPHOS, and electron flow (derived from NADH and FADH).
This causes energy release which is used to transport protons from the matrix to the intermembrane
space, creating an electrochemical gradient. ATP synthase (considered the complex V) uses this
gradient to phosphorylate ADP to ATP [4].

Mitochondria participate in other crucial cells functions including calcium (Ca2+) storage, cell
signaling (proliferation, adaptation to different environments and stress response) and apoptosis [18,19].
Ca2+ storage in mitochondria is involved in the regulation of ion homeostasis, cell signaling,
and apoptosis (when prolonged high levels of Ca2+ in plasma concentrations) [20].

Also, important to understanding the potential role of mitochondria in neuronal death is the
regulation of mitochondrial outer membrane permeabilization (MOMP). This is well controlled by
different mechanisms, and when significant permeation does occur there is an activation of caspases
and a release of pro-apoptotic factors into the cytosol, initiating the apoptosis-cascade [21–26].
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2.2. Inflammation and Glia in Multiple Sclerosis

During acute events of inflammation, immune cells (mainly CD4+ T helper lymphocytes and
also CD8+ T cells) cross the blood–brain barrier (BBB) and B cells and monocytes are activated.
The primary target in MS is the myelin sheath of CNS white matter, though in recent years there has
been growing evidence of direct attack against cortical and deep gray matter [27]. The release of
pro-inflammatory cytokines (e.g., IL-17, IL-4, IL-10, TNF-α), activation of microglia and macrophages
with the release of toxic substances such as reactive oxygen species (ROS), tumor necrosis factor,
reactive nitrogen species (RNS), and glutamate [28] further damage the myelin. Enzymes involved
in this neuroinflammation include myeloperoxidase, xanthine, NADPH oxidases (responsible for
neuronal injury) [29,30], excitotoxins, cytotoxic cytokines, proteases and, lipases [31].

The damaged BBB subsequently becomes increasingly permeable, allowing further migration of
immune cells leading to the formation of plaques of focal demyelination [32,33]. Focal plaques may
converge, forming confluent demyelinated areas in both the white and grey matter [34]. The lymphocytic
neuroinflammation process that characterizes the acute phase of the disease leads not only to the
damage of myelin fibers synthesized by oligodendrocytes, but also to the death of the oligodendrocytes.
The combination of demyelination and loss of trophic stimuli of oligodendrocytes then progresses to
axonal degeneration, axon and neuron death with permanent neurologic disability [35]. Remyelination,
if it occurs, is often only partial and astrocytes form sclerotic glial scars in the damaged white matter [36].
Chronic inflammation is also responsible for cumulative oxidation of phospholipids and DNA strand
breaks [37].

In multiple sclerosis, there is also production of intrathecal, oligoclonal IgG and IgM. Although
investigated extensively, no clear antigenic pattern identifying a specific potential trigger for MS has
been found in studying these CSF antibodies. In SPMS there are also “meningeal lymphoid-like
structures” that correlate with the pathology of the gray matter [38].

2.3. Neurodegeneration in Multiple Sclerosis and Evidence for Mitochondrial Involvement

Historically, the neurodegeneration of MS was understood as a sequential process following
chronic neuroinflammation, but some evidence suggests that the neurodegenerative component is
already present during the initial clinical manifestations of the disease [3]. The number of relapses in
RRMS does not correlate with the probability or latency of progression of SPMS [39]. Tissue atrophy is
considered an imaging marker of neurodegeneration in MS, and cerebral, spinal, and retinal atrophy
have been reported to be present at the first clinical manifestations of RRMS, affecting both white and
gray matter [40–42]. The accepted explanation for this observation is that neuroinflammation is followed
by a failure in the process of remyelination, axonal damage and Wallerian degeneration [42]. Normal
appearing white matter (NAWM), with normal macroscopic appearance and microscopically normal
myelination, has a decreased density of axons; this is, in part justified by Wallerian degeneration, but
also indicates more widespread early damage than captured by routine MRI [43–48]. Neuropathological
findings from brain tissue blocks of MS patients show evidence of gray matter lesions (axonal and
dendritic transection, apoptotic neurons and demyelinated cortical plaques) [49] present from the time
of initial disease onset; this is, particularly prominent in SPMS and PPMS.

The chronic neuro-inflammatory stimuli of MS disrupt neuro-axonal hemostasis, leading to
a simultaneous increase in oxidative stress, marked by a rise in ROS, and secondary damage to
mitochondria and macromolecules (mtDNA, proteins from ETC, lipids). Excitotoxicity and an imbalance
of neurotrophic substances for neurons and oligodendrocytes occurs [3,50,51]. This damage impairs
mitochondrial function (below described), which further increases ROS production in a vicious cycle [4].
The result is a reduction in the efficiency of energy production, creating an imbalance between energy
generation and consumption. The final result is an environment with a failure to provide required
levels of energy within the demyelinated axons, and after reduced ATP production reaches a critical
point there is an imbalance in ionic homeostasis leading to activation of apoptosis mechanisms [52,53].
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Of relevance to understanding the pathology of MS, the central nervous system (CNS) has increased
susceptibility to oxidative damage because of the high metabolic rate (consumption of oxygen) of
neurons and the rich composition of polyunsaturated fatty acids in CNS cells [54]. Furthermore,
mitochondria influence the differentiation of oligodendroglial cells through overexpression of
mitochondrial transcripts and mtDNA [55]. An environment of oxidative stress reduces the expression
of these transcripts involved with oligodendrocyte differentiation [56]. Double strand breaks in mtDNA
have been shown to cause an oligodendropathy and exaggerated injury responses in an animal model
of MS [57]. Additional observations have demonstrated a potential direct link between mitochondrial
dysfunction and oligodendrocyte myelination. N-acetyl aspartate (NAA), is a mitochondrial metabolite
and also an indirect oligodendrocyte substrate for the production of myelin (after breakdown into
acetate and aspartate). A lack in the availability of NAA, from damaged mitochondria, was associated
with lower levels of acetate in the cortex (parietal and motor) in postmortem tissue from patients with
MS [58].

Though they are often overridden and unable to counter the stress burden, there are compensatory
mechanisms to counter these mitochondria-related degenerative processes. The body has intrinsic
mechanisms of self-protection against ROS, including nuclear factor erythroid 2related factor 2 (NRF2)
and antioxidant enzymes such as heme oxygenase 1 (HMOX1) which are activated during periods
of hypoxic stress [59]. But after a critical point in the reduction in ATP production, an imbalance in
ionic homeostasis occurs, leading to the activation of apoptosis mechanisms mediated by ions (Ca2+

dependent proteases) in those axons with chronic inflammation and demyelination [60].

2.3.1. Human Studies of Mitochondria Function in Multiple Sclerosis

Multiple human studies have demonstrated evidence of mitochondrial dysfunction in MS patients
(Figure 1, Table 1). One publication compared 10 post mortem brains of patients with MS (n = 9 SPMS
and n = 1 PPMS) to healthy controls paired for age and sex. The MS cortex exhibited distinctive
levels of both mtDNA transcripts (488 decreased and 67 increased compared to controls), and nuclear
mitochondrial DNA transcripts (26 decreased transcripts). In a study of function in the same samples
there was a decrease in complex I and III activity from the neurons of motor cortex in MS patients,
and a decrease in GABAergic synaptic components [52]. Another study of thirteen patients with MS
(SPMS) identified large mtDNA deletions in neurons, with some showing specific deletions in the
subunits of complex IV [59].

Additionally, reports of a decrease in PGC-1α levels (a transcriptional co-activator and regulator
of mitochondrial function) in pyramidal neurons of MS patients (7 SPMS, 7 PPMS and 1 subtype
not determined) was associated with reduced expression of mitochondrial machinery components
(OXPHOS subunits, antioxidants and uncoupling proteins 4 and 5). This finding was confirmed
in a functional model (with neuronal cells) showing association of these changes with more ROS
production [60]. Another publication reported that increases in ROS affect the ability of NRF-2
(a transcription factor for ETC proteins) to bind promotors, even in apparently normal areas of
gray matter cortex of SPMS patients [61]. Higher ROS production in the CNS of progressive MS
patients (14 SPMS, 5 PPMS and 7 subtypes not determined) has also been associated with a rise
in the number of mitochondria in axon and astrotcytes. Increased ROS is also associated with the
translation of mitochondrial proteins in active and chronic inactive MS lesions, including elevated
expression of proteins from the mitochondrial ETC complex IV and higher levels of a heat shock protein
(mtHSP70) compared to the brain of controls. The mtHSP70 protein is a marker of mitochondrial
stress [62]. A recent publication found in fronto-parietal areas decreased levels of the potent antioxidant,
glutathione (GSH), in PPMS and SPMS compared with RRMS and controls, suggesting that oxidative
stress affects the neurodegeneration phase more than the neuroinflammatory phase [63]. Another
study compared the mitochondrial proteome from the brains of MS (eight SPMS) patients and controls.
The findings showed different patterns by mass spectrometry in levels of human cytochrome c oxidase
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subunit 5b (COX5b), the brain-specific creatine kinase isoform, and the β-chain of hemoglobin between
groups [64].

Table 1. Evidence of mitochondrial involvement in Progressive Forms of Multiple Sclerosis compared
to Controls or RRMS.

MS
Phenotype

Tissue Cell Type Mitochondria Pathology Reference

1 PP
9 SP
8 C

Motor cortex Neurons

—decreased expression of
mitochondrial nuclear gene DNA
—functionally reduced complex I
and III activities

Dutta, R. et al.
2006 [52]

1 PP
9 SP
6 C

Chronic inactive
lesions

Demyelinated
axons

—increased total mitochondrial
content and complex IV activity

Mahad, D.J. et al.
2009 [65]

8 SP
5 C

Grey matter in
Cortex NCD

—epigenetic changes affected by
ROS, through the reduced capacity
of NRF-2 (a transcription factor for
ETC proteins)

Pandit, A. et al.
2009 [61]

5 PP
14 SP
7 ND
7 C

Active and
chronic lesions NCD

—increase in the levels of a heat
shock protein (mtHSP70), a marker
of mitochondrial stress
—an increase in the number of
mitochondria and in the translation
of mitochondrial proteins

Witte, M.E. et al.
2009 [62]

13 SP
10 C NCD Neurons

—accumulation of large mtDNA
deletions, with some showing
specific deletion in the subunits of
complex IV

Campbell,
G.R. et al.
2011 [59]

2 PP
7 SP
1 RC

NCD

Acute and
chronic

demyelinated
axons

—increased mitochondrial content
and complex IV activity compared
with remyelinating and myelinated
axons

Zambonin,
J.L. et al.
2011 [66]

8 SP
8 C NCD NCD

—different patterns of mass
spectrometry in human cytochrome
c oxidase subunit 5b (COX5b), the
brain-specific creatine kinase
isoform, and the β-chain of
hemoglobin

Broadwater,
L. et al. 2011 [64]

7 PP
7 SP

1 ND
9 C

NCD Pyramidal
neurons

—decrease in PGC-1α levels,
OXPHOS subunits, antioxidants
and uncoupling proteins 4 and 5

Witte, M.E. et al.
2013 [60]

20 PP
20 SP

vs
21 RR

NCD NCD

—decreased levels of glutathione
(GSH), a potent antioxidant,
signaling that oxidative stress more
strongly affects the
neurodegeneration phase than the
neuroinflammation one

Choi, Y. et al.
2018 [63]

MS Type: PP = primary progressive; SP = secondary progressive; RR = relapsing progressive; C = controls; ND = not
determined; NCD = Tissue or Cell Type not clearly defined.
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Figure 1. Mitochondrial dysfunction described in the literature associated with Multiple Sclerosis.
Chronic neuroinflammation leading to mitochondrial dysfunction.

2.3.2. Neurodegeneration in Multiple Sclerosis Animal Models

There have been many attempts to reproduce the spectrum of inflammation (acute and chronic),
demyelination/remyelination, and neurodegeneration that characterize the different clinical syndromes
(PP, SP, RR) of the disease. There is no single experimental model that fully covers the spectrum
of pathology in human MS. Each model available has strengths for certain questions, but without
completely recapitulating all of the mitochondrial deficiencies in MS [67]. In trial design it is important
to focus on the mechanism of the potential drug and choose the animal model in which it is possible to
induce the disease process of interest [67,68].

In one of the most commonly used models for MS, experimental autoimmune encephalomyelitis
(EAE), there are morphology changes in the mitochondria (swelling) [69], early mitochondrial
dysfunction even in normal appearing white matter [70], and impairment of mitochondrial and axonal
depolarization [71]. Some of the mitochondrial damage can be rescued with specific interventions
such as gene therapy for expressing complex I ETC proteins [72,73] and antioxidant cocktails [74,75].
In a myelin basic protein (MBP) knockout, considered a model for the chronic demyelination of MS,
there were increased numbers of mitochondria observed by electron microscopy. Additionally, there
was a two-fold increase in the cytochrome c staining in the white matter, showing mitochondrial
changes associated with cases of reduction in myelin [76]. A summary of previous animal models’
findings regarding the association of mitochondrial involvement in multiple sclerosis is presented
in Table 2.
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Table 2. Mouse models to study multiple sclerosis [77].

MS Animal Model
Type of MS

Modeled
Indication for Research Mitochondrial Findings

EAE-SJL/J mice
-C57BL/6J mice

-Biozzi chronic EAE

-RR
-PP and SP
-RR -> SP

Understanding of the
neuroinflammatory process
after immunologic activation
of the mice (SJL/J with PLP
or MBP and C57BL/6J with

MOG) [77,78].
Accumulative damage of
neuroinflammation with

secondary progression of the
disease [68,79,80].

C57BL/6′s mitochondria morphology
changes (swelling) [69], early

mitochondrial dysfunction in EAE
disease [70] and impairment of

mitochondrial and axonal
depolarization [71].

C57Bl/6 model did not reproduce the
cortex respiratory protein’s alterations

seen in MS patients [64].

TCR transgenic mice -RR [78]

Understanding spontaneous
neuroinflammatory process

after immunologic
activation [77].

-

TMEV Demyelination and
axonal damage

Infection mediated by
Picornavirus inducing

an encephalomyelitis (whole
neuroaxis) [77].

-

Toxin-induced
demyelination

(Cuprizone, Lysolecithin,
Ethidium bromide)

Demyelination and
remyelination

Reproducible onset of
demyelination and start of

remyelination after
interruption of toxic
exposure. If chronic

exposure of cuprizone also
possible to see impairment

of remyelination [81].

Cuprizone is a copper chelator
an essential component of COX [82].
Mice’s brain treated with cuprizone
presented “giant” mitochondria in

oligodendroglial cells [83].
Oligodendrocytes treated with

cuprizone presented with decreased
mitochondrial potential (in vitro) [84].

EAE = experimental autoimmune/allergic encephalomyelitis. TCR transgenic mice = T cell receptor (TCR) transgenic
mouse models. TMEV = Theiler’s murine encephalomyelitis virus. PLP = proteolipoprotein. MBP =myelin basic
protein. MOG =myelin oligodendrocyte glycoprotein. COX = cytochrome oxidase.

2.4. Summary (Mechanism of Mitochondrial Dysfunction Perpetuating the CNS Injury in Multiple Sclerosis)

The brain has a high metabolic rate and consumes 20% of the total energy produced in the
human body, which is mainly utilized in neurotransmission (more than half of that consumed to
maintain the ionic equilibrium and the membrane potential) and the axoplasmic flow (to conduct nerve
impulses); these functions depend substantially on mitochondria machinery [4,85]. The neurologic
signal transmission is due to propagation of the membrane depolarization through the neuron,
and the electrochemical gradient is created by the Na+/K+-ATPase, allocated in the nodes of Ranvier.
Oligodendrocytes are not only responsible for the myelin sheath but also release lactate for the neuron
as energy supply. With the chronic inflammation and myelin destruction, there is redistribution
of the ion channels. Consequently, there is more ATP consumption by the increased number of
Na+/K+-ATPase. With the purpose of balancing the ratio and demand for energy, mitochondria
begin compensatory modifications (increasing in number and size, changing the localization in
the neuron and its morphology). In parallel, the chronic inflammation creates an environment
of oxidative stress secondary to ROS release by macrophages and the microglia and increases in
glutamate released in response to neuronal damage. TNF-α damages the OXPHOS process through
Ca++ regulated mechanisms [86]. With mitochondrial progressive accumulative damage (mtDNA
alteration and increased heteroplasmy, OXPHOSP subunits dysfunction, alteration in proteins that
regulates the migration of the organelle from neuron body to the axon) significant impairment in
energy production develops. [51]. If ATP production is compromised, the Na+/K+-ATPase is not
able to keep the gradient after an action potential, which leads to Na+ accumulation in the neuron
cytoplasm. This forces the Na+/Ca2+ channel to transfer Ca2+ inside the cell, activating the Ca2+

apoptosis-depend-cascade, which results in neuron death, Wallerian degeneration and irreversible
neurologic dysfunction [34,53,65,66,86–89]. This process is represented in Figure 2. The progressive
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degenerative process initiated in the axon can continue to the neuron body and dendrites, also reaching
presynaptic and postsynaptic neurons [34], chronic failure to provide energy to the tissue increases the
oxidative stress in a vicious cycle that increases mitochondrial damage [51].

Important to mention is that mitochondrial DNA damage is amplified during the process of
expansion of the clones (with deletions or mutations), changing the levels of heteroplasmy of the
tissue [51,59]. This process increases the failure to provide appropriate energy supply for the tissue,
contributing to the death of the cells [90].

a

b

c

d
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Site of demyelination

Defective

mitochondria

Normal

mitochondria

Neuron

cell body

Myelin sheath

Node

of Ranvier
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Na+/K+�
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Na+/Ca2+

exchanger

Ca2+
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Figure 2. The role of mitochondria in the process of neurodegeneration. a. Normal nerve. b. Site of
demyelination with secondary modification of the distribution of ion channels in the nerve. c. Structural
and functional modification in mitochondria caused by oxidative stress. d. Cascade of apoptosis
activated by Ca2+. Figure reprinted with permission from the article “Involvement of Mitochondria in
Neurodegeneration in Multiple Sclerosis”, Kozin et al., Biochemistry (Moscow), 2018, Vol. 83, No. 7,
pp. 813–830 [4].
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3. Mitochondrial Mutations in Multiple Sclerosis and Overlapping Diseases

3.1. Mitochondrial Mutations and Multiple Sclerosis Risk

The current consensus is that MS is a multifactorial disease, with 25% of the risk related to heritable
factors [91]. The important role of the class II region of the human leukocyte antigen (HLA) gene
cluster has been well recognized for several decades. There are now over 100 loci identified in the
HLA region found to be associated with susceptibility and over 200 in non-HLA loci [92]. Several
single site mutations in mtDNA have been reported to increase the risk of MS, including the mtDNA
nt13708A [93] and mtDNA T4216C [94] variants. A large consortium study by Tranah et al. examined
mitochondrial DNA sequence variation and MS risk. In the discovery dataset they compared over
7000 MS cases and over 14,000 controls from seven countries. Haplotype group and more than 100
common mtDNA mutations were evaluated. While they reported an elevated risk of MS (OR 1.15,
p = 0002) among haplotype JT carriers, they found no associations between common mtDNA mutations
and MS risk [95].

