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preface

This book presents an introductory survey of computer science. It explores the
breadth of the subject while including enough depth to convey an honest appre-
ciation for the topics involved.

Audience

I wrote this text for students of computer science as well as students from
other disciplines. As for computer science students, most begin their studies
with the illusion that computer science is programming, Web browsing, and
Internet file sharing since that is essentially all they have seen. Yet computer
science is much more than this. In turn, beginning computer science stu-
dents need exposure to the breadth of the subject in which they are planning
to major. Providing this exposure is the theme of this book. It gives students
an overview of computer science—a foundation from which they can appreci-
ate the relevance and interrelationships of future courses in the field. This
survey approach is, in fact, the model used for introductory courses in the
natural sciences.

This broad background is also what students from other disciplines need if
they are to relate to the technical society in which they live. A computer science
course for this audience should provide a practical, realistic understanding of the
entire field rather than merely an introduction to using the Internet or training
in the use of some popular software packages. There is, of course, a proper place
for training, but this text is about educating.

Thus, while writing this text, maintaining accessibility for nontechnical stu-
dents was a major goal. The result is that previous editions have been used suc-
cessfully in courses for students over a wide range of disciplines and educational
levels, ranging from high school to graduate courses. This eleventh edition is
designed to continue that tradition.

New in the Eleventh Edition

The underlying theme during the development of this eleventh edition was to
update the text to include handheld mobile devices, in particular smartphones.
Thus, you will find that the text has been modified, and at times expanded, to
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present the relationship between the subject matter being discussed and smart-
phone technology. Specific topics include:

Smartphone hardware

The distinction between 3G and 4G networks
Smartphone operating systems

Smartphone software development

The human/smartphone interface

These additions are most noticeable in Chapters 3 (Operating Systems) and
4 (Networking) but is also observable in Chapters 6 (Programming Languages),
and 7 (Software Engineering).

Other prominent changes to this edition include updates to the following
topics:

® Software ownership and liability: The material in Chapter 7 (Software
Engineering) pertaining to this topic has been rewritten and updated.

¢ Training artificial neural networks: This material, in Chapter 11 (Artificial
Intelligence), has been modernized.

Finally, you will find that the material throughout the text has been updated
to reflect the state of today’s technology. This is most prevalent in Chapter 0
(Introduction), Chapter 1 (Data Storage), and Chapter 2 (Data Manipulation).

Organization

This text follows a bottom-up arrangement of subjects that progresses from the
concrete to the abstract—an order that results in a sound pedagogical presentation
in which each topic leads to the next. It begins with the fundamentals of informa-
tion encoding, data storage, and computer architecture (Chapters 1 and 2); pro-
gresses to the study of operating systems (Chapter 3) and computer networks
(Chapter 4); investigates the topics of algorithms, programming languages, and
software development (Chapters 5 through 7); explores techniques for enhancing
the accessibility of information (Chapters 8 and 9); considers some major applica-
tions of computer technology via graphics (Chapter 10) and artificial intelligence
(Chapter 11); and closes with an introduction to the abstract theory of computa-
tion (Chapter 12).

Although the text follows this natural progression, the individual chapters
and sections are surprisingly independent and can usually be read as isolated
units or rearranged to form alternative sequences of study. Indeed, the book is
often used as a text for courses that cover the material in a variety of orders. One
of these alternatives begins with material from Chapters 5 and 6 (Algorithms and
Programming Languages) and returns to the earlier chapters as desired. In con-
trast, I know of one course that starts with the material on computability from
Chapter 12. In still other cases the text has been used in “senior capstone”
courses where it serves as merely a backbone from which to branch into projects
in different areas. Courses for less technically oriented audiences may want to
concentrate on Chapters 4 (Networking and the Internet), 9 (Database Systems),
10 (Computer Graphics), and 11 (Artificial Intelligence).

On the opening page of each chapter, I have used asterisks to mark some sec-
tions as optional. These are sections that cover topics of more specific interest or



perhaps explore traditional topics in more depth. My intention is merely to pro-
vide suggestions for alternative paths though the text. There are, of course, other
shortcuts. In particular, if you are looking for a quick read, T suggest the follow-
ing sequence:

Section Topic

1.1-1.4 Basics of data encoding and storage
2.1-2.3 Machine architecture and machine language
3.1-3.3 Operating systems

4.1-4.3 Networking and the Internet
51-5.4 Algorithms and algorithm design
6.1-6.4 Programming languages

7.1-7.2 Software engineering

8.1-8.3 Data abstractions

9.1-9.2 Database systems

10.1-10.2 Computer graphics

11.1-11.3 Artificial intelligence

12.1-12.2 Theory of computation

There are several themes woven throughout the text. One is that computer
science is dynamic. The text repeatedly presents topics in a historical perspec-
tive, discusses the current state of affairs, and indicates directions of research.
Another theme is the role of abstraction and the way in which abstract tools are
used to control complexity. This theme is introduced in Chapter 0 and then
echoed in the context of operating system architecture, networking, algorithm
development, programming language design, software engineering, data organi-
zation, and computer graphics.

To Instructors

There is more material in this text than can normally be covered in a single
semester so do not hesitate to skip topics that do not fit your course objectives or
to rearrange the order as you see fit. You will find that, although the text follows
a plot, the topics are covered in a largely independent manner that allows you to
pick and choose as you desire. The book is designed to be used as a course
resource—not as a course definition. I suggest encouraging students to read the
material not explicitly included in your course. I think we underrate students if
we assume that we have to explain everything in class. We should be helping
them learn to learn on their own.

I feel obliged to say a few words about the bottom-up, concrete-to-abstract
organization of the text. I think as academics we too often assume that students
will appreciate our perspective of a subject—often one that we have developed
over many years of working in a field. As teachers I think we do better by pre-
senting material from the student’s perspective. This is why the text starts with
data representation/storage, machine architecture, operating systems, and net-
working. These are topics to which students readily relate—they have most
likely heard terms such as JPEG and MP3; they have probably recorded data on
CDs and DVDs; they have purchased computer components; they have inter-
acted with an operating system; and they have used the Internet. By starting the
course with these topics, students discover answers to many of the “why” ques-
tions they have been carrying for years and learn to view the course as practical

To Instructors

vii
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rather than theoretical. From this beginning it is natural to move on to the more
abstract issues of algorithms, algorithmic structures, programming languages,
software development methodologies, computability, and complexity that those
of us in the field view as the main topics in the science. As I've said before, the
topics are presented in a manner that does not force you to follow this bottom-up
sequence, but I encourage you to give it a try.

We are all aware that students learn a lot more than we teach them directly, and
the lessons they learn implicitly are often better absorbed than those that are studied
explicitly. This is significant when it comes to “teaching” problem solving. Students
do not become problem solvers by studying problem-solving methodologies. They
become problem solvers by solving problems—and not just carefully posed “textbook
problems.” So this text contains numerous problems, a few of which are intentionally
vague—meaning that there is not necessarily a single correct approach or a single
correct answer. I encourage you to use these and to expand on them.

Another topic in the “implicit learning” category is that of professionalism,
ethics, and social responsibility. I do not believe that this material should be pre-
sented as an isolated subject that is merely tacked on to the course. Instead, it
should be an integral part of the coverage that surfaces when it is relevant. This
is the approach followed in this text. You will find that Sections 3.5, 4.5, 7.8, 9.7,
and 11.7 present such topics as security, privacy, liability, and social awareness
in the context of operating systems, networking, database systems, software en-
gineering, and artificial intelligence. Moreover, Section 0.6 introduces this theme
by summarizing some of the more prominent theories that attempt to place eth-
ical decision making on a philosophically firm foundation. You will also find that
each chapter includes a collection of questions called Social Issues that challenge
students to think about the relationship between the material in the text and the
society in which they live.

Thank you for considering my text for your course. Whether you do or do
not decide that it is right for your situation, I hope that you find it to be a contri-
bution to the computer science education literature.

Pedagogical Features

This text is the product of many years of teaching. As a result, it is rich in peda-
gogical aids. Paramount is the abundance of problems to enhance the student’s
participation—over 1,000 in this eleventh edition. These are classified as Ques-
tions/Exercises, Chapter Review Problems, and Social Issues. The Questions/
Exercises appear at the end of each section (except for the introductory chapter).
They review the material just discussed, extend the previous discussion, or hint at
related topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except for the
introductory chapter). They are designed to serve as “homework” problems in that
they cover the material from the entire chapter and are not answered in the text.

Also at the end of each chapter are the questions in the Social Issues cate-
gory. They are designed for thought and discussion. Many of them can be used
to launch research assignments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains ref-
erences to other material relating to the subject of the chapter. The Web sites
identified in this preface, in the text, and in the sidebars of the text are also good
places to look for related material.



Supplemental Resources

A variety of supplemental materials for this text are available at the book’s
Companion Website: www.pearsonhighered.com/brookshear. The following are
accessible to all readers:

® Chapter-by-chapter activities that extend topics in the text and provide
opportunities to explore related topics

® Chapter-by-chapter “self-tests” that help readers to rethink the material
covered in the text

¢ Manuals that teach the basics of Java and C++ in a pedagogical sequence
compatible with the text

In addition, the following supplements are available to qualified instruc-
tors at Pearson Education's Instructor Resource Center. Please visit
www.pearsonhighered.com or contact your Pearson sales representative for
information on how to access them:

¢ Instructor’s Guide with answers to the Chapter Review Problems
¢ PowerPoint lecture slides
¢ Test bank

You may also want to check out my personal Web site at www.mscs.mu
.edu/~glennb. It is not very formal (and it is subject to my whims and sense of
humor), but I tend to keep some information there that you may find helpful. In
particular, you will find an errata page that lists corrections to errors in the text
that have been reported to me.

To Students

I'm a bit of a nonconformist (some of my friends would say more than a bit) so
when T set out to write this text I didn't always follow the advice I received. In
particular, many argued that certain material was too advanced for beginning
students. But, I believe that if a topic is relevant, then it is relevant even if the ac-
ademic community considers it to be an “advanced topic.” You deserve a text that
presents a complete picture of computer science—not a watered-down version
containing artificially simplified presentations of only those topics that have
been deemed appropriate for introductory students. Thus, I have not avoided
topics. Instead I've sought better explanations. I've tried to provide enough depth
to give you an honest picture of what computer science is all about. As in the
case of spices in a recipe, you may choose to skip some of the topics in the fol-
lowing pages, but they are there for you to taste if you wish—and I encourage
you to do so.

I should also point out that in any course dealing with technology, the details
you learn today may not be the details you will need to know tomorrow. The
field is dynamic—that’s part of the excitement. This book will give you a current
picture of the subject as well as a historical perspective. With this background
you will be prepared to grow along with technology. I encourage you to start the
growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in me by choosing to read my book.
As an author I have an obligation to produce a manuscript that is worth your
time. I hope you find that I have lived up to this obligation.

To Students
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CHAPTER

Introduction

In this preliminary chapter we consider the scope of computer
science, develop a historical perspective, and establish a

foundation from which to launch our study.

0.1 TheRole of Algorithms 0.3 The Science 0.5 An Outline of

. of Algorithms Our Study
0.2 The History

of Computing 0.4 Abstraction 0.6 Social Repercussions
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Chapter 0 Introduction

Computer science is the discipline that seeks to build a scientific foundation for
such topics as computer design, computer programming, information process-
ing, algorithmic solutions of problems, and the algorithmic process itself. It pro-
vides the underpinnings for today’s computer applications as well as the
foundations for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a typi-
cal university computer science curriculum. We want to appreciate the full scope
and dynamics of the field. Thus, in addition to the topics themselves, we will be
interested in their historical development, the current state of research, and
prospects for the future. Our goal is to establish a functional understanding of
computer science—one that will support those who wish to pursue more special-
ized studies in the science as well as one that will enable those in other fields to
flourish in an increasingly technical society.

0.1 The Role of Algorithms

We begin with the most fundamental concept of computer science—that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later in Chapter 5.) For example, there are
algorithms for cooking (called recipes), for finding your way through a strange
city (more commonly called directions), for operating washing machines (usu-
ally displayed on the inside of the washer’s lid or perhaps on the wall of a laun-
dromat), for playing music (expressed in the form of sheet music), and for
performing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm for
performing that task must be discovered and represented in a form that is com-
patible with the machine. A representation of an algorithm is called a program.
For the convenience of humans, computer programs are usually printed on
paper or displayed on computer screens. For the convenience of machines, pro-
grams are encoded in a manner compatible with the technology of the machine.
The process of developing a program, encoding it in machine-compatible form,
and inserting it into a machine is called programming. Programs, and the algo-
rithms they represent, are collectively referred to as software, in contrast to the
machinery itself, which is known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the
search for algorithms was a significant activity of mathematicians long before
the development of today’s computers. The goal was to find a single set of direc-
tions that described how all problems of a particular type could be solved. One of
the best known examples of this early research is the long division algorithm for
finding the quotient of two multiple-digit numbers. Another example is the
Euclidean algorithm, discovered by the ancient Greek mathematician Euclid, for
finding the greatest common divisor of two positive integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance of
that task no longer requires an understanding of the principles on which the
algorithm is based. Instead, the performance of the task is reduced to the process
of merely following directions. (We can follow the long division algorithm to find
a quotient or the Euclidean algorithm to find a greatest common divisor without
understanding why the algorithm works.) In a sense, the intelligence required to
solve the problem at hand is encoded in the algorithm.
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Figure 0.1  An algorithm for a magic trick

Effect: The performer places some cards from a normal deck of playing cards face
down on a table and mixes them thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards, the performer turns over cards
of the requested color.

Secret and Patter:

Step 1. From a normal deck of cards, select ten red cards and ten black cards. Deal these cards
face up in two piles on the table according to color.

Step 2. Announce that you have selected some red cards and some black cards.

Step 3. Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Step 4. Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Step 5. Immediately after returning the black cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughy mixing the cards.

Step 6. As long as there are face-down cards on the table, repeatedly
execute the following steps:

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
the remaining cards to prove your claim.

Figure 0.2 The Euclidean algorithm for finding the greatest common divisor of two
positive integers

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.
Step 2. Divide M by N, and call the remainder R.

Step 3. If Ris not 0, then assign M the value of N, assign N the value of R, and return to step 2;
otherwise, the greatest common divisor is the value currently assigned to N.
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It is through this ability to capture and convey intelligence (or at least intel-
ligent behavior) by means of algorithms that we are able to build machines that
perform useful tasks. Consequently, the level of intelligence displayed by
machines is limited by the intelligence that can be conveyed through algorithms.
We can construct a machine to perform a task only if an algorithm exists for per-
forming that task. In turn, if no algorithm exists for solving a problem, then the
solution of that problem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities solidified as a subject
in mathematics in the 1930s with the publication of Kurt Godel’s incompleteness
theorem. This theorem essentially states that in any mathematical theory
encompassing our traditional arithmetic system, there are statements whose
truth or falseness cannot be established by algorithmic means. In short, any
complete study of our arithmetic system lies beyond the capabilities of algorith-
mic activities.

This realization shook the foundations of mathematics, and the study of algo-
rithmic capabilities that ensued was the beginning of the field known today as
computer science. Indeed, it is the study of algorithms that forms the core of
computer science.

0.2 The History of Computing

Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it most likely had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine is
quite simple, consisting of beads strung on rods that are in turn mounted in a
rectangular frame (Figure 0.3). As the beads are moved back and forth on the
rods, their positions represent stored values. It is in the positions of the beads
that this “computer” represents and stores data. For control of an algorithm’s exe-
cution, the machine relies on the human operator. Thus the abacus alone is
merely a data storage system; it must be combined with a human to create a
complete computational machine.

In the time period after the Middle Ages and before the Modern Era the quest
for more sophisticated computing machines was seeded. A few inventors began
to experiment with the technology of gears. Among these were Blaise Pascal
(1623-1662) of France, Gottfried Wilhelm Leibniz (1646-1716) of Germany, and
Charles Babbage (1792-1871) of England. These machines represented data
through gear positioning, with data being input mechanically by establishing ini-
tial gear positions. Output from Pascal’s and Leibniz's machines was achieved by
observing the final gear positions. Babbage, on the other hand, envisioned
machines that would print results of computations on paper so that the possibil-
ity of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of flexibility
in these machines. Pascal’'s machine was built to perform only addition.
Consequently, the appropriate sequence of steps was embedded into the structure
of the machine itself. In a similar manner, Leibniz’s machine had its algorithms
firmly embedded in its architecture, although it offered a variety of arithmetic
operations from which the operator could select. Babbage'’s Difference Engine (of
which only a demonstration model was constructed) could be modified to perform
a variety of calculations, but his Analytical Engine (the construction for which he
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Figure 0.3 An abacus (photography by Wayne Chandler)

never received funding) was designed to read instructions in the form of holes in
paper cards. Thus Babbage's Analytical Engine was programmable. In fact,
Augusta Ada Byron (Ada Lovelace), who published a paper in which she demon-
strated how Babbage’s Analytical Engine could be programmed to perform various
computations, is often identified today as the world’s first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752-1834), who, in
1801, had developed a weaving loom in which the steps to be performed during
the weaving process were determined by patterns of holes in large thick cards
made of wood (or cardboard). In this manner, the algorithm followed by the loom
could be changed easily to produce different woven designs. Another beneficiary
of Jacquard’s idea was Herman Hollerith (1860-1929), who applied the concept of
representing information as holes in paper cards to speed up the tabulation
process in the 1890 U.S. census. (It was this work by Hollerith that led to the cre-
ation of IBM.) Such cards ultimately came to be known as punched cards and sur-
vived as a popular means of communicating with computers well into the 1970s.
Indeed, the technique lives on today, as witnessed by the voting issues raised in
the 2000 U.S. presidential election.

The technology of the time was unable to produce the complex gear-driven
machines of Pascal, Leibniz, and Babbage in a financially feasible manner. But
with the advances in electronics in the early 1900s, this barrier was overcome.
Examples of this progress include the electromechanical machine of George
Stibitz, completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944
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Babbage’s Difference Engine

The machines designed by Charles Babbage were truly the forerunners of modern
computer design. If technology had been able to produce his machines in an eco-
nomically feasible manner and if the data processing demands of commerce and gov-
ernment had been on the scale of today’s requirements, Babbage’s ideas could have
led to a computer revolution in the 1800s. As it was, only a demonstration model of
his Difference Engine was constructed in his lifetime. This machine determined
numerical values by computing “successive differences.” We can gain an insight to
this technique by considering the problem of computing the squares of the integers.
We begin with the knowledge that the square of 0 is 0, the square of 1 is 1, the
square of 2 is 4, and the square of 3 is 9. With this, we can determine the square of 4
in the following manner (see the following diagram). We first compute the differ-
ences of the squares we already know: 12 — 02 = 1,22 — 12 =3,and 3> — 22 = 5.
Then we compute the differences of these results: 3 — 1 = 2, and 5 — 3 = 2. Note
that these differences are both 2. Assuming that this consistency continues (mathe-
matics can show that it does) we conclude that the difference between the value
(4% — 32 and the value (3% — 22) must also be 2. Hence (42 — 3%) must be 2 greater
than (32 — 2?), so 4% — 32 = 7 and thus 4% = 3% + 7 = 16. Now that we know the
square of 4, we could continue our procedure to compute the square of 5 based on the
values of 12, 22, 3%, and 42. (Although a more in-depth discussion of successive differ-
ences is beyond the scope of our current study, students of calculus may wish to
observe that the preceding example is based on the fact that the derivative of y = x? is
a straight line with a slope of 2.)
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at Harvard University by Howard Aiken and a group of IBM engineers (Figure 0.4).
These machines made heavy use of electronically controlled mechanical relays. In
this sense they were obsolete almost as soon as they were built, because other
researchers were applying the technology of vacuum tubes to construct totally
electronic computers. The first of these machines was apparently the Atanasoff-
Berry machine, constructed during the period from 1937 to 1941 at Towa State
College (now Iowa State University) by John Atanasoft and his assistant, Clifford
Berry. Another was a machine called Colossus, built under the direction of Tommy
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Figure 0.4 The Mark | computer (Courtesy of IBM archives. Unauthorized use is not permitted.)

Flowers in England to decode German messages during the latter part of World
War II. (Actually, as many as ten of these machines were apparently built, but mil-
itary secrecy and issues of national security kept their existence from becoming
part of the ‘computer family tree.”) Other, more flexible machines, such as the
ENIAC (electronic numerical integrator and calculator) developed by John
Mauchly and J. Presper Eckert at the Moore School of Electrical Engineering,
University of Pennsylvania, soon followed.

From that point on, the history of computing machines has been closely
linked to advancing technology, including the invention of transistors (for which
physicists William Shockley, John Bardeen, and Walter Brattain were awarded a
Nobel Prize) and the subsequent development of complete circuits constructed
as single units, called integrated circuits (for which Jack Kilby also won a Nobel
Prize in physics). With these developments, the room-sized machines of the
1940s were reduced over the decades to the size of single cabinets. At the same
time, the processing power of computing machines began to double every two
years (a trend that has continued to this day). As work on integrated circuitry
progressed, many of the circuits within a computer became readily available on
the open market as integrated circuits encased in toy-sized blocks of plastic
called chips.

A major step toward popularizing computing was the development of desk-
top computers. The origins of these machines can be traced to the computer hob-
byists who built homemade computers from combinations of chips. It was within
this “underground” of hobby activity that Steve Jobs and Stephen Wozniak built a
commercially viable home computer and, in 1976, established Apple Computer,
Inc. (now Apple Inc.) to manufacture and market their products. Other compa-
nies that marketed similar products were Commodore, Heathkit, and Radio
Shack. Although these products were popular among computer hobbyists, they
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Augusta Ada Byron

Augusta Ada Byron, Countess of Lovelace, has been the subject of much commentary
in the computing community. She lived a somewhat tragic life of less than 37 years
(1815-1852) that was complicated by poor health and the fact that she was a non-
conformist in a society that limited the professional role of women. Although she was
interested in a wide range of science, she concentrated her studies in mathematics.
Her interest in “compute science” began when she became fascinated by the
machines of Charles Babbage at a demonstration of a prototype of his Difference
Engine in 1833. Her contribution to computer science stems from her translation
from French into English of a paper discussing Babbage’s designs for the Analytical
Engine. To this translation, Babbage encouraged her to attach an addendum describ-
ing applications of the engine and containing examples of how the engine could be
programmed to perform various tasks. Babbage’s enthusiasm for Ada Byron’s work
was apparently motivated by his hope that its publication would lead to financial
backing for the construction of his Analytical Engine. (As the daughter of Lord Byron,
Ada Byron held celebrity status with potentially significant financial connections.)
This backing never materialized, but Ada Byron’s addendum has survived and is con-
sidered to contain the first examples of computer programs. The degree to which
Babbage influenced Ada Byron’s work is debated by historians. Some argue that
Babbage made major contributions whereas others contend that he was more of an
obstacle than an aid. Nonetheless, Augusta Ada Byron is recognized today as the
world’s first programmer, a status that was certified by the U.S. Department of
Defense when it named a prominent programming language (Ada) in her honor.

were not widely accepted by the business community, which continued to look
to the well-established IBM for the majority of its computing needs.

In 1981, IBM introduced its first desktop computer, called the personal com-
puter, or PC, whose underlying software was developed by a newly formed com-
pany known as Microsoft. The PC was an instant success and legitimized the
desktop computer as an established commodity in the minds of the business
community. Today, the term PC is widely used to refer to all those machines
(from various manufacturers) whose design has evolved from IBM’s initial desk-
top computer, most of which continue to be marketed with software from
Microsoft. At times, however, the term PC is used interchangeably with the
generic terms desktop or laptop.

As the twentieth century drew to a close, the ability to connect individual
computers in a world-wide system called the Internet was revolutionizing com-
munication. In this context, Tim Berners-Lee (a British scientist) proposed a sys-
tem by which documents stored on computers throughout the Internet could be
linked together producing a maze of linked information called the World Wide
Web (often shortened to “Web”). To make the information on the Web accessible,
software systems, called search engines, were developed to “sift through” the
Web, “categorize” their findings, and then use the results to assist users research-
ing particular topics. Major players in this field are Google, Yahoo, and Microsoft.
These companies continue to expand their Web-related activities, often in direc-
tions that challenge our traditional way of thinking.
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At the same time that desktop computers (and the newer mobile laptop
computers) were being accepted and used in homes, the miniaturization of
computing machines continued. Today, tiny computers are embedded within
various devices. For example, automobiles now contain small computers run-
ning Global Positioning Systems (GPS), monitoring the function of the engine,
and providing voice command services for controlling the car’s audio and phone
communication systems.

Perhaps the most potentially revolutionary application of computer miniatur-
ization is found in the expanding capabilities of portable telephones. Indeed, what
was recently merely a telephone has evolved into a small hand-held general-
purpose computer known as a smartphone on which telephony is only one of
many applications. These “phones” are equipped with a rich array of sensors
and interfaces including cameras, microphones, compasses, touch screens,
accelerometers (to detect the phone’s orientation and motion), and a number of
wireless technologies to communicate with other smartphones and computers.
The potential is enormous. Indeed, many argue that the smartphone will have a
greater effect on society than the PC.

The miniaturization of computers and their expanding capabilities have
brought computer technology to the forefront of today’s society. Computer tech-
nology is so prevalent now that familiarity with it is fundamental to being a
member of modern society. Computing technology has altered the ability of
governments to exert control; had enormous impact on global economics; led to
startling advances in scientific research; revolutionized the role of data collec-
tion, storage, and applications; provided new means for people to communicate
and interact; and has repeatedly challenged society’s status quo. The result is a
proliferation of subjects surrounding computer science, each of which is now a
significant field of study in its own right. Moreover, as with mechanical engi-
neering and physics, it is often difficult to draw a line between these fields and

Google

Founded in 1998, Google Inc. has become one of the world’s most recoginzed techol-
ogy companies. Its core service, the Google search engine, is used by millions of peo-
ple to find documents on the World Wide Web. In addition, Google provides
electronic mail service (called Gmail), an Internet based video sharing service (called
YouTube), and a host of other Internet services (including Google Maps, Google
Calendar, Google Earth, Google Books, and Google Translate).

However, in addition to being a prime example of the entrepreneurial spirit,
Google also provides examples of how expanding technology is challenging soci-
ety. For example, Google’s search engine has led to questions regarding the extent
to which an international company should comply with the wishes of individual
governments; YouTube has raised questions regarding the extent to which a com-
pany should be liable for information that others distribute through its services as
well as the degree to which the company can claim ownership of that information;
Google Books has generated concerns regarding the scope and limitations of
intelectual property rights; and Google Maps has been accused of violating
privacy rights.
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computer science itself. Thus, to gain a proper perspective, our study will not
only cover topics central to the core of computer science but will also explore a
variety of disciplines dealing with both applications and consequences of the
science. Indeed, an introduction to computer science is an interdisciplinary
undertaking.

