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1 Introduction and outline of

the book

Recent advances in data collection and data storage techniques enable mar-

keting researchers to study the characteristics of many actual transactions

and purchases, that is, revealed preference data. Owing to the large number

of observations and the wealth of available information, a detailed analysis

of these data is possible. This analysis usually addresses the effects of market-

ing instruments and the effects of household-specific characteristics on the

transaction. Quantitative models are useful tools for this analysis. In this

book we review several such models for revealed preference data. In this

chapter we give a general introduction and provide brief introductions to

the various chapters.

1.1 Introduction

It is the aim of this book to present various important and practi-

cally relevant quantitative models, which can be used in present-day market-

ing research. The reader of this book should become able to apply these

methods in practice, as we provide the data which we use in the various

illustrations and we also add the relevant computer code for EViews if it is

not already included in version 3.1. Other statistical packages that include

estimation routines for some of the reviewed models are, for example,

LIMDEP, SPSS and SAS. Next, the reader should come to understand

(the flavor of) the latest methodological developments as these are put for-

ward in articles in, for example,Marketing Science, the Journal of Marketing

Research, the Journal of Consumer Research and the International Journal of

Research in Marketing. For that matter, we also discuss interesting new

developments in the relevant sections.

The contents of this book originate from lecture notes prepared for under-

graduate and graduate students in Marketing Research and in Econometrics.

Indeed, it is our intention that this book can be used at different teaching

levels. With that aim, all chapters have the same format, and we indicate

1



2 Quantitative models in marketing research

which sections correspond with which teaching level. In section 1.2, we will

provide more details. For all readers, however, it is necessary to have a basic

knowledge of elementary regression techniques and of some matrix algebra.

Most introductory texts on quantitative methods include such material, but

as a courtesy we bring together some important topics in an Appendix at the

end of this book.

There are a few other books dealing with sets of quantitative models

similar to the ones we consider. Examples are Maddala (1983), Ben-Akiva

and Lerman (1985), Cramer (1991) and Long (1997). The present book

differs from these textbooks in at least three respects. The first is that we

discuss the models and their specific application in marketing research con-

cerning revealed preference data. Hence, we pay substantial attention to the

interpretation and evaluation of the models in the light of the specific appli-

cations. The second difference is that we incorporate recent important devel-

opments, such as modeling unobserved heterogeneity and sample selection,

which have already become quite standard in academic marketing research

studies (as may be noticed from many relevant articles in, for example, the

Journal of Marketing Research and Marketing Science). The third difference

concerns the presentation of the material, as will become clear in section 1.2

below. At times the technical level is high, but we believe it is needed in order

to make the book reasonably self-contained.

1.1.1 On marketing research

A useful definition of marketing research, given in the excellent

introductory textbook by Lehmann et al. (1998, p. 1), is that ‘‘[m]arketing

research is the collection, processing, and analysis of information on topics

relevant to marketing. It begins with problem definition and ends with a

report and action recommendations.’’ In the present book we focus only

on the part that concerns the analysis of information. Additionally, we

address only the type of analysis that requires the application of statistical

and econometric methods, which we summarize under the heading of quan-

titative models. The data concern revealed preference data such as sales and

brand choice. In other words, we consider models for quantitative data,

where we pay specific attention to those models that are useful for marketing

research. We do not consider models for stated preference data or other

types of survey data, and hence we abstain from, for example, LISREL-

type models and various multivariate techniques. For a recent treatment of

combining revealed and stated preference data, see Hensher et al. (1999).

Finally, we assume that the data have already been collected and that the

research question has been clearly defined.
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The reasons we focus on revealed preference data, instead of on stated

preference data, are as follows. First, there are already several textbooks on

LISREL-type models (see, for example, Jöreskog and Sörbom, 1993) and on

multivariate statistical techniques (see, for example, Johnson and Wichern,

1998). Second, even though marketing research often involves the collection

and analysis of stated preference data, we observe an increasing availability

of revealed preference data.

Typical research questions in marketing research concern the effects of

marketing instruments and household-specific characteristics on various

marketing performance measures. Examples of these measures are sales,

market shares, brand choice and interpurchase times. Given knowledge of

these effects, one can decide to use marketing instruments in a selective

manner and to address only apparently relevant subsamples of the available

population of households. The latter is usually called segmentation.

Recent advances in data collection and data storage techniques, which

result in large data bases with a substantial amount of information, seem

to have changed the nature of marketing research. Using loyalty cards and

scanners, supermarket chains can track all purchases by individual house-

holds (and even collect information on the brands and products that were

not purchased). Insurance companies, investment firms and charity institu-

tions keep track of all observable activities by their clients or donors. These

developments have made it possible to analyze not only what individuals

themselves state they do or would do (that is, stated preference), but also

what individuals actually do (revealed preference). This paves the way for

greater insights into what really drives loyalty to an insurance company or

into the optimal design for a supermarket, to mention just a few possible

issues. In the end, this could strengthen the relationship between firms and

customers.

The large amount of accurately measured marketing research data implies

that simple graphical tools and elementary modeling techniques in most

cases simply do not suffice for dealing with present-day problems in market-

ing. In general, if one wants to get the most out of the available data bases,

one most likely needs to resort to more advanced techniques. An additional

reason is that more detailed data allow more detailed questions to be

answered. In many cases, more advanced techniques involve quantitative

models, which enable the marketing researcher to examine various correla-

tions between marketing response variables and explanatory variables mea-

suring, for example, household-specific characteristics, demographic

variables and marketing-mix variables.

In sum, in this book we focus on quantitative models for revealed pre-

ference data in marketing research. For conciseness, we do not discuss the

various issues related to solving business problems, as this would require an
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entirely different book. The models we consider are to be viewed as helpful

practical tools when analyzing marketing data, and this analysis can be part

of a more comprehensive approach to solving business problems.

1.1.2 Data

Marketing performance measures can appear in a variety of for-

mats. And, as we will demonstrate in this book, these differing formats often

need different models in order to perform a useful analysis of these measures.

To illustrate varying formats, consider ‘‘sales’’ to be an obvious marketing

performance measure. If ‘‘sales’’ concerns the number of items purchased,

the resultant observations can amount to a limited range of count data, such

as 1; 2; 3; . . . . However, if ‘‘sales’’ refers to the monetary value in dollars (or
cents) of the total number of items purchased, we may consider it as a

continuous variable. Because the evaluation of a company’s sales may

depend on all other sales, one may instead want to consider market shares.

These variables are bounded between 0 and 1 by construction.

Sales and market shares concern variables which are observed over time.

Typically one analyzes weekly sales and market shares. Many other market-

ing research data, however, take only discrete (categorical) values or are only

partially observed. The individual response to a direct mailing can take a

value of 1 if there is a response, and 0 if the individual does not respond. In

that case one has encountered a binomial dependent variable. If households

can choose between three or more brands, say brands A, B, C and D, one has

encountered a multinomial dependent variable. It may then be of interest to

examine whether or not marketing-mix instruments have an effect on brand

choice. If the brands have a known quality or preference ranking that is

common to all households, the multinomial dependent variable is said to

be ordered; if not, it is unordered. Another example of an ordered categorical

variable concerns questionnaire items, for which individuals indicate to what

extent they disagree, are indifferent, or agree with a certain statement.

Marketing research data can also be only partially observed. An example

concerns donations to charity, for which individuals have received a direct

mailing. Several of these individuals do not respond, and hence donate

nothing, while others do respond and at the same time donate some amount.

The interest usually lies in investigating the distinguishing characteristics of

the individuals who donate a lot and those who donate a lesser amount,

while taking into account that individuals with perhaps similar characteris-

tics donate nothing. These data are called censored data. If one knows the

amount donated by an individual only if it exceeds, say, $10, the correspond-

ing data are called truncated data.
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Censoring is also a property of duration data. This type of observation

usually concerns the time that elapses between two events. Examples in

marketing research are interpurchase times and the duration of a relation-

ship between a firm and its customers. These observations are usually col-

lected for panels of individuals, observed over a span of time. At the time of

the first observations, it is unlikely that all households buy a product or

brand at the same time, and hence it is likely that some durations (or rela-

tionships) are already ongoing. Such interpurchase times can be useful in

order to understand, for example, whether or not promotions accelerate

purchasing behavior. For direct marketing, one might model the time

between sending out the direct mailing and the response, which perhaps

can be reduced by additional nationwide advertising. In addition, insurance

companies may benefit from lengthy relationships with their customers.

1.1.3 Models

As might be expected from the above summary, it is highly unlikely

that all these different types of data could be squeezed into one single model

framework. Sales can perhaps be modeled by single-equation linear regres-

sion models and market shares by multiple-equation regression models

(because market shares are interconnected), whereas binomial and multino-

mial data require models that take into account that the dependent variable

is not continuous. In fact, the models for these choice data usually consider,

for example, the probability of a response to a direct mailing and the prob-

ability that a brand is selected out of a set of possible brands. Censored data

require models that take into account the probability that, for example,

households do not donate to charity. Finally, models for duration data

take into account that the time that has elapsed since the last event has an

effect on the probability that the next event will happen.

It is the purpose of this book to review quantitative models for various

typical marketing research data. The standard Linear Regression model is

one example, while the Multinomial Logit model, the Binomial Logit model,

the Nested Logit model, the Censored Regression model and the

Proportional Hazard model are other examples. Even though these models

have different names and take account of the properties of the variable to be

explained, the underlying econometric principles are the same. One can

summarize these principles under the heading of an econometric modeling

cycle. This cycle involves an understanding of the representation of the

model (what does the model actually do? what can the model predict? how

can one interpret the parameters?), estimation of the unknown parameters,

evaluation of the model (does the model summarize the data in an adequate
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way? are there ways to improve the model?), and the extension of the model,

if required.

We follow this rather schematic approach, because it is our impression

that studies in the academic marketing research literature are sometimes not

very explicit about the decision to use a particular model, how the para-

meters were estimated, and how the model results should be interpreted.

Additionally, there are now various statistical packages which include esti-

mation routines for such models as the Nested Logit model and the Ordered

Probit model (to name just a few of the more exotic ones), and it frequently

turns out that it is not easy to interpret the output of these statistical

packages and to verify the adequacy of the procedures followed. In many

cases this output contains a wealth of statistical information, and it is not

always clear what this all means and what one should do if statistics take

particular values. By making explicit several of the modeling steps, we aim to

bridge this potential gap between theory and practice.

1.2 Outline of the book

This book aims to describe some of the main features of various

potentially useful quantitative models for marketing research data.

Following a chapter on the data used throughout this book, there are six

chapters, each dealing with one type of dependent variable. These chapters

are subdivided into sections on (1) representation and interpretation, (2) the

estimation of the model parameters, (3) model diagnostics and inference, (4)

a detailed illustration and (5) advanced topics.

All models and methods are illustrated using actual data sets that are or

have been effectively used in empirical marketing research studies in the

academic literature. The data are available through relevant websites. In

chapter 2, we discuss the data and also some of the research questions. To

sharpen the focus, we will take the data as the main illustration throughout

each chapter. This means that, for example, the chapter on a multinomial

dependent variable (chapter 5) assumes that such a model is useful for mod-

eling brand choice. Needless to say, such a model may also be useful for

other applications. Additionally, to reduce confusion, we will consider the

behavior of a household, and assume that it makes the decisions. Of course

this can be replaced by individuals, customers or other entities, if needed.

1.2.1 How to use this book

The contents of the book are organized in such a way that it can be

used for teaching at various levels or for personal use given different levels of

training.



Introduction and outline of the book 7

The first of the five sections in each of chapters 3 to 8 contains the

representation of the relevant model, the interpretation of the parameters,

and sometimes the interpretation of the full model (by focusing, for example,

on elasticities). The fourth section contains a detailed illustration, whose

content one should be able to grasp given an understanding of the content

of the first section. These two sections can be used for undergraduate as well

as for graduate teaching at a not too technical level. In fact, we ourselves

have tried out these sections on undergraduate students in marketing at

Erasmus University Rotterdam (and, so far, we have not lost our jobs).

Sections 2 and 3 usually contain more technical material because they deal

with parameter estimation, diagnostics, forecasting and model selection.

Section 2 always concerns parameter estimation, and usually we focus on

the Maximum Likelihood method. We provide ample details of this method

as we believe it is useful for a better understanding of the principles under-

lying the diagnostic tests in section 3. Furthermore, many computer

packages do not provide diagnostics and, using the formulas in section 2,

one can compute them oneself. Finally, if one wants to program the estima-

tion routines oneself, one can readily use the material. In many cases one can

replicate our estimation results using the relevant standard routines in

EViews (version 3.1). In some cases these routines do not exist, and in

that case we give the relevant EViews code at the end of the relevant chap-

ters. In addition to sections 1 and 4, one could consider using sections 2 and

3 to teach more advanced undergraduate students, who have a training in

econometrics or advanced quantitative methods, or graduate students in

marketing or econometrics.

Finally, section 5 of each chapter contains advanced material, which may

not be useful for teaching. These sections may be better suited to advanced

graduate students and academics. Academics may want to use the entire

book as a reference source.

1.2.2 Outline of chapter contents

The outline of the various chapters is as follows. In chapter 2 we

start off with detailed graphical and tabulated summaries of the data. We

consider weekly sales, a binomial variable indicating the choice between two

brands, an unordered multinomial variable concerning the choice between

four brands, an ordered multinomial variable for household-specific risk

profiles, a censored variable measuring the amount of money donated to

charity and, finally, interpurchase times in relation to liquid detergent.

In chapter 3 we give a concise treatment of the standard Linear

Regression model, which can be useful for a continuous dependent variable.

We assume some knowledge of basic matrix algebra and of elementary
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statistics. We discuss the representation of the model and the interpretation

of its parameters. We also discuss Ordinary Least Squares (OLS) and

Maximum Likelihood (ML) estimation methods. The latter method is dis-

cussed because it will be used in most chapters, although the concepts under-

lying the OLS method return in chapters 7 and 8. We choose to follow the

convention that the standard Linear Regression model assumes that the data

are normally distributed with a constant variance but with a mean that

obtains different values depending on the explanatory variables. Along simi-

lar lines, we will introduce models for binomial, multinomial and duration

dependent variables in subsequent chapters. The advanced topics section in

chapter 3 deals with the attraction model for market shares. This model

ensures that market shares sum to unity and that they lie within the range

½0; 1�.
The next chapter deals with a binomial dependent variable. We discuss the

binomial Logit and Probit models. These models assume a nonlinear relation

between the explanatory variables and the variable to be explained.

Therefore, we pay considerable attention to parameter interpretation and

model interpretation. We discuss the ML estimation method and we provide

some relevant model diagnostics and evaluation criteria. As with the stan-

dard Linear Regression model, the diagnostics are based on the residuals

from the model. Because these residuals can be defined in various ways for

these models, we discuss this issue at some length. The advanced topics

section is dedicated to the inclusion of unobserved parameter heterogeneity

in the model and to the effects of sample selection for the Logit model.

In chapter 5 we expand on the material of chapter 4 by focusing on an

unordered multinomial dependent variable. Quite a number of models can

be considered, for example the Multinomial Logit model, the Multinomial

Probit model, the Nested Logit model and the Conditional Logit model. We

pay substantial attention to outlining the key differences between the various

models in particular because these are frequently used in empirical marketing

research.

In chapter 6 we focus on the Logit model and the Probit model for an

ordered multinomial dependent variable. Examples of ordered multinomial

data typically appear in questionnaires. The example in chapter 6 concerns

customers of a financial investment firm who have been assigned to three

categories depending on their risk profiles. It is the aim of the empirical

analysis to investigate which customer-specific characteristics can explain

this classification. In the advanced topics section, we discuss various other

models for ordered categorical data.

Chapter 7 deals with censored and truncated dependent variables, that is,

with variables that are partly continuous and partly take some fixed value

(such as 0 or 100) or are partly unknown. We mainly focus on the Truncated
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Regression model and on the two types of Tobit model, the Type-1 and

Type-2 Tobit models. We show what happens if one neglects the fact that

the data are only partially observed. We discuss estimation methods in sub-

stantial detail. The illustration concerns a model for money donated to

charity for a large sample of individuals. In the advanced topics section we

discuss other types of models for data censored in some way.

Finally, in chapter 8 we deal with a duration dependent variable. This

variable has the specific property that its value can be made dependent on the

time that has elapsed since the previous event. For some marketing research

applications this seems a natural way to go, because it may become increas-

ingly likely that households will buy, for example, detergent if it is already a

while since they purchased it. We provide a discussion of the Accelerated

Lifetime model and the Proportional Hazard model, and outline their most

important differences. The advanced topics section contains a discussion of

unobserved heterogeneity. It should be stressed here that the technical level

both of chapter 8 and of chapter 5 is high.

Before we turn to the various models, we first look at some marketing

research data.



2 Features of marketing

research data

The purpose of quantitative models is to summarize marketing research data

such that useful conclusions can be drawn. Typically the conclusions concern

the impact of explanatory variables on a relevant marketing variable, where

we focus only on revealed preference data. To be more precise, the variable

to be explained in these models usually is what we call a marketing perfor-

mance measure, such as sales, market shares or brand choice. The set of

explanatory variables often contains marketing-mix variables and house-

hold-specific characteristics.

This chapter starts by outlining why it can be useful to consider quanti-

tative models in the first place. Next, we review a variety of performance

measures, thereby illustrating that these measures appear in various formats.

The focus on these formats is particularly relevant because the marketing

measures appear on the left-hand side of a regression model. Were they to be

found on the right-hand side, often no or only minor modifications would be

needed. Hence there is also a need for different models. The data which will

be used in subsequent chapters are presented in tables and graphs, thereby

highlighting their most salient features. Finally, we indicate that we limit our

focus in at least two directions, the first concerning other types of data, the

other concerning the models themselves.

2.1 Quantitative models

The first and obvious question we need to address is whether one

needs quantitative models in the first place. Indeed, as is apparent from the

table of contents and also from a casual glance at the mathematical formulas

in subsequent chapters, the analysis of marketing data using a quantitative

model is not necessarily a very straightforward exercise. In fact, for some

models one needs to build up substantial empirical skills in order for these

models to become useful tools in new applications.

10
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Why then, if quantitative models are more complicated than just looking

at graphs and perhaps calculating a few correlations, should one use these

models? The answer is not trivial, and it will often depend on the particular

application and corresponding marketing question at hand. If one has two

sets of weekly observations on sales of a particular brand, one for a store

with promotions in all weeks and one for a store with no promotions at all,

one may contemplate comparing the two sales series in a histogram and

perhaps test whether the average sales figures are significantly different

using a simple test. However, if the number of variables that can be corre-

lated with the sales figures increases – for example, the stores differ in type of

customers, in advertising efforts or in format – this simple test somehow

needs to be adapted to take account of these other variables. In present-

day marketing research, one tends to have information on numerous vari-

ables that can affect sales, market shares and brand choice. To analyze these

observations in a range of bivariate studies would imply the construction of

hundreds of tests, which would all be more or less dependent on each other.

Hence, one may reject one relationship between two variables simply because

one omitted a third variable. To overcome these problems, the simplest

strategy is to include all relevant variables in a single quantitative model.

Then the effect of a certain explanatory variable is corrected automatically

for the effects of other variables.

A second argument for using a quantitative model concerns the notion of

correlation itself. In most practical cases, one considers the linear correlation

between variables, where it is implicitly assumed that these variables are con-

tinuous. However, as will become apparent in the next section and in subse-

quent chapters, many interesting marketing variables are not continuous but

discrete (for example, brand choice). Hence, it is unclear how one should

define a correlation. Additionally, for somemarketing variables, such as dona-

tions to charity or interpurchase times, it is unlikely that a useful correlation

between these variables and potential explanatory variables is linear. Indeed,

we will show in various chapters that the nature of many marketing variables

makes the linear concept of correlation less useful.

In sum, for a small number of observations on just a few variables, one

may want to rely on simple graphical or statistical techniques. However,

when complexity increases, in terms of numbers of observations and of

variables, it may be much more convenient to summarize the data using a

quantitative model. Within such a framework it is easier to highlight correla-

tion structures. Additionally, one can examine whether or not these correla-

tion structures are statistically relevant, while taking account of all other

correlations.

A quantitative model often serves three purposes, that is, description,

forecasting and decision-making. Description usually refers to an investiga-
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tion of which explanatory variables have a statistically significant effect on

the dependent variable, conditional on the notion that the model does fit the

data well. For example, one may wonder whether display or feature promo-

tion has a positive effect on sales. Once a descriptive model has been con-

structed, one may use it for out-of-sample forecasting. This means

extrapolating the model into the future or to other households and generat-

ing forecasts of the dependent variable given observations on the explana-

tory variables. In some cases, one may need to forecast these explanatory

variables as well. Finally, with these forecasts, one may decide that the out-

comes are in some way inconvenient, and one may examine which combina-

tions of the explanatory variables would generate, say, more sales or shorter

time intervals between purchases. In this book, we will not touch upon such

decision-making, and we sometimes discuss forecasting issues only briefly. In

fact, we will mainly address the descriptive purpose of a quantitative model.

In order for the model to be useful it is important that the model fits the

data well. If it does not, one may easily generate biased forecasts and draw

inappropriate conclusions concerning decision rules. A nice feature of the

models we discuss in this book, in contrast to rules of thumb or more

exploratory techniques, is that the empirical results can be used to infer if

the constructed model needs to be improved. Hence, in principle, one can

continue with the model-building process until a satisfactory model has been

found. Needless to say, this does not always work out in practice, but one

can still to some extent learn from previous mistakes.

Finally, we must stress that we believe that quantitative models are useful

only if they are considered and applied by those who have the relevant skills

and understanding. We do appreciate that marketing managers, who are

forced to make decisions on perhaps a day-to-day basis, are not the most

likely users of these models. We believe that this should not be seen as a

problem, because managers can make decisions on the basis of advice gen-

erated by others, for example by marketing researchers. Indeed, the con-

struction of a useful quantitative model may take some time, and there is

no guarantee that the model will work. Hence, we would argue that the

models to be discussed in this book should be seen as potentially helpful

tools, which are particularly useful when they are analyzed by the relevant

specialists. Upon translation of these models into management support sys-

tems, the models could eventually be very useful to managers (see, for exam-

ple, Leeflang et al., 2000).

2.2 Marketing performance measures

In this section we review various marketing performance measures,

such as sales, brand choice and interpurchase times, and we illustrate these
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with the data we actually consider in subsequent chapters. Note that the

examples are not meant to indicate that simple tools of analysis would not

work, as suggested above. Instead, the main message to take from this

chapter is that marketing data appear in a variety of formats. Because

these variables are the dependent variables, we need to resort to different

model types for each variable. Sequentially, we deal with variables that are

continuous (such as sales), binomial (such as the choice between two brands),

unordered multinomial (a choice between more than two brands), ordered

multinomial (attitude rankings), and truncated or censored continuous

(donations to charity) and that concern durations (the time between two

purchases). The reader will notice that several of the data sets we use were

collected quite a while ago. We believe, however, that these data are roughly

prototypical of what one would be able to collect nowadays in similar situa-

tions. The advantage is that we can now make these data available for free.

In fact, all data used in this book can be downloaded from

http://www.few.eur.nl/few/people/paap.

2.2.1 A continuous variable

Sales and market shares are usually considered to be continuous

variables, especially if these relate to frequently purchased consumer goods.

Sales are often measured in terms of dollars (or some other currency),

although one might also be interested in the number of units sold. Market

shares are calculated in order to facilitate the evaluation of brand sales with

respect to category sales. Sales data are bounded below by 0, and market

shares data lie between 0 and 1. All brand market shares within a product

category sum to 1. This establishes that sales data can be captured by a

standard regression model, possibly after transforming sales by taking the

natural logarithm to induce symmetry. Market shares, in contrast, require a

more complicated model because one needs to analyze all market shares at

the same time (see, for example, Cooper and Nakanishi, 1988, and Cooper,

1993).

In chapter 3 we will discuss various aspects of the standard Linear

Regression model. We will illustrate the model for weekly sales of Heinz

tomato ketchup, measured in US dollars. We have 124 weekly observations,

collected between 1985 and 1988 in one supermarket in Sioux Falls, South

Dakota. The data were collected by A.C. Nielsen. In figure 2.1 we give a time

series graph of the available sales data (this means that the observations are

arranged according to the week of observation). From this graph it is imme-

diately obvious that there are many peaks, which correspond with high sales

weeks. Naturally it is of interest to examine if these peaks correspond with

promotions, and this is what will be pursued in chapter 3.
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In figure 2.2 we present the same sales data, but in a histogram. This graph

shows that the distribution of the data is not symmetric. High sales figures

are observed rather infrequently, whereas there are about thirty to forty

weeks with sales of about US$50–100. It is now quite common to transform
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Figure 2.2 Histogram of weekly sales of Heinz tomato ketchup
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such a sales variable by applying the natural logarithmic transformation

(log). The resultant log sales appear in figure 2.3, and it is clear that the

distribution of the data has become more symmetric. Additionally, the dis-

tribution seems to obey an approximate bell-shaped curve. Hence, except for

a few large observations, the data may perhaps be summarized by an

approximately normal distribution. It is exactly this distribution that under-

lies the standard Linear Regression model, and in chapter 3 we will take it as

a starting point for discussion. For further reference, we collect a few impor-

tant distributions in section A.2 of the Appendix at the end of this book.

In table 2.1 we summarize some characteristics of the dependent variable

and explanatory variables concerning this case of weekly sales of Heinz

tomato ketchup. The average price paid per item was US$1.16. In more

than 25% of the weeks, this brand was on display, while in less than 10%

of the weeks there was a coupon promotion. In only about 6% of the weeks,

these promotions were held simultaneously. In chapter 3, we will examine

whether or not these variables have any explanatory power for log sales

while using a standard Linear Regression model.

2.2.2 A binomial variable

Another frequently encountered type of dependent variable in mar-

keting research is a variable that takes only two values. As examples, these

values may concern the choice between brand A and brand B (see Malhotra,
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Figure 2.3 Histogram of the log of weekly sales of Heinz tomato ketchup
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1984) or between two suppliers (see Doney and Cannon, 1997), and the value

may equal 1 in the case where someone responds to a direct mailing while it

equals 0 when someone does not (see Bult, 1993, among others). It is the

purpose of the relevant quantitative model to correlate such a binomial

variable with explanatory variables. Before going into the details, which

will be much better outlined in chapter 4, it suffices here to state that a

standard Linear Regression model is unlikely to work well for a binomial

dependent variable. In fact, an elegant solution will turn out to be that we do

not consider the binomial variable itself as the dependent variable, but

merely consider the probability that this variable takes one of the two pos-

sible outcomes. In other words, we do not consider the choice for brand A,

but we focus on the probability that brand A is preferred. Because this

probability is not observed, and in fact only the actual choice is observed,

the relevant quantitative models are a bit more complicated than the stan-

dard Linear Regression model in chapter 3.

As an illustration, consider the summary in table 2.2, concerning the

choice between Heinz and Hunts tomato ketchup. The data originate from

a panel of 300 households in Springfield, Missouri, and were collected by

A.C. Nielsen using an optical scanner. The data involve the purchases made

during a period of about two years. In total, there are 2,798 observations. In

2,491 cases (89.03%), the households purchased Heinz, and in 10.97% of

cases they preferred Hunts see also figure 2.4, which shows a histogram of

the choices. On average it seems that Heinz and Hunts were about equally

expensive, but, of course, this is only an average and it may well be that on

specific purchase occasions there were substantial price differences.

Table 2.1 Characteristics of the dependent

variable and explanatory variables: weekly

sales of Heinz tomato ketchup

Variables Mean

Sales (US$)

Price (US$)

% display onlya

% coupon onlyb

% display and couponc

114.47

1.16

26.61

9.68

5.65

Notes:
aPercentage of weeks in which the brand was on

display only.
bPercentage of weeks in which the brand had a

coupon promotion only.
cPercentage of weeks in which the brand was

both on display and had a coupon promotion.
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Furthermore, table 2.2 contains information on promotional activities such

as display and feature. It can be seen that Heinz was promoted much more

often than Hunts. Additionally, in only 3.75% of the cases we observe

combined promotional activities for Heinz (0.93% for Hunts). In chapter

4 we will investigate whether or not these variables have any explanatory

value for the probability of choosing Heinz instead of Hunts.

Table 2.2 Characteristics of the dependent

variable and explanatory variables: the choice

between Heinz and Hunts tomato ketchup

Variables Heinz Hunts

Choice percentage

Average price (US$ 	 100/oz.)

% display onlya

% feature onlyb

% feature and displayc

89.03

3.48

15.98

12.47

3.75

10.97

3.36

3.54

3.65

0.93

Notes:
aPercentage of purchase occasions when a brand was

on display only.
bPercentage of purchase occasions when a brand was

featured only.
cPercentage of purchase occasions when a brand was

both on display and featured.
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2.2.3 An unordered multinomial variable

In many real-world situations individual households can choose

between more than two brands, or in general, face more than two choice

categories. For example, one may choose between four brands of saltine

crackers, as will be the running example in this subsection and in chapter

5, or between three modes of public transport (such as a bus, a train or the

subway). In this case there is no natural ordering in the choice options, that

is, it does not matter if one chooses between brands A, B, C and D or

between B, A, D and C. Such a dependent variable is called an unordered

multinomial variable. This variable naturally extends the binomial variable

in the previous subsection. In a sense, the resultant quantitative models to be

discussed in chapter 5 also quite naturally extend those in chapter 4.

Examples in the marketing research literature of applications of these models

can be found in Guadagni and Little (1983), Chintagunta et al. (1991),

Gönül and Srinivasan (1993), Jain et al. (1994) and Allenby and Rossi

(1999), among many others.

To illustrate various variants of models for an unordered multinomial

dependent variable, we consider an optical scanner panel data set on pur-

chases of four brands of saltine crackers in the Rome (Georgia) market,

collected by Information Resources Incorporated. The data set contains

information on all 3,292 purchases of crackers made by 136 households

over about two years. The brands were Nabisco, Sunshine, Keebler and a

collection of private labels. In figure 2.5 we present a histogram of the actual
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purchases, where it is known that each time only one brand was purchased.

Nabisco is clearly the market leader (54%), with private label a good second

(31%). It is obvious that the choice between four brands results in discrete

observations on the dependent variable. Hence again the standard Linear

Regression model of chapter 3 is unlikely to capture this structure. Similarly

to the binomial dependent variable, it appears that useful quantitative mod-

els for an unordered multinomial variable address the probability that one of

the brands is purchased and correlate this probability with various explana-

tory variables.

In the present data set of multinomial brand choice, we also have the actual

price of the purchased brand and the shelf price of other brands. Additionally,

we know whether there was a display and/or newspaper feature of the four

brands at the time of purchase. Table 2.3 shows some data characteristics.

‘‘Average price’’ denotes the mean of the price of a brand over the 3,292

purchases; the Keebler crackers were the most expensive. ‘‘Display’’ refers

to the fraction of purchase occasions that a brand was on display and ‘‘fea-

ture’’ refers to the fraction of occasions that a brand was featured. The market

leader, Nabisco, was relatively often on display (29%) and featured (3.8%).

In chapter 5, we will examine whether or not these variables have any expla-

natory value for the eventually observed brand choice.

2.2.4 An ordered multinomial variable

Sometimes in marketing research one obtains measurements on a

multinomial and discrete variable where the sequence of categories is fixed.

Table 2.3 Characteristics of the dependent variable and explanatory

variables: the choice between four brands of saltine crackers

Variables Private label Sunshine Keebler Nabisco

Choice percentage

Average price (US$)

% display onlya

% feature onlyb

% feature and displayc

31.44

0.68

6.32

1.15

3.55

7.26

0.96

10.72

1.61

2.16

6.68

1.13

8.02

1.64

2.61

54.44

1.08

29.16

3.80

4.86

Notes:
aPercentage of purchase occasions when the brand was on display only.
bPercentage of purchase occasions when the brand was featured only.
cPercentage of purchase occasions when the brand was both on display and featured.
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An example concerns the choice between brands where these brands have a

widely accepted ordering in terms of quality. Another example is provided by

questionnaires, where individuals are asked to indicate whether they disagree

with, are neutral about, or agree with a certain statement. Reshuffling the

discrete outcomes of such a multinomial variable would destroy the relation

between adjacent outcome categories, and hence important information gets

lost.

In chapter 6 we present quantitative models for an ordered multinomial

dependent variable. We illustrate these models for a variable with three

categories that measures the risk profile of individuals, where this profile is

assigned by a financial investment firm on the basis of certain criteria (which

are beyond our control). In figure 2.6 we depict the three categories, which

are low-, middle- and high-risk profile. It is easy to imagine that individuals

who accept only low risk in financial markets are those who most likely have

only savings accounts, while those who are willing to incur high risk most

likely are active on the stock market. In total we have information on 2,000

individuals, of whom 329 are in the low-risk category and 1,140 have the

intermediate profile.

In order to examine whether or not the classification of individuals into

risk profiles matches with some of their characteristics, we aim to correlate

the ordered multinomial variable with the variables in table 2.4 and to

explore their potential explanatory value. Because the data are confidential,

we can label our explanatory variables only with rather neutral terminology.
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In this table, we provide some summary statistics averaged for all 2,000

individuals. The fund and transaction variables concern counts, while the

wealth variable is measured in Dutch guilders (NLG). For some of these

variables we can see that the average value increases (or decreases) with the

risk profile, thus being suggestive of their potential explanatory value.

2.2.5 A limited continuous variable

A typical data set in direct mailing using, say, catalogs involves two

types of information. The first concerns the response of a household to such

a mailing. This response is then a binomial dependent variable, like the one

to be discussed in chapter 4. The second concerns the number of items

purchased or the amount of money spent, and this is usually considered to

be a continuous variable, like the one to be discussed in chapter 3. However,

this continuous variable is observed only for those households that respond.

For a household that does not respond, the variable equals 0. Put another

way, the households that did not purchase from the catalogs might have

purchased some things once they had responded, but the market researcher

does not have information on these observations. Hence, the continuous

variable is censored because one does not have all information.

In chapter 7 we discuss two approaches to modeling this type of data. The

first approach considers a single-equation model, which treats the non-

response or zero observations as special cases. The second approach con-

siders separate equations for the decision to respond and for the amount of

Table 2.4 Characteristics of the dependent variable and explanatory

variables: ordered risk profiles

Variables Totala

Risk profile

Lowb Middleb Highb

Relative category frequency

Funds of type 2

Transactions of type 1

Transactions of type 3

Wealth (NLG 10,000)

100.00

2.34

0.89

1.46

0.65

26.55

1.25

1.04

0.31

0.50

57.00

2.12

0.86

0.60

0.53

16.45

4.85

0.72

6.28

1.34

Notes:
aAverage values of the explanatory variables in the full sample.
bAverage values of the explanatory variables for low-, middle- and high-risk profile

categories.
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money spent given that a household has decided to respond. Intuitively, the

second approach is more flexible. For example, it may describe that higher

age makes an individual less likely to respond, but, given the decision to

respond, we may expect older individuals to spend more (because they tend

to have higher incomes).

To illustrate the relevant models for data censored, in some way, we

consider a data set containing observations for 4,268 individuals concerning

donations to charity. From figure 2.7 one can observe that over 2,500 indi-

viduals who received a mailing from charity did not respond. In figure 2.8,

we graph the amount of money donated to charity (in Dutch guilders).

Clearly, most individuals donate about 10–20 guilders, although there are

a few individuals who donate more than 200 guilders. In line with the above

discussion on censoring, one might think that, given the histogram of figure

2.8, one is observing only about half of the (perhaps normal) distribution of

donated money. Indeed, negative amounts are not observed. One might say

that those individuals who would have wanted to donate a negative amount

of money decided not to respond in the first place.

In table 2.5, we present some summary statistics, where we again consider

the average values across the two response (no/yes) categories. Obviously,

the average amount donated by those who did not respond is zero. In

chapter 7 we aim to correlate the censored variable with observed character-

istics of the individuals concerning their past donating behavior. These vari-

ables are usually summarized under the headings Recency, Frequency and
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Figure 2.7 Histogram of the response to a charity mailing
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Monetary Value (RFM). For example, from the second panel of table 2.5,

we observe that, on average, those who responded to the previous mailing

are likely to donate again (52.61% versus 20.73%), and those who took a

long time to donate the last time are unlikely to donate now (72.09% versus
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Figure 2.8 Histogram of the amount of money donated to charity

Table 2.5 Characteristics of the dependent variable and explanatory

variables: donations to charity

Variables Totala No responseb Responseb

Relative response frequency 100.00 60.00 40.00

Gift (NLG) 7.44 0.00 18.61

Responded to previous mailing 33.48 20.73 52.61

Weeks since last response 59.05 72.09 39.47

Percentage responded mailings 48.43 39.27 62.19

No. of mailings per year 2.05 1.99 2.14

Gift last response 19.74 17.04 23.81

Average donation in the past 18.24 16.83 20.36

Notes:
aAverage values of the explanatory variables in the full sample.
bAverage values of the explanatory variables for no response and response observa-

tions, respectively.
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39.47%). Similar kinds of intuitively plausible indications can be obtained

from the last two panels in table 2.5 concerning the pairs of Frequency and

Monetary Value variables. Notice, however, that this table is not informative

as to whether these RFM variables also have explanatory value for the

amount of money donated. We could have divided the gift size into cate-

gories and made similar tables, but this can be done in an infinite number of

ways. Hence, here we have perhaps a clear example of the relevance of

constructing and analyzing a quantitative model, instead of just looking at

various table entries.

2.2.6 A duration variable

The final type of dependent variable one typically encounters in

marketing research is one that measures the time that elapses between two

events. Examples are the time an individual takes to respond to a direct

mailing, given knowledge of the time the mailing was received, the time

between two consecutive purchases of a certain product or brand, and the

time between switching to another supplier. Some recent marketing studies

using duration data are Jain and Vilcassim (1991), Gupta (1991), Helsen and

Schmittlein (1993), Bolton (1998), Allenby et al. (1999) and Gönül et al.

(2000), among many others. Vilcassim and Jain (1991) even consider inter-

purchase times in combination with brand switching, and Chintagunta and

Prasad (1998) consider interpurchase times together with brand choice.

Duration variables have a special place in the literature owing to their

characteristics. In many cases variables which measure time between events

are censored. This is perhaps best understood by recognizing that we some-

times do not observe the first event or the timing of the event just prior to the

available observation period. Furthermore, in some cases the event has not

ended at the end of the observation period. In these cases, we know only that

the duration exceeds some threshold. If, however, the event starts and ends

within the observation period, the duration variable is fully observed and

hence uncensored. In practice, one usually has a combination of censored

and uncensored observations. A second characteristic of duration variables

is that they represent a time interval and not a single point in time.

Therefore, if we want to relate duration to explanatory variables, we may

have to take into account that the values of these explanatory variables may

change during the duration. For example, prices are likely to change in the

period between two consecutive purchases and hence the interpurchase time

will depend on the sequence of prices during the duration. Models for dura-

tion variables therefore focus not on the duration but on the probability that

the duration will end at some moment given that it lasted until then. For

example, these models consider the probability that a product will be pur-
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chased this week, given that it has not been acquired since the previous

purchase. In chapter 8 we will discuss the salient aspects of two types of

duration models.

For illustration, in chapter 8 we use data from an A.C. Nielsen household

scanner panel data set on sequential purchases of liquid laundry detergents in

Sioux Falls, South Dakota. The observations originate from the purchase

behavior of 400 households with 2,657 purchases starting in the first week

of July 1986 and ending on July 16, 1988. Only those households are selected

that purchased the (at that time) top six national brands, that is, Tide, Eraplus

and Solo (all three marketed by Procter & Gamble) and Wisk, Surf and All

(all three marketed by Lever Brothers), which accounted for 81% of the total

market for national brands. In figure 2.9, we depict the empirical distribution

of the interpurchase times, measured in days between two purchases. Most

households seem to buy liquid detergent again after 25–50 days, although

there are also households that can wait for more than a year. Obviously, these

individuals may have switched to another product category.

For each purchase occasion, we know the time since the last purchase of

liquid detergents, the price (cents/oz.) of the purchased brands and whether

the purchased brand was featured or displayed (see table 2.6). Furthermore,

we know the household size, the volume purchased on the previous purchase

occasion, and expenditures on non-detergent products. The averages of the

explanatory variables reported in the table are taken over the 2,657 inter-

0

200

400

600

800

1,000

0 100 200 300 400 500
No. of days

N
o.

 o
f p

ur
ch

as
es
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purchase times. In the models to be dealt with in chapter 8, we aim to

correlate the duration dependent variable with these variables in order to

examine if household-specific variables have more effect on interpurchase

times than marketing variables do.

2.2.7 Summary

To conclude this section on the various types of dependent vari-

ables, we provide a brief summary of the various variables and the names of

the corresponding models to be discussed in the next six chapters. In table

2.7 we list the various variables and connect them with the as yet perhaps

unfamiliar names of models. These names mainly deal with assumed distri-

bution functions, such as the logistic distribution (hence logit) and the nor-

mal distribution. The table may be useful for reference purposes once one

has gone through the entire book, or at least through the reader-specific

relevant chapters and sections.

2.3 What do we exclude from this book?

We conclude this chapter with a brief summary of what we have

decided to exclude from this book. These omissions concern data and mod-

Table 2.6 Characteristics of the dependent

variable and explanatory variables: the time

between liquid detergent purchases

Variables Mean

Interpurchase time (days)

Household size

Non-detergent expenditures (US$)

Volume previous purchase occasion

Price (US$ 	100/oz.)
% display onlya

% feature onlyb

% display and featurec

62.52

3.06

39.89

77.39

4.94

2.71

6.89

13.25

Notes:
aPercentage of purchase occasions when the brand was

on display only.
bPercentage of purchase occasions when the brand was

featured only.
cPercentage of purchase occasions when the brand was

on both display and featured.
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els, mainly for revealed preference data. As regards data, we leave out exten-

sive treatments of models for count data, when there are only a few counts

(such as 1 to 4 items purchased). The corresponding models are less fashion-

able in marketing research. Additionally, we do not explicitly consider data

on diffusion processes, such as the penetration of new products or brands. A

peculiarity of these data is that they are continuous on the one hand, but

bounded from below and above on the other hand. There is a large literature

on models for these data (see, for example, Mahajan et al., 1993).

As regards models, there are a few omissions. First of all, we mainly

consider single-equation regression-based models. More precisely, we assume

a single and observed dependent variable, which may be correlated with a set

of observed explanatory variables. Hence, we exclude multivariate models, in

which two or more variables are correlated with explanatory variables at the

same time. Furthermore, we exclude an explicit treatment of panel models,

where one takes account of the possibility that one observes all households

during the same period and similar measurements for each household are

made. Additionally, as mentioned earlier, we do not consider models that use

multivariate statistical techniques such as discriminant analysis, factor mod-

els, cluster analysis, principal components and multidimensional scaling,

among others. Of course, this does not imply that we believe these techniques

to be less useful for marketing research.

Within our chosen framework of single-equation regression models, there

are also at least two omissions. Ideally one would want to combine some of

the models that will be discussed in subsequent chapters. For example, one

might want to combine a model for no/yes donation to charity with a model

for the time it takes for a household to respond together with a model for the

Table 2.7 Characteristics of a dependent variable and the names of relevant

models to be discussed in chapters 3 to 8

Dependent variable Name of model Chapter

Continuous

Binomial

Unordered multinomial

Ordered multinomial

Truncated, censored

Duration

Standard Linear Regression model

Binomial Logit/Probit model

Multinomial Logit/Probit model

Conditional Logit/Probit model

Nested Logit model

Ordered Logit/Probit model

Truncated Regression model

Censored Regression (Tobit) model

Proportional Hazard model

Accelerated Lifetime model

3

4

5

5

5

6

7

7

8

8
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amount donated. The combination of these models amounts to allowing for

the presence of correlation across the model equations. Additionally, it is

very likely that managers would want to know more about the dynamic

(long-run and short-run) effects of their application of marketing-mix stra-

tegies (see Dekimpe and Hanssens, 1995). However, the tools for these types

of analysis for other than continuous time series data have only very recently

been developed (see, for some first attempts, Erdem and Keane, 1996, and

Paap and Franses, 2000, and the advanced topics section of chapter 5).