3.2. Leber’s Hereditary Optic Neuropathy

Leber’s hereditary optic neuropathy (LHON) is a mitochondrial disease resulting in severe bilateral
optic neuropathy, characterized by central vision loss and dyschromatopsia. There is degeneration of
the retinal ganglion cells (RGC) and axonal tracts of the optic nerve. There are numerous mitochondrial
mutations associated with LHON, but the vast majority of patients have one of three different
mitochondrial mutations at nucleotides 3460, 11778 and 14484. The mutations are single amino acid
substitutions in one of the mitochondrially encoded subunits of NADH: ubiquinone oxidoreductase,
complex I of the electron transport chain (ETC). There is some evidence suggesting that the exposure to
high nitric oxide concentrations could impair in vivo the ability to cope with the oxidative stress caused
by the genetic defect, thereby driving the pathology in LHON. This was described by Flabella et al. in
one patient carrying the 11788/ND4 mutation [96]. This same increase in ROS was described in MS as
previously discussed [3,50,51].

Males are more frequently affected, and there is incomplete penetrance seen in LHON families [97].
There is a modest epidemiological overlap between MS and LHON, with a subset of patients developing
both diseases (Table 3). Harding first described this association in 1992 in case studies of eight women
with matrilineal relatives with LHON who presented with optic neuritis; six of the eight progressed to
clinical MS with neurologic symptoms. Seven of the eight also had characteristic white matter lesions
on MRI [98]. Since Harding’s first report of the association of LHON and MS this relationship has
continued to be observed with females being predominantly affected at a ratio of more than two to
one [99]. In one review the incidence of demyelination among LHON affected persons was up to five
percent, which is fifty times greater than the prevalence of MS in the general population [100]. RGC
thinning is also noted in MS. While the exact pathophysiology may be different in LHON and MS,
the mitochondrial dysfunction in LHON may be instructive to the understanding of mitochondria’s
role in MS.

3.3. Dominant Optic Atrophy and OPA1 Mutations

An additional example of potential overlap between mitochondrial genetic optic atrophy and
MS has been described by Yu-Wai-Man et al. in a paper detailing three cases of MS-like disease
associated with OPA1 mutations (Table 3). OPA1 mutations have previously been discussed in the
literature in association with autosomal dominant optic atrophy (DOA), the most common inherited
form of optic nerve visual loss. OPA1 has multiple roles in mitochondrial function as it encodes for
an inner mitochondrial membrane protein, and is involved in respiratory chain complexes, cytochrome
c molecules, and fusion/fission balance. There are over 90 known gene mutations (substitutions,
deletions and insertions) associated with OPA1 mutations and thought to be due to a truncated
protein [101]. Like LHON, DOA is a mitochondrial determined optic neuropathy preferentially
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affecting the ganglion cells within the inner retina. The exact relationship between OPA1 proteins and
MS has yet to be clearly elucidated, with only the above few cases being reported.

3.4. POLG1 Mutations

The mitochondrial gene POLG1 is the larger catalytic subunit of polymerase gamma which is the
only known DNA polymerase active in human mitochondria. POLG1 mutations have been implicated
in a number of mitochondrial disorders and more recently have also been identified in several cases
of demyelination. Two cases of non-related individuals with novel POLG1 mutations who had optic
neuritis and white matter lesions consistent with clinical MS were reported in the literature. Of note
both of these patients progressed into a more classic POLG1 phenotype with bilateral ophthalmoplegia,
ptosis, myopathy, cardiomyopathy, ataxia, dysphagia, and hearing and cognitive impairment. These
patients also had muscle biopsies showing red ragged fibers [99,102]. Therefore, their progression calls
into question whether or not they truly had MS or if their initial presentations were instead MS mimics.
Clearly more research is needed. Yet it is important to consider these cases as they may offer further
evidence of the role of the mitochondria within MS and MS-like disease processes. Further research
may lead to the discovery of more MS patients with mitochondrial mutations.

Table 3. Associations between MS and mitochondrial diseases.

Disease Gene Mutation MS Overlap
Overlap in Potential

Mechanism

MS
mtDNA nt13708A
mtDNA T4216C
nt 11778 (G→A)

NA NA

LHON
nt 3460

nt 11778 (G→A)
nt 14484

5% LHON have evidence of
demyelinating lesion

Degeneration of optic
nerve

DOA over 90 gene mutations
OPA1 protein: known link to DOA,

implicated in 3 patients with
MS-like disease

OPA1 mutation and
truncated protein

POLG1 Not specified Linked to cases of demyelination Not specified

MS: multiple Sclerosis, LHON: Leber’s hereditary optic neuropathy, DOA: autosomal dominant optic atrophy,
POLG1: mitochondrial gene POLG1.

4. Potential Therapies and Targets

The treatment of most mitochondrial diseases is still largely supportive at this time, although
some therapies have been tried such as vitamins, co-enzymes, creatine, free radical scavengers and
hyperbaric oxygen treatments. Despite the widespread use of a multitude of co-enzymes and vitamin
supplements there is currently limited evidence that these are effective in the treatment of primary
mitochondrial disorders. For targeted treatment of MS the use of alpha lipoic acid and co-enzyme
Q10 are being investigated. A randomized controlled phase 2 trial of alpha lipoic acid (ALA) versus
placebo was studied in SPMS and found to slow whole brain atrophy [103]; further studies are
ongoing. Other studies are examining a synthetic analogue of co-enzyme Q10, idebenone, which
is being targeted for treatment of neurodegenerative disorders such as LHON [99]. Phase I/II trials
of idebonone in PPMS demonstrated safety but initial data showed no change in progression of
the disease (http://www.santhera.com/assets/files/press-releases/2018-03-05_PR_PPMS_e_final.pdf).
An expansion study is ongoing with completion planned for later this year (https://www.clinicaltrials.
gov/ct2/show/NCT01854359). In addition to these targets there are several other potential approaches
for mitochondrial based therapy and limiting neurodegeneration in MS.
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4.1. Mitochondrial Metabolism and Chronic Neuroinflammation

Neurodegeneration is in part driven by the activation of mononuclear phagocytes. When
mononuclear phagocytes are persistently activated it can lead to a state of chronic neuroinflammation.
Mitochondrial metabolism has a role in the inflammation cascade and targeting the metabolism
of innate immune cells may be of benefit. Future studies may address this relationship to aid in
the development of novel molecular and cellular therapies that could disrupt the state of chronic
neuroinflammation as a way of preventing secondary neurologic damage [104]. Therapies that support
cellular metabolism such as high dose biotin, iron and vitamin D have been proposed as possible
treatment therapies in progressive MS, and studies looking at each of these treatments are ongoing
(https://clinicaltrials.gov). The pilot studies of high dose biotin are encouraging and results suggest
both a reduction in disease progression as well as decreased disability in PPMS [105]. Furthermore,
these therapies may also have a role in preventing progression of RRMS to SPMS [50].

4.2. Gene Therapy

Gene therapies are being developed in mitochondrial disorders, though most are still in early phases
of development. In vivo studies in mice using several vectors have been promising in some disease
models such as LHON [106]. Gene Therapy GS010 was shown to be safe in LHON patients carrying
the G11778A mutation in a phase 1/2 clinical trial (https://clinicaltrials.gov/ct2/show/NCT02064569).
Although the results did not have sufficient power to definitively demonstrate efficacy, 6/14 patients
who received GS010 had visual acuity improvements [107]. While these early results in LHON do not
immediately translate to MS care, the suggestion of treatment effect is promising for the future of gene
therapy in this field of mitochondrial dysfunction.

5. Conclusions

There is compelling data to suggest an important role for mitochondria in the pathophysiology
of MS. Further work is needed to move from studies of association to understanding causal
relationships between failure of mitochondrial function and MS phenotype. Targeting energy failure
and mitochondrial dysfunction is a novel potential therapeutic approach for the challenging progressive
phase of MS. Trials are already underway to begin exploring these pathways as treatment targets,
including studies of biotin and alpha lipoic acid in progressive MS.
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Abstract: James Parkinson first described the motor symptoms of the disease that took his name over
200 years ago. While our knowledge of many of the changes that occur in this condition has increased,
it is still unknown what causes this neurodegeneration and why it only affects some individuals with
advancing age. Here we review current literature to discuss whether the mitochondrial dysfunction
we have detected in Parkinson’s disease is a pathogenic cause of neuronal loss or whether it is
itself a consequence of dysfunction in other pathways. We examine research data from cases of
idiopathic Parkinson’s with that from model systems and individuals with familial forms of the
disease. Furthermore, we include data from healthy aged individuals to highlight that many of the
changes described are also present with advancing age, though not normally in the presence of severe
neurodegeneration. While a definitive answer to this question may still be just out of reach, it is clear
that mitochondrial dysfunction sits prominently at the centre of the disease pathway that leads to
catastrophic neuronal loss in those affected by this disease.

Keywords: Parkinson’s disease; mitochondria; ageing; neurodegenerative disease

1. Introduction

Mitochondrial dysfunction was proposed to be an integral player in the development of
Parkinson’s disease (PD) nearly 40 years ago, and since those initial discoveries, evidence of the
role it may play in this neurodegeneration continues to increase. There is now evidence to suggest
a role not only for a loss of mitochondrial function in terms of ATP provision and calcium buffering
capacity, but also the degradation of these organelles through mitophagy and the interaction of
mitochondria with other organelles and proteins in this disease. Furthermore, over the last 30 years,
our understanding of the molecular pathways involved in the development of PD has grown
immensely. These developments have been driven in part by improved genetic techniques allowing
large-scale screens to be performed, but also by the speed with which disease-causing genes can be
identified within affected families. In light of this, the number of genes associated with both early
onset familial PD and the sporadic form of the disease continues to increase. This growing body of
work continues to highlight pathways likely to be important for the development of PD, many of
which centre around the function of mitochondria.
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2. Mitochondrial Function

2.1. Mitochondrial Respiratory Chain

The first link between mitochondrial dysfunction and PD became evident in 1983, when
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was found to cause parkinsonian-like symptoms
in intravenous drug users [1,2]. Once MPTP penetrates the blood-brain barrier, this lipophilic
compound is bio-transformed into its toxic form 1-methyl-4-phenylpyridinium (MPP+) by glial
monoamine oxidase (MAO) [3]. MPP+ specifically interferes with the activity of respiratory chain
(RC) complex I (NADH: Ubiquinone oxidoreductase) in dopaminergic (DA) neurons, causing selective
neurodegeneration in both human and mouse substantia nigra (SN) [2,4,5]. Since this original study,
several environmental toxins which also are capable of potent inhibition of mitochondrial complex I
have been implicated in the epidemiology of sporadic PD. This raised awareness of the association of
environmental exposure with the risk of developing PD later in life, via damage of RC function and
increased oxidative stress (reviewed in [6,7]). These neurotoxins include rotenone, a wide spectrum
insecticide [8]; organochlorine pesticides, such as chloripyrifos and permethrin, and macromolecular
solvents such as 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) and trichloroethylene (TCE)
(reviewed in [6]). However, the toxicity of these molecules may not simply lie in their inhibition of
Complex I, but may also be related to exposure level, and their effect on other cellular processes,
for example intracellular dopamine oxidation [9–12].

In post-mortem studies, varying degrees of Complex I (Figure 1) and complex II (succinate
dehydrogenase, SDH) deficiency have been found in individual SN neurons from PD patients (~60%
Complex I and ~65% Complex II deficiency [13]). A widespread decrease in complex I expression
has also been observed in multiple brain regions in PD, including hippocampus, putamen, and
pedunculopontine nucleus [14,15]. While immunofluorescent (protein expression) [13] and COX
(Complex IV, cytochrome c oxidase)/SDH (enzyme activity) [16,17] assays have identified that 25–30%
of SN neurons show a deficiency for Complex IV (Figure 1). This deficiency commonly presents
alongside the aforementioned Complex I or Complex II deficiency in both PD and normal ageing [13,18].
It is possible that the predisposition for Complex I deficiency in SN neurons is due to a low reserve for
Complex I function [19]. Furthermore, the high number of mitochondrial DNA (mtDNA) encoded
subunits required for Complex I assembly confers that this complex is more likely to be affected by
pathogenic mtDNA mutations in the susceptible neuronal populations. However, the causal role of
Complex I deficiency in SN neuronal loss remains unclear. The loss of Complex I seems to be better
tolerated than that of other RC subunits, given that defects in the expression of this complex are
commonly detected in surviving SN neurons in PD cases and aged matched individuals, as well as
in neurons from multiple other regions [13,14,18]. Mutations in the gene encoding the mitochondrial
polymerase, POLG, in mitochondrial disease patients cause accumulated mitochondrial dysfunction
similar to that detected in PD and ageing [20]. Complex I-negative neurons are found in infant POLG
patients, before the prominent loss of neurons, which could further support a less detrimental effect of
Complex I deficiency on neuronal survival, compared to the loss of other RC complexes [21].

Single neuron studies have attempted to interrogate the relationship between mitochondrial
dysfunction and the formation of alpha-synuclein pathology [14,22]. Significantly higher expression of
Complex I and Complex IV was found in SN neurons with alpha-synuclein pathology [22], whilst the
presence of alpha-synuclein aggregation was less frequent in Complex I deficient SN neurons [14,22].
Both post-mortem studies suggested that alpha-synuclein pathology and abnormal RC function may
be two independent factors in PD pathogenesis.
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Figure 1. Mitochondrial respiratory chain (RC) deficiency in substantia nigra (SN) neurons of an
individual with Parkinson’s disease (PD). Immunofluorescent images demonstrating SN neurons with
normal Complex I (CI) and Complex IV (CIV) expression, Complex I deficiency and normal Complex
IV expression, and deficiency of both Complex I and Complex IV. Scale bar, 20 μm.

2.2. Mitochondrial DNA Defects

The potential consequences of clonally expanded mtDNA deletions and related biochemical
defects on the survival of SN neurons have been investigated in several studies. Indeed, somatic
mtDNA deletions reaching 50% have been described at the single SN neuron level in both PD and
healthy ageing, with much higher levels in COX-deficient cells [16,17]. These deletions were found to
be of various sizes (~2000 to ~9500bp), located within the major arc of mtDNA, and involve both tRNA
and mitochondrial RC protein genes [20]. It is therefore evident that these multiple mtDNA deletions
are somatically acquired, with the clonal expansion of different-sized deletions within each individual
SN neuron, thus yielding a wide spectrum of mtDNA deletion breakpoints within an individual [20].
A recent post-mortem study revealed an accumulation of mtDNA deletions with advancing age in
individual SN neurons, whilst such a trend did not occur in cortical or cerebellar neurons and the
deletion load was much lower in these neuronal populations [23].

Although the mechanism for the formation of mtDNA deletions is still under debate, the necessity
of mtDNA replication activity in deletion formation [24] was challenged by the absence of 3′-repeat
retention in some of the detected mtDNA deletion species in SN neurons [20]. According to the
“slipped-replication” theory, a single stranded loop occurs between 3′5′ direct repeats which is then
exposed and degraded during mtDNA replication, leading to the occurrence of deletions that are
often located within the major arc of mtDNA [24]. Krishnan et al. proposed another possibility
that mtDNA deletion formation may initiate from 3′–5′ exonuclease activity during the repair of
damage to mtDNA in the SN neuronal population [25]. MtDNA damage leads to the formation of
double strand breaks (DSB), and misrepair of such breaks could cause the loss of several kilobases
of mtDNA on both strands. Single strand mtDNA generated from this process would then anneal
with homologous sequences, resulting in the double-stranded deleted molecule with both a 5′ and 3′

repeat [25]. The relationship between DSB repair and the generation of mtDNA deletions has been
supported by several studies using inducible mitochondrial-targeted restriction endonuclease, PstI,
to trigger mtDNA DSB. Multiple mtDNA deletions were found in cultured PstI neurons [26] and in
DA neurons of a PstI mouse model [27]. These mice also developed nigrostriatal degeneration and
PD-related behavioral phenotypes [27]. Later, Moraes’ team reported an acceleration effect of mtDNA
DSB on neuronal ageing through reactive oxygen species (ROS) induced damage [28]. The nature
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of deletion formation through repair could therefore be regarded as an inevitable cost of mtDNA
self-rescue/regulation against oxidative damage. This fits well with the strikingly high deletion
load of mtDNA detected in aged SN neurons of both healthy individuals and PD patients [20,23],
as ROS-induced mtDNA damage advances with ageing.

In addition to the higher mtDNA deletion load in the SN than other aged brain regions, such as the
basal ganglia, cortical areas and cerebellum [23,29,30], Dolle et al. also revealed a age-related increase
of mtDNA copy number within individual SN neurons [23]. More importantly, the upregulation
of mtDNA copy number also correlates with the increase in mtDNA deletion load within the SN
neuronal population. The corresponding increase of mtDNA copy number with mtDNA deletion level,
together with an enhancement of mitochondrial function, were mirrored in a study of DA neurons
from a premature ageing model (POLGD257A mice) [31]. These findings suggested an ability of age
SN neurons to adapt to mitochondrial dysfunction via the maintenance of their mtDNA population.
Failure of such regulatory mechanisms of mtDNA copy number is described in PD patients in several
studies. Grunewald et al. suggested depletion of mtDNA copy number and low expression of an
essential mtDNA nucleoid protein, mitochondrial transcription factor A (TFAM) in the SN neurons
of PD patients [13]. However, another study showed a decrease in mtDNA wildtype copy number
but not in total copy number, alongside a decreased correlation between mtDNA copy number and
deletion level in PD neurons compared to healthy aged neurons [23]. Reduction of mtDNA copy
number in the peripheral blood [32] and cerebrospinal fluid [33,34] has also been detected in patients
with PD and neurodegenerative disease.

These studies all suggest that the formation and accumulation of high levels of mtDNA deletions
leads to mitochondrial dysfunction that will have an impact on the health and survival of SN neurons.
However, many of the reported findings are also found in normal ageing in the SN. Therefore, mtDNA
alterations are certainly one cause of the mitochondrial deficiency detected within these neurons and
will undoubtedly increase the vulnerability of these neurons to loss in PD, but the question still remains
whether these defects are causative of PD itself.

2.3. ROS Production and Oxidative Stress

The accumulation of somatic mtDNA deletions and the subsequent development of RC deficiency
within aged SN neurons may lead to impaired mitochondrial membrane potential (ΔΨm), reduced
synthesis of ATP, and an increase in release of ROS leading to oxidative stress [35]. A higher rate of
electron flux due to an increase in respiratory capacity to adapt to high metabolic demands in SN
neurons has also been thought to cause increased ROS generation. The increase in numbers of electrons
being transferred would increase the probability of electron capture by O2 to generate superoxide
before they reach COX [36]. In addition to the production and release of ROS from mitochondria,
the process of dopamine metabolism by monoamine oxidase could also account for the accumulation of
toxic oxidative species such as hydroxyl radicals [37]. Oxidative damage to mtDNA results in further
deficiency in RC expression and creates a vicious circle of oxidative stress and bioenergetics failure. This
“mitochondrial theory of ageing” has long been regarded as a rationale for mitochondrial changes with
advancing age [38], which could contribute to the increase in SN neuronal vulnerability. However, this
theory was challenged by more recent studies which manipulated the antioxidant capacity of several
mouse models, finding impaired integrity of the mitochondrial genome which was not necessarily
associated with an age-related phenotype or shortened lifespan (reviewed in [39]). Evidence from a
premature ageing mouse model (POLGD257A mutant) found that the generation of mitochondrial ROS
or mtDNA damage did not increase with a high heteroplasmic level of mtDNA point mutation, and that
there seems to be a threshold for mtDNA deletions to cause accelerated ageing [40].