0.3 The Science of Algorithms

Conditions such as limited data storage capabilities and intricate, time-consuming
programming procedures restricted the complexity of the algorithms utilized in
early computing machines. However, as these limitations began to disappear,
machines were applied to increasingly larger and more complex tasks. As
attempts to express the composition of these tasks in algorithmic form began to
tax the abilities of the human mind, more and more research efforts were
directed toward the study of algorithms and the programming process.

It was in this context that the theoretical work of mathematicians began to
pay dividends. As a consequence of Godel's incompleteness theorem, mathe-
maticians had already been investigating those questions regarding algorithmic
processes that advancing technology was now raising. With that, the stage was
set for the emergence of a new discipline known as computer science.

Today, computer science has established itself as the science of algorithms. The
scope of this science is broad, drawing from such diverse subjects as mathematics,
engineering, psychology, biology, business administration, and linguistics. Indeed,
researchers in different branches of computer science may have very distinct defi-
nitions of the science. For example, a researcher in the field of computer architec-
ture may focus on the task of miniaturizing circuitry and thus view computer
science as the advancement and application of technology. But, a researcher in the
field of database systems may see computer science as seeking ways to make infor-
mation systems more useful. And, a researcher in the field of artificial intelligence
may regard computer science as the study of intelligence and intelligent behavior.

Thus, an introduction to computer science must include a variety of topics,
which is a task that we will pursue in the following chapters. In each case, our
goal will be to introduce the central ideas in the subject, the current topics of
research, and some of the techniques being applied to advance knowledge in the
area. With such a variety of topics, it is easy to lose track of the overall picture.
We therefore pause to collect our thoughts by identifying some questions that
provide a focus for its study.

e Which problems can be solved by algorithmic processes?

e How can the discovery of algorithms be made easier?

e How can the techniques of representing and communicating algorithms
be improved?

e How can the characteristics of different algorithms be analyzed
and compared?

e How can algorithms be used to manipulate information?

e How can algorithms be applied to produce intelligent behavior?

e How does the application of algorithms affect society?

Note that the theme common to all these questions is the study of algorithms
(Figure 0.5).



Figure 0.5 The central role of algorithms in computer science
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0.4 Abstraction

The concept of abstraction so permeates the study of computer science and the
design of computer systems that it behooves us to address it in this preliminary
chapter. The term abstraction, as we are using it here, refers to the distinction
between the external properties of an entity and the details of the entity’s inter-
nal composition. It is abstraction that allows us to ignore the internal details of a
complex device such as a computer, automobile, or microwave oven and use it as
a single, comprehensible unit. Moreover, it is by means of abstraction that such
complex systems are designed and manufactured in the first place. Computers,
automobiles, and microwave ovens are constructed from components, each of
which is constructed from smaller components. Each component represents a
level of abstraction at which the use of the component is isolated from the details
of the component’s internal composition.

It is by applying abstraction, then, that we are able to construct, analyze, and
manage large, complex computer systems, which would be overwhelming if
viewed in their entirety at a detailed level. At each level of abstraction, we view
the system in terms of components, called abstract tools, whose internal com-
position we ignore. This allows us to concentrate on how each component inter-
acts with other components at the same level and how the collection as a whole
forms a higher-level component. Thus we are able to comprehend the part of the
system that is relevant to the task at hand rather than being lost in a sea of details.

We emphasize that abstraction is not limited to science and technology. It is
an important simplification technique with which our society has created a
lifestyle that would otherwise be impossible. Few of us understand how the var-
ious conveniences of daily life are actually implemented. We eat food and wear
clothes that we cannot produce by ourselves. We use electrical devices and com-
munication systems without understanding the underlying technology. We use
the services of others without knowing the details of their professions. With
each new advancement, a small part of society chooses to specialize in its
implementation while the rest of us learn to use the results as abstract tools. In
this manner, society’s warehouse of abstract tools expands, and society’s ability
to progress increases.

0.4 Abstraction
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Abstraction is a recurring theme in our study. We will learn that computing
equipment is constructed in levels of abstract tools. We will also see that the
development of large software systems is accomplished in a modular fashion in
which each module is used as an abstract tool in larger modules. Moreover,
abstraction plays an important role in the task of advancing computer science
itself, allowing researchers to focus attention on particular areas within a com-
plex field. In fact, the organization of this text reflects this characteristic of the
science. Each chapter, which focuses on a particular area within the science, is
often surprisingly independent of the others, yet together the chapters form a
comprehensive overview of a vast field of study.

0.5 An Outline of Our Study

This text follows a bottom up approach to the study of computer science, begin-
ning with such hands-on topics as computer hardware and leading to the more
abstract topics such as algorithm complexity and computability. The result is
that our study follows a pattern of building larger and larger abstract tools as our
understanding of the subject expands.

We begin by considering topics dealing with the design and construction of
machines for executing algorithms. In Chapter 1 (Data Storage) we look at how
information is encoded and stored within modern computers, and in Chapter 2
(Data Manipulation) we investigate the basic internal operation of a simple com-
puter. Although part of this study involves technology, the general theme is tech-
nology independent. That is, such topics as digital circuit design, data encoding
and compression systems, and computer architecture are relevant over a wide
range of technology and promise to remain relevant regardless of the direction of
future technology.

In Chapter 3 (Operating Systems) we study the software that controls the
overall operation of a computer. This software is called an operating system. It is
a computer’s operating system that controls the interface between the machine
and its outside world, protecting the machine and the data stored within from
unauthorized access, allowing a computer user to request the execution of vari-
ous programs, and coordinating the internal activities required to fulfill the
user’s requests.

In Chapter 4 (Networking and the Internet) we study how computers are
connected to each other to form computer networks and how networks are con-
nected to form internets. This study leads to topics such as network protocols,
the Internet’s structure and internal operation, the World Wide Web, and numer-
ous issues of security.

Chapter 5 (Algorithms) introduces the study of algorithms from a more for-
mal perspective. We investigate how algorithms are discovered, identify sev-
eral fundamental algorithmic structures, develop elementary techniques for
representing algorithms, and introduce the subjects of algorithm efficiency
and correctness.

In Chapter 6 (Programming Languages) we consider the subject of algorithm
representation and the program development process. Here we find that the
search for better programming techniques has led to a variety of programming
methodologies or paradigms, each with its own set of programming languages.
We investigate these paradigms and languages as well as consider issues of gram-
mar and language translation.
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Chapter 7 (Software Engineering) introduces the branch of computer science
known as software engineering, which deals with the problems encountered
when developing large software systems. The underlying theme is that the
design of large software systems is a complex task that embraces problems
beyond those of traditional engineering. Thus, the subject of software engineer-
ing has become an important field of research within computer science, drawing
from such diverse fields as engineering, project management, personnel man-
agement, programming language design, and even architecture.

In next two chapters we look at ways data can be organized within a com-
puter system. In Chapter 8 (Data Abstractions) we introduce techniques tradi-
tionally used for organizing data in a computer’s main memory and then trace
the evolution of data abstraction from the concept of primitives to today’s object-
oriented techniques. In Chapter 9 (Database Systems) we consider methods tra-
ditionally used for organizing data in a computer’'s mass storage and investigate
how extremely large and complex database systems are implemented.

In Chapter 10 (Computer Graphics) we explore the subject of graphics and
animation, a field that deals with creating and photographing virtual worlds.
Based on advancements in the more traditional areas of computer science such
as machine architecture, algorithm design, data structures, and software engi-
neering, the discipline of graphics and animation has seen significant progress
and has now blossomed into an exciting, dynamic subject. Moreover, the field
exemplifies how various components of computer science combine with other
disciplines such as physics, art, and photography to produce striking results.

In Chapter 11 (Artificial Intelligence) we learn that in order to develop more
useful machines computer science has turned to the study of human intelli-
gence for leadership. The hope is that by understanding how our own minds rea-
son and perceive, researchers will be able to design algorithms that mimic these
processes and thus transfer these capabilities to machines. The result is the area
of computer science known as artificial intelligence, which leans heavily on
research in such areas as psychology, biology, and linguistics.

We close our study with Chapter 12 (Theory of Computation) by investigat-
ing the theoretical foundations of computer science—a subject that allows us to
understand the limitations of algorithms (and thus machines). Here we identify
some problems that cannot be solved algorithmically (and therefore lie beyond
the capabilities of machines) as well as learn that the solutions to many other
problems require such enormous time or space that they are also unsolvable
from a practical perspective. Thus, it is through this study that we are able to
grasp the scope and limitations of algorithmic systems.

In each chapter our goal is to explore to a depth that leads to a true under-
standing of the subject. We want to develop a working knowledge of computer
science—a knowledge that will allow you to understand the technical society in
which you live and to provide a foundation from which you can learn on your
own as science and technology advance.

0.6 Social Repercussions

Progress in computer science is blurring many distinctions on which our society
has based decisions in the past and is challenging many of society’s long-held
principles. In law, it generates questions regarding the degree to which intellec-
tual property can be owned and the rights and liabilities that accompany that
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ownership. In ethics, it generates numerous options that challenge the traditional
principles on which social behavior is based. In government, it generates debates
regarding the extent to which computer technology and its applications should be
regulated. In philosophy, it generates contention between the presence of intelli-
gent behavior and the presence of intelligence itself. And, throughout society, it
generates disputes concerning whether new applications represent new free-
doms or new controls.

Although not a part of computer science itself, such topics are important for
those contemplating careers in computing or computer-related fields. Revelations
within science have sometimes found controversial applications, causing serious
discontent for the researchers involved. Moreover, an otherwise successful career
can quickly be derailed by an ethical misstep.

The ability to deal with the dilemmas posed by advancing computer technol-
ogy is also important for those outside its immediate realm. Indeed, technology is
infiltrating society so rapidly that few, if any, are independent of its effects.

This text provides the technical background needed to approach the dilem-
mas generated by computer science in a rational manner. However, technical
knowledge of the science alone does not provide solutions to all the questions
involved. With this in mind, this text includes several sections that are devoted to
social, ethical, and legal issues. These include security concerns, issues of soft-
ware ownership and liability, the social impact of database technology, and the
consequences of advances in artificial intelligence.

Moreover, there is often no definitive correct answer to a problem, and
many valid solutions are compromises between opposing (and perhaps equally
valid) views. Finding solutions in these cases often requires the ability to listen,
to recognize other points of view, to carry on a rational debate, and to alter one’s
own opinion as new insights are gained. Thus, each chapter of this text ends
with a collection of questions under the heading “Social Issues” that investigate
the relationship between computer science and society. These are not neces-
sarily questions to be answered. Instead, they are questions to be considered. In
many cases, an answer that may appear obvious at first will cease to satisfy you
as you explore alternatives. In short, the purpose of these questions is not to
lead you to a “correct” answer but rather to increase your awareness, including
your awareness of the various stakeholders in an issue, your awareness of alter-
natives, and your awareness of both the short- and long-term consequences of
those alternatives.

We close this section by introducing some of the approaches to ethics that
have been proposed by philosophers in their search for fundamental theories
that lead to principles for guiding decisions and behavior. Most of these theories
can be classified under the headings of consequence-based ethics, duty-based
ethics, contract-based ethics, and character-based ethics. You may wish to use
these theories as a means of approaching the ethical issues presented in the text.
In particular, you may find that different theories lead to contrasting conclusions
and thus expose hidden alternatives.

Consequence-based ethics attempts to analyze issues based on the conse-
quences of the various options. A leading example is utilitarianism that proposes
that the “correct” decision or action is the one that leads to the greatest good for
the largest portion of society. At first glance utilitarianism appears to be a fair
way of resolving ethical dilemmas. But, in its unqualified form, utilitarianism
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leads to numerous unacceptable conclusions. For example, it would allow the
majority of a society to enslave a small minority. Moreover, many argue that
consequence-based approaches to ethical theories, which inherently emphasize
consequences, tend to view a human as merely a means to an end rather than as
a worthwhile individual. This, they continue, constitutes a fundamental flaw in
all consequence-based ethical theories.

In contrast to consequence-based ethics, duty-based ethics does not consider
the consequences of decisions and actions but instead proposes that members of
a society have certain intrinsic duties or obligations that in turn form the foun-
dation on which ethical questions should be resolved. For example, if one
accepts the obligation to respect the rights of others, then one must reject slav-
ery regardless of its consequences. On the other hand, opponents of duty-based
ethics argue that it fails to provide solutions to problems involving conflicting
duties. Should you tell the truth even if doing so destroys a colleague’s confi-
dence? Should a nation defend itself in war even though the ensuing battles will
lead to the death of many of its citizens?

Contract-based ethical theory begins by imagining society with no ethical
foundation at all. In this “state of nature” setting, anything goes—a situation in
which individuals must fend for themselves and constantly be on guard against
aggression from others. Under these circumstances, contract-based ethical the-
ory proposes that the members of the society would develop “contracts” among
themselves. For example, I won't steal from you if you won't steal from me. In
turn, these “contracts” would become the foundation for determining ethical
behavior. Note that contract-based ethical theory provides a motivation for ethi-
cal behavior—we should obey the “contracts of ethics” because we would other-
wise live an unpleasant life. However, opponents of contract-based ethical
theory argue that it does not provide a broad enough basis for resolving ethical
dilemmas since it provides guidance only in those cases in which contracts have
been established. (I can behave anyway I want in situations not covered by an
existing contract.) In particular, new technologies may present uncharted terri-
tory in which existing ethical contracts may not apply.

Character-based ethics (sometimes called virtue ethics), which was pro-
moted by Plato and Aristotle, argues that “good behavior” is not the result of
applying identifiable rules but instead is a natural consequence of “good char-
acter.” Whereas consequence-based ethics, duty-based ethics, and contract-
based ethics propose that a person resolve an ethical dilemma by asking, “What
are the consequences?”; “What are my duties?”; or “What contracts do I have?”
character-based ethics proposes that dilemmas be resolved by asking, “Who do
I want to be?” Thus, good behavior is obtained by building good character,
which is typically the result of sound upbringing and the development of vir-
tuous habits.

It is character-based ethics that underlies the approach normally taken when
“teaching” ethics to professionals in various fields. Rather than presenting specific
ethical theories, the approach is to introduce case studies that expose a variety of
ethical questions in the professionals’ area of expertise. Then, by discussing the
pros and cons in these cases, the professionals become more aware, insightful,
and sensitive to the perils lurking in their professional lives and thus grow in
character. This is the spirit in which the questions regarding social issues at the
end of each chapter are presented.
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Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1.

The premise that our society is different from what it would have been with-
out the computer revolution is generally accepted. Is our society better than
it would have been without the revolution? Is our society worse? Would your
answer differ if your position within society were different?

. Is it acceptable to participate in today’s technical society without making an

effort to understand the basics of that technology? For instance, do members
of a democracy, whose votes often determine how technology will be sup-
ported and used, have an obligation to try to understand that technology?
Does your answer depend on which technology is being considered? For
example, is your answer the same when considering nuclear technology as
when considering computer technology?

By using cash in financial transactions, individuals have traditionally had the
option to manage their financial affairs without service charges. However, as
more of our economy is becoming automated, financial institutions are
implementing service charges for access to these automated systems. Is
there a point at which these charges unfairly restrict an individual’s access to
the economy? For example, suppose an employer pays employees only by
check, and all financial institutions were to place a service charge on check
cashing and depositing. Would the employees be unfairly treated? What if an
employer insists on paying only via direct deposit?

In the context of interactive television, to what extent should a company be
allowed to retrieve information from children (perhaps via an interactive
game format)? For example, should a company be allowed to obtain a child’s
report on his or her parents’ buying patterns? What about information about
the child?

To what extent should a government regulate computer technology and its
applications? Consider, for example, the issues mentioned in Questions 3
and 4. What justifies governmental regulation?

To what extent will our decisions regarding technology in general, and com-
puter technology in particular, affect future generations?

As technology advances, our educational system is constantly challenged to
reconsider the level of abstraction at which topics are presented. Many ques-
tions take the form of whether a skill is still necessary or whether students
should be allowed to rely on an abstract tool. Students of trigonometry are no
longer taught how to find the values of trigonometric functions using tables.
Instead, they use calculators as abstract tools to find these values. Some
argue that long division should also give way to abstraction. What other sub-
jects are involved with similar controversies? Do modern word processors
eliminate the need to develop spelling skills? Will the use of video technol-
ogy someday remove the need to read?



10.

11.

12.

13.

14,

15.

16.

The concept of public libraries is largely based on the premise that all citi-
zens in a democracy must have access to information. As more information
is stored and disseminated via computer technology, does access to this tech-
nology become a right of every individual? If so, should public libraries be
the channel by which this access is provided?

What ethical concerns arise in a society that relies on the use of abstract
tools? Are there cases in which it is unethical to use a product or service
without understanding how it works? Without knowing how it is produced?
Or, without understanding the byproducts of its use?

As our society becomes more automated, it becomes easier for governments
to monitor their citizens’ activities. Is that good or bad?

Which technologies that were imagined by George Orwell (Eric Blair) in his
novel 1984 have become reality? Are they being used in the manner in
which Orwell predicted?

If you had a time machine, in which period of history would you like to live?
Are there current technologies that you would like to take with you? Could
your choice of technologies be taken with you without taking others? To what
extent can one technology be separated from another? Is it consistent to
protest against global warming yet accept modern medical treatment?

Suppose your job requires that you reside in another culture. Should you
continue to practice the ethics of your native culture or adopt the ethics of
your host culture? Does your answer depend on whether the issue involves
dress code or human rights? Which ethical standards should prevail if you
continue to reside in your native culture but conduct business with a for-
eign culture?

Has society become too dependent on computer applications for commerce,
communications, or social interactions? For example, what would be the
consequences of a long-term interruption in Internet and/or cellular tele-
phone service?

Most smartphones are able to identify the phone’s location by means of GPS.
This allows applications to provide location-specific information (such as the
local news, local weather, or the presence of businesses in the immediate
area) based on the phone’s current location. However, such GPS capabilities
may also allow other applications to broadcast the phone’s location to other
parties. Is this good? How could knowledge of the phone’s location (thus
your location) be abused?

On the basis of your initial answers to the preceding questions, to which eth-
ical theory presented in Section 0.6 do you tend to subscribe?
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Data Storage

In this chapter, we consider topics associated with data represen-
tation and the storage of data within a computer. The types of data
we will consider include text, numeric values, images, audio, and
video. Much of the information in this chapter is also relevant to
fields other than traditional computing, such as digital photogra-

phy, audio/video recording and reproduction, and long-distance

communication.
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We begin our study of computer science by considering how information is
encoded and stored inside computers. Our first step is to discuss the basics of a
computer’s data storage devices and then to consider how information is
encoded for storage in these systems. We will explore the ramifications of today’s
data storage systems and how such techniques as data compression and error
handling are used to overcome their shortfalls.

1.1 Bits and Their Storage

Inside today’s computers information is encoded as patterns of Os and 1s. These
digits are called bits (short for binary digits). Although you may be inclined to
associate bits with numeric values, they are really only symbols whose meaning
depends on the application at hand. Sometimes patterns of bits are used to rep-
resent numeric values; sometimes they represent characters in an alphabet and
punctuation marks; sometimes they represent images; and sometimes they rep-
resent sounds.

Boolean Operations

To understand how individual bits are stored and manipulated inside a com-
puter, it is convenient to imagine that the bit 0 represents the value false and
the bit 1 represents the value true because that allows us to think of manipulat-
ing bits as manipulating true/false values. Operations that manipulate
true/false values are called Boolean operations, in honor of the mathemati-
cian George Boole (1815-1864), who was a pioneer in the field of mathematics
called logic. Three of the basic Boolean operations are AND, OR, and XOR
(exclusive or) as summarized in Figure 1.1. These operations are similar to the
arithmetic operations TIMES and PLUS because they combine a pair of values
(the operation’s input) to produce a third value (the output). In contrast to
arithmetic operations, however, Boolean operations combine true/false values
rather than numeric values.

The Boolean operation AND is designed to reflect the truth or falseness of a
statement formed by combining two smaller, or simpler, statements with the
conjunction and. Such statements have the generic form

P AND Q
where P represents one statement and Q represents another—for example,
Kermit is a frog AND Miss Piggy is an actress.

The inputs to the AND operation represent the truth or falseness of the compound
statement’s components; the output represents the truth or falseness of the com-
pound statement itself. Since a statement of the form P AND Q is true only when
both of its components are true, we conclude that 1 AND 1 should be 1, whereas all
other cases should produce an output of 0, in agreement with Figure 1.1.

In a similar manner, the OR operation is based on compound statements of
the form

PORQ
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where, again, P represents one statement and Q represents another. Such state-
ments are true when at least one of their components is true, which agrees with
the OR operation depicted in Figure 1.1.

There is not a single conjunction in the English language that captures the
meaning of the XOR operation. XOR produces an output of 1 (true) when one of
its inputs is 1 (true) and the other is 0 (false). For example, a statement of the
form P XOR Q means “either P or Q but not both.” (In short, the XOR operation
produces an output of 1 when its inputs are different.)

The operation NOT is another Boolean operation. It differs from AND,
OR, and XOR because it has only one input. Its output is the opposite of that
input; if the input of the operation NOT is true, then the output is false, and
vice versa. Thus, if the input of the NOT operation is the truth or falseness of
the statement

Fozzie is a bear.
then the output would represent the truth or falseness of the statement

Fozzie is not a bear.

Gates and Flip-Flops

A device that produces the output of a Boolean operation when given the opera-
tion’s input values is called a gate. Gates can be constructed from a variety of
technologies such as gears, relays, and optic devices. Inside today’s computers,
gates are usually implemented as small electronic circuits in which the digits 0
and 1 are represented as voltage levels. We need not concern ourselves with such
details, however. For our purposes, it suffices to represent gates in their symbolic

Figure 1.1 The Boolean operations AND, OR, and XOR (exclusive or)

The AND operation

0 0 1 1
AND o AND 1 AND o AND 1
0 0 0 1

The OR operation

0 0 1 1
OR o OR 1 OR o OR 1
1 1
The XOR operation
0 0 1 1
XOR o0 XOR 1 XOR o0 XOR 1

0 1 1 0
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form, as shown in Figure 1.2. Note that the AND, OR, XOR, and NOT gates are
represented by distinctively shaped symbols, with the input values entering on
one side and the output exiting on the other.

Gates provide the building blocks from which computers are constructed.
One important step in this direction is depicted in the circuit in Figure 1.3. This is
a particular example from a collection of circuits known as a flip-flop. A flip-flop
is a circuit that produces an output value of 0 or 1, which remains constant until a
pulse (a temporary change to a 1 that returns to 0) from another circuit causes it
to shift to the other value. In other words, the output will flip or flop between two
values under control of external stimuli. As long as both inputs in the circuit in
Figure 1.3 remain 0, the output (whether 0 or 1) will not change. However, tem-
porarily placing a 1 on the upper input will force the output to be 1, whereas tem-
porarily placing a 1 on the lower input will force the output to be 0.

Let us consider this claim in more detail. Without knowing the current output
of the circuit in Figure 1.3, suppose that the upper input is changed to 1 while the
lower input remains 0 (Figure 1.4a). This will cause the output of the OR gate to
be 1, regardless of the other input to this gate. In turn, both inputs to the AND
gate will now be 1, since the other input to this gate is already 1 (the output pro-
duced by the NOT gate whenever the lower input of the flip-flop is at 0). The out-
put of the AND gate will then become 1, which means that the second input to

Figure 1.2 A pictorial representation of AND, OR, XOR, and NOT gates as well as their input
and output values

AND OR

Inputs } Output Inputs 3 Output
Inputs Output Inputs Output
00 0 00 0
01 0 01 1
10 0 10 1
11 1 11 1

XOR NOT

Inputs D Output Inputs —Do— Output
Inputs Output Inputs Output
00 0 0 1
01 1 1 0
10 1
11 0
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Figure 1.3  Asimple flip-flop circuit

Input
>—‘D7% Output

—(]
Input {>c

the OR gate will now be 1 (Figure 1.4b). This guarantees that the output of the
OR gate will remain 1, even when the upper input to the flip-flop is changed
back to 0 (Figure 1.4c). In summary, the flip-flop’s output has become 1, and this
output value will remain after the upper input returns to 0.

In a similar manner, temporarily placing the value 1 on the lower input will
force the flip-flop’s output to be 0, and this output will persist after the input
value returns to 0.

Figure 1.4 Setting the output of a flip-flop to 1

a. 1is placed on the upper input. b.This causes the output of the OR gate to be 1 and,
in turn, the output of the AND gate to be 1.

: o : >

c.The 1 from the AND gate keeps the OR gate from
changing after the upper input returns to 0.
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Our purpose in introducing the flip-flop circuit in Figures 1.3 and 1.4 is
threefold. First, it demonstrates how devices can be constructed from gates, a
process known as digital circuit design, which is an important topic in computer
engineering. Indeed, the flip-flop is only one of many circuits that are basic tools
in computer engineering.

Second, the concept of a flip-flop provides an example of abstraction and the
use of abstract tools. Actually, there are other ways to build a flip-flop. One alter-
native is shown in Figure 1.5. If you experiment with this circuit, you will find
that, although it has a different internal structure, its external properties are the
same as those of Figure 1.3. A computer engineer does not need to know which
circuit is actually used within a flip-flop. Instead, only an understanding of the
flip-flop’s external properties is needed to use it as an abstract tool. A flip-flop,
along with other well-defined circuits, forms a set of building blocks from which
an engineer can construct more complex circuitry. In turn, the design of com-
puter circuitry takes on a hierarchical structure, each level of which uses the
lower level components as abstract tools.

The third purpose for introducing the flip-flop is that it is one means of stor-
ing a bit within a modern computer. More precisely, a flip-flop can be set to have
the output value of either 0 or 1. Other circuits can adjust this value by sending
pulses to the flip-flop’s inputs, and still other circuits can respond to the stored
value by using the flip-flop’s output as their inputs. Thus, many flip-flops, con-
structed as very small electrical circuits, can be used inside a computer as a
means of recording information that is encoded as patterns of Os and 1s. Indeed,
technology known as very large-scale integration (VLSI), which allows mil-
lions of electrical components to be constructed on a wafer (called a chip), is
used to create miniature devices containing millions of flip-flops along with their
controlling circuitry. In turn, these chips are used as abstract tools in the con-
struction of computer systems. In fact, in some cases VLSI is used to create an
entire computer system on a single chip.

