
Ronald T. Kneusel

Numbers
and
Computers

Numbers and Computers

Ronald T. Kneusel

Numbers and Computers

123

Ronald T. Kneusel
Broomfield, CO, USA

ISBN 978-3-319-17259-0 ISBN 978-3-319-17260-6 (eBook)
DOI 10.1007/978-3-319-17260-6

Library of Congress Control Number: 2015935728

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com

To my parents, Janet and Tom, for fostering
my love of science.

Preface

This is a book about numbers and how those numbers are represented in and
operated on by computers.

Of course, numbers are fundamental to how computers operate because, in the
end, everything a computer works with is a number. It is crucial that people who de-
velop code understand this area because the numerical operations allowed by com-
puters and the limitations of those operations, especially in the area of floating point
math, affect virtually everything people try to do with computers. This book aims
to help by exploring, in sufficient, but not overwhelming, detail, just what it is that
computers do with numbers.

Who Should Read This Book

This book is for anyone who develops software including software engineers, scien-
tists, computer science students, and engineering students and anyone who programs
for fun.

If you are a software engineer, you should already be familiar with many of the
topics in this book, especially if you have been in the field for any length of time.
Still, I urge you to press on, for perhaps you will find a gem or two which are new
to you.

If you are old enough, you will remember the days of Fortran and mainframes. If
so, like the software engineers above, you are probably also familiar with the basics
of how computers represent and operate on numbers, but, also like the software en-
gineers above, you will likely find a gem or two of your own. Scientists in particular
should be aware of the limitations and pitfalls associated with using floating point
numbers since few things in science are restricted to integers.

Students need this book because it is essential to know what the computer is
doing under the hood. After all, if you are going to make a career of computers,
why would you not want to know how the machine works?

vii

viii Preface

How to Use This Book

This book consists of two main parts. The first deals with standard representations of
integers and floating point numbers, while the second details several other number
representations which are nice to know about and handy from time to time. Either
part is a good place to start, though it is probably best if the parts themselves are read
from start to end. Later, after the book has been read, you can use it as a reference.

There are exercises at the end of each chapter. Most of these are of the straightfor-
ward pencil and paper kind, just to test your understanding, while others are small
programming projects meant to increase your familiarity with the material. Exer-
cises that are (subjectively) more difficult will be marked with either one or two
stars (* or **) to indicate the level of difficulty.

Example code is in C and/or Python version 2.7, though earlier 2.x versions
should work just as well. Intimate knowledge of these programming languages is
not necessary in order to understand the concepts being discussed. If something is
not easy to see in the code, it will be described in the text. Why C? Because C is
a low-level language, close to the numbers we will be working with and because C
is the grandfather of most common programming languages in current use includ-
ing Python. In general, code will be offset from text and in a monospace font.
For readers not familiar with C and/or Python, there are a plethora of tutorials on
the Web and reference books by the bookcase. Two examples, geared toward peo-
ple less familiar with programming, are Beginning C by Ivor Horton and Python
Programming Fundamentals by Kent Lee. Both of these texts are available from
Springer in print or e-book format.

At the end of each chapter are references for the material presented in the chapter.
Much can be learned by looking at these references. Almost by instinct we tend to
ignore sections like this as we are now programmed to ignore advertisements on
web pages. In this former case, resist temptation; in the latter case, keep calm and
carry on.

Acknowledgments

This book was not written in a vacuum. Here I want to acknowledge those who
helped make it a reality. First, the reviewers, who gave of their time and talent to
give me extremely valuable comments and friendly criticism: Robert Kneusel, M.S.,
Jim Pendleton, Ed Scott, Ph.D., and Michael Galloy, Ph.D. Gentlemen, thank you.
Second, thank you to Springer, especially my editor, Courtney Clark, for moving
ahead with this book. Lastly, and most importantly, thank you to my wife, Maria,
and our children: David, Peter, Paul, Monica, Joseph, and Francis. Without your
patience and encouragement, none of this would have been written.

Broomfield, USA Ronald T. Kneusel
December 2014 AM+DG

Contents

Part I Standard Representations

1 Number Systems . 3
1.1 Representing Numbers . 3
1.2 The Big Three (and One Old Guy) . 8
1.3 Converting Between Number Bases . 10
1.4 Chapter Summary . 16
Exercises . 16
References . 16

2 Integers . 19
2.1 Bits, Nibbles, Bytes, and Words . 19
2.2 Unsigned Integers . 21

2.2.1 Representation . 22
2.2.2 Storage in Memory: Endianness . 22

2.3 Operations on Unsigned Integers . 25
2.3.1 Bitwise Logical Operations . 25
2.3.2 Testing, Setting, Clearing, and Toggling Bits 30
2.3.3 Shifts and Rotates . 33
2.3.4 Comparisons . 37
2.3.5 Arithmetic . 41
2.3.6 Square Roots . 52

2.4 What About Negative Integers? . 53
2.4.1 Sign-Magnitude . 54
2.4.2 One’s Complement . 54
2.4.3 Two’s Complement . 55

2.5 Operations on Signed Integers . 56
2.5.1 Comparison . 56
2.5.2 Arithmetic . 57

2.6 Binary-Coded Decimal . 66
2.6.1 Introduction . 66

ix

x Contents

2.6.2 Arithmetic with BCD . 68
2.6.3 Conversion Routines . 69

2.7 Chapter Summary . 72
Exercises . 73
References . 74

3 Floating Point . 75
3.1 Floating-Point Numbers . 75
3.2 An Exceedingly Brief History of Floating-Point Numbers 78
3.3 Comparing Floating-Point Representations . 80
3.4 IEEE 754 Floating-Point Representations . 83
3.5 Rounding Floating-Point Numbers (IEEE 754) 89
3.6 Comparing Floating-Point Numbers (IEEE 754) 93
3.7 Basic Arithmetic (IEEE 754) . 95
3.8 Handling Exceptions (IEEE 754) . 98
3.9 Floating-Point Hardware (IEEE 754) . 101
3.10 The Elephant in the Living Room (Pitfalls of Floating Point) 103
3.11 Chapter Summary . 109
Exercises . 109
References . 111

Part II Other Representations

4 Big Integers and Rational Arithmetic . 115
4.1 What is a Big Integer? . 115
4.2 Representing Big Integers . 116
4.3 Arithmetic with Big Integers . 122
4.4 Alternative Multiplication and Division Routines 134
4.5 Implementations . 143
4.6 Rational Arithmetic with Big Integers . 146
4.7 When to Use Big Integers and Rational Arithmetic 152
4.8 Chapter Summary . 154
Exercises . 155
References . 156

5 Fixed-Point Numbers . 157
5.1 Representation (Q Notation) . 157
5.2 Arithmetic with Fixed-Point Numbers . 162
5.3 Trigonometric and Other Functions . 167
5.4 When to Use Fixed-Point Numbers . 177
5.5 Chapter Summary . 177
Exercises . 178
References . 179

Contents xi

6 Decimal Floating Point . 181
6.1 What Is Decimal Floating-Point? . 181
6.2 The IEEE 754-2008 Decimal Floating-Point Format 182
6.3 Decimal Floating-Point in Software . 189
6.4 Thoughts on Decimal Floating-Point . 198
6.5 Chapter Summary . 199
Exercises . 199
References . 199

7 Interval Arithmetic . 201
7.1 Defining Intervals . 201
7.2 Basic Operations . 203
7.3 Functions and Intervals . 217
7.4 Implementations . 222
7.5 Thoughts on Interval Arithmetic . 226
7.6 Chapter Summary . 227
Exercises . 227
References . 227

Index . 229

Part I
Standard Representations

Chapter 1
Number Systems

Abstract Computers use number bases other than the traditional base 10. In this
chapter we take a look at number bases focusing on those most frequently used in
association with computers. We look at how to construct numbers in these bases as
well as how to move numbers between different bases.

1.1 Representing Numbers

The ancient Romans used letters to represent their numbers. These are the “Roman
numerals” which are often taught to children,

I 1
II 2
III 3
IV 4 (1 before 5)
V 5
X 10
L 50
C 100
D 500
M 1000

By grouping these numbers we can build larger numbers (integers),

MCMXCVIII = 1998

The Romans built their numbers from earlier Egyptian numbers as seen in Fig. 1.1.
Of course, we do not use either of these number systems for serious computation
today for the simple reason that they are hard to work with.

For example, the Egyptians multiplied by successive doubling and adding. So, to
multiply 17×18 to get 306 the Egyptians would make a table with two columns.
The first column consists of the powers of two: 20,21,22,23,24 = 1,2,4,8,16, etc.

© Springer International Publishing Switzerland 2015
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-17260-6 1

3

4 1 Number Systems

Fig. 1.1 Egyptian numbers. The ancient Egyptians wrote numbers by summing units, tens, and
hundreds. There were also larger valued symbols which are not shown. Numbers were written by
grouping symbols until the sum equaled the desired number. The order in which the symbols were
written, largest first or smallest first, did not matter, but common symbols were grouped together.
In this example, the smallest units are written first when writing from left to right to represent 224

and the second column is the first number to be multiplied and its doublings. In
this case, 17 is the first number in the problem so the second column would be
17,34,68,136,272, etc. where the next number in the sequence is two times the
previous number. Therefore, the table would look like this (ignore the starred rows
for the moment),

1 17

2 34 *
4 68

8 136

16 272 *

Next, the Egyptians would mark the rows of the table that make the sum of the
entries in the first column equal to the second number to multiply, in this case 18.
These are marked in the table already and we see that 2+16= 18. Lastly, the final
answer is found by summing the entries in the second column for the marked rows,
34+272= 306.

This technique works for any pair of integers. If one were to ask the opposite
question, what number times 17 gives 306, one would construct the table as before
and then mark rows until the sum of the numbers in the second column is 306.

1.1 Representing Numbers 5

The answer, then, is to sum the corresponding numbers in the first column to get 18.
Hence, division was accomplished by the same trick. In the end, since we have
algebra at our disposal, we can see that what the Egyptians were really doing was
applying the distributive property of multiplication over addition,

17(18) = 17(2+16) = 34+272= 306

But, still, this is a lot of effort. Fortunately, there is another way to represent num-
bers: place notation (or, more formally, place-value notation). In place notation, each
digit represents the number of times that power of the base is present in the number
with the powers increasing by one for each digit position we move to the left. Nega-
tive powers of the base are used to represent fractions less than one. The digit values
we typically use range from 0 to 9 with 10 as the base. Here we write 10 to mean
1×101 +0×100 thereby expressing the base of our numbers in the place notation
using that base. Naturally, this fact is true regardless of the base, so 10B is the base
B for all B > 1. Computers do use base 10 numbers but not very often though we
will see a few examples of this later in the book.

In general, if the base of a number system is B then numbers in that base are
written with digits which run from 0 to B−1. These digits, in turn, count how many
instances of the base raised to some integer power are present in the number. Lots
of words, but an equation may clarify,

abcdB = a×B3 +b×B2 + c×B1 +d ×B0

for digits a, b, c, and d. Notice how the exponent of the base is counting down. This
counting continues after zero to negative exponents which are just fractions,

B−n =
1

Bn

So, we can introduce a “decimal point” to represent fractions of the base. Formally,
this is known as the radix point and is the character which separates the integer part
of a number in a particular base from the fractional part. In this book, we will use
the “.” (period) character and indicate the base of the number with a subscript after
the number,

abcd.efgB = a×B3 +b×B2 + c×B1 +d ×B0 + e×B−1 + f ×B−2 +g×B−3

for additional digits e, f , g and base B. If no explicit base is given, assume the base
is 10.

Before moving on to modern number systems let’s take a quick look at two anc-
ient number systems that used place notation. The first is the Babylonian number
system which used base 60 (sexagesimal) but constructed its digits by grouping sets
of symbols representing ones and tens. The second is the Mayan number system
which used base 20 and constructed digits by combining dots for one and bars for
five.

6 1 Number Systems

Figure 1.2 illustrates Babylonian numbers and performs some simple additions
with them. One interesting thing to note is that the ancient Babylonians did not have
a symbol for zero or the radix point. Instead, they used spaces and context from the
text of the document to imply where the radix point should be inserted. Figure 1.2b
shows examples of decimal numbers written in base 60 and as the Babylonians
would have written them. Since it is difficult to work with the actual notation, schol-
ars use a shorthand which combines our decimal notation with base 60. In this not-
ation, a number is written with “,” (comma) separating the digits and, if necessary,
a “;” (semicolon) to serve as the radix point. For example,

123410 = 20×601 +34×600 = 20,34

or
3.14159 = 3×600 +8×60−1 +29×60−2 +44×60−3

a b

c

Fig. 1.2 (a) Sexagesimal numbers in ancient Babylon used groups of symbols for one and ten
to be the digits of their base 60 numbers as opposed to our use of ten different symbols for our
digits. (b) Decimal numbers written in sexagesimal. The left column is the decimal number, the
middle column is the equivalent base 60 number using decimal digits and “,” to separate the digits.
The right column shows the Babylonian number which matches directly with the middle column
representation. (c) The Babylonians were able to write numbers with fractional parts by using a
space to separate it from the integer part. Here we show a three place representation of π

The fact that the ancient Babylonians had a place notation is all the more impres-
sive given that they wrote and performed their calculations on clay tablets which
were allowed to dry in the sun. This is a good thing as it preserved thousands of

1.1 Representing Numbers 7

Fig. 1.3 YBC 7289 showing the calculation of the diagonal of a square with a side of length 1
2 .

Note that this calculation makes use of a particularly good value for
√

2 (Image copyright Bill
Casselman and is used with permission, see http://www.math.ubc.ca/∼cass/Euclid/ybc/ybc.html.
The original tablet is in the Yale Babylonian Collection)

tablets for us to investigate today. Figure 1.3 is a particularly important mathemat-
ical tablet. This tablet shows a square with its diagonals marked. The side of the
square is marked as 30 which is interpreted to be 1

2 . There are two numbers written
by one of the diagonals. The first is 1, 24, 51, 10 and the one below it is 42,
25, 35. The length of the diagonal of a square is

√
2 times the length of the side. If

we multiply 30 by 1, 24, 51, 10 we do get 42, 25, 35. This means that
the Babylonians used 1, 24, 51, 10 as an approximation to

√
2. How good

was this approximation? Squaring 1, 24, 51, 10 gives 1, 59, 59, 59,
38, 1, 40 which is, in decimal, about 1.99999830, a very good approximation
indeed.

The Mayan people developed their own place notation in base 20 using com-
binations of dots (one) and bars (five) to form digits. The numbers were written
vertically from bottom to top of the page. Figure 1.4 shows on the left an addition

http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html

8 1 Number Systems

problem written with this notation. Unlike the Babylonians, the Mayans did use a
symbol for zero, shaped like a shell, and this is seen in Fig. 1.4 on the right.

Fig. 1.4 Mayan numbers in base 20 written from bottom to top. Bars represent five, dots represent
ones, with groups of bars and dots used to show the numbers 1 through 19. The zero symbol, shown
on the right, is a shaped like a shell and holds empty places in the same way zero is used in base
10 so that the number on the right is 1×203 +0×202 +0×201 +14×200 = 8014

It is interesting to see how the Maya, like the Babylonians before them, did not
create unique symbols for all possible base 20 digits but instead used combinations
likely base symbols. This might imply that the place notation evolved from an early
tally system, which is a reasonable thing to imagine. Addition in the Mayan system
worked by grouping digits, replacing five dots with a bar and carrying to the next
higher digit if the total in the lower digit was twenty or more.

For more background on the fascinating history of numbers and number systems,
including Mayan numbers, see [1] and [3]. For a detailed look at Babylonian num-
bers and mathematics, see [4] and [5]. Lastly, for a look at Egyptian numbers and
mathematics see [2].

1.2 The Big Three (and One Old Guy)

In this book we are concerned, primarily, with three number bases: base 2 (binary),
base 10 (decimal), and base 16 (hexadecimal). These are the “big three” number
bases when it comes to computers. In the past, base 8 (octal) was also used fre-
quently, so we will mention it here. This is the “one old guy”. In this section we
take a look at how to represent numbers in these bases and how to move a number
between these bases. Operations, such as arithmetic, will be covered in subsequent

1.2 The Big Three (and One Old Guy) 9

chapters from the point of view of how the computer works with numbers of a par-
ticular type.

Decimal Numbers. Relatively little needs to be said about decimal numbers as
we have been using them all our lives to the point where working with them is
second nature. Of course, the reason for this frequent appearance of ten is that we
have ten fingers and ten toes. Decimal numbers, however, are not a good choice for
computers. Digital logic circuits have two states, “on” or “off”. Since computers are
built of these circuits it makes sense to represent the “on” state (logical True) as
a 1 and the “off” state (logical False) as a 0. If your digits are 0 and 1 then the
natural number base to pick is 2, or binary numbers.

Binary Numbers. In the end, computers work with nothing more than binary num-
bers which is really quite interesting to think about: all the activities of the computer
rely on numbers represented as ones and zeros. Following the notation above, we
can see that a binary number such as 10112 is really,

10112 = 1×23 +0×22 +1×21 +1×20 = 11

Thinking back to the example of ancient Egyptian multiplication above we can
now see that the left-hand column was nothing more than the powers of two, which
are the place values in a binary number. Since each power of two appears only once
in a given number (integer) it is always possible to find a sum of powers of two
that equals any number. The 1 values in a binary integer are nothing more than tick
marks indicating which power of two is present. We know that each power of two
appears at most once in a given integer because it is possible to represent any integer
in binary and the only digits allowed in a binary number are 0 and 1.

Hexadecimal Numbers. If you work with computers long enough, you will even-
tually encounter hexadecimal numbers. These are base 16 numbers since “hex”
refers to six and “dec” refers to ten. One question might immediately present itself:
if we need ten separate symbols for the ten decimal digits, we need 16 symbols for
hexadecimal digits. Zero through nine can be reused, but what should we use for
10 through 15? The flippant answer is, whatever symbols you want, you could even
make up sixteen entirely new symbols, but typically we follow the convention the
ancient Greeks used (see [1], chapter 4) and take the first six letters of the Latin
alphabet as the missing symbols,

A 10
B 11
C 12
D 13
E 14
F 15

In this case, counting runs as 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10. It should be
no surprise that when writing hexadecimal numbers one often sees lowercase letters,

10 1 Number Systems

a– f , instead of A–F . Additionally, computer scientists, like most English speakers,
tend to shorten words whenever possible. So, you will often hear or see hexadecimal
numbers referred to as “hex” numbers. No reference to magic is intended unless it
is the magic by which computers work at all.

If we break down a hex number,

FDED16 = 15×163 +13×162 +14×161 +13×160 = 65005

we see that it is a compact notation compared to binary. This should not be surprising
as in place of simply indicating which power of two is in a number, as binary does,
we are here allowed up to sixteen possible multipliers on each power of 16.

Octal Numbers. While much less common than in the past, octal (base 8) numbers
still show up from time to time. Since these are base 8 numbers we already know that
we only need the digits 0–7 to write numbers in this base. In Sect. 1.3 we will see
why, if computers are really working in binary, people bother to use other number
bases like octal or hexadecimal.

We should expect by now that octal numbers break down in a familiar way,

12348 = 1×83 +2×82 +3×81 +4×80 = 668

and we will not be disappointed. In modern programming languages, octal numbers
are typically reserved for character codes and will be rarely seen outside of that
context.

1.3 Converting Between Number Bases

Representing numbers is a good thing but sometimes we need to convert a number
between bases. In this section we look at converting between the bases we intro-
duced above. Table 1.1 will be handy when converting numbers between bases.
It shows the first sixteen integers in binary, octal, hexadecimal and decimal.

Hexadecimal and Binary. Hexadecimal numbers are base 16 while binary num-
bers are base 2. We see that 24 = 16 so the conversion between hexadecimal and
binary, either direction, will involve groups of four binary digits. To convert a bi-
nary number to hexadecimal, simply separate the digits into groups of four, from
right to left, and write each group as a hex digit referring to Table 1.1 if necessary,

1011100100111102 = 101 1100 1001 1110

= 5 C 9 E

= 5C9E16

Turning a hexadecimal number into binary is simply the reverse process,

FDDA16 = F D D A

= 1111 1101 1101 1010

= 11111101110110102

1.3 Converting Between Number Bases 11

Decimal Binary Octal Hexadecimal
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Table 1.1 The first sixteen integers in decimal, binary, octal, and hexadecimal

This conversion process is simple enough, but why does it work? The key is in
the fact already noted, that 24 = 16. Recall that in a place notation system each
digit position to the left is one power of the base larger just as the hundreds place
in decimal is a factor of ten, the base, larger than the tens place. If we look at base
2 and instead of moving one digit to the left, which is two times larger than the
original digit value, we move four digits we are now 2× 2× 2× 2 larger or 16.
But, in base 16, each digit position is 16 times larger than the next place to the
right. Therefore, we have an equivalence between moving one digit to the left in a
hexadecimal number and four digits to the left in a binary number. This is why we
can group the binary digits in sets of four to get the equivalent hexadecimal digit.

Octal and Binary. If 24 = 16 implies we group binary digits in sets of four, then
23 = 8 implies we should group binary digits in sets of three to convert between
binary and octal, and this is indeed the case,

1011100100111102 = 101 110 010 011 110

= 5 6 2 3 6

= 562368

Likewise, we can reverse the process to get,

524318 = 5 2 4 3 1

= 101 010 110 011 001

= 1010101100110012

Lastly, should the need arise, conversion between hexadecimal and octal, or vice
versa, is easily accomplished by first moving to binary and then to the other base
from binary.

12 1 Number Systems

Decimal and Binary. The simple conversion technique above falls apart when
moving between decimal and binary. We already know the reason, 2x = 10 does
not have an integer solution so we cannot simply group digits. Instead, we handle
the conversions in a more cumbersome way.

Decimal to Binary. Perhaps the simplest way to convert a decimal number to binary
by hand is to repeatedly divide the number by two and keep track of the quotient and
remainder. The quotient gives the next number to divide by two and the remainder,
always either 1 or 0, is one binary digit of the result. If the numbers are not too big,
dividing by two is easy enough to do without paper and pencil.

For example, to convert 123 to binary,

123÷2 = 61 r 1

61÷2 = 30 r 1

30÷2 = 15 r 0

15÷2 = 7 r 1

7÷2 = 3 r 1

3÷2 = 1 r 1

1÷2 = 0 r 1

Now, to get the binary representation, read from bottom to top: 123= 11110112.
The conversion works but it is good to know why it works so let’s take a closer

look. If we write a seven digit binary number, b6b5b4b3b2b1b0, with bk the k-th digit,
in expanded form we get,

b0 ×20 +b1 ×21 +b2 ×22 +b3 ×23 +b4 ×24 +b5 ×25 +b6 ×26

which, since 20 = 1 and every other term is a multiple of two, can be written as,

b0 +2(b1 ×20 +b2 ×21 +b3 ×22 +b4 ×23 +b5 ×24 +b6 ×25)

If we divide the above by 2 we get the quotient,

b1 ×20 +b2 ×21 +b3 ×22 +b4 ×23 +b5 ×24 +b6 ×25

and a remainder of b0. Therefore, it is clear that performing an integer division of
a number by two leads to a new quotient and a remainder of either zero or one
since b0 is a binary digit. Further, this remainder is in fact the right-most digit in the
binary representation of the number. If we look at the quotient above it has the same
form as the initial binary representation of the number but with every binary digit
now shifted to the next lowest power of two. Therefore, if we take this quotient and
divide it by two we will repeat the calculation above and get b1 as the remainder.
This is then the next digit in the binary representation of the number. Lastly, if we
repeat this over and over until the quotient is simply zero we will generate all the
digits in the binary representation of the number in reverse order. Finally, writing
the stream of binary digits backwards will put them in the proper sequence and give
the desired binary representation.

1.3 Converting Between Number Bases 13

Another method for converting a decimal number to binary involves making a
table of the powers of two and asking repeated questions about sums from that table.
This method works because the conversion process is really tallying the powers of
two that add up to the decimal number.

For example, to convert 79 to binary make a table like this,

64 32 16 8 4 2 1

with the powers of two written highest to lowest from left to right. Next, ask the
question, “Is 64 > 79?” If the answer is yes, put a 0 under the 64. If the answer is
no, put a 1 under the 64 because there is a 64 in 79,

64 32 16 8 4 2 1
1

Now add a new line to the table and ask the question “Is 64+ 32 > 79?” Since the
answer is yes, we know that there is no 32 in the binary representation of 79 so we
put a 0 below the 32,

64 32 16 8 4 2 1
1

0

We continue the process, now asking “Is 64+16 > 79?” In this case, the answer is
again yes so we put a 0,

64 32 16 8 4 2 1
1

0
0

We continue for each remaining power of two asking whether that power of two,
plus all the previous powers of two that have a 1 under them, is greater or less
than 79,

64 32 16 8 4 2 1
1

0
0

1
1

1
1

To complete the conversion we collapse the table vertically and write the binary
answer, 79 = 10011112.

Binary to Decimal. If a binary number is small the fastest way to convert it to a
decimal is to simply remember Table 1.1. Barring that, there is a straightforward

14 1 Number Systems

iterative way to convert binary to decimal. If we have a k digit binary number,
b4b3b2b1b0, where in this case k = 5, we can use the following recurrence relation
to find the decimal equivalent,

d0 = 0
di = bk−i +2di−1, i = 1 . . .k

For example, let’s convert 110012 to decimal using the recurrence relation. In this
case we get,

i di

0 0

1 1+2(0) = 1

2 1+2(1) = 3

3 0+2(3) = 6

4 0+2(6) = 12

5 1+2(12) = 25

This technique is easily implemented in a computer program. Why does it work?
Consider the five digit binary number we started this section with, b4b3b2b1b0. If
we write the algebraic expression that represents the recurrence relation after five
iterations we get,

d5 = b0 +2(b1 +2(b2 +2(b3 +2(b4 +2(0)))))

Which, if we work it out step by step, becomes,

b0 +2(b1 +2(b2 +2(b3 +2(b4 +2(0)))))
= b0 +2(b1 +2(b2 +2(b3 +2b4)))
= b0 +2(b1 +2(b2 +2b3 +22b4))
= b0 +2(b1 +2b2 +22b3 +23b4)
= b0 +2b1 +22b2 +23b3 +24b4

= b0 ×20 +b1 ×21 +b2 ×22 +b3 ×23 +b4 ×24

which is the expanded form of a binary number with digits b4b3b2b1b0.

Others to Decimal. The recurrence relation for converting binary numbers to dec-
imal works for any number base. For example,

d0 = 0
di = bk−i +Bdi−1, i = 1 . . .k

for a base B number with digits bi.
Armed with this knowledge it becomes straightforward to convert hexadecimal

or octal numbers to decimal. Simply use B = 16 for hexadecimal and B = 8 for
octal. In the case of hexadecimal, which is a base greater than 10, the additional
digits, A−F , take on their actual decimal values 10−15.

1.3 Converting Between Number Bases 15

As an example, let’s convert 56AD16 to decimal. Since this is a four digit number
k = 4 and the recurrence relation becomes,

d0 = 0
di = bk−i +16di−1, i = 1 . . .k

and calculation proceeds as,

i di

0 0

1 5+16(0) = 5

2 6+16(5) = 86

3 10+16(86) = 1386 (since A16 = 10)
4 13+16(1386) = 22189 (since D16 = 13)

so 56AD16 = 22189.
Finally, a similar calculation works for octal numbers. Convert 75028 to decimal.

Again, k = 4 and the recurrence relation is now,

d0 = 0
di = bk−i +8di−1, i = 1 . . .k

giving,
i di

0 0

1 7+8(0) = 7

2 5+8(7) = 61

3 0+8(61) = 488

4 2+8(488) = 3906

with a final result of 75028 = 3906.
Frequent use of hexadecimal and octal numbers will quickly teach you to simply

remember the first few powers of each base. Embedded systems programmers learn
this early on for at least the first four digits. For hexadecimal, the powers of 16 are,

160 1

161 16

162 256

163 4096

and similarly for octal,

80 1

81 8

82 64

83 512

with these, small hexadecimal and octal integers can be converted to decimal
quickly,

16 1 Number Systems

123416 = 1×4096+2×256+3×16+4×1 = 4660

12348 = 1×512+2×64+3×8+4×1 = 668

With a little practice, such conversion can be performed mentally.

1.4 Chapter Summary

In this chapter we briefly reviewed numbers, how they were represented historically,
how place notation works, and how to manipulate numbers in the bases most fre-
quently used by computers. It is helpful to become comfortable working with the
conversion between number bases and it is especially helpful to memorize the binary
representation of the first 16 integers. The exercises will help build this confidence
and the skill will be used frequently in the remainder of this book.

Exercises

1.1. Using Egyptian notation and method calculate 22×48 and 713÷31.

1.2. Using Babylonian notation calculate 405+768. (Hint: carry on sixty, not ten)

1.3. Using Mayan notation calculate 419+2105. (Hint: carry on twenty, not ten)

1.4. Convert the following hexadecimal numbers to binary: A9C116, 20ED16, FD6016.

1.5. Convert the following octal numbers to binary: 7738, 2038, 6568.

1.6. Using the table method, convert 6502 to binary.

1.7. Using the division method, convert 8008 to binary.

1.8. Write e = 2.71828182845904 . . . to at least four decimal places using Babylo-
nian notation. (Hint: You will need to use three negative powers of sixty) **

1.9. Write a program to convert a number in any base < 37 to its decimal equivalent
using the recurrence relation. Use a string to hold the number itself and use 0−9

and capital letters A−Z for the digits. *

References

1. Boyer, C.B.: A History of Mathematics. Princeton University Press, Princeton, New Jersey
(1985)

2. Gillings, R.: Mathematics in the Time of the Pharaohs. Dover Publications, New York (1982)
3. Menninger, K.: Number Words and Number Symbols. Dover Publications, New York (1992)

References 17

4. Neugebauer, O.: Mathematical Cuneiform Texts. American Oriental Series, vol. 29.
New Haven: American Oriental Society (1945)

5. Neugebauer, O.: The Exact Sciences in Antiquity. Princeton University Press, Princeton,
New Jersey (1952)

Chapter 2
Integers

Abstract Integers are perhaps the most important class of numbers. This is certainly
true in the case of computers. In this chapter we dive into the integers and how com-
puters represent and operate on them. Without these operations, digital computers
would not function. We begin with some preliminary notation and terminology. Next
we take a detailed look at the unsigned integers. We follow this with an examina-
tion of negative integers and their operations. Lastly, we finish with a look at binary
coded decimals.

2.1 Bits, Nibbles, Bytes, and Words

Our tour of integers will be easier if we get some terminology out of the way first.
This will make it just that much easier to talk about the way numbers are actually
represented inside a computer. We’ll start small and work our way up.

Bits. As we have seen, computers work with binary numbers. A single binary digit
is known affectionately as a bit. This bit is either zero or one, off or on, false or true.
The word bit is short for binary digit and appears in Claude Shannon’s classic 1948
paper A Mathematical Theory of Communication [2]. Shannon attributed bit to John
Tukey who used it in a Bell Labs memo dated January 9, 1947. Note, throughout
this book we will play fast and loose with the bit terminology and freely alternate
between “on” and “true” for when a bit is set to one and “off” or “false” when a bit
is set to zero. The choice of word will depend on the context.

Since a bit is so simple, just a zero or a one, it is the smallest unit of information
in the digital world. Still, this small unit can be very important. A status bit set to one
may indicate that the rocket is ready to launch while a status bit set to zero indicates
a fault. Indeed, some microcontroller devices, like the 8051, make excellent use
of their limited resources and support single bit data. We will make extensive use

© Springer International Publishing Switzerland 2015
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-17260-6 2

19

20 2 Integers

of bits in the remainder of this chapter. Zero or one, how hard can it be? Still, as
useful as a bit is, it is just, well, a bit. You need to group them together to get more
expressive numbers.

Nibbles. A nibble (sometimes nybble) is a four bit number. As a four bit number
a nibble can represent the first 16 integers with 00002 = 0 and 11112 = 15. And,
as we now know, the numbers 0 through 15 are exactly the digits of a hexadecimal
number. So, a nibble is a single hexadecimal digit. This makes sense since with
four bits we can represent 24 = 16 possible values. A nibble is also the amount of
information necessary to represent a single binary-coded decimal digit but we are
getting ahead of ourselves and will talk about binary-coded decimal later in this
chapter. The origin of the word nibble is related to the origin of the word byte so we
will expand on it below.

Modern computers do not use nibbles as a unit of data for processing. However,
the very first microprocessors, like the TMS 1000 by Texas Instruments and the
4004 by Intel, both introduced in 1971, were 4-bit devices and operated on 4-bit
data. This makes the nibble a bit like octal numbers: appearing in the shadows but
not a real player in modern computing.

Bytes. For a modern computer, the smallest unit of data that it will work with is the
byte which is an eight bit binary number. This means that the integers from 0 . . .255
can be represented in a single byte. We’ll ignore the concept of negative numbers
for the time being.

The term byte was first used by Werner Buchholz in July 1956 during the design
of the IBM Stretch computer and was an intentional misspelling of “bite” to avoid
confusion with “bit” [3]. Since byte came from “bite” it is natural to be tempted to
call half a byte, which is a four bit number, a “nibble” since a nibble is a small bite.
Hence the origin of nibble above.

Buchholz intended a byte to represent a character. We still use bytes to represent
characters in ASCII, but have since moved on to larger numbers for characters in
Unicode. In this book, however, to keep things simple, we will make an implicit as-
sumption that characters are bytes. So, a text that contains 1000 characters will take
1000 bytes of memory to store. The universal use of bytes when working with com-
puters leads to the frequent appearance of the numbers 28 = 256 and 28−1= 255.
For example, colors on computers are often represented as triplets of numbers to
indicate the amount of red, green, and blue that make up the color. Typically, these
triplets are given as a set of three bytes to indicate the amount so that 00000016 is
black and 00FF0016 is bright green. This is just one example, bytes are everywhere.
The relationship between bits, nibbles and bytes is visualized in Fig. 2.1. Here we
see that a byte can be thought of as two nibbles, each a hexadecimal digit, or as eight
bits, each a binary digit.

Words. A byte is two nibbles, so, is a word two bytes? Well, sometimes, yes. And
sometimes it is four bytes, or eight, or some other value. Unfortunately, the term
word is not generic like bit and byte, instead it is tied to a particular computer archi-
tecture and describes the basic data size of the architecture.

2.2 Unsigned Integers 21

Fig. 2.1 A byte which consists of two nibbles and eight bits. The number is 211 which is made up
of two nibbles, D16 and 316 giving D316, or eight bits 110100112

Historically, the word size of a computer could be anywhere from four bits for
early microprocessors (Intel 4004) to 60 bits for early mainframes (CDC 6600) but
modern computers have settled on powers of two for their word sizes, typically 32
or 64 bits with some second generation microprocessors using 16 bit words (Intel
8086, WDC 65816). For our purposes, we can assume a 32 bit word size when
describing data formats. On occasion we will need to be more careful and explicitly
declare the word size we are working with.

With these preliminaries now under our belt, it is time to start working with actual
data representations. We start naturally with unsigned integers.

2.2 Unsigned Integers

Unsigned integers are our first foray into the depths of the computer as far as num-
bers are concerned. These are the basic numbers, the positive integers, that find
frequent use in representing characters, as counters, or as constants, really anything
that can be mapped to the set {0,1,2, . . .}. Of course, computers have finite memory
so there is a limit to the size of an unsigned integer and we will get to that in the
next section.

22 2 Integers

2.2.1 Representation

Integers are stored in memory in binary using one or more bytes depending on the
range of the integer. The example in Fig. 2.1 is a one byte unsigned integer. If we
are working in a typed language like C we need to declare a variable that will store
one byte. Typically, this would mean using an unsigned char data type,

unsigned char myByte;

which can store a positive integer from 000000002 = 0 to 111111112 = 255. This
is therefore the range of the unsigned char data type. Note how C betrays its
age by referring to a byte number as a character. Unsigned integers larger than 255

require more than one byte.
Table 2.1 shows standard C types for unsigned integers and the allowed range for

that type. These are fixed in the sense that numbers must fit into this many bits at all
times. If not, an underflow or overflow will occur. Languages like Python abstract
integers for the programmer and only support the concept of integer as opposed
to a floating-point number. The unsigned integer operations discussed later in the
chapter work nicely with Python but the concept of range is a little nebulous in that
case since Python will move between internal representations as necessary.

Declaration Minimum Maximum Number of bits
unsigned char 0 255 8
unsigned short 0 65,535 16
unsigned int 0 4,294,967,295 32
unsigned long 0 4,294,967,295 32
unsigned long long 0 18,446,744,073,709,551,615 64

Table 2.1 Unsigned integer declarations in C. The declaration, minimum value, maximum value
and number of data bits are given

If a number like 111111112 = 255 is the largest unsigned number that fits in a
single byte how many bytes will be needed to store 256? If we move to the next
number we see that we will need nine bits to store 256 which implies that we will
need two bytes. However, there is a subtlety here that needs to be addressed. This
is, if the number is to be stored in the computer’s memory, say starting at address
1200, how should the individual bits be written to memory location 1200 and the
one following (1201, since each memory location is a byte)? This question has more
than one answer.

2.2.2 Storage in Memory: Endianness

Addresses. In order to talk about how we store unsigned integers in computer
memory we have to first talk a bit about how memory is addressed. In this book,

2.2 Unsigned Integers 23

we have a working assumption of a 32-bit Intel-based computer running the Linux
operating system. Additionally, we assume gcc to be our C compiler. In this case,
we have byte-addressable memory meaning that even though the word size is four
bytes, we can refer to memory addresses using bytes. For example, this small C
program,

1 #include <stdio.h>
2
3 int main() {
4 unsigned char *p;
5 unsigned short n = 256;
6
7 p = (unsigned char *)&n;
8 printf("address of first byte = %p\n", &p[0]);
9 printf("address of second byte = %p\n", &p[1]);
10
11 return 0;
12 }

when compiled and run produces output similar to,

address of first byte = 0xbfdafe9e
address of second byte = 0xbfdafe9f

where the specific addresses, given in hexadecimal and starting with the 0x prefix
used by C, will vary from system to system and run to run. The key point is that
the difference between the addresses is one byte. This is what is meant by a byte-
addressable memory. If you don’t know the particulars of the C language, don’t
worry. The program is defining a two byte number in line 5 (n) and a pointer to a
single byte number in line 4 (p). The pointer stores a memory address which we
set to the beginning of the memory used by n in line 7. We then ask the computer
to print the numeric address of the memory location (line 8) and of the next byte
(line 9) using the & operator and indexing for the first (p[0]) and second (p[1])
bytes. With this in mind, let’s look at actually storing unsigned integers.

Bit Order. To store the number 110111012 = 221 in memory we use the eight
bits of the byte at a particular memory address. The question then becomes, which
bits of 221 map to which bits of the memory? If we number the bits from 0 for the
lowest-order bit, which is the right-most bit when writing the number in binary, to
7 for the highest-order bit, which is the left-most bit when writing in binary, we get
a one-to-one mapping,

7 6 5 4 3 2 1 0
1 1 0 1 1 1 0 1

so that the highest-order bit of the number is put into the highest-order bit of the
memory address. This seems sensible enough but one could imagine doing the
reverse as well,

7 6 5 4 3 2 1 0
1 0 1 1 1 0 1 1

24 2 Integers

So, which is correct? The answer depends on how bits are read from the memory
location. In modern computer systems, the bits are read low to high meaning the
low-order bit is read first (bit 0) followed by the next higher bit (bit 1) so that the
computer will use the first ordering of bits that maps 76543210 to 11011101.

Byte Order. Within a byte, bits are stored low to high. What about the bytes of a
multibyte integer? We know that the number 1000000002 = 256 requires two bytes
of memory, one storing the low set of eight bits 000000002 and another storing the
high set of eight bits 000000012 where leading zeros are used to indicate that it is
the first bit position set and the rest of the bits in the byte are clear (set to zero). But,
what order in memory should we use,

Memory address: 1200 1201

Low first: 00000000 00000001

High first: 00000001 00000000

low first or high first? The answer is either. If we put the low order bytes of a multi-
byte number in memory first we are using little-endian storage. If we put the high
order bytes first we are using big-endian or network order. The choice is the endian-
ness of the number and both are in use typically as a function of the microprocessor,
which has a preferred ordering. The terms little-endian and big-endian are derived
from the book Gulliver’s Travels by satirist Jonathan Swift [4]. Published in 1726
the book tells the story of Gulliver and his travels throughout a fictional world. When
Gulliver comes to the land of Lilliput he encounters two religious sects who are at
odds over whether to crack open their soft-boiled eggs little end first or big end first.
Intel based computers use little-endian when storing multibyte integers. Motorola
based computers use big-endian. Additionally, big-endian is called network order
because the Internet Protocol standard [5] requires that numeric values in packet
headers be stored in big-endian order.

Let’s look at some examples of little and big endian numbers. To save space, we
will use a 32-bit number but represent the numbers showing only the hexadecimal
values of the four bytes such a number would occupy. For example, if the 32-bit
number is,

101011101111000001010110100101102 = AE16 F016 5616 9616

we will write it as AEF05696 dropping the 16 base indicator for the time being.
Putting this number into memory starting with byte address zero and using big-
ending ordering gives,

Address: 0 1 2 3

Value: AE F0 56 96

where the first byte one would read, pulling bytes from address zero first, is the
high-order byte. If we want to use little-endian we would instead put the lowest
order byte first to fill in memory with,

Address: 0 1 2 3

Value: 96 56 F0 AE

2.3 Operations on Unsigned Integers 25

which will give us the low-order byte first when reading from address zero. Note,
within a particular byte we always still use the bit ordering that maps the high-order
bit (bit 7) to the high-order bit of the number. Reversing the bits within a byte when
using little-endian is an error.

When we are working with data on a single computer within a single program,
we typically do not need to pay attention to endianness. However, when transmitting
data over the network or using data files written on other machines it is a good idea
to consider what the endianness of the data is. For example, when reading sensor
values from a CCD camera, which are typically 16-bit numbers requiring two bytes
to store, it is essential to know the endianness otherwise the image generated from
the raw data will look strange because the high-order bits which contain the majority
of the information about the image will be in the wrong place. From the examples
above, we see that correcting for endianness differences is straightforward, simply
flip the order of the bytes in memory to convert from little-endian to big-endian and
vice versa.

2.3 Operations on Unsigned Integers

Binary and unary operations on unsigned integers is the heart of what computers do.
In this section we go over all the common operations, bit by bit, and mention some
of the key things to look out for when working with unsigned integers of fixed bit
width. Examples will use byte values to keep it simple but in some cases multibyte
numbers will be shown. Specific operations will be shown in C and Python. Though
the Python syntax is often the same as C, the results may differ because the Python
interpreter will change the internal representation as necessary.

2.3.1 Bitwise Logical Operations

Bitwise operators are binary operators, meaning they operate on two numbers
(called operands), to produce a new binary number. In the previous sentence the first
instance of “binary” refers to the number of operands or arguments to the operation
while the second instance of “binary” refers to the base of the operands themselves.
This is an unfortunate but common abuse of notation.

Digital logic circuits, which are fascinating to study but well beyond the purview
of this book, are built from logic gates which implement in hardware the logical
operations we are discussing here. The basic set of logic operators are given names
which relate to Boolean logic: AND, OR, XOR, and the unary NOT. Negated versions
of AND and OR, called NAND and NOR, are also in use but these are easily constructed
by taking the output of AND and OR and passing it through a NOT so we will ignore
them here.

26 2 Integers

Logical operations are most easily understood by looking at their truth tables
which illustrate the function of the operator by enumerating the possible set of inputs
and giving the corresponding output. They are called truth tables because of the
correspondence between the 1 and 0 of a bit and the logical concept of true and
false which goes back to Boolean algebra developed by George Boole in the
nineteenth century [6].

A truth table shows, for each row, the explicit inputs to the operator followed by
the output for those inputs. For example, the truth table for the AND operator is,

AND
0 0 0

0 1 0

1 0 0

1 1 1

which says that if the two inputs to the AND, recall the inputs are single bits, are 0

and 0 that the output bit will also be 0. Likewise, if the inputs are 1 and 1 the output
will also be 1. In fact, for the AND operation the only way to get an output of 1 is for
both input bits to be set. We can think of this as meaning “only both”.

The two other most commonly used binary logic operators are OR and XOR. The
latter is a called exclusive-OR and is sometimes indicated with EOR instead of XOR.
Their truth tables are,

OR
0 0 0

0 1 1

1 0 1

1 1 1

XOR
0 0 0

0 1 1

1 0 1

1 1 0

where we see that OR means “at least one” and XOR means “one or the other but
not both”. The last of the common bitwise logical operators is NOT and it has a very
simple truth table,

NOT
0 1

1 0

where the operation is simply turn 1 to 0 and 0 to 1.
If we look again at the truth tables for AND, OR and XOR we see that there are

four rows in each table which match the four possible sets of inputs. Looking at these
rows we can interpret the four bits in the output as a single four bit number. A four
bit number has sixteen possible values from 00002 to 11112 which implies that there
are sixteen possible truth tables for a binary bitwise operator. Three of them are AND,
OR and XOR and another three are the tables made by negating the output of these
operators. That leaves ten other possible truth tables. What do these correspond to
and are they useful in computer programming? The full set of possible binary truth
tables is given in Table 2.2 along with an interpretation of each operation. While all
of these operators have a name and use in logic many are clearly of limited utility in

2.3 Operations on Unsigned Integers 27

terms of computer programming. For example, always outputting 0 or 1 regardless
of the input (FALSE and TRUE in the table) is of no practical use in helping the
programmer. The negated versions of the three main operators, NAND, NOR and
XNOR, are naturally built by adding a “not” word to the positive versions and are
therefore useful.

p: 0 0 1 1
q: 0 1 0 1

FALSE 0 0 0 0 always false
AND 0 0 0 1 p and q

0 0 1 0 if p then not q else false
0 0 1 1 p
0 1 0 0 if not p and q
0 1 0 1 q

XOR 0 1 1 0 p or q but not (p and q)
OR 0 1 1 1 p, q or (p and q)

NOR 1 0 0 0 not OR
XNOR 1 0 0 1 not XOR

1 0 1 0 not q
1 0 1 1 if q then p else true
1 1 0 0 not p
1 1 0 1 if p then q else true

NAND 1 1 1 0 not AND
TRUE 1 1 1 1 always true

Table 2.2 The sixteen possible binary bitwise logical operators. If a common name exists for the
operation it is given in the first column. The top two rows labeled p and q refer to the operands or
inputs to the operator. A 0 is considered false while 1 is true. A description of the operator is given
in the last column. In the description the appearance of p or q in an if-statement implies that the
operand is true

Now that we know the basic operators and why this set is most useful to computer
programmers let’s look at a few examples. First the AND operator,

10111101 = 189
AND 11011110 = 222

10011100 = 156

where the binary representation of the number is in the first column and the decimal
is in the second. We see that for each bit in the two operands, 189 and 222, the
output bit is on only if the corresponding bits in the operand were on. If the operands
were simply zero or one the output would be one only if the inputs were both one.
Since this is exactly what we mean when we use “and” in a sentence we can use this
operator to decide if two things are both true. A natural place to use this ability is in
an if-statement and many programming languages, C and Python included, use the
concept that zero is false and one is true. Actually, C and Python extend this concept
and declare anything that is not zero to be true. It should be noted that Python also
supports Boolean variables and treats the keywords True and False as true and
false respectively.

28 2 Integers

We look next at the OR and XOR operators. For OR we have,

10111101 = 189
OR 11011110 = 222

11111111 = 255

which means at in every bit position at least one of the operands had a bit set. The
XOR operator will give us,

10111101 = 189
XOR 11011110 = 222

01100011 = 99

One useful property of the XOR operator is that it undoes itself if applied a second
time. Above, we calculated 189 XOR 222 to get 99. If we now perform 99 XOR
222 we get,

01100011 = 99
XOR 11011110 = 222

10111101 = 189

giving us back what we started with. As an aside, this is useful as a simple way
to encrypt data. If Alice wishes to encrypt a stream of n bytes (M), which may
represent any data at all, so that she can send it (relatively) securely to Bob, all she
need do is generate a stream of n random bytes (S) and apply XOR, byte by byte, to
the original stream M to produce a new stream, M’. Alice can then transmit M’ to
Bob any way she wishes knowing that if Carol intercepts the message she cannot
easily decode it without the same random stream S. Of course, Bob must somehow
have S as well in order to recover the original message M. If S is truly random, used
only once and then discarded, this is known as a one-time pad encryption. The keys
are that S is truly random and that it is only used once. Of course, this does not cover
the possibility that Carol may get her hands on S as well, but if she cannot, there is
(relatively) little chance she will be able to recover M from just M’.

Another handy use for XOR is that it allows us to swap two unsigned integers
without using a third variable. So, in C, instead of,

unsigned char a,b,t;
...
t = a;
a = b;
b = t;

we can use,

unsigned char a,b;
...
a ˆ= b; // a = a ˆ b;
b ˆ= a;
a ˆ= b;

2.3 Operations on Unsigned Integers 29

where ˆ is the C operator for XOR and a ˆ= b is shorthand for a = a ˆ b. Why
does this work? If we write out an example in binary, we will see,

a = 01011101
b = 11011011
a ˆ= b 01011101 ˆ 11011011 → a=10000110
b ˆ= a 10000110 ˆ 11011011 → b=01011101
a ˆ= b 10000110 ˆ 01011101 → a=11011011

As mentioned above, if we do a XOR b→ c and then c XOR b we will get a back. If we
instead do c XOR a we will get b back. So, the trick makes use of this by first doing
a XOR b and then using that result, stored temporarily in a, to get a back but this time
storing it in b and likewise for getting b back and storing it in a. This, then, swaps the
two values in memory. This trick works for unsigned integers of any size. Another
common use of XOR is in parity calculations. The parity of an integer is the number
of 1 bits in its binary representation. If the number is odd, the parity is 1, otherwise
it is 0. This can be used as a simple checksum when transmitting a series of bytes.
A checksum is a indicator of the integrity of the data. If the checksum calculated
on the receiving end does not match then there has been an error in transmission. If
the last byte of data is the running XOR of all previous bytes the parity of this byte
can be used to determine if a bit was changed during transmission. In order to see
how to use XOR for parity calculations we need to wait a little bit until we talk about
shifts below.

The effect of NOT is straightforward to illustrate,

NOT 10111101 = 189
01000010 = 66

it simply flips the bits from 0 to 1 and 1 to 0. We will see this operation again when
we investigate signed integers.

Figure 2.2 gives a C program that implement the AND, OR, XOR and NOT logical
operators. This illustrates the syntax. Note that the C example uses the unsigned
char data type. This is an 8-bit unsigned integer like we saw in the examples above.
The operators work with any size integer type so we could just as well have used
unsigned short or unsigned int, etc. Figure 2.3 gives the corresponding
Python code.

The standard C language does not support direct output of numbers in binary
so the example in Fig. 2.2 instead outputs in decimal and hexadecimal. Recall that
in Chap. 1 we learned how to easily change hexadecimal numbers into binary by
replacing each hexadecimal digit with four bits representing that digit. The Python
code makes use of standard string formatting language features to output in binary
directly. As Python is itself written in C and the language was designed to show
that heritage, the syntax for the bitwise logical operators is the same. There is one
subtlety with the Python code you may have noticed. The function pp() uses “z
& 0xff” in the format() method call where you might have expected only “z”.
If we do not AND the output value with FF16 we will output a full range integer

30 2 Integers

Fig. 2.2 Bitwise logical operators in C

Fig. 2.3 Bitwise logical operators in Python

and as we will see later in this chapter, that would be a negative number to Python.
The AND keeps only the lowest eight bits and gives us the output we would expect
matching the C code in Fig. 2.2.

2.3.2 Testing, Setting, Clearing, and Toggling Bits

Common operations on unsigned integers include the setting, clearing and testing
of particular bits. Setting a bit means to turn that bit on (1) while clearing is to turn
the bit off (0). Testing a bit simply returns its current state, 0 or 1, without changing
its value. In the embedded computing world this is often done to set an output line
high or low or to read the state of an input line. For example, a microcontroller uses
specific pins on the device as digital inputs or outputs. Typically, this requires setting
bits in a control register or reading bits in a register to know whether a voltage is
present or not on pins of the device.

2.3 Operations on Unsigned Integers 31

The bitwise logical operators introduced above are the key to working with bits.
As Fig. 2.3 already alluded to, the AND operator can be used to mask bits. Masking
sets certain bits to zero and some examples will make this clear. First, consider a
situation similar to the Python code of Fig. 2.3 that keeps the lower nibble of a byte
while it clears the upper nibble. To do this, we AND the byte with 0F16,

10111101 = BD
AND 00001111 = 0F

00001101 = 0D

where we now display the binary and hexadecimal equivalent. The output byte will
have all zeros in the upper nibble because AND is only true when both operands are
one. Since the second operand has all zeros in the upper nibble there is no situation
where the output can be one. Likewise, the lower nibble is unaffected by the AND
operation since every position where the first operand has a one the second operand
will also have a one leading to an output of one but every position where the first
operand has a zero the second operand will still have a one leading to an output of
zero, which is just what the first operand has in that position. A quick look back at
the truth table for AND (above) will clarify why this masking works.