In addition to mitochondrial ROS, other factors that may contribute to increased oxidative damage
include iron accumulation and an increase in lipid peroxidation burden [41,42], while accumulation
of hydroxyl and superoxide radicals due to a decline in glutathione content [43] have also been
reported in the brain of PD patients. Recent studies also highlighted a direct toxicity of alpha-synuclein

198



Biology 2019, 8, 38

oligomers on mitochondria via induction of mitochondrial lipid peroxidation and oxidation of ATP
synthase [44,45]. It was shown that alpha-synuclein leads to increased permeability of mitochondrial
membranes and ROS production, ultimately leading to neuronal death [45].

2.4. Calcium Handling

Emerging evidence has suggested the importance of cytosolic calcium ions (Ca2+) in the regionally
selective nature of neuronal loss in PD pathogenesis. Dopaminergic neurons in the SN exhibit
autonomous pacemaking activity in order to maintain regular release of dopamine to the striatum,
facilitated by CaV1.3 L-type calcium channels. Action potentials generated from this process are
broad, with a relatively slow rate (2–10 Hz), promoting a slow rhythmic activity accompanied with
a slow oscillation in cytosolic Ca2+. A relationship between Ca2+ oscillations and PD neuronal loss
was initially proposed by experiments showing a decline in the number of calbindin (a Ca2+ binding
protein), positive neurons in PD patients [46,47]. These slow Ca2+ oscillations promote the import of
Ca2+ into the mitochondrial intermembrane space and matrix. Intramitochondrial Ca2+ is required for
the activation of pyruvate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate (important
enzymes in the tricarboxylic acid (TCA) cycle) and promotes RC function and ATP production.
Mitochondrial sequestration of Ca2+ benefits synaptic neurotransmission in terms of assisting in the
stabilization of the cytosolic Ca2+ concentration during vesicle exocytosis [48] and promoting the
recovery of synaptic excitation after exocytosis [48,49]. The unique feature of CaV1.3 channels is that
they open at relatively hyperpolarized ΔΨm. Even so, the lack of powerful intracellular buffering
of Ca2+ from the endoplasmic reticulum (ER) in DA neurons drives a sustained Ca2+ flux to enter
mitochondria. This is able to promote ATP synthesis in the absence of a strong energy demand [50,51].
Ca2+ overload may force the opening of mitochondrial permeability transition pore (mPTP), leading to
retrograde electron flux through the electron transport chain, resulting in increased ROS production,
release of cytochrome c, and activation of apoptosis [52,53]. The increase in mitochondrial oxidative
stress has also been identified in other neuronal populations, including the dorsal motor nucleus of the
vagus (DMV) and the locus coeruleus (LC), which also express CaV1.3 channels. DA neurons in the
ventral tegmental area (VTA) which have modest CaV1.3 channel currents however, demonstrate low
mitochondrial oxidative stress and an improved ability to buffer cytosolic Ca2+ with ageing [54,55].
All of these indicate that CaV1.3 channels cause extra oxidative burden on mitochondria that may
contribute to the selectively vulnerability of SN neurons (reviewed in Reference [56]). A recent report
showed depletion of alpha-synuclein prevents the elevation of cytosolic Ca2+ concentration induced
by MPP+ in mouse SN neurons, suggesting synergistic detrimental effects of these two pathological
aspects in PD neurodegeneration [57].

2.5. Two Novel Familial PD Genes Associated with Mitochondrial Function

2.5.1. VPS35

A novel autosomal dominant PD related pathogenic mutation was identified in the vascular
protein sorting associated protein 35 (VPS35, PARK17, OMIM 614203) gene [58,59], and has been
linked to impaired RC complex I and II subunit assembly and activity [60]. The VPS35 protein is a core
subunit of the cargo recognition subcomplex that mediates the sorting, trafficking, and endocytosis of
synaptic vesicles [35]. The VPS35 mutation-induced mitochondrial dysfunction has been suggested
to be a consequence of impaired mitochondrial fusion, tipping the balance of the fission and fusion
cycle toward excessive fission. VPS35 promotes the degradation of mitochondrial E3 ubiquitin ligase1
(MUL1), and stabilizes mitofusin 2 (MFN2) preventing its degradation by MUL1 [61]. VPS35 deficiency
impairs the regulatory machinery of mitochondrial dynamics via degradation of MFN2 by MUL1 in
DA neurons, leading to mitochondrial dysfunction and fragmentation, which may underlie related
PD pathogenesis [61]. Furthermore, a recent report has shown prominent changes in dopaminergic
synaptic function, including increased dopamine turnover, loss of the dopamine transporter (DAT)
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and increased vesicular monoamine transporter 2 (VMAT2) expression in a VPS35 knock-in mouse
model [62].

2.5.2. CHCHD2

Mutations in the coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2, PARK22,
OMIM 616244) gene have recently been associated with autosomal dominant PD in Japanese
families [63]. The role of CHCHD2 as a PD-related gene was confirmed by genetic screening of affected
Chinese families [64], however, studies in Caucasians, south Italians [65,66], and Brazilians [67] did
not support its causative role in PD. It has been proposed that the localization of the CHCHD2
protein in the mitochondrial intermembrane space is beneficial to the maintenance of mitochondrial
cristae structure and integrity of the mitochondrial RC [68,69]. Inhibition of CHCHD2 was found
to impair mitochondrial Complex III (cytochrome bc1 complex) and Complex IV activity, leading
to decreases in OXPHOS activity and increased oxidative damage [69,70]. These mitochondrial
structural and biochemical defects have also been shown in fibroblasts generated from a PD patient
who carried a homozygous variant in CHCHD2 [71]. In addition to the mitochondrial structural and
biochemical defects, Drosophila carrying the CHCHD2 mutations identified in patients also manifest
motor symptoms and DA neurodegeneration [69].

2.6. Does Mitochondrial Dysfunction Drive the Development of Neurodegeneration in PD?

It is evident from other conditions, for example, mitochondrial disorders associated with
mutations in the polymerase gamma gene, POLG, that a primary mitochondrial defect is sufficient to
cause loss of SN neurons (and other neuronal populations) [18,72]. Furthermore, such mutations are
often associated with the development of PD-like symptoms (reviewed in Reference [73]). However,
attempting to disentangle “cause and effect” in the contribution of mitochondrial dysfunction to the
pathogenesis of PD is difficult, since many of the changes we detect in those with PD are also present
in healthy aged individuals. The mitochondrial defects present in these individuals often exist in the
absence of cell loss or parkinsonian symptoms. For example, equivalent levels of mtDNA deletions are
detected in SN neurons from individuals with PD and healthy controls [16,17] and neurons showing
deficiencies for both Complex I and Complex IV are also detected in both instances [18]. Many of the
processes described above initiate changes in other pathways and thus activate well defined responses
which exist to mitigate to these changes, for example, ROS and antioxidants. Therefore, it might be
suggested that in PD it is the ability of neurons to respond to mitochondrial functional changes that is
impaired. Thus, neurons become more sensitive to changes in other pathways, which ultimately leads
to their degeneration and loss.

3. Mitochondrial Turnover

3.1. Mitophagy

Mitophagy contributes to mitochondrial quality control by the selective clearance of damaged
mitochondria, targeting an entire mitochondrion or fission fragmented mitochondria for autophagy.
As a specialized form of autophagy, mitophagy comprises three necessary stages: the recognition of
impaired mitochondria, the formation of autophagic membranes around the target, and the fusion of
the mitoautophagosome with a lysosome (reviewed in Reference [74] and Reference [75]). Two familial
PD-associated proteins, phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1,
PARK6, OMIM 608309) and E3 ubiquitin ligase, Parkin (PARK2, OMIM 602544), have been strongly
implicated in the identification of damaged mitochondria for degradation via mitophagy [76]. PINK1
is a serine/threonine kinase localized to both mitochondria and the cytosol [77]. It accumulates
on the outer membrane of damaged mitochondria, following a reduction in ΔΨm, and recruits
Parkin to trigger the engulfment of mitochondria by autophagosomes [78]. The recruitment of Parkin
requires PINK1-mediated phosphorylation of both Parkin and ubiquitin, which activates a ubiquitin
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phosphorylation cascade for mitophagy adapters. This feed-forward amplification loop leads to
further recruitment and ubiquitylation-activation of Parkin so that the engulfment can proceed [79].
However, several studies have described a Parkin-independent mitophagy pathway associated with
other E3 ubiquitin ligases including Glycoprotein 78 (Gp78) [80] and Ariadne RBR Ubiquitin E3 ligase 1
(ARIH1) [81].

3.2. Mitochondrial Biogenesis

The constant generation of new mitochondria is a key process for the maintenance of a
healthy mitochondrial population with advancing age. The fact that the mitochondrial genome
has limited protein coding capacity determines the dependence of mitochondrial biogenesis on
synchronized transcription activity from both the mitochondrial and nuclear genomes. This provides
building blocks which aid the replacement of mitochondria or can be inserted into remaining
functional mitochondria [82]. Central to the regulation of mitochondrial biogenesis is the nuclear
transcription cascade, mediated by peroxisome proliferator-activated receptor γ (PPARγ) coactivator
1α (PGC-1α) [83,84]. PGC-1α and its downstream cofactors nuclear respiratory factors (NRF1, 2) largely
contribute to the regulation of transcription initiation of all nuclear-encoded RC proteins that are
expressed by the nuclear genome. TFAM and dimethyladenosine transferase 2 (TFB2M) can then act in
response to intracellular oxidative stress [85,86]. Reduction in the mRNA level of nuclear-encoded RC
genes that are responsive to PGC-1α has been identified in individual DA neurons of PD patients, and in
neurons in regions with subclinical PD-related Lewy body neuropathology [87]. The transcriptional
decline in genes that control mitochondrial biogenesis and oxidative energy metabolism, including
RC related genes and some cytosolic ribosomal genes (related to protein synthesis), are altered with
advancing age [88,89]. This is supported by the discovery of downregulated AMP- activated protein
kinase (AMPK) signalling, a key player in the control of PGC-1α expression, alongside decreased
mitochondrial biogenesis in aged individuals [90]. These data strongly indicate the contribution
of impaired biogenesis to the accumulation of mitochondrial dysfunction during ageing and the
neurodegenerative process.

PGC-1α and its transcriptional control is critical for maintaining neuron function. Loss of
dopaminergic neurons and striatal degeneration have been demonstrated in animal models where
the PGC-1α gene is silenced or knockout [57,91,92]. Several ex vivo and in vivo studies have
demonstrated the beneficial effects of PGC-1α overexpression and the corresponding increase in
transcription activities in the rescue of dopaminergic neuronal loss induced by MPTP [93], rotenone,
or alpha-synuclein mediated toxicity [94–96]. In addition to enhancing mitochondrial biogenesis,
PGC-1α is also capable of activating the expression of antioxidant enzymes in response to oxidative
stress [97,98] and protecting DA neurons against neuroinflammation [99]. However, there is still a
lack of consensus on the value of upregulating PGC-1α expression as a PD therapeutic intervention.
An increase in PGC-1α expression is not necessarily associated with an activation of its target cofactors
that facilitate mitochondrial biogenesis [40]. Major alterations in energy metabolism that impair
normal neuronal function have been found in a study of long term overexpression of PGC-1α
in an alpha-synuclein mutant mouse, carrying the A53T mutation [33]. However, mitochondrial
hyperactivity and increased ROS production were also described in this model, and may also contribute
to the severe DA neuronal loss.

Shin et al. first identified a link between Parkin and PGC-1α in the regulation of PGC-1α
expression via a Parkin interacting substrate, PARIS (also known as zinc finger protein 746, ZNF746).
Parkin mediates the proteasomal degradation of PARIS. In the absence of Parkin, PARIS is bound to the
promoter of PGC-1α gene and suppresses its expression [100]. This causes declines in mitochondrial
respiratory capacity and mitochondrial mass, ultimately leading to dopaminergic neuronal
death [33,34,101]. The parkin-mediated PARIS-dependent control of mitochondrial biogenesis, adds
further evidence that impaired mitochondrial turnover contributes to the neuronal loss in PD.
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It is hypothesized that mitochondrial turnover is slowed in aged and PD neurons due to defective
nuclear transcriptional control of mitochondrial proteins. Alongside this, there is a decline in the
clearance of dysfunctional mitochondria that occurs in coordination with a decrease in biogenic
activity and, as a result, mutant mitochondria accumulate in the neurodegenerative process. Evidence
for a decline in mitophagy during ageing has been highlighted in several recent reviews [102–105].
The abnormal accumulation of alpha-synuclein in PD neurons may put an additional burden on protein
degradation pathways, increasing the vulnerability of SN neurons to mitochondrial dysfunction and
pushing these neurons toward early cell death (reviewed in [106]).

3.3. Familial PD Associated Genes Related to Mitochondrial Turnover

3.3.1. PINK1 and Parkin

Among many genes that are associated with familiar PD, PINK1 and Parkin are highlighted due
to their substantial involvement in mitochondrial maintenance. Although the PINK1/Parkin pathway
is the key mediator of the process of mitophagy, recently more attention has been given to their
regulatory roles in neuronal mitochondrial dynamics via their interactions with the Mitochondrial Rho
GTPase1 (MIRO)/Milton complex (see below). In addition, the association of PINK1 and Parkin with
the removal of mitochondrial proteins and impaired mitochondrial biogenesis has been suggested
(reviewed in Reference [107]).

PINK1 has been suggested to also be important for the mitochondrial unfolded protein response
(UPRmt). The UPRmt was first reported in cell lines with a mutant form of ornithine transcarbamylase
(OTC) [108], which led to accumulation of a misfolded form of the protein which subsequently drove
expression of mitochondrial quality control genes. Believed to be a stress response to damaged
mitochondrial proteins and hence dysfunction, alterations in the UPRmt pathway may be of pathogenic
importance in PD. For example, PINK1 has been proposed to be involved in this pathway through its
interaction with HTRA serine peptidase 2 (HTRA2, PARK13, OMIM 606441) [109] and tumor necrosis
factor receptor-associated protein 1 (TRAP1) [110]. Importantly, mutations in the genes encoding both
these proteins have been associated with the development of PD [111,112]. In addition, the brains of
those individuals carrying PINK1 mutations show decreased levels of HTRA2 phosphorylation [109],
while the brains of mice with a knockout of HTRA2 show an accumulation of misfolded proteins
within the mitochondria leading to reduced respiratory function and neurodegeneration [113]. TRAP1
is a mitochondrial chaperone protein, whose knockout in Drosophila causes an age-related decrease
in climbing ability and dopamine levels in the brain, increased sensitivity to mitochondrial toxins
including rotenone and a decrease in ATP levels [114]. It is also a PINK1 effector whose expression in
PINK1 deficient Drosophila rescues morphological and mitochondrial defects and is capable of reducing
dopamine deficits [114,115]. Given the importance of the UPRmt for the maintenance of mitochondrial
function, this pathway may prove to be an important therapeutic target. Upregulation of the UPRmt for
example, may allow mitochondrial function to be improved through either degradation of unfolded
mitochondrial proteins or increases in the upstream signalling cascade.

3.3.2. DJ-1 and LRRK2

The functions of DJ-1 (PARK7, OMIM 606324) and leucine-rich repeat kinase 2 (LRRK2, PARK8,
OMIM 609007) are less well characterized in terms of mitochondrial health. Downregulation of DJ-1
causes multiple mitochondrial abnormalities, including increased mitochondrial fragmentation and
reduced ΔΨm and connectivity [116,117]. Interestingly, this effect can be blocked by overexpression of
Parkin and PINK1 [118]. A recent study using induced pluripotent stem cells (iPSC)-derived neurons
reports the beneficial effect of LRRK2 in the removal of MIRO, and thus enhanced arrest of damaged
mitochondria. Pathogenic LRRK2 mutations disrupt this function, speeding up mitochondrial mobility
and consequentially slowing the initiation of mitophagy [119].
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3.3.3. ATP13A2 and GBA

Novel mutations in ATP13A2 (ATPase type 13A2, PARK9, OMIM 610513) have been identified
as a genetic cause of a rare juvenile-onset form of PD, named Kufor–Rakeb syndrome [120,121].
ATP13A2 encodes an isoform of type P5B ATPase, which functions as a lysosomal ATPase transporter.
It is believed to play critical roles in the regulation of vesicular transportation [122], endolysosomal
activity [123,124], and glycolysis [125]. Deficiency of ATP13A2 causes lysosomal defects, and thus
affects cation homeostasis, for example Zn2+, leading to impaired mitochondrial respiratory function
and defective mitophagy [89,122]. A recent study also found gliosis in multiple brain regions of
heterozygous ATP13A2 knockout mice, suggestive of the neuroinflammation which occurs in the
early stages of PD development [123]. Another heterozygous mutation in the gene that encodes the
lysosomal enzyme glucocerebrosidase (GBA, OMIM 606463) has also been identified as a powerful
genetic risk factor for PD [126,127]. Those PD patients who carried a GBA mutation tended to have
an earlier age of onset and an increased risk of developing dementia compared to idiopathic PD
patients [128]. Together, this evidence highlights that lysosomal alterations may be crucial to the
pathogenesis PD, exacerbating the accumulation of mitochondrial damage and abnormal protein
aggregation [129].

3.4. Does Mitochondrial Turnover Drive the Development of Neurodegeneration in PD?

Although the process is still not clearly defined in neurons, data suggests that the degradation of
dysfunctional mitochondria occurs through the autophagy related pathway, mitophagy. A number of
studies have suggested that there is a decline in mitophagy with age (reviewed in References [102,103]).
Furthermore, many of the genes that control the degradation of mitochondria through this pathway
have been linked to ageing and lifespan in model organisms (reviewed in [130]). A decline in lysosome
function has also been shown to occur with advancing age, mainly through the accumulation of
lipofuscin within these organelles [131]. However, the fact that many of the genes responsible for
familial PD have been shown to have important roles in autophagy or lysosomal pathways suggests
that this is an important driver of the pathogenesis of PD. Alterations in the efficiency of such pathways
will clearly exacerbate mitochondrial dysfunction, allowing defective mitochondria to accumulate.
Mitochondrial dysfunction itself may also increase oxidative damage to proteins and organelles which
may overwhelm these systems in PD, leading to neuronal loss. Again, we are faced with a vicious
circle of damage, whereby mitochondrial dysfunction may be caused by defects in genes such as
ATP13A2. However, lysosomal dysfunction may increase oxidative stress, which would then cause
further mitochondrial and cellular damage.

4. Mitochondrial Dynamics, Transport, and Distribution

The precise distribution of mitochondria within neurons is a fundamental aspect of the correct
function of these cells. Neuronal communication through electrical impulse and chemical synapses is
fundamental for brain function, and, in PD, a loss of synapses has been shown to precede the loss of
cell bodies from the substantia nigra. This decline in synaptic terminal density may begin decades
before the first symptoms appear in affected individuals (reviewed in Reference [132]). Therefore,
understanding the causes of this synaptic loss may be key to unlocking new therapies for PD.

As described above, mitochondrial production relies on signalling between the nucleus and
the mitochondria, while the degradation of dysfunctional mitochondria requires the interaction
of a number of proteins and signalling pathways that we are only just beginning to understand.
Mitochondrial biogenesis generally occurs at the soma, in close proximity to the nucleus, although
evidence has suggested that mtDNA replication may occur within axons at sites distant from the
cell body [133–135]. The degradation of damaged mitochondria has generally been thought to occur
within the cell body, since this was thought to be the only location of lysosomes, though recently this
convention has also been challenged [136]. Data has also suggested that mitochondria may be donated
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to and removed from neurons by astrocytes, with such processes occurring in response to cellular
stress [137,138]. Therefore, neurons require processes which allow mitochondrial movements to be
responsive to changes within the local and intracellular environments.