Hexadecimal Notation

When considering the internal activities of a computer, we must deal with pat-
terns of bits, which we will refer to as a string of bits, some of which can be quite
long. A long string of bits is often called a stream. Unfortunately, streams are
difficult for the human mind to comprehend. Merely transcribing the pattern
101101010011 is tedious and error prone. To simplify the representation of such
bit patterns, therefore, we usually use a shorthand notation called hexadecimal

Figure 1.5 Another way of constructing a flip-flop

Input {>c

{>c Output
Input
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Figure 1.6 The hexadecimal encoding system

Hexadecima
Bit pattern  representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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notation, which takes advantage of the fact that bit patterns within a machine
tend to have lengths in multiples of four. In particular, hexadecimal notation uses
a single symbol to represent a pattern of four bits. For example, a string of twelve
bits can be represented by three hexadecimal symbols.

Figure 1.6 presents the hexadecimal encoding system. The left column dis-
plays all possible bit patterns of length four; the right column shows the symbol
used in hexadecimal notation to represent the bit pattern to its left. Using this
system, the bit pattern 10110101 is represented as B5. This is obtained by dividing
the bit pattern into substrings of length four and then representing each sub-
string by its hexadecimal equivalent—1011 is represented by B, and 0101 is repre-
sented by 5. In this manner, the 16-bit pattern 1010010011001000 can be reduced
to the more palatable form A4C8.

We will use hexadecimal notation extensively in the next chapter. There you

will come to appreciate its efficiency.
i

1. What input bit patterns will cause the following circuit to produce an

output of 1?
Inputs ijD }Output

2. In the text, we claimed that placing a 1 on the lower input of the flip-flop
in Figure 1.3 (while holding the upper input at 0) will force the flip-flop’s
output to be 0. Describe the sequence of events that occurs within the
flip-flop in this case.
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3. Assuming that both inputs to the flip-flop in Figure 1.5 are 0, describe the
sequence of events that occurs when the upper input is temporarily set to 1.

4. a. If the output of an AND gate is passed through a NOT gate, the com-
bination computes the Boolean operation called NAND, which has an
output of 0 only when both its inputs are 1. The symbol for a NAND
gate is the same as an AND gate except that it has a circle at its output.
The following is a circuit containing a NAND gate. What Boolean oper-
ation does the circuit compute?

Input {>c
L
,—%
Input {>c

b. If the output of an OR gate is passed through a NOT gate, the combi-
nation computes the Boolean operation called NOR that has an output
of 1 only when both its inputs are 0. The symbol for a NOR gate is the
same as an OR gate except that it has a circle at its output. The fol-
lowing is a circuit containing an AND gate and two NOR gates. What
Boolean operation does the circuit compute?

Input >—/|—

Output

Input >———-

5. Use hexadecimal notation to represent the following bit patterns:

a. 0110101011110010 b. 111010000101010100010111
c. 01001000

6. What bit patterns are represented by the following hexadecimal patterns?

a. 5FD97 b. 610A c. ABCD d. 0100

1.2 Main Memory

For the purpose of storing data, a computer contains a large collection of circuits
(such as flip-flops), each capable of storing a single bit. This bit reservoir is
known as the machine’s main memory.

Memory Organization

A computer’s main memory is organized in manageable units called cells, with
a typical cell size being eight bits. (A string of eight bits is called a byte. Thus, a
typical memory cell has a capacity of one byte.) Small computers used in such
household devices as microwave ovens may have main memories consisting of
only a few hundred cells, whereas large computers may have billions of cells in
their main memories.



Figure 1.7 The organization of a byte-size memory cell

High-order end 0 1 0 1 1 0 1 0 Low-orderend

Most Least
significant significant
bit bit

Although there is no left or right within a computer, we normally envision the
bits within a memory cell as being arranged in a row. The left end of this row is
called the high-order end, and the right end is called the low-order end. The left-
most bit is called either the high-order bit or the most significant bit in reference
to the fact that if the contents of the cell were interpreted as representing a numeric
value, this bit would be the most significant digit in the number. Similarly, the right-
most bit is referred to as the low-order bit or the least significant bit. Thus we may
represent the contents of a byte-size memory cell as shown in Figure 1.7.

To identify individual cells in a computer’'s main memory, each cell is
assigned a unique “name,” called its address. The system is analogous to the tech-
nique of identifying houses in a city by addresses. In the case of memory cells,
however, the addresses used are entirely numeric. To be more precise, we envi-
sion all the cells being placed in a single row and numbered in this order starting
with the value zero. Such an addressing system not only gives us a way of
uniquely identifying each cell but also associates an order to the cells (Figure 1.8),
giving us phrases such as “the next cell” or “the previous cell.”

An important consequence of assigning an order to both the cells in main
memory and the bits within each cell is that the entire collection of bits within a
computer’s main memory is essentially ordered in one long row. Pieces of this
long row can therefore be used to store bit patterns that may be longer than the
length of a single cell. In particular, we can still store a string of 16 bits merely by
using two consecutive memory cells.

To complete the main memory of a computer, the circuitry that actually
holds the bits is combined with the circuitry required to allow other circuits to

Figure 1.8 Memory cells arranged by address

1.2 Main Memory
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store and retrieve data from the memory cells. In this way, other circuits can get
data from the memory by electronically asking for the contents of a certain
address (called a read operation), or they can record information in the memory
by requesting that a certain bit pattern be placed in the cell at a particular
address (called a write operation).

Because a computer’s main memory is organized as individual, addressable
cells, the cells can be accessed independently as required. To reflect the ability to
access cells in any order, a computer's main memory is often called random
access memory (RAM). This random access feature of main memory is in
stark contrast to the mass storage systems that we will discuss in the next sec-
tion, in which long strings of bits are manipulated as amalgamated blocks.

Although we have introduced flip-flops as a means of storing bits, the RAM in
most modern computers is constructed using other technologies that provide
greater miniaturization and faster response time. Many of these technologies store
bits as tiny electric charges that dissipate quickly. Thus these devices require addi-
tional circuitry, known as a refresh circuit, that repeatedly replenishes the charges
many times a second. In recognition of this volatility, computer memory con-
structed from such technology is often called dynamic memory, leading to the
term DRAM (pronounced “DEE-ram”) meaning Dynamic RAM. Or, at times the
term SDRAM (pronounced “ES-DEE-ram”), meaning Synchronous DRAM, is used
in reference to DRAM that applies additional techniques to decrease the time
needed to retrieve the contents from its memory cells.

Measuring Memory Capacity

As we will learn in the next chapter, it is convenient to design main memory systems
in which the total number of cells is a power of two. In turn, the size of the memo-
ries in early computers were often measured in 1024 (which is 2!%) cell units. Since
1024 is close to the value 1000, the computing community adopted the prefix kilo in
reference to this unit. That is, the term kilobyte (abbreviated KB) was used to refer to
1024 bytes. Thus, a machine with 4096 memory cells was said to have a 4KB mem-
ory (4096 = 4 X 1024). As memories became larger, this terminology grew to include
MB (megabyte), GB (gigabyte), and TB (terabyte). Unfortunately, this application of
prefixes kilo-, mega-, and so on, represents a misuse of terminology because these
are already used in other fields in reference to units that are powers of a thousand.
For example, when measuring distance, kilometer refers to 1000 meters, and when
measuring radio frequencies, megahertz refers to 1,000,000 hertz. Thus, a word of
caution is in order when using this terminology. As a general rule, terms such as
kilo-, mega-, etc. refer to powers of two when used in the context of a computer’s
memory, but they refer to powers of a thousand when used in other contexts.

1. If the memory cell whose address is 5 contains the value 8, what is the
difference between writing the value 5 into cell number 6 and moving
the contents of cell number 5 into cell number 67

2. Suppose you want to interchange the values stored in memory cells 2
and 3. What is wrong with the following sequence of steps:

Step 1. Move the contents of cell number 2 to cell number 3.
Step 2. Move the contents of cell number 3 to cell number 2.



Design a sequence of steps that correctly interchanges the contents of
these cells. If needed, you may use additional cells.

3. How many bits would be in the memory of a computer with 4KB memory?

1.3 Mass Storage
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1.3 Mass Storage

Due to the volatility and limited size of a computer’s main memory, most computers
have additional memory devices called mass storage (or secondary storage) sys-
tems, including magnetic disks, CDs, DVDs, magnetic tapes, and flash drives (all of
which we will discuss shortly). The advantages of mass storage systems over main
memory include less volatility, large storage capacities, low cost, and in many cases,
the ability to remove the storage medium from the machine for archival purposes.

The terms on-line and off-line are often used to describe devices that can be
either attached to or detached from a machine. On-line means that the device or
information is connected and readily available to the machine without human
intervention. Off-line means that human intervention is required before the
device or information can be accessed by the machine—perhaps because the
device must be turned on, or the medium holding the information must be
inserted into some mechanism.

A major disadvantage of mass storage systems is that they typically require
mechanical motion and therefore require significantly more time to store and
retrieve data than a machine’s main memory, where all activities are per-
formed electronically.

Magnetic Systems

For years, magnetic technology has dominated the mass storage arena. The most
common example in use today is the magnetic disk, in which a thin spinning
disk with magnetic coating is used to hold data (Figure 1.9). Read/write heads are
placed above and/or below the disk so that as the disk spins, each head traverses
a circle, called a track. By repositioning the read/write heads, different concen-
tric tracks can be accessed. In many cases, a disk storage system consists of sev-
eral disks mounted on a common spindle, one on top of the other, with enough
space for the read/write heads to slip between the platters. In such cases, the

Figure 1.9 Adisk storage system
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read/write heads move in unison. Each time the read/write heads are reposi-
tioned, a new set of tracks—which is called a cylinder—becomes accessible.

Since a track can contain more information than we would normally want
to manipulate at any one time, each track is divided into small arcs called
sectors on which information is recorded as a continuous string of bits. All sec-
tors on a disk contain the same number of bits (typical capacities are in the
range of 512 bytes to a few KB), and in the simplest disk storage systems each
track contains the same number of sectors. Thus, the bits within a sector on a
track near the outer edge of the disk are less compactly stored than those on the
tracks near the center, since the outer tracks are longer than the inner ones. In
fact, in high capacity disk storage systems, the tracks near the outer edge are
capable of containing significantly more sectors than those near the center, and
this capability is often utilized by applying a technique called zoned-bit
recording. Using zoned-bit recording, several adjacent tracks are collectively
known as zones, with a typical disk containing approximately ten zones. All
tracks within a zone have the same number of sectors, but each zone has more
sectors per track than the zone inside of it. In this manner, efficient utilization
of the entire disk surface is achieved. Regardless of the details, a disk storage
system consists of many individual sectors, each of which can be accessed as an
independent string of bits.

The location of tracks and sectors is not a permanent part of a disk’s physical
structure. Instead, they are marked magnetically through a process called
formatting (or initializing) the disk. This process is usually performed by the
disk’s manufacturer, resulting in what are known as formatted disks. Most com-
puter systems can also perform this task. Thus, if the format information on a
disk is damaged, the disk can be reformatted, although this process destroys all
the information that was previously recorded on the disk.

The capacity of a disk storage system depends on the number of platters
used and the density in which the tracks and sectors are placed. Lower-capacity
systems may consist of a single platter. High-capacity disk systems, capable of
holding many gigabytes, or even terabytes, consist of perhaps three to six plat-
ters mounted on a common spindle. Furthermore, data may be stored on both
the upper and lower surfaces of each platter.

Several measurements are used to evaluate a disk system’s performance: (1)
seek time (the time required to move the read/write heads from one track to
another); (2) rotation delay or latency time (half the time required for the disk
to make a complete rotation, which is the average amount of time required for
the desired data to rotate around to the read/write head once the head has been
positioned over the desired track); (3) access time (the sum of seek time and
rotation delay); and (4) transfer rate (the rate at which data can be transferred
to or from the disk). (Note that in the case of zone-bit recording, the amount of
data passing a read/write head in a single disk rotation is greater for tracks in an
outer zone than for an inner zone, and therefore the data transfer rate varies
depending on the portion of the disk being used.)

A factor limiting the access time and transfer rate is the speed at which a
disk system rotates. To facilitate fast rotation speeds, the read/write heads in
these systems do not touch the disk but instead “float” just off the surface. The
spacing is so close that even a single particle of dust could become jammed
between the head and disk surface, destroying both (a phenomenon known as a
head crash). Thus, disk systems are typically housed in cases that are sealed at
the factory. With this construction, disk systems are able to rotate at speeds of



several thousands times per second, achieving transfer rates that are measured
in MB per second.

Since disk systems require physical motion for their operation, these sys-
tems suffer when compared to speeds within electronic circuitry. Delay times
within an electronic circuit are measured in units of nanoseconds (billionths of a
second) or less, whereas seek times, latency times, and access times of disk sys-
tems are measured in milliseconds (thousandths of a second). Thus the time
required to retrieve information from a disk system can seem like an eternity to
an electronic circuit awaiting a result.

Disk storage systems are not the only mass storage devices that apply mag-
netic technology. An older form of mass storage using magnetic technology is
magnetic tape (Figure 1.10). In these systems, information is recorded on the
magnetic coating of a thin plastic tape that is wound on a reel for storage. To
access the data, the tape is mounted in a device called a tape drive that typically
can read, write, and rewind the tape under control of the computer. Tape drives
range in size from small cartridge units, called streaming tape units, which use
tape similar in appearance to that in stereo systems to older, large reel-to-reel
units. Although the capacity of these devices depends on the format used, most
can hold many GB.

A major disadvantage of magnetic tape is that moving between different posi-
tions on a tape can be very time-consuming owing to the significant amount of
tape that must be moved between the reels. Thus tape systems have much longer
data access times than magnetic disk systems in which different sectors can be
accessed by short movements of the read/write head. In turn, tape systems are not
popular for on-line data storage. Instead, magnetic tape technology is reserved for
off-line archival data storage applications where its high capacity, reliability, and
cost efficiency are beneficial, although advances in alternatives, such as DVDs and
flash drives, are rapidly challenging this last vestige of magnetic tape.

Optical Systems

Another class of mass storage systems applies optical technology. An example is
the compact disk (CD). These disks are 12 centimeters (approximately 5 inches)
in diameter and consist of reflective material covered with a clear protective
coating. Information is recorded on them by creating variations in their reflective

Figure 1.10 A magnetic tape storage mechanism
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surfaces. This information can then be retrieved by means of a laser beam that
detects irregularities on the reflective surface of the CD as it spins.

CD technology was originally applied to audio recordings using a recording
format known as CD-DA (compact disk-digital audio), and the CDs used today
for computer data storage use essentially the same format. In particular, informa-
tion on these CDs is stored on a single track that spirals around the CD like a
groove in an old-fashioned record, however, unlike old-fashioned records, the track
on a CD spirals from the inside out (Figure 1.11). This track is divided into units
called sectors, each with its own identifying markings and a capacity of 2KB of
data, which equates to '/s of a second of music in the case of audio recordings.

Note that the distance around the spiraled track is greater toward the outer
edge of the disk than at the inner portion. To maximize the capacity of a CD,
information is stored at a uniform linear density over the entire spiraled track,
which means that more information is stored in a loop around the outer portion
of the spiral than in a loop around the inner portion. In turn, more sectors will be
read in a single revolution of the disk when the laser beam is scanning the outer
portion of the spiraled track than when the beam is scanning the inner portion of
the track. Thus, to obtain a uniform rate of data transfer, CD-DA players are
designed to vary the rotation speed depending on the location of the laser beam.
However, most CD systems used for computer data storage spin at a faster, con-
stant speed and thus must accommodate variations in data transfer rates.

As a consequence of such design decisions, CD storage systems perform best
when dealing with long, continuous strings of data, as when reproducing music. In
contrast, when an application requires access to items of data in a random manner,
the approach used in magnetic disk storage (individual, concentric tracks divided
into individually accessible sectors) outperforms the spiral approach used in CDs.

Traditional CDs have capacities in the range of 600 to 700MB. However,
DVDs (Digital Versatile Disks), which are constructed from multiple, semi-
transparent layers that serve as distinct surfaces when viewed by a precisely
focused laser, provide storage capacities of several GB. Such disks are capable of
storing lengthy multimedia presentations, including entire motion pictures.
Finally, Blu-ray technology, which uses a laser in the blue-violet spectrum of
light (instead of red), is able to focus its laser beam with very fine precision. As a

Figure 1.11  CD storage format
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result, BDs (Blu-ray Disks) provides over five times the capacity of a DVD.
This seemingly vast amount of storage is needed to meet the demands of high
definition video.

Flash Drives

A common property of mass storage systems based on magnetic or optic tech-
nology is that physical motion, such as spinning disks, moving read/write heads,
and aiming laser beams, is required to store and retrieve data. This means that
data storage and retrieval is slow compared to the speed of electronic circuitry.
Flash memory technology has the potential of alleviating this drawback. In a
flash memory system, bits are stored by sending electronic signals directly to the
storage medium where they cause electrons to be trapped in tiny chambers of
silicon dioxide, thus altering the characteristics of small electronic circuits. Since
these chambers are able to hold their captive electrons for many years, this tech-
nology is suitable for off-line storage of data.

Although data stored in flash memory systems can be accessed in small
byte-size units as in RAM applications, current technology dictates that stored
data be erased in large blocks. Moreover, repeated erasing slowly damages the
silicon dioxide chambers, meaning that current flash memory technology is not
suitable for general main memory applications where its contents might be
altered many times a second. However, in those applications in which alter-
ations can be controlled to a reasonable level, such as in digital cameras, cellu-
lar telephones, and hand-held PDAs, flash memory has become the mass
storage technology of choice. Indeed, since flash memory is not sensitive to
physical shock (in contrast to magnetic and optic systems) its potential in
portable applications is enticing.

Flash memory devices called flash drives, with capacities of up to a few
hundred GBs, are available for general mass storage applications. These units are
packaged in small plastic cases approximately three inches long with a remov-
able cap on one end to protect the unit’s electrical connector when the drive is
off-line. The high capacity of these portable units as well as the fact that they are
easily connected to and disconnected from a computer make them ideal for off-
line data storage. However, the vulnerability of their tiny storage chambers dic-
tates that they are not as reliable as optical disks for truly long term applications.

Another application of flash technology is found in SD (Secure Digital)
memory cards (or just SD Card). These provide up to two GBs of storage and are
packaged in a plastic rigged wafer about the size a postage stamp (SD cards are also
available in smaller mini and micro sizes), SDHC (High Capacity) memory
cards can provide up to 32 GBs and the next generation SDXC (Extended
Capacity) memory cards may exceed a TB. Given their compact physical size,
these cards conveniently slip into slots of small electronic devices. Thus, they are
ideal for digital cameras, smartphones, music players, car navigation systems, and
a host of other electronic appliances.

File Storage and Retrieval

Information stored in a mass storage system is conceptually grouped into large
units called files. A typical file may consist of a complete text document, a photo-
graph, a program, a music recording, or a collection of data about the employees in
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a company. We have seen that mass storage devices dictate that these files be
stored and retrieved in smaller, multiple byte units. For example, a file stored on a
magnetic disk must be manipulated by sectors, each of which is a fixed predeter-
mined size. A block of data conforming to the specific characteristics of a storage
device is called a physical record. Thus, a large file stored in mass storage will
typically consist of many physical records.

In contrast to this division into physical records, a file often has natural divi-
sions determined by the information represented. For example, a file containing
information regarding a company’s employees would consist of multiple units,
each consisting of the information about one employee. Or, a file containing a
text document would consist of paragraphs or pages. These naturally occurring
blocks of data are called logical records.

Logical records often consist of smaller units called fields. For example, a
logical record containing information about an employee would probably consist
of fields such as name, address, employee identification number, etc. Sometimes
each logical record within a file is uniquely identified by means of a particular
field within the record (perhaps an employee’s identification number, a part
number, or a catalogue item number). Such an identifying field is called a key
field. The value held in a key field is called a key.

Logical record sizes rarely match the physical record size dictated by a mass
storage device. In turn, one may find several logical records residing within a sin-
gle physical record or perhaps a logical record split between two or more physical
records (Figure 1.12). The result is that a certain amount of unscrambling is asso-
ciated with retrieving data from mass storage systems. A common solution to this
problem is to set aside an area of main memory that is large enough to hold sev-
eral physical records and to use this memory space as a regrouping area. That is,
blocks of data compatible with physical records can be transferred between this
main memory area and the mass storage system, while the data residing in the
main memory area can be referenced in terms of logical records.

An area of memory used in this manner is called a buffer. In general, a
buffer is a storage area used to hold data on a temporary basis, usually during the
process of being transferred from one device to another. For example, modern

Figure 1.12 Logical records versus physical records on a disk
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printers contain memory circuitry of their own, a large part of which is used as a
buffer for holding portions of a document that have been received by the printer

but not yet printed.

1. What is gained by increasing the rotation speed of a disk or CD?

2. When recording data on a multiple-disk storage system, should we fill a
complete disk surface before starting on another surface, or should we
first fill an entire cylinder before starting on another cylinder?

3. Why should the data in a reservation system that is constantly being
updated be stored on a magnetic disk instead of a CD or DVD?

4. Sometimes, when modifying a document with a word processor, adding
text does not increase the apparent size of the file in mass storage, but at
other times the addition of a single symbol can increase the apparent
size of the file by several hundred bytes. Why?

5. What advantage do flash drives have over the other mass storage systems
introduced in this section?

6. What is a buffer?
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1.4 Representing Information as Bit Patterns

Having considered techniques for storing bits, we now consider how information
can be encoded as bit patterns. Our study focuses on popular methods for encod-
ing text, numerical data, images, and sound. Each of these systems has repercus-
sions that are often visible to a typical computer user. Our goal is to understand
enough about these techniques so that we can recognize their consequences for
what they are.

Representing Text

Information in the form of text is normally represented by means of a code in
which each of the different symbols in the text (such as the letters of the alpha-
bet and punctuation marks) is assigned a unique bit pattern. The text is then rep-
resented as a long string of bits in which the successive patterns represent the
successive symbols in the original text.

In the 1940s and 1950s, many such codes were designed and used in con-
nection with different pieces of equipment, producing a corresponding prolifera-
tion of communication problems. To alleviate this situation, the American
National Standards Institute (ANSI, pronounced “AN-see”) adopted the
American Standard Code for Information Interchange (ASCII, pronounced
“AS-kee”). This code uses bit patterns of length seven to represent the upper-
and lowercase letters of the English alphabet, punctuation symbols, the digits 0
through 9, and certain control information such as line feeds, carriage returns,
and tabs. ASCII is extended to an eight-bit-per-symbol format by adding a 0 at the
most significant end of each of the seven-bit patterns. This technique not only



36

Chapter 1 Data Storage

produces a code in which each pattern fits conveniently into a typical byte-size
memory cell but also provides 128 additional bit patterns (those obtained by
assigning the extra bit the value 1) that can be used to represent symbols beyond
the English alphabet and associated punctuation.

A portion of ASCII in its eight-bit-per-symbol format is shown in Appendix A.
By referring to this appendix, we can decode the bit pattern

01001000 01100101 01101100 01101100 01101111 00101110

as the message “Hello.” as demonstrated in Figure 1.13.

The International Organization for Standardization (also known as ISO,
in reference to the Greek word isos, meaning equal) has developed a number of
extensions to ASCII, each of which were designed to accommodate a major lan-
guage group. For example, one standard provides the symbols needed to express
the text of most Western European languages. Included in its 128 additional pat-
terns are symbols for the British pound and the German vowels &, 6, and 1.

The ISO extended ASCII standards made tremendous headway toward sup-
porting all of the world’s multilingual communication; however, two major obsta-
cles surfaced. First, the number of extra bit patterns available in extended ASCII
is simply insufficient to accommodate the alphabet of many Asian and some
Eastern European languages. Second, because a given document was con-
strained to using symbols in just the one selected standard, documents contain-
ing text of languages from disparate language groups could not be supported.
Both proved to be a significant detriment to international use. To address this
deficiency, Unicode, was developed through the cooperation of several of the
leading manufacturers of hardware and software and has rapidly gained the sup-
port in the computing community. This code uses a unique pattern of 16 bits
to represent each symbol. As a result, Unicode consists of 65,536 different bit
patterns—enough to allow text written in such languages as Chinese, Japanese,
and Hebrew to be represented.

A file consisting of a long sequence of symbols encoded using ASCII or
Unicode is often called a text file. It is important to distinguish between simple
text files that are manipulated by utility programs called text editors (or often
simply editors) and the more elaborate files produced by word processors such
as Microsoft's Word. Both consist of textual material. However, a text file contains
only a character-by-character encoding of the text, whereas a file produced by a
word processor contains numerous proprietary codes representing changes in
fonts, alignment information, etc.

Representing Numeric Values

Storing information in terms of encoded characters is inefficient when the infor-
mation being recorded is purely numeric. To see why, consider the problem of
storing the value 25. If we insist on storing it as encoded symbols in ASCII using
one byte per symbol, we need a total of 16 bits. Moreover, the largest number

Figure 1.13 The message “Hello.” in ASCII

01001000 01100101 01101100 01101100 01101111 00101110
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The American National Standards Institute

The American National Standards Institute (ANSI) was founded in 1918 by a small
consortium of engineering societies and government agencies as a nonprofit federa-
tion to coordinate the development of voluntary standards in the private sector.
Today, ANSI membership includes more than 1300 businesses, professional organi-
zations, trade associations, and government agencies. ANSI is headquartered in New
York and represents the United States as a member body in the ISO. The Web site for
the American National Standards Institute is at http://www.ansi.org.

Similar organizations in other countries include Standards Australia (Australia),
Standards Council of Canada (Canada), China State Bureau of Quality and Technical
Supervision (China), Deutsches Institut fiir Normung (Germany), Japanese Industrial
Standards Committee (Japan), Direccién General de Normas (Mexico), State Committee
of the Russian Federation for Standardization and Metrology (Russia), Swiss
Association for Standardization (Switzerland), and British Standards Institution

(United Kingdom).
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we could store using 16 bits is 99. However, as we will shortly see, by using
binary notation we can store any integer in the range from 0 to 65535 in these
16 bits. Thus, binary notation (or variations of it) is used extensively for encoded
numeric data for computer storage.