This property of AND can be used to test if a bit is set. Say we wish to see if bit
3 of BD16 is set. All we need to do is create a mask that has a one in bit position 3
and zeros in all other bit positions (recall that bit positions count from zero, right to
left),

10111101 = BD
AND 00001000 = 08

00001000 = 08

if the result of the AND is not zero we know that the bit in position 3 of BD16 is
indeed set. If the bit was clear, the output of the entire operation would be exactly
zero which would indicate that the bit was clear. Since C and Python treat nonzero
as true the following C code would output “bit 3 on”,

if (0xBD & 0x08) {
printf("bit 3 on\n");

}

as would this Python code,

if (0xBD & 0x08):
print "bit 3 on"

We use AND to test bits and mask bits but we use OR to actually set bits. For
example, to actually set bit 3 and leave all other bits as they were we would do
something like this,

10110101 = B5
OR 00001000 = 08

10111101 = BD

32 2 Integers

which works because OR returns true when either operand or both have a one in a
particular bit position. Just as AND with an operand of all ones will return the other
operand, so an OR with all zeros will do likewise. In order to set bits, then, we need
OR, a bit mask, and assignment as this C code shows,

#include <stdio.h>

int main() {
unsigned char z = 0xB5;

z = z | 0x08; // set bit 3
printf("%x\n", z);
z |= 0x40; // set bit 6
printf("%x\n", z);

return 0;
}

which outputs BD16 and FD16 after setting bits 3 and 6. Since we updated z each
time the set operations are cumulative.

We’ve seen how to test and set bits now let’s look at clearing bits without affect-
ing other bits. We know that if we AND with a mask of all ones we will get back our
first operand. So, if we AND with a mask of all ones that has a zero in the bit position
we want to clear we will turn off that bit and leave all other bits as they were. For
example, to turn off bit 3 we do something like this,

10111101 = BD
AND 11110111 = F7

10110101 = B5

where the mask value for AND is F716. But, this begs the question of how we get
the magic F716 in the first place? This is where NOT comes into play. We know
that to set bit 3 we need a mask with only bit 3 on and all others set to zero. This
mask value is easy to calculate because the bit positions are simply powers of two
so that the third position is 23 = 8 implying that the mask is just 8= 000010002. If
we apply NOT to this mask we will invert all the bits giving us the mask we need:
111101112. This is readily accomplished in C,

unsigned char z = 0xBD;
z = z & (˜0x08);
printf("%x\n", z);

which outputs B516 = 101101012 with bit 3 clear. The same syntax will also work
in Python.

Our last example toggles bits. When a bit is toggled its value is changed from
off to on or on to off. We can use NOT to quickly toggle all the bits, since this is
what NOT does, but how to toggle only one bit and leave the rest unchanged? The
answer lies in using XOR. The XOR operator returns true only when the operands
are different. If both are zero or one, the output is zero. This is what we need. If we
XOR our value with a mask that has a one in the bit position we desire to toggle we
will get something like this for bit 1,

2.3 Operations on Unsigned Integers 33

10111101 = BD
XOR 00000010 = 02

10111111 = BF

where we have turned bit 1 on when previously it was off. If bit 1 was already on
we would have 1 XOR 1= 0 which would turn it off in the output. Clearly, we can
toggle multiple bits by setting the positions we want to toggle in the mask and then
apply the XOR. In C we have,

unsigned char z = 0xBD;
z = z ˆ 0x02;
printf("%x\n", z);

which will output BF16 = 101111112 as expected.

2.3.3 Shifts and Rotates

So far we have looked at operations that manipulate bits more or less independently
of other bits. Now we take a look at sliding bits from one position to another within
the same value. These manipulations are accomplished through the shift and rotate
operators. A shift is as straightforward as it sounds, just move bits from lower posi-
tions in the value to higher, if shifting to the left, or from higher positions to lower
if shifting to the right. When shifting, bits simply “fall off” the left or right if they
hit the end of the integer. This implies something, namely, that we impose a specific
number of bits on the integer. For our examples we will stick with 8-bit unsigned
integers though all of these operations work equally well on integers of any size.
Let’s look at what happens when we shift a value to the left one bit position using
binary notation,

10101111← 1= 01011110

where we use the ← symbol to mean shift to the left and the 1 is the number of bit
positions. The leading 1 drops off the left end and a zero moves in from the right
end to fill in the empty space. All other bits move up one bit position. Now, what
happens when only a single bit is set and we shift one position to the left,

00000010← 1= 00000100

we see that we started with a value of 21 = 2 and we ended with a value of 22 = 4.
Therefore, a single position shift to the left will move each bit to the next highest
bit position which is the same as multiplying it by two. Since this will happen to all
bits, the net effect is to multiply the number by two. Of course, if bits that were set
fall off the left end we will lose precision but the remaining bits will be multiplied
by two. For example,

00101110← 1= 01011100

34 2 Integers

which takes 001011102 = 46 to 010111002 = 92 which is 46× 2. Shifting to the
left by more than one bit position is equivalent to repeated shifts by one position so
shifting by two positions will multiply the number by 2×2 = 4,

00101110← 2= 10111000

giving 101110002 = 184 as expected.
It is natural to think that if a left shift multiplies by two a right shift would divide

by two and this is indeed the case,

00101110→ 1= 00010111

gives 000101112 = 23 which is 46÷ 2. Just as bits falling off the left end of the
number will result in a loss of precision so will bits falling off the right end with
one significant difference. If a bit falls off the right end of the number it is lost from
the ones position. If the ones position is set, that means the number is odd and not
evenly divisible by two. If the bit is lost the result is still the number divided by two
but the division is integer division which ignores any remainder. Information is lost
since a right shift followed by a left shift results in a number that is one less than
what we started with if the original number was odd. We can see this by shifting two
positions to the right,

00101110→ 2= 00001011

to get 000010112 = 11 which is 46÷4 ignoring the remainder of 2.
Both C and Python support shifts using the << and >> operators for left and

right shifts respectively. The << operator is frequently used with an argument of 1
in order to quickly build bit masks,

1 << 3 = 000010002
1 << 5 = 001000002

which is a pretty handy way to move bits into position.
Before we leave shifts, let’s return to the parity calculation mentioned above.

Recall that the parity of a number is determined by the number of 1 bits in its binary
representation. If odd, the parity is 1, otherwise it is 0. The key observation here
is that XOR preserves the parity of its arguments. For example, if, in binary, a =
1101 and b = 0111 then the parity of the two together is zero since there are a
total of six on bits. If we apply XOR we get a XOR b = 1010 which also has an
even number of on bits and therefore has the same parity. This suggests the trick. If
we XOR a number with itself but first shift the number half its bit width the resulting
bits of the lower half of the output of XOR will have the same parity as the original
number. We can see this if we look at a = 01011101 and XOR it with itself after
shifting down by four bits, which is half the width of the number,

01011101
XOR 00000101

xxxx1000

2.3 Operations on Unsigned Integers 35

where we are ignoring the upper four bits. The original number has 5 on bits there-
fore the parity is 1. If we look at the lower four bits after the XOR we see it also has
a parity of 1. If we repeat the process but using the new value and this time shifting
by half its effective width, which is 4 bits, we will end up with a number that has
the same parity as we started with and the same parity as the original number. If we
repeat this all the way the final result will be a one bit number that is the parity of
the original number. Therefore, for 01011101,

original 01011101
right shift 4 00000101
XOR 01011000
right shift 2 00010110
XOR 01001110
right shift 1 00100111
XOR 01101001

parity bit xxxxxxx1

For an 8-bit number we can define a parity function in C as,

unsigned char parity(unsigned char x) {
x = (x >> 4) ˆ x;
x = (x >> 2) ˆ x;
x = (x >> 1) ˆ x;

return x & 1;
}

where the return x & 1; line returns only the lowest order bit since all other
bits are meaningless at this point. The extension of this function to wider integers is
straightforward.

Shifting moves bits left or right and drops them at the ends. This is not the only
option. Instead of dropping the bits we might want to move the bits that would have
fallen off to the opposite end. This is a rotation which like a shift can be to the
left or right. Unfortunately, while many microprocessors contain rotate instructions
as primitive machine language operations neither C nor Python support rotations
directly. However, they can be simulated easily enough in code and an intelligent
compiler will even turn the simulation into a single machine instruction (e.g., gcc).

Again, to keep things simple, we will work with 8-bit numbers. For an 8-bit
number, say AB16 = 101010112, a rotation to the right of one bit looks like this,

10101011⇒ 1= 11010101

where we introduce the ⇒ symbol to mean rotation to the right instead of simple
shifting (→). Rotation to the left bit position gives,

10101011⇐ 1= 01010111

where we see that the bit that would have fallen off at the left end has now moved
around to the right side.

36 2 Integers

To simulate rotation operators in C and Python we use a combination of << and
>> with an OR operator. We need to pay attention to the number of bits in the data
type in this case. For example, in C, we can define rotations to the right by any
number of bits using,

unsigned char rotr(unsigned char x, int n) {
return (x >> n) | (x << 8 - n);

}

with a similar definition for rotations to the left,

unsigned char rotl(unsigned char x, int n) {
return (x << n) | (x >> 8 - n);

}

where we have changed << to >> and vice versa. One thing to note is the 8
in the second line of these functions. This number represents the number of bits
used to store the data value. Since we have declared the argument x to be of
type unsigned char we know it uses eight bits. If we wanted to modify the
functions for 32-bit integers we would replace the 8 with 32 or, in general, use
sizeof(x) * 8 to convert the byte size to bits.

The Python versions of the C rotation functions are similar.

def rotr(x,s):
return ((x >> s) | (x << 8 - s)) & 0xff

and,

def rotl(x,s):
return ((x << s) | (x >> 8 - s)) & 0xff

where the only change is that the return value is AND’ed with FF16 which as we
have seen will keep the lowest eight bits and set all the others to zero. This is again
because Python uses 32-bit integers internally and we are interested in keeping the
output in the 8-bit range. If we wanted these functions to work with 16-bit integers,
we would replace the 8 with 16, as in the C versions, but we would also need to
make the mask keep the lowest 16 bits by replacing 0xff with 0xffff.

The rotation functions are helpful, but why do they work? Let’s take a look by
breaking the operations up individually and seeing how they combine to produce
the final result. We start with the original input, AB16 = 101010112, and show, row
by row, the first shift to the left, then the second shift to the right, and finally the OR
to combine them. The values between the vertical lines are those that fit within the
8-bit range of the number, the other bits are those that are lost in the shift operations,

10101011 AB16
01010101 1 AB16 >> 1

1010101 10000000 AB16 << 8-1
11010101 OR

where we see that the bit lost when shifting to the right one position has been added
back at the front of the number by the shift to the left and the OR operation. Since the

2.3 Operations on Unsigned Integers 37

shifts always introduce a zero bit the OR will always set the output bit to the proper
value because 1 OR 0 = 1 and 0 OR 0 = 0. This works for any number of
bits to rotate,

10101011 AB16
00101010 11 AB16 >> 2

1010101 11000000 AB16 << 8-2
11101010 OR

2.3.4 Comparisons

Magnitude comparison operators take two unsigned integers and return a truth value
about whether or not the relationship implied by the operator holds for the operands.
Here we look at the basic three, equality (A = B), greater than (A > B), and less
than (A < B). There is a second set which can be created easily from the first: not
equal (A �= B), greater than or equal (A≥ B), and less than or equal (A≤ B).

At its core, a computer uses digital logic circuits to compare bits. Figure 2.4
illustrates the layout of a 1-bit comparator. Comparators for larger numbers of bits
are repeated instances of this basic pattern. As this not a book on digital logic we
will go no further down this avenue but will instead talk about comparing unsigned
integers from a more abstract point of view.

Fig. 2.4 A 1-bit digital comparator. The three output values represent the three possible relation-
ships between the input values A and B. Recall that input values are 0 or 1. The output is 1 for the
relationship that is true and 0 for those that are not meet. Cascades of this basic form can be used
to create multi-bit comparators

Most microprocessors have primitive instructions for comparison of integers as
this operation is so fundamental to computing. In addition to direct comparison,
many instructions affect processor flags based on privileged numbers like zero. For
example, to keep things simple, the 8-bit 6502 microprocessor, which has a single
accumulator, A, for arithmetic, performs comparisons with the CMP instruction but
also sets processor status flags whenever a value is loaded from memory using the
LDA instruction. There are other registers and instructions, of course, but we focus

38 2 Integers

on the accumulator to keep the example simple. The 6502 uses branch instructions
like BEQ and BNE to branch on equal or not equal respectively. This also applies
to the implied comparison with the special value 0 which happens when the LDA
instruction loads the accumulator.

Armed with this brief review of an old 8-bit microprocessor we can see that the
following set of instructions would indeed perform an 8-bit comparison between
2216 already in the accumulator via the first LDA instruction and 1A16 stored in
memory location 203516 and branch if they are not equal. Additionally, we will
also perform an implicit comparison of the value of memory location 20FE16 with
zero and branch if it is,

LDA #$22 ; A = $22
CMP $2035 ; compare to location $2035
BNE noteql ; branch to "noteql" if not equal

LDA #$20FE ; A = contents of $20FE
BEQ iszero ; branch to "iszero" if zero

where we use the classic notation of $22 = 2216.
Why bring up this example? In part to show that comparison is very fundamental

to computers and is done as efficiently as possible in hardware and to set the stage for
our less efficient alternatives to digital logic. The comparisons we are implementing
in code are pure hardware even in the simplest of microprocessors.

Since for any two integers A and B exactly one of the following is true: A = B,
A< B, or A> B, it follows that if we know how to test for any two the last condition
is simply when neither of the two we can test for applies. In our case, we look at
the situation where we know how to test for equality (A = B) and greater than
(A > B). We do this with two predicate functions that simply return 1 if the
relationship holds for the arguments and 0 otherwise. Let’s call these predicates
isZero(A) and isGreater(A,B) and see how we might implement them di-
rectly in C for 8-bit values using the unsigned char data type.

You may be wondering why we chose to use isZero(A) instead of the perhaps
more obvious isEqual(A,B). If so, good, you are paying attention. Given our
experience with the XOR operator we now know that,

a XOR a→ 0

so we can immediately see that,

isEqual(A,B) = isZero(A XOR B)

but how do we implement isZero(A)? One approach in code would be to shift
the bits and test the lowest order one. If we find one that is not zero then the number
is not zero. The test is via an OR which is only zero when both operands are zero.
We use AND to do the bit comparison and then shift the result down so that the
compared bit is in the lowest position. Then, the OR of all these tests will be 1 if any
bits are set and 0 if not. This is the exact opposite of what we want so we add a NOT
to reverse the sense of the logic and a final AND with 1 to mask out all other bits

2.3 Operations on Unsigned Integers 39

and return the state of the lowest bit only. This, then, is the full predicate function
isZero(x),

unsigned char isZero(unsigned char x) {
unsigned char ans;

return ˜(((x & (1<<7)) >> 7) | // test bit 7
((x & (1<<6)) >> 6) |
((x & (1<<5)) >> 5) |
((x & (1<<4)) >> 4) |
((x & (1<<3)) >> 3) |
((x & (1<<2)) >> 2) |
((x & (1<<1)) >> 1) |
(x & 1)) & 1; // test bit 1

}

Notice that there are no actual comparison operators in this function, only logical
bitwise operators. With this we can quickly implement isEqual(x,y),

unsigned char isEqual(unsigned char x,
unsigned char y) {

return isZero(x ˆ y);
}

We now need isGreater(A,B) which is implemented with bit operators,
shifts, and a call to isZero(x). This is why we started with isZero(x) in-
stead of isEqual(x,y). The C code for our function is given first followed by
the explanation of why it works,

1 unsigned char isGreater(unsigned char a,
2 unsigned char b) {
3 unsigned char x,y;
4
5 x = ˜a & b;
6 y = a & ˜b;
7
8 x = x | (x >> 1);
9 x = x | (x >> 2);
10 x = x | (x >> 4);
11
12 return ˜isZero(˜x & y) & 1;
12 }

In order to tell if a is greater than b we need to know the first place where their
respective bits do not agree. Once we know this bit position we know that a is
greater than b if at that bit position a has a 1 while b has a 0. So, we need to find
the locations of where the bits differ. To make the example concrete, we let a be
000111012 = 29 and b be 000110102 = 26. If we look at line 5 we see,

x = ˜a & b;

which sets x to the AND of the NOT of a and b. This leaves x with a 1 in all the
positions where the bit in a is less than the same bit in b. For our example this

40 2 Integers

sets x to 000000102 which tells us that the only bit position in a that is less than
the corresponding bit position in b is bit 1. Likewise, line 6 asks where are the bit
positions where a is greater than b? In this case, we set y to 000001012 to indicate
that in bit 0 and bit 2 the value of a is greater than b. In order to see if a is greater
than b we need to find the highest bit position where the two differ and see if that bit
is set. We can do this if we take the value in x, which tells us where a bits are less
than b bits, and build a mask which is 1 for all bit positions at or below the highest
bit position where a is first less than b. We do this with lines 8 through 10. This
operation which ORs the value with shifted versions of itself duplicates the highest
1 bit among all the lower bits. In this case,

x → 00000010
x = x | (x >> 1) → 00000011
x = x | (x >> 2) → 00000011
x = x | (x >> 4) → 00000011

where the last two steps add nothing new since x >> 2 and x >> 4 both result in
zero which will set no new bits. We now have a mask in x that tells us all the bit
positions below the first place where the bit in a is less than the bit in b. If we NOT
this mask, ¬ 00000011 → 11111100, we can use the new mask to tell us all the
bit positions where a was not less than b. Lastly, with this mask and the value in y
which tells us where the bits in a were greater than the bits in b, we can perform
one final AND, ˜x & y, which will result in zero if a≤ b since no bits will be set in
y in the region where the bits of a were greater than those of b, or a nonzero value
since at least one bit will be set in y in that region. Line 12, then, asks if this result
is zero by passing the output to isZero. It then applies NOT to change the output
of isZero since the result is zero when a≤ b and not zero when a> b. The final
AND with 1 gives us only the final bit since the NOT will change all the bits of the
result of isZero.

We are nearly finished with our comparison operators. We have equality
(isEqual) and greater than (isGreater). With these we see that isLess
would be,

unsigned char isLess(unsigned char x,
unsigned char y) {

return (!isEqual(x,y)) && (!isGreater(x,y));
}

which is reasonable since for any two unsigned integers A and B, if A �≥ B then A< B

must be true. Testing for not equal is even simpler,
unsigned char isNotEqual(unsigned char x,

unsigned char y) {
return !isEqual(x,y);

}

since the only way for A to not not equal B is if the two are indeed equal. Less than or
equal and greater than or equal follow directly from the functions already defined,

unsigned char isLessOrEqual(unsigned char x,
unsigned char y) {

return isEqual(x,y) || isLess(x,y);
}

2.3 Operations on Unsigned Integers 41

and

unsigned char isGreaterOrEqual(unsigned char x,
unsigned char y) {

return isEqual(x,y) || isGreater(x,y);
}

which completes our implementation of comparison operators using only bitwise
operations.

2.3.5 Arithmetic

Just as comparison is a fundamental microprocessor operation, so is arithmetic. In
this section we look at arithmetic with unsigned binary integers, first from the point
of view of doing it “by hand” and then from the point of view of a simple 8-bit
microprocessor. These two approaches should illustrate the mechanism behind the
operations. We will not, however, attempt to implement these operations in C as
we did above for the comparison operators though we will use C to demonstrate
overflow and underflow conditions.

The addition facts in binary are,

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 carry 1

from which we see that one of them produces a carry since it results in a two digit
number. Just as in decimal, the carry is applied to the next digit over to the left. So,
to add two unsigned 8-bit binary numbers we move right to left, bit by bit, adding
and moving any carry to the next digit to the left,

11111 ← carry
01101110 ← first operand

+ 00110101 ← second operand
10100011 ← answer

where the carry from the second to leftmost bit does not cause difficulty since the
highest bits of each number are zero. However, what would happen if there was a
carry from the leftmost bit? In mathematics, nothing special would happen, there
would simply be a new leftmost bit, but in computers this is not the case. Recall
that we are working with 8-bit unsigned numbers which means that all numbers
fit in eight bits in memory. If we use eight bits for numbers we have no place in
which to put any final carry bit. This results in an overflow condition. The computer
simply discards this new highest value bit and retains the lowest eight bits which fit
in memory,

42 2 Integers

11111
11101110 EE16

+ 00110101 3516
1 00100011 12316

which is stored as 2316 discarding the carry on the leftmost bit. This is precisely
what we see with the following C code,

#include <stdio.h>

int main() {
unsigned char x, y, z;

x = 0xEE;
y = 0x35;
z = x + y;

printf("%x\n", z);
}

Let’s take a look at how a simple 8-bit microprocessor would implement an
addition. In this case, we look at an unsigned 16-bit addition which requires two
addition operations. Working again with the 6502 processor mentioned above we
see that an 8-bit addition between a value in memory locations 2316 and 2516 will
involve a load into the accumulator (LDA), a clearing of the carry flag which catches
any overflow bit (CLC) and an addition with memory (ADC). Specifically, we assume
memory location 2316 contains EE16, memory location 2516 contains 3516. We then
load the accumulator, clear the carry and add,

LDA $23 A ← EE
CLC C ← 0
ADC $25 A ← A + 35 + C

A ← 23, C ← 1

with the accumulator set to 2316, the lowest eight bits of the sum of EE16 and 3516,
and the carry flag set to 1 to indicate an overflow happened. This setting of the carry
flag is the key to implementing multibyte addition. In C, we would simply declare
the variables to be of data type unsigned short which is 16-bits and add as
before. For example, in C we have,

#include <stdio.h>

int main() {
unsigned short x, y, z;

x = 0xEE;
y = 0x35;
z = x + y;

printf("%x\n", z);
}

2.3 Operations on Unsigned Integers 43

which gives us a 16-bit answer of 12316. In memory, using little-endian representa-
tion for multibyte numbers, we have,

memory location $24 : 23
$25 : 01

since we store the lowest byte first.
In the simpler world of the 8-bit microprocessor we store the lowest part of the

sum, the low byte, and add the high bytes without clearing the carry. Assuming
memory is set to

memory location $23 : EE
$24 : 00
$25 : 35
$26 : 00

we clear the carry flag, add the two low bytes, store the partial sum, add the high
bytes with any carry, and store the final part of the sum like this,

LDA $23 A ← EE
CLC C ← 0
ADC $25 A ← A + 35 + C, A=23
STA $27 $27 ← 23, C ← 1
LDA $24 A ← 0
ADC $26 A ← A + 0 + C, A=1
STA $28 $28 ← 1

where we have introduced a new instruction, STA, which stores the accumulator in
memory. When this sequence of instructions is complete we have the final answer
in memory locations $27 and $28 as 2316 and 116 respectively as we expect for a
little-endian number.

The addition above is equivalent to this single 16-bit addition

1 11111
00000000 11101110 EE16

+ 00000000 00110101 3516
00000001 00100011 12316

where we have separated the upper eight bits of the high byte from the lower eight
bits of the low byte.

Addition of unsigned binary numbers is by now straightforward. We add, left to
right, bit by bit with carry bit when necessary. If the result is too large, we overflow
and retain the lowest n bits where n is the width of the number in bits. We now move
on to subtraction of unsigned binary numbers.

The subtraction facts in binary are,

0 − 0 = 0
0 − 1 = 1, underflow
1 − 0 = 1
1 − 1 = 0

44 2 Integers

where the underflow condition will require a borrow from the next higher bit
position. Like overflow, underflow is the situation where we cannot properly rep-
resent the number using the number of bits we have to work with. In this case, the
underflow happens when we attempt to subtract a larger number from a smaller and
we have no way to represent the resulting negative number. We’ll address this issue
below.

To continue with the example we used for addition, we now evaluate EE16−3516
to get B916. In binary, using the subtraction facts, we have,

01
01 01

11101110 EE16
− 00110101 3516

10111001 B916

with each borrow written above the bit and the next bit set to one less than it was. If
a second borrow is necessary for a bit position, we write it above again. Let’s look
at the subtraction again, bit by bit, right to left, we are computing,

bit 0 10 - 1 = 1, borrow
bit 1 0 - 0 = 0
bit 2 1 - 1 = 0
bit 3 1 - 0 = 1
bit 4 10 - 1 = 1, borrow
bit 5 10 - 1 = 1, borrow
bit 6 0 - 0 = 0
bit 7 1 - 0 = 1

which, reading from bottom to top, gives 101110012 = B916 as expected.
What happens if we need to borrow across more than one bit position? For ex-

ample, in base 10 a problem like,

7003
- 972
6031

involves borrowing across two digits in order to subtract the 7 of 972 which we can
write as,

69103
- 9 72

6031

where we change the 700 into 6910 to subtract 9 7 giving the partial result 603.
We subtracted one from the next two digits and added it in as a ten to the digit we
were working with. The same thing happens in binary. Consider this subtraction
problem,

2.3 Operations on Unsigned Integers 45

01
101010101 A916

− 101001 10 A616
00000011 0316

where we attempt to subtract 1 from 0 in the second bit position (bit 1, since we
always count from zero and from right to left). We need to borrow from bit 2, but
since this is also zero, we instead borrow from bit 3 and change 100 into 0110 in
order to do the subtraction.

As we are working with 8-bit unsigned integers one will eventually be tempted
to ask what happens if we try to subtract 1 from 0 since we cannot represent -1.
What happens is we get the result we would get if we had an extra bit at left-most
position and borrowed from it like so,

0 1111111
1 000000010

− 0000000 1
11111111

meaning that subtracting one from the smallest number we can represent, namely
zero, results in the largest number we can represent which for an 8-bit unsigned
integer is every bit set, 28 − 1 = 255. Another way to think about it is that the
numbers form a loop with 00000000 and 11111111 set next to each other. If
we move one position down below zero we wrap around to the top and get 255.
Likewise, if we move one position up from 255 we will wrap around to the bottom
and get zero. Moving down below zero is an underflow condition while moving up
above 255 is an overflow.

Before we move on to multiplication and division of unsigned integers, let’s look
at one more subtraction example that would result in a negative number. We’ll use
our running example but swap the operands,

1 00110101 3516
- 11101110 EE16

01000111 4716

where we have indicated the implied 1 bit from which we can borrow. This implied
1 bit is in the bit position for 28 = 256 which suggests another way to think about the
answer we would expect if we go negative in a subtraction of unsigned numbers. For
our example, 3516−EE16 =−185, but if we add in 256 which is essentially what we
are doing in thinking there is an implied extra high bit, we get −185+256= 71=
4716 which is the answer we found previously. We have been working with 8-bit
wide unsigned integers. If we are using 16-bit integers the implied bit 16 (recall,
we count bits from zero) is 216 = 65536 which means we would add 65536 to any
negative value to get the result we would expect from unsigned subtraction.

46 2 Integers

The following C example demonstrates that what we have been discussing is
indeed the case,

#include <stdio.h>

int main() {
unsigned char x=0xEE, y=0x35, z;

z = x - y;
printf("%X\n", z);

z = y - x;
printf("%X\n", z);

z = 0 - 1;
printf("%X\n", z);

}

The output of this program is,

B916 = 101110012
4716 = 010001112
FF16 = 111111112

which is exactly what we saw in the examples above.
Now that we know how to subtract in binary we can examine a useful trick inv-

olving AND. If one bit in a number is set this implies that the number is a power of
two since every position in a binary number is, by definition, a power of two. If we
know which bit we want to test for, which power of two, it is straightforward to use
a mask and check that bit. But, what if we wanted to know if the number in question
was any power of two? We can use AND here along with an observation about bits
that are on in a number that is a power of two. For example, if the number we want to
test is 001000002 = 32 we see that it is a power of two and only one bit is on. Now,
subtract one from this number. In this case, we will get 000111112 = 31. What has
happened is that the single bit that was on is now off and some of the bits that were
off are now on. Finally, what happens if we AND these two values together? We get,

00100000 = 32
AND 00011111 = 31

00000000 = 00

which is exactly zero. From this we see that we will only get exactly zero when one
of two conditions are met: either the number is itself zero or it is a power of two
which had only one bit set. This is nicely captured in a simple C function,

unsigned char is_power_of_two(unsigned char n) {
return (n == 0) ? 0

: (n & (n-1)) == 0;
}

2.3 Operations on Unsigned Integers 47

which returns 1 if the argument is a power of two and 0 otherwise. The function
checks if the argument is zero, if so, return 0. If not, then check whether n & (n-1)

is exactly 0. If it is, the expression is true and the function returns 1 to indicate a
power of two, otherwise it returns 0. While written for unsigned char data type
the function will work for any unsigned integer type.

We’ve looked in detail at addition and subtraction, now we turn our attention
to multiplication and division. Modern microprocessors perform multiplication and
division as operations in hardware. This is a very good thing but makes it difficult
for us in a sense so we will, as before, look at more primitive approaches which
might be used in small 8-bit microcontrollers that lack hardware instructions for
multiplication and division. To keep things simple we will illustrate the algorithms
in C even though this would never be done in practice.

Since multiplication is really repeated addition one approach to finding n× m,
where n and m are unsigned integers, would be to add n to itself m times or vice
versa. Naturally, it would make sense to run the loop as few times as possible so we
would loop over the smaller of n or m adding the other number. In C we have,

unsigned short mult1(unsigned char n, unsigned char m) {
unsigned char i;
unsigned short ans = 0;

if (n < m) {
for(i=0; i < n; i++)

ans += m;
} else {

for(i=0; i < m; i++)
ans += n;

}

return ans;
}

which leaves the product of the 8-bit numbers in n and m in the now possibly 16-bit
value p. Why is the product possibly 16-bits? Because the largest possible number
we can get by multiplying two 8-bit numbers requires 16-bits to store it in memory
since 255×255= 65025 which is above 28−1= 255 meaning it needs more than
8-bits to store but is below 216 − 1 = 65535 which is the maximum for a 16-bit
unsigned integer.

Is this really a good way to multiply numbers, however? Probably not. The loop
needs to be repeated for the smaller of n or m which may be up to 255 times. Given
we must do 16-bit addition inside the loop, recalling the example above, we see
that the simple multiplication may turn into many thousands of individual machine
instructions. Surely we can do better than this? To answer this question, let’s look a
little more closely at multiplication in binary as we might do it by hand,

48 2 Integers

00010100 1416 = 20
× 00001110 0E16 = 14

00000000
00010100

00010100
+ 00010100

00100011000 11816 = 280

in which we see that if the binary digit in the multiplier is 0 we simply copy down
all zeros and if it is a 1 we copy the multiplicand lining it up beneath the multiplier
bit as we would do in decimal. Then, again as in decimal multiplication, we add all
the partial products to arrive at the final answer. For simplicity we did not write the
leading zeros which would be present if showing all 16-bits of the result.

This method suggests a possible improvement over our existing multiplication
function, mult1. Rather than repeatedly add the multiplier or multiplicand, we can
copy the process just shown by shifting the multiplicand into position and adding it
to the partial product if the multiplier bit is 1 otherwise ignore those that are 0. This
leads to a second multiplication function in C,

unsigned short mult2(unsigned char n, unsigned char m) {
unsigned char i;
unsigned short ans = 0;

for(i=0; i < 8; i++) {
if (m & 1) {

ans += n << i;
}
m >>= 1;

}

return ans;
}

which, when compared to mult1 and run ten million times proves to be about 1.6x
faster. Let’s look at what mult2 is actually doing.

We are multiplying two 8-bit numbers so we need to look at each bit in the mul-
tiplier, m. This is the source of the for loop. The if statement AND’s the multiplier
with 1 to extract the lowest bit. If this bit is set, we want to add the multiplicand,
n, to the partial product stored in ans. Note, though, that before we add the multi-
plicand, we need to shift it up to the proper bit position. Note also that this works
because the result of the operation is a 16-bit value which will not lose any of the
bits of n when we do the shift. Regardless of whether we add anything to the partial
product we need to shift the multiplier down one bit so that in the next pass through
the loop the if will be looking at the next highest bit of the original m. Lastly, we
see that there are no side-effects to this function because C passes all arguments by
value meaning n and m are copies local to the function..

The speed improvement between mult1 and mult2 becomes much more dra-
matic when we move from multiplying two 8-bit numbers to multiplying two
16-bit numbers. To do this, we take the source for mult1 and mult2 and replace

2.3 Operations on Unsigned Integers 49

all instances of unsigned char by unsigned short and all instances of
unsigned short by unsigned int. Lastly, we change the loop limit in
mult2 from 8 to 16 since we are multiplying two 16-bit numbers. When this done
we see that mult2 is nearly 3500x faster than mult1 for the same arguments
(assuming both to be near the limit of 65535).

What about division? We cover two operations with division since the algorithm
returns the quotient and any remainder. The operations are integer division (/) which
returns the quotient and modulo (%) which returns the remainder. For example, we
need an algorithm that produces these answers,

123 / 4 = 30
123 % 4 = 3

since 123/4= 30 with a remainder of 3.
We could implement division by repeated subtraction. If we count the number of

times we can subtract the divisor from the dividend before we get a partial result
that is less than the divisor we will have the quotient and the remainder. We might
code this in C as,

unsigned char div1(unsigned char n,
unsigned char m,
unsigned char *r) {

unsigned char q=0;

*r = n;

while (*r > m) {
q++;

*r -= m;
}

return q;
}

and test it with,

int main() {
unsigned char n=123, m=7;
unsigned char q,r;

q = div1(n, m, &r);
printf("quotient=%d, remainder=%d\n", q,r);

}

which prints quotient=30, remainder=3 which is the answer we are expecting.
This function requires three arguments since we want to return the quotient as

the function value and the remainder as a side-effect value. This is why we pass the
remainder as a third argument using a pointer. Inside of div1 we set the remainder
(r) to our dividend and continually subtract the divisor (m) until we get a result less
than the divisor. While doing this we keep count of the number of times we subtract
in q which we return as the quotient.

50 2 Integers

Like our mult1 example above, div1 is an inefficient way to implement
division. What happens if the dividend is large and the divisor is small? We must
loop many times in that case before we are done. The problem is even worse if we
use integers larger than 8-bits. What to do, then?

Just as we did for multiplication, let’s look at binary division by hand. Unlike
decimal long division, binary division is rather simple, either the divisor is less than
or equal to the dividend in which case the quotient bit is 1, otherwise, the quotient
bit is 0; there are no trial multiplications. Dividing 123= 011110112 by 4= 1002
in this way gives,

100
00011110)
01111011
0
01
0

011
0

0111
100
0111
100
0110

100
0101
100

11
0

11

with 000111102 = 30 and a remainder of 112 = 3 as expected.
As we have seen several times already, modern microprocessors implement such

a fundamental operation as division in hardware, but we can look at unsigned div-
ision in the way it might be implemented in a more primitive microprocessor or
microcontroller. For simplicity, we again implement the algorithm in C. With all of
this in mind, we get Fig. 2.5 which will require a bit of explanation.

The key to understanding what Fig. 2.5 is doing it to observe that binary division
by hand is really a matter of testing whether or not we can subtract the divisor from
the partial dividend. If so, we set a one in that bit of the quotient, otherwise we set
a zero. The algorithm of Fig. 2.5 is setup for 8-bit division using 8-bit dividends
and divisors, and by implication quotients. Therefore, we need to examine all eight
bits of the dividend starting with the highest bit. To do this, and to save space as
this algorithm is often implemented in hardware, we take advantage of the fact that
C passes arguments by value and use n to be both dividend and quotient. When
we have examined all eight bits the value in n will be the quotient. We can do this
because as we look at each bit of the dividend we shift it out to the left while shifting
in the new bit of the quotient from the right.

2.3 Operations on Unsigned Integers 51

Fig. 2.5 Shift, test, and restore unsigned integer division

We store the remainder in r and pass it back out of the function by using a pointer.
To start the division process we set r to zero and the quotient to the dividend in n.
Since n already has the dividend there is no explicit operation to do this, we get it for
free. If we call div2(123, 4, &r) to continue with our running division example,
the state of affairs in binary after the execution of line 6 in Fig. 2.5 is,

i r n m
undefined 00000000 01111011 100

where the dividend is in n and the remainder is zero. We next hit the loop starting
in line 8. This loop executes eight times, once for each bit of the dividend. Lines 9
and 10 perform a double left shift. This is the equivalent of treating r and n as a
single 16-bit variable with r the high order bits. First we shift r one bit to the left
(*r << 1) and then comes the rather cryptic expression,

((n & 0x80) != 0)

which tests whether the highest bit in n, our dividend and quotient is set. Recall our
discussion of AND above. If it is set, we add it into r. This is because we are about
to left shift n one bit and if the bit we are shifting out of n is set, we need to move
it to r to complete the virtual 16-bit shift of r and n. We then shift n in line 10.

Line 12 checks whether or not we can subtract the divisor in m from the partial
dividend which is being built, bit by bit, in r. If we can, we set the first bit of n, our
quotient, in line 13 and then update the partial dividend by subtracting the divisor
in line 14. Recall, we are examining the dividend one bit at a time by moving it into
r. We are simultaneously storing the quotient in n one bit at a time by putting it in
on the right side. Since we already shifted to the left the first bit in n is always zero,

52 2 Integers

we only update it if the subtraction succeeds. After this first pass through the loop
we have,

i r n m
0 00000000 11110110 100

with the first bit of the quotient, a zero, in the first bit of n. If we continue through
the loop we will get the following sequence of values,

i r n m
1 00000001 11101100 100
2 00000011 11011000 100
3 00000011 10110001 100
4 00000011 01100011 100
5 00000010 11000111 100
6 00000001 10001111 100
7 00000011 00011110 100

where we end with a quotient of 30 in nwhich is the return value of the function and
a remainder in r of 3. Notice how n changes as we move through the loop. Each
binary digit is shifted into r from the right as the new quotient bits are assigned
from the left until all bits are examined. This algorithm, unlike the div1 example,
operates in constant time. There are a fixed number of operations needed regardless
of the input values.

2.3.6 Square Roots

We briefly consider here a simple integer square root algorithm which makes use
of an interesting mathematical fact. This algorithm works by counting the number
of times an ever increasing odd number can be subtracted before reaching or going
below zero. The algorithm itself is easy to implement in C,

unsigned char sqr(unsigned char n) {
unsigned char c=0, p=1;

while (n >= p) {
n -= p;
p += 2;
c++;

}

return c;
}

where we again make use of the fact that C passes arguments by value which allows
us to modify n in the function without changing it outside of the function. Our
count, which will be the square root of n, is initialized to zero in c. We start our odd
number in p at 1 and then move to 3, 5, 7, and so on. The while loop is checking
to see if our n value is still larger or the same as p and if so, we subtract p and count

2.4 What About Negative Integers? 53

one more subtraction in c. When n is less than p we are done counting and return c
as the square root. Naturally, this algorithm is only approximate by underestimating
when n is not actually a perfect square.

If we call sqr with 64 as the argument, we get the following sequence of values
in the while loop,

n p c
63 3 1
60 5 2
55 7 3
48 9 4
39 11 5
28 13 6
15 15 7
0 17 8

where the final value of n is zero since 64 is a perfect square and c is 8, which is
the square root of 64. We see that the algorithm works, but why?

The trick is the observation that the sum of the sequence of odd numbers is always
a perfect square. For example,

1 = 1
1+3 = 4

1+3+5 = 9
1+3+5+7 = 16

1+3+5+7+9 = 25

or more compactly,

n

∑
i=1

2i−1 = n2

where n2 is the argument to sqr and n is the square root.

2.4 What About Negative Integers?

In the previous section we took a thorough look at unsigned integers and the sorts
of operations computers typically perform on them. Without a doubt, unsigned inte-
gers are the mainstay of computers, but often it is necessary to represent quantities
that are less than zero. What do we do about that? In this section we examine three
options, two in detail, for tracking the sign of an integer and performing opera-
tions with signed integers. We will naturally build on what we have learned about
unsigned integers and bear in mind that, as before, while we may show examples
using 8-bit numbers for simplicity, everything immediately translates to numbers
with more bits, be they 16, 32, or larger.

The most common techniques for handling signs are sign-magnitude, one’s com-
plement, and two’s complement.

54 2 Integers

2.4.1 Sign-Magnitude

Perhaps the most natural way to represent the sign of an integer is to reserve one bit
of its representation for the sign and this is precisely what early computers did. If
we decide that we will keep the highest-order bit of the number for the sign we can
use the remainder of the bits to represent the magnitude as an unsigned integer and
this is the sign-magnitude form,

01111111 = 127
. . .
00000010 = 2
00000001 = 1
00000000 = 0
10000001 = -1
10000010 = -2
. . .
11111111 = -127

This seems to be a perfectly reasonable way to store a signed integer but notice a
few things,

• We lose range in terms of magnitude. An unsigned 8-bit number can take values
from 0 to 255 while a sign-magnitude number is restricted to -127 to +127.
As we will see, keeping track of the sign always results in a loss of magnitude
range.

• There are two ways to represent zero: +0 = 00000000 and -0 = 10000000.
This seems unnecessary and wasteful of a bit pattern.

• Arithmetic becomes more tedious since we need to bear the sign of the number
in mind at all times. It would be nice to be able to do some arithmetic without
requiring separate logic for the sign.

For the reasons given above, especially the additional hardware logic, the sign-
magnitude representation for integers has been abandoned by modern computer sys-
tems. Let us now turn our attention to possible replacements.

2.4.2 One’s Complement

Our first candidate for a suitable replacement to the sign-magnitude form is called
one’s complement. In this notation we represent negative numbers by taking the pos-
itive form and calculating the one’s complement. The one’s complement is simple
to do, just negate (logical NOT) every bit in the positive form of the number. So, we
have,

2.4 What About Negative Integers? 55

01111111 = 127
. . .
00000010 = 2
00000001 = 1
00000000 = 0
11111110 = -1
11111101 = -2
. . .
10000000 = -127

which again seems good in that we can look at the highest order bit to see if the
number is negative or not and as we will shortly see we can use this notation for
arithmetic without too much trouble, but we do still have two ways to represent zero
since 00000000→ 11111111.

2.4.3 Two’s Complement

The one’s complement of a positive number is the bit pattern we get when we change
all the zero bits to one and all the one bits to zero. The two’s complement of a positive
number is the bit pattern we get when we take the one’s complement and then add
one to it. This is the notation that has been accepted as the way to represent negative
integers and the advantages will be come clear when we look at operations on signed
integers. As with one’s complement integers, a positive two’s complement integer
is represented in just the same way as an unsigned integer. With two’s complement
we have,

01111111 = 127
. . .
00000010 = 2
00000001 = 1
00000000 = 0
11111111 = -1
11111110 = -2
. . .
10000000 = -128

where we now have only one way to represent zero since,

00000000 → 11111111 → 00000000
positive one’s complement two’s complement

since adding one to 11111111 maps back around to 00000000 with the overflow
bit ignored. Additionally, we have increased our range by one since we can represent
numbers from -128 to +127 instead of -127 to 127 as with one’s complement or
sign-magnitude.

56 2 Integers

2.5 Operations on Signed Integers

We would like to be able to perform operations on signed integers. The bit level
operations like AND, OR and NOT work the same way with signed integers as with
unsigned integers. To these operators, the bits are just bits, the “fact” of a negative
integer is just a convention forced on certain bit patterns. Since this is the case, we
need only look at how to compare negative integers, how to perform arithmetic on
negative integers, and, as a special operation, how to deal with the sign of a two’s
complement integer when changing the number of bits used to represent the number.
Let us first start with comparing two signed integers.

2.5.1 Comparison

Comparison of two signed integers, A and B, implies determining which relational
operator, <, >, or =, should be put between them. When we compared unsigned
integers we looked at the bits from highest to lowest. We still to that for signed
integers but we need to first consider the signs of the two numbers. If the signs differ
we know very quickly the relationship between the numbers without considering
all the bits. If the signs match, either both positive or both negative, we need to
look at the magnitude bits to see where they might be different. This will tell us the
relationship between the two numbers. Naturally, if the bits are all the same, position
for position, then the two numbers are equal and use the exact same bit pattern.

We can use a C function like the one in Fig. 2.6, with included helper function to
determine whether or not a particular bit position is on, to compare two signed num-
bers in two’s complement notation. Note that we are now working with variables of
type signed char which are 8-bit signed integers.

The helper function (bset, lines 1–4) returns 1 if the n-th bit of v is on, other-
wise it returns a 0. It uses the shift and AND mask trick we saw above to test a bit
position value. The main function, scomp, looks first at the signs of the arguments
(lines 10–13) and returns the relationship if they differ. If the sign bit of a is zero, a
is positive. If the sign bit of b is one, then b is negative and a must be greater than
b so return 1 to indicate a > b. If the signs are reversed, a is less than b so return
-1 to indicate a< b.

If the signs of a and b match, either positive or negative, we then look at the
remaining bits from highest to lowest to see where there are any differences. This is
the loop of lines 15 through 20 in Fig. 2.6. If we find a bit position where a has a
zero and b has a one we know that a < b must be true so we return -1. Likewise,
if we find that a is one and b is zero at that bit position we know that a > b so we
return 1. Finally, if we make it through all the bits and find no differences the two
integers are equal so we return 0. With a comparison function like scomp it is easy
to create predicate functions checking for equal, less than and greater than. Recall
that a predicate function is a function that returns true or false. For example,

2.5 Operations on Signed Integers 57

Fig. 2.6 Comparison of two signed integers a and b. The function returns 0 if a== b, 1 if a> b

and -1 if a< b

unsigned char isEqual(signed char a,
signed char b) {

return scomp(a,b) == 0;
}

unsigned char isLessThan(signed char a,
signed char b) {

return scomp(a,b) == -1;
}

unsigned char isGreaterThan(signed char a,
signed char b) {

return scomp(a,b) == 1;
}

define functions which return true (1) when a = b, a < b, and a > b, respectively.

2.5.2 Arithmetic

Let’s take a look at the basic arithmetic operations (+,−,×,÷, and %) as they
apply to signed numbers. For addition and subtraction we will consider both
one’s and two’s complement negative numbers to show why two’s complement is

58 2 Integers

often preferable. We focus on operations involving negative numbers as operations
involving positive numbers follow the techniques described earlier in the chapter for
unsigned integers.

Addition and Subtraction. Addition in one’s complement notation is nearly iden-
tical to unsigned addition with one extra operation should there be a final carry.
To see this, let’s take a look at adding two negative integers represented in one’s
complement,

11000000 -63
+ 11000010 -61
1 10000010 -125
10000011 -124

(one’s complement)

where the carry at the end, shown by the extra 1 on the left, is added back into the
result to get the correct answer of -124. This adding in of any carry is called the
end-around carry and is the extra twist necessary when adding one’s complement
numbers.

The same addition in two’s complement notation produces a carry which we
ignore,

11000001 -63
+ 11000011 -61
1 10000100 -124

(two’s complement)

since we see that 10000100 is -124 by making it positive,

01111011
+ 00000001
01111100 124

Addition of a positive and negative number works in the same way for both one’s
and two’s complement numbers. For example, in one’s complement we have,

+ 01111100 124
11000010 -61

1 00111110 62
00111111 63

(one’s complement)

where we have again made use of the end-around carry to give us the correct answer.
The two’s complement version is similar,

+ 01111100 124
11000011 -61

1 00111111 63
(two’s complement)

where we again ignore the carry and keep only the lower eight bits. Recall, we are
giving all examples as signed or unsigned 8-bit numbers. If we were working with
16-bit or 32-bit numbers we would keep that many bits in the answer.

2.5 Operations on Signed Integers 59

Computers implement subtraction by negation and addition. This allows for only
one set of hardware circuits to be used for both operations. With that in mind, sub-
traction becomes particularly simple. If we want to calculate 124 − 61 = 63 we
actually calculate 124+(−61) = 63 which is exactly the example calculated above.
For calculation by hand it is helpful to think of subtraction as an actual operation
but, as we see here, when done with the appropriate notation for negative numbers,
subtraction is really an “illusion” and is nothing more than addition with a negative
number.

While addition and subtraction are straightforward, especially with two’s com-
plement notation, we have to consider one question: what happens if the result of the
operation does not fit in the number of bits we are working with? For our examples,
this means that the result does not fit in eight bits taking the sign into account. Let’s
consider only two’s complement numbers. We already saw in the examples above
that we could ignore the carry to the 9th bit and saw that the lower eight bits were
correct. Is this always the case?

A signed 8-bit two’s complement number has a range from -128 to 127. If we
attempt an operation that falls outside of this range we will not be able to properly
represent the answer. We call this condition an overflow. How can we detect this?
By following two simple rules,

1. If the sum of two positive numbers is negative, overflow has happened.
2. If the sum of two negative numbers is positive, overflow has happened.

We need not worry about the sum of a positive and negative number because both the
positive and negative number are already in the allowed range and it is impossible,
because of the difference in sign, for the sum to be outside the allowed range. This
is why we ignored the last carry bit when adding −61 to 124. Let’s look at cases that
prove the rules. If we try to calculate 124+124 = 248 we know we will have trouble
because 248 is greater than 127 which is the largest 8-bit positive two’s complement
number. We get,

+ 01111100 124
01111100 124
11111000 -8

(two’s complement)

which is clearly a wrong answer. According to our rule for addition of two positive
numbers we know overflow has happened because the sign bit, bit 7, is one, indicat-
ing a negative answer. Similarly, two large negative numbers added will prove our
second rule,

+ 10000100 -124
10000100 -124
00001000 8

(two’s complement)

where we have ignored the carry to the 9th bit. We see that the result is positive since
bit 7 is zero. This proves our second rule and we know that overflow has happened.

60 2 Integers

Multiplication. We now consider multiplication of signed integers. One approach
to signed multiplication would be to make use of the rules for products to track the
sign of the result. If we do this, we can make any negative number positive, do uns-
igned integer multiplication as described above in Sect. 2.3.5, and negate the result
if necessary to make it negative. This approach will work for both one’s and two’s
complement numbers. As we recall from school, when multiplying two numbers
there are four possible scenarios related to the signs,

1. positive × positive = positive
2. positive × negative = negative
3. negative × positive = negative
4. negative × negative = positive

with this in mind it is simple to extend our mult2 example from Sect. 2.3.5 to
check the signs of the inputs and negate the negative numbers to make them positive
before multiplying. Then, the result can be negated to make it negative if the result
should be negative. In C this gives us Fig. 2.7

Fig. 2.7 Unsigned integer multiplication modified for signed numbers

where the main loop in lines 18 through 21 has not changed but before we run it we
check the signs of the inputs to see if we need to negate any negative numbers to
make them positive. The variable s holds the flag to tell us that the answer needs to

2.5 Operations on Signed Integers 61

be negative. We initially set it to 0 with the assumption that the inputs, n and m, will
both be positive. In lines 5 through 16 we check this assumption. If n is positive and
m is negative, we set s in line 6 and make m positive. Likewise, in line 9 we check
to see if n is negative and m is positive and make n positive if this is the case. We
also set the flag in s since we know the answer needs to be negative. Lastly, if both
n and m are negative we make them both positive and leave the flag in s unset. Then
we multiply as before. In line 23 we check to see if the negative flag is set, if so, we
make the answer negative before returning it.

In this example we have taken advantage of the fact that the C compiler will
properly negate a value as in line 7 regardless of the underlying notation used for
negative numbers. We know, however, in practice that this will typically be two’s
complement. Can we multiply numbers directly in two’s complement? Yes, in fact,
there are several existing algorithms which to exactly that. Let’s consider one of the
more popular of them, the Booth algorithm [1] which was developed by Andrew
Booth in 1950. A C implementation of this algorithm for multiplying two signed
8-bit integers is given in Fig. 2.8. Let’s take a look at what it is doing.

Fig. 2.8 The Booth algorithm for multiplication of two’s complement 8-bit integers

Booth’s essential insight was that when we multiply two binary numbers a string
of ones can be replaced by a positive and negative sum in the same way that 16×6=
16× (8−2) but since we are in binary we can always write any string of ones as the
next higher bit minus one. So, we have,

00011100 = 00100000 + 000000-10

62 2 Integers

where we have written a -1 for a specific bit position to indicate subtraction. This
means, if we scan across the multiplicand and see that at bit position i and i−1 there
is a 0 and 1, respectively, we can add the multiplier. Similarly, when we see a 1 and
0, respectively, we can subtract the multiplier. At other times, we neither add nor
subtract the multiplier. After each pair of bits, we shift to the right.

In Fig. 2.8 we initialize the algorithm by setting A to the multiplier, m, shifted
nine places to the left, and similarly set S to the negative of the multiplier (two’s
complement form), also shifted nine positions to the left. The product, P, is initial-
ized to the multiplicand in r but shifted one position to the left. This is done in lines
5 through 7. Why all the shifting? We are multiplying two eight bit signed numbers
so the result may have as many as 16 bits, hence using signed int for A, S and P.
This is the origin of eight of the nine bit positions. The extra bit position for A and
S, and the single extra bit for P (line 7), is so that we can look at the last bit position
and the one that would come after which we always set to zero. This means that the
last bit position, bit 0, and the next, bit −1, could be 1 and 0 to signal the end of
a string of ones. We mask the multiplicand, r, with 0xFF to ensure that the sign is
not extended when we move from the signed char to signed int data type. See
the next section for a description of sign extension.

The loop in lines 9 through 21 examines the first two bits of P, which are the
two we are currently considering, and decides what to do based on their values. Our
options are,

bit i bit i−1 operation
0 0 do nothing
0 1 add multiplier to product
1 0 subtract multiplier from product
1 1 do nothing

which is reflected in the switch statement of line 10. The phrase P & 3 masks
off the first two bits of P, which is what we want to examine. After the operation,
we shift the product (P) to the right to examine the next pair of bits. When the loop
finishes, we shift P once more to the right to remove the extra bit we added at the
beginning in line 7. This completes the algorithm and we have the product in P,
which we return. This algorithm substitutes a starting add and ending subtraction
for what might be a long string of additions for each 1 bit in a string of 1 bits.
Also, when not adding or subtracting, we simply shift bits. This makes the algorithm
particularly efficient.

Sign Extension and Signed Division. Just as we did for multiplication above, we
can modify the unsigned integer algorithm for division in Fig. 2.5 to work with
signed integers by determining the proper sign of the output, then making all argu-
ments positive and dividing, negating the answer if necessary. However, before we
do that, let’s take a quick look at sign extension.