Mitochondria perform a variety of roles within neurons to support their function. They provide
localized ATP to regions of the neuron which are particularly energy demanding (including the nodes of
Ranvier and pre-synaptic terminals) and buffer cytosolic calcium. These two functions of mitochondria
support the release and recycling of synaptic vesicles and the maintenance of electrochemical gradients,
which are intimately dependent on each other since they both rely on calcium signalling. Therefore,
as the main organelles which support these processes, there is a need for mitochondria to be dynamic
and responsive in their distribution. The movement and localization of mitochondria can be affected
by their function. A loss of mitochondrial membrane potential, for example, has been proposed to
drive directional mitochondrial movement. Vice versa, incorrect positioning of mitochondria within
neurons may have a detrimental effect on the health and function of neurons (reviewed in [139,140]).

4.1. Fission and Fusion

The processes of fission and fusion control the network connectivity of mitochondria within
neurons. These processes allow the creation or destruction of a mitochondrial syncytium, in which
mitochondrial contents may be shared, or dysfunctional mitochondria partitioned for destruction.
The degradation of dysfunctional mitochondria through mitophagy and the manipulation of this
process has been suggested to be an important therapeutic avenue for many degenerative diseases [141].
While many of the specifics of exactly how mitochondria are detected as being targets for degradation
remain unclear, it is likely that the fission of such organelles from the network will be a key process [142].
Fragmentation of the mitochondrial network occurs rapidly following the loss of mitochondrial
membrane potential, and if this loss cannot be restored, fragmented mitochondria lose their “fusion”
capabilities and are degraded [142]. Many of the proteins that control these two process have been
characterized and alterations in these processes have been detected in a number of models of familial
PD, yielding differences in the size of mitochondria and their ultrastructure [143]. Moreover, a loss
of dynamin-1-like protein (DRP1), a key protein in the fission machinery within dopaminergic
neurons, causes a Parkinson’s like phenotype in affected mice due to degeneration of SN neurons.
A staggering 85% of SN neurons had been lost by the age of 1 month in these animals and this
loss was due to depletion of the axonal mitochondrial population [144]. Furthermore, mutations in
OPA1 (OMIM 605290) have been linked with parkinsonism, including alterations upon DAT-SPECT
scanning [145]. The two heterozygous mutations reported in this paper also caused alterations to
the structure and function of mitochondria [145]. In SHSY5Y cells, the overexpression of OPA1 has
been shown to protect against the ultrastructural abnormalities induced by treatment with MPP+,
although interestingly this was not related to a reduction of fission [146]. The fusion of mitochondria
has been further linked with PD by the finding that mitofusin 1 (MFN1) and MFN2 are ubiquitinated
in a Parkin/PINK1 dependent manner [147,148]. The ubiquitination of mitochondrial proteins is a
key step in their identification for degradation through mitophagy. Further details of this process
have emerged showing that PINK1 phosphorylates MFN2, and this phosphorylation then recruits
Parkin, which then ubiquitinates the protein [149]. This study also showed that in cardiomyocytes,
a deficiency of MFN2 impedes mitophagy, leading to the accumulation of abnormal mitochondria and
respiratory dysfunction [149]. The ubiquitination of the mitofusin proteins is impeded in fibroblasts
from individuals with pathogenic PINK1 or Parkin mutations [150]. Interestingly, other proteins
important for the fission and fusion of mitochondria are not affected by mutations within these
genes [150]. The ubiquitination of the mitofusions will act not only to identify mitochondria for
degradation, but will also ensure that such mitochondria are unable to rejoin the mitochondrial network.
In addition, as described above, many of the neurotoxins used to generate experimental models of
Parkinson’s Disease, including rotenone and MPTP, cause the fragmentation of the mitochondrial
network, most likely due to their inhibitory effects on mitochondrial complex I [151–153]. In fact,
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their toxicity might be directly related to their effect on the balance of mitochondrial biogenesis and
fission/fusion [154].

4.2. Mitochondrial Distribution

The correct positioning of mitochondria within neurons is required for localized supply of ATP and
calcium buffering. By performing these essential tasks mitochondria become integral to the functioning
and survival of neurons. The provision of ATP is crucial for the support of neuronal electrical activity,
and in line with this, mitochondria are found clustered at sites with high energy demands, for example,
at the Nodes of Ranvier in myelinated axons. Their location at such sites supports the function of ion
channels such as the Na+/K+ ATPase, which is responsible for the restoration of resting membrane
potential following an action potential. Furthermore, their distribution changes to mirror alterations in
channel distribution, for example, following demyelination [155]. In addition, the positional holding of
mitochondria at these locations changes in response to electrical activity. A decline or arrest in electrical
activity will increase mitochondrial mobility away from nodes, while conversely, depolarization leads
to a movement of mitochondria into these areas to provide ATP to repolarize the membrane (reviewed
in Reference [156]).

Localized reliable sources of ATP are also essential for synaptic function. Within the presynaptic
terminal, mitochondrial ATP is required for an array of processes, including vesicle recycling, exo and
endocytosis of vesicles, and the loading of recycled vesicles with neurotransmitter (reviewed in
Reference [157]). As crucial as this energy provision is the ability of mitochondria to buffer calcium
(see above). The release of neurotransmitter from presynaptic terminals relies on a number of
processes which are modulated by calcium signalling. As such, the concentration of calcium within
the presynaptic terminal must be tightly regulated, to control the quantal release of neurotransmitter,
the priming of terminals for the next depolarization, and changes in synaptic strength. Calcium
buffering might be particularly important for the neurons of the substantia nigra, given their
pace-making activity. Blockage of the calcium channel, which governs this activity, forces the neurons
to utilize sodium channels to maintain this low frequency activity, which also protects neurons against
mitochondrial dysfunction caused by rotenone treatment [158].

Mitochondria can be recruited to synapses, though not all synapses contain mitochondria.
Synapses devoid of mitochondria have been found in a number of cell types, including hippocampal
neurons, primary cortical neurons, and the DA neurons of the nigrostriatal pathway [159–161].
The number of these “empty” synapses was recently shown to decline in the presence of dopaminergic
neuronal degeneration in PD [162]. This suggests two interesting hypotheses, either synapses which
lack mitochondria show an increased vulnerability in PD and are the first to be lost, or that in the
presence of degenerating neighbors, neurons can populate such synapses with mitochondria and the
replenishment with ATP activates them as part of an adaptation to maintain transmission to those
post-synaptic sites. In neurons with complex architecture, such as the neurons of the nigrostriatal
pathway which have been suggested to have a huge number of pre-synaptic terminals, it may seem
obvious that they would not utilize the full synaptic complement but keep some “in reserve” in case of
loss of a proportion.

4.3. Mitochondrial Transport

The correct distribution of mitochondria and the maintenance of a healthy functional population
within DA neurons relies on efficient transport from sites of genesis or to sites of degradation.
The movement of mitochondria along axons relies on motor proteins and microtubules with different
proteins mediating retrograde (towards the cell body) and anterograde (towards the terminus)
transport. The directionality of mitochondrial movements is controlled by different sets of motors
with dynein motors controlling retrograde transport, while anterograde movements are driven by
kinesin motors (reviewed in Reference [157]). The transport of mitochondria over long distances
within neurons is much more complicated than this and additional protein interactions are required
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namely between trafficking kinesin binding proteins (TRAKs), kinesin heavy chain isoform 5 (KIF5)
and dynein, and the mitochondrial proteins MIRO1 and 2. These outer mitochondrial membrane
proteins are responsible for the interaction of mitochondria with these molecular motors. An in-depth
discussion of the mechanisms of mitochondrial transport is out of the realm of this review, however,
there are a number of excellent reviews which cover this in detail [139,156,157,163].

Previous work has suggested that mitochondria are transported towards the cell body when
they have lost their membrane potential, a key signal for their sequestration in autophagosomes,
although other studies have been unable to replicate this [164,165]. Many of the interactions involved
in these processes have been well characterized, as have the patterns of movement exhibited by
mitochondria under normal and disease conditions. In line with the fact that mitochondria are
predominantly held at sites where they are required to provide localized ATP or calcium buffering,
the majority of mitochondria within neurons are stationary, with only 10–20% of mitochondria being
motile in hippocampal neurons [160,166], with over 90% reported as being stationary in cortical and
spinal neurons [167–169]. Those mitochondria move through showing a variety of velocities and
movements, with some moving in one direction with others seemingly wobbling back and forth.
These mitochondrial movements also change with maturation of neurons, with more mitochondria
becoming immobile and enriched at sites such as synapses [168].

The docking of mitochondria at discrete sites of the neuron relies on calcium. Localized elevated
calcium levels cause mitochondrial stalling. In cultured neurons, mitochondrial mobility is decreased
by increasing calcium influx [159,170]. The ability of calcium to cause mitochondrial immobility
relies on MIRO and the binding of calcium to the proteins two EF hands. Mutations within these
domains leading to impaired calcium binding have been shown to prevent the ability of mitochondria
to dock (reviewed in Reference [171]). The importance of calcium for the transport and mobilization of
mitochondria is particularly interesting given the importance of calcium for the pace-making activity
exhibited by dopaminergic SN neurons (reviewed in Reference [56]). Many studies have investigated
mitochondrial trafficking in mouse and cell culture-based models of PD [172,173]. For example,
the complex I inhibitor MPP+ alters mitochondrial directionality, increasing the speed of retrograde
movement and decreasing the opposing movements. Furthermore, this study also showed that of the
mitochondria that were moving, MPP+ caused the stalling of over 50% of these. Interestingly, this study
also uncovered that mitochondria within DA neurons were much smaller than those within non-DA
axons. This reduction in size in DA neurons may suggest that there are inherent differences in the levels
of fission and fusion between DA neurons and other neuronal populations. Differences in transport in
these cells may also impede the delivery of mitochondria to synapses and other discrete sites within the
neurons [172]. Furthermore, in the DA neurons of the MitoPark mouse (conditional TFAM knockout)
the supply of mitochondria to axonal terminals is impaired due to reduced anterograde transport [173].

4.4. Familial PD Genes and Their Association with Mitochondrial Dynamics

The importance of many of the genes associated with PD for mitochondrial dynamics lies in
the ability of the proteins they encode to affect the transport of mitochondria. Of all the proteins
which have been associated with familial PD, the ones most associated with mitochondrial dynamics,
obviously given their roles in mitophagy, are PINK1 and Parkin. Initially thought of as key mediators
of mitochondrial degradation through mitophagy, the impact and responsibility of Parkin and PINK1
on the maintenance of mitochondrial integrity is now believed to be more complex. Recent studies
have also proposed roles for these two proteins in the mitochondrial unfolded protein response, in the
modulation of mitochondrial fission and fusion, and finally in mitochondrial transport and trafficking
(reviewed in depth in Reference [174]).

Early studies showed that PINK1, a mitochondrial outer membrane protein, was able to recruit
Parkin to mitochondria upon mitochondrial depolarization with the uncoupler carbonyl cyanide
m-chlorophenyl hydrazine (CCCP) [78,175]. We now know that PINK1 actively recruits Parkin to
mitochondria and phosphorylates it, Parkin is then able to ubiquitinate outer mitochondrial membrane
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proteins signalling the mitochondrion for destruction. The mitochondrion is then enveloped by an
autophagosome and trafficked to the lysosome (reviewed in Reference [176]). PINK1 and Parkin
mutations in animal models have been shown to lead to both mitochondrial structural and functional
changes, which are often causative of the DA neuron degeneration in these models [177,178]. Parkin
overexpression has the ability to rescue many of the phenotypic changes detected in PINK1 mutants,
including the mitochondrial defects and DA loss [177]. Furthermore, the expression of Parkin in cell
lines has been shown to drive expression of a number of mitochondria associated proteins, including a
number important for mitochondrial dynamics, trafficking, and the ubiquitin proteasome [179].

PINK1 and Parkin have also been linked to mitochondrial dynamics and trafficking through their
interaction with a number of proteins essential to these processes. For example, overexpression of
PINK1 or Parkin in neurons has been shown to decrease bidirectional mitochondrial movements.
PINK1 phosphorylates MIRO, which then causes Parkin mediated degradation and kinesin
release [180,181]. The knockdown of PINK1 has been shown to promote anterograde mitochondrial
transport in Drosophila motor neurons, while conversely, a loss of MIRO in Hela cells was linked to
perinuclear mitochondrial clustering and mitochondrial degradation by mitophagy [180]. PINK1
expression in mitochondria has been found to be linked to expression of both MIRO and Milton,
with which it forms a complex. Furthermore, the interaction with these proteins can drive the
association of PINK1 with mitochondria even in the absence of a PINK1 mitochondrial targeting
sequence [182]. Finally, Parkin expression has been found to decrease the amount of mitochondrial
movement in hippocampal neurons. This change in mitochondrial movement was also found to be
associated with a reduction in axonal mitochondrial density [181].

4.5. Do Mitochondrial Dynamics Drive the Development of Neurodegeneration in PD?

Together these data suggest that many of the proteins that are known to be integral to the
development of PD have now been shown to have crucial roles in maintaining the dynamics,
distribution, and transport of mitochondria within neurons. We are now beginning to understand
more about these dynamic aspects of mitochondria due to improved imaging techniques and models.
It is clear, however, that the correct distribution of mitochondria within neurons is as important to
their function as the interconnectivity of these organelles. Furthermore, it is not only the movements
of functional mitochondria which need to be monitored and controlled, but also the localisation and
transport of those which are dysfunctional and require degradation. Disruption of these processes
in many models has been linked with impaired neuronal function or even neurodegeneration.
With advancing age and in PD the neurons of the SN do accumulate mitochondria which are
dysfunctional and may therefore be unable to provide the required level of ATP. Failure to remove
these mitochondria from important sites such as the synapse will then lead to further detrimental
changes (as described above) and neuronal loss.

5. Mitochondria and Protein Aggregation

Protein aggregation in Parkinson’s disease is predominantly driven by alpha-synuclein, a small
protein with a propensity to aggregate into oligomeric and fibrillar forms upon damage or mutation.
This small protein has been proposed to function to support synaptic transmission, with proposed roles
in vesicular packaging, synaptic vesicle trafficking and synaptic plasticity (reviewed in Reference [183]).
The interaction of alpha-synuclein with mitochondria has been studied in depth over recent years,
particularly since it has been suggested that it may be imported into mitochondria and cause inhibition
of complex I [184]. The specific interaction of alpha-synuclein with mitochondrial complex I causes a
reduction in its activity. This inhibition can be driven by both wild-type and mutant alpha-synuclein,
and by oligomeric and fibrillar forms of the protein [45,185,186]. This functional disruption of
mitochondria has most recently been shown to be also driven by an interaction of alpha-synuclein
with complex V (ATP synthase) causing alterations in mitochondrial morphology, accompanied by an
opening of the permeability transition pore, an increase in oxidative stress, and ultimately, neuronal
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death [45]. Recent work has highlighted that this capacity to interact with mitochondria may also
impact on the ability of mitochondria to import essential proteins from the cytosol [184,187,188].
Alpha-synuclein has been shown to interact with the TOM (translocase of the outer membrane)
complex in both tissue and culture-based systems. A blockage of import in this way has previously
been shown to be sufficient to drive nigrostriatal degeneration [189].

Alpha-synuclein has been shown to cause fragmentation of the mitochondrial network in a number
of models [190–192]. This fragmentation is DRP1 independent, occurs in the presence of both wild-type
and mutant forms of the protein, and has been shown to precede the loss of mitochondrial function and
neuron death. Interestingly, it has been suggested that the protein has no effect on the structure of the
endoplasmic reticulum, the Golgi, or their interactions with the mitochondria. However, a recent study
has shown that alpha-synuclein does interact with VAPB, an integral ER protein. This interaction then
weakens the association of mitochondria with the ER, causing alteration in calcium buffering and the
production of ATP [193]. The effect of alpha-synuclein on the structure of the mitochondria extends
beyond merely affecting their fission and fusion with alterations to the ultrastructure of mitochondria
also reported. Kamp et al. showed that PINK1, Parkin, and DJ-1 over expression was sufficient to be
able to rescue the effect of alpha-synuclein on mitochondrial dynamics [191].

Alpha-synuclein has been suggested to be important for synaptic vesicle trafficking for many
years, but recently, mounting evidence has suggested that it also affects the movement of mitochondria
around neurons. In neurons exposed to alpha-synuclein, the balance between retrograde and anterograde
transport is shifted. Wild type neurons showed a skewed preference for anterograde movement to
maintain the axonal mitochondrial populations, and this preference was lost when alpha-synuclein
expressed [194]. Kymograph analysis in a zebrafish model confirmed that alpha-synuclein reduced
anterograde mitochondrial movements along axons and that the mitochondria within these axons, spent
more time in a paused/stationary state [96]. The ability of alpha-synuclein to interrupt mitochondrial
trafficking in this manner has been studied in depth, and is driven by its interaction with microtubules
and cytoskeletal elements. Alpha-synuclein is capable of binding to a number of these proteins, including
kinesin family member 5 (KIF5A), microtubule-associated protein 2 (MAP2), and Tau, with wild type
synuclein showing the strongest binding to these proteins, with oligomers and fibrils showing weaker
interactions [195]. The effect of alpha-synuclein on microtubule stability affects the distribution of
mitochondria to neurites which would have detrimental effects on neuronal health and survival.

Does the Interaction of Alpha-Synuclein with Mitochondria Drive the Development of Neurodegeneration in PD?

Alpha-synuclein, of all the proposed contributors to Parkinson’s pathogenesis, perhaps affects the
most aspects of mitochondrial function. Alpha-synuclein has been shown to impact mitochondrial
function, dynamics, transport, and protein import. Considering that alpha-synuclein aggregation
is still one of the pathological hallmarks of PD, this would certainly suggest that in the presence of
mitochondrial defects, it may lead to neurodegeneration. However, it is important to consider that
studies have reported that Lewy bodies accumulate in neurons which do not have mitochondrial
deficiencies, and that not all alpha-synuclein models recapitulate all of the characteristics of PD.
Mitochondrial dysfunction, caused by alpha-synuclein or mtDNA mutations, may cause oxidative
stress which will further damage alpha-synuclein, causing it to misfold into oligomeric forms. These
alpha-synuclein aggregates are then capable of exacerbating mitochondrial dysfunction, as well as
interfering with mitochondrial turnover and transport. This would lead to incorrect distribution of
mitochondria, impaired calcium buffering, and ATP production increasing the sensitivity of these
neurons to loss in Parkinson’s.

6. Conclusions

Mitochondrial dysfunction, initially detected as Complex I deficiency, is found within the neurons
of the SN, the population of neurons whose loss leads to the development of the motor symptoms
associated with this disease. This deficiency may be caused by mtDNA deletions, by alpha-synuclein
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oligomers, or environmental toxins. A loss of mitochondrial function impedes ATP production
and calcium buffering, key processes in the function of these neurons, and exacerbates oxidative
stress. Such mitochondria should be targeted for degradation through the mitophagy pathway and
replenished with new functional organelles through the PGC1α biogenesis pathway, both of which
are affected by advancing age and have been shown to be linked to Parkinson’s disease. Furthermore,
dysfunctional mitochondria require transport to lysosomes and away from energy demanding sites.
Recent evidence has also hinted that the dynamic processes that control the distribution and structure of
mitochondria are also linked with PD. All these processes have the ability to cause further accumulation
of defective mitochondria if they are themselves impaired.