Binary notation is a way of representing numeric values using only the digits
0 and 1 rather than the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as in the traditional dec-
imal, or base ten, system. We will study the binary system more thoroughly in
Section 1.5. For now, all we need is an elementary understanding of the system.
For this purpose consider an old-fashioned car odometer whose display wheels
contain only the digits 0 and 1 rather than the traditional digits 0 through 9. The
odometer starts with a reading of all 0s, and as the car is driven for the first few
miles, the rightmost wheel rotates from a 0 to a 1. Then, as that 1 rotates back to
a0, it causes a 1 to appear to its left, producing the pattern 10. The 0 on the right
then rotates to a 1, producing 11. Now the rightmost wheel rotates from 1 back to
0, causing the 1 to its left to rotate to a 0 as well. This in turn causes another 1 to
appear in the third column, producing the pattern 100. In short, as we drive the
car we see the following sequence of odometer readings:

0000
0001
0010
0011
0100
0101
0110
0111
1000

This sequence consists of the binary representations of the integers zero
through eight. Although tedious, we could extend this counting technique to dis-
cover that the bit pattern consisting of sixteen 1s represents the value 65535,
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which confirms our claim that any integer in the range from 0 to 65535 can be
encoded using 16 bits.

Due to this efficiency, it is common to store numeric information in a form of
binary notation rather than in encoded symbols. We say “a form of binary nota-
tion” because the straightforward binary system just described is only the basis for
several numeric storage techniques used within machines. Some of these varia-
tions of the binary system are discussed later in this chapter. For now, we merely
note that a system called two’s complement notation (see Section 1.6) is com-
mon for storing whole numbers because it provides a convenient method for rep-
resenting negative numbers as well as positive. For representing numbers with
fractional parts such as 4'/. or %, another technique, called floating-point nota-
tion (see Section 1.7), is used.

Representing Images

One means of representing an image is to interpret the image as a collection of
dots, each of which is called a pixel, short for “picture element.” The appearance
of each pixel is then encoded and the entire image is represented as a collection
of these encoded pixels. Such a collection is called a bit map. This approach is
popular because many display devices, such as printers and display screens,
operate on the pixel concept. In turn, images in bit map form are easily format-
ted for display.

The method of encoding the pixels in a bit map varies among applications.
In the case of a simple black and white image, each pixel can be represented by
a single bit whose value depends on whether the corresponding pixel is black or
white. This is the approach used by most facsimile machines. For more elaborate
back and white photographs, each pixel can be represented by a collection of bits
(usually eight), which allows a variety of shades of grayness to be represented.

In the case of color images, each pixel is encoded by more complex system.
Two approaches are common. In one, which we will call RGB encoding, each
pixel is represented as three color components—a red component, a green com-
ponent, and a blue component—corresponding to the three primary colors of
light. One byte is normally used to represent the intensity of each color compo-
nent. In turn, three bytes of storage are required to represent a single pixel in the
original image.

ISO—The International Organization for Standardization

The International Organization for Standardization (more commonly called 1SO) was
established in 1947 as a worldwide federation of standardization bodies, one from
each country. Today, it is headquartered in Geneva, Switzerland and has more than
100 member bodies as well as numerous correspondent members. (A correspondent
member is usually a standardization body from a country that does not have a
nationally recognized standardization body. Such members cannot participate
directly in the development of standards but are kept informed of ISO activities.) ISO
maintains a Web site at http://www.iso.org.
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An alternative to simple RGB encoding is to use a “brightness” component
and two color components. In this case the “brightness” component, which is
called the pixel’s luminance, is essentially the sum of the red, green, and blue
components. (Actually, it is considered to be the amount of white light in the
pixel, but these details need not concern us here.) The other two components,
called the blue chrominance and the red chrominance, are determined by com-
puting the difference between the pixel’s luminance and the amount of blue or
red light, respectively, in the pixel. Together these three components contain the
information required to reproduce the pixel.

The popularity of encoding images using luminance and chrominance com-
ponents originated in the field of color television broadcast because this
approach provided a means of encoding color images that was also compatible
with older black-and-white television receivers. Indeed, a gray-scale version of
an image can be produced by using only the luminance components of the
encoded color image.

A disadvantage of representing images as bit maps is that an image cannot
be rescaled easily to any arbitrary size. Essentially, the only way to enlarge the
image is to make the pixels bigger, which leads to a grainy appearance. (This is
the technique called “digital zoom” used in digital cameras as opposed to “optical
zoom’ that is obtained by adjusting the camera lens.)

An alternate way of representing images that avoids this scaling problem is to
describe the image as a collection of geometric structures, such as lines and
curves, that can be encoded using techniques of analytic geometry. Such a
description allows the device that ultimately displays the image to decide how the
geometric structures should be displayed rather than insisting that the device
reproduce a particular pixel pattern. This is the approach used to produce the
scalable fonts that are available via today’s word processing systems. For example,
TrueType (developed by Microsoft and Apple) is a system for geometrically
describing text symbols. Likewise, PostScript (developed by Adobe Systems) pro-
vides a means of describing characters as well as more general pictorial data. This
geometric means of representing images is also popular in computer-aided
design (CAD) systems in which drawings of three-dimensional objects are dis-
played and manipulated on computer display screens.

The distinction between representing an image in the form of geometric
structures as opposed to bit maps is evident to users of many drawing software
systems (such as Microsoft’s Paint utility) that allow the user to draw pictures
consisting of preestablished shapes such as rectangles, ovals, and elementary
curves. The user simply selects the desired geometric shape from a menu and
then directs the drawing of that shape via a mouse. During the drawing
process, the software maintains a geometric description of the shape being
drawn. As directions are given by the mouse, the internal geometric represen-
tation is modified, reconverted to bit map form, and displayed. This allows for
easy scaling and shaping of the image. Once the drawing process is complete,
however, the underlying geometric description is discarded and only the bit
map is preserved, meaning that additional alterations require a tedious pixel-
by-pixel modification process. On the other hand, some drawing systems pre-
serve the description as geometric shapes, which can be modified later. With
these systems, the shapes can be easily resized, maintaining a crisp display at
any dimension.
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Representing Sound

The most generic method of encoding audio information for computer storage
and manipulation is to sample the amplitude of the sound wave at regular inter-
vals and record the series of values obtained. For instance, the series 0, 1.5, 2.0,
1.5, 2.0, 3.0, 4.0, 3.0, 0 would represent a sound wave that rises in amplitude, falls
briefly, rises to a higher level, and then drops back to 0 (Figure 1.14). This tech-
nique, using a sample rate of 8000 samples per second, has been used for years
in long-distance voice telephone communication. The voice at one end of the
communication is encoded as numeric values representing the amplitude of the
voice every eight-thousandth of a second. These numeric values are then trans-
mitted over the communication line to the receiving end, where they are used to
reproduce the sound of the voice.

Although 8000 samples per second may seem to be a rapid rate, it is not suf-
ficient for high-fidelity music recordings. To obtain the quality sound reproduc-
tion obtained by today’s musical CDs, a sample rate of 44,100 samples per second
is used. The data obtained from each sample are represented in 16 bits (32 bits
for stereo recordings). Consequently, each second of music recorded in stereo
requires more than a million bits.

An alternative encoding system known as Musical Instrument Digital
Interface (MIDI, pronounced “MID-ee”) is widely used in the music synthesiz-
ers found in electronic keyboards, for video game sound, and for sound effects
accompanying Web sites. By encoding directions for producing music on a syn-
thesizer rather than encoding the sound itself, MIDI avoids the large storage
requirements of the sampling technique. More precisely, MIDI encodes what
instrument is to play which note for what duration of time, which means that a
clarinet playing the note D for two seconds can be encoding in three bytes
rather than more than two million bits when sampled at a rate of 44,100 sam-
ples per second.

In short, MIDI can be thought of as a way of encoding the sheet music read
by a performer rather than the performance itself, and in turn, a MIDI “record-
ing” can sound significantly different when performed on different synthesizers.

Figure 1.14 The sound wave represented by the sequence 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0
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. Here is a message encoded in ASCII using 8 bits per symbol. What does
it say? (See Appendix A)

01000011 01101111 01101101 01110000 01110101 01110100
01100101 01110010 00100000 01010011 01100011 01101001
01100101 01101110 01100011 01100101

. In the ASCII code, what is the relationship between the codes for an
uppercase letter and the same letter in lowercase? (See Appendix A.)

. Encode these sentences in ASCII:

a. “Stop!” Cheryl shouted. b. Does2 + 3 = 5?

. Describe a device from everyday life that can be in either of two states,
such as a flag on a flagpole that is either up or down. Assign the symbol 1
to one of the states and 0 to the other, and show how the ASCII repre-
sentation for the letter b would appear when stored with such bits.

. Convert each of the following binary representations to its equivalent
base ten form:

a. 0101 b. 1001 c. 1011
d. 0110 e. 10000 f. 10010

. Convert each of the following base ten representations to its equivalent
binary form:

a. 6 b. 13 c. 11
d. 18 e. 27 f. 4

. What is the largest numeric value that could be represented with three
bytes if each digit were encoded using one ASCII pattern per byte? What
if binary notation were used?

. An alternative to hexadecimal notation for representing bit patterns is
dotted decimal notation in which each byte in the pattern is repre-
sented by its base ten equivalent. In turn, these byte representations are
separated by periods. For example, 12.5 represents the pattern
0000110000000101 (the byte 00001100 is represented by 12, and 00000101
is represented by 5), and the pattern 100010000001000000000111 is repre-
sented by 136.16.7. Represent each of the following bit patterns in dotted
decimal notation.

a. 0000111100001111 b. 001100110000000010000000
c. 0000101010100000

. What is an advantage of representing images via geometric structures as
opposed to bit maps? What about bit map techniques as opposed to geo-
metric structures?

. Suppose a stereo recording of one hour of music is encoded using a sam-
ple rate of 44,100 samples per second as discussed in the text. How does
the size of the encoded version compare to the storage capacity of a CD?
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1.5 The Binary System

In Section 1.4 we saw that binary notation is a means of representing numeric
values using only the digits 0 and 1 rather than the ten digits 0 through 9 that are
used in the more common base ten notational system. It is time now to look at
binary notation more thoroughly.

Binary Notation

Recall that in the base ten system, each position in a representation is associated
with a quantity. In the representation 375, the 5 is in the position associated with
the quantity one, the 7 is in the position associated with ten, and the 3 is in the
position associated with the quantity one hundred (Figure 1.15a). Each quantity
is ten times that of the quantity to its right. The value represented by the entire
expression is obtained by multiplying the value of each digit by the quantity
associated with that digit’s position and then adding those products. To illustrate,
the pattern 375 represents (3 X hundred) + (7 X ten) + (5 X one), which, in
more technical notation, is (3 X 10%) + (7 X 101) + (5 X 10%).

The position of each digit in binary notation is also associated with a
quantity, except that the quantity associated with each position is twice the
quantity associated with the position to its right. More precisely, the rightmost
digit in a binary representation is associated with the quantity one (2%), the
next position to the left is associated with two (2!), the next is associated with
four (2%), the next with eight (2%), and so on. For example, in the binary repre-
sentation 1011, the rightmost 1 is in the position associated with the quantity
one, the 1 next to it is in the position associated with two, the 0 is in the posi-
tion associated with four, and the leftmost 1 is in the position associated with
eight (Figure 1.15b).

To extract the value represented by a binary representation, we follow the
same procedure as in base ten—we multiply the value of each digit by the quan-
tity associated with its position and add the results. For example, the value rep-
resented by 100101 is 37, as shown in Figure 1.16. Note that since binary notation
uses only the digits 0 and 1, this multiply-and-add process reduces merely to
adding the quantities associated with the positions occupied by 1s. Thus the
binary pattern 1011 represents the value eleven, because the 1s are found in the
positions associated with the quantities one, two, and eight.

In Section 1.4 we learned how to count in binary notation, which allowed us
to encode small integers. For finding binary representations of large values, you
may prefer the approach described by the algorithm in Figure 1.17. Let us apply
this algorithm to the value thirteen (Figure 1.18). We first divide thirteen by two,

Figure 1.15 The base ten and binary systems

a. Base ten system b. Base two system
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Figure 1.16 Decoding the binary representation 100101

Binary

pattern—[ 11 ]1- X one = 1
0 x two = 0
1 x four = 4
0 x eight = 0
0 x sixteen = 0
1 X thirty-two = 32

4 ——— 37 Total

Value Position’s
of bit quantity

Figure 1.17  An algorithm for finding the binary representation of a positive integer

Step 1. Divide the value by two and record the remainder.

Step 2. As long as the quotient obtained is not zero, continue to divide
the newest quotient by two and record the remainder.

Step 3. Now that a quotient of zero has been obtained, the binary
representation of the original value consists of the remainders
listed from right to left in the order they were recorded.

Figure 1.18 Applying the algorithm in Figure 1.17 to obtain the binary representation
of thirteen
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110 Binary representation

obtaining a quotient of six and a remainder of one. Since the quotient was not
zero, Step 2 tells us to divide the quotient (six) by two, obtaining a new quotient
of three and a remainder of zero. The newest quotient is still not zero, so we
divide it by two, obtaining a quotient of one and a remainder of one. Once again,
we divide the newest quotient (one) by two, this time obtaining a quotient of
zero and a remainder of one. Since we have now acquired a quotient of zero, we
move on to Step 3, where we learn that the binary representation of the original
value (thirteen) is 1101, obtained from the list of remainders.
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Binary Addition

To understand the process of adding two integers that are represented in binary,
let us first recall the process of adding values that are represented in traditional
base ten notation. Consider, for example, the following problem:

58
+ 27

We begin by adding the 8 and the 7 in the rightmost column to obtain the sum 15.
We record the 5 at the bottom of that column and carry the 1 to the next column,
producing

We now add the 5 and 2 in the next column along with the 1 that was carried
to obtain the sum 8, which we record at the bottom of the column. The result
is as follows:

58
+ 27

85

In short, the procedure is to progress from right to left as we add the digits in
each column, write the least significant digit of that sum under the column, and
carry the more significant digit of the sum (if there is one) to the next column.

To add two integers represented in binary notation, we follow the same pro-
cedure except that all sums are computed using the addition facts shown in
Figure 1.19 rather than the traditional base ten facts that you learned in elemen-
tary school. For example, to solve the problem

111010
+ 11011

we begin by adding the rightmost 0 and 1; we obtain 1, which we write below the
column. Now we add the 1 and 1 from the next column, obtaining 10. We write
the 0 from this 10 under the column and carry the 1 to the top of the next col-
umn. At this point, our solution looks like this:

1
111010
+ 11011
01

Figure 1.19 The binary addition facts

0 1 0 1
B e o
0 1 1 10
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We add the 1, 0, and 0 in the next column, obtain 1, and write the 1 under this
column. The 1 and 1 from the next column total 10; we write the 0 under the col-
umn and carry the 1 to the next column. Now our solution looks like this:

1
111010
+ 11011
0101

The 1, 1, and 1 in the next column total 11 (binary notation for the value three);
we write the low-order 1 under the column and carry the other 1 to the top of the
next column. We add that 1 to the 1 already in that column to obtain 10. Again,
we record the low-order 0 and carry the 1 to the next column. We now have

1
111010
+ 11011
010101

The only entry in the next column is the 1 that we carried from the previous col-
umn so we record it in the answer. Our final solution is this:

111010
+ 11011
1010101

Fractions in Binary

To extend binary notation to accommodate fractional values, we use a radix
point in the same role as the decimal point in decimal notation. That is, the dig-
its to the left of the point represent the integer part (whole part) of the value and
are interpreted as in the binary system discussed previously. The digits to its
right represent the fractional part of the value and are interpreted in a manner
similar to the other bits, except their positions are assigned fractional quanti-
ties. That is, the first position to the right of the radix is assigned the quantity
'/, (which is 271), the next position the quantity /4 (which is 27%), the next '/
(which is 27%), and so on. Note that this is merely a continuation of the rule
stated previously: Each position is assigned a quantity twice the size of the one
to its right. With these quantities assigned to the bit positions, decoding a
binary representation containing a radix point requires the same procedure as
used without a radix point. More precisely, we multiply each bit value by the
quantity assigned to that bit’s position in the representation. To illustrate, the
binary representation 101.101 decodes to 5%, as shown in Figure 1.20.

Figure 1.20 Decoding the binary representation 101.101

Binary 73 9 1.1 0 1

pattern 1 x one-eighth = 14
0 x one-fourth = o
1 x one-half = 1,
1 x one = 1
0 X two = 0
1 x four = 4

s s e 5% Total

Value Position’s
of bit quantity
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Analog Versus Digital

Prior to the twenty-first century, many researchers debated the pros and cons of dig-
ital versus analog technology. In a digital system, a value is encoded as a series of
digits and then stored using several devices, each representing one of the digits. In
an analog system, each value is stored in a single device that can represent any value
within a continuous range.

Let us compare the two approaches using buckets of water as the storage devices. To
simulate a digital system, we could agree to let an empty bucket represent the digit 0 and
a full bucket represent the digit 1. Then we could store a numeric value in a row of buckets
using floating-point notation (see Section 1.7). In contrast, we could simulate an analog
system by partially filling a single bucket to the point at which the water level represented
the numeric value being represented. At first glance, the analog system may appear to be
more accurate since it would not suffer from the truncation errors inherent in the digital
system (again see Section 1.7). However, any movement of the bucket in the analog sys-
tem could cause errors in detecting the water level, whereas a significant amount of
sloshing would have to occur in the digital system before the distinction between a full
bucket and an empty bucket would be blurred. Thus the digital system would be less
sensitive to error than the analog system. This robustness is a major reason why many
applications that were originally based on analog technology (such as telephone commu-
nication, audio recordings, and television) are shifting to digital technology.

U
||||||||||||I"! ik I! % [Exe

. Convert each of the following binary representations to its equivalent

For addition, the techniques applied in the base ten system are also applica-

ble in binary. That is, to add two binary representations having radix points, we
merely align the radix points and apply the same addition process as before. For
example, 10.011 added to 100.11 produces 111.001, as shown here:

10.011
+ 100.110
111.001

|
base ten form:

a. 101010 b. 100001 ¢ 10111 d. 0110 e. 11111

. Convert each of the following base ten representations to its equivalent

binary form:

a. 32 b. 64 c. 96 d. 15 e. 27

. Convert each of the following binary representations to its equivalent

base ten form:

a. 11.01 b. 101.111 ¢ 10.1 d. 110.011 e. 0.101

. Express the following values in binary notation:

a. 4/ b. 2% c. 1'% d. %s e. 5%
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5. Perform the following additions in binary notation:
a. 11011 b. 1010.001 ¢ 11111 d. 111.11
+1100 + 1.101 + 0001 + 00.01

47

1.6 Storing Integers

Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of dig-
ital circuitry. In this section we consider two of these notational systems, two’s
complement notation and excess notation, which are used for representing inte-
ger values in computing equipment. These systems are based on the binary sys-
tem but have additional properties that make them more compatible with
computer design. With these advantages, however, come disadvantages as well.
Our goal is to understand these properties and how they affect computer usage.

Two’s Complement Notation

The most popular system for representing integers within today’s computers is
two’s complement notation. This system uses a fixed number of bits to repre-
sent each of the values in the system. In today’s equipment, it is common to use
a two’s complement system in which each value is represented by a pattern of
32 bits. Such a large system allows a wide range of numbers to be represented
but is awkward for demonstration purposes. Thus, to study the properties of
two's complement systems, we will concentrate on smaller systems.

Figure 1.21 shows two complete two’s complement systems—one based on
bit patterns of length three, the other based on bit patterns of length four. Such a

Figure 1.21 Two’s complement notation systems

a. Using patterns of length three b. Using patterns of length four
Bit Value Bit Value
pattern represented pattern represented

011 3 0111 7
010 2 0110 6
001 1 0101 5
000 0 0100 4
111 =1 0011 3
110 =2 0010 2
101 =g 0001 1
100 -4 0000 0
1111 =1
1110 -2
1101 -3
1100 —4
1011 -5
1010 -6
1001 =17
1000 -8
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system is constructed by starting with a string of 0s of the appropriate length and
then counting in binary until the pattern consisting of a single 0 followed by 1s is
reached. These patterns represent the values 0, 1, 2, 3, . . . . The patterns repre-
senting negative values are obtained by starting with a string of 1s of the appro-
priate length and then counting backward in binary until the pattern consisting
of a single 1 followed by 0s is reached. These patterns represent the values —1,
—2, =3, . ... (If counting backward in binary is difficult for you, merely start at
the very bottom of the table with the pattern consisting of a single 1 followed by
0s, and count up to the pattern consisting of all 1s.)

Note that in a two’s complement system, the leftmost bit of a bit pattern indi-
cates the sign of the value represented. Thus, the leftmost bit is often called the
sign bit. In a two’s complement system, negative values are represented by the
patterns whose sign bits are 1; nonnegative values are represented by patterns
whose sign bits are 0.

In a two’s complement system, there is a convenient relationship between
the patterns representing positive and negative values of the same magnitude.
They are identical when read from right to left, up to and including the first 1.
From there on, the patterns are complements of one another. (The
complement of a pattern is the pattern obtained by changing all the 0s to 1s
and all the 1s to 0s; 0110 and 1001 are complements.) For example, in the 4-bit
system in Figure 1.21 the patterns representing 2 and —2 both end with 10, but
the pattern representing 2 begins with 00, whereas the pattern representing —2
begins with 11. This observation leads to an algorithm for converting back and
forth between bit patterns representing positive and negative values of the same
magnitude. We merely copy the original pattern from right to left until a 1 has
been copied, then we complement the remaining bits as they are transferred to
the final bit pattern (Figure 1.22).

Understanding these basic properties of two’s complement systems also
leads to an algorithm for decoding two’s complement representations. If the
pattern to be decoded has a sign bit of 0, we need merely read the value as

Figure 1.22 Encoding the value —6 in two’s complement notation using 4 bits

Two's complement notation —{ 0 1 1 0
for 6 using four bits | |
| |
| |
| |
| |
| | .
Copy the bits from
| | i .
| | ; right to left until a
I I ] 1 has been copied
| |
| |
| |
| |
I T Complement the
| ] remaining bits
Two’s complement notation v ¥ v v
for -6 using four bits ——1 0 1 0
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though the pattern were a binary representation. For example, 0110 represents the
value 6, because 110 is binary for 6. If the pattern to be decoded has a sign bit of
1, we know the value represented is negative, and all that remains is to find the
magnitude of the value. We do this by applying the “copy and complement” pro-
cedure in Figure 1.22 and then decoding the pattern obtained as though it were a
straightforward binary representation. For example, to decode the pattern 1010,
we first recognize that since the sign bit is 1, the value represented is negative.
Hence, we apply the “copy and complement” procedure to obtain the pattern
0110, recognize that this is the binary representation for 6, and conclude that the
original pattern represents —6.

Addition in Two’s Complement Notation To add values represented in two’s comple-
ment notation, we apply the same algorithm that we used for binary addition,
except that all bit patterns, including the answer, are the same length. This
means that when adding in a two’s complement system, any extra bit generated
on the left of the answer by a final carry must be truncated. Thus “adding” 0101
and 0010 produces 0111, and “adding” 0111 and 1011 results in 0010 (0111 + 1011 =
10010, which is truncated to 0010).

With this understanding, consider the three addition problems in Figure 1.23.
In each case, we have translated the problem into two’s complement notation
(using bit patterns of length four), performed the addition process previously
described, and decoded the result back into our usual base ten notation.

Observe that the third problem in Figure 1.23 involves the addition of a pos-
itive number to a negative number, which demonstrates a major benefit of two’s
complement notation: Addition of any combination of signed numbers can be
accomplished using the same algorithm and thus the same circuitry. This is in
stark contrast to how humans traditionally perform arithmetic computations.
Whereas elementary school children are first taught to add and later taught to

subtract, a machine using two’s complement notation needs to know only how
to add.

Figure 1.23 Addition problems converted to two’s complement notation

Problem in Problem in Answer in
base ten two's complement base ten
0011

+‘;’ —»  1£0010

0101 — 5

= 1101
.2 —» +1110

1011 —> =5

. 0111
.5 —» 1011

0010 —> 2
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For example, the subtraction problem 7 — 5 is the same as the addition prob-
lem 7 + (—5). Consequently, if a machine were asked to subtract 5 (stored as
0101) from 7 (stored as 0111), it would first change the 5 to —5 (represented as
1011) and then perform the addition process of 0111 + 1011 to obtain 0010, which
represents 2, as follows:

7 0111 0111
=5 — — 0101 — + 1011
0010 — 2

We see, then, that when two’s complement notation is used to represent numeric
values, a circuit for addition combined with a circuit for negating a value is suffi-
cient for solving both addition and subtraction problems. (Such circuits are
shown and explained in Appendix B.)

The Problem of Overflow One problem we have avoided in the preceding examples
is that in any two’s complement system there is a limit to the size of the values
that can be represented. When using two's complement with patterns of 4 bits,
the largest positive integer that can be represented is 7, and the most negative
integer is —8. In particular, the value 9 can not be represented, which means that
we cannot hope to obtain the correct answer to the problem 5 + 4. In fact, the
result would appear as —7. This phenomenon is called overflow. That is, over-
flow is the problem that occurs when a computation produces a value that falls
outside the range of values that can be represented. When using two’s comple-
ment notation, this might occur when adding two positive values or when adding
two negative values. In either case, the condition can be detected by checking
the sign bit of the answer. An overflow is indicated if the addition of two positive
values results in the pattern for a negative value or if the sum of two negative
values appears to be positive.

Of course, because most computers use two’s complement systems with
longer bit patterns than we have used in our examples, larger values can be
manipulated without causing an overflow. Today, it is common to use patterns of
32 bits for storing values in two’s complement notation, allowing for positive val-
ues as large as 2,147,483,647 to accumulate before overflow occurs. If still larger
values are needed, longer bit patterns can be used or perhaps the units of meas-
ure can be changed. For instance, finding a solution in terms of miles instead of
inches results in smaller numbers being used and might still provide the accu-
racy required.

The point is that computers can make mistakes. So, the person using the
machine must be aware of the dangers involved. One problem is that computer
programmertrs and users become complacent and ignore the fact that small values
can accumulate to produce large numbers. For example, in the past it was com-
mon to use patterns of 16 bits for representing values in two’s complement nota-
tion, which meant that overflow would occur when values of 2!> = 32,768 or
larger were reached. On September 19, 1989, a hospital computer system mal-
functioned after years of reliable service. Close inspection revealed that this date
was 32,768 days after January 1, 1900, and the machine was programmed to com-
pute dates based on that starting date. Thus, because of overflow, September 19,
1989, produced a negative value—a phenomenon for which the computer’s pro-
gram was not designed to handle.
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Excess Notation

Another method of representing integer values is excess notation. As is the
case with two’s complement notation, each of the values in an excess nota-
tion system is represented by a bit pattern of the same length. To establish
an excess system, we first select the pattern length to be used, then write
down all the different bit patterns of that length in the order they would
appear if we were counting in binary. Next, we observe that the first pattern
with a 1 as its most significant bit appears approximately halfway through
the list. We pick this pattern to represent zero; the patterns following this are
used to represent 1, 2, 3, . . .; and the patterns preceding it are used for —1,
—2, =3, . . . . The resulting code, when using patterns of length four, is
shown in Figure 1.24. There we see that the value 5 is represented by the
pattern 1101 and —5 is represented by 0011. (Note that the difference
between an excess system and a two’s complement system is that the sign
bits are reversed.)