Sign Extension. What happens if we take an 8-bit number and make it a 16-bit
number? If the number is positive, we simply set the upper eight bits of the new
16-bit number to zero and the lower eight bits to our original number like so,

2.5 Operations on Signed Integers 63

00010110 → 0000000000010110

which is pretty straightforward. Now, if we have a negative 8-bit signed integer in
two’s complement notation we know that the leading bit will be a 1. If we simply
add leading zeros we will get,

11011101 → 0000000011011101

which is no longer a negative number because the leading bit is now a 0. To avoid
this problem and preserve the value we extend the sign when we form the 16-bit
number by making all the new higher bits 1 instead of 0,

11011101 → 1111111111011101

which we know is the same value numerically and we can check it by looking at the
magnitude of the number. Recall, we convert between positive and negative two’s
complement by flipping the bits and adding one. So, the 8-bit version becomes,

11011101 → 00100010 + 1 → 00100011 = 3510

and the 16-bit version becomes,

1111111111011101 → 0000000000100010 + 1 → 0000000000100011 = 3510

which means that both bit patterns represent −35 as desired. We intentionally frus-
trated sign extension in Fig. 2.8 by masking r with 0xFF before assigning it to P
which was a 32-bit integer.

Signed Division. Figure 2.5 implements unsigned division. If we track the signs
properly we can modify it to work with signed integers. Division actually returns
two results. The first is the quotient and the second is any remainder. The sign we
should use for the quotient is straightforward enough,

Dividend Divisor Quotient
+ + +
+ − −
− + −
− − +

ambiguity arises when we think about what sign to apply to the remainder. It turns
out that different programming languages have adopted different conventions. For
example, C chooses to make the remainder have the same sign as the dividend while
Python gives the remainder the sign of the divisor. Unfortunately, the situation is
more complicated still. When dividing negative numbers we are often returning an
approximate quotient (unless the remainder is zero) and that approximate quotient
has to be rounded in a particular direction. All division algorithms in programming
languages satisfy d = nq+ r which means that the quotient, q, times the divisor, n,
plus the remainder, r, equals the dividend, d. However, we have choices regarding
how to set the signs and values of q and r. There are three options,

64 2 Integers

1. Round towards zero. In this case, we select q to be the integer closest to zero that
when multiplied by n is less than or equal to d. In this case, if d is negative, r
will also be negative. For example, −33/5 =−6 with a remainder of −3 so that
−33 = 5(−6)+(−3). This is the option used by C.

2. Round towards negative infinity. Here we round the quotient down and end up
with a remainder that has the same sign as the divisor. In this case, −33/5 =−7
with a remainder of 2 giving −33= 5(−7)+2. This is the option used by Python.

3. Euclidean definition. This definition makes the remainder always positive. If
n > 0 then q = f loor(d/n) and if n < 0 then q = ceil(d/n). In either case, r
is always positive, 0 ≤ r < |n|.
Let’s make these definitions more concrete. The table below shows the quotient

and remainder for several examples in both C and Python. These will give us an
intuitive feel for how these operations work.

Dividend Divisor Quotient Remainder
33 7 4 5 C

4 5 Python
−33 7 −4 −5 C

−5 2 Python
33 −7 −4 5 C

−5 −2 Python
−33 −7 4 −5 C

4 −5 Python

We see that differences only arise when the signs of the dividend and divisor
are opposite. It is here that the C choice of rounding towards zero and the Python
choice of rounding towards negative infinity come into play. The C choice seems
more consistent at first because it always results in quotients and remainders with
the same magnitude, only the signs change, but from a mathematical point of view
it is less desirable because certain expected operations do not give valid results.
For example, to test whether or not an integer is even it is common to check if the
remainder is zero or one when dividing by two. If the remainder is zero, the number
is even, if one, it is odd. This works in Python for negative integers since -43 %

2 = 1 as expected, but in C this fails since we get -43 % 2 = -1 because of the
convention to give the remainder the sign of the dividend.

With all of the above in mind, we can now update our div2 algorithm in
Fig. 2.5 to handle signed integers. We show the updated algorithm, now called
signed div2, in Fig. 2.9. Let’s look at what has changed.

The actual division algorithm in lines 20 through 30 is the same as in Fig. 2.5
since we are still performing unsigned division. Lines 6 through 18 check on which
of the arguments, the dividend (n) or divisor (m) or both, are negative. We use two
auxiliary variables, sign and rsign, to track how we deal with the sign of the
answer. If the dividend is negative but the divisor is positive the quotient should be
negative so we set sign to 1. If the dividend is positive but the divisor is negative,
we also need to make the quotient negative. If both the dividend and divisor are

2.5 Operations on Signed Integers 65

Fig. 2.9 Shift, test, and restore unsigned integer division updated to handle signed integers

negative, the quotient is positive. In all cases we make the dividend and divisor pos-
itive after we know how to account for the sign of the quotient. For the remainder,
we use the variable rsign to decide when to make it negative. The division algo-
rithm itself will make the remainder, in *r, positive but in order for our answer to
be sound we must sometimes make *r negative. When to do this? A sound answer
will always satisfy,

n = m×q+ r

so if the dividend in n was negative, we will require the remainder to be negative as
well. In this case we follow the C convention.

66 2 Integers

If we run signed div2 on n = 123 and m = 4 with all combinations of
signs, we get the following output,

n m q r m×q+ r
123 4 30 3 4(30)+3
-123 4 -30 -3 4(-30)-3
123 -4 -30 3 -4(-30)+3
-123 -4 30 -3 -4(30)-3

where the column on the right shows that our choice of sign for the remainder is
correct.

In this section we have reviewed implementations of signed arithmetic on in-
tegers. In some cases we were able to build directly on existing algorithms for
unsigned arithmetic while in some we worked directly in two’s complement for-
mat. There is no need to talk about signed integer square root since the square root
of a negative number is imaginary and we are not yet ready to work with complex
numbers.

2.6 Binary-Coded Decimal

Binary-Coded Decimal (BCD) numbers make use of specific bit patterns corre-
sponding to the digits 0 . . .9 in order to store one or two decimal digits in each byte.
Storing numbers in this format allows for decimal operations in place of binary and,
indeed, some early microprocessors such as the Western Digital 6502 had BCD
modes. In this section we describe how to encode numbers in BCD and how to do
simple arithmetic with those numbers.

2.6.1 Introduction

As we saw earlier in this chapter, working with numbers expressed in binary can be
cumbersome. Binary is the natural base for a computer to use given its construction
but humans, with ten fingers and ten toes, generally prefer to work in decimal. One
possibility is to encode decimal digits in binary and let the computer work with data
in this format. Binary-coded decimal does just this. For our purposes we will work
with what is generally called packed BCD where we use each nibble of a byte to
represent exactly one decimal digit. Historically, other sizes were used, one digit per
byte (unpacked) for example, or even other values, typically with early computers.
In addition, while any set of distinct bit patterns can be used to represent decimal
digits we will use the obvious choice, 0 = 0000,1 = 0001, . . . ,9 = 1001, so there is
a direct conversion between a decimal digit and its BCD bit pattern. The remaining
six bit patterns, 1010 . . .1111 are not used or allowed in properly formatted BCD
numbers. In the previous sections we ignored the difficulties in converting human

2.6 Binary-Coded Decimal 67

entered decimal data to binary and vice versa. BCD simplifies this process. BCD is
no longer frequently used but it will turn up again when we consider some of the
more specialized ways in which computers represent numbers.

If we consider only positive numbers, a single byte can represent decimal num-
bers from zero through 99 as so,

BCD Decimal
0 0 0
0 1 1
0 2 2
1 0 10
1 1 11
. . .

9 8 98
9 9 99

where the two digits in the BCD column on the left represent the two 4-bit nibbles of
the byte. This works but does not allow for negative numbers. Historically, several
variations were used for storing a sign with a BCD number. The form we will use
is directly analogous to signed binary integers but instead of two’s complement we
will use ten’s complement with a leading nibble to represent the sign. If the leading
nibble is 0000 the number is positive, if 1001 the number is negative and the
value is in ten’s complement format. We use the leading sign nibble because unlike
two’s complement where the leading bit is always 1 if the number is negative, ten’s
complement has no such quick test.

In two’s complement we negate a number by flipping all the digits making 0→ 1
and 1→ 0 and then add one. For the ten’s complement of a decimal number we first
find the nine’s complement which involves subtracting the number from 99, for a
single byte, and then add one. So, we see that the BCD number 51 can be thought
of as −49 because,

99−51 = 48, 48+1 = 49

A multidigit BCD number is represented with multiple bytes. Endian issues arise
again in this case and we chose to use big-endian so that it is easier to see the decimal
numbers in the binary bit patterns. With this convention, including the sign nibble,
the decimal number 123 is represented in BCD as,

+ 0 1 2 3
0000 0000 0001 0010 0011

where we need the leading 0 digit to fill out the byte representing the leading two
digits. Similarly, using the negative sign nibble we can represent −732 as,

− 0 2 6 8
1001 0000 0010 0110 1000

because 999−732 = 267, 267+1 = 268 is the ten’s complement of 732.

68 2 Integers

2.6.2 Arithmetic with BCD

Let’s look at arithmetic using BCD numbers. We only consider addition and subtrac-
tion as multiplication and division are rarely performed in BCD. For performance
reasons it is faster to convert from BCD to binary, do the multiplication or division
in binary, and then convert the answer back to BCD.

Addition of two BCD numbers is straightforward at first glance. We simply add
nibble by nibble since each nibble is a digit,

123 0000 0001 0010 0011
+ 732 + 0000 0111 0011 0010

855 0000 1000 0101 0101

where for each nibble we simply add in binary as if the numbers were unsigned
binary integers. For this example, everything works out nicely. But consider this,

123 0000 0001 0010 0011
+ 738 + 0000 0111 0011 1000

861 0000 1000 0101 1011

here we have a small problem, the sum of the first digits gives us 1011 which is
11, not an allowed bit pattern in BCD. We see the source of the problem which is
that 3+8 = 11 so we have produced a carry. A simple way to deal with any carries
is to take the resulting bit pattern, 1011, and add six, 0110, which will give us
the correct bit pattern for the decimal digit and a carry of 1 for the next digit. This
correction gives,

1011+0110 = 1 0001

with the carry separated from the remaining digit which is now the BCD represen-
tation of 1. Applying this correction to the addition leads to the correct result,

123 0000 0001 0010 0011
+ 738 + 0000 0111 0011 1000

0000 1000 0101 1011
861 0000 1000 0110 0001

where we have added the carry into the next digit to change the 5 to a 6. Why add
six? There are 16 possible 4-bit nibbles but we are only using the first 10 of them
for decimal digits. If we exceed 10 for any single digit adding six will wrap the bit
pattern around to the digit we would get if we, in decimal, subtracted ten. It also
leaves the carry set for the next digit. If adding the carry to the next higher digit
results in 10 or greater the “add six” trick can be used again and repeated as many
times as necessary until the BCD number is in the proper form, each time moving
to the next higher digit position.

We have chosen to represent negative BCD numbers using ten’s complement.
This format works in the same way as two’s complement so that in order to subtract
we simply add. For example, consider,

2.6 Binary-Coded Decimal 69

123 0000 0001 0010 0011
- 732 + 1001 0010 0110 1000

1001 0011 1000 1011
-609 1001 0011 1001 0001

where the overflow in the first digit was addressed by adding six and then adding
the carry to the next higher digit. The sign is negative and the BCD number reads
as 391. Since the number is negative, we expect that 391 is the ten’s complement
form of −609 which is the actual answer. To see that it is, we negate it,

999−391 = 608, 608+1 = 609

so we know that we have, in fact, reached the correct result.

2.6.3 Conversion Routines

Binary to BCD and BCD to binary conversion is straightforward. First, let’s consider
binary to BCD. This routine could be used during multiplication or division of BCD
numbers or might be used on its own to prepare for output of a binary value as
a decimal number. Once the value is in BCD conversion to ASCII for output is
straightforward, simply examine each nibble, add it to 48 which is the ASCII code
for “0” and output the resulting byte as an ASCII character.

Our binary to BCD conversion routine will convert an 8-bit unsigned binary
number to a three digit BCD number. It goes by the amusing name of the “dou-
ble dabble” algorithm and we present our implementation in Fig. 2.10. The routine
itself is referred to briefly in [7].

What is this code doing? We have an unsigned 8-bit binary number passed in
as b. We will return the three digit BCD number in p. Since a single byte can
hold any value from zero to 255 we need exactly 12 bits to store the equivalent
BCD number. Using an unsigned short as a return value gives us 16 bits, the
top four of which we leave as zero. Inside the algorithm we work with p as an
unsigned int so that we have 32-bits to work with. The algorithm is going to
perform eight shifts to the left so that it can examine each of the eight bits in b. For
example, if b is 123= 011110112 we initialize p with b so that at the start p looks
like,

p
0000 0000 0000 0000 0000 0000 0111 1011

100s 10s 1s

where the bit positions of the hundreds, tens and ones digits for our BCD represen-
tation are indicated.

The loop in lines 7 through 24 runs eight times and shifts p one bit position
to the left each time. However, before the shift we look at each of the BCD digit
locations to see if the value there is five or greater. If it is, we add three before

70 2 Integers

Fig. 2.10 Unsigned 8-bit binary to three digit BCD conversion

shifting to the left. Line 8 pulls out the four bits representing the ones value in the
BCD representation. Specifically, it first masks pwith 0xf00which leaves only the
four bits in the ones place nonzero. It then shifts to the right eight bits and assigns
this value to t. This sets t to the ones value. Line 9 asks if this value is greater than
or equal to five. If so, line 10 increments t by three. Line 11 then updates the proper
position in p with the new value of t. Let’s look at this line more closely. Recall that
OR combines bits and here three pieces are combined to replace the proper four bits
of p with the value of t. First, ((p>>12)<<12) loses the lower 12 bits of p, which
includes the four bits of the BCD ones digit along with the eight bits originally set to
b. It then shifts back up so that the net result is a value that has the lowest 12 bits set
to zero and the remaining bits set to whatever they were previously. This is OR-ed
with t shifted up eight bits so that the lower four bits of t, which are the only ones
to have a nonzero value, are in the proper position to be the BCD ones digit. Lastly,
p & 0xff keeps the lowest eight bits of p and OR’s them in as well. When each of
these operations is complete p is the same as it was previously with the exception
that the four bits in the BCD ones position have been increased by three. We will
see below why three was added and why five was the cutoff value. Lines 13 through
22 perform the same check for the BCD tens and BCD hundreds digits. The only

2.6 Binary-Coded Decimal 71

change is the mask and shift values to isolate and work with the correct four bits
of p. Lastly, line 23 shifts all of p one position to the left to move the next bit of b
(in the lowest eight bits of p) into position. After all bits of b have been examined
the final BCD result is in bits nine through twenty so we shift down eight positions
to get the final BCD value.

The operation of the entire algorithm is shown below for b = 123. For conve-
nience we ignore the top three nibbles of p, a 32-bit unsigned integer. This leaves
us with,

100s 10s 1s b comment
0000 0000 0000 0111 1011 initial
0000 0000 0000 1111 0110 shift 1
0000 0000 0001 1110 1100 shift 2
0000 0000 0011 1101 1000 shift 3
0000 0000 0111 1011 0000 shift 4
0000 0000 1010 1011 0000 add 3, ones
0000 0001 0101 0110 0000 shift 5
0000 0001 1000 0110 0000 add 3, ones
0000 0011 0000 1100 0000 shift 6
0000 0110 0001 1000 0000 shift 7
0000 1001 0001 1000 0000 add 3, tens
0001 0010 0011 0000 0000 shift 8

which after the last left shift has 123 as a BCD number in the indicated columns.
The return statement shifts this value to the right eight bits to return the final
three digit BCD number.

This shows us that the algorithm works but not why it works. The key to under-
standing the algorithm is to recall that to convert a BCD digit that is not a proper
digit, say 1011 which is 11, to a proper digit is to add six, 0110. This will produce
a carry bit to the next BCD digit position while preserving the proper value in the
existing digit. So, one way to think of how to convert binary to BCD is to look at
each digit position and if it is greater than ten subtract ten before doubling. This is
to say, calculate,

2x+6

for cases where the digit, x, is ten or greater before looking at the next bit of our
binary number. This is equivalent to considering if the value is greater than five and
if so adding three and then doubling because,

2x+6 = 2(x+3)

which has the added advantage of not requiring an extra bit since 2x+ 6 may be
greater than 15 while x+3 never will be for x a valid BCD digit. This is the approach
of the double-dabble algorithm shown in Fig. 2.10.

Conversion from a three digit BCD number to binary is especially straightfor-
ward. We simply examine each nibble, multiply it by the proper power of 10, and
accumulate the result,

72 2 Integers

unsigned char bcd2bin8(unsigned short b) {
unsigned char n;

n = (b & 0x0f);
b >>= 4;
n += 10*(b & 0x0f);
b >>= 4;
n += 100*(b & 0x0f);

return n;
}

The phrase b & 0x0f masks off the lowest nibble of b. This is the ones digit, so
we simply set the output value in n to it. We then shift b to the right by four bits
to make the lowest nibble the tens digit. We add this to the running total after first
multiplying it by ten. We then shift one last time to make the hundreds digit the first
nibble, multiply it by 100 and add to n to get the final value of the three digit BCD
number.

2.7 Chapter Summary

In this lengthy but essential chapter we covered a lot of important topics. We learned
key terminology regarding bits, bytes, and words. We explored unsigned integers at
length learning how to perform such low-level functions as manipulation of individ-
ual bits to the basic logic operations of AND, OR, NOT and XOR. We completed our
tour of low-level manipulation by studying shifts and rotates and how they affect the
value of an unsigned integer. We then examined how to compare the magnitude of
two unsigned integers.

Unsigned integer arithmetic was our next topic and with it we learned how to
implement the basic operations of addition, subtraction, multiplication and division
with remainder. To round out the unsigned integers we reviewed one approach for
calculating the square root of a number.

Signed integers were our next target. We built upon what we learned with un-
signed integers and delved into the main ways signed data is stored: sign-magnitude,
one’s complement and two’s complement. We learned how to compare signed inte-
gers and how to either extend existing unsigned arithmetic routines to handle signed
arguments or how to implement algorithms that operate on two’s complement num-
bers directly.

To round out our examination we took a look at binary-coded decimal numbers,
how to add and subtract them, in ten’s complement, and how to convert between
binary-coded decimal and pure binary as well as vice versa.

It would not be too much to say that integers are the heart of computers. We
now know how to work with them at any level. There are more specialized repre-
sentations of integers, and we will examine them in other chapters, but for the vast
majority of computer work involving data that does not need fractions, including
characters which are represented as integer codes, fixed-width integers are our main
tools and understanding them in some detail is well worth the effort.

Exercises 73

Exercises

2.1. Interpret the following bit patterns first as little-endian then as big-endian
unsigned short integers. Convert your answer to decimal.

• 1101011100101110
• 1101010101100101
• 0010101011010101
• 1010101011010111

2.2. Given A= 6B16 and B= D616, write the result of each expression in binary and
hexadecimal.

• (A AND B) OR (NOT A)
• (A XOR B) OR (A AND (NOT B))
• ((NOT A) OR (NOT B)) XOR (A AND B)

2.3. Using C syntax write an expression that achieves each of the following. Assume
that the unsigned char A = 0x8A.

• Set bits 3 and 6 of A.
• Keep only the low nibble of A.
• Set unsigned char B to 100 if bit 3 of A is not set.
• Clear bit 1 of A.
• Toggle bits 4 and 5 of A.

2.4. Using C syntax write an expression for each of the following.

• Swap the upper and lower nibbles of unsigned char v = 0xC4.
• Multiply v by 5 using at least one shift operation.

2.5. Express each of the following numbers in one’s and two’s complement notation.
Write your answer in binary and hexadecimal. Assume 8-bit signed integers.

• −14
• −127
• −1

2.6. Write a function to reverse the bits of an unsigned 8-bit integer. *

2.7. Write a function to count the number of 1 bits in an unsigned 32-bit integer. *

2.8. The Hamming distance between two integers is the number of places where
their corresponding bits differ. For example, the Hamming distance between 1011
and 0010 is 2 because the numbers differ in bits 0 and 3. Write a function to
calculate the Hamming distance between two unsigned short integers. *

74 2 Integers

2.9. A Gray code is a sequence of bit patterns in which any two adjacent patterns in
the sequence differ by only one bit. Gray codes were developed to aid in error cor-
rection of mechanical switches but are used more generally in digital systems. For
example, for four bits, the first six values in the Gray code are: 0000, 0001, 0011,
0010, 0110, 0111. The rule to convert a binary number n into the corresponding
Gray code g is to move bit by bit, from lowest bit to highest bit, setting the output
bit to the original bit or inverted if the next higher bit is 1. So, to change n = 0011
to g = 0010 we output a 0 for bit 0 of g since bit 1 of n is set and output the existing
bit value of n for all other positions since the next higher bit is not set.

Using this rule, write a C function that calculates the Gray code g for any
unsigned short n input. (Hint: there are many ways to write a function that works
but in the end it can be accomplished in one line of code. Think about how to check
if the next higher bit of the input is set by shifting and how to invert the output bit if
it is.) **

References

1. Booth, A.D., A signed multiplication technique. The Quarterly Journal of Mechanics and
Applied Mathematics, Vol IV, Part 2 (1951)

2. Shannon, C., “A mathematical theory of communication.” ACM SIGMOBILE Mobile
Computing and Communications Review 5.1 (2001): 3–55.

3. As mentioned in Anecdotes, Annals of the History of Computing, Vol 6, No 2, April pp 152–156
(1984)

4. Swift, J., Gulliver’s Travels (1726). Reprinted Dover Publications; Unabridged edition (1996)
5. The Internet Protocol. RFC 791 (1981)
6. Boole, G., An Investigation of the Laws of Thought (1854). Reprinted with corrections, Dover

Publications, New York, NY, 1958. (reissued by Cambridge University Press, 2009)
7. Gao, S., Al-Khalili, D., Chabini, N., “An improved BCD adder using 6-LUT FPGAs”, IEEE

10th International New Circuits and Systems Conference (NEWCAS 2012), pp. 13–16 (2012)

Chapter 3
Floating Point

Abstract We live in a world of floating-point numbers and we make frequent use
of floating-point numbers when working with computers. In this chapter we dive
deeply into how floating-point numbers are represented in a computer. We briefly
review the distinction between real numbers and floating-point numbers. Then
comes a brief historical look at the development of floating-point numbers. After
this we compare two popular floating-point representations and then focus exclu-
sively on the IEEE 754 standard. For IEEE 754 we consider representation, round-
ing, arithmetic, exception handling, and hardware implementations. We conclude
the chapter with some comments about the pitfalls associated with using floating-
point numbers.

3.1 Floating-Point Numbers

This chapter is about floating-point numbers. This is a highly complex area with
active research even today. As such, we can only scratch the surface of represen-
tation and computation with floating-point numbers in a single chapter. Therefore,
we will, after some preliminaries, focus on the current Institute of Electrical and
Electronics Engineers (IEEE) 754-2008 standard which we will refer to simply as
“IEEE 754”. For a more in-depth treatment of floating-point numbers and arithmetic
please see Muller et al. [1].

It would be good to have an idea of what, exactly, a “floating-point” number
actually is and how it differs from a “real” number. Let’s start with the latter concept.
This one we know from school: a real number is a number that can be found on the
real number line. We have an intuitive feel for what a real number is, and we know
many of them because we know that all integers (Z) and rationals (Q) are also real
numbers. But, of course, there are still many more real numbers besides these. For
example, π is transcendental and therefore a real number but it is neither an integer
nor a rational (capable of being written as p/q with p,q ∈ Z).

© Springer International Publishing Switzerland 2015
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-17260-6 3

75

76 3 Floating Point

How, then, to define the real numbers, R? Formally, there are several ways to
define R. The one we will consider is the synthetic approach with specifies R by
defining several axioms which hold only for R. The set of numbers which satisfy
these axioms is, by definition, R. Specifically, R may be defined by considering a
set (R), two special elements of R, 0 and 1, two operations called addition (+) and
multiplication (×), and finally a relation on R called ≤ which orders the elements
of R. With this and the following four axioms, we have arrived at a specification of
the real numbers. The axioms are,

1. (R,+,×) forms a field.
2. (R,≤) forms a totally ordered set.
3. + and × maintain ≤.
4. The order ≤ is complete in a formal sense.

where a full description of their meaning and implications are beyond the scope of
this text. The interested reader is directed to [2] for a presentations of fields and
rings. For the present, in this sense, + is simply normal addition and × is normal
multiplication. The order ≤ also acts as expected. A floating-point number is an
approximation of a real number that is representable on a computer. It is “close
enough” (we’ll see below what that means) to the actual real number we wish to
represent to be useful and lead to meaningful results.

To be specific, in this chapter a floating-point number is a number which is rep-
resented in exponential form as,

±d0.d1d2d3 . . .dp−1 ×β e, 0 ≤ di < β

where d0.d1d2d3 . . .dp−1 is the p digit significand (or mantissa), β is the base and e
is the integer exponent. For the above we follow the notation given in [3]. While it
is possible for the base β to be any integer for this chapter we restrict ourselves to
β = 2 so that our numbers are binary and the only allowed digits are 0 and 1.

If there are p digits in the significand then this part of the floating-point num-
ber can have β p unique values. This defines the precision with which values can
be represented for a particular exponent. To complete the format we need to also
specify the range for the exponent from emin to emax. Before moving on to a brief
history of floating-point numbers in computers let’s take a quick look at working
with floating-point numbers in base 2.

The significand, d0.d1d2d3 . . .dp−1 is a number with the value of

d0 +d1β−1 +d2β−2 +d3β−3 + · · ·+dp−1β−(p−1)

which is then scaled by the exponent β e, so that the final value of the number is,

(d0 +d1β−1 +d2β−2 +d3β−3 + · · ·+dp−1β−(p−1))β e

where we have ignored a possible minus sign to make the entire number negative.

3.1 Floating-Point Numbers 77

The above makes it clear that it is the number of digits p in the significand that
controls the precision of the floating-point number for a given exponent e. It also
means that the distribution of floating-point numbers on the real number line is not
uniform as shown in Fig. 3.1.

Fig. 3.1 The distribution of floating-point numbers. For this figure the number of significand bits is
three with an implied leading bit of one: 1.m0m1m2×2e. The location of representable numbers for
exponents of e = 0,1,2 are shown. For each increase in the exponent the number of representable
numbers is halved. So, between [1,2) there are eight values while between [2,3) there are only four
and between [4,5) there are only two

This is the case because as we saw above the digits of the significand become
multipliers on the exponent value β e. So, for a fixed exponent, the smallest interval
between two floating-point numbers is β−(p−1)β e which is of fixed size as long
as the exponent does not change. Once the exponent changes from e to e+ 1 the
minimum interval becomes,

β−(p−1)β e → β−(p−1)β e+1 =
(

β−(p−1)β e
)

β

which is β times larger than the previous smallest interval.
Above we said that there are β p possible significands. However, not all of them

are useful if we want to make floating-point numbers unique. For example, in dec-
imal 1.0× 102 is the same as 0.1× 103 and the same holds true for any base β .
Therefore, to make floating-point numbers uniquely representable we add a condi-
tion which states that the first digit of the significand must be nonzero. For binary
floating-point this means that the first digit of the significand must be a 1. Floating-
point numbers with this convention are said to be normalized. This requirement also
buys us one extra digit of precision when the base is 2 because the only nonzero
digit is 1 which means all normal binary floating-point numbers have a known lead-
ing digit for the significand. This known digit need not be stored in memory leaving
room for a p+1-th digit in the significand.

78 3 Floating Point

To make all of this concrete, let’s look at expressing some binary floating-point
numbers (β = 2). We will calculate the actual decimal values for the floating-point
numbers shown in Fig. 3.1. They are,

significand exponent expanded decimal value
1.000 0 (1)×1 1.0000
1.001 0 (1+ 1

8)×1 1.1250
1.010 0 (1+ 1

4)×1 1.2500
1.011 0 (1+ 1

4 +
1
8)×1 1.3750

1.100 0 (1+ 1
2)×1 1.5000

1.101 0 (1+ 1
2 +

1
8)×1 1.6250

1.110 0 (1+ 1
2 +

1
4)×1 1.7500

1.111 0 (1+ 1
2 +

1
4 +

1
8)×1 1.8750

1.000 1 (1)×2 2.0000
1.001 1 (1+ 1

8)×2 2.2500
1.010 1 (1+ 1

4)×2 2.5000
1.011 1 (1+ 1

4 +
1
8)×2 2.7500

1.100 1 (1+ 1
2)×2 3.0000

1.101 1 (1+ 1
2 +

1
8)×2 3.2500

1.110 1 (1+ 1
2 +

1
4)×2 3.5000

1.111 1 (1+ 1
2 +

1
4 +

1
8)×2 3.7500

1.000 2 (1)×4 4.0000
1.001 2 (1+ 1

8)×4 4.5000
1.010 2 (1+ 1

4)×4 5.0000

where we see that the three bits of the significand has indeed set the precision of
each number for a fixed exponent but that the larger the exponent the greater the
delta between successive floating-point numbers.

3.2 An Exceedingly Brief History of Floating-Point Numbers

Perhaps the first description of floating-point numbers, meaning a method for stor-
ing and manipulating real numbers with a machine, is that of Leonardo Torres y
Quevedo in his paper “Essays on Automatics” (1914). This paper is included in
Randell’s book “The Origins of Digital Computers” [4]. Torres y Quevedo im-
plemented an electromechanical calculating machine, the “electromechanical arith-
mometer”, inspired by the work of Charles Babbage, which was capable of accept-
ing typed statements such as 365 x 256 via a typewriter and would respond, by typ-
ing on the same line, with = 93440 and then advance to the next line. This machine
was demonstrated at a conference in Paris in 1920.

3.2 An Exceedingly Brief History of Floating-Point Numbers 79

As for floating-point, Torres describes a way to store floating-point numbers in a
consistent manner in his “Essays” paper. First he states that numbers will be stored
in exponential format as n× 10m. He then offers three rules by which consistent
manipulation of floating-point numbers by a machine could be implemented. They
are, in his own words (as translated into English),

1. n will always be the same number of digits (six for example).
2. The first digit of n will be of order of tenths, the second of hundredths, etc.
3. One will write each quantity in the form: n;m.

On the whole this is quite remarkable for 1914. The format he proposed shows that
he understood the need for a fixed-sized significand as is presently used for floating-
point data. He also fixed the location of the decimal point in the significand so that
each representation was unique. Finally, he even showed concern for how to format
such numbers by specifying a syntax to be used that could be entered through a
typewriter, as was the case for his “electromechanical arithmometer” some years
later. We use essentially the same syntax for most programming languages today;
simply replace the “;” with an “E” or “e” so that where he would have written
0.314159;1 we now write 0.314159E1. It is unfortunate that Torres y Quevedo’s
work is not more widely known outside his native Spain.

Konrad Zuse is typically credited with being first to implement practical floating-
point numbers for his Z1 and Z3 computers [5]. The Z1 was developed in 1938 with
the Z3 completed in 1941. These computers used binary floating-point numbers with
one bit for the sign, 14 bits for the significand, and a signed exponent of 7 bits. Zuse
also recognized the value of an implicit “1” bit in the significand and stored the
numbers in normalized format. This format is in many ways identical to the modern
floating-point formats we will be investigating in this chapter and is a testament to
Zuse’s often unrecognized brilliance.

According to [5] Zuse called any number with an exponent of −64 “zero”
and any number with an exponent of 63 “infinity”. This means that the small-
est number possible on the Z3 was 2−63 = 1.08 × 10−19 while the largest was
1.999×262 = 9.2×1018. Numbers were entered in decimal and converted to binary
format. Similarly, output was converted from binary to decimal. However, this con-
version did not cover the entire range of the machine and the user was limited to a
much smaller floating-point range for input and output.

Computers in the 1950s through the 1970s used a wide variety of floating-point
formats. For example, the Burroughs B6700 used a base 8 (β = 8) format while the
IBM System/360 used a base 16 (β = 16) format. Many other computers copied the
IBM format including the Data General Nova and Eclipse computers.

In 1985 IEEE released a standard for floating-point arithmetic. This standard has
since dominated the industry and has been implemented in hardware by the Intel
x86 series of microprocessors. This standard is the main focus of this chapter and
we begin by comparing its floating-point representation to the older IBM format.

80 3 Floating Point

3.3 Comparing Floating-Point Representations

In this section we examine the 32-bit IBM S/360 format for floating-point numbers
and compare it to the 32-bit IEEE 754 format. We then focus exclusively on the
IEEE format for the remainder of the section and chapter. By this comparison we
will see that the choice of β = 16 was not a particularly good one and why the β = 2
of IEEE is a better one.

A single-precision floating-point number in the IBM S/360 format was stored in
memory as,

with 1 bit for the sign (S), 7 bits for the exponent (E), and 24 bits for the signif-
icand (M). The exponent was stored in excess-64 format meaning an exponent of
0 represented −64 and an exponent of 127 represented 63. The significand was in
binary but manipulated in groups of four bits since the base was 16 and 24 = 16.
Because of this, one can think of the significand as representing six hexadecimal
digits for the first six negative powers of 16.

In order to normalize a floating-point number at least one of the first four high bits
of the significand had to be nonzero. Because of this the smallest positive floating-
point number that could be represented was,

which is, in base 16, 0.116 ×160−64 = 1×16−1 ×16−64 = 5.397605×10−79.
Similarly, the largest positive number was,

equal to 0.FFFFFF16×16127−64 = 15×16−1+15×16−2+15×16−3+15×16−4+
15 × 16−5 + 15 × 16−6 × 1663 = (1 − 16−6)× 1663 = 7.237005 × 1075 since the
significand of 0.FFFFFF16 is only one 16−6 away from 1, hence 0.FFFFFF16 =
1−16−6. The number zero was represented by all bits set to zero.

The IEEE 754 standard defines a number of different floating-point sizes. For
the moment we consider only the binary32 single-precision format which fits in a
32-bit number. On modern x86-based hardware this is the format used when one
declares a variable to be of type float in C, for example. This format is stored in
memory as,

3.3 Comparing Floating-Point Representations 81

with 1 bit for the sign (S), 8 bits for the exponent (E), and 23 bits for the signifi-
cand (M). The exponent is stored in excess-127 format with two special exponent
values of 0 and FF16 reserved. The base is 2 (β = 2) and the significand has an imp-
lied leading 1 bit always for a normalized number. So, in this format, the number
stored is,

±1.b22b21b20 . . .b0 ×2E−127

where bn is the value of that bit of the significand. Since the base is 2 the bits are
interpreted as individual bits as opposed to groups of four bits for the base 16 IBM
format.

Because of the implied 1 bit, the smallest allowed binary32 number is,

which is 1×21−127 = 1.1754944×10−38. Similarly, the largest positive number is,

which, using the reasoning above for the significand of the largest IBM S/360 format
number, is (2− 2−23)× 2254−127 = 3.4028235× 1038. The mantissa is (2− 2−23)
instead of (1− 2−23) because of the implied leading 1 bit of the binary32 signifi-
cand.

Immediately we see that the IBM format has a much larger range than the IEEE
format, approximately [10−79,1075] versus [10−38,1038]. This is encouraging in
terms of expressing large numbers using fewer bits of memory but there is a prob-
lem hidden in the significand. Namely, for the IBM format, a normalized number
is one in which the first hexadecimal digit of the six hexadecimal digit significand
is non-zero. This means that any of the possible bit patterns for 1 through 15 are
allowed. If the bit pattern is 00012 then there are three fewer significant bits in the
significand than if the leading digit is 10002 up to 11112. This represents a potential
lost of precision of up to one decimal digit and is due entirely to the way in which
the number is represented in base 16. This loss of precision as a function of the rep-
resentation of the number in the selected base is known as wobbling precision and
is more severe when the base is larger, as it is for the IBM format. This wobbling
precision can lead to very inaccurate results as the following example illustrates
(borrowed from Cody and Waite [6]).

82 3 Floating Point

The approximate value of π/2 in hexadecimal is 1.92216×160. We get this from
Python using the float.hex() class method:

float.hex(pi/2.0) = 0x1.921fb54442d18p+0
= 1.921fb54442d1816 ×20

where we must be careful because Python expresses floats in hexadecimal with a
base of 16, not 2. The conversion to binary is straightforward, however, simply
replace each hexadecimal digit with four binary digits equal to the hexadecimal
digit. In this case, the exponent is zero so the actual value is just the mantissa.
Similarly, the approximate value of 2/π in hexadecimal is a.2f916 ×16−1 since,

float.hex(2.0/pi) = 0x1.45f306dc9c883p-1
= 1.45f306dc9c88316 ×2−1

= 1.45f306dc9c88316/2
≈ a.2f916 ×16−1

with the important point being the leading digit of the base 16 representation of these
two numbers. This would be the leading digit of the IBM floating-point format for
these numbers and in the case of π/2 we see that it is a 00012 while for 2/π we get
10102. The former has three leading zeros meaning only 21 significant bits in the
IBM representation while the latter has no leading zeros meaning all 24 significand
bits are important. This difference of three bits is a loss of about one decimal digit
of accuracy.

What is the case for the IEEE base 2 format? In this case there is no loss of
precision at all which we can see immediately from the Python output. For π/2 we
get 1.921fb54442d1816 ×20 while for 2/π we have 1.45f306dc9c88316 ×2−1 both
of which have a leading 1 digit as the IEEE format specifies. This means that all
the bits of the significand are meaningful and there is no wobbling precision effect
when β = 2. This is the reason why the IEEE 754 format is to be preferred to the
older IBM S/360 floating-point format.

As an aside, before we leave this section, we describe a small C function for
converting 32-bit IBM S/360 floating point numbers to IEEE double precision num-
bers. Double precision is necessary as we have seen that the single precision IEEE
format does not have the numeric range necessary to hold all 32-bit IBM floats. The
IBM format is assumed to be stored in an unsigned 32-bit integer which allows all
bit patterns. The function is,

1 double ibm_to_ieee_64(uint32_t n) {
2 int s, e, m;
3 double ans;
4
5 s = (n & (1<<31)) != 0;
6 e = (n >> 24) & 0x7F;
7 m = n & 0xFFFFFF;
8
9 ans = m * pow(16,-6) * pow(16,e-64);
10 return (s == 1) ? -ans : ans;
11 }

3.4 IEEE 754 Floating-Point Representations 83

This function may be useful if one encounters an old data file in IBM format (this
is also the format used by many other computer systems in the 1970s and 1980s).
The sign of the IBM float is extracted in line 5, the exponent in line 6, and the
significand in line 7 using simple masking and shifting operations. The resulting
double precision floating point number is calculated in line 9. The significand of
the IBM format is of the form 0.h0h1h2h3h4h5 so the value in m must be multiplied
by 16−6 before the final multiplication by 16e−64 where we subtract 64 because
the exponent is in excess-64 format. Line 10 simply sets the sign of the output and
returns it. This function assumes that it is running on a system which uses IEEE
floating-point by default.

3.4 IEEE 754 Floating-Point Representations

The IEEE 754 standard defines multiple floating-point formats for binary (β = 2)
and decimal (β = 10) numbers. We are only concerned with the binary formats here.
These are, with their ranges,

Name Minimum Maximum
binary16 2−14 ≈ 6.104×10−5 (2−2−10)×215 = 65504.0
binary32 2−126 ≈ 1.175×10−38 (2−2−23)×2127 ≈ 3.403×1038

binary64 2−1022 ≈ 2.225×10−308 (2−2−52)×21023 ≈ 1.798×10308

where binary16 is half precision, binary32 is single precision (C float), binary64
is double precision (C double), and binary128 (not shown) is quadruple precision,
sometimes called “quad precision”. The binary128 format uses 128-bits and some
C compilers will implement it in this format using software. More often, however,
compilers for x86 architectures will use the 80-bit extended precision hardware type
instead. Because of this we will largely ignore binary128 in this chapter. If you
are familiar with Fortran, the binary32 format is roughly equivalent to a REAL,
while the binary64 format is similar to REAL*8 and the binary128 format is like
REAL*16.

The binary32 format was illustrated above in Sect. 3.3. For completeness we
illustrate binary16,

and binary64,

84 3 Floating Point

which follow the same format as binary32 but differ in the exponent and significand
bits. For binary16 the exponent is 5 bits and is stored in excess-15 format. The
exponent for binary32 is 8 bits and uses excess-127 format. Lastly, binary64 uses
an exponent of 11 bits stored in excess-1023 format.

The observant reader will see that the exponent ranges in the table above do
not cover the full range of bit values possible. For example, the binary32 format
uses 8 bits for the exponent which means any exponent from 0− 127 = −127 to
255− 127 = 128 should be possible but the actual exponent range is from −126
to 127 instead. This is because IEEE 754 uses the smallest and largest exponent
values for specific purposes. The smallest exponent value, the bit pattern of all zeros,
designates either zero itself, or a subnormal number. We will deal with subnormal
numbers shortly. The largest exponent bit pattern, either 111112, 111111112, or
111111111112 for binary16, binary32, or binary64, respectively, is reserved for inf-
inity or NaN (not-a-number). The selection between zero and a subnormal number
or infinity or NaN depends upon the value of the significand (M). Specifically,

Exponent M = 0 M �= 0
largest ±∞ NaN
smallest (=0) ±0 subnormal

where the sign bit sets positive or negative. Note carefully that this convention
implies that zero itself is signed but the standard requires +0 = −0, i.e., zero is
interpreted as zero, regardless of the sign bit.

Most readers are likely familiar with the single and double precision floating
point numbers, binary32 and binary64, respectively. These generally map to the
well used C data types of float and double. Note, however, that the Python
data type float is really a binary64 number. The addition of binary16 to the IEEE
standard seems a bit odd as it does not map to any primitive data type typically used
in modern programming languages.

Half precision floats, another common name for binary16 numbers, are supported
in recent versions of gcc for ARM targets. Newer Intel microprocessors also have
instructions for working with binary16 numbers. In both cases the storage in mem-
ory uses half precision but once read from memory the numbers are converted to
32-bit floats. The main use for these numbers is to increase the precision of values
that are stored on graphics processors. Indeed, OpenGL supports binary16 num-
bers. Naturally, however, this comes with a price, which is a rapidly increasing loss
of precision as the value stored gets further and further from zero. As illustrated
in Fig. 3.1 the difference between floating-point values increases as one moves fur-
ther away from zero. On the plus side, this means that if one needs to work with
numbers in the range [0,1] then unless very high precision is required binary16 is
a reasonable way to keep relatively high precision (about 6 or 7 decimals) while

3.4 IEEE 754 Floating-Point Representations 85

using half the memory of a 32-bit float and one quarter the memory of a 64-bit float.
This might be significant if there are large arrays of these values to work with as the
bandwidth to move that memory is much less than it might otherwise be. It also may
help by allowing more data to fit in a processor cache thereby reducing the number
of expensive and slow accesses from main memory. Recall that images are typically
stored as large arrays so it makes sense to want to be as efficient as possible with
memory while not sacrificing precision or dynamic range.

Infinity For any of the IEEE formats, if the exponent is maximum, i.e., all bits
set to 1, and the significand is zero, then the number is infinite (∞) and positive
or negative depending upon the sign bit. Infinity is produced when the result of an
operation would exceed the range of numbers that can be expressed in the given
floating-point format. For example,

exp(1000000.0) = Inf = +∞
-exp(1000000.0) = -Inf = −∞

Infinity is also returned for certain other operations such as,

1.0/0.0 = Inf = +∞
log(0.0) = -Inf = −∞

which follow the usual rules of arithmetic. The −∞ result for log(0.0) makes
sense as a limit as x → 0 from the right.

As mentioned in the IEEE standard, the following operations are valid and work
as expected when using ∞ as an argument and x finite (and not zero),

∞+ x = ∞ , x+∞ = ∞
∞− x = ∞ , x−∞ = −∞
∞× x = ∞ , x×∞ = ∞
∞÷ x = ∞ , x÷∞ = 0

Additionally, the square root of infinity is also defined to be infinity.

Not-A-Number While infinity is straightforward, Not-a-Number or NaN, gets a
little messy. A NaN is stored as a floating-point number with the largest possible
exponent (all bits 1) and a significand that is not zero. There are two kinds of NaNs,
quiet and signaling. We will discuss this distinction more fully below when we talk
about floating-point exceptions. For now we are concerned with how these two kinds
of NaNs are stored so that we can distinguish between them.

According to the standard, the first bit of the significand, which is d1 in the rep-
resentation ±d0.d1d2d3 . . .dp−1 ×β e since d0 is always implied and 1, determines
the NaN type. If this bit is zero the NaN is a signaling NaN, otherwise it is a quiet
NaN. Note that this implies that a signaling NaN must have at least one other bit
of the significand be nonzero otherwise the number is not a NaN but infinity. The
remaining p− 2 digits of the significand are available for a “payload”, to use the
standard’s term, which may contain diagnostic information about what caused the
NaN in the first place.

86 3 Floating Point

The standard is intentionally fuzzy about what, if anything, should constitute the
payload of a NaN. However, the standard is explicit that NaNs, when used as an
argument in an operation, should preserve the payload of at least one of the NaNs,
or the NaN, if it is the only NaN in the operation. Operations on NaNs produce
NaNs as output. The vague nature of the NaN payload invites creative use. Indeed,
some groups and companies have used NaNs for their own purposes. Since it is
not specified, beyond indicating a bit for quiet or signaling, users are free to use
NaNs as they see fit. One possibility might be to use NaNs as symbols in a symbolic
expression parser. Another would be to use NaNs as missing data values and the
payload to indicate a source for the missing data or its class.

The following set of C functions can be used to check for NaN and to set and get
a payload from a NaN of up to 22 bits,

1 typedef union {
2 float f;
3 unsigned int d;
4 } fp_t;
5
6 char nan_isnan(float nan) {
7 fp_t x;
8 x.f = nan;
9 return (((x.d >> 23) & 0xFF) == 0xFF) && ((x.d & 0x7FFFFF) != 0);
10 }
11
12 float nan_set_payload(float nan, unsigned int payload) {
13 fp_t x;
14 x.f = nan;
15 x.d |= (payload & 0x3FFFFF);
16 return x.f;
17 }
18
19 unsigned int nan_get_payload(float nan) {
20 fp_t x;
21 x.f = nan;
22 return (x.d & 0x3FFFFF);
23 }

where nan isnan checks to see if a float is actually a NaN, nan set payload
sets the free 22-bits of a NaN to a user-specified value and nan get payload
returns this value from a NaN. Most systems already have a isnan function, we
include it here for completeness. The functions make use of a trick to work with
the same piece of memory as both a float and an unsigned integer, both of which
occupy 32-bits. This is the fp t data type defined in lines 1 through 4. The function
nan isnan accepts a binary32 number and puts it into x (line 8). We then interpret
the memory of the float as an unsigned integer by accessing the d field. Line 9 is
the magic in two parts both of which come directly from the definition of a NaN.
The first part, (((x.d >> 23) & 0xFF) == 0xFF), examines the exponent field
of the number. Recall that a binary32 number has 23 bits in the significand. We
shift 23 bits down to move the exponent field into bit position 0. We then mask this

3.4 IEEE 754 Floating-Point Representations 87

to keep the first eight bits (the AND with 0xFF). This removes any sign bit which
the standard ignores for NaNs. If this is the exponent of an actual NaN then, by
definition, the exponent is all 1 bits, which is 0xFF so we check if the value is equal
to 0xFF. An exponent of all 1 bits is not enough to define a NaN, however, as the
number could still be infinity. We must consider the significand itself. This is the
second part of line 9, ((x.d & 0x7FFFFF) != 0), which masks off the 23-bits of
the significand by the AND with 0x7FFFFF and then checks to see if this value is
zero. If the number is a NaN, this value will not be zero. If it is a quiet NaN the
highest bit will be set, at a minimum, and if it is a signaling NaN, at least one of the
other 22-bits will need to be set. If both of these parts are true, the number is a NaN
and the result of the final logical AND is returned.

The nan set payload function accepts a NaN and a payload which must fit
in 22-bits. A fp t is used to hold the NaN. The payload is masked with 0x3FFFFF
to keep it in range and then OR’ed into the bits of the NaN in line 15. The updated
NaN is returned in line 16. To access the NaN value use nan get payloadwhich
accepts a NaN and after setting x to it, returns the lowest 22-bits by again masking
with 0x3FFFFF.

To illustrate the idea of NaN propagation consider the following code snippet,
compiled on a 32-bit Linux system using gcc,

1 const char *pp(unsigned int x) {
2 static char b[33];
3 unsigned int z;
4 b[0] = ’\0’;
5 for (z = (1<<31); z > 0; z >>= 1)
6 strcat(b, ((x & z) == z) ? "1" : "0");
7 return b;
8 }
9
10 int main() {
11 fp_t x;
12 float n = log(-1);
13 unsigned int d;
14
15 x.f = n;
16 printf("%d original = %s\n", nan_isnan(n),pp(x.d));
17 n = nan_set_payload(n, 12345);
18
19 x.f = n;
20 printf("%d set payload = %s\n", nan_isnan(n),pp(x.d));
21 d = nan_get_payload(n);
22 printf("payload is %d (%s)\n", d, pp(d));
23
24 n = 123 * n;
25
26 d = nan_get_payload(n);
27 printf("payload is still %d (%s)\n", d, pp(d));
28 }

88 3 Floating Point

where the function pp simply prints the given 32-bit unsigned integer in binary as
a string. In line 12 we define n and set it so log(-1) which is a NaN. In line 15
we put this NaN into x and print the result of asking whether n is a NaN (it is) and
showing the bits of n,

1 original = 01111111110000000000000000000000

Line 17 sets the payload for the NaN to the unimaginative air-shield combination
number of 12345. Lines 19 through 22 show that the NaN is still a NaN but now has
a payload,

1 set payload = 01111111110000000011000000111001

payload is 12345 (00000000000000000011000000111001)

where 110000001110012 = 12345. So far, this isn’t anything particularly impres-
sive. Line 24, however, multiplies n by 123 and assigns back to n. This is to illus-
trate NaN propagation, which the IEEE standard strongly encourages. The output
of line 27 is,

payload is still 12345 (00000000000000000011000000111001)

Which clearly demonstrates that the payload was propagated.

Subnormal Numbers As we previously stated, a normal number is one in which
the leading bit of the significand is an implied 1 and the exponent, e, is 0< e<m, for
m the maximum exponent value which depends upon the precision of the number.
For binary32, m = 255 since eight bits are used to store the exponent. Therefore, the
smallest normal binary32 number is,

0 00000001 000000000000000000000002 = 2−126 = 1.1754944×10−38

where we have separated the binary representation into the sign, exponent and sig-
nificand. If we insist on using an implied leading 1 bit for the significand the next
smallest number we can represent is immediately zero. However, if we are will-
ing to suffer a loss of precision in the significant we can drop the exponent to zero
and change the implied leading digit of the significand from 1 to 0 to represent
numbers as,

±0.d1d2 . . .d23 ×2−126

where numbers of this form are called subnormal or denormal. Subnormal numbers
allow us to work with very small numbers around zero but at the small cost of a
loss of precision in the significand. However, there is a very large cost in terms
of performance as modern floating-point hardware does not work with subnormal
numbers implying calculations must be done in software.

The program in Fig. 3.2 illustrates the transition between normal and subnormal
numbers for 32-bit floats. It initializes a float to 1.0 and then repeatedly divides it
by 2 until the result is zero. The function ppx prints the bits of the floating point
number with a space between the sign and exponent and the exponent and the sig-
nificand. If we run this program the tail end of the output is,

3.5 Rounding Floating-Point Numbers (IEEE 754) 89

x = (0 00000010 00000000000000000000000) 2.3509887e-38
x = (0 00000001 00000000000000000000000) 1.1754944e-38
x = (0 00000000 10000000000000000000000) 5.8774718e-39
x = (0 00000000 01000000000000000000000) 2.9387359e-39
x = (0 00000000 00100000000000000000000) 1.4693679e-39
x = (0 00000000 00010000000000000000000) 7.3468397e-40
x = (0 00000000 00001000000000000000000) 3.6734198e-40
x = (0 00000000 00000100000000000000000) 1.8367099e-40
x = (0 00000000 00000010000000000000000) 9.1835496e-41
x = (0 00000000 00000001000000000000000) 4.5917748e-41
x = (0 00000000 00000000100000000000000) 2.2958874e-41
x = (0 00000000 00000000010000000000000) 1.1479437e-41
x = (0 00000000 00000000001000000000000) 5.7397185e-42
x = (0 00000000 00000000000100000000000) 2.8698593e-42
x = (0 00000000 00000000000010000000000) 1.4349296e-42
x = (0 00000000 00000000000001000000000) 7.1746481e-43
x = (0 00000000 00000000000000100000000) 3.5873241e-43
x = (0 00000000 00000000000000010000000) 1.793662e-43
x = (0 00000000 00000000000000001000000) 8.9683102e-44
x = (0 00000000 00000000000000000100000) 4.4841551e-44
x = (0 00000000 00000000000000000010000) 2.2420775e-44
x = (0 00000000 00000000000000000001000) 1.1210388e-44
x = (0 00000000 00000000000000000000100) 5.6051939e-45
x = (0 00000000 00000000000000000000010) 2.8025969e-45
x = (0 00000000 00000000000000000000001) 1.4012985e-45
x = (0 00000000 00000000000000000000000) 0

where the first two numbers are normalized, the exponent is nonzero. After these
start the subnormalized numbers the first of which is,

0 00000000 100000000000000000000002 = 2−1 ×2−126 = 5.8774718×10−39

and the smallest positive subnormal number is therefore 2−23×2−126 = 1.4012985×
10−45.

The penalty in performance for using subnormal numbers can be found by tim-
ing how long it takes to run 10 million iterations of a simple multiplication of x by
1 where x is first the smallest normal number and then the largest subnormal num-
ber. If we do this, being careful to make sure the loop is actually performed and
not optimized away by the compiler, we see that subnormal numbers are about 23
times slower than normal numbers on the machine used. This reflects the difference
between hardware and software support.