Generally, at present, these tools are not sufficiently developed to warrant

inclusion in the current edition of this book.



3 A continuous dependent variable

In this chapter we review a few principles of econometric modeling, and

illustrate these for the case of a continuous dependent variable. We assume

basic knowledge of matrix algebra and of basic statistics and mathematics

(differential algebra and integral calculus). As a courtesy to the reader, we

include some of the principles on matrices in the Appendix (section A.1).

This chapter serves to review a few issues which should be useful for later

chapters. In section 3.1 we discuss the representation of the standard Linear

Regression model. In section 3.2 we discuss Ordinary Least Squares and

Maximum Likelihood estimation in substantial detail. Even though the

Maximum Likelihood method is not illustrated in detail, its basic aspects

will be outlined as we need it in later chapters. In section 3.3, diagnostic

measures for outliers, residual autocorrelation and heteroskedasticity are

considered. Model selection concerns the selection of relevant variables

and the comparison of non-nested models using certain model selection

criteria. Forecasting deals with within-sample or out-of-sample prediction.

In section 3.4 we illustrate several issues for a regression model that corre-

lates sales with price and promotional activities. Finally, in section 3.5 we

discuss extensions to multiple-equation models, thereby mainly focusing on

modeling market shares.

This chapter is not at all intended to give a detailed account of econo-

metric methods and econometric analysis. Much more detail can, for

example, be found in Greene (2000), Verbeek (2000) and Wooldridge

(2000). In fact, this chapter mainly aims to set some notation and to highlight

some important topics in econometric modeling. In later chapters we will

frequently make use of these concepts.

3.1 The standard Linear Regression model

In empirical marketing research one often aims to correlate a ran-

dom variable Yt with one (or more) explanatory variables such as xt, where

29
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the index t denotes that these variables are measured over time, that is,

t ¼ 1; 2; . . . ;T . This type of observation is usually called time series observa-
tion. One may also encounter cross-sectional data, which concern, for

example, individuals i ¼ 1; 2; . . . ;N, or a combination of both types of

data. Typical store-level scanners generate data on Yt, which might be the

weekly sales (in dollars) of a certain product or brand, and on xt, denoting

for example the average actual price in that particular week.

When Yt is a continuous variable such as dollar sales, and when it seems

reasonable to assume that it is independent of changes in price, one may

consider summarizing these sales by

Yt 
 Nð�; �2Þ; ð3:1Þ
that is, the random variable sales is normally distributed with mean � and
variance �2. For further reference, in the Appendix (section A.2) we collect
various aspects of this and other distributions. In figure 3.1 we depict an

example of such a normal distribution, where we set � at 1 and �2 at 1. In
practice, the values of � and �2 are unknown, but they could be estimated
from the data.

In many cases, however, one may expect that marketing instruments such

as prices, advertising and promotions do have an impact on sales. In the case

of a single price variable, xt, one can then choose to replace (3.1) by

Yt 
 Nð�0 þ �1xt; �
2Þ; ð3:2Þ

0.0

0.1

0.2

0.3

0.4

0.5

_4 _2 0 2 4

Figure 3.1 Density function of a normal distribution with � ¼ �2 ¼ 1
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where the value of the mean � is now made dependent on the value of the
explanatory variable, or, in other words, where the conditional mean of Yt is

now a linear function of �0 and �1xt, with �0 and �1 being unknown para-
meters. In figure 3.2, we depict a set of simulated yt and xt, generated by

xt ¼ 0:0001tþ "1;t with "1;t 
 Nð0; 1Þ
yt ¼ �2þ xt þ "2;t with "2;t 
 Nð0; 1Þ; ð3:3Þ

where t is 1; 2; . . . ;T . In this graph, we also depict three density functions of
a normal distribution for three observations on Yt. This visualizes that each

observation on yt equals �0 þ �1xt plus a random error term, which in turn is

a drawing from a normal distribution. Notice that in many cases it is unlikely

that the conditional mean of Yt is equal to �1xt only, as in that case the line

in figure 3.2 would always go through the origin, and hence one should better

always retain an intercept parameter �0.
In case there is more than one variable having an effect on Yt, one may

consider

Yt 
 Nð�0 þ �1x1;t þ � � � þ �KxK;t; �
2Þ; ð3:4Þ

where x1;t to xK;t denote the K potentially useful explanatory variables. In

case of sales, variable x1;t can for example be price, variable x2;t can be

advertising and variable x3;t can be a variable measuring promotion. To

simplify notation (see also section A.1 in the Appendix), one usually defines

_8
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_4

_2
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_4 _2 0 2 4
xt

y t

Figure 3.2 Scatter diagram of yt against xt
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the ðK þ 1Þ 	 1 vector of parameters �, containing the K þ 1 unknown para-
meters �0, �1 to �K , and the 1	 ðK þ 1Þ vector Xt, containing the known

variables 1, x1;t to xK;t. With this notation, (3.4) can be summarized as

Yt 
 NðXt�; �
2Þ: ð3:5Þ

Usually one encounters this model in the form

Yt ¼ Xt�þ "t; ð3:6Þ
where "t is an unobserved stochastic variable assumed to be distributed as
normal with mean zero and variance �2, or in short,

"t 
 Nð0; �2Þ: ð3:7Þ
This "t is often called an error or disturbance. The model with components
(3.6) and (3.7) is called the standard Linear Regression model, and it will be

the focus of this chapter.

The Linear Regression model can be used to examine the contempora-

neous correlations between the dependent variable Yt and the explanatory

variables summarized in Xt. If one wants to examine correlations with pre-

viously observed variables, such as in the week before, one can consider

replacing Xt by, for example, Xt�1. A parameter �k measures the partial

effect of a variable xk;t on Yt, k 2 f1; 2; . . . ;Kg, assuming that this variable
is uncorrelated with the other explanatory variables and "t. This can be seen
from the partial derivative

@Yt

@xk;t
¼ �k: ð3:8Þ

Note that if xk;t is not uncorrelated with some other variable xl;t, this

partial effect will also depend on the partial derivative of xl;t to xk;t, and

the corresponding �l parameter. Given (3.8), the elasticity of xk;t for yt is

now given by �kxk;t=yt. If one wants a model with time-invariant elasticities

with value �, one should consider the regression model

logYt 
 Nð�0 þ �1 log x1;t þ � � � þ �K log xK;t; �
2Þ; ð3:9Þ

where log denotes the natural logarithmic transformation, because in that

case

@Yt

@xk;t
¼ �k

yt

xk;t
: ð3:10Þ

Of course, this logarithmic transformation can be applied only to positive-

valued observations. For example, when a 0/1 dummy variable is included to

measure promotions, this transformation cannot be applied. In that case,



A continuous dependent variable 33

one simply considers the 0/1 dummy variable. The elasticity of such a

dummy variable then equals expð�kÞ � 1.
Often one is interested in quantifying the effects of explanatory variables

on the variable to be explained. Usually, one knows which variable should be

explained, but in many cases it is unknown which explanatory variables are

relevant, that is, which variables appear on the right-hand side of (3.6). For

example, it may be that sales are correlated with price and advertising, but

that they are not correlated with display or feature promotion. In fact, it is

quite common that this is exactly what one aims to find out with the model.

In order to answer the question about which variables are relevant, one

needs to have estimates of the unknown parameters, and one also needs to

know whether these unknown parameters are perhaps equal to zero. Two

familiar estimation methods for the unknown parameters will be discussed in

the next section.

Several estimation methods require that the maintained model is not mis-

specified. Unfortunately, most models constructed as a first attempt are

misspecified. Misspecification usually concerns the notion that the main-

tained assumptions for the unobserved error variable "t in (3.7) are violated
or that the functional form (which is obviously linear in the standard Linear

Regression model) is inappropriate. For example, the error variable may

have a variance which varies with a certain variable, that is, �2 is not con-
stant but is �2t , or the errors at time t are correlated with those at t� 1, for
example, "t ¼ �"t�1 þ ut. In the last case, it would have been better to include

yt�1 and perhaps also Xt�1 in (3.5). Additionally, with regard to the func-
tional form, it may be that one should include quadratic terms such as x2k;t
instead of the linear variables.

Unfortunately, usually one can find out whether a model is misspecified

only once the parameters for a first-guess model have been estimated. This is

because one can only estimate the error variable given these estimates, that is

"̂"t ¼ yt � Xt�̂�; ð3:11Þ

where a hat indicates an estimated value. The estimated error variables are

called residuals. Hence, a typical empirical modeling strategy is, first, to put

forward a tentative model, second, to estimate the values of the unknown

parameters, third, to investigate the quality of the model by applying a

variety of diagnostic measures for the model and for the estimated error

variable, fourth, to re-specify the model if so indicated by these diagnostics

until the model has become satisfactory, and, finally, to interpret the values

of the parameters. Admittedly, a successful application of this strategy

requires quite some skill and experience, and there seem to be no straightfor-

ward guidelines to be followed.
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3.2 Estimation

In this section we briefly discuss parameter estimation in the stan-

dard Linear Regression model. We first discuss the Ordinary Least Squares

(OLS) method, and then we discuss the Maximum Likelihood (ML) method.

In doing so, we rely on some basic results in matrix algebra, summarized in

the Appendix (section A.1). The ML method will also be used in later chap-

ters as it is particularly useful for nonlinear models. For the standard Linear

Regression model it turns out that the OLS and ML methods give the same

results. As indicated earlier, the reader who is interested in this and the next

section is assumed to have some prior econometric knowledge.

3.2.1 Estimation by Ordinary Least Squares

Consider again the standard Linear Regression model

Yt ¼ Xt�þ "t; with "t 
 Nð0; �2Þ: ð3:12Þ
The least-squares method aims at finding that value of � for which

PT
t¼1 "

2
t ¼PT

t¼1ðyt � Xt�Þ2 gets minimized. To obtain the OLS estimator we differenti-
ate

PT
t¼1 "

2
t with respect to � and solve the following first-order conditions

for �

@
XT
t¼1

ðyt � Xt�Þ2

@�
¼
XT
t¼1

X 0
tðyt � Xt�Þ ¼ 0; ð3:13Þ

which yields

�̂� ¼
XT
t¼1

X 0
tXt

 !�1PT
t¼1X

0
tyt: ð3:14Þ

Under the assumption that the variables in Xt are uncorrelated with the error

variable "t, in addition to the assumption that the model is appropriately
specified, the OLS estimator is what is called consistent. Loosely speaking,

this means that when one increases the sample size T , that is, if one collects

more observations on yt and Xt, one will estimate the underlying � with
increasing precision.

In order to examine if one or more of the elements of � are equal to zero
or not, one can use

�̂� 
a N �; �̂�2
XT
t¼1

X 0
tXt

 !�11A;
0
@ ð3:15Þ
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where 
a denotes ‘‘distributed asymptotically as’’, and where

�̂�2 ¼ 1

T � ðK þ 1Þ
XT
t¼1

ðyt � Xt�̂�Þ2 ¼
1

T � ðK þ 1Þ
XT
t¼1

"̂"2t ð3:16Þ

is a consistent estimator of �2. An important requirement for this result is
that the matrix ðPT

t¼1 X
0
tXtÞ=T approximates a constant value as T increases.

Using (3.15), one can construct confidence intervals for the K þ 1 parameters
in �. Typical confidence intervals cover 95% or 90% of the asymptotic

distribution of �̂�. If these intervals include the value of zero, one says that
the underlying but unknown parameter is not significantly different from

zero at the 5% or 10% significance level, respectively. This investigation is

usually performed using a so-called z-test statistic, which is defined as

z�̂�k
¼ �̂�k � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�̂�2
PT

t¼1X
0
tXt


 ��1� 

k;k

s ; ð3:17Þ

where the subscript (k; k) denotes the matrix element in the k’th row and k’th

column. Given the adequacy of the model and given the validity of the null

hypothesis that �k ¼ 0, it holds that

z�̂�k

a Nð0; 1Þ: ð3:18Þ

When z�̂�k
takes a value outside the region ½�1:96; 1:96�, it is said that the

corresponding parameter is significantly different from 0 at the 5% level (see

section A.3 in the Appendix for some critical values). In a similar manner,

one can test whether �k equals, for example, �
�
k. In that case one has to

replace the denominator of (3.17) by �̂�k � ��k. Under the null hypothesis
that �k ¼ ��k the z-statistic is again asymptotically normally distributed.

3.2.2 Estimation by Maximum Likelihood

An estimation method based on least-squares is easy to apply, and

it is particularly useful for the standard Linear Regression model. However,

for more complicated models, such as those that will be discussed in subse-

quent chapters, it may not always lead to the best possible parameter esti-

mates. In that case, it would be better to use the Maximum Likelihood (ML)

method.

In order to apply the ML method, one should write a model in terms of

the joint probability density function pðyjX; �Þ for the observed variables y

given X , where � summarizes the model parameters � and �2, and where p
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denotes probability. For given values of �, pð�j�; �Þ is a probability density
function for y conditional on X . Given ðyjXÞ, the likelihood function is
defined as

Lð�Þ ¼ pðyjX; �Þ: ð3:19Þ
This likelihood function measures the probability of observing the data ðyjXÞ
for different values of �. The ML estimator �̂� is defined as the value of � that
maximizes the function Lð�Þ over a set of relevant parameter values of �.
Obviously, the ML method is optimal in the sense that it yields the value of �̂�
that gives the maximum likely correlation between y and X , given X .

Usually, one considers the logarithm of the likelihood function, which is

called the log-likelihood function

lð�Þ ¼ logðLð�ÞÞ: ð3:20Þ
Because the natural logarithm is a monotonically increasing transformation,

the maxima of (3.19) and (3.20) are naturally obtained for the same values

of �.
To obtain the value of � that maximizes the likelihood function, one first

differentiates the log-likelihood function (3.20) with respect to �. Next, one
solves the first-order conditions given by

@lð�Þ
@�

¼ 0 ð3:21Þ

for � resulting in the ML estimate denoted by �̂�. In general it is usually not
possible to find an analytical solution to (3.21). In that case, one has to use

numerical optimization techniques to find the ML estimate. In this book we

opt for the Newton–Raphson method because the special structure of the

log-likelihood function of many of the models reviewed in the following

chapters results in efficient optimization, but other optimization methods

such as the BHHH method of Berndt et al. (1974) can be used instead

(see, for example, Judge et al., 1985, Appendix B, for an overview). The

Newton–Raphson method is based on meeting the first-order condition for

a maximum in an iterative manner. Denote the gradient Gð�Þ and Hessian
matrix Hð�Þ by

Gð�Þ ¼ @lð�Þ
@�

Hð�Þ ¼ @2lð�Þ
@�@�0

;

ð3:22Þ

then around a given value �h the first-order condition for the optimization
problem can be linearized, resulting in Gð�hÞ þ Hð�hÞð� � �hÞ ¼ 0. Solving

this for � gives the sequence of estimates
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�hþ1 ¼ �h � Hð�hÞ�1Gð�hÞ: ð3:23Þ

Under certain regularity conditions, which concern the log-likelihood func-

tion, these iterations converge to a local maximum of (3.20). Whether a

global maximum is found depends on the form of the function and on the

procedure to determine the initial estimates �0. In practice it can thus be
useful to vary the initial estimates and to compare the corresponding log-

likelihood values. ML estimators have asymptotically optimal statistical

properties under fairly mild conditions. Apart from regularity conditions

on the log-likelihood function, the main condition is that the model is ade-

quately specified.

In many cases, it holds true that

ffiffiffiffi
T

p
ð�̂� � �Þ 
a Nð0; ÎI�1Þ; ð3:24Þ

where ÎI is the so-called information matrix evaluated at �̂�, that is,

ÎI ¼ �E @2lð�Þ
@�@�0

" #�����
�¼�̂�
; ð3:25Þ

where E denotes the expectation operator.

To illustrate the ML estimation method, consider again the standard

Linear Regression model given in (3.12). The log-likelihood function for

this model is given by

Lð�; �2Þ ¼
YT
t¼1

1

�
ffiffiffiffiffiffi
2�

p expð� 1

2�2
ðyt � Xt�Þ2Þ ð3:26Þ

such that the log-likelihood reads

lð�; �2Þ ¼
XT
t¼1

� 1
2
log 2�� log � � 1

2�2
ðyt � Xt�Þ2

� 

; ð3:27Þ

where we have used some of the results summarized in section A.2 of the

Appendix. The ML estimates are obtained from the first-order conditions

@lð�; �2Þ
@�

¼
XT
t¼1

1

�2
X 0

tðyt � Xt�Þ ¼ 0

@lð�; �2Þ
@�2

¼
XT
t¼1

� 1

2�2
þ 1

2�4
ðyt � Xt�Þ2

� 

¼ 0:

ð3:28Þ
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Solving this results in

�̂� ¼
XT
t¼1

X 0
tXt

 !�1XT
t¼1

X 0
tyt

�̂�2 ¼ 1

T

XT
t¼1

ðyt � Xt�̂�Þ2 ¼
1

T

XT
t¼1

"̂"2t :

ð3:29Þ

This shows that the ML estimator for � is equal to the OLS estimator in
(3.14), but that the ML estimator for �2 differs slightly from its OLS counter-
part in (3.16).

The second-order derivatives of the log-likelihood function, which are

needed in order to construct confidence intervals for the estimated para-

meters (see (3.24)), are given by

@2lð�; �2Þ
@�@�0

¼ � 1

�2

XT
t¼1

X 0
tXt

@2lð�; �2Þ
@�@�2

¼ � 1

�4

XT
t¼1

X 0
tðyt � Xt�Þ

@2lð�; �2Þ
@�2@�2

¼
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t¼1

1

2�4
� 1

�6
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� 

:

ð3:30Þ

Upon substituting the ML estimates in (3.24) and (3.25), one can derive that

�̂� 
a N �; �̂�2
XT
t¼1

X 0
tXt

 !�10
@

1
A; ð3:31Þ

which, owing to (3.29), is similar to the expression obtained for the OLS

method.

3.3 Diagnostics, model selection and forecasting

Once the parameters have been estimated, it is important to check

the adequacy of the model. If a model is incorrectly specified, there may be a

problem with the interpretation of the parameters. Also, it is likely that the

included parameters and their corresponding standard errors are calculated

incorrectly. Hence, it is better not to try to interpret and use a possibly

misspecified model, but first to check the adequacy of the model.

There are various ways to derive tests for the adequacy of a maintained

model. One way is to consider a general specification test, where the main-

tained model is the null hypothesis and the alternative model assumes that
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any of the underlying assumptions are violated. Although these general tests

can be useful as a one-time check, they are less useful if the aim is to obtain

clearer indications as to how one might modify a possibly misspecified

model. In this section, we mainly discuss more specific diagnostic tests.

3.3.1 Diagnostics

There are various ways to derive tests for the adequacy of a main-

tained model. One builds on the Lagrange Multiplier (LM) principle. In

some cases the so-called Gauss–Newton regression is useful (see Davidson

and MacKinnon, 1993). Whatever the principle, a useful procedure is the

following. The model parameters are estimated and the residuals are saved.

Next, an alternative model is examined, which often leads to the suggestion

that certain variables were deleted from the initial model in the first place.

Tests based on auxiliary regressions, which involve the original variables and

the omitted variables, can suggest whether the maintained model should be

rejected for the alternative model. If so, one assumes the validity of the

alternative model, and one starts again with parameter estimation and diag-

nostics.

The null hypothesis in this testing strategy, at least in this chapter, is the

standard Linear Regression model, that is,

Yt ¼ Xt�þ "t; ð3:32Þ
where "t obeys

"t 
 Nð0; �2Þ: ð3:33Þ
A first and important test in the case of time series variables (but not for

cross-sectional data) concerns the absence of correlation between "t and "t�1,
that is, the same variable lagged one period. Hence, there should be no

autocorrelation in the error variable. If there is such correlation, this can

also be visualized by plotting estimated "t against "t�1 in a two-dimensional
scatter diagram. Under the alternative hypothesis, one may postulate that

"t ¼ �"t�1 þ vt; ð3:34Þ
which is called a first-order autoregression (AR(1)) for "t. By writing

�Yt�1 ¼ Xt�1��þ �"t�1, and subtracting this from (3.32), the regression

model under this alternative hypothesis is now given by

Yt ¼ �Yt�1 þ Xt�� Xt�1��þ vt: ð3:35Þ
It should be noticed that an unrestricted model with Yt�1 and Xt�1 would
contain 1þ ðK þ 1Þ þ K ¼ 2ðK þ 1Þ parameters because there is only one
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intercept, whereas, owing to the common � parameter, (3.35) has only 1þ
ðK þ 1Þ ¼ K þ 2 unrestricted parameters.
One obvious way to examine if the error variable "t is an AR(1) variable is

to add yt�1 and Xt�1 to the initial regression model and to examine their joint
significance. Another way is to consider the auxiliary test regression

"̂"t ¼ Xt� þ �"̂"t�1 þ wt: ð3:36Þ
If the error variable is appropriately specified, this regression model should

not be able to describe the estimated errors well. A simple test is now given

by testing the significance of "̂"t�1 in (3.36). This can be done straightfor-
wardly using the appropriate z-score statistic (see (3.17)). Consequently, a

test for residual autocorrelation at lags 1 to p can be performed by consider-

ing

"̂"t ¼ Xt� þ �1"̂"t�1 þ � � � þ �p"̂"t�p þ wt; ð3:37Þ
and by examining the joint significance of "̂"t�1 to "̂"t�p with what is called an

F-test. This F-test is computed as

F ¼ RSS0 � RSS1
p

� 
,
RSS1

T � ðK þ 1Þ � p

� 

; ð3:38Þ

where RSS0 denotes the residual sum of squares under the null hypothesis

(which is here that the added lagged residual variables are irrelevant), and

RSS1 is the residual sum of squares under the alternative hypothesis. Under

the null hypothesis, this test has an Fðp;T � ðK þ 1Þ � pÞ distribution (see
section A.3 in the Appendix for some critical values).

An important assumption for the standard Linear Regression model is

that the variance of the errors has a constant value �2 (called homoskedas-
tic). It may however be that this variance is not constant, but varies with the

explanatory variables (some form of heteroskedasticity), that is, for example,

�2t ¼ �0 þ �1x21;t þ � � � þ �Kx2K;t: ð3:39Þ
Again, one can use graphical techniques to provide a first impression of

potential heteroskedasticity. To examine this possibility, a White-type

(1980) test for heteroskedasticity can then be calculated from the auxiliary

regression

"̂"2t ¼ 	0 þ 	1x1;t þ � � � þ 	KxK;t þ �1x21;t þ � � � þ �Kx2K;t þ wt; ð3:40Þ
The actual test statistic is the joint F-test for the significance of final K

variables in (3.40). Notice that, when some of the explanatory variables

are 0/1 dummy variables, the squares of these are the same variables

again, and hence it is pointless to include these squares.
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Finally, the standard Linear Regression model assumes that all observa-

tions are equally important when estimating the parameters. In other words,

there are no outliers or otherwise influential observations. Usually, an outlier

is defined as an observation that is located far away from the estimated

regression line. Unfortunately, such an outlier may itself have a non-negli-

gible effect on the location of that regression line. Hence, in practice, it is

important to check for the presence of outliers. An indication may be an

implausibly large value of an estimated error. Indeed, when its value is more

than three or four times larger than the estimated standard deviation of the

residuals, it may be considered an outlier.

A first and simple indication of the potential presence of outliers can be

given by a test for the approximate normality of the residuals. When the

error variable in the standard Linear Regression model is distributed as

normal with mean 0 and variance �2, then the skewness (the standardized
third moment) is equal to zero and the kurtosis (the standardized fourth

moment) is equal to 3. A simple test for normality can now be based on

the normalized residuals "̂"t=�̂� using the statistics

1ffiffiffiffiffiffiffi
6T

p
XT
t¼1

"̂"t
�̂�

� 
3
ð3:41Þ

and

1ffiffiffiffiffiffiffiffiffi
24T

p
XT
t¼1

"̂"t
�̂�

� 
4
�3

 !
: ð3:42Þ

Under the null hypothesis, each of these two test statistics is asymptotically

distributed as standard normal. Their squares are asymptotically distributed

as �2ð1Þ, and the sum of these two as �2ð2Þ. This last �2ð2Þ-normality test
(Jarque–Bera test) is often applied in practice (see Bowman and Shenton,

1975, and Bera and Jarque, 1982). Section A.3 in the Appendix provides

relevant critical values.

3.3.2 Model selection

Supposing the parameters have been estimated, and the model

diagnostics do not indicate serious misspecification, then one may examine

the fit of the model. Additionally, one can examine if certain explanatory

variables can be deleted.

A simple measure, which is the R2, considers the amount of variation in yt

that is explained by the model and compares it with the variation in yt itself.

Usually, one considers the definition
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R2 ¼ 1�
PT

t¼1 "̂"
2
tPT

t¼1ðyt � �yytÞ2
; ð3:43Þ

where �yyt denotes the average value of yt. When R2 ¼ 1, the fit of the model is

perfect; when R2 ¼ 0, there is no fit at all. A nice property of R2 is that it can

be used as a single measure to evaluate a model and the included variables,

provided the model contains an intercept.

If there is more than a single model available, one can also use the so-

called Akaike information criterion, proposed by Akaike (1969), which is

calculated as

AIC ¼ 1

T
ð�2lð�̂�Þ þ 2nÞ; ð3:44Þ

or the Schwarz (or Bayesian) information criterion of Schwarz (1978)

BIC ¼ 1

T
ð�2lð�̂�Þ þ n logTÞ; ð3:45Þ

where lð�̂�Þ denotes the maximum of the log-likelihood function obtained for

the included parameters �, and where n denotes the total number of para-

meters in the model. Alternative models including fewer or other explanatory

variables have different values for �̂� and hence different lð�̂�Þ, and perhaps also
a different number of variables. The advantage of AIC and BIC is that they

allow for a comparison of models with different elements in Xt, that is, non-

nested models. Additionally, AIC and BIC provide a balance between the fit

and the number of parameters.

One may also consider the Likelihood Ratio test or the Wald test to see if

one or more variables can be deleted. Suppose that the general model under

the alternative hypothesis is the standard Linear Regression model, and

suppose that the null hypothesis imposes g independent restrictions on the

parameters. We denote the ML estimator for � under the null hypothesis by
�̂�0 and the ML estimator under the alternative hypothesis by �̂�A. The
Likelihood Ratio (LR) test is now defined as

LR ¼ �2 log Lð�̂�0Þ
Lð�̂�AÞ

¼ �2ðlð�̂�0Þ � lð�̂�AÞÞ: ð3:46Þ

Under the null hypothesis it holds that

LR 
a �2ðgÞ: ð3:47Þ
The null hypothesis is rejected if the value of LR is sufficiently large, com-

pared with the critical values of the relevant �2ðgÞ distribution (see section
A.3 in the Appendix).

The LR test requires two optimizations: ML under the null hypothesis

and ML under the alternative hypothesis. The Wald test, in contrast, is based
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on the unrestricted model only. Note that the z-score in (3.18) is a Wald test

for a single parameter restriction. Now we discuss the Wald test for more

than one parameter restriction. This test concerns the extent to which the

restrictions are satisfied by the unrestricted estimator �̂� itself, comparing it
with its confidence region. Under the null hypothesis one has r� ¼ 0, where

the r is a g	 ðK þ 1Þ to indicate g specific parameter restrictions. The Wald

test is now computed as

W ¼ ðr�̂�� 0Þ0½rÎIð�̂�Þ�1r 0��1ðr�̂�� 0Þ; ð3:48Þ
and it is asymptotically distributed as �2ðgÞ. Note that the Wald test requires
the computation only of the unrestricted ML estimator, and not the one

under the null hypothesis. Hence, this is a useful test if the restricted

model is difficult to estimate. On the other hand, a disadvantage is that

the numerical outcome of the test may depend on the way the restrictions

are formulated, because similar restrictions may lead to the different Wald

test values. Likelihood Ratio tests or Lagrange Multiplier type tests are

therefore often preferred. The advantage of LM-type tests is that they

need parameter estimates only under the null hypothesis, which makes

these tests very useful for diagnostic checking. In fact, the tests for residual

serial correlation and heteroskedasticity in section 3.3.1 are LM-type tests.

3.3.3 Forecasting

One possible use of a regression model concerns forecasting. The

evaluation of out-of-sample forecasting accuracy can also be used to com-

pare the relative merits of alternative models. Consider again

Yt ¼ Xt�þ "t: ð3:49Þ
Then, given the familiar assumptions on "t, the best forecast for "t for t þ 1 is
equal to zero. Hence, to forecast yt for time tþ 1, one should rely on

ŷytþ1 ¼ X̂Xtþ1�̂�: ð3:50Þ
If �̂� is assumed to be valid in the future (or, in general, for the observations
not considered for estimating the parameters), the only information that is

needed to forecast yt concerns X̂Xtþ1. In principle, one then needs a model for
Xt to forecast Xtþ1. In practice, however, one usually divides the sample of T
observations into T1 and T2, with T1 þ T2 ¼ T . The model is constructed

and its parameters are estimated for T1 observations. The out-of-sample

forecast fit is evaluated for the T2 observations. Forecasting then assumes

knowledge of Xtþ1, and the forecasts are given by

ŷyT1þj ¼ XT1þj�̂�; ð3:51Þ
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with j ¼ 1; 2; . . . ;T2. The forecast error is

eT1þj ¼ yT1þj � ŷyT1þj: ð3:52Þ
The (root of the) mean of the T2 squared forecast errors ((R)MSE) is often

used to compare the forecasts generated by different models.

A useful class of models for forecasting involves time series models (see,

for example, Franses, 1998). An example is the autoregression of order 1,

that is,

Yt ¼ �Yt�1 þ "t: ð3:53Þ
Here, the forecast of yT1þ1 is equal to �̂�yT1 . Obviously, this forecast includes

values that are known ðyT1Þ or estimated ð�Þ at time T1. In fact,

ŷyT1þ2 ¼ �̂�ŷyT1þ1, where ŷyT1þ1 is the forecast for T1 þ 1. Hence, time series
models can be particularly useful for multiple-step-ahead forecasting.

3.4 Modeling sales

In this section we illustrate various concepts discussed above for a

set of scanner data including the sales of Heinz tomato ketchup (St), the

average price actually paid (Pt), coupon promotion only (CPt), major dis-

play promotion only (DPt), and combined promotion (TPt). The data are

observed over 124 weeks. The source of the data and some visual character-

istics have already been discussed in section 2.2.1. In the models below, we

will consider sales and prices after taking natural logarithms. In figure 3.3 we

give a scatter diagram of logSt versus logPt. Clearly there is no evident

correlation between these two variables. Interestingly, if we look at the scat-

ter diagram of logSt versus logPt � logPt�1 in figure 3.4, that is, of the
differences, then we notice a more pronounced negative correlation.

For illustration, we first start with a regression model where current log

sales are correlated with current log prices and the three dummy variables for

promotion. OLS estimation results in

logSt ¼ 3:936 � 0:117 logPt þ 1:852 TPt

ð0:106Þ ð0:545Þ ð0:216Þ
þ 1:394 CPt þ 0:741 DPt þ "̂"t;

ð0:170Þ ð0:116Þ

ð3:54Þ

where estimated standard errors are given in parentheses. As discussed in

section 2.1, these standard errors are calculated as

SE�̂�k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂�2ððX 0XÞ�1Þk;k

q
; ð3:55Þ

where �̂�2 denotes the OLS estimator of �2 (see (3.16)).
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Figure 3.3 Scatter diagram of logSt against logPt
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Figure 3.4 Scatter diagram of logSt against logPt � logPt�1



46 Quantitative models in marketing research

Before establishing the relevance and usefulness of the estimated para-

meters, it is important to diagnose the quality of the model. The LM-

based tests for residual autocorrelation at lag 1 and at lags 1–5 (see section

3.3.1) obtain the values of 0.034 and 2.655, respectively. The latter value is

significant at the 5% level. The �2ð2Þ-test for normality of the residuals is
0.958, which is not significant at the 5% level. The White test for hetero-

skedasticity obtains a value of 8.919, and this is clearly significant at the 1%

level. Taking these diagnostics together, it is evident that this first attempt

leads to a misspecified model, that is, there is autocorrelation in the residuals

and there is evidence of heteroskedasticity. Perhaps this misspecification

explains the unexpected insignificance of the price variable.

In a second attempt, we first decide to take care of the dynamic structure

of the model. We enlarge it by including first-order lags of all the explanatory

variables and by adding the one-week lagged logs of the sales. The OLS

estimation results for this model are

logSt ¼ 3:307 þ 0:120 logSt�1 � 3:923 logPt þ 4:792 logPt�1
ð0:348Þ ð0:086Þ ð0:898Þ ð0:089Þ
þ 1:684 TPt þ 0:241 TPt�1 þ 1:395 CPt

ð0:188Þ ð0:257Þ ð0:147Þ
� 0:425 CPt�1 þ 0:325 DPt þ 0:407 DPt�1 þ "̂"t; ð3:56Þ
ð0:187Þ ð0:119Þ ð0:127Þ

where the parameters �3:923 for logPt and 4:792 logPt�1 suggest an effect
of about �4 for logPt � logPt�1 (see also figure 3.4). The LM tests for

residual autocorrelation at lag 1 and at lags 1–5 obtain the values of 0.492

and 0.570, respectively, and these are not significant. However, the �2ð2Þ-test
for normality of the residuals now obtains the significant value of 12.105.

The White test for heteroskedasticity obtains a value of 2.820, which is

considerably smaller than before, though still significant. Taking these diag-

nostics together, it seems that there are perhaps some outliers, and maybe

these are also causing heteroskedasticity, but that, on the whole, the model

seems not too bad.

This seems to be confirmed by the R2 value for this model, which is

0.685. The effect of having two promotions at the same time is 1:684,
while the effect of having these promotions in different weeks is

1:395� 0:425þ 0:325þ 0:407 ¼ 1:702, which is about equal to the joint

effect. Interestingly, a display promotion in the previous week still has a

positive effect on the sales in the current week (0.407), whereas a coupon

promotion in the previous week establishes a so-called postpromotion dip

(�0:425) (see van Heerde et al., 2000, for a similar model).
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3.5 Advanced topics

In the previous sections we considered single-equation econometric

models, that is, we considered correlating yt with Xt. In some cases however,

one may want to consider more than one equation. For example, it may well

be that the price level is determined by past values of sales. In that case, one

may want to extend earlier models by including a second equation for the log

of the actual price. If this model then includes current sales as an explanatory

variable, one may end up with a simultaneous-equations model. A simple

example of such a model is

logSt ¼ �1 þ �1 logSt�1 þ �1 logPt þ "1;t
logPt ¼ �2 þ �2 logPt�1 þ �2 logSt þ "2;t:

ð3:57Þ

When a simultaneous-equations model contains lagged explanatory vari-

ables, it can often be written as what is called a Vector AutoRegression

(VAR). This is the multiple-equation extension of the AR model mentioned

in section 3.3 (see Lütkepohl, 1993).

Multiple-equation models also emerge in marketing research when the

focus is on modeling market shares instead of on sales (see Cooper and

Nakanishi, 1988). This is because market shares sum to unity.

Additionally, as market shares lie between 0 and 1, a more specific model

may be needed. A particularly useful model is the attraction model. Let Aj;t

denote the attraction of brand j at time t, t ¼ 1; . . . ;T , and suppose that it is
given by

Aj;t ¼ expð�j þ "j;tÞ
YK
k¼1

x
�k;j

k;j;t for j ¼ 1; . . . ; J; ð3:58Þ

where xk;j;t denotes the k’th explanatory variable (such as price, distribution,

advertising) for brand j at time t and where �k;j is the corresponding coeffi-

cient. The parameter �j is a brand-specific constant, and the error term

ð"1;t; . . . ; "J;tÞ0 is multivariate normally distributed with zero mean and �

as covariance matrix. For the attraction to be positive, xk;j;t has to be posi-

tive, and hence rates of changes are often not allowed. The variable xk;j;t

may, for instance, be the price of brand j. Note that for dummy variables (for

example, promotion) one should include expðxk;j;tÞ in order to prevent Aj;t

becoming zero.

Given the attractions, the market share of brand j at time t is now defined

as

Mj;t ¼
Aj;tPJ
l¼1Al;t

for j ¼ 1; . . . ; J: ð3:59Þ



48 Quantitative models in marketing research

This assumes that the attraction of the product category is the sum of the

attractions of all brands and that Aj;t ¼ Al;t implies that Mj;t ¼ Ml;t.

Combining (3.58) with (3.59) gives

Mj;t ¼
expð�j þ "j;tÞ

QK
k¼1 x

�k;j

k;j;tPJ
l expð�l þ "l;tÞ

QK
k¼1 x

�k;l

k;l;t

for i ¼ j; . . . ; J: ð3:60Þ

To enable parameter estimation, one can linearize this model by, first,

taking brand J as the benchmark such that

Mj;t

MJ;t
¼ expð�j þ "j;tÞ

QK
k¼1 x

�k;j

k;j;t

expð�J þ "J;tÞ
QK

k¼1 x
�k;J

k;J;t

; ð3:61Þ

and, second, taking natural logarithms on both sides, which results in the

ðJ � 1Þ equations

logMj;t ¼ logMJ;t þ ð�j � �JÞ þ
XK
k¼1

ð�k;j � �k;JÞ logxk;j;t

þ "j;t � "J;t;
ð3:62Þ

for j ¼ 1; . . . ; J � 1. Note that one of the �j parameters j ¼ 1; . . . ; J is not
identified because one can only estimate �j � �J . Also, for similar reasons,

one of the �k;j parameters is not identified for each k. In fact, only the

parameters ��
j ¼ �j � �J and �

�
k;j ¼ �k;j � �k;J are identified. In sum, the

attraction model assumes J � 1 model equations, thereby providing an
example of how multiple-equation models can appear in marketing research.

The market share attraction model bears some similarities to the so-called

multinomial choice models in chapter 5. Before we turn to these models, we

first deal with binomial choice in the next chapter.
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In this chapter we focus on the Logit model and the Probit model for binary

choice, yielding a binomial dependent variable. In section 4.1 we discuss the

model representations and ways to arrive at these specifications. We show

that parameter interpretation is not straightforward because the parameters

enter the model in a nonlinear way. We give alternative approaches to inter-

preting the parameters and hence the models. In section 4.2 we discuss ML

estimation in substantial detail. In section 4.3, diagnostic measures, model

selection and forecasting are considered. Model selection concerns the choice

of regressors and the comparison of non-nested models. Forecasting deals

with within-sample or out-of-sample prediction. In section 4.4 we illustrate

the models for a data set on the choice between two brands of tomato

ketchup. Finally, in section 4.5 we discuss issues such as unobserved hetero-

geneity, dynamics and sample selection.

4.1 Representation and interpretation

In chapter 3 we discussed the standard Linear Regression model,

where a continuously measured variable such as sales was correlated with,

for example, price and promotion variables. These promotion variables typi-

cally appear as 0/1 dummy explanatory variables in regression models. As

long as such dummy variables are on the right-hand side of the regression

model, standard modeling and estimation techniques can be used. However,

when 0/1 dummy variables appear on the left-hand side, the analysis changes

and alternative models and inference methods need to be considered. In this

chapter the focus is on models for dependent variables that concern such

binomial data. Examples of binomial dependent variables are the choice

between two brands made by a household on the basis of, for example,

brand-specific characteristics, and the decision whether or not to donate to

charity. In this chapter we assume that the data correspond to a single cross-

section, that is, a sample of N individuals has been observed during a single

49
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time period and it is assumed that they correspond to one and the same

population. In the advanced topics section of this chapter, we abandon

this assumption and consider other but related types of data.

4.1.1 Modeling a binomial dependent variable

Consider the linear model

Yi ¼ �0 þ �1xi þ "i; ð4:1Þ
for individuals i ¼ 1; 2; . . . ;N, where �0 and �1 are unknown parameters.
Suppose that the random variable Yi can take a value only of 0 or 1. For

example, Yi is 1 when a household buys brand A and 0 when it buys B, where

xi is, say, the price difference between brands A and B. Intuitively it seems

obvious that the assumption that the distribution of "i is normal, with mean
zero and variance �2, that is,

Yi 
 Nð�0 þ �1xi; �
2Þ; ð4:2Þ

is not plausible. One can imagine that it is quite unlikely that this model

maps possibly continuous values of xi exactly on a variable, Yi, which can

take only two values. This is of course caused by the fact that Yi itself is not a

continuous variable.

To visualize the above argument, consider the observations on xi and yi

when they are created using the following Data Generating Process (DGP),

that is,

xi ¼ 0:0001i þ "1;i with "1;i 
 Nð0; 1Þ
y�i ¼ �2þ xi þ "2;i with "2;i 
 Nð0; 1Þ; ð4:3Þ

where i ¼ 1; 2; . . . ;N ¼ 1,000. Note that the same kind of DGP was used in

chapter 3. Additionally, in order to obtain binomial data, we apply the rule

Yi ¼ 1 if y�i > 0 and Yi ¼ 0 if y�i � 0. In figure 4.1, we depict a scatter dia-

gram of this binomial variable yi against xi. This diagram also shows the fit

of an OLS regression of yi on an intercept and xi. This graph clearly shows

that the assumption of a standard linear regression for binomial data is

unlikely to be useful.

The solution to the above problem amounts to simply assuming another

distribution for the random variable Yi. Recall that for the standard Linear

Regression model for a continuous dependent variable we started with

Yi 
 Nð�; �2Þ: ð4:4Þ
In the case of binomial data, it would now be better to opt for

Yi 
 BINð1; �Þ; ð4:5Þ
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where BIN denotes the Bernoulli distribution with a single unknown para-

meter � (see section A.2 in the Appendix for more details of this distribu-
tion). A familiar application of this distribution concerns tossing a fair coin.

In that case, the probability � of obtaining heads or tails is 0:5.
When modeling marketing data concerning, for example, brand choice or

the response to a direct mailing, it is unlikely that the probability � is known
or that it is constant across individuals. It makes more sense to extend (4.5)

by making � dependent on xi, that is, by considering

Yi 
 BINð1;Fð�0 þ �1xiÞÞ; ð4:6Þ

where the function F has the property that it maps �0 þ �1xi onto the inter-

val (0,1). Hence, instead of considering the precise value of Yi, one now

focuses on the probability that, for example, Yi ¼ 1, given the outcome of

�0 þ �1xi. In short, for a binomial dependent variable, the variable of inter-

est is

Pr½Yi ¼ 1jXi� ¼ 1� Pr½Yi ¼ 0jXi�; ð4:7Þ

where Pr denotes probability, where Xi collects the intercept and the variable

xi (and perhaps other variables), and where we use the capital letter Yi to

denote a random variable with realization yi, which takes values conditional

on the values of xi.
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Figure 4.1 Scatter diagram of yi against xi, and the OLS regression line of yi

on xi and a constant
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As an alternative to this more statistical argument, there are two other

ways to assign an interpretation to the fact that the focus now turns towards

modeling a probability instead of an observed value. The first, which will

also appear to be useful in chapter 6 where we discuss ordered categorical

data, starts with an unobserved (also called latent) but continuous variable

y�i , which in the case of a single explanatory variable is assumed to be
described by

y�i ¼ �0 þ �1xi þ "i: ð4:8Þ
For the moment we leave the distribution of "i unspecified. This latent vari-
able can, for example, amount to some measure for the difference between

unobserved preferences for brand A and for brand B, for each individual i.