The system represented in Figure 1.24 is known as excess eight notation.
To understand why, first interpret each of the patterns in the code using the
traditional binary system and then compare these results to the values repre-
sented in the excess notation. In each case, you will find that the binary inter-
pretation exceeds the excess notation interpretation by the value 8. For
example, the pattern 1100 in binary notation represents the value 12, but in
our excess system it represents 4; 0000 in binary notation represents 0, but in
the excess system it represents negative 8. In a similar manner, an excess sys-
tem based on patterns of length five would be called excess 16 notation,

Figure 1.24  An excess eight conversion table

Bit Value
pattern represented
1111 7
1110 6
1101 5
1100 4
1011 3
1010 2
1001 1
1000 0
0111 -1
0110 -2
0101 -3
0100 -4
0011 -5
0010 -6
0001 =7
0000 -8
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Figure 1.25 An excess notation system using bit patterns of length three

Bit Value
pattern represented

111 3

110 2

101 1

100 0

011 -1

010 -2

001 -3

000 -4

because the pattern 10000, for instance, would be used to represent zero
rather than representing its usual value of 16. Likewise, you may want to
confirm that the three-bit excess system would be known as excess four nota-

tion (Figure 1.25).

X
1

. Convert each of the following two’s complement representations to its

equivalent base ten form:

a. 00011 b. 01111 c. 11100
d. 11010 e. 00000 f. 10000

. Convert each of the following base ten representations to its equivalent

two's complement form using patterns of 8 bits:

a. 6 b. —6 c. —17

d. 13 e. —1 f. 0

Suppose the following bit patterns represent values stored in two’s com-
plement notation. Find the two’s complement representation of the neg-
ative of each value:

a. 00000001 b. 01010101 ¢ 11111100

d. 11111110 e. 00000000 f. 01111111

Suppose a machine stores numbers in two’s complement notation. What
are the largest and smallest numbers that can be stored if the machine
uses bit patterns of the following lengths?

a. four b. six c. eight

In the following problems, each bit pattern represents a value stored in
two’s complement notation. Find the answer to each problem in two's
complement notation by performing the addition process described in
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the text. Then check your work by translating the problem and your

answer into base ten notation.

a. 0101 b. 0011 C. 0101 d. 1110 e. 1010
+ 0010 + 0001 + 1010 + 0011 + 1110

6. Solve each of the following problems in two’s complement notation, but
this time watch for overflow and indicate which answers are incorrect
because of this phenomenon.

a. 0100 b. 0101 (& 1010 d. 1010 e. 0111
+ 0011 + 0110 + 1010 + 0111 + 0001

7. Translate each of the following problems from base ten notation into
two’s complement notation using bit patterns of length four, then con-
vert each problem to an equivalent addition problem (as a machine
might do), and perform the addition. Check your answers by converting
them back to base ten notation.

a. 6 b. 3 c. 4 d. 2 e. 1

—(-1) =7 —6 —(—4) -5

8. Can overflow ever occur when values are added in two’s complement nota-
tion with one value positive and the other negative? Explain your answer.

9. Convert each of the following excess eight representations to its equiva-
lent base ten form without referring to the table in the text:

a. 1110 b. 0111 c. 1000
d. 0010 e. 0000 f. 1001

10. Convert each of the following base ten representations to its equivalent
excess eight form without referring to the table in the text:

a. 5 b. —5 c. 3
d. 0 e. 7 f. —8

11. Can the value 9 be represented in excess eight notation? What about rep-
resenting 6 in excess four notation? Explain your answer.
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In contrast to the storage of integers, the storage of a value with a fractional part
requires that we store not only the pattern of 0s and 1s representing its binary
representation but also the position of the radix point. A popular way of doing
this is based on scientific notation and is called floating-point notation.

Floating-Point Notation

Let us explain floating-point notation with an example using only one byte of
storage. Although machines normally use much longer patterns, this 8-bit format
is representative of actual systems and serves to demonstrate the important con-
cepts without the clutter of long bit patterns.

We first designate the high-order bit of the byte as the sign bit. Once again, a
0 in the sign bit will mean that the value stored is nonnegative, and a 1 will mean
that the value is negative. Next, we divide the remaining 7 bits of the byte into
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two groups, or fields: the exponent field and the mantissa field. Let us desig-
nate the 3 bits following the sign bit as the exponent field and the remaining
4 bits as the mantissa field. Figure 1.26 illustrates how the byte is divided.

We can explain the meaning of the fields by considering the following exam-
ple. Suppose a byte consists of the bit pattern 01101011. Analyzing this pattern
with the preceding format, we see that the sign bit is 0, the exponent is 110, and
the mantissa is 1011. To decode the byte, we first extract the mantissa and place a
radix point on its left side, obtaining

.1011

Next, we extract the contents of the exponent field (110) and interpret it as an
integer stored using the 3-bit excess method (see again Figure 1.25). Thus the
pattern in the exponent field in our example represents a positive 2. This tells us
to move the radix in our solution to the right by 2 bits. (A negative exponent
would mean to move the radix to the left.) Consequently, we obtain

10.11

which is the binary representation for 2%. Next, we note that the sign bit in our
example is 0; the value represented is thus nonnegative. We conclude that the
byte 01101011 represents 2%:. Had the pattern been 11101011 (which is the same as
before except for the sign bit), the value represented would have been —2%..

As another example, consider the byte 00111100. We extract the mantissa
to obtain

.1100

and move the radix 1 bit to the left, since the exponent field (011) represents the
value —1. We therefore have

.01100

which represents *s. Since the sign bit in the original pattern is 0, the value
stored is nonnegative. We conclude that the pattern 00111100 represents .

To store a value using floating-point notation, we reverse the preceding
process. For example, to encode 1'%, first we express it in binary notation and
obtain 1.001. Next, we copy the bit pattern into the mantissa field from left to
right, starting with the leftmost 1 in the binary representation. At this point, the
byte looks like this:

We must now fill in the exponent field. To this end, we imagine the contents
of the mantissa field with a radix point at its left and determine the number of bits
and the direction the radix must be moved to obtain the original binary number.

Figure 1.26 Floating-point notation components

:I—Bit positions

Mantissa
Exponent

Sign bit
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In our example, we see that the radix in .1001 must be moved 1 bit to the right to
obtain 1.001. The exponent should therefore be a positive one, so we place 101
(which is positive one in excess four notation as shown in Figure 1.25) in the
exponent field. Finally, we fill the sign bit with 0 because the value being stored is
nonnegative. The finished byte looks like this:

01011001

There is a subtle point you may have missed when filling in the mantissa field.
The rule is to copy the bit pattern appearing in the binary representation from left
to right, starting with the leftmost 1. To clarify, consider the process of storing the
value %, which is .011 in binary notation. In this case the mantissa will be

This is because we fill in the mantissa field starting with the leftmost 1 that
appears in the binary representation. Representations that conform to this rule
are said to be in normalized form.

Using normalized form eliminates the possibility of multiple representations
for the same value. For example, both 00111100 and 01000110 would decode to the
value %, but only the first pattern is in normalized form. Complying with nor-
malized form also means that the representation for all nonzero values will have
a mantissa that starts with 1. The value zero, however, is a special case; its
floating-point representation is a bit pattern of all Os.

Truncation Errors

Let us consider the annoying problem that occurs if we try to store the value 2%
with our one-byte floating-point system. We first write 2% in binary, which gives
us 10.101. But when we copy this into the mantissa field, we run out of room, and
the rightmost 1 (which represents the last ') is lost (Figure 1.27). If we ignore

Figure 1.27 Encoding the value 2%

25/, Original representation

-

10.101 Basetwo representation

-

1 0101 Raw bitpattern

|
| Lost bit
Mantissa

Exponent

Sign bit
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this problem for now and continue by filling in the exponent field and the sign
bit, we end up with the bit pattern 01101010, which represents 2'/ instead of
2°/s. What has occurred is called a truncation error, or round-off error—
meaning that part of the value being stored is lost because the mantissa field is
not large enough.

The significance of such errors can be reduced by using a longer mantissa
field. In fact, most computers manufactured today use at least 32 bits for storing
values in floating-point notation instead of the 8 bits we have used here. This
also allows for a longer exponent field at the same time. Even with these longer
formats, however, there are still times when more accuracy is required.

Another source of truncation errors is a phenomenon that you are already
accustomed to in base ten notation: the problem of nonterminating expan-
sions, such as those found when trying to express '/s in decimal form. Some val-
ues cannot be accurately expressed regardless of how many digits we use. The
difference between our traditional base ten notation and binary notation is that
more values have nonterminating representations in binary than in decimal
notation. For example, the value one-tenth is nonterminating when expressed
in binary. Imagine the problems this might cause the unwary person using
floating-point notation to store and manipulate dollars and cents. In particular,
if the dollar is used as the unit of measure, the value of a dime could not be
stored accurately. A solution in this case is to manipulate the data in units of
pennies so that all values are integers that can be accurately stored using a
method such as two's complement.

Truncation errors and their related problems are an everyday concern for
people working in the area of numerical analysis. This branch of mathematics
deals with the problems involved when doing actual computations that are often
massive and require significant accuracy.

The following is an example that would warm the heart of any numerical
analyst. Suppose we are asked to add the following three values using our one-
byte floating-point notation defined previously:

2%+ s+

Single Precision Floating Point

The floating-point notation introduced in this chapter (Section 1.7) is far too simplis-
tic to be used in an actual computer. After all, with just 8 bits only 256 numbers out of
set of all real numbers can be expressed. Our discussion has used 8 bits to keep the
examples simple, yet still cover the important underlying concepts.

Many of today’s computers support a 32 bit form of this notation called Single
Precision Floating Point. This format uses 1 bit for the sign, 8 bits for the exponent
(in an excess notation), and 23 bits for the mantissa. Thus, single precision floating
point is capable of expressing very large numbers (order of 103%) down to very small
numbers (order of 1037) with the precision of 7 decimal digits. That is to say, the
first 7 digits of a given decimal number can be stored with very good accuracy (a
small amount of error may still be present). Any digits passed the first 7 will certainly
be lost by truncation error (although the magnitude of the number is retained).
Another form, called Double Precision Floating Point, uses 64 bits and provides a
precision of 15 decimal digits.
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If we add the values in the order listed, we first add 2'/2 to '/s and obtain 2%,
which in binary is 10.101. Unfortunately, because this value cannot be stored
accurately (as seen previously), the result of our first step ends up being stored
as 2'/2 (which is the same as one of the values we were adding). The next step is
to add this result to the last '/s. Here again a truncation error occurs, and our final
result turns out to be the incorrect answer 2'/..

Now let us add the values in the opposite order. We first add % to '/ to obtain
'/e. In binary this is .01; so the result of our first step is stored in a byte as
00111000, which is accurate. We now add this '/: to the next value in the list, 2'/,
and obtain 2%, which we can accurately store in a byte as 01101011. The result
this time is the correct answer.

To summarize, in adding numeric values represented in floating-point nota-
tion, the order in which they are added can be important. The problem is that if
a very large number is added to a very small number, the small number may be
truncated. Thus, the general rule for adding multiple values is to add the smaller
values together first, in hopes that they will accumulate to a value that is signifi-
cant when added to the larger values. This was the phenomenon experienced in
the preceding example.

Designers of today’s commercial software packages do a good job of shielding
the uneducated user from problems such as this. In a typical spreadsheet sys-
tem, correct answers will be obtained unless the values being added differ in size
by a factor of 10! or more. Thus, if you found it necessary to add one to the value

10,000,000,000,000,000
you might get the answer

10,000,000,000,000,000
rather than

10,000,000,000,000,001

Such problems are significant in applications (such as navigational systems) in
which minor errors can be compounded in additional computations and ulti-
mately produce significant consequences, but for the typical PC user the degree

of accuracy offered by most commercial software is sufficient.
| Il
| st s
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1. Decode the following bit patterns using the floating-point format dis-
cussed in the text:

a. 01001010 b. 01101101 c. 00111001 d. 11011100 e. 10101011

2. Encode the following values into the floating-point format discussed in
the text. Indicate the occurrence of truncation errors.

a. 2% b. 5 C. s d. —3% e. —4%

3. In terms of the floating-point format discussed in the text, which of the
patterns 01001001 and 00111101 represents the larger value? Describe a
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simple procedure for determining which of two patterns represents the
larger value.

4. When using the floating-point format discussed in the text, what is the
largest value that can be represented? What is the smallest positive value
that can be represented?

1.8 Data Compression

For the purpose of storing or transferring data, it is often helpful (and sometimes
mandatory) to reduce the size of the data involved while retaining the underlying
information. The technique for accomplishing this is called data compression.
We begin this section by considering some generic data compression methods
and then look at some approaches designed for specific applications.

Generic Data Compression Techniques

Data compression schemes fall into two categories. Some are lossless, others are
lossy. Lossless schemes are those that do not lose information in the compres-
sion process. Lossy schemes are those that may lead to the loss of information.
Lossy techniques often provide more compression than lossless ones and are
therefore popular in settings in which minor errors can be tolerated, as in the
case of images and audio.

In cases where the data being compressed consist of long sequences of the
same value, the compression technique called run-length encoding, which is a
lossless method, is popular. It is the process of replacing sequences of identical
data elements with a code indicating the element that is repeated and the num-
ber of times it occurs in the sequence. For example, less space is required to indi-
cate that a bit pattern consists of 253 ones, followed by 118 zeros, followed by
87 ones than to actually list all 458 bits.

Another lossless data compression technique is frequency-dependent
encoding, a system in which the length of the bit pattern used to represent a data
item is inversely related to the frequency of the item’s use. Such codes are exam-
ples of variable-length codes, meaning that items are represented by patterns of
different lengths as opposed to codes such as Unicode, in which all symbols are
represented by 16 bits. David Huffman is credited with discovering an algorithm
that is commonly used for developing frequency-dependent codes, and it is com-
mon practice to refer to codes developed in this manner as Huffman codes. In
turn, most frequency-dependent codes in use today are Huffman codes.

As an example of frequency-dependent encoding, consider the task of
encoded English language text. In the English language the letters ¢, t, a, and i
are used more frequently than the letters z, g, and x. So, when constructing a
code for text in the English language, space can be saved by using short bit pat-
terns to represent the former letters and longer bit patterns to represent the lat-
ter ones. The result would be a code in which English text would have shorter
representations than would be obtained with uniform-length codes.

In some cases, the stream of data to be compressed consists of units, each of
which differs only slightly from the preceding one. An example would be con-
secutive frames of a motion picture. In these cases, techniques using relative
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encoding, also known as differential encoding, are helpful. These techniques
record the differences between consecutive data units rather than entire units;
that is, each unit is encoded in terms of its relationship to the previous unit.
Relative encoding can be implemented in either lossless or lossy form depending
on whether the differences between consecutive data units are encoded pre-
cisely or approximated.

Still other popular compression systems are based on dictionary encoding
techniques. Here the term dictionary refers to a collection of building blocks
from which the message being compressed is constructed, and the message itself
is encoded as a sequence of references to the dictionary. We normally think of
dictionary encoding systems as lossless systems, but as we will see in our dis-
cussion of image compression, there are times when the entries in the dictionary
are only approximations of the correct data elements, resulting in a lossy com-
pression system.

Dictionary encoding can be used by word processors to compress text docu-
ments because the dictionaries already contained in these processors for the
purpose of spell checking make excellent compression dictionaries. In particu-
lar, an entire word can be encoded as a single reference to this dictionary rather
than as a sequence of individual characters encoded using a system such as
ASCII or Unicode. A typical dictionary in a word processor contains approxi-
mately 25,000 entries, which means an individual entry can be identified by an
integer in the range of 0 to 24,999. This means that a particular entry in the dic-
tionary can be identified by a pattern of only 15 bits. In contrast, if the word
being referenced consisted of six letters, its character-by-character encoding
would require 48 bits using 8-bit ASCII or 96 bits using Unicode.

A variation of dictionary encoding is adaptive dictionary encoding (also
known as dynamic dictionary encoding). In an adaptive dictionary encoding sys-
tem, the dictionary is allowed to change during the encoding process. A popular
example is Lempel-Ziv-Welsh (LZW) encoding (named after its creators,
Abraham Lempel, Jacob Ziv, and Terry Welsh). To encode a message using LZW,
one starts with a dictionary containing the basic building blocks from which the
message is constructed, but as larger units are found in the message, they are
added to the dictionary—meaning that future occurrences of those units can be
encoded as single, rather than multiple, dictionary references. For example,
when encoding English text, one could start with a dictionary containing indi-
vidual characters, digits, and punctuation marks. But as words in the message
are identified, they could be added to the dictionary. Thus, the dictionary would
grow as the message is encoded, and as the dictionary grows, more words (or
recurring patterns of words) in the message could be encoded as single refer-
ences to the dictionary.

The result would be a message encoded in terms of a rather large dictionary
that is unique to that particular message. But this large dictionary would not
have to be present to decode the message. Only the original small dictionary
would be needed. Indeed, the decoding process could begin with the same small
dictionary with which the encoding process started. Then, as the decoding
process continues, it would encounter the same units found during the encoding
process, and thus be able to add them to the dictionary for future reference just
as in the encoding process.

To clarify, consider applying LZW encoding to the message

XYX XYX XYyX XyX
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starting with a dictionary with three entries, the first being x, the second being y,
and the third being a space. We would begin by encoding xyx as 121, meaning
that the message starts with the pattern consisting of the first dictionary entry,
followed by the second, followed by the first. Then the space is encoded to pro-
duce 1213. But, having reached a space, we know that the preceding string of
characters forms a word, and so we add the pattern xyx to the dictionary as the
fourth entry. Continuing in this manner, the entire message would be encoded
as 121343434.

If we were now asked to decode this message, starting with the original
three-entry dictionary, we would begin by decoding the initial string 1213 as xyx
followed by a space. At this point we would recognize that the string xyx forms a
word and add it to the dictionary as the fourth entry, just as we did during the
encoding process. We would then continue decoding the message by recognizing
that the 4 in the message refers to this new fourth entry and decode it as the
word xyx, producing the pattern

XyX XYyX
Continuing in this manner we would ultimately decode the string 121343434 as
XYyX XYyX XYyX XyX

which is the original message.

Compressing Images

In Section 1.4, we saw how images are encoded using bit map techniques.
Unfortunately, the bit maps produced are often very large. In turn, numerous
compression schemes have been developed specifically for image representations.

One system known as GIF (short for Graphic Interchange Format and pro-
nounced “Giff” by some and “Jiff” by others) is a dictionary encoding system that
was developed by CompuServe. It approaches the compression problem by
reducing the number of colors that can be assigned to a pixel to only 256. The
red-green-blue combination for each of these colors is encoded using three bytes,
and these 256 encodings are stored in a table (a dictionary) called the palette.
Each pixel in an image can then be represented by a single byte whose value
indicates which of the 256 palette entries represents the pixel’s color. (Recall that
a single byte can contain any one of 256 different bit patterns.) Note that GIF is a
lossy compression system when applied to arbitrary images because the colors
in the palette may not be identical to the colors in the original image.

GIF can obtain additional compression by extending this simple dictionary
system to an adaptive dictionary system using LZW techniques. In particular, as
patterns of pixels are encountered during the encoding process, they are added
to the dictionary so that future occurrences of these patterns can be encoded
more efficiently. Thus, the final dictionary consists of the original palette and a
collection of pixel patterns.

One of the colors in a GIF palette is normally assigned the value “transpar-
ent,” which means that the background is allowed to show through each region
assigned that “color.” This option, combined with the relative simplicity of the
GIF system, makes GIF a logical choice in simple animation applications in
which multiple images must move around on a computer screen. On the other
hand, its ability to encode only 256 colors renders it unsuitable for applications
in which higher precision is required, as in the field of photography.
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Another popular compression system for images is JPEG (pronounced “JAY-
peg”). It is a standard developed by the Joint Photographic Experts Group
(hence the standard’s name) within ISO. JPEG has proved to be an effective stan-
dard for compressing color photographs and is widely used in the photography
industry, as witnessed by the fact that most digital cameras use JPEG as their
default compression technique.

The JPEG standard actually encompasses several methods of image com-
pression, each with its own goals. In those situations that require the utmost in
precision, JPEG provides a lossless mode. However, JPEG’s lossless mode does
not produce high levels of compression when compared to other JPEG options.
Moreover, other JPEG options have proven very successful, meaning that JPEG’s
lossless mode is rarely used. Instead, the option known as JPEG’s baseline stan-
dard (also known as JPEG’s lossy sequential mode) has become the standard of
choice in many applications.

Image compression using the JPEG baseline standard requires a sequence of
steps, some of which are designed to take advantage of a human eye’s limita-
tions. In particular, the human eye is more sensitive to changes in brightness
than to changes in color. So, starting from an image that is encoded in terms of
luminance and chrominance components, the first step is to average the chromi-
nance values over two-by-two pixel squares. This reduces the size of the chromi-
nance information by a factor of four while preserving all the original brightness
information. The result is a significant degree of compression without a notice-
able loss of image quality.

The next step is to divide the image into eight-by-eight pixel blocks and to
compress the information in each block as a unit. This is done by applying a
mathematical technique known as the discrete cosine transform, whose details
need not concern us here. The important point is that this transformation con-
verts the original eight-by-eight block into another block whose entries reflect
how the pixels in the original block relate to each other rather than the actual
pixel values. Within this new block, values below a predetermined threshold are
then replaced by zeros, reflecting the fact that the changes represented by these
values are too subtle to be detected by the human eye. For example, if the origi-
nal block contained a checkerboard pattern, the new block might reflect a uni-
form average color. (A typical eight-by-eight pixel block would represent a very
small square within the image so the human eye would not identify the checker-
board appearance anyway.)

At this point, more traditional run-length encoding, relative encoding, and
variable-length encoding techniques are applied to obtain additional compression.
All together, JPEG's baseline standard normally compresses color images by a fac-
tor of at least 10, and often by as much as 30, without noticeable loss of quality.

Still another data compression system associated with images is TIFF (short
for Tagged Image File Format). However, the most popular use of TIFF is not as
a means of data compression but instead as a standardized format for storing
photographs along with related information such as date, time, and camera set-
tings. In this context, the image itself is normally stored as red, green, and blue
pixel components without compression.

The TIFF collection of standards does include data compression techniques,
most of which are designed for compressing images of text documents in fac-
simile applications. These use variations of run-length encoding to take advan-
tage of the fact that text documents consist of long strings of white pixels. The
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color image compression option included in the TIFF standards is based on
techniques similar to those used by GIF, and are therefore not widely used in
the photography community.

Compressing Audio and Video

The most commonly used standards for encoding and compressing audio and
video were developed by the Motion Picture Experts Group (MPEG) under
the leadership of I1SO. In turn, these standards themselves are called MPEG.

MPEG encompasses a variety of standards for different applications. For
example, the demands for high definition television (HDTV) broadcast are dis-
tinct from those for video conferencing in which the broadcast signal must find
its way over a variety of communication paths that may have limited capabili-
ties. And, both of these applications differ from that of storing video in such a
manner that sections can be replayed or skipped over.

The techniques employed by MPEG are well beyond the scope of this text,
but in general, video compression techniques are based on video being con-
structed as a sequence of pictures in much the same way that motion pictures
are recorded on film. To compress such sequences, only some of the pictures,
called I-frames, are encoded in their entirety. The pictures between the I-frames
are encoded using relative encoding techniques. That is, rather than encode the
entire picture, only its distinctions from the prior image are recorded. The
I-frames themselves are usually compressed with techniques similar to JPEG.

The best known system for compressing audio is MP3, which was developed
within the MPEG standards. In fact, the acronym MP3 is short for MPEG layer 3.
Among other compression techniques, MP3 takes advantage of the properties of
the human ear, removing those details that the human ear cannot perceive. One
such property, called temporal masking, is that for a short period after a loud
sound, the human ear cannot detect softer sounds that would otherwise be audi-
ble. Another, called frequency masking, is that a sound at one frequency tends
to mask softer sounds at nearby frequencies. By taking advantage of such char-
acteristics, MP3 can be used to obtain significant compression of audio while
maintaining near CD quality sound.

Using MPEG and MP3 compression techniques, video cameras are able to
record as much as an hour’s worth of video within 128MB of storage and portable
music players can store as many as 400 popular songs in a single GB. But, in con-
trast to the goals of compression in other settings, the goal of compressing audio
and video is not necessarily to save storage space. Just as important is the goal of
obtaining encodings that allow information to be transmitted over today’s commu-
nication systems fast enough to provide timely presentation. If each video frame
required a MB of storage and the frames had to be transmitted over a communica-
tion path that could relay only one KB per second, there would be no hope of suc-
cessful video conferencing. Thus, in addition to the quality of reproduction
allowed, audio and video compression systems are often judged by the transmis-
sion speeds required for timely data communication. These speeds are normally
measured in bits per second (bps). Common units include Kbps (kilo-bps, equal
to one thousand bps), Mbps (mega-bps, equal to one million bps), and Gbps (giga-
bps, equal to one billion bps). Using MPEG techniques, video presentations can
be successfully relayed over communication paths that provide transfer rates of
40 Mbps. MP3 recordings generally require transfer rates of no more than 64 Kbps.
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1. List four generic compression techniques.

2. What would be the encoded version of the message
XYX YXXXY XYX YXXXY YXXXY

if LZW compression, starting with the dictionary containing x, y, and a
space (as described in the text), were used?

3. Why would GIF be better than JPEG when encoding color cartoons?

4. Suppose you were part of a team designing a spacecraft that will travel
to other planets and send back photographs. Would it be a good idea to
compress the photographs using GIF or JPEG’s baseline standard to
reduce the resources required to store and transmit the images?

5. What characteristic of the human eye does JPEG’s baseline standard
exploit?

6. What characteristic of the human ear does MP3 exploit?

7. Identify a troubling phenomenon that is common when encoding
numeric information, images, and sound as bit patterns.
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1.9 Communication Errors

When information is transferred back and forth among the various parts of a
computer, or transmitted from the earth to the moon and back, or, for that mat-
ter, merely left in storage, a chance exists that the bit pattern ultimately retrieved
may not be identical to the original one. Particles of dirt or grease on a magnetic
recording surface or a malfunctioning circuit may cause data to be incorrectly
recorded or read. Static on a transmission path may corrupt portions of the data.
And, in the case of some technologies, normal background radiation can alter
patterns stored in a machine’s main memory.