3.5 Rounding Floating-Point Numbers (IEEE 754)

Often when a real number is expressed in floating-point format it is necessary to
round it so that it can be stored as a valid floating-point number. The IEEE standard
defines four rounding modes, or rules, for binary floating-point. These are available
to programmers in C on Linux if using the gcc compiler (among others). The round-
ing modes are listed in Fig. 3.3.

90 3 Floating Point

Fig. 3.2 A program to display the transition from normal to subnormal floating-point numbers

Round to Nearest Round to the nearest floating-point number. Ties round to even.
Round Towards Zero Round down, if positive, or up, if negative, always towards zero.
Round Towards +∞ Round up, always towards positive infinity.
Round Towards −∞ Round down, always towards negative infinity.

Fig. 3.3 The four IEEE 754 binary floating-point rounding modes

The default mode for gcc, and the one recommended by the IEEE standard, is to
round towards the nearest value with ties rounding towards the even value. The even
value is the one with a zero in the lowest order bit of the significand. For example,
using decimal and rounding to an integer value “round to nearest” would act in this
way,

+123.7 → +124
+123.4 → +123
+123.5 → +124
−123.7 → −124
−123.4 → −123
−123.5 → −124

3.5 Rounding Floating-Point Numbers (IEEE 754) 91

which is more or less the way we would expect rounding to work. The stipulation of
rounding ties to even helps prevent the accumulation of rounding errors as in binary
this will happen about 50 % of the time.

The other, directed, rounding modes work in this way,

Value Round towards Zero Round towards +∞ Round towards −∞
+123.7 +123 +124 +123
+123.4 +123 +124 +123
+123.5 +123 +124 +123
−123.7 −123 −123 −124
−123.4 −123 −123 −124
−123.5 −123 −123 −124

The directed rounding modes always shift results, consistently up or down for
rounding towards ±∞, regardless of sign, or up or down for negative and positive
numbers in the case of “round towards zero”. The default mode is used so often
that many software libraries do not function properly if one of the directed modes is
used [7].

It is possible to alter the rounding mode programmatically. Figure 3.4 is a Linux
program that changes the rounding mode while displaying the floating-point repre-
sentation of exp(1.1) and -exp(1.1).

This program produces the following output,

FE_TONEAREST:
exp(1.1) = (0 10000000 10000000100010001000010) 3.00416613
-exp(1.1) = (1 10000000 10000000100010001000010) -3.00416613

FE_UPWARD:
exp(1.1) = (0 10000000 10000000100010001000010) 3.00416613
-exp(1.1) = (1 10000000 10000000100010001000001) -3.00416589

FE_DOWNWARD:
exp(1.1) = (0 10000000 10000000100010001000001) 3.00416589
-exp(1.1) = (1 10000000 10000000100010001000010) -3.00416613

FE_TOWARDZERO:
exp(1.1) = (0 10000000 10000000100010001000001) 3.00416589
-exp(1.1) = (1 10000000 10000000100010001000001) -3.00416589

which shows the floating-point number in decimal as well as the actual bits used
to store the value. Note that Fig. 3.4 includes a comment line describing the actual
command used to compile the program. The -frounding-math option is required
otherwise fesetround() will not actually change the rounding mode.

If we look at the output we see that FE TONEAREST, which is the default rounding
mode, produces results which match what we expect since negating the value is not
expected to alter the result other than the sign bit. We see this clearly by looking at
the bits of the results; they are all the same except for the sign bit.

92 3 Floating Point

Fig. 3.4 A program to display the effect of different rounding modes. Note that fp t and ppx()
are defined in Fig. 3.2

The remaining directed modes act as expected. For FE UPWARD we see that the
negative result is smaller than the positive, in magnitude, because it has been
rounded towards positive infinity. Similarly, we see the magnitudes reversed for
FE DOWNWARD which is rounding towards negative infinity. Lastly, FE TOWARDZERO

rounds towards zero giving the smaller magnitude result for both positive and neg-
ative cases. The floating-point bit patterns for FE TONEAREST and FE TOWARDZERO

are the same in each case except for the sign bit while the other two cases are similar
but the positive and negative bit patterns are flipped (for the significand).

3.6 Comparing Floating-Point Numbers (IEEE 754) 93

If the default of “round to nearest” is so widely used, why are the other rounding
modes present in the IEEE standard? One example of why can be found in [8]
where directed rounding significantly improved the accuracy of the calculations.
Regardless of specialized uses, in most cases it is completely unnecessary to modify
the rounding mode from the default.

3.6 Comparing Floating-Point Numbers (IEEE 754)

The IEEE standard requires that floating-point numbers maintain an explicit order-
ing for comparisons. The simplest way to compare two floating-point numbers is to
look at their bit patterns. For example, the following two numbers are as close as
two 32-bit floating-point numbers can be without being equal. This means there are
no representable floating point numbers between them. The numbers are,

0.500000000 = 0 01111110 00000000000000000000000 = 1056964608
0.500000060 = 0 01111110 00000000000000000000001 = 1056964609

where the floating-point value is on the left, the actual bit patterns are in the center
and the equivalent 32-bit signed integer is on the right. Note that when viewed as
an integer the smaller number, 0.5, is also smaller. This is no accident. The floating-
point format is designed to make comparison of floating-point numbers as straight-
forward as comparing two signed integers where negative floating-point numbers
are interpreted in two’s-complement format. The only exception is zero since it can
be signed or unsigned. But it is easy to check for this single case.

The C code for a floating-point comparison function that checks for the special
case of signed zero is,

1 typedef union {
2 float f;
3 int d;
4 } sp_t;
5
6 int fp_compare(float a, float b) {
7 sp_t x,y;
8
9 x.f=a;
10 y.f=b;
11
12 if ((x.d == (int)0x80000000) &&
13 (y.d == 0)) return 0;
14 if ((y.d == (int)0x80000000) &&
15 (x.d == 0)) return 0;
16
17 if (x.d == y.d) return 0;
18 if (x.d < y.d) return -1;
19 return 1;
20 }

94 3 Floating Point

where we introduce sp t instead of fp t which we used previously. The difference
is we now use a signed integer instead of an unsigned integer. The signed integer is
necessary so that the integer comparisons will treat negative floating-point numbers
properly.

The fp compare function accepts two floats, a and b, as input and returns −1 if
a < b, 0 if a = b, and +1 if a > b. In lines 9 and 10 the input floats are placed into
two sp t variables, x and y. This is so we can get the equivalent signed integer from
the floating-point bit pattern. Lines 12 and 13 are the special check for negative zero
compared to positive zero. In this case we want a return value of 0 since the standard
says these values are equal. The cryptic (int)0x80000000 is the bit pattern for
a negative zero number cast to a signed integer. If this is the first value and the
second is positive zero, consider them the same. Lines 14 and 15 make the same
comparison with the arguments reversed. Line 17 checks if the bit patterns are the
same and returns zero if they are to declare the values equal. Line 18 checks to see
if a < b and returns −1 if they are. The only option left is that a > b so we return
+1 in line 19. This completes the predicate function to compare two floating point
numbers using their integer bit patterns.

For completeness, let’s define functions for the basic comparison operators. We
can then check these against the intrinsic operators in C for floating-point numbers.
The functions are,

1 int fp_eq(float a, float b) {
2 return fp_compare(a,b) == 0;
3 }
4
5 int fp_lt(float a, float b) {
6 return fp_compare(a,b) == -1;
7 }
8
9 int fp_gt(float a, float b) {
10 return fp_compare(a,b) == 1;
11 }

And we can use them with the following code,

1 int main() {
2 float a,b;
3
4 a = 3.13; b = 3.13;
5 printf("3.13 == 3.13: %d %d\n", fp_eq(a,b), a==b);
6
7 a = 3.1; b = 3.13;
8 printf("3.1 < 3.13: %d %d\n", fp_lt(a,b), a<b);
9
10 a = 3.2; b = 3.13;
11 printf("3.2 > 3.13: %d %d\n", fp_gt(a,b), a>b);
12
13 a = -1; b = 1;
14 printf("-1 < 1: %d %d\n", fp_lt(a,b), a<b);
15 }

3.7 Basic Arithmetic (IEEE 754) 95

which shows that comparing the integer representations gives the results we would
expect,

3.13 = 3.13 : 1 1
3.10 < 3.13 : 1 1
3.20 > 3.13 : 1 1

-1.00 < 1.00 : 1 1

In this discussion we have ignored NaNs and infinity. NaNs, according to the
standard, are unordered even when compared to themselves. Infinities of the same
sign compare as equal while those of opposite signs should compare as expected.
This is not the case with the simple example above in fp compare which would
need to be updated to compare infinities properly.

3.7 Basic Arithmetic (IEEE 754)

The standard mandates that conforming implementations supply the expected
addition (+), subtraction (−), multiplication (×) and division (/) operators. It also
requires square root of a positive number and a fused multiply-add which imple-
ments (xy)+ z with no exceptions thrown during the multiplication. This combined
operation only involves one rounding step, not the two that would happen if the
multiplication was done separately from the addition.

Addition and Subtraction. The addition of two floating-point numbers is straight-
forward. Let’s consider the steps necessary to calculate 8.76+1.34. First, we repre-
sent each number in binary as:

8.76 → 8.760000229 = 0 10000010 00011000010100011110110
1.34 → 1.340000033 = 0 01111111 01010111000010100011111

where we immediately see that neither 1.34 nor 8.76 can be exactly represented
using a 32-bit float and that we have again shown the binary representation separat-
ing the sign, exponent and significand. If we convert the bit pattern to actual binary
we get,

8.76 → 1.00011000010100011110110×23

1.34 → 1.01010111000010100011111×20

where we see that the exponents are not the same. In order to add the significands
we need to make the exponents the same first. So, we rewrite the smaller number so
that it has the same exponent as the larger. This means we add the difference of the
exponents to the exponent of the smaller number, 3−0 = 3 → 3+0 = 3, and shift
the significand of the smaller number that many bit positions to the left to get,

8.76 → 1.00011000010100011110110 000×23

1.34 → 0.00101010111000010100011 111×23

with the bits that would have been shifted out of the 32-bit float separated from the
rest of the significand by a space. Normally, the calculation is done with a higher

96 3 Floating Point

precision than the storage format and rounding is applied. The top value is filled in
by three zeros for the extended precision bits.

With the exponents the same the addition is simple, add the significand, bit by
bit, just as one would add 2.5×103 and 4.6×103 to get 7.1×103,

8.76 → 1.00011000010100011110110 000×23

+ 1.34 → 0.00101010111000010100011 111×23

1.01000011001100110011001 111×23

If the answer does not have a single 1 to the left of the decimal point we shift the
significand to the right until it does so that our answer is a normalized number.
Naturally, if we shift the significand n bits to the right we need to raise the exponent
by adding n to it. In the example above the answer is already normalized since the
first, and only, bit to the left of the decimal point is 1.

There is one step remaining, which is to account for rounding. Assuming that
the rounding mode is the default of “round to nearest” we need to consider the first
1 in the three lowest order bits of the answer, the three bits on the far right of the
significand. In order to round up to the nearest floating-point number we add one to
the right-most bit on the significand, before the space, to make 001 → 010. In this
case, then, the final answer is,

10.100000381 → 1.01000011001100110011010×23

Subtraction works in the same way. Specifically, the steps to add or subtract two
floating-point numbers x and y are,

1. Raise the exponent of the number with the smaller exponent by the difference
between the larger and smaller exponent. Also, shift the significand of the smaller
number to the right by the same number of bits. This causes both numbers to have
the same exponent. If the smaller number was y the shifted number is y′.

2. Add or subtract the significands of x and y′ as they now have the same exponent.
Put the answer in z.

3. If there is not a single 1 to the left of the decimal point in z, shift the significand
of z to the right until there is. Increase the exponent of z by the number of bits
shifted.

Multiplication. If we want to multiply two numbers in scientific notation we mul-
tiply the significands and add the exponents,

(a×10x)(b×10y) = ab×10x+y

similarly, for two floating-point numbers expressed in binary, we multiply the sig-
nificands and add exponents then normalize. So, to multiply 3.141592 by 2.1, we
have,

3.141592 → 3.141592026 → 0 10000000 10010010000111111011000
2.1 → 2.099999905 → 0 10000000 00001100110011001100110

3.7 Basic Arithmetic (IEEE 754) 97

where the first column is the real number we want to multiply, the second column is
the actual floating-point number we get when using binary32 and the last column is
the actual bit pattern in memory. Using the bit pattern we can write these values in
binary as,

3.141592 → 1.10010010000111111011000×21

2.1 → 1.00001100110011001100110×21

which means that our product will have an exponent of 1+1 = 2. We can multiply
the significands, bit by bit, which is tedious on paper so instead we approximate the
product using only seven bits after the radix point,

1.1001001
× 1.0000110

0
1110010010
11100100100

...
110010010000000

+ 1.10100100110110

where we have already moved the radix point to the proper position in the final sum.
The ... represents a series of all zero places corresponding to the string of four
zeros in the multiplier. The last line shows the last partial product. The full product
of the significands is 1.10100110001110101101111.

Since the significand product already has a leading value of one we do not need
to shift in order to get a leading bit of one. For example, if the significand product
started with 10.00101... we would shift the radix point one position to the left
so make the significand 1.000101... and increase the exponent by one position.

So, finally, our now approximate product (because we dropped many significand
bits) can be represented as,

1.10100100110110×22 → 6.5756835938

while the full precision product is 3.141592×2.1 = 6.5973429545.
In summary, then, the steps to multiply two floating-point numbers x and y are,

1. Add the exponents of x and y.
2. Multiply the significands of x and y.
3. Shift the product of the significands to get a single leading one bit to the left of the

radix point. Adjust the exponent as well by adding one for every bit position the
product of the significands is shifted to the right. This is equivalent to shifting
the radix point to the left.

4. Reconcile the signs so that final product has the expected sign.

This concludes our look at floating-point arithmetic. Next we consider an impor-
tant part of the IEEE 754 standard we have neglected until now, exceptions.

98 3 Floating Point

3.8 Handling Exceptions (IEEE 754)

Not all floating-point operations produce meaningful results for all operands. An
important part of the IEEE 754 standard addresses what to do when exceptions to
normal floating-point processing arise. The standard recommends a default set of
actions for these cases and then allows implementations to give users the power to
trap and respond to exceptions. In this section we learn what these exceptions are,
the default responses the standard recommends for them, and how to trap exceptions
to bring them under user control in C. It is important to remember that floating-
point exception handling is distinct from the concept of exceptions in programming
languages, though they are, of course, related and could be intermingled. Modern
processors, including the x86 line, process floating-point exceptions in hardware
and as such are programming language independent.

Exceptions and Default Handling The standard defines five types of exceptions:
inexact, invalid, underflow, overflowand divide-by-zero:

Exception Type Description Examples
inexact When the result is not exact due to

rounding.
2.0/3.0

invalid When the operands are not valid for
the operation.

0/0, 0×∞,
√

x,x < 0

underflow When the result is too small to be
accurate or when subnormal.

(1.17549435×10−38)/3.0

overflow When the result is too large to rep-
resent

(3.40282347×1038)2

divide-by-zero When a finite number is divided by
zero

1/0

The standard also defines default behavior for these exceptions. The goal of the
default behavior is to allow the computation to proceed by substituting a particu-
lar value for the exception or to just ignore the exception altogether. For example,
the default behavior for an inexact exception is to ignore it and continue with the
calculation. The default behavior for an invalid exception is to generate a NaN and
then propagate the NaN through the remainder of the calculation. If divide-by-zero
happens the result is passed on as ±∞ depending upon the signs of the operands.

The overflow exception is raised when the result does not fit. What the default
behavior is depends upon the rounding mode in effect at the time as well as the sign
of the number. Specifically,

Round to Nearest Return ±∞ depending upon the sign of the result.
Round Towards Zero Return the largest number for the format with the

sign of the result.
Round Towards +∞ Return +∞ if positive, largest negative number if

negative.
Round Towards −∞ Return −∞ if negative, largest positive number if

positive.

3.8 Handling Exceptions (IEEE 754) 99

Lastly, underflow is raised when the number is too small. The implementer is
allowed to determine what “too small” means. The default result returned will be
the subnormal number or zero.

Trapping Exceptions For many programs the default behavior is perfectly accept-
able. However, for total control over floating-point operations the standard allows
for traps which run user code when an exception happens. For x86 architectures,
traps are in hardware but can be used from programming languages such as C. When
a trap executes, or is used by a higher-level library, the programmer is able to control
what happens when exceptions occur. Let’s take a look at how one can do this using
gcc.

The first thing to be aware of is that by default, the gcc compiler is not 100 %
compliant with IEEE 754. So, to get the performance we expect we need to be sure
to use -frounding-math and -fsignaling-nans when we compile. Also,
we need to include the fenv.h library. With these caveats, the set of functions we
can use depends upon the way in which we want to control floating-point excep-
tions. We can throw a signal when they happen (SIGFPE) or we can test individual
operations for individual exceptions. Let’s look at using a signal first.

A signal is a Unix concept, recall we assume a 32-bit Linux implementation,
which is a message to a program to indicate that a particular event has happened.
There are many possible signals, but the one we want is SIGFPE to signal a floating-
point error. We need to enable floating-point exceptions, then arrange a signal han-
dler like so,

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <signal.h>
4 #include <fenv.h>
5
6 void fpe_handler(int sig) {
7 if (sig != SIGFPE) return;
8 printf("Floating point exception!\n");
9 exit(1);
10 }
11
12 int main() {
13 float a=1, b=0, c;
14
15 feenableexcept(FE_INVALID | FE_DIVBYZERO |
16 FE_OVERFLOW | FE_UNDERFLOW);
17 signal(SIGFPE, fpe_handler);
18
19 c = a/b;
20 }

where lines 1 through 4 include necessary libraries. Lines 6 through 10 define our
signal handler. We check to see if the signal is actually a floating-point exception
(line 7) and then report it and exit. In main we define some floats and then enable

100 3 Floating Point

floating-point exception traps by calling feenableexcept() with the bit masks
for the floating-point exceptions we want to trap. Line 17 ties the SIGFPE signal to
our handler, fpe handler(). Finally, line 19 tries to divide by zero which will
trigger the exception. This code should be compiled with,

$gcc fpe.c−ofpe−lm−frounding−math−fsignaling−nans

assuming fpe.c to be the name of the file.
Another way to work with floating-point exceptions is to explicitly check if any

were raised during a calculation. In this case we need the feclearexcept() and
fetestexcept() functions to clear any exceptions prior to the calculation and
then to test for particular exceptions after. For example, this program,

1 #include <stdio.h>
2 #include <signal.h>
3 #include <fenv.h>
4
5 int main() {
6 float c;
7
8 feclearexcept(FE_ALL_EXCEPT);
9 c = 0.0/0.0;
10 if (fetestexcept(FE_INVALID) != 0)
11 printf("FE_INVALID happened\n");
12
13 feclearexcept(FE_ALL_EXCEPT);
14 c = 2.0/3.0;
15 if (fetestexcept(FE_INEXACT) != 0)
16 printf("FE_INEXACT happened\n");
17
18 feclearexcept(FE_ALL_EXCEPT);
19 c = 1.17549435e-38 / 3.0;
20 if (fetestexcept(FE_UNDERFLOW) != 0)
21 printf("FE_UNDERFLOW happened\n");
22
23 feclearexcept(FE_ALL_EXCEPT);
24 c = 3.40282347e+38 * 3.40282347e+38;
25 if (fetestexcept(FE_OVERFLOW) != 0)
26 printf("FE_OVERFLOW happened\n");
27
28 feclearexcept(FE_ALL_EXCEPT);
29 c = 1.0 / 0.0;
30 if (fetestexcept(FE_DIVBYZERO) != 0)
31 printf("FE_DIVBYZERO happened\n");
32 }

3.9 Floating-Point Hardware (IEEE 754) 101

will produce this output,

FE INVALID happened
FE INEXACT happened
FE UNDERFLOW happened
FE OVERFLOW happened
FE DIVBYZERO happened

when compiled with,
$ gcc fpe traps.c -o fpe traps -lm -frounding-math -fsignaling-nans

thereby showing how to explicitly test for floating-point exceptions. Note, just as
feenableexcept() took an argument that was the bitwise OR of one or more
exceptions, so too will fetestexcept() so that in order to test for invalid and
divide-by-zero one would call,

int i = fetestexcept(FE INVALID | FE DIVBYZERO)

and then check for either with i != 0 or one explicitly with (i & FE_INVALID)

!= 0.

3.9 Floating-Point Hardware (IEEE 754)

For this section we assume a system using modern x86 processors. These processors
implement an 80-bit extended precision version of floating-point in hardware. This
is why floating-point calculations are so fast when in the past floating-point was
generally, especially for smaller systems, done in software. This is still true in the
large embedded processor world which we will of necessity neglect entirely.

An x86 extended precision float is stored in registers as,

where it is very important to note that unlike the IEEE storage formats, there is no
implied leading 1 bit for the significand. Instead, it is given explicitly as the first bit
marked a “I” above. The sign (S) is 0 for positive and 1 for negative. The exponent
(E) is stored as excess-16383 and the fractional part of the significand (M) is 63-bits
long. This means that a floating-point number (n) is,

n = (−1)si0.d62d61 . . .d0 ×2e−16383

where there is now an explicit integer part (i0) and the binary significand (d62 . . .d0).
How many bits of the significand are actually used in a particular calculation is
a function of the processor (32-bit vs 64-bit), the compiler, and various compiler
settings. We ignore these important but intricate details here and instead focus on
the representation.

102 3 Floating Point

Just as an IEEE binary32 or binary64 float uses certain bit combinations to indi-
cate NaN and infinity so does the hardware version. The explicit integer part helps
in quickly determining the type of number that is being worked with. Table 3.1 il-
lustrates how to decide whether or not the float is normal, subnormal, zero, infinity,
NaN or invalid.

(a) Normal, Subnormal and Zero:

Exponent I M Value
000000000000000 0 all 0 zero (sign ignored)
000000000000000 0 non-0 subnormal

any but all 1’s 1 any normal

(b) Infinity, Not-a-Number, and Invalid (exponent = 111111111111111):

I M62 M61 . . .M0 Value
1 0 0 ±∞ (uses sign)
1 0 non-0 signaling NaN
1 1 0 invalid result (e.g., 0/0)
1 1 non-0 quiet NaN

Table 3.1 How to interpret the bit patterns of an x86 extended precision floating-point number.
Only the meaningful combinations of bits are shown, all others should be interpreted as invalid.
When the CPU performs floating-point calculations it uses this format converting to and from IEEE
754 formats like binary32 and binary64 as needed. In (a) the exponent and integer part are used
to decide between zero, subnormal numbers and normal numbers. All normal numbers have an
integer part of 1 matching the implied leading 1 bit of the IEEE formats. For (b) the exponent is the
special case of all ones. The integer part and leading bit of the significand determine the number
type

The top part of the table illustrates normal, subnormal and zero. As is the case for
IEEE, there are two possible representations for zero, signed and unsigned. The sign
is ignored in calculations. An integer part of zero indicates a subnormal number. If
the integer part is 1 and the exponent is any value except all zeros or all ones the
number is a normalized floating-point number. In the bottom part of the table are
the exceptional values. All of these have the integer part set to 1 and the exponent
set to all ones. These values are distinguished based on the value of the leading
fractional part of the significand and the remaining bits of the significand. If the
leading bit, M62, is zero the number is infinity (all remaining significand bits zero)
or a signaling NaN. Recall that a signaling NaN raises an exception. If M62 is set
the number is either a quiet NaN (remainder of the significand bits are not zero) or
an invalid number (all zero bits).

The bit patterns covered in Table 3.1 are not exhaustive. There are other combi-
nations which could be present. In the past some of these were used but now all are
considered invalid and will not be generated by the floating-point hardware.

3.10 The Elephant in the Living Room (Pitfalls of Floating Point) 103

The large number of bits in the significand means that 32-bit and 64-bit float-
ing point operations can be performed with full precision and proper rounding of
results. Above we discussed the basic arithmetic operations called out by the IEEE
754 standard. There is one we intentionally ignored at the time. This is the fused
multiply-add operation, xy + z, which first calculates xy and then adds z without
rounding after the multiplication. If this were not done the expression would inv-
olve two roundings, one for the multiplication and another for the addition. This is
unnecessary and with the extended precision of the x86 floating-point format will
result in fewer rounding artifacts. The xy+ z form was chosen because it appears
frequently in expressions and a smart compiler would look for these expressions so
as to use the fused multiply-add capability whenever possible.

3.10 The Elephant in the Living Room (Pitfalls of Floating Point)

Programmers use floating-point numbers very frequently and sometimes without
careful consideration of the consequences from the imprecision which may arise. In
this section we will look at several examples of where floating-point numbers have
led to disaster, often with the loss of human life. After these cautionary tales we will
offer some general (and hopefully helpful) advice on how to improve our chances
of creating a correctly functioning program involving floating-point values.

Patriot Missile Failure During the Gulf War (August 1990 through February
1991) the Iraqi army employed Soviet-built Scud missiles. The United States res-
ponded by installing Patriot anti-missile batteries to shoot down approaching Scuds.
On February 25, 1991 a Scud missile hit a US army barracks in Dharan, Saudi
Arabia, killing 28 solders. The base was protected by Patriot missile batteries yet the
battery in range of the Scud failed to fire. The reason why is due to round-off error
in floating-point calculations. The full report of the incident is available from the
United States General Accounting Office (GAO) [9] but the essence of the problem
has to do with trying to represent a simple value, in this case 0.1, in a floating-point
format which was itself then truncated to fit into a fixed-point number.

The Patriot missile software tracked the position of incoming Scuds using radar.
It tracked time by counting tenths of a second and used a 24-bit fixed-point repre-
sentation of the floating-point value for 0.1 to convert to seconds. The only problem
is that in binary the value of 0.1 is an infinitely repeating decimal,

0.1 = 0.0001100110011001100110011001100 . . .2

that simply truncating at 24-bits gives, 0.000110011001100110011002 meaning an
error of 0.000000000000000000000000110011001100 . . .2 ≈ 0.000000095 seconds
was in introduced for each truncation. This is not much, but if the missile battery
was left in operation for a long period of time the error would accumulate.

The GAO report indicates that Israeli forces, also operating Patriot batteries,
noticed that after approximately eight hours of operation that the targeting was off

104 3 Floating Point

by about 20 %. A software fix was created and scheduled to be sent to the batteries.
However, no long running tests were performed to see how long the battery could
be in operation before the timing error was catastrophic. Battery operators were
warned that long runtimes might cause inaccuracy in targeting but were not given
any notion of what “long runtime” might mean. On February 25, 1991 the Patriot
battery in Dharan had been in continuous operation for about 100 hours. This means
the small timing error introduced by the truncation of 0.1 to 24-bits was now mul-
tiplied by the number of tenths of a second in 100 hours or 3,600,000 causing a
discrepancy of about 0.34 seconds. During this time a Scud missile would cover
about half of a kilometer putting it out of range of the battery. Since the battery
thought the missile was out of range it did not fire and the missile went on to kill 28
soldiers. The software patch arrived at Dharan on February 26th.

Ariane 5 Explosion The European Space Agency has a successful track record
when it comes to launching sophisticated spacecraft. However, the maiden flight of
its Ariane 5 rocket on June 4, 1996, was a total loss, to the tune of $500 million
USD, all because one of the software modules attempted to put a 64-bit floating-
point value into a 16-bit signed integer.

Just under 40 seconds after its launch from Kourou, French Guiana, the rocket
self-destructed. The software putting a 64-bit floating-point value into the signed
16-bit integer had caused an overflow (i.e., the value exceeded 32,767) which caused
the rocket to believe it was off-course. It therefore fired thrusters to “correct” its
course which put so much stress on the rocket that its self-destruct was triggered.
The final report of the inquiry board summarizes the events [10].

An Experiment The examples above show that floating-point can sometimes lead
to fatal and costly disasters. More practically, floating-point, in combination with
compilers, hardware, and even the form of the equations used, can lead to wildly
inaccurate results. Consider the following experiment inspired by previous work by
Colonna [11].

A favorite equation used to illustrate the onset of chaotic behavior is the logistic
map, xi+1 = rxi(1−xi) with r a constant between 1 and < 4 and x a value from (0,1).
This map exhibits very interesting behavior as an initial x0 is iterated repeatedly and
as r varies from say 2 up to just under 4. If one were to select a starting value
of 0.1 (or any other) and run the iteration forward a thousand times and then plot
the next thousand as a function of r one would get Fig. 3.5 which is known as a
bifurcation plot. This plot shows the period-doubling route to chaotic behavior as
r increases. There is a deep correlation between the structure of this plot and the
famous Mandelbrot set. Of interest to us is the sequence of values one gets if r is
in the chaotic regime for different but algebraically equivalent forms of the logistic
equation.

We can rewrite the logistic equation as,

xi+1 = rxi(1− xi) = rxi − rxixi = xi(r− rxi) = rxi − rx2
i

where each of the four forms will be computed in our test program. The program
itself is straightforward,

3.10 The Elephant in the Living Room (Pitfalls of Floating Point) 105

Fig. 3.5 The bifurcation plot of the logistic map. The plot shows several hundred x values from the
iterated logistic map for each r value as a function of r. This map illustrates the period-doubling
route to chaotic behavior. For the experiment r = 3.8 which is in the chaotic region (“Logistic Map”
by Jordan Pierce, Creative Commons CC0 1.0 Universal Public Domain Dedication License)

1 #include <stdio.h>
2 #include <math.h>
3
4 int main() {
5 double x0,x1,x2,x3;
6 double r = 3.8;
7 int i;
8
9 x0 = x1 = x2 = x3 = 0.25;
10
11 for(i=0; i < 100000; i++) {
12 x0 = r*x0*(1.0 - x0);
13 x1 = r*x1 - r*x1*x1;
14 x2 = x2*(r - r*x2);
15 x3 = r*x3 - r*pow(x3,2);
16 }
17
18 printf(" x0 x1 x2 x3\n");
19
20 for(i=0; i < 8; i++) {
21 x0 = r*x0*(1.0 - x0);
22 x1 = r*x1 - r*x1*x1;
23 x2 = x2*(r - r*x2);
24 x3 = r*x3 - r*pow(x3,2);
25 printf("%0.8f %0.8f %0.8f %0.8f\n", x0,x1,x2,x3);
26 }
27 }

106 3 Floating Point

This program iterates each of the four versions of the logistic map and outputs
the final eight iterates after an initial burn in of 100,000 iterations. Note that the
program uses double precision values and that the initial value is 0.25 which is not
a repeating binary. The program produces this as output,

x0 x1 x2 x3
0.76670670 0.65123778 0.80925715 0.38542453
0.67969664 0.86308311 0.58656806 0.90011535
0.82729465 0.44904848 0.92152269 0.34164928
0.54293721 0.94013498 0.27481077 0.85471519
0.94299431 0.21386855 0.75730128 0.47187310
0.20427297 0.63888941 0.69842500 0.94699374
0.61767300 0.87669699 0.80038457 0.19074708
0.89738165 0.41077765 0.60712262 0.58657800

when compiled with,
$ gcc logistic.c -o logistic -lm

where we already see the effect of the different way the compiler has decided to
evaluate the logistic expressions even though algebraically they are identical. If we
compile again with optimization,

$ gcc logistic.c -o logistic -lm -O2

we get,

x0 x1 x2 x3
0.18402020 0.67978266 0.32056222 0.92875529
0.57059572 0.82717714 0.82764792 0.25144182
0.93106173 0.54322944 0.54205800 0.71523156
0.24390598 0.94289862 0.94327827 0.77396643
0.70078024 0.20459509 0.20331661 0.66478109
0.79681171 0.61839658 0.61552007 0.84681933
0.61523066 0.89673255 0.89928943 0.49292215
0.89954320 0.35189247 0.34415822 0.94980964

which is different still. Clearly, the way in which an expression is coded matters sig-
nificantly. Which value, if any, is most correct? How can one tell? One way would
be to use arbitrary precision floating-point, which we do not have the space in this
book to discuss (see MPFR [12]). Alternatively, one could use rational arithmetic
and convert back to floating-point at the end. For an explanation of rational arith-
metic see Chap. 4 but be warned that the iteration will quickly lead to fractions with
very large numerators and denominators and require a great deal of memory.

Another Experiment Let’s consider another experiment. In this case we want to
compute ex for any x using the Taylor series expansion,

ex = 1+ x+
x2

2!
+

x3

3!
+ · · ·= 1+

∞

∑
i=1

xi

i!

3.10 The Elephant in the Living Room (Pitfalls of Floating Point) 107

which we translate into Python as,

1 def fact(n):
2 if (n == 1):
3 return 1.0
4 return n * fact(n-1)
5
6 def exponential(x, tol=1e-10):
7 ans = 0.0
8 term= 1.0
9 p = 1.0
10
11 while (abs(term) > tol):
12 ans += term
13 term = x**p / fact(p)
14 p += 1
15
16 return ans

where we accumulate terms of the series until one of the terms is smaller than a
given threshold. If we run this program for positive values of x and compare them
with the output of a gold standard exp(x) function (recall that Python floats are
double precision), we get,

20 4.8516519540979016e+08 4.8516519540979028e+08
21 1.3188157344832141e+09 1.3188157344832146e+09
22 3.5849128461315928e+09 3.5849128461315918e+09
23 9.7448034462489052e+09 9.7448034462489033e+09
24 2.6489122129843472e+10 2.6489122129843472e+10
25 7.2004899337385880e+10 7.2004899337385880e+10

where the first column is the argument, the second is the output of exponential()
and the third is the output of our gold standard function. Clearly, our Taylor series
approximation for ex is working quite well.

Now, let’s run again but this time make x < 0. In this case we get,

-20 4.9926392547479328e-09 2.0611536224385579e-09
-21 2.7819487708032662e-08 7.5825604279119066e-10
-22 -2.4369901527907362e-08 2.7894680928689246e-10
-23 3.1518333727167153e-09 1.0261879631701890e-10
-24 3.7814382919759864e-07 3.7751345442790977e-11
-25 1.1662837734562158e-06 1.3887943864964021e-11

Not so good. What happened and how can we fix it? What happened is that the
Taylor series for ex is made up of terms that are alternately even and odd powers of
x. This means that the sign of the term changes from term to term. In other words, the
series sum is made up of values that are wildly different from each other. Consider
the approximation for e−20,

e−20 = 1−20+ 202

2 − 203

6 + 204

24 − 205

120 +
206

720 −·· ·
= 1−20+200−1333.3+6666.7−26666.7+88888.9−·· ·

108 3 Floating Point

where the effect of each term changing sign is that the sum to term n is always the
opposite sign as term n+ 1. This addition of two very different numbers leads to a
rapid loss of precision making the approximation functionally useless even though
mathematically it is valid.

The fix in this case is to use only positive x and to recall that e−x = 1/ex. If we run
our Python program again with only positive x and report 1.0/exponential(x) we
greatly improve our final results,

-20 2.0611536224385583e-09 2.0611536224385579e-09
-21 7.5825604279119097e-10 7.5825604279119066e-10
-22 2.7894680928689241e-10 2.7894680928689246e-10
-23 1.0261879631701888e-10 1.0261879631701890e-10
-24 3.7751345442790977e-11 3.7751345442790977e-11
-25 1.3887943864964019e-11 1.3887943864964021e-11

thereby proving that thought is always required when expecting meaningful results
from floating-point operations.

Rules of Thumb We end this chapter with some “rules of thumb” regarding the
use of floating-point numbers. These rules are not absolute, of course, and others
could be given, but they will hopefully be found helpful and cause you to pause and
consider carefully when writing floating-point programs.

1. Do not use floating-point numbers if integers will suffice. As a corollary, do not
use floating-point numbers if exact computation is required, rather, scale if a fixed
number of decimals will always be used. For example, if the values are dollars
do the computations in cents and divide by 100 when done.

2. Do not represent floating-point numbers in text form in files or as strings unless
absolutely necessary. If necessary, use scientific notation and be sure to have
enough digits after the decimal point of the mantissa to represent the significand
accurately. For a 32-bit float use at least 8 digits. For a 64-bit float use at least 16.
For example, in Python,
>>> from math import pi

>>> float("%0.15g" % pi) == pi

False

>>> float("%0.16g" % pi) == pi

True

where the 0.15g format specifier uses 15 digits after the decimal which is not
enough, 16 are required so that the text representation of π , when converted
back to a floating-point number, matches the original. Floating-point numbers
are often in XML files and frequently without enough precision.

3. The spacing between floating-point numbers increases as the number increases.
If working with large numbers, rescale, if possible, to map to values closer to
one.

4. Comparing two floating-point values for equality can be problematic if they were
computed using a different code sequence. If possible, replace expressions like
a == b with abs(a-b) < e where e is a tolerance value. If the numbers
are “close enough” so that their difference is less than e we can regard them
as equal (or, not equal). Even this is dangerous in that the choice of e depends
upon the scale of the values being worked with. Absolute comparison for equality

Exercises 109

involves treating the floating-point numbers as integers, as we did above using the
C union, and comparing these integers bit by bit. IEEE floating-point numbers
are ordered so two floats are only truly equal if their bit patterns are identical.

5. Subtracting two nearly equal numbers results in a large loss of precision as the
result is made up of only the lowest order bits of the significand. Generally, this
should be avoided. Naturally, the rule above does just this which is why it is best
to compare integer representations directly when possible and absolute precision
is needed.

6. For real numbers we know that (ab)c = a(bc) however this is sometimes not
the case for floating-point numbers due to rounding. Use care when assuming
associativity.

The rules above are ad hoc examples of a large research area known as numeri-
cal stability or numerical analysis. An important part of numerical stability involves
an analysis of the equations being implemented by the computer and a rework-
ing of those equations to minimize calculations requiring floating-point operations
known to lead to poor results. The stability of numerical algorithms is a vast field
as might be expected. For a scholarly introduction, especially its early chapters, see
Higham [13]. For a more popular treatment see Acton [14].

3.11 Chapter Summary

In this chapter we took a thorough look at floating-point numbers and how they
are represented in a computer. We discussed just what we mean by “floating-point”
and talked about some of the history surrounding floating-point and computers. We
compared two popular (though one is largely disused now) floating-point representa-
tions. We then explored the main parts of the IEEE 754 standard covering represen-
tations, rounding modes, comparisons, basic arithmetic, and exceptions. Next, we
discussed the relationship between the standard and common floating-point hard-
ware. Lastly, we covered some of the many pitfalls associated with floating-point
numbers by examining several catastrophic failures due to floating-point math.

Exercises

3.1. Convert the following 32-bit IEEE bit patterns to their corresponding floating-
point values:

(a) 0 10000000 10010010000111111011011

(b) 0 10000000 01011011111100001010100

(c) 0 01111111 10011110001101110111101

(d) 0 01111110 01100010111001000011000

(e) 0 01111111 01101010000010011110011

110 3 Floating Point

Where the first number is the sign, the second group of 8 bits is the exponent and
the remaining bits are the significand. It will help to write a computer program to
handle the powers of two in the significand.

3.2. Assume a simple floating-point representation that uses four bits in the signif-
icand, three bits for the exponent, and one for the sign. The exponent is stored in
excess-3 format and all exponent values are valid. In this case we have the following
representations,

4.25 = 0 101 0100
1.5 = 0 011 1000
-1.5 = 1 011 1000

-4.25 = 1 101 0100

Work out the following sums and express the answer in bits. Use a floating-point
intermediate with eight bits for the significand and then round your answer to the
nearest expressible value. Find 4.25 + 1.5 and -4.25 + -1.5. **

3.3. Modify fp compare to handle infinities properly.

3.4. Summing the values of an array is a common operation. If the naive implemen-
tation is used, simply adding each new array element to the accumulated sum of
all the previous, there will be an overall round-off error proportional to the num-
ber of terms added. For a small array this is negligible but for a large array it may
matter. One way to avoid the accumulated round-off error is to use pairwise sum-
mation [13]. This is a recursive divide-and-conquer algorithm which checks to see
if the input array length is below a cutoff value, say five elements, and if so it ret-
urns their sum by simply adding them together. Otherwise, it takes the length of
the input array, divides it by two using integer division, and calls itself on each of
those subarrays adding the return values together to form the final output value. In
pseudo-code,

function pairwise(x) {
if (length(x) <= 5) {

s = x[0] + x[1] + ...
} else {

n = length(x) / 2
s = pairwise(x[0..n-1]) + pairwise(x[n..])

}
return s

}

Implement this function in C and Python. Demonstrate the effect of round-off by
comparing the output of this function with the naive summation for input arrays
of 10,000 elements or more. Use a pseudo-random number generator to generate
values in the range [0,1). **

References 111

References

1. Muller, J., Brisebarre, N., et al. Handbook of Floating-Point Arithmetic, Birkhäuser Boston
(2010).

2. Saracino D., Abstract Algerbra: A First Course, Addison-Wesley (1980).
3. Goldberg, D., “What every computer scientist should know about floating-point arithmetic.”

ACM Computing Surveys (CSUR) 23.1 (1991): 5–48.
4. Randell, B., The Origins of Digital Computers-Selected Papers. Springer-Verlag, (1982).
5. Rojas, R., “Konrad Zuse’s legacy: the architecture of the Z1 and Z3.” Annals of the History of

Computing, IEEE 19.2 (1997): 5–16.
6. Cody, W., Waite, W. Software Manual for the Elementary Functions, Prentice-Hall, (1980).
7. Monniaux, D., “The pitfalls of verifying floating-point computations.” ACM Transactions on

Programming Languages and Systems (TOPLAS) 30.3 (2008): 12.
8. Rump, SM., “Accurate solution of dense linear systems, Part II: Algorithms using directed

rounding.” Journal of Computational and Applied Mathematics 242 (2013): 185–212.
9. B-247094, Report to the House of Representatives. Washington, D.C.: GAO, Information

Management and Technology Division, 4 Feb. 1992, url: www.fas.org/spp/starwars/gao/
im92026.htm (retrieved 15 Oct 2014).

10. Lions, JL (chair), ARIANE 5 Flight 501 Failure Report by the Inquiry Board, Paris, 19 July
1996.

11. Colonna, JF, The Subjectivity of Computers, http://www.lactamme.polytechnique.fr/
descripteurs/subject.01..html. (retrieved 15 Oct 2014).

12. http://www.mpfr.org/. (retrieved 15 Oct 2014).
13. Higham, N. Accuracy and stability of numerical algorithms, Siam, (2002).
14. Acton, F., Real computing made real: Preventing Errors in Scientific and Engineering calcu-

lations, Courier Dover Publications, (2013).

www.fas.org/spp/starwars/gao/im92026.htm
www.fas.org/spp/starwars/gao/im92026.htm
http://www.lactamme.polytechnique.fr/descripteurs/subject.01..html
http://www.lactamme.polytechnique.fr/descripteurs/subject.01..html
http://www.mpfr.org/

Part II
Other Representations

Chapter 4
Big Integers and Rational Arithmetic

Abstract Big integers differ from standard integers in that they are of arbitrary size;
the number of digits used is limited only by the memory available. In this chapter
we look at how big integers are represented in memory and how to perform arith-
metic with them. We also discuss some implementations which might be of use
when using programming languages that do not support big integers natively. Next
we examine rational arithmetic with big integers. Finally, we conclude with some
advice on when it might be advantageous to use big integers and rational numbers.

4.1 What is a Big Integer?

Big integers, also known as bignums, bigints, multiple precision, arbitrary precision,
or infinite precision integers, are integers that are not limited to a fixed number of
bits. The standard representation for integers in computers involves a fixed number
of bits, typically 8, 16, 32, or 64. These numbers therefore have a fixed range. A big
integer, however, uses as much memory as is necessary to represent the digits and
therefore is only limited in range by the memory available to it.

Several programming languages include big integers as part of their specification
including Python. In Python we have an interpreter that seamlessly moves between
fixed-width integers and big integers, of data type long, depending upon the result
of a calculation. The transition point depends upon the version of the Python int-
erpreter in use. The easy way to check this limit is to import the sys library and
get the value for sys.maxint. This value is the largest positive integer which
the interpreter will store in the standard representation. If this value is exceeded,
the interpreter will switch to a big integer representation. For example, on a 32-bit
system we have the following,

>>> import sys
>>> sys.maxint

2147483647
>>> sys.maxint + 1

© Springer International Publishing Switzerland 2015
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-17260-6 4

115

116 4 Big Integers and Rational Arithmetic

2147483648L
>>> -sys.maxint

-2147483647
>>> -sys.maxint - 1

-2147483648
>>> -sys.maxint - 2

-2147483649L

where the Python prompt is given as >>> and replies from the interpreter are shown
without the prompt and indented for clarity.

Several important things to note are happening in this example. First, we import
the sys library and ask for the value of maxint to which Python replies it is
2,147,483,647 which we recognize as the largest positive two’s complement
32-bit integer. This is to be expected on a 32-bit system. If we take this value and
add one, which results in a value that cannot be represented by a 32-bit two’s com-
plement integer, we get the answer we expect with an extra “L” after it. This extra
letter is Python’s way of saying the data type is now long, meaning a big integer.
If we negate the maxint value we get a two’s complement integer. If we then sub-
tract one from this value we still get a two’s complement integer, which is expected
because a two’s complement integer gives us one extra negative number compared
to one’s complement notation. However, if we subtract two we get our expected
answer but this time Python has moved to a big integer representation.

In this chapter we will look at ways in which big integers are represented in mem-
ory and some algorithms for dealing with big integer input and output when the base
is a convenient one. We then look at arithmetic and explore some of the more com-
mon big integer algorithms. Next, we look at some more sophisticated big integer
algorithms which are suitable when the numbers involved become quite large. We
then look at rational arithmetic, a natural place to use big integers. We follow this
with a, by necessity, time-sensitive view of key big integer implementations cover-
ing libraries for languages without big integers which we expect to be long-lived and
certain languages which implement big integers natively. We conclude with some
comments on when one might wish to resort to big integers or rational arithmetic.

4.2 Representing Big Integers

We know that place notation represents numbers using a given base, B, and the co-
efficients of the powers of that base which sum to the number we want to represent.
Specifically, we can represent a number in any base with,

abcd.efgB = a×B3 +b×B2 + c×B1 +d ×B0 + e×B−1 + f ×B−2 +g×B−3

where we typically use B = 10 as the base. When we represent a big integer in
memory we would like to use a base which allows us to accomplish two things
simultaneously,

4.2 Representing Big Integers 117

1. Use a base which makes conversion between text input and output straightfor-
ward.

2. Use a base in which products of the “digits” of our base fit in a standard word.

If we have a 32-bit system and look at using signed 32-bit integers as the way
to represent digits we need a base where any two digits, when multiplied, give us
a value that fits in a 32-bit integer. We will consider representation of signs for big
integers later. This will satisfy the second requirement above. What about the first?
If one looks at the common number bases used in computer systems we see that
they are all powers of two. Octal is base 23 = 8 while hexadecimal is base 24 = 16.
In these cases we saw that it was particularly simple to change a binary number
into an octal or hexadecimal number and vice versa. This is clue we can use when
choosing a base for our big integers. Since we would like to make things convenient
for users we want to be able to input and output base ten numbers. This suggests
using a power of ten for our big integer base, but which power? Since in this book
we are assuming a 32-bit computer we want a base such that the base squared fits
in a signed 32-bit integer. If we choose B = 10,000 we see that B2 = 100,000,000
which does fit nicely in a signed 32-bit integer. However, if we go to the next power
of ten, B = 100,000 we see that B2 = 10,000,000,000 which is too large to fit in
32-bits. So, let’s work with B = 10,000. Why choose such a large base? Why not
simply use B = 10? The answer is that the larger the base the smaller the number of
unique digits which are required to represent a large number. In binary we need eight
bits to represent a number which in base ten is only three digits long and is only two
digits in hexadecimal. So, the larger the base, the less memory we will need to store
our numbers. As we are, by definition, working with big numbers we would like to
be as economical as possible. If we were willing to work harder to handle input and
output we could, naturally, use an even larger base. The largest value that fits in an
unsigned 32-bit integer is 4,294,967,295 and we see that 65,5352 = 4,294,836,225
will fit meaning that is the largest base we could use. However, as it is not a power
of ten, we would have to work harder in input and output and since the larger base
does not change the algorithms we will be exploring in this chapter we are justified
in working with the smaller but handier base of 10,000. An additional nice feature
of our choice of base is that it fits in a signed 32-bit integer allowing us to make our
internal representation quite compact as we will see.

We have selected to represent our big integers in memory as base 10,000 num-
bers with 10,000 digits. We will simply use standard binary to represent the digit
with each word in memory being one digit of the number. When we want to output
a big integer, then, we only need output each signed 32-bit integer as a group of four
decimal digits, again, because our base is 104 = 10,000. Similarly, when getting a
number from a user, we will take the input, as a string of ASCII characters, and
group it in sets of four characters to form the digits of our base 10,000 number in
memory.

The previous paragraph contains a subtle piece of information. It implies that our
big integers will be stored in memory in big-endian format. This means that the if
we use an array of signed integers to hold the digits that the first integer in that array

118 4 Big Integers and Rational Arithmetic

will be the largest power of the base, not the smallest as it would be in little-endian
format. This choice again simplifies our input and output operations.

At this point, we are able to write down how we will represent big integers for the
examples that follow. We will use arrays of signed integers to represent the digits.
Additionally, the very first element of the array will contain the number of digits in
the number and the sign of this element will be the sign of the integer. Pictorially,

which illustrates how the number “−12,345,678,910” would be stored in memory
using an array of four signed 32-bit integers. The first element of the array contains
“−3” which says there are three digits in this number and that it is negative. The
remaining three elements of the array are the digit values themselves in base 10,000.
This simple format is what we will be using going forward in this chapter.

Input and Output. With all of these preliminaries in place, Fig. 4.1 shows a simple
C routine to convert a string into a base 10,000 number. Similarly, Fig. 4.2 shows a
C routine for output of a base 10,000 number as a decimal number.

Figure 4.1 accepts a string in s and returns a pointer to a newly allocated big
integer. Note that this memory must be released by a call to free. Let’s look in
detail at what this particular function is doing.

Line 10 checks to see if the input is negative. If it is we set the sign to 1 (default
is 0) and skip past the sign character by incrementing our character index j. Line
15 calculates the number of digits that will be in the big integer. The input string is
in base 10 while the output integer is in base 10,000 so we divide the length of the
input, accounting for the sign character, by four to see how many digits we need. We
take the ceiling of this to avoid truncating the length. Line 16 allocates new memory
on the heap for the number, using n+1 to add in one element for the length and sign.
For clarity we skip any check on the return value of malloc to see if the allocation
succeeded. In line 17 the sign and length are set.

Lines 19 through 36 work through the big integer, digit by digit, using sets of four
characters from s to set the value. The first digit, which is the highest order digit, is a
special case and is handled by lines 21 through 29. This is because the highest order
digit is the only digit which might have fewer than four digits in the element. The
digit is set to zero, then the switch statement determines how many excess digits
there are in the input string. These are digits that will be in the first output digit and
there can be between one to four of them. Notice there are no break statements in
the switch. This will cause the first matched condition to fall through to all the
lower ones. This is what we want. Lines 31 through 34 handle all other digits of
the output big integer. In this case, since we know there are actually four characters
matched to this digit we do not need the switch statement and the logic is easier
to see. We successively add in each character multiplied by the proper power of

4.2 Representing Big Integers 119

Fig. 4.1 Big integer input in C. This routine takes a string representing a big integer in decimal
and converts it to a base 10,000 number. The required standard C libraries are also listed

ten and converted to a digit value by subtracting the ASCII value for zero. When
the loop over output digits completes the number is complete and a pointer to the
memory is returned in line 38.

Figure 4.2 takes a pointer to a big integer in b and a pointer to an output string
buffer in s. The big integer is then put into s as an ASCII string. This conversion
is simpler than going the other way as in Fig. 4.1. If the first element of the big
integer is negative the number is negative so we output the sign in line 8 bumping
the output character index, j. Lines 10 through 16 pass over the big integer, digit by

120 4 Big Integers and Rational Arithmetic

Fig. 4.2 Big integer output in C. This routine takes a base 10,000 big integer and outputs it as a
decimal string

digit, and convert each digit to a set of up to four ASCII characters. To save space
we use a temporary string, t, and the C library function sprintf which prints
into a string. This changes the i-th big integer digit into a four character string. This
string, because of the %04d format statement may have leading zeros. If i is one,
not zero because we skip the sign/length element, then we do not want leading zeros.
This is the origin of the somewhat cryptic code in lines 12 through 14. Each of these
if statements asks if we are working with the highest order digit, when i is one,
and if that digit is zero. It then negates this to execute when we are not working with
the highest order digit and the digit is zero. In that case, we want to copy the proper
character from the temporary string, t, to the output string, s. Since we always have
at least one character in the digit we are working with line 15 has no if statement, it
is always executed. When the loop in lines 10 through 16 completes we have filled
in all of the output string, character by character, with the decimal representation
of the input big integer. All that remains is to add a null at the end of the output to
make a valid C-style string out of it (line 18). With this the conversion is complete.

Comparisons. Before we jump into arithmetic routines for big integers we need to
take a quick look at comparisons using big integers.

Figure 4.3 shows basic big integer comparison in C. The function bigint compare

takes two big integer arguments, a and b, and returns −1 if a < b, 0 if a = b, and
+1 if a > b. Let’s take a look at what it is doing.