Next, this latent continuous variable gets mapped onto the binomial variable

yi by the rule:

Yi ¼ 1 if y�i > 0
Yi ¼ 0 if y�i � 0:

ð4:9Þ

This rule says that, when the difference between the preferences for brands A

and B is positive, one would choose brand A and this would be denoted as

Yi ¼ 1. The model is then used to correlate these differences in preferences

with explanatory variables, such as, for example, the difference in price.

Note that the threshold value for y�i in (4.9) is equal to zero. This restric-
tion is imposed for identification purposes. If the threshold were �, the
intercept parameter in (4.8) would change from �0 to �0 � �. In other

words, � and �0 are not identified at the same time. It is common practice
to solve this by assuming that � is equal to zero. In chapter 6 we will see that
in other cases it can be more convenient to set the intercept parameter equal

to zero.

In figure 4.2, we provide a scatter diagram of y�i against xi, when the data

are again generated according to (4.3). For illustration, we depict the density

function for three observations on y�i for different xi, where we now assume

that the error term is distributed as standard normal. The shaded areas

correspond with the probability that y�i > 0, and hence that one assigns
these latent observations to Yi ¼ 1. Clearly, for large values of xi, the prob-

ability that Yi ¼ 1 is very close to 1, whereas for small values of xi this

probability is 0.

A second and related look at a model for a binomial dependent variable

amounts to considering utility functions of individuals. Suppose an indivi-

dual i assigns utility uA;i to brand A based on a perceived property xi, where

this variable measures the observed price difference between brands A and B,

and that he/she assigns utility uB;i to brand B. Furthermore, suppose that

these utilities are linear functions of xi, that is,
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uA;i ¼ �A þ �Axi þ "A;i
uB;i ¼ �B þ �Bxi þ "B;i:

ð4:10Þ

One may now define that an individual buys brand A if the utility of A

exceeds that of B, that is,

Pr½Yi ¼ 1jXi� ¼ Pr½uA;i > uB;ijXi�
¼ Pr½�A � �B þ ð�A � �BÞxi > "A;i � "B;ijXi�
¼ Pr½"i � �0 þ �1xijXi�;

ð4:11Þ

where "i equals "A;i � "B;i, �0 equals �A � �B and �1 is �A � �B. This shows

that one cannot identify the individual parameters in (4.11); one can identify

only the difference between the parameters. Hence, one way to look at the

parameters �0 and �1 is to see these as measuring the effect of xi on the

choice for brand A relative to brand B. The next step now concerns the

specification of the distribution of "i.

4.1.2 The Logit and Probit models

The discussion up to now has left the distribution of "i unspecified.
In this subsection we will consider two commonly applied cumulative dis-

tribution functions. So far we have considered only a single explanatory

variable, and in particular examples below we will continue to do so.
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Figure 4.2 Scatter diagram of y�i against xi
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However, in the subsequent discussion we will generally assume the avail-

ability of K þ 1 explanatory variables, where the first variable concerns the
intercept. As in chapter 3, we summarize these variables in the 1	 ðK þ 1Þ
vector Xi, and we summarize the K þ 1 unknown parameters �0 to �K in a

ðK þ 1Þ 	 1 parameter vector �.
The discussion in the previous subsection indicates that a model that

correlates a binomial dependent variable with explanatory variables can be

constructed as

Pr½Yi ¼ 1jXi� ¼ Pr½y�i > 0jXi�
¼ Pr½Xi�þ "i > 0jXi�
¼ Pr½"i > �Xi�jXi�
¼ Pr½"i � Xi�jXi�:

ð4:12Þ

The last line of this set of equations states that the probability of observing

Yi ¼ 1 given Xi is equal to the cumulative distribution function of "i, eval-
uated at Xi�. In shorthand notation, this is

Pr½Yi ¼ 1jXi� ¼ FðXi�Þ; ð4:13Þ
where FðXi�Þ denotes the cumulative distribution function of "i evaluated in
Xi�. For further use, we denote the corresponding density function evaluated
in Xi� as f ðXi�Þ.
There are many possible choices for F , but in practice one usually con-

siders either the normal or the logistic distribution function. In the first case,

that is

FðXi�Þ ¼ �ðXi�Þ ¼
Z Xi�

�1

1ffiffiffiffiffiffi
2�

p exp � z2

2

 !
dz; ð4:14Þ

the resultant model is called the Probit model, where the symbol � is com-

monly used for standard normal distribution. For further use, the corre-

sponding standard normal density function evaluated in Xi� is denoted as
�ðXi�Þ. The second case takes

FðXi�Þ ¼ �ðXi�Þ ¼
expðXi�Þ

1þ expðXi�Þ
; ð4:15Þ

which is the cumulative distribution function according to the standardized

logistic distribution (see section A.2 in the Appendix). In this case, the resul-

tant model is called the Logit model. In some applications, the Logit model is

written as

Pr½Yi ¼ 1jXi� ¼ 1��ð�Xi�Þ; ð4:16Þ
which is of course equivalent to (4.15).
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It should be noted that the two cumulative distribution functions above

are already standardized. The reason for doing this can perhaps best be

understood by reconsidering y�i ¼ Xi�þ "i. If y�i were multiplied by a factor
k, this would not change the classification y�i into positive or negative values
upon using (4.9). In other words, the variance of "i is not identified, and
therefore "i can be standardized. This variance is equal to 1 in the Probit
model and equal to 1

3�
2 in the Logit model.

The standardized logistic and normal cumulative distribution functions

behave approximately similarly in the vicinity of their mean values. Only in

the tails can one observe that the distributions have different patterns. In

other words, if one has a small number of, say, yi ¼ 1 observations, which

automatically implies that one considers the left-hand tail of the distribution

because the probability of having yi ¼ 1 is apparently small, it may matter

which model one considers for empirical analysis. On the other hand, if the

fraction of yi ¼ 1 observations approaches 12, one can use

"Logiti �
ffiffiffiffiffiffiffiffi
1

3
�2

r
"Probiti ;

although Amemiya (1981) argues that the factor 1.65 might be better. This

appropriate relationship also implies that the estimated parameters of the

Logit and Probit models have a similar relation.

4.1.3 Model interpretation

The effects of the explanatory variables on the dependent binomial

variable are not linear, because they get channeled through a cumulative

distribution function. For example, the cumulative logistic distribution func-

tion in (4.15) has the component Xi� in the numerator and in the denomi-
nator. Hence, for a positive parameter �k, it is not immediately clear what

the effect is of a change in the corresponding variable xk.

To illustrate the interpretation of the models for a binary dependent

variable, it is most convenient to focus on the Logit model, and also to

restrict attention to a single explanatory variable. Hence, we confine the

discussion to
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�ð�0 þ �1xiÞ ¼
expð�0 þ �1xiÞ

1þ expð�0 þ �1xiÞ

¼
exp �1

�0
�1

þ xi

� 
� 


1þ exp �1
�0
�1

þ xi


� 
 :
ð4:17Þ

This expression shows that the inflection point of the logistic curve occurs at

xi ¼ ��0=�1, and that then �ð�0 þ �1xiÞ ¼ 1
2. When xi is larger than ��0=�1,

the function value approaches 1, and when xi is smaller than ��0=�1, the
function value approaches 0.

In figure 4.3, we depict three examples of cumulative logistic distribution

functions

�ð�0 þ �1xiÞ ¼
expð�0 þ �1xiÞ

1þ expð�0 þ �1xiÞ
; ð4:18Þ

where xi ranges between �4 and 6, and where �0 can be �2 or �4 and �1 can
be 1 or 2. When we compare the graph of the case �0 ¼ �2 and �1 ¼ 1 with

that where �1 ¼ 2, we observe that a large value of �1 makes the curve
steeper. Hence, the parameter �1 changes the steepness of the logistic func-
tion. In contrast, if we fix �1 at 1 and compare the curves with �0 ¼ �2 and
�0 ¼ �4, we notice that the curve shifts to the right when �0 is more negative
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Figure 4.3 Graph of �ð�0 þ �1xiÞ against xi
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but that its shape stays the same. Hence, changes in the intercept parameter

only make the curve shift to the left or the right, depending on whether the

change is positive or negative. Notice that when the curve shifts to the right,

the number of observations with a probability Pr½Yi ¼ 1jXi� > 0:5 decreases.
In other words, large negative values of the intercept �0 given the range of xi

values would correspond with data with few yi ¼ 1 observations.

The nonlinear effect of xi can also be understood from

@�ð�0 þ �1xiÞ
@xi

¼ �ð�0 þ �1xiÞ½1��ð�0 þ �1xiÞ��1: ð4:19Þ

This shows that the effect of a change in xi depends not only on the value of

�1 but also on the value taken by the logistic function.
The effects of the variables and parameters in a Logit model (and similarly

in a Probit model) can also be understood by considering the odds ratio,

which is defined by

Pr½Yi ¼ 1jXi�
Pr½Yi ¼ 0jXi�

: ð4:20Þ

For the Logit model with one variable, it is easy to see using (4.15) that this

odds ratio equals

�ð�0 þ �1xiÞ
1��ð�0 þ �1xiÞ

¼ expð�0 þ �1xiÞ: ð4:21Þ

Because this ratio can take large values owing to the exponential function, it

is common practice to consider the log odds ratio, that is,

log
�ð�0 þ �1xiÞ

1��ð�0 þ �1xiÞ
� 


¼ �0 þ �1xi: ð4:22Þ

When �1 ¼ 0, the log odds ratio equals �0. If additionally �0 ¼ 0, this is seen

to correspond to an equal number of observations yi ¼ 1 and yi ¼ 0. When

this is not the case, but the �0 parameter is anyhow set equal to 0, then the
�1xi component of the model has to model the effect of xi and the intercept

at the same time. In practice it is therefore better not to delete the �0 para-
meter, even though it may seem to be insignificant.

If there are two or more explanatory variables, one may also assign an

interpretation to the differences between the various parameters. For exam-

ple, consider the case with two explanatory variables in a Logit model,

that is,

�ð�0 þ �1x1;i þ �2x2;iÞ ¼
expð�0 þ �1x1;i þ �2x2;iÞ

1þ expð�0 þ �1x1;i þ �2x2;iÞ
: ð4:23Þ
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For this model, one can derive that

@Pr½Yi ¼ 1jXi�
@x1;i

@Pr½Yi ¼ 1jXi�
@x2;i

¼ �1
�2
; ð4:24Þ

where the partial derivative of Pr½Yi ¼ 1jXi� with respect to xk;i equals

@Pr½Yi ¼ 1jXi�
@xk;i

¼ Pr½Yi ¼ 1jXi�ð1� Pr½Yi ¼ 1jXi�Þ�k k ¼ 1; 2:

ð4:25Þ
Hence, the ratio of the parameter values gives a measure of the relative effect

of the two variables on the probability that Yi ¼ 1.

Finally, one can consider the so-called quasi-elasticity of an explanatory

variable. For a Logit model with again a single explanatory variable, this

quasi-elasticity is defined as

@Pr½Yi ¼ 1jXi�
@xi

xi ¼ Pr½Yi ¼ 1jXi�ð1� Pr½Yi ¼ 1jXi�Þ�1xi; ð4:26Þ

which shows that this elasticity also depends on the value of xi. A change in

the value of xi has an effect on Pr½Yi ¼ 1jXi� and hence an opposite effect on
Pr½Yi ¼ 0jXi�. Indeed, it is rather straightforward to derive that

@Pr½Yi ¼ 1jXi�
@xi

xi þ
@Pr½Yi ¼ 0jXi�

@xi

xi ¼ 0: ð4:27Þ

In other words, the sum of the two quasi-elasticities is equal to zero.

Naturally, all this also holds for the binomial Probit model.

4.2 Estimation

In this section we discuss the Maximum Likelihood estimation

method for the Logit and Probit models. The models are then written in

terms of the joint density distribution pðyjX;�Þ for the observed variables y

given X , where � summarizes the model parameters �0 to �K . Remember that

the variance of the error variable is fixed, and hence it does not have to be

estimated. The likelihood function is defined as

Lð�Þ ¼ pðyjX;�Þ: ð4:28Þ
Again it is convenient to consider the logarithmic likelihood function

lð�Þ ¼ logðLð�ÞÞ: ð4:29Þ
Contrary to the Linear Regression model in section 3.2.2, it turns out that it

is not possible to find an analytical solution for the value of � that maximizes
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the log-likelihood function. The maximization of the log-likelihood has to be

done using a numerical optimization algorithm. Here, we opt for the

Newton–Raphson method. For this method, we need the gradient Gð�Þ
and the Hessian matrix Hð�Þ, that is,

Gð�Þ ¼ @lð�Þ
@�

;

Hð�Þ ¼ @2lð�Þ
@�@�0

:

ð4:30Þ

It turns out that for the binomial Logit and Probit models, one can obtain

elegant expressions for these two derivatives. The information matrix, which

is useful for obtaining standard errors for the parameter estimates, is equal

to �EðHð�ÞÞ. Linearizing the optimization problem and solving it gives the

sequence of estimates

�hþ1 ¼ �h � Hð�hÞ�1Gð�hÞ; ð4:31Þ
where Gð�hÞ and Hð�hÞ are the gradient and Hessian matrix evaluated in �h

(see also section 3.2.2).

4.2.1 The Logit model

The likelihood function for the Logit model is the product of the

choice probabilities over the i individuals, that is,

Lð�Þ ¼
YN
i¼1

ð�ðXi�ÞÞyi ð1��ðXi�ÞÞ1�yi ; ð4:32Þ

and the log-likelihood is

lð�Þ ¼
XN
i¼1

yi log�ðXi�Þ þ
XN
i¼1

ð1� yiÞ logð1��ðXi�ÞÞ: ð4:33Þ

Owing to the fact that

@�ðXi�Þ
@�

¼ �ðXi�Þð1��ðXi�ÞÞX 0
i ; ð4:34Þ

the gradient (or score) is given by

Gð�Þ ¼ @lð�Þ
@�

¼ �
XN
i¼1

ð�ðXi�ÞÞX 0
i þ

XN
i¼1

X 0
i yi; ð4:35Þ
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and the Hessian matrix is given by

Hð�Þ ¼ @2lð�Þ
@�@�0

¼ �
XN
i¼1

ð�ðXi�ÞÞð1��ðXi�ÞÞX 0
iXi: ð4:36Þ

In Amemiya (1985) it is formally proved that the log-likelihood function is

globally concave, which implies that the Newton–Raphson method con-

verges to a unique maximum (the ML parameter estimates) for all possible

starting values. The ML estimator is consistent, asymptotically normal and

asymptotically efficient. The asymptotic covariance matrix of the parameters

� can be estimated by �Hð�̂�Þ�1, evaluated in the ML estimates. The diagonal
elements of this ðK þ 1Þ 	 ðK þ 1Þ matrix are the estimated variances of the
parameters in �̂�. With these, one can construct the z-scores for the estimated

parameters in order to diagnose if the underlying parameters are significantly

different from zero.

4.2.2 The Probit model

Along similar lines, one can consider ML estimation of the model

parameters for the binary Probit model. The relevant likelihood function is

now given by

Lð�Þ ¼
YN
i¼1

ð�ðXi�ÞÞyi ð1��ðXi�ÞÞ1�yi ; ð4:37Þ

and the corresponding log-likelihood function is

lð�Þ ¼
XN
i¼1

yi log�ðXi�Þ þ
XN
i¼1

ð1� yiÞ logð1��ðXi�ÞÞ: ð4:38Þ

Differentiating lð�Þ with respect to � gives

Gð�Þ ¼ @lð�Þ
@�

¼ �
XN
i¼1

yi ��ðXi�Þ
�ðXi�Þð1��ðXi�ÞÞ

�ðXi�ÞX 0
i ; ð4:39Þ

and the Hessian matrix is given by

Hð�Þ ¼ @2lð�Þ
@�@�0

¼
XN
i¼1

�ðXi�Þ2
�ðXi�Þð1��ðXi�ÞÞ

X 0
iXi: ð4:40Þ

The asymptotic covariance matrix of the parameters � can again be esti-
mated by �Hð�̂�Þ�1, evaluated in the ML estimates. The diagonal elements
of this ðK þ 1Þ 	 ðK þ 1Þ matrix are again the estimated variances of the
parameters in �̂�.
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4.2.3 Visualizing estimation results

Once the parameters have been estimated, there are various ways to

examine the empirical results. Of course, one can display the parameter

estimates and their associated z-scores in a table in order to see which of

the parameters in � is perhaps equal to zero. If such parameters are found,
one may decide to delete one or more variables. This would be useful in the

case where one has a limited number of observations, because redundant

variables in general reduce the z-scores of all variables. Hence, the inclusion

of redundant variables may erroneously suggest that certain other variables

are also not significant.

Because the above models for a binary dependent variable are nonlinear in

the parameters �, it is not immediately clear how one should interpret their
absolute values. One way to make more sense of the estimation output is to

focus on the estimated cumulative distribution function. For the Logit

model, this is equal to

P̂rPr½Yi ¼ 1jXi� ¼ �ðXi�̂�Þ: ð4:41Þ

One can now report the maximum value of P̂rPr½Yi ¼ 1jXi�, its minimum value

and its mean, and also the values given maximum, mean and minimum

values for the explanatory variables. A scatter diagram of the estimated

quasi-elasticity

P̂rPr½Yi ¼ 1jXi�ð1� P̂rPr½Yi ¼ 1jXi�Þ�̂k�kxk;i; ð4:42Þ

for a variable xk;i against this variable itself can also be insightful. In the

empirical section below we will demonstrate a few potentially useful mea-

sures.

4.3 Diagnostics, model selection and forecasting

Once the parameters in binomial choice models have been esti-

mated, it is again important to check the empirical adequacy of the model.

Indeed, if a model is incorrectly specified, the interpretation of the para-

meters may be hazardous. Also, it is likely that the included parameters

and their corresponding standard errors are calculated incorrectly. Hence,

one should first check the adequacy of the model. If the model is found to be

adequate, one may consider deleting possibly redundant variables or com-

pare alternative models using selection criteria. Finally, when one or more

suitable models have been found, one may evaluate them on within-sample

or out-of-sample forecasting performance.
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4.3.1 Diagnostics

As with the standard Linear Regression model, diagnostic tests are

frequently based on the residuals. Ideally one would want to be able to

estimate the values of "i in y�i ¼ Xi�þ "i, but unfortunately these values
cannot be obtained because y�i is an unobserved (latent) variable. Hence,
residuals can for example be obtained from comparing

P̂rPr½Yi ¼ 1jXi� ¼ FðXi�̂�Þ
¼ p̂pi;

ð4:43Þ

with the true observations on yi. Because a Bernoulli distributed variable

with mean p has variance pð1� pÞ (see also section A.2 in the Appendix), we
have that the variance of the variable ðYijXiÞ is equal to pið1� piÞ. This
suggests that the standardized residuals

êei ¼
yi � p̂piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pið1� p̂piÞ

p ð4:44Þ

can be used for diagnostic purposes.

An alternative definition of residuals can be obtained from considering the

first-order conditions of the ML estimation method, that is

@lð�Þ
@�

¼
XN
i¼1

yi � FðXi�Þ
FðXi�Þð1� FðXi�ÞÞ

f ðXi�ÞX 0
i ¼ 0; ð4:45Þ

where FðXi�Þ can be �ðXi�Þ or �ðXi�Þ and f ðXi�Þ is then �ðXi�Þ or �ðXi�Þ,
respectively. Similarly to the standard Linear Regression model, one can

now define the residuals to correspond with

@lð�Þ
@�

¼
XN
i¼1

X 0
i êei ¼ 0; ð4:46Þ

which leads to

êei ¼
yi � FðXi�̂�Þ

FðXi�̂�Þð1� FðXi�̂�ÞÞ
f ðXi�̂�Þ: ð4:47Þ

Usually these residuals are called the generalized residuals. Large values of êei
may indicate the presence of outliers in yi or in p̂pi (see Pregibon, 1981).

Notice that the residuals are not normally distributed, and hence one can

evaluate the residuals only against their average value and their standard

deviation. Once outlying observations have been discovered, one might

decide to leave out these observations while re-estimating the model para-

meters again.
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A second check for model adequacy, which in this case concerns the error

variable in the unobserved regression model "i, involves the presumed con-
stancy of its variance. One may, for example, test the null hypothesis of a

constant variance against

H1 : Vð"iÞ ¼ expð2Zi�Þ; ð4:48Þ
where V denotes ‘‘variance of’’, and where Zi is a ð1	 qÞ vector of variables
and � is a ðq	 1Þ vector of unknown parameters. Davidson and MacKinnon
(1993, section 15.4) show that a test for heteroskedasticity can be based on

the artificial regression

yi � p̂piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pið1� p̂piÞ

p ¼ f ð�Xi�̂�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pið1� p̂piÞ

p Xi�1 þ
f ð�Xi�̂�Þð�Xi�̂�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂pið1� p̂piÞ
p Zi�2 þ �i: ð4:49Þ

The relevant test statistic is calculated as the Likelihood Ratio test for the

significance of the �2 parameters and it is asymptotically distributed as �
2ðqÞ.

Once heteroskedasticity has been discovered, one may consider a Probit

model with

"i 
 Nð0; �2i Þ; with �2i ¼ expð2Zi�Þ; ð4:50Þ
see Greene (2000, p. 829) and Knapp and Seaks (1992) for an application.

The above diagnostic checks implicitly consider the adequacy of the func-

tional form. There are, however, no clear guidelines as to how one should

choose between a Logit and a Probit model. As noted earlier, the main

differences between the two functions can be found in the tails of their

distributions. In other words, when one considers a binary dependent vari-

able that only seldom takes a value of 1, one may find different parameter

estimates across the two models. A final decision between the two models can

perhaps be made on the basis of out-of-sample forecasting.

4.3.2 Model selection

Once two or more models of the Logit or Probit type for a binomial

dependent variable are found to pass relevant diagnostic checks, one may

want to examine if certain (or all) variables can be deleted or if alternative

models are to be preferred. These alternative models may include alternative

regressors.

The relevance of individual variables can be based on the individual z-

scores, which can be obtained from the parameter estimates combined with

the diagonal elements of the estimated information matrix. The joint signifi-

cance of g explanatory variables can be examined by using a Likelihood

Ratio (LR) test. The test statistic can be calculated as
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LR ¼ �2 log Lð�̂�0Þ
Lð�̂�AÞ

¼ �2ðlð�̂�0Þ � lð�̂�ÞÞ; ð4:51Þ

where lð�̂�0Þ denotes that the model contains only an intercept, and where lð�̂�Þ
is the value of the maximum of the log-likelihood function for the model

with the g variables included. Under the null hypothesis that the g variables

are redundant, it holds that

LR 
a �2ðgÞ: ð4:52Þ

The null hypothesis is rejected if the value of LR is sufficiently large when

compared with the relevant critical values of the �2ðgÞ distribution. If g ¼ K ,

this LR test amounts to a measure of the overall fit.

An alternative measure of the overall fit is the R2 measure. Windmeijer

(1995) reviews several such measures for binomial dependent variable mod-

els, and based on simulations it appears that the measures proposed by

McFadden (1974) and by McKelvey and Zavoina (1975) are the most reli-

able, in the sense that these are least dependent on the number of observa-

tions with yi ¼ 1. The McFadden R2 is defined by

R2 ¼ 1� lð�̂�Þ
lð�̂�0Þ

: ð4:53Þ

Notice that the lower bound value of this R2 is equal to 0, but that the upper

bound is not equal to 1, because lð�̂�Þ cannot become equal to zero.
The R2 proposed in McKelvey and Zavoina (1975) is slightly different, but

it is found to be useful because it can be generalized to discrete dependent

variable models with more than two ordered outcomes (see chapter 6). The

intuition for this R2 is that it measures the ratio of the variance of ŷy�i and the
variance of y�i , where ŷy�i equals Xi�̂�. Some manipulation gives

R2 ¼
PN

i¼1ðŷy�i � �yy�i Þ2PN
i¼1ðŷy�i � �yy�i Þ2 þ N�2

; ð4:54Þ

where �yy�i denotes the average value of ŷy
�
i , with �

2 ¼ 1
3�

2 in the Logit model

and �2 ¼ 1 in the Probit model.

Finally, if one has more than one model within the Logit or Probit class of

models, one may also consider familiar model selection criteria. In the nota-

tion of this chapter, the Akaike information criterion is defined as

AIC ¼ 1

N
ð�2lð�̂�Þ þ 2nÞ; ð4:55Þ
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and the Schwarz information criterion is defined as

BIC ¼ 1

N
ð�2lð�̂�Þ þ n logNÞ; ð4:56Þ

where n denotes the number of parameters and N the number of observa-

tions.

4.3.3 Forecasting

A possible purpose of a model for a binomial dependent variable is

to generate forecasts. One can consider forecasting within-sample or out-of-

sample. For the latter forecasts, one needs to save a hold-out sample, con-

taining observations that have not been used for constructing the model and

estimating its parameters. Suppose that in that case there are N1 observa-

tions for model building and estimation and that N2 observations can be

used for out-of-sample forecast evaluation.

The first issue of course concerns the construction of the forecasts. A

common procedure is to predict that Yi ¼ 1, to be denoted as ŷyi ¼ 1, if

FðXi�̂�Þ > c, and to predict that Yi ¼ 0, denoted by ŷyi ¼ 0, if FðXi�̂�Þ � c.

The default option in many statistical packages is that c is 0.5. However,

in practice one is free to choose the value of c. For example, one may also

want to consider

c ¼ #ðyi ¼ 1Þ
N

; ð4:57Þ

that is, the fraction of observations with yi ¼ 1.

Given the availability of forecasts, one can construct the prediction–

realization table, that is,

Predicted

yîi ¼ 1 yîi ¼ 0

Observed

yi ¼ 1 p11 p10 p1:
yi ¼ 0 p01 p00 p0:

p�1 p�0 1

The fraction p11 þ p00 is usually called the hit rate. Based on simulation

experiments, Veall and Zimmermann (1992) recommend the use of the mea-

sure suggested by McFadden et al. (1977), which is given by

F1 ¼
p11 þ p00 � p2�1 � p2�0

1� p2�1 � p2�0
: ð4:58Þ
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The model with the maximum value for F1 may be viewed as the model that

has the best forecasting performance. Indeed, perfect forecasts would have

been obtained if F1 ¼ 1. Strictly speaking, however, there is no lower bound

to the value of F1.

4.4 Modeling the choice between two brands

In this section we illustrate the Logit and Probit models for the

choice between Heinz and Hunts tomato ketchup. The details of these data

have already been given in section 2.2.2. We have 2,798 observations for 300

individuals. We leave out the last purchase made by each of these indivi-

duals, that is, we have N2 ¼ 300 data points for out-of-sample forecast

evaluation. Of the N2 observations there are 265 observations with yi ¼ 1,

corresponding to the choice of Heinz. For within-sample analysis, we have

N1 ¼ 2,498 observations, of which 2,226 amount to a choice for Heinz

(yi ¼ 1). For each purchase occasion, we know whether or not Heinz and/

or Hunts were on display, and whether or not they were featured. We also

have the price of both brands at each purchase occasion. The promotion

variables are included in the models as the familiar 0/1 dummy variables,

while we further decide to include the log of the ratio of the prices, that is,

log
price Heinz

price Hunts

� 

;

which obviously equals logðprice HeinzÞ � logðprice HuntsÞ.
The ML parameter estimates for the Logit and Probit models appear in

table 4.1, as do the corresponding estimated standard errors. The intercept

parameters are both positive and significant, and this matches with the larger

number of purchases of Heinz ketchup. The promotion variables of Heinz do

not have much explanatory value, as only display promotion is significant at

the 5% level. In contrast, the promotion variables for Hunts are all signifi-

cant and also take larger values (in an absolute sense). The joint effect of

feature and display of Hunts (equal to �1:981) is largest. Finally, the price
variable is significant and has the correct sign. When we compare the esti-

mated values for the Logit and the Probit model, we observe that oftentimes

�̂�Logit � 1:85�̂�Probit, where the factor 1:85 closely matches withffiffiffiffiffiffiffiffi
1

3
�2

r
:

As the results across the two models are very similar, we focus our attention

only on the Logit model in the rest of this section.

Before we pay more attention to the interpretation of the estimated Logit

model, we first consider its empirical adequacy. We start with the generalized
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residuals, as these are defined in (4.47). The mean value of these residuals is

zero, and the standard deviation is 0.269. The maximum value of these

residuals is 0.897 and the minimum value is �0.990. Hence, it seems that
there may be a few observations which can be considered as outliers. It seems

best, however, to decide about re-estimating the model parameters after

having seen the results of other diagnostics and evaluation measures. Next,

a test for the null hypothesis of homoskedasticity of the error variable "i
against the alternative

H1 : Vð"iÞ ¼ exp 2�1 log
price Heinzi
price Huntsi

� 
� 

ð4:59Þ

results in a �2ð1Þ test statistic value of 3.171, which is not significant at the
5% level (see section A.3 in the Appendix for the relevant critical value).

The McFadden R2 (4.53) is 0.30, while the McKelvey and Zavoina R2

measure (4.54) equals 0.61, which does not seem too bad for a large cross-

section. The LR test for the joint significance of all seven variables takes a

Table 4.1 Estimation results for Logit and Probit models for the choice

between Heinz and Hunts

Variables

Logit model Probit model

Parameter

Standard

error Parameter

Standard

error

Intercept

Heinz, display only

Heinz, feature only

Heinz, feature and display

Hunts, display only

Hunts, feature only

Hunts, feature and display

log (price Heinz/Hunts)

max. log-likelihood value

3:290***

0:526**
0:474
0:473

�0:651**
�1:033***
�1:981***

�5:987***

�601:238

0.151

0.254

0.320

0.489

0.254

0.361

0.479

0.401

1:846***

0:271**
0:188
0:255

�0:376**
�0:573***
�1:094***

�3:274***

�598:828

0.076

0.129

0.157

0.248

0.151

0.197

0.275

0.217

Notes:

*** Significant at the 0.01 level, ** at the 0.05 level, * at the 0.10 level.

The total number of observations is 2,498, of which 2,226 concern the choice for

Heinz (yi ¼ 1).
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value of 517.06, which is significant at the 1% level. Finally, we consider

within-sample and out-of-sample forecasting. In both cases, we set the cut-

off point at 0.891, which corresponds with 2,226/2,498. For the 2,498 within-

sample forecasts we obtain the following prediction–realization table, that is,

Predicted

Heinz Hunts

Observed

Heinz 0.692 0.199 0.891

Hunts 0.023 0.086 0.108

0.715 0.285 1

The F1 statistic takes a value of 0.455 and the hit rate p equals 0.778 (0.692 +

0.086).

For the 300 out-of-sample forecasts, where we again set the cut-off point c

at 0.891, we obtain

Predicted

Heinz Hunts

Observed

Heinz 0.673 0.210 0.883

Hunts 0.020 0.097 0.117

0.693 0.307 1

It can be seen that this is not very different from the within-sample results.

Indeed, the F1 statistic is 0.459 and the hit rate is 0.770. In sum, the Logit

model seems very adequate, even though further improvement may perhaps

be possible by deleting a few outlying data points.

We now continue with the interpretation of the estimation results in table

4.1. The estimated parameters for the promotion variables in this table

suggest that the effects of the Heinz promotion variables on the probability

of choosing Heinz are about equal, even though two of the three are not

significant. In contrast, the effects of the Hunts promotion variables are 1.3

to about 5 times as large (in an absolute sense). Also, the Hunts promotions

are most effective if they are held at the same time.

These differing effects can also be visualized by making a graph of the

estimated probability of choosing Heinz against the log price difference for

various settings of promotions. In figure 4.4 we depict four such settings. The

top left graph depicts two curves, one for the case where there is no promo-

tion whatsoever (solid line) and one for the case where Heinz is on display. It

can be seen that the differences between the two curves are not substantial,

although perhaps in the price difference range of 0.2 to 0.8, the higher price

of Heinz can be compensated for by putting Heinz on display. The largest

difference between the curves can be found in the bottom right graph, which
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concerns the case where Hunts is featured. Clearly, when Heinz gets more

expensive than Hunts, additional featuring of Hunts can substantially reduce

the probability of buying Heinz.

Finally, in figure 4.5 we give a graph of a quasi price elasticity, that is,

�5:987 P̂rPr½HeinzjXi�ð1� P̂rPr½HeinzjXi�Þ log
price Heinzi
price Huntsi

� 

; ð4:60Þ

against

log
price Heinzi
price Huntsi

� 

:

Moving from an equal price, where the log price ratio is equal to 0, towards

the case where Heinz is twice as expensive (about 0.69) shows that the price

elasticity increases rapidly in absolute sense. This means that going from a

price ratio of, say, 1.4 to 1.5 has a larger negative effect on the probability of

buying Heinz than going from, say, 1.3 to 1.4. Interestingly, when Heinz

becomes much more expensive, for example it becomes more than three

times as expensive, the price elasticity drops back to about 0. Hence, the

structure of the Logit model implies that there is a price range that corre-

sponds to highly sensitive effects of changes in a marketing instrument such

as price.

_1.0

_0.8

_0.6

_0.4

_0.2

0.0

0.2

_0.5 0.0 0.5 1.0 1.5

log(price Heinz) _ log(price Hunts)

E
la

st
ic

ity

Figure 4.5 Quasi price elasticity
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4.5 Advanced topics

The models for a binomial dependent variable in this chapter have

so far assumed the availability of a cross-section of observations, where N

individuals could choose between two options. In the empirical example,

these options concerned two brands, where we had information on a few

(marketing) aspects of each purchase, such as price and promotion. Because

sometimes one may know more about the individuals too, that is, one may

know some household characteristics such as size and family income, one

may aim to modify the Logit and Probit models by allowing for household

heterogeneity. In other cases, these variables may not be sufficient to explain

possible heterogeneity, and then one may opt to introduce unobserved het-

erogeneity in the models. In section 4.5.1, we give a brief account of includ-

ing heterogeneity. In the next subsection we discuss a few models that can be

useful if one has a panel of individuals, whose purchases over time are

known. Finally, it can happen that the observations concerning one of the

choice options outnumbers those of the other choice. For example, one

brand may be seldom purchased. In that case, one can have a large number

of observations with yi ¼ 0 and only very few with yi ¼ 1. To save time

collecting explanatory variables for all yi ¼ 0 observations, one may decide

to consider relatively few yi ¼ 0 observations. In section 4.5.3, we illustrate

that in the case of a Logit model only a minor modification to the analysis is

needed.

4.5.1 Modeling unobserved heterogeneity

It usually occurs that one has several observations of an individual

over time. Suppose the availability of observations yi;t for i ¼ 1; 2; . . . ;N and

t ¼ 1; 2; . . . ;T . For example, one observes the choice between two brands
made by household i in week t. Additionally, assume that one has explana-

tory variables xi;t, which are measured over the same households and time

period, where these variables are not all constant.

Consider again a binary choice model to model brand choice in week t for

individual i, and for ease of notation assume that there is only a single

explanatory variable, that is,

Pr½Yi;t ¼ 1jXi;t� ¼ Fð�0 þ �1xi;tÞ; ð4:61Þ
and suppose that xi;t concerns a marketing-specific variable such as price in

week t. If one has information on a household-specific variable hi such as

income, one can modify this model into

Pr½Yi;t ¼ 1jXi;t; hi� ¼ Fð�0;1 þ �0;2hi þ �1;1xi;t þ �1;2xi;thiÞ: ð4:62Þ
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Through the cross-term xi;thi this model allows the effect of price on the

probability of choosing, say, brand A, to depend also on household

income.

It may, however, be that the effects of a variable such as price differ across

households, but that a variable such as income is not good enough to

describe this variation. It may also happen that one does not have informa-

tion on such variables in the first place, while one does want to allow for

heterogeneity. A common strategy is to extend (4.61) by allowing the para-

meters to vary across the households, that is, to apply

Pr½Yi;t ¼ 1jXi;t� ¼ Fð�0;i þ �1;ixi;tÞ: ð4:63Þ

Obviously, if some households do not buy one of the two brands, one cannot

estimate these household-specific parameters. Additionally, one may not

have enough observations over time to estimate each household-specific

parameter (see Rossi and Allenby, 1993, for a discussion). It is in that case

common practice to consider one of the following approaches to analyze a

model such as (4.63).

The first amounts to assuming that the household-specific parameters are

drawings from a population distribution. For example, one may assume that

�0;i 
 Nð�0; �20Þ and �1;i 
 Nð�1; �21Þ, where now the number of unknown

parameters has been reduced to 4 population parameters instead of 2N

parameters (2 per household); see, for example, Gönül and Srinivasan

(1993) among many others for such an approach.

Another possible solution, which tends to be used quite frequently in

marketing research (see Wedel and Kamakura, 1999), amounts to assuming

the presence of latent classes. When there are S such classes in the popula-

tion, the probability that a household belongs to these classes is modeled by

the positive probabilities p1 to pS�1 and pS ¼ 1�PS�1
s¼1 ps. Because these

probabilities are unknown, one has to estimate their values. In each class

we have different � parameters, which are denoted �0;s and �1;s. The like-
lihood function now reads

Lð�Þ ¼
YN
i¼1

XS
s¼1

ps

YT
t¼1

Fð�0;s þ �1;sxi;tÞyi;tð1� Fð�0;s þ �1;sxi;tÞÞ1�yi;t

 !
;

ð4:64Þ

where � ¼ ð�0;1; . . . ; �0;S; �1;1; . . . ; �1;S; p1; . . . ; pS�1Þ. For a given value of
the number of segments S, all parameters can be estimated by Maximum

Likelihood. Wedel and Kamakura (1999) describe several useful estimation

routines.
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4.5.2 Modeling dynamics

When the binomial dependent variable concerns a variable that is

measured over time, one may want to modify the basic model by including

dynamics. Given that it is likely that households have some brand loyalty,

one may want to include the choice made in the previous week. One possible

extension of the binomial choice model is to allow for state dependence,

where we again consider a single explanatory variable for convenience

y�i;t ¼ �0 þ �1xi;t þ �yi;t�1 þ "i;t
Yi;t ¼ 1 if y�i;t > 0

Yi;t ¼ 0 if y�i;t � 0:

ð4:65Þ

The parameter � reflects some kind of loyalty. Notice that the observations
on yi;t�1 are known at time t, and hence, upon assuming that the distribution

of "i;t does not change with i or t, one can rely on the estimation routines

discussed in section 4.2.

Two alternative models that also allow for some kind of brand loyalty

assume

y�i;t ¼ �0 þ �1xi;t þ �y�i;t�1 þ "i;t ð4:66Þ
and

y�i;t ¼ �0 þ �1xi;t þ �2xi;t�1 þ �y�i;t�1 þ "i;t: ð4:67Þ
These last two models include an unobserved explanatory variable on the

right-hand side, and this makes parameter estimation more difficult.

4.5.3 Sample selection issues

In practice it may sometimes occur that the number of observations

with yi ¼ 0 in the population outnumbers the observations with yi ¼ 1, or

the other way around. A natural question now is whether one should analyze

a sample that contains that many data with yi ¼ 0, or whether one should

not start collecting all these data in the first place. Manski and Lerman

(1977) show that in many cases this is not necessary, and that often only

the likelihood function needs to be modified. In this section, we will illustrate

that for the Logit model for a binomial dependent variable this adaptation is

very easy to implement.

Suppose one is interested in Prp½Yi ¼ 1�, where the subscript p denotes

population, and where we delete the conditioning on Xi to save notation.

Further, consider a sample is (to be) drawn from this population, and denote
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with wi ¼ 1 if an individual is observed and wi ¼ 0 if this is not the case. For

this sample it holds that

Pr½Yi ¼ 1;Wi ¼ 1� ¼ Pr½Wi ¼ 1jYi ¼ 1�Prp½Yi ¼ 1�
Pr½Yi ¼ 0;Wi ¼ 1� ¼ Pr½Wi ¼ 1jYi ¼ 0�Prp½Yi ¼ 0�: ð4:68Þ

Hence, for a sample from the population it holds that

Prs½Yi ¼ 1� ¼ Pr½Yi ¼ 1;Wi ¼ 1�
Pr½Yi ¼ 1;Wi ¼ 1� þ Pr½Yi ¼ 0;Wi ¼ 1� ; ð4:69Þ

where the subscript s refers to the sample.

If the sample is random, that is,

Pr½Wi ¼ 1jYi ¼ 1� ¼ Pr½Wi ¼ 1jYi ¼ 0� ¼ �; ð4:70Þ

then

Prs½Yi ¼ 1� ¼ �Prp½Yi ¼ 1�
�Prp½Yi ¼ 1� þ �ð1� Prp½Yi ¼ 1�Þ

¼ Prp½Yi ¼ 1�:
ð4:71Þ

If, however, the sample is not random, that is,

Pr½Wi ¼ 1jYi ¼ 1� ¼ �

Pr½Wi ¼ 1jYi ¼ 0� ¼ �� ð1� �Þ� ¼ ��;
ð4:72Þ

implying that a fraction 1� � of the yi ¼ 0 observations is deleted, then one

has that

Prs½Yi ¼ 1� ¼ Prp½Yi ¼ 1�
Prp½Yi ¼ 1� þ �ð1� Prp½Yi ¼ 1�Þ ; ð4:73Þ

which can be written as

Prs½Yi ¼ 1� ¼ ��1Prp=ð1� PrpÞ
1þ ��1Prp=ð1� PrpÞ

: ð4:74Þ

For the Logit model, one can easily find the link between Prs½Yi ¼ 1� and
Prp½Yi ¼ 1� because this model holds that the log odds ratio is

Prp½Yi ¼ 1�
1� Prp½Yi ¼ 1� ¼ expðXi�Þ; ð4:75Þ
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see (4.21). Substituting (4.75) into (4.74) gives

Prs½Yi ¼ 1� ¼ ��1 expðXi�Þ
1þ ��1 expðXi�Þ

¼ expð� logð�Þ þ Xi�Þ
1þ expð� logð�Þ þ Xi�Þ

:

ð4:76Þ

Hence, we only have to adjust the intercept parameter to correct for the fact

that we have not included all yi ¼ 0. It follows from (4.76) that one needs

only to add logð�Þ to �̂0�0 to obtain the parameter estimates for the whole
sample. Cramer et al. (1999) examine the loss of efficiency when observations

from a sample are deleted, and they report that this loss is rather small.



5 An unordered multinomial

dependent variable

In the previous chapter we considered the Logit and Probit models for a

binomial dependent variable. These models are suitable for modeling bino-

mial choice decisions, where the two categories often correspond to no/yes

situations. For example, an individual can decide whether or not to donate

to charity, to respond to a direct mailing, or to buy brand A and not B. In

many choice cases, one can choose between more than two categories. For

example, households usually can choose between many brands within a

product category. Or firms can decide not to renew, to renew, or to renew

and upgrade a maintenance contract. In this chapter we deal with quantita-

tive models for such discrete choices, where the number of choice options is

more than two. The models assume that there is no ordering in these options,

based on, say, perceived quality. In the next chapter we relax this assumption.

The outline of this chapter is as follows. In section 5.1 we discuss the

representation and interpretation of several choice models: the

Multinomial and Conditional Logit models, the Multinomial Probit model

and the Nested Logit model. Admittedly, the technical level of this section is

reasonably high. We do believe, however, that considerable detail is relevant,

in particular because these models are very often used in empirical marketing

research. Section 5.2 deals with estimation of the parameters of these models

using the Maximum Likelihood method. In section 5.3 we discuss model

evaluation, although it is worth mentioning here that not many such diag-

nostic measures are currently available. We consider variable selection pro-

cedures and a method to determine some optimal number of choice

categories. Indeed, it may sometimes be useful to join two or more choice

categories into a new single category. To analyze the fit of the models, we

consider within- and out-of-sample forecasting and the evaluation of forecast

performance. The illustration in section 5.4 concerns the choice between four

brands of saltine crackers. Finally, in section 5.5 we deal with modeling of

unobserved heterogeneity among individuals, and modeling of dynamic

choice behavior. In the appendix to this chapter we give the EViews code

76
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for three models, because these are not included in version 3.1 of this statis-

tical package.