Therefore, it is clear that alterations in mitochondrial function are important for neuronal survival
and are a key driver of neuronal loss in Parkinson’s disease (Figure 2). Since the initial description of
Complex I deficiency in this disorder, our understanding not only of the complexities of mitochondria
but also of the pathways and proteins whose function has an impact on, or is impacted by mitochondrial
function, has dramatically increased. However, despite overwhelming evidence to suggest that the
function of mitochondria is important for PD pathogenesis, the ability to identify the initial event in
the cascade of changes that leads to neurodegeneration remains elusive. While here we have tried to
categorize a number of proteins by their primary role (for example PINK1/Parkin as mitophagy proteins),
it is becoming clear that many of these proteins have a role to play in a host of other pathways, while
many of these also have differential consequences for the mitochondria (for example, the contribution
of PINK1/Parkin to mitochondrial dynamics). While current techniques and models are driving this
search forward, it is clear that the complex nature of the mitochondria and the role they play in a host
of cellular pathways means that they have a large impact on a number of processes (energy provision,
calcium buffering, ROS production, etc.). However, since their function is also impacted by changes
in many of these pathways, it would seem that for every link between mitochondrial function and a
pathway (for example, mitochondrial dynamics), a contrary relationship will then be found between
the two processes. Understanding more about these interactions will uncover novel drugs which can
modulate them not only to preserve mitochondrial function, but also to protect these organelles against
damage and damaging moieties, driving and supporting the hunt for neuroprotective treatments.

Figure 2. Schematic presentation of mitochondrial involvement in the pathogenesis of Parkinson’s
disease (PD). This diagram serves to highlight the complex links between the changes in mitochondrial
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homeostasis, turnover, quality control and trafficking in cases of PD. These mitochondrial alternations
are also intricately associated with the ageing process and impairments of the ubiquitin protease
system that are attributed to Lewy body pathology. Lines with dots represent interactive effects,
lines with arrows represent regulatory effects. Genes associated with familial PD are shown in
blue, while we have also highlighted other proteins and toxins, recently been associated with
PD, which impact on mitochondrial function. MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;
VPS35: vacuolar protein sorting 35; CHCHD2: coiled-coil-helix-coiled-coil-helix domain containing
2; TFAM: mitochondrial transcription factor A; AMPK: AMP-activated protein kinase; PGC-1α:
peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α; NRF: nuclear respiratory factors;
TFB2M: dimethyladenosine transferase 2; DRP1: dynamin-1-like protein; MFN: mitofusin; LRRK2:
Leucine-rich repeat kinase 2; PINK1: phosphatase and tensin homolog (PTEN)-induced putative
kinase 1; GBA: lysosomal enzyme glucocerebrosidase; MIRO: mitochondrial Rho GTPase1; ΔΨm:
mitochondrial membrane potential; ROS: reactive oxygen species; mtDNA: mitochondrial DNA;
UPRmt: the mitochondrial unfolded protein response.
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Abstract: Alzheimer’s disease (AD) patients display widespread mitochondrial defects. Brain hypometabolism
occurs alongside mitochondrial defects, and correlates well with cognitive decline. Numerous theories
attempt to explain AD mitochondrial dysfunction. Groups propose AD mitochondrial defects stem
from: (1) mitochondrial-nuclear DNA interactions/variations; (2) amyloid and neurofibrillary tangle
interactions with mitochondria, and (3) mitochondrial quality control defects and oxidative damage.
Cells respond to mitochondrial dysfunction through numerous retrograde responses including
the Integrated Stress Response (ISR) involving eukaryotic initiation factor 2α (eIF2α), activating
transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). AD brains activate the ISR
and we hypothesize mitochondrial defects may contribute to ISR activation. Here we review current
recognized contributions of the mitochondria to AD, with an emphasis on their potential contribution
to brain stress responses.
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1. Introduction

Sporadic Alzheimer’s disease (AD) brains possess profound mitochondrial defects, including
changes in number, morphology, and enzyme activity [1–3]. Mitochondrial dysfunction in AD is not
restricted to the nervous system. Systemic mitochondrial defects occur in AD patients compared
to controls [4,5]. Metabolic defects occur alongside mitochondrial abnormalities in AD, providing
early markers of disease progression [6]. Mitochondrial dysfunction may contribute to hallmark AD
pathology and stimulate stress response pathways.

2. AD Brain Hypometabolism

Brain glucose uptake studies provided some of the earliest evidence for AD metabolic defects.
Changes in cerebral glucose utilization occur during AD, demonstrated by numerous studies using
[18F]-2-fluoro-2-deoxy-D-glucose (FDG) coupled with positron emission tomography (PET) [7–10]. In
these studies, researchers administer radiolabeled FDG to patients intravenously. Cells take FDG up
through glucose importers and subsequently phosphorylate FDG via hexokinase. Unlike glucose, FDG
cannot be processed further by glycolytic enzymes and accumulates within the cell. Cells taking up
more radiolabeled FDG display a stronger PET signal [11]. AD patients consistently display reduced
cerebral PET signals following [18F] FDG administration suggesting reductions in glucose uptake and
neuronal activity [12–14].
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Classically, AD brains display decreased temporo-parietal glucose uptake in both hemispheres [15].
Studies have attempted to correlate numerous AD pathological changes with cognitive decline. FDG
PET studies show cerebral glucose utilization correlates reasonably well with cognitive decline.
Amyloid plaques, on the other hand, correlate poorly with cognitive decline, while neurofibrillary
tangles (NFTs) show better correlation [16]. Although a definitive diagnosis of Alzheimer’s disease
requires the presence of amyloid plaques and NFTs, brain hypometabolism may provide a sensitive
and early marker of neurodegeneration [17].

Decreased cerebral glucose utilization occurs early in AD and could prove useful
diagnostically [6,18,19]. Studies performing FDG PET analysis on patients with “very early Alzheimer’s
disease” found changes in glucose uptake. The study divided participants into a very early
Alzheimer’s disease group and an age-matched control group based on mini-mental state exam
performance. The very early Alzheimer’s disease group displayed brain region specific decreases
in glucose utilization relative to age-matched controls. Early glucose uptake deficits presented most
prominently in the posterior cingulate cortex (PCC) and cinguloparietal transition regions. Reports
describe neurodegeneration in these regions in neuropathologically confirmed AD cases. Reduced
glucose utilization in the very early Alzheimer’s disease brain did not correlate with AD pathology.
Neuropathological examination of very early Alzheimer’s disease brains found NFT accumulation
in medial and inferior temporal cortex but not in the PCC. It is interesting to note that metabolic
deficiencies occur in the absence of AD pathology, suggesting NFTs and plaques do not need to be
present for reduced glucose utilization to occur [13]. Longitudinal FDG PET studies, followed up
with neuropathological diagnosis, demonstrate further AD specific changes in brain metabolism. This
study improved upon prior work by confirming eventual AD diagnosis. The results support brain
glucose utilization as a potential tool in AD diagnosis [20]. Several studies show metabolic defects
can be detected long before the onset of cognitive decline [21,22]. Meta-analysis of studies evaluating
FDG-PET for AD diagnosis shows FDG-PET performs better in diagnosing AD than current diagnostic
methodologies [23]. Brain hypometabolism’s early appearance and correlation with dementia in AD
patients suggests altered metabolism is intimately linked with disease progression.

A clear association between brain hypometabolism and dementia exists but researchers do not
understand why AD brains display reduced glucose utilization. Glucose transporter studies in AD
brains provide one potential explanation for decreased glucose utilization. Glucose transporters move
glucose across cell membranes and into the cytoplasm. Neurons import glucose mainly through GLUT3,
while astrocytes import glucose mainly through GLUT1 [24]. Both GLUT1 and GLUT3 protein levels
decrease in AD brain and these changes in GLUT1 and GLUT3 persist after correcting for cell death.
For this reason, Simpson et al. argue glucose transporter loss contributes to neurodegeneration [25].
Further studies found reduced glucose transporter levels at the blood-brain barrier in AD brains,
another likely contributor to decreased glucose uptake [26]. Decreasing glucose transporter levels
speak to broad metabolic defects in AD brain. Mitochondrial dysfunction likely contributes to these
broad and general AD metabolic defects.

3. AD Mitochondrial Defects

Altered metabolism in AD coincides with numerous mitochondrial changes. AD platelet
cytochrome oxidase (COX) activity studies provided early evidence for mitochondrial dysfunction.
Parker et al. showed altered COX activity in AD platelets, later extending their findings to AD brain
tissue [4,27]. At this time, they postulated mitochondrial DNA (mtDNA) alterations may trigger
AD COX deficiencies [28]. An additional study characterized AD mitochondrial complex I and
II–III activities, finding no consistent activity changes in various brain areas. However, the study
confirms decreased COX activity in multiple AD cortical brain regions [29]. Mitochondrial tricarboxylic
acid (TCA) cycle enzymes also display altered activity in AD brain. Post-mortem AD brain activity
assays reveal increases and decreases in TCA enzyme activities. Among mitochondrial enzyme
activities, clinical decline correlates most closely with changes in pyruvate dehydrogenase complex
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activity [30]. Defects in numerous mitochondrial enzymes exist in AD brain, likely contributing to
metabolic abnormalities.

Further changes in mitochondrial enzymes exist in AD. Post-mortem AD brain tissue analysis
finds that COX subunits decrease during disease progression. In one study, the authors analyzed
COXIV (nuclear-encoded) and COXII (mitochondrial-encoded) subunit levels in cerebellar Purkinje
neurons, an area relatively preserved in AD subjects compared to age-matched controls. The study
found decreased COXIV and COXII protein levels in AD Purkinje neurons relative to age matched
controls, as well as COX subunit reductions in aged controls relative to young controls. Based upon this
finding, the authors argue COX deficiency occurs during normal aging and accelerated COX deficiency
contributes to AD progression [31]. Cottrell et al. [32] discovered increased COX deficient neurons in the
AD hippocampus. The study examined COX and mitochondrial complex II (succinate dehydrogenase)
levels in individual cells via immunohistochemistry (IHC). Neurons containing drastically reduced
COX levels with normal succinate dehydrogenase levels were classified as COX deficient [32]. The
specific reduction in COX levels relative to succinate dehydrogenase suggests mitochondrial mass is
maintained while COX is preferentially depleted. Subsequent studies correlated AD pathology with
COX deficiency. Correlational studies revealed COX deficient neurons contain decreased NFTs relative
to surrounding COX positive neurons. The study found no correlation between COX levels and plaque
burden [33].

While the AD hippocampus contains many COX deficient neurons, studies also observe AD
neurons displaying increases in COX and mtDNA. In AD neurons with increased COX and mtDNA,
lysosomal structures tend to accumulate mitochondrial components. These findings suggest increases
in COX and mtDNA do not reflect increased intact mitochondria. Instead, mtDNA and COX
accumulation likely signals deficient mitochondrial degradation [34]. AD neurons upregulate lysosomal
components early in the disease process. AD neurons increase lysosomal protease (cathepsin D)
mRNA and protein with concomitant lysosomal accumulation [35]. Furthermore, diseased neurons
accumulate autophagosomes at a high level, suggesting either an increased autophagic rate, decreased
autophagosome maturation, or both [36]. Disruptions to autophagy and lysosomal degradation
likely contribute to AD mitochondrial defects. Defective mitochondria generally undergo selective
degradation through an autophagosome dependent process known as mitophagy. To begin the process
of mitophagy, autophagic vacuoles surround and envelope mitochondria. Autophagic vacuoles
containing mitochondrial components then acidify, maturing to lysosomes, and degrading their
contents [37]. Mitophagy maintains a healthy mitochondrial pool, so disruptions in this process
compounds other mitochondrial defects [38]. Mitophagy is altered in AD, as studies observe increased
mitochondria-lysosome associations.

AD mitochondria also display alterations in morphology. AD brain electron microscopy (EM)
studies reveal changes in mitochondrial physical structure. Numerous AD brain regions display
increased variability in mitochondrial shape and disrupted cristae, as well as decreased mitochondrial
surface area [39]. Mitochondrial morphology relies on fission and fusion processes. Mitochondrial
fission and fusion defects occur in AD and likely contribute to morphological changes. Zhang et al. [40]
performed three-dimensional (3D) reconstruction of serial AD hippocampal EM sections. 3D EM
revealed a novel AD mitochondrial morphology termed “mitochondria on a string” (MOAS). Earlier
methodologies could not detect this morphological feature, likely classifying MOAS as fragmented
mitochondria. MOAS likely form when fission machinery malfunctions. The authors propose AD
bioenergetic defects inhibit fission machinery, triggering mitochondrial morphology changes [40].
Additional studies suggest AD disrupts fusion and fission. Wang et al. describe altered mitochondrial
localization in AD pyramidal neurons along with altered fusion and fission proteins [41]. Experiments
also show that amyloid beta can cause fusion and fission defects, and inhibiting mitochondrial
fission proves beneficial in AD mouse models. Mutant amyloid precursor protein overexpression in
primary mouse hippocampal neurons altered fusion and fission genes and disrupted mitochondrial
structure [42]. Additionally, amyloid beta treatment in neuronal cells caused dynamin related protein 1
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(Drp1) phosphorylation and increased mitochondrial fission. A mitochondrial fission inhibitor reduced
reactive oxygen species (ROS) and reduced mitochondrial dysfunction caused by amyloid beta
treatment [43,44]. Studies of mitochondrial fission in AD models also suggest that mitochondrial fission
favors cell death. In fact, amyloid beta oligomers trigger mitochondrial fragmentation and subsequent
cell death via the loss of a mitochondrial fusion factor [45]. Inhibiting mitochondrial fission in an
AD mouse model decreased brain pathology and improved memory, as well as synaptic connections,
suggesting mitochondrial fission inhibitors may have therapeutic potential [46]. Mitochondrial
morphological changes in AD speak to widespread mitochondrial dysfunction.

Whether metabolic and mitochondrial defects represent a cause or consequence of AD remains
controversial. Numerous groups propose mitochondrial dysfunction initiates AD pathological cascades
and therapeutics should target mitochondrial dysfunction [1,47–49]. The cause for mitochondrial
dysfunction in AD remains unclear, however. Many theories explaining AD mitochondrial dysfunction
exist. Groups viewing mitochondrial dysfunction as a primary event in AD progression point to
mtDNA as a potential disease driver [28,50]. Groups viewing mitochondrial dysfunction as a disease
consequence propose AD pathology, namely amyloid protein and tau tangles, initiates mitochondrial
dysfunction [51–53]. Still other groups propose defective mitochondrial quality control and oxidative
damage contributes to mitochondrial dysfunction [34]. Each of these mechanisms may in fact contribute
to AD mitochondrial dysfunction and, increasingly, mitochondrial function is viewed favorably as a
therapeutic target.

4. Role of Mitochondrial DNA in AD

Somatic mtDNA mutations may contribute to AD and mtDNA inheritance may influence
AD risk. Mitochondrial function relies on coordinated expression of genes from the nuclear and
mitochondrial genomes. Inherited mtDNA polymorphisms cause a range of disorders known as
primary mitochondrial diseases. Many of these diseases primarily affect cognition, demonstrating that
neurons possess high sensitivity to mitochondrial defects. One of the most widely recognized mtDNA
deletions, a 4997 bp deletion called the “common deletion”, increases in the brain during normal aging.
Common deletion rates increase most drastically in regions with high metabolic activity, causing
some to speculate that mtDNA somatic deletions dispose individuals to neurological disease [54]. AD
mtDNA alterations surpass those observed in age-matched controls. High common deletion rates
occur early in the AD cortex. As AD patients reach age 80, however, common deletion rates typically
decline. The opposite trend exists in age-matched control cortex, with low common deletion rates early
and increasing rates as individuals age [55,56].

AD brains also display increased mtDNA oxidative damage. Interestingly, mtDNA oxidative damage
occurs most heavily in the parietal lobe, which displays early and consistent hypometabolism [57].
Increased oxidative damage correlates with mitochondrial dysfunction. For this reason, researchers
speculated that AD oxidative damage favors mtDNA mutations. Indeed, mtDNA control region
mutations increase in AD frontal cortex. Increased control region mutations associate with decreased
mtDNA transcription and replication [58]. Subsequent analyses utilizing next generation sequencing
(NGS) discovered increased AD hippocampal mtDNA point mutations. However, the authors conclude
AD point mutations likely stem from mtDNA replication errors rather than oxidative damage [59].

AD inheritance pattern studies implicate mtDNA inheritance as an AD risk factor. In a group of
families with one AD affected parent and two affected siblings, Edland et al. discovered increased AD
rates among individuals with a maternal AD history [60]. These findings suggest AD favors a maternal
inheritance pattern. Maternal AD history also increases risk for brain hypometabolism, potentially
increasing AD risk [61]. Groups propose mtDNA inheritance explains AD’s subtle but identifiable
maternal inheritance predominance [48]. mtDNA largely passes from mother to child, and therefore
AD’s bias towards maternal inheritance is consistent with mtDNA influencing AD risk.

Cytoplasmic hybrid (cybrid) studies provide further evidence mtDNA contributes to AD
mitochondrial abnormalities. Cybrid generation occurs by repopulating cells lacking mtDNA (ρ0) with
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exogenous mtDNA. Exogenous mtDNA often comes from patient platelets, allowing creation of cybrids
containing AD patient mtDNA. Cybrids, therefore, effectively model AD mitochondrial function on a
stable nuclear background. AD cybrids recapitulate numerous AD features. Initial AD cybrid studies
demonstrate COX activity deficits that recapitulate those of AD patient mitochondria. AD cybrid COX
deficits provide strong evidence that mtDNA contributes to AD mitochondrial defects [62,63]. Further
studies suggest mtDNA deletions contribute to AD hippocampal COX deficiency. As referenced earlier,
COX deficient neurons increase in the AD hippocampus. COX deficient AD neurons contain increased
mtDNA deletions, suggesting mtDNA deletions contribute to COX deficiency [64]. Additional AD
cybrid studies describe enlarged, swollen mitochondria with reductions in membrane potential and
increases in ROS and antioxidant enzymes [63,65]. AD cybrid studies also suggest mitochondrial
dysfunction can drive changes in AD neuropathology.

AD cybrids display amyloid changes reminiscent of those observed in AD and possess increased
sensitivity to amyloid beta fragments. AD cybrids release amyloid beta at greater rates than controls.
Furthermore, AD cybrids contain increased intracellular amyloid beta. Elevations in amyloid beta
coincide with increased cytochrome c release and caspase-3 activity, suggesting cell death pathway
activation may contribute to elevated amyloid beta [66]. AD cybrids treated with amyloid beta
display enhanced cell death pathway activity compared to control. Mitochondrial membrane potential,
cytochrome c release and caspase 3 activity all change to a greater extent in amyloid beta treated AD
cybrids [67]. AD mitochondrial function predisposes cells to increased amyloid beta production and
cell death.

5. Mitochondrial Interaction with AD Pathology

Further studies demonstrate mitochondrial function influences AD pathology. Treating fibroblasts
from control subjects with a mitochondrial membrane potential uncoupler (CCCP) triggers tau
phosphorylation at sites altered in AD [68]. Complex I inhibitors also initiate AD-like tau alterations.
Chronic rotenone treatment in rat brain triggers tau hyperphosphorylation and aggregation [69].
Studies often utilize triple transgenic mice to model AD. Triple transgenic mice express mutated forms
of APP, tau and presenilin 1, causing them to develop amyloid plaques and tau tangles. Studies in
female triple transgenic mice observe mitochondrial dysfunction prior to amyloid plaque formation.
Female triple transgenic mice eventually experience increased mitochondrial amyloid beta levels
which may exacerbate mitochondrial dysfunction. However, female triple transgenic mice experience
decreased COX activity and increased glycolytic rates prior to amyloidosis [70]. Overexpressing a form
of mutant APP in mice also causes mitochondrial gene upregulation in the hippocampus long before
amyloid plaque deposition. Most of these upregulated genes contribute to oxidative phosphorylation
(OXPHOS) [71].

