
PRAISE FOR WRITE GREAT CODE, VOLUME 1: UNDERSTANDING THE MACHINE

“If you are programming without benefit of formal train-
ing, or if you lack the aegis of a mentor, Randall Hyde’s 
Write Great Code series should rouse your interest.”
—UnixReview.com

No prior knowledge of
assembly language required!

In the beginning, most software was written in assembly, 
the CPU’s low-level language, in order to achieve 
acceptable performance on relatively slow hardware. 
Early programmers were sparing in their use of high-level 
language code, knowing that a high-level language com-
piler would generate crummy low-level machine code for 
their software. Today, however, many programmers write 
in high-level languages like C, C++, Pascal, Java, or 
BASIC. The result is often sloppy, inefficient code. Write 
Great Code, Volume 2 helps you avoid this common 
problem and learn to write well-structured code.

In this second volume of the Write Great Code series, 
you’ll learn:

• How to analyze the output of a compiler to verify that 
your code does, indeed, generate good machine code

• The types of machine code statements that compilers 
typically generate for common control structures, so you 
can choose the best statements when writing HLL code

• Just enough x86 and PowerPC assembly language to 
read compiler output

• How compilers convert various constant and
variable objects into machine data, and how to use 
these objects to write faster and shorter programs

You don’t need to give up the productivity and 
portability of high-level languages in order to produce 
more efficient software. With an understanding of how 
compilers work, you’ll be able to write source code 
that they can translate into elegant machine code. That 
understanding starts right here, with Write Great Code: 
Thinking Low-Level, Writing High-Level.

About the author

Randall Hyde is the author of The Art of Assembly 
Language, one of the most highly recommended 
resources on assembly, and Write Great Code, Volume 
1 (both No Starch Press). He is also the co-author of 
The Waite Group’s MASM 6.0 Bible. He has written 
for Dr. Dobb’s Journal and Byte, as well as professional 
and academic journals.

Get better results

from your

source code

Get better results

from your

source code

www.nostarch.com

      “I lay flat.”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

TH E  F I N EST  I N  G E E K  E NTE RTA I N M E NT™

SH
EL

VE
 IN

:
PR

OG
RA

M
M

IN
G

$44.95 ($58.95 CDN)

6   89 1 45  7 06 58   1

5 4 4 9 5

9  7 81 5 93  2 70 65 0   

ISBN: 1-59327-065-8

H
Y

D
E

W
R

ITE
 G

R
E

A
T C

O
D

E
W

R
ITE

 G
R

E
A

T C
O

D
E

V
O

L
U

M
E

 2
:

 T
H

IN
K

IN
G

 L
O

W
-

L
E

V
E

L
,

 W
R

IT
IN

G
 H

IG
H

-
L

E
V

E
L

R a n d a l l  H y d e

W R I T E  G R E A T

C ODE
W R I T E  G R E A T

C ODE
V O L U M E  2 :  T H I N K I N G  L O W - L E V E L ,

W R I T I N G  H I G H - L E V E L





WRITE GREAT 
CODE

V o lu m e  2 :  T h i n ki n g  L o w -
L e ve l ,  W r i ti n g  H i g h - L eve l

by Randal l  Hyde

San Francisco



WRITE GREAT CODE, Vol. 2: Thinking Low-Level, Writing High-Level. Copyright © 2006 by Randall Hyde.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior 
written permission of the copyright owner and the publisher.

 Printed on recycled paper in the United States of America

1 2 3 4 5 6 7 8 9 10 – 09 08 07 06

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and 
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark 
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the 
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock
Managing Editor: Elizabeth Campbell
Cover and Interior Design: Octopod Studios
Developmental Editor: Jim Compton
Technical Reviewer: Benjamin David Lunt
Copyeditor: Kathy Grider-Carlyle
Compositor: Riley Hoffman
Proofreader: Stephanie Provines

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been 
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any 
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the 
information contained in it.

Library of Congress Cataloging-in-Publication Data (Volume 1)

Hyde, Randall.

Write great code : understanding the machine / Randall Hyde.

p. cm.

ISBN 1-59327-003-8

1. Computer programming. 2. Computer architecture.  I. Title.

QA76.6.H94 2004

005.1--dc22

2003017502

No Starch Press, Copyright © 2006 by Randall Hyde



B R I E F  C O N T E N T S

Acknowledgments ..........................................................................................................xv

Introduction .................................................................................................................xvii

Chapter 1: Thinking Low-Level, Writing High-Level ..............................................................1

Chapter 2: Shouldn’t You Learn Assembly Language? .......................................................11

Chapter 3: 80x86 Assembly for the HLL Programmer ........................................................21

Chapter 4: PowerPC Assembly for the HLL Programmer ....................................................47

Chapter 5: Compiler Operation and Code Generation .....................................................61

Chapter 6: Tools for Analyzing Compiler Output ............................................................115

Chapter 7: Constants and High-Level Languages ............................................................165

Chapter 8: Variables in a High-Level Language .............................................................189

Chapter 9: Array Data Types .......................................................................................241

Chapter 10: String Data Types ....................................................................................281

Chapter 11: Pointer Data Types ...................................................................................315

Chapter 12: Record, Union, and Class Data Types ........................................................341

No Starch Press, Copyright © 2006 by Randall Hyde



vi Br ief  Con ten ts

Chapter 13: Arithmetic and Logical Expressions .............................................................385

Chapter 14: Control Structures and Programmatic Decisions ...........................................439

Chapter 15: Iterative Control Structures .........................................................................489

Chapter 16: Functions and Procedures ..........................................................................521

Engineering Software .................................................................................................579

Appendix: A Brief Comparison of the 80x86 and PowerPC CPU Families .........................581

Online Appendices .....................................................................................................589

Index .........................................................................................................................591

No Starch Press, Copyright © 2006 by Randall Hyde



C O N T E N T S  I N  D E T A I L

ACKNOWLEDGMENTS xv

INTRODUCTION xvii

1
THINKING LOW-LEVEL, WRITING HIGH-LEVEL 1

1.1 Misconceptions About Compiler Quality .............................................................. 2
1.2 Why Learning Assembly Language Is Still a Good Idea ......................................... 2
1.3 Why Learning Assembly Language Isn’t Absolutely Necessary................................ 3
1.4 Thinking Low-Level............................................................................................. 3

1.4.1 Compilers Are Only as Good as the Source Code You Feed Them.......... 4
1.4.2 Helping the Compiler Produce Better Machine Code ............................. 4
1.4.3 How to Think in Assembly While Writing HLL Code .............................. 5

1.5 Writing High-Level ............................................................................................ 7
1.6 Assumptions ..................................................................................................... 7
1.7 Language-Neutral Approach .............................................................................. 8
1.8 Characteristics of Great Code ............................................................................ 8
1.9 The Environment for This Text.............................................................................. 9
1.10 For More Information..................................................................................... 10

2
SHOULDN’T YOU LEARN ASSEMBLY LANGUAGE? 11

2.1 Roadblocks to Learning Assembly Language....................................................... 12
2.2 Write Great Code, Volume 2, to the Rescue....................................................... 12
2.3 High-Level Assemblers to the Rescue .................................................................. 13
2.4 The High-Level Assembler (HLA) ........................................................................ 14
2.5 Thinking High-Level, Writing Low-Level............................................................... 15
2.6 The Assembly Programming Paradigm (Thinking Low-Level) .................................. 16
2.7 The Art of Assembly Language and Other Resources ........................................... 18

3
80X86 ASSEMBLY FOR THE HLL PROGRAMMER 21

3.1 Learning One Assembly Language Is Good, Learning More Is Better ..................... 22
3.2 80x86 Assembly Syntaxes ............................................................................... 22
3.3 Basic 80x86 Architecture................................................................................. 23

3.3.1 Registers ........................................................................................ 23
3.3.2 80x86 General-Purpose Registers ..................................................... 24
3.3.3 The 80x86 EFLAGS Register............................................................. 25

No Starch Press, Copyright © 2006 by Randall Hyde



viii Conten t s in  Detai l

3.4 Literal Constants.............................................................................................. 26
3.4.1 Binary Literal Constants.................................................................... 26
3.4.2 Decimal Literal Constants ................................................................. 27
3.4.3 Hexadecimal Literal Constants .......................................................... 27
3.4.4 Character and String Literal Constants ............................................... 28
3.4.5 Floating-Point Literal Constants .......................................................... 29

3.5 Manifest (Symbolic) Constants in Assembly Language.......................................... 30
3.5.1 Manifest Constants in HLA ............................................................... 30
3.5.2 Manifest Constants in Gas ............................................................... 30
3.5.3 Manifest Constants in MASM and TASM ........................................... 31

3.6 80x86 Addressing Modes ............................................................................... 31
3.6.1 80x86 Register Addressing Modes ................................................... 31
3.6.2 Immediate Addressing Mode............................................................ 32
3.6.3 Displacement-Only Memory Addressing Mode ................................... 33
3.6.4 Register Indirect Addressing Mode .................................................... 35
3.6.5 Indexed Addressing Mode ............................................................... 36
3.6.6 Scaled-Indexed Addressing Modes.................................................... 38

3.7 Declaring Data in Assembly Language .............................................................. 39
3.7.1 Data Declarations in HLA................................................................. 40
3.7.2 Data Declarations in MASM and TASM............................................. 41
3.7.3 Data Declarations in Gas................................................................. 41

3.8 Specifying Operand Sizes in Assembly Language............................................... 44
3.8.1 Type Coercion in HLA ..................................................................... 44
3.8.2 Type Coercion in MASM and TASM ................................................. 45
3.8.3 Type Coercion in Gas ..................................................................... 45

3.9 The Minimal 80x86 Instruction Set .................................................................... 46
3.10 For More Information..................................................................................... 46

4
POWERPC ASSEMBLY FOR THE HLL PROGRAMMER 47

4.1 Learning One Assembly Language Is Good; More Is Better .................................. 48
4.2 Assembly Syntaxes.......................................................................................... 48
4.3 Basic PowerPC Architecture.............................................................................. 49

4.3.1 General-Purpose Integer Registers ..................................................... 49
4.3.2 General-Purpose Floating-Point Registers ............................................ 49
4.3.3 User-Mode-Accessible Special-Purpose Registers ................................. 49

4.4 Literal Constants.............................................................................................. 52
4.4.1 Binary Literal Constants.................................................................... 52
4.4.2 Decimal Literal Constants ................................................................. 53
4.4.3 Hexadecimal Literal Constants .......................................................... 53
4.4.4 Character and String Literal Constants ............................................... 53
4.4.5 Floating-Point Literal Constants .......................................................... 53

4.5 Manifest (Symbolic) Constants in Assembly Language.......................................... 54
4.6 PowerPC Addressing Modes ............................................................................ 54

4.6.1 PowerPC Register Access ................................................................. 54
4.6.2 The Immediate Addressing Mode...................................................... 54
4.6.3 PowerPC Memory Addressing Modes................................................ 55

4.7 Declaring Data in Assembly Language .............................................................. 56
4.8 Specifying Operand Sizes in Assembly Language............................................... 59
4.9 The Minimal Instruction Set............................................................................... 59
4.10 For More Information..................................................................................... 59

No Starch Press, Copyright © 2006 by Randall Hyde



Conten ts  in  Detai l ix

5
COMPILER OPERATION AND CODE GENERATION 61

5.1 File Types That Programming Languages Use...................................................... 62
5.2 Programming Language Source Files ................................................................. 62

5.2.1 Tokenized Source Files .................................................................... 62
5.2.2 Specialized Source File Formats........................................................ 63

5.3 Types of Computer Language Processors............................................................ 63
5.3.1 Pure Interpreters .............................................................................. 64
5.3.2 Interpreters ..................................................................................... 64
5.3.3 Compilers ...................................................................................... 64
5.3.4 Incremental Compilers ..................................................................... 65

5.4 The Translation Process.................................................................................... 66
5.4.1 Lexical Analysis and Tokens ............................................................. 68
5.4.2 Parsing (Syntax Analysis) ................................................................. 69
5.4.3 Intermediate Code Generation.......................................................... 69
5.4.4 Optimization .................................................................................. 70
5.4.5 Comparing Different Compilers’ Optimizations ................................... 81
5.4.6 Native Code Generation ................................................................. 81

5.5 Compiler Output ............................................................................................. 81
5.5.1 Emitting HLL Code as Compiler Output .............................................. 82
5.5.2 Emitting Assembly Language as Compiler Output................................ 83
5.5.3 Emitting Object Files as Compiler Output ........................................... 84
5.5.4 Emitting Executable Files as Compiler Output ..................................... 85

5.6 Object File Formats ......................................................................................... 85
5.6.1 The COFF File Header ..................................................................... 86
5.6.2 The COFF Optional Header ............................................................. 88
5.6.3 COFF Section Headers .................................................................... 91
5.6.4 COFF Sections................................................................................ 93
5.6.5 The Relocation Section..................................................................... 94
5.6.6 Debugging and Symbolic Information................................................ 94
5.6.7 Learning More About Object File Formats .......................................... 94

5.7 Executable File Formats ................................................................................... 94
5.7.1 Pages, Segments, and File Size ........................................................ 95
5.7.2 Internal Fragmentation ..................................................................... 97
5.7.3 So Why Optimize for Space?........................................................... 98

5.8 Data and Code Alignment in an Object File ....................................................... 99
5.8.1 Choosing a Section Alignment Size................................................. 100
5.8.2 Combining Sections ...................................................................... 101
5.8.3 Controlling the Section Alignment ................................................... 102
5.8.4 Section Alignment and Library Modules ........................................... 102

5.9 Linkers and Their Effect on Code ..................................................................... 110
5.10 For More Information................................................................................... 113

6
TOOLS FOR ANALYZING COMPILER OUTPUT 115

6.1 Background.................................................................................................. 116
6.2 Telling a Compiler to Produce Assembly Output ................................................ 117

6.2.1 Assembly Output from GNU and Borland Compilers ......................... 118
6.2.2 Assembly Output from Visual C++ .................................................. 118
6.2.3 Example Assembly Language Output............................................... 118
6.2.4 Analyzing Assembly Output from a Compiler ................................... 128

No Starch Press, Copyright © 2006 by Randall Hyde



x Conten ts  in  Detai l

6.3 Using Object-Code Utilities to Analyze Compiler Output .................................... 129
6.3.1 The Microsoft dumpbin.exe Utility ................................................... 129
6.3.2 The FSF/GNU objdump.exe Utility .................................................. 142

6.4 Using a Disassembler to Analyze Compiler Output............................................ 146
6.5 Using a Debugger to Analyze Compiler Output ................................................ 149

6.5.1 Using an IDE’s Debugger ............................................................... 149
6.5.2 Using a Stand-Alone Debugger....................................................... 151

6.6 Comparing Output from Two Compilations ...................................................... 152
6.6.1 Before-and-After Comparisons with diff ............................................ 153
6.6.2 Manual Comparison ..................................................................... 162

6.7 For More Information..................................................................................... 163

7
CONSTANTS AND HIGH-LEVEL LANGUAGES 165

7.1 Literal Constants and Program Efficiency .......................................................... 166
7.2 Literal Constants Versus Manifest Constants ...................................................... 168
7.3 Constant Expressions ..................................................................................... 169
7.4 Manifest Constants Versus Read-Only Memory Objects...................................... 171
7.5 Enumerated Types......................................................................................... 172
7.6 Boolean Constants ........................................................................................ 174
7.7 Floating-Point Constants ................................................................................. 176
7.8 String Constants............................................................................................ 182
7.9 Composite Data Type Constants ..................................................................... 186
7.10 For More Information................................................................................... 188