5.1 Representation and interpretation

In this chapter we extend the choice models of the previous chapter

to the case with an unordered categorical dependent variable, that is, we now

assume that an individual or household i can choose between J categories,

where J is larger than 2. The observed choice of the individual is again

denoted by the variable yi, which now can take the discrete values

1; 2; . . . ; J. Just as for the binomial choice models, it is usually the aim to

correlate the choice between the categories with explanatory variables.

Before we turn to the models, we need to say something briefly about the

available data, because we will see below that the data guide the selection of

the model. In general, a marketing researcher has access to three types of

explanatory variable. The first type corresponds to variables that are differ-

ent across individuals but are the same across the categories. Examples are

age, income and gender. We will denote these variables by Xi. The second

type of explanatory variable concerns variables that are different for each

individual and are also different across categories. We denote these variables

by Wi;j. An example of such a variable in the context of brand choice is the

price of brand j experienced by individual i on a particular purchase occa-

sion. The third type of explanatory variable, summarized by Zj, is the same

for each individual but different across the categories. This variable might be

the size of a package, which is the same for each individual. In what follows

we will see that the models differ, depending on the available data.

5.1.1 The Multinomial and Conditional Logit models

The random variable Yi, which underlies the actual observations yi,

can take only J discrete values. Assume that we want to explain the choice by

the single explanatory variable xi, which might be, say, age or gender. Again,

it can easily be understood that a standard Linear Regression model such as

yi ¼ �0 þ �1xi þ "i; ð5:1Þ
which correlates the discrete choice yi with the explanatory variable xi, does

not lead to a satisfactory model. This is because it relates a discrete variable

with a continuous variable through a linear relation. For discrete outcomes,

it therefore seems preferable to consider an extension of the Bernoulli dis-

tribution used in chapter 4, that is, the multivariate Bernoulli distribution

denoted as
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Yi 
MNð1; �1; . . . ; �JÞ ð5:2Þ
(see section A.2 in the Appendix). This distribution implies that the prob-

ability that category j is chosen equals Pr½Yi ¼ j� ¼ �j, j ¼ 1; . . . ; J, with
�1 þ �2 þ � � � þ �J ¼ 1. To relate the explanatory variables to the choice,

one can make �j a function of the explanatory variable, that is,

�j ¼ Fjð�0;j þ �1;jxiÞ: ð5:3Þ
Notice that we allow the parameter �1;j to differ across the categories because
the effect of variable xi may be different for each category. If we have an

explanatory variable wi;j, we could restrict �1;j to �1 (see below). For a
binomial dependent variable, expression (5.3) becomes � ¼ Fð�0 þ �1xiÞ.
Because the probabilities �j have to lie between 0 and 1, the function

Fj has to be bounded between 0 and 1. Because it also must hold thatPJ
j¼1 �j equals 1, a suitable choice for Fj is the logistic function. For this

function, the probability that individual i will choose category j given an

explanatory variable xi is equal to

Pr½Yi ¼ jjXi� ¼
expð�0;j þ �1;jxiÞPJ
l¼1 expð�0;l þ �1;lxiÞ

; for j ¼ 1; . . . ; J; ð5:4Þ

where Xi collects the intercept and the explanatory variable xi. Because the

probabilities sum to 1, that is,
PJ

j¼1 Pr½Yi ¼ jjXi� ¼ 1, it can be understood

that one has to assign a base category. This can be done by restricting the

corresponding parameters to zero. Put another way, multiplying the numera-

tor and denominator in (5.4) by a non-zero constant, for example expð�Þ,
changes the intercept parameters �0;j into �0;j þ � but the probability

Pr½Yi ¼ jjXi� remains the same. In other words, not all J intercept para-

meters are identified. Without loss of generality, one usually restricts �0;J
to zero, thereby imposing category J as the base category. The same holds

true for the �1;j parameters, which describe the effects of the individual-
specific variables on choice. Indeed, if we multiply the nominator and

denominator by expð�xiÞ, the probability Pr½Yi ¼ jjXi� again does not

change. To identify the �1;j parameters one therefore also imposes that
�1;J ¼ 0. Note that the choice for a base category does not change the effect

of the explanatory variables on choice.

So far, the focus has been on a single explanatory variable and an inter-

cept for notational convenience, and this will continue in several of the

subsequent discussions. Extensions to Kx explanatory variables are however

straightforward, where we use the same notation as before. Hence, we write

Pr½Yi ¼ jjXi� ¼
expðXi�jÞPJ
l¼1 expðXi�lÞ

for j ¼ 1; . . . ; J; ð5:5Þ
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where Xi is a 1	 ðKx þ 1Þ matrix of explanatory variables including the
element 1 to model the intercept and �j is a ðKx þ 1Þ-dimensional parameter
vector. For identification, one can set �J ¼ 0. Later on in this section we will

also consider the explanatory variables Wi.

The Multinomial Logit model

The model in (5.4) is called the Multinomial Logit model. If we

impose the identification restrictions for parameter identification, that is, we

impose �J ¼ 0, we obtain for Kx ¼ 1 that

Pr½Yi ¼ jjXi� ¼
expð�0;j þ �1;jxiÞ

1þPJ�1
l¼1 expð�0;l þ �1;lxiÞ

for j ¼ 1; . . . ; J � 1;

Pr½Yi ¼ JjXi� ¼
1

1þPJ�1
l¼1 expð�0;l þ �1;lxiÞ

:

ð5:6Þ
Note that for J ¼ 2 (5.6) reduces to the binomial Logit model discussed in

the previous chapter. The model in (5.6) assumes that the choices can be

explained by intercepts and by individual-specific variables. For example, if

xi measures the age of an individual, the model may describe that older

persons are more likely than younger persons to choose brand j.

A direct interpretation of the model parameters is not straightforward

because the effect of xi on the choice is clearly a nonlinear function in the

model parameters �j. Similarly to the binomial Logit model, to interpret the

parameters one may consider the odds ratios. The odds ratio of category j

versus category l is defined as

�jjlðXiÞ ¼
Pr½Yi ¼ jjXi�
Pr½Yi ¼ ljXi�

¼ expð�0;j þ �1;jxiÞ
expð�0;l þ �1;lxiÞ

for l ¼ 1; . . . ; J � 1;

�jjJðxiÞ ¼
Pr½Yi ¼ jjXi�
Pr½Yi ¼ JjXi�

¼ expð�0;j þ �1;jxiÞ
ð5:7Þ

and the corresponding log odds ratios are

log�jjlðXiÞ ¼ ð�0;j � �0;lÞ þ ð�1;j � �1;lÞxi for l ¼ 1; . . . ; J � 1;
log�jjJ ðXiÞ ¼ �0;j þ �1;jxi:

ð5:8Þ
Suppose that the �1;j parameters are equal to zero, we then see that positive
values of �0;j imply that individuals are more likely to choose category j than

the base category J. Likewise, individuals prefer category j over category l if

ð�0;j � �0;lÞ > 0. In this case the intercept parameters correspond with the
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average base preferences of the individuals. Individuals with a larger value

for xi tend to favor category j over category l if ð�1;j � �1;lÞ > 0 and the other
way around if ð�1;j � �1;lÞ < 0. In other words, the difference ð�1;j � �1;lÞ
measures the change in the log odds ratio for a unit change in xi. Finally,

if we consider the odds ratio with respect to the base category J, the effects

are determined solely by the parameter �1;j.
The odds ratios show that a change in xi may imply that individuals are

more likely to choose category j compared with category l. It is important to

recognize, however, that this does not necessarily mean that Pr½Yi ¼ jjXi�
moves in the same direction. Indeed, owing to the summation restriction, a

change in xi also changes the odds ratios of category j versus the other

categories. The net effect of a change in xi on the choice probability follows

from the partial derivative of Pr½Yi ¼ jjXi� with respect to xi, which is given

by

@Pr½Yi ¼ jjXi�
@xi

¼
1þPJ�1

l¼1 expð�0;l þ �1;lxiÞ

 �

expð�0;j þ �1;jÞ�1;jxi

1þPJ�1
l¼1 expð�0;l þ �1;lxiÞ


 �2

� expð�0;j þ �1;jxiÞ
PJ�1

l¼1 expð�0;l þ �1;lxiÞ�1;l
1þPJ�1

l¼1 expð�0;l þ �1;lxiÞ

 �2

¼ Pr½Yi ¼ jjXi� �1;j �
XJ�1
l¼1

�1;l Pr½Yi ¼ ljXi�
 !

:

ð5:9Þ

The sign of this derivative now depends on the sign of the term in parenth-

eses. Because the probabilities depend on the value of xi, the derivative may

be positive for some values of xi but negative for others. This phenomenon

can also be observed from the odds ratios in (5.7), which show that an

increase in xi may imply an increase in the odds ratio of category j versus

category l but a decrease in the odds ratio of category j versus some other

category s 6¼ l. This aspect of the Multinomial Logit model is in marked

contrast to the binomial Logit model, where the probabilities are monoto-

nically increasing or decreasing in xi. In fact, note that for only two cate-

gories (J ¼ 2) the partial derivative in (5.9) reduces to

Pr½Yi ¼ 1jXi�ð1� Pr½Yi ¼ 1jXi�Þ�1;j: ð5:10Þ

Because obviously �1;j ¼ �1, this is equal to the partial derivative in a bino-
mial Logit model (see (4.19)).
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The quasi-elasticity of xi, which can also be useful for model interpreta-

tion, follows directly from the partial derivative (5.9), that is,

@Pr½Yi ¼ jjXi�
@xi

xi ¼ Pr½Yi ¼ jjXi� �1;j �
XJ�1
l¼1

�1;l Pr½Yi ¼ ljXi�
 !

xi:

ð5:11Þ
This elasticity measures the percentage point change in the probability that

category j is preferred owing to a percentage increase in xi. The summation

restriction concerning the J probabilities establishes that the sum of the

elasticities over the alternatives is equal to zero, that is,

XJ
j¼1

@Pr½Yi ¼ jjXi�
@xi

xi

¼
XJ
j¼1
Pr½Yi ¼ jjXi��1;jxi �

XJ
j¼1

ðPr½Yi ¼ jjXi�
XJ�1
l¼1

�1;l Pr½Yi ¼ ljXi�xiÞ

¼
XJ�1
j¼1
Pr½Yi ¼ jjXi��1;jxi �

XJ�1
l¼1

ðPr½Yi ¼ ljXi��1;lxið
XJ
j¼1
Pr½Yi ¼ jjXi�ÞÞ ¼ 0;

ð5:12Þ
where we have used �1;J ¼ 0.

Sometimes it may be useful to interpret the Multinomial Logit model as a

utility model, thereby building on the related discussion in section 4.1 for a

binomial dependent variable. Suppose that an individual i perceives utility

ui;j if he or she chooses category j, where

ui;j ¼ �0;j þ �1;jxi þ "i;j; for j ¼ 1; . . . ; J ð5:13Þ
and "i;j is an unobserved error variable. It seems natural to assume that
individual i chooses category j if he or she perceives the highest utility

from this choice, that is,

ui;j ¼ maxðui;1; . . . ; ui;JÞ: ð5:14Þ
The probability that the individual chooses category j therefore equals the

probability that the perceived utility ui;j is larger than the other utilities ui;l

for l 6¼ j, that is,

Pr½Yi ¼ jjXi� ¼ Pr½ui;j > ui;1; . . . ; ui;j > ui;j�1; ui;j > ui;jþ1; . . . ;
ui;j > ui;J jXi�:

ð5:15Þ
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The Conditional Logit model

In the Multinomial Logit model, the individual choices are corre-

lated with individual-specific explanatory variables, which take the same

value across the choice categories. In other cases, however, one may have

explanatory variables that take different values across the choice options.

One may, for example, explain brand choice by wi;j, which denotes the price

of brand j as experienced by household i on a particular purchase occasion.

Another version of a logit model that is suitable for the inclusion of this type

of variable is the Conditional Logit model, initially proposed by McFadden

(1973). For this model, the probability that category j is chosen equals

Pr½Yi ¼ jjWi� ¼
expð�0;j þ �1wi;jÞPJ
l¼1 expð�0;l þ �1wi;lÞ

for j ¼ 1; . . . ; J: ð5:16Þ

For this model the choice probabilities depend on the explanatory variables

denoted by Wi ¼ ðWi;1; . . . ;Wi;JÞ, which have a common impact �1 on the
probabilities. Again, we have to set �0;J ¼ 0 for identification of the intercept

parameters. However, the �1 parameter is equal for each category and hence
it is always identified except for the case where wi;1 ¼ wi;2 ¼ . . . ¼ wi;J .

The choice probabilities in the Conditional Logit model are nonlinear

functions of the model parameter �1 and hence again model interpretation
is not straightforward. To understand the effect of the explanatory variables,

we again consider odds ratios. The odds ratio of category j versus category l

is given by

�jjlðWiÞ ¼
Pr½Yi ¼ jjWi�
Pr½Yi ¼ ljWi�

¼ expð�0;j þ �1wi;jÞ
expð�0;l þ �1wi;lÞ

for l ¼ 1; . . . ; J

¼ expðð�0;j � �0;lÞ þ �1ðwi;j � wi;lÞÞ
ð5:17Þ

and the corresponding log odds ratio is

log�jjlðWiÞ ¼ ð�0;j � �0;lÞ þ �1ðwi;j � wi;lÞ for l ¼ 1; . . . ; J:

ð5:18Þ
The interpretation of the intercept parameters is similar to that for the

Multinomial Logit model. Furthermore, for positive values of �1, individuals
favor category j more than category l for larger positive values of ðwi;j � wi;lÞ.
For �1 < 0, we observe the opposite effect. If we consider a brand choice
problem and wi;j represents the price of brand j, a negative value of �1 means
that households are more likely to buy brand j instead of brand l as brand l

gets increasingly more expensive. Due to symmetry, a unit change in wi;j

leads to a change of �1 in the log odds ratio of category j versus l and a

change of ��1 in the log odds ratio of l versus j.
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The odds ratios for category j (5.17) show the effect of a change in the

value of the explanatory variables on the probability that category j is chosen

compared with another category l 6¼ j. To analyze the total effect of a change

in wi;j on the probability that category j is chosen, we consider the partial

derivative of Pr½Yi ¼ jjWi� with respect to wi;j, that is,

@Pr½Yi ¼ jjWi�
@wi;j

¼
PJ

l¼1 expð�0;l þ �1wi;lÞ expð�0;j þ �1wi;jÞ�1PJ
l¼1 expð�0;l þ �1wi;lÞ


 �2

� expð�0;j þ �1wi;jÞ expð�0;j þ �1wi;jÞ�1PJ
l¼1 expð�0;l þ �1wi;lÞ


 �2
¼ �1 Pr½Yi ¼ jjWi�ð1� Pr½Yi ¼ jjWi�Þ:

ð5:19Þ

This partial derivative depends on the probability that category j is chosen

and hence on the values of all explanatory variables in the model. The sign of

this derivative, however, is completely determined by the sign of �1. Hence,
in contrast to the Multinomial Logit specification, the probability varies

monotonically with wi;j.

Along similar lines, we can derive the partial derivative of the probability

that an individual i chooses category j with respect to wi;l for l 6¼ j, that is,

@Pr½Yi ¼ jjWi�
@wi;l

¼ ��1 Pr½Yi ¼ jjWi�Pr½Yi ¼ ljWi�: ð5:20Þ

The sign of this cross-derivative is again completely determined by the sign of

��1. The value of the derivative itself also depends on the value of all
explanatory variables through the choice probabilities. Note that the sym-

metry @Pr½Yi ¼ jjWi�=@wi;l ¼ @Pr½Yi ¼ ljWi�=@wi;j holds. If we consider

brand choice again, where wi;j corresponds to the price of brand j as experi-

enced by individual i, the derivatives (5.19) and (5.20) show that for �1 < 0
an increase in the price of brand j leads to a decrease in the probability that

brand j is chosen and an increase in the probability that the other brands are

chosen. Again, the sum of these changes in choice probabilities is zero

because
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XJ
j¼1

@Pr½Yi ¼ jjWi�
@wi;l

¼ �1 Pr½Yi ¼ ljWi�ð1� Pr½Yi ¼ ljWi�Þ

þ
XJ

j¼1;j 6¼l

��1 Pr½Yi ¼ jjWi�Pr½Yi ¼ ljWi� ¼ 0;

ð5:21Þ
which simply confirms that the probabilities sum to one. The magnitude of

each specific change in choice probability depends on �1 and on the prob-
abilities themselves, and hence on the values of all wi;l variables. If all wi;l

variables change similarly, l ¼ 1; . . . ; J, the net effect of this change on the
probability that, say, category j is chosen is also zero because it holds that

XJ
l¼1

@Pr½Yi ¼ jjWi�
@wi;l

¼ �1 Pr½Yi ¼ ljWi�ð1� Pr½Yi ¼ ljWi�Þ

þ
XJ

l¼1;l 6¼j

��1 Pr½Yi ¼ jjWi�Pr½Yi ¼ ljWi� ¼ 0;

ð5:22Þ
where we have used

PJ
l¼1;l 6¼j Pr½Yi ¼ ljWi� ¼ 1� Pr½Yi ¼ ljWi�. In marketing

terms, for example for brand choice, this means that the model implies that

an equal price change in all brands does not affect brand choice.

Quasi-elasticities and cross-elasticities follow immediately from the above

two partial derivatives. The percentage point change in the probability that

category j is chosen upon a percentage change in wi;j equals

@Pr½Yi ¼ jjWi�
@wi;j

wi;j ¼ �1wi;j Pr½Yi ¼ jjWi�ð1� Pr½Yi ¼ jjWi�Þ:

ð5:23Þ
The percentage point change in the probability for j upon a percentage

change in wi;l is simply

@Pr½Yi ¼ jjWi�
@wi;l

wi;l ¼ ��1wi;l Pr½Yi ¼ jjWi�Pr½Yi ¼ ljWi�: ð5:24Þ

Given (5.23) and (5.24), it is easy to see that

XJ
j¼1

@Pr½Yi ¼ jjWi�
@wi;l

wi;l ¼ 0 and
XJ
l¼1

@Pr½Yi ¼ jjwi�
@wi;l

wi;l ¼ 0;

ð5:25Þ
and hence the sum of all elasticities is equal to zero.
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A general logit specification

So far, we have discussed the Multinomial and Conditional Logit

models separately. In some applications one may want to combine both

models in a general logit specification. This specification can be further

extended by including explanatory variables Zj that are different across

categories but the same for each individual. Furthermore, it is also possible

to allow for different �1 parameters for each category in the Conditional
Logit model (5.16). Taking all this together results in a general logit speci-

fication, which for one explanatory variable of either type reads as

Pr½Yi ¼ jjXi;Wi;Z� ¼ expð�0;j þ �1;jxi þ �1;jwi;j þ �zjÞPJ
l¼1 expð�0;l þ �1;lxi þ �1;lwi;l þ �zlÞ

;

for j ¼ 1; . . . ; J;

ð5:26Þ
where �0;J ¼ �1;J ¼ 0 for identification purposes and Z ¼ ðz1; . . . ; zJÞ. Note
that it is not possible to modify � into �j because the zj variables are in fact

already proportional to the choice-specific intercept terms.

The interpretation of the logit model (5.26) follows again from the odds

ratio

Pr½Yi ¼ jjxi;wi; z�
Pr½Yi ¼ ljxi;wi; z�

¼ expðð�0;j � �0;lÞ þ ð�1;j � �1;lÞ xi

þ �1;jwi;j � �1;lwi;l þ �ðzj � zlÞÞ:
ð5:27Þ

For most of the explanatory variables, the effects on the odds ratios are the

same as in the Conditional and Multinomial Logit model specification. The

exception is that it is not the difference between wi;j and wi;l that affects the

odds ratio but the linear combination �1;jwi;j � �1;lwi;l . Finally, partial deri-

vatives and elasticities for the net effects of changes in the explanatory vari-

ables on the probabilities can be derived in a manner similar to that for the

Conditional and Multinomial Logit models. Note, however, that the sym-

metry @Pr½Yi ¼ jjXi;Wi;Z�=@wi;l ¼ @Pr½Yi ¼ ljXi;Wi;Z�=@wi;j does not hold

any more.

The independence of irrelevant alternatives

The odds ratio in (5.27) shows that the choice between two cate-

gories depends only on the characteristics of the categories under considera-

tion. Hence, it does not relate to the characteristics of other categories or to

the number of categories that might be available for consideration.

Naturally, this is also true for the Multinomial and Conditional Logit mod-

els, as can be seen from (5.7) and (5.17), respectively. This property of these

models is known as the independence of irrelevant alternatives (IIA).
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Although the IIA assumption may seem to be a purely mathematical

issue, it can have important practical implications, in particular because it

may not be a realistic assumption in some cases. To illustrate this, consider

an individual who can choose between two mobile telephone service provi-

ders. Provider A offers a low fixed cost per month but charges a high price

per minute, whereas provider B charges a higher fixed cost per month, but

has a lower price per minute. Assume that the odds ratio of an individual is 2

in favor of provider A, then the probability that he or she will choose

provider A is 2/3 and the probability that he or she will opt for provider

B is 1/3. Suppose now that a third provider called C enters the market,

offering exactly the same service as provider B. Because the service is the

same, the individual should be indifferent between providers B and C. If, for

example, the Conditional Logit model in (5.16) holds, the odds ratio of

provider A versus provider B would still have to be 2 because the odds

ratio does not depend on the characteristics of the alternatives. However,

provider C offers the same service as provider B and therefore the odds ratio

of A versus C should be equal to 2 as well. Hence, the probability that the

individual will choose provider A drops from 2/3 to 1/2 and the remaining

probability is equally divided between providers B and C (1/4 each). This

implies that the odds ratio of provider A versus an alternative with high fixed

cost and low variable cost is now equal to 1. In sum, one would expect

provider B to suffer most from the entry of provider C (from 1/3 to 1/4),

but it turns out that provider A becomes less attractive at a faster rate (from

2/3 to 1/2).

This hypothetical example shows that the IIA property of a model may

not always make sense. The origin of the IIA property is the assumption that

the error variables in (5.13) are uncorrelated and that they have the same

variance across categories. In the next two subsections, we discuss two choice

models that relax this assumption and do not incorporate this IIA property.

It should be stressed here that these two models are a bit more complicated

than the ones discussed so far. In section 5.3 we discuss a formal test for the

validity of IIA.

5.1.2 The Multinomial Probit model

One way to derive the logit models in the previous section starts off

with a random utility specification, (see (5.13)). The perceived utility for

category j for individual i denoted by ui;j is then written as

ui;j ¼ �0;j þ �1;jxi þ "i;j; for j ¼ 1; . . . ; J; ð5:28Þ
where "i;j are unobserved random error variables for i ¼ 1; . . . ;N and where

xi is an individual-specific explanatory variable as before. Individual i
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chooses alternative j if he or she perceives the highest utility from this alter-

native. The corresponding choice probability is defined in (5.15). The prob-

ability in (5.15) can be written as a J-dimensional integralð1
�1

ðui;j

�1
� � �
ðui;j

�1
f ðui;1; . . . ; ui;JÞ dui;j dui;1 . . . dui;j�1 dui;jþ1 . . . ; dui;J ;

ð5:29Þ
where f denotes the joint probability density function of the unobserved

utilities. If one now assumes that the error variables are independently dis-

tributed with a type-I extreme value distribution, that is, that the density

function of "i;j is

f ð"i;jÞ ¼ expð� expð�"i;jÞÞ; for j ¼ 1; . . . ; J; ð5:30Þ
it can be shown that the choice probabilities (5.29) simplify to (5.6); see

McFadden (1973) or Amemiya (1985, p. 297) for a detailed derivation.

For this logit model the IIA property holds. This is caused by the fact

that the error terms "i;j are independently and identically distributed.
In some cases the IIA property may not be plausible or useful and an

alternative model would then be more appropriate. The IIA property dis-

appears if one allows for correlations between the error variables and/or if

one does not assume equal variances for the categories. To establish this, a

straightforward alternative to the Multinomial Logit specification is the

Multinomial Probit model. This model assumes that the J-dimensional vec-

tor of error terms "i ¼ ð"i;1; . . . ; "i;JÞ is normally distributed with mean zero
and a J 	 J covariance matrix �, that is,

"i 
 Nð0;�Þ ð5:31Þ
(see, for example, Hausman and Wise, 1978, and Daganzo, 1979). Note that,

when the covariance matrix is an identity matrix, the IIA property will again

hold. However, when � is a diagonal matrix with different elements on the

main diagonal and/or has non-zero off-diagonal elements, the IIA property

does not hold.

Similarly to logit models, several parameter restrictions have to be

imposed to identify the remaining parameters. First of all, one again needs

to impose that �0;J ¼ �1;J ¼ 0. This is, however, not sufficient, and hence the

second set of restrictions concerns the elements of the covariance matrix.

Condition (5.14) shows that the choice is determined not by the levels of the

utilities ui;j but by the differences in utilities ðui;j � ui;lÞ. This implies that a
ðJ � 1Þ 	 ðJ � 1Þ covariance matrix completely determines all identified var-
iances and covariances of the utilities and hence only JðJ � 1Þ=2 elements of
� are identified. Additionally, it follows from (5.14) that multiplying each

utility ui;j by the same constant � does not change the choice and hence we
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have to scale the utilities by restricting one of the diagonal elements of � to

be 1. A detailed discussion on parameter identification in the Multinomial

Probit model can be found in, for example, Bunch (1991) and Keane (1992).

The random utility specification (5.28) can be adjusted to obtain a general

probit specification in the same manner as for the logit model. For example,

if we specify

ui;j ¼ �0;j þ �jwi;j þ "i;j for j ¼ 1; . . . ; J; ð5:32Þ
we end up with a Conditional Probit model.

The disadvantage of the Multinomial Probit model with respect to the

Multinomial Logit model is that there is no easy expression for the choice

probabilities (5.15) that would facilitate model interpretation using odds

ratios. In fact, to obtain the choice probabilities, one has to evaluate

(5.29) using numerical integration (see, for example, Greene, 2000, section

5.4.2). However, if the number of alternatives J is larger than 3 or 4, numer-

ical integration is no longer feasible because the number of function evalua-

tions becomes too large. For example, if one takes n grid points per

dimension, the number of function evaluations becomes nJ . To compute

the choice probabilities for large J, one therefore resorts to simulation tech-

niques. The techniques also have to be used to compute odds ratios, partial

derivatives and elasticities. We consider this beyond the scope of this book

and refer the reader to, for example, Börsch-Supan and Hajivassiliou (1993)

and Greene (2000, pp. 183–185) for more details.

5.1.3 The Nested Logit model

It is also possible to extend the logit model class in order to cope

with the IIA property (see, for example, Maddala, 1983, pp. 67–73,

Amemiya, 1985, pp. 300–307, and Ben-Akiva and Lerman, 1985, ch. 10).

A popular extension is the Nested Logit model. For this model it is assumed

that the categories can be divided into clusters such that the variances of the

error terms of the random utilities in (5.13) are the same within each cluster

but different across clusters. This implies that the IIA assumption holds

within each cluster but not across clusters. For brand choice, one may, for

example, assign brands to a cluster with private labels or to a cluster with

national brands:
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Another example is the contract renewal decision problem discussed in the

introduction to this chapter, which can be represented by:

The first cluster corresponds to no renewal, while the second cluster contains

the categories corresponding to renewal. Although the trees suggest that

there is some sequence in decision-making (renew no/yes followed by

upgrade no/yes), this does not have to be the case.

In general, we may divide the J categories intoM clusters, each containing

Jm categories m ¼ 1; . . . ;M such that
PM

m¼1 Jm ¼ J. The random variable

Yi, which models choice, is now split up into two random variables ðCi;SiÞ
with realizations ci and si, where ci corresponds to the choice of the cluster

and si to the choice among the categories within this cluster. The probability

that individual i chooses category j in cluster m is equal to the joint prob-

ability that the individual chooses cluster m and that category j is preferred

within this cluster, that is,

Pr½Yi ¼ ðj;mÞ� ¼ Pr½Ci ¼ m ^ Si ¼ j�: ð5:33Þ
One can write this probability as the product of a conditional probability of

choice given the cluster and a marginal probability for the cluster

Pr½Ci ¼ m ^ Si ¼ j� ¼ Pr½Si ¼ jjCi ¼ m�Pr½Ci ¼ m� ð5:34Þ
To model the choice within each cluster, one specifies a Conditional Logit

model,

Pr½Si ¼ jjCi ¼ m;Z� ¼ expðZjjm�ÞPJm

j¼1 expðZjjm�Þ
; ð5:35Þ

where Zjjm denote the variables that have explanatory value for the choice
within cluster m, for j ¼ 1; . . . ; Jm.

To model the choice between the clusters we consider the following logit

specification

Pr½Ci ¼ mjZ� ¼ expðZm�þ �mImÞPM
l¼1 expðZl�þ �lIlÞ

; ð5:36Þ

where Zm denote the variables that explain the choice of the cluster m and Im
denote the inclusive value of cluster m defined as
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Im ¼ log
XJm

j¼1
expðZjjm�Þ; for m ¼ 1; . . . ;M: ð5:37Þ

The inclusive value captures the differences in the variance of the error terms

of the random utilities between each cluster (see also Amemiya, 1985, p. 300,

and Maddala, 1983, p. 37). To ensure that choices by individuals correspond

to utility-maximizing behavior, the restriction �m � 1 has to hold for

m ¼ 1; . . . ;M. These restrictions also guarantee the existence of nest/cluster

correlations (see Ben-Akiva and Lerman, 1985, section 10.3, for details).

The model in (5.34)–(5.37) is called the Nested Logit model. As we will

show below, the IIA assumption is not implied by the model as long as the �m
parameters are unequal to 1. Indeed, if we set the �m parameters equal to 1
we obtain

Pr½Ci ¼ m ^ Si ¼ jjZ� ¼ expðZm�þ Zjjm�ÞPM
l¼1
PJm

j¼1 expðZl�þ Zjjl�Þ
; ð5:38Þ

which is in fact a rewritten version of the Conditional Logit model (5.16) if

Zm and Zjjm are the same variables.
The parameters of the Nested Logit model cannot be interpreted directly.

Just as for the Multinomial and Conditional Logit models, one may consider

odds ratios to interpret the effects of explanatory variables on choice. The

interpretation of these odds ratios is the same as in the above logit models.

Here, we discuss the odds ratios only with respect to the IIA property of the

model. The choice probabilities within a cluster (5.35) are modeled by a

Conditional Logit model, and hence the IIA property holds within each

cluster. This is also the case for the choices between the clusters because

the ratio of Pr½Ci ¼ m1jZ� and Pr½Ci ¼ m2jZ� does not depend on the expla-
natory variables and inclusive values of the other clusters. The odds ratio of

the choice of category j in cluster m1 versus the choice of category l in cluster

m2, given by

Pr½Yi ¼ ðj;m1ÞjZ�
Pr½Yi ¼ ðl;m2ÞjZ� ¼

expðZm1
�þ �m1

Im1
Þ

expðZm2
�þ �m2

Im2
Þ
expðZjjm1

�ÞPJm2

j¼1 expðZjjm2
�Þ

expðZljm2
�ÞPJm1

j¼1 expðZjjm1
�Þ
;

ð5:39Þ
is seen to depend on all categories in both clusters unless �m1

¼ �m2
¼ 1. In

other words, the IIA property does not hold if one compares choices across

clusters.

Partial derivatives and quasi-elasticities can be derived in a manner similar

to that for the logit models discussed earlier. For example, the partial deri-

vative of the probability that category j belonging to cluster m is chosen to

the cluster-specific variables Zjjm equals



An unordered multinomial dependent variable 91

@Pr½Ci ¼ m ^ Si ¼ j�
@Zjjm

¼ Pr½Ci ¼ mjZ� @Pr½Si ¼ jjCi ¼ m�
@Zjjm

þ Pr½Sj ¼ jjCi ¼ m� @Pr½Ci ¼ m�
@Zjjm

¼ � Pr½Ci ¼ m�Pr½Si ¼ jjCi ¼ m�
ð1� Pr½Si ¼ jjCi ¼ m�Þ
þ �m� Pr½Si ¼ jjCi ¼ m�Pr½Ci ¼ m�
ð1� Pr½Si ¼ m�Þ expðZjjm� � ImÞ;

ð5:40Þ
where the conditioning on Z is omitted for notational convenience. This

expression shows that the effects of explanatory variables on the eventual

choice are far from trivial.

Several extensions to the Nested Logit model in (5.34)–(5.37) are also

possible. We may include individual-specific explanatory variables and

explanatory variables that are different across categories and individuals in

a straightforward way. Additionally, the Nested Logit model can even be

further extended to allow for new clusters within each cluster. The complex-

ity of the model increases with the number of cluster divisions (see also

Amemiya, 1985, pp. 300–306, and especially Ben-Akiva and Lerman, 1985,

ch. 10, for a more general introduction to Nested Logit models).

Unfortunately, there is no general rule or testing procedure to determine

an appropriate division into clusters, which makes the clustering decision

mainly a practical one.

5.2 Estimation

Estimates of the model parameters discussed in the previous sec-

tions can be obtained via the Maximum Likelihood method. The likelihood

functions of the models presented above are all the same, except for the fact

that they differ with respect to the functional form of the choice probabilities.

In all cases the likelihood function is the product of the probabilities of the

chosen categories over all individuals, that is,

Lð�Þ ¼
YN
i¼1

YJ
j¼1
Pr½Yi ¼ j�I ½yi¼j�; ð5:41Þ

where I ½�� denotes a 0/1 indicator function that is 1 if the argument is true
and 0 otherwise, and where � summarizes the model parameters. To save on
notation we abbreviate Pr½Yi ¼ jj�� as Pr½Yi ¼ j�. The logarithm of the like-

lihood function is
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lð�Þ ¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j� log Pr½Yi ¼ j�: ð5:42Þ

The ML estimator is the parameter value �̂� that corresponds to the largest
value of the (log-)likelihood function over the parameters. This maximum

can be found by solving the first-order condition

@lð�Þ
@�

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j� @ log Pr½Yi ¼ j�
@�

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j�
Pr½Yi ¼ j�

@Pr½Yi ¼ j�
@�

¼ 0:

ð5:43Þ

Because the log-likelihood function is nonlinear in the parameters, it is not

possible to solve the first-order conditions analytically. Therefore, numerical

optimization algorithms, such as Newton–Raphson, have to be used to max-

imize the log-likelihood function. As described in chapter 3, the ML esti-

mates can be found by iterating over

�h ¼ �h�1 � Hð�h�1Þ�1Gð�h�1Þ; ð5:44Þ

until convergence, where Gð�Þ and Hð�Þ are the first- and second-order deri-
vatives of the log-likelihood function (see also section 3.2.2).

In the remainder of this section we discuss parameter estimation of the

models for a multinomial dependent variable discussed above in detail and

we provide mathematical expressions for Gð�Þ and Hð�Þ.

5.2.1 The Multinomial and Conditional Logit models

Maximum Likelihood estimation of the parameters of the

Multinomial and Conditional Logit models is often discussed separately.

However, in practice one often has a combination of the two specifications,

and therefore we discuss the estimation of the combined model given by

Pr½Yi ¼ j� ¼ expðXi�j þ Wi;j�ÞPJ
l¼1 expðXi�l þ Wi;j�Þ

for j ¼ 1; . . . ; J; ð5:45Þ

where Wi;j is a 1	 Kw matrix containing the explanatory variables for cate-

gory j for individual i and where � is a Kw-dimensional vector. The estima-

tion of the parameters of the separate models can be done in a

straightforward way using the results below.
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The model parameters contained in � are ð�1; . . . ; �J ; �Þ. The first-order
derivative of the likelihood function called the gradient Gð�Þ is given by

Gð�Þ ¼ @lð�Þ
@�01

; . . . ;
@lð�Þ
@�0J

;
@lð�Þ
@�

� 
0
: ð5:46Þ

To derive the specific first-order derivatives, we first consider the partial

derivatives of the choice probabilities with respect to the model parameters.

The partial derivatives with respect to the �j parameters are given by

@Pr½Yi ¼ j�
@�j

¼ Pr½Yi ¼ j�ð1� Pr½Yi ¼ j�ÞX 0
i for j ¼ 1; . . . ; J � 1

@Pr½Yi ¼ l�
@�j

¼ �Pr½Yi ¼ l�Pr½Yi ¼ j�X 0
i for j ¼ 1; . . . ; J � 1 6¼ l:

ð5:47Þ

The partial derivative with respect to � equals

@Pr½Yj ¼ j�
@�

¼ Pr½Yi ¼ j� W 0
i;j �

XJ
l¼1
Pr½Yi ¼ l�W 0

i;l

 !
: ð5:48Þ

If we substitute (5.47) and (5.48) in the first-order derivative of the log-like-

lihood function (5.46), we obtain the partial derivatives with respect to the

model parameters. For the �j parameters these become

@lð�Þ
@�j

¼
XN
i¼1

ðI ½yi ¼ j� � Pr½Yi ¼ j�ÞX 0
i for j ¼ 1; . . . ; J � 1: ð5:49Þ

Substituting (5.48) in (5.43) gives

@lð�Þ
@�

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j�
Pr½Yi ¼ j�Pr½Yi ¼ j� W 0

i;j �
XJ
l¼1
Pr½Yi ¼ l�W 0

i;l

 !

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j� W 0
i;j �

XJ
l¼1
Pr½Yi ¼ l�W 0

i;l

 !
:

ð5:50Þ

It is immediately clear that it is not possible to solve equation (5.43) for �j

and � analytically. Therefore we use the Newton–Raphson algorithm in

(5.44) to find the maximum.

The optimization algorithm requires the second-order derivative of the

log-likelihood function, that is, the Hessian matrix, given by
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Hð�Þ ¼

@2lð�Þ
@�1@�

0
1

. . .
@2lð�Þ

@�1@�
0
J�1

@2lð�Þ
@�1@�

0

..

. . .
. ..

. ..
.

@2lð�Þ
@�J�1@�01

. . .
@2lð�Þ

@�J�1@�0J�1

@2lð�Þ
@�J�1@� 0

@2lð�Þ
@�@�01

. . .
@2lð�Þ
@�@�0J�1

@2lð�Þ
@�@� 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð5:51Þ

To obtain this matrix, we need the second-order partial derivatives of the

log-likelihood with respect to �j and � and cross-derivatives. These deriva-
tives follow from the first-order derivatives of the log-likelihood function

(5.49) and (5.50) and the probabilities (5.47) and (5.48). Straightforward

substitution gives

@2lð�Þ
@�j@�

0
j

¼ �
XN
i¼1
Pr½Yi ¼ j�ð1� Pr½Yi ¼ j�ÞX 0

jXj for j ¼ 1; . . . ; J � 1

@2lð�Þ
@�@� 0

¼ �
XN
i¼1

XJ
j¼1

I ½yi ¼ j�
XJ
l¼1
Pr½Yi ¼ l�

W 0
i;lWi;l �

XJ
j¼1
Pr½Yi ¼ j�W 0

i;jWi;l

 !

ð5:52Þ
and the cross-derivatives equal

@2lð�Þ
@�j@�

0
l

¼
XN
i¼1
Pr½Yi ¼ j�Pr½Yi ¼ l�X 0

iXi for j ¼ 1; . . . ; J � 1 6¼ l

@2lð�Þ
@�j@�

0 ¼
XN
i¼1
Pr½Yi ¼ j� W 0

i;jXi �
XJ
l¼1
Pr½Yi ¼ l�W 0

i;lXi

 !

for j ¼ 1; . . . ; J � 1:
ð5:53Þ

The ML estimator is found by iterating over (5.44), where the expressions

for Gð�Þ and Hð�Þ are given in (5.46) and (5.51). It can be shown that the log-
likelihood is globally concave (see Amemiya, 1985). This implies that the

Newton–Raphson algorithm (5.44) will converge to a unique optimum for all

possible starting values. The resultant ML estimator �̂� ¼ ð�̂�1; . . . ; �̂�J�1; �̂�Þ is
asymptotically normally distributed with the true parameter value � as its
mean and the inverse of the information matrix as its covariance matrix. This
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information matrix can be estimated by �Hð�̂�Þ, where Hð�Þ is defined in
(5.51) such that

�̂� 
a Nð�; ð�Hð�̂�ÞÞ�1Þ: ð5:54Þ
This result can be used to make inferences about the significance of the

parameters. In sections 5.A.1 and 5.A.2 of the appendix to this chapter we

give the EViews code for estimating Multinomial and Conditional Logit

models.

5.2.2 The Multinomial Probit model

The parameters of the Multinomial and Conditional Probit models

can be estimated in the same way as the logistic alternatives. The log-like-

lihood function is given by (5.42) with Pr½Yi ¼ j� defined in (5.29) under the
assumption that the error terms are multivariate normally distributed. For

the Multinomial Probit model, the parameters are summarized by

� ¼ ð�1; . . . ; �J�1;�Þ. One can derive the first-order and second-order deri-
vatives of the choice probabilities to the parameters in �, which determine the
gradient and Hessian matrix. We consider this rather complicated derivation

beyond the scope of this book. The interested reader who wants to estimate

Multinomial Probit models is referred to McFadden (1989), Geweke et al.

(1994) and Bolduc (1999), among others.

5.2.3 The Nested Logit model

There are two popular ways to estimate the parameters � ¼ ð�; �;
�1; . . . ; �mÞ of the Nested Logit model (see also Ben-Akiva and Lerman, 1985,
section 10.4). The first method amounts to a two-step ML procedure. In the

first step, one estimates the � parameters by treating the choice within a
cluster as a standard Conditional Logit model. In the second step one con-

siders the choice between the clusters as a Conditional Logit model and

estimates the � and �m parameters, where �̂� is used to compute the inclusive
values Im for all clusters. Because this is a two-step estimator, the estimate of

the covariance matrix obtained in the second step has to be adjusted (see

McFadden, 1984).

The second estimation method is a full ML approach. The log-likelihood

function is given by

lð�Þ ¼
XN
i¼1

XM
m¼1

XJm

j¼1
I ½yi ¼ ðj;mÞ� log Pr½Si ¼ jjCi ¼ m�Pr½Ci ¼ m�:

ð5:55Þ
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The log-likelihood function is maximized over the parameter space �.
Expressions for the gradient and Hessian matrix can be derived in a straight-

forward way. In practice, one may opt for numerical first- and second-order

derivatives. In section 5.A.3 we give the EViews code for estimating a Nested

Logit model.

5.3 Diagnostics, model selection and forecasting

Once the parameters of a model for a multinomial dependent vari-

able have been estimated, one should check the empirical validity of the

model. Again, the interpretation of the estimated parameters and their stan-

dard errors may be invalid if the model is not well specified. Unfortunately,

at present there are not many diagnostic checks for multinomial choice

models. If the model is found to be adequate, one may consider deleting

redundant variables or combining several choice categories using statistical

tests or model selection criteria. Finally, one may evaluate the models on

their within-sample and/or out-of-sample forecasting performance.

5.3.1 Diagnostics

At present, there are not many diagnostic tests for multinomial

choice models. Many diagnostic tests are based on the properties of the

residuals. However, the key problem of an unordered multinomial choice

model lies in the fact that there is no natural way to construct a residual. A

possible way to analyze the fit of the model is to compare the value of the

realization yi with the estimated probability. For example, in a Multinomial

Logit model the estimated probability that category j is chosen by individual

i is simply

p̂pi;j ¼ P̂rPr½Yi ¼ jjXi� ¼
expðXi�̂�jÞPJ
l¼1 expðXi�̂�lÞ

: ð5:56Þ

This probability has to be 1 if j is the true value of Yi and zero for the other

categories. As the maximum of the log-likelihood function (5.42) is just the

sum of the estimated probabilities of the observed choices, one may define as

residual

êei ¼ 1� p̂pi; ð5:57Þ
where p̂pi is the estimated probability of the chosen alternative, that is

p̂pi ¼ P̂rPr½Yi ¼ yijXi�. This residual has some odd properties. It is always posi-
tive and smaller or equal to 1. The interpretation of these residuals is there-

fore difficult (see also Cramer, 1991, section 5.4). They may, however, be

useful for detecting outlying observations.
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A well-known specification test in Multinomial and Conditional Logit

models is due to Hausman and McFadden (1984) and it concerns the IIA

property. The idea behind the test is that deleting one of the categories

should not affect the estimates of the remaining parameters if the IIA

assumption is valid. If it is valid, the estimation of the odds of two outcomes

should not depend on alternative categories. The test amounts to checking

whether the difference between the parameter estimates based on all cate-

gories and the parameter estimates when one or more categories are

neglected is significant.