Studies question whether mitochondrial dysfunction triggers Alzheimer’s pathology. Fukui et al.
deleted the COX10 gene, which encodes a necessary COX assembly factor, in triple transgenic mice.
COX10 deletion inhibits COX assembly, causing loss of function. COX10 deficient triple transgenic
mice produce fewer amyloid plaques and amyloid beta than triple transgenic mice with functional
COX [72]. This finding suggests loss of COX function reduces amyloid plaque production. However, it
should be noted that loss of COX function via COX10 deletion likely stimulates different responses
than those elicited by defective functioning of intact COX. Additional studies are needed to more fully
examine mitochondrial dysfunction’s effects on AD pathology.

A reciprocal relationship exists between AD pathology and mitochondrial function. Amyloid beta
treatment in cell culture causes mitochondrial dysfunction, including decreases in membrane potential,
electron transport chain activity and oxygen consumption [73]. Amyloid beta inhibits COX activity in
isolated mitochondria [74]. In AD brains APP accumulates in mitochondrial translocases, potentially
inhibiting their function [53]. Further work describes AD mitochondrial amyloid beta accumulation
and interaction with an alcohol dehydrogenase within the mitochondrial matrix [75,76]. Tau also
interacts with mitochondria and their biology. Tau overexpression in cell culture changes mitochondrial
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localization, likely by disrupting mitochondrial transport along microtubules. Post mortem AD brain
studies observe decreased synaptic mitochondria suggesting AD disturbs neuronal mitochondrial
transport [77]. Pathological tau may contribute to microtubule disruption and subsequent mitochondrial
localization changes in AD. Hyperphosphorylated tau associates with voltage dependent anion channel
1 (VDAC1) on the outer mitochondrial membrane. AD increases hyperphosphorylated tau bound to
VDAC1, another potential contributor to mitochondrial dysfunction [78].

Tau truncation also occurs in AD, potentially contributing to mitochondrial dysfunction. AD
NFTs contain truncated tau and these truncated tau species may be toxic [79,80]. Overexpressing
a specific N-terminal tau fragment (NH2-26-44) causes primary neurons to die. N-terminal tau
fragment treatment inhibits adenine nucleotide transporter (ANT) function, causing mitochondrial
dysfunction [81]. Further studies need to determine whether this N-terminal tau fragment increases
during AD progression. Overexpressing another tau fragment (Asp-421 cleaved tau), known to increase
during AD, causes mitochondrial fragmentation and increased oxidative stress in cell culture [82].
Tau fragment generation likely occurs through caspase cleavage during apoptosis. Additional
AD-associated protein fragments disrupt mitochondrial function.

Apolipoprotein E allele ε4 (apoE4) increases risk for AD. Relative to other apoE isoforms,
apoE4 accumulates in endosomal compartments and stimulates cholesterol efflux less efficiently [83].
Furthermore, apoE4 appears susceptible to c-terminal protease cleavage. C-terminal apoE fragments
occur in AD brain and truncated apoE colocalizes with NFTs. Overexpressing apoE4 fragments
(apoE4 Δ272–299) in cell culture stimulates NFT formation [84]. ApoE associates with mitochondrial
proteins, with apoE4 fragments binding mitochondrial proteins more strongly than apoE2 and apoE3.
Overexpressing apoE4 fragments decreases mitochondrial complex III and COX activity [85], suggesting
apoE4 increases AD risk partly through mitochondrial effects.

6. Mitochondrial Contributions to Proteostasis

Emerging evidence suggests mitochondria contribute to cellular proteostasis (Figure 1). In yeast,
mitochondria degrade misfolded cytosolic proteins through resident proteases. Ruan et al. [86] show
aggregated protein degradation in yeast relies on mitochondrial import machinery and proteases.
When the authors blocked mitochondrial protein import and deleted mitochondrial proteases, protein
aggregates became more stable. Defective cytosolic chaperones caused misfolded proteins to
accumulate in mitochondria. Together, these observations highlight mitochondrial contributions
to yeast proteostasis. The authors refer to mitochondrial protein degradation as “Mitochondria as
Guardians in the Cytosol” (MAGIC) [86]. Whether MAGIC contributes substantially to proteostasis in
human cells remains unclear. If MAGIC occurs in human cells, defective mitochondrial proteastasis
could contribute to AD plaque and tangle formation. Another study shows mitochondrial degradation
via mitophagy reduces amyloid burden in mAPP transgenic mice. mAPP mice lacking PTEN-induced
putative kinase (PINK1) accumulate amyloid pathology earlier than mAPP mice expressing PINK1.
PINK1 accumulation in mitochondrial membranes stimulates mitophagy. PINK1 knockout, therefore,
seems to increase amyloid pathology in mAPP mice by disrupting mitophagy. Alternatively, PINK1
overexpression in mAPP mice enhances mitophagy and reduces amyloid beta plaques [87]. Mitophagy
induction likely reduces mAPP mouse plaque burden by degrading amyloid beta filled mitochondria.
In line with these findings, another report highlights mitophagy’s role in clearing protein aggregates.
Findings suggest mitochondrial fission facilitates selective mitophagy of regions containing protein
aggregates [88]. These studies suggest mitochondria act as disposal sites for aggregated proteins.
Pathological protein aggregates may signal defective mitochondrial proteostasis or mitophagy.
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Figure 1. Mitochondrial proteases and mitophagy contribute to cellular proteostasis. Dysfunctional
proteases and/or mitophagy could contribute to protein misfolding in disease states. Future work
should examine mitochondrial contributions to cellular proteostasis in human cells as this process has
largely been described in yeast.

Mitochondria possess intrinsic mechanisms for responding to unfolded proteins. Mitochondrial
protein misfolding triggers a compensatory mechanism termed the mitochondrial unfolded response
(mtUPR). Mutant ornithine transcarbamylase (OTC) overexpression leads misfolded OTC to accumulate
within mitochondria, stimulating the mtUPR [89]. The mtUPR induces mitochondrial proteases and
chaperones to restore proteostasis. Studies in Caenorhabditis elegans (C. elegans) provide most of
the evidence for a mtUPR. mtDNA depletion by ethidium bromide, doxycycline treatment and
mitochondrial ribosomal protein knockdown all trigger the mtUPR in C. elegans. Also, disrupting
mitochondrial protein complexes and knocking down mitochondrial proteases and chaperones
activates the mtUPR [90]. In C. elegans, Activating Transcription Factor associated with Stress-1
(ATFS-1) mediates mtUPR activation. ATFS-1 controls the mtUPR based on its subcellular localization.
Functional mitochondria import and degrade ATFS-1. When mitochondrial dysfunction occurs, ATFS-1
accumulates in the nucleus due to a nuclear targeting sequence. Nuclear ATFS-1 activates mitochondrial
protease and chaperone transcription. The mtUPR and ATFS-1 gained notoriety following discoveries
of lifespan extension in C. elegans upon electron transport chain (ETC) gene knockdown [91]. Groups
posited mtUPR activation mediates the lifespan extension gained from ETC gene knockdown. However,
C. elegans lifespan studies suggest mtUPR activation and ATFS-1 activity do not facilitate the observed
lifespan extension following mitochondrial insult [92].

In mammalian cells, activating transcription factor 5 (ATF5) may regulate an mtUPR similar to
how ATFS-1 functions in C. elegans. However, distinct mitochondrial stress response pathways appear
to predominate in mammalian cells. Studies examining diverse mitochondrial stressors suggest ATF5
activation occurs under specific circumstances. Paraquat treatment and mutant OTC overexpression
stimulate mitochondrial chaperone and protease transcription in an ATF5-dependent manner. While
ATF5 appears responsive to paraquat and mutant OTC, studies reveal activating transcription factor
4 (ATF4) responds to numerous mitochondrial stressors. Quiros et al. [93] introduced mammalian
cells to distinct mitochondrial stressors, including membrane depolarization, translation inhibition,
OXPHOS inhibition and protein import suppression. Mitochondrial stressors failed to induce either
mtUPR or ATF5 activation, instead stimulating ATF4 dependent stress response pathways. Numerous
studies implicate ATF4 in the mitochondrial stress response. ATF4 orchestrates diverse metabolic
changes to help cells cope with mitochondrial dysfunction. Abrogating ATF4 decreases cellular
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proliferation, especially following mitochondrial stress [93]. In line with these findings, another study
finds mitochondrial OXPHOS inhibitors stimulate stress response genes via ATF4 induction [94]. ATF4
clearly responds to diverse mitochondrial stressors, leading researchers to examine how mitochondrial
dysfunction activates ATF4. While this review will focus on ATF4 related stress responses, mitochondrial
dysfunction stimulates diverse compensatory mechanisms.

7. Mitochondrial Dysfunction Triggers Numerous Retrograde Responses, Including the
Integrated Stress Response (mtISR)

Mitochondrial dysfunction triggers numerous changes in nuclear gene expression [95,96]. Referred
to as retrograde responses, mitochondrial stress responses preserve cell viability by modulating
metabolic pathways and mitochondrial function. Studies in Saccharomyces cerevisiae have elucidated
mitochondrial-nuclear communication pathways in great detail [97]. While fewer studies on
mammalian retrograde responses exist, certain pathways consistently respond to mitochondrial
stressors. Multiple mitochondrial stressors perturb cytosolic calcium (Ca2+) and ROS levels, activating
nuclear factor kappa B (NFκB). Although NFκB activation is canonically associated with immune
system function, diverse cellular stressors, including mitochondrial dysfunction, activate NFκB [97].
Mitochondrial dysfunction activates NFκB in a manner distinct from cytokine mediated NFκB activation.
Furthermore, NFκB may regulate c-Myc transcription, a transcription factor consistently upregulated
by mitochondrial dysfunction [98,99]. c-Myc forms a Myc-Max heterodimer homologous to yeast
retrograde response mediators [97]. NFκB and Myc activity increase in aged tissues and decrease
during cell senescence [100]. Numerous cell signaling pathways participate in tightly orchestrated,
context dependent retrograde responses. In yeast, retrograde responses facilitate replicative lifespan
extension. Some groups speculate retrograde responses act similarly in mammalian cells to compensate
for age-related mitochondrial deficits [101,102].

Many studies show that mitochondrial stress activates ATF4 signaling, suggesting ATF4 plays a
role in retrograde signaling. ATF4 activation occurs through a pathway known as the integrated stress
response (ISR). The ISR begins with eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation [103].
Four kinases, heme-regulated inhibitor (HRI), protein kinase R (PKR), PKR-like endoplasmic reticulum
kinase, (PERK) and general control non-depressible 2 (GCN2), phosphorylate eIF2α. Heme depletion,
viral infection, endoplasmic reticulum stress, and amino acid starvation activate each kinase,
respectively [104]. Studies implicate eIF2α phosphorylation in long term potentiation and long
term memory through downstream effects on cyclic AMP responsive element binding protein (CREB),
providing a potential link between the ISR and cognitive decline [105]. eIF2α phosphorylation triggers
diverse cellular effects.

One of eIF2α phosphorylation’s most important effects is to pause general protein translation,
assisting in cellular stress recovery. However, eIF2α phosphorylation paradoxically increases protein
translation from mRNAs possessing alternative open reading frames (ORFs). Numerous stress
responsive factors contain alternative ORFs. Therefore, eIF2α phosphorylation reduces cell protein
loads while preferentially increasing stress response factors [106]. ATF4 translation increases following
eIF2α phosphorylation due to ATF4’s alternative ORFs [107]. Increased ATF4 translation stimulates
downstream target transcription, including C/EBP homologous protein (CHOP) [108]. CHOP induction
favors cell cycle arrest and, upon chronic activation, apoptosis [109,110]. In summary, the ISR responds
to numerous stressors by reducing general protein translation while upregulating stress responsive
factors. Major ISR mediators include eIF2α, ATF4, and CHOP.

Several reports show mitochondrial dysfunction stimulates the ISR in mammalian cells. Rotenone
treated oligodendroglia increase eIF2α phosphorylation as well as ATF4 and CHOP protein [111].
Earlier studies show CHOP mediates a mitochondrial specific stress response [112]. mtDNA depletion
and doxycycline treatment in cell culture activate CHOP expression in an ATF4-dependent manner
without concomitant mtUPR activation [113]. Multiple studies indicate mitochondrial protease
inhibition specifically induces the ISR. Knocking out a mitochondrial serine protease, HtrA2, triggers
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the ISR in mouse brain [114]. Similarly, LON protease (LONP1) deficient cell lines exhibit mitochondrial
protein aggregation along with ISR activation. LONP1 functions as an important mitochondrial matrix
protease. Mitochondrial protein aggregates stemming from LONP1 depletion only modestly induce
the mtUPR. The authors conclude LONP1 depletion prominently activates the ISR, while slightly
increasing some mitochondrial proteases and chaperones [115].

Further studies show mitochondrial stress induces the ISR in muscle and brain tissue. Deletor
mice possessing a dominant Twinkle (helicase involved in mtDNA replication) mutation model
mitochondrial myopathy. Deletor mice rapidly accumulate mtDNA mutations leading to OXPHOS
deficiency. OXPHOS deficiency in deletor mice triggers ISR components resulting in altered one carbon
metabolism, serine synthesis, and glutathione production pathways (transulfuration) [116]. Quiros
et al. note similar metabolic changes following mitochondrial dysfunction and ISR activation [93].
Furthermore, mammalian target of rapamycin complex 1 (mTORC1) inhibition in deletor mice rescues
metabolic alterations by reducing ISR activity. In this model, mitochondrial dysfunction activates
mTORC1 which subsequently activates the ISR [116].

Inducible Drp1 knockout in mouse neurons also stimulates the ISR. Drp1 knockout disrupts
mitochondrial fission causing mitochondrial dysfunction and ISR activation. Drp1 knockout neurons
increase fibroblast growth factor 21 (Fgf21) plasma protein and mRNA levels. A cytokine associated
with mitochondrial myopathies, Fgf21 release increases upon mitochondrial dysfunction. Neuronal
Drp1 knockout mouse studies show that brain mitochondrial dysfunction triggers Fgf21 release in
an ISR dependent manner [117]. Some consider Fgf21 a mitokine, transmitting mitochondrial stress
signals between organs [118]. ISR stimulation of Fgf21 expression further demonstrates a link between
mitochondrial dysfunction and the ISR. However, the ISR responds to numerous cellular stressors. A
mitochondrial stress-induced ISR refers to a unique ISR subgroup, a mitochondrial ISR (mtISR). Ample
evidence of the mtISR exists, however, future research should examine signaling cascades stimulating
the mtISR.

As referenced earlier, numerous signals could activate ISRs. Heme depletion, viral infection,
endoplasmic reticulum stress, and amino acid starvation all stimulate eIF2α kinases [104]. Determining
specific signals responsible for the mtISR may prove difficult. Few studies associate mtISRs with
specific eIF2α kinases. One study finds doxycycline treatment increases eIF2α phosphorylation
through GCN2, the amino acid starvation sensitive kinase [113]. However, Quiros et al. knocked
down all four eIF2α kinases following mitochondrial depolarization and saw no reductions in eIF2α
phosphorylation. The authors concluded multiple kinases increase eIF2α phosphorylation during the
mtISR [93]. Determining whether a mtISR occurs in sporadic diseases such as AD remains difficult
since we do not know specific mtISR signatures. Numerous stressors occur in AD brain which may
feed into the ISR. For example, endoplasmic reticulum (ER) stress occurs in AD and is known to
strongly induce the ISR. Changes in ER calcium levels and protein glycosylation as well as misfolded
protein accumulation trigger ER stress leading to eIF2α phosphorylation and increased ATF4 and
CHOP [119,120]. ER stress activates another unique ISR subgroup, an ER stress-induced ISR (erISR).

Mitochondria associate with the ER and assist in calcium maintenance, leading investigators to
speculate whether mitochondrial dysfunction triggers ISR by causing ER stress. To determine whether
mitochondrial dysfunction stimulates ER stress, studies examined classical ER stress markers not
involved in the ISR. Studies found that mitochondrial dysfunction triggers the mtISR independently of
general ER stress [93]. Although the mtISR does not appear to involve ER stress, these phenomena
are not mutually exclusive (Figure 2). AD neurons exhibit increased ER stress markers concomitant
with eIF2α phosphorylation. IHC studies show the ER stress markers, p-PERK and p-IRE1, increase
in AD hippocampal neurons along with p-eIF2α. p-eIF2α and p-PERK antibodies stain similar
granular structures in AD pyramidal hippocampal neurons, suggesting concomitant ER stress and ISR.
While correlative, these findings suggest erISR occurs in AD [121]. Further work should attempt to
determine whether a mtISR occurs in AD. To our knowledge, no articles discuss potential mitochondrial
contributions to the observed AD ISR activation.
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Figure 2. Mitochondrial stress and ER stress stimulate the ISR, which reduces general protein
translation while upregulating stress responsive factors. ER stress activates the ISR through PERK,
while mitochondrial stress may activate the ISR through multiple eIF2α kinases.

8. AD Activates the ISR: Could Mitochondrial Dysfunction Contribute?

Declining mitochondrial function during aging could theoretically stimulate retrograde
responses [122]. AD brains display mitochondrial dysfunction beyond those observed with normal
aging. Groups hypothesize that compensatory responses fail in AD once mitochondrial dysfunction
passes a threshold, thus favoring disease progression [47]. In this hypothesized paradigm, beneficial
compensatory responses decline during disease progression while potentially maladaptive stress
responses predominate. Under certain conditions, ISR activation may represent a maladaptive
response [123]. Maladaptive retrograde responses seem counterintuitive, however, inhibiting retrograde
responses proves beneficial in multiple scenarios. For example, chronic ISR activation appears to favor
cell death and inhibiting ISR activity proves beneficial in traumatic brain injury models [124]. Similarly,
NFκB activation can favor apoptosis in cases of severe stress [125]. Researchers speculate that many
retrograde responses may prove beneficial in the short term but become detrimental upon chronic
activation [126].

Few studies focus on retrograde responses in the AD brain. In fact, many mammalian retrograde
response studies use cancer cells which may respond differently to mitochondrial stress than postmitotic
neurons. However, several lines of evidence suggest retrograde responses occur in neurons. Drosophila
melanogaster models of neuronal mitochondrial dysfunction identify hypoxia inducible factor 1α,
forkhead box O (FOXO) and ATF4 as key retrograde responders [127]. Human primary mitochondrial
diseases often present with neurological deficits and cell lines carrying associated mtDNA mutations
display retrograde responses [128]. Differentiated dopaminergic neurons treated with a complex
I inhibitor upregulated ATF4 signaling pathways according to transcriptional profiling [129]. The
diversity in retrograde responses makes it difficult to describe a canonical retrograde response in
disease states, however, AD brains display changes in numerous factors implicated in mammalian
retrograde responses.

Postmortem AD brains generally display NFκB activation and cyclic AMP response element
binding protein (CREB) alterations, both of which can be affected by mitochondrial dysfunction and
subsequent changes in Ca2+ concentration [130]. AD brains also possess decreased HIF1α and cortical
SIRT1 levels [131,132]. The AD parietal lobe also displays activated Akt/mTOR as well as increases
in downstream targets [133]. All of these factors can participate in retrograde responses, however,
they all respond to diverse stimuli. AD mitochondrial dysfunction could activate these response or,
alternatively, deficits in these responses could make cells more vulnerable to mitochondrial dysfunction.
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Currently, there is not enough evidence to support strong conclusions regarding the nature and function
of retrograde responses in AD.