8
VARIABLES IN A HIGH-LEVEL LANGUAGE 189

8.1 Runtime Memory Organization ....................................................................... 190
8.1.1 The Code, Constant, and Read-Only Sections................................... 191
8.1.2 The Static Variables Section ........................................................... 193
8.1.3 The BSS Section............................................................................ 194
8.1.4 The Stack Section.......................................................................... 195
8.1.5 The Heap Section and Dynamic Memory Allocation .......................... 196

8.2 What Is a Variable? ...................................................................................... 196
8.2.1 Attributes ..................................................................................... 197
8.2.2 Binding........................................................................................ 197
8.2.3 Static Objects ............................................................................... 197
8.2.4 Dynamic Objects .......................................................................... 197
8.2.5 Scope.......................................................................................... 198
8.2.6 Lifetime ........................................................................................ 198
8.2.7 So What Is a Variable? ................................................................. 199

8.3 Variable Storage .......................................................................................... 199
8.3.1 Static Binding and Static Variables.................................................. 199
8.3.2 Pseudo-Static Binding and Automatic Variables................................. 203
8.3.3 Dynamic Binding and Dynamic Variables ........................................ 206

8.4 Common Primitive Data Types ........................................................................ 210
8.4.1 Integer Variables .......................................................................... 210
8.4.2 Floating-Point/Real Variables ......................................................... 213
8.4.3 Character Variables ...................................................................... 214
8.4.4 Boolean Variables......................................................................... 215

No Starch Press, Copyright © 2006 by Randall Hyde



Conten ts  in  Detai l xi

8.5 Variable Addresses and High-level Languages.................................................. 215
8.5.1 Storage Allocation for Global and Static Variables ........................... 216
8.5.2 Using Automatic Variables to Reduce Offset Sizes............................. 217
8.5.3 Storage Allocation for Intermediate Variables ................................... 223
8.5.4 Storage Allocation for Dynamic Variables and Pointers...................... 224
8.5.5 Using Records/Structures to Reduce Instruction Offset Sizes................ 226
8.5.6 Register Variables ......................................................................... 228

8.6 Variable Alignment in Memory ....................................................................... 229
8.6.1 Records and Alignment.................................................................. 235

8.7 For More Information..................................................................................... 239

9
ARRAY DATA TYPES 241

9.1 What Is an Array? ........................................................................................ 242
9.1.1 Array Declarations ........................................................................ 242
9.1.2 Array Representation in Memory..................................................... 246
9.1.3 Accessing Elements of an Array ...................................................... 250
9.1.4 Padding Versus Packing................................................................. 252
9.1.5 Multidimensional Arrays ................................................................ 255
9.1.6 Dynamic Versus Static Arrays ......................................................... 270

9.2 For More Information..................................................................................... 279

10
STRING DATA TYPES 281

10.1 Character String Formats ............................................................................. 282
10.1.1 Zero-Terminated Strings ............................................................... 283
10.1.2 Length-Prefixed Strings ................................................................. 300
10.1.3 7-Bit Strings ................................................................................ 302
10.1.4 HLA Strings ................................................................................ 303
10.1.5 Descriptor-Based Strings .............................................................. 306

10.2 Static, Pseudo-Dynamic, and Dynamic Strings................................................. 307
10.2.1 Static Strings .............................................................................. 308
10.2.2 Pseudo-Dynamic Strings ............................................................... 308
10.2.3 Dynamic Strings.......................................................................... 308

10.3 Reference Counting for Strings...................................................................... 309
10.4 Delphi/Kylix Strings .................................................................................... 310
10.5 Using Strings in a High-Level Language ......................................................... 310
10.6 Character Data in Strings............................................................................. 312
10.7 For More Information................................................................................... 314

11
POINTER DATA TYPES 315

11.1 Defining and Demystifying Pointers ............................................................... 316
11.2 Pointer Implementation in High-Level Languages.............................................. 317
11.3 Pointers and Dynamic Memory Allocation ...................................................... 320
11.4 Pointer Operations and Pointer Arithmetic ...................................................... 320

11.4.1 Adding an Integer to a Pointer...................................................... 322
11.4.2 Subtracting an Integer from a Pointer............................................. 323

No Starch Press, Copyright © 2006 by Randall Hyde



xii Content s  i n De ta i l

11.4.3 Subtracting a Pointer from a Pointer .............................................. 324
11.4.4 Comparing Pointers..................................................................... 325
11.4.5 Logical AND/OR and Pointers...................................................... 327
11.4.6 Other Operations with Pointers ..................................................... 328

11.5 A Simple Memory Allocator Example ............................................................ 329
11.6 Garbage Collection .................................................................................... 332
11.7 The OS and Memory Allocation.................................................................... 332
11.8 Heap Memory Overhead............................................................................. 333
11.9 Common Pointer Problems............................................................................ 335

11.9.1 Using an Uninitialized Pointer....................................................... 336
11.9.2 Using a Pointer That Contains an Illegal Value................................ 337
11.9.3 Continuing to Use Storage After It Has Been Freed.......................... 337
11.9.4 Failing to Free Storage When Done with It ..................................... 338
11.9.5 Accessing Indirect Data Using the Wrong Data Type....................... 339

11.10 For More Information................................................................................. 340

12
RECORD, UNION, AND CLASS DATA TYPES 341

12.1 Records ..................................................................................................... 342
12.1.1 Record Declarations in Various Languages ..................................... 342
12.1.2 Instantiation of a Record .............................................................. 344
12.1.3 Initialization of Record Data at Compile Time ................................. 350
12.1.4 Memory Storage of Records ......................................................... 355
12.1.5 Using Records to Improve Memory Performance ............................. 358
12.1.6 Dynamic Record Types and Databases .......................................... 359

12.2 Discriminant Unions..................................................................................... 360
12.3 Union Declarations in Various Languages ...................................................... 360

12.3.1 Union Declarations in C/C++....................................................... 361
12.3.2 Union Declarations in Pascal/Delphi/Kylix .................................... 361
12.3.3 Union Declarations in HLA ........................................................... 362

12.4 Memory Storage of Unions .......................................................................... 362
12.5 Other Uses of Unions .................................................................................. 363
12.6 Variant Types ............................................................................................. 364
12.7 Namespaces .............................................................................................. 369
12.8 Classes and Objects.................................................................................... 371

12.8.1 Classes Versus Objects ................................................................ 371
12.8.2 Simple Class Declarations in C++ ................................................. 371
12.8.3 Virtual Method Tables.................................................................. 373
12.8.4 Sharing VMTs............................................................................. 377
12.8.5 Inheritance in Classes .................................................................. 377
12.8.6 Polymorphism in Classes .............................................................. 380
12.8.7 Classes, Objects, and Performance ............................................... 381

12.9 For More Information................................................................................... 382

13
ARITHMETIC AND LOGICAL EXPRESSIONS 385

13.1 Arithmetic Expressions and Computer Architecture .......................................... 386
13.1.1 Stack-Based Machines ................................................................. 386
13.1.2 Accumulator-Based Machines ....................................................... 391

No Starch Press, Copyright © 2006 by Randall Hyde



Conten t s  in  Detai l xiii

13.1.3 Register-Based Machines.............................................................. 393
13.1.4 Typical Forms of Arithmetic Expressions ......................................... 394
13.1.5 Three-Address Architectures.......................................................... 395
13.1.6 Two-Address Architectures............................................................ 395
13.1.7 Architectural Differences and Your Code........................................ 396
13.1.8 Handling Complex Expressions..................................................... 397

13.2 Optimization of Arithmetic Statements ........................................................... 397
13.2.1 Constant Folding......................................................................... 398
13.2.2 Constant Propagation .................................................................. 399
13.2.3 Dead Code Elimination................................................................ 400
13.2.4 Common Subexpression Elimination .............................................. 402
13.2.5 Strength Reduction ...................................................................... 406
13.2.6 Induction.................................................................................... 410
13.2.7 Loop Invariants ........................................................................... 413
13.2.8 Optimizers and Programmers ....................................................... 416

13.3 Side Effects in Arithmetic Expressions ............................................................ 416
13.4 Containing Side Effects: Sequence Points ....................................................... 421
13.5 Avoiding Problems Caused by Side Effects..................................................... 425
13.6 Forcing a Particular Order of Evaluation ........................................................ 425
13.7 Short-Circuit Evaluation ................................................................................ 427

13.7.1 Short-Circuit Evaluation and Boolean Expressions............................ 428
13.7.2 Forcing Short-Circuit or Complete Boolean Evaluation...................... 430
13.7.3 Efficiency Issues .......................................................................... 432

13.8 The Relative Cost of Arithmetic Operations ..................................................... 436
13.9 For More Information................................................................................... 437

14
CONTROL STRUCTURES AND
PROGRAMMATIC DECISIONS 439

14.1 Control Structures Are Slower Than Computations! .......................................... 440
14.2 Introduction to Low-Level Control Structures..................................................... 440
14.3 The goto Statement...................................................................................... 443
14.4 break, continue, next, return, and Other Limited Forms of the goto Statement ..... 447
14.5 The if Statement .......................................................................................... 448

14.5.1 Improving the Efficiency of Certain if/else Statements ...................... 450
14.5.2 Forcing Complete Boolean Evaluation in an if Statement .................. 453
14.5.3 Forcing Short-Circuit Boolean Evaluation in an if Statement .............. 460

14.6 The switch/case Statement ........................................................................... 466
14.6.1 Semantics of a switch/case Statement ........................................... 467
14.6.2 Jump Tables Versus Chained Comparisons ..................................... 468
14.6.3 Other Implementations of switch/case ........................................... 475
14.6.4 Compiler Output for switch Statements........................................... 486

14.7 For More Information................................................................................... 486

15
ITERATIVE CONTROL STRUCTURES 489

15.1 The while Loop ........................................................................................... 489
15.1.1 Forcing Complete Boolean Evaluation in a while Loop..................... 492
15.1.2 Forcing Short-Circuit Boolean Evaluation in a while Loop ................. 501

No Starch Press, Copyright © 2006 by Randall Hyde



xiv Content s  i n De ta i l

15.2 The repeat..until (do..until/do..while) Loop..................................................... 504
15.2.1 Forcing Complete Boolean Evaluation in a repeat..until Loop............ 507
15.2.2 Forcing Short-Circuit Boolean Evaluation in a repeat..until Loop ........ 510

15.3 The forever..endfor Loop .............................................................................. 515
15.3.1 Forcing Complete Boolean Evaluation in a forever Loop................... 518
15.3.2 Forcing Short-Circuit Boolean Evaluation in a forever Loop............... 518

15.4 The Definite Loop (for Loops) ........................................................................ 518
15.5 For More Information................................................................................... 520

16
FUNCTIONS AND PROCEDURES 521

16.1 Simple Function and Procedure Calls ............................................................. 522
16.1.1 Storing the Return Address ........................................................... 525
16.1.2 Other Sources of Overhead ......................................................... 529

16.2 Leaf Functions and Procedures ...................................................................... 530
16.3 Macros and Inline Functions ......................................................................... 534
16.4 Passing Parameters to a Function or Procedure ............................................... 540
16.5 Activation Records and the Stack .................................................................. 547

16.5.1 Composition of the Activation Record ............................................ 549
16.5.2 Assigning Offsets to Local Variables .............................................. 552
16.5.3 Associating Offsets with Parameters .............................................. 554
16.5.4 Accessing Parameters and Local Variables ..................................... 559

16.6 Parameter-Passing Mechanisms..................................................................... 567
16.6.1 Pass-by-Value ............................................................................. 568
16.6.2 Pass-by-Reference........................................................................ 568

16.7 Function Return Values................................................................................. 570
16.8 For More Information................................................................................... 577

ENGINEERING SOFTWARE 579

APPENDIX
A BRIEF COMPARISON OF THE 80X86 AND
POWERPC CPU FAMILIES 581

A.1 Architectural Differences Between RISC and CISC............................................. 582
A.1.1 Work Accomplished per Instruction................................................. 582
A.1.2 Instruction Size ............................................................................. 583
A.1.3 Clock Speed and Clocks per Instruction........................................... 583
A.1.4 Memory Access and Addressing Modes .......................................... 584
A.1.5 Registers...................................................................................... 585
A.1.6 Immediate (Constant) Operands ..................................................... 585
A.1.7 Stacks ......................................................................................... 585

A.2 Compiler and Application Binary Interface Issues.............................................. 586
A.3 Writing Great Code for Both Architectures....................................................... 587

ONLINE APPENDICES 589

INDEX 591

No Starch Press, Copyright © 2006 by Randall Hyde



A C K N O W L E D G M E N T S

Originally, the material in this book was intended to appear as the last 
chapter of Write Great Code, Volume 1. Hillel Heinstein, the developmental 
editor for Volume 1, was concerned that the chapter was way too long and, 
despite its length, did not do the topic justice. We decided to expand the 
material and turn it into a separate volume, so Hillel is the first person I 
must acknowledge for this book’s existence.

Of course, turning a 200-page chapter into a complete book is a major 
undertaking, and there have been a large number of people involved with 
the production of this book. I’d like to take a few moments to mention their 
names and the contributions they’ve made.

Mary Philips, a dear friend who helped me clean up The Art of Assembly 
Language, including some material that found its way into this book.

Bill Pollock, the publisher, who believes in the value of this series and 
has offered guidance and moral support.

Elizabeth Campbell, production manager and my major contact at No 
Starch, who has shepherded this project and made it a reality.

Kathy Grider-Carlyle, the editor, who lent her eyes to the grammar.

Jim Compton, the developmental editor, who spent considerable time 
improving the readability of this book.

No Starch Press, Copyright © 2006 by Randall Hyde



xvi Acknowledgments

Stephanie Provines, whose proofreading caught several typographical 
and layout errors.

Riley Hoffman, who handled the page layout chores and helped ensure 
that the book (especially the code listings) was readable.

Christina Samuell, who also worked on the book’s layout and provided 
lots of general production help.

Benjamin David Lunt, the technical reviewer, who helped ensure the 
technical quality of this book.

Leigh Poehler and Patricia Witkin, who’ll handle the sales and market-
ing of this book.

I would also like to acknowledge Susan Berge and Rachel Gunn, former 
editors at No Starch Press. Although they moved on to other positions before 
getting to see the final product, their input on this project was still valuable.

Finally, I would like to dedicate this book to my nieces and nephews: 
Gary, Courtney (Kiki), Cassidy, Vincent, Sarah Dawn, David, and Nicholas. 
I figure they will get a kick out of seeing their names in print.

No Starch Press, Copyright © 2006 by Randall Hyde



I N T R O D U C T I O N

There are many aspects of great code—far 
too many to describe properly in a single 

book. Therefore, this second volume of the 
Write Great Code series concentrates on one impor-

tant part of great code: performance. As computer 
systems have increased in performance from MHz, to 
hundreds of MHz, to GHz, the performance of computer software has taken 
a back seat to other concerns. Today, it is not at all uncommon for software 
engineers to exclaim, “You should never optimize your code!” Funny, you 
don’t hear too many computer application users making such statements.