Let �̂�r denote the ML estimator of the logit model, where we have deleted
one or more categories, and V̂Vð�̂�rÞ the estimated covariance matrix of these
estimates. Because the number of parameters for the unrestricted model is

larger than the number of parameters for the restricted model, one removes

the superfluous parameters from the ML estimates of the parameters of the

unrestricted model �̂�, resulting in �̂�f . The corresponding estimated covariance
matrix is denoted by V̂Vð�̂�f Þ. The Hausman-type test of the validity of the IIA
property is now defined as:

HIIA ¼ ð�̂�r � �̂�f Þ0ðV̂Vð�̂�rÞ � V̂Vð�̂�f ÞÞ�1ð�̂�r � �̂�f Þ: ð5:58Þ
The test statistic is asymptotically �2 distributed with degrees of freedom
equal to the number of parameters in �r. The IIA assumption is rejected for
large values of HIIA. It may happen that the test statistic is negative. This is

evidence that the IIA holds (see Hausman and McFadden, 1984, p. 1226).

Obviously, if the test for the validity of IIA is rejected, one may opt for a

Multinomial Probit model or a Nested Logit model.

5.3.2 Model selection

If one has obtained one or more empirically adequate models for a

multinomial dependent variable, one may want to compare the different

models. One may also want to examine whether or not certain redundant

explanatory variables may be deleted.

The significance of individual explanatory variables can be based on the z-

scores of the estimated parameters. These follow from the estimated para-

meters divided by their standard errors, which result from the square root of

the diagonal elements of the estimated covariance matrix. If one wants to test

for the redundancy of, say, g explanatory variables, one can use a likelihood

ratio test. The relevant test statistic equals

LR ¼ �2ðlð�̂�NÞ � lð�̂�AÞÞ; ð5:59Þ
where lð�̂�NÞ and lð�̂�AÞ are the values of the log-likelihood function under the
null and alternative hypotheses, respectively. Under the null hypothesis, this
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likelihood ratio test is asymptotically �2 distributed with g degrees of free-

dom.

It may sometimes also be of interest to see whether the number of cate-

gories may be reduced, in particular where there are, for example, many

brands, of which a few are seldom purchased. Cramer and Ridder (1991)

propose a test for the reduction of the number of categories in the

Multinomial Logit model. Consider again the log odds ratio of j versus l

defined in (5.8), and take for simplicity a single explanatory variable

log�jjlðXiÞ ¼ �0;j � �0;l þ ð�1;j � �1;lÞxi: ð5:60Þ

If �1;j ¼ �1;l, the variable xi cannot explain the difference between categories

j and l. In that case the choice between j and l is fully explained by the

intercept parameters ð�0;j � �0;lÞ. Hence,

� ¼ expð�0;jÞ
expð�0;jÞ þ expð�0;lÞ

ð5:61Þ

determines the fraction of yi ¼ j observations in a new combined category

(j þ l). A test for such a combination can thus be based on checking the

equality of �1;j and �1;l.
In general, a test for combining two categories j and l amounts to testing

for the equality of �j and �l apart from the intercepts parameters. This

equality restriction can be tested with a standard Likelihood Ratio test.

The value of the log-likelihood function under the alternative hypothesis

can be obtained from (5.42). Under the null hypothesis one has to estimate

the model under the restriction that the � parameters (apart from the inter-

cepts) of two categories are the same. This can easily be done as the log-

likelihood function under the null hypothesis that categories j and l can be

combined can be written as

lð�NÞ ¼
XN
i¼1

XJ
s¼1;s6¼l

I ½yi ¼ s� log Pr½Yi ¼ s�

þ I ½yi ¼ j _ yi ¼ l�Pr½Yi ¼ j�

þ
XN
i¼1

ðI ½yi ¼ j� log�þ I ½yi ¼ 1� logð1� �ÞÞ:

ð5:62Þ

This log-likelihood function consists of two parts. The first part is the

log-likelihood function of a Multinomial Logit model under the restriction

�j ¼ �l including the intercept parameters. This is just a standard

Multinomial Logit model. The last part of the log-likelihood function is a

simple binomial model. The ML estimator of � is the ratio of the number of
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observations for which yi ¼ j divided by the number of observations that yi

¼ j or l, that is,

�̂� ¼ #ðyi ¼ jÞ
#ðyi ¼ jÞ þ #ðyi ¼ lÞ : ð5:63Þ

Under the null hypothesis that the categories may be combined, the LR

statistic is asymptotically �2 distributed with degrees of freedom equal to

Kx (the number of parameters in �j minus the intercept). Tests for the com-

bination of more than two categories follow in the same way (see Cramer

and Ridder, 1991, for more details).

As we have already discussed in the previous subsection, it is difficult to

define residuals for multinomial choice models. To construct an overall

measure of fit, one therefore usually opts for a pseudo-R2 measure. One

such measure is the McFadden R2 given by

R2 ¼ 1� lð�̂�Þ
lð�̂�0Þ

; ð5:64Þ

where lð�̂�0Þ is the value of the log likelihood function if the model contains
only intercept parameters. The lower bound of the R2 in (5.64) is 0, but the

upper bound is not equal to 1, because lð�̂�Þ will never be 0. An alternative R2

measure is derived in Maddala (1983, p. 39), that is,

�RR2 ¼
1� Lð�̂�0Þ

Lð�̂�Þ

 !2=N

1� ðLð�̂�0ÞÞ2=N
; ð5:65Þ

where Lð�̂�0Þ is the value of the likelihood function when the model contains
only intercept parameters and N is the number of individuals. This R2 mea-

sure has a lower bound of 0 if Lð�̂�0Þ ¼ Lð�̂�Þ and an upper bound of 1 if
Lð�̂�Þ ¼ 1. This upper bound corresponds with a perfect fit because it implies

that all residuals in (5.57) are zero.

Finally, if one wants to compare models with different sets of explanatory

variables, one may use the familiar AIC and BIC model selection criteria as

discussed in chapters 3 and 4.

5.3.3 Forecasting

A final stage in a model selection procedure may be the evaluation

of the forecasting performance of one or more selected models. We may

consider within-sample and out-of-sample forecasts. In the latter case one

needs a hold-out sample, which is not used for the estimation of the model

parameters.
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To generate forecasts, one computes the estimated choice probabilities.

For a Multinomial Logit model this amounts to computing

p̂pi;j ¼ P̂rPr½Yi ¼ jjXi� ¼
expðXi�̂�jÞPJ
l¼1 expðXi�̂�lÞ

for j ¼ 1; . . . ; J: ð5:66Þ

The next step consists of translating these probabilities into a discrete choice.

One may think that a good forecast of the choice equals the expectation of Yi

given Xi, that is,

E½YijXi� ¼
XJ
j¼1

p̂pi;j j; ð5:67Þ

but this is not the case because the value of this expectation depends on the

ordering of the choices from 1 to J, and this ordering was assumed to be

irrelevant. In practice, one usually opts for the rule that the forecast for Yi is

the value of j that corresponds to the highest choice probability, that is

ŷyi ¼ j if p̂pi;j ¼ maxðp̂pi;1; . . . ; p̂pi;JÞ: ð5:68Þ

To evaluate the forecasts, one may consider the percentage of correct hits for

each model. These follow directly from a prediction–realization table:

Predicted
ŷyi ¼ 1 . . . ŷyi ¼ j . . . ŷyi ¼ J

Observed
yi ¼ 1 p11 . . . p1j . . . p1J p1:

..

. ..
. . .

. ..
. . .

. ..
. ..

.

yi ¼ j pj1 . . . pjj . . . pjJ pj:
..
. ..

. . .
. ..

. . .
. ..

. ..
.

yi ¼ J pJ1 . . . pJj . . . pJJ pJ :

p:1 . . . p:j . . . p:J 1

The value p11 þ . . .þ pjj þ . . .þ pJJ can be interpreted as the hit rate. A

useful forecasting criterion can generalize the F1 measure in chapter 4, that

is,

F1 ¼
PJ

j¼1 pjj � p2:j

1�PJ
j¼1 p

2
�j

ð5:69Þ

The model with the maximum value for F1 may be viewed as the model that

has the best forecasting performance.
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5.4 Modeling the choice between four brands

As an illustration of the modeling of an unordered multinomial

dependent variable, we consider the choice between four brands of saltine

crackers. The brands are called Private label, Sunshine, Keebler and

Nabisco. The data were described in section 2.2.3. We have a scanner data

set of N ¼ 3,292 purchases made by 136 households. For each purchase, we

have the actual price of the purchased brand, the shelf price of the other

brands and four times two dummy variables which indicate whether the

brands were on display or featured.

To describe brand choice we consider the Conditional Logit model in

(5.16), where we include as explanatory variables per category the price of

the brand and three 0/1 dummy variables indicating whether a brand was on

display only or featured only or jointly on display and featured. To allow for

out-of-sample evaluation of the model, we exclude the last purchases of each

household from the estimation sample. Hence, we have 3,156 observations

for parameter estimation.

Table 5.1 shows the ML parameter estimates of the Conditional Logit

model with corresponding estimated standard errors. The model parameters

Table 5.1 Parameter estimates of a Conditional Logit

model for the choice between four brands of saltine

crackers

Variables Parameter

Standard

error

Intercepts

Private label

Sunshine

Keebler

�1:814***
�2:464***
�1:968***

0.091

0.084

0.074

Marketing variables

Display

Feature

Display and feature

Price

0.048

0:412***
0:580***

�3:172***

0.067

0.154

0.118

0.194

max. log-likelihood value �3215:83

Notes:

***Significant at the 0.01 level, ** at the 0.05 level, * at the

0.10 level

The total number of observations is 3,156.
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are estimated using EViews 3.1 (see section 5.A.2 for the EViews code). The

model contains three intercepts because the intercept for Nabisco is set equal

to zero for identification. The three intercept parameters are all negative and

significant, thereby confirming that Nabisco is the market leader (see section

2.2.3). Feature and joint display and feature have a significant positive effect

on brand choice, but their effects do not seem to be significantly different.

This suggests that the effect of a single display is not significant, which is

confirmed by its individual insignificant parameter. The negative significant

price coefficient indicates that an increase in the price of a brand leads to a

smaller probability that the brand is chosen. The likelihood ratio test for the

significance of the four explanatory variables (apart from the three inter-

cepts) equals 324.33, and the effect of the four explanatory variables on

brand choice is significant at the 1% level.

To evaluate the model, we first consider the test for the validity of IIA. We

remove the Private label category from the data set and we estimate the

parameters in a Conditional Logit model for the three national brands.

The Hausman-type statistic HIIA (see (5.58)), which compares the parameter

estimates of the model with four brands with the parameter estimates of the

model with three brands, equals 32.98. This statistic is asymptotically �2ð6Þ
distributed under the null hypothesis, and hence the IIA property is rejected

at the 5% level.

To account for the absence of IIA, we opt for a Nested Logit model for

the same data. We split the brands into two clusters. The first cluster con-

tains Private label and the second cluster the three national brands, that is,

To model the brand choices within the national brands cluster, we take a

Conditional Logit model (see (5.35)) with Jm ¼ 3. As explanatory variables,

we take price, display only, feature only and display and feature, and two

intercept parameters (Nabisco is the base brand within the cluster). Because

the Private label cluster contains only one brand, we do not have to specify a

logit model for this cluster. The choice probabilities between the two clusters

are modeled by (5.36) with M ¼ 2. As explanatory variables we take the

price, display only, feature only and display and feature of Private label.

Additionally, we include a Private label intercept and the inclusive value

of the national brand cluster with parameter �. We impose that the price,
display and feature effects in the probabilities that model the cluster choices

denoted by � in (5.36) are the same as the price, display and feature effects of
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the choice probabilities in the national brand cluster, denoted by � in (5.35).
This restriction implies that, for � ¼ 1, the model simplifies to the same

Conditional Logit model as considered above. Hence, we can simply test

the Nested Logit model against the Conditional Logit model using a

Likelihood Ratio test.

Table 5.2 shows the ML parameter estimates of the above Nested Logit

model. The model parameters are estimated using EViews 3.1 (see section

5.A.3 for the EViews code). The parameter estimates are rather similar to the

estimates in table 5.1. The display and feature parameters are slightly higher,

while the price parameter is lower. Fortunately, the �̂� parameter is larger
than 1, which ensures utility-maximizing behavior. The standard error of �̂�
shows that �̂� is more than two standard errors away from 1, which suggests

that we cannot restrict � to be 1. The formal LR test for � ¼ 1 equals 10.80

and hence we can reject the null hypothesis of the Conditional Logit model

against the Nested Logit specification. This means that the Nested Logit

model is preferred.

The McFadden R2 in (5.64) of the Conditional Logit model equals 0.05,

while the alternative �RR2 (5.65) equals 0.11. The R2 measures for the Nested

Table 5.2 Parameter estimates of a Nested Logit

model for the choice between four brands of saltine

crackers

Variables Parameter

Standard

error

Intercepts

Private label

Sunshine

Keebler

�2:812***
�2:372***
�1:947***

0.339

0.056

0.074

Marketing variables

Display

Feature

Display and feature

Price

0:075
0:442***
0:631***

�2:747***

0.057

0.132

0.107

0.205

�̂� 1:441*** 0.147

max. log-likelihood value �3210:43

Notes:

***Significant at the 0.01 level, ** at the 0.05 level, * at the

0.10 level

The total number of observations is 3,156.
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Logit model are almost the same. Hence, although the model is significantly

different, there is not much difference in fit.

To compare the forecast performance of both models we construct the

prediction–realization tables. For the 3,156 within-sample forecasts of the

Conditional Logit model and Nested Logit model the prediction–realization

table is:

Predicted
Private label Sunshine Keebler Nabisco

Observed
Private label 0.09 (0.09) 0.00 (0.00) 0.00 (0.00) 0.23 (0.23) 0.32 (0.32)
Sunshine 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.06 (0.06) 0.07 (0.07)
Keebler 0.01 (0.02) 0.00 (0.00) 0.00 (0.00) 0.06 (0.05) 0.07 (0.07)
Nabisco 0.06 (0.08) 0.00 (0.00) 0.00 (0.00) 0.48 (0.46) 0.54 (0.54)

0.18 (0.20) 0.00 (0.00) 0.00 (0.00) 0.82 (0.80) 1

where the Nested Logit model results appear in parentheses. The small

inconsistencies in the table are due to rounding errors. We see that there is

not much difference in the forecast performance of both models. The hit rate

is 0.57 (= 0.09 + 0.48) for the Conditional Logit model and 0.55 for the

Nested Logit model. The F1 measures are 0.025 and 0.050 for the

Conditional and Nested Logit models, respectively. Both models perform

reasonably well in forecasting Private label and Nabisco purchases, but

certainly not purchases of Sunshine and Keebler.

For the 136 out-of-sample forecasts, the prediction–realization table

becomes:

Predicted
Private label Sunshine Keebler Nabisco

Observed
Private label 0.14 (0.15) 0.00 (0.00) 0.00 (0.00) 0.15 (0.15) 0.29 (0.29)
Sunshine 0.03 (0.03) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.04 (0.04)
Keebler 0.01 (0.02) 0.00 (0.00) 0.00 (0.00) 0.07 (0.07) 0.09 (0.09)
Nabisco 0.14 (0.15) 0.00 (0.00) 0.00 (0.00) 0.43 (0.42) 0.57 (0.57)

0.32 (0.35) 0.00 (0.00) 0.00 (0.00) 0.68 (0.65) 1

where the results for the Nested Logit model again appear in parentheses.

Again, small inconsistencies in the table are due to rounding errors. The out-

of-sample hit rate for both models is 0.57, which is (about) as good as the in-

sample hit rates. The F1 measures are however worse, �0:46 and �0:40 for
the Conditional and Nested Logit models, respectively. We notice the same

pattern as for the within-sample forecasts. Both models predict the purchases

of Private label and Nabisco reasonably well, but fail to forecast purchases

of Sunshine and Keebler. This indicates that it must be possible to improve

the model.



An unordered multinomial dependent variable 105

A promising way of improving the model is perhaps to allow households

to have different base preferences and to allow that some households are

more price sensitive than others by introducing unobserved household het-

erogeneity, as is done in Jain et al. (1994). This topic is beyond the scope of

this application and some discussion on this matter is postponed to the

advanced topics section. In this section, we will continue with model inter-

pretation, where we focus on the Conditional Logit model.

Figure 5.1 displays the choice probabilities as a function of the prices of

the four brands for the estimated Conditional Logit model. For example, the

upper left cell displays the choice probabilities for the four brands as a

function of the price of Private label. The prices of the other brands are

set at their sample mean. We assume no display or feature. An increase in

the price of Private label leads to a decrease in the choice probability of

Private label and an increase in the choice probabilities of the national

brands. For high prices of Private label, Nabisco is by far the most popular

brand. This is also the case for high prices of Sunshine and Keebler. For high

prices of Nabisco, Private label is the most popular brand. In marketing

terms, this suggests that Nabisco is the most preferred brand when it

comes to competitive actions. Also, the direct competitor to Nabisco

seems to be Private Label.

The choice probabilities for Sunshine and Keebler seem to behave in a

roughly similar way. The second and third graphs are very similar and in the

two other graphs the choice probabilities are almost the same for all prices.

This suggests that we could test whether or not it is possible to combine both

categories; it is, however, not possible because the values of the explanatory

variables for Sunshine and Keebler are different. Hence, one could now

calculate some kind of an average price and average promotion activity,

and combine the two as one brand. An LR test to check whether this is

allowed is, however, not possible.

Figure 5.2 shows the quasi price elasticities of the four brands. Because

price elasticities depend on the value of the prices of the other brands, we set

these prices at their sample mean value. We assume again that there is no

display or feature. The price elasticities of Private label, Sunshine and

Keebler have the same pattern. For small values of the price, we see a

decrease in price elasticity, but for prices larger than US$0.75 we see an

increase. Nabisco is less price sensitive than the other brands for small values

of the price but much more price sensitive if the price is larger than US$0.80.

Finally, for Nabisco the turning point from a decrease to an increase in price

elasticity is around a hypothetical price of US$1.30. The main message to

take from figure 5.2 is that a Conditional Logit model implies nonlinear

patterns in elasticities.
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5.5 Advanced topics

So far, the discussion on models for a multinomial unordered

dependent variable has been based on the availability of a cross-section of

observations, where N individuals could choose from J categories. In many

marketing applications one can have several observations of individuals over

time. In the advanced topics section of chapter 4 we have already seen that

we may use this extra information to estimate unobserved heterogeneity and

analyze choice dynamics, and here we extend it to the above discussed mod-

els. In section 5.5.1 we discuss modeling of unobserved heterogeneity for the

multinomial choice models and in section 5.5.2 we discuss ways to introduce

dynamics in choice models.

5.5.1 Modeling unobserved heterogeneity

Let yi;t denote the choice of individual i from J categories at time t,

t ¼ 1; . . . ;T . To model the choice behavior of this individual, consider again
the Conditional Logit model with one explanatory variable

Pr½Yi;t ¼ jjwi;t� ¼
expð�0;j þ �1wi;j;tÞPJ
l¼1 expð�0;l þ �1wi;l;tÞ

for j ¼ 1; . . . ; J;

ð5:70Þ
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Figure 5.2 Price elasticities
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where wi;j;t denotes the explanatory variable belonging to category j experi-

enced by individual i at time t. It is likely that individuals will have different

base preferences. To capture these differences, one usually includes indivi-

dual-specific explanatory variables such as age or gender to the model. In

many cases these variables are not available. To capture differences in base

preferences in these cases one may replace the intercepts �0;j in (5.70) by
individual-specific intercepts �0;j;i.
It is not always possible to estimate individual-specific intercepts. If an

individual does not consider one or more categories, it is not possible to

estimate all individual-specific intercepts. To solve this problem, one usually

assumes that the �0;j;i parameters are draws from a distribution, which

describes the distribution of the base preferences in the population of indi-

viduals. There are several possibilities for the functional form of the distri-

bution. One may, for example, assume that the vector of individual-specific

intercepts �0;i ¼ ð�0;1;i; . . . ; �0;J�1;iÞ is normally distributed with mean �0 and
covariance matrix ��0 , that is,

�0;i 
 Nð�0;��0Þ ð5:71Þ
(see, for example, Gönül and Srinivasan, 1993, and Rossi and Allenby,

1993).

Another frequently used approach in marketing research is to assume that

there are S latent classes in the population (see also section 4.5). The inter-

cept parameters for class s are �0;s and the probability that an individual
belongs to this class equals ps with

PS
s¼1 ps ¼ 1 (see, for example, Kamakura

and Russell, 1989, and Jain et al., 1994). The likelihood function now

becomes

Lð�Þ ¼
YN
i¼1

XS
s¼1

ps

YT
t¼1

YJ
j¼1
Pr½Yi;t ¼ j;�0;s; �1�I ½yi;t¼j�

 ! !
: ð5:72Þ

To estimate the parameters of the model, one maximizes the likelihood

function with respect to the parameters � ¼ ð�0;1; . . . ; �0;S; p1; . . . ; pS�1; �1Þ
(see, for example, Wedel and Kamakura, 1999).

Apart from different base preferences, the effects of explanatory variables

on choice may be different for individuals. This can be modeled in the same

way as for the intercept parameters, that is, one replaces �1 in (5.70) by the
individual-specific parameter �1;i.

5.5.2 Modeling dynamics

Dynamic structures can be incorporated in the model in several

ways. The easiest way is to allow for state dependence and to include a
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lagged choice variable to the model that denotes whether the category is

chosen at time t � 1, that is,

Pr½Yi;t ¼ jjwi;t� ¼
expð�0;j þ �1wi;j;t þ �I ½yi;t�1 ¼ j�ÞPJ
l¼1 expð�0;l þ �1wi;l;t þ �I ½yi;t�1 ¼ l�Þ

for j ¼ 1; . . . ; J;

ð5:73Þ

where I ½yi;t�1 ¼ j� is a 0/1 dummy variable that is 1 if the individual chooses
category j at time t� 1 and zero otherwise, and � is a parameter (see, for
example, Roy et al., 1996). Other possibilities concern introducing an auto-

regressive structure on the error variables "i;j in (5.28) (see, for example,
McCulloch and Rossi, 1994, Geweke et al., 1997, and Paap and Franses,

2000).

Finally, another way to include past choice behavior in a model is used in

Guadagni and Little (1983). They introduce a brand loyalty variable in their

logit brand choice model. This variable is an exponentially weighted average

of past purchase decisions. The brand loyalty variable for brand j for indi-

vidual i, bi;j;t, is defined as

bi;j;t ¼ �bi;j;t�1 þ ð1� �ÞI ½yi;t�1 ¼ j�; ð5:74Þ
with 0 < � < 1. To start up brand loyalty, we set bi;j;1 equal to � if j was the
first choice of individual i and ð1� �Þ=ðJ � 1Þ otherwise. The value of � has to
be estimated from the data.

5.A. EViews Code

This appendix provides the EViews code we used to estimate the

models in section 5.4. In the code the following abbreviations are used for

the variables:

. pri, sun, kee and nab are 0/1 dummy variables indicating whether

the brand has been chosen;
. dispri, dissun, diskee and disnab are 0/1 dummy variables indicating

whether the corresponding brand was on display only;
. feapri, feasun, feakee and feanab are 0/1 dummy variables indicating

whether the corresponding brand was featured only;
. fedipri, fedisun, fedikee and fedinab are 0/1 dummy variables indicat-

ing whether the corresponding brand was displayed and featured

at the same time;
. pripri, prisun, prikee and prinab are the prices of the four brands;
. hhsize and inc denote household size and family income. These

variables are not in our genuine data set, and serve for illustrative

purposes only.
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5.A.1 The Multinomial Logit model

load c:\data\cracker.wf1

’ Declare coefficient vectors to use in Maximum Likelihood estimation

coef(3) a1

coef(3) b1

coef(3) b2

’ Specify log-likelihood for Multinomial Logit

model logl mnl

mnl.append @logl loglmnl

’ Define the exponent for each choice

mnl.append xb1=a1(1)+b1(1)*hhsize+b2(1)*inc

mnl.append xb2=a1(2)+b1(2)*hhsize+b2(2)*inc

mnl.append xb3=a1(3)+b1(3)*hhsize+b2(3)*inc

mnl.append denom=1+exp(xb2)+exp(xb3)+exp(xb4)

mnl.append loglmnl=pri*xb1+sun*xb2+kee*xb3-log(denom)

’ Estimate by Maximum Likelihood

smpl 1 3292

mnl.ml(d)

show mnl.output

5.A.2 The Conditional Logit model

load c:\data\cracker.wf1

’ Declare coefficient vectors to use in Maximum Likelihood estimation

coef(3) a1

coef(4) b1

’ Specify log-likelihood for Conditional Logit model

logl cl

cl.append @logl loglcl

’ Define the exponent for each choice

cl.append xb1=a1(1)+b1(1)*dispri+b1(2)*feapri+b1(3)*fedipri+b1(4)*pripri

cl.append xb2=a1(2)+b1(1)*dissun+b1(2)*feasun+b1(3)*fedisun+b1(4)*prisun

cl.append xb3=a1(3)+b1(1)*diskee+b1(2)*feakee+b1(3)*fedikee+b1(4)*prikee

cl.append xb4=b1(1)*disnab+b1(2)*feanab+b1(3)*fedinab+b1(4)*prinab

cl.append denom=exp(xb1)+exp(xb2)+exp(xb3)+exp(xb4)

cl.append loglcl=pri*xb1+sun*xb2+kee*xb3+nab*xb4-log(denom)
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’ Estimate by Maximum Likelihood

smpl 1 3292

cl.ml(d)

show cl.output

5.A.3 The Nested Logit model

load c:\data\cracker.wf1

’ Declare coefficient vectors to use in Maximum Likelihood estimation

coef(3) a1

coef(4) b1

coef(1) c1

’ Specify log-likelihood for Nested Logit model

logl nl

nl.append @logl loglnl

’ National brands cluster

nl.append xb21=a1(1)+b1(1)*dissun+b1(2)*feasun+b1(3)*fedisun+b1(4)*prisun

nl.append xb22=a1(2)+b1(1)*diskee+b1(2)*feakee+b1(3)*fedikee+b1(4)*prikee

nl.append xb23=b1(1)*disnab+b1(2)*feanab+b1(3)*fedinab+b1(4)*prinab

’ Private label + inclusive value

nl.append xb11=a1(3)+b1(1)*dispri+b1(2)*feapri+b1(3)*fedipri+b1(4)*pripri

nl.append ival=log(exp(xb21)+exp(xb22)+exp(xb23))

’ Cluster probabilities

nl.append prob1=exp(xb11)/(exp(xb11)+exp(c1(1)*ival))

nl.append prob2=exp(c1(1)*ival)/(exp(xb11)+exp(c1(1)*ival))

’ Conditional probabilities within national brands cluster

nl.append prob22=exp(xb21)/(exp(xb21)+exp(xb22)+exp(xb23))

nl.append prob23=exp(xb22)/(exp(xb21)+exp(xb22)+exp(xb23))

nl.append prob24=exp(xb23)/(exp(xb21)+exp(xb22)+exp(xb23))

nl.append loglnl=pri*log(prob1)+sun*log(prob2*prob22)

+kee*log(prob2*prob23)+nab*log(prob2*prob24)

’ Estimate by Maximum Likelihood

smpl 1 3292

nl.ml(d)

show nl.output



6 An ordered multinomial

dependent variable

In this chapter we focus on the Logit model and the Probit model for an

ordered dependent variable, where this variable is not continuous but takes

discrete values. Such an ordered multinomial variable differs from an unor-

dered variable by the fact that individuals now face a ranked variable.

Examples of ordered multinomial data typically appear in questionnaires,

where individuals are, for example, asked to indicate whether they strongly

disagree, disagree, are indifferent, agree or strongly agree with a certain

statement, or where individuals have to evaluate characteristics of a (possibly

hypothetical) brand or product on a five-point Likert scale. It may also be

that individuals themselves are assigned to categories, which sequentially

concern a more or less favorable attitude towards some phenomenon, and

that it is then of interest to the market researcher to examine which expla-

natory variables have predictive value for the classification of individuals

into these categories. In fact, the example in this chapter concerns this last

type of data, where we analyze individuals who are all customers of a finan-

cial investment firm and who have been assigned to three categories accord-

ing to their risk profiles. Having only bonds corresponds with low risk and

trading in financial derivatives may be viewed as more risky. It is the aim of

this empirical analysis to investigate which behavioral characteristics of the

individuals can explain this classification.

The econometric models which are useful for such an ordered dependent

variable are called ordered regression models. Examples of applications in

marketing research usually concern customer satisfaction, perceived custo-

mer value and perceptual mapping (see, for example, Katahira, 1990, and

Zemanek, 1995, among others). Kekre et al. (1995) use an Ordered Probit

model to investigate the drivers of customer satisfaction for software pro-

ducts. Sinha and DeSarbo (1998) propose an Ordered Probit-based model to

examine the perceived value of compact cars. Finally, an application in

financial economics can be found in Hausman et al. (1992).

112
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The outline of this chapter is as follows. In section 6.1 we discuss the

model representations of the Ordered Logit and Probit models, and we

address parameter interpretation in some detail. In section 6.2 we discuss

Maximum Likelihood estimation. Not many textbooks elaborate on this

topic, and therefore we supply ample details. In section 6.3 diagnostic mea-

sures, model selection and forecasting are considered. Model selection is

confined to the selection of regressors. Forecasting deals with within-sample

or out-of-sample classification of individuals to one of the ordered cate-

gories. In section 6.4 we illustrate the two models for the data set on the

classification of individuals according to risk profiles. Elements of this data

set were discussed in chapter 2. Finally, in section 6.5 we discuss a few other

models for ordered categorical data, and we will illustrate the effects of

sample selection if one wants to handle the case where the observations

for one of the categories outnumber those in other categories.

6.1 Representation and interpretation

This section starts with a general introduction to the model frame-

work for an ordered dependent variable. Next, we discuss the representation

of an Ordered Logit model and an Ordered Probit model. Finally, we pro-

vide some details on how one can interpret the parameters of these models.

6.1.1 Modeling an ordered dependent variable

As already indicated in chapter 4, the most intuitively appealing

way to introduce an ordered regression model starts off with an unobserved

(latent) variable y�i . For convenience, we first assume that this latent variable
correlates with a single explanatory variable xi, that is,

y�i ¼ �0 þ �1xi þ "i; ð6:1Þ

where for the moment we leave the distribution of "i unspecified. This latent
variable might measure, for example, the unobserved willingness of an indi-

vidual to take a risk in a financial market. Another example concerns the

unobserved attitude towards a certain phenomenon, where this attitude can

range from very much against to very much in favor. In chapter 4 we dealt

with the case that this latent variable gets mapped onto a binomial variable

Yi by the rule

Yi ¼ 1 if y�i > 0
Yi ¼ 0 if y�i � 0:

ð6:2Þ
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In this chapter we extend this mapping mechanism by allowing the latent

variable to get mapped onto more than two categories, with the implicit

assumption that these categories are ordered.

Mapping y�i onto a multinomial variable, while preserving the fact that y
�
i

is a continuous variable that depends linearly on an explanatory variable,

and thus making sure that this latent variable gets mapped onto an ordered

categorical variable, can simply be done by extending (6.2) to have more

than two categories. More formally, (6.2) can be modified as

Yi ¼ 1 if �0 < y�i � �1

Yi ¼ j if �j�1 < y�i � �j for j ¼ 2; . . . ; J � 1
Yi ¼ J if �J�1 < y�i � �J ;

ð6:3Þ

where �0 to �J are unobserved thresholds. This amounts to the indicator

variable I ½yi ¼ j�, which is 1 if observation yi belongs to category j and 0

otherwise, for i ¼ 1; . . . ;N; and j ¼ 1; . . . ; J. To preserve the ordering, the
thresholds �i in (6.3) must satisfy �0 < �1 < �2 < . . . < �J�1 < �J . Because

the boundary values of the latent variable are unknown, one can simply set

�0 ¼ �1 and �J ¼ þ1, and hence there is no need to try to estimate their
values. The above equations can be summarized as that an individual i gets

assigned to category j if

�j�1 < y�i � �j; j ¼ 1; . . . ; J: ð6:4Þ
In figure 6.1, we provide a scatter diagram of y�i against xi, when the data

are again generated according to the DGP that was used in previous chap-

ters, that is,

xi ¼ 0:0001i þ "1;i with "1;i 
 Nð0; 1Þ
y�i ¼ �2þ xi þ "2;i with "2;i 
 Nð0; 1Þ; ð6:5Þ

where i is 1; 2; . . . ;N ¼ 1,000. For illustration, we depict the distribution of

y�i for three observations xi. We assume that �1 equals �3 and �2 equals �1.
For an observation with xi ¼ �2, we observe that it is most likely (as indi-
cated by the size of the shaded area) that the individual gets classified into the

bottom category, that is, where Yi ¼ 1. For an observation with xi ¼ 0, the

probability that the individual gets classified into the middle category ðYi ¼
2Þ is the largest. Finally, for an observation with xi ¼ 2, most probability

mass gets assigned to the upper category ðYi ¼ 3Þ. As a by-product, it is clear
from this graph that if the thresholds �1 and �2 get closer to each other, and
the variance of "i in (6.1) is not small, it may become difficult correctly to
classify observations in the middle category.

When we combine the expressions in (6.3) and (6.4) we obtain the ordered

regression model, that is,
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Pr½Yi ¼ jjXi� ¼ Pr½�j�1 < y�i � �j �
¼ Pr½�j�1 � ð�0 þ �1xiÞ < "i � �j � ð�0 þ �1xiÞ�
¼ Fð�j � ð�0 þ �1xiÞÞ � Fð�j�1 � ð�0 þ �1xiÞÞ;

ð6:6Þ
for j ¼ 2; 3; . . . ; J � 1, where

Pr½Yi ¼ 1jXi� ¼ Fð�1 � ð�0 þ �1xiÞÞ; ð6:7Þ
and

Pr½Yi ¼ JjXi� ¼ 1� Fð�J�1 � ð�0 þ �1xiÞÞ; ð6:8Þ
for the two outer categories. As usual, F denotes the cumulative distribution

function of "i.
It is important to notice from (6.6)–(6.8) that the parameters �1 to �J�1

and �0 are not jointly identified. One may now opt to set one of the threshold
parameters equal to zero, which is what is in effect done for the models for a

binomial dependent variable in chapter 4. In practice, one usually opts to

impose �0 ¼ 0 because this may facilitate the interpretation of the ordered

regression model. Consequently, from now on we consider

Pr½Yi ¼ jjxi� ¼ Fð�j � �1xiÞ � Fð�j�1 � �1xiÞ: ð6:9Þ
Finally, notice that this model assumes no heterogeneity across individuals,

that is, the parameters �j and �1 are the same for every individual. An
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Figure 6.1 Scatter diagram of y�i against xi
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extension to such heterogeneity would imply the parameters �j;i and �1;i,
which depend on i.

6.1.2 The Ordered Logit and Ordered Probit models

As with the binomial and multinomial dependent variable models

in the previous two chapters, one should now decide on the distribution of "i.
Before we turn to this discussion, we need to introduce some new notation

concerning the inclusion of more than a single explanatory variable. The

threshold parameters and the intercept parameter in the latent variable equa-

tion are not jointly identified, and hence it is common practice to set the

intercept parameter equal to zero. This is the same as assuming that the

regressor vector Xi contains only K columns with explanatory variables,

and no column for the intercept. To avoid notational confusion, we sum-

marize these variables in a 1	 K vector ~XXi, and we summarize the K

unknown parameters �1 to �K in a K 	 1 parameter vector ~��. The general
expression for the ordered regression model thus becomes

Pr½Yi ¼ jj ~XXi� ¼ Fð�j � ~XXi
~��Þ � Fð�j�1 � ~XXi

~��Þ; ð6:10Þ
for i ¼ 1; . . . ;N and j ¼ 1; . . . ; J. Notice that (6.10) implies that the scale of
F is not identified, and hence one also has to restrict the variance of "i. This
model thus contains K þ J � 1 unknown parameters. This amounts to a
substantial reduction compared with the models for an unordered multino-

mial dependent variable in the previous chapter.

Again there are many possible choices for the distribution function F , but

in practice one usually considers either the cumulative standard normal dis-

tribution or the cumulative standard logistic distribution (see section A.2 in

the Appendix). In the first case, that is,

Fð�j � ~XXi
~��Þ ¼ �ð�j � ~XXi

~��Þ ¼
ð�j� ~XXi

~��

�1

1ffiffiffiffiffiffi
2�

p exp � z2

2

 !
dz; ð6:11Þ

the resultant model is called the Ordered Probit model. The corresponding

normal density function is denoted in shorthand as �ð�j � ~XXi
~��Þ. The second

case takes

Fð�j � ~XXi
~��Þ ¼ �ð�j � ~XXi

~��Þ ¼ expð�j � ~XXi
~��Þ

1þ expð�j � ~XXi
~��Þ ; ð6:12Þ

and the resultant model is called the Ordered Logit model. The correspond-

ing density function is denoted as �ð�j � ~XXi
~��Þ. These two cumulative distri-

bution functions are standardized, which implies that the variance of "i is set
equal to 1 in the Ordered Probit model and equal to 13�

2 in the Ordered Logit
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model. This implies that the parameters for the Ordered Logit model are

likely to beffiffiffiffiffiffiffiffi
1

3
�2

r

times as large as those of the Probit model.

6.1.3 Model interpretation

The effects of the explanatory variables on the ordered dependent

variable are not linear, because they get channeled through a nonlinear

cumulative distribution function. Therefore, convenient methods to illustrate

the interpretation of the model again make use of odds ratios and quasi-

elasticities.

Because the outcomes on the left-hand side of an ordered regression

model obey a specific sequence, it is customary to consider the odds ratio

defined by

Pr½Yi � jj ~XXi�
Pr½Yi > jj ~XXi�

; ð6:13Þ

where

Pr½Yi � jj ~XXi� ¼
Xj

m¼1
Pr½Yi ¼ mj ~XXi� ð6:14Þ

denotes the cumulative probability that the outcome is less than or equal to j.

For the Ordered Logit model with K explanatory variables, this odds ratio

equals

�ð�j � ~XXi
~��Þ

1��ð�j � ~XXi
~��Þ ¼ expð�j � ~XXi

~��Þ; ð6:15Þ

which after taking logs becomes

log
�ð�j � ~XXi

~��Þ
1��ð�j � ~XXi

~��Þ

 !
¼ �j � ~XXi

~��: ð6:16Þ

This expression clearly indicates that the explanatory variables all have the

same impact on the dependent variable, that is, ~��, and that the classification
into the ordered categories on the left-hand side hence depends on the values

of �j.

An ordered regression model can also be interpreted by considering the

quasi-elasticity of each explanatory variable. This quasi-elasticity with

respect to the k’th explanatory variable is defined as
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@Pr½Yi ¼ jj ~XXi�
@xk;i

xk;i ¼
@Fð�j � ~XXi

~��Þ
@xk;i

� @Fð�j�1 � ~XXi
~��Þ

@xk;i

 !
xk;i

¼ �kxk;iðf ð�j�1 � ~XXi
~��Þ � f ð�j � ~XXi

~��ÞÞ;
ð6:17Þ

where f ð�Þ denotes the density function. Interestingly, it can be seen from this
expression that, even though �k can be positive (negative), the quasi-elasti-

city of xk;i also depends on the value of f ð�j�1 � ~XXi
~��Þ � f ð�j � ~XXi

~��Þ. This
difference between densities may take negative (positive) values, whatever the

value of �k. Of course, for a positive value of �k the probability that indivi-

dual i is classified into a higher category gets larger.

Finally, one can easily derive that

@Pr½Yi � jj ~XXi�
@xk;i

xk;i þ
@Pr½Yi > jj ~XXi�

@xk;i
xk;i ¼ 0: ð6:18Þ

As expected, given the odds ratio discussed above, the sum of these two

quasi-elasticities is equal to zero. This indicates that the ordered regression

model effectively contains a sequence of J � 1 models for a range of binomial
dependent variables. This notion will be used in section 6.3 to diagnose the

validity of an ordered regression model.

6.2 Estimation

In this section we discuss the Maximum Likelihood estimation

method for the ordered regression models. The models are then written in

terms of the joint probability distribution for the observed variables y given

the explanatory variables and the parameters. Notice again that the variance

of "i is fixed, and hence it does not have to be estimated.

6.2.1 A general ordered regression model

The likelihood function follows directly from (6.9), that is,

Lð�Þ ¼
YN
i¼1

YJ
j¼1
Pr½Yi ¼ jj ~XXi�I ½yi¼j�

¼
YN
i¼1

YJ
j¼1

Fð�j � ~XXi
~��Þ � Fð�j�1 � ~XXi

~��Þ� �I ½yi¼j�
;

ð6:19Þ

where � summarizes � ¼ ð�1; . . . ; �J�1Þ and ~�� ¼ ð�1; . . . ; �K Þ and where the
indicator function I ½yi ¼ j� is defined below equation (6.3). Again, the para-
meters are estimated by maximizing the log-likelihood, which in this case is

given by
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lð�Þ ¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j� log Pr½Yi ¼ jj ~XXi�

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j� log Fð�j � ~XXi
~��Þ � Fð�j�1 � ~XXi

~��Þ� �
:

ð6:20Þ

Because it is not possible to solve the first-order conditions analytically, we

again opt for the familiar Newton–Raphson method. The maximum of the

log-likelihood is found by applying

�h ¼ �h�1 � Hð�hÞ�1Gð�hÞ ð6:21Þ
until convergence, where Gð�hÞ and Hð�hÞ are the gradient and Hessian

matrix evaluated in �h (see also section 3.2.2). The gradient and Hessian
matrix are defined as

Gð�Þ ¼ @lð�Þ
@�

;

Hð�Þ ¼ @2lð�Þ
@�@�0

:

ð6:22Þ

The gradient of the log-likelihood (6.20) can be found to be equal to

@lð�Þ
@�

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j�
Pr½Yi ¼ jj ~XXi�

@Pr½Yi ¼ jj ~XXi�
@�

 !
ð6:23Þ

with

@Pr½Yi ¼ jj ~XXi�
@�

¼ @Pr½Yi ¼ jj ~XXi�
@ ~��0

@Pr½Yi ¼ jj ~XXi�
@�1

� � � @Pr½Yi ¼ jj ~XXi�
@�J�1

 !0

ð6:24Þ
and

@Pr½Yi ¼ jj ~XXi�
@ ~��

¼ ð f ð�j�1 � ~XXi
~��Þ � f ð�j � ~XXi

~��ÞÞ ~XX 0
i

@Pr½Yi ¼ jj ~XXi�
@�s

¼
f ð�s � ~XXi

~��Þ if s ¼ j

�f ð�s � ~XXi
~��Þ if s ¼ j � 1

0 otherwise

8>>><
>>>:

ð6:25Þ

where f ðzÞ is @FðzÞ=@z. The Hessian matrix follows from



120 Quantitative models in marketing research

@2lð�Þ
@�@� 0

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j�
Pr½Yi ¼ j�2

Pr½Yi ¼ j� @
2 Pr½Yi ¼ j�
@�@� 0

� @Pr½Yi ¼ j�
@�

Pr½Yi ¼ j�
@� 0

 !
;

ð6:26Þ
where we use the short notation Pr½Yi ¼ j� instead of Pr½Yi ¼ jj ~XXi�. The
second-order derivative of the probabilities to � are summarized by

@2 Pr½Yi ¼ jj ~XXi�
@�@�0

¼

@2 Pr½Yi ¼ jj ~XXi�
@ ~��@ ~��0

@2 Pr½Yi ¼ jj ~XXi�
@ ~��@�1

. . .
@2 Pr½Yi ¼ jj ~XXi�

@ ~��@�J�1

@2 Pr½Yi ¼ jj ~XXi�
@�1@ ~��

0
@2 Pr½Yi ¼ jj ~XXi�

@�1@�1
. . .