To resolve such problems, a variety of encoding techniques have been devel-
oped to allow the detection and even the correction of errors. Today, because
these techniques are largely built into the internal components of a computer
system, they are not apparent to the personnel using the machine. Nonetheless,
their presence is important and represents a significant contribution to scientific
research. It is fitting, therefore, that we investigate some of these techniques that
lie behind the reliability of today’s equipment.

Parity Bits

A simple method of detecting errors is based on the principle that if each bit
pattern being manipulated has an odd number of 1s and a pattern with an
even number of 1s is encountered, an error must have occurred. To use this
principle, we need an encoding system in which each pattern contains an odd
number of 1s. This is easily obtained by first adding an additional bit, called a
parity bit, to each pattern in an encoding system already available (perhaps
at the high-order end). In each case, we assign the value 1 or 0 to this new bit
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so that the entire resulting pattern has an odd number of 1s. Once our encod-
ing system has been modified in this way, a pattern with an even number of
1s indicates that an error has occurred and that the pattern being manipulated
is incorrect.

Figure 1.28 demonstrates how parity bits could be added to the ASCII codes
for the letters A and F. Note that the code for A becomes 101000001 (parity bit 1)
and the ASCII for F becomes 001000110 (parity bit 0). Although the original 8-bit
pattern for A has an even number of 1s and the original 8-bit pattern for F has an
odd number of 1s, both the 9-bit patterns have an odd number of 1s. If this tech-
nique were applied to all the 8-bit ASCII patterns, we would obtain a 9-bit encod-
ing system in which an error would be indicated by any 9-bit pattern with an
even number of 1s.

The parity system just described is called odd parity, because we designed
our system so that each correct pattern contains an odd number of 1s. Another
technique is called even parity. In an even parity system, each pattern is
designed to contain an even number of 1s, and thus an error is signaled by the
occurrence of a pattern with an odd number of 1s.

Today it is not unusual to find parity bits being used in a computer’s main
memory. Although we envision these machines as having memory cells of 8-bit
capacity, in reality each has a capacity of 9 bits, 1 bit of which is used as a parity
bit. Each time an 8-bit pattern is given to the memory circuitry for storage, the
circuitry adds a parity bit and stores the resulting 9-bit pattern. When the pattern
is later retrieved, the circuitry checks the parity of the 9-bit pattern. If this does
not indicate an error, then the memory removes the parity bit and confidently
returns the remaining 8-bit pattern. Otherwise, the memory returns the 8 data
bits with a warning that the pattern being returned may not be the same pattern
that was originally entrusted to memory.

The straightforward use of parity bits is simple but it has its limitations. If a
pattern originally has an odd number of 1s and suffers two errors, it will still
have an odd number of 1s, and thus the parity system will not detect the errors.
In fact, straightforward applications of parity bits fail to detect any even number
of errors within a pattern.

One means of minimizing this problem is sometimes applied to long bit
patterns, such as the string of bits recorded in a sector on a magnetic disk. In
this case the pattern is accompanied by a collection of parity bits making up
a checkbyte. Each bit within the checkbyte is a parity bit associated with a
particular collection of bits scattered throughout the pattern. For instance,
one parity bit may be associated with every eighth bit in the pattern starting

Figure 1.28 The ASCII codes for the letters A and F adjusted for odd parity

Parity bit  ASCII A containing an even Parity bit ~ ASCII F containing an odd
number of 1s number of 1s
l | | l |
101000001 001000110
[
Total pattern has an odd Total pattern has an odd
number of 1s number of 1s




1.9 Communication Errors

with the first bit, while another may be associated with every eighth bit start-
ing with the second bit. In this manner, a collection of errors concentrated in
one area of the original pattern is more likely to be detected, since it will be
in the scope of several parity bits. Variations of this checkbyte concept lead
to error detection schemes known as checksums and cyclic redundancy
checks (CRC).

Error-Correcting Codes

Although the use of a parity bit allows the detection of an error, it does not pro-
vide the information needed to correct the error. Many people are surprised
that error-correcting codes can be designed so that errors can be not only
detected but also corrected. After all, intuition says that we cannot correct
errors in a received message unless we already know the information in the
message. However, a simple code with such a corrective property is presented
in Figure 1.29.

To understand how this code works, we first define the term Hamming
distance, which is named after R. W. Hamming who pioneered the search for
error-correcting codes after becoming frustrated with the lack of reliability of the
early relay machines of the 1940s. The hamming distance between two bit pat-
terns is the number of bits in which the patterns differ. For example, the
Hamming distance between the patterns representing A and B in the code in
Figure 1.29 is four, and the Hamming distance between B and C is three. The
important feature of the code in Figure 1.29 is that any two patterns are sepa-
rated by a Hamming distance of at least three.

If a single bit is modified in a pattern from Figure 1.29, the error can be
detected since the result will not be a legal pattern. (We must change at least
3 bits in any pattern before it will look like another legal pattern.) Moreover, we
can also figure out what the original pattern was. After all, the modified pattern
will be a Hamming distance of only one from its original form but at least two
from any of the other legal patterns.

Thus, to decode a message that was originally encoded using Figure 1.29, we
simply compare each received pattern with the patterns in the code until we find
one that is within a distance of one from the received pattern. We consider this
to be the correct symbol for decoding. For example, if we received the bit pattern
010100 and compared this pattern to the patterns in the code, we would obtain

Figure 1.29 An error-correcting code

Symbol Code

000000
001111
010011
011100
100110
101001
110101
111010
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Figure 1.30 Decoding the pattern 010100 using the code in Figure 1.29

Distance between
Pattern received pattern
Character Code received and code
A 000000 010100 2
B 001111 010100 4
C 010011 010100 3
D 011100 010100 1 S_mallest
E 100110 010100 3 distance
F 101001 010100 5]
G 110101 010100 2
H 111010 010100 4

the table in Figure 1.30. Thus, we would conclude that the character transmitted
must have been a D because this is the closest match.

You will observe that using this technique with the code in Figure 1.29 actu-
ally allows us to detect up to two errors per pattern and to correct one error. If we
designed the code so that each pattern was a Hamming distance of at least five
from each of the others, we would be able to detect up to four errors per pattern
and correct up to two. Of course, the design of efficient codes associated with
large Hamming distances is not a straightforward task. In fact, it constitutes a
part of the branch of mathematics called algebraic coding theory, which is a sub-
ject within the fields of linear algebra and matrix theory.

Error-correcting techniques are used extensively to increase the reliability of
computing equipment. For example, they are often used in high-capacity mag-
netic disk drives to reduce the possibility that flaws in the magnetic surface will
corrupt data. Moreover, a major distinction between the original CD format used
for audio disks and the later format used for computer data storage is in the
degree of error correction involved. CD-DA format incorporates error-correcting
features that reduce the error rate to only one error for two CDs. This is quite
adequate for audio recordings, but a company using CDs to supply software to
customers would find that flaws in 50 percent of the disks would be intolerable.
Thus, additional error-correcting features are employed in CDs used for data
storage, reducing the probability of error to one in 20,000 disks.

I
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1. The following bytes were originally encoded using odd parity. In which
of them do you know that an error has occurred?

a. 100101101 b. 100000001 ¢ 000000000
d. 111000000 e. 011111111

2. Could errors have occurred in a byte from Question 1 without your
knowing it? Explain your answer.
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3. How would your answers to Questions 1 and 2 change if you were told

that even parity had been used instead of odd?

4. Encode these sentences in ASCII using odd parity by adding a parity bit

at the high-order end of each character code:

a. “Stop!” Cheryl shouted. b. Does 2 + 3 = 5?

5. Using the error-correcting code presented in Figure 1.29, decode the fol-

lowing messages:

a. 001111 100100 001100
c. 011010 110110 100000 011100

b. 010001 000000 001011

6. Construct a code for the characters A, B, C, and D using bit patterns of
length five so that the Hamming distance between any two patterns is at

least three.

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

1. Determine the output of each of the following b.
circuits, assuming that the upper input is 1
and the lower input is 0. What would be the Input
output when upper input is 0 and the lower
inputis 1?
% Input
*3. a.
a.
b.
c.

2. a. What Boolean operation does the circuit

compute?
::D% Output

>0

Input

Input

[>o

What Boolean operation does the circuit
compute?

Output

If we were to purchase a flip-flop circuit from
an electronic component store, we may find
that it has an additional input called flip.
When this input changes from a 0 to 1, the
output flips state (if it was 0 it is now 1 and
vice versa). However, when the flip input
changes from 1 to a 0, nothing happens.
Even though we may not know the details of
the circuitry needed to accomplish this
behavior, we could still use this device as an
abstract tool in other circuits. Consider the
circuitry using two of the following flip-flops.
If a pulse were sent on the circuit’s input, the
bottom flip-flop would change state.
However, the second flip-flop would not
change, since its input (received from the
output of the NOT gate) went from a 1 to a 0.
As a result, this circuit would now produce
the outputs 0 and 1. A second pulse would



68

Chapter 1 Data Storage

flip the state of both flip-flops, producing an
output of 1 and 0. What would be the output
after a third pulse? After a fourth pulse?

Output 0 ©

0
flip | Flip-flop
[
fli 0
ip | Flip-fl

Input >————— 'p-tiop
0

b. It is often necessary to coordinate activities
of various components within a computer.
This is accomplished by connecting a pul-
sating signal (called a clock) to circuitry
similar to part a. Additional gates (as
shown) will then send signals in a coordi-
nated fashion to other connected circuits.
On studying this circuit you should be able
to confirm that on the 1%, 5™, 9™ pulses
of the clock, a 1 will be sent on output A.
On what pulses of the clock will a 1 be sent
on output B? On what pulses of the clock
will a 1 be sent on output C? On which out-

putis a 1 sent on the 4™ pulse of the clock?
Output A
flip | Flip-flop
r o< ‘ DO_D%Output B
flip | Flip-flop Output C
Clock >——————
4. Assume that both of the inputs in the follow-

5.

ing circuit are 1. Describe what would happen
if the upper input were temporarily changed
to 0. Describe what would happen if the lower
input were temporarily changed to 0. Redraw
the circuit using NAND gates.

>

The following table represents the addresses
and contents (using hexadecimal notation) of

10.

11.

some cells in a machine’s main memory.
Starting with this memory arrangement, follow
the sequence of instructions and record the
final contents of each of these memory cells:

Address Contents
00 AB
01 53
02 D6
03 02

Step 1. Move the contents of the cell whose
address is 03 to the cell at address 00.

Step 2. Move the value 01 into the cell at
address 02.

Step 3. Move the value stored at address 01
into the cell at address 03.

How many cells can be in a computer’s main
memory if each cell’s address can be repre-
sented by two hexadecimal digits? What if four
hexadecimal digits are used?

What bit patterns are represented by the fol-
lowing hexadecimal notations?

a. CD b. 67 C.
d. FF e. 10

What is the value of the most significant bit in
the bit patterns represented by the following
hexadecimal notations?

a. 8F b. FF

c. 6F d. 1F

9A

Express the following bit patterns in hexadeci-
mal notation:

a. 101000001010

b. 110001111011

c. 000010111110

Suppose a digital camera has a storage capac-
ity of 256MB. How many photographs could
be stored in the camera if each consisted of
1024 pixels per row and 1024 pixels per column
if each pixel required three bytes of storage?

Suppose a picture is represented on a
display screen by a rectangular array
containing 1024 columns and 768 rows

of pixels. If for each pixel, 8 bits are required
to encode the color and another 8 bits to
encode the intensity, how many byte-size
memory cells are required to hold the

entire picture?
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13.

14.

15.

16.

17.

18.

19.

20.

21.

a. Identify two advantages that main memory
has over magnetic disk storage.

b. Identify two advantages that magnetic disk
storage has over main memory.

Suppose that only 50GB of your personal com-
puter’s 120GB hard-disk drive is empty. Would
it be reasonable to use CDs to store all the
material you have on the drive as a backup?
What about DVDs?

If each sector on a magnetic disk contains
1024 bytes, how many sectors are required to
store a single page of text (perhaps 50 lines of
100 characters) if each character is repre-
sented in Unicode?

How many bytes of storage space would be
required to store a 400-page novel in which
each page contains 3500 characters if ASCII
were used? How many bytes would be
required if Unicode were used?

How long is the latency time of a typical
hard-disk drive spinning at 360 revolutions
per second?

What is the average access time for a hard disk
spinning at 360 revolutions per second with a
seek time of 10 milliseconds?

Suppose a typist could type 60 words per
minute continuously day after day. How long
would it take the typist to fill a CD whose
capacity is 640MB? Assume one word is five
characters and each character requires one
byte of storage.

Here is a message in ASCII. What does it say?
01010111 01101000 01100001 01110100
00100000 01100100 01101111 01100101
01110011 00100000 01101001 01110100
00100000 01110011 01100001 01111001
00111111

The following is a message encoded in ASCII
using one byte per character and then repre-
sented in hexadecimal notation. What is the
message”?

68657861646563696D616C

Encode the following sentences in ASCII using
one byte per character.

a. Does 100 / 5 = 20?

b. The total cost is $7.25.

22.

23.

24,

25.

*26.

*27.

*28.

*29.

*30.

*31.

*32.
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Chapter Review Problems

Express your answers to the previous prob-
lem in hexadecimal notation.

List the binary representations of the inte-
gers from 8 to 18.

a. Write the number 23 by representing the 2
and 3 in ASCII.

b. Write the number 23 in binary
representation.

What values have binary representations in
which only one of the bits is 1? List the
binary representations for the smallest six
values with this property.

Convert each of the following binary represen-
tations to its equivalent base ten representation:

a. 1111 b. 0001 c. 10101
d. 1000 e. 10011 f. 000000
g. 1001 h. 10001 i. 100001
j. 11001 k. 11010 1. 11011

Convert each of the following base ten represen-
tations to its equivalent binary representation:

a. 7 b. 11 c. 16

d. 17 e. 31

Convert each of the following excess 16
representations to its equivalent base ten

representation:
a. 10001 b. 10101 c. 01101
d. 01111 e. 11111

Convert each of the following base ten
representations to its equivalent excess four

representation:
a. 0 b. 3 c. —2
d. -1 e 2

Convert each of the following two’s comple-
ment representations to its equivalent base
ten representation:

a. 01111 b. 10100
d. 10000 e. 10110

Convert each of the following base ten repre-
sentations to its equivalent two’s comple-
ment representation in which each value is
represented in 7 bits:

a. 13 b. —13 c.
d. 0 e. 16

Perform each of the following additions
assuming the bit strings represent values in
two’s complement notation. Identify each

c. 01100

-1
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*33.

*34,

*35.

*36.

*37.

*38.

*39.
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case in which the answer is incorrect
because of overflow.

a. 00101 b. 11111 c. 01111
+01000 +00001 +00001
d. 10111 e. 11111 f. 00111
+11010 +11111 +01100

Solve each of the following problems by trans-
lating the values into two’s complement nota-

tion (using patterns of 5 bits), converting any

subtraction problem to an equivalent addition
problem, and performing that addition. Check
your work by converting your answer to base

ten notation. (Watch out for overflow.)

a. 5 b. 5 c. 12
+1 -1 =5
d. 8 e. 12 f. 5
-7 +5 -1

Convert each of the following binary
representations into its equivalent base
ten representation:

a. 11.11 b. 100.0101 c¢. 0.1101
d. 1.0 e. 10.01

Express each of the following values in
binary notation:

a. 5% b. 15%4s
d. 1 e. 6%

Decode the following bit patterns using the
floating-point format described in Figure 1.26:
a. 01011001 b. 11001000

c. 10101100 d. 00111001

c. 5%

Encode the following values using the 8-bit
floating-point format described in Figure 1.26.
Indicate each case in which a truncation
€TTOT OCCUTS.

a. =7 b. '/ C.
d. 7/ e. '/

—3%

Assuming you are not restricted to using nor-
malized form, list all the bit patterns that could
be used to represent the value % using the
floating-point format described in Figure 1.26.

What is the best approximation to the square
root of 2 that can be expressed in the 8-bit
floating-point format described in Figure 1.26?
What value is actually obtained if this approxi-
mation is squared by a machine using this
floating-point format?

*40,

*41.

*42.

*43.

*44,

*45.

*46.
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What is the best approximation to the value one-
tenth that can be represented using the 8-bit
floating-point format described in Figure 1.26?

Explain how errors can occur when measure-
ments using the metric system are recorded
in floating-point notation. For example, what
if 110 cm was recorded in units of meters?

One of the bit patterns 01011 and 11011 repre-

sents a value stored in excess 16 notation and

the other represents the same value stored in
two's complement notation.

a. What can be determined about this com-
mon value?

b. What is the relationship between a pattern
representing a value stored in two's com-
plement notation and the pattern repre-
senting the same value stored in excess
notation when both systems use the same
bit pattern length?

The three bit patterns 10000010, 01101000,
and 00000010 are representations of the same
value in two’s complement, excess, and the
8-bit floating-point format presented in
Figure 1.26, but not necessarily in that order.
What is the common value, and which pat-
tern is in which notation?

Which of the following values cannot be rep-
resented accurately in the floating-point for-
mat introduced in Figure 1.26?

a. 6'% b. s c. 9

d. "/ e. /e

If you changed the length of the bit strings
being used to represent integers in binary
from 4 bits to 6 bits, what change would be
made in the value of the largest integer you
could represent? What if you were using
two's complement notation?

What would be the hexadecimal representa-
tion of the largest memory address in a mem-
ory consisting of 4MB if each cell had a
one-byte capacity?

What would be the encoded version of

the message

if LZW compression, starting with the diction-
ary containing x, y, and a space (as described
in Section 1.8), were used?
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The following message was compressed using
LZW compression with a dictionary whose
first, second, and third entries are x, y, and
space, respectively. What is the decompressed
message?

22123113431213536
If the message

XXY YYX XXY XXYY

were compressed using LZW with a starting
dictionary whose first, second, and third
entries were x, y, and space, respectively, what
would be the entries in the final dictionary?

As we will learn in the next chapter, one
means of transmitting bits over traditional
telephone systems is to convert the bit pat-
terns into sound, transfer the sound over the
telephone lines, and then convert the sound
back into bit patterns. Such techniques are
limited to transfer rates of 57.6 Kbps. Is this
sufficient for teleconferencing if the video is
compressed using MPEG?

Encode the following sentences in ASCII
using even parity by adding a parity bit

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

*52.

*53.

*54,
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Social Issues

at the high-order end of each character
code:

a. Does 100/5 = 20?

b. The total cost is $7.25.

The following message was originally transmit-
ted with odd parity in each short bit string. In
which strings have errors definitely occurred?

11001 11011 10110 00000 11111 10001
10101 00100 01110

Suppose a 24-bit code is generated by repre-
senting each symbol by three consecutive
copies of its ASCII representation (for example,
the symbol A is represented by the bit string
010000010100000101000001). What error-
correcting properties does this new code have?

Using the error-correcting code described in
Figure 1.30, decode the following words:

111010 110110
101000 100110
011101 000110
010010 001000
000000 110111
e. 010011 000000

001100
000000
001110
100110
101001

010100
101111

a0 o

100110

1. A truncation error has occurred in a critical situation, causing extensive dam-
age and loss of life. Who is liable, if anyone? The designer of the hardware?
The designer of the software? The programmer who actually wrote that part
of the program? The person who decided to use the software in that particu-
lar application? What if the software had been corrected by the company that
originally developed it, but that update had not been purchased and applied
in the critical application? What if the software had been pirated?

Is it acceptable for an individual to ignore the possibility of truncation errors
and their consequences when developing his or her own applications?

Was it ethical to develop software in the 1970s using only two digits to repre-
sent the year (such as using 76 to represent the year 1976), ignoring the fact
that the software would be flawed as the turn of the century approached? Is
it ethical today to use only three digits to represent the year (such as 982 for
1982 and 015 for 2015)? What about using only four digits?
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4,

Many argue that encoding information often dilutes or otherwise distorts the
information, since it essentially forces the information to be quantified. They
argue that a questionnaire in which subjects are required to record their opin-
ions by responding within a scale from one to five is inherently flawed. To what
extent is information quantifiable? Can the pros and cons of different locations
for a waste disposal plant be quantified? Is the debate over nuclear power and
nuclear waste quantifiable? Is it dangerous to base decisions on averages and
other statistical analysis? Is it ethical for news agencies to report polling results
without including the exact wording of the questions? Is it possible to quantify
the value of a human life? Is it acceptable for a company to stop investing in the
improvement of a product, even though additional investment could lower the
possibility of a fatality relating to the product’s use?

Should there be a distinction in the rights to collect and disseminate data
depending on the form of the data? That is, should the right to collect and
disseminate photographs, audio, or video be the same as the right to collect
and disseminate text?

Whether intentional or not, a report submitted by a journalist usually
reflects that journalist’s bias. Often by changing only a few words, a story can
be given either a positive or negative connotation. (Compare, “The majority
of those surveyed opposed the referendum.” to “A significant portion of those
surveyed supported the referendum.”) Is there a difference between altering
a story (by leaving out certain points or carefully selecting words) and alter-
ing a photograph?

Suppose that the use of a data compression system results in the loss of sub-
tle but significant items of information. What liability issues might be raised?
How should they be resolved?
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CHAPTER

Data Manipulation

In this chapter we will learn how a computer manipulates data and
communicates with peripheral devices such as printers and key-
boards. In doing so, we will explore the basics of computer archi-
tecture and learn how computers are programmed by means of

encoded instructions, called machine language instructions.

2.1 Computer Architecture
CPU Basics
The Stored-Program Concept

2.2 Machine Language

The Instruction Repertoire
An Illustrative Machine Language

2.3 Program Execution

An Example of Program
Execution

Programs Versus Data
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Logic Operations

Rotation and Shift Operations
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Direct Memory Access
Handshaking

Popular Communication Media
Communication Rates

*2.6 Other Architectures
Pipelining
Multiprocessor Machines
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In Chapter 1 we studied topics relating to the storage of data inside a computer.
In this chapter we will see how a computer manipulates that data. This manipu-
lation consists of moving data from one location to another as well as performing
operations such as arithmetic calculations, text editing, and image manipulation.
We begin by extending our understanding of computer architecture beyond that
of data storage systems.

2.1 Computer Architecture

The circuitry in a computer that controls the manipulation of data is called the
central processing unit, or CPU (often referred to as merely the processor). In
the machines of the mid-twentieth century, CPUs were large units comprised of
perhaps several racks of electronic circuitry that reflected the significance of the
unit. However, technology has shrunk these devices drastically. The CPUs found
in today’s desktop computers and notebooks are packaged as small flat squares
(approximately two inches by two inches) whose connecting pins plug into a
socket mounted on the machine’s main circuit board (called the motherboard).
In smartphones, mini-notebooks, and other Mobile Internet Devices (MID),
CPU'’s are around half the size of a postage stamp. Due to their small size, these
processors are called microprocessors.

CPU Basics

A CPU consists of three parts (Figure 2.1): the arithmetic/logic unit, which
contains the circuitry that performs operations on data (such as addition and
subtraction); the control unit, which contains the circuitry for coordinating the
machine’s activities; and the register unit, which contains data storage cells
(similar to main memory cells), called registers, that are used for temporary
storage of information within the CPU.

Some of the registers within the register unit are considered general-purpose
registers whereas others are special-purpose registers. We will discuss some of

Figure 2.1  CPU and main memory connected via a bus

Central processing unit Main memory

Register unit

Arithmetic/logic
unit

Bus

Control
unit

[00--- 0000
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the special-purpose registers in Section 2.3. For now, we are concerned only with
the general-purpose registers.

General-purpose registers serve as temporary holding places for data being
manipulated by the CPU. These registers hold the inputs to the arithmetic/logic
unit’s circuitry and provide storage space for results produced by that unit. To per-
form an operation on data stored in main memory, the control unit transfers the
data from memory into the general-purpose registers, informs the arithmetic/logic
unit which registers hold the data, activates the appropriate circuitry within the
arithmetic/logic unit, and tells the arithmetic/logic unit which register should
receive the result.

For the purpose of transferring bit patterns, a machine’s CPU and main memory
are connected by a collection of wires called a bus (see again Figure 2.1). Through
this bus, the CPU extracts (reads) data from main memory by supplying the address
of the pertinent memory cell along with an electronic signal telling the memory cir-
cuitry that it is supposed to retrieve the data in the indicated cell. In a similar man-
ner, the CPU places (writes) data in memory by providing the address of the
destination cell and the data to be stored together with the appropriate electronic sig-
nal telling main memory that it is supposed to store the data being sent to it.

Based on this design, the task of adding two values stored in main memory
involves more than the mere execution of the addition operation. The data must
be transferred from main memory to registers within the CPU, the values must
be added with the result being placed in a register, and the result must then be
stored in a memory cell. The entire process is summarized by the five steps
listed in Figure 2.2.

The Stored-Program Concept

Early computers were not known for their flexibility—the steps that each device
executed were built into the control unit as a part of the machine. To gain more
flexibility, some of the early electronic computers were designed so that the CPU
could be conveniently rewired. This flexibility was accomplished by means of a
pegboard arrangement similar to old telephone switchboards in which the ends
of jumper wires were plugged into holes.

Figure 2.2 Adding values stored in memory

Step 1. Get one of the values to be
added from memory and
place it in a register.

Step 2. Get the other value to be
added from memory and
place it in another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.
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Cache Memory

Itis instructive to compare the memory facilities within a computer in relation to their
functionality. Registers are used to hold the data immediately applicable to the oper-
ation at hand; main memory is used to hold data that will be needed in the near
future; and mass storage is used to hold data that will likely not be needed in the
immediate future. Many machines are designed with an additional memory level,
called cache memory. Cache memory is a portion (perhaps several hundred KB) of
high-speed memory located within the CPU itself. In this special memory area, the
machine attempts to keep a copy of that portion of main memory that is of current
interest. In this setting, data transfers that normally would be made between regis-
ters and main memory are made between registers and cache memory. Any changes
made to cache memory are then transferred collectively to main memory at a more
opportune time. The result is a CPU that can execute its machine cycle more rapidly

because it is not delayed by main memory communication.

(1] et

A breakthrough (credited, apparently incorrectly, to John von Neumann)
came with the realization that a program, just like data, can be encoded and
stored in main memory. If the control unit is designed to extract the program
from memory, decode the instructions, and execute them, the program that the
machine follows can be changed merely by changing the contents of the com-
puter’'s memory instead of rewiring the CPU.