Although this book describes how to write efficient code, it is not a book 
about optimization. Optimization is a phase near the end of the software 
development cycle in which software engineers determine why their code 
does not meet performance specifications and then massage the code to 
achieve those specifications. But unfortunately, if no thought is put into the 
performance of the application until the optimization phase, it’s unlikely 
that optimization will prove practical. The time to ensure that an application 

No Starch Press, Copyright © 2006 by Randall Hyde



xviii In t roduc ti on

has reasonable performance characteristics is at the beginning, during the 
design and implementation phases. Optimization can fine-tune the perfor-
mance of a system, but it can rarely deliver a miracle. 

Although the quote is often attributed to Donald Knuth, who popular-
ized it, it was Tony Hoare who originally said, “Premature optimization is the 
root of all evil.” This statement has long been the rallying cry of software 
engineers who avoid any thought of application performance until the very 
end of the software-development cycle—at which point the optimization 
phase is typically ignored for economic or time-to-market reasons. However, 
Hoare did not say, “Concern about application performance during the 
early stages of an application’s development is the root of all evil.” He speci-
fically said premature optimization, which, back then, meant counting cycles 
and instructions in assembly language code—not the type of coding you 
want to do during initial program design, when the code base is rather fluid. 
So, Hoare’s comments were on the mark. The following excerpt from a 
short essay by Charles Cook (www.cookcomputing.com/blog/archives/
000084.html) describes the problem with reading too much into this 
statement:

I’ve always thought this quote has all too often led software 
designers into serious mistakes because it has been applied to a 
different problem domain to what was intended.

The full version of the quote is “We should forget about small 
efficiencies, say about 97% of the time: premature optimization is 
the root of all evil.” and I agree with this. It’s usually not worth 
spending a lot of time micro-optimizing code before it’s obvious 
where the performance bottlenecks are. But, conversely, when 
designing software at a system level, performance issues should 
always be considered from the beginning. A good software 
developer will do this automatically, having developed a feel for 
where performance issues will cause problems. An inexperienced 
developer will not bother, misguidedly believing that a bit of fine 
tuning at a later stage will fix any problems.

Hoare was really saying that software engineers should worry about other 
issues, like good algorithm design and good implementations of those algo-
rithms, before they worry about traditional optimizations, like how many 
CPU cycles a particular statement requires for execution.

Although you could certainly apply many of this book’s concepts during 
an optimization phase, most of the techniques here really need to be done 
during initial coding. If you put them off until you reach “code complete,” 
it’s unlikely they will ever find their way into your software. It’s just too much 
work to implement these ideas after the fact.

This book will teach you how to choose appropriate high-level language 
(HLL) statements that translate into efficient machine code with a modern 
optimizing compiler. With most HLLs, using different statements provides 
many ways to achieve a given result; and, at the machine level, some of these 
ways are naturally more efficient than others. Though there may be a very 
good reason for choosing a less-efficient statement sequence over a more 

No Starch Press, Copyright © 2006 by Randall Hyde



In t roduc ti on xix

efficient one (e.g., for readability purposes), the truth is that most software 
engineers have no idea about the runtime costs of HLL statements. Without 
such knowledge, they are unable to make an educated choice concerning 
statement selection. The goal of this book is to change that.

An experienced software engineer may argue that the implementation 
of these individual techniques produces only minor improvements in per-
formance. In some cases, this evaluation is correct; but we must keep in 
mind that these minor effects accumulate. While one can certainly abuse 
the techniques this book suggests, producing less readable and less main-
tainable code, it only makes sense that, when presented with two otherwise 
equivalent code sequences (from a system design point of view), you 
should choose the more efficient one. Unfortunately, many of today’s 
software engineers don’t know which of two implementations actually 
produces the more efficient code. 

Though you don’t need to be an expert assembly language programmer 
in order to write efficient code, if you’re going to study compiler output (as 
you will do in this book), you’ll need at least a reading knowledge of it. 
Chapters 3 and 4 provide a quick primer for 80x86 and PowerPC assembly 
language.

In Chapters 5 and 6, you’ll learn about determining the quality of your 
HLL statements by examining compiler output. These chapters describe 
disassemblers, object code dump tools, debuggers, various HLL compiler 
options for displaying assembly language code, and other useful software tools.

The remainder of the book, Chapters 7 through 15, describes how 
compilers generate machine code for different HLL statements and data 
types. Armed with this knowledge, you will be able to choose the most 
appropriate data types, constants, variables, and control structures to 
produce efficient applications.

While you read, keep Dr. Hoare’s quote in mind: “Premature optimiza-
tion is the root of all evil.” It is certainly possible to misapply the information 
in this book and produce code that is difficult to read and maintain. This 
would be especially disastrous during the early stages of your project’s design 
and implementation, when the code is fluid and subject to change. But 
remember: This book is not about choosing the most efficient statement 
sequence, regardless of the consequences; it is about understanding the cost 
of various HLL constructs so that, when you have a choice, you can make an 
educated decision concerning which sequence to use. Sometimes, there are 
legitimate reasons to choose a less efficient sequence. However, if you do not 
understand the cost of a given statement, there is no way for you to choose a 
more efficient alternative.

Those interested in reading some additional essays about “the root of all 
evil” might want to check out the following web pages (my apologies if these 
URLs have become inactive since publication):

http://blogs.msdn.com/ricom/archive/2003/12/12/43245.aspx

http://en.widipedia.org/wiki/Software_optimization

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



1
T H I N K I N G  L O W - L E V E L ,  

W R I T I N G  H I G H - L E V E L
“If you want to write the best high-level language code, learn assembly language.”

—Common programming advice

This book doesn’t teach anything revolu-
tionary. It describes a time-tested, well-proven 

approach to writing great code—to make sure 
you understand how the code you write will actually 
execute on a real machine. Programmers with a few 
decades of experience will probably find themselves nodding in recognition 
as they read this book. If they haven’t seen a lot of code written by younger 
programmers who’ve never really mastered this material, they might even 
write it off. This book (and Volume 1 of this series) attempts to fill the gaps 
in the education of the current generation of programmers, so they can write 
quality code, too.

This particular volume of the Write Great Code series will teach you the 
following concepts:

� Why it’s important to consider the low-level execution of your high-level 
programs

� How compilers generate machine code from high-level language (HLL) 
statements

No Starch Press, Copyright © 2006 by Randall Hyde



2 Chapter 1

� How compilers represent various data types using low-level, primitive, 
data types

� How to write your HLL code to help the compiler produce better 
machine code

� How to take advantage of a compiler’s optimization facilities

� How to “think” in assembly language (low-level terms) while writing 
HLL code

The journey to understanding begins with this chapter. In it, we’ll explore 
the following topics:

� Misconceptions programmers have about the code quality produced by 
typical compilers

� Why learning assembly language is still a good idea

� How to think in low-level terms while writing HLL code

� What you should know before reading this book

� How this book is organized

� And last, but not least, what constitutes great code

So without further ado, let’s begin!

1.1 Misconceptions About Compiler Quality

In the early days of the personal computer revolution, high-performance soft-
ware was written in assembly language. As time passed, optimizing compilers 
for high-level languages were improved, and their authors began claiming 
that the performance of compiler-generated code was within 10 to 50 percent 
of hand-optimized assembly code. Such proclamations ushered the ascent of 
high-level languages for PC application development, sounding the death 
knell for assembly language. Many programmers began quoting numbers 
like “my compiler achieves 90 percent of assembly’s speed, so it’s insane to 
use assembly language.” The problem is that they never bothered to write 
hand-optimized assembly versions of their applications to check their claims. 
Often, their assumptions about their compiler’s performance are wrong.

The authors of optimizing compilers weren’t lying. Under the right con-
ditions, an optimizing compiler can produce code that is almost as good as 
hand-optimized assembly language. However, the HLL code has to be written 
in an appropriate fashion to achieve these performance levels. To write HLL 
code in this manner requires a firm understanding of how computers operate 
and execute software. 

1.2 Why Learning Assembly Language Is Still a Good Idea

When programmers first began giving up assembly language in favor of using 
HLLs, they generally understood the low-level ramifications of the HLL state-
ments they were using and could choose their HLL statements appropriately. 
Unfortunately, the generation of computer programmers that followed them 

No Starch Press, Copyright © 2006 by Randall Hyde



Think ing Low -Level , Wr i t ing High -Level 3

did not have the benefit of mastering assembly language. As such, they were 
not in a position to wisely choose statements and data structures that HLLs 
could efficiently translate into machine code. Their applications, if they were 
measured against the performance of a comparable hand-optimized assembly 
language program, would surely embarrass whoever wrote the compiler.

Vetran programmers who recognized this problem offered a sagely piece 
of advice to the new programmers: “If you want to learn how to write good 
HLL code, you need to learn assembly language.” By learning assembly 
language, a programmer will be able to consider the low-level implications 
of their code and can make informed decisions concerning the best way to 
write applications in a high-level language.

1.3 Why Learning Assembly Language Isn’t Absolutely 
Necessary

While it’s probably a good idea for any well-rounded programmer to learn to 
program in assembly language, the truth is that learning assembly isn’t a 
necessary condition for writing great, efficient code. The important thing is 
to understand how HLLs translate statements into machine code so that you 
can choose appropriate HLL statements.

One way to learn how to do this is to become an expert assembly language 
programmer, but that takes considerable time and effort—and it requires 
writing a lot of assembly code.

A good question to ask is, “Can a programmer just study the low-level 
nature of the machine and improve the HLL code they write without 
becoming an expert assembly programmer in the process?” The answer is a 
qualified yes. The purpose of this book, the second in a series, is to teach you 
what you need to know to write great code without having to become an 
expert assembly language programmer.

1.4 Thinking Low-Level
When the Java language was first becoming popular in the late 1990s, 
complaints like the following were heard:

Java’s interpreted code is forcing me to take a lot more care when 
writing software; I can’t get away with using linear searches the way 
I could in C/C++. I have to use good (and more difficult to 
implement) algorithms like binary search.

Statements like that truly demonstrate the major problem with using 
optimizing compilers: They allow programmers to get lazy. Although optimiz-
ing compilers have made tremendous strides over the past several decades, 
no optimizing compiler can make up for poorly written HLL source code. 

Of course, many naive HLL programmers read about how marvelous 
the optimization algorithms are in modern compilers and assume that the 
compiler will produce efficient code regardless of what they feed their com-
pilers. But there is one problem with this attitude: although compilers can do 
a great job of translating well-written HLL code into efficient machine code, 

No Starch Press, Copyright © 2006 by Randall Hyde



4 Chapter 1

it is easy to feed the compiler poorly written source code that stymies the 
optimization algorithms. In fact, it is not uncommon to see C/C++ program-
mers bragging about how great their compiler is, never realizing how poor a 
job the compiler is doing because of how they’ve written their programs. 
The problem is that they’ve never actually looked at the machine code the 
compiler produces from their HLL source code. They blindly assume that 
the compiler is doing a good job because they’ve been told that “compilers 
produce code that is almost as good as what an expert assembly language 
programmer can produce.”

1.4.1 Compilers Are Only as Good as the Source Code You Feed Them
It goes without saying that a compiler won’t change your algorithms in 
order to improve the performance of your software. For example, if you 
use a linear search rather than a binary search, you cannot expect the 
compiler to substitute a better algorithm for you. Certainly, the optimizer 
may improve the speed of your linear search by a constant factor (e.g., 
double or triple the speed of your code), but this improvement may be 
nothing compared with using a better algorithm. In fact, it’s very easy to 
show that, given a sufficiently large database, a binary search processed 
by an interpreter with no optimization will run faster than a linear search 
algorithm processed by the best compiler. 

1.4.2 Helping the Compiler Produce Better Machine Code
Let’s assume that you’ve chosen the best possible algorithm(s) for your appli-
cation and you’ve spent the extra money to get the best compiler available. 
Is there something you can do to write HLL code that is more efficient than 
you would otherwise produce? Generally, the answer is, yes, there is.

One of the best-kept secrets in the compiler world is that most compiler 
benchmarks are rigged. Most real-world compiler benchmarks specify an 
algorithm to use, but they leave it up to the compiler vendors to actually 
implement the algorithm in their particular language. These compiler ven-
dors generally know how their compilers behave when fed certain code 
sequences, so they will write the code sequence that produces the best 
possible executable. 

Some may feel that this is cheating, but it’s really not. If a compiler 
is capable of producing that same code sequence under normal circum-
stances (that is, the code generation trick wasn’t developed specifically for the 
benchmark), then there is nothing wrong with showing off the compiler’s 
performance. And if the compiler vendor can pull little tricks like this, so can 
you. By carefully choosing the statements you use in your HLL source code, 
you can “manually optimize” the machine code the compiler produces.

Several levels of manual optimization are possible. At the most abstract 
level, you can optimize a program by selecting a better algorithm for the 
software. This technique is independent of the compiler and the language. 

No Starch Press, Copyright © 2006 by Randall Hyde



Think ing Low -Level , Wr i t ing High -Level 5

Dropping down a level of abstraction, the next step is to manually 
optimize your code based on the HLL that you’re using while keeping the 
optimizations independent of the particular implementation of that language. 
While such optimizations may not apply to other languages, they should apply 
across different compilers for the same language. 

Dropping down yet another level, you can start thinking about structur-
ing the code so that the optimizations are only applicable to a certain vendor 
or perhaps only a specific version of a compiler from some vendor. 

At perhaps the lowest level, you begin to consider the machine code 
that the compiler emits and adjust how you write statements in an HLL 
to force the generation of some desirable sequence of machine instruc-
tions. The Linux kernel is an example of this latter approach. Legend has 
it that the kernel developers were constantly tweaking the C code they 
wrote in the Linux kernel in order to control the 80x86 machine code that 
the GCC compiler was producing. 

Although this development process may be a bit overstated, one thing is 
for sure: Programmers employing this process will produce the best possible 
machine code. This is the type of code that is comparable to that produced 
by decent assembly language programmers, and it is the kind of compiler 
output that HLL programmers like to brag about when arguing that compilers 
produce code that is comparable to handwritten assembly. The fact that 
most people do not go to these extremes to write their HLL code never 
enters into the argument. Nevertheless, the fact remains that carefully 
written HLL code can be nearly as efficient as decent assembly code.

Will compilers ever produce code that is as good as what an expert 
assembly language programmer can write? The correct answer is no. 
However, careful programmers writing code in high-level languages like C 
can come close if they write their HLL code in a manner that allows the 
compiler to easily translate the program into efficient machine code. So, 
the real question is “How do I write my HLL code so that the compiler can 
translate it most efficiently?” Well, answering that question is the subject of 
this book. But the short answer is “Think in assembly; write in a high-level 
language.” Let’s take a quick look at how to do this.

1.4.3 How to Think in Assembly While Writing HLL Code
HLL compilers translate statements in that language to a sequence of one or 
more machine language (or assembly language) instructions. The amount 
of space in memory that an application consumes and the amount of time 
that an application spends in execution are directly related to the number of 
machine instructions and the type of machine instructions that the compiler 
emits. 