@2 Pr½Yi ¼ jj ~XXi�
@�1@�J�1

..

. ..
. . .

. ..
.

@2 Pr½Yi ¼ jj ~XXi�
@�J�1@ ~��0

@2 Pr½Yi ¼ jj ~XXi�
@�J�1@�1

..

. @2 Pr½Yi ¼ jj ~XXi�
@�J�1@�J�1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

ð6:27Þ
The elements of this matrix are given by

@2 Pr½Yi ¼ jj ~XXi�
@ ~��@ ~��0

¼ ðf 0ð�j � ~XXi
~��Þ � f 0ð�j�1 � ~XXi

~��ÞÞ ~XX 0
i
~XXi

@2 Pr½Yi ¼ jj ~XXi�
@ ~��@�s

¼ @Pr½Yi ¼ jj ~XXi�
@�s

~XX 0
i for s ¼ 1; . . . ; J � 1

@2 Pr½Yi ¼ jj ~XXi�
@�s@�l

¼
f 0ð�s � ~XXi

~��Þ if s ¼ l ¼ j

�f 0ð�s � ~XXi
~��Þ if s ¼ l ¼ j � 1

0 otherwise

8><
>:

ð6:28Þ

where f 0ðzÞ equals @f ðzÞ=@z.
Unrestricted optimization of the log-likelihood does not guarantee a

feasible solution because the estimated thresholds should obey

�̂�1 < �̂�2 << �̂�J�1. To ensure that this restriction is satisfied, one can consider
the following approach. Instead of maximizing over unrestricted �’s, one can
maximize the log-likelihood over �’s, where these are defined by
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�1 ¼ �1

�2 ¼ �1 þ �22 ¼ �1 þ �22
�3 ¼ �1 þ �22 þ �23 ¼ �2 þ �23
..
. ..

. ..
.

�J�1 ¼ �1 þ
XJ�1
j¼2

�2j ¼ �J�2 þ �2J�1:

ð6:29Þ

To maximize the log-likelihood one now needs the first- and second-order

derivatives with respect to � ¼ ð�1; . . . ; �J�1Þ instead of �. These follow
from

@lð�Þ
@�s

¼
XJ�1
j¼1

@lð�Þ
@�j

@�j

@�s

;

@lð�Þ
@�s@�l

¼
XJ�1
j¼1

@lð�Þ
@�j

@�j

@�s@�l

; s; l ¼ 1; . . . ; J � 1;
ð6:30Þ

where

@�j

@�s

¼
1 if s ¼ 1
2�s if 1 < s � j
0 if s > j

8<
: ð6:31Þ

and

@�j

@�s@�l

¼
1 if s ¼ l ¼ 1
2�s if 1 < s ¼ l � j
0 otherwise.

8<
: ð6:32Þ

6.2.2 The Ordered Logit and Probit models

The expressions in the previous subsection hold for any ordered

regression model. If one decides to use the Ordered Logit model, the above

expressions can be simplified using the property of the standardized logistic

distribution that implies that

f ðzÞ ¼ �ðzÞ ¼ @�ðzÞ
@z

¼ �ðzÞð1��ðzÞÞ; ð6:33Þ

and

f 0ðzÞ ¼ �0ðzÞ ¼ @�ðzÞ
@z

¼ �ðzÞð1� 2�ðzÞÞ: ð6:34Þ
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For the Ordered Probit model, we use the property of the standard normal

distribution, and therefore we have

f ðzÞ ¼ �ðzÞ ¼ @�ðzÞ
@z

f 0ðzÞ ¼ �0ðzÞ ¼ @�ðzÞ
@z

¼ �z�ðzÞ:
ð6:35Þ

In Pratt (1981) it is shown that the ML estimation routine for the Ordered

Probit model always converges to a global maximum of the likelihood func-

tion.

6.2.3 Visualizing estimation results

As mentioned above, it may not be trivial to interpret the estimated

parameters for the marketing problem at hand. One possibility for examin-

ing the relevance of explanatory variables is to examine graphs of

P̂rPr½Yi � jj ~XXi� ¼
Xj

m¼1
P̂rPr½Yi ¼ mj ~XXi� ð6:36Þ

for each j against one of the explanatory variables in ~XXi. To save on the

number of graphs, one should fix the value of all variables in ~XXi to their mean

levels, except for the variable of interest. Similarly, one can depict

P̂rPr½Yi ¼ jj ~XXi� ¼ Fð�̂�j � ~XXi
~̂��~��Þ � Fð�̂�j�1 � ~XXi

~̂��~��Þ ð6:37Þ

against one of the explanatory variables, using a comparable strategy.

Finally, it may also be insightful to present the estimated quasi-elasticities

@P̂rPr½Yi ¼ jj ~XXi�
@xk;i

xk;i ð6:38Þ

against the k’th variable xk;i, while setting other variables at a fixed value.

6.3 Diagnostics, model selection and forecasting

Once the parameters in ordered regression models have been esti-

mated, it is important to check the empirical adequacy of the model. If the

model is found to be adequate, one may consider deleting possibly redundant

variables. Finally, one may evaluate the models on within-sample or out-of-

sample forecasting performance.
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6.3.1 Diagnostics

Diagnostic tests for the ordered regression models are again to be

based on the residuals (see also, Murphy, 1996). Ideally one would want to

be able to estimate the values of "i in the latent regression model

y�i ¼ Xi�þ "i, but unfortunately these values cannot be obtained because
y�i is an unobserved variable. A useful definition of residuals can now be

obtained from considering the first-order conditions concerning the ~�� para-
meters in the ML estimation method. From (6.23) and (6.24) we can see that

these first-order conditions are

@lð�Þ
@ ~��

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j� ~XX 0
i

f ð�̂�j�1 � ~XXi
~̂��~��Þ � f ð�̂�j � ~XXi

~̂��~��Þ
Fð�̂�j � ~XXi

~̂��~��Þ � Fð�̂�j�1 � ~XXi
~̂��~��Þ

0
@

1
A ¼ 0:

ð6:39Þ

This suggests the possible usefulness of the residuals

êei ¼
f ð�̂�j�1 � ~XXi

~̂��~��Þ � f ð�̂�j � ~XXi
~̂��~��Þ

Fð�̂�j � ~XXi
~̂��~��Þ � Fð�̂�j�1 � ~XXi

~̂��~��Þ
: ð6:40Þ

As before, these residuals can be called the generalized residuals. Large

values of êei may indicate the presence of outlying observations. Once these

have been detected, one may consider deleting these and estimating the

model parameters again.

The key assumption of an ordered regression model is that the explana-

tory variable is discrete and ordered. An informal check of the presumed

ordering can be based on the notion that

Pr½Yi � jj ~XXi� ¼
Xj

m¼1
Pr½Yi ¼ mj ~XXi�

¼ Fð�j � ~XXi
~��Þ;

ð6:41Þ

which implies that the ordered regression model combines J � 1 models for
the binomial dependent variable Yi � j and Yi > j. Notice that these J � 1
binomial models all have the same parameters ~�� for the explanatory vari-
ables. The informal check amounts to estimating the parameters of these

J � 1 models, and examining whether or not this equality indeed holds in
practice. A formal Hausman-type test is proposed in Brant (1990); see also

Long (1997, pp. 143–144).
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6.3.2 Model selection

The significance of each explanatory variable can be based on its

individual z-score, which can be obtained from the relevant parameter esti-

mates combined with the square root of the diagonal elements of the esti-

mated covariance matrix. The significance of a set of, say, g variables can be

examined by using a Likelihood Ratio test. The corresponding test statistic

can be calculated as

LR ¼ �2 logLð�̂�NÞ
Lð�̂�AÞ

¼ �2ðlð�̂�NÞ � lð�̂�AÞÞ; ð6:42Þ

where lð�̂�AÞ is the maximum of the log-likelihood under the alternative

hypothesis that the g variables cannot be deleted and lð�̂�NÞ is the maximum
value of the log-likelihood under the null hypothesis with the restrictions

imposed. Under the null hypothesis that the g variables are redundant, it

holds that

LR 
a �2ðgÞ: ð6:43Þ

The null hypothesis is rejected if the value of LR is sufficiently large when

compared with the critical values of the �2ðgÞ distribution. If g ¼ K , this LR

test can be considered as a measure of the overall fit.

To evaluate the model one can also use a pseudo-R2 type of measure. In

the case of an ordered regression model, such an R2 can be defined by

R2 ¼ 1� lð�̂�Þ
lð�̂�Þ ; ð6:44Þ

where lð�̂�Þ here denotes that an ordered regression model contains only J � 1
intercepts.

The R2 proposed in McKelvey and Zavoina (1975) is particularly useful

for an ordered regression model. This R2 measures the ratio of the variance

of ŷy�i and the variance of y�i , where ŷy�i equals ~XXi
~̂��~��, and it is given by

R2 ¼
PN

i¼1ðŷy�i � �yy�i Þ2PN
i¼1ðŷy�i � �yy�i Þ2 þ N�2

; ð6:45Þ

where �yy�i denotes the average value of ŷy
�
i . Naturally, �

2 ¼ 1
3�

2 in the Ordered

Logit model and �2 ¼ 1 in the Ordered Probit model.

If one has more than one model within the Ordered Logit or Ordered

Probit class of models, one may also consider the familiar Akaike and

Schwarz information criteria (see section 4.3.2).
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6.3.3 Forecasting

Another way to evaluate the empirical performance of an Ordered

Regression model amounts to evaluating its in-sample and out-of-sample

forecasting performance. Forecasting here means that one examines the abil-

ity of the model to yield a correct classification of the dependent variable,

given the explanatory variables. This classification emerges from

P̂rPrðYi ¼ jj ~XXiÞ ¼ Fð�̂�j � ~XXi
~̂��~��Þ � Fð�̂�j�1 � ~XXi

~̂��~��Þ; ð6:46Þ

where the category with the highest probability is favored.

In principle one can use the same kind of evaluation techniques for the hit

rate as were considered for the models for a multinomial dependent variable

in the previous chapter. A possible modification can be given by the fact that

misclassification is more serious if the model does not classify individuals to

categories adjacent to the correct ones. One may choose to give weights to

the off-diagonal elements of the prediction–realization table.

6.4 Modeling risk profiles of individuals

In this section we illustrate the Ordered Logit and Probit models

for the classification of individuals into three risk profiles. Category 1 should

be associated with individuals who do not take much risk, as they, for

example, only have a savings account. In contrast, category 3 corresponds

with those who apparently are willing to take high financial risk, like those

who often trade in financial derivatives. The financial investment firm is of

course interested as to which observable characteristics of individuals, which

are contained in their customer database, have predictive value for this

classification. We have at our disposal information on 2,000 clients of the

investment firm, 329 of whom had been assigned (beyond our control) to the

high-risk category, and 531 to the low-risk category. Additionally, we have

information on four explanatory variables. Three of the four variables

amount to counts, that is, the number of funds of type 2 and the number

of transactions of type 1 and 3. The fourth variable, that is wealth, is a

continuous variable and corresponds to monetary value. We refer to chapter

2 for a more detailed discussion of the data.

In table 6.1 we report the ML parameter estimates for the Ordered Logit

and Ordered Probit models. It can be seen that several parameters have the

expected sign and are also statistically significant. The wealth variable and

the transactions of type 1 variable do not seem to be relevant. When we

compare the parameter estimates across the two models, we observe that the

Logit parameters are approximately
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ffiffiffiffiffiffiffiffi
1

3
�2
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times the Probit parameters, as expected. Notice that this of course also

applies to the � parameters. Both �1 and �2 are significant. The confidence
intervals of these threshold parameters do not overlap, and hence there

seems no need to reduce the number of categories.

The McFadden R2 (6.44) of the estimated Ordered Logit model is 0.062,

while it is 0.058 for the Ordered Probit model. This does not seem very large,

but the LR test statistics for the significance of the four variables, that is,

only the ~�� parameters, are 240.60 for the Ordered Logit model and 224.20
for the Ordered Probit model. Hence, it seems that the explanatory variables

contribute substantially to the fit. The McKelvey and Zavoina R2 measure

(6.45) equals 0.28 and 0.14 for the Logit and Probit specifications, respec-

tively.

In table 6.2 we report on the estimation results for two binomial depen-

dent variable models, where we confine the focus to the Logit model. In the

first case the binomial variable is Yi � 1 and Yi > 1, where the first outcome
gets associated with 0 and the second with 1; in the second case we consider

Yi � 2 and Yi > 2. If we compare the two columns with parameter estimates
in table 6.2 with those of the Ordered Logit model in table 6.1, we see that

Table 6.1 Estimation results for Ordered Logit and Ordered Probit models

for risk profiles

Variable

Logit model Probit model

Parameter

Standard

error Parameter

Standard

error

Funds of type 2

Transactions of type 1

Transactions of type 3

Wealth (NLG 100,000)

�̂�1
�̂�2

0:191***
�0:009
0:052***
0:284

�0:645***
2:267***

(0.013)

(0.016)

(0.016)

(0.205)

(0.060)

(0.084)

0:105***
�0:007
0:008***
0:173

�0:420***
1:305***

(0.008)

(0.010)

(0.002)

(0.110)

(0.035)

(0.044)

max. log-likelihood value �1818:49 �1826:69

Notes:

*** Significant at the 0.01 level, ** at the 0.05 level, * at the 0.10 level

The total number of observations is 2,000, of which 329 concern the high-risk profile,

1,140 the intermediate profile and 531 the low-risk profile.
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the parameters apart from the intercepts have the same sign and are roughly

similar. This suggests that the presumed ordering is present and hence that

the Ordered Logit model is appropriate.

We continue with an analysis of the estimation results for the Ordered

Logit model. In figures 6.2 and 6.3 we depict the quasi-elasticities (6.17) of

the number of type 2 funds and of transactions of type 3 for each class,

respectively. The other explanatory variables are set at their mean values.

Note that the three elasticities sum to zero. Figure 6.2 shows that the quasi-

elasticity of the number of type 2 funds for the low-risk class is relatively

close to zero. The same is true if we consider the quasi-elasticity of type 3

transactions (see figure 6.3). The shapes of the elasticities for the other classes

are also rather similar. The scale, however, is different. This is not surprising

because the estimated parameters for type 2 funds and type 3 transactions

are both positive but different in size (see table 6.1). The quasi-elasticity for

the high-risk class rises until the number of type 2 funds is about 15, after

which the elasticity becomes smaller again. For the quasi-elasticity with

respect to the number of type 3 transactions, the peak is at about 50. For

the middle-risk class we observe the opposite pattern. The quasi-elasticity

mainly decreases until the number of type 2 funds is about 15 (or the number

of type 3 transactions is about 50) and increases afterwards. The figures

suggest that both variables mainly explain the classification between high

risk and middle risk.

Table 6.2 Estimation results for two binomial Logit models for cumulative

risk profiles

Variables

Yi > 1 Yi > 2

Parameter

Standard

error Parameter

Standard

error

Intercept

Funds of type 2

Transactions of type 1

Transactions of type 3

Wealth (NLG 100,000)

0:595***
0:217***

�0:001
0:054**
0:090

(0.069)

(0.027)

(0.018)

(0.024)

(0.279)

�2:298***
0:195***

�0:014
0:064***
0:414

(0.092)

(0.018)

(0.029)

(0.014)

(0.295)

max. log-likelihood value �1100:97 �789:39

Notes:

*** Significant at the 0.01 level, ** at the 0.05 level, * at the 0.10 level

For the model for Yi > 1, 1,149 observations are 1 and 531 are 0, while, for the
model for Yi > 2, 329 are 1 and 1,671 are 0.
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If we generate within-sample forecasts for the Ordered Logit model, we

obtain that none of the individuals gets classified in the low-risk category

(whereas there are 531), 1,921 are assigned to the middle category (which is

much more than the true 1,140) and 79 to the top category (which has 329

observations). The corresponding forecasts for the Ordered Probit model are

0, 1,936 and 64. These results suggest that the explanatory variables do not

have substantial explanatory value for the classification. Indeed, most indi-

viduals get classified into the middle category. We can also compute the

prediction–realization table for the Ordered Logit model, that is,

Predicted
low middle high

Observed
low 0.000 0.266 0.001 0.266
middle 0.000 0.556 0.015 0.570
high 0.000 0.140 0.025 0.165

0.000 0.961 0.040 1

where small inconsistencies in the table are due to rounding errors. We

observe that 58% of the individuals get correctly classified.

To compare the forecasting performance of the Ordered Logit model with

an unordered choice model, we calculate the same kind of table based on a

Multinomial Logit model and obtain
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Figure 6.2 Quasi-elasticities of type 2 funds for each category
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Predicted
low middle high

Observed
low 0.000 0.265 0.001 0.266
middle 0.000 0.555 0.015 0.570
high 0.000 0.137 0.028 0.165

0.000 0.957 0.044 1

where again small inconsistencies in the table are due to rounding errors. For

this model we also correctly classify about 58% of the individuals. We see

that the forecasting results for the two types of model are almost the same.

6.5 Advanced topics

In this section we discuss two advanced topics for the ordered

regression model. As the illustration in the previous section indicates, it

may be that the common parameter ~�� for all categories is too restrictive. In
the literature, alternative models have been proposed for ordered categorical

data, and three of these will be mentioned in section 6.5.1. A second observa-

tion from the illustration is that there is one category with most of the obser-

vations. Suppose one has to collect data and it is known that one of the
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category outcomes outnumbers the others, one may decide to apply selective

sampling. In section 6.5.2 we discuss how one should modify the likelihood in

the case where one considers selective draws from the available data.

6.5.1 Related models for an ordered variable

Other models for an ordered variable often start with a log odds

ratio. For the ordered regression models discussed so far, this is given by

log
Pr½Yi � jj ~XXi�
Pr½Yi > jj ~XXi�

 !
: ð6:47Þ

However, one may also want to consider

log
Pr½Yi ¼ jj ~XXi�

Pr½Yi ¼ j þ 1j ~XXi�

 !
¼ �j � ~XXi

~��; ð6:48Þ

which results in the so-called Adjacent Categories model, which corresponds

with a set of connected models for binomial dependent variables.

The model that is closest to a model for a multinomial dependent variable

is the stereotype model, that is,

log
Pr½Yi ¼ jj ~XXi�
Pr½Yi ¼ mj ~XXi�

 !
¼ �j � ~XXi

~��j; ð6:49Þ

where it is imposed that �1 < �2 < . . . < �J�1. Through ~��j, the explanatory

variables now have different effects on the outcome categories. A recent lucid

survey of some of these and other models is given in Agresti (1999).

6.5.2 Selective sampling

When a market researcher makes an endogenous selection of the

available observations or the observations to be collected, the estimation

method needs to be adjusted. Recall that the true probabilities in the popu-

lation for customer i and category j are

Pr½Yi ¼ jj ~XXi� ¼ Fð�j � ~XXi
~��Þ � Fð�j�1 � ~XXi

~��Þ: ð6:50Þ
When the full sample is a random sample from the population with sampling

fraction �, the probabilities that individual i is in the observed sample and is
a member of class 1; 2; . . . J are �Pr½Yi ¼ jj ~XXi�. These probabilities do not
sum to 1 because it is also possible that an individual is not present in the

sample, which happens with probability ð1� �Þ. If, however, the number of
observations in class j is reduced by �j, where the deleted observations are
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selected at random, these probabilities become ��j Pr½Yi ¼ jj ~XXi�. Of course,
when all observations are considered then �j ¼ 1. Note that �j is not an
unknown parameter but is set by the researcher.

To simplify notation, we write Pr½Yi ¼ j� instead of Pr½Yi ¼ jj ~XXi�. The
probability of observing Yi ¼ j in the reduced sample is now given by

��j Pr½Yi ¼ j�PJ
l¼1 ��l Pr½Yi ¼ l� ¼

�j Pr½Yi ¼ j�PJ
l¼1 �l Pr½Yi ¼ l� : ð6:51Þ

With these adjusted probabilities, we can construct the modified log-

likelihood function as

lð�Þ ¼
XN
i¼1

XJ
j¼1

I ½ yi ¼ j� log �j Pr½Yi ¼ j�PJ
l¼1 �l Pr½Yi ¼ l�

 !
: ð6:52Þ

To optimize the likelihood we need the derivatives of the log-likelihood to

the parameters � and �. The first-order derivatives are

@lð�Þ
@�

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j�
Pr½Yi ¼ j�

@Pr½Yi ¼ j�
@�

� I ½yi ¼ j�PJ
l¼1 �l Pr½Yi ¼ l�

@
PJ

l¼1 �l Pr½Yi ¼ l�
@�

 !
;

ð6:53Þ
where we need the additional derivative

@
PJ

l¼1 �l Pr½Yi ¼ l�
@�

¼
XJ
l¼1

�l
@Pr½Yi ¼ l�

@�
: ð6:54Þ

The second-order derivatives now become

@2lð�Þ
@�@� 0

¼
XN
i¼1

XJ
j¼1

I ½yi ¼ j�
Pr½Yi ¼ j�2
 

Pr½Yi ¼ j� @
2 Pr½Yi ¼ j�
@�@� 0

� @Pr½Yi ¼ j�
@�

@Pr½Yi ¼ j�
@� 0

 !

þ I ½ yi ¼ j�PJ
l¼1 �l Pr½Yi ¼ l�


 �2
XJ
l¼1

�l Pr½Yi ¼ l� @
2PJ

l¼1 �l Pr½Yi ¼ 1�
@�@� 0

� @
PJ

l¼1 �l Pr½Yi ¼ l�
@�

 

@
PJ

l¼1 �l Pr½Yi ¼ l�
@� 0

!!
; ð6:55Þ
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where one additionally needs that

@2
PJ

l¼1 �l Pr½Yi ¼ l�
@�@�0

¼
XJ
l¼1

�l
@2 Pr½Yi ¼ l�

@�@�0
: ð6:56Þ

A detailed account of this method, as well as an illustration, appears in Fok

et al. (1999).



7 A limited dependent variable

In chapter 3 we considered the standard Linear Regression model, where

the dependent variable is a continuous random variable. The model

assumes that we observe all values of this dependent variable, in the

sense that there are no missing observations. Sometimes, however, this is

not the case. For example, one may have observations on expenditures of

households in relation to regular shopping trips. This implies that one

observes only expenditures that exceed, say, $10 because shopping trips

with expenditures of less than $10 are not registered. In this case we call

expenditure a truncated variable, where truncation occurs at $10. Another

example concerns the profits of stores, where losses (that is, negative prof-

its) are perhaps not observed. The profit variable is then also a truncated

variable, where the point of truncation is now equal to 0. The standard

Regression model in chapter 3 cannot be used to correlate a truncated

dependent variable with explanatory variables because it does not directly

take into account the truncation. In fact, one should consider the so-called

Truncated Regression model.

In marketing research it can also occur that a dependent variable is

censored. For example, if one is interested in the demand for theater tick-

ets, one usually observes only the number of tickets actually sold. If,

however, the theater is sold out, the actual demand may be larger than

the maximum capacity of the theater, but we observe only the maximum

capacity. Hence, the dependent variable is either smaller than the maxi-

mum capacity or equal to the maximum capacity of the theater. Such a

variable is called censored. Another example concerns the donation beha-

vior of individuals to charity. Individuals may donate a positive amount to

charity or they may donate nothing. The dependent variable takes a value

of 0 or a positive value. Note that, in contrast to a truncated variable, one

does observe the donations of individuals who give nothing, which is of

course 0. In practice, one may want to relate censored dependent variables

to explanatory variables using a regression-type model. For example, the

133
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donation behavior may be explained by the age and income of the indivi-

dual. The regression-type models to describe censored dependent variables

are closely related to the Truncated Regression models. Models concerning

censored dependent variables are known as Tobit models, named after

Tobin (1958) by Goldberger (1964). In this chapter we will discuss the

Truncated Regression model and the Censored Regression model.

The outline of this chapter is as follows. In section 7.1 we discuss the

representation and interpretation of the Truncated Regression model.

Additionally, we consider two types of the Censored Regression model,

the Type-1 and Type-2 Tobit models. Section 7.2 deals with Maximum

Likelihood estimation of the parameters of the Truncated and Censored

Regression models. In section 7.3 we consider diagnostic measures, model

selection and forecasting. In section 7.4 we apply two Tobit models to

describe the charity donations data discussed in section 2.2.5. Finally, in

section 7.5 we consider two other types of Tobit model.

7.1 Representation and interpretation

In this section we discuss important properties of the Truncated

and Censored Regression models. We also illustrate the potential effects of

neglecting the fact that observations of the dependent variable are limited.

7.1.1 Truncated Regression model

Suppose that one observes a continuous random variable, indicated

by Yi, only if the variable is larger than 0. To relate this variable to a single

explanatory variable xi, one can use the regression model

Yi ¼ �0 þ �1xi þ "i Yi > 0; for i ¼ 1; . . . ;N; ð7:1Þ
with "i 
 Nð0; �2Þ. This model is called a Truncated Regression model, with
the point of truncation equal to 0. Note that values of Yi smaller than zero

may occur, but that these are not observed by the researcher. This corre-

sponds to the example above, where one observes only the positive profits of

a store. It follows from (7.1) that the probability of observing Yi is

Pr½Yi > 0jxi� ¼ Pr½�0 þ �1xi þ "i > 0�
¼ Pr½"i > ��0 � �1xi� ¼ 1��ð�ð�0 þ �1xiÞ=�Þ;

ð7:2Þ
where �ð�Þ is again the cumulative distribution function of a standard nor-
mal distribution. This implies that the density function of the random vari-

able Yi is not the familiar density function of a normal distribution. In fact,
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to obtain the density function for positive Yi values we have to condition on

the fact that Yi is observed. Hence, the density function reads

f ðyiÞ ¼
1

�

�ððyi � �0 � �1xiÞ=�Þ
1��ð�ð�0 þ �1xiÞ=�Þ

if yi > 0

0 if yi � 0;

8><
>: ð7:3Þ

where as before �ð�Þ denotes the density function of a standard normal dis-
tribution defined as

�ðzÞ ¼ 1ffiffiffiffiffiffi
2�

p exp � z2

2

 !
; ð7:4Þ

(see also section A.2 in the Appendix).

To illustrate the Truncated Regression model, we depict in figure 7.1 a set

of simulated yi and xi, generated by the familiar DGP, that is,

xi ¼ 0:0001i þ "1;i with "1;i 
 Nð0; 1Þ
yi ¼ �2þ xi þ "2;i with "2;i 
 Nð0; 1Þ; ð7:5Þ

where i ¼ 1; 2; . . . ;N. In this figure we do not include the observations for
which yi � 0. The line in this graph is the estimated regression line based on

OLS (see chapter 3). We readily notice that the estimated slope of the line

(�̂�1) is smaller than 1, whereas (7.5) implies that it should be approximately
equal to 1. Additionally, the estimated intercept parameter (�̂�0) is larger
than �2.
The regression line in figure 7.1 suggests that neglecting the truncation can

lead to biased estimators. To understand this formally, consider the expected

value of Yi for Yi > 0. This expectation is not equal to �0 þ �1xi as in the

standard Regression model, but is

E½YijYi > 0; xi� ¼ �0 þ �1xi þ E½"ij"i > ��0 � �1xi�
¼ �0 þ �1xi þ �

�ð�ð�0 þ �1xiÞ=�Þ
1��ð�ð�0 þ �1xiÞ=�Þ

;
ð7:6Þ

where we have used that E½ZjZ > 0� for a normal random variable Z with

mean � and variance �2 equals �þ ��ð��=�Þ=ð1��ð��=�ÞÞ (see Johnson
and Kotz, 1970, p. 81, and section A.2 in the Appendix). The term

�ðzÞ ¼ �ðzÞ
1��ðzÞ ð7:7Þ

is known in the literature as the inverse Mills ratio. In chapter 8 we will

return to this function when we discuss models for a duration dependent

variable. The expression in (7.6) indicates that a standard Regression model

for yi on xi neglects the variable �ð�ð�0 þ �1xiÞ=�Þ, and hence it is misspe-
cified, which in turn leads to biased estimators for �0 and �1.
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For the case of no truncation, the �1 parameter in (7.1) represents the
partial derivative of Yi to xi and hence it describes the effect of the expla-

natory variable xi on Yi. Additionally, if xi ¼ 0, �0 represents the mean of Yi

in the case of no truncation. Hence, we can use these � parameters to draw
inferences for all (including the non-observed) yi observations. For example,

the �1 parameter measures the effect of the explanatory variable xi if one

considers all stores. In contrast, if one is interested only in the effect of xi on

the profit of stores with only positive profits, one has to consider the partial

derivative of the expectation of Yi given that Yi > 0 with respect to xi, that

is,

@E½YijYi > 0; xi�
@xi

¼ �1 þ �
@�ð�ð�0 þ �1xiÞ=�Þ

@xi

¼ �1 þ �ð�2i � ð�ð�0 þ �1xiÞ=�Þ�iÞð��1=�Þ
¼ �1ð1� �2i þ ð�ð�0 þ �1xiÞ=�Þ�iÞ
¼ �1wi;

ð7:8Þ

where �i ¼ �ð�ð�0 þ �1xiÞ=�Þ and we use @�ðzÞ=@z ¼ �ðzÞ2 � z�ðzÞ. It turns
out that the variance of Yi given Yi > 0 is equal to �

2wi (see, for example,

Johnson and Kotz, 1970, p. 81, or section A.2 in the Appendix). Because the

variance of Yi given Yi > 0 is smaller than �
2 owing to truncation, wi is

smaller than 1. This in turn implies that the partial derivative is smaller
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Figure 7.1 Scatter diagram of yi against xi given yi > 0
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than �1 in absolute value for any value of xi. Hence, for the truncated data

the effect of xi is smaller than for all data.

In this subsection we have assumed so far that the point of truncation is 0.

Sometimes the point of truncation is positive, as in the example on regular

shopping trips, or negative. If the point of truncation is c instead of 0, one

just has to replace �0 þ �1xi by c þ �0 þ �1xi in the discussion above. It is

also possible to have a sample of observations truncated from above. In that

case Yi is observed only if it is smaller than a threshold c. One may also

encounter situations where the data are truncated from both below and

above. Similar results for the effects of xi can now be derived.

7.1.2 Censored Regression model

The Truncated Regression model concerns a dependent variable

that is observed only beyond a certain threshold level. It may, however,

also occur that the dependent variable is censored. For example, the depen-

dent variable Yi can be 0 or a positive value. To illustrate the effects of

censoring we consider again the DGP in (7.5). Instead of deleting observa-

tions for which yi is smaller than zero, we set negative yi observations equal

to 0.

Figure 7.2 displays such a set of simulated yi and xi observations. The

straight line in the graph denotes the estimated regression line using OLS (see

chapter 3). Again, the intercept of the regression is substantially larger than

the �2 in the data generating process because the intersection of the regres-
sion line with the y-axis is about �0:5. The slope of the regression line is
clearly smaller than 1, which is of course due to the censored observations,

which take the value 0. This graph illustrates that including censored obser-

vations in a standard Regression model may lead to a bias in the OLS

estimator of its parameters.

To describe a censored dependent variable, several models have been

proposed in the literature. In this subsection we discuss two often applied

Censored Regression models. The first model is the basic Type-1 Tobit

model introduced by Tobin (1958). This model consists of a single equation.

The second model is the Type-2 Tobit model, which more or less describes

the censored and non-censored observations in two separate equations.

Type-1 Tobit model

The idea behind the standard Tobit model is related to the Probit

model for a binary dependent variable discussed in chapter 4. In section 4.1.1

it was shown that the Probit model assumes that the binary dependent vari-

able Yi is 0 if an unobserved latent variable y�i is smaller than or equal to zero
and 1 if this latent variable is positive. For the latent variable one considers a
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standard Linear Regression model y�i ¼ Xi�þ "i with "i 
 Nð0; 1Þ, where Xi

contains K þ 1 explanatory variables including an intercept. The extension
to a Tobit model for a censored dependent variable is now straightforward.

The censored variable Yi is 0 if the unobserved latent variable y�i is smaller
than or equal to zero and Yi ¼ y�i if y�i is positive, which in short-hand
notation is

Yi ¼ Xi�þ "i if y�i ¼ Xi�þ "i > 0
Yi ¼ 0 if y�i ¼ Xi�þ "i � 0;

ð7:9Þ

with "i 
 Nð0; �2Þ.
For the observations yi that are zero, we know only that

Pr½Yi ¼ 0jXi� ¼ Pr½Xi�þ "i � 0jXi� ¼ Pr½"i � �Xi�jXi�
¼ �ð�Xi�=�Þ:

ð7:10Þ

This probability is the same as in the Probit model. Likewise, the probability

that Yi ¼ y�i > 0 corresponds with Pr½Yi ¼ 1jXi� in the Probit model (see
(4.12)). Note that, in contrast to the Probit model, we do not have to impose

the restriction � ¼ 1 in the Tobit model because the positive observations of

the dependent variable yi identify the variance of "i. If we consider the
charity donation example, probability (7.10) denotes the probability that

individual i does not give to charity.

0
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4

_4 _2 0 2 4
xi

y i

Figure 7.2 Scatter diagram of yi against xi for censored yi
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The expected donation of an individual, to stick to the charity example,

follows from the expected value of Yi given Xi, that is,

E½YijXi� ¼ Pr½Yi ¼ 0jXi�E½YijYi ¼ 0;Xi�
þ Pr½Yi > 0jXi�E½YijYi > 0;Xi�

¼ 0þ ð1��ð�Xi�=�ÞÞ Xi�þ �
�ð�Xi�=�Þ

ð1��ð�Xi�=�ÞÞ
� 


¼ ð1��ð�Xi�=�ÞÞXi�þ ��ð�Xi�=�Þ;
ð7:11Þ

where E½YijYi > 0;Xi� is given in (7.6). The explanatory variables Xi affect

the expectation of the dependent variable Yi in two ways. First of all, from

(7.10) it follows that for a positive element of � an increase in the corre-
sponding component of Xi increases the probability that Yi is larger than 0.

In terms of our charity donation example, a larger value of Xi thus results in

a larger probability of donating to charity. Secondly, an increase in Xi also

affects the conditional mean of the positive observations. Hence, for indivi-

duals who give to charity, a larger value of Xi also implies that the expected

donated amount is larger.

The total effect of a change in the k’th explanatory variable xk;i on the

expectation of Yi follows from

@E½YijXi�
@xk;i

¼ ð1��ð�Xi�=�ÞÞ�k � Xi��ð�Xi�=�Þ�k=�

þ ��ð�Xi�=�Þð�Xi�=�Þð��k=�Þ
¼ ð1��ð�Xi�=�ÞÞ�k:

ð7:12Þ

Because ð1��ð�Xi�=�ÞÞ is always positive, the direction of the effect of an
increase in xk;i on the expectation of Yi is completely determined by the sign

of the � parameter.
The Type-1 Tobit model assumes that the parameters for the effect of the

explanatory variables on the probability that an observation is censored and

the effect on the conditional mean of the non-censored observations are the

same. This may be true if we consider for example the demand for theater

tickets, but may be unrealistic if we consider charity donating behavior. In

the remainder of this subsection we discuss the Type-2 Tobit model, which

relaxes this assumption.

Type-2 Tobit model

The standard Tobit model presented above can be written as a

combination of two already familiar models. The first model is a Probit

model, which determines whether the yi variable is zero or positive, that is,
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Yi ¼ 0 if Xi�þ "i � 0
Yi > 0 if Xi�þ "i > 0 ð7:13Þ

(see chapter 4), and the second model is a Truncated Regression model for

the positive values of Yi, that is,

Yi ¼ y�i ¼ Xi�þ "i Yi > 0: ð7:14Þ
The difference from the Probit model is that in the Probit specification we

never observe y�i , whereas in the Tobit model we observe y�i if y�i is larger
than zero. In that case y�i is equal to yi.

The two models in the Type-1 Tobit model contain the same explanatory

variables Xi with the same � parameters and the same error term "i. It is of
course possible to relax this assumption and allow for different parameters

and error terms in both models. An example is

Yi ¼ 0 if y�i ¼ Xi�þ "1;i � 0
Yi ¼ Xi�þ "2;i if y�i ¼ Xi�þ "1;i > 0; ð7:15Þ

where � ¼ ð�0; . . . ; �K Þ, where "1;i 
 Nð0; 1Þ because it concerns the Probit
part, and where "2;i 
 Nð0; �22Þ. Both error terms may be correlated and
hence E½"1;i"2;i� ¼ �12. This model is called the Type-2 Tobit model (see
Amemiya, 1985, p. 385). It consists of a Probit model for yi being zero or

positive and a standard Regression model for the positive values of yi. The

Probit model may, for example, describe the influence of explanatory vari-

ables Xi on the decision whether or not to donate to charity, while the

Regression model measures the effect of the explanatory variables on the

size of the amount for donating individuals.

The Type-2 Tobit model is more flexible than the Type-1 model. Owing to

potentially different � and � parameters, it can for example describe situa-
tions where older individuals are more likely to donate to charity than are

younger individuals, but, given a positive donation, younger individuals

perhaps donate more than older individuals. The explanatory variable age

then has a positive effect on the donation decision but a negative effect on the

amount donated given a positive donation. This phenomenon cannot be

described by the Type-1 Tobit model.

The probability that an individual donates to charity is now given by the

probability that Yi ¼ 0 given Xi, that is,

Pr½Yi ¼ 0jXi� ¼ Pr½Xi�þ "1;i � 0jXi� ¼ Pr½"1;i � �Xi�jXi�
¼ �ð�Xi�Þ:

ð7:16Þ

The interpretation of this probability is the same as for the standard Probit

model in chapter 4. For individuals who donate to charity, the expected

value of the donated amount equals the expectation of Yi given Xi and

y�i > 0, that is
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E½Yijy�i > 0;Xi� ¼ E½Xi�þ "2;ij"1;i > �Xi��
¼ Xi�þ E½"2;ij"1;i > �Xi��
¼ Xi�þ E½E½"2;ij"1;i�j"1;i > �Xi��
¼ Xi�þ E½�12"1;ij"1;i > �Xi��
¼ Xi�þ �12

�ð�Xi�Þ
1��ð�Xi�Þ

:

ð7:17Þ

Notice that the expectation is a function of the covariance between the error

terms in (7.15), that is, �12. The conditional mean of Yi thus gets adjusted

owing to the correlation between the decision to donate and the donated

amount. A special case concerns what is called the two-part model, where the

covariance between the Probit and the Regression equation �12 is 0. In that
case the expectation simplifies to Xi�. The advantage of a two-part model
over a standard Regression model for only those observations with non-zero

value concerns the possibility of computing the unconditional expectation of

Yi as shown below.

The effect of a change in the k’th explanatory variable xk;i on the expecta-

tion of non-censored Yi for the Type-2 Tobit model is given by

@E½Yijy�i > 0;Xi�
@xk;i

¼ �k � �12ð�2i � ð�Xi�Þ�iÞ�k; ð7:18Þ

where �i ¼ �ð�Xi�Þ and we use the result below equation (7.8). Note again
that it represents the effect of xk;i on the expected donated amount given a

positive donation. If one wants to analyze the effect of xk;i on the expected

donation without conditioning on the decision to donate to charity, one has

to consider the unconditional expectation of Yi. This expectation can be

constructed in a straightforward way, and it equals

E½YijXi� ¼ E½Yijy�i � 0;Xi�Pr½y�i � 0jXi�
þ E½Yijy�i > 0;Xi�Pr½y�i > 0jXi�

¼ 0þ Xi�þ �12
�ð�Xi�Þ

1��ð�Xi�Þ
� 


ð1��ð�Xi�ÞÞ

¼ Xi�ð1��ð�Xi�ÞÞ þ �12�ð�Xi�Þ:

ð7:19Þ

It follows from the second line of (7.19) that the expectation of Yi is always

smaller than the expectation of yi given that y
�
i > 0. For our charity donation

example, this means that the expected donated amount of individual i is

always smaller than the expected donated amount given that individual i

donates to charity.

To determine the effect of the k’th explanatory variable xk;i on the expec-

tation (7.19), we consider the partial derivative of E½YijXi� with respect to
xk;i, that is,
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@E½YijXi�
@xk;i

¼ ð1��ð�Xi�ÞÞ�k þ Xi��ð�Xi�Þ�k

� �12ðXi�Þ�ð�Xi�Þ�k:

ð7:20Þ

Again, this partial derivative captures both the changes in probability that an

observation is not censored and the changes in the conditional mean of

positive yi observations.

7.2 Estimation

The parameters of the Truncated and Censored Regression models

can be estimated using the Maximum Likelihood method. For both types of

model, the first-order conditions cannot be solved analytically. Hence, we

again have to use numerical optimization algorithms such as the Newton–

Raphson method discussed in section 3.2.2.

7.2.1 Truncated Regression model

The likelihood function of the Truncated Regression model follows

directly from the density function of yi given in (7.3) and reads

Lð�Þ ¼
YN
i¼1

ð1��ð�Xi�=�ÞÞ�1
1

�
ffiffiffiffiffiffi
2�

p expð� 1

2�2
ðyi � Xi�Þ2Þ

� 


ð7:21Þ
where � ¼ ð�; �Þ. Again we consider the log-likelihood function

lð�Þ ¼
XN
i¼1

�
� logð1��ð�Xi�=�ÞÞ �

1

2
log 2�� log �

� 1

2�2
ðyi � Xi�Þ2



:

ð7:22Þ

To estimate the model using ML it is convenient to reparametrize the model

(see Olsen, 1978). Define � ¼ �=� and � ¼ 1=�. The log-likelihood function
in terms of �� ¼ ð�; �Þ now reads

lð��Þ ¼
XN
i¼1

�
� logð1��ð�Xi�ÞÞ �

1

2
log 2�þ log �

� 1
2
ð�yi � Xi�Þ2



:

ð7:23Þ
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The first-order derivatives of the log-likelihood function with respect to �
and � are simply

@lð��Þ
@�

¼
XN
i¼1

ð��ð�Xi�Þ þ ð�yi � Xi�ÞÞX 0
i

@lð��Þ
@�

¼
XN
i¼1

ð1=� � ð�yi � Xi�ÞyiÞ;
ð7:24Þ

where �ð�Þ again denotes the inverse Mills ratio. The second-order derivatives
read

@lð��Þ
@�@� 0

¼
XN
i¼1

ð�ð�Xi�Þ2 þ Xi��ð�Xi�Þ � 1ÞX 0
iXi

@lð��Þ
@�@�

¼
XN
i¼1

yiX
0
i

@lð��Þ
@�@�

¼
XN
i¼1

ð�1=�2 � y2i Þ:

ð7:25Þ

It can be shown that the log-likelihood is globally concave in �� (see Olsen,
1978), and hence that the Newton–Raphson algorithm converges to the

unique maximum, that is, the ML estimator.