Another hypothetical consequence of AD mitochondrial dysfunction is ISR activation.
Post-mortem AD brains display ISR activation. Given the well documented mitochondrial dysfunction
in AD and evidence suggesting mitochondrial dysfunction stimulates the mtISR, it seems possible a
mtISR occurs in AD brain. Numerous studies describe increased eIF2α phosphorylation in AD brains,
particularly in hippocampal neurons [134,135] ATF4 protein levels increase in AD frontal cortex and
increased ATF4 correlates fairly well with increased p-eIF2α [135]. IHC studies reveal increases in
ATF4 positive cells in AD entorhinal cortex and subiculum, but decreases in the hippocampus [136].
CHOP protein also increases in AD cortex [137]. AD brains display defects in ribosome function and
protein translation, although the ISR’s role in these deficits remains unclear [138]. Whether the ISR
activation in AD stems largely from ER stress or mitochondrial dysfunction remains unknown.

Several groups propose amyloid beta and tau alterations trigger the ISR. In embryonic rat
hippocampal cultures, amyloid beta oligomer treatment induces axonal ATF4 and CHOP synthesis.
ATF4 siRNA desensitizes rat hippocampal cultures to amyloid beta’s negative effects, suggesting
ATF4 potentiates amyloid beta toxicity [136]. However, aged Tg2576 mice, which accumulate amyloid
plaques, do not display CHOP induction [137]. Colocalization experiments with ER stress markers
and tau antibodies reveal a correlation between p-PERK staining and pretangle neurons containing
hyperphosphorylated tau. Interestingly, neurons decorated with NFTs rarely display p-PERK staining,
suggesting ER stress markers appear early in disease progression [139]. ER stress and mitochondrial
dysfunction independently activate the ISR. Both ER stress and mitochondrial dysfunction occur
in AD. Therefore, it seems reasonable that the mtISR may occur in AD alongside the erISR. While
evidence suggests the possibility of a mtISR in AD, more work is needed to support this hypothetical
relationship. If AD mitochondrial dysfunction triggers disease relevant retrograde responses, then
therapeutic approaches should consider whether the compensatory mechanisms represent beneficial
or maladaptive responses.

9. Conclusions

Mitochondrial dysfunction occurs in AD. Mitochondrial and metabolic abnormalities present
early in disease progression. Systemic AD metabolic changes may prove useful diagnostically, and
mitochondrial dysfunction seems to be a reasonable therapeutic target. Mitochondria-specific stress
responses help cells cope with mitochondrial dysfunction. Certain mitochondrial stress response
components are activated in AD, although to what extent these stress responses contribute to retarding
or promoting AD progression remains unclear.
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Abstract: Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability
to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance
of the ‘physiologic reserve’. Although their double-membrane structure and primary role as
‘powerhouses of the cell’ have essentially remained the same for ~2 billion years, they have evolved
to regulate other cell functions that contribute to the aging process, such as reactive oxygen species
generation, inflammation, senescence, and apoptosis. Biological aging is characterized by buildup of
intracellular debris (e.g., oxidative damage, protein aggregates, and lipofuscin), which fuels a ‘vicious
cycle’ of cell/DNA danger response activation (CDR and DDR, respectively), chronic inflammation
(‘inflammaging’), and progressive cell deterioration. Therapeutic options that coordinately mitigate
age-related declines in mitochondria and organelles involved in quality control, repair, and recycling
are therefore highly desirable. Rejuvenation by exercise is a non-pharmacological approach that
targets all the major hallmarks of aging and extends both health- and lifespan in modern humans.

Keywords: aging; exercise; mitochondria; aerobic; ROS; inflammation; senescence; lysosome;
autophagy; mitophagy

1. Introduction

Mitochondria are the energy-producing organelles of nearly all eukaryotic cells, which arose
~1.5–2 billion years ago when a phototrophic α-proteobacterium was endocytosed by an ancestral
eukaryote [1]. This endosymbiotic relationship is thought to have conferred significant evolutionary
advantages to the anaerobic host at a time when Earth was becoming more oxygenated [2]. The increased
energy availability allowed for expansion of the eukaryotic genome, enhanced protein expression, and
more complex signaling pathways and cellular traits [3], allowing for the rise of complex life [4].

In terms of human evolution, the first marked increase in hominin brain size emerged ~2 million
years ago concurrent with increased exploration (ranging, scavenging, and hunting), a dietary shift to
higher quality/nutrient-dense food (meat), and technological sophistication [5,6]. Striding bipedalism,
such as long-distance walking and running, is a unique human trait contingent upon aerobic prowess
(e.g., lungs, heart, and muscles), and allowed for divergence from their apelike forbears to become
successful hunters [7,8]. It is now widely accepted that the ability to deliver and utilize oxygen
by the cardiorespiratory system and skeletal muscles, respectively (e.g., maximal aerobic capacity;
VO2max), is a strong determinant of health and longevity in modern humans [9]. For example, runners
have ~45–70% and ~30–50% reduced risk of mortality from cardiovascular disease (CVD) and cancer,
respectively, and live 3–10% (2–8 years) longer than non-runners [10,11].

Considering the profound role of mitochondria in the evolution of aerobic life, it is not surprising
that they hold a central position in cellular homeostasis and drive many aspects of the biological
aging process. Aging is characterized by a progressive impairment of all body organs, including
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those that regulate VO2max and locomotion (e.g., cardiorespiratory, nervous, and musculoskeletal
systems), resulting in a ~10% decline in aerobic capacity per decade in both males and females after
~30 years of age [12,13]. Post-mitotic cells are particularly susceptible to the ‘wear and tear’ of aging,
as exemplified by the progressive build-up of intracellular debris over a lifetime [14]. Concomitant
oxidative damage, protein aggregation, and lipofuscinogenesis are interrelated features of the aging
process, neurodegenerative disease, and lysosomal storage disorders [14–16]. Collectively, these
danger-associated molecular patterns (DAMPs) fuel a ‘vicious cycle’ of cell/DNA danger response
activation (CDR and DDR, respectively), senescence, and systemic inflammation (‘inflammaging’) [17].
Organelles that regulate reactive oxygen species (ROS) production (mitochondria), protein quality
control/repair (unfolded protein response: endoplasmic reticulum (UPRER) and mitochondria (UPRMT)),
and recycling (autophagosomes, lysosomes, and proteasomes) therefore constitute the cell’s major
defense systems against aging. Arguably, no other organelle is more important than the mitochondria in
this context because they provide the bulk of the energy needed to sustain the ‘physiologic reserve’ and
regulate other vital functions for cell survival, including ROS production, inflammation, senescence,
and apoptosis (Figure 1) [18–20]. Currently, physical activity (PA) and caloric restriction represent
the only non-pharmacologic means to enhance health-span and life expectancy by their ability to
coordinately rejuvenate the systems that drive the biological aging process [21,22]; however, exercise is
the only factor confirmed to lower morbidity and all-cause mortality in epidemiological studies.

Herein, we highlight the integrative nature of cell aging, review the evidence for age-associated
mitochondrial dysfunction, and discuss how habitual PA attenuates the biological aging process,
specifically aerobic (AET) and resistance (RET) exercise training. Because mitochondria have been
extensively studied in heart and muscle, the main organs that limit VO2max, we primarily focus on
myocellular aging in this review.

Figure 1. Major eukaryotic cell functions regulated by mitochondria. ATP: adenosine triphosphate;
ROS: reactive oxygen species; Ca2+: calcium ion.

2. Integrated Systems Hypothesis of Aging

Although over 300 hypotheses of aging have been proposed to date, with the vast majority
focused on observable age effects (‘wear and tear’) or presumed root causes of age-associated pathology
(‘primary damage’) [23], the common denominator across species has not yet been identified. The works
of Schrödinger [24], Bortz [25], and Hayflick [26,27] collectively point to biological aging being a
stochastic process occurring after reproductive maturity that is driven by entropy and results in
progressive accumulation of random, irreparable losses in molecular fidelity. In line with the second
law of thermodynamics, entropy is the tendency of a system to spontaneously disperse energy and
evolve toward thermodynamic equilibrium, which is exemplified by a molecule’s altered energy
state following breakage of its intra- and/or inter-molecular bonds. According to Hayflick [27],
entropic changes are circumvented by the cell’s high-fidelity repair and replacement mechanisms until
reproductive maturity, at which the rate of damage accumulation exceeds the rate of self-renewal.

One of the most prominent hypotheses in the category of ‘primary damage’ is Denham Harman’s
free radical theory of aging [28], originally conceptualized in 1954 but still garnering interest in the
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research community [29]. The original hypothesis posits that oxygen free radicals are the driving
factors of aging, but has evolved to include all forms of reactive oxygen species (ROS) and mitochondria
as the main source of ROS (oxidative stress and mitochondrial theories of aging, respectively) [28,30,31].
Subsequent observations of buildup of indigestible material in the lysosomes of post-mitotic cells (e.g.,
ferritin, mitochondrial fragments, and lipofuscin/‘age-pigment’) connected the aging process with
an impairment in autolysosomal clearance (the mitochondrial–lysosomal axis theory of aging) [14].
Franceschi et al. further expanded on this integrated hypothesis by arguing that chronic, systemic
inflammation at old age (inflammaging) is fueled by intracellular DAMPs originating from this ‘garbage
catastrophe’ [32].

In summary, aging may be driven by entropy and manifests as a progressive accumulation
of molecules with altered energy states, rendering them inactive or malfunctioning, prone to
posttranslational modifications (e.g., oxidation, acetylation, methylation, glycation, etc.), cross-linking,
and aggregation, and ultimately resistant to normal recycling mechanisms (for example, advanced
glycation end products (AGEs) and lipofuscin). While mitochondria still remain central to the biological
aging process in this view (by virtue of altered ROS and energy production), other organelles involved
in recycling and quality control/repair also age, thus contributing to the ‘vicious cycle’ of debris
accumulation, DAMP-activation of CDR/DDR, inflammation, and induction of cell-death (Figure 2).

 

Figure 2. Integrated Systems Hypothesis of Aging (see text for details). DAMPs: danger-associated
molecular patterns; ER: endoplasmic reticulum; CDR: cell danger response; DDR: DNA danger response;
Inflammaging: chronic, low-grade inflammation with aging; SASP: senescence-associated secretory
phenotype; Gerokines: cytokines, chemokines, growth factors, and proteases increased with aging;
Vicious cycle: self-reinforcing feedback loop with detrimental outcome(s); NLRP3: inflammasome;
P16: tumor suppressor protein P16INK4A/CDKN2A; P21: tumor suppressor protein P21Cip1/CDKN1A;
IL: interleukin; TNF: tumor necrosis factor; CXCL-1: chemokine (C-X-C motif) ligand 1 (also KC and
GROα); GM-CSF: granulocyte-macrophage colony-stimulating factor.

3. Mitochondrial Respiration: Yin and Yang of Aerobic Life

From an aging perspective, thermodynamically unfavorable/endergonic processes, such as
biosynthesis and repair, are essential to counteract inevitable energy dispersal by entropy. A consistent
supply of energy in the form of adenosine triphosphate (ATP) is integral to maintain tissue order and
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function; a task that is governed by the mitochondria [33]. Mammalian mitochondria generate >80%
of cellular ATP under normal conditions and are composed of ~1158 proteins encoded by the nuclear
genome and to a lesser extent by mitochondrial DNA (mtDNA) (MitoCarta2.0 [34]). The 37 gene
products transcribed by mtDNA (e.g., 2 ribosomal ribonucleic acids (rRNAs), 22 transfer ribonucleic
acids (tRNAs), 13 protein sub-units (7 complex I, 1 complex III, 3 complex IV, and 2 complex V)) are
synthesized within the organelle itself, while the vast majority of mitochondrial proteins are encoded
by the nuclear genome, synthesized in the cytoplasm, and imported by the mitochondrial translocation
machinery. Mitochondrial biogenesis, and by extension energy supply, cell homeostasis, and human
longevity, rely on the synchronous and concerted action of these processes.

Aerobic energy production by mitochondria, referred to as oxidative phosphorylation (OXPHOS),
consumes the vast majority of cellular oxygen and is driven by a series of redox reactions/electron
transfers in the inner mitochondrial membrane (mitochondrial respiratory chain (MRC)) [35]. In this
process, electrons are successively transferred from electron donors (reducing agents) generated by
macronutrient oxidation (glucose, fatty acids, and amino acids) to successively more electronegative
electron-acceptors (oxidizing agents) in order to establish a proton gradient to drive ATP synthesis.
Ironically, molecular oxygen is not only essential for ATP synthesis, but also represents a major source
of reactive oxygen species (ROS) in mammalian cells, making oxidative metabolism a double-edged
sword requiring careful cellular coordination.

As a natural by-product of respiration, ~0.2–2% of molecular oxygen undergoes a one-electron
reduction into superoxide radicals in complexes I and III (O2

−•), which may be further converted
into membrane-permeable singlet oxygen (1ΔgO2 and 2∑gO2) or hydrogen peroxide (H2O2) [36–39].
Although mainly generated by complexes I and III, H2O2 and O2

−• are also produced by the monoamine
oxidases and NADPH oxidases in mitochondria [39,40]. Transition metals in iron–sulfur clusters in
the MRC and lysosomes may react with H2O2 to generate hydroxyl radicals (•OH; via Fenton-type
reactions), which are short-lived but indiscriminate oxidants that are highly dangerous to biological
organisms [20]. Superoxide may also become protonated into perhydroxyl radicals (HO2

•) and have
been proposed to play a central role in mediating the toxic side effects of aerobic respiration because
of their high reactivity and membrane permeability [41]. Other potentially damaging molecules are
also produced by the mitochondria, such as nitric oxide (NO•) and peroxynitrite (ONOO−), but are
technically considered reactive nitrogen species (RNS).

Chronic overproduction of ROS can lead to oxidative damage, cell toxicity, and apoptosis, and is
linked to neurodegenerative diseases, cancer, and aging [42,43]. Paradoxically, ROS are also integral
for regulation of cell signaling pathways, gene expression, and exercise adaptations [20]. Consequently,
the complete amelioration of pro-oxidants is not advantageous for cell viability or health [43,44].
ROS levels are thereby exquisitely fine-tuned by the cell’s principal enzymatic (EA) and non-enzymatic
(NEA) antioxidant defense systems (EA: superoxide dismutases 1 and 2 (Cu/Zn-SOD and Mn-SOD,
respectively), catalase, glutathione reductase, and glutathione peroxidases (GPx 1-4); NEA: reduced vs.
oxidized glutathione (GSH: GSSG ratio), vitamin E, and vitamin C). Perturbations in the ‘redox state’ of
the cell, generally defined as an imbalance between (pro-oxidants)/(anti-oxidants), predisposes towards
oxidative damage [20]. Biological targets include lipids and proteins of cell membranes and nucleic
acids of either genome being the most vulnerable in post-mitotic tissues. Oxidative modifications
may lead to inactivation, fragmentation, and degradation of proteins, decomposition of membrane
lipids, and significant RNA/DNA damage, including strand breaks, cross-links, and mutations, which
predispose for senescence and cell-death [43].

4. Mitochondrial Aging

4.1. Oxidative Stress, mtDNA Mutagenesis, Apoptosis, and Respiration

Although direct evidence from human trials is lacking, mitochondrial O2
−• and H2O2 production

increases with advancing age and is inversely correlated to lifespan in multiple mammalian species
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and flies [45–48]. Excessive mitochondrial ROS production (and/or reduced antioxidant capacity) is
associated with oxidative damage, MRC dysfunction, loss of mitochondrial membrane potential (ΔΨm),
and induction of cell-death pathways in post-mitotic tissues of both prematurely (progeroid) and
physiologically aged animal models. For example, mtDNA polymerase gamma-deficient mice (PolG;
↑ mtDNA mutagenesis) exhibit an accelerated aging phenotype (shorter lifespan, muscle atrophy,
cardiomyopathy, anemia, thin dermis, gray fur, and kyphosis), deficits in OXPHOS function and
ATP synthesis, and increased ROS-induced damage to mitochondrial proteins and nucleic acids [49].
Consistent with observations made in old Fisher 344 Brown Norway rats [48], reduced ΔΨm in
PolG mice is associated with the release of pro-apoptotic factors and induction of apoptosis, which
likely contributes to organ dysfunction and muscle wasting in this model [50–52]. As cogently
summarized by others [53,54], ROS imbalance, Ca2+ dysregulation, and/or loss of ΔΨm may mediate
mitochondrial outer membrane permeabilization and activation of intrinsic apoptotic pathways
by opening of the mitochondrial permeability transition pore (mPTP) and the Bax/Bcl2-controlled
mitochondrial apoptosis channel. ROS also contribute to telomere shortening and nuclear DNA
instability (mainly in stem cells [55]), and genotoxic damage is a known activator of p53-mediated
mPTP opening and apoptosis [56], which is the basis of the telomere-p53-mitochondrion model
of aging [57]. In other words, several intrinsic (mitochondrial, ER, and lysosomal) and extrinsic
(death receptor-induction by TNF-α and FasL) pathways may cooperate in myonuclear and satellite
cell apoptosis, while mitochondria-driven cell death is believed to play the most important role in
sarcopenia of aging [53,54,58,59].

Biological aging in humans is characterized by a progressive accumulation of oxidative damage
and mutations to the mitochondrial genome from the third decade of life onward in several post-mitotic
tissues (for example, muscle, heart, and brain) [31,60–63]. Concurrent with (or as a result of) increased
ROS-induced damage and/or mtDNA mutagenesis, aging mitochondria display morphological
abnormalities [30,64], lower MRC and OXPHOS activities [65,66], and impaired ATP synthesis [67,68].
Age-associated mitochondrial dysfunction, as assessed in vivo or at the whole tissue level [69], is
attributable to intrinsic mitochondrial deficiency and a reduction in organellar number [68,70,71]. Due
to the close proximity of mtDNA to the source of ROS, lack of protection by histones, and limited
capacity for DNA repair [72,73], mtDNA is more susceptible to oxidative damage than nuclear DNA
(nDNA), resulting in a nearly 20-fold higher mutation rate [74], including deletions [75–80], tandem
duplications [81], and single base modifications [82]. In a series of landmark publications by the
groups of Aiken and Turnbull, it was shown that clonal expansion of mtDNA mutations were linked
to energy-deficient, cytochrome c oxidase-negative (COX−) areas within skeletal muscle that contained
atrophied and broken myofibers with high apoptotic susceptibility [75,76,83–87]. In one elegant
study, Bua et al. found that a significant number of vastus lateralis (VL) muscle fibers displayed a
‘ragged-blue phenotype’ (e.g., succinate dehydrogenase-hyperactive (SDH++) and COX−) in older
humans (>90 years), and that >80% of the total mtDNA pool was mutated in affected fibers [76]. Other
findings suggest that random deletions may be present in up to 70% of mtDNA molecules in VL muscle
of ‘the oldest old’, primarily affecting MRC complexes that contain mtDNA-encoded subunits [88].