However, the fact that you can achieve the same result with two different 
code sequences in an HLL does not imply that the compiler generates the 
same sequence of machine instructions for each approach. The HLL if and 

No Starch Press, Copyright © 2006 by Randall Hyde



6 Chapter 1

switch/case statements are classic examples. Most introductory programming 
texts suggest that a chain of if-elseif-else statements is equivalent to a 
switch/case statement. Let’s examine the following trivial C example:

switch( x )

    {

        case 1:

            printf( "X=1\n" );

            break;

        case 2:

            printf( "X=2\n" );

            break;

        case 3:

            printf( "X=3\n" );

            break;

        case 4:

            printf( "X=4\n" );

            break;

        default:

            printf( "X does not equal 1, 2, 3, or 4\n" );

    }

/* equivalent IF statement */

    if( x == 1 )

            printf( "X=1\n" );

    else if( x == 2 )

            printf( "X=2\n" );

    else if( x == 3 )

            printf( "X=3\n" );

    else if( x == 4 )

            printf( "X=4\n" );

    else

            printf( "X does not equal 1, 2, 3, or 4\n" );

Although these two code sequences might be semantically equivalent 
(that is, they compute the same result), there is no guarantee whatsoever at 
all that the compiler will generate the same sequence of machine instructions 
for these two examples. 

Which one will be better? Unless you understand how the compiler 
translates statements like these into machine code, and you have a basic 
understanding of the different efficiencies between various machine 
instructions, you can’t evaluate and choose one sequence over the other. 
Programmers who fully understand how a compiler will translate these two 
sequences can judiciously choose one or the other of these two sequences 
based on the quality of the code they expect the compiler to produce. 

No Starch Press, Copyright © 2006 by Randall Hyde



Think ing Low -Level , Wr i t ing High -Level 7

By thinking in low-level terms when writing HLL code, a programmer 
can help an optimizing compiler approach the code quality level achieved 
by hand-optimized assembly language code. Sadly, the converse is usually 
True as well: if a programmer does not consider the low-level ramifications 
of his HLL code, the compiler will rarely generate the best possible machine 
code.

1.5 Writing High-Level
One problem with thinking in low-level terms while writing high-level code is 
that it is almost as much work to write HLL code in this fashion as it is to write 
assembly code. This negates many of the familiar benefits of writing programs 
in HLLs such as faster development time, better readability, easier mainte-
nance, and so on. If you’re sacrificing the benefits of writing applications in 
an HLL, why not simply write them in assembly language to begin with?

As it turns out, thinking in low-level terms won’t lengthen your overall 
project schedule as much as you would expect. Although it does slow down 
the initial coding, the resulting HLL code will still be readable and portable, 
and it will still maintain the other attributes of well-written, great code. But 
more importantly, it will also possess some efficiency that it wouldn’t other-
wise have. Once the code is written, you won’t have to constantly think about 
it in low-level terms during the maintenance and enhancement phases of 
the software life cycle. Therefore, thinking in low-level terms during the initial 
software development stage will retain the advantages of both low-level and 
high-level coding (efficiency plus ease of maintenance) without the corre-
sponding disadvantages.

1.6 Assumptions

This book was written with certain assumptions about the reader’s prior 
knowledge. You’ll receive the greatest benefit from this material if your 
personal skill set matches these assumptions:

� You should be reasonably competent in at least one imperative (proce-
dural) programming language. This includes C and C++, Pascal, BASIC, 
and assembly, as well as languages like Ada, Modula-2, and FORTRAN.

� You should be capable of taking a small problem description and work-
ing through the design and implementation of a software solution for 
that problem. A typical semester or quarter course at a college or univer-
sity (or several months of experience on your own) should be sufficient 
preparation.

� You should have a basic grasp of machine organization and data repre-
sentation. You should know about the hexadecimal and binary numbering 
systems. You should understand how computers represent various high-
level data types such as signed integers, characters, and strings in memory. 
Although the next couple of chapters provide a primer on machine 

No Starch Press, Copyright © 2006 by Randall Hyde



8 Chapter 1

language, it would help considerably if you’ve picked up this informa-
tion along the way. Write Great Code, Volume 1 fully covers the subject 
of machine organization if you feel your knowledge in this area is a 
little weak.

1.7 Language-Neutral Approach

Although this book assumes you are conversant in at least one imperative 
language, it is not entirely language specific; its concepts transcend whatever 
programming language(s) you’re using. To help make the examples more 
accessible to readers, the programming examples we’ll use will rotate among 
several languages such as C/C++, Pascal, BASIC, and assembly. When 
presenting examples, I’ll explain exactly how the code operates so that even 
if you are unfamiliar with the specific programming language, you will be 
able to understand its operation by reading the accompanying description.

This book uses the following languages and compilers in various 
examples:

� C/C++: GCC, Microsoft’s Visual C++, and Borland C++

� Pascal: Borland’s Delphi/Kylix

� Assembly Language: Microsoft’s MASM, Borland’s TASM, HLA (the 
High-Level Assembler), and the GNU assembler, Gas

� BASIC: Microsoft’s Visual Basic

If you’re not comfortable working with assembly language, don’t worry; 
the two-chapter primer on assembly language and the online reference 
(www.writegreatcode.com) will allow you to read compiler output. If you 
would like to extend your knowledge of assembly language, you might want 
to check out my book The Art of Assembly Language (No Starch Press, 2003).

1.8 Characteristics of Great Code

What do we mean by great code? In Volume 1 of this series I presented several 
attributes of good code. It’s worth repeating that discussion here to set the 
goals for this book.

Different programmers will have different definitions for great code. 
Therefore, it is impossible to provide an all-encompassing definition that will 
satisfy everyone. However, there are certain attributes of great code that nearly 
everyone will agree on, and we’ll use some of these common characteristics to 
form our definition. For our purposes, here are some attributes of great code:

� Great code uses the CPU efficiently (that is, the code is fast).

� Great code uses memory efficiently (that is, the code is small).

� Great code uses system resources efficiently.

� Great code is easy to read and maintain.

� Great code follows a consistent set of style guidelines.

No Starch Press, Copyright © 2006 by Randall Hyde



Think ing Low -Level , Wr i t ing High -Level 9

� Great code uses an explicit design that follows established software 
engineering conventions.

� Great code is easy to enhance.

� Great code is well tested and robust (that is, it works).

� Great code is well documented.

We could easily add dozens of items to this list. Some programmers, 
for example, may feel that great code must be portable, must follow a given 
set of programming style guidelines, must be written in a certain language, 
or must not be written in a certain language. Some may feel that great code 
must be written as simply as possible while others may feel that great code is 
written quickly. Still others may feel that great code is created on time and 
under budget. And you can think of additional characteristics. 

So what is great code? Here is a reasonable definition:

Great code is software that is written using a consistent and 
prioritized set of good software characteristics. In particular, great 
code follows a set of rules that guide the decisions a programmer 
makes when implementing an algorithm as source code.

This book will concentrate on some of the efficiency aspects of writing 
great code. Although efficiency might not always be the primary goal of a 
software development effort, most people will generally agree that inefficient 
code is not great code. This does not suggest that code isn’t great if it isn’t as 
efficient as possible. However, code that is grossly inefficient (that is, noticeably 
inefficient) never qualifies as great code. And inefficiency is one of the major 
problems with modern applications, so it’s an important topic to emphasize.

1.9 The Environment for This Text
Although this text presents generic information, parts of the discussion will 
necessarily be system specific. Because the Intel Architecture PCs are, by far, 
the most common in use today, I will use that platform when discussing 
specific system-dependent concepts in this book. However, those concepts 
will still apply to other systems and CPUs (e.g., the PowerPC CPU in the 
older Power Macintosh systems or some other RISC CPU in a Unix box), 
although you may need to research the particular solution for an example on 
your specific platform.

Most of the examples in this book run under both Windows and Linux. 
When creating the examples, I tried to stick with standard library interfaces 
to the OS wherever possible and makes OS-specific calls only when the 
alternative was to write “less than great” code.

Most of the specific examples in this text will run on a late-model Intel-
Architecture (including AMD) CPU under Windows or Linux, with a reason-
able amount of RAM and other system peripherals normally found on a 
modern PC.1 The concepts, if not the software itself, will apply to Macs, Unix 
boxes, embedded systems, and even mainframes.

1 A few examples, such as a demonstration of PowerPC assembly language, do not run on Intel 
machines, but this is rare.

No Starch Press, Copyright © 2006 by Randall Hyde



10 Chapter  1

1.10 For More Information

No single book can completely cover everything you need to know in order 
to write great code. This book, therefore, concentrates on the areas that are 
most pertinent for writing great software, providing the 90 percent solution 
for those who are interested in writing the best possible code. To get that 
last 10 percent you’re going to need additional resources. Here are some 
suggestions:

� Become an expert assembly language programmer. Fluency in at least 
one assembly language will fill in many missing details that you just won’t 
get from this book. The purpose of this book is to teach you how to write 
the best possible code without actually becoming an assembly language 
programmer. However, the extra effort will improve your ability to think 
in low-level terms. An excellent choice for learning assembly language is 
my book The Art of Assembly Language (No Starch Press, 2003).

� Study compiler construction theory. Although this is an advanced topic 
in computer science, there is no better way to understand how compilers 
generate code than to study the theory behind compilers. While there is 
a wide variety of textbooks available covering this subject, there is consid-
erable prerequisite material. You should carefully review any book before 
you purchase it in order to determine if it was written at an appropriate 
level for your skill set. You can also use a search engine to find some 
excellent tutorials on the Internet.

� Study advanced computer architecture. Machine organization and 
assembly language programming is a subset of the study of computer 
architecture. While you may not need to know how to design your own 
CPUs, studying computer architecture may help you discover additional 
ways to improve the HLL code that you write. Computer Architecture, 
A Quantitative Approach by Patterson, Hennessy, and Goldberg (Morgan 
Kaufmann, 2002) is a well-respected textbook that covers this subject 
matter.

No Starch Press, Copyright © 2006 by Randall Hyde



2
S H O U L D N ’ T  Y O U  L E A R N  
A S S E M B L Y  L A N G U A G E ?

Although this book will teach you how 
to write better code without mastering 

assembly language, the absolute best HLL 
programmers do know assembly, and that 

knowledge is one of the reasons they write great code. 
Though this book can provide a 90 percent solution 
for those who just want to write great HLL code, learning assembly language 
is the only way to fill in that last 10 percent. Though teaching you to master 
assembly language is beyond the scope of this book, it is still important to 
discuss this subject and point you in the direction of other resources if you 
want to pursue the 100 percent solution after reading this book. In this 
chapter we’ll explore the following concepts:

� The problem with learning assembly language
� High-Level Assemblers (HLAs) and how they can make learning assem-

bly language easier
� How you can use real-world products like Microsoft Macro Assembler 

(MASM), Borland Turbo Assembler (TASM), and HLA to easily learn 
assembly language programming

No Starch Press, Copyright © 2006 by Randall Hyde



12 Chapter  2

� How an assembly language programmer thinks (the assembly language 
programming paradigm)

� Resources available to help you learn assembly language programming

2.1 Roadblocks to Learning Assembly Language

Learning assembly language, really learning assembly language, will offer two 
benefits: First, you will gain a complete understanding of the machine code 
that a compiler can generate. By mastering assembly language, you’ll achieve 
the 100 percent solution that the previous section describes and you will be 
able to write better HLL code. Second, you’ll be able to drop down into 
assembly language and code critical parts of your application in assembly 
language when your HLL compiler is incapable, even with your help, of 
producing the best possible code. So once you’ve absorbed the lessons of 
the following chapters to hone your HLL skills, moving on to learn assembly 
language is a very good idea.

There is only one catch to learning assembly language: In the past, 
learning assembly language has been a long, difficult, and frustrating task. 
The assembly language programming paradigm is sufficiently different from 
HLL programming that most people feel like they’re starting over from square 
one when learning assembly language. It’s very frustrating when you know 
how to achieve something in a programming language like C/C++, Java, 
Pascal, or Visual Basic, and you cannot figure out the solution in assembly 
language while learning assembly. 

Most programmers prefer being able to apply what they’ve learned in the 
past when learning something new. Unfortunately, traditional approaches to 
learning assembly language programming tend to force HLL programmers 
to forget what they’ve learned in the past. This, obviously, isn’t a very efficient 
use of existing knowledge. What was needed was a way to leverage existing 
knowledge while learning assembly language.

2.2 Write Great Code, Volume 2, to the Rescue

Once you’ve read through this book, there are three reasons you’ll find it 
much easier to learn assembly language:

� You will be better motivated to learn assembly language, as you’ll under-
stand why mastering assembly language can help you write better code.

� This book provides two brief primers on assembly language (one on 
80x86 assembly language, on one PowerPC assembly language), so even 
if you’ve never seen assembly language before, you’ll learn some assembly 
language by the time you finish this book.

� You will have already seen how compilers emit machine code for all the 
common control and data structures, so you will have learned one of the 
most difficult lessons a beginning assembly programmer faces—how to 
achieve things in assembly language that they already know how to do in 
an HLL.

No Starch Press, Copyright © 2006 by Randall Hyde



Shouldn ’ t You  Learn Assembly Language? 13

Though this book will not teach you how to become an expert assembly 
language programmer, the large number of example programs that demon-
strate how compilers translate HLLs into machine code will aquaint you with 
many assembly language programming techniques. You will find these useful 
should you decide to learn assembly language after reading this book.

Certainly, you’ll find this book easier to read if you already know assem-
bly language. The important thing to note, however, is that you’ll also find 
assembly language easier to master once you’ve read this book. And as learn-
ing assembly language is probably the more time consuming of these two tasks 
(learning assembly or reading this book), the most efficient approach is 
probably going to be to read this book first.

2.3 High-Level Assemblers to the Rescue

Way back in 1995, I had a discussion with the UC Riverside Computer Science 
department chair. I lamented the fact that students had to start all over when 
taking the assembly course and how much time it took for them to relearn so 
many things. As the discussion progressed, it became clear that the problem 
wasn’t with assembly language, per se, but with the syntax of existing assem-
blers (like Microsoft’s Macro Assembler, MASM). Learning assembly language 
entailed a whole lot more than learning a few machine instructions. First of 
all, you have to learn a new programming style. Mastering assembly language 
doesn’t consist of learning the semantics of a few machine instructions; you 
also have to learn how to put those instructions together to solve real-world 
problems. And that’s the hard part to mastering assembly language.

Second, pure assembly language is not something you can efficiently pick 
up a few instructions at a time. Writing even the simplest programs requires 
considerable knowledge and a repertoire of a couple dozen or more machine 
instructions. When you add that repertoire to all the other machine organiza-
tion topics students must learn in a typical assembly course, it’s often several 
weeks before they are prepared to write anything other than “spoon-fed” 
trivial applications in assembly language.

One important feature that MASM had back in 1995 was support for 
HLL-like control statements such as .if, .while, and so on. While these 
statements are not true machine instructions, they do allow students to use 
familiar programming constructs early in the course, until they’ve had time 
to learn enough machine instructions so they can write their applications 
using low-level machine instructions. By using these high-level constructs 
early on in the term, students can concentrate on other aspects of assembly 
language programming and not have to assimilate everything all at once. 
This allows students to start writing code much sooner in the course and, 
as a result, they wind up covering more material by the time the term is 
complete.

An assembler that provides control statements similar to those found in 
HLLs (in additional to the traditional low-level machine instructions that do 
the same thing) is called a high-level assembler. Microsoft’s MASM (v6.0 and 
later) and Borland’s TASM (v5.0 and later) are good examples of high-level 

No Starch Press, Copyright © 2006 by Randall Hyde



14 Chapter  2

assemblers. In theory, with an appropriate textbook that teaches assembly 
language programming using these high-level assemblers, students could 
begin writing simple programs during the very first week of the course.