The idea of storing a computer’s program in its main memory is called
the stored-program concept and has become the standard approach used
today—so standard, in fact, that it seems obvious. What made it difficult orig-
inally was that everyone thought of programs and data as different entities:
Data were stored in memory; programs were part of the CPU. The result was
a prime example of not seeing the forest for the trees. It is easy to be caught
in such ruts, and the development of computer science might still be in
many of them today without our knowing it. Indeed, part of the excitement
of the science is that new insights are constantly opening doors to new theo-
ries and applications.
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1. What sequence of events do you think would be required to move the
contents of one memory cell in a computer to another memory cell?

2. What information must the CPU supply to the main memory circuitry to
write a value into a memory cell?

3. Mass storage, main memory, and general-purpose registers are all stor-
age systems. What is the difference in their use?
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2.2 Machine Language

To apply the stored-program concept, CPUs are designed to recognize instruc-
tions encoded as bit patterns. This collection of instructions along with the
encoding system is called the machine language. An instruction expressed in
this language is called a machine-level instruction or, more commonly, a
machine instruction.

The Instruction Repertoire

The list of machine instructions that a typical CPU must be able to decode and
execute is quite short. In fact, once a machine can perform certain elementary
but well-chosen tasks, adding more features does not increase the machine’s the-
oretical capabilities. In other words, beyond a certain point, additional features
may increase such things as convenience but add nothing to the machine’s fun-
damental capabilities.

The degree to which machine designs should take advantage of this fact has
lead to two philosophies of CPU architecture. One is that a CPU should be designed
to execute a minimal set of machine instructions. This approach leads to what is
called a reduced instruction set computer (RISC). The argument in favor of
RISC architecture is that such a machine is efficient, fast, and less expensive to
manufacture. On the other hand, others argue in favor of CPUs with the ability to
execute a large number of complex instructions, even though many of them are
technically redundant. The result of this approach is known as a complex
instruction set computer (CISC). The argument in favor of CISC architecture is
that the more complex CPU can better cope with the ever increasing complexities

Who Invented What?

Awarding a single individual credit for an invention is always a dubious undertaking.
Thomas Edison is credited with inventing the incandescent lamp, but other
researchers were developing similar lamps, and in a sense Edison was lucky to be the
one to obtain the patent. The Wright brothers are credited with inventing the airplane,
but they were competing with and benefited from the work of many contemporaries,
all of whom were preempted to some degree by Leonardo da Vinci, who toyed with the
idea of flying machines in the fifteenth century. Even Leonardo’s designs were appar-
ently based on earlier ideas. Of course, in these cases the designated inventor still
has legitimate claims to the credit bestowed. In other cases, history seems to have
awarded credit inappropriately—an example is the stored-program concept. Without
a doubt, John von Neumann was a brilliant scientist who deserves credit for numerous
contributions. But one of the contributions for which popular history has chosen to
credit him, the stored-program concept, was apparently developed by researchers led
by J. P. Eckert at the Moore School of Electrical Engineering at the University of
Pennsylvania. John von Neumann was merely the first to publish work reporting the

idea and thus computing lore has selected him as the inventor.
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of today’s software. With CISC, programs can exploit a powerful rich set of instruc-
tions, many of which would require a multi-instruction sequence in a RISC design.

In the 1990s and into the millennia, commercially available CISC and RISC
processors were actively competing for dominance in desktop computing. Intel
processors, used in PCs, are examples of CISC architecture; PowerPC processors
(developed by an alliance between Apple, IBM, and Motorola) are examples of
RISC architecture and were used in the Apple Macintosh. As time progressed,
the manufacturing cost of CISC was drastically reduced; thus Intel’s processors
(or their equivalent from AMD—Advanced Micro Devices, Inc.) are now found in
virtually all desktop and laptop computers (even Apple is now building comput-
ers based on Intel products).

While CISC secured its place in desktop computers, it has an insatiable thirst
for electrical power. In contrast, the company Advanced RISC Machine (ARM) has
designed a RISC architecture specifically for low power consumption. (Advanced
RISC Machine was originally Acorn Computers and is now ARM Holdings.) Thus,
ARM-based processors, manufactured by a host of vendors including Qualcomm
and Texas Instruments, are readily found in game controllers, digital TVs, naviga-
tion systems, automotive modules, cellular telephones, smartphones, and other
consumer electronics.

Regardless of the choice between RISC and CISC, a machine’s instructions
can be categorized into three groupings: (1) the data transfer group, (2) the
arithmetic/logic group, and (3) the control group.

Data Transfer The data transfer group consists of instructions that request the
movement of data from one location to another. Steps 1, 2, and 4 in Figure 2.2 fall
into this category. We should note that using terms such as transfer or move to iden-
tify this group of instructions is actually a misnomer. It is rare that the data being
transferred is erased from its original location. The process involved in a transfer
instruction is more like copying the data rather than moving it. Thus terms such as
copy or clone better describe the actions of this group of instructions.

While on the subject of terminology, we should mention that special terms
are used when referring to the transfer of data between the CPU and main
memory. A request to fill a general-purpose register with the contents of a

Variable-Length Instructions

To simplify explanations in the text, the machine language used for examples in this
chapter (and described in Appendix C) uses a fixed size (two bytes) for all instruc-
tions. Thus, to fetch an instruction, the CPU always retrieves the contents of two con-
secutive memory cells and increments its program counter by two. This consistency
streamlines the task of fetching instructions and is characteristic of RISC machines.
CISC machines, however, have machine languages whose instructions vary in length.
Today’s Intel processors, for example, have instructions that range from single-byte
instructions to multiple-byte instructions whose length depends on the exact use of
the instruction. CPUs with such machine languages determine the length of the
incoming instruction by the instruction’s op-code. That is, the CPU first fetches the
op-code of the instruction and then, based on the bit pattern received, knows how
many more bytes to fetch from memory to obtain the rest of the instruction.
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memory cell is commonly referred to as a LOAD instruction; conversely, a
request to transfer the contents of a register to a memory cell is called a STORE
instruction. In Figure 2.2, Steps 1 and 2 are LOAD instructions, and Step 4 is a
STORE instruction.

An important group of instructions within the data transfer category consists
of the commands for communicating with devices outside the CPU-main memory
context (printers, keyboards, display screens, disk drives, etc.). Since these
instructions handle the input/output (I/O) activities of the machine, they are
called I/0 instructions and are sometimes considered as a category in their own
right. On the other hand, Section 2.5 describes how these I/0 activities can be
handled by the same instructions that request data transfers between the CPU
and main memory. Thus, we shall consider the I/0 instructions to be a part of the
data transfer group.

Arithmetic/Logic The arithmetic/logic group consists of the instructions that tell
the control unit to request an activity within the arithmetic/logic unit. Step 3 in
Figure 2.2 falls into this group. As its name suggests, the arithmetic/logic unit is
capable of performing operations other than the basic arithmetic operations. Some
of these additional operations are the Boolean operations AND, OR, and XOR,
introduced in Chapter 1, which we will discuss in more detail later in this chapter.
Another collection of operations available within most arithmetic/logic units
allows the contents of registers to be moved to the right or the left within the reg-
ister. These operations are known as either SHIFT or ROTATE operations,
depending on whether the bits that “fall off the end” of the register are merely
discarded (SHIFT) or are used to fill the holes left at the other end (ROTATE).

Control The control group consists of those instructions that direct the execution
of the program rather than the manipulation of data. Step 5 in Figure 2.2 falls
into this category, although it is an extremely elementary example. This group
contains many of the more interesting instructions in a machine’s repertoire,
such as the family of JUMP (or BRANCH) instructions used to direct the CPU to
execute an instruction other than the next one in the list. These JUMP instruc-
tions appear in two varieties: unconditional jumps and conditional jumps.

Figure 2.3 Dividing values stored in memory

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.
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An example of the former would be the instruction “Skip to Step 5”; an example
of the latter would be, “If the value obtained is 0, then skip to Step 5.” The dis-
tinction is that a conditional jump results in a “change of venue” only if a certain
condition is satisfied. As an example, the sequence of instructions in Figure 2.3
represents an algorithm for dividing two values where Step 3 is a conditional
jump that protects against the possibility of division by zero.

An Illustrative Machine Language

Let us now consider how the instructions of a typical computer are encoded.
The machine that we will use for our discussion is described in Appendix C and
summarized in Figure 2.4. It has 16 general-purpose registers and 256 main
memory cells, each with a capacity of 8 bits. For referencing purposes, we label
the registers with the values 0 through 15 and address the memory cells with
the values 0 through 255. For convenience we think of these labels and
addresses as values represented in base two and compress the resulting bit pat-
terns using hexadecimal notation. Thus, the registers are labeled 0 through F,
and the memory cells are addressed 00 through FF.

The encoded version of a machine instruction consists of two parts: the op-code
(short for operation code) field and the operand field. The bit pattern appearing
in the op-code field indicates which of the elementary operations, such as
STORE, SHIFT, XOR, and JUMP, is requested by the instruction. The bit patterns
found in the operand field provide more detailed information about the opera-
tion specified by the op-code. For example, in the case of a STORE operation, the
information in the operand field indicates which register contains the data to be
stored and which memory cell is to receive the data.

The entire machine language of our illustrative machine (Appendix C) con-
sists of only twelve basic instructions. Each of these instructions is encoded
using a total of 16 bits, represented by four hexadecimal digits (Figure 2.5). The
op-code for each instruction consists of the first 4 bits or, equivalently, the first
hexadecimal digit. Note (Appendix C) that these op-codes are represented by
the hexadecimal digits 1 through C. In particular, the table in Appendix C shows

Figure 2.4 The architecture of the machine described in Appendix C

Central processing unit Main memory
. Address Cells
Registers
o Program counter 00 L]
Bus
1 ] 01 ]
02 1]
[ 12 Instruction register
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Figure 2.5 The composition of an instruction for the machine in Appendix C

Op-code Operand
1 1

[ [N |
0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

us that an instruction beginning with the hexadecimal digit 3 refers to a STORE
instruction, and an instruction beginning with hexadecimal A refers to a
ROTATE instruction.

The operand field of each instruction in our illustrative machine consists
of three hexadecimal digits (12 bits), and in each case (except for the HALT
instruction, which needs no further refinement) clarifies the general instruc-
tion given by the op-code. For example (Figure 2.6), if the first hexadecimal
digit of an instruction were 3 (the op-code for storing the contents of a regis-
ter), the next hexadecimal digit of the instruction would indicate which regis-
ter is to be stored, and the last two hexadecimal digits would indicate which
memory cell is to receive the data. Thus the instruction 35A7 (hexadecimal)
translates to the statement “STORE the bit pattern found in register 5 in the
memory cell whose address is A7.” (Note how the use of hexadecimal notation
simplifies our discussion. In reality, the instruction 35A7 is the bit pattern
0011010110100111.)

(The instruction 35A7 also provides an explicit example of why main mem-
ory capacities are measured in powers of two. Because 8 bits in the instruction
are reserved for specifying the memory cell utilized by this instruction, it is pos-
sible to reference exactly 2° different memory cells. It behooves us therefore to
build main memory with this many cells—addressed from 0 to 255. If main
memory had more cells, we would not be able to write instructions that distin-
guished between them; if main memory had fewer cells, we would be able to
write instructions that referenced nonexisting cells.)

Figure 2.6 Decoding the instruction 35A7

Instruction—[ 3 b A 7

/

Op-code 3 means

to store the contents This part of the operand identifies
of a registerin a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.
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As another example of how the operand field is used to clarify the general
instruction given by op-code, consider an instruction with the op-code 7 (hexa-
decimal), which requests that the contents of two registers be ORed. (We will see
what it means to OR two registers in Section 2.4. For now we are interested
merely in how instructions are encoded.) In this case, the next hexadecimal digit
indicates the register in which the result should be placed, while the last two
hexadecimal digits indicate which two registers are to be ORed. Thus the instruc-
tion 70C5 translates to the statement “OR the contents of register C with the con-
tents of register 5 and leave the result in register 0.”

A subtle distinction exists between our machine’s two LOAD instructions.
Here we see that the op-code 1 (hexadecimal) identifies an instruction that loads
a register with the contents of a memory cell, whereas the op-code 2 (hexa-
decimal) identifies an instruction that loads a register with a particular value.
The difference is that the operand field in an instruction of the first type con-
tains an address, whereas in the second type the operand field contains the
actual bit pattern to be loaded.

Note that the machine has two ADD instructions: one for adding two's com-
plement representations and one for adding floating-point representations. This
distinction is a consequence of the fact that adding bit patterns that represent val-
ues encoded in two's complement notation requires different activities within the
arithmetic/logic unit from adding values encoded in floating-point notation.

We close this section with Figure 2.7, which contains an encoded version of
the instructions in Figure 2.2. We have assumed that the values to be added are
stored in two’s complement notation at memory addresses 6C and 6D and the
sum is to be placed in the memory cell at address 6E.

Figure 2.7 An encoded version of the instructions in Figure 2.2

Encoded
instructions Translation
156C Load register 5 with the bit pattern
found in the memory cell at
address 6C.
166D Load register 6 with the bit pattern
found in the memory cell at
address 6D.
5056 Add the contents of register 5 and
6 as though they were two’s
complement representation and
leave the result in register 0.
306E Store the contents of register 0
in the memory cell at address 6E.
C000 Halt.
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1. Why might the term move be considered an incorrect name for the oper-
ation of moving data from one location in a machine to another?

2. In the text, JUMP instructions were expressed by identifying the desti-
nation explicitly by stating the name (or step number) of the destination
within the JUMP instruction (for example, “Jump to Step 6”). A draw-
back of this technique is that if an instruction name (number) is later
changed, we must be sure to find all jumps to that instruction and
change that name also. Describe another way of expressing a JUMP
instruction so that the name of the destination is not explicitly stated.

3. Is the instruction “If 0 equals 0, then jump to Step 7” a conditional or
unconditional jump? Explain your answer.

4. Write the example program in Figure 2.7 in actual bit patterns.
5. The following are instructions written in the machine language
described in Appendix C. Rewrite them in English.

a. 368A b. BADE c. 803C d. 40F4

6. What is the difference between the instructions 15AB and 25AB in the
machine language of Appendix C?

7. Here are some instructions in English. Translate each of them into the
machine language of Appendix C.

a. LOAD register number 3 with the hexadecimal value 56.

b. ROTATE register number 5 three bits to the right.

c. AND the contents of register A with the contents of register 5 and
leave the result in register 0.
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2.3 Program Execution

A computer follows a program stored in its memory by copying the instructions
from memory into the CPU as needed. Once in the CPU, each instruction is
decoded and obeyed. The order in which the instructions are fetched from mem-
ory corresponds to the order in which the instructions are stored in memory
unless otherwise altered by a JUMP instruction.

To understand how the overall execution process takes place, it is necessary
to consider two of the special purpose registers within the CPU: the instruction
register and the program counter (see again Figure 2.4). The instruction regis-
ter is used to hold the instruction being executed. The program counter contains
the address of the next instruction to be executed, thereby serving as the
machine'’s way of keeping track of where it is in the program.

The CPU performs its job by continually repeating an algorithm that guides
it through a three-step process known as the machine cycle. The steps in the
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machine cycle are fetch, decode, and execute (Figure 2.8). During the fetch step,
the CPU requests that main memory provide it with the instruction that is stored
at the address indicated by the program counter. Since each instruction in our
machine is two bytes long, this fetch process involves retrieving the contents of
two memory cells from main memory. The CPU places the instruction received
from memory in its instruction register and then increments the program
counter by two so that the counter contains the address of the next instruction
stored in memory. Thus the program counter will be ready for the next fetch.

With the instruction now in the instruction register, the CPU decodes the
instruction, which involves breaking the operand field into its proper compo-
nents based on the instruction’s op-code.

The CPU then executes the instruction by activating the appropriate cir-
cuitry to perform the requested task. For example, if the instruction is a load
from memory, the CPU sends the appropriate signals to main memory, waits for
main memory to send the data, and then places the data in the requested regis-
ter; if the instruction is for an arithmetic operation, the CPU activates the appro-
priate circuitry in the arithmetic/logic unit with the correct registers as inputs
and waits for the arithmetic/logic unit to compute the answer and place it in the
appropriate register.

Once the instruction in the instruction register has been executed, the CPU
again begins the machine cycle with the fetch step. Observe that since the pro-
gram counter was incremented at the end of the previous fetch, it again provides
the CPU with the correct address.

A somewhat special case is the execution of a JUMP instruction. Consider, for
example, the instruction B258 (Figure 2.9), which means “JUMP to the instruction
at address 58 (hexadecimal) if the contents of register 2 is the same as that of reg-
ister 0.” In this case, the execute step of the machine cycle begins with the com-
parison of registers 2 and 0. If they contain different bit patterns, the execute step

Figure 2.8 The machine cycle

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the
program counter.

2. Decode the bit pattern
in the instruction register.

3. Perform the action
required by the
instruction in the
instruction register.
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Comparing Computer Power

When shopping for a personal computer, you will find that clock speeds are often
used to compare machines. A computer’s clock is a circuit, called an oscillator, which
generates pulses that are used to coordinate the machine’s activities —the faster this
oscillating circuit generates pulses, the faster the machine performs its machine
cycle. Clock speeds are measured in hertz (abbreviated as Hz) with one Hz equal to
one cycle (or pulse) per second. Typical clock speeds in desktop computers are in the
range of a few hundred MHz (older models) to several GHz. (MHz is short for mega-
hertz, which is a million Hz. GHz is short for gigahertz, which is 1000 MHz.)

Unfortunately, different CPU designs might perform different amounts of work in
one clock cycle, and thus clock speed alone fails to be relevant in comparing
machines with different CPUs. If you are comparing a machine based on an Intel
processor to one based on ARM, it would be more meaningful to compare perform-
ance by means of benchmarking, which is the process of comparing the performance
of different machines when executing the same program, known as a benchmark. By
selecting benchmarks representing different types of applications, you get meaning-
ful comparisons for various market segments.
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terminates and the next machine cycle begins. If, however, the contents of these
registers are equal, the machine places the value 58 (hexadecimal) in its program
counter during the execute step. In this case, then, the next fetch step finds 58 in
the program counter, so the instruction at that address will be the next instruction

to be fetched and executed.

Note that if the instruction had been B058, then the decision of whether the
program counter should be changed would depend on whether the contents of
register 0 was equal to that of register 0. But these are the same registers and
thus must have equal content. In turn, any instruction of the form BOXY will
cause a jump to be executed to the memory location XY regardless of the con-

tents of register 0.

Figure 2.9 Decoding the instruction B258

Instruction—[ B

/

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in
register 0.

5 8

o

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.
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An Example of Program Execution

Let us follow the machine cycle applied to the program presented in Figure 2.7,
which retrieves two values from main memory, computes their sum, and stores
that total in a main memory cell. We first need to put the program somewhere in
memory. For our example, suppose the program is stored in consecutive
addresses, starting at address A0 (hexadecimal). With the program stored in this
manner, we can cause the machine to execute it by placing the address (A0) of the
first instruction in the program counter and starting the machine (Figure 2.10).

The CPU begins the fetch step of the machine cycle by extracting the
instruction stored in main memory at location A0 and placing this instruction
(156C) in its instruction register (Figure 2.11a). Notice that, in our machine,
instructions are 16 bits (two bytes) long. Thus the entire instruction to be fetched
occupies the memory cells at both address A0 and Al. The CPU is designed to
take this into account so it retrieves the contents of both cells and places the bit
patterns received in the instruction register, which is 16 bits long. The CPU then
adds two to the program counter so that this register contains the address of the
next instruction (Figure 2.11b). At the end of the fetch step of the first machine
cycle, the program counter and instruction register contain the following data:

Program Counter: A2
Instruction Register: 156C

Next, the CPU analyzes the instruction in its instruction register and con-
cludes that it is to load register 5 with the contents of the memory cell at address
6C. This load activity is performed during the execution step of the machine
cycle, and the CPU then begins the next cycle.

This cycle begins by fetching the instruction 166D from the two memory
cells starting at address A2. The CPU places this instruction in the instruction

Figure 2.10 The program from Figure 2.7 stored in main memory ready for execution

Program counter contains
address of first instructions.
CPU Main memory
Address Cells
Registers
Program counter A0
o [
Al
Bus
. _ A2 16 _PrOQram is
A3 stored in
— main memory
2 - 24 beginning at
address AO.
A5
Instruction register A6
] a7
A8
F [
A9 _
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Figure 2.11 Performing the fetch step of the machine cycle

CPU Main memory

Program counter

Address Cells

Bus 0 s

e a |ea
Instruction register

156C A2

A3

a. At the beginning of the fetch step the instruction starting at address A0 is
retrieved from memory and placed in the instruction register.

CPU Main memory
Program counter Address Cells
A0
. . Al
Instruction register
156C A2
A3

b. Then the program counter is incremented so that it points to the next instruction.

register and increments the program counter to A4. The values in the program
counter and instruction register therefore become the following:

Program Counter: A4
Instruction Register: 166D

Now the CPU decodes the instruction 166D and determines that it is to load
register 6 with the contents of memory address 6D. It then executes the instruc-
tion. It is at this time that register 6 is actually loaded.

Since the program counter now contains A4, the CPU extracts the next
instruction starting at this address. The result is that 5056 is placed in the
instruction register, and the program counter is incremented to A6. The CPU
now decodes the contents of its instruction register and executes it by activating
the two’s complement addition circuitry with inputs being registers 5 and 6.

During this execution step, the arithmetic/logic unit performs the requested
addition, leaves the result in register 0 (as requested by the control unit), and
reports to the control unit that it has finished. The CPU then begins another
machine cycle. Once again, with the aid of the program counter, it fetches the
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next instruction (306E) from the two memory cells starting at memory location
A6 and increments the program counter to A8. This instruction is then decoded
and executed. At this point, the sum is placed in memory location 6E.

The next instruction is fetched starting from memory location A8, and the
program counter is incremented to AA. The contents of the instruction register
(C000) are now decoded as the halt instruction. Consequently, the machine stops
during the execute step of the machine cycle, and the program is completed.

In summary, we see that the execution of a program stored in memory
involves the same process you and I might use if we needed to follow a detailed
list of instructions. Whereas we might keep our place by marking the instructions
as we perform them, the CPU keeps its place by using the program counter. After
determining which instruction to execute next, we would read the instruction and
extract its meaning. Then, we would perform the task requested and return to the
list for the next instruction in the same manner that the CPU executes the instruc-
tion in its instruction register and then continues with another fetch.

Programs Versus Data

Many programs can be stored simultaneously in a computer’s main memory, as
long as they occupy different locations. Which program will be run when the
machine is started can then be determined merely by setting the program
counter appropriately.

One must keep in mind, however, that because data are also contained in main
memory and encoded in terms of Os and 1s, the machine alone has no way of know-
ing what is data and what is program. If the program counter were assigned the
address of data instead of the address of the desired program, the CPU, not knowing
any better, would extract the data bit patterns as though they were instructions and
execute them. The final result would depend on the data involved.

We should not conclude, however, that providing programs and data with a
common appearance in a machine’s memory is bad. In fact, it has proved a use-
ful attribute because it allows one program to manipulate other programs (or
even itself) the same as it would data. Imagine, for example, a program that mod-
ifies itself in response to its interaction with its environment and thus exhibits
the ability to learn, or perhaps a program that writes and executes other pro-
grams in order to solve problems presented to it.

1. Suppose the memory cells from addresses 00 to 05 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
00 14
01 02
02 34
03 17
04 CO0

05 00



If we start the machine with its program counter containing 00, what bit
pattern is in the memory cell whose address is hexadecimal 17 when the
machine halts?

. Suppose the memory cells at addresses BO to B8 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
BO 13
Bl B8
B2 A3
B3 02
B4 33
B5 B8
B6 (@[0)
B7 00
B8 OF

a. If the program counter starts at BO, what bit pattern is in register
number 3 after the first instruction has been executed?

b. What bit pattern is in memory cell B8 when the halt instruction
is executed?

. Suppose the memory cells at addresses A4 to Bl in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
A4 20
A5 00
Ab 21
A7 03
A8 22
A9 01
AA Bl
AB BO
AC 50
AD 02
AE BO
AF AA
BO (0[0)
Bl 00

When answering the following questions, assume that the machine is
started with its program counter containing A4.

a. What is in register 0 the first time the instruction at address AA
is executed?

b. What is in register 0 the second time the instruction at address AA
is executed?

¢. How many times is the instruction at address AA executed before the
machine halts?

2.3 Program Execution
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4. Suppose the memory cells at addresses FO to F9 in the machine
described in Appendix C contain the (hexadecimal) bit patterns
described in the following table:

Address Contents
FO 20
F1 Co
F2 30
F3 F8
F4 20
F5 00
F6 30
F7 F9
F8 FF
F9 FF

If we start the machine with its program counter containing F0, what
does the machine do when it reaches the instruction at address F8?

2.4 Arithmetic/Logic Instructions

As indicated earlier, the arithmetic/logic group of instructions consists of
instructions requesting arithmetic, logic, and shift operations. In this section, we
look at these operations more closely.

Logic Operations

We introduced the logic operations AND, OR, and XOR (exclusive or) in Chapter 1
as operations that combine two input bits to produce a single output bit. These
operations can be extended to operations that combine two strings of bits to pro-
duce a single output string by applying the basic operation to individual
columns. For example, the result of ANDing the patterns 10011010 and 11001001
results in

10011010
AND 11001001
10001000

where we have merely written the result of ANDing the 2 bits in each column at the
bottom of the column. Likewise, ORing and XORing these patterns would produce

10011010 10011010
OR 11001001 XOR 11001001
11011011 01010011

One of the major uses of the AND operation is for placing 0s in one part of a
bit pattern while not disturbing the other part. Consider, for example, what hap-
pens if the byte 00001111 is the first operand of an AND operation. Without know-
ing the contents of the second operand, we still can conclude that the four most
significant bits of the result will be 0s. Moreover, the four least significant bits of
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the result will be a copy of that part of the second operand, as shown in the fol-
lowing example:

00001111
AND 10101010
00001010

This use of the AND operation is an example of the process called masking.
Here one operand, called a mask, determines which part of the other operand
will affect the result. In the case of the AND operation, masking produces a
result that is a partial replica of one of the operands, with 0s occupying the
nonduplicated positions.