Lines 4 and 5 do a quick comparison to see if the signs of the numbers are dif-
ferent. If they are we already know the proper value to return and we do not need to
look at the actual data values. Lines 7 through 10 do similar quick tests. We already
know that the signs of a and b are the same so we look to see which has a larger
number of digits. In line 7 we look to see if a has more digits than b and that they

4.2 Representing Big Integers 121

Fig. 4.3 Big integer comparison. The function compares two big integers, a and b, and returns −1
if a < b, 0 if a = b, and +1 if a > b. With this basic comparison function it is straightforward to
define <, >, =, <=, >= and ! = via small wrapper functions

are both positive. If so, we know that a is larger so we return 1. If both are positive
and b has more digits, the case in line 8, we return −1 because that means that a is
the smaller value and we are determining the relationship between a and b (not b
and a). Lines 9 and 10 do the same comparison but for both a and b negative. In this
case, the return values are flipped since if a has more digits than b it must be larger
in magnitude and negative making it smaller than b.

Line 12 looks at the sign of a. At this point we know a and b have the same sign
and same number of digits. We must therefore look digit by digit, largest power of
10,000 first, to see where they might be different. This tells us which of the two is
larger. The loop in lines 13 through 16 moves through a and b and uses digit values
to decide if one is larger than the other. The loop in lines 19 through 21 does the
same but in this case we know that a and b are both negative and have the same
number of digits so the return values are reversed. Lastly, if we reach line 24 we
know that the numbers have the same sign, same number of digits, and same digit
values so we know that they must be equal and we return 0.

The function in Fig. 4.3 makes it easy to define wrapper functions to implement
the actual comparison operations. If we were using C++ we would define a big
integer class and overload <, >, =, etc to implement the comparisons. As we are
using plain C we instead implement a function library. A possible definition for the
equal function is,

122 4 Big Integers and Rational Arithmetic

int bigint_equal(signed int *a, signed int *b) {
return bigint_compare(a,b) == 0;

}

We leave the definition of the remaining operators as an exercise.
Now that we know how to store big integers, how to read them from strings,

how to write them to strings, how to compare them, we are ready to look at basic
arithmetic with big integers.

4.3 Arithmetic with Big Integers

Basic arithmetic with big integers generally follows the school book methods though
as we will see there are some alternatives for multiplication that are effective if the
number of digits is very large. We will continue with our implementation of big
integers as above and develop routines for addition, subtraction, multiplication and
division. We will not implement C versions of the alternative multiplication routines
but we will discuss the operation of the algorithms. Note that the routines given here
are bare-bones only. We are omitting necessary checks for memory allocation, etc.,
in order to make the routines as concise and easy to follow as possible. We proceed
then with the understanding that a true big integer package would have all of these
checks in place.

Addition and Subtraction. Before we look at implementing addition and subtrac-
tion let’s think a bit about how we will handle negative numbers. We are using a
sign-magnitude representation of our big integers because using a complement not-
ation might mean manipulating all the digits of the number when we can be more
clever about handling operations with regard to the signs. For addition we have the
following situations in Table 4.1 where we always work with the absolute value of
the integers a and b. Similarly for subtraction we have Table 4.2 where it becomes
apparent that for addition and subtraction we need the ability to compare the abso-
lute value of two big integers, the ability to negate a big integer, and the ability to
add and subtract two positive big integers. Therefore, to properly implement addi-
tion and subtraction we need two helper functions: bigint ucompare to compare
the absolute value of two big integers, and bigint negate to negate a big integer.
These are given in Fig. 4.4.

These functions are straightforward. Indeed, bigint negate is about as simple
as can be given the efficient way we have selected to represent our big integers in
memory. To change the sign we need only negate the first element of the array.
In addition we return a reference to the array so that we can compose the negate
call with other big integer operations. The function bigint ucompare is a reduced
version of bigint compare as given in Fig. 4.3 where we do not pay attention to the
sign. It returns −1 if |a|< |b|, 0 if |a|= |b|, and +1 if |a|> |b|. With these in hand,
we can implement addition and subtraction using low-level functions that ignore the

4.3 Arithmetic with Big Integers 123

sign of a sign of b Steps to find a+b
+ + Add |a| and |b|.
+ − |a|> |b|, subtract |b| from |a|.

|a|< |b|, subtract |a| from |b|. Negate answer.
− + |a|> |b|, subtract |b| from |a|. Negate answer.

|a|< |b|, subtract |a| from |b|.
− − Add |a| and |b|. Negate answer.

Table 4.1 Steps to add two big integers paying attention to their signs

sign of a sign of b Steps to find a−b
+ + |a| ≥ |b|, subtract |b| from |a|.

|a|< |b|, subtract |a| from |b|. Negate answer.
+ − Add |a|+ |b|.
− + Add |a|+ |b|. Negate answer.
− − |a| ≤ |b|, subtract |a| from |b|.

|a|> |b|, subtract |b| from |a|. Negate answer.

Table 4.2 Steps to subtract two big integers paying attention to their signs

Fig. 4.4 Big integer helper functions to compare the absolute value of two big integers,
bigint ucompare, and to negate a big integer, bigint negate

sign of their arguments. After that, we will use a higher level version of addition and
subtraction that does look at the sign of the arguments to decide how to proceed.

Our low-level addition routine will pay no attention to the sign of the arguments.
It will assume they are positive. This routine implements addition using the simple
method we learned in school. We add digits, from right to left, carrying on every
10,000. We will add a new first digit to the output, if necessary, based on any carry
in the top digit position. This is directly analogous to addition in any other base. We
call the routine bigint uadd and it is given in Fig. 4.5.

124 4 Big Integers and Rational Arithmetic

Fig. 4.5 Low-level big integer addition using the school method

Recall that we will be using a high-level driver routine to decide when to call
the low-level add and subtract routines. Because of this, bigint uadd will ignore
the sign of its input and treat all arguments as positive. Lines 5 through 11 set up the
addition. We use extra pointers, x, and y, and assign them the arguments a or b so
that x will always point to the larger number (line 5). We also use n and m to hold
the number of digits in these numbers. We do this to align the digits properly when
we move from right to left across the number adding as we go. Since y will always
have as many or fewer digits as x we can use this fact in the addition to substitute
zero for digits that do not exist in y. Line 13 allocates memory for the addition while
line 14 sets the length of the output. We know that when adding two big integers it is
possible that we overflow in the most significant digit. If that happens, we adjust for
it later in the routine and initially assume that the answer will fit in n digits which is

4.3 Arithmetic with Big Integers 125

the number of digits in the larger of a or b. Lines 16 through 24 perform the actual
addition, digit by digit, from the least significant digit to the most significant. We
use yy to hold the digit value of the lesser of a and b (in terms of number of digits).
Line 17 either returns the actual digit of y or zero if we are looking at digits of x
that have no match in y. Line 18 sets the output digit in c. We add the current digit
of x and y and any carry that came over from the previous digit addition. Note that
we set carry to zero in line 3 when it was declared.

After the addition of the digits we need to check if we caused a carry. We are
using base 10,000 so we know that any two digits added together will still fit in a
single signed int. We simply need to see if the result is larger than 9999. If so,
we subtract the base and set the carry for the next digit. Otherwise, we ensure that
the carry is clear (line 23).

The addition loop continues until all the digits of x have been examined. At the
end of this we have the answer in c but we need to do one more check. We need
to check for overflow of the most significant digit of c. This is line 26. If the carry
is set from the last digit addition we have overflowed the n digits we allotted to c
and need to add one more most significant digit. Lines 27 through 33 do this by
creating a new output array in t with n+1 digits. Line 28 copies the digits from c to
t leaving room for the new most significant digit. Lines 29 and 30 set the number of
digits in t and set the most significant digit to 1 since that is the carry. Lines 31 and
32 release the old memory used by c and point c to t. Line 34 returns the pointer
to the new big integer which holds the sum of a and b. This addition routine can,
temporarily, use double the memory because of the copy when c overflows. For our
present purposes this inefficiency is tolerable and will seldom happen in practice
(how often? we don’t really know, but we believe it will be infrequent).

In a similar fashion, we implement the low-level subtraction routine, bigint
usub, in Fig. 4.6. This routine, like bigint uadd, ignores the sign of its inputs. It
also assumes that a is always larger, in terms of magnitude, than b. This means that
we will never underflow and end up with a negative answer. Our high-level driver
routine will arrange things so that this assumption is always true. Lines 5 through
8 get the number of digits of our arguments in n and m and allocate room for our
answer in c which will always need n+1 digits. We set c[0] to the number of
digits.

Lines 10 through 19 perform the subtraction, from least significant digit to most
significant using the same trick we used in bigint uadd to get the digit of the
smaller number in y, which may be zero if we are looking at digits b does not
have. Line 12 does the subtraction for the current digit and puts it in c. Note that we
subtract any borrow that happened in the previous digit subtraction. We set borrow
to zero when it is defined in line 3. How do we know if we borrowed? If the digit
answer is negative, we need to borrow a base value (10,000) from the next higher
digit. The check for this is in line 13. If true, borrow is set to 1 (we only ever need
to borrow 10,000) and we add the borrow into the current digit value to bring it
positive. If no borrow is needed, we set borrow to zero and continue to the next
most significant digit. Line 18 appears to be curious. It adds the current digit value
to a single variable we are calling zero. This is set to zero when defined in line
3. We use this variable to decide if the result of the subtraction is exactly zero.

126 4 Big Integers and Rational Arithmetic

Fig. 4.6 Low-level big integer subtraction using the school method

This allows us to simplify the return value, c, in lines 29 through 34, if possible.
If we are subtracting two large integers and they happen to be exactly the same
value the result, without this check, would use as much memory as the arguments
themselves with every digit set to zero. This check lets us save that memory and
return a very simple result that is only one digit long. The new result releases the
memory used by the initial result and sets up a single digit big integer that is exactly
zero instead. We also check to see if the subtraction has left us with a leading zero.
This is purpose of lines 21 through 27. If the leading digit is zero, but the entire
value is not zero, the leading digit is removed by allocating a new value in line 22
and copying the digits from c to this value ignoring the initial zero. Once the loop
in lines 10 through 19 ends the answer is in c and we return it in line 36.

4.3 Arithmetic with Big Integers 127

Our final bigint add and bigint sub routines look at the signs of their argu-
ments and proceed to call the low-level versions of add and subtract as appropriate.
Figure 4.7 shows bigint add while Fig. 4.8 shows bigint sub.

Fig. 4.7 High-level big integer addition

Our high-level addition routine examines the signs and magnitudes of the argu-
ments to determine how to get the proper result. The checks in the code are directly
analogous to those of Tables 4.1 and 4.2. For addition, if the arguments are both pos-
itive we simply add (line 3). If the arguments are both negative, we add and make
the answer negative (line 6). If the signs are mixed we need to consider the rela-
tionship between the magnitudes of the numbers. If a is positive and b is negative
(line 9) we see two cases: |a| < |b| which is handled in line 11 and |a| ≥ |b| which
is handled in line 13. Similarly, for a negative and b positive (line 16) we consider
cases when |a|> |b| in line 17 and when |a| ≤ |b| in line 20.

For high-level subtraction in Fig. 4.8 we follow Table 4.2. If both a and b are
positive we look at |a| < |b| in line 4 or otherwise in line 7. Similarly, if both are
negative we look at |a| > |b| in line 11 and otherwise in line 14. The simpler cases
here are if a is positive and b is negative, line 17, or a is negative and b is positive,
line 20. The signs of the arguments will fit one of these cases for both addition and
subtraction so we know that all possibilities have been considered. Note that for
subtraction we always ensure that the first argument to bigint usub is the same
size or larger than the second.

128 4 Big Integers and Rational Arithmetic

Fig. 4.8 High-level big integer subtraction

Multiplication. Big integer multiplication can be implemented using the school
method without much difficulty. We do that in Fig. 4.9 where we pay no attention
to the signs of the arguments. Figure 4.10 is our high-level routine that manages the
signs. Let’s look at Fig. 4.10 first. The rules of multiplication say that when the signs
of the multiplicand and multiplier are the same, either both positive or negative, that
the answer is positive. This check is made in line 3. If the signs are the same, we
simply call bigint umult as that will always give a positive result. If the signs are
different, we drop to line 7 and negate the result since the result should be negative.

Figure 4.9 is really three separate functions all of which are used to multiply the
numbers stored in a and b. Lines 1 through 7 define a simple helper function that
duplicates an existing big integer. It allocates space for the new integer and copies
all the bytes of a to b by calling the C library function, memcpy. It then returns the
reference to this new big integer.

Lines 9 through 29 define bigint umultd which multiplies a big integer in a
by a single digit, d. When we multiply two numbers using the school method we
accumulate partial products, shifting them for the power of the base we are currently
multiplying by. We then add these together to get the final result. For example,

1776 ← multiplicand
× 1492 ← multiplier

3552 ← 1st partial product
159840
710400

+ 1776000 ← 4th partial product
2649792

4.3 Arithmetic with Big Integers 129

Fig. 4.9 Low-level big integer multiplication using the school method

130 4 Big Integers and Rational Arithmetic

Fig. 4.10 High-level big integer multiplication

We can get the same result by starting with a product of zero and adding each digit
times the multiplicand after shifting to the left as many places as the location of
the digit in the multiplier. This is exactly what we are doing when we write and
then sum the partial products. This same approach works regardless of base. In
bigint umultd we do the same thing. The multiplicand is in a, the digit to multiply
by is in d and the number of places to shift the result to the left is in s. In Line 13
of Fig. 4.9 n is set to the number of output digits. We need to have room for all the
digits in a, which we get with abs(a[0]). To this we add s, these are extra digits
at the end of the number that we will initialize to zero. This takes the place of the
zeros added to the end of the partial products in the example above. We need to add
one more array element to hold the sign and length of the number and to this we add
still one more digit to handle any overflow (carry in the last digit multiplied). This
is the origin of the + 2 in line 13. Line 14 allocates the product and points p to it.
Line 15 erases the entire number and sets it to zero while line 16 sets the length of
the number. This initializes the partial product.

Lines 18 through 25 do the multiplication by the digit, d. We look at all the digits
of the multiplicand a from least significant to most significant. This defines the loop
in line 18. Line 19 does the multiplication of the digit of a by d. There are two
things to note in this line. First, we add in carry, just as we did for addition, but in
this case the carry may be more than one. Second, we assign this result to p[i+1]
and not p[i]. This is done to leave a leading zero in p to handle any final overflow.
Recall that array elements further from p[0] are less significant. Lines 20 and 24
handle any carry. If the resulting multiplication is greater than 9999 we have a carry.
Unlike addition, the carry is not simply one but is the value of p[i+1] divided by
the base. The actual value that should be in p[i+1] is the remainder when dividing
by the base. If the carry has not happened, line 24 clears carry.

When the loop exits it is possible that carry is not zero. Line 27 checks for this
and sets the leading zero already allocated to the carry. Line 28 returns the partial
product. A full implementation would do something about the leading zero in p, but
we ignore it here.

The function that does the actual unsigned multiplication is bigint umult. The
result of the multiplication will be in m which we initialize to zero in lines 42 and
43 of Fig. 4.9. Before this, lines 36 through 40 set pointers x and y so that x always
points to the input with the largest number of digits, which may be the same as the

4.3 Arithmetic with Big Integers 131

other input. We do this because we need fewer passes through the loop in line 45 if
we make the multiplier the value with the least number of digits.

The loop in lines 45 through 52 accumulates the partial products of the digits of
y (the shorter of a and b) with x. This code is inefficient because it requires copying
and free-ing memory more than is necessary but this makes the algorithm easier to
follow. We use p and q to point to temporary results. In this case, p points to the
partial product returned by the call to bigint umultd. This call multiplies x by
the current digit of y and shifts the result abs(y[0])-i places to the left. As we
move from right to left over the digits of y we need to shift each partial product the
current digit position to the left and this is exactly abs(y[0])-i. When this call
finishes the partial product is in p and it must be added to our accumulated product.
We reuse bigint uadd to do this and store the new running product value in q. We
really want this result in m so we release memory used by m and call bigint copy

to copy q to m. This is necessary so that the next pass through the loop can update q.
This is a consequence of using plain C and not a language with automatic garbage
collection. At the end of the loop we have the final product in m. To avoid leaking
memory we must free p and q at the end of the loop. Finally, we return the product
in line 56.

Clearly this implementation is pedagogical as there are more efficient ways to
implement the multiplication routine. The school approach is well known to be of
order n2 which is denoted O(n2). Below we will discuss alternate big integer multi-
plication routines that do better than this. If a routines runs in O(n2) time it means
that as n, here the number of the digits, increases the running time increases as the
square of the number of digits (with an unstated multiplier that is generally ignored).
An O(n2) routine may be perfectly acceptable for small inputs (relatively few digits)
but quickly becomes unusable when the number of digits becomes large.

Division. Division of big integers is rather difficult to implement quickly. The
school algorithm for division is typically implemented but for the purposes of this
book even that is too long. So, in order to provide a minimalist but complete package
for big integer arithmetic we will instead implement the simplest approach possible.
Fear not, however, we will discuss more comprehensive algorithms for division,
along with multiplication, in the next section.

So, how to implement division with big integers? Thinking back to the simplest
possible ways of working with numbers we remember that division of two integers is
really counting the number of times the divisor can be subtracted from the dividend
before we hit zero or go below zero if the division would leave a remainder. In this
case, we ignore the remainder and leave implementing it as an exercise

As with multiplication, we implement division as a high-level function that han-
dles the signs of the numbers and a low-level function that deals with the magnitude
only. Figure 4.11 shows our “division by repeated subtraction” approach. We divide
a by b, ignoring signs, by counting the number of times we can subtract b from a,
updating a in the process, before we hit zero or go negative. This is the quotient
which we store in q. Lines 4 through 6 initialize the quotient and set it to zero. Like-
wise, lines 8 through 10 initialize a constant value of 1 which is added to q each
time through the loop.

132 4 Big Integers and Rational Arithmetic

Fig. 4.11 Low-level big integer division

Line 12 copies a so we can subtract from it without altering it in memory. The
loop of lines 14 through 26 do the work. We need to manage memory carefully to
avoid leaks so we use auxiliary pointers x and y to hold intermediate results. Line
17 subtracts the divisor in b from t which is the portion of a remaining. Line 18
bumps the quotient counter by adding the constant 1 in c. Lines 21 and 22 copy
the partial results of the loop to t and q. We do this so we can free memory before
we lose the pointer address. Languages with automatic garbage collection can avoid
this sort of inelegance. Line 24 checks to see if we have reached a point where the
remainder in t is less than b, the divisor. If so, we are done and break out of the
loop. After cleaning up memory the quotient is returned.

It is well-known that this approach to division, while correct, is terribly ineffi-
cient, especially for fixed length integers. Be that as it may, the algorithm is straight-
forward and simple to understand. All we need do now is account for the signs of
the dividend and divisor. This is done in Fig. 4.12 through the bigint div routine.

4.3 Arithmetic with Big Integers 133

Fig. 4.12 High-level big integer division

In order to handle the signs of a and b it is necessary to check several conditions.
Along the way we check for situations that result in invalid outputs for the case of
integer division or division by zero. Lines 5 through 11 do this. If the divisor is
zero (bigint iszero(b) == 0) or the dividend is less than the divisor, we return a
constant value of zero. For the second case this is correct but division by zero should
instead signal an error. For clarity, we ignore the error and return the incorrect value
of zero instead. This would be corrected if implementing a full big integer package.

We extract the signs of the arguments in lines 13 and 14. We then ensure that
they are positive so we can pass the values to bigint udiv. We will reset the signs
of the arguments when done, see lines 25 and 26. We know from school that if the
signs of a and b are the same, either both positive or both negative, that the quotient
must be positive. So, if this is the case, we execute line 20 to perform the division.
If the signs of the arguments are opposite, either a positive and b negative or vice
versa, we must make the answer negative as well. In this case, line 22 is what gets
executed. After restoring the proper signs of the arguments we return the quotient
in line 28.

134 4 Big Integers and Rational Arithmetic

Division by repeated subtraction is unsatisfying in the long run and can be inc-
redibly inefficient. However, it completes our implementation of basic arithmetic
for big integers and therefore is worth looking at even if it is not how things would
be done if we were developing a big integer package for wide-spread use.

The algorithms we implemented above are adequate for simple purposes but,
especially for multiplication and division, people have certainly done far better.
In the next section we look at some of these improved algorithms without imple-
menting them. This will give an appreciation for what goes into efficient algorithm
implementation and design and will give us a background we will use when dis-
cussing particular big integer libraries that you may someday wish to use in your
own programs.

4.4 Alternative Multiplication and Division Routines

In this section we take a look at some alternate algorithms for multiplication and
division. A true big integer package would implement some if not all of these
alternatives. By necessity we are cherry-picking algorithms. A particularly nice
treatment of big integer algorithms is found in Chapter 9 of Crandall and Pomerance
[1] and readers interested in a more thorough mathematical treatment are directed
there.

Multiplication. In the previous section we implemented the school method for
multiplication of big integers. As we noted, this method runs O(n2) in the size of
the inputs. While this is adequate for numbers with perhaps a thousand digits, it
becomes intractable if we are working with very large numbers with tens of thou-
sands, hundreds of thousands or even millions of digits. To work with truly large big
integers we need to improve our multiplication algorithm. Fortunately, this problem
has been investigated and a number of alternate multiplication algorithms exist. Here
we will look at three of them: Comba multiplication, Karatsuba multiplication and
FFT multiplication. Each has an advantage over the simple school method and with
respect to each other.

Our first possible improvement to multiplication is the Comba algorithm [2].
Comba noted that the school method of multiplication is geared towards humans
and not computers. After each single digit multiplication of a column we carry to
the next column. In Comba multiplication we instead do not carry but store the
entire product for each column position. We then repeat for the next digit to multiply
adding in any existing value in that column (from a previous digit multiplication).
When all single digit multiplications have been performed the resulting vector of
column values is adjusted from left to right by adding any carry to the next digit
to the left and leaving the remainder in the column. When this is done the vector
will contain the output value. This process is described in Fig. 4.13 where we work
in base 10 for clarity. If we were implementing this algorithm for our big integer
representation we would be using base 10,000 instead.

4.4 Alternative Multiplication and Division Routines 135

a

2 3 7
1 4 8
16 24 56 237× 8

8 12 28 237× 4
2 3 7 237× 1
2 11 35 52 56 column sums
3 5 0 7 6 carries, right to left

b

2 3 7
1 4 8
16 24 56 column1

8 28 52 56 column2
2 11 35 52 56 column3
3 5 0 7 6 carries, right to left

Fig. 4.13 Comba column-wise multiplication of 237× 148 in base 10. (a) Writing out the mul-
tiplication by hand keeping each column without carries to the next. After all digits have been
multiplied we add the columns. Finally, we perform the carries from right to left. (b) The same but
as would be implemented in a computer. In this case, a single output number stores the columns
adding the new value for that column to the previous. Once all the digits of the multiplier have been
visited the output is adjusted by carrying from right to left to achieve the same answer as in (a)

In (a) we work out the multiplication using the school method but instead of
carrying after each multiplier digit multiplication we keep the value in the proper
column. When each digit of the multiplier has been used we sum the results to get
an intermediate answer that still needs to be adjusted for the carries we did not
perform in the previous steps. The last step is to move from right to left replacing
each column value, n, with n%10, and adding to the next digit the result of n/10
using integer division. This handles all the carries we did not do in the lines above.
In (b) we do the same as in (a) but each time we multiply a digit we immediately
add the result to the proper column of the single output value. Then, when done, we
handle the carries.

Comba multiplication is generally believed to be about 30% more efficient than
the school method. However, there are some things to keep in mind before using it.
Depending upon the way digits of the big integer are stored it is possible to overflow
a particular digit value because a column may need to sum the single digit multipli-
cation for n digits where n is the minimum number of digits in the multiplicand and
multiplier. For that reason, Comba multiplication is limited in the number of digits
in the product and is not suitable for multiplying truly large numbers. Additionally,
while a 30% improvement is helpful, the algorithm is still essentially the school
method and therefore is still O(n2). We can do better than this.

Karatsuba multiplication [3] improves on the school method by simplifying the
multiplication. The essential insight involves simplifying the multiplication of two
large integers, a and b, by replacing the multiplication with three multiplications of

136 4 Big Integers and Rational Arithmetic

numbers with about half as many digits as a and b. If we choose m, m < n, where n
is the number of digits, we can rewrite a and b as,

a = a1Bm +a0

b = b1Bm +b0

where a0, a1, b0, and b1 are all less than Bm where B is the base of our numbers, for
example, B = 10,000. If we then calculate ab we get,

ab = (a1Bm +a0)(b1Bm +b0) = a1b1B2m +(a1b0 +a0b1)Bm +a0b0

which we can rewrite as,

αB2m +βBm + γ

with,

α = a1b1

β = a1b0 +a0b1

γ = a0b0

This is seemingly no improvement. Instead of the single multiplication ab we now
have four multiplications to get α , β and γ , but press on anyway and we will soon
see the benefit. We can remove one of the four multiplications by rewriting our
expressions. First we look at (a1 +a0)(b1 +b0),

(a1 +a0)(b1 +b0) = a1b1 +a1b0 +a0b1 +a0b0

= (a1b0 +a0b1)+a1b1 +a0b0

where the first term on the right is β . This means we can determine β with one less
multiplication,

a1b0 +a0b1 = (a1 +a0)(b1 +b0)−a1b1 −a0b0

β = (a1 +a0)(b1 +b0)−α − γ

One thing to note is that (a1 +a0)(b1 +b0) can itself be calculated using Karatsuba
multiplication meaning this algorithm is recursive. This is one of its strong suits.

So, where is the benefit? It comes from the fact that the three multiplications we
have replaced ab with are numbers with roughly half the number of digits as a or
b. While a formal complexity analysis is beyond the scope of this book we see that
the additions and subtractions are linear, O(n), and as n grows they become less
important. The recursive nature makes the analysis a bit tricky but the final result is
that the algorithm as a whole is O(nlg(3)) where lg(3) is the log base 2 of 3. Compare
this to the O(n2) of the school method and as Fig. 4.14 shows, this difference quickly
becomes important for large n.

If n is too small, say less than four digits, it is more efficient to use the school
method to multiply ab. This means we can use the school method as the terminating
condition of the recursive application of Karatsuba multiplication.

Our final multiplication algorithm is that of Schönhage and Strassen [4]. This
algorithm is based deeply in abstract algebra and Fourier transform theory but we

4.4 Alternative Multiplication and Division Routines 137

Fig. 4.14 O(nlg(3)) (solid line) versus O(n2) (dashed line) growth as n increases. This plot shows
that the Karatsuba method is a significant improvement over the school method for suitable input
lengths (n)

will describe it at a high level. Here we discuss the variant presented as Algorithm
9.5.23 in [1].

Before diving into the algorithm itself we need to address a few concepts related
to the operation of the algorithm which are its connection to abstract algebra and a
bit about convolution, multiplication, and Fourier transforms.

The algorithm actually calculates multiplication modulo a specific integer, 2n+1.
This means that the result, which is an integer, is really a number from Z2n+1. If you
are not familiar with the notation, Z refers to the set of integers and Zm refers to the
set of integers modulo m. For example, Z4 = 0,1,2,3 and operations that go above
or below “wrap around” as needed so that in Z4 we have 2+ 3 = 1. This is not a
problem, really, since we select n so that 2n + 1 is larger than the product of our
arguments. Call the arguments x and y so we select n such that 2n + 1 > xy. In this
case, we never “wrap around” and we get the desired product.

In reality, the algorithm operates on a ring [5] defined in Z2n+1 and uses only
integer operations. A ring is an enhancement of a group which is itself a general-
ization of a binary operation acting on a set. In a ring, along with the first binary
operation of the group, which is often denoted as + even though it need not be add-
ition, we add a second operation, •, which need not really be multiplication. This is
the abstract algebra connection. In our case, addition is addition, multiplication is
multiplication and the set is Z2n+1, which is a (possibly very large) set of integers.
If we select n so that n ≥ �lgx�+ �lgy� then 2n +1 > xy which is what we want so
that the algorithm produces the actual product.

138 4 Big Integers and Rational Arithmetic

In the Comba algorithm for multiplication we saw that multiplying the multipli-
cand by a digit of the multiplier, especially when we collected the resulting value
without carrying, was in essence doing convolution. A convolution is passing one
value over another, so here we “pass” the single multiplier digit “over” the multipli-
cand digits, and collect the product. This means that multiplication of two numbers
is related to convolution. This is where the Fourier connection comes from. We need
not know anything about Fourier transforms at present beyond the fact that they map
a sequence of values from one space to another space. We denote a Fourier trans-
form of x, where x is a vector of values, by F (x) and recognize that this forward
transform has an inverse transform, F−1, so that F−1(F (x)) = x. In truth, the
Fourier transform is such a powerful mathematical tool that all readers should be
familiar with it. Please take a look at Bracewell [6] or a similar text to familiarize
yourself with this elegant addition to the mathematical toolbox.

One of the many properties of the Fourier transform is that multiplication in one
space is equivalent to convolution in another. This is a key hint in understanding
what the Schönhage and Strassen algorithm is doing. It will calculate the convolu-
tion of x and y through the Fourier transform and multiplication when in Fourier
space. In essence, the algorithm does,

X ′ =F (X), Y ′ =F (Y) ← map to Fourier space
Z′ = X ′Y ′ ← calculate a product
Z =F−1(Z′) ← return to X and Y space

which at first seems backwards but isn’t because the result in z is the convolution of
X and Y which is what we want. It is important to note that X and Y are not x and y,
the numbers to be multiplied, but decompositions of them as performed in the first
part of the algorithm. We are intentionally glossing over the fact that the Fourier
transform referred to by F is not the one familiar to scientists and engineers but
a generalization of it that operates via integer operations only. See Definition 9.5.3
of [1], particularly the integer-ring DFT variant. We are now ready to look at the
Schönhage and Strassen algorithm which we present in Fig. 4.15 with apologies to
Crandall and Pomerance for the paraphrasing.

In step 1 we select a size for our Fourier transforms and n′. The selection of
n′ is not arbitrary. It is selected so that the algorithm will work on smaller sets in
step 5 should the multiplication there, which is also of the form xy mod N where
N = 2n′ + 1, be done by a recursive call to the algorithm itself. In step 2 we then
split the input values, x and y, into vectors A and B. It is these vector representations
that will be mapped to Fourier space to perform the convolution. Recall that the
convolution in this space will mimic the school method of multiplication.

In Step 3 we weight the vectors A and B to prepare for the FFT, remembering
that the FFT here implements integer-only operations. The multiplication can be
performed using only shifts in a binary representation of the numbers. Also, the
modulo operation can likewise be implemented efficiently as Crandall and Pomer-
ance also show in [1].

Step 4 performs the actual FFT in-place to save memory as these numbers may be
very large. Step 5 multiplies the components in Fourier space, again this is convolu-

4.4 Alternative Multiplication and Division Routines 139

1. [Initialize]
Choose an FFT size, D = 2k dividing n.
Set a recursion length, n′ ≥ 2M+ k, n = DM such that D divides n′, n′ = DM′.

2. [Decomposition]
Split x and y into arrays A and B of length D such that A = A0,A1, . . . ,AD−1 and B = B0,
B1, . . . ,BD−1 as residues modulo 2n′ +1.

3. [Prepare FFT]
Weight A and B by (2 jM′

A j) mod (2n′ +1) and (2 jM′
B j) mod (2n′ +1) respectively for j = 0,

1, . . . ,D−1.
4. [Perform FFT]

A =F (A) and B =F (B) done in-place.
5. [Dyadic stage]

A j = A jB j mod (2n′ +1) for j = 0,1, . . . ,D−1. Storing product in Fourier space in A.
6. [Inverse FFT]

A = F−1(A). A now contains the convolution of the decomposition of x and y. This is the
product.

7. [Normalization and Sign Adjustment]
Scale A assigning to C to account for scale factor in Fourier transform.

8. [Composition]
Perform carry operations to C to give final sum: xy mod (2n + 1) = Σ D−1

j=0 Cj2 jM mod (2n + 1)
which is the desired product.

Fig. 4.15 The Schönhage and Strassen big integer multiplication algorithm as presented in [1] with
paraphrasing and explanatory text added

tion in the original space, and it is this step that requires something other than shifts
and basic integer operations. Notice that the form of this multiplication matches
what this very algorithm does so it is possible to make a recursive call here which is
the motivation for selecting n′ properly. Other multiplication methods could be used
here as well including the basic school method. Notice that the result is stored in
A, again to save memory. Step 6 performs the inverse FFT to return to the original
space and Step 7 normalizes the result by applying a scale factor that is typical of the
FFT, either split between the two transforms or applied in one direction. During this
process the vector C is created. Lastly, step 8 accounts for the carries (ala Comba
above) and returns the result which is the desired product. A complexity analysis of
this algorithm shows that it runs in O(n logn log logn) which is significantly better
than the O(n2) of the school method.

Division. For division we look at two algorithms. The first is that found in Knuth
[7] known as Algorithm D which is an implementation of long division suitable for
application to big integers. The second is the divide-and-conquer division algorithm
of Burnikel and Ziegler [8].

In [7] Knuth gives a thorough description his long division algorithm which fol-
lows the school method except for one twist. The twist has to do with trial divisions
based on an observation, which he proves, that assuming the quotient of an n+ 1
digit number x divided by an n digit number y to be the quotient of the top two
digits of x by the leading digit of y means that your assumption will never be more
than 2 away from the true value. A few examples of this fact,

140 4 Big Integers and Rational Arithmetic

24356 / 5439 = 4 24 / 5 = 4 0
95433 / 6796 = 14 95 / 6 = 15 1

12345678 / 9876543 = 1 12/9 = 1 0
8888888888 / 777777777 = 11 88/7 = 12 1

where the right-most column is the difference between the exact quotient and the
trial quotient. It is important to note, however, that this fact is only true if the divisor
is greater than or equal to the one half the base, here base is 10 so the divisors are
all 5 or larger. The normalization step of the algorithm takes case of this case by
multiplying both dividend and divisor by a value, which can be done with a simple
shift, since the quotient will be the same and the remainder can be unnormalized at
the end.

The essence of the Knuth algorithm, paraphrased from [7], is given below,

1. [Normalize]
Scale inputs u and v by a single digit, d so that the leading digit of v, called
v1, is v1 ≥ �b/2� where b is the base. Note that u and v are big-endian vectors
representing the digits of the numbers in base b.

2. [Initialize]
Loop m times where m is the difference between the number of digits in u and v.
Naturally, if m is negative the quotient is 0 and the remainder is v since v > u.
Each pass through the loop is division of the n digits of u starting at j, the loop
index, by v.

3. [Calculate Trial Quotient]
Set q̂ = �(u jb+u j+1)/v1�, the trial quotient. If u j = v1 set q̂ = b−1. Knuth adds
a test here that will ensure that the trial quotient is never more than one greater
than it should be.

4. [Multiply and Subtract]
Subtract q̂ times v from the n digits of u, starting at position j, replacing those
digits. This is the subtraction normally done in long division by hand. Since it
is possible q̂ is too large this result may be negative. If so, it will be handled in
step 6.

5. [Test Remainder]
Set the j-th digit of the quotient to the trial value in q̂. If the result of step 4 was
negative, do to Step 6, otherwise, go to Step 7.

6. [Add Back]
Decrease the j-th digit of the quotient by one and add v back to u starting with
the j-th digit. This accounts for the few times the trial quotient is too large.

7. [Loop]
Go back to Step 2 while j ≤ m.

8. [Unnormalize]
The correct quotient is in q and the remainder is um+1 through um+n divided by
d, the scale factor used in the first step.

The run time of this algorithm is O(mn) which is adequate for smaller input sizes
but becomes cumbersome if the inputs are very large in much the same way the
school multiplication algorithm does.

4.4 Alternative Multiplication and Division Routines 141

Burnikel and Ziegler [8] implement two algorithms which work together to
perform division of big integers with specific numbers of digits. They then describe
how to apply these algorithms to arbitrary division problems. The first algorithm,
which they name D2n/1n, divides a number of 2n digits by a number of n digits.
They do this by breaking the number up into super digits. If we wish to find A/B
and use this algorithm we must break A into four digits, (A1,A2,A3,A4) and break
B into two digits (B1,B2) so that each digit has a length of n/2. In other words,

A = A1β 3n/2 +A2β n +A3β n/2 +A4

B = B1β n/2 +B2

With this separation of A and B into super digits we can examine the D2n/1n algo-
rithm,

Algorithm D2n/1n

1. [Given]
A < β nB, β/2 ≤ B < β n, n even, β is the base. Find Q = �A/B� and remainder
R = A−QB.

2. [High Part]
Compute Q1 as Q1 = �[A1,A2,A3]/[B2,B1]� with remainder R1 = [R1,1,R1,2]
using algorithm D3n/2n.

3. [Low Part]
Compute Q2 as Q2 = �[R1,1,R1,2,A4]/[B2,B1]� with remainder R using algorithm
D3n/2n.

4. [Return]
Return Q = [Q1, Q2] as the quotient and R as the remainder.

This algorithm is deceptively simple. The recursive nature of it becomes clear when
we look at algorithm D3n/2n which in turn calls D2n/1n again. First we present D3n/2n
and then we discuss them together,

Algorithm D3n/2n

1. [Givens]
A = [A1,A2,A3] and B = [B1,B2] from D2n/1n. Find Q = �A/B� and remainder
R = A−QB.

2. [Case 1]
If A1 < B1 compute Q̂ = �[A1,A2]/B1� with remainder R1 using D2n/1n.

3. [Case 2]
If A1 ≥B1 set Q̂= β n−1 and set R1 = [A1,A2]− [B1,0]+[0,B1] = [A1,A2]−Q̂B1.

4. [Multiply]
Compute D = Q̂B2 using Karatsuba multiplication.

5. [Remainder]
Compute R̂ = R1β n +A4 −D.

142 4 Big Integers and Rational Arithmetic

6. [Correct]
As long as R̂ < 0 repeat:

a. R̂ = R̂+B
b. Q̂ = Q̂−1.

7. [Return]
Return Q̂ and R̂.

The pair of algorithms, D2n/1n and D3n/2n, work together on successively smaller
inputs to return the final solution to the division problem. We know that D2n/1n
requires A to have twice as many digits as B and when it is called in the first
[Case 1] of D3n/2n we are also passing it arguments that meet the 2n to n digit
requirement so the recursion will end.

It is interesting to compare the steps in D3n/2n with those of the Knuth algorithm
above. We get a “trial” quotient, Q̂, from one of the cases and then determine the
remainder in step 5. Then in step 6 we correct the quotient in case we selected too
large of an answer. This is exactly what is done in the Knuth algorithm in step 6.
Here we are structuring the problem in such a way that the digits always match the
desired pattern and using recursion to divide up the work. In the Knuth algorithm
we move through the divisor digit by digit.

The school division method of Knuth is O(mn) which would be O(n2) for the
case we are considering here since the dividend has twice as many digits as the
divisor. What about the Burnikel and Ziegler algorithm? As they discuss in [8]
the performance of this algorithm depends upon the type of multiplication used in
step 4 of D3n/2n. If using Karatsuba multiplication they determine the performance
to be 2K(n) +O(n logn) with K(n) the performance of Karatsuba multiplication
itself. As they note, if the school method of multiplication is used instead we get
n2 +O(n logn) which is actually worse than long division itself. So, the choice of
multiplication algorithm is crucial in determining the performance.

We have examined, superficially, several alternatives to the basic arithmetic al-
gorithms we developed for our big integer implementation. We have seen that they
out perform the naive algorithms and that they extend our abilities in working with
big integers to those that are much larger than what we would be able to work with
otherwise. Computer memory is inexpensive so the limiting factor is now algorithm
performance. Every small improvement counts. There are many other algorithms we
could have examined but cannot for space considerations. There is ongoing research
in this area and tweaks and small improvements are happening all the time. But, for
now, we leave the algorithms and move on to more practical considerations, namely,
implementations. It is fun to implement some of these basic algorithms ourselves,
but the complex and highly performant ones are often tricky and it is wise to use
proven libraries when speed and accuracy count.

4.5 Implementations 143

4.5 Implementations

Most programming languages do not define big integer operations as intrinsic to
the language. In this section we will look at some that do, specifically Python and
Scheme. We will also look at some extensions to existing languages such as C/C++,
Java and JavaScript which give big integer functionality to developers using these
languages. We start first with the extensions.

Libraries. When discussing software libraries time is naturally a factor. Projects
start and finish and are often abandoned as people move on to other work making
an orphan of the library which becomes less and less relevant as time moves on.
Here we will look at one library that has considerable popular support and is a
member of the Gnu Software suite, namely, the GNU Multiple Precision Arithmetic
Library or GMP for short [9]. This library is open source software and is distributed
via the GNU LPGL and GNU GPL licenses which allows the library to be used in
its existing form in commercial code while enabling additions to the library to be
passed on to other users. It has been in constant development since 1991 which is
why we include it here as it is likely to be supported for some time to come.

GMP is a C and C++ library for a wide-range of mathematical operations involv-
ing multi-precision numbers. At its core it consists of several main packages: signed
integer arithmetic functions (mpz), rational arithmetic functions (mpq), floating-
point functions (mpf), and a low-level implementation (mpn). Additionally, a C++
class wrapper is available for the mpz, mpq and mpf packages. Here we will con-
sider only the integer operations of the mpz package. The GMP library goes to great
lengths to ensure efficiency and optimal performance.

The mpz package uses much the same format for numbers as we have used above.
It defines a structure in gmp.h called mpz struct which is typedef-ed to
mpz t. The struct is,

typedef struct
{

int _mp_alloc;
int _mp_size;
mp_limb_t *_mp_d;

} __mpz_struct;

where mp limb t points to a “limb” or digit. Its actual size depends on the system
the code is compiled for but is typically an unsigned long int which is 4 bytes on
the 32-bit system we assume in this book. The mp alloc field counts the number
of limbs allocated while mp size is the number of limbs used. As we did above,
the sign of the number is stored in the sign of mp size. If mp size is zero the
number is zero. This saves allocating a limb and setting it to zero.

Input of big integers is via strings as was done in our code above. Output is to file
streams or strings depending upon the function used. Integers must be created and
initialized before being assigned but may be freely assigned after that. When done,
they must be cleared. This code initializes a big integer, assigns it a value and then
prints the value to stdout in two different number bases,

144 4 Big Integers and Rational Arithmetic

1 #include <stdio.h>
2 #include <gmp.h>
3
4 int main() {
5 mpz_t A;
6
7 mpz_init(A);
8
9 mpz_set_str(A, "1234567890123456789", 0);
10 mpz_out_str(NULL, 10, A);
11 printf("\n");
12 mpz_out_str(NULL, 2, A);
13 printf("\n");
14
15 mpz_clear(A);
16 }

The GMP library is included in line 2 (linking with -lgmp is also required). A new
big integer, A, is defined in line 5 and initialized in line 7. Note that A is not passed as
an address. The definition of mpz t is a one element array of mp struct which
passes it as an address already. In line 9 we assign A from a string, the 0 means use
the string itself to determine the base, in this case base 10. Lines 10 and 12 output
A first as a base 10 number and then in binary. Finally, we release A in line 15.

Basic big integer functions in mpz include the expected addition (mpz add),
subtraction (mpz sub) and multiply (mpz mul). Also included are negation
(mpz neg) and absolute value (mpz abs). For efficiency there are also special
functions that combine operations as it is sometimes better to combine them than
perform them individually. For example, there are mpz addmul which adds the
product of two numbers to an existing number as well as mpz submul which sub-
tracts the product.

For division mpz gives us many options. These options reflect various rounding
methods and implement different algorithms which may be much faster than general
algorithms if certain conditions are met. If we select only the tdiv functions, which
round towards zero, like C does, we have three functions,

mpz tdiv q - divide n by d returning only the quotient, q.
mpz tdiv r - divide n by d returning only the remainder, r.
mpz tdiv qr - divide n by d returning both quotient, q, and remainder, r.

There is also a general mod function which always returns a positive result (mpz mod).
If it is known in advance that the numerator n is exactly divisible by the denomina-
tor d one may use mpz divexact which is much faster than the generic division
routines. Filling out the division options are mpz divisible to check if n is ex-
actly divisible by d and mpz congruent p to check if n is congruent to c modulo
d meaning there is an integer q such that n = c+qd.

What algorithms are implemented by these top-level functions? For addition and
subtraction, which are at the lowest level for Intel architecture implemented in ass-
embly, we can expect the normal school method. What about multiplication? As we
are now well aware, there are many options.

4.5 Implementations 145

The GMP library uses one of seven multiplication algorithms for N digit by N
digit multiplication (as of GMP version 6.0.0). Which is used depends upon the size
of N and whether or not it exceeds a preset threshold. The algorithms are, in order
of use (ie, larger N uses algorithms further down the list),

1. School method. This is the algorithm we implemented above.
2. Karatsuba. The Karatsuba method discussed above.
3. Toom-3. A three-way Toom extension to Karatsuba. See [7].
4. Toom-4. A four-way Toom algorithm.
5. Toom-6.5. A six-way Toom-like algorithm.
6. Toom-8.5. An eight-way Toom-like algorithm.
7. FFT. The Schönhage and Strassen method as discussed above.

All of these algorithms are optimized by the authors of GMP and at a lowest level
are somewhat different than might be found in the original papers. If the operands
to the multiplication are of very different sizes, N digits by M digits, then below one
threshold the school method is used while FFT is used for very large numbers. In
between, the Toom algorithms are used based on heuristics given the sizes N and M.

For division, four main algorithms are in use. For numbers below a threshold
(50 digits) the long division method of Knuth is used. Above this threshold the
divide-and-conquer method of Burnikel and Ziegler (modified) is used. Division
by very large numbers uses an algorithm based on Barrett reduction [10]. Exact
division uses Jebelean’s method [11]. Switching between methods is automatic, the
user need only call the top-level functions.

If GMP is for C and C++, what about other languages that lack intrinsic big
integer functionality? Java uses the BigInteger class. This class comes with its
own implementations, in Java, for low-level operations which exactly match those
found in GMP’s mpn package. This was done to make it possible to easily replace
the Java code with highly performance C code if desired. So, we see that C, C++
and Java all make use of the GMP library.

For JavaScript a common choice to add support for big integers is the library
BigInteger.js which is distributed via the MIT License and implements all
functionality in pure JavaScript so it can run within a web browser. This implemen-
tation is very generic and uses a base of 10,000,000 to take advantage of the sim-
plicity this provides input and output just as we did with our implementation above.
Addition and subtraction use the school method as does multiplication. There is a
comment in version 0.9 to add Karatsuba in the future. Division uses the Knuth
algorithm.

Languages. We know that Python has intrinsic support for big integers. Let’s take
a look at what it is doing under the hood. The Python interpreter is written in plain
C and big integers are found in the source code file (Python 2.7) longobject.c.
This file contains implementations for all the operations supported by Python long
integers, it does not use the GMP or other libraries. For addition and subtraction the
expected school method is used. For multiplication only two algorithms are avail-
able, the school method and Karatsuba if the number of digits exceeds 70. Division

146 4 Big Integers and Rational Arithmetic

is long division ala Knuth. The numbers themselves use a base of 215. While the
native implementations are adequate, for serious work in Python with big integers
one would do well to wrap the GMP library. Surprisingly, given the current popular-
ity of Python, this does not appear to have been done with any level of seriousness.

Another language which requires in its very definition the support of big integers
is Scheme [12]. This is a small dialect of Lisp and has been used widely for ins-
truction in computer programming. Indeed, it is used in the very popular Structure
and Interpretation of Computer Programs by Abelson and Sussman [13] which has
trained a generation of programmers from MIT though it has fallen out of style in
recent years. Regardless, the text comes highly recommended.

The version of Scheme we will consider is Scheme48 available online from
s48.org. This version of Scheme conforms to the R5RS version of the language [14]
and includes big integer support for exact numeric computation. Section 6.2.3 of
the R5RS report (“Implementation Restrictions”) strongly encourages implementa-
tions to support “exact integers and exact rationals of practically unlimited size and
precision” which Scheme48 does.

The Scheme interpreter itself is written in C and places big integer operations in
the file bignum.c. Looking at this file we see that the implementations are based
on earlier work from MIT. As expected, the addition and subtraction routines use
the school method. The multiplication routine is limited to the school method as
well, regardless of the size of the input. This limits the usefulness of Scheme for
high-performance work with big integers unless using an external library like GMP.
Similarly, we see that division is the Knuth algorithm, again regardless of the size
of the operands.

4.6 Rational Arithmetic with Big Integers

Once we have the ability to represent any integer p with an arbitrary number of dig-
its it logically follows that one might consider how to represent fractions, which are
the ratio of two integers, using big integers. In this section we look at rational arith-
metic with big integer components. If we group two big integers together, p and q,
we can treat them as the numerator and denominator of a fraction, p/q, and perform
arithmetic with them. For this section we will take advantage of the big integers pro-
vided by Python and extend them to implement basic rational arithmetic of arbitrary
precision. It is proper to consider rational numbers in computers in a chapter on
big integers because rational arithmetic involves fractions that grow quickly to have
large numerators and denominators which implies that they will quickly exceed the
capacity of fixed-length integers.

Elementary mathematics tell us how to implement the four basic arithmetic ope-
rations using fractions. They are,

4.6 Rational Arithmetic with Big Integers 147

Addition a
b +

c
d = ad+bc

bd

Subtraction a
b − c

d = ad−bc
bd

Multiplication a
b × c

d = ac
bd

Division a
b ÷ c

d = ad
bc

where a,b,c, and d are themselves big integers. However, there is one twist we
must bear in mind. If we were to implement these operations directly we would
quickly find our numerators and denominators are becoming very large indeed. This
is because after every operation we need to reduce the resulting fraction to lowest
terms, as no doubt our grade school teachers mentioned to us many times! In order
to do this we need to find, for each numerator and denominator, the greatest common
divisor or GCD. Thankfully, this is straightforward to find as we will soon see.

Storing rationals in Python. Python is a modern object-oriented language. To
store a rational number we need to store two integers, the numerator and the den-
ominators. Since we are developing a rational arithmetic class, we will store the
numerator and denominator as member variables n and d. Additionally, we will
overload the basic math operations so that we can work with rationals in a man-
ner similar to other numbers. Input and output will be straightforward as we simply
display the number by printing the numerator, the fraction symbol (/), and the den-
ominator. We will adopt the convention that the sign of the rational is stored in the
numerator.

A basic rational arithmetic class. The first part of our Rational class defines the
class and the constructor, init . Since Python uses automatic garbage collection
we do not need in this case to define a specific destructor. So far, then, our class
looks like this,

1 from types import *
2
3 class Rational:
4
5 def __init__(self, n,d=None):
6 if (d == None):
7 t = float(n).as_integer_ratio()
8 n = t[0]
9 d = t[1]
10 g = self.__gcd(n,d)
11 self.n = n/g
12 self.d = d/g
13 if (self.d < 0):
14 self.n *= -1
15 self.d = abs(self.d)

where we consistently use four spaces for indenting as is the Python standard. In line
1 we include the types module which is part of the standard Python library. We will
use this to determine whether or not arguments are Rational objects or integers.

148 4 Big Integers and Rational Arithmetic

Our constructor is in init and takes self as the first argument as all Python
methods do. This is a reference to the object itself and this is how we will access
member data and call other class methods. The constructor takes two arguments, n
and d, which are the numerator and denominator of the new rational object. Lines
6 through 9 check to see if a single argument was given. If so, it is assumed to be a
floating-point number and converted to a rational by calling the as integer ratio

method of the float class. In line 10 we call the gcd method to calculate the GCD
of the given numbers. We will explore this method in more detail shortly. Note that
we are using the standard Python naming convention of two leading underscores ()
which marks the method as being private to our class. The important point here is
that each method in our class representing an operation will return a new Rational

object. This means that the only time we need consider reducing the fraction is when
the new object is created as it is not changed once created. In lines 11 and 12 we
set the local values for the numerator (self.n) and denominator (self.d) dividing
each by the GCD so that the fraction is stored in lowest terms. For simplicity, we
ignore error states such as a denominator of zero. Lines 13, 14 and 15 ensure that
the new fraction places its sign in the numerator as is our convention. As this point,
we have a new Rational object and it is initialized with the given numerator and
denominator in lowest terms. Now lets look at the gcd method itself.

Reducing fractions using the GCD. In school we learned that fractions are not
unique. For example, p/q is a fraction with a particular value which we can say,
when expressed as a decimal number, is c since c = p/q. But, if we multiply our
fraction by a new fraction which is equal to 1, α/α = 1, we get α p/αq which
is, of course, still c. Therefore, when working with fractions we were constantly
encouraged to express our answers in lowest terms (factor out the α). When working
with rational numbers on a computer this is especially important to prevent our
numerators and denominators from growing too large too quickly. To reduce the
fraction we need to find α which is the greatest common divisor of both p and q and
divide p and q by it.

The iterative form of the algorithm of Euclid [15] is a good way to calculate the
GCD even for large numbers. Our implementation of it is,

1 def __gcd(self, a,b):
2 while b:
3 a,b = b, a % b
4 return abs(a)

Arithmetic and other methods. We are now ready to implement basic arithmetic
operations. Python defines a set of methods that users can override in their own
classes to capture situations which syntactically look like more ordinary operations.
For example, the seemingly simple statement,

a + b

is really equivalent to,

a. add (b)

4.6 Rational Arithmetic with Big Integers 149

which means that a Python class which overrides the add method will be able to
participate in mathematical expressions. This is exactly what we require in order to
make using the Rational class as natural as possible.

Python has a large set of methods that we could override in our class. We will
do some here and leave others to the exercises. In particular, we will override the
following methods,

add Addition (+)
sub Subtraction (−)
mul Multiplication (×)
div Division (/)
str String output for str() and print

repr String output for repr()
float Floating-point value for float()
int Integer value for int()
long Integer value for long()

In addition, we will override the “reverse” forms for the arithmetic operators. These
are called if instead of a+2 we write 2+a. For operators that commute, addition
and multiplication, we really only need call the non-reversed form. For division and
subtraction we have to be more careful.