The only problem with high-level assemblers like MASM and TASM is 
that they provide just a few HLL control statements and data types. Almost 
everything else is foreign to someone who is familiar with HLL programming. 
For example, data declarations in MASM and TASM are completely different 
than data declarations in most HLLs. Beginning assembly programmers still 
have to relearn a considerable amount of information, despite the presence 
of HLL-like control statements.

2.4 The High-Level Assembler (HLA)

Shortly after the discussion with my department chair, it occurred to me that 
there is no reason an assembler couldn’t adopt a more high-level syntax with-
out changing the semantics of assembly language. For example, consider the 
following statements in C/C++ and Pascal that declare an integer array 
variable:

int intVar[8]; // C/C++

var intVar: array[0..7] of integer; (* Pascal *)

Now consider the MASM declaration for the same object:

intVar sdword 8 dup (?) ;MASM

While the C/C++ and Pascal declarations differ from each other, the 
assembly language version is radically different from either. A C/C++ pro-
grammer will probably be able to figure out the Pascal declaration even if 
she’s never seen Pascal code before. The converse is also true. However, 
the Pascal and C/C++ programmers probably won’t be able to make heads 
or tails of the assembly language declaration. This is but one example of the 
problems HLL programmers face when first learning assembly language.

The sad part is that there really is no reason a variable declaration in 
assembly language has to be so radically different from declarations found in 
HLLs. It will make absolutely no difference in the final executable file which 
syntax an assembler uses for variable declarations. Given that, why shouldn’t 
an assembler use a more high-level-like syntax so people switching over from 
HLLs will find the assembler easier to learn? This was the question I was pon-
dering back in 1996 when discussing the assembly language course with my 
department chair. And that led me to develop a new assembler specifically 
geared toward teaching assembly language programming to students who 
had already mastered a high-level programming language: the High-Level 
Assembler, or HLA. In HLA, for example, the aforementioned array declaration 
looks like this:

var intVar:int32[8]; // HLA

No Starch Press, Copyright © 2006 by Randall Hyde



Shouldn ’ t You  Learn Assembly Language? 15

Though the syntax is slightly different from C/C++ and Pascal (actually, 
it’s a combination of the two), most HLL programmers will probably be able 
to figure out the meaning of this declaration.

The whole purpose of HLA’s design is to create an assembly language 
programming environment that is as familiar as possible to traditional 
(imperative) high-level programming languages, without sacrificing the 
ability to write real assembly language programs. Those components of the 
language that have nothing to do with machine instructions use a familiar 
high-level language syntax while the machine instructions still map on a 
one-to-one basis to the underlying 80x86 machine instructions.

By making HLA as similar as possible to various HLLs, students learning 
assembly language programming don’t have to spend as much time assimi-
lating a radically different syntax. Instead, they can apply their existing HLL 
knowledge, thus making the process of learning assembly language easier 
and faster.

A comfortable syntax for declarations and a few high-level-like control 
statements aren’t all you need to make learning assembly language as efficient 
as possible. One very common complaint about learning assembly language 
is that it provides very little support for the programmer—programmers have 
to constantly reinvent the wheel while writing assembly code. For example, 
when learning assembly language programming using MASM or TASM, we 
quickly discover that assembly language doesn’t provide useful I/O facilities 
such as the ability to print integer values as strings to the user’s console. 
Assembly programmers are responsible for writing such code themselves. 
Unfortunately, writing a decent set of I/O routines requires sophisticated 
knowledge of assembly language programming. Yet the only way to gain 
that knowledge is by writing a fair amount of code first, and writing such code 
without having any I/O routines is difficult. Therefore, another facility a 
good assembly language educational tool needs to provide is a set of I/O 
routines that allow beginning assembly programmers to do simple I/O tasks, 
like reading and writing integer values, before they have the sophistication to 
write such routines themselves. HLA provides this facility in the guise of the 
HLA Standard Library. This is a collection of subroutines and macros that make 
it very easy to write complex applications by simply calling those routines.

Because of the ever-increasing popularity of the HLA assembler, and the 
fact that HLA is a free, open-source, and public domain product available for 
Windows and Linux, this book uses HLA syntax for compiler-neutral exam-
ples involving assembly language. 

2.5 Thinking High-Level, Writing Low-Level

The goal of HLA is to allow a beginning assembly programmer to think in 
HLL terms while writing low-level code (in other words, the exact opposite 
of what this book is trying to teach). Ultimately, of course, an assembly pro-
grammer needs to think in low-level terms. But for the student first approach-
ing assembly language, being able to think in high-level terms is a Godsend—
the student can apply techniques he’s already learned in other languages 
when faced with a particular assembly language programming problem.

No Starch Press, Copyright © 2006 by Randall Hyde



16 Chapter  2

Eventually, the student of assembly language needs to set aside the high-
level control structures and use their low-level equivalents. But early on in the 
process, having those high-level statements available allows the student to 
concentrate on (and assimilate) other low-level programming concepts. 
By controlling the rate at which a student has to learn new concepts, the 
educational process can be made more efficient.

Ultimately, of course, the goal is to learn the low-level programming 
paradigm. And that means giving up HLL-like control structures and writing 
pure low-level code. That is, “thinking low-level and writing low-level.” Never-
theless, starting out by “thinking high-level while writing low-level” is a great 
way to learn assembly language programming. It’s much like stop smoking 
programs that use patches with various levels of nicotine in them—the patch 
wearer is gradually weaned off the need for nicotine. Similarly, a high-level 
assembler allows a programmer to be gradually weaned away from thinking 
in high-level terms. This approach is just as effective for learning assembly 
language as it is when you’re trying to stop smoking.

2.6 The Assembly Programming Paradigm (Thinking Low-
Level)

Programming in assembly language is quite different from programming in 
common HLLs. For this reason, many programmers find it difficult to learn 
how to write programs in assembly language. Fortunately, for this book, you 
need only a reading knowledge of assembly language to analyze compiler 
output; you don’t need to be able to write assembly language programs from 
scratch. This means that you don’t have to master the hard part of assembly 
language programming. Nevertheless, if you understand how assembly pro-
grams are written you will be able to understand why a compiler emits certain 
code sequences. To that end, we’ll spend time here to describe how assembly 
language programmers (and compilers) “think.”

The most fundamental aspect of the assembly language programming 
paradigm1 is that tasks you want to accomplish are broken up into tiny pieces 
that the machine can handle. Fundamentally, a CPU can only do a single, 
tiny, task at once (this is true even for CISC processors). Therefore, complex 
operations, like statements you’ll find in an HLL, have to be broken down 
into smaller components that the machine can execute directly. As an exam-
ple, consider the following Visual Basic assignment statement:

profits = sales - costOfGoods - overhead - commissions

No practical CPU is going to allow you to execute this entire VB statement 
as a single machine instruction. Instead, you’re going to have to break this 
down to a sequence of machine instructions that compute individual compo-
nents of this assignment statement. For example, many CPUs provide a subtract
instruction that lets you subtract one value from a machine register. Because 
the assignment statement in this example consists of three subtractions, you’re 

1 Paradigm means model. A programming paradigm is a model of how programming is done, so 
the assembly language programming paradigm is a description of the ways assembly programming 
is accomplished.

No Starch Press, Copyright © 2006 by Randall Hyde



Shouldn ’ t You  Learn Assembly Language? 17

going to have to break the assignment operation down into at least three 
different subtract instructions.

The 80x86 CPU family provides a fairly flexible subtract instruction: sub.
This particular instruction allows the following forms (in HLA syntax):

sub( constant, reg );       // reg = reg - constant

sub( constant, memory );    // memory = memory - constant

sub( reg1, reg2 );          // reg2 = reg2 - reg1

sub( memory, reg );         // reg = reg - memory

sub( reg, memory );         // memory = memory - reg

Assuming that all of the identifiers in the original Visual Basic code 
represent variables, we can use the 80x86 sub and mov instructions to 
implement the same operation with the following HLA code sequence:

// Get sales value into EAX register:

mov( sales, eax ); 

// Compute sales-costOfGoods (EAX := EAX - costOfGoods)

sub( costOfGoods, eax );

// Compute (sales-costOfGoods) - overhead

// (note: EAX contains sales-costOfGoods)

    

sub( overhead, eax );

// Compute (sales-costOfGoods-overhead) - commissions

// (note: EAX contains sales-costOfGoods-overhead)

sub( commissions, eax );

// Store result (in EAX) into profits:

mov( eax, profits );

The important thing to notice here is that a single Visual Basic statement 
has been broken down into five different HLA statements, each of which 
does a small part of the total calculation. The secret behind the assembly 
language programming paradigm is knowing how to break down complex 
operations into a simple sequence of machine instructions as was done in 
this example. We’ll take another look at this process in Chapter 13.

HLL control structures are another big area where complex operations 
are broken down into simpler statement sequences. For example, consider 
the following Pascal if statement:

if( i = j ) then begin

writeln( "i is equal to j" );

end;

No Starch Press, Copyright © 2006 by Randall Hyde



18 Chapter  2

CPUs do not support an if machine instruction. Instead, you compare 
two values that set condition-code flags and then test the result of these condi-
tion codes by using conditional jump instructions. A common way to translate 
an HLL if statement into assembly language is to test the opposite condition 
(i <> j) and then jump over the statements that would be executed if the 
original condition (i = j) evaluates to True. For example, here is a trans-
lation of the former Pascal if statement into HLA (using pure assembly 
language, that is, no HLL-like constructs):

mov( i, eax );      // Get i's value

    cmp( eax, j );      // Compare to j's value

    jne skipIfBody;     // Skip body of if statement if i <> j

    << code to print string >>

skipIfBody:

As the Boolean expressions in the HLL language control structures 
become more complex, the number of corresponding machine instructions 
also increases. But the process remains the same. Later, we’ll take a look at 
how compilers translate high-level control structures into assembly language 
(see Chapters 14 and 15).

Passing parameters to a procedure or function, accessing those para-
meters within the procedure or function, and accessing other data local to 
that procedure or function is another area where assembly language is quite 
a bit more complex than typical HLLs. We don’t have the prerequisites to go 
into how this is done here (or even make sense of a simple example), but rest 
assured that we will get around to covering this important subject a little later 
in this book (see Chapter 16).

The bottom line is that when converting some algorithm from a high-
level language, you have to break the problem into much smaller pieces in 
order to code it in assembly language. As noted earlier, the good news is that 
you don’t have to figure out which machine instructions to use when all you’re 
doing is reading assembly code—the compiler (or assembly programmer) 
that originally created the code will have already done this for you. All you’ve 
got to do is draw a correspondence between the HLL code and the assembly 
code. And how you accomplish that will be the subject of much of the rest of 
this book.

2.7 The Art of Assembly Language and Other Resources

While HLA is a great tool for learning assembly language, by itself it isn’t 
sufficient. A good set of educational materials that use HLA are absolutely 
necessary to learn assembly language using HLA. Fortunately, such material 
exists; in fact, HLA was written specifically to support those educational 
materials (rather than the educational materials being created to support 
HLA). The number one resource you’ll find for learning assembly pro-
gramming with HLA is The Art of Assembly Language (No Starch Press, 2003). 

No Starch Press, Copyright © 2006 by Randall Hyde



Shouldn ’ t You  Learn Assembly Language? 19

This book was specifically written to teach assembly language in the gradual 
manner this chapter describes. Experience with thousands and thousands 
of students and others who’ve read The Art of Assembly Language attests to the 
success of this approach. If you’re someone who knows an HLL and wants to 
learn assembly language programming, you should seriously consider taking 
a look at The Art of Assembly Language.

The Art of Assembly Language certainly isn’t the only resource available on 
assembly language programming. Jeff Duntemann’s Assembly Language Step-
by-Step (Wiley, 2000) is geared toward programmers who are learning 
assembly language programming as their first programming language (that 
is, they do not have any high-level programming language experience). 
Though readers of Write Great Code generally don’t fall into this category, this 
different approach to teaching assembly may work better for some people.

Programming from the Ground Up by Jonathon Barlett (Bartlett Publishing, 
2004) teaches assembly language programming using GNU’s Gas assembler. 
This book is especially useful to those who need to analyze GCC’s 80x86 
output. An older, free version of this book can be found online on Webster 
at http://webster.cs.ucr.edu/AsmTools/Gas/index.html.

Professional Assembly Language (Programmer to Programmer) by Richard Blum 
(Wrox, 2005) is another book that uses the GNU assembler on the 80x86 and 
should be of interest to those wanting to read GCC’s Gas output.

Dr. Paul Carter also has an interesting online tutorial on assembly lan-
guage programming. You can find links to Dr. Carter’s current version of the 
book on the links page on Webster at http://webster.cs.ucr.edu/links.htm.

Of course, Webster has lots of assembly language programming resources 
available, including several online e-texts. If you’re interested in learning 
more about assembly language programming, you’ll definitely want to visit 
the Webster site, at http://webster.cs.ucr.edu.

These are not the only sources of information about assembly language 
programming available. In particular, a quick search on the Internet using 
your favorite search engine will turn up thousands of pages of information 
about assembly language programming. There are also a couple of Usenet 
newsgroups, alt.lang.asm and comp.lang.asm.x86, where you can ask lots of 
questions concerning assembly language programming. There are several 
web-based forums for assembly language, as well. Once again, a search of the 
Internet via Google or some other Internet search engine will turn up more 
information than you’ll be able to digest any time soon.

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



3
8 0 X 8 6  A S S E M B L Y  F O R  T H E  H L L  

P R O G R A M M E R

Throughout this book, you’ll examine 
high-level language code and compare it to 

the machine code that a compiler generates 
for the high-level code. Making sense of a com-

piler’s output requires some knowledge of assembly 
language. Becoming an expert assembly programmer 
takes time and experience. Fortunately, such skill isn’t necessary for our pur-
poses. All you really need is the ability to read code generated by compilers 
and other assembly language programmers; you don’t need to be able to write 
assembly language programs from scratch. This chapter

� Describes the basic 80x86 machine architecture

� Provides a basic overview of 80x86 assembly language so that you will be 
able to read the 80x86 output produced by various compilers

� Describes the addressing modes that the 32-bit 80x86 CPUs support

� Describes the syntax that several common 80x86 assemblers use (HLA, 
MASM/TASM, and Gas)

No Starch Press, Copyright © 2006 by Randall Hyde



22 Chapter  3

� Describes how to use constants and declare data in assembly language 
programs

In addition to this chapter, you will also want to take a look at the 
online resources (www.writegreatcode.com), which present a minimal 
80x86 instruction set that you’ll need when examining compiler output.

3.1 Learning One Assembly Language Is Good, Learning 
More Is Better

If you intend to write code for a processor other than the 80x86, you should 
really learn how to read at least two different assembly languages. By doing 
so, you’ll avoid the pitfall of coding for the 80x86 in an HLL and then find-
ing that your “optimizations” only work on the 80x86 CPU. For this reason, 
Chapter 4 is an equivalent primer on the PowerPC CPU. You’ll see that both 
processor families rely on many of the same concepts, but that there are some 
important differences (summarized in the appendix).