Such an operation is useful when manipulating a bit map, a string of bits in
which each bit represents the presence or absence of a particular object. We have
already encountered bit maps in the context of representing images, where each
bit is associated with a pixel. As another example, a string of 52 bits, in which
each bit is associated with a particular playing card, can be used to represent a
poker hand by assigning 1s to those 5 bits associated with the cards in the hand
and Os to all the others. Likewise, a bit map of 52 bits, of which thirteen are 1s,
can be used to represent a hand of bridge, or a bit map of 32 bits can be used to
represent which of thirty-two ice cream flavors are available.

Suppose, then, that the 8 bits in a memory cell are being used as a bit map,
and we want to find out whether the object associated with the third bit from the
high-order end is present. We merely need to AND the entire byte with the mask
00100000, which produces a byte of all 0s if and only if the third bit from the
high-order end of the bit map is itself 0. A program can then act accordingly by
following the AND operation with a conditional branch instruction. Moreover, if
the third bit from the high-order end of the bit map is a 1, and we want to change
it to a 0 without disturbing the other bits, we can AND the bit map with the mask
11011111 and then store the result in place of the original bit map.

Where the AND operation can be used to duplicate a part of a bit string while
placing Os in the nonduplicated part, the OR operation can be used to duplicate a
part of a string while putting 1s in the nonduplicated part. For this we again use
a mask, but this time we indicate the bit positions to be duplicated with 0s and
use 1s to indicate the nonduplicated positions. For example, ORing any byte with
11110000 produces a result with 1s in its most significant 4 bits while its remain-
ing bits are a copy of the least significant 4 bits of the other operand, as demon-
strated by the following example:

11110000
OR 10101010
11111010

Consequently, whereas the mask 11011111 can be used with the AND operation to
force a 0 in the third bit from the high-order end of a byte, the mask 00100000 can
be used with the OR operation to force a 1 in that position.

A major use of the XOR operation is in forming the complement of a bit
string. XORing any byte with a mask of all 1s produces the complement of the
byte. For example, note the relationship between the second operand and the
result in the following example:

11111111
XOR 10101010
01010101
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In the machine language described in Appendix C, op-codes 7, 8, and 9 are
used for the logic operations OR, AND, and XOR, respectively. Each requests
that the corresponding logic operation be performed between the contents of
two designated registers and that the result be placed in another designated reg-
ister. For example, the instruction 7ABC requests that the result of ORing the
contents of registers B and C be placed in register A.

Rotation and Shift Operations

The operations in the class of rotation and shift operations provide a means for
moving bits within a register and are often used in solving alignment prob-
lems. These operations are classified by the direction of motion (right or left)
and whether the process is circular. Within these classification guidelines are
numerous variations with mixed terminology. Let us take a quick look at the
ideas involved.

Consider a register containing a byte of bits. If we shift its contents 1 bit to the
right, we imagine the rightmost bit falling off the edge and a hole appearing at the
leftmost end. What happens with this extra bit and the hole is the distinguishing
feature among the various shift operations. One technique is to place the bit that
fell off the right end in the hole at the left end. The result is a circular shift, also
called a rotation. Thus, if we perform a right circular shift on a byte-size bit pat-
tern eight times, we obtain the same bit pattern we started with.

Another technique is to discard the bit that falls off the edge and always fill
the hole with a 0. The term logical shift is often used to refer to these opera-
tions. Such shifts to the left can be used for multiplying two’s complement rep-
resentations by two. After all, shifting binary digits to the left corresponds to
multiplication by two, just as a similar shift of decimal digits corresponds to mul-
tiplication by ten. Moreover, division by two can be accomplished by shifting the
binary string to the right. In either shift, care must be taken to preserve the sign
bit when using certain notational systems. Thus, we often find right shifts that
always fill the hole (which occurs at the sign bit position) with its original value.
Shifts that leave the sign bit unchanged are sometimes called arithmetic shifts.

Among the variety of shift and rotate instructions possible, the machine
language described in Appendix C contains only a right circular shift, desig-
nated by op-code A. In this case the first hexadecimal digit in the operand spec-
ifies the register to be rotated, and the rest of the operand specifies the number
of bits to be rotated. Thus the instruction A501 means “Rotate the contents of
register 5 to the right by 1 bit.” In particular, if register 5 originally contained
the bit pattern 65 (hexadecimal), then it would contain B2 after this instruction
is executed (Figure 2.12). (You may wish to experiment with how other shift
and rotate instructions can be produced with combinations of the instructions
provided in the machine language of Appendix C. For example, since a register
is 8 bits long, a right circular shift of 3 bits produces the same result as a left
circular shift of 5 bits.)

Arithmetic Operations

Although we have already mentioned the arithmetic operations of add, sub-
tract, multiply, and divide, a few loose ends should still be connected. First, we
have already seen that subtraction can be simulated by means of addition and
negation. Moreover, multiplication is merely repeated addition and division is
repeated subtraction. (Six divided by two is three because three two’s can be
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Figure 2.12 Rotating the bit pattern 65 (hexadecimal) one bit to the right

o 1 1 0 O 1 0 1 The original bit pattern
L |

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

|=
=
|_\
|_|
|lo
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The final bit pattern

subtracted from six.) For this reason, some small CPUs are designed with only
the add or perhaps only the add and subtract instructions.

We should also mention that numerous variations exist for each arithmetic
operation. We have already alluded to this in relation to the add operations avail-
able on our machine in Appendix C. In the case of addition, for example, if the
values to be added are stored in two’s complement notation, the addition process
must be performed as a straightforward column by column addition. However, if
the operands are stored as floating-point values, the addition process must
extract the mantissa of each, shift them right or left according to the exponent
fields, check the sign bits, perform the addition, and translate the result into
floating-point notation. Thus, although both operations are considered addition,
the action of the machine is not the same.

AR I
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1. Perform the indicated operations.

a. 01001011 b. 10000011 C. 11111111
AND 10101011 AND 11101100 AND 00101101
d. 01001011 e. 10000011 f. 11111111
OrR 10101011 OR 11101100 OR 00101101
. 01001011 h. 10000011 i. 11111111
XOR 10101011 XOR 11101100 XOR 00101101

2. Suppose you want to isolate the middle 4 bits of a byte by placing 0s in
the other 4 bits without disturbing the middle 4 bits. What mask must
you use together with what operation?
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3. Suppose you want to complement the 4 middle bits of a byte while leav-
ing the other 4 bits undisturbed. What mask must you use together with
what operation?

4. a. Suppose you XOR the first 2 bits of a string of bits and then continue
down the string by successively XORing each result with the next bit
in the string. How is your result related to the number of 1s appearing
in the string?

b. How does this problem relate to determining what the appropriate
parity bit should be when encoding a message?

5. It is often convenient to use a logical operation in place of a numeric
one. For example, the logical operation AND combines 2 bits in the same
manner as multiplication. Which logical operation is almost the same as
adding 2 bits, and what goes wrong in this case?

6. What logical operation together with what mask can you use to change
ASCII codes of lowercase letters to uppercase? What about uppercase
to lowercase?

7. What is the result of performing a 3-bit right circular shift on the follow-
ing bit strings:

a. 01101010 b. 00001111 ¢ 01111111

8. What is the result of performing a 1-bit left circular shift on the following
bytes represented in hexadecimal notation? Give your answer in hexa-
decimal form.

a. AB b. 5C c. B7 d. 35

9. A right circular shift of 3 bits on a string of 8 bits is equivalent to a left cir-
cular shift of how many bits?

10. What bit pattern represents the sum of 01101010 and 11001100 if the pat-
terns represent values stored in two's complement notation? What if the
patterns represent values stored in the floating-point format discussed in
Chapter 1?

11. Using the machine language of Appendix C, write a program that places
a 1 in the most significant bit of the memory cell whose address is A7
without modifying the remaining bits in the cell.

12. Using the machine language of Appendix C, write a program that copies
the middle 4 bits from memory cell EO into the least significant 4 bits of
memory cell E1, while placing 0s in the most significant 4 bits of the cell
at location E1.

2.5 Communicating with Other Devices

Main memory and the CPU form the core of a computer. In this section, we
investigate how this core, which we will refer to as the computer, communicates
with peripheral devices such as mass storage systems, printers, keyboards, mice,
display screens, digital cameras, and even other computers.
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The Role of Controllers

Communication between a computer and other devices is normally handled
through an intermediary apparatus known as a controller. In the case of a per-
sonal computer, a controller may consist of circuitry permanently mounted on
the computer’s motherboard or, for flexibility, it may take the form of a circuit
board that plugs into a slot on the motherboard. In either case, the controller
connects via cables to peripheral devices within the computer case or perhaps to
a connector, called a port, on the back of the computer where external devices
can be attached. These controllers are sometimes small computers themselves,
each with its own memory circuitry and simple CPU that performs a program
directing the activities of the controller.

A controller translates messages and data back and forth between forms
compatible with the internal characteristics of the computer and those of the
peripheral device to which it is attached. Originally, each controller was
designed for a particular type of device; thus, purchasing a new peripheral
device often required the purchase of a new controller as well.

Recently, steps have been taken within the personal computer arena to
develop standards, such as the universal serial bus (USB) and FireWire, by
which a single controller is able to handle a variety of devices. For example, a
single USB controller can be used as the interface between a computer and any
collection of USB-compatible devices. The list of devices on the market today
that can communicate with a USB controller includes mice, printers, scanners,
mass storage devices, digital cameras, and smartphones.

Each controller communicates with the computer itself by means of connec-
tions to the same bus that connects the computer’s CPU and main memory
(Figure 2.13). From this position it is able to monitor the signals being sent between
the CPU and main memory as well as to inject its own signals onto the bus.

With this arrangement, the CPU is able to communicate with the controllers
attached to the bus in the same manner that it communicates with main mem-
ory. To send a bit pattern to a controller, the bit pattern is first constructed in one
of the CPU’s general-purpose registers. Then an instruction similar to a STORE
instruction is executed by the CPU to “store” the bit pattern in the controller.

Figure 2.13 Controllers attached to a machine’s bus
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Likewise, to receive a bit pattern from a controller, an instruction similar to a
LOAD instruction is used.

In some computer designs the transfer of data to and from controllers is
directed by the same LOAD and STORE op-codes that are already provided for
communication with main memory. In these cases, each controller is designed
to respond to references to a unique set of addresses while main memory is
designed to ignore references to these locations. Thus when the CPU sends a
message on the bus to store a bit pattern at a memory location that is assigned to
a controller, the bit pattern is actually “stored” in the controller rather than main
memory. Likewise, if the CPU tries to read data from such a memory location, as
in a LOAD instruction, it will receive a bit pattern from the controller rather than
from memory. Such a communication system is called memory-mapped 1/0
because the computer’s input/output devices appear to be in various memory
locations (Figure 2.14).

An alternative to memory-mapped I/0 is to provide special op-codes in the
machine language to direct transfers to and from controllers. Instructions with
these op-codes are called 1/0 instructions. As an example, if the language
described in Appendix C followed this approach, it might include an instruction
such as F5A3 to mean “STORE the contents of register 5 in the controller identi-
fied by the bit pattern A3.”

Direct Memory Access

Since a controller is attached to a computer’s bus, it can carry on its own com-
munication with main memory during those nanoseconds in which the CPU is
not using the bus. This ability of a controller to access main memory is known as
direct memory access (DMA), and it is a significant asset to a computer’s per-
formance. For instance, to retrieve data from a sector of a disk, the CPU can send
requests encoded as bit patterns to the controller attached to the disk asking the
controller to read the sector and place the data in a specified area of main mem-
ory. The CPU can then continue with other tasks while the controller performs
the read operation and deposits the data in main memory via DMA. Thus two
activities will be performed at the same time. The CPU will be executing a pro-
gram and the controller will be overseeing the transfer of data between the disk
and main memory. In this manner, the computing resources of the CPU are not
wasted during the relatively slow data transfer.

The use of DMA also has the detrimental effect of complicating the commu-
nication taking place over a computer’s bus. Bit patterns must move between the
CPU and main memory, between the CPU and each controller, and between
each controller and main memory. Coordination of all this activity on the bus is
a major design issue. Even with excellent designs, the central bus can become an

Figure 2.14 A conceptual representation of memory-mapped 1/0
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USB and FireWire

The universal serial bus (USB) and FireWire are standardized serial communication
systems that simplify the process of adding new peripheral devices to a personal
computer. USB was developed under the lead of Intel. The development of FireWire
was led by Apple. In both cases the underlying theme is for a single controller to pro-
vide external ports at which a variety of peripheral devices can be attached. In this
setting, the controller translates the internal signal characteristics of the computer to
the appropriate USB or FireWire standard signals. In turn, each device connected to
the controller converts its internal idiosyncrasies to the same USB or FireWire stan-
dard, allowing communication with the controller. The result is that attaching a new
device to a PC does not require the insertion of a new controller. Instead, one merely
plugs any USB compatible device into a USB port or a FireWire compatible device
into a FireWire port.

Of the two, FireWire provides a faster transfer rate, but the lower cost of USB
technology has made it the leader in the lower-cost mass market arena. USB com-
patible devices on the market today include mice, keyboards, printers, scanners, dig-
ital cameras, smartphones, and mass storage systems designed for backup
applications. FireWire applications tend to focus on devices that require higher trans-

fer rates such as video recorders and online mass storage systems.
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impediment as the CPU and the controllers compete for bus access. This imped-
iment is known as the von Neumann bottleneck because it is a consequence of
the underlying von Neumann architecture in which a CPU fetches its instruc-
tions from memory over a central bus.

Handshaking

The transfer of data between two computer components is rarely a one-way
affair. Even though we may think of a printer as a device that receives data, the
truth is that a printer also sends data back to the computer. After all, a computer
can produce and send characters to a printer much faster than the printer can
print them. If a computer blindly sent data to a printer, the printer would quickly
fall behind, resulting in lost data. Thus a process such as printing a document
involves a constant two-way dialogue, known as handshaking, in which the
computer and the peripheral device exchange information about the device’s sta-
tus and coordinate their activities.

Handshaking often involves a status word, which is a bit pattern that is gen-
erated by the peripheral device and sent to the controller. The status word is a bit
map in which the bits reflect the conditions of the device. For example, in the
case of a printer, the value of the least significant bit of the status word may indi-
cate whether the printer is out of paper, while the next bit may indicate whether
the printer is ready for additional data. Still another bit may be used to indicate
the presence of a paper jam. Depending on the system, the controller may
respond to this status information itself or make it available to the CPU. In either
case, the status word provides the mechanism by which communication with a
peripheral device can be coordinated.
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Popular Communication Media

Communication between computing devices is handled over two types of paths:
parallel and serial. These terms refer to the manner in which signals are trans-
ferred with respect to each other. In the case of parallel communication, sev-
eral signals are transferred at the same time, each on a separate “line.” Such a
technique is capable of transferring data rapidly but requires a relatively com-
plex communication path. Examples include a computer’s internal bus where
multiple wires are used to allow large blocks of data and other signals to be trans-
ferred simultaneously.

In contrast, serial communication is based on transferring signals one
after the other over a single line. Thus serial communication requires a simpler
data path than parallel communication, which is the reason for its popularity.
USB and FireWire, which offer relatively high-speed data transfer over short dis-
tances of only a few meters, are examples of serial communication systems. For
slightly longer distances (within a home or office building), serial communica-
tion over Ethernet connections (Section 4.1), either by wire or radio broadcast,
are popular.

For communication over greater distances, traditional voice telephone lines
dominated the personal computer arena for many years. These communication
paths, consisting of a single wire over which tones are transferred one after the
other, are inherently serial systems. The transfer of digital data over these lines
is accomplished by first converting bit patterns into audible tones by means of a
modem (short for modulator-demodulator), transferring these tones serially over
the telephone system, and then converting the tones back into bits by another
modem at the destination.

For faster long-distance communication over traditional telephone lines,
telephone companies offer a service known as DSL (Digital Subscriber Line),
which takes advantage of the fact that existing telephone lines are capable of
handling a wider frequency range than that used by traditional voice communi-
cation. More precisely, DSL uses frequencies above the audible range to transfer
digital data while leaving the lower frequency spectrum for voice communica-
tion. Although DSL has been highly successful, telephone companies are rapidly
upgrading their systems to fiber-optic lines, which support digital communica-
tion more readily than traditional telephone lines.

Other technologies that compete with DSL and fiber optics include cable,
as used in cable television systems, and satellite links via high-frequency
radio broadcast.

Communication Rates

The rate at which bits are transferred from one computing component to
another is measured in bits per second (bps). Common units include Kbps
(kilo-bps, equal to one thousand bps), Mbps (mega-bps, equal to one million
bps), and Gbps (giga-bps, equal to one billion bps). (Note the distinction between
bits and bytes—that is, 8 Kbps is equal to 1 KB per second. In abbreviations, a
lowercase b usually means bit whereas an uppercase B means byte.)

For short distance communication, USB and FireWire provide transfer rates
of several hundred Mbps, which is sufficient for most multimedia applications.
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This, combined with their convenience and relatively low cost, is why they are
popular for communication between home computers and local peripherals
such as printers, external disk drives, and cameras.

By combining multiplexing (the encoding or interweaving of data so that a
single communication path serves the purpose of multiple paths) and data com-
pression techniques, traditional voice telephone systems were able to support
transfer rates of 57.6 Kbps, which falls short of the needs of today’s multimedia
and Internet applications, such as YouTube and Facebook. To play MP3 music
recordings requires a transfer rate of about 64 Kbps, and to play even low quality
video clips requires transfer rates measured in units of Mbps. This is why alter-
natives such as DSL, cable, and satellite links, which provide transfer rates well
into the Mbps range, have replaced traditional audio telephone systems. (For
example, DSL offers transfer rates on the order of 54 Mbps.)

The maximum rate available in a particular setting depends on the type of
the communication path and the technology used in its implementation. This
maximum rate is often loosely equated to the communication path’s
bandwidth, although the term bandwidth also has connotations of capacity
rather than transfer rate. That is, to say that a communication path has a high
bandwidth (or provides broadband service) means that the communication
path has the ability to transfer bits at a high rate as well as the capacity to carry

large amounts of information simultaneously.
N

1. Assume that the machine described in Appendix C uses memory-
mapped I/0 and that the address B5 is the location within the printer
port to which data to be printed should be sent.

a. If register 7 contains the ASCII code for the letter A, what machine
language instruction should be used to cause that letter to be printed
at the printer?

b. If the machine executes a million instructions per second, how many
times can this character be sent to the printer in one second?

c. If the printer is capable of printing five traditional pages of text per
minute, will it be able to keep up with the characters being sent to

it in (b)?

2. Suppose that the hard disk on your personal computer rotates at 3000
revolutions a minute, that each track contains 16 sectors, and that each
sector contains 1024 bytes. Approximately what communication rate is
required between the disk drive and the disk controller if the controller
is going to receive bits from the disk drive as they are read from the spin-
ning disk?

3. Estimate how long it would take to transfer a 300-page novel encoded in
Unicode at a transfer rate of 54 Mbps.

99

i Il
ot Exereises ||
it




100

Chapter 2 Data Manipulation

2.6 Other Architectures

To broaden our perspective, let us consider some alternatives to the traditional
machine architecture we have discussed so far.

Pipelining

Electric pulses travel through a wire no faster than the speed of light. Since light
travels approximately 1 foot in a nanosecond (one billionth of a second), it
requires at least 2 nanoseconds for the CPU to fetch an instruction from a mem-
ory cell that is 1 foot away. (The read request must be sent to memory, requiring
at least 1 nanosecond, and the instruction must be sent back to the CPU, requiring
at least another nanosecond.) Consequently, to fetch and execute an instruction in
such a machine requires several nanoseconds—which means that increasing the
execution speed of a machine ultimately becomes a miniaturization problem.

However, increasing execution speed is not the only way to improve a com-
puter’s performance. The real goal is to improve the machine’s throughput,
which refers to the total amount of work the machine can accomplish in a given
amount of time.

An example of how a computer’s throughput can be increased without
requiring an increase in execution speed involves pipelining, which is the
technique of allowing the steps in the machine cycle to overlap. In particular,
while one instruction is being executed, the next instruction can be fetched,
which means that more than one instruction can be in “the pipe” at any one
time, each at a different stage of being processed. In turn, the total throughput
of the machine is increased even though the time required to fetch and execute
each individual instruction remains the same. (Of course, when a JUMP
instruction is reached, any gain that would have been obtained by prefetching
is not realized because the instructions in “the pipe” are not the ones needed
after all.)

Modern machine designs push the pipelining concept beyond our simple
example. They are often capable of fetching several instructions at the same
time and actually executing more than one instruction at a time when those
instructions do not rely on each other.

The Multi-Core CPU

As technology provides ways of placing more and more circuitry on a silicon chip, the
physical distinction between a computer’s components diminishes. For instance, a
single chip might contain a CPU and main memory. This is an example of the “system-
on-a-chip” approach in which the goal is to provide a complete apparatus in a single
device that can be used as an abstract tool in higher level designs. In other cases
multiple copies of the same circuit are provided within a single device. This latter tac-
tic originally appeared in the form of chips containing several independent gates or
perhaps multiple flip-flops. Today’s state of the art allows for more than one entire
CPU to be placed on a single chip. This is the underlying architecture of devices
known as multi-core CPUs, which consist of two or more CPUs residing on the same
chip along with shared cache memory. (Multi-core CPUs containing two processing
units are typically called dual-core CPUs.) Such devices simplify the construction of
MIMD systems and are readily available for use in home computers.
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Multiprocessor Machines

Pipelining can be viewed as a first step toward parallel processing, which is the
performance of several activities at the same time. However, true parallel pro-
cessing requires more than one processing unit, resulting in computers known
as multiprocessor machines.

A variety of computers today are designed with this idea in mind. One strat-
egy is to attach several processing units, each resembling the CPU in a single-
processor machine, to the same main memory. In this configuration, the
processors can proceed independently yet coordinate their efforts by leaving mes-
sages to one another in the common memory cells. For instance, when one
processor is faced with a large task, it can store a program for part of that task in
the common memory and then request another processor to execute it. The result
is a machine in which different instruction sequences are performed on different
sets of data, which is called a MIMD (multiple-instruction stream, multiple-data
stream) architecture, as opposed to the more traditional SISD (single-instruction
stream, single-data stream) architecture.

A variation of multiple-processor architecture is to link the processors
together so that they execute the same sequence of instructions in unison, each
with its own set of data. This leads to a SIMD (single-instruction stream, multiple-
data stream) architecture. Such machines are useful in applications in which the
same task must be applied to each set of similar items within a large block of data.

Another approach to parallel processing is to construct large computers as
conglomerates of smaller machines, each with its own memory and CPU. Within
such an architecture, each of the small machines is coupled to its neighbors so
that tasks assigned to the whole system can be divided among the individual
machines. Thus if a task assigned to one of the internal machines can be broken
into independent subtasks, that machine can ask its neighbors to perform these
subtasks concurrently. The original task can then be completed in much less

time than would be required by a single-processor machine.
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1. Referring back to Question 3 of Section 2.3, if the machine used the
pipeline technique discussed in the text, what will be in “the pipe” when
the instruction at address AA is executed? Under what conditions would
pipelining not prove beneficial at this point in the program?

2. What conflicts must be resolved in running the program in Question 4 of
Section 2.3 on a pipeline machine?

3. Suppose there were two “central” processing units attached to the same
memory and executing different programs. Furthermore, suppose that
one of these processors needs to add one to the contents of a memory
cell at roughly the same time that the other needs to subtract one from
the same cell. (The net effect should be that the cell ends up with the
same value with which it started.)

a. Describe a sequence in which these activities would result in the cell
ending up with a value one less than its starting value.

b. Describe a sequence in which these activities would result in the cell
ending up with a value one greater than its starting value.
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(Asterisked problems are associated with optional sections.)

Chapter 2 Data Manipulation

1.

a. In what way are general-purpose registers
and main memory cells similar?
b. In what way do general-purpose registers

a. 7123
d. B100

b. 40E1
e. 2BCD

c. A304

i X 8. Suppose a machine language is designed with
and main memory cells differ? an op-code field of 4 bits. How many different
2. Answer the following questions in terms of instruction types can the language contain?
the machine language described in Appendix C. What if the op-code field is increased to 6 bits?
a. Write the instruction 2304 (hexadecimal) as g yanslate the following instructions from
a string of 16 bits. . . English into the machine language described
b. Write the. op-code of the instruction B2A5 in Appendix C.
(hexadecimal) as a string of 4 bits. a. LOAD register 6 with the hexadecimal
c. Write the operand field of the instruction value 77.
B2A5 (hexadecimal) as a string of 12 bits. b. LOAD register 7 with the contents of mem-
3. Suppose a block of data is stored in the mem- ory cell 77.
ory cells of the machine described in c. JUMP to the instruction at memory loca-
Appendix C from address 98 to A2, inclusive. tion 24 if the contents of register 0 equals
How many memory cells are in this block? the value in register A.
List their addresses. d. ROTATE register 4 three bits to the right.
4. What is the value of the program counter in e. AND the cont(?nts of registers E and 2 leav-
the machine described in Appendix C immedi- ing the result in register 1.
ately after executing the instruction BOCD? 10. Rewrite the program in Figure 2.7 assuming
5. Suppose the memory cells at addresses 00 that f[he Val,ues to b? added are encoded using
through 05 in the machine described in floating-point potatlon rather than two’s com-
Appendix C contain the following bit patterns: plement notation.
Address Contents 11. Classify egch of the following ins‘Fructigns (in
00 2 the machine language of Appendix C) in
0 1 terms of whether its execution changes the
02 1 contents of the memory cell at location 3B,
03 02 retrieves the contents of the memory cell at
04 co location 3C, or is independent of the contents
05 00 of the memory cell at location 3C.
a. 353C b. 253C c. 153C
Assuming that the program counter initially d. 3C3C e. 403C
contained 00, record the contents of the pro- 12. Suppose the memory cells at addresses 00

gram counter, instruction register, and memory
cell at address 02 at the end of each fetch phase
of the machine cycle until the machine halts.

through 03 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
6. Suppose three values x, y, and z are stored in a 00 26
machine’s memory. Describe the sequence of 01 55
events (loading registers from memory, saving 02 Co
values in memory, and so on) that leads to the 03 00
computation of x + y + z. How about (2v) + y? a. Translate the first instruction into English.
7. The following are instructions written in the b. If the machine is started with its program

machine language described in Appendix C.
Translate them into English.

counter containing 00, what bit pattern is
in register 6 when the machine halts?



13.

14,

15.

Suppose the memory cells at addresses 00
through 02 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
00 12
01 21
02 34

a. What would be the first instruction exe-
cuted if we started the machine with its
program counter containing 00?

b. What would be the first instruction exe-
cuted if we started the machine with its
program counter containing 017

Suppose the memory cell