So, how do we implement addition? Like so,

1 def __add__(self, b):
2 t = type(b)
3 if (t == InstanceType):
4 n = self.n*b.d + self.d*b.n
5 d = self.d*b.d
6 elif (t == IntType) or (t == LongType):
7 n = self.n + self.d*b
8 d = self.d
9 return Rational(n,d)

10
11 def __radd__(self, b):
12 return self.__add__(b)

where we first look at the type of the argument, b, in line 2. We do not only want
to work with other rational numbers but also with integers and long integers. If the
argument is another rational number we move to line 4 and add to get the numerator
followed by the denominator. Otherwise, if the argument is an integer, we move to
line 7 to add the integer to the fraction. Line 9 returns the new rational answer. Recall
that the constructor is what applies the GCD so it is not explicitly called here. Line
11 defines the reverse case method. Since addition is commutative, a+ b = b+ a,
we simply fall back to the main addition method.

Subtraction is virtually identical except for the reversed call,

150 4 Big Integers and Rational Arithmetic

1 def __sub__(self, b):
2 t = type(b)
3 if (t == InstanceType):
4 n = self.n*b.d - self.d*b.n
5 d = self.d*b.d
6 elif (t == IntType) or (t == LongType):
7 n = self.n - self.d*b
8 d = self.d
9 return Rational(n,d)

10
11 def __rsub__(self, b):
12 t = type(b)
13 if (t == IntType) or (t == LongType):
14 n = b*self.d - self.n
15 d = self.d
16 return Rational(n,d)

where sub is identical to add except for the change from + to −. However,
as subtraction is not commutative, we must implement it explicitly for the reverse
case. This is done in lines 13 through 16. Why is there no check for InstanceType?
Because Python is smart enough to know that if both arguments are objects the main
method will be called instead.

Multiplication follows addition,

1 def __mul__(self, b):
2 t = type(b)
3 if (t == InstanceType):
4 n = self.n * b.n
5 d = self.d * b.d
6 elif (t == IntType) or (t == LongType):
7 n = self.n * b
8 d = self.d
9 return Rational(n,d)

10
11 def __rmul__(self, b):
12 return self.__mul__(b)

while division follows subtraction in implementing the reverse call explicitly,

1 def __div__(self, b):
2 t = type(b)
3 if (t == InstanceType):
4 n = self.n * b.d
5 d = self.d * b.n
6 elif (t == IntType) or (t == LongType):
7 n = self.n
8 d = self.d * b
9 return Rational(n,d)

10
11 def __rdiv__(self, b):
12 if (type(b) == IntType):
13 n = b * self.d
14 d = self.n
15 return Rational(n,d)

and in both cases the proper steps for multiplication and division of fractions are
performed.

4.6 Rational Arithmetic with Big Integers 151

The remaining methods are convenience methods,

1 def __str__(self):
2 if (self.n == 0):
3 return "0"
4 elif (self.d == 1):
5 return "%d" % self.n
6 else:
7 return "%d/%d" % (self.n, self.d)
8
9 def __repr__(self):
10 return self.__str__()
11
12 def __float__(self):
13 return float(self.n) / float(self.d)
14
15 def __int__(self):
16 return int(self.__float__())
17
18 def __long__(self):
19 return long(self.__float__())

which allow us to interact with Python in a more natural way. Use str to re-
turn a string representation of the fraction as the output of str() or print. In this
method we check for special cases like zero or an integer (denominator of one).
The repr method responds to the repr() function by returning exactly the same
string print would receive. The float , int and long methods perform
the necessary conversion to return the rational as a float, integer, or long integer,
respectively. These are used by the float(), int(), and long() functions. These
are the minimal set of methods for our Rational class.

Using the Rational class. Because of our design choices in overriding key default
Python methods we can use the Rational class in a quite natural way. The following
examples are from an interactive session and illustrate how to use the class,

1 >>> from Rational import *
2 >>> a = Rational(2,3)
3 >>> b = Rational(355,113)
4 >>> c = a + b
5 >>> c
6 1291/339
7 >>> (a+b) * c
8 1666681/114921
9 >>> d = (a + b) * c
10 >>> d = 2*d
11 >>> d
12 3333362/114921
13 >>> float(b)
14 3.1415929203539825
15 >>> d / d
16 1
17 >>> 1/d
18 114921/3333362
19 >>>

152 4 Big Integers and Rational Arithmetic

where >>> is the Python interactive shell prompt and replies from Python are lines
without the prompt.

In line 1 we import the Rational class. Lines 2 and 3 define a and b to be 2/3
and 355/113, respectively. Line 4 adds a and b and assigns the result to c which is
then displayed in line 6. Line 9 uses all three rationals in an expression and displays
it. Note already how the numerator and denominator are growing. We define d in
line 9 and multiply it by an integer in line 10. Line 13 shows us that 355/113 is a
good approximation of π by requesting the floating point version of it. We use line
15 as a sanity check to make sure that a rational number acts rationally. Finally, line
17 checks that the inverse of a rational is, in fact, what you get when you flip the
numerator and the denominator.

This concludes our simple Python Rational class. As promised, the exercises
will offer you the opportunity to extend the class even further.

4.7 When to Use Big Integers and Rational Arithmetic

The sections above demonstrate how to implement big integers, how to operate on
them efficiently, and where to find performant big integer libraries, however, none
of the above actually talks about when and why one might want to use big integers.
We remedy that in this section.

In modern computing undoubtedly the largest use of big integers is in cryptogra-
phy. Cryptographic systems depend upon the fact that certain operations are easy to
do in one direction but next to impossible to do, in a reasonable period of time, in
the other direction. Most of these systems depend upon the following two facts,

1. The fundamental theorem of arithmetic states that all numbers are either prime
or can be factored, uniquely, into a specific set of primes.

2. Factoring large integers is a tedious process even though multiplying them is
straightforward.

This means that while it is easy to find n= pq with p and q both integers it is hard
to factor n to see that it is in fact what you get if you multiply p and q. This is the
second fact above. The first says that if p and q are prime then indeed the only way
to factor n is to find the specific pair, p and q. If p and q are too small, trial and error
will eventually find them, but if they are very large, on the order of several hundred
bits or about 100 decimal digits, then finding the factor of their product will take
a very long time. This is the heart of modern cryptography. Let’s see briefly how
multiplying large integers plays into it.

First we consider classic Diffie-Hellman key exchange [16]. This system allows
two parties, traditionally known as Alice and Bob, to exchange a secret number to
be used as a key to encrypt a message shared between them. We are not concerned
with the encryption but rather how they exchange the secret key so that an outsider
(traditionally known as Carol or Eve) cannot learn what it is. Let’s look at the steps
and then we will see where big integers play into it,

4.7 When to Use Big Integers and Rational Arithmetic 153

The heart of the exchange relies on the choice of p and g. We must choose p to
be prime and g to be a primitive root modulo p. The exact definition of a “primitive
root modulo p” does not concern us here but it a number theory concept. What
does concern us is that p and g are public and known by Alice, Bob and Carol.
Additionally, Alice and Bob each select a secret number only they know. We’ll
call Alice’s number a and Bob’s number b. These numbers are known only to the
respective person. For our example, we will select p = 37 and g = 13, which is a
primitive root of 37. With this setup, the steps necessary to exchange a secret key are,

1. Alice chooses a = 4. Only Alice knows this number.
2. Bob chooses b = 11. Only Bob knows this number.
3. Alice sends Bob A = 134 mod 37 = 34. Carol sees A.
4. Bob sends Alice B = 1311 mod 37 = 15. Carol sees B.
5. Alice computes the secret key, s = 154 mod 37 = 9. Carol cannot compute s.
6. Bob computes the secret key, s = 3411 mod 37 = 9.
7. Alice and Bob both use s as the key for their encryption system.

Recall that a and b are secret but p = 37, g = 13, A = 34 and B = 15 are public.
When the exchange is complete, Alice and Bob have both calculated s = (ga)b mod
37 = (gb)a mod 37 = 9 which they will use as the secret key for their encryption
system without Carol knowing what s is.

Big integers come into this system with the choice of p, a and b. If these are very
large, hundreds of digits long instead of small as in our example above, it becomes
virtually impossible to determine s from the values that are known publicly. Even
though A is known and it is known that A = ga mod p, the reverse operation, known
as the discrete logarithm, is very hard to do so a remains unknown publicly. It is this
difficulty that makes the key exchange system secure and big integers are essential
because without them the numbers involved would be too small to offer security
against brute force attacks.

Another cryptographic system that relies on big integers is RSA public key enc-
ryption [17]. This system was published by Rivest, Shamir, and Adelman (hence
RSA) of MIT in 1977. In this system users generate two keys, a public key and a
private key. They then publish their public key allowing anyone to encrypt a message
using it. The holder of the corresponding private key, however, is the only one who
can decrypt it. For simplicity we ignore the extra twist of signing the message using
the sender’s private key. The essence of the algorithm depends upon two primes, p
and q, their product, n = pq, a public key exponent, e, and its multiplicative inverse,
d. The person generating the keys keeps d as the private key and releases both n and
e together to be the public key. With this public key anyone can encrypt a message
but only the holder of the private key as decrypt it. The length of n is the key length
which is related to the strength of the algorithm.

If Bob has released his public key, the pair n and e, then Alice can send Bob
a secure message by turning her message into an integer, m, the exact method for
this is irrelevant but must be agreed upon by both Alice and Bob, and computing
c = me mod n. She then sends c to Bob. Bob, in turn, recovers Alice’s message by
computing m = cd mod n using the private key, d. Since only Bob has d, he is the
only one who can recover the message.

154 4 Big Integers and Rational Arithmetic

As in Diffie-Hellman, the security of the encryption depends upon the choice
of large primes for p and q. When these are very large numbers it becomes vir-
tually impossible to recover them from knowledge of just n. The exponent, e, and
private key, d are calculated from p and q so knowledge of p and q would lead to
a breakdown of the entire algorithm. Fortunately, big integers come to our rescue
and let us work with the very large primes that make the system secure. Practical
implementations of encryption algorithms which rely on big integers are found in
OpenSSL [18] which implements the secure socket layer for internet data transfer
and libgcrypt [19] which is an open source package implementing numerous algo-
rithms including RSA.

Big integers are of practical importance to cryptography but they are also used
for research purposes by mathematicians. For example, the open source package
Pari [20] has been in existence for some time and it supports arbitrary precision
calculations for mathematicians interested in number theory and other disciplines.
Additionally, sometimes it is helpful to have the ability to restrict the precision of
calculations in order to explore the effect of mathematical operations. In the paper
Chaos, Number Theory and Computers [21] Adler, Kneusel and Younger explored
the effect of the precision used when calculating values for the logistic map, xn+1 =
Axn(1−xn), A ≤ 4, 0 < x < 1, which can lead to anomalous behavior. The software
for this paper made use of the intrinsic big integer arithmetic found in the Scheme
language to calculate logistic map values with a set precision.

What about rational arithmetic? As we’ve seen, adding rational arithmetic once
big integers are available is straightforward. Many languages and libraries do sup-
port rational arithmetic. For example, the mpq part of GMP implements rational
functions and while Python supports big integers natively, Scheme supports ratio-
nals natively as well including syntactically so that (+ 2/3 3/4) is a perfectly valid
function call yielding 17/12 as its answer. Another use for rational arithmetic would
be as a way to increase the precision of calculations beyond that of native floating
point.

4.8 Chapter Summary

In this chapter we introduced the concept of a big integer by which we mean an int-
eger larger than any native type supported by the computer. We implemented basic
big integer operations in C and discussed improved algorithms for these basic oper-
ations which are of more practical utility. Next we looked at important implemen-
tations of big integer libraries as well as programming languages which support big
integers intrinsically. We then examined rational numbers built from big integers
and implemented a simple rational number class in Python. Lastly, we discussed
some prominent uses of big integers to give examples of when big integers might be
the tool of choice.

Exercises 155

Exercises

4.1. Big integer libraries typically represent integers in sign-magnitude format as
we did in this chapter. Another possibility would be to use a complement notation,
call it B’s-complement where B is the base, which is the analog of 2’s-complement
used almost exclusively for fixed-length integers. However, very few big integer
packages actually do this. Why?

4.2. In Sect. 4.2 we gave a C function for bigint equal to test if two big integers
are equal. This function made use of bigint compare. Write the remaining com-
parison functions for <, >, ≤, ≥ and �=. *

4.3. Figure 4.11 implements a function to perform big integer division. Extend this
function to return the remainder as well. *

4.4. Add a new function to our library, bigint pow(a,b), which returns ab. Be sure
to handle signs and special cases. *

4.5. Add another new function to our library, bigint fact(a), which returns a!.
Recall that the argument must be ≥ 0. *

4.6. Using the big integer functions defined in this chapter create a simple arbitrary
precision desk calculator in C which takes as input expressions of the form “A op B”,
as a string, where A and B are big integers and op is one of the four basic arithmetic
operations and returns the result. If you wish, you may use postfix notation and a
stack. In postfix notation the operands come first followed by the operation, “A B
op”. You can use Python to check your answers. **

4.7. Extend the basic Rational Python class outlined above to compare rational
numbers by overriding the lt , le , gt , ge , eq , and ne methods to
implement comparison operators <, ≤, >, ≥, ==, and �=. *

4.8. Extend the basic Rational Python class outlined above by adding neg ,
abs methods for negation and absolute value. *

4.9. Extend the basic Rational Python class outlined above by adding methods to
handle shortcut operations. N.B., these, unlike all the others, destructively update
the existing rational object. They do not return a new object. The method names
are: iadd , isub , imul , and idiv corresponding to operators +=, -=, *=,
and /=. Be careful when handling integer arguments and be aware that the updated
value may no longer be in lowest terms. *

4.10. Use the Rational class to create a simple interactive rational desk calculator.
This should take as input expressions of the form “A op B”, as a string, where A
and B are rationals (with a “/” character) or integers and op is one of the four basic
arithmetic operations and return the result. If you wish, you may use postfix notation
and a stack. **

156 4 Big Integers and Rational Arithmetic

References

1. Crandall R., Pomerance C., Prime Numbers: a Computational Perspective, Springer (2005).
2. Comba P., Exponentiation Cryptosystems on the IBM PC. IBM Systems Journal 29,

4:526–536 (1990).
3. Karatsuba, A., Ofman, Y., Multiplication of Many-Digital Numbers by Automatic Comput-

ers, Proceedings of the USSR Academy of Sciences 145: 293–294 (1962). Translation in the
academic journal Physics-Doklady, 7 , pp. 595–596 (1963).

4. Schönhage, D., Strassen, V., Schnelle multiplikation grosser zahlen, Computing, 7(3–4),
281–292 (1971).

5. Saracino D., Abstract Algerbra: A First Course, Addison-Wesley (1980).
6. Bracewell, R., The Fourier transform and its applications, New York: McGraw-Hill (1986).
7. Knuth, D., The Art of Computer Programming, Volume 2: Seminumerical Algorithms,

Addison-Wesley Professional (2014).
8. Burnikel, C., Ziegler, J., Im Stadtwald, D., Fast recursive division (1998).
9. Granlund, T., gmp – GNU multiprecision library, Version 6.0.0 (2014).

10. Barrett, P., Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm
on a Standard Digital Signal Processor, Advances in Cryptology – CRYPTO’ 86. Lecture
Notes in Computer Science 263. pp. 311–323 (2006).

11. Jebelean T., An algorithm for exact division, Journal of Symbolic Computation, volume 15,
169–180 (1993).

12. Sussman, G. Steele, Jr, G., The First Report on Scheme Revisited, Higher-Order and Symbolic
Computation 11 (4): 399–404 (1998).

13. Abelson, H., Sussman, G., Structure and interpretation of computer programs, 2nd Ed, MIT
Press (1996).

14. Kelsey, R., Clinger, W., Rees, J. (eds.), Revised5 Report on the Algorithmic Language
Scheme, Higher-Order and Symbolic Computation, Vol. 11, No. 1, (1998).

15. Heath T., The Thirteen Books of Euclid’s Elements, 2nd ed. (Facsimile. Original publication:
Cambridge University Press, 1925) , Dover Publications (1956).

16. Diffie, W., Hellman, M., New directions in cryptography, Information Theory, IEEE Transac-
tions on, 22(6), 644–654 (1976).

17. Rivest, R., Shamir, A., Adleman, L., A method for obtaining digital signatures and public-key
cryptosystems, Communications of the ACM, 21(2), 120–126 (1978).

18. http://www.openssl.org/.
19. http://www.gnu.org/software/libgcrypt/.
20. The PARI Group, PARI/GP version 2.7.0, Bordeaux, 2014, http://pari.math.u-bordeaux.fr/.
21. Adler C., Kneusel R., Younger, B., Chaos, Number Theory, and Computers, Journal of Com-

putational Physics, 166, 165–172 (2001).

http://www.openssl.org/
http://www.gnu.org/software/libgcrypt/
http://pari.math.u-bordeaux.fr/

Chapter 5
Fixed-Point Numbers

Abstract Fixed-point numbers implement floating-point operations using ordinary
integers. This is accomplished through clever use of scaling and allows systems
without explicit floating-point hardware to work with floating-point values effec-
tively. In this chapter we explore how to define and store fixed-point numbers, how
to perform signed arithmetic with fixed-point numbers, how to implement common
trigonometric and transcendental functions using fixed-point numbers, and, lastly,
discuss when one might wish to use fixed-point numbers in place of floating-point
numbers.

5.1 Representation (Q Notation)

A fixed-point number is a scaled floating-point number. The scaling can be in deci-
mal or binary, we will focus on binary here because this makes the scaling a power
of two which means scaling up or down is simply a matter of shifting bits up or
down. One reason to use fixed-point arithmetic is speed, so this rapid shifting is an
advantage. Let’s take a look at what scaled arithmetic actually entails.

If we are working with numbers in a known range, say between −3 and +3, we
normally use a float or double to represent the numbers and go on our merry
way. However, what if we are in a situation where floating-point math is expen-
sive in terms of speed or memory? One option is to use scaled arithmetic, which is
fixed-point arithmetic. Before we can implement any arithmetic functions, however,
we need to understand the way scaling is used so let’s look at an example. If we
have 16-bit integers, C short int, we can represent values between −65536 and
65535, including the end points, if we use two’s-complement notation. This means
that we need to scale our −3 to +3 range numbers so that they fit in the range
−65536 to 65535. Additionally, we want to make the scale factor a power of two
and make it as large as possible while still keeping our scaled integer in the 16-bit
range. In this case, we need two bits to store the integer part and one additional
bit to store the sign for a total of three bits. This leaves 16− (2+ 1) = 13 bits for

© Springer International Publishing Switzerland 2015
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-17260-6 5

157

158 5 Fixed-Point Numbers

representing the fractional part. This means that the scale factor is 213 = 8192 and
the resolution of our fixed-point numbers will be 2−13 or about 0.000122. Here
“resolution” means that the difference between any two consecutive 16-bit integers,
in this interpretation, is a fixed difference of 0.000122. More formally, to imple-
ment scaled arithmetic, we are really using integers to represent rational numbers
with an implied denominator which is the scale factor. So, for our example, we are
using 16-bit integers to represent fractions where the integer is the numerator and
the denominator is fixed at 213 = 8192. We will look at how to convert floating-
point numbers to and from fixed-point notation and then things should be clearer but
before doing that, let’s introduce some notation that will make discussing fixed-point
numbers much easier, this is Q notation.

The Q notation was introduced by Texas Instruments (for example, see [1]) as
a shorthand for specifying the size of the integer used to represent a fixed-point
number as well as the number of bits reserved for the integer and fractional part.
Formally, the notation is Qm.n where m is the number of bits used in the integer
part while n is the number of bits in the fractional part. Signs are stored using two’s-
complement notation meaning the entire integer is a two’s-complement number. As
this is the expected way fixed-length integers are stored in modern computers this
is a good thing. This also means that there must be one additional bit for the sign of
the fixed-point number and the entire length of the fixed-point number is m+n+1
bits. Our example above used two bits for the integer part and 13 for the fractional
part. In Q notation this is Q2.13 which uses 2+13+1 = 16 bits, exactly the number
of bits in a C signed short integer. If the number of integer bits is zero it is
dropped from the Q notation so that Q31 means a 32-bit integer with no integer part
and 31 bits reserved for the fractional part.

Armed with Q notation we can see that our example above is a good choice for
representing numbers in the range −3 to +3 using 16 bits. The range of a fixed-
point number Qm.n is [−2m,2m − 2−n] which for Q2.13 is about [−4,3.999878],
beyond the [−3,3] range we required. By picking the smallest number of bits for the
integer part we maximize the number of bits for the fractional part thereby making
the fixed-point numbers as accurate as possible over the desired range for the given
total number of bits.

What if instead of selecting Q2.13 we select Q7.8? In this case the interval be-
tween values is 2−8 or about 0.0040 which is 32x larger than Q2.13 meaning our
numbers are much less accurate. To see this, consider a number line such as that
of Fig. 5.1 which shows graphically the reduced accuracy we would have if we did
not keep the integer part of the fixed-point number as close to the working range as
possible.

We now understand that a fixed-point number is a fraction with a denominator
that is a power of two. We also know how to indicate, via the Q notation, how
we are interpreting this fraction so that the entire range of the fixed-width integer
we are using to represent the fraction is used. With this in mind, we can begin to
piece together our own library of fixed-point functions in C. In this case C is a very
natural choice as one of the primary uses of fixed-point is in embedded development
where often one is working with microcontrollers without floating-point hardware.

5.1 Representation (Q Notation) 159

a

b

Fig. 5.1 The difference between numbers representable in (a) Q2.13 and (b) Q7.8. For Q2.13
each hash mark is 0.000122 apart while for Q7.8 the hash marks are 0.0040 apart. If we want to
represent a floating point value, indicated by the double arrow, we must select the closest hash
mark in each subfigure (small arrows). This is why if the range is known we should select the
smallest integer width encompassing that range

While it is possible, and often done in the past, to emulate floating-point hardware
in software, in general, fixed-point math is much faster. And in the microcontroller
world, C is still the language of choice.

Existing fixed-point libraries are highly optimized to take full advantage of the
performance found in small systems. To this end, they often implement one or two
types of fixed-point numbers. For example, the open source libfixmath project [2]
implements Q15.16 only using signed 32-bit integers. This is a reasonable choice
for a general-purpose library, actually, as it covers the range [−32768,32767.99998]
which likely includes many of the values one would encounter in daily practice,
especially in the embedded development world. The resolution is 2−16 or about
0.0000153 which is also quite reasonable. For our library, however, we will opt to
implement a variable set of fixed-point numbers. This means that when the library
is initialized we will pass in our desired Qm.n by passing m explicitly. This will de-
termine how we will interpret values internally and allow us to tailor the library to
maximize the floating-point accuracy of our numbers. The library will always use a
signed 32-bit integer to represent the number. This means that we need only specify
m, the number of bits for the integer part, and we know that n will be 32− (m+1)
bits so that the total number of bits used is always 32 (recall one extra bit for the
sign). Additionally, when the library is initialized for a particular configuration we
will recalculate certain constants which will be used when we implement trigono-
metric and transcendental functions.

We start the library with code to set up for a particular Qm.n and to calculate
some constants in that representation for future use. Note that we create a new type,
fix t, to distinguish between ordinary integers and integers we mean to interpret

160 5 Fixed-Point Numbers

as fixed-point numbers as well as fixx t for a double precision 64-bit version. So,
our initialization routine becomes,

1 #define MASK_SIGN 0x80000000
2 #define DEG2RAD 0.0174532925
3 #define PI 3.141592653589793
4 #define EXP_ITER_MAX 50
5 #define EXP_TOLERANCE 0.000001
6
7 typedef int32_t fix_t;
8 typedef int64_t fixx_t;
9 int32_t M=0,N=31;
10 fix_t PIh, PId, d2r, r2d;
11 fix_t f90,f180,f270,f360;
12 fix_t st1,st2,st3,st4;
13 fix_t p0,p1,p2,p3,p4,p5;
14 fix_t sin_tbl[91]; // sine lookup table
15
16 void Q_init(int32_t m) {
17 int i;
18
19 M = ((m >= 0) && (m < 32)) ? m : 0;
20 N = 32 - (m+1);
21
22 for(i=0; i<91; i++)
23 sin_tbl[i] = Q_to_fixed(sin(i*DEG2RAD));
24
25 PId = Q_to_fixed(2*PI);
26 PIh = Q_to_fixed(PI/2);
27 d2r = Q_to_fixed(DEG2RAD);
28 r2d = Q_to_fixed(1.0/DEG2RAD);
29 f90 = Q_to_fixed(90*DEG2RAD);
30 f180= Q_to_fixed(180*DEG2RAD);
31 f270= Q_to_fixed(270*DEG2RAD);
32 f360= Q_to_fixed(360*DEG2RAD);
33 st1 = Q_to_fixed(1.0/6);
34 st2 = Q_to_fixed(1.0/120);
35 st3 = Q_to_fixed(1.0/5040);
36 st4 = Q_to_fixed(1.0/362880);
37 p0 = Q_to_fixed(1.17708643e-05);
38 p1 = Q_to_fixed(9.99655930e-01);
39 p2 = Q_to_fixed(2.19822760e-03);
40 p3 = Q_to_fixed(-1.72068031e-01);
41 p4 = Q_to_fixed(5.87493727e-03);
42 p5 = Q_to_fixed(5.79939713e-03);
43 }

where Q init takes the number of integer bits in m. We check that m is reasonable
in line 19 and set our global M (line 9) to it. In line 20 we set N so that we always use
32 bits for the entire number. Note that we are including two standard libraries (not
listed). The math.h library is necessary for our conversion routines between floating-
point and fixed-point and to be explicit about integer types we include stdint.h.

5.1 Representation (Q Notation) 161

This latter library defines the integer types in a consistent way so that int32 t
is a signed int of 32-bits while uint32 t is an unsigned int of 32-bits.

We introduce several #define values. We use MASK SIGN to mask values to get
the sign of the number. This will be handy when we check for overflow. DEG2RAD
is the constant that converts an angle in degrees to radians. This is used in line 23
to build the sine look up table. We define PI to be π for convenience. We will use
EXP ITER MAX and EXP TOLERANCE when we implement the exponential function.

Besides M and N there are several other globals which in a fixed library would
themselves be constants. Here they are variables so that we can adapt to different Q
representations. In line 10 we define variables to hold fixed-point representations of
2π , π/2, DEG2RAD, and its reciprocal, respectively. The specific assignments for a
new Q notation are in lines 25 through 28.

The variables f90, f180, f270, and f360 are set to π/2, π , 3π/2 and 2π
radians. These values are needed when implementing the sine function. Variables
st1, st2, st3, and st4 are set to coefficients of the Taylor series expansion of
sinx. Lastly, p0 through p5 are the coefficients of the 5-th degree polynomial fit to
sinx. These values are determined empirically by curve fitting.

We will add two convenience functions to the library which one would likely not
include if working in a constrained environment. These functions let us easily map a
floating-point value (C double) to a fixed-point value and back. To find the Qm.n
representation of a floating-point value simply scale it by the denominator, 2n, and
round to the nearest integer,

z f ixed = �2nz f loat +0.5�

Similarly, to change fixed-point back to floating-point simply multiply by the recip-
rocal of the denominator,

z f loat = 2−nz f ixed

These functions are easily implemented in C as,

1 fix_t Q_to_fixed(double z) {
2 return (fix_t)floor(pow(2.0,N)*z + 0.5);
3 }
4
5 double Q_to_double(fix_t z) {
6 return (double)z * pow(2.0,-N);
7 }

What about comparisons of fixed-point numbers? In this case, since we are scaling
by a fixed power of two (ignoring the case of comparing different Q notations), nor-
mal integer comparisons will still work as expected so we do not need to implement
anything specific for fixed-point numbers. An example will illustrate. If we use an
eight bit integer and Q3.4 notation to store 2.6875 we interpret each bit as follows,

bit value → 0 0 1 0 1 0 1 1
place value → sign 22 21 20 2−1 2−2 2−3 2−4

162 5 Fixed-Point Numbers

where the integer we store has the value 2b16 = 43. If we then look at storing
2.3125 in the same format we get an integer with the value of 37. Clearly, since
2.3125 < 2.6875 we also have 37 < 43 following directly from the fact that if the Q
notation is the same then the place value for each bit is the same and we can compare
bit by bit as is done when comparing two signed integers. Negative values are stored
in two’s-complement format so we again see that the comparison of two signed in-
tegers arrives at the same relationship as the two floating-point values those integers
represent when interpreted as fixed-point numbers. With this understood, we are
now ready to look at implementing basic arithmetic.

5.2 Arithmetic with Fixed-Point Numbers

Arithmetic with fixed-point numbers is arithmetic using fractions with an implied
denominator. Another way to consider fixed-point numbers is that they are scaled
by the fractional part. So, if x is a fixed-point representation of X , a floating-point
number, then x = Xd where d = 2n is the scale factor, with rounding to the nearest
integer. Similarly, for fixed-point number y = Y d, where Y is the actual floating-
point number, we have,

x+ y = Xd +Y d = (X +Y)d

and,
x− y = Xd −Y d = (X −Y)d

which means that addition and subtraction of fixed-point numbers naturally results
in a properly scaled answer. If the magnitude of X +Y or X −Y is too large to fit in
m bits then the resulting number will overflow or underflow the representation and
a loss of precision, possibly significant, will occur.

For multiplication we have,

xy = (Xd)(Y d) = XY d2

where the answer is now scaled by d2 instead of d. To get back to the same scaling
we divide by d to get a final answer, XY d, which is what we expect for multiplication
of two Qm.n numbers returning a Qm.n result.

There are several things to keep in mind with multiplication of fixed-point num-
bers. First, multiplication may lead to an intermediate result that requires double the
precision to hold since it is scaled by d2 instead of d. Second, a loss of fractional
precision may well happen when we divide by d to get the final answer. This loss
will be in the lowest bits of the fractional part. Once the division has been made the
resulting value can be put back into a single precision integer. This means keeping
the lowest b bits of the double precision 2b-bit integer. Note that the division is sim-
ply a shift to the right by n bits for a Qm.n number. Finally, if the integer part of the
multiplication has overflowed meaning the result has an integer value that cannot

5.2 Arithmetic with Fixed-Point Numbers 163

fit in m bits, there will be a catastrophic loss of precision in the answer. Therefore,
it is important to check for this overflow when working with the double precision
version.

There is one other detail we did not mention yet. This is the issue of what happens
when we divide the double precision product by the denominator. Recall that this
division is really a shift to the right a specified number of bits. If we do this shift
without concern for any rounding issues we will introduce bias in our results. To
avoid this, we take the extra step of adding a value that is equal to 2n−1 which
is the highest bit position that will be discarded by the right shift of n bits. This is
tantamount to adding 0.5 to a floating point value before applying the floor operation
so that the resulting integer is the integer closest to the number being rounded. This
will increase the precision of our answers in the long run and cause errors to average
out over a series of calculations without constantly losing precision by applying a
floor operation. For multiplication this extra addition is done before the rescaling by
2−n so that we use the bits that will be discarded.

The algorithm for multiplication of two Qm.n fixed-point numbers, x and y, is,

1. Cast x to x′ which is a sign-extended 2b-bit integer. Cast y to y′, also a sign-
extended 2b-bit integer.

2. t ′ = x′ × y′. This is the result scaled by (2n)(2n) = 22n and stored in a 2b-bit
integer, t ′.

3. t ′ = t ′+2n−1. This is the rounding to avoid truncation bias. We will divide by 2n

so we add 2n−1 which is the largest bit value we are about to discard.
4. t ′ = t ′ × 2−n. This is the result scaled by 2n. Note that this is a right shift by n

bits.
5. Cast t ′ to t by keeping the lowest m+ n+ 1 bits. This is the product in Qm.n

format. If any bits of t ′ above bits m+ n+ 1 are set overflow has happened and
our result, t, will be incorrect.

Lastly, let’s look at fixed-point division. We want to divide two Qm.n numbers,
x by y, and return a quotient that is also a Qm.n number. This means we want an
integer that represents X/Y scaled by 2n. This is what we get if we implement the
following algorithm,

1. Cast x to x′ = x×2n where x′ is a 2b-bit integer. This means that x′ is x scaled by
22n, hence using a 2b-bit integer to store the result.

2. Correct for truncation bias by adding y/2 to x′, x′ = x′+y/2. Note that y/2 is also
a 2b-bit integer. This addition is adding Y×2n

2 =Y ×2n−1 to the value x′ which is
scaled by 22n. We will see below why this is helpful.

3. Calculate a quotient, q′ = x′/y where y has been properly sign-extended to 2b-
bits. Because of the initial scaling of x this quotient is already properly scaled so
we keep the lowest b bits to return the Qm.n answer.

Let’s look more closely at this algorithm. In the end, we want a number that is
(X/Y)×2n which is the scaled Qm.n representation of the quotient of x/y = X/Y .
By scaling x in step 1 we have x′ = x×2n = X ×22n. The bias correction in step 2

164 5 Fixed-Point Numbers

seems particularly mysterious but we see that we are adding y/2 = (Y × 2n)/2 =
Y ×2n−1. This means that the division in step 3 is,

x′/y =
X ×22n +Y ×2n−1

Y ×2n = (X/Y)×2n +
1
2

which is exactly the quotient we want, properly scaled to Qm.n plus the bias correc-
tion of 1/2.

Now that we know how to do basic arithmetic with fixed-point numbers, let’s
implement these operations for our library. We will implement two versions of
addition, subtraction, and multiplication, one that checks for overflow and one that
does not. First we present versions that do not check for overflow conditions as they
are the simplest,

1 fix_t Q_add(fix_t x, fix_t y) { return x+y; }
2 fix_t Q_sub(fix_t x, fix_t y) { return x-y; }
3
4 fix_t Q_mul(fix_t x, fix_t y) {
5 fixx_t ans = (fixx_t)x * (fixx_t)y;
6
7 ans += 1<<(N-1);
8 return (fix_t)(ans >> N);
9 }

Addition and subtraction are as simple as can be if we do not check for overflow.
Adding (subtracting) two two’s-complement integers is mathematically identical
to adding two “floating-point” values stored in two’s-complement format which is
what a fixed-point number actually is. There is an implied radix point between bits
n and n−1, counting bits from zero, but the process of addition (subtraction) of the
fractional part is the same as for the integer part so we simply add or subtract the
two values and will arrive at the proper answer.

Multiplication is much the same but if we think about the school method of mul-
tiplication we see that we will end with, since both numbers are in Qm.n format, a
number that is scaled by 2n bits. Similarly, it may also need 2m bits for the integer
part. So, we cannot use a single precision integer of 32-bits to hold the result, we
must use a double precision integer with 64-bits. This is the fixx t data type. In
line 5 we cast our inputs to 64-bits then multiply them. In line 8 we shift down N
bits to get the answer to fit into a 32-bit integer. We’ll skip line 7 for the moment.

Pictorially, the multiplication looks like Fig. 5.2 where we see the result of mul-
tiplying two 8-bit Q3.4 values using a 16-bit intermediate. The effect is the same
when two 32-bit values are multiplied using a 64-bit intermediate. This figure shows
clearly why the product must be shifted to the right to remove the extraneous lower-
order bits. In the general case this shift is by N bits as in line 8 above. Finally, line
9 casts back to a 32-bit integer type, losing any overflow in the integer part of the
fixed-point product, and returns.

We skipped line 7 above. This is the correction to remove truncation bias that was
mentioned in Step 2 of the multiplication algorithm. We add a value which is equal
to the highest bit position we will be discarding. This is much the same as adding

5.2 Arithmetic with Fixed-Point Numbers 165

0.5 to a decimal number before keeping only the integer part so that the integer will
round to the nearest value, not just the lowest value,

2068.34 →�2068.34+0.5�= �2068.85�= 2068

2068.64 →�2068.65+0.5�= �2069.15�= 2069

which is what we would expect from a round-to-the-nearest-integer operation.

Fig. 5.2 Multiplication of two fixed-point numbers. In this case two 8-bit fixed-point Q3.4 num-
bers are multiplied. The radix point is shown to separate the fractional bits from the integer bits
(including the sign). The product requires 16-bits of which the middle eight are the desired answer
as indicated. Fractional bits below this range are of lower order (smaller) and are discarded when
the product is shifted down n = 4 bits. If any bits above the indicated range are set, and not the
extended sign of the answer, then overflow has happened

What if we do check for overflow? Starting with addition and subtraction we
have,

1 fix_t Q_add_over(fix_t x, fix_t y) {
2 uint32_t ux = x;
3 uint32_t uy = y;
4 uint32_t s = ux + uy;
5
6 if ((ux & MASK_SIGN) == (uy & MASK_SIGN)) {
7 if ((s & MASK_SIGN) != (ux & MASK_SIGN)) {
8 printf("Q_add_over: overflow!\n");
9 return 0;
10 }
11 }
12 return x+y;
13 }
14

166 5 Fixed-Point Numbers

15 fix_t Q_sub_over(fix_t x, fix_t y) {
16 uint32_t ux = x;
17 uint32_t uy = y;
18 uint32_t s = ux - uy;
19
20 if ((ux & MASK_SIGN) != (uy & MASK_SIGN)) {
21 if ((s & MASK_SIGN) != (ux & MASK_SIGN)) {
22 printf("Q_sub_over: overflow!\n");
23 return 0;
24 }
25 }
26 return x-y;
27 }
28

where in each case we return the same value as above, see lines 12 and 26, but
before that we use unsigned 32-bit integers to examine the sign of the result. We
use unsigned integers because overflow is undefined in the C standard for signed
integers. This tip we borrow from the libfixmath project.

For addition we know overflow happened if the signs of the arguments are the
same but the sign of the answer is not the same as the arguments. In line 6 we mask
the unsigned representation, same bit pattern as the signed representation, keeping
only the highest bit. This is the sign bit for the signed interpretation of the number. If
these are the same for both arguments, we then check whether the sign of the result
differs from the sign of the first argument (line 7). If they do, we know overflow
happened and we report it in line 8 and return zero in line 9. Naturally, a complete
implementation would set an error indicator and that would be used to know that the
return value is not valid.

The situation is similar for subtraction except instead of checking for the same
sign in the arguments line 20 checks to see if the signs are different. If so, we check
to see if the sign of the answer is the same as the sign of the first argument. If not,
we know overflow has happened and we report it in lines 22 and 23. Otherwise, we
return the difference in line 26 knowing that the two’s-complement representation
will handle the signs properly.

Multiplication with overflow detection is,

1 fix_t Q_mul_over(fix_t x, fix_t y) {
2 fixx_t xx,yy,tt;
3 uint32_t ux = x;
4 uint32_t uy = y;
5
6 xx = (fixx_t)x;
7 yy = (fixx_t)y;
8 tt = xx * yy;
9 tt += 1<<(N-1);
10 tt >>= N;
11
12 if ((ux & MASK_SIGN) == (uy & MASK_SIGN)) {
13 if (((fix_t)tt & MASK_SIGN) != (ux & MASK_SIGN)) {
14 printf("Q_mul_over: overflow!\n");
15 return 0;

5.3 Trigonometric and Other Functions 167

16 }
17 }
18 return (fix_t)tt;
19 }

where we multiply as before but check our result starting at line 12. If the signs of
the arguments are the same (line 12) but the signs of the result and first argument
are different (line 13) we know overflow has happened and we report it in lines 14
and 15. If not, we return the product in line 18.

Lastly, we present division,

1 fix_t Q_div(fix_t x, fix_t y) {
2 fixx_t xx,yy;
3
4 xx = (fixx_t)x << N;
5 xx += (fixx_t)y / 2;
6 return xx / (fixx_t)y;
7 }

which implements the algorithm for division outlined above. We cast the dividend
to a 64-bit integer and then scale it up by N bits in line 4. This sets xx to x× 2n

using 64-bits to hold the result. Line 5 is the truncation bias correction term which
adds a 64-bit version of y divided by 2. The actual division is performed in line 6
which as we saw above returns an already properly scaled quotient. Since the return
type for the function is fix t the result of the division in line 6 is cast to the proper
32-bit size.

Before we finish this section let’s take a quick look at the effect the truncation bias
correction term has on repeated multiplication. To do this we will look at powers of
p = π −3 using Q2.29 which is capable of representing this value accurately to nine
decimal places. First, we calculate (π −3)10, then we calculate p10 with truncation
bias correction and without to show the effect of a series of ten multiplications in
a row,

(π −3)10 = 0.00000000323897 floating-point value
(π −3)10 = 0.00000000372529 Q2.29, truncation bias correction
(π −3)10 = 0.00000000186265 Q2.29, no bias correction

Notice how the truncation bias correction term keeps the final value reasonably close
to the actual value while without it the error accumulates and a serious loss of pre-
cision occurs. Clearly, truncation bias correction is an essential component of fixed-
point arithmetic.

5.3 Trigonometric and Other Functions

Now that we have implemented basic arithmetic operations in fixed-point, what
about trigonometric and other functions like log and exp? To implement these func-
tions we have several options. We can use a look-up table, which is very fast, but

168 5 Fixed-Point Numbers

potentially either not accurate enough because there are not enough entries in the
table, or it takes up too much memory because the table is big enough to be accu-
rate. We can approximate the value by using a polynomial. Lastly, we can approx-
imate the value by summing a Taylor series expansion. Let’s look at each of these
options for the sine function. We can calculate the cosine from the sine and once we
have both sine and cosine we can calculate the tangent. We will ignore the inverse
trigonometric functions. After this, we will show implementations for square root,
logarithm and exponential functions.

Trigonometric functions. For our fixed-point library we will implement the three
basic trigonometric functions: sine, cosine, and tangent. All of these will be based
on the sine which we will implement in three different ways so that we can compare
the performance and accuracy of each method. The cosine is, of course, easy to
derive from the sine since,

cos(θ) = sin(
π
2
−θ)

and, by definition,

tanθ =
sinθ
cosθ

meaning we get everything once we have the sine implemented. We will implement
the sine using a table, a Taylor series expansion, and a polynomial fit. First the table,

1 fix_t Q_sin_table(fix_t x) {
2 int32_t sign;
3 fix_t angle;
4
5 if (x < 0) x += PId;
6 sin_val_sign(&x, &sign);
7
8 angle = Q_mul(x,r2d);
9 angle += 1 << (N-1);
10 return sign*sin_tbl[angle >> N];
11 }

which uses the globally defined sin tbl array defined above with Q init. This
function also uses a helper function, sin val sign, which we describe below. This
function will be used by our other sine implementations, too. It takes an angle, in
radians, and updates it to be in the range [0,π/2] along with a sign. This is equivalent
to paying attention to which quadrant the angle puts us in and then using the appro-
priate angle and sign for that quadrant to give us the right sine value. Recall that
Q init initializes sin tbl with the sine for each degree from [0,90]. This means
that we only need consider input angles in that range.

For Q sin table we first see if the argument is negative. If so, we add 2π to
make it positive. So, the input to the function must be in the range [−2π,2π]. This
is line 5. Note that we use normal addition thereby making an implicit assumption
that we will not overflow (nor to we check for it). In line 6 we call sin val sign

to adjust our input angle to be in the range [0,π/2] and set sign accordingly.
In line 8 we convert our adjusted input angle, assumed to be in radians, to degrees.

5.3 Trigonometric and Other Functions 169

This is because we built the table by degrees and want to index it by degree. Line
9 adds 0.5 to the angle, this is the bias correction, as we are interested in mapping
angle to the nearest degree so we can use the look-up table. In line 10 we trun-
cate angle, dropping the fractional part by shifting it down N bits. This means that
angle >> N is an integer in the range [0,90] degrees. With this integer we index
our sine table and, after multiplying by sign, return the final answer. This function
is fast but has the overhead of building the table in the first place for each call to
Q init and the memory used by the table. Additionally, while most accurate for
inputs which have no fractional component, it is not as accurate as it could be for
arbitrary inputs. The exercises will challenge the reader to increase the accuracy by
linear interpolation.

Let’s look at sin val sign which we used above and will use again,

1 void sin_val_sign(int32_t *angle, int32_t *sign) {
2
3 if ((*angle >=0) && (*angle <= f90)) {
4 // quadrant I
5 *sign = 1;
6 } else {
7 if ((*angle > f90) && (*angle <= f180)) {
8 // quadrant II
9 *sign = 1;
10 *angle = f180-*angle;
11 } else {
12 if ((*angle > f180) && (*angle <= f270)) {
13 // quadrant III
14 *sign = -1;
15 *angle = *angle-f180;
16 } else {
17 // quadrant IV
18 *sign = -1;
19 *angle = f360-*angle;
20 }
21 }
22 }
23 }

This function accepts as input via pointers the current angle and a sign value which
it will set. By comparing with the constants f90, f180, f270, and f360, each of
which is set in Q init, the function determines which quadrant angle falls in. It
then sets sign appropriately for that quadrant and updates the value of angle so
that the sine of the new angle, times sign, will be the proper sine for the original
angle. This means we only ever work with angles in the range [0,π/2].

We get Q cos table and Q tan table for free via Q sin table,

1 fix_t Q_cos_table(fix_t x) {
2 return Q_sin_table(Q_sub(PIh,x));
3 }
4
5 fix_t Q_tan_table(fix_t x) {
6 return Q_div(Q_sin_table(x), Q_cos_table(x));
7 }

170 5 Fixed-Point Numbers

where we have made use of the trigonometric identities given above. Note the use
of the constant PIh for π/2 which is set in Q init for the given Qm.n fixed-point
representation.

Now we consider implementing sine using a Taylor series expansion. Please see
any calculus book for a description of a Taylor series. Here we simply use the well-
known series expansion for sinx,

sinx = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
+ · · ·

after mapping the input angle to [0,π/2] as before. This leads to,

1 fix_t Q_sin_taylor(fix_t x) {
2 fix_t x3,x5,x7,x9;
3 fix_t ans;
4 int32_t sign;
5
6 if (x < 0) x += PId;
7 sin_val_sign(&x, &sign);
8
9 x3 = Q_mul(Q_mul(x,x),x);
10 x5 = Q_mul(Q_mul(x3,x),x);
11 x7 = Q_mul(Q_mul(x5,x),x);
12 x9 = Q_mul(Q_mul(x7,x),x);
13
14 ans = x;
15 if (x3 != 0) ans -= Q_mul(st1,x3);
16 if (x5 != 0) ans += Q_mul(st2,x5);
17 if (x7 != 0) ans += Q_mul(st3,x7);
18 if (x9 != 0) ans += Q_mul(st4,x9);
19
20 return sign*ans;
21 }

where lines 6 and 7 check for a negative input, adding 2π if it is, and we map the
argument to [0,π/2] while setting sign. Lines 9 through 12 calculate powers of the
input, x. We are implementing the series directly to make it as easy as possible to
see the translation from the equation to the code so we calculate all the powers we
need in advance. A little algebraic manipulation will show that we only really need
x and x2 plus some well-placed parentheses. See the exercises for another challenge
to the reader. Line 14 sets ans to the first term in the series. Lines 15 through 18
add subsequent terms if the power of x for that term is not zero. This may happen
if x < 1 and we do not have enough precision in the n fractional bits of the Qm.n
number to represent the power. The magic constants st1, st2, st3, and st4 are
the reciprocals of the factorials in the series representation. These are calculated
in advance for the given Q representation when Q init is called. Finally, line 20
multiplies by the sign and returns the final estimate for sinx. As before, we get cosx
and tanx for free,

5.3 Trigonometric and Other Functions 171

1 fix_t Q_cos_taylor(fix_t x) {
2 return Q_sin_taylor(Q_sub(PIh,x));
3 }
4
5 fix_t Q_tan_taylor(fix_t x) {
6 return Q_div(Q_sin_taylor(x), Q_cos_taylor(x));
7 }

where the form of the functions matches the table versions above but is based on
Q sin taylor instead.

Our final sinx implementation comes from a set of points calculated from a
floating-point version of sine that is then curve fit to a 5-th degree polynomial. We
calculated sinx for 100 equally spaced points from [0,π/2] using the C library ver-
sion of sin. We then fit a 5-th degree polynomial to these points to find the coef-
ficients p0, p1, p2, p3, p4, and p5 which minimize the squared difference between
sinx and f (x) where,

f (x) = p0 + p1x+ p2x2 + p3x3 + p4x4 + p5x5

for each of the 100 data points xi, i = 0,1, . . . ,99. This is standard least-squares
curve fitting. We used the Python numpy package [3] to calculate the coefficients
(see polyfit). These coefficients are mapped to the current Q notation in Q init and
set to the variables p0, p1, p2, p3, p4, and p5, respectively. With these parameters
we are able to approximate the sine in the range [0,π/2] with,

1 fix_t Q_sin_poly(fix_t x) {
2 fix_t x2,x3,x4,x5;
3 fix_t ans;
4 int32_t sign;
5
6 if (x < 0) x += PId;
7 sin_val_sign(&x, &sign);
8
9 x2 = Q_mul(x,x);
10 x3 = Q_mul(x2,x);
11 x4 = Q_mul(x3,x);
12 x5 = Q_mul(x4,x);
13
14 ans = p0 + Q_mul(p1,x) + Q_mul(p2,x2) + Q_mul(p3,x3) +
15 Q_mul(p4,x4) + Q_mul(p5,x5);
16 return sign*ans;
17 }

where as before, lines 6 and 7 adjust for negative arguments and map x to [0,π/2]
while setting sign. Lines 9 through 12 calculate the powers of x for the 5-th de-
gree polynomial. Lines 14 and 15 directly implement the polynomial using Q mul

to multiply with a proper intermediate number of bits and ordinary addition thereby
ignoring any potential overflow. Lastly, line 16 multiplies by sign and returns the
answer. As before, we can write cosx and tanx using the polynomial sine,

172 5 Fixed-Point Numbers

1 fix_t Q_cos_poly(fix_t x) {
2 return Q_sin_poly(Q_sub(PIh,x));
3 }
4
5 fix_t Q_tan_poly(fix_t x) {
6 return Q_div(Q_sin_poly(x), Q_cos_poly(x));
7 }

Comparison of trigonometric functions. All three sets of trigonometric functions
implemented above have a version of sine at their heart. Therefore, we can compare
them by looking at the accuracy of the sine functions. If we generate the sine, using
the table, series expansion, or polynomial fit, for 100 randomly selected angles in
[0,2π) we can compare the resulting values to the actual floating-point sine. Any
deviation can be used to assess the quality of the sine approximation.

If we generate the table with code like this,

1 Q_init(7);
2 srand(time(NULL));
3
4 for(i=0; i<100; i++) {
5 f = 2*3.14159265*((double)rand()/RAND_MAX);
6 a = Q_to_fixed(f);
7 printf("%0.8f %0.8f %0.8f %0.8f %0.8f\n", f, sin(f),
8 Q_to_double(Q_sin_table(a)),
8 Q_to_double(Q_sin_taylor(a)),
9 Q_to_double(Q_sin_poly(a)));
10 }

where we include the stdlib.h C library and use srand to seed the random
number generator which we call in line 5 to set f to a random value in the range
[0,2π). We note that it is well known that rand is a very poor pseudo-random
number generator and that we have a very (very) small chance of selecting 2π as
rand returns a number from [0,RANDMAX] and we are dividing by RAND MAX.
However, for our purposes we accept the inefficiency and take the risk. The reader
is encouraged, however, to develop an understanding of pseudo-random number
generation, which is fascinating, by referring to one of the many good texts on the
subject. For example, see Gentle’s Random Number Generation and Monte Carlo
Methods [4].

Now that we have our randomly selected sine values we can calculate the delta
between the floating-point value and the three approximations for each angle and
then report the absolute maximum deviation (|Δ |), the mean (x̄), and the standard
deviation (σ) of the deltas. These will give us a feel for how the functions per-
form over the their full range. The results of this analysis for Q7.24 numbers are in
Table 5.1.

We see that while all three approximations are adequate with relatively small
errors, on average, it is clear that Q sin table is the least accurate, as expected
because it forces the argument to the nearest degree, and that Q sin poly is to

5.3 Trigonometric and Other Functions 173

Function |Δ | x̄ σ
Q sin table 8.4×10−3 −6.5×10−5 3.8×10−3

Q sin taylor 8.2×10−3 −7.8×10−6 8.2×10−3

Q sin poly 7.7×10−6 −1.1×10−7 3.9×10−6

Table 5.1 Comparison of the difference between the floating-point sine and each of the fixed-
point sine functions using summary statistics for 100 randomly selected angles over the entire
range [0,2π)

be preferred over Q sin taylor in terms of accuracy. If we count the number of
multiplications we see that Q sin poly is also more efficient than Q sin taylor

with nine multiplications to as many as twelve.

Square root and transcendental functions. In addition to basic trigonometric
functions we want to add square root, natural logarithm and exponential functions
to our library. Let’s look at how we can implement these functions starting first with
square root.

Perhaps the fastest way to implement a fixed-point square root function is to
use Newton’s method. This is an iterative method to find the roots of a function
by solving f (x) = 0. The method selects an initial guess for the root, x0, and then
iterates,

xi+1 = xi − f (xi)

f ′(xi)

until convergence where f ′(x) is the first derivative of f (x). In this case, we want
f (x) = x2 − n = 0 which will find the value of x which when squared equals a
specific number n. This means that x will be equal to the square root of n which is
exactly what we want. If we work through the steps we have,

f (x) = x2 −n

f ′(x) = 2x

xi+1 = xi − f (xi)

f ′(xi)

= xi − x2
i −n
2xi

= xi − 1
2
(xi − n

xi
)

=
1
2
(xi +

n
xi
)

which implies that we need only an initial guess followed by some number of iter-
ations of the final equation above to generate a good approximation to the square
root of n. It is known that this method converges quickly so we only need a handful
of iterations.