The ML estimator �̂�� is asymptotically normally distributed with the true
value �� as mean and with the inverse of the information matrix as the
covariance matrix. This matrix can be estimated by evaluating minus the

inverse of the Hessian Hð��Þ in the ML estimates. Hence, we can use for

inference that

�̂�� 
a Nð��;�Hð�̂��Þ�1Þ: ð7:26Þ

Recall that we are interested in the ML estimates of � instead of ��. It is
easy to see that �̂� ¼ �̂��̂� and �̂� ¼ 1=�̂� maximize the log-likelihood function
(7.22) over �. The resultant ML estimator �̂� ¼ ð�̂�; �̂�Þ is asymptotically nor-
mally distributed with the true parameter � as mean and the inverse of the
information matrix as covariance matrix. For practical purposes, one can

transform the estimated covariance matrix of �̂�� and use that

�̂� 
a Nð�;�Jð�̂��ÞHð�̂��Þ�1Jð�̂��Þ0Þ; ð7:27Þ

where Jð��Þ denotes the Jacobian of the transformation from �� to � given by
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Jð��Þ ¼ @�=@� 0 @�=@�
@�=@� 0 @�=@�

� 

¼ ��1IKþ1 ���2�

0
0 ��2

� 

; ð7:28Þ

where 00 denotes a 1	 ðK þ 1Þ vector with zeroes.

7.2.2 Censored Regression model

In this subsection we first outline parameter estimation for the

Type-1 Tobit model and after that we consider the Type-2 Tobit model.

Type-1 Tobit

Maximum likelihood estimation for the Type-1 Tobit model pro-

ceeds in a similar way as for the Truncated Regression model. The likelihood

function consists of two parts. The probability that an observation is cen-

sored is given by (7.10) and the density of the non-censored observations is a

standard normal density. The likelihood function is

Lð�Þ ¼
YN
i¼1

�
�Xi�

�

� 
I ½yi¼0� 1

�
ffiffiffiffiffiffi
2�

p expð� 1

2�2
ðyi � Xi�Þ2Þ

� 
I ½yi>0�
;

ð7:29Þ

where � ¼ ð�; �Þ. Again it is more convenient to reparametrize the model
according to � ¼ �=� and � ¼ 1=�. The log-likelihood function in terms of
�� ¼ ð�; �Þ reads

lð��Þ ¼
XN
i¼1

ðI ½ yi ¼ 0� log�ð�Xi�Þ þ I ½ yi > 0�ðlog � �
1

2
logð2�Þ

� 1
2
ð�yi � Xi�Þ2ÞÞ:

ð7:30Þ

The first-order derivatives of the log-likelihood function with respect to �
and � are

@lð��Þ
@�

¼
XN
i¼1

ð�I ½yi ¼ 0��ðXi�ÞX 0
i þ I ½yi > 0�ð�yi � Xi�ÞX 0

i Þ

@lð��Þ
@�

¼
XN
i¼1

I ½yi > 0�ð1=� � ð�yi � Xi�ÞyiÞ
ð7:31Þ
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and the second-order derivatives are

@lð��Þ
@�@� 0

¼
XN
i¼1

ðI ½yi ¼ 0�ð��ðXi�Þ2 þ Xi��ðXi�ÞÞX 0
iXi � I ½yi > 0�X 0

iXiÞ

@lð��Þ
@�@�

¼
XN
i¼1

I ½yi > 0�yiX
0
i

@lð��Þ
@�@�

¼
XN
i¼1

I ½yi > 0�ð�1=�2 � y2i Þ:

ð7:32Þ
Again, Olsen (1978) shows that the log-likelihood function is globally con-

cave and hence the Newton–Raphson converges to a unique maximum,

which corresponds to the ML estimator for � and �. Estimation and infer-
ence on � and � proceed in the same way as for the Truncated Regression
model discussed above.

Type-2 Tobit

The likelihood function of the Type-2 Tobit model also contains

two parts. For the censored observations, the likelihood function equals the

probability that Yi ¼ 0 or y�i � 0 given in (7.16). For the non-censored

observations one uses the density function of yi given that y�i > 0 denoted
by f ðyijy�i > 0Þ times the probability that y�i > 0. Hence, the likelihood func-
tion is given by

Lð�Þ ¼
YN
i¼1

Pr½y�i < 0�I ½yi¼0�ðf ðyijy�i > 0ÞPr½y�i > 0�ÞI ½yi¼1�

 �

; ð7:33Þ

where � ¼ ð�; �; �22; �12Þ. To express the second part of the likelihood func-
tion (7.33) as density functions of univariate normal distributions, we write

f ðyijy�i > 0ÞPr½y�i > 0� ¼
ð1
0

f ðyi; y
�
i Þdy�i

¼
ð1
0

f ðy�i jyiÞf ðyiÞdy�i ;
ð7:34Þ

where f ðyi; y
�
i Þ denotes the joint density of y�i and yi which is in fact the

density function of a bivariate normal distribution (see section A.2 in the

Appendix). We now use that, if ðyi; y
�
i Þ are jointly normally distributed, y�i

given yi is also normally distributed with mean Xi�þ �12��22 ðyi � Xi�Þ and
variance ~��2 ¼ 1� �212��22 (see section A.2 in the Appendix). We can thus

write the log-likelihood function as
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lð�Þ ¼
XN
i¼1



I ½ yi ¼ 0��ð�Xi�Þ þ I ½ yi ¼ 1�ð1��ð�ðXi�þ �12��22

ð yi � Xi�ÞÞ= ~��ÞÞ þ I ½ yi ¼ 1�
ð� log �2 �

1

2
log 2�� 1

2�22
ð yi � Xi�Þ2Þ

�
:

ð7:35Þ

This log-likelihood function can be maximized using the Newton–Raphson

method discussed in section 3.2.2. This requires the first- and second-order

derivatives of the log-likelihood function. In this book we will abstain from a

complete derivation and refer to Greene (1995) for an approach along this

line.

Instead of the ML method, one can also use a simpler but less efficient

method to obtain parameter estimates, known as the Heckman (1976) two-

step procedure. In the first step one estimates the parameters of the Probit

model, where the dependent variable is 0 if yi ¼ 0 and 1 if yi > 0. This can be
done using the ML method as discussed in section 4.2. This yields �̂� and an
estimate of the inverse Mills ratio, that is, �ð�Xi�̂�Þ, i ¼ 1; . . . ;N. For the
second step we use that the expectation of Yi given that Yi > 0 equals (7.17)
and we estimate the � parameters in the regression model

yi ¼ Xi�þ !�ð�Xi�̂�Þ þ �i ð7:36Þ

using OLS, where we add the inverse Mills ratio �ð�Xi�̂�Þ to correct the
conditional mean of Yi, thereby relying on the result in (7.17). It can be

shown that the Heckman two-step estimation method provides consistent

estimates of �. The two-step estimator is, however, not efficient because the
variance of the error term �i in (7.36) is not homoskedastic. In fact, it can be
shown that the variance of �i is �

2
2 � �212ðXi��ð�Xi�Þ þ �ð�Xi�Þ2Þ. Hence we

cannot rely on the OLS standard errors. The asymptotic covariance matrix

of the two-step estimator was first derived in Heckman (1979). It is, however,

also possible to use White’s (1980) covariance estimator to deal with the

heterogeneity in the error term. The White estimator of the covariance

matrix for the regression model yi ¼ Xi�þ "i equals

N

N � K � 1
XN
i¼1

X 0
iXi

 !�1 XN
i¼1

"̂"iX
0
iXi

 ! XN
i¼1

X 0
iXi

 !�1
: ð7:37Þ

This estimator is nowadays readily available in standard packages. In the

application below we also opt for this approach. A recent survey of the

Heckman two-step procedure can be found in Puhani (2000).
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7.3 Diagnostics, model selection and forecasting

In this section we discuss diagnostics, model selection and forecast-

ing for the Truncated and Censored Regression models. Because model

selection is not much different from that for the standard regression

model, that particular subsection contains a rather brief discussion.

7.3.1 Diagnostics

In this subsection we first discuss the construction of residuals, and

then do some tests for misspecification.

Residuals

The simplest way to construct residuals in a Truncated Regression

model is to consider

"̂"i ¼ yi � Xi�̂�: ð7:38Þ
However, in this way one does not take into account that the dependent

variable is censored. The expected value of these residuals is therefore not

equal to 0. An alternative approach to define residuals is

"̂"i ¼ yi � E½YijYi > 0;Xi�; ð7:39Þ
where E½YijYi > 0;Xi� is given in (7.6), and where � and � are replaced by
their ML estimates. The residuals in (7.39) are however heteroskedastic, and

therefore one often considers the standardized residuals

"̂" ¼ yi � E½YijYi > 0;Xi�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V½YijYi > 0;Xi�

p ; ð7:40Þ

where V½YijYi > 0;Xi� is the variance of Yi given that Yi is larger than 0.

This variance equals �2ð1� ðXi�=�Þ�ð�Xi�=�Þ � �ð�Xi�=�Þ2Þ (see Johnson
and Kotz, 1970, pp. 81–83, and section A.2 in the Appendix).

In a similar way we can construct residuals for the Type-1 Tobit model.

Residuals with expectation zero follow from

"̂"i ¼ yi � E½YijXi�; ð7:41Þ
where E½YijXi� is given in (7.11). The standardized version of these residuals
is given by

"̂"i ¼
yi � E½YijXi�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V½YijXi�

p ; ð7:42Þ

where

V½YijXi� ¼ �2ð1��ð�Xi�=�ÞÞ þ Xi�E½YijXi� � E½YijXi�2

(see Gourieroux and Monfort, 1995, p. 483).
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An alternative approach to construct residuals in a Censored Regression

model is to consider the residuals of the regression y�i ¼ Xi�þ "i in (7.9).
These residuals turn out to be useful in the specification tests as discussed

below. For the non-censored observations yi ¼ y�i , one can construct resi-
duals as in the standard Regression model (see section 3.3.1). For the cen-

sored observations one considers the expectation of "i in (7.9) for y�i < 0.
Hence, the residuals are defined as

"̂"i ¼ ðyi � Xi�̂�ÞI ½yi > 0� þ E½ðy�i � Xi�̂�Þjy�i < 0�I ½yi ¼ 0�: ð7:43Þ
Along similar lines to (7.6) one can show that

E½ðy�i � Xi�̂�Þjy�i < 0� ¼ ��̂� �ðXi�̂�=�̂�Þ
1��ðXi�̂�=�̂�Þ

¼ ��̂��ðXi�̂�=�̂�Þ: ð7:44Þ

Specification tests

There exist a number of specification tests for the Tobit model (see

Pagan and Vella, 1989, and Greene, 2000, section 20.3.4, for more refer-

ences). Some of these tests are Lagrange multiplier tests. For example,

Greene (2000, p. 912) considers an LM test for heteroskedasticity. The con-

struction of this test involves the derivation of the first-order conditions

under the alternative specification and this is not pursued here. Instead, we

will follow a more general and simpler approach to construct tests for mis-

specification. The resultant tests are in fact conditional moment tests.

We illustrate the conditional moment test by analyzing whether the error

terms in the latent regression y�i ¼ Xi�þ "i of the Type-1 Tobit model are
homoskedastic. If the disturbances are indeed homoskedastic, a variable zi

should not have explanatory power for �2 and hence there is no correlation
between zi and ðE½"2i � � �2Þ, that is,

E½ziðE½"2i � � �2Þ� ¼ 0: ð7:45Þ
The expectation of "2i is simply ðyi � Xi�Þ2 in the case of no censoring. In the
case of censoring we use that E½"2i jyi ¼ 0� ¼ �2 þ �ðXi�Þ�ðXi�=�Þ (see Lee
and Maddala, 1985, p. 4). To test the moment condition (7.45) we consider

the sample counterpart of ziðE½"2i � � �2Þ, which equals

mi ¼ ziððyi � Xi�̂�Þ2 � �̂�2ÞI ½yi > 0� þ zi �̂�
2Xi�̂�

�̂�
�ðXi�̂�=�̂�Þ

 !
I ½yi ¼ 0�:

ð7:46Þ
The idea behind the test is now to check whether the difference between the

theoretical moment and the empirical moment is zero. The test for homo-



A limited dependent variable 149

skedasticity of the error terms turns out to be a simple F- or t-test for the

significance of the constant !0 in the following regression

mi ¼ !0 þ G0
i!1 þ �i; ð7:47Þ

where Gi is a vector of first-order derivatives of the log-likelihood function

per observation evaluated in the maximum likelihood estimates (see Pagan

and Vella, 1989, for details). The vector of first-order derivatives Gi is con-

tained in (7.31) and equals

Gi ¼ I ½yi ¼ 0��ðXi�ÞX 0
i � I ½yi > 0�ð�yi � Xi�ÞX 0

i

I ½yi > 0�ð1=� � ð�yi � Xi�ÞyiÞ
� 


: ð7:48Þ

Note that the first-order derivatives are expressed in terms of �� ¼ ð�; �Þ and
hence we have to evaluate Gi in the ML estimate �̂�

�.
If homoskedasticity is rejected, one may consider a Censored Regression

model (7.9) where the variance of the disturbances is different across obser-

vations, that is,

�2i ¼ expð�0 þ �1ziÞ ð7:49Þ
(see Greene, 2000, pp. 912–914, for an example).

The conditional moment test can also be used to test, for example,

whether explanatory variables have erroneously been omitted from the

model or whether the disturbances "i are normally distributed (see Greene,
2000, pp. 917–919, and Pagan and Vella, 1989).

7.3.2 Model selection

We can be fairly brief about model selection because, as far as we

know, the choice of variables and a comparison of models can be performed

along similar lines to those discussed in section 3.3.2. Hence, one can use the

z-scores for individual parameters, LR tests for joint significance of variables

and the AIC and BIC model selection criteria.

In Laitila (1993) a pseudo-R2 measure is proposed for a limited dependent

variable model. If we define ŷy�i as Xi�̂� and �̂�
2 as the ML estimate of �2, this

pseudo-R2 is defined as

R2 ¼
PN

i¼1ðŷy�i � �yy�i Þ2PN
i¼1ðŷy�i � �yy�i Þ2 þ N�̂�2

; ð7:50Þ

where �yy�i denotes the average value of ŷy�i ; see also the R2 measure of

McKelvey and Zavoina (1975), which was used in previous chapters for an

ordered dependent variable.
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7.3.3 Forecasting

One of the purposes of using Truncated and Censored Regression

models is to predict the outcomes of out-of-sample observations.

Additionally, using within-sample predictions one can evaluate the model.

In contrast to the standard Regression model of chapter 3, there is not a

unique way to compute predicted values in the Truncated and Censored

Regression models. In our opinion, the type of the prediction depends on

the research question. In the remainder of this subsection we therefore pro-

vide several types of prediction generated by Truncated and Censored

Regression models and their interpretation.

Truncated Regression model

To illustrate forecasting using Truncated Regression models, we

consider again the example in the introduction to this chapter, where we

model the positive profits of stores. The prediction of the profit of a store

i with a single characteristic xi is simply �̂�0 þ �̂�1xi. Note that this prediction

can obtain a negative value, which means that the Truncated Regression

model can be used to forecast outside the range of the truncated dependent

variable in the model. If one does not want to allow for negative profits

because one is certain that this store has a positive profit, one should con-

sider computing the expected value of Yi given that Yi > 0 given in (7.6).

Censored Regression model

Several types of forecasts can be made using Censored Regression

models depending on the question of interest. To illustrate some possibilities,

we consider again the example of donating to charity. If, for example, one

wants to predict the probability that an individual i with characteristics Xi

does not donate to charity, one has to use (7.10) if one is considering a Type-

1 Tobit model. If one opts for a Type-2 Tobit model, one should use (7.16).

Of course, the unknown parameters have to be replaced by their ML esti-

mates.

To forecast the donation of an individual i with characteristics Xi one

uses the expectation in equation (7.19) for the Type-2 Tobit model. For

the Type-1 Tobit model we take expectation (7.11). If, however, one

knows for sure that this individual donates to charity, one has to take the

expectation in (7.6) and (7.17) for the Type-1 and Type-2 Tobit models,

respectively. The first type of prediction is not conditional on the fact that

the individual donates to charity, whereas the second type of prediction is

conditional on the fact that the individual donates a positive amount of

money. The choice between the two possibilities depends of course on the

goal of the forecasting exercise.
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7.4 Modeling donations to charity

To illustrate a model of a censored dependent variable, we consider

a sample of donations to charity. The data have already been discussed in

section 2.2.5. Our sample contains 4,268 individuals who received a mailing

from a charitable institution. We use the first 4,000 individuals to estimate

various models and the remaining 268 observations to evaluate the estimated

models in a forecasting exercise. Of these 4,000 individuals, about 59% do

not donate and 41% donate amount yi.

As explanatory variables to describe the response and donation behavior

we consider the Recency Frequency and Monetary Value (RFM) variables

discussed in section 2.2.5, that is, a 0/1 dummy indicating whether the indi-

vidual responded to the previous mailing, the number of weeks since the last

response, the average number of mailings received per year, the proportion

of response in the past, the average donation in the past and the amount

donated in the last response. The correlation between the last two explana-

tory variables is extremely high (>0.99) and to avoid multicollinearity we do

not consider the amount donated in the last response. Additionally, our

preliminary analysis reveals, upon using the residuals in (7.42), that there

is a huge outlier (observation 678). For this observation we include a 0/1

dummy variable.

First, we relate the amount donated (including the zero observations) to

the RFM explanatory variables using a standard Regression model that does

not take censoring into account. The first two columns of table 7.1 show the

least squares parameter estimates and their corresponding standard errors.

All RFM variables turn out to be significant.

The last two columns of table 7.1 show the estimation results of a Type-1

Tobit model. The Laitila pseudo-R2 measure (7.50) equals 0.28. All the Tobit

parameter estimates turn out to be larger in absolute value. Note that a

similar phenomenon could be observed in figure 7.2, where the OLS

parameter estimates were substantially smaller in absolute value than the

true DGP parameters. All parameters are significant except the one modeling

the effect of the response to the previous mailing. The number of weeks since

last response has a negative effect on expected donation, while the other

variables have a positive effect. Note that the Type-1 Tobit model imposes

that the parameters modeling the effect of the explanatory variables on the

probability of donating to charity and the expected donation are the same.

To see whether these effects are different we now consider a Type-2 Tobit

model.

Table 7.2 shows the parameter estimates and corresponding standard

errors of this Type-2 Tobit model. The parameters are estimated using

Heckman’s two-step procedure. The first two columns show the parameter
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Table 7.1 Estimation results for a standard Regression model (including the

0 observations) and a Type-1 Tobit model for donation to charity

Variables

Standard regression Tobit model

Parameter

Standard

error Parameter

Standard

error

Constant

Response to previous mailing

Weeks since last response

No. of mailings per year

Proportion response

Average donation (NLG)

�5:478***
1:189**

�0:019***
1:231***
12:355***
0:296***

(1.140)

(0.584)

(0.007)

(0.329)

(1.137)

(0.011)

�29:911***
1:328

�0:122***
3:102***
32:604***
0:369***

(2.654)

(1.248)

(0.017)

(0.723)

(2.459)

(0.021)

max. log-likelihood value �15928:03 �8665:53

Notes:

*** Significant at the 0.01 level, ** at the 0.05 level, * at the 0.10 level

The total number of observations is 3,999, of which 1,626 correspond to donations

larger than 0.

Table 7.2 Estimation results for a Type-2 Tobit model for the charity

donation data

Variables

Probit part Regression part

Parameter

Standard

error Parameter

Standard

errora

Constant

Response to previous mailing

Weeks since last response

No. of mailings per year

Proportion response

Average donation (NLG)

Inverse Mills ratio

�1:299***
0:139**

�0:004***
0:164***
1:779***
0:000

(0.121)

(0.059)

(0.001)

(0.034)

(0.117)

(0.001)

26:238***
�1:411**
0:073***
1:427**

�17:239**
1:029***

�17:684***

(10.154)

(0.704)

(0.027)

(0.649)

(6.905)

(0.053)

(6.473)

max. log-likelihood value �2252:86 �5592:61

Notes:

*** Significant at the 0.01 level, ** at the 0.05 level, * at the 0.10 level
aWhite heteroskedasticity-consistent standard errors.

The total number of observations is 3,999, of which 1,626 correspond to donations

larger than 0.
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estimates of a binomial Probit model for the decision whether or not to

respond to the mailing and donate to charity. The last two columns show

the estimates of the regression model for the amount donated for the indi-

viduals who donate to charity. The inverse Mills ratio is significant at the 1%

level, and hence we do not have a two-part model here. We can see that some

parameter estimates are quite different across the two components of this

Type-2 Tobit model, which suggests that a Type-2 Tobit model is more

appropriate than a Type-1 Tobit model.

Before we turn to parameter interpretation, we first discuss some diag-

nostics for the components of the Type-2 Tobit model. The McFadden R2

(4.53) for the Probit model equals 0.17, while the McKelvey and Zavoina R2

measure (4.54) equals 0.31. The Likelihood Ratio statistic for the significance

of the explanatory variables is 897.71, which is significant at the 1% level.

The R2 of the regression model is 0.83. To test for possible heteroskedasticity

in the error term of the Probit model, we consider the LM test for constant

variance versus heteroskedasticity of the form (4.48) as discussed in section

4.3.1. One may include several explanatory variables in the variance equation

(4.48). Here we perform five LM tests where each time we include a single

explanatory variable in the variance equation. It turns out that constant

variance cannot be rejected except for the case where we include weeks

since last response. The LM test statistics equal 0.05, 0.74, 10.09, 0.78 and

0.34, where we use the same ordering as in table 7.1. Hence, the Type-2 Tobit

model may be improved by allowing for heteroskedasticity in the Probit

equation, but this extension is too difficult to pursue in this book.

As the Type-2 model does not seem to be seriously misspecified, we turn to

parameter interpretation. Interesting variables are the response to the pre-

vious mailing and the proportion of response. If an individual did respond to

the previous mailing, it is likely that he or she will respond again, but also

donate less. A similar conclusion can be drawn for the proportion of

response. The average donation does not have an impact on the response,

whereas it matters quite substantially for the current amount donated. The

differences across the parameters in the two components of the Type-2 Tobit

model also suggest that a Type-1 Tobit model is less appropriate here. This

notion is further supported if we consider out-of-sample forecasting.

To compare the forecasting performance of the models, we consider first

whether or not individuals will respond to a mailing by the charitable

organization. For the 268 individuals in the hold-out sample we compute

the probability that the individual, given the value of his or her RFM

variables, will respond to the mailing using (7.10). We obtain the following

prediction–realization table, which is based on a cut-off point of

1626=3999 ¼ 0:4066,
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Predicted
no donation donation

Observed
no donation 0.616 0.085 0.701
donation 0.153 0.146 0.299

0.769 0.231 1

The hit rate is 76% . The prediction–realization table for the Probit model

contained in the Type-2 Tobit model is

Predicted
no donation donation

Observed
no donation 0.601 0.101 0.701
donation 0.127 0.172 0.299

0.728 0.272 1

where small inconsistencies in the table are due to rounding errors. The hit

rate is 77%, which is only slightly higher than for the Type-1 Tobit model. If

we compute the expected donation to charity for the 268 individuals in the

hold-out sample using the Type-1 and Type-2 Tobit models as discussed in

section 7.3.3, we obtain a Root Mean Squared Prediction Error (RMSPE) of

14.36 for the Type-1 model and 12.34 for the Type-2 model. Hence, although

there is little difference in forecasting performance as regards whether or not

individuals will respond to the mailing, the forecasting performance for

expected donation is better for the Type-2 Tobit model.

The proposed models in this section can be used to select individuals who

are likely to respond to a mailing and donate to charity. This is known as

target selection. Individuals may be ranked according to their response

probability or according to their expected donation. To compare different

selection strategies, we consider again the 268 individuals in the hold-out

sample. For each individual we compute the expected donation based on the

Type-1 Tobit model and the Type-2 Tobit model. Furthermore, we compute

the probability of responding based on the estimated Probit model in table

7.2. These forecasts are used to divide the individuals into four groups A, B,

C, D according to the value of the expected donation (or the probability of

responding). Group A corresponds to the 25% of individuals with the largest

expected donation (or probability of responding). Group D contains the

25% of individuals with the smallest expected donation (or probability of

responding). This is done for each of the three forecasts, hence we obtain

three subdivisions in the four groups.
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Table 7.3 shows the total revenue and the response rate for each group

and for each model. If we consider the total revenue, we can see that selec-

tion based on the Type-2 Tobit model results in the best target selection. The

total revenues for groups A and B are larger than for the other models and as

a result smaller for groups C and D. The response rate for group A is largest

for the Probit model. This is not surprising because this model is designed to

model response rate. Note further that the total revenue for group A based

on selection with the Type-1 Tobit model is smaller than that based on

selection with the Probit model.

7.5 Advanced topics

A possible extension to the standard Tobit model is to include

unobserved heterogeneity as in the advanced topics sections in chapters 4

and 6. Because this can be done in a similar way to those chapters, we will

not pursue this in this section and refer the reader to DeSarbo and Choi

(1999) and Jonker et al. (2000) for some examples. In this section we briefly

discuss two alternative types of Tobit model, which might be useful for

marketing research.

In our illustration in this chapter we considered the case where one can

donate to only one charitable organization. This can of course be extended

to the case where an individual may donate amount yA to charity A and

amount yB to charity B. Assuming the availability of explanatory variables

Table 7.3 A comparison of target selection strategies based on the Type-1

and Type-2 Tobit models and the Probit model

Group Model Total revenue Response rate

A Type-1 Tobit

Type-2 Tobit

Probit

904

984

945

0.61

0.66

0.69

B Type-1 Tobit

Type-2 Tobit

Probit

340

370

224

0.28

0.30

0.18

C Type-1 Tobit

Type-2 Tobit

Probit

310

200

360

0.28

0.22

0.30

D Type-1 Tobit

Type-2 Tobit

Probit

10

10

35

0.01

0.01

0.03
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XA;i and XB;i, which may differ because of different RFM variables, one can

then consider the model

yA;i ¼ XA;i�A þ "A;i if y�i ¼ Xi�þ "i > 0
0 if y�i ¼ Xi�þ "i � 0

"
ð7:51Þ

and

yB;i ¼ XB;i�B þ "B;i if y�i ¼ Xi�þ "i > 0
0 if y�i ¼ Xi�þ "i � 0;

"
ð7:52Þ

where "A;i 
 Nð0; �2AÞ, "B;i 
 Nð0; �2BÞ and "i 
 Nð0; 1Þ. Just as in the Type-2
Tobit model, it is possible to impose correlations between the error terms.

Estimation of the model parameters can be done in a similar way to that for

the Type-2 Tobit model.

Another extension concerns the case where an individual always donates

to charity, but can choose between charity A or B. Given this binomial

choice, the individual then decides to donate yA;i or yB;i. Assuming again

the availability of explanatory variables XA;i and XB;i, one can then consider

the model

yA;i ¼ XA;i�A þ "A;i if y�i ¼ Xi�þ "i > 0
0 if y�i ¼ Xi�þ "i � 0

"
ð7:53Þ

and

yB;i ¼ 0 if y�i ¼ Xi�þ "i > 0
XB;i�B þ "B;i if y�i ¼ Xi�þ "i � 0;

"
ð7:54Þ

where "A;i 
 Nð0; �2AÞ, "B;i 
 Nð0; �2BÞ and "i 
 Nð0; 1Þ. Again, it is possible
to impose correlations between "i and the other two error terms (see

Amemiya, 1985, p. 399, for more details). Note that the model does not

allow an individual to donate to both charities at the same time.

The y�i now measures the unobserved willingness to donate to charity A
instead of to B. The probability that an individual i donates to charity A is of

course 1��ð�Xi�Þ. Likewise, the probability that an individual donates to
charity B is �ð�Xi�Þ. If we assume no correlation between the error terms,
the log-likelihood function is simply
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Lð�Þ ¼
XN
i¼1

I ½yA;i > 0�
�
logð1��ð�Xi�ÞÞ �

1

2
log 2�

� log �A � 1

2�2A
ðyA;i � Xi�AÞ2



þ I ½yB;i > 0�

log�ð�Xi�Þ �
1

2
log 2�� log �B �

1

2�2B
ðyB;i � Xi�BÞ2

� 

ð7:55Þ

where � summarizes the model parameters. The Probit model and the two
Regression models can be estimated separately using the ML estimators

discussed in chapters 3 and 4. If one wants to impose correlation between

the error terms, one can opt for a similar Heckman two-step procedure to

that for the Type-2 Tobit model (see Amemiya, 1985, section 10.10).



8 A duration dependent variable

In the previous chapters we have discussed econometric models for ordered

and unordered discrete choice dependent variables and continuous depen-

dent variables, which may be censored or truncated. In this chapter we deal

with models for duration as the dependent variable. Duration data often

occur in marketing research. Some examples concern the time between two

purchases, the time until a customer becomes inactive or cancels a subscrip-

tion or service contract, and the time it takes to respond to a direct mailing

(see Helsen and Schmittlein, 1993, table 1, for more examples).

Models for duration data receive special attention in the econometric

literature. This is because standard regression models cannot be used. In

fact, standard regression models are used to correlate a dependent variable

with explanatory variables that are all measured at the same point in time. In

contrast, if one wants to relate a duration variable to explanatory variables,

it is likely that the duration will also depend on the path of the values of the

explanatory variables during the period of duration. For example, the timing

of a purchase may depend on the price of the product at the time of the

purchase but also on the price in the weeks or days before the purchase.

During these weeks a household may have considered the price of the pro-

duct to be too high, and therefore it postponed its purchase. Hence, the focus

of modeling of duration is often not on explaining duration directly but

merely on the probability that the duration will end this week given that it

lasted until this week.

A second important feature of duration data is censoring. If one collects

duration data it is likely that at the beginning of the measurement period

some durations will already be in progress. Also, at the end of the mea-

surement period, some durations may not have been completed. It is, for

example, unlikely that all households in the sample purchased a product

exactly at the end of the observation period. To deal with these properties

of duration variables, so-called duration models, have been proposed and

used. For an extensive theoretical discussion of duration models, we refer

158
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to Kalbfleisch and Prentice (1980), Kiefer (1988) and Lancaster (1990),

among others.

The outline of this chapter is as follows. In section 8.1 we discuss the

representation and interpretation of two commonly considered duration

models, which are often used to analyze duration data in marketing.

Although the discussion starts off with a simple model for discrete duration

variables, we focus in this section on duration models with continuous

dependent variables. We discuss the Accelerated Lifetime specification and

the Proportional Hazard specification in detail. Section 8.2 deals with

Maximum Likelihood estimation of the parameters of the two models. In

section 8.3 we discuss diagnostics, model selection and forecasting with

duration models. In section 8.4 we illustrate models for interpurchase

times in relation to liquid detergents (see section 2.2.6 for more details on

the data). Finally, in section 8.5 we again deal with modeling unobserved

heterogeneity as an advanced topic.

8.1 Representation and interpretation

Let Ti be a discrete random variable for the length of a duration

observed for individual i and ti the actual length, where Ti can take the

values 1; 2; 3; . . . for i ¼ 1; . . . ;N. It is common practice in the econometric
literature to refer to a duration variable as a spell. Suppose that the prob-

ability that the spell ends is equal to � at every period t in time, where

t ¼ 1; . . . ; ti. The probability that the spell ends after two periods is therefore
�ð1� �Þ. In general, the probability that the spell ends after ti duration

periods is then

Pr½Ti ¼ ti� ¼ �ð1� �Þðti�1Þ: ð8:1Þ
In other words, the random variable Ti has a geometric distribution with

parameter � (see section A.2 in the Appendix).
In many cases one wants to relate the probability that a spell ends to

explanatory variables. Because � is a probability, one can, for example,
consider

� ¼ Fð�0 þ �1xiÞ; ð8:2Þ
where F is again a function that maps the explanatory variable xi on the unit

interval ½0; 1� (see also section 4.1). The function F can, for example, be the

logistic function.

If xi is a variable that takes the same value over time (for example,

gender), the probability that the spell ends does not change over time.

This may be an implausible assumption. If we consider, for example, pur-

chase timing, we may expect that the probability that a household will buy

detergent is higher if the relative price of detergent is low and lower if the
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relative price is high. In other words, the probability that a spell will end can

be time dependent. In this case, the probability that the spell ends after ti
periods is given by

Pr½Ti ¼ ti� ¼ �ti

Yti�1
t¼1

ð1� �tÞ; ð8:3Þ

where �t is the probability that the spell will end at time t given that it has

lasted until t for t ¼ 1; . . . ; ti. This probability may be related to explanatory
variables that stay the same over time, xi, and explanatory variables that

change over time, wi;t, according to

�t ¼ Fð�0 þ �1xi þ �wi;tÞ: ð8:4Þ
The variable wi;t can be the price of detergent in week t, for example.

Additionally it is likely that the probability that a household will buy

detergent is higher if it had already bought detergent four weeks ago, rather

than two weeks ago. To allow for an increase in the purchase probability

over time, one may include (functions of) the variable t as an explanatory

variable with respect to �t, as in

�t ¼ Fð�0 þ �1xi þ �wi;t þ �tÞ: ð8:5Þ
The functions �t, which represent the probability that the spell will end at

time t given that it has lasted until t, are called hazard functions.

In practice, duration data are often continuous variables (or treated as

continuous variables) instead of discrete variables. This means that Ti is a

continuous random variable that can take values on the interval ½0;1Þ. In
the remainder of this chapter we will focus the discussion on modeling such

continuous duration data. The discussion concerning discrete duration data

turns out to be a good basis for the interpretation of the models for con-

tinuous duration data. The distribution of the continuous random variable

Ti for the length of a spell of individual i is described by the density function

f ðtiÞ. The density function f ðtiÞ is the continuous-time version of (8.3).

Several distributions have been proposed to describe duration (see table

8.1 for some examples and section A.2 in the Appendix for more details).

The normal distribution, which is frequently used in econometric models, is

however not a good option because duration has to be positive. The log-

normal distribution can be used instead.

The probability that the continuous random variable Ti is smaller than t is

now given by

Pr½Ti < t� ¼ FðtÞ ¼
ðt

0

f ðsÞds; ð8:6Þ

where FðtÞ denotes the cumulative distribution function of Ti. It is common

practice in the duration literature to use the survival function, which is
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defined as the probability that the random variable Ti will equal or exceed t,

that is,

SðtÞ ¼ 1� FðtÞ ¼ Pr½Ti � t�: ð8:7Þ
Using the survival function we can define the continuous-time analogue of

the hazard functions �t in (8.2) and (8.5), that is,

�ðtÞ ¼ f ðtÞ
SðtÞ ; ð8:8Þ

where we now use �ðtÞ to indicate that t is a continuous variable. The func-
tion �ðtÞ is called the hazard function of a distribution. Roughly speaking, it
denotes the rate at which spells will be completed at time t given that they

have lasted until t. In terms of purchases, �ðtÞ measures the probability that a
purchase will be made at time t given that it has not yet been purchased.

More precisely, the hazard function is defined as

�ðtÞ ¼ lim
h!0

Pr½t � Ti < tþ hjT � t�
h

: ð8:9Þ

The hazard function is not a density function for the random variable Ti

because
Ð1
0 �ðtÞdt is in general not equal to 1. Because dSðtÞ=dt ¼ �f ðtÞ (see

(8.7)), the hazard function equals the derivative of minus the log of the

survival function with respect to t, that is,

�ðtÞ ¼ � d logSðtÞ
dt

: ð8:10Þ

This expression is useful to determine the hazard function if one has an

expression for the survival function (see below).

Table 8.1 shows the density function, the survival function and the hazard

function for four familiar distributions: the exponential, the Weibull, the

loglogistic and the lognormal distribution. The simplest distribution to

describe duration is the exponential distribution. Its hazard function is con-

stant and hence the rate at which a spell ends does not depend on time.

Because there is no duration dependence for this distribution it is often called

memoryless. The hazard function of the Weibull distribution depends on

time unless � ¼ 1, in which case the distribution simplifies to the exponential

distribution. For � > 1 the hazard function is increasing in t and we have

positive duration dependence, and for 0 < � < 1 we have negative duration
dependence; see also figure 8.1, which shows the hazard function for different

values of � and �. The graph also shows that the � parameter is just a scale
parameter because the shape of the density functions does not change with

changing values for �. The loglogistic and the lognormal distributions allow
for hazard functions that increase for small values of t and decrease for large

values of t (see figure 8.2).
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In practice, for many problems we are interested not particularly in the

density of the durations but in the shape of the hazard functions. For

example, we are interested in the probability that a household will buy

detergent now given that it last purchased detergent four weeks ago.

Another example concerns the probability that a contract that started

three months ago will be canceled today. It is therefore more natural to

think in terms of hazard functions, and hence the analysis of duration

data often starts with the specification of the hazard function �ðtÞ instead
of the density function FðtÞ.
Because the hazard function is not a density function, any non-negative

function of time t can be used as a hazard function. A flexible form for the

hazard function, which can describe different shapes for various values of the

parameters, is, for example,

�ðtÞ ¼ expð�0 þ �1t þ �2 logðtÞ þ �3t2Þ; ð8:11Þ

where the exponential transformation ensures positiveness of �ðtÞ (see, for
example, Jain and Vilcassim, 1991, and Chintagunta and Prasad, 1998, for

an application). Often, and also in case of (8.11), it is difficult to find the

density function f ðtÞ that belongs to a general specified hazard function. This
should, however, not be considered a problem because one is usually inter-

ested only in the hazard function and not in the density function.

For the estimation of the model parameters via Maximum Likelihood it is

not necessary to know the density function f ðtÞ. It suffices to know the

hazard function �ðtÞ and the integrated hazard function defined as

�ðtÞ ¼
ðt

0

�ðsÞds: ð8:12Þ

This function has no direct interpretation, however, but is useful to link the

hazard function and the survival function. From (8.10) it is easy to see that

the survival function equals

SðtÞ ¼ expð��ðtÞÞ: ð8:13Þ

So far, the models for continuous duration data have not included much

information from explanatory variables. Two ways to relate duration data to

explanatory variables are often applied. First of all, one may scale (or accel-

erate) t by a function of explanatory variables. The resulting model is called

an Accelerated Lifetime (or Failure Time) model. The other possibility is to

scale the hazard function, which leads to a Proportional Hazard model. In

the following subsections we discuss both specifications.
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8.1.1 Accelerated Lifetime model

The hazard and survival functions that involve only t are usually

called the baseline hazard and baseline survival functions, denoted by �0ðtÞ
and S0ðtÞ, respectively. In the Accelerated Lifetime model the explanatory
variables are used to scale time in a direct way. This means that the survival

function for an individual i, given a single explanatory variable xi, equals

SðtijxiÞ ¼ S0ð ðxiÞtiÞ; ð8:14Þ
where the duration ti is scaled through the function  ð�Þ. We assume now for
simplicity that the xi variable has the same value during the whole duration.

Below we will discuss how time-varying explanatory variables may be incor-

porated in the model. Applying (8.10) to (8.14) provides the hazard function

�ðtijxiÞ ¼  ðxiÞ�0ð ðxiÞtiÞ; ð8:15Þ
and differentiating (8.14) with respect to t provides the corresponding density

function

f ðtijxiÞ ¼  ðxiÞf0ð ðxiÞtiÞ; ð8:16Þ
where f0ð�Þ is the density function belonging to S0ð�Þ.
The function  ð�Þ naturally has to be nonnegative and it is usually of the

form

 ðxiÞ ¼ expð�0 þ �1xiÞ: ð8:17Þ
If we consider the distributions in table 8.1, we see that the parameter � in
these distributions also scales time. Hence, the parameters �0 and � are not
jointly identified. To identify the parameters we may set either � ¼ 1 or

�0 ¼ 0. In practice one usually opts for the first restriction. To interpret

the parameter �1 in (8.17), we linearize the argument of (8.14), that is,
expð�0 þ �1xiÞti, by taking logarithms. This results in the linear representa-
tion of the Accelerated Lifetime model

� log ti ¼ �0 þ �1xi þ ui: ð8:18Þ
The distribution of the error term ui follows from the probability that ui is

smaller than U:

Pr½ui < U� ¼ Pr½� log ti < U þ �0 þ �1xi�
¼ Pr½ti > expð�U � �0 � �1xiÞ�
¼ S0ðexpð�0 þ �1xiÞ expð�U � �0 � �1xiÞÞ
¼ S0ðexpð�UÞÞ

ð8:19Þ

and hence the density of ui is given by expð�uiÞf0ðexpð�uiÞÞ, which does not
depend on xi. Recall that this is an important condition of the standard
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Regression model. The parameter �1 therefore measures the effect of xi on

the log duration as

@ log ti
@xi

¼ ��1: ð8:20Þ

Additionally, if xi is a log transformed variable, �1 can be interpreted as an
elasticity.

8.1.2 Proportional Hazard model

A second way to include explanatory variables in a duration model

is to scale the hazard function by the function  ð�Þ, that is,
�ðtijxiÞ ¼  ðxiÞ�0ðtiÞ; ð8:21Þ

where �0ðtiÞ denotes the baseline hazard. Again, because the hazard function
has to be nonnegative, one usually specifies  ð�Þ as

 ðxiÞ ¼ expð�0 þ �1xiÞ: ð8:22Þ
If the intercept �0 is unequal to 0, the baseline hazard in (8.21) is identified
upon a scalar. Hence, if one opts for a Weibull or an exponential baseline

hazard one again has to restrict � to 1 to identify the parameters.
The interpretation of the parameters �1 for the proportional hazard spe-

cification is different from that for the Accelerated Lifetime model. This

parameter describes the constant proportional effect of xi on the conditional

probability of completing a spell, which can be observed from

@ log �ðtijxiÞ
@xi

¼ @ log ðxiÞ
@xi

¼ �1: ð8:23Þ

This suggests that one can linearize the model as follows:

� log�0ðtiÞ ¼ �0 þ �1xi þ ui; ð8:24Þ
where �0ðtiÞ denotes the integrated baseline hazard defined as

Ð ti
0 �0ðsÞds. The

distribution of ui follows from

Pr½ui < U� ¼ Pr½� log�0ðtiÞ < U þ �0 þ �1xi�
¼ Pr½�0ðtiÞ > expð�U � �0 � �1xiÞ�
¼ Pr½ti > ��1

0 ½expð�U � �0 � �1xiÞ��
¼ Sð��1

0 ½expð�U � �0 � �1xiÞ�Þ
¼ expð� expð�UÞÞ;

ð8:25Þ

where we use that SðtÞ ¼ expð��ðtÞÞ (see (8.13)). Hence, ui has a type-I

extreme value distribution.
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Note that, in contrast to the Accelerated Lifetime specification, the depen-

dent variable in (8.24) may depend on unknown parameters. For example, it

is easy to show that the integrated baseline hazard for a Weibull distribution

with � ¼ 0 is �0ðtÞ ¼ t� and hence (8.24) simplifies to

�� ln ti ¼ �0 þ �1xi þ ui. This suggests that, if we divide both � parameters
by �, we obtain the Accelerated Lifetime model with a Weibull specification
for the baseline hazard. This is in fact the case and an exact proof of this

equivalence is straightforward. For other distributions it is in general not

possible to write (8.24) as a linear model for the log duration variable.

So far, we have considered only one explanatory variable. In general, one

may include K explanatory variables such that the  ð�Þ function becomes

 ðXiÞ ¼ expðXi�Þ; ð8:26Þ

where Xi is the familiar ð1	 ðK þ 1ÞÞ vector containing the K explanatory

variables and an intercept term and � is now a ðK þ 1Þ-dimensional para-
meter vector.