Perhaps the main difference between complex instruction set computer 
(CISC) architectures such as the 80x86 and reduced instruction set computer 
(RISC) architectures like the PowerPC is the way they use memory. RISC 
architectures provide a relatively clumsy memory access, and applications go 
to great lengths to avoid accessing memory. The 80x86 architecture, on the 
other hand, can access memory in many different ways, and applications 
generally take advantage of this facility. While there are advantages and 
disadvantages to both approaches, the bottom line is that code running on 
an 80x86 has some fundamental differences from comparable code running 
on a RISC architecture such as the PowerPC. 

3.2 80x86 Assembly Syntaxes
While 80x86 programmers can choose from a wide variety of program 
development tools, this abundance has a minor drawback: syntactical 
incompatibility. Different compilers and debuggers for the 80x86 family 
output different assembly language listings for the exact same program. This 
is because those tools emit code for different assemblers. For example, 
Microsoft’s Visual C++ package generates assembly code compatible with 
Microsoft Macro Assembler (MASM). Borland’s C++ compiler generates 
code compatible with Borland’s Turbo Assembler (TASM). The GNU 
Compiler Suite (GCC) generates Gas-compatible source code (Gas is the 
GNU Assembler from the Free Software Foundation). In addition to the 
code that compilers emit, you’ll find tons of assembly programming 
examples written with assemblers like FASM, NASM, GoAsm, HLA, and 
more. 

It would be nice to use just a single assembler’s syntax throughout this 
book, but because our approach is not compiler specific, we must consider 
the syntaxes for several different common assemblers. This book will 
generally present non–compiler-specific examples using the High-Level 
Assembler (HLA). Therefore, this chapter will discuss the syntaxes for four 

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 23

assemblers: MASM, TASM, Gas, and HLA. Fortunately, once you master the 
syntax for one assembler, learning the syntax of other assemblers is very easy. 
It’s like switching from one dialect of BASIC to another.

3.3 Basic 80x86 Architecture

The Intel CPU is generally classified as a Von Neumann machine. Von 
Neumann computer systems contain three main building blocks: the central 
processing unit (CPU), memory, and input/output (I/O) devices. These three 
components are connected together using the system bus (consisting of the 
address, data, and control buses). The block diagram in Figure 3-1 shows this 
relationship.

Figure 3-1: Block diagram of a Von Neumann system

The CPU communicates with memory and I/O devices by placing a num-
eric value on the address bus to select one of the memory locations or I/O 
device port locations, each of which has a unique binary numeric address.
Then the CPU, I/O, and memory devices pass data among themselves by 
placing the data on the data bus. The control bus contains signals that 
determine the direction of the data transfer (to or from memory, and to 
or from an I/O device).

3.3.1 Registers

The register set is the most prominent feature within the CPU. Almost all 
calculations on the 80x86 CPU involve at least one register. For example, to 
add the value of two variables and store their sum into a third variable, you 
must load one of the variables into a register, add the second operand to 
the register, and then store the register’s value into the destination variable. 
Registers are middlemen in almost every calculation. Therefore, registers are 
very important in 80x86 assembly language programs.

The 80x86 CPU registers can be broken down into four categories: 
general-purpose registers, special-purpose application-accessible registers, 
segment registers, and special-purpose kernel-mode registers. We will not 

CPU

Memory

I/O devices

System bus

No Starch Press, Copyright © 2006 by Randall Hyde



24 Chapter  3

consider the last two sets of registers, because the segment registers are not 
used very much in modern 32-bit operating systems (e.g., Windows, BSD, 
BeOS, and Linux), and the special-purpose kernel-mode registers are 
intended for writing operating systems, debuggers, and other system-level 
tools. Such software construction is well beyond the scope of this text.

3.3.2 80x86 General-Purpose Registers

The 80x86 (Intel family) CPUs provide several general-purpose registers for 
application use. These include eight 32-bit registers that have the following 
names:

EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP

The E prefix on each name stands for extended. This prefix differentiates 
the 32-bit registers from the eight 16-bit registers that have the following 
names:

AX, BX, CX, DX, SI, DI, BP, and SP

Finally, the 80x86 CPUs provide eight 8-bit registers that have the 
following names:

AL, AH, BL, BH, CL, CH, DL, and DH

The most important thing to note about the general-purpose registers is 
that they are not independent. That is, the 80x86 does not provide 24 separate 
registers. Instead, it overlaps the 32-bit registers with the 16-bit registers, and 
it overlaps the 16-bit registers with the 8-bit registers. Figure 3-2 shows this 
relationship.

Figure 3-2: Intel 80x86 CPU general-purpose registers

The fact that modifying one register may modify as many as three other 
registers cannot be overemphasized. For example, modifying the EAX register 
may also modify the AL, AH, and AX registers. You will often see compiler-
generated code using this feature of the 80x86. For example, a compiler may 

CX

CH CL

ECX

DX

DH DL

EDX

AX

AL

EAX ESI

EDI

EBP

ESP

SI

BX

BH BL

EBX

DI

BP

SP

AH

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 25

clear (set to zero) all the bits in the EAX register and then load AL with a 
one or zero in order to produce a 32-bit True (1) or False (0) value. Some 
machine instructions manipulate only the AL register, yet the program may 
need to return those instructions’ results in EAX. By taking advantage of the 
register overlap, the compiler-generated code can use an instruction that 
manipulates AL to return that value in all of EAX.

Although Intel calls these registers general purpose, you should not infer 
that you can use any register for any purpose. The SP/ESP register pair for 
example, has a very special purpose that effectively prevents you from using it 
for any other purpose (it’s the stack pointer). Likewise, the BP/EBP register 
has a special purpose that limits its usefulness as a general-purpose register. 
All the 80x86 registers have their own special purposes that limit their use in 
certain contexts; we will consider these special uses as we discuss the machine 
instructions that use them (see the online resources).

3.3.3 The 80x86 EFLAGS Register

The 32-bit EFLAGS register encapsulates numerous single-bit Boolean 
(True/False) values (or flags). Most of these bits are either reserved for kernel 
mode (operating system) functions or are of little interest to application 
programmers. Eight of these bits are of interest to application programmers 
reading (or writing) assembly language code: the overflow, direction, interrupt 
disable,1 sign, zero, auxiliary carry, parity, and carry flags. Figure 3-3 shows 
their layout within the low-order (LO) 16 bits of the EFLAGS register.

Figure 3-3: Layout of the 80x86 flags register (LO 16 bits)

Of the eight flags that application programmers can use, four flags in par-
ticular are extremely valuable: the overflow, carry, sign, and zero flags. We call 
these four flags the condition codes. Each flag has a state—set or cleared—that 
you can use to test the result of previous computations. For example, after 
comparing two values, the condition-code flags will tell you if one value is less 
than, equal to, or greater than a second value.

1 Applications programs cannot modify the interrupt flag, but we’ll look at this flag later in this 
text, hence the discussion of this flag here.

Overflow
Direction
Interrupt

Sign
Zero

Auxiliary Carry

Parity

Carry

Not very
interesting to
application
programmers

15 0

No Starch Press, Copyright © 2006 by Randall Hyde



26 Chapter  3

3.4 Literal Constants

Most assemblers support literal numeric, character, and string constants. 
Unfortunately, just about every assembler out there uses a different syntax 
for literal constants. The following subsections describe the syntax for the 
assemblers we’ll be using in this book.

3.4.1 Binary Literal Constants

All assemblers provide the ability to specify base-2 (binary) literal constants. 
Few compilers emit binary constants, so you probably won’t see these values 
in the output a compiler produces, but you may see them in handwritten 
assembly code.

3.4.1.1 Binary Literal Constants in HLA

Binary literal constants in HLA begin with the special percent character (%)
followed by one or more binary digits (0 or 1). Underscore characters may 
appear between any two digits in a binary number. By convention, HLA 
programmers separate each group of four digits with an underscore. For 
example:

%1011

%1010_1111

%0011_1111_0001_1001

%1011001010010101

3.4.1.2 Binary Literal Constants in Gas

Binary literal constants in Gas begin with the special 0b prefix followed by 
one or more binary digits (0 or 1). For example:

0b1011

0b10101111

0b0011111100011001

0b1011001010010101

3.4.1.3 Binary Literal Constants in MASM and TASM

Binary literal constants in MASM/TASM consist of one or more binary digits 
(0 or 1) followed by the special b suffix. For example:

1011b

10101111b

0011111100011001b

1011001010010101b

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 27

3.4.2 Decimal Literal Constants

Decimal constants in most assemblers take the standard form—a sequence of 
one or more decimal digits without any special prefix or suffix. This is one of 
the two common numeric formats that compilers emit, so you will often see 
decimal literal constants when reading compiler output.

3.4.2.1 Decimal Literal Constants in HLA

HLA allows you to optionally insert underscores between any two digits in a 
decimal number. HLA programmers generally use underscores to separate 
groups of three digits in a decimal number. For example, take the following 
numbers:

123
1209345

In HLA a programmer could insert underscores as shown here:

1_024
1_021_567

3.4.2.2 Decimal Literal Constants in Gas, MASM, and TASM

Gas, MASM, and TASM use a string of decimal digits (the standard “computer” 
format for decimal values). For example:

123
1209345

MASM, TASM, and Gas (unlike HLA) do not allow embedded under-
scores in decimal literal constants.

3.4.3 Hexadecimal Literal Constants
Hexadecimal (base-16) literal constants are the other common numeric 
format you’ll find in assembly language programs (especially those that 
compilers emit).

3.4.3.1 Hexadecimal Literal Constants in HLA

Hexadecimal literal constants in HLA consist of a string of hexadecimal 
digits (0..9, a..f, or A..F) with a $ prefix. Underscores may optionally appear 
between any two hexadecimal digits in the number. By convention, HLA 
programmers separate sequences of four digits with underscores.

For example:

$1AB0

$1234_ABCD

$dead

No Starch Press, Copyright © 2006 by Randall Hyde



28 Chapter  3

3.4.3.2 Hexadecimal Literal Constants in Gas

Hexadecimal literal constants in Gas consist of a string of hexadecimal digits 
(0..9, a..f, or A..F) with a 0x prefix. For example:

0x1AB0

0x1234ABCD

0xdead

3.4.3.3 Hexadecimal Literal Constants in MASM and TASM

Hexadecimal literal constants in MASM/TASM consist of a string of hexa-
decimal digits (0..9, a..f, or A..F) with an h suffix. The values must begin with 
a decimal digit (0 if the constant would normally begin with a digit in the 
range a..f). For example:

1AB0h

1234ABCDh

0deadh

3.4.4 Character and String Literal Constants

Character and string data are also common data types that you’ll find in 
assembly programs. MASM and TASM do not differentiate between literal 
character or string constants. HLA and Gas, however, use a different internal 
representation for characters and strings, so the distinction between the two 
literal constant forms is very important in those assemblers.

3.4.4.1 Character and String Literal Constants in HLA

Literal character constants in HLA take a couple of different forms. The 
most common form is a single printable character surrounded by a pair 
of apostrophes, such as 'A'. To specify an apostrophe as a literal character 
constant, HLA requires that you surround a pair of apostrophes by apos-
trophes (''''). Finally, you may also specify a character constant using 
the # symbol followed by a binary, decimal, or hexadecimal numeric 
value that specifies the ASCII code of the character you want to use. 
For example:

'a'

''''

' '

#$d

#10

#%0000_1000

String literal constants in HLA consist of a sequence of zero or more 
characters surrounded by quotes. If a quote must appear within a string 
constant, the string constant will contain two adjacent quotes to represent a 
quote character within the string.

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 29

For example:

"Hello World"

"" -- The empty string

"He said ""Hello"" to them"

"""" -- string containing one quote character

3.4.4.2 Character and String Literal Constants in Gas

Character literal constants in Gas consist of an apostrophe followed by a single 
character. For example:

'a

''

'!

String literal constants in Gas consist of a sequence of zero or more 
characters surrounded by quotes. String literal constants in Gas use the 
same syntax as C strings. You use the \ escape sequence to embed special 
characters in a Gas string. For example:

"Hello World"

"" -- The empty string

"He said \"Hello\" to them"

"\"" -- string containing one quote character

3.4.4.3 Character/String Literal Constants in MASM and TASM

Character and string literal constants in MASM/TASM take the same form: 
a sequence of one or more characters surrounded by either apostrophes or 
quotes. These assemblers do not differentiate character constants and string 
constants. For example:

'a'

"'" - An apostrophe character

'"' - A quote character

"Hello World"

"" -- The empty string

'He said "Hello" to them'

3.4.5 Floating-Point Literal Constants

Floating-point literal constants in assembly language typically take the same 
form you’ll find in HLLs (a sequence of digits, possibly containing a decimal 
point, optionally followed by a signed exponent). For example:

3.14159

2.71e+2

1.0e-5

5e2

No Starch Press, Copyright © 2006 by Randall Hyde



30 Chapter  3

3.5 Manifest (Symbolic) Constants in Assembly Language

Almost every assembler provides a mechanism for declaring symbolic (named) 
constants. In fact, most assemblers provide several ways to associate a value 
with an identifier in the source file. 

3.5.1 Manifest Constants in HLA

The HLA assembler, true to its name, uses a high-level syntax for declaring 
named constants in the source file. You may define constants in one of three 
ways: in a const section, in a val section, or with the ? compile-time operator. 
The const and val sections appear in the declaration section of an HLA 
program and their syntax is very similar. The difference between them is that 
you may reassign values to identifiers you define in the val section and you 
may not reassign values to identifiers appearing in a const section. Although 
HLA supports a wide range of options in these declaration sections, the basic 
declaration takes the following form:

const
someIdentifier := someValue;

Wherever someIdentifier appears in the source file (after this 
declaration), HLA will substitute the value someValue in the identifier’s 
place. For example:

const

    aCharConst := 'a';

    anIntConst := 12345;

    aStrConst := "String Const";

    aFltConst := 3.12365e-2;

val

    anotherCharConst := 'A';

    aSignedConst := -1;

In HLA, the ? statement allows you to embed val declarations anywhere 
whitespace is allowed in the source file. This is sometimes useful because it 
isn’t always convenient to declare constants in a declaration section. For 
example:

?aValConst := 0;

3.5.2 Manifest Constants in Gas

Gas uses the .equ statement to define a symbolic constant in the source file. 
This statement has the following syntax:

.equ        symbolName, value

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 31

Here are some examples of “equates” within a Gas source file:

.equ        false, 0

.equ        true, 1

.equ        anIntConst, 12345

3.5.3 Manifest Constants in MASM and TASM
MASM and TASM also provide a couple of different ways to define manifest 
constants within a source file. One way is with the equ directive:

false       equ    0

true        equ    1

anIntConst  equ    12345

Another way is with the = operator:

false       =    0

true        =    1

anIntConst  =    12345

The difference between the two is minor; see the MASM and TASM 
documentation for details. 

NOTE For the most part, compilers tend to emit the equ form rather than the = form.

3.6 80x86 Addressing Modes

An addressing mode is a hardware-specific mechanism for accessing instruction 
operands. The 80x86 family provides three different classes of operands: 
register operands, immediate operands, and memory operands. The following 
subsections discuss each of these addressing modes.

3.6.1 80x86 Register Addressing Modes
Most 80x86 instructions can operate on the 80x86’s general-purpose register 
set. You access a register by specifying its name as an instruction operand. 