174 5 Fixed-Point Numbers

Translating this into code gives,

1 fix_t Q_sqrt(fix_t n) {
2 fix_t a;
3 int32_t k;
4
5 if (n <= 0) return -(1<<N);
6 if (n == (1<<N)) return (1<<N);
7
8 a = n >> 1;
9
10 for(k=0; k < 10; k++)
11 a = Q_mul(1 << (N-1),Q_add(Q_div(n,a),a));
12
13 return a;
14 }

where we first check for negative arguments and return −1 if we have one in line 5.
Recall that our fixed-point numbers are binary fractions scaled by N bits so shifting
1 up N bits gives us a value equal to one in our current Q notation. Line 6 is a quick
check to see if our argument is one. If so we immediately return the square root (1).
Line 8 is our initial guess which we store in a. We are looking for a square root so
our initial guess is n/2 which is exactly what we get by shifting the argument one bit
position to the right. The loop in lines 10 and 11 performs the actual iteration. We fix
the number of iterations at ten though a more sophisticated approach would perhaps
be sensitive to the number of bits in the fractional part of our numbers and adjust the
iteration limit accordingly. Line 11 is a direct translation of our final equation above
using our previously defined arithmetic functions. Note that for simplicity we are
not checking for any overflow conditions. Also note the use of 1 << (N-1) which
is exactly 0.5 for N bits in the fractional part. Finally, line 13 returns a which is the
approximate square root of n.

Repeating a random analysis similar to the one performed above for the sine
functions we can compare Q sqrt to the floating-point sqrt function for 100 ran-
domly selected values from [1,1000) using Q10.21 format numbers. If we do this
we get the following results,

|Δ | x̄ σ
3.6×10−7 −1.3×10−7 1.4×10−7

which indicates that this approach gives quite accurate answers in general.
We consider the exponential function, ex, next as we will need this function in

order to efficiently implement the natural logarithm. The Taylor series expansion of
ex is particularly well suited for implementation on a computer. The series itself is,

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·=

∞

∑
i=0

xi

i!

Looking at the series shows that if the current term in the series is ti then the
next term in the series is ti+1 = ti(x

i) which means that we need not calculate the

5.3 Trigonometric and Other Functions 175

factorials completely but will get them by multiplying the current term by x
i and

adding it to a running total. If we accumulate terms until we get a term that is below
a given threshold, say too small to add anything meaningful to the total given the
number of bits used for the fractional part of the fixed-point number, we have a
particularly nice implementation. Writing this in C using EXP TOLERANCE to be
the cut-off value for our terms, 0.000001 or the like, and adding a maximum number
of iterations (EXP ITER MAX = 50) gives the following,

1 fix_t Q_exp(fix_t x) {
2 int32_t i;
3 fix_t e, c, t, tol;
4
5 tol = Q_to_fixed(EXP_TOLERANCE);
6 i = 0;
7
8 c = 1 << N;
9 e = 1 << N;
10 t = x;
11
12 do {
13 e = Q_add(e,t);
14 c = Q_add(c, 1<<N);
15 t = Q_mul(t, Q_div(x,c));
16 i++;
17 } while ((abs(t) > tol) && (i < EXP_ITER_MAX));
18
19 return e;
20 }

where line 5 sets the tolerance and line 6 initializes the iteration counter. Line 8 sets
c to one. This is the term counter and is set to one because the first term in the series
(1) is used to initialize the accumulator, e in line 9. The current term is then the
second term in the series, which is x = x1/1!, and we initialize t with it. The loop
in lines 12 through 17 adds new terms to the accumulator (line 13) while bumping
the term counter (line 14). Line 15 calculates the next term in the series from the
previous term and sets t accordingly. Line 16 increments the iteration counter while
line 17 checks to see if we can exit the loop by either calculating a term below the
tolerance or by reaching the limit on iterations. At this point e contains the sum of
the series, which is ex, and it is returned in line 19.

Repeating the random value test for 100 random arguments in the range [−4,4)
for Q10.21 format numbers gives,

|Δ | x̄ σ
2.0×10−5 −9.2×10−7 4.5×10−6

showing that Q exp does give good results.
With ex implemented we can now add our final library function, the natural log

(logx) which is implemented using Newton’s method just as square root was. In this

176 5 Fixed-Point Numbers

case, our function is f (x) = ex −c = 0 which is zero when x is the log of c. The first
derivative of this function is f ′(x) = ex which means our iteration function is,

xi+1 = xi − f (xi)

f ′(xi)
= xi − exi − c

exi
= xi −1+ ce−xi

where we again set our initial guess to x0 = c/2. Translating to C code gives,

1 fix_t Q_log(fix_t x) {
2 fix_t a;
3 int32_t k;
4
5 if (x <= 0) return -(1<<N);
6 if (x == (1<<N)) return 0;
7
8 a = x >> 1;
9
10 for(k=0; k < 7; k++) {
11 a = Q_add(a, Q_mul(x,Q_exp(-a)));
12 a = Q_sub(a,1<<N);
13 }
14
15 return a;
16 }

where a sanity check is made in line 5 to disallow negative arguments (return -1)
and a quick check for a known value (log1 = 0) is in line 6. Line 8 sets a to our
initial guess of c/2. Lines 10 through 13 are the iteration loop. This is why we
needed to implement ex before we could implement the logarithm. Line 11 calls
Q exp as part of the update to a. Line 12 subtracts one from the sum in line 11. The
number of iterations is hard-coded to seven which gives good results. Again, a more
sophisticated approach would be aware of the number of bits in the fractional part
of our fixed-point numbers and set the loop limit accordingly. Line 15 returns a as
our approximation of the natural log.

A final repeat of the random value test with 100 random arguments from [0.5,10)
gives,

|Δ | x̄ σ
1.3×10−5 4.0×10−7 4.4×10−6

again showing good agreement with the floating-point C library function.
At this point our C library of fixed-point functions is complete. We now turn our

attention from the what of fixed-point numbers to briefly consider the questions of
why and when.

5.5 Chapter Summary 177

5.4 When to Use Fixed-Point Numbers

Perhaps the most obvious time to use fixed-point numbers is when working on a
system that does not have floating-point capability in hardware. This includes many
small systems, like microcontrollers and digital signal processors (DSP), but also
includes older computers that lack floating-point hardware. Using fixed-point num-
bers on these systems makes sense and is much faster than using software to emulate
floating-point hardware. For example, older Macintosh computers based on the Mo-
torola 68000 and later processors often used software to emulate floating-point hard-
ware. Called SANE (Standard Apple Numerics Environment), it implemented IEEE
754 floating point arithmetic in software for early Macintosh computers that lacked
the floating-point hardware found in the Motorola 68040 or did not use the 68881
floating-point coprocessor. The SANE library provided maximum numeric compat-
ibility ensuring that floating-point operations on one computer matched those of
another that used hardware instead of software for the calculations. However, the
simplicity of fixed-point arithmetic would have greatly improved performance on
these early systems.

In 1993, Id Software released DOOM [5]. This game was one of the earliest first-
person shooter (FPS) video games. FPS games give the user the illusion of being in a
three-dimensional environment and as such require a lot of geometric graphics pro-
cessing at high speed to enable realistic (limited for DOOM, granted) rendering of
the environment. However, in 1993 only Intel 80486DX microprocessors had built-
in hardware floating point abilities. As processor speeds were very low compared to
current standards, only tens of megahertz, it was crucial that calculations be as fast
as possible while still using only software. Id’s solution was to use fixed-point arith-
metic for all graphics calculations. Specifically, they used Q15.16 format numbers
which fit in a 32-bit signed integer.

Another reason to consider fixed-point math is power consumption. The floating-
point unit on processors uses more power than the integer unit hence fixed-point
arithmetic will use less power than the same calculations performed with hardware
floating-point. This is particularly important in mobile applications.

Lastly, many popular audio and video codecs are designed to be implemented
using fixed-point arithmetic so that simple devices that lack floating-point hardware
can be used. For example, the open source Shine project [6] is a fast fixed-point
MP3 encoder which can be used on simple computers like the Raspberry Pi.

5.5 Chapter Summary

In this chapter we introduced Q notation to specify fixed-point numbers. These num-
bers interpret an integer as a floating point number with a fixed number of fractional
bits. We learned how to convert floating-point numbers to fixed-point and back. We
also implemented arithmetic operations in C for fixed-point numbers using signed
32-bit integers. Additionally, we implemented trigonometric functions in three

178 5 Fixed-Point Numbers

different ways and compared them for accuracy. To round out the library we then
added square root, natural logarithm, and exponential functions. Lastly, we talked
about when to use fixed-point numbers and gave some examples of places where
fixed-point numbers have been used.

Exercises

5.1. The function Q sin table rounds its argument to the nearest degree and then
returns the sine stored in the precomputed table for that degree. This can be made
more accurate by linearly interpolating between the degrees that bound the input an-
gle. For example, if the input value, as a fixed-point number in some Qm.n represen-
tation, is equivalent to 45.4 degrees then Q sin table will round down to 45 degrees
and return 0.70710678 as the sine. The actual sine of 45.4 degrees is 0.71202605 so
the returned value underestimates the true value.

In linear interpolation the values that bound the input, in this case 45 < 45.4 <
46 degrees, are used to determine the line between the values, y = mx+ b, with
m = (y2 − y1)/(x2 − x1) and b = y1 −mx1 where x1 = 45, x2 = 46, y1 = sin(x1) and
y2 = sin(x2). Then, sin(45.4) is equal to m(45.4)+b.

In this case, then, the improved answer is sin(45.4) = m(45.4)+b = 0.71199999
with m = 0.01223302 and b = 0.15662088 for a difference on the order of 2.6×
10−5 when compared to the true result. This is better than the difference of 4.9×
10−3 by simply rounding to the nearest degree. Add linear interpolation to
Q sin table. **

5.2. Add a function, Q ipow, to the library that takes two arguments. The first is a
fixed-point number, x, and the second is an integer, n, which may be negative. The
return value of the function is xn. *

5.3. Add a function, Q pow, to the library that takes two arguments. The first is a
fixed-point number, x, and the second is also a fixed-point number, y. The return
value of the function is xy. (Hint: xy = ey log(x)) *

5.4. Add a function, Q asin, to the library that takes a sine value, positive and neg-
ative, and returns the angle for that sign, in radians. Use a Taylor series expansion,

sin−1 x = x+

(
1
2

)(
x3

3

)
+

(
1
2

)(
3
4

)(
x5

5

)
+

(
1
2

)(
3
4

)(
5
6

)(
x7

7

)
+ · · ·

where you may need terms to x9 or higher. (Hint: the coefficient of term ti+1 can be
created from ti) **

5.5. Create a Python class, Fixed, that duplicates the arithmetic functionality of the
C fixed-point library. Be sure to overload the operators for +, −, /, ∗ so that the
fixed-point class can be used in expressions. **

References 179

5.6. The function Q sin taylor uses terms out to x9 and calculates them explicitly
for input x. Show via algebraic manipulation that the same truncated series sum can
be found using only x and x2. Then, update Q sin taylor to use this form. Note
that you will need to introduce new constants in place of the values used for st1
through st4. Update Q init as well to set these new values. **

References

1. TMS320C64x DSP Library Programmer’s Reference Literature Number: SPRU565B, Texas
Instruments, October 2003.

2. https://code.google.com/p/libfixmath/.
3. http://www.numpy.org/.
4. Gentle, J. E. Random number generation and Monte Carlo methods. Springer, 2003.
5. Doom. Id Software. 1993. Video game.
6. https://github.com/savonet/shine.

https://code.google.com/p/libfixmath/
http://www.numpy.org/
https://github.com/savonet/shine

Chapter 6
Decimal Floating Point

Abstract Decimal floating-point is an emerging standard which uses base 10 instead
of base 2 to represent floating-point numbers. In this chapter we will take a look at
how decimal floating-point numbers are stored using the IEEE 754-2008 standard as
our reference. We will then look at a C language software implementation of decimal
floating-point which conforms to the IEEE standard and give some examples of its
use. We follow this with a look at the Python decimal library. We end with some
thoughts on decimal floating-point and its use.

6.1 What Is Decimal Floating-Point?

Modern computers make extensive use of floating-point arithmetic. Virtually all
of this is accomplished with binary floating-point numbers. Binary floating-point
numbers use base 2 and generally represent their numbers as a significand (man-
tissa), also binary, multiplied by 2 raised to some exponent. The standard for this
type of floating-point number is given in the IEEE 754-2008 document [1] which
has been universally adopted and includes hardware implementations for maximum
performance. However, it is known that there are often accuracy issues with binary
floating-point because of rounding errors or lack of precision when converting dec-
imal numbers to binary. For example, decimal 0.1 is an infinitely repeating binary
fraction which therefore must be truncated when stored in a finite number of bits.

Decimal floating-point (DFP) was introduced to address these issues. In DFP, the
base is 10, not 2, so that decimal numbers may be represented exactly (to within the
number of digits in the significand). The IEEE standard that defines binary floating-
point also defines decimal floating-point formats and operations. This is the standard
we will refer to in this chapter. Even though there is limited hardware support for
DFP, notably from IBM, we will focus exclusively on software implementations
here.

© Springer International Publishing Switzerland 2015
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-17260-6 6

181

182 6 Decimal Floating Point

A binary floating-point number is represented as,

±d0.d1d2d3 . . .dp−1 ×2e, 0 ≤ di < 2

where d0.d1d2d3 . . .dp−1 is the p digit significand (or mantissa), 2 is the base and e
is the integer exponent. Similarly, a decimal floating-point number is represented as,

±d0.d1d2d3 . . .dp−1 ×10e, 0 ≤ di < 10

where the digits of the significand are decimal digits. This implies, as we will be
storing our DFP numbers on a computer, that there is some sort of encoding for the
significand so the digits 0 . . .9 can be stored efficiently. This is not necessary in a
binary floating-point number. For a description of the difference between a floating-
point number, regardless of base, and a real number see the introduction to Chap. 3.

6.2 The IEEE 754-2008 Decimal Floating-Point Format

In this section we introduce decimal floating-point using the IEEE 754 format. We
will describe the way in which DFP numbers are stored, using the fixed decimal32,
decimal64 and decimal128 storage formats, and cover special values such as zero,
infinity, and Not-a-Number (NaN). These values have direct analogues in binary
floating-point.

Storage Formats. The IEEE 754 standard specifies DFP numbers as a sign, coef-
ficient and exponent so that the actual number is,

n = (−1)sign × coefficient×10exponent

with the sign a single bit, 0 if positive and 1 for negative, and the exponent in ex-
cess binary notation. Excess notation means that the actual exponent is found by
subtracting the bias from the stored value. There are two equivalent storage formats
for the coefficient field, one as a binary integer and the other as a packed decimal
format. In this chapter we will be working with a software library which uses the
packed decimal format so that is the format we will concentrate on. The few existing
hardware implementations of DFP use the packed format most often as well.

While the actual DFP value is specified by the sign, coefficient and exponent the
actual way in which DFP numbers are stored in memory is fairly complicated. The
decimal64 format is made up of four different fields,

where S is the sign (1 bit), CF is the combination field (5 bits), BXCF is the biased
exponent continuation field (8 bits), and CCF is the coefficient continuation field

6.2 The IEEE 754-2008 Decimal Floating-Point Format 183

(50 bits). For a decimal32 number the BXCF is 6 bits and the CCF is 20 bits. For
decimal128 these fields are 12 bits and 110 bits respectively.

Let’s start by decoding an example of a decimal64 number, in this case 0.1. While
0.1 is infinitely repeating when expressed in binary in decimal it is simply a single
digit. If we encode 0.1 as a DFP number it will use eight bytes of memory (64 bits).
We can then dump each of these bytes as a sequence of hexadecimal numbers,

0.1 → 22 34 00 00 00 00 00 01

from which we see that the fields are, in binary,

S = 0

CF = 01000

BXCF = 10001101

CCF = 0000000000 0000000000 0000000000 0000000000 0000000001

where we have written the CCF as five groups of ten binary digits. We’ll see why
momentarily. For now, let’s consider the other fields. The sign is straightforward
enough. It is zero so the number is positive since (−1)0 = 1. The CF field requires
some explanation. It is a five bit field which encodes the two leftmost binary digits
of the bias exponent along with the leftmost digit of the coefficient. There are ten
possible coefficient digits and three different values of the leftmost two bits of the
exponent for a total of 30 possible five bit combinations. As 25 = 32 this means that
30 of the possible bit patterns encode the values we want and we still have two left
over for other uses as we will see below. Table 6.1 shows all the bit patterns for the
CF field and how to interpret them to get the exponent and coefficient digit values.

Digit 00 01 10
0 00000 01000 10000
1 00001 01001 10001
2 00010 01010 10010
3 00011 01011 10011
4 00100 01100 10100
5 00101 01101 10101
6 00110 01110 10110
7 00111 01111 10111
8 11000 11010 11100
9 11001 11011 11101

Table 6.1 Decoding the CF field. Locate the CF bit pattern to read off the leftmost two bits of the
biased exponent (column) and the leftmost digit of the coefficient (row). After [2]

For our example we have 01000 which corresponds to exponent bits 01 and a left-
most coefficient digit of 0.

The remainder of the ten bit exponent is in the BXCF field. Combining this with
the decoded CF value gives 01100011012 = 18D16 = 397 for the biased exponent.
The bias value for decimal64 is 398 so the unbiased exponent is 397− 398 = −1.

184 6 Decimal Floating Point

The bias value for decimal32 is 101 while the bias for decimal128 is 6176. The
minimum and maximum exponents for each of the three encodings is therefore,

Minimum Maximum
decimal32 −101 90
decimal64 −398 398
decimal128 −6176 6111

The last part we need to decode is the coefficient field itself. We already know
the leftmost digit of the coefficient field from the CF field. It is zero. The remain-
der of the coefficient is encoded in the CCF field. This field encodes the decimal
digits of the coefficient in a packed format called densely packed decimal or DPD.
This format uses ten bits to encode three decimal digits. This is more efficient than
classical binary-coded decimal which would require 12 bits to encode three decimal
digits See Chap. 2 for an explanation of binary-coded decimal.

The DPD encoding takes ten bits labeled pqr stu v wxy and maps them to three
decimal digits represented in binary as abcd efgh ijkm where each letter is a binary
digit (l is skipped to avoid confusion with 1). This group of ten bits is called a declet
and can be decoded by mapping through Table 6.2.

vxwst abcd efgh ijkm
0---- 0pqr 0stu 0wxy
100-- 0pqr 0stu 100y
101-- 0pqr 100u 0sty
110-- 100r 0stu 0pqy
11100 100r 0pqu 100y
11110 0pqr 100u 100y
11111 100r 100u 100y

Table 6.2 Unpacking a declet (pqr stu v wxy) by translating it into three groups of binary digits
representing three decimal digits (abcd efgh ijkm). After [2]

For our example we have five declets which corresponds to 15 decimal digits,
three digits per declet, plus one additional leading (leftmost) digit of zero. This
means that a decimal64 number has 16 digits of precision. For decimal32 the preci-
sion is 7 digits while for decimal128 it is 34 digits. Four of the five declets in our ex-
ample are all zeros mapping to three zero digits. The rightmost declet is 0000000001
which means that in Table 6.2 v is zero corresponding to the first row of the table.
Therefore, the three decimal digits of this last declet are,

0pqr 0stu 0wxy
0000 0000 0001

corresponding to 001 in decimal. So, finally, we have decoded the entire DPF num-
ber: sign, coefficient, and exponent. The final value is, as we expect,

n = (−1)0 ×0000000000000001×10−1 = 1×10−1 = 0.1

6.2 The IEEE 754-2008 Decimal Floating-Point Format 185

It should be noted that, unlike IEEE binary floating-point, DFP does not have a
single exponent for each number. This means that there are possibly multiple repre-
sentations of the same number since 1×10−1 = 10×10−2, etc. The standard defines
a preferred exponent, based on the arguments to an operation, in order to produce
consistent output. The set of representations mapping to the same number are called
its cohort.

Packing numbers into a DPD declet is straightforward. For the example above
we produced three BCD digits (four bits each, the value in binary is the value of the
digit) and called the bits of each abcd, efgh, and ijkm. Using these labels for the bits
we can take any set of three BCD digits and encode them into a DPD declet using
Table 6.3. Recall that the ten bits of the declet are labeled pqr stu v wxy which can
be read from the table by finding the row matching the aei bit values from the input
BCD numbers. We will not work an example here but save using Table 6.3 for the
exercises.

aei pqr stu v wxy
000 bcd fgh 0 jkm
001 bcd fgh 1 00m
010 bcd jkh 1 01m
011 bcd 10h 1 11m
100 jkd fgh 1 10m
101 fgd 01h 1 11m
110 jkd 00h 1 11m
111 00d 11h 1 11m

Table 6.3 Packing three BCD numbers (abcd efgh ijkm) into a declet (pqr stu v wxy). Locate the
row by matching the first bit of each BCD number to the value under the aei column, then, the bits
of the declet are read from the remaining columns of that row. After [2]

Special Values. Just as IEEE 754 defines special values for binary floating-point,
so it does for decimal floating-point. These are zero, which may be signed or un-
signed but interpreted as zero regardless, infinities, and Not-a-Number (NaN). Let’s
consider each of these.

For decimal64 the eight bytes representing +0 are 22 38 00 00 00 00 00 00.
Parsing this gives S of 0, CF of 01000, and BXCF of 10001110. As before, the CF
implies that the first two bits of the exponent field are 01 while the first digit of the
coefficient field is zero. Glancing at the remaining digits of the bytes representing
zero makes it clear that the entire coefficient field is zero. What about the exponent?
Combining the 01 from the CF field with the bits of the BXCF field gives,

e = 01100011102 = 18E16 = 398

which unbiased is e = 398−398 = 0. So, zero is represented in DFP as (−1)0×0×
100 which is as we would expect. What happens if we consider -0? The only value
that changes is the sign giving (−1)1 ×0×100, which is still zero.

If a number is too large, positive or negative, to be represented, a special value of
infinity is used. To signal infinity the CF field is set to one of the two 5-bit values

186 6 Decimal Floating Point

that are not used to encode the exponent. In this case, the CF field will be 11110.
The sign bit determines whether the value is +∞ or −∞. Other bits are ignored. So,
if we try to represent 1×101000 with a decimal64 number, which is too large since
the largest allowed exponent value is 369, we instead get infinity,

78 00 00 00 00 00 00 00

with,

S = 0

CF = 11110

and BXCF and CCF all zero. Negative infinity is the same with S set to 1.
The IEEE 754 standard for binary floating-point defines Not-a-Number values

to represent attempts to encode values that are not legitimate numbers. NaNs are
also defined for decimal floating-point by the special CF field value of 11111. For
example, attempting to calculate the logarithm of a negative number will result in
a NaN. In addition to the bits of the CF field, the leftmost bit of the BXCF field
is used to determine whether or not the NaN is signaling (bit set to 1) or quiet (bit
set to 0). A signaling NaN will throw a floating-point exception while a quiet NaN
will not.

When a NaN is generated the IEEE 754 standard allows implementations to use
the CCF field to encode information about the source of the NaN. This is called
its payload. Furthermore, the standard also ensures that subsequent operations in-
volving a NaN will propagate the payload to the result of the operation. It appears,
in practice, that this ability is seldom used. Instead, the appearance of the NaN is
taken to mean there is an error in the expression or code without using the payload
to provide any additional information. See Chap. 3 for an example using the payload
for a binary floating-point number.

Rounding Modes. The IEEE standard defines multiple rounding modes. The stan-
dard assumes that operations are performed with “infinite” precision and are then
fit into the storage format at hand. This will require rounding of results so that the
proper number of output digits can be set. These are the rounding modes. Typically,
users seldom modify these modes but there are times when it is beneficial to do so
(interval arithmetic is one such instance). There are five rounding modes that can
apply to decimal floating-point numbers. These are,

Name Description
roundTowardsPositive Round the result towards +∞.
roundTiesToAway Round the result to the closest representable value.

Round ties to the larger in magnitude.
roundTiesToEven Round the result to the closest representable value.

Round ties towards the even value.
roundTowardsZero Round the result towards zero.
roundTowardsNegative Round the result towards −∞.

with the default action to roundTiesToEven.

6.2 The IEEE 754-2008 Decimal Floating-Point Format 187

Storage Order. For the examples in this section we have implicitly assumed that
the bytes of the DFP number are stored in memory with the most significant byte
first. This is called big-endian format and matches the way the bits are labeled in the
diagrams of the standard. Naturally, the concept of big-endianness is more general
than just this one instance. The library we will be using later in the chapter uses
little-endian format. The difference is simply reversing the order of the bytes in
memory. For convenience, our examples will continue to use big-endian format.

An Example. Before we move on and start using the open source decimal floating-
point library let’s use what we’ve covered in this section to write a simple routine to
parse a DFP number, stored as eight bytes, and output the value as an ASCII string.
We will assume the storage order to be big-endian.

The main function, dfp parse() is listed in Fig. 6.1. It accepts a big-endian dec-
imal64 number as an array of bytes and fills in a given string with the output value.
The string array is assumed to be large enough.
In line 4 the sign of the output string is set. If the number is not negative the sign
will be overwritten. Lines 5 through 7 extract the sign bit, CF field and BXCF field.
The BXCF field is made up of the last two bits of the first byte and all of the second.
At this point we can do two quick checks to see if the number is infinity or a NaN.
If so, copy the proper string to the output and return (lines 9 and 10). Line 12 calls
a helper function, dfp parse exp(), to extract the exponent and first output digit
from the combined CF and BXCF fields. This function is,

1 int dfp_parse_exp(int cf, int bxcf, int *d) {
2 static int digits[] = {0,1,2,3,4,5,6,7,
3 0,1,2,3,4,5,6,7,
4 0,1,2,3,4,5,6,7,
5 8,9,8,9,8,9};
6 static int bits[] = {0,0,0,0,0,0,0,0,
7 1,1,1,1,1,1,1,1,
8 2,2,2,2,2,2,2,2,
9 0,0,1,1,2,2};
10
11 *d = digits[cf];
12 return ((bits[cf] << 8) + bxcf) - 398;
13 }

which is an encoding of Table 6.1 so that the 5-bit CF value can be used to look
up the proper digit and bits. The bits are combined with the BXCF to produce the
biased exponent which is then reduced by subtracting the bias term (line 12), which
is returned.

Once we have the exponent and first significand digit we can put it in the output
(line 14) after setting up our index (line 13) which will cause the initial minus sign to
be overwritten if the number is positive. Lines 16 through 40 appear daunting at first
but they are really five repetitions of the same pattern. First we extract the 10 bits of
a declet (lines 16, 21, 26, 31, and 36). Next, we recover the three decimal digits from
this declet by calling the helper function dfp parse declet(). We then place the
digits in the output string. The lines defining the declet are somewhat cryptic. They

188 6 Decimal Floating Point

Fig. 6.1 A function to parse a decimal64 number

are pulling the 10 bits of the declet from the bytes of the input DFP number using
standard bit manipulation to piece the declet together. A helpful exercise would be to
write out all the bits for one of the hexadecimal examples above, say the one for 0.1,
and then mark off the five declets. This will make clear the origin of the particular

6.3 Decimal Floating-Point in Software 189

incantations used in this function. The helper function itself is an implementation of
Table 6.2 and is given in Fig. 6.2 with dfp parse bits() defined as,

1 int dfp_parse_bits(int a, int b, int c, int d) {
2 return 8*a + 4*b + 2*c + d;
3 }

The helper function assigns the bits from the input declet (lines 4 through 8)
and then compares them to the values from the table in lines 10 through 44. When
there is a match, the three decimal numbers are extracted by setting the proper bits
according to Table 6.2.

After line 40 in Fig. 6.1 all that remains is to copy the exponent to the output
string which is done in lines 42 and 43.

This example is only the simplest of ways to convert the DFP number to a deci-
mal string. The output is given without any attempt to remove leading zeros of the
significand or to scale the number to a more standard range. For example, if the func-
tion dfp parse() is given 22 18 00 00 19 43 65 65 as input (in hexadecimal)
it produces

0000000314159265E-8

as output. Clearly, a more complete implementation would change this to something
closer to the more familiar 3.14159265 format. We leave implementing a function
for decimal32 DFP numbers to the exercises.

6.3 Decimal Floating-Point in Software

In this section we look at DFP implementations in C and Python along with some
examples of their use. DFP operations are complex enough that beyond the example
above to parse a DFP number it does not make sense to attempt an implementation
of our own in this case.

DFP in C. DFP implementations in hardware are not yet common. However, IBM
has released, as open source, a DFP library which is compatible with the IEEE 754
standard. It is this library that we will be using in this section. The decNumber
library is available here,

http://speleotrove.com/decimal/decnumber.html

along with some documentation on its use. We are using version 3.68 but later ver-
sions should operate in much the same way. Download the library and expand it.
There is no Makefile or installation, the library is simply a set of source code files
in C along with documentation and a few examples. The IEEE compliant portion
is implemented in the decimal32.c, decimal64.c and decimal128.c files. We
will focus on the decimal64 implementation. Explore the other options the library
provides as we will only scratch the surface here.

http://speleotrove.com/decimal/decnumber.html

190 6 Decimal Floating Point

Fig. 6.2 A function to parse a DPD declet into three BCD digits

6.3 Decimal Floating-Point in Software 191

The library uses little-endian storage order. A useful example is example5.c

which we can trivially modify to output in big-endian order. In a text editor, open
example5.c and change line 30 from,

sprintf(&hexes[i*3], "%02x ", a.bytes[i]);

to,

sprintf(&hexes[i*3], "%02x ", a.bytes[7-i]);

so that bytes are output with the highest order byte first. With this change the pro-
gram will output hex digits as we have been using them above. Compile the program
with,

gcc example5.c -o example5 decimal64.c decNumber.c decContext.c

then test the program with,

./example5 0.1

which should produce,

0.1 => 22 34 00 00 00 00 00 01 => 0.1

matching the hexadecimal numbers we decoded in the previous section. This con-
firms that the decNumber library is working properly.

The full decNumber library is far more complete than what we will need here. We
will work with IEEE 754 compliant functions as defined in the decDouble.c file.
These functions ensure that we get results matching IEEE 754 decimal floating-
point hardware. In order to compare results and performance between DFP and
binary floating-point we will again make use of the logistic map which we first saw
in Chap. 3. To review, this map iterates values between [0,1] and can be used to
demonstrate the bifurcation route to chaotic dynamic behavior, among other things.
For the present, it is sufficient to know that this map has the form,

xi+1 = rxi(1− xi)

for some initial x0, which we set to 0.25 and a fixed r of 3.8 which is in the chaotic
region.

First we will implement this map in C using variables of type double. We will
then implement the map using the decNumber library and compare outputs and
execution time. This will also illustrate how to use the library functions to set up a
context, initialize variables, and perform arithmetic.

Figure 6.3 shows the plain C version. This version will initialize x and then output
the first eight iterates. It then runs for 10 million more iterates and outputs the final
eight. Note that we have broken the calculation into individual operations (lines 9
to 11) so that the DFP implementation matches in terms of the order in which the
expressions are evaluated.

192 6 Decimal Floating Point

Fig. 6.3 A program to iterate the logistic map, xi+1 = rxi(1− xi), using IEEE 754 binary floating-
point

Figure 6.4 shows the decNumber library version. This requires some expla-
nation. Before the main program we define a helper function, pp(), which will
print a double64 number by first converting it to a string. The function uses the
decDoubleToString() library function. The constant DECDOUBLE String is large
enough to hold the biggest string that might be produced. The argument is a pointer
to a decDouble. This is the base type for a decimal64 number. The type is a struc-
ture which does not use any heap memory which means that it can be created, used,
and ignored like a normal C variable.

The program starts in line 12 by defining the temporary variables we will use to
store the logistic map calculation. Line 13 declares a context. This will be initialized
to properly handle a decimal64 number in line 17. This context must be passed to
many of the library functions to get the expected behavior. The context includes the
rounding mode. Here we leave it to the default. We will describe how to work with
rounding modes below. Line 14 defines our variable, x, as well as r and a constant
one. Initial values are set from strings in lines 19 through 21. Since this is base ten,

6.3 Decimal Floating-Point in Software 193

the value set is exact. Lines 23 through 28 iterate the equation eight times printing
the value of x after each iteration. These will be compared to the initial values gen-
erated by the binary floating-point version. The equation itself is implemented in a
way that mirrors the binary implementation but using the decDoubleSubtract()

and decDoubleMultiply() library functions. There are similarly named functions
for addition and division plus many other operations. The final eight iterates are
printed with lines 38 through 43. Compile the programs with,

gcc logistic.c -o logistic

gcc logistic64.c -o logistic64 decContext.c decDouble.c decQuad.c

where logistic64.c needs both decDouble.c and decQuad.c so that computa-
tions can be performed with 128-bits and then rounded to 64-bits.

Let’s compare the output of the two programs, Figs 6.3 and 6.4. The first eight
iterates for logistic and logistic64 are,

logistic logistic64
0.7124999999999999 0.71250
0.7784062500000002 0.77840625000
0.6554618478515620 0.6554618478515625
0.8581601326777955 0.8581601326777949
0.4625410135688510 0.4625410135688527
0.9446679324750937 0.9446679324750942
0.1986276333476368 0.1986276333476352
0.6048638471497435 0.6048638471497399

where we already see that after a few iterations the two sequences begin to diverge.
Note that the decimal result is exact at least for the first two iterations while the
binary result is already showing rounding error. The final eight iterations are,

logistic logistic64
0.6245962562304587 0.9494112872063385
0.8910079371467448 0.1825120807398593
0.3690286137353397 0.5669654002706923
0.8848166847236699 0.9329594136330268
0.3872812528014777 0.2376753553568733
0.9017190393139833 0.6885059670888577
0.3367628911200712 0.8149689014131991
0.8487438558811845 0.5730194463417375

where there is no longer any relationship between the two sequences. This is after
10,000,000 iterations. In this case, the departure is not fatal due to the shadowing
theorem which states that for any chaotic trajectory the numerically computed tra-
jectory using that initial condition (here 0.25) ultimately follows another chaotic
trajectory with a slightly different initial condition. This theorem means that chaotic
trajectories generated by computers are real.

194 6 Decimal Floating Point

Fig. 6.4 A program to iterate the logistic map, xi+1 = rxi(1−xi), using IEEE 754 decimal floating-
point

6.3 Decimal Floating-Point in Software 195

If we use the Python rational arithmetic class developed in Chap. 4 we see that
the first few iterates of the logistic map are exactly,

57/80 = 0.7125000000000000
24909/32000 = 0.7784062500000000
3355964661/5120000000 = 0.6554618478515625
112480764910343946501/
131072000000000000000

= 0.8581601326777950

which matches the decimal floating-point output more closely than the binary.
Naturally, there is a large difference in performance between logistic and

logistic64 since the former is using hardware (on systems using Intel instruc-
tions). Logistic64 is approximately 45 times slower than logistic so DFP’s pre-
cision must be balanced by the runtime hit. For some applications it may not be
feasible to use DFP.

We conclude this introduction to the decNumber library by looking at rounding
modes and their effect on calculations. Rounding modes are set using decContext

SetRounding(). A simple example will show the effect. Figure 6.5 illustrates all
the IEEE rounding modes using the decNumber library. The value is chosen so that
the first digit beyond the limit of a decimal64 number is 5 to enable a tie between
representable numbers. The output of Fig. 6.5 is,

Mode Value
roundTiesToEven 0.1234567890123456
roundTowardsPositive 0.1234567890123457
roundTiesToAway 0.1234567890123457
roundTowardsZero 0.1234567890123456
roundTowardsNegative 0.1234567890123456
roundTiesToEven -0.1234567890123456
roundTowardsPositive -0.1234567890123456
roundTiesToAway -0.1234567890123457
roundTowardsZero -0.1234567890123456
roundTowardsNegative -0.1234567890123457

where the last digit of the converted number shows the choice made according to
the IEEE rounding rules.

DFP in Python. Python supports decimal floating-point through its decimal mod-
ule. This module is really a wrapper on the decNumber library but is easier to use
because of operator overloading. A quick example shows it in action,

196 6 Decimal Floating Point

Fig. 6.5 A program to illustrate the effect of IEEE 754 decimal rounding modes

1 >>> from decimal import *
2 >>> "%0.16f" % 0.1
3 ’0.1000000000000000’
4 >>> "%0.16f" % (1.95-1.85)
5 ’0.0999999999999999’
6 >>> setcontext(Context(prec=16))
7 >>> print Decimal("0.1")
8 0.1
9 >>> print Decimal("1.95") - Decimal("1.85")

10 0.10

6.3 Decimal Floating-Point in Software 197

After importing the DFP library the first two examples (lines 2 and 4) show why
decimal floating-point might be desirable. The output should be the same, 0.1, but
it is not because of rounding and the fact that 0.1 is a repeating value in binary.

Line 6 sets the context of the decimal module to use 16 digits. This matches
the decDouble library used above and corresponds to an IEEE decimal64 number.
Note that both libraries support arbitrary precision but we restrict ourselves to IEEE
sized numbers here.

The Decimal class defines a DFP number, typically by using a string as we did
above. Lines 7 and 9 repeat lines 2 and 4 but show that there is no rounding error but
only an exact result. Additionally, line 9 returns “0.10” instead of “0.1” to indicate
that the result is accurate to two digits.

Figure 6.6 shows a Python implementation of the logistic example given above.
The output is identical to that of logstic64 as expected since the underlying library
is the same and we have initialized the context to 16 digits of precision. However, the
run time is significantly worse, taking 82x longer than the C decNumber version.
This is due to the Python interpreter itself and the overhead of object creation and
not the performance of the C library itself.

Fig. 6.6 A Python version of the logistic map using the decimal module

198 6 Decimal Floating Point

6.4 Thoughts on Decimal Floating-Point

Decimal floating-point has not increased in use as might have been expected. Hu-
mans work in base ten almost universally so making calculations in base ten seems
quite reasonable. One reason for the slow adoption of DFP is the fact that hard-
ware floating-point in binary is so much faster. The few hardware implementations
of DFP are slower than their binary cousins but not terribly so. Still, even a 10%
reduction in performance may not be acceptable in some circumstances.

The exactness of the results of DFP calculations makes this a perfect number
format for commercial or financial work. Many, if not most, databases are using
decimal storage for monetary values, often as character strings in base ten, so that
the possible application of DFP to these databases is obvious. It would probably also
result in smaller storage requirements and would certainly result in more accuracy
or fewer checks for edge cases that cannot be allowed in financial calculations.

Is DFP useful for scientific programming? We think so, if it were fast enough.
The logistic example above clearly shows that DFP results are sometimes “truer”
than binary floating-point. The preservation of knowledge that there are meaningful
trailing zeros in a value is also potentially of significance. The Python example
returning “0.10” as the answer instead of “0.1” is helpful as it tells users that the
digit in the hundredths place is truly zero and not simply unknown. A scientific
result might require a great deal of effort to know that digit is exactly zero so it
would be good if the computer representation preserved it.

While writing this chapter two potentially highly useful exercises came to mind.
As far as we know as of this writing neither has been done but we present them as a
challenge to motivated individuals,

– Python is widely used in scientific programming because of its well-
supported array-processing libraries, particularly NumPy and libraries
built on top of it (like SciPy). These array-processing libraries are highly
optimized and performant. It would be perhaps quite useful to imple-
ment a version of NumPy using decimal floating-point in such a way
that if compiled on a system with actual DFP hardware it could take
advantage of it automatically.
– Interval arithmetic adds bounds to numbers by specifying a range
in which the actual number exists rather than simply a single value.
This requires proper control of rounding modes (see Chap. 7). A deci-
mal floating-point based interval arithmetic package would perhaps be
useful and could be combined with a DFP based NumPy for Python.

Hopefully this chapter has illustrated that decimal floating-point is of value and
should be of primary concern to developers working with financial data. The thought
perhaps should not be “should I use decimal floating-point?” but rather, “Is there any
valid reason why I should not use decimal floating-point?”

References 199

6.5 Chapter Summary

In this chapter we reviewed the IEEE standard for storing decimal floating-point
numbers using the format that seems to be in widest use. We learned how to decode
such numbers and produce the corresponding decimal value as a string. We then
examined an IEEE compliant C library for decimal floating-point and learned the
basics of how to use it. We used the logistic map from chaos theory as an example
of how decimal floating-point can be more accurate than binary floating-point for
iterated calculations. We then examined a Python core module that uses the C library
to implement a decimal floating-point class and showed that it produces the same
results as before for the logistic map. We concluded by presenting, as food for future
thought, two possible ways in which decimal floating-point might grow in its use
which in turn would hopefully lead to more accessible hardware implementations.

Exercises

6.1. Parse the following decimal64 numbers:
29 ff 98 42 d2 e9 64 45
25 ff 18 0c ce ef 26 1f
25 fe 14 44 ee 27 cc 5b

6.2. The function dfp parse() in Fig. 6.1 works with decimal64 numbers only.
Create a version that works with decimal32 numbers. Test it with the following
inputs,

A2 10 C6 15 → -3.1415
F8 00 00 00 → -inf
22 40 00 01 → 0.1

6.3. Encode the number 123.456 as a decimal64 number. First decide on the signifi-
cand and exponent to use, then encode the exponent and first digit of the significand
to create the CF and BXCF fields. Last, use Table 6.3 to encode the significand
mapping the remaining 15 decimal digits to five declets. ***

References

1. IEEE Standards Association. Standard for Floating-Point Arithmetic. IEEE 754-2008 (2008).
2. Duale, A., et al. Decimal floating-point in z9: An implementation and testing perspective. IBM

Journal of Research and Development 51.1.2 (2007): 217–227.

Chapter 7
Interval Arithmetic

Abstract Floating-point numbers do not map exactly to the real numbers. Also,
sometimes there are uncertainties in our knowledge of the true value for a quantity.
Both of these situations can be addressed by using interval arithmetic which keeps
bounds on the possible value of a number while a calculation is in progress. In this
chapter we will describe interval arithmetic, implement basic operations for inter-
val arithmetic in C, discuss functions as they pertain to intervals, examine interval
implementation for C and Python, and finally offer some advice on when to use
interval arithmetic.

7.1 Defining Intervals

A number like π is exact in the sense that there is no uncertainty as to its numeric
value even though in this case it is impossible to write it. However, in the real world,
there is almost never complete certainty as to the value of a quantity since most are
measurements made by some finite device which has limitations. A scale may only
be accurate to the ounce or gram. A ruler may only be accurate to a millimeter. Sci-
entists associate uncertainties with measured quantities as a way to mathematically
account for the inexactness of our dealings with reality. Similarly, since computers
use a finite number of bits to store floating-point numbers, we know that it is impos-
sible to store just any real number in a computer, we can only store the floating-point
number we deem to be “nearest to” the actual real number.

Mathematics has ways to deal with uncertainty, be it through probability and
statistics or through error analysis and propagation. The latter are mathematical
concepts which involve a function, f , of input variables, say, x and y, and how to de-
termine the uncertainty in f (x,y), denoted as σ f , given x, y and their uncertainties,
σx and σy. It is the propagation of errors that decides how to calculate σ f . This is an
essential technique for science as a whole and the reader is directed to the very use-
ful presentation in Bevington [1] for examples and advice on how to calculate the

© Springer International Publishing Switzerland 2015
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-17260-6 7

201

202 7 Interval Arithmetic

uncertainty of expressions involving variables with uncertainties. For our purposes
we need only consider what σx means for a particular x and how to represent that
meaning in a computer using floating-point numbers. We will always assume that
any floating-point numbers we use are IEEE 754 compliant.

Scientific literature is full of measured quantities which are often given along
with some uncertainty as to their actual value. This uncertainty may be estimated,
the standard deviation of a set of measurements of a quantity, the mean of a set
of measurements of a quantity along with the standard error of the mean, etc. For
example, it might be reported that the temperature of a reaction was 74.0 ± 1.3
C where the ±1.3 portion is the uncertainty. This means that, with some level of
confidence, usually 95 %, we know that the temperature of the experiment was in
the interval [72.7,75.3] C because this is 1.3 C less and more than the first value
reported. Instead of tracking mean values and uncertainties we could just track the
interval itself and work with it. This is the essence of interval arithmetic and we
will write intervals in the form t = [72.7,75.3] where the first number is the lower
bound on the interval and the second is the upper bound (the bounds are included in
the interval). Symbolically we will write t = [t, t̄] where t is the lower bound and t̄
is the upper.

We should slow down a bit here. The previous paragraphs mentioned the concept
of “propagation of errors” without describing it and without discussing why one
might choose interval arithmetic over propagating uncertainty. Without deriving it,
we give the general formula for determining the uncertainty of the value of a func-
tion (σ f) from the uncertainties of the arguments to that function. We assume f (x,y)
with argument uncertainties of σx and σy but the formula holds for any number of
arguments, just use a similar term for each additional variable. The formula is,

σ2
f = σ2

x

(
∂ f
∂x

)2

+σ2
y

(
∂ f
∂y

)2

under the assumption that x and y are independent (i.e., not correlated with each
other so that the covariance terms disappear) and that x and y represent random
variables from Gaussian distributions.

Do not be concerned if the last sentence is not clear. The point to remember is that
the formula used for propagation of errors is based on assumptions about the way in
which the values behave, or, rather, the environment in which they were produced.
And, as is always the case, an assumption may be incorrect. With intervals there is
no assumption beyond the statement that the true value lies within the interval.

We will see below how to calculate intervals but let’s quickly look at an example
comparing intervals to propagation of errors. In this example we simply want to
calculate f (x,y) = x+ y and find the uncertainty or interval containing f (x,y). We
use a C program which uses interval arithmetic to add x and y and to calculate σ f

from the formula above. When we do this we get the following answers,

propagation of errors = [23.344, 23.564]
interval arithmetic = [23.337, 23.571]

7.2 Basic Operations 203

for x = [12.12,12.34] and y = [11.217,11.231]. Notice that while not exact the two
methods produce comparable answers so we know at least that interval arithmetic
might be a useful way to account for uncertainty.

In some sense the origin of interval arithmetic stretches back into antiquity.
Archimedes, in his On the measurement of the circle estimated the value of π by us-
ing a two-sided bound which is in effect an interval since he showed that x ≤ π ≤ x̄
for the bounds [x, x̄] which he placed on the value of π .

In modern times intervals were discussed by Young [2] (1931) and extended by
Dwyer [3] (1951). Sunaga again extended the algebra of intervals [4] (1958). Dwyer
discussed computing with approximate numbers but it was Moore who first wrote
about implementing interval arithmetic on digital computers [5] (1959). Moore
refers to Dwyer and then extends intervals to floating-point numbers representable
on the computer. Indeed, [5] is more than simply interval arithmetic and is an in-
teresting historical work which discusses how to represent floating-point numbers
on digital computers. Note that Moore calls interval arithmetic “range arithmetic”
after Dwyer and then extends this to “digital range arithmetic” by which is meant
the interval arithmetic that is the subject of this chapter.

The remainder of this chapter discusses interval arithmetic over basic operations
(+,−,×,/, comparison) with examples in C and Python. Next comes a discussion
of functions and intervals. This includes elementary functions like sine, cosine, and
exponential along with general functions made up of expressions involving vari-
ables which are themselves intervals. We will see that general functions lead to some
undesirable consequences and discuss the “dependency effect” which is the biggest
drawback of interval arithmetic. After this we look at intervals in programming,
examining some implementations. We conclude the chapter with thoughts on inter-
vals and their use.

7.2 Basic Operations

Basic arithmetic operations are well-suited to working with intervals but before we
start our library of functions we need to consider carefully how we will go about
defining intervals using floating-point numbers. Mathematically, the bounds of an
interval are real numbers and as such are exact. Unfortunately, computers do not
operate on real numbers but instead use floating-point numbers which are by neces-
sity a finite set. So, when an operation produces a result, and this is true even when
the operands are already floating-point numbers, the result is seldom a floating-point
number but must be rounded in some way to be expressed as a floating-point num-
ber. How should the result be rounded? IEEE 754 floating-point, which is the stan-
dard, has multiple rounding modes. By default, IEEE 754 states that results should
be rounded to the nearest floating-point value. This is a completely reasonable thing
to do but completely wrong when it comes to interval arithmetic.

If we write our interval arithmetic functions so that they round results to the
nearest floating-point number we will quickly see that this introduces a bias that

204 7 Interval Arithmetic

will make the intervals change so that we can no longer be certain that the actual
number lies in the specified interval. We can fix this issue, however, by making use
of the non-default rounding modes supported by IEEE 754. One of these modes is
to always round down towards −∞. Another is to round up towards +∞. These two
modes are what we need. When computing the lower bound of an interval we will
always round towards −∞ while for an upper bound we will round towards +∞ (see
[6]). This will ensure that our interval does not shrink during a calculation.

We begin our library by including required C libraries and by defining the data
structure we will use to represent an interval,

1 #include <fenv.h>
2 #include <stdio.h>
3 #include <math.h>
4
5 typedef struct {
6 double a;
7 double b;
8 } interval_t;
9
10 char *pp(interval_t x) {
11 static char s[100];
12 sprintf(s, "[%0.16g, %0.16g]", x.a, x.b);
13 return s;
14 }
15
16 interval_t interval(double a, double b) {
17 interval_t ans;
18 ans.a = a;
19 ans.b = b;
20 return ans;
21 }

where we will use the function pp() to display an interval which is of type
interval t. To maximize precision we use C doubles with a the lower bound and
b the upper. The function interval() builds an interval from two floating-point
numbers representing the bounds.

Note the inclusion of not only stdio.h and math.h but also fenv.h. This latter
include is the floating-point library and it defines constants and functions related
to floating-point including those necessary to change the rounding mode. Including
fenv.h is not enough on its own, however. We must also compile our programs
with the -frounding-math compiler switch (for gcc) otherwise the function calls
for changing the rounding mode will be ignored.

Addition and Subtraction. Now, let’s take a look at how to add two intervals
x = [x, x̄] and y = [y, ȳ]. In this case, the answer is not too surprising,

x+ y = [x, x̄]+ [y, ȳ]≡ [x+ y, x̄+ ȳ]

where we must remember in our implementation to use rounding towards −∞ for
the lower bound and rounding towards +∞ for the upper. Intuitively it makes sense

7.2 Basic Operations 205

that the lower bound would simply be the sum of the two lower bounds and likewise
for the upper bounds. So far, so good. Here’s the C code,

1 interval_t int_add(interval_t x, interval_t y) {
2 interval_t sum;
3
4 fesetround(FE_DOWNWARD);
5 sum.a = x.a + y.a;
6 fesetround(FE_UPWARD);
7 sum.b = x.b + y.b;
8 fesetround(FE_TONEAREST);
9 return sum;
10 }

where lines 5 and 7 add the lower and upper bounds. Line 4 sets the floating-point
rounding mode towards −∞ just before adding the lower bounds. Line 6 then sets the
rounding mode towards +∞ before adding the upper bounds in line 7. Lastly, line 8
returns to rounding towards the nearest floating-point number just before returning
the new sum in line 9.

Subtraction is, as might be expected, similar in form to addition but with a twist.
Interval subtraction is defined to be,

x− y = [x, x̄]− [y, ȳ]≡ [x− ȳ, x̄− y]

which at first glance might seem a bit odd. One way to see why subtraction is defined
like this is to consider what negation of an interval might mean. To negate a value is
to change its sign, x →−x. For an interval the operation is the same but not only are
the signs of the bounds changed but also their order. If the order were not changed
the lower bound would suddenly be larger than the upper bound. So, negation is,

−[x, x̄]≡ [−x̄,−x]

where we have swapped the order of the bounds. How does this help in understand-
ing subtraction? By remembering that subtraction is simply addition of a negative
value. So,

[x, x̄]− [y, ȳ] = [x, x̄]+ [−ȳ,−y]≡ [x− ȳ, x̄− y]

which is exactly the definition of interval subtraction. In code this looks like,

1 interval_t int_sub(interval_t x, interval_t y) {
2 interval_t diff;
3
4 fesetround(FE_DOWNWARD);
5 diff.a = x.a - y.b;
6 fesetround(FE_UPWARD);
7 diff.b = x.b - y.a;
8 fesetround(FE_TONEAREST);
9 return diff;
10 }

206 7 Interval Arithmetic

where we set the proper rounding mode as in addition and lines 5 and 7 set the lower
and upper bounds using the definition of interval subtraction.

Multiplication. The goal of interval arithmetic is to ensure that the interval rep-
resents the entire range in which the actual value may be found. This means that
the lower bound must be the smallest such value and the upper bound must be the
largest. For the addition of two intervals it is clear that the lower bound must be sim-
ply the sum of the lower bounds of the operands and similarly for the upper bound.
With subtraction the same holds after we see that it is addition of the negation of the
second operand. For multiplication the situation is more general, however, because
the interval may include bounds of opposite signs. Therefore, we define multiplica-
tion of two intervals as,

[x, x̄]× [y, ȳ]≡ [min{xy,xȳ, x̄y, x̄ȳ},max{xy,xȳ, x̄y, x̄ȳ}]

which reduces to,
[x, x̄]× [y, ȳ] = [xy, x̄ȳ]

if the lower bounds of x and y are greater than zero. This definition covers all cases
in order to find the smallest and largest product of the components of x and y.

With multiplication defined we can now implement it in our library,

1 interval_t int_mul(interval_t x, interval_t y) {
2 interval_t prod;
3 double t;
4
5 fesetround(FE_DOWNWARD);
6 prod.a = x.a * y.a;
7 t = x.a * y.b;
8 if (t < prod.a) prod.a = t;
9 t = x.b * y.a;
10 if (t < prod.a) prod.a = t;
11 t = x.b * y.b;
12 if (t < prod.a) prod.a = t;
13
14 fesetround(FE_UPWARD);
15 prod.b = x.a * y.a;
16 t = x.a * y.b;
17 if (t > prod.b) prod.b = t;
18 t = x.b * y.a;
19 if (t > prod.b) prod.b = t;
20 t = x.b * y.b;
21 if (t > prod.b) prod.b = t;
22
23 fesetround(FE_TONEAREST);
24 return prod;
25 }

where we accept two input intervals in x and y and return prod as their product.
Lines 5 through 12 set the lower bound so we first set the IEEE rounding mode to
−∞ (line 5). Line 6 sets the lower bound of prod to xy. This will be our lower bound

7.2 Basic Operations 207

for the product unless one of the other component products is smaller. We set the
auxiliary variable t to the next candidate (line 7) and in line 8 check to see if this
is smaller than our current lower bound. If so, we update the lower bound. Lines 9
through 12 continue this process for the remaining component products so that after
line 12 we know prod.a is set to the smallest value. Line 14 sets the rounding mode
to +∞ and repeats this process for the upper bound keeping the largest component
product in prod.b. Line 23 then restores the default IEEE rounding mode and the
final product interval is returned in line 24.