Finally, until now we have assumed that the explanatory variables sum-

marized in Xi have the same value over the complete duration. In practice

it is often the case that the values of the explanatory variables change over

time. For example, the price of a product may change regularly between

two purchases of a household. The inclusion of time-varying explanatory

variables is far from trivial (see Lancaster, 1990, pp. 23–32, for a discus-

sion). The simplest case corresponds to the situation where the explanatory

variables change a finite number of times over the duration; for example,

the price changes every week but is constant during the week. Denote this

time-varying explanatory variable by wi;t and assume that the value of wi;t

changes at �0; �1; �2; . . . ; �n where �0 ¼ 0 corresponds to the beginning of

the spell. Hence, wi;t equals wi;�i for t 2 ½�i; �iþ1Þ. The corresponding hazard
function is then given by �ðtijwi;ti Þ and the integrated hazard function

equals

�ðtijwi;tÞ ¼
Xn�1
i¼0

ð�iþ1
�i

�ðujwi;�i Þ du ð8:27Þ

(see also Gupta, 1991, for an example in marketing). To derive the survival

and density functions we can use the relation (8.13). Fortunately, we do not

need expressions for these functions for the estimation of the model para-

meters, as will become clear in the next section. For convenience, in the

remainder of this chapter we will however assume that the explanatory

variables are time invariant for simplicity of notation.
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8.2 Estimation

Estimation of duration models can be done via Maximum

Likelihood. The likelihood function is simply the product of the individual

density functions. As already discussed in the introduction to this chapter,

we are often faced with spells that started before the beginning of the mea-

surement period or with spells that have not yet ended at the end of the

observation period. This results in left-censored and right-censored data,

respectively. A possible solution to the censoring problem is to ignore

these censored data. This solution may, however, introduce a bias in the

estimated length of duration because censored data will usually correspond

to long durations. To deal with censoring, one therefore has to include the

censoring information in the likelihood function. The only information we

have on left- and right-censored observations is that the spell lasted for at

least the duration during the observation sample denoted by ti. The prob-

ability of this event is simply SðtijXiÞ. If we define di as a 0/1 dummy that is 1

if the observation is not censored and 0 if the observation is censored, the

likelihood function is

Lð�Þ ¼
YN
i¼1

f ðtijXiÞdiSðtijXiÞð1�diÞ; ð8:28Þ

where � is a vector of the model parameters consisting of � and the distribu-
tion-specific parameters (see again table 8.1). The log-likelihood function is

given by

lð�Þ ¼
XN
i¼1

ðdi log f ðtijxiÞ þ ð1� diÞ logSðtijxiÞÞ: ð8:29Þ

If we use f ðtijXiÞ ¼ �ðtijXiÞSðtijXiÞ as well as (8.13), we can write the log-
likelihood function as

lð�Þ ¼
XN
i¼1

ðdi log �ðtijXiÞ ��ðtijXiÞÞ ð8:30Þ

because �ðtijXiÞ equals � logSðtijxiÞ. Hence, we can express the full log-
likelihood function in terms of the hazard function.

The ML estimator �̂� is again the solution of the equation

@lð�Þ
@�

¼ 0: ð8:31Þ

In general, there are no closed-form expressions for this estimator and we

have to use numerical optimization algorithms such as Newton–Raphson to

maximize the log-likelihood function. Remember that the ML estimates can

be found by iterating over
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�h ¼ �h�1 � Hð�h�1Þ�1Gð�h�1Þ ð8:32Þ
until convergence, where Gð�Þ and Hð�Þ denote the first- and second-order
derivatives of the log-likelihood function.

The analytical form of the first- and second-order derivatives of the log-

likelihood depends on the form of the baseline hazard. In the remainder of

this section, we will derive the expression of both derivatives for an

Accelerated Lifetime model and a Proportional Hazard model for a

Weibull-type baseline hazard function. Results for other distributions can

be obtained in a similar way.

8.2.1 Accelerated Lifetime model

The hazard function of an Accelerated Lifetime model with a

Weibull specification reads as

�ðtijXiÞ ¼ expðXi�Þ�0ðexpðXi�ÞtiÞ
¼ expðXi�Þ�ðexpðXi�ÞtiÞ��1;

ð8:33Þ

where we put � ¼ 1 for identification. The survival function is then given by

SðtijXiÞ ¼ expð�ðexpðXi�ÞtiÞ�Þ: ð8:34Þ
To facilitate the differentiation of the likelihood function in an Accelerated

Lifetime model, it is convenient to define

zi ¼ � lnðexpðXi�ÞtiÞ ¼ �ðln ti þ Xi�Þ: ð8:35Þ
Straightforward substitution in (8.34) results in the survival function and the

density function of ti expressed in terms of zi, that is,

SðtijXiÞ ¼ expð� expðziÞÞ: ð8:36Þ

f ðtijXiÞ ¼ � expðzi � expðziÞÞ; ð8:37Þ
(see also Kalbfleisch and Prentice, 1980, chapter 2, for similar results for

other distributions than the Weibull). The log-likelihood function can be

written as

lð�Þ ¼
XN
i¼1

ðdi log f ðtijXiÞ þ ð1� diÞ logSðtijXiÞÞ

¼
XN
i¼1

ðdiðzi þ logð�ÞÞ � expðziÞÞ;
ð8:38Þ

where � ¼ ð�; �Þ.
The first-order derivative of the log-likelihood equals Gð�Þ ¼ ð@lð�Þ=@�0;

@lð�Þ=@�Þ0 with
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@lð�Þ
@�

¼
XN
i¼1

�ðdi � expðziÞÞX 0
i

@lð�Þ
@�

¼
XN
i¼1

diðzi þ 1Þ � expðziÞzi

�
;

ð8:39Þ

where we use that @zi=@� ¼ zi=� and @zi=@� ¼ �Xi. The Hessian equals

Hð�Þ ¼
@2lð�Þ
@�@�0

@2lð�Þ
@�@�

@2lð�Þ
@�@�0

@2lð�Þ
@�@�

0
BBB@

1
CCCA; ð8:40Þ

where

@2lð�Þ
@�@�0

¼ �
XN
i¼1

�2 expðziÞX 0
iXi

@2lð�Þ
@�@�

¼
XN
i¼1

ðdi � expðziÞÞX 0
i

@2lð�Þ
@�@�

¼ �
XN
i¼1

di þ expðziÞz2i
�2

:

ð8:41Þ

The ML estimates are found by iterating over (8.32) for properly chosen

starting values for � and �. One may, for example, use OLS estimates of � in
(8.18) as starting values and set � equal to 1. In section 8.A.1 we provide the
EViews code for estimating an Accelerated Lifetime model with a Weibull

specification.

8.2.2 Proportional Hazard model

The log-likelihood function for the Proportional Hazard model

�ðtijXiÞ ¼ expðXi�Þ�0ðtiÞ ð8:42Þ
is given by

lð�Þ ¼
XN
i¼1

ðdiXi�þ di log �0ðtiÞ � expðXi�Þ�0ðtiÞÞ; ð8:43Þ

which allows for various specifications of the baseline hazard. If we assume

that the parameters of the baseline hazard are summarized in �, the first-
order derivatives of the log-likelihood are given by
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@lð�Þ
@�

¼
XN
i¼1

ðdi � expðXi�Þ�0ðtiÞÞX 0
i

@lð�Þ
@�

¼
XN
i¼1

di

�0ðtiÞ
@�0ðtiÞ
@�

� expðXi�Þ
@�0ðtiÞ
@�

� 

:

ð8:44Þ

The second-order derivatives are given by

@2lð�Þ
@�@�0

¼ �
XN
i¼1
expðXi�Þ�0ðtiÞX 0

iXi

@2lð�Þ
@�@�

¼
XN
i¼1
expðXi�Þ

@�0ðtiÞ
@�0

X 0
i

@2lð�Þ
@�@�0

¼ �
XN
i¼1

di

�0ðtiÞ
@2�0ðtiÞ
@�@�0

� di

�0ðtiÞ2
@�0ðtiÞ
@�

@�0ðtiÞ
@�0

 

� expðXi�Þ
@2�0ðtiÞ
@�@�0

!
;

ð8:45Þ

which shows that we need the first- and second-order derivatives of the

baseline hazard and the integrated baseline hazard. If we assume a

Weibull baseline hazard with � ¼ 1, the integrated baseline hazard equals

�0ðtÞ ¼ t�. Straightforward differentiation gives

@�0ðtiÞ
@�

¼ ð1þ � logðtÞÞt� @2�0ðtiÞ
@�2

¼ ð2 logðtÞ þ �ðlogðtÞÞ2Þt��1

ð8:46Þ

@�0ðtiÞ
@�

¼ ta logðtÞ @2�0ðtiÞ
@�2

¼ taðlogðtÞÞ2 ð8:47Þ

The ML estimates are found by iterating over (8.32) for properly chosen

starting values for � and �. In section 8.A.2 we provide the EViews code for
estimating a Proportional Hazard model with a log-logistic baseline hazard

specification.

For both specifications, the ML estimator �̂� is asymptotically normally
distributed with the true parameter vector � as mean and the inverse of the
information matrix as covariance matrix. The covariance matrix can be

estimated by evaluating minus the inverse of the Hessian Hð�Þ in �̂�, and
hence we use for inference that

�̂� 
a Nð�;�Hð�̂�Þ�1Þ: ð8:48Þ
This means that we can rely on z-scores to examine the relevance of indivi-

dual explanatory variables.
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8.3 Diagnostics, model selection and forecasting

Once the parameters of the duration model have been estimated, it

is important to check the validity of the model before we can turn to the

interpretation of the estimation results. In section 8.3.1 we will discuss some

useful diagnostic tests for this purpose. If the model is found to be adequate,

one may consider deleting possibly redundant variables or compare alterna-

tive models using selection criteria. This will be addressed in section 8.3.2.

Finally, one may want to compare models on their forecasting performance.

In section 8.3.3 we discuss several ways to use the model for prediction.

8.3.1 Diagnostics

Just as for the standard regression model, the analysis of the resi-

duals is the basis for checking the empirical adequacy of the estimated

model. They display the deviations from the model and may suggest direc-

tions for model improvement. As we have already discussed, it is possible to

choose from among many distributions which lead to different forms of the

hazard function. It is therefore convenient for a general diagnostic checking

procedure to employ errors, which do not depend on the specification of the

hazard function. Because the distribution of the error of (8.24) is the same

for all specifications of the baseline hazard, one may opt for ui ¼ � log�0

ðtiÞ � Xi� to construct residuals. In practice, however, one tends to consider
expð�uiÞ ¼ �0ðtiÞ expðXi�Þ ¼ �ðtijXiÞ. Hence,

ei ¼ �ðtijXiÞ ¼ � logSðtijXiÞ for i ¼ 1; . . . ;N ð8:49Þ
is defined as the generalized error term. The distribution of ei follows from

Pr½ei < E� ¼ Pr½�ðtijXiÞ < E�
¼ Pr½ti < ��1ðEjXiÞ�
¼ Sð��1ðEjXiÞÞ
¼ 1� expð�EÞ;

ð8:50Þ

where we use that SðtÞ ¼ expð��ðtÞÞ. Hence, the distribution of the general-
ized error terms is an exponential distribution with � ¼ 1 (see table 8.1). It

therefore does not depend on the functional form of the hazard function.

The generalized residuals are obtained by evaluating the integrated hazard

in the ML estimates. For the Accelerated Lifetime model with a Weibull

distribution, the generalized residuals are given by

êei ¼ ðexpðXi�̂�ÞtiÞ�̂�; ð8:51Þ
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while for the Proportional Hazard specification we obtain

êei ¼ expðXi�̂�Þt�̂�i : ð8:52Þ
To check the empirical adequacy of the model, one may analyze whether

the residuals are drawings from an exponential distribution. One can make a

graph of the empirical cumulative distribution function of the residuals

minus the theoretical cumulative distribution function where the former is

defined as

FêeðxÞ ¼
#½êei < x�

N
; ð8:53Þ

where #½êei < x� denotes the number of generalized residuals smaller than x.

This graph should be approximately a straight horizontal line on the hor-

izontal axis (see Lawless, 1982, ch. 9, for more discussion). The integrated

hazard function of an exponential distribution with � ¼ 1 is
R t

0 1du ¼ t. We

may therefore also plot the empirical integrated hazard function, evaluated

at x, against x. The relevant points should approximately lie on a 45 degree

line (see Lancaster, 1990, ch. 11, and Kiefer, 1988, for a discussion).

In this chapter we will consider a general test for misspecification of the

duration model using the conditional moment test discussed in section 7.3.1.

We compare the empirical moments of the generalized residuals with their

theoretical counterparts using the approach of Newey (1985) and Tauchen

(1985) (see again Pagan and Vella, 1989). The theoretical moments of the

exponential distribution with � ¼ 1 are given by

E½er
i � ¼ r! ð8:54Þ

Because the expectation of ei and the sample mean of êei are both 1, one

sometimes defines the generalized residuals as êei � 1 to obtain zero mean
residuals. In this section we will continue with the definition in (8.49).

Suppose that one wants to test whether the third moment of the general-

ized residuals equals 6, that is, we want to test whether

E½e3i � � 6 ¼ 0: ð8:55Þ
Again, we check whether the difference between the theoretical moment and

the empirical moment is zero, that is, we test whether the sample averages of

mi ¼ êe3i � 6 ð8:56Þ
differ significantly from zero. To compute the test we again need the first-

order derivative of the log density function of each observation, that is,

Gi ¼
@ log f ðtijXiÞ

@�
for i ¼ 1; . . . ;N: ð8:57Þ
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These derivatives are contained in the gradient of the log-likelihood func-

tions (see section 8.2). The test statistic is now an F-test or Likelihood Ratio

test for the significance of the intercept !0 in the following auxiliary regres-
sion model

mi ¼ !0 þ Gi!1 þ �i ð8:58Þ
(see Pagan and Vella, 1989, for details). If the test statistic is too large, we

reject the null hypothesis that the empirical moment of the generalized resi-

duals is equal to the theoretical moment, which in turn indicates misspecifi-

cation of the model. In that case one may decide to change the baseline

hazard of the model. If one has specified a monotone baseline hazard, one

may opt for a non-monotone hazard, such as, for example, the hazard

function of a loglogistic distribution or the flexible baseline hazard specifica-

tion in (8.11). Note that the test as described above is valid only for uncen-

sored observations. If we want to apply the test for censored observations,

we have to adjust the moment conditions.

Finally, there exist several other tests for misspecification in duration

models. The interested reader is referred to, for example, Kiefer (1985),

Lawless (1982, ch. 9), Lancaster (1990, ch. 11).

8.3.2 Model selection

Once one or some models have been considered empirically ade-

quate, one may compare the different models or examine whether or not

certain explanatory variables can be deleted.

The significance of the individual parameters can be analyzed using z-

scores, which are defined as the parameter estimates divided by their esti-

mated standard errors (see (8.48)). If one wants to test for the redundancy of

more than one explanatory variable, one can use a Likelihood Ratio test as

before (see chapter 3). The LR test statistic is asymptotically �2 distributed
with degrees of freedom equal to the number of parameter restrictions.

To compare different models we may consider the pseudo-R2 measure,

which is often used in non-linear models. If we denote lð�̂�0Þ as the value of the
log-likelihood function if the model contains only intercept parameters, that

is expðXi�Þ ¼ expð�0Þ, the pseudo-R2 measure is

R2 ¼ 1� lð�̂�Þ
lð�̂�0Þ

: ð8:59Þ

This measure provides an indication of the contribution of the explanatory

variables to the fit of the model. Indeed, one may also perform a Likelihood

Ratio test for the significance of the � parameters except for �0.
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Finally, if one wants to compare models with different sets of explanatory

variables, one may use the familiar AIC and BIC as discussed in section

4.3.2.

8.3.3 Forecasting

The duration model can be used to generate several types of pre-

diction, depending on the interest of the researcher. If one is interested in the

duration of a spell for an individual, one may use

E½TijXi� ¼
ð1
0

ti f ðtijXiÞdti: ð8:60Þ

If the model that generates this forecast is an Accelerated Lifetime model

with a Weibull distribution, this simplifies to expð�Xi�Þ�ð1þ 1=�Þ, where �
denotes the Gamma function defined as �ð�Þ ¼ Ð1

0 x��1 expð�xÞdx (see also
section A.2 in the Appendix). For the Proportional Hazard specification, the

expectation equals expð�Xi�Þ1=a�ð1þ 1=�Þ. To evaluate the forecasting per-
formance of a model, one may compare the forecasted durations with the

actual durations within-sample or for a hold-out-sample.

Often, however, one is interested in the probability that the spell will end

in the next �t period given that it lasted until t. For individual i this prob-

ability is given by

Pr½Ti � t þ�tjTi > t;Xi� ¼ 1� Pr½Ti > t þ�tjTi > t;Xi�

¼ 1� Pr½Ti > t þ�tjXi�
Pr½T > tjXi�

¼ 1� Sðtþ�tjXiÞ
SðtjXiÞ

:

ð8:61Þ

To evaluate this forecast one may compare the expected number of ended

spells in period �t with the true number of ended spells. This may again be

done within-sample or for a hold-out sample.

8.4 Modeling interpurchase times

To illustrate the analysis of duration data, we consider the purchase

timing of liquid detergents of households. This scanner data set has already

been discussed in section 2.2.6. To model the interpurchase times we first

consider an Accelerated Lifetime model with a Weibull distribution (8.33).

As explanatory variables we consider three 0/1 dummy variables which indi-

cate whether the brand was only on display, only featured or displayed as

well as featured at the time of the purchase. We also include the difference of
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the log of the price of the purchased brand on the current purchase occasion

and on the previous purchase occasion. Additionally, we include household

size, the volume of liquid detergent purchased on the previous purchase

occasion (divided by 32 oz.) and non-detergent expenditure (divided by

100). The last two variables are used as a proxy for ‘‘regular’’ and ‘‘fill-in’’

trips and to take into account the effects of household inventory behavior on

purchase timing, respectively (see also Chintagunta and Prasad, 1998). We

have 2,657 interpurchase times. As we have to construct log price differences,

we lose the first observation of each household and hence our estimation

sample contains 2,257 observations.

Table 8.2 shows the ML estimates of the model parameters. The model

parameters are estimated using EViews 3.1. The EViews code is provided in

section 8.A.1. The LR test statistic for the significance of the explanatory

variables (except for the intercept parameter) equals 99.80, and hence these

variables seem to have explanatory power for the interpurchase times. The

pseudo-R2 is, however, only 0.02.

To check the empirical validity of the hazard specification we consider the

conditional moment tests on the generalized residuals as discussed in section

8.3.1. We test whether the second, third and fourth moments of the general-

ized residuals equal 2, 6 and 24, respectively. The LR test statistics for the

Table 8.2 Parameter estimates of a Weibull Accelerated Lifetime model for

purchase timing of liquid detergents

Variables Parameter Standard error

Intercept

Household size

Non-detergent expenditure

Volume previous occasion

�4:198***
0:119***
0:008

�0:068***

0.053

0.011

0.034

0.017

Log price difference

Display only

Feature only

Display and feature

�0:132***
0:004

�0:180***
�0:112**

0.040

0.105

0.066

0.051

Shape parameter �̂� 1:074*** 0.017

max. log-likelihood value �3257:733

Notes:

*** Significant at the 0.01 level, ** at the 0.05 level, * at the 0.10 level

The total number of observations is 2,257.



A duration dependent variable 177

significance of the intercepts in the auxiliary regression (8.58) are 84.21, 28.90

and 11.86, respectively. This suggests that the hazard function is misspecified

and that we need a more flexible hazard specification.

In a second attempt we estimate a Proportional Hazard model (8.21) with

a loglogistic baseline hazard (see table 8.1). Hence, the hazard function is

specified as

�ðtijXiÞ ¼ expðXi�Þ
��ð�tiÞ��1
ð1þ ð�tiÞ�Þ

: ð8:62Þ

We include the same explanatory variables as in the Accelerated Lifetime

model.

Table 8.3 shows the ML estimates of the model parameters. The model

parameters are estimated using EViews 3.1. The EViews code is provided in

section 8.A.2. To check the empirical validity of this hazard specification we

consider again the conditional moment tests on the generalized residual as

discussed in section 8.3.1. The generalized residuals are given by

êei ¼ expðXi�̂�Þ logð1þ ð�̂�tiÞ�̂�Þ: ð8:63Þ

Table 8.3 Parameter estimates of a loglogistic Proportional Hazard model

for purchase timing of liquid detergents

Variables Parameter Standard error

Intercept

Household size

Non-detergent expenditure

Volume previous occasion

0:284**
0:127***
0:007

�0:090***

0.131

0.014

0.041

0.022

Log price difference

Display only

Feature only

Display and feature

�0:103*
0:006

�0:143*
�0:095

0.054

0.134

0.085

0.063

Shape parameter �̂�
Scale parameter �̂�

1:579***
�0:019***

0.054

0.002

max. log-likelihood value �11148:52

Notes:

*** Significant at the 0.01 level, ** at the 0.05 level, * at the 0.10 level

The total number of observations is 2,257.
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We perform the same test for the second, third and fourth moments of the

generalized residuals as before. The LR test statistics for the significance of

the intercepts in the auxiliary regression (8.58) now equal 0.70, 0.35 and 1.94,

respectively, and hence the hazard specification now does not seem to be

misspecified. To illustrate this statement, we show in figure 8.3 the graph of

the empirical integrated hazard versus the generalized residuals. If the model

is well specified this graph should be approximately a straight 45 degree line.

We see that the graph is very close to the straight line, indicating an appro-

priate specification of the hazard function.

As the duration model does not seem to be misspecified we can continue

with parameter interpretation. The first panel of table 8.3 shows the effects of

the non-marketing mix variables on interpurchase times. Remember that the

� parameters of the Proportional Hazard model correspond to the partial
derivatives of the hazard function with respect to the explanatory variables.

A positive coefficient therefore implies that an increase in the explanatory

variable leads to an increase in the probability that detergent will be pur-

chased given that it has not been purchased so far. As expected, household

size has a significantly positive effect; hence for larger households the inter-

purchase time will be longer. The same is true for non-detergent expendi-

tures. Households appear to be more inclined to buy liquid detergents on

regular shopping trips than on fill-in trips (see also Chintagunta and Prasad,
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Figure 8.3 Empirical integrated hazard function for generalized residuals
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1998, for similar results). Note, however, that in our case this effect is not

significant. Not surprisingly, the volume purchased on the previous purchase

occasion has a significant negative effect on the conditional probability that

detergent is purchased.

The second panel of table 8.3 shows the effects of the marketing mix

variables. The log price difference has a negative effect on the conditional

probability that detergent is purchased. Display has a positive effect, but this

effect is not significant. Surprisingly, feature has a negative effect but this

effect is just significant at the 10% level. The effects of combined display and

feature are not significant.

8.5 Advanced topics

In the final section of this chapter we consider the modeling of

unobserved heterogeneity in the two duration model specifications.

To capture differences in duration across individuals, one may include

individual-specific explanatory variables in the model. For example, in the

illustration in the previous section we included household size to capture

differences in interpurchase times across households. In many cases, indivi-

dual-specific explanatory variables are not available or are not informative

enough to describe the differences in duration across individuals, leading to a

misspecification of the duration model. To capture this unobserved hetero-

geneity one may include an individual-specific parameter in the model,

resulting in a conditional hazard specification

�ðtijXi; viÞ; ð8:64Þ

where vi denotes the individual-specific effect. Because it is usually impossi-

ble, owing to a lack of observations, to estimate individual-specific par-

ameters, one tends to assume that vi is a draw from a population

distribution (see also some of the previous Advanced Topics sections).

Given (8.64), the conditional integrated hazard function is

�ðtijXi; viÞ ¼
ðti

0

�ðujXi; viÞdu ð8:65Þ

such that the conditional survival and density functions are

SðtijXi; viÞ ¼ expð��ðtijXi; viÞÞ

f ðtijXi; viÞ ¼ � @ logSðtijXi; viÞ
@ti

;
ð8:66Þ
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respectively. The unconditional density function results from

f ðtijXiÞ ¼
ð
vi

f ðtijXi; viÞf ðviÞdvi; ð8:67Þ

where f ðtijXi; viÞ is the conditional density function of ti and f ðviÞ the density
function of distribution describing the unobserved heterogeneity. Likewise,

SðtijXiÞ ¼
ð
vi

SðtijXi; viÞf ðviÞdvi; ð8:68Þ

and hence the unconditional hazard function is defined as the ratio of (8.67)

and (8.68).

In the remainder of this section, we will illustrate the inclusion of hetero-

geneity in an Accelerated Lifetime and a Proportional Hazard model with a

Weibull distribution, where we assume a normalized Gamma distribution for

the unobserved heterogeneity. The Gamma distribution has mean 1 and

variance 1=� and its density function reads

f ðviÞ ¼
��

�ð�Þ expð��viÞv��1i ð8:69Þ

(see also section A.2 in the Appendix).

Accelerated Lifetime model

To incorporate heterogeneity in the Accelerated Lifetime model, we

adjust the survival function (8.34) to obtain the conditional survival function

SðtijXi; viÞ ¼ expðð�vi expðXi�ÞtiÞ�Þ: ð8:70Þ
The unconditional survival function is given by

SðtijXiÞ ¼
ð1
0

f ðviÞSðtijXi; viÞdvi

¼
ð1
0

��

�ð�Þ expð��viÞv��1i expðð�vi expðXi�ÞtiÞ�Þdvi

¼ ð1þ 1
�
ðexpðXi�ÞtiÞ�Þ��:

ð8:71Þ

Differentiating with respect to ti provides the unconditional density function

f ðtijXiÞ ¼ expðXi�Þ�ðexpðXi�ÞtiÞ��1 1þ 1
�
ðexpðXi�ÞtiÞ�

� 
���1

ð8:72Þ
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and hence the hazard function equals

�ðtijXiÞ ¼
expðXi�Þ�ðexpðXi�ÞtiÞ��1

1þ 1
�
ðexpðXi�ÞtiÞ�

� 
 : ð8:73Þ

For �! 1, we obtain the hazard function of the Weibull distribution (8.33)

because in that case the variance of vi is zero. For � ¼ 1, we obtain the

hazard function of a loglogistic distribution. This shows that it is difficult

to distinguish between the distribution of the baseline hazard and the dis-

tribution of the unobserved heterogeneity. In fact, the Accelerated Lifetime

model is not identified in the presence of heterogeneity, in the sense that we

cannot uniquely determine the separate effects due to the explanatory vari-

ables, the duration distribution and the unobserved heterogeneity, given

knowledge of the survival function. The Proportional Hazard model, how-

ever, is identified under mild assumptions (see Elbers and Ridder, 1982). In

the remainder of this section, we will illustrate an example of modeling

unobserved heterogeneity in a Proportional Hazard model.

Proportional Hazard model

To incorporate unobserved heterogeneity in the Proportional

Hazard model we adjust (8.42) as follows

�ðtijXi; viÞ ¼ expðXi�Þ�0ðtiÞvi: ð8:74Þ
From (8.66) it follows that conditional integrated hazard and survival func-

tions are given by

�ðtijXi; viÞ ¼
ðti

0

vi expðXi�Þ�0ðuÞdu ¼ vi expðXi�Þ�0ðtiÞ
SðtijXi; viÞ ¼ expð�vi expðXi�Þ�0ðtiÞÞ:

ð8:75Þ

For a Weibull distribution the integrated baseline hazard is t�i and hence the

unconditional survival function is

SðtijXiÞ ¼
ð1
0

expð�vi expðXi�Þt�Þ
��

�ð�Þ expð��viÞv��1i dvi

¼ 1þ 1
�
expðXi�Þt�

� 
��
:

ð8:76Þ

Differentiating with respect to ti gives the unconditional density function

f ðtijXiÞ ¼ expðXi�Þ�t��1 1þ 1
�
expðXi�Þt�

� 
���1
ð8:77Þ
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and hence the unconditional hazard function equals

�ðtijXiÞ ¼
expðXi�Þ�t��1

1þ 1
�
expðXi�Þt�

� 
 : ð8:78Þ

For �! 1, the hazard function simplifies to the proportional hazard func-
tion of a Weibull distribution. The variance of vi is in that case zero. In

contrast to the Accelerated Lifetime specification, the hazard function does

not simplify to the hazard function of a Proportional Hazard model with

loglogistic baseline hazard for � ¼ 1, which illustrates the differences in

identification in Accelerated Lifetime and proportional hazard specifications.

8.A EViews code

This appendix provides the EViews code we used to estimate the

models in section 8.4. In the code the following abbreviations are used for

the variables:

. interpurch denotes the interpurchase time. The dummy variable cen-

sdum is 1 if the corresponding interpurchase time observation is

not censored and 0 if it is censored.
. hhsize, nondexp and prevpurch denote household size, nondetergent

expenditure and volume purchased on the previous purchase occa-

sion, respectively.
. dlprice, displ, feat and dispfeat denote the log price difference of the

purchased product, a 0/1 display only dummy, 0/1 feature only

dummy and a 0/1 display and feature dummy, respectively.

8.A.1 Accelerated Lifetime model (Weibull distribution)

load c:\data\deterg.wf1

’ Declare coefficient vectors to use in Maximum Likelihood estimation

coef(8) b = 0

coef(1) a = 1

’ Specify log-likelihood for Accelerated Lifetime Weibull model

logl llal

llal.append @logl loglal

’ Define exponent part

llal.append xb=b(1)+b(2)*hhsize+b(3)*nondexp/100+b(4)*prevpurch/32

+b(5)*dlprice+b(6)*displ+b(7)*feat+b(8)*dispfeat
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’ Define z

llal.append z=a(1)*(log(interpurch)+xb)

llal.append loglal = censdum*(z+log(a(1)))-exp(z)

’ Estimate by Maximum Likelihood

smpl 1 2257

llal.ml(d,m=1000)

show llal.output

’ Generate generalized residuals

genr res=(exp(xb)*interpurch)^a(1)

8.A.2 Proportional Hazard model (loglogistic distribution)

load c:\data\deterg\deterg.wf1

’ Declare coefficient vectors to use in Maximum Likelihood Estimation

coef(1) a = 1

coef(1) g = 1

’ Specify log-likelihood for log-logistic Proportional Hazard model

logl llph

llph.append @logl loglph

’ Define exponent part

llph.append xb=b(1)+b(2)*hhsize+b(3)*nondexp/100+b(4)*prevpurch/32

+b(5)*dlprice+b(6)*displ+b(7)*feat+b(8)*dispfeat

’ Define log hazard and integrated hazard function

llph.append lhaz=log(a(1))+log(g(1))+(a(1)-1)*log(g(1)*interpurch)

-log(1+(g(1)*interpurch)^(a(1)))

llph.append ihaz=log(1+(g(1)*interpurch)^(a(1)))

llph.append loglph = censdum*(xb+lhaz)-exp(xb)*ihaz

’ Estimate by Maximum Likelihood

smpl 1 2257

llph.ml(d,m=1000)

show llph.output

’ Generate generalized residuals

genr res=exp(xb)*log(1+(g(1)*interpurch)^a(1))
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A.1 Overview of matrix algebra

In this appendix we provide a short overview of the matrix algebra

we use in this book. We first start with some notation. For simplicity we

assume that the dimension of the vectors is 3 or 4, because this also matches

with several examples considered in the book. Generalization to higher

dimensions is straightforward.

A 3-dimensional column vector � with elements �1; �2; �3 is defined as

� ¼
�1
�2
�3

0
@

1
A: ðA:1Þ

If we transpose the column vector �, we obtain a 3-dimensional row vector �0

defined as

�0 ¼ ð�1; �2; �3Þ: ðA:2Þ
A 4	 3 matrix X with elements xi;j is defined as

X ¼
x1;1 x1;2 x1;3
x2;1 x2;2 x2;3
x3;1 x3;2 x3;3
x4;1 x4;2 x4;3

0
BB@

1
CCA: ðA:3Þ

The transpose of this matrix X is the 3	 4 matrix denoted by X 0, that is,

X 0 ¼
x1;1 x2;1 x3;1 x4;1
x1;2 x2;2 x3;2 x4;2
x1;3 x2;3 x3;3 x4;3

0
@

1
A: ðA:4Þ

An identity matrix is a symmetric matrix with a value of 1 on the diagonal

and zeros elsewhere. For example, the 3	 3 identity matrix denoted by I3, is

I3 ¼
1 0 0
0 1 0
0 0 1

0
@

1
A: ðA:5Þ

184
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One can add and subtract matrices (or vectors) of the same format in the

same way as scalar variables. For example, the difference between two 3	 4
matrices X and Y is simply

X � Y ¼

x1;1 x1;2 x1;3

x2;1 x2;2 x2;3

x3;1 x3;2 x3;3

x4;1 x4;2 x4;3

0
BBB@

1
CCCA�

y1;1 y1;2 y1;3

y2;1 y2;2 y2;3

y3;1 y3;2 y3;3

y4;1 y4;2 y4;3

0
BBB@

1
CCCA

¼

x1;1 � y1;1 x1;2 � y1;2 x1;3 � y1;3

x2;1 � y2;1 x2;2 � y2;2 x2;3 � y2;3

x3;1 � y3;1 x3;2 � y3;2 x3;3 � y3;3

x4;1 � y4;1 x4;2 � y4;2 x4;3 � y4;3

0
BBB@

1
CCCA:

ðA:6Þ

It is also possible to multiply two vectors. For example, the so-called inner

product of the 3-dimensional row vector � is defined as

�0� ¼ ð�1; �2; �3Þ
�1
�2
�3

0
@

1
A ¼ �21 þ �22 þ �23 ¼

X3
k¼1

�2k: ðA:7Þ

Hence the outcome is a scalar. Another multiplication concerns the outer

product. The outer product of the same vector � is defined as

��0 ¼
�1
�2
�3

0
@

1
Að�1; �2; �3Þ ¼ �21 �1�2 �1�3

�2�1 �22 �2�3
�3�1 �3�2 �23

0
@

1
A; ðA:8Þ

which is a 3	 3 matrix.
The matrix product of a 3	 4 matrix Y and a 4	 3 matrix X is defined as

YX ¼
y1;1 y1;2 y1;3 y1;4

y2;1 y2;2 y2;3 y2;4

y3;1 y3;2 y3;3 y3;4

0
B@

1
CA

x1;1 x1;2 x1;3

x2;1 x2;2 x2;3

x3;1 x3;2 x3;3

x4;1 x4;2 x4;3

0
BBB@

1
CCCA

¼
y1;1x1;1 þ y1;2x2;1 þ y1;3x3;1 þ y1;4x4;1

y2;1x1;1 þ y2;2x2;1 þ y2;3x3;1 þ y2;4x4;1

y3;1x1;1 þ y3;2x2;1 þ y3;3x3;1 þ y3;4x4;1

0
B@
. . . y1;1x1;3 þ y1;2x2;3 þ y1;3; x3;3 þ y1;4x4;3

. . . y2;1x1;3 þ y2;2x2;3 þ y2;3; x3;3 þ y2;4x4;3

. . . y3;1x1;3 þ y3;2x2;3 þ y3;3; x3;3 þ y3;4x4;3

1
CA

ðA:9Þ
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which is a 3	 3 matrix. In general, multiplying an N 	 K matrix with a K 	
M matrix results in an N 	 M matrix. Hence, one multiplies each row of the

matrix Y with each column of the matrix X.

The inverse of a 3	 3 matrix X , denoted by the 3	 3 matrix X�1, is
defined by

XX�1 ¼ I3 ðA:10Þ

such that the matrix product of X and X�1 results in the 3	 3 identity
matrix I3 defined in (A.5). This inverse is defined only for squared matrices.

Next, we consider derivatives. If X is a 3-dimensional column vector and �
a 3-dimensional row vector, the first-order derivative of X� ¼ x1�1 þ x2�2 þ
x3�3 with respect to the vector � is defined as

@ðX�Þ
@�

¼ X 0; ðA:11Þ

which is a 3-dimensional column vector containing

@X�

@�1
@X�

@�2
@X�

@�3

0
BBBBBB@

1
CCCCCCA
: ðA:12Þ

Likewise, the first-order derivative of X� with respect to the vector �0 is

@ðX�Þ
@�0

¼ X; ðA:13Þ

which is now a row vector. Just like differentiating to a scalar, we can use the

chain rule. The first-order derivative of ðX�Þ2 with respect to � is therefore

@ðX�Þ2
@�

¼ 2ðX�Þ @ðX�Þ
@�

¼ 2ðX�ÞX 0 ¼ 2X 0ðX�Þ; ðA:14Þ

which is again a 3-dimensional column vector. Hence, the second-order

derivative of ðX�Þ2 is

@ðX�Þ2
@�@�0

¼ 2X 0 @ðX�Þ
@�0

¼ 2X 0X; ðA:15Þ

which is a symmetric 3	 3 matrix. This matrix is in fact
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ð@X�Þ2
@2�1

@ðX�Þ2
@�1@�2

@ðX�Þ2
@�1@�3

@ðX�Þ2
@�2@�1

@ðX�Þ2
@2�2

@ðX�Þ2
@�2@�3

@ðX�Þ2
@�3@�1

@ðX�Þ2
@�3@�2

@ðX�Þ2
@2�3

0
BBBBBBBB@

1
CCCCCCCCA
: ðA:16Þ

The symmetry occurs as

ð@X�Þ2
@�j@�i

¼ ð@X�Þ2
@�i@�j

: ðA:17Þ

A.2 Overview of distributions

In this section we give an overview of the key properties of the

distributions used in various chapters of this book. Table A.1 displays the

density functions, the means and variances of the relevant univariate discrete

distributions. These are the binomial, the Bernoulli, the negative binomial

and the geometric distributions. Table A.2 displays similar results for rele-

vant multivariate discrete distributions, which are the multinomial and the

multivariate Bernoulli distribution. Important properties of various other

relevant continuous distributions are displayed in tables A.3 and A.4. For

further reference and more details, we refer the interested reader to Johnson

and Kotz (1969, 1970, 1972).

In chapter 7 we need the mean and the variance of truncated distributions.

Suppose that Y 
 Nð�; �2Þ. The expectation and variance of Y given that Y

is larger than c equal

E½Y jY > c� ¼ �þ � �ððc � �Þ=�Þ
1��ððc� �Þ=�Þ

V½Y jY > c� ¼ �2ð1þ ððc � �Þ=�Þ�ððc � �Þ=�Þ � �ððc � �Þ=�Þ2Þ;
ðA:18Þ

where �ð�Þ and �ð�Þ are the pdf and cdf of a standard normal distribution and
where �ð�Þ ¼ �ð�Þ=ð1��ð�ÞÞ (see table A.3). Likewise, the expectation and
variance of Y given that Y is smaller than c equal

E½Y jY < c� ¼ �þ ���ððc � �Þ=�Þ
�ððc � �Þ=�Þ

V½Y jY < c� ¼ �2ð1� ððc � �Þ=�Þ�ð�ðc � �Þ=�Þ � �ð�ðc � �Þ=�Þ2Þ
ðA:19Þ
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(see Johnson and Kotz, 1970, pp. 81–83, and Gourieroux and Monfort,

1995, p. 483).

In many chapters we rely on the multivariate normal distribution. To

illustrate some of its properties, consider the bivariate random variable

Y ¼ ðY1;Y2Þ, which is normally distributed with mean � ¼ ð�1; �2Þ and
covariance matrix

� ¼ �21 �12

�12 �22

 !
; ðA:20Þ

or, in shorthand, Y 
 Nð�;�Þ. The term �12 denotes the covariance between
Y1 and Y2, that is, E½ðY1 � �1ÞðY2 � �2Þ�. The correlation between Y1 and Y2
is defined as � ¼ �12=ð�1�2Þ. The density function of this bivariate normal
distribution is

f ðy1; y2Þ ¼
1ffiffiffiffiffiffi
2�

p� �2 1

�1�2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
exp

� �1
2ð1� �2Þ ððy1 � �1Þ2=�21 � 2�ðy1 � �1Þðy2 � �2Þ=

ð�1�2Þ þ ðy2 � �2Þ2=�22Þ


: ðA:21Þ

An important property of the bivariate (or multivariate) normal distribu-

tion is that the marginal and conditional distributions of Y1 and Y2 are again

normal, that is,

Y1 
 Nð�1; �21Þ
Y2 
 Nð�2; �22Þ

Y1jy2 
 Nð�1 þ �12=�22ðy2 � �2Þ; �21 � �212=�22Þ
Y2jy1 
 Nð�2 þ �12=�21ðy1 � �1Þ; �22 � �212=�21Þ:

ðA:22Þ

The results in (A.22) can be extended to a J-dimensional normally distrib-

uted random variable in a straightforward way (see Johnson and Kotz,

1972).

A.3 Critical values

In this section we provide some important critical values for the test

statistics used in the book. Table A.5 provides the critical values for normally

distributed test statistics, while table A.6 displays the critical values for �2

distributed test statistics, and table A.7 gives some critical values for the

Fðk; nÞ distribution.
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Table A.5 Some critical values for a

normally distributed test statistic

Significance level

20% 10% 5% 1%

1.282 1.645 1.960 2.576

Note: The critical values are for a two-sided test.

Table A.6 Some critical values for a �2ð	Þ distributed test statistic

Degrees of freedom of

the �2ð	Þ distribution
Significance level

20% 10% 5% 1%

1

2

3

4

5

6

7

8

9

10

1.642

3.219

4.642

5.989

7.289

8.558

9.803

11.030

12.242

13.442

2.706

4.605

6.251

7.779

9.236

10.645

12.017

13.362

14.684

15.987

3.841

5.991

7.814

9.488

11.071

12.592

14.067

15.508

16.919

18.307

6.635

9.210

11.345

13.278

15.086

16.812

18.475

20.090

21.667

23.209
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Table A.7 Some critical values for an Fðk; nÞ distributed test statistic

Degrees of

freedom of

denominator

n

s.l.

Degrees of freedom for numerator k

1 2 3 4 5 6 7 8 9 10

10

10%

5%

1%

3.29

4.96

10.04

2.92

4.10

7.56

2.73

3.71

6.55

2.61

3.48

5.99

2.52

3.33

5.64

2.46

3.22

5.39

2.41

3.14

5.20

2.38

3.07

5.06

2.35

3.02

4.94

2.32

2.98

4.85

20

10%

5%

1%

2.97

4.35

8.10

2.59

3.49

5.85

2.38

3.10

4.94

2.25

2.87

4.43

2.16

2.71

4.10

2.09

2.60

3.87

2.04

2.51

3.70

2.00

2.45

3.56

1.96

2.39

3.46

1.94

2.35

3.37

30

10%

5%

1%

2.88

4.17

7.56

2.49

3.32

5.39

2.28

2.92

4.51

2.14

2.69

4.02

2.05

2.53

3.70

1.98

2.42

3.30

1.93

2.33

3.30

1.88

2.27

3.17

1.85

2.21

3.07

1.82

2.16

2.98

40

10%

5%

1%

2.84

4.08

7.31

2.44

3.23

5.18

2.23

2.84

4.51

2.09

2.61

4.02

2.00

2.45

3.70

1.93

2.34

3.47

1.87

2.25

3.30

1.83

2.18

3.17

1.79

2.12

3.07

1.76

2.08

2.98

60

10%

5%

1%

2.79

4.00

7.08

2.39

3.15

4.98

2.18

2.76

4.13

2.04

2.53

3.83

1.95

2.37

3.51

1.87

2.35

3.29

1.82

2.17

3.12

1.77

2.10

2.99

1.74

2.04

2.89

1.71

1.99

2.80

120

10%

5%

1%

2.75

3.92

6.85

2.35

3.07

4.79

2.13

2.68

3.95

1.99

2.45

3.48

1.90

2.29

3.17

1.82

2.17

2.96

1.77

2.09

2.79

1.72

2.02

2.66

1.68

1.96

2.56

1.65

1.91

2.47

200

10%

5%

1%

2.73

3.89

6.76

2.33

3.04

4.71

2.11

2.65

3.88

1.97

2.42

3.41

1.88

2.26

3.11

1.80

2.14

2.89

1.75

2.06

2.73

1.70

1.98

2.60

1.66

1.93

2.50

1.63

1.88

2.41

1 10%

5%

1%

2.71

3.84

6.63

2.30

3.00

4.61

2.08

2.60

3.78

1.94

2.37

3.32

1.85

2.21

3.32

1.77

2.10

2.80

1.72

2.01

2.64

1.67

1.94

2.51

1.63

1.88

2.41

1.60

1.83

2.32

Note:

s.l. ¼ significance level
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