Collectively, animal and human studies indicate that MRC dysfunction and OXPHOS deficits are
common features of biological aging across multiple species (e.g., flies, mice, rats, dogs, monkeys, and
humans) [89], and that a loss of ΔΨm, redox imbalance, and mtDNA mutagenesis confer a significant
challenge to a plethora of organ systems and cell functions in mammals (Figure 3). It is well-known
that the major growth-regulatory processes in skeletal muscle (GRPs; synthesis, degradation, satellite
cell function, and apoptosis) are sensitive to perturbations in ROS, Ca2+, ATP, and immunological
homeostasis. Progressive dysfunction of organelles that regulate the aforementioned signaling
molecules in skeletal muscle may therefore underlie the age-associated induction of intrinsic and
extrinsic apoptotic pathways [53,54], reduction in proliferation and differentiation potentials of satellite
cells [90], and desensitization to the anabolic and anti-proteolytic effects of insulin receptor (IR)
stimulation [91–94]. Although these observations are consistent with the mitochondrial theory of
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aging [28,30,95], the question as to whether mitochondrial dysfunction drives the aging process and
sarcopenia remains to be answered.

 
Figure 3. Age-associated deterioration in ‘quantity and quality’ of mitochondria. ROS: reactive
oxygen species; mtDNA: mitochondrial DNA; ΔΨm: mitochondrial membrane potential; ATP:
adenosine triphosphate

4.2. Garbage Catastrophe—The Role of Mitochondria

Recycling of biologic waste provides the cell with new building-blocks and substrates for energy
metabolism; an integral housekeeping process predominately executed by the proteasome and
lysosomes. Clearance of damaged organelles and macromolecules is critically important to maintain
tissue homeostasis, particularly in post-mitotic cells that are unable to undergo waste dilution by cell
division. Mitochondrial proteostasis is governed by an integrated network of pathways that include
the organelles specialized in recycling and protein quality control (e.g., 26S proteasome, autolysosomal
system, and PERK-mediated UPRER) and mitochondria-specific QC mechanisms (fusion/fission,
mitophagy, various proteases, and the GCN2-mediated UPRMT) [96,97]. Failure to maintain cellular
clearance causes clumping of oxidatively damaged and misfolded proteins, formation of insoluble
aggregates, and cell death by apoptosis or necrosis. The importance of efficient waste disposal
is demonstrated by the fact that its disruption leads to neurodegenerative disease and lysosomal
storage disorders; conditions linked to accelerated aging of neurons and muscle cells. Ablation
of genes coding for lysosomal hydrolases or proteins that regulate intracellular waste delivery to
lysosomes (e.g., autophagy) is associated with autophagic blockage, mitochondrial dysfunction, and
tissue deterioration. In the case of acid α-glucosidase deficiency (Pompe disease), failure to clear
lysosomal glycogen leads to cardiorespiratory insufficiency, muscle wasting, and premature death [98].
Conversely, pharmacological or genetic manipulations that prolong lifespan in model organisms
typically activate cellular clearance pathways, and their inhibition may negate the life-extending effects,
as in the case of caloric restriction [99].

A unifying feature in the pathogenesis of mammalian aging and accelerated aging conditions is
the progressive deposition of cytotoxic debris impervious to lysosomal and proteasomal degradation.
Age-related functional declines in autophagy, including macroautophagy and microautophagy
(and likely aggrephagy), are linked to impaired mitochondrial turnover, protein aggregation, and
accumulation of lipofuscin [14,16,99–103]. Lipofuscin, or ‘aging pigment’, is a degradation-resistant,
redox-active biomolecule composed of oxidized proteins (30–70%), lipids (20–50%), and transition
metals (iron, copper etc.) and increases with advancing age in lysosomes of post-mitotic
cells [100,104–106]. In humans, lipofuscin has been demonstrated in heart, liver, kidney, and skin, but
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is believed to play the most fundamental role in the aging process of neurons and muscle cells [100].
Motor neurons in the anterior horn of the spinal cord, which innervate muscles necessary for voluntary
movement of the limbs and trunk, appear particularly susceptible to lipofuscin deposition [104]. In
addition, lipofuscin in skeletal muscle has been proposed to be a more robust marker of age-induced
pathology compared to oxidative stress/damage [107].

Due to degradation of iron-containing macromolecules (ferritin, myoglobin, cytochrome c (e.g.,
mitochondrial complexes)), lysosomes, and by extension lipofuscin, contain significant amounts of
low-mass, reactive iron (Fe2+), which catalyze Fenton-type reactions (H2O2 → •OH)[108]. Hydroxyl
radicals are extremely harmful and induce ubiquitous damage to biologic material, including
peroxidation and permeabilization of the lysosomal membrane (LMP). Aspartic and cysteine cathepsins
are released from LMP and cleave targets in the apoptotic pathway (Bid, Bcl-2 family members, caspase
8, and XIAP), culminating in activation of apoptosis, amplification of the apoptotic response, and/or
necrosis [109]. Other known LMP inducers are DNA damage, lysosomotropic agents, calpain 1, and
extrinsic stimuli such as death receptor ligands and signaling enhancers (TNF-α, FasL, IFN-γ) [109].
In addition to being independent activators of apoptosis, significant crosstalk occurs between lysosomes,
mitochondria, and the ER in response to cellular stress via H2O2, cathepsins, and Ca2+. According
to the mitochondrial–lysosomal axis theory of aging, mitochondrial ROS serves as an accelerant
of lipofuscinogenesis, which impairs lysosomal degradative capacity and recycling of damaged
mitochondria, further perpetuating redox imbalance, cytotoxicity, and debris aggregation [14].
Collectively, mitochondria and lysosomes generate the vast majority of ‘accelerating agents’ for
oxidation, aggregation, and lipofuscinogenesis (ROS and Fe2+, respectively), play major roles in the
induction of cell death, and likely contribute significantly to sarcopenia and the biological aging process.

4.3. Inflammaging—The Role of Mitochondria

Inflammation is a basic biological response to prevent, limit, and repair damage by invading
pathogens or endogenous biomolecules. Cell stress and infectious agents trigger transmembrane
(Toll-like (TLR) and C-type lectin) and cytosolic (NOD-like (NLR), RIG-I-like (RLR), and PYHIN
protein family) signaling receptors in immune and non-immune cells, which activate intracellular
and humoral components of the innate and acquired immune systems [110]. While the transient
inflammatory response is beneficial (removal of pathogens, mitigation of injury, and clearance of
dying cells), persistent inflammation is associated with tissue dysfunction and pathology (obesity,
type 2 diabetes, atherosclerosis, asthma, and neurodegenerative diseases) [111]. Chronic low-grade
inflammation (inflammaging) is a hallmark of biological aging and is characterized by a 2 to 4-fold
increase in circulating cytokines, chemokines, growth factors, and proteases, collectively termed
‘gerokines’, which may be broadly classified into pro- (TNF-α, IL-1α/β, IL-8, IFNγ, VEGF, etc.) and
anti-inflammatory (IL-2, IL-4, IL-10, IL-13, TGF-β, etc.) factors [17,32]. Inflammaging is attributed to
DAMP-activation of the innate immune response, cell senescence (e.g., SASP; senescence-associated
secretory phenotype), and immunosenescence, and has been linked to an elevation in all-cause mortality
and sarcopenia [112–118].

In 2002, Jürg Tschopp discovered a molecular platform that mediates the induction of the
innate immune response in myeloid (monocytes, macrophages, dendritic cells, and neutrophils)
and nonmyeloid cells (nerve, muscle, heart, endothelial etc.) [119,120]. The multi-protein complex,
referred to as the inflammasome, is a cytosolic receptor that senses pathogen- and damage-associated
molecular patterns (PAMPs and DAMPs, respectively), activates caspase-1, and causes IL-1β/IL-18
maturation. Subsequent secretion of IL-1β/IL-18 recruits immune cells to the site of damage, which leads
to further release of cytokines and chemokines (TNF- α, IL-1β etc.), cell death, and phagocytosis
of apoptotic bodies. NLRP3, the most widely studied inflammasome, requires a priming step by
NF-κB and a danger/pathogen signal to become fully activated [121]. Tschopp’s group demonstrated
that ROS overgeneration by mitochondria, induced by inhibition of mitophagy (via 3-MA and
Beclin1/ATG5 knockdown) or complex I and III inactivation (via rotenone and anti-mycin, respectively),
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activated the NLRP3 inflammasome and promoted IL-1β secretion [122,123]. Other DAMPs, including
mitochondrial- (mtDNA, cardiolipin, mitofusins, and the mitochondrial antiviral-signaling protein
(MAVS)), lysosomal- (cathepsins), and ER-derived (Ca2+), directly regulate NLRP3 activity or are
integral in the recruitment and docking of the inflammasome to the mitochondria [110,124]. Oxidized
mtDNA released during apoptosis is a known inducer of NLRP3 [125], increases gradually after the fifth
decade of life, and is positively correlated to systemic proinflammatory cytokine levels [115]. Failure
to recycle damaged mitochondria causes ROS overgeneration, mtDNA damage, and exacerbation
of the inflammatory response (as shown by Tschopp et al.). Taken together, these data suggest that
age-associated danger signals generated from mitochondria, lysosomes, and the ER contribute to
inflammaging and sarcopenia [113].

5. The Anti-Aging Benefits of Physical Activity

In light of the hormetic effects of low levels and/or pulses of oxidative stress [20,126], aging
intervention strategies should be aimed at dampening (but not ameliorating) persistent ROS
overgeneration and removing oxidative damage and protein aggregates as expediently as possible,
which would limit the formation of waste products refractory to normal enzyme catalysis and
inflammation. Attenuation of the major hallmarks of aging will not halt entropy per se, but will delay
downstream pathology, extend health-span, and add longevity. Accrual of an excess physiologic
reserve before the reproductive peak in humans (20–30 years), and maintenance of this reserve capacity
by efficient repair and recycling in adulthood (40 years onwards), are synonymous with life extension,
but may necessitate a combined approach of pharmacotherapy, rejuvenative biotechnology, and lifestyle
modification. The feasibility of using non-exercise strategies for life extension has been discussed
elsewhere [127].

5.1. Acute Exercise is Hormesis

Acute contractile activity is a hormetic stress stimulus that temporarily alters intracellular danger
signals (ROS, Ca2+, pH, and hypoxia), lowers cellular energy state (NAD+/NADH and AMP/ATP),
and promotes release of hormones and circulatory factors (‘exerkines’), which synchronously activate
signaling pathways that stimulate mitochondrial biogenesis (CaMK II, PGC-1α, SIRT1, and AMPK),
antioxidant defense (Nrf2-Keap1, NF-κB, and MAPK), waste recycling (autophagy (ULK1-Beclin1)
and 26S proteasome (FOXO3a)), and the immune response (IL-1β, IL-18, IL-6, IL-10, IL-1ra, sTNF-R,
etc.) [20,21,128–139]. Anabolic GRPs, mainly mediated by Akt-mTOR signaling (e.g., protein synthesis),
are activated following exercise concomitant with energy repletion, and may stay elevated for 1–2 days in
older adults [140]. Consistent with the concept of hormesis [44,141], repeated exposure to a single-stress
stimulus such as exercise improves stress resistance and immunity, rejuvenates mitochondria (increased
biogenesis, recycling, and damage removal), and increases the organ functional reserve [17].

5.2. Mitochondrial Rejuvenation

The long-term benefits of PA are multi-systemic (muscular, nervous, vascular, endocrine, and
immune systems) and culminate in reduced all-cause mortality and enhanced longevity (e.g., ~3–10%
in average life expectancy) [10,11]. AET is considered the gold standard to improve mitochondrial
biogenesis, insulin sensitivity, and cardiorespiratory fitness across all age groups. In older adults, AET
partially reverses mitochondrial dysfunction by augmenting mtDNA copy number, mitochondrial
transcript and protein expression, oxidative enzyme function, ATP synthesis, and total mitochondrial
volume [142–144]. Short et al. demonstrated that the capacity for mitochondrial biogenesis (e.g.,
PGC-1α, NRF1, and TFAM), mitochondrial gene expression (COX IV and ND4), and Kreb’s cycle/MRC
enzyme activities (CS and COX) may be enhanced by AET regardless of age [143]. Indeed, 12 weeks of
progressive moderate-intensity AET (50–70% VO2 max) increased total mitochondrial content (mtDNA
and cardiolipin), MRC function (NADH oxidase and succinate oxidase), and HOMA-IR (Homeostatic
Model Assessment of Insulin Resistance) in older adults [142]. In the latter study, both pools of
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mitochondria (e.g., subsarcolemmal and intermyofibrillar) were responsive to contractile activity and
the majority of mitochondrial variables were improved by >50%. Although findings by Broskey et al.
suggest that AET-induced mitochondrial benefits are largely ascribed to higher mitochondrial volume
density [144], other studies (both cross-sectional and longitudinal) indicate that the intrinsic quality of
individual mitochondria may also be enhanced by AET [145–147].

RET is generally considered to have minimal effects on mitochondrial biogenesis, but our group
and others have clearly shown that strength training rejuvenates the mitochondrial transcriptome
profile, enhances MRC and antioxidant enzyme activities, and reduces oxidative damage in skeletal
muscle of older adults [148–153]. A study by Jubrias et al. demonstrated that gains in mitochondrial
volume density may even be greater following RET vs. AET in elderly (30% vs. 10%, respectively) [146],
and one report suggests that mitochondrial adaptations are similar regardless of exercise mode [154].
Porter and Rasmussen found that the intrinsic quality of mitochondria is improved by regular strength
training, with a potential shift in the relative contribution of complex I and complex II to maximal
electron transfer [155]. Data from our studies suggest that RET-induced mitochondrial benefits
are partially mediated by activation of satellite cells, which fuse with the mature myofiber and
bring in wildtype mtDNA to ‘dilute down’ the mutant mtDNA pool [153]. The concept of mtDNA
shifting following muscle overload and subtle myofiber injury by concentric and eccentric contractile
activity, respectively, was first introduced by Taivassalo et al. and tested in mitochondrial disease
patients [156,157]. We have now expanded this concept and demonstrated that progressive RET
(50–75% of one-repetition maximum (1-RM)) lowers mtDNA deletions and increases lean mass, muscle
strength, and function in older adults [152,153].

5.3. Intracellular Garbage Clearance

Aging is associated with ROS overgeneration that overwhelms antioxidant defense systems and
leads to oxidative modifications of proteins, lipids, and nDNA/mtDNA [158]. Oxidative damage
and other DAMPs fuel a vicious cycle that culminates in blunted recycling, debris accumulation,
and inflammation. Oxidative stress reduction is thereby a key aspect of anti-aging therapies and a
substantial amount data supports the antioxidant role of PA [20,158]. Regular training induces a shift
from fast to intermediate muscle fiber types (e.g., glycolytic→ more oxidative), which strengthens
antioxidant defense and protects against buildup of damage [20]. Importantly, these observations are
not limited to the muscles, as PA has been shown to have multi-systemic benefits on diverse tissues
(skin and brain, for example), including reductions in nDNA/mtDNA adducts, AGE cross-links, and
amyloid plaques [159–161].

Although the effects of contractile activity on quality control, repair, and recycling mechanisms
remain largely unknown, several research teams have contributed to an increased understanding of how
exercise modulates autolysosomal and 26S proteasomal pathways. Collectively, animal and human
studies suggest that aerobic exercise reduces the cellular energy state, which stimulates lysosomal
biogenesis, macroautophagy, proteasomal activity, and mitochondrial recycling via activation of TFEB
(CLEAR network), ULK1-Beclin1, and FOXO transcription factors [132,162–164]. The magnitude of
the response appears to be dependent upon the duration of exercise and nutrient status (e.g., fed or
fasted state) [132]. In a study by Pagano et al, it was shown that aerobic exercise sequentially activates
AMPK (preceding Akt-mTOR inhibition), ULK1, and FOXO3, leading to an increased LC3BII/LC3BI
ratio, expression of E3 ubiquitin ligases (MuRF1 and MAFbx), and enhanced mitochondrial turnover
(Mul1 and DRP1)[131]. Additionally, the integral role of Bcl2-mediated activation of Beclin1 for
exercise-induced autophagy has previously been demonstrated in multiple tissues by Beth Levine’s
group (muscle, heart, liver, pancreas, adipose tissue, and brain) [129,130]. Importantly, basal autophagic
flux is improved in skeletal muscle following AET, concomitant with a shift from glycolytic to oxidative
myofiber phenotype [165]. Data from our laboratory suggest that AET also augments autophagic
debris removal in LSDs such as Pompe disease [15]. Conversely, RET may preferentially modulate the
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ubiquitin-proteasome pathway [132], but more research is needed to determine the effects of exercise
mode and training intensity on recycling/repair processes.

5.4. Boosting the Immune System

High-intensity and unaccustomed exercise may cause tissue damage, elevated levels of pro- and
anti-inflammatory factors, and delayed onset muscle soreness (DOMS) [17,166,167]. Typically, the acute
inflammatory response is followed by a healing phase, structural remodeling, and muscle adaptation,
which mitigates DOMS from subsequent exercise sessions. Over time, exercise leads to physiological
adaptations into a more stress-resistant, homeostatic level, which protects against age-related chronic
diseases such as systemic inflammation and cancer [17].

Although the anti-inflammatory benefits of PA are traditionally attributed to a reduction in visceral
fat mass and/or induction of an anti-inflammatory environment with each bout of exercise [137,139],
it is plausible that mitochondrial rejuvenation in multiple cell populations concomitantly enhances
immunity via enhanced control of the inflammasome (e.g., ↓DAMP-mediated activation). Considering
that skeletal muscle is an endocrine organ that makes up ~35–50% of total body mass, immune benefits
in older adults may be partially mediated by preservation of muscle mass. Results from randomized
controlled trials indicate that AET and combined AET/RET boost the vaccination response, reduce
circulatory levels of pro-inflammatory cytokines, and augment proliferative capacity and/or function of
multiple cell types in the innate and adaptive immune systems [118]. Our group recently demonstrated
that lifelong AET potently dampens inflammaging, including master regulators of cytokine cascade
and tumorigenesis (IL1-α/β, TNF-α, and IL-6), which partially preserved muscle mass, protected
against multi-systemic cancers, and enhanced health-span of naturally-aged mice [17]. Lastly, the
anti-inflammatory effects of strength training in isolation are understudied, but there is sufficient
evidence of improved immune function following long-term RET in frail elderly [168,169].

6. Conclusions

Concomitant oxidative damage, protein aggregation, lipofuscinogenesis, and inflammation are
unifying features of the normal aging process, neurodegenerative disease, and lysosomal storage
disorders. Activation of clearance pathways extends lifespan in multiple species, collectively suggesting
that the ability to neutralize cytotoxins, recycle debris, and repair stress-induced damage is integral for
survival. Although the ‘ground zero’ of aging may be entropy, we propose that the rate of aging is
predominately dictated by the organelles/processes that govern the most critical needs of the cell, such
as energy production (mitochondria), recycling (autophagosome, lysosome, and 26S proteasome), and
quality control (UPRER and UPTMT). Given their importance in eukaryotic evolution, cell homeostasis,
and growth, mitochondria may be considered the ‘hubs of aerobic life’, and are therefore assigned a
central role in the Integrated Systems Hypothesis of Aging.

An impressive body of knowledge over the last 50 years unequivocally proves that regular exercise
lowers all-cause and cardiovascular mortality risks, enhances health and longevity, and that an inactive
lifestyle is inherently unsafe. Both major types of exercise, aerobic and resistance training, bestow
multi-systemic benefits and protect against the major hallmarks of aging, including mitochondrial
dysfunction, recycling deficiency, impaired quality control, and systemic inflammation, thus providing
a compelling argument in support of exercise as a front-line modality to decelerate the aging process.
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