Reciprocal and Division. Just as subtraction is really the addition of a negative
value so it is that division is really multiplication by the reciprocal. Therefore, in
order to discuss division, we need to take a look at reciprocal in interval arithmetic.
Our first thought would be to simply take the reciprocal, x → 1/x, of each compo-
nent. However, just as negation of an interval required swapping the bounds so will
the reciprocal because 1/x̄ < 1/x, like so,

1/[x, x̄]≡ [1/x̄,1/x]

where we have swapped the bounds as needed. However, there is an important caveat
that we must keep in mind. Division by zero is mathematically undefined so we must
be careful of the case when the interval we are taking the reciprocal of contains zero.
If the interval does not contain zero, which means that x> 0 or x̄< 0, we can proceed
normally because the reciprocal is defined over the entire interval. This means we
must add a qualifier to our original definition,

1/[x, x̄]≡ [1/x̄,1/x],x > 0 or x̄ < 0

which makes it explicit that we are not allowed to consider intervals which contain
zero.

For scalars, we simply say that division by zero is undefined and leave it at that.
Can we say something more in the case of intervals? One approach is to split the
interval into two parts at zero,

1/[x,0] → [−∞,1/x]
1/[0, x̄] → [1/x̄,∞]

following the definition above and writing ±∞ for 1/0. If we do this we get two
overlapping intervals representing the reciprocal of our original interval, x, which
contained zero. Because of this we are really saying that there is no information in
writing the reciprocal of an interval containing zero, but we could continue to work
through an expression involving such an interval if we use both the intervals above.
This is one reason why interval arithmetic is not more widely used, though it isn’t
the main one (we will see that below). For our convenience, and because we are
trying to be pedagogical and not obfuscate things, we will declare reciprocals of
intervals which contain zero to be illegal and ignore them.

208 7 Interval Arithmetic

Armed with a definition of the reciprocal of an interval we are now ready to
calculate x/y. We do this by first calculating the reciprocal, y′ ≡ 1/y, and then find
x× y′. The C code we need is,

1 interval_t int_recip(interval_t x) {
2 interval_t inv;
3
4 if ((x.a < 0.0) && (x.b > 0.0)) {
5 inv.a = -exp(1000.0);
6 inv.b = exp(1000.0);
7 } else {
8 fesetround(FE_DOWNWARD);
9 inv.a = 1.0 / x.b;
10 fesetround(FE_UPWARD);
11 inv.b = 1.0 / x.a;
12 fesetround(FE_TONEAREST);
13 }
14
15 return inv;
16 }
17
18 interval_t int_div(interval_t x, interval_t y) {
19 return int_mul(x,int_recip(y));
20 }

where we call the int mul() function defined above to do the actual multiplication
with proper rounding modes.

The function int div() is straightforward, simply multiply the first argument
by the reciprocal of the second as in line 19 above. All the action is in int recip()

which first checks to see if zero is in the interval (line 4). If zero is in the interval
we call the reciprocal undefined and return [−∞,+∞] by attempting to calculate the
exponential of a large number (lines 5 and 6). Line 8 sets rounding towards −∞ and
then calculates the lower bound in line 9. This is repeated by lines 10 and 11 with
rounding set towards +∞. Line 12 resets the rounding mode and line 15 returns the
new interval.

Powers. What it means to raise a number to a positive integer power is clear, sim-
ply multiply the number by itself that many times so that x4 = x× x× x× x. For
intervals we must be more careful. The result of raising an interval to an integer
power depends both upon the even or oddness of the exponent and the signs of the
components of the interval.

Let’s present the formulas and then look at why they work. For an odd exponent,
n = 2k+1, k = 0,1, . . ., things work as expected,

[x, x̄]n = [xn, x̄n], n = 2k+1, k = 0,1, . . .

It is only when the exponent is even that things become interesting. In this case we
have,

7.2 Basic Operations 209

[x, x̄]n = [xn, x̄n], x ≥ 0, n = 2k, k = 1,2, . . .

= [x̄n,xn], x̄ < 0

= [0,max{xn, x̄n}], otherwise

For an odd exponent it is straightforward to see why the formula takes that form.
If the interval has bounds that are negative then an odd power of those bounds will
still be negative and the order of the original will not change. This means that for an
odd exponent xn < x̄n so the answer is simple, no special cases. When the exponent
is even, however, we have to pay attention to the signs of the bounds of x. In the first
case, if x ≥ 0 we know that both bounds are positive and that x < x̄. Therefore, the
order of the bounds need not change since xn < x̄n as well. The second case tells us
that both bounds are negative. Since an = |a|n if n is even and a < 0 it follows that
xn > x̄n when x, x̄ < 0 so we must swap the order of the bounds. The last case covers
situation when the interval includes zero. As xn is always positive when n is even
(and a positive integer) we know that the lower bound of the result must be zero.
The upper bound is set to the larger of the two original bounds after raising them to
the n-th power.

What if n is a negative integer? In that case we use the rule that x−n = 1/xn. To do
this, first calculate y= xn = [x, x̄]n and then calculate the result as [x, x̄]−n = [1/ȳ,1/y]
with suitable warnings about y containing zero.

Adding int pow() to our library is straightforward, if a little tedious in checking
all the special cases. The C code is,

1 interval_t int_pow(interval_t x, int n) {
2 interval_t ans;
3
4 if ((n%2) == 1) {
5 fesetround(FE_DOWNWARD);
6 ans.a = pow(x.a,n);
7 fesetround(FE_UPWARD);
8 ans.b = pow(x.b,n);
9 } else {
10 if (x.a >= 0) {
11 fesetround(FE_DOWNWARD);
12 ans.a = pow(x.a,n);
13 fesetround(FE_UPWARD);
14 ans.b = pow(x.b,n);
15 } else {
16 if (x.b < 0) {
17 fesetround(FE_DOWNWARD);
18 ans.a = pow(x.b,n);
19 fesetround(FE_UPWARD);
20 ans.b = pow(x.a,n);
21 } else {
22 ans.a = 0.0;
23 fesetround(FE_UPWARD);

210 7 Interval Arithmetic

24 ans.b = pow(x.a,n);
25 if (pow(x.b,n) > ans.b) ans.b = pow(x.b,n);
26 }
27 }
28 }
29
30 fesetround(FE_TONEAREST);
31 return ans;
32 }

where line 4 checks to see if the exponent n is even or odd. If the remainder after
dividing by 2 is 1, then n is odd and we calculate the lower bound in line 6 and the
upper in line 8 after setting the floating-point rounding mode appropriately. If n is
even we move to line 10 and check the three cases given above. If the lower bound is
greater than or equal to zero (line 10) we calculate the new bounds in lines 12 and 14.
If the upper bound is less than zero (line 16) we swap the results (lines 18 and 20).
Finally, if the interval includes zero we set the lower bound to zero (line 22) and set
the upper bound to the larger of the two exponentiated initial bounds (lines 24 and
25). Line 30 restores the default rounding mode and line 31 returns our answer.

When using intervals it is important to remember that, unlike real numbers, expo-
nentiation is not simply repeated multiplication. Let’s look at some examples using
our library routines above. We will give an example of an even and odd power of
intervals that are positive, negative, and include zero. We will use int pow() for the
powers and int mul() for the multiplications.

First, an all negative interval,

x = [-2.7182818284590451, -2.6182818284590454]

x3 = [-20.0855369231876679, -17.9493685483622478]

x× x× x = [-20.0855369231876679, -17.9493685483622443]

x4 = [46.9965055024911891, 54.5981500331442291]

x× x× x× x = [46.9965055024911749, 54.5981500331442433]

Second, an all positive interval,

x = [2.7182818284590451, 2.8182818284590452]

x3 = [20.0855369231876644, 22.3848022077206359]

x× x× x = [20.0855369231876608, 22.3848022077206359]

x4 = [54.5981500331442220, 63.0866812956689813]

x× x× x× x = [54.5981500331442149, 63.0866812956689884]

Lastly, an interval including zero,

x = [-2.7182818284590451, 2.8182818284590452]

x3 = [-20.0855369231876679, 22.3848022077206359]

x× x× x = [-21.5905309612583913, 22.3848022077206359]

x4 = [0.0000000000000000, 63.0866812956689813]

x× x× x× x = [-60.8482010748969273, 63.0866812956689884]

The examples above are displayed using a format specifier of %0.16f which
always displays 16 digits after the decimal point. Note that the repeated multi-
plications tend to lead to result intervals that are a little too large compared to

7.2 Basic Operations 211

the powers. Especially note that the even power of the interval including zero is
completely wrong in the sense that it is far too large by including a negative lower
bound.

Other Operations. There are many other operations we could add to our library.
Here we add only a few of these. The new operations are negation, absolute value,
comparison for equality, comparison for less than or equal, and a concept of “dis-
tance” between two intervals. We will describe the C code first and then give some
examples. The code for negation is,

1 interval_t int_neg(interval_t x) {
2 interval_t ans;
3 fesetround(FE_DOWNWARD);
4 ans.a = -x.b;
5 fesetround(FE_UPWARD);
6 ans.b = -x.a;
7 fesetround(FE_TONEAREST);
8 return ans;
9 }

which implements −[x, x̄] = [−x̄,−x]. This is always true because the lower bound
of an interval is, by definition, less than (or equal) to the upper bound. Therefore,
changing the sign of these values means that their order must be reversed to keep
the lower bound less than the upper.

The absolute value of an interval depends on the signs of the bounds. Formally,
the absolute value is defined to be,

|x|= [min{|x|, |x̄|},max{|x|, |x̄|}], if xx̄ ≥ 0

= [0,max{|x|, |x̄|}], if xx̄ < 0

where we maximize the interval if the signs of the bounds are the same (xx̄ ≥ 0) or
we set zero to be the lower bound if the interval includes zero (xx̄ < 0).

The C code for this operation is,

1 interval_t int_abs(interval_t x) {
2 interval_t ans;
3 if (x.b * x.a >= 0) {
4 fesetround(FE_DOWNWARD);
5 ans.a = (fabs(x.b) < fabs(x.a)) ? fabs(x.b) : fabs(x.a);
6 fesetround(FE_UPWARD);
7 ans.b = (fabs(x.b) < fabs(x.a)) ? fabs(x.a) : fabs(x.b);
8 } else {
9 ans.a = 0.0;
10 fesetround(FE_UPWARD);
11 ans.b = (fabs(x.b) < fabs(x.a)) ? fabs(x.a) : fabs(x.b);
12 }
13 fesetround(FE_TONEAREST);
14 return ans;
15 }

212 7 Interval Arithmetic

where line 3 looks to see if the signs of the bounds are the same. If so, the minimum
is used for the lower bound (line 5) and the maximum is used for the upper bound
(line 7) with proper rounding modes set. If the interval includes zero we move to
line 9 and set the output lower bound to zero and the upper bound to the maximum
(line 11). We reset to the default rounding mode and return the answer in line 14.

To this point the interval library consists entirely of operations. Here we define
the concepts of equality and less than or equal for intervals. Equality is straightfor-
ward: two intervals are equal if their bounds are equal. Symbolically this is repre-
sented as,

[x, x̄] = [y, ȳ] iff (x = y)∧ (x̄ = ȳ)

where ∧ is conjunction or “logical and”.
For less than or equal we compare both the bounds for less than or equal like so,

[x, x̄]≤ [y, ȳ] iff (x ≤ y)∧ (x̄ ≤ ȳ)

Why equal and less than or equal? These relations are enough to define the others as
needed and are called out explicitly in [7] which works towards defining a standard
for interval arithmetic.

The last operation we are including in our interval library is the concept of the
distance between two intervals. This is a scalar measuring the difference between
the bounds of two intervals returning the largest difference. Symbolically this is,

dist(x,y) = max{|x− y|, |x̄− ȳ|}

which measures the degree to which two intervals “overlap”. The larger this value,
the more dissimilar the intervals are.

In C code these operations are defined to be,

1 unsigned char int_eq(interval_t x, interval_t y) {
2 return (x.a==y.a) && (x.b==y.b);
3 }
4
5 unsigned char int_le(interval_t x, interval_t y) {
6 return (x.a <= y.a) && (x.b <= y.b);
7 }
8
9 double int_dist(interval_t x, interval_t y) {
10 double a,b;
11 a = fabs(x.a - y.a);
12 b = fabs(x.b - y.b);
13 return (a>b) ? a : b;
14 }

where line 2 simply compares the bounds for equality and line 6 compares them
for less than or equal. For int dist() we first compute |x− y| (line 11) and |x̄− ȳ|
(line 12) and then return the larger of the two in line 13.

7.2 Basic Operations 213

As a quick example of these functions consider two intervals,

x = [-2.7182818284590451, 2.8182818284590452]

y = [2.5182818284590449, 2.9182818284590453]

which overlap. With these, then, the function calls to our new operations return,

int neg(x,y) = [-2.8182818284590452, 2.7182818284590451]

int abs(x) = [0.0000000000000000, 2.8182818284590452]

int eq(x,y) = 0 (false)
int le(x,y) = 1 (true)
int dist(x,y) = 5.2365636569180900

The Python Version. Before we move on with our investigation of interval arith-
metic let’s quickly implement an interval class in Python. For this class we will
only implement the basic arithmetic operations and leave extending the class to the
exercises. The key to interval arithmetic is the ability to control the floating-point
rounding mode. This is easily accomplished in C by including the fenv.h header
file and compiling with the -frounding-math option. However, the Python inter-
preter is already compiled and does not offer direct access to the constants and
functions defined in fenv.h. Fortunately, all is not lost, we are still able to access
the underlying C library that contains these functions and use them to set the round-
ing mode as necessary. For this trick we thank Rafael Barreto for his blog post [8]
which describes how to do this to set the rounding mode.

Jumping in, then, with our Python implementation we start with the beginning of
the class,

1 from math import exp
2 from ctypes import cdll
3 from ctypes.util import find_library
4
5 class Interval:
6 libc = cdll.LoadLibrary(find_library("m"))
7 FE_TOWARDZERO = 0xc00
8 FE_DOWNWARD = 0x400
9 FE_UPWARD = 0x800
10 FE_TONEAREST = 0
11
12 def __init__(self, a,b=None):
13 if (b == None):
14 self.a = a
15 self.b = a
16 else:
17 self.a = a
18 self.b = b

where lines 2 and 3 import standard Python libraries which will give us access to
the C library so we can call the rounding functions. Line 1 imports the exponential
function which we will use to generate infinity. The class starts on line 5. Line 6 sets
a class-level variable, libc, to the C library which on Linux systems can be found by
searching for “m” (hence -lm when compiling). We also define the rounding modes

214 7 Interval Arithmetic

as class-level variables. The specific values were determined by a short C program
which displayed them after including fenv.h. The constructor for the class starts on
line 12 and takes up to two arguments. If only one is given the argument is assumed
to be a real number and an interval is created from this number. Doing this simplifies
the class by removing the need to consider mixed interval and float operations. If
both arguments are given they are assumed to be the lower (a) and upper (b) bounds
of the interval being defined. These are stored in self.a and self.b, respectively.

In order to round properly we need methods which set the rounding mode. These
are defined next,

1 def __RoundDown(self):
2 self.libc.fesetround(self.FE_DOWNWARD)
3
4 def __RoundUp(self):
5 self.libc.fesetround(self.FE_UPWARD)
6
7 def __RoundNearest(self):
8 self.libc.fesetround(self.FE_TONEAREST)

where RoundDown(), RoundUp(), and RoundNearest() are wrappers on calls
to the C fesetround() function. Note the use of the double underscore prefix as
Python notation for “private”. We will call these methods whenever we need to
change the rounding mode.

Next comes addition and subtraction. Instead of methods with those names we
use the flexibility built into Python to define methods that work directly with the
+ and − operators. This means we can define expressions with intervals as if they
were any other number or variable. The code is,

1 def __add__(self, y):
2 self.__RoundDown()
3 a = self.a + y.a
4 self.__RoundUp()
5 b = self.b + y.b
6 self.__RoundNearest()
7 return Interval(a,b)
8
9 def __sub__(self, y):
10 self.__RoundDown()
11 a = self.a - y.b
12 self.__RoundUp()
13 b = self.b - y.a
14 self.__RoundNearest()
15 return Interval(a,b)

where these methods, add () and sub (), will be called when objects of this
class are encountered in arithmetic expressions involving + and −. Since we are not
implementing mixed operations both operands of the + or − must be of this class.
Just as we did for the C library we set the rounding modes to down (lower bound)
or up (upper bound) before calculating the new value. We return the new value as a
new Interval object.

7.2 Basic Operations 215

Multiplication is next (mul). This is directly analogous to the C version where
we consider each case for the new lower and upper limit with proper rounding. The
result is returned as a new interval object,

1 def __mul__(self, y):
2 self.__RoundDown()
3 a = min([self.a*y.a,self.a*y.b,self.b*y.a,self.b*y.b])
4 self.__RoundUp()
5 b = max([self.a*y.a,self.a*y.b,self.b*y.a,self.b*y.b])
6 self.__RoundNearest()
7 return Interval(a,b)

with line 2 setting rounding towards −∞ before calculating all the products between
the two intervals. It then selects the smallest of these and sets the lower bound to
it. Line 4 changes to rounding towards +∞ and repeats the calculation this time
selecting the maximum value. We must do the multiplications twice because we
changed the rounding mode. Line 6 returns to default rounding and the new object
is returned in line 7.

Division, with reciprocal, and powers are all that remain to be implemented.
Division is multiplication by the reciprocal, as before,

1 def recip(self):
2 if (self.a < 0.0) and (self.b > 0.0):
3 return Interval(-exp(1000.0), exp(1000.0))
4 self.__RoundDown()
5 a = 1.0 / self.b
6 self.__RoundUp()
7 b = 1.0 / self.a
8 self.__RoundNearest()
9 return Interval(a,b)
10
11 def __div__(self, y):
12 return self.__mul__(y.recip())

where division is called in line 12. The reciprocal method, not associated with an
operator but not private, is used to return the reciprocal of the interval. If the interval
contains zero (line 2) we return [−∞,+∞] (line 3). Otherwise, we round down and
calculate the lower bound, round up, calculate the upper bound, and finally return
the new reciprocal object.

The last method we will implement is raising an interval to a positive integer
power. This will mimic the C code as,

1 def __pow__(self, n):
2 if (n%2) == 1:
3 self.__RoundDown()
4 a = self.a**n
5 self.__RoundUp()
6 b = self.b**n
7 elif (self.a >= 0):

216 7 Interval Arithmetic

8 self.__RoundDown()
9 a = self.a**n
10 self.__RoundUp()
11 b = self.b**n
12 elif (self.b < 0):
13 self.__RoundDown()
14 a = self.b**n
15 self.__RoundUp()
16 b = self.a**n
17 else:
18 a = 0.0
19 self.__RoundUp()
20 b = self.a**n
21 t = self.b**n
22 if (t > b):
23 b = t
24 self.__RoundNearest()
25 return Interval(a,b)

with each condition checked as before. Note that ** is exponentiation in Python.
Let’s look at some examples using the class. We give a running interactive Python

session with >>> the Python prompt followed by user input. Python output does not
have the prompt and has been slightly intended for clarity,

>>> from Interval import *
>>> from math import sqrt
>>> x = Interval(-sqrt(2), sqrt(2)+0.1)
>>> x; x*x; x**2

[-1.4142135623730951, 1.5142135623730952]
[-2.1414213562373101, 2.2928427124746200]
[0.0000000000000000, 2.2928427124746200]

>>> x*x*x; x**3
[-3.2425692603699230, 3.4718535316173851]
[-2.8284271247461903, 3.4718535316173846]

>>> x = Interval(sqrt(2), sqrt(2)+0.01)
>>> y = x**2
>>> x/y

[0.6972118559681739, 0.7121067811865476]
>>> y/x

[1.4042837765619229, 1.4342842730512142]

We first import the library and the square root function. We then define an interval, x,
and show it along with x×x and x2. Notice that the former gives too large an interval
in this case because the interval contains zero. The more correct interval is the one
returned by x2. The same comparison is made between multiplying x by itself three
times and calling the exponential. The multiplication leads to too large an interval.
Re-defining x to be positive lets us demonstrate division thereby illustrating all the
basic operations of the class.

In this section we explored and implemented basic interval arithmetic in C and
Python. Next we consider functions of intervals. This is where we will run into the
biggest reason, apart from performance issues due to repeated calculations, why
interval arithmetic is not more widely used.

7.3 Functions and Intervals 217

Properties of Intervals. We summarize this section by discussing some of the
mathematical properties of intervals. The first few are familiar and mimic those of
normal arithmetic. Things become more interesting when we get to the distributive
property.

For any three intervals, x = [x, x̄], y = [y, ȳ], and z = [z, z̄], we have the following
as true,

(x+ y)+ z = x+(y+ z) (associative)
(x− y)− z = x− (y− z)

x+ y = y+ x (commutative)
x× y = y× x

x+[0,0] = x (additive identity)
x× [1,1] = x (multiplicative identity)

which comes as no surprise. However, the distributive property causes problems. In
general, for intervals,

x× (y+ z) �= xy+ xz

For example if x = [1,2], y = [1,2], and z = [−2,−1],

x× (y+ z) xy+ xz
[1,2]× ([1,2]+ [−2,−1]) [1,2]× [1,2]+ [1,2]× [−2,−1]

[1,2]× [−1,1] [1,4]+ [−4,−1]
[−2,2] [−3,3]

which is at first glance unexpected. This property is called subdistributivity and
implies that for intervals we have,

x× (y+ z)⊆ x× y+ x× z

which is seen clearly in the example above because [−2,2]⊆ [−3,3] as it is a tighter
bound. This means that in practice one needs to be careful with the form of an
expression.

7.3 Functions and Intervals

Now that we know how to implement intervals we are ready to use them and be
sure of accurate and tight bounds on our calculations. Or not. We must take a look
at general functions of intervals and when we do we will see that a large elephant is
indeed in the living room.

If a function of one variable is monotonic over a range this means that the func-
tion, f (x), is either increasing or decreasing over the range. If this is the case, then
interval arithmetic will work as expected because for the range of the interval the
function will maintain (or reverse) the ordering of the bounds. For example, consider
the square root function for positive intervals. Since the square root is monotonically

218 7 Interval Arithmetic

increasing over any positive interval the output of
√

x for an interval x will also be
increasing as shown in Fig. 7.1.

Because of this consistent increase the tightest output interval will be simply
[
√

x,
√

x̄]. If the function is monotonically decreasing over the interval the result
will be similar but with the bounds flipped to maintain a proper ordering. So, in
general, for monotonically increasing functions of one variable (f (x)) we have,

f (x) = f ([x, x̄]) = [f (x), f (x̄)]

while for monotonically decreasing functions (g(x)) we have,

g(x) = g([x, x̄]) = [g(x̄),g(x)]

where it should be noted that many elementary functions are of this form. This
includes the exponential function, roots (eg. cube root), and logarithms. For expo-
nentials and logarithms we can define the output explicitly,

a[x,x̄] = [ax,ax̄], a > 1

loga[x, x̄] = [logax, logax̄]

Fig. 7.1 An example of a monotonic function. Since the function y =
√

x is always increasing for
a positive input the bounds on any output interval are simply the function values at the lower and
upper bounds of the input interval as shown for the interval x = [3.5,4.5]. This leads to the proper
output interval of approximately [1.8708,2.1213]. If the function were monotonically decreasing
over this interval the output would be the same but with the upper and lower bounds swapped so
that the interval has the right ordering

7.3 Functions and Intervals 219

What about functions that are not monotonically increasing or decreasing? In this
case things become a bit more difficult. For example, what about the sine function?
We assume the reader is familiar with the shape of the sine function. Clearly, it
is sometimes increasing and sometimes decreasing. How to work with this and by
extension the cosine?

One possibility is to use a Taylor series expansion. This is the solution presented
in Daumas et al. [9] in terms of bounded functions using a parameter n to control
the bounds where in the limit n → ∞ the bounds tighten to the actual value of the
function. Specifically, for the sine function [9] defines the output interval to be,

[sin(x)]n = [sin(x,n),sin(x̄,n)], x ⊆ [
−π
2

,
π
2
]

for a specified value of n. We’ll see shortly what a good value of n might be. The
functions sin(x,n) and sin(x̄,n) are themselves defined in terms of Taylor series
parametrized by n and operating on scalar values (the bounds of x). The series
expansions are,

sin(x,n) =
m

∑
i=1

(−1)i−1 x2i−1

(2i−1)!

sin(x,n) =
m+1

∑
i=1

(−1)i−1 x2i−1

(2i−1)!

where m = 2n+1,x ≥ 0,otherwise,m = 2n. In [9] the value of π itself is defined as
an interval but for our purposes we will treat it as an exact quantity and note that the
argument to our interval sine be restricted to the range given above.

Looking at the series expansions and the dependency upon the summation limit
as a function of n we see where the cleverness lies in the definition. The bounds
of the sine come from the number of terms used in the summation with the lower
bound set by m(n) and the upper set by m(n)+1. Also, as n → ∞ it is clear that the
series will converge more and more to the sine of x.

Let’s add this function to our interval library. The implementation is straightfor-
ward requiring a main function,

1 interval_t int_sin(interval_t x) {
2 int n=8;
3 interval_t ans;
4
5 fesetround(FE_DOWNWARD);
6 ans.a = int_sin_lo(x.a, n);
7 fesetround(FE_UPWARD);
8 ans.b = int_sin_hi(x.b, n);
9 fesetround(FE_TONEAREST);
10 return ans;
11 }

which follows our standard format of setting the rounding mode, first towards −∞
for the lower bound and then towards +∞ for the upper bound. Lines 6 and 8 set the

220 7 Interval Arithmetic

output value by calling helper functions to compute the series value for the lower
and upper bound. Note that line 2 sets n to eight. This value can be adjusted but
eight gives good results. The helper functions are,

1 double fact(int n) {
2 return (n==1) ? 1.0 : n*fact(n-1);
3 }
4
5 double int_sin_lo(double x, int n) {
6 int i, m = (x < 0) ? 2*n : 2*n+1;
7 double ans=0.0;
8
9 for(i=1; i <= m; i++) {
10 ans += pow(-1,i-1) * pow(x,2*i-1) / fact(2*i-1);
11 }
12 return ans;
13 }
14
15 double int_sin_hi(double x, int n) {
16 int i, m = (x < 0) ? 2*n : 2*n+1;
17 double ans=0.0;
18
19 for(i=1; i <= m+1; i++) {
20 ans += pow(-1,i-1) * pow(x,2*i-1) / fact(2*i-1);
21 }
22 return ans;
23 }

where int sin lo() and int sin hi() call fact() to compute the factorial. We
use the recursive algorithm for simplicity noting that we will only need less than
a dozen terms in the series. The functions themselves are a literal translation of
the formulas with m set appropriately when declared (lines 6 and 16). Note also
that for int sin hi() we add one to m in the loop limit. Why do we not combine
these two functions? If int sin hi() needs to calculate only one more term in the
series expansion than int sin lo() why calculate everything twice? The answer
lies in the guarantee implicit in intervals implemented in floating-point, namely,
that the bounds on the interval will be certain to include the correct answer. When
int sin lo() is called from int sin() the floating-point rounding mode has been
set towards −∞. Therefore, all the calculations of the series terms will round in
that direction thereby assuring us that rounding error will not shrink the interval we
expect. Likewise, when int sin hi() is called the rounding mode it towards +∞
for the same reason. This is why the calculation must be done twice.

Let’s look at the output of our sine function and compare it to the “gold standard”
present in the C math library. For,

x = [0.7852981625,0.7854981625]

where the difference between the bounds is underlined, we get,

sin(x) = [0.7070360663383567,0.7071774876944870] (interval sine)

while the sin() function from math.h produces the interval,

7.3 Functions and Intervals 221

sin(x) = [0.7070360663383576,0.7071774876944862] (math.h sine)

Looking at the underlined digits of each interval we see that our sine function does
indeed produce an interval which will be sure to encompass the “true” value.

The formulas for the interval version of cosine are,

[cos(x)]n = [cos(x̄,n),cos(x,n)], x ⊆ [0,π]

and,

cos(x,n) = 1+
m+1

∑
i=1

(−1)i x2i

(2i)!

cos(x,n) = 1+
m

∑
i=1

(−1)i x2i

(2i)!

again where m = 2n+1,x ≥ 0,otherwise,m = 2n. We leave the implementation, in
C and Python, to the exercises.

So far in this section we have examined interval versions of elementary func-
tions. What about general functions of x? Let’s take a look and we will soon see
that this is the elephant mentioned above. Applying interval arithmetic to general
functions leads to the dependency problem (or dependency effect) which is the bane
of intervals.

This problem shows itself when applying intervals to general functions where
the interval variable appears more than once in the expression. The most commonly
cited example of this is the evaluation of the expression x−x2 for x = [0,1]. Another
way to write this expression is x(1− x). Let’s look at how these two compare when
we evaluate them,

x(1− x) x− x2

[0,1]× (1− [0,1]) [0,1]− [0,1]2

[0,1]× [0,1] [0,1]− [0,1]
[0,1] [−1,1]

where we clearly have differing answers. We also have that the interval for x(1− x)
⊆ x − x2 which is exactly what we would expect due to the subdistributivity of
intervals. However, while neither answer is technically incorrect, since the proper
answer lies inside of each interval, neither answer is satisfactory because of the
dependency problem.

The expression we are evaluating is a downward facing parabola with a max-
imum value of 0.25 at x = 1

2 and minimum values of zero at x = 0 and x = 1.
Therefore, over the given range, x = [0,1], we would expect the output interval to
be [0, 1

4]. While this interval is within the range of both of the intervals above we do
not find the narrow interval unless we remove the dependency problem by rewriting
the expression so that x appears only once. If we complete the square of x− x2 we
can rewrite the original expression as 1

4 − (1
2 − x)2 in which x appears only once. If

we evaluate this expression over x = [0,1] we get,

222 7 Interval Arithmetic

1
4 − (1

2 − x)2

0.25− (0.5− [0,1])2

0.25− [0,0.25]
[0,0.25]

which is the narrowest interval in this case.
The dependency problem is likely the primary reason interval arithmetic is not

more widely used. It is often impossible to rewrite an expression so that the variable
appears only once. When this is the case it is possible to introduce auxiliary intervals
whose union results in the original interval and then apply the expression to each of
these intervals. This interval splitting will result in less of a dependency problem.
Let’s look at an example of this from [9] where the expression under consideration
is 2x− x with x = [0,1]. If we simply evaluate the expression we get [−1,2] as the
answer when the narrowest interval is naturally [0,1]. The observation key to interval
splitting is that while x = [0,1] does not lead to the narrowest interval we can split
the interval into two parts, x1 = [0,0.5] and x2 = [0.5,1], and evaluate each of these
in turn. In that case we get [−0.5,1] for x1 and [0,1.5] for x2. The union of these two
intervals is [−0.5,1.5] which is closer to the expected answer of [0,1]. If the intervals
are divided further and further the resulting answer will approach [0,1] which we
can see if we evaluate x1 = [0,0.05] to x20 = [0.95,1] which gives [−0.05,0.1] up
to [0.9,1.05] the union of which is [−0.05,1.05]. While interval splitting can help
deal with the dependency problem it introduces a significant amount of overhead to
the calculations. This is why our simple interval C library and Python class do not
implement interval splitting even though more complete libraries do.

7.4 Implementations

In this section we look at two implementations of interval arithmetic, one for C
and the other for Python. For C perhaps the most widely used library is the Multi-
ple Precision Floating-point Interval library or MPFI for short [10]. This library is
built on top of the widely used GNU GMP and MPFR libraries for multiple pre-
cision floating-point numbers. This means that in addition to interval arithmetic
the MPFI library supports more than the standard IEEE 754 32-bit and 64-bit
floating-point. For our purposes we will ignore this important and useful feature
and instead focus on the interval support MPFI provides. Using MPFI requires us
to install GMP (http://gmplib.org/) and MPFR (http://www.mpfr.org/). Once these
are installed with the typical “configure; make; make install” sequence of
Unix instructions we can download MPFI (http://perso.ens-lyon.fr/nathalie.revol/
software.html). Building MPFI follows the same sequence of steps as GMP and
MPFR.

Let’s start with a simple example that defines two intervals and then prints them
on standard out. This will teach us how to define and initialize intervals and how to
print them. Please note that there is an extensive API for this library and that we are
only using a small part of it. Our initial program, then, is,

http://gmplib.org/
http://www.mpfr.org/
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://perso.ens-lyon.fr/nathalie.revol/software.html

7.4 Implementations 223

1 #include <stdio.h>
2 #include <mpfr.h>
3 #include <mpfi.h>
4 #include <mpfi_io.h>
5
6 int main() {
7 mpfi_t x, y;
8
9 mpfr_set_default_prec(64);
10
11 mpfi_init(x);
12 mpfi_set_str(x, "[-1.0, 1.0]", 10);
13
14 mpfi_init_set_str(y, "[0,2]", 10);
15
16 printf("x = ");
17 mpfi_out_str(stdout, 10, 0, x);
18 printf("\n");
19
20 printf("y = ");
21 mpfi_out_str(stdout, 10, 0, y);
22 printf("\n");
23
24 mpfi_clear(x);
25 mpfi_clear(y);
26 }

where lines 1 through 4 include necessary header files. Note that the documentation
for MPFI recommends including stdio.h before the remaining header files. Line
7 declares two interval variables, x and y. This declares the variables but does not
initialize them. They must be initialized before they are used. Line 9 sets the default
precision to 64 bits to mimic a double. Note that this is a call to the MPFR library.
Lines 11 and 12 show one way to initialize an interval variable and set its value from
a string. We will use strings to set values though there are many options in the API.
For mpfi set str() the first argument is the variable, the second is a string which
defines the interval in the way we have been displaying them throughout this chapter,
and the last argument is the base in which the interval is defined (2 through 36). Line
14 combines lines 11 and 12 into a single initialize and set function. The arguments
are the same as line 12. We then display the intervals using mpfi out str() in lines
17 and 21. The first argument is the output file stream, the second is the base, the
third is the number of digits (0 says use the precision of the variable) and the fourth
argument is the interval variable itself. Lastly, lines 24 and 25 clear the memory
used by x and y. While not necessary in this case because the program is about to
exit it is necessary before re-assigning these variables.

This program should be compiled with,

gcc mpfi ex.c -o mpfi ex -lmpfi -lmpfr

assuming mpfi ex.c to be the file name. Note that MPFI installs itself in
/usr/local/lib which might require adding that path to the LD LIBRARY PATH

environment variable.

224 7 Interval Arithmetic

Now that we know how to initialize, set, and display intervals in MPFI let’s look
at basic arithmetic functions. These are,

int mpfi add(mpfi t ROP, mpfi t OP1, mpfi t OP2)
int mpfi sub(mpfi t ROP, mpfi t OP1, mpfi t OP2)
int mpfi mul(mpfi t ROP, mpfi t OP1, mpfi t OP2)
int mpfi div(mpfi t ROP, mpfi t OP1, mpfi t OP2)

where ROP is the variable to receive the result and OP1 and OP2 are the operands.
Note that division using an interval containing zero will result in [−∞,+∞]. The
return value indicates whether or not endpoints of the interval are exact.

MPFI is powerful but a bit cumbersome to use because of its C language heritage.
There is a C++ version as well which we are not exploring here. Let’s look at our
dependency problem example again and implement it using MPFI. This example
computes x(1− x) and x− x2 for x = [0,1]. The C code is,

1 int main() {
2 mpfi_t x, one, t, y;
3
4 mpfr_set_default_prec(64);
5 mpfi_init_set_str(x, "[0, 1]", 10);
6 mpfi_init_set_str(one, "[1,1]", 10);
7
8 mpfi_init(t);
9 mpfi_sub(t, one, x);
10 mpfi_init(y);
11 mpfi_mul(y, t, x);
12
13 printf("y = ");
14 mpfi_out_str(stdout, 10, 0, y);
15 printf("\n");
16
17 mpfi_clear(y);
18 mpfi_clear(t);
19 mpfi_clear(one);
20
21 mpfi_init(t);
22 mpfi_mul(t, x, x);
23 mpfi_init(y);
24 mpfi_sub(y, x, t);
25
26 printf("y = ");
27 mpfi_out_str(stdout, 10, 0, y);
28 printf("\n");
29 }

where we see that it is necessary to preserve the intermediate temporary variables
so that they can be released properly without leaking memory. Specifically, line 5
initializes x while line 6 initializes the constant interval, one. The expression x(1−x)
is calculated in lines 8 through 11. First, t = 1−x is calculated in line 9 and then the
final answer is found as y = t ×x in line 11. This is the first y output (line 14). Lines
17 through 19 release memory so that we can reuse y and t to calculate x− x2. This
expression is calculated in lines 21 through 24 and output in line 27. The output,

7.4 Implementations 225

y = [0,1.00000000000000000000]

y = [-1.00000000000000000000,1.00000000000000000000]

is precisely what we would expect it to be for x(1− x) and x− x2.
The functionality of MPFI is available in Python via the mpmath [11] library.

This library is built on the same foundations as MPFI and is quite powerful. As with
MPFI, we will only look at the simplest of uses with intervals. To install mpmath on
Ubuntu use the command,

sudo apt-get -y install python-mpmath

with suitable repository access for other Linux distributions or build it from the
website.

Once the library is installed we can access it easily from the Python command
prompt. The following console session shows some of mpmath’s basic interval
abilities,

1 >>> from mpmath import mpi
2 >>> x = mpi(’0’,’1’)
3 >>> print x
4 [0.0, 1.0]
5 >>> print x*(1-x)
6 [0.0, 1.0]
7 >>> print x-x**2
8 [-1.0, 1.0]
9 >>> y = mpi(’-1’,’1’)
10 >>> print y**2
11 [0.0, 1.0]
12 >>> print y*y
13 [-1.0, 1.0]
14 >>> print 1/y
15 [-inf, +inf]
16 >>> print 1/x
17 [1.0, +inf]

where the Python prompt is >>> and Python output is indented for clarity.
In line 1 we import the interval module (mpi) from the larger mpmath library.

Line 2 defines a new interval and stores it in x. Note that the bounds are given as two
separate arguments and may be given as strings or as numbers. If given as numbers
they are interpreted as Python floats (64-bits) while strings are interpreted as exact
decimals. Line 5 prints x(1− x) with the expected output while line 7 prints x− x2,
again with the expected output. Line 9 defines y to be an interval containing zero.
Lines 10 through 15 display the results of several simple calculations on y. Note
that y2 (line 10) returns an interval different than y× y (line 12) but positive, as in
our C library above. Note that line 14 returns [−∞,+∞] as the reciprocal of y since
it contains zero while line 16 prints the reciprocal of x which has zero as a lower
bound. In this case the resulting interval is [0,+∞].

The bounds of an interval are acquired by the a and b properties on the object.
Additionally, there are also mid and delta properties for the midpoint of an interval
and for the difference between the endpoints,

226 7 Interval Arithmetic

1 >>> from mpmath import mpi
2 >>> x = mpi(’0.41465’, ’0.5’)
2 >>> x.a
2 mpi(’0.41464999999999996’, ’0.41464999999999996’)
2 >>> x.b
2 mpi(’0.5’, ’0.5’)
2 >>> x.mid
2 mpi(’0.45732499999999998’, ’0.45732499999999998’)
2 >>> x.delta
2 mpi(’0.085350000000000037’, ’0.085350000000000037’)

with x.a returning the lower bound, x.b returning the upper, x.mid returning the
middle position between the lower and upper bounds, and x.delta to calculating
the range of the interval. Note, the return values are themselves intervals even if the
lower and upper bounds are the same.

This section took a quick look at two common interval libraries to extend C
and Python. Intervals have been added to many other languages and sometimes the
compiler used will support intervals. For example, Fortran has had interval packages
for some time. More recent languages like R and Matlab also support intervals.

7.5 Thoughts on Interval Arithmetic

Interval arithmetic is most useful when uncertainty is part of the data. With inter-
vals, and proper rounding, we have assurances that the correct answer lies within a
particular range. For basic operations intervals work well even if they may involve
significantly more low-level calculations than floating-point numbers on their own.
For that reason, unless truly necessary, intervals are generally not recommended
in situations where high-performance is required. Packages like MPFI and mpmath
use powerful underlying libraries with arbitrary precision floating-point and this can
add much to creating intervals that are highly accurate and as small as is possible.

Floating-point arithmetic is standardized via the IEEE 754 standard. IEEE 754
defines the number of bits for each precision, including single (32-bit) and double
(64-bit), as well as rounding modes, comparisons, etc. The IEEE organization, as
of this writing (Fall 2014), is developing IEEE P1788 (Standard for Interval Arith-
metic) as a project [12]. This standard will address the fact that currently intervals
are implemented in many different ways and without a consistent set of algorithms.
While not yet complete and adopted, the standard is worth remembering as it may
go a long way towards increasing the use of interval arithmetic. A good summary of
interval arithmetic, along with a discussion of its uses in scientific and mathematical
research, can be found in [13].

Because of the difficulty involved in properly applying interval arithmetic to gen-
eral functions and expressions one must be careful and thoughtful when using inter-
vals to avoid falling into a situation where the uncertainty grows too large. Recall
that unlike standard floating-point computation, the interval [−∞,+∞] is a valid
return value for an interval expression, albeit, not a particularly useful one. How-
ever, if uncertainty and bounds on it are crucial to the task at hand, then interval
arithmetic may be the ideal choice.

References 227

7.6 Chapter Summary

In this chapter we took a practical look at interval arithmetic. We defined what we
mean by intervals and interval arithmetic, summarized the history of intervals, and
explained basic operations on intervals. We implemented an interval library in C and
Python which included some elementary functions. We then discussed the depen-
dency problem, with examples, and mentioned interval splitting as a technique for
minimizing the dependency problem. Lastly, we looked at some implementations of
interval arithmetic and offered some thoughts on interval arithmetic and its utility.

Exercises

7.1. Add int lt(), int gt(), int ge(), and int ne() functions to test for <, >,
≥, and �= using int eq() and int le(). **

7.2. Add exponential (ex), square root (
√

x) and logarithm functions (any base) to
the C interval library. **

7.3. The Python interval class only contains basic operations. Complete the class by
adding the missing operations found in the C library. **

7.4. Extend the Python interval library to support mixed scalar and interval arith-
metic for +, −, ×, and /. (Hint: look at how methods like radd () might be
used) **

7.5. Extend the Python pow () method to proper handle negative integer
exponents.

7.6. Extend the C library by adding cosine using the formulas in Sect. 7.3. *

7.7. Extend the Python class by adding sine and cosine using the formulas in
Sect. 7.3. *

7.8. Add interval splitting to the Python interval class in order to minimize the
dependency problem. Automatically split intervals into n parts and evaluate a func-
tion on each of those parts reporting the union of them when complete. ***

References

1. Bevington, PR., Robinson, DK. Data reduction and error analysis for the physical sciences.
Vol. 336. McGraw-Hill (1969).

2. Young, RC., The algebra of multi-valued quantities, Mathematische Annalen, 1931, Vol. 104,
pp. 260–290.

3. Dwyer, PS., Linear Computations, J. Wiley, N.Y., 1951.

228 7 Interval Arithmetic

4. Sunaga, T., Theory of interval algebra and its application to numerical analysis, In: Research
Association of Applied Geometry (RAAG) Memoirs, Ggujutsu Bunken Fukuy-kai. Tokyo,
Japan, 1958, Vol. 2, pp. 29–46 (547–564); reprinted in Japan Journal on Industrial and Applied
Mathematics, 2009, Vol. 26, No. 2–3, pp. 126–143.

5. Moore, RE. Automatic error analysis in digital computation. Technical Report Space Div.
Report LMSD84821, Lockheed Missiles and Space Co., 1959.

6. Hickey, T., Ju, Q. and van Emden, MH., Interval Arithmetic: From principles to implementa-
tion. Journal of the ACM (JACM) 48.5 (2001): 1038–1068.

7. Bohlender, G., Kulisch, U., Definition of the Arithmetic Operations and Comparison Relations
for an Interval Arithmetic Standard. Reliable Computing 15 (2011): 37.

8. Barreto, R., Controlling FPU rounding modes with Python, http://rafaelbarreto.wordpress.
com/2009/03/30/controlling-fpu-rounding-modes-with-python/ (accessed 07-Nov-2014).

9. Daumas, M., Lester, D., Muoz, C. Verified real number calculations: A library for interval
arithmetic. Computers, IEEE Transactions on 58.2 (2009): 226–237.

10. Revol, N., Rouillier, F., Multiple Precision Floating-point Interval Library. http://perso.
ens-lyon.fr/nathalie.revol/software.html (retrieved 15-Nov-2014) (2002).

11. Johansson, F. et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic
(version 0.14), February 2010. http://code.google.com/p/mpmath (accessed 16-Nov-2014).

12. Kearfott, R. An overview of the upcoming IEEE P-1788 working group document: Standard
for interval arithmetic. IFSA/NAFIPS. 2013.

13. Kearfott, R. Interval computations: Introduction, uses, and resources. Euromath Bulletin 2.1
(1996): 95–112.

http://rafaelbarreto.wordpress.com/2009/03/30/controlling-fpu-rounding-modes-with-python/
http://rafaelbarreto.wordpress.com/2009/03/30/controlling-fpu-rounding-modes-with-python/
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://code.google.com/p/mpmath

Index

AND, 26
Ariane 5 rocket explosion, 104

Big integers, 115
Addition and subtraction, 122
Comba multiplication, 134
Comparing, 120
Divide-and-conquer, 140
Division, 131
in Python, 145
Input and output, 118
Karatsuba multiplication, 135
Knuth division, 139
Libraries, 143
Representation, 116
Schönhage and Strassen multiplication, 136
School method multiplication, 127

Bits, 19
Clearing, 32
Masking, 31
Rotations, 35
Setting, 31
Shifting, 33
Testing, 31
Toggling, 32

Boole, George, 26
Boolean algebra, 26
Bytes, 20

Checksum, 29
Compare instructions, 37
Converting numbers

Binary to binary-coded decimal, 69
Binary to decimal, 13
Binary-coded decimal to binary, 71
Decimal to binary, 12
Fixed-point to floating-point, 161

Floating-point to fixed-point, 161
Hexadecimal and binary, 10
Octal and binary, 11
Others to decimal, 14

Cryptography, 152

Decimal floating-point, 181
Biased exponent continuation field, 182
Combination field, 182
Continuation field, 182
Declet, 184
Densely packed decimal (DPD), 184
in software (C), 189
in software (Python), 195
Infinity, 185
Not-a-number (NaN), 186
Rounding modes, 186
Storage formats, 182
Storage order, 187

Diffie-Hellman key exchange, 152
Digital comparator, 37
Distribution of floating-point numbers, 77

Encryption, 28
Endianness

Big-endian, 24
Little-endian, 24

Experiments
Comparison of fixed-point trigonometric

functions, 172
Decimal floating-point logistic map, 191
Decimal floating-point to ASCII string, 187
Floating-point uncertainty in repeated

subtractions, 106
Illustrating uncertainty in floating-point

calculations, 104
Using rational numbers, 151

© Springer International Publishing Switzerland 2015
R.T. Kneusel, Numbers and Computers, DOI 10.1007/978-3-319-17260-6

229

230 Index

Fixed-point numbers
Addition, 162
Cosine (polynomial), 171
Cosine (table), 169
Cosine (Taylor series), 170
Division, 167
DOOM (case study), 177
Exponential (Taylor series), 174
Multiplication, 163
Natural logarithm (Newton’s method), 175
Q notation, 157
Sine (polynomial), 171
Sine (table), 168
Sine (Taylor series), 170
Square root (Newton’s method), 173
Subtraction, 162
Trigonometric functions, 168

Floating-point
Addition/subtraction algorithm, 96
Comparison, 93
Floating-point number, 75
IEEE 754 rounding modes (binary), 89
IEEE addition and subtraction, 95
IEEE exceptions, 98
IEEE floating-point in hardware, 101
IEEE infinity (binary), 85
IEEE multiplication, 96
IEEE NaN (binary), 85
Mantissa, 76
Multiplication algorithm, 97
Pitfalls, 103
Real number, 75
Significand, 76
Subnormal numbers, 88
Trapping exceptions, 99

IBM S/360 floating-point, 80
IEEE 754 number formats, 83
IEEE 754-2008, 75
Integers

Binary addition, 41
Binary subtraction, 43
Binary-code decimal subtraction, 68
Binary-coded decimal, 66
Binary-coded decimal addition, 68
One’s complement numbers, 54
Power of two test, 46
Sign extension, 62
Sign-magnitude numbers, 54
Signed addition, 58
Signed comparison, 56
Signed division, 63
Signed multiplication, 60
Signed subtraction, 58

Two’s complement numbers, 55
Unsigned, 21
Unsigned addition, 42
Unsigned division, 49
Unsigned multiplication, 47
Unsigned square root, 52
Unsigned subtraction, 44

Interval arithmetic, 202
Absolute value, 211
Addition and subtraction, 204
Comparisons, 212
Dependency problem, 221
in Python, 213
Monotonic functions, 218
MPFI library, 222
Multiplication, 206
Negation, 211
Powers, 208
Properties of intervals, 217
Reciprocal and division, 207
Sine and cosine, 219

Least-squares curve fitting, 171
Logical operators, 25

Memory
Addresses, 22
Bit order, 23
Byte order, 24

Nibbles, 20
NOT, 26
Numbers

Babylonian numbers, 6
Binary numbers, 9
Decimal numbers, 9
Egyptian numbers, 3
Hexadecimal numbers, 9
Mayan numbers, 8
Octal numbers, 10
Roman numerals, 3

OR, 26

Parity, 29
Patriot missile failure, 103
Place notation, 5
Propagation of errors, 202

Radix point, 5
Rational arithmetic, 146

Addition, 149
Division, 150
GCD, 148

Index 231

in Python, 147
Multiplication, 150
Subtraction, 149

RSA encryption, 153
Rules of thumb for floating-point numbers, 108

Shannon, Claude, 19
Swift, Jonathan, 24

Torres y Quevedo, Leonardo, 78
Truth table, 26

Words, 20

XOR, 26

Zuse, Konrad, 79

	Preface
	Who Should Read This Book
	How to Use This Book
	Acknowledgments

	Contents
	Part I Standard Representations
	1 Number Systems
	1.1 Representing Numbers
	1.2 The Big Three (and One Old Guy)
	1.3 Converting Between Number Bases
	1.4 Chapter Summary
	Exercises
	References

	2 Integers
	2.1 Bits, Nibbles, Bytes, and Words
	2.2 Unsigned Integers
	2.2.1 Representation
	2.2.2 Storage in Memory: Endianness

	2.3 Operations on Unsigned Integers
	2.3.1 Bitwise Logical Operations
	2.3.2 Testing, Setting, Clearing, and Toggling Bits
	2.3.3 Shifts and Rotates
	2.3.4 Comparisons
	2.3.5 Arithmetic
	2.3.6 Square Roots

	2.4 What About Negative Integers?
	2.4.1 Sign-Magnitude
	2.4.2 One's Complement
	2.4.3 Two's Complement

	2.5 Operations on Signed Integers
	2.5.1 Comparison
	2.5.2 Arithmetic

	2.6 Binary-Coded Decimal
	2.6.1 Introduction
	2.6.2 Arithmetic with BCD
	2.6.3 Conversion Routines

	2.7 Chapter Summary
	Exercises
	References

	3 Floating Point
	3.1 Floating-Point Numbers
	3.2 An Exceedingly Brief History of Floating-Point Numbers
	3.3 Comparing Floating-Point Representations
	3.4 IEEE 754 Floating-Point Representations
	3.5 Rounding Floating-Point Numbers (IEEE 754)
	3.6 Comparing Floating-Point Numbers (IEEE 754)
	3.7 Basic Arithmetic (IEEE 754)
	3.8 Handling Exceptions (IEEE 754)
	3.9 Floating-Point Hardware (IEEE 754)
	3.10 The Elephant in the Living Room (Pitfalls of Floating Point)
	3.11 Chapter Summary
	Exercises
	References

	Part II Other Representations
	4 Big Integers and Rational Arithmetic
	4.1 What is a Big Integer?
	4.2 Representing Big Integers
	4.3 Arithmetic with Big Integers
	4.4 Alternative Multiplication and Division Routines
	4.5 Implementations
	4.6 Rational Arithmetic with Big Integers
	4.7 When to Use Big Integers and Rational Arithmetic
	4.8 Chapter Summary
	Exercises
	References

	5 Fixed-Point Numbers
	5.1 Representation (Q Notation)
	5.2 Arithmetic with Fixed-Point Numbers
	5.3 Trigonometric and Other Functions
	5.4 When to Use Fixed-Point Numbers
	5.5 Chapter Summary
	Exercises
	References

	6 Decimal Floating Point
	6.1 What Is Decimal Floating-Point?
	6.2 The IEEE 754-2008 Decimal Floating-Point Format
	6.3 Decimal Floating-Point in Software
	6.4 Thoughts on Decimal Floating-Point
	6.5 Chapter Summary
	Exercises
	References

	7 Interval Arithmetic
	7.1 Defining Intervals
	7.2 Basic Operations
	7.3 Functions and Intervals
	7.4 Implementations
	7.5 Thoughts on Interval Arithmetic
	7.6 Chapter Summary
	Exercises
	References

	Index