Let’s consider some examples of how our assemblers implement this 
strategy, using the 80x86 mov (move) instruction.

3.6.1.1 Register Access in HLA

The HLA mov instruction looks like this:

mov( source, destination );

This instruction copies the data from the source operand to the 
destination operand. The 8-bit, 16-bit, and 32-bit registers are certainly 
valid operands for this instruction. The only restriction is that both 
operands must be the same size.

No Starch Press, Copyright © 2006 by Randall Hyde



32 Chapter  3

Now let’s look at some actual 80x86 mov instructions:

mov( bx, ax );      // Copies the value from BX into AX

mov( al, dl );      // Copies the value from AL into DL

mov( edx, esi );    // Copies the value from EDX into ESI

3.6.1.2 Register Access in Gas

Gas prepends each register name with percent sign (%). For example:

%al, %ah, %bl, %bh, %cl, %ch, %dl, %dh

%ax, %bx, %cx, %dx, %si, %di, %bp, %sp

%eax, %ebx, %ecx, %edx, %esi, %edi, %ebp, %esp

The Gas syntax for the mov instruction is similar to HLA’s, except 
that it drops the parentheses and semicolons and requires the assembly 
language statements to fit completely on one physical line of source code. 
For example:

mov %bx, %ax       // Copies the value from BX into AX

mov %al, %dl       // Copies the value from AL into DL

mov %edx, %esi     // Copies the value from EDX into ESI

3.6.1.3 Register Access in MASM and TASM

The MASM and TASM assemblers use the same register names as HLA, and a 
basic syntax that is similar to Gas, except that these two assemblers reverse 
the operands. That is, a typical instruction like mov takes the form:

mov destination, source

Here are some examples of the mov instruction in MASM/TASM syntax:

mov ax, bx       ; Copies the value from BX into AX

mov dl, al       ; Copies the value from AL into DL

mov esi, edx     ; Copies the value from EDX into ESI

3.6.2 Immediate Addressing Mode

Most instructions that allow register and memory operands also allow 
immediate, or constant, operands. The following HLA mov instructions, 
for example, load appropriate values into the corresponding destination 
registers.

mov( 0, al );

mov( 12345, bx );

mov( 123_456_789, ecx );

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 33

Most assemblers allow you to specify a wide variety of literal constant 
types when using the immediate addressing mode. For example, you can 
supply numbers in hexadecimal, decimal, or binary form. You can also supply 
character constants as operands. The rule is that the constant must fit in the 
size specified for the destination operand. Here are some additional exam-
ples involving HLA, MASM/TASM, and Gas:

mov( 'a', ch );  // HLA

mov 'a, %ch      // Gas

mov ch, 'a'      ;MASM/TASM

mov( $1234, ax ); // HLA

mov 0x1234, ax    // Gas

mov ax, 1234h     ; MASM/TASM

mov( 4_012_345_678, eax ); // HLA

mov 4012345678, eax        // Gas

mov eax, 4012345678        ; MASM/TASM

Almost every assembler lets you create symbolic constant names and 
supply those names as source operands. For example, HLA predefines the 
two Boolean constants true and false so you may supply those names as mov
instruction operands:

mov( true, al );
mov( false, ah );

Some assemblers even allow pointer constants and other abstract data 
type constants. (See the reference manual for your assembler for all the 
details.)

3.6.3 Displacement-Only Memory Addressing Mode
The most common addressing mode, and the one that’s the easiest to under-
stand, is the displacement-only (or direct) addressing mode, in which a 32-bit 
constant specifies the address of the memory location, which may be either 
the source or the destination operand. 

For example, assuming that variable J is a byte variable appearing at 
address $8088, the HLA instruction mov( J, al ); loads the AL register with a 
copy of the byte at memory location $8088. Likewise, if the byte variable K is at 
address $1234 in memory, then the instruction mov( dl, K ); writes the value 
in the DL register to memory location $1234 (see Figure 3-4).

The displacement-only addressing mode is perfect for accessing simple 
scalar variables. It is the addressing mode you would normally use to access 
static or global variables in an HLL program.

NOTE Intel named this addressing mode “displacement-only” because a 32-bit constant 
(displacement) follows the mov opcode in memory. On the 80x86 processors, this dis-
placement is an offset from the beginning of memory (that is, address zero). 

No Starch Press, Copyright © 2006 by Randall Hyde



34 Chapter  3

Figure 3-4: Displacement-only (direct) addressing mode 

The examples in this chapter will often access byte-sized objects in 
memory. Don’t forget, however, that you can also access words and double 
words on the 80x86 processors by specifying the address of their first byte 
(see Figure 3-5).

Figure 3-5: Accessing a word or double word using the direct addressing mode

MASM, TASM, and Gas use the same syntax for the displacement addres-
sing mode as HLA. That is, for the operand you simply specify the name of the 
object you want to access. Some MASM and TASM programmers put brackets 
around the variable names, although this is not strictly necessary with those 
assemblers. 

Here are several examples using HLA, Gas, and MASM/TASM syntax:

mov( byteVar, ch );  // HLA

movb byteVar, %ch // Gas

mov ch, byteVar      ;MASM/TASM

mov( wordVar, ax ); // HLA

movw wordVar, ax    // Gas

mov ax, wordVar     ; MASM/TASM

mov( dwordVar, eax );   // HLA

movl dwordVar, eax      // Gas

mov eax, dwordVar       ; MASM/TASM

$8088 (Address of J)AL

DL $1234 (Address of K)

mov( J, al );

mov( dl, K );

$1000 (Address of M)

$1234 (Address of K)
$1235

$1003

$1002

$1001

mov( K, ax );

mov( edx, M );

AX

EDX

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 35

3.6.4 Register Indirect Addressing Mode

The 80x86 CPUs let you access memory indirectly through a register using the 
register indirect addressing modes. We call these modes indirect because the 
operand is not the actual address. Instead, the operand’s value specifies the 
memory address to use.  In the case of the register indirect addressing modes, 
the register’s value is the address to access.  For example, the HLA instruction 
mov( eax, [ebx] ); tells the CPU to store EAX’s value at the location whose 
address is in EBX.

3.6.4.1 Register Indirect Modes in HLA

There are eight forms of this addressing mode on the 80x86. Using HLA 
syntax they look like this:

mov( [eax], al );

mov( [ebx], al );

mov( [ecx], al );

mov( [edx], al );

mov( [edi], al );

mov( [esi], al );

mov( [ebp], al );

mov( [esp], al );

These eight addressing modes reference the memory location at the 
offset found in the register enclosed by brackets (EAX, EBX, ECX, EDX, 
EDI, ESI, EBP, or ESP, respectively). 

NOTE The register indirect addressing modes require a 32-bit register. You cannot specify a 
16-bit or 8-bit register when using an indirect addressing mode. 

3.6.4.2 Register Indirect Modes in MASM and TASM

MASM and TASM use exactly the same syntax as HLA for the register 
indirect addressing modes—a pair of brackets around a register name—
although the operand order is reversed in instructions like mov.

Here are the MASM/TASM equivalents of the instructions given 
earlier:

mov al, [eax] 

mov al, [ebx] 

mov al, [ecx] 

mov al, [edx] 

mov al, [edi] 

mov al, [esi] 

mov al, [ebp] 

mov al, [esp] 

No Starch Press, Copyright © 2006 by Randall Hyde



36 Chapter  3

3.6.4.3 Register Indirect Modes in Gas

Gas, on the other hand, uses parentheses around the register names. Here 
are Gas variants of the previous HLA mov instructions:

movb (%eax), %al

movb (%ebx), %al

movb (%ecx), %al

movb (%edx), %al

movb (%edi), %al

movb (%esi), %al

movb (%ebp), %al

movb (%esp), %al

3.6.5 Indexed Addressing Mode
The effective address is the ultimate address in memory that an instruction 
will access once all the address calculations are complete. The indexed 
addressing mode computes an effective address2 by adding the address (also 
called the displacement or offset) of the variable to the value held in the 32-bit 
register appearing inside the square brackets.  Their sum provides the memory 
address that the instruction accesses. So if VarName is at address $1100 in 
memory and EBX contains 8, then mov( VarName [ebx], al ); loads the byte 
at address $1108 into the AL register (see Figure 3-6).

Figure 3-6: Indexed addressing mode

3.6.5.1 Indexed Addressing Mode in HLA

The indexed addressing modes use the following HLA syntax, where VarName
is the name of some static variable in your program:

mov( VarName[ eax ], al );

mov( VarName[ ebx ], al );

mov( VarName[ ecx ], al );

mov( VarName[ edx ], al );

mov( VarName[ edi ], al );

mov( VarName[ esi ], al );

mov( VarName[ ebp ], al );

mov( VarName[ esp ], al );

2 The effective address is the ultimate address in memory that an instruction will access, once all 
the address calculations are complete.

EBX

AL

+

VarName

This is the
address of
VarName

$1100

$1108

$08

mov( VarName [ebx], al );

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 37

3.6.5.2 Indexed Addressing Mode in MASM and TASM

MASM and TASM support the same syntax as HLA, but they also allow 
several variations of this syntax for specifying the indexed addressing mode. 
The following are equivalent formats, and they demonstrate some of the 
variations MASM and TASM support:

varName[reg32]

[reg32+varName]

[varName][reg32]

[varName+reg32]

[reg32][varName]

varName[reg32+const]

[reg32+varName+const]

[varName][reg32][const]

varName[const+reg32]

[const+reg32+varName]

[const][reg32][varName]

varName[reg32-const]

[reg32+varName-const]

[varName][reg32][-const]

MASM and TASM also allow many other combinations. These assemblers 
treat two juxtaposed items within brackets as though they were separated by 
the + operator. The multitude of combinations arises because of the commu-
tative nature of addition.

Here are the MASM/TASM equivalents to HLA example given in 
Section 3.6.5.1, “Indexed Addressing Mode in HLA”:

mov  al, VarName[ eax ]

mov  al, VarName[ ebx ]

mov  al, VarName[ ecx ]

mov  al, VarName[ edx ]

mov  al, VarName[ edi ]

mov  al, VarName[ esi ]

mov  al, VarName[ ebp ]

mov  al, VarName[ esp ]

3.6.5.3 Indexed Addressing Mode in Gas

As with the register indirect addressing mode, Gas uses parentheses 
rather than brackets. Here is the syntax that Gas allows for the indexed 
addressing mode:

varName(%reg32)

const(%reg32)

varName+const(%reg32)

Here are the Gas equivalents to the HLA instructions given earlier:

movb VarName( %eax ), al

movb VarName( %ebx ), al

No Starch Press, Copyright © 2006 by Randall Hyde



38 Chapter  3

movb VarName( %ecx ), al

movb VarName( %edx ), al

movb VarName( %edi ), al

movb VarName( %esi ), al

movb VarName( %ebp ), al

movb VarName( %esp ), al

3.6.6 Scaled-Indexed Addressing Modes
The scaled-indexed addressing modes are similar to the indexed addressing 
modes with two differences. The scaled-indexed addressing modes allow 
you to:

� Combine two registers plus a displacement

� Multiply the index register by a (scaling) factor of 1, 2, 4, or 8

To see what makes this possible, consider the following HLA example:

mov( eax, VarName[ ebx + esi * 4 ] );

The primary difference between the scaled-indexed addressing mode 
and the indexed addressing mode is the inclusion of the esi * 4 component.  
This example computes the effective address by adding in the value of ESI 
multiplied by 4 (see Figure 3-7).

Figure 3-7: Scaled-indexed addressing mode

3.6.6.1 Scaled-Indexed Addressing in HLA

HLA’s syntax provides several different ways to specify the scaled-indexed 
addressing mode. Here are the various syntactical forms:

VarName[ IndexReg32 * scale ]

VarName[ IndexReg32 * scale + displacement ]

VarName[ IndexReg32 * scale - displacement ]

[ BaseReg32 + IndexReg32 * scale ]

[ BaseReg32 + IndexReg32 * scale + displacement ]

[ BaseReg32 + IndexReg32 * scale - displacement ]

EBX

VarName

AL

+

ESI * scale +

mov( VarName [ebx + esi * scale], al );

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 39

VarName[ BaseReg32 + IndexReg32 * scale ]

VarName[ BaseReg32 + IndexReg32 * scale + displacement ]

VarName[ BaseReg32 + IndexReg32 * scale - displacement ]

In these examples, BaseReg32 represents any general-purpose 32-bit 
register; IndexReg32 represents any general-purpose 32-bit register except 
ESP; scale must be one of the constants: 1, 2, 4, or 8; and VarName represents 
a static variable name.

3.6.6.2 Scaled-Indexed Addressing in MASM and TASM

MASM and TASM support the same syntax for these addressing modes as 
HLA, but with additional forms comparable to those presented for the 
indexed addressing mode. Those forms are just syntactical variants based 
on the commutativity of the + operator.

3.6.6.3 Scaled-Indexed Addressing in Gas

As usual, Gas uses parentheses rather than brackets to surround scaled-
indexed operands. Gas also uses a three-operand syntax to specify the base 
register, the index register, and the scale value, rather than the arithmetic expres-
sion syntax that the other assemblers employ. The generic syntax for the Gas 
scaled-indexed addressing mode is

expression( baseReg32, indexReg32, scaleFactor )

More specifically:

VarName( ,IndexReg32, scale )

VarName + displacement( ,IndexReg32, scale )

VarName - displacement( ,IndexReg32, scale )

( BaseReg32, IndexReg32, scale )

displacement( BaseReg32, IndexReg32, scale )

VarName( BaseReg32, IndexReg32, scale )

VarName + displacement( BaseReg32, IndexReg32, scale )

VarName - displacement( BaseReg32, IndexReg32, scale )

3.7 Declaring Data in Assembly Language
The 80x86 provides only a few low-level machine data types on 
which individual machine instructions operate. Those data types are 
listed here:

� Bytes hold arbitrary 8-bit values.

� Words hold arbitrary 16-bit values.

� Double words, or dwords, hold arbitrary 32-bit values.

No Starch Press, Copyright © 2006 by Randall Hyde



40 Chapter  3

� Real32 objects (also called Real4 objects) hold 32-bit single-precision 
floating-point values.

� Real64 objects (also called Real8 objects) hold 64-bit double-precision 
floating-point values.

NOTE 80x86 assemblers typically support TByte (ten-byte) and Real80/Real10 data types, 
but we won’t consider using those types here because most HLL compilers don’t use 
these data types. (However, certain C/C++ compilers support Real80 values using the 
long double data type.)

3.7.1 Data Declarations in HLA

The HLA assembler, true to its high-level nature, provides a wide variety of 
single-byte data types including character, signed integer, unsigned integer, 
Boolean, and enumerated types. Were you to actually write an application in 
assembly language, having all these different data types (along with the type 
checking that HLA provides) would be quite useful. For our purposes, how-
ever, all we really need is to allocate storage for byte variables and set aside a 
block of bytes for larger data structures. The HLA byte type is all we really 
need for 8-bit and array objects. 

You can declare byte objects in an HLA static section as follows:

static
variableName : byte;

To allocate storage for a block of bytes, you’d use the following HLA 
syntax:

static
blockOfBytes : byte[ sizeOfBlock ];

These HLA declarations create uninitialized variables. Technically 
speaking, HLA always initializes static objects with zeros, so they aren’t 
truly uninitialized. The main thing here is that this code does not explicitly 
initialize these byte objects with a value. You can, however, tell HLA to ini-
tialize your byte variables with a value when the operating system loads the 
program into memory using statements like the following:

static

// InitializedByte has the initial value 5:

InitializedByte : byte := 5;

// InitializedArray is initialized with 0, 1, 2, and 3;

InitializedArray : byte[4] := [0,1,2,3]; 

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 41

3.7.2 Data Declarations in MASM and TASM

In MASM or TASM, you would normally use the db or byte directives within a 
.data section to reserved storage for a byte object or an array of byte objects. 
The syntax for a single declaration would take one of these equivalent forms:

variableName    db      ?
variableName    byte    ?

The preceding declarations create unintialized objects (which are actually 
initalized with zeros, just as with HLA). The ? in the operand field of the 
db/byte directive informs the assembler that you don’t want to explicitly 
attach a value to the declaration.

To declare a variable that is a block of bytes, you’d use syntax like the 
following:

variableName    db      sizeOfBlock dup (?)
variableName    byte    sizeOfBlock dup (?)

To create objects with an initial value other than zero, you could use 
syntax like the following:

                        .data

InitializedByte         db      5

InitializedByte2        byte    6

InitializedArray0       db      4 dup (5)   ;array is 5,5,5,5

InitializedArray1       db      5 dup (6)   ;array is 6,6,6,6,6

To create an initialized array of bytes whose values are not all the same, 
you simply specify a comma-delimited list of values in the operand field of 
the MASM and TASM db/byte directive:

                    .data

InitializedArray2   byte    0,1,2,3

InitializedArray3   byte    4,5,6,7,8

3.7.3 Data Declarations in Gas

The GNU Gas assembler uses the .byte directive in a .data section to declare 
a byte variable. The generic form of this directive is

variableName: .byte 0

Gas doesn’t provide an explicit form for creating uninitialized variables; 
instead, you just supply a zero operand for uninitialized variables. Here are 
two actual byte variable declarations in Gas:

InitializedByte: .byte   5
ZeroedByte       .byte   0  // Zeroed value

No Starch Press, Copyright © 2006 by Randall Hyde



42 Chapter  3

The GNU assembler does not provide an explicit directive for declaring 
an array of byte objects, but you may use the .rept/.endr directives to create 
multiple copies of the .byte directive as follows:

variableName:

        .rept   sizeOfBlock

        .byte   0

        .endr

NOTE You can also supply a comma-delimited list of values if you want to initialize the array 
with different values.

Here are a couple of array declaration examples in Gas:

            .section    .data

InitializedArray0: // Creates an array with elements 5,5,5,5

            .rept       4

            .byte       5

            .endr

InitializedArray1:  

            .byte       0,1,2,3,4,5

3.7.3.1 Accessing Byte Variables in Assembly Language

When accessing byte variables, you simply use the variable’s declared name 
in one of the 80x86 addressing modes. For example, given a byte object 
named byteVar and an array of bytes named byteArray, you could use any of 
the following instructions to load that variable into the AL register using the 
mov instruction:

// HLA's mov instruction uses "src, dest" syntax:

mov( byteVar, al );

mov( byteArray[ebx], al ); // EBX is the index into byteArray

// Gas' movb instruction also uses a "src, dest" syntax:

movb byteVar, %al

movb byteArray(%ebx), %al

; MASM's & TASM's mov instructions use "dest, src" syntax

mov al, byteVar

mov al, byteArray[ebx]

For 16-bit objects, HLA uses the word data type, MASM and TASM use 
either the dw or word directives, and Gas uses the .int directive. Other than 
the size of the object these directives declare, their use is identical to the byte 
declarations.

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 43

For example:

// HLA example:

static

    // HLAwordVar: two bytes, initialized with zeros: 

    HLAwordVar : word; 

    // HLAwordArray: eight bytes, initialized with zeros:

    HLAwordArray : word[4]; 

    // HLAwordArray2: 10 bytes, initialized with 0, ..., 5:

    HLAwordArray2 : word[5] := [0,1,2,3,4];

; MASM/TASM example:

                    .data

MASMwordVar         word    ?

TASMwordArray       word    4 dup (?)

MTASMwordArray2     word    0,1,2,3,4

// Gas example:

                    .section    .data

GasWordVar:         .int    0

GasWordArray:

                    .rept   4

                    .int    0

                    .endr

GasWordArray2:      .int    0,1,2,3,4

For 32-bit objects, HLA uses the dword data type, MASM and TASM use 
the dd or dword directives, and Gas uses the .long directive. For example:

// HLA example:

static

    // HLAdwordVar: 4 bytes, initialized with zeros:

    HLAdwordVar : dword;

    // HLAdwordArray: 16 bytes, initialized with zeros.

    HLAdwordArray : dword[4];

    // HLAdwordArray: 20 bytes, initialized with 0, ..., 4:

    HLAdwordArray2 : dword[5] := [0,1,2,3,4];

No Starch Press, Copyright © 2006 by Randall Hyde



44 Chapter  3

; MASM/TASM example:

                    .data

MASMdwordVar        dword   ?

TASMdwordArray      dword   4 dup (?)

MTASMdwordArray2    dword   0,1,2,3,4

// Gas example:

                    .section    .data

GasDWordVar:        .long   0

GasDWordArray:

                    .rept   4

                    .long   0

                    .endr

GasDWordArray2:     .long   0,1,2,3,4

3.8 Specifying Operand Sizes in Assembly Language
80x86 assemblers use two mechanisms to specify their operand sizes: 

� The operands specify the size using type checking (most assemblers 
do this).

� The instructions themselves specify the size (in the case of Gas).

For example, consider the following three HLA mov instructions:

mov( 0, al );

mov( 0, ax );

mov( 0, eax );

In each case, the register operand specifies the size of the data that the 
mov instruction copies into that register. MASM/TASM use a similar syntax 
(though the operands are reversed):

mov al, 0  ;8-bit data movement

mov ax, 0  ;16-bit data movement

mov eax, 0 ;32-bit data movement

The important thing to note in each of these six cases is that the instruc-
tion mnemonic (mov) is exactly the same. The operand, not the instruction 
mnemonic, specifies the size of the data transfer.

3.8.1 Type Coercion in HLA

However, there is one problem with this approach. Consider the following 
HLA example:

mov( 0, [ebx] );  // Copy zero to the memory location
// pointed at by EBX.

No Starch Press, Copyright © 2006 by Randall Hyde



80x86 Assemb ly for the HLL P rogrammer 45

This instruction is ambiguous. The memory location to which EBX points 
could be a byte, a word, or a double word. Nothing in the instruction tells 
the assembler the size of the operand. Faced with an instruction like this, the 
assembler will report an error and you will have to explicitly tell it the size of 
the memory operand. In HLA’s case, this is done with a type coercion operator 
as follows:

mov( 0, (type word [ebx]) );  // 16-bit data movement.

In general, you can coerce any memory operand to an appropriate size 
using the HLA syntax:

(type new_type memory)

where new_type represents a data type (such as byte, word, or dword) and memory
represents the memory address whose type you would like to override.

3.8.2 Type Coercion in MASM and TASM

MASM and TASM suffer from this same problem. You will need to coerce the 
memory location using a coercion operator like the following:

mov  word ptr [ebx], 0   ; 16-bit data movement.

Of course, you can substitute byte or dword in these two examples to coerce 
the memory location to a byte or double word size.

3.8.3 Type Coercion in Gas

The Gas assembler doesn’t require type coercion operators because it 
uses a different technique to specify the size of its operands: the instruction 
mnemonic explicitly specifies the size. Rather than using a single mnemonic 
like mov, Gas uses three mnemonics that consist of mov with a single character 
suffix that specifies the size. The Gas mov mnemonics are:

There is never any ambiguity when using these mnemonics, even if their 
operands don’t have an explicit size. For example:

movb 0, (%ebx)  // 8-bit data copy

movw 0, (%ebx)  // 16-bit data copy

movl 0, (%ebx)  // 32-bit data copy

movb Copy an 8-bit (byte) value

movw Copy a 16-bit (word) value

movl Copy a 32-bit (long) value

No Starch Press, Copyright © 2006 by Randall Hyde



46 Chapter  3

3.9 The Minimal 80x86 Instruction Set

Although the 80x86 CPU family supports hundreds of instructions, few com-
pilers actually use more than a couple dozen of these instructions. If you’re 
wondering why compilers don’t use more of the available instructions, the 
answer is because many of the instructions have become obsolete over 
time as newer instructions reduced the need for older instructions. Some 
instructions, such as the Pentium’s MMX and SSE instructions, simply do 
not correspond to functions you’d normally perform in an HLL. Therefore, 
compilers rarely generate these types of machine instructions (such instruc-
tions generally appear only in handwritten assembly language programs). 
Therefore, you don’t need to learn the entire 80x86 instruction set in order 
to study compiler output. Instead, you need only learn the handful of 
instructions that compilers actually emit for the 80x86. The online resources 
(www.writegreatcode.com) provide a reasonable subset of the 80x86 instruc-
tions that you will commonly encounter when examining the output of an 
80x86-based compiler.

3.10 For More Information

This chapter and the online resources present only a small subset of the 80x86 
instruction set. Some compilers will, undoubtedly, use some instructions not 
present in this book. The Intel Pentium manual set, available online at 
www.intel.com, provides the complete reference for the 80x86 instruction 
set. Another excellent 80x86 reference is my book The Art of Assembly Language
(No Starch Press, 2003). Jonathon Bartlett’s Programming from the Ground Up
(Bartlett Publishing, 2004) and Richard Blum’s Professional Assembly Language
(Wrox, 2005) provide a treatment of the Gas assembler for those who are 
working with GNU tools.

No Starch Press, Copyright © 2006 by Randall Hyde



4
P O W E R P C  A S S E M B L Y  F O R  T H E  

H L L  P R O G R A M M E R

Throughout this book you’ll be examining 
high-level language code and comparing it 

against the machine code that the compiler 
generates for the high-level code. Making sense 

of the compiler’s output requires some knowledge of 
assembly language programming. Though becoming 
an expert assembly language programmer takes time and experience, such a 
skill level isn’t necessary for our purposes. All you really need is the ability to 
read code that compilers and other assembly language programmers have 
produced; you don’t need the ability to write assembly language programs 
from scratch. The purpose of this chapter is to provide a basic overview of 
PowerPC assembly language so that you will be able to read the PowerPC 
output produced by compilers on machines like the older Power Macintosh 
or for game consoles such as the Sony PlayStation 3 or the Xbox 2. This 
chapter

� Describes the basic PowerPC machine architecture

� Provides a basic overview of PowerPC assembly language so that you will 
be able to read the PowerPC output produced by the GCC compiler

No Starch Press, Copyright © 2006 by Randall Hyde



48 Chapter  4

� Describes the memory addressing modes of the PowerPC CPU

� Describes the syntax that the PowerPC Gas assembler uses

� Describes how to use constants and declare data in assembly language 
programs

In addition to this chapter, you will also want to take a look at the 
online resources (www.writegreatcode.com), which describe a minimal 
PowerPC instruction set that you’ll need when examining compiler output.

4.1 Learning One Assembly Language Is Good; More Is Better

If you intend to write code for a processor other than the PowerPC, then you 
should really learn how to read at least two different assembly languages. 
By doing so, you’ll avoid the pitfall of coding for the PowerPC in an HLL and 
then finding that your “optimizations” only work on the PowerPC CPU. 
A good second instruction set to learn is the Intel 80x86 instruction set, which 
Chapter 3 describes (in fact, the 80x86 instruction set is often the first
instruction set and the PowerPC is the second instruction set that people 
learn). Other possible processors to consider include the ARM processor 
family, the SPARC processor family, the MIPS processor family, the 680x0 
processor family, or the IA-64 processor. As a general rule, you should famili-
arize yourself with the instruction sets of at least one RISC CPU and one CISC 
CPU. The 80x86 and 680x0 processor families are good examples of CISC 
CPUs; the PowerPC, SPARC, MIPS, and ARM processor families provide good 
examples of RISC CPUs. The IA-64 processor is actually what is known as a 
VLIW (very large instruction word) processor, though it’s closer in design to 
a RISC than a CISC CPU. This book chooses to cover the 80x86 and PowerPC 
families because they are the most popular CPUs in use on contemporary 
machines.

This chapter and the online resources provide more of a reference than a 
tutorial on PowerPC assembly language. You’ll reap the greatest benefit 
from this chapter if you skim it rapidly and then refer back to it whenever 
you have a question about the assembly code you’ll be seeing throughout 
the rest of this book.

4.2 Assembly Syntaxes

In Chapter 3 you saw that there are signficant syntax differences in the code 
generated by various assembles for the 80x86. With the PowerPC, by con-
trast, the various assemblers use a much more uniform syntax, so this book 
uses the syntax employed by the Gas assembler as provided with (the PowerPC 
version of) Mac OS X. As GNU’s Gas assembler for the PowerPC uses a 
relatively standard PowerPC assembly language syntax, you should have no 
trouble reading PowerPC assembly listings produced for other assemblers 
(such as the Code Warrior assembler) if you learn the Gas syntax.

No Starch Press, Copyright © 2006 by Randall Hyde



PowerPC Assemb ly for the HLL P rogrammer 49

4.3 Basic PowerPC Architecture

The IBM/Motorola PowerPC CPU family is generally classified as a Von 
Neumann machine. Von Neumann computer systems contain three main 
building blocks: the central processing unit (CPU), memory, and input/output 
(I/O) devices. These three components are connected together using the 
system bus (consisting of the address, data, and control buses). The block 
diagram in Figure 3-1 shows this relationship.

The CPU communicates with memory and I/O devices by placing a 
numeric value on the address bus to select one of the memory locations or I/O 
device port locations, each of which has a unique binary numeric address.
Then the CPU, I/O, and memory devices pass data between themselves by 
placing the data on the data bus. The control bus provides signals that deter-
mine the direction of the data transfer (to/from memory and to/from an 
I/O device).

Within the CPU the registers are the most prominent feature. The 
PowerPC CPU registers can be broken down into several categories: general-
purpose integer registers, floating-point registers, special-purpose application-
accessible registers, and special-purpose kernel-mode registers. This text will 
not consider the last set of registers. The special-purpose kernel-mode registers 
are intended for writing operating systems, debuggers, and other system-level 
tools. Such software construction is well beyond the scope of this text, so there 
is little need to discuss the special-purpose kernel-mode registers.

4.3.1 General-Purpose Integer Registers

The PowerPC CPUs provide 32 general-purpose integer registers for applica-
tion use. Most compilers refer to these registers via the names R0..R31. On 
most PowerPC processors (circa 2005) these registers are 32 bits wide. On 
higher-end PowerPC processors these registers are 64 bits wide.

4.3.2 General-Purpose Floating-Point Registers

The PowerPC processor also provides a set of 32 64-bit floating-point registers. 
Assemblers and compilers generally refer to these registers using the register 
names F0..F31 (or FPR0..FPR31). These registers can hold single- or double-
precision floating-point values.

4.3.3 User-Mode-Accessible Special-Purpose Registers

The user-mode-accessible special-purpose registers include the condition-
code register(s), the floating-point status and control register, the XER 
register, the LINK register, the COUNT register (CTR), and the time base 
registers (TBRs).

No Starch Press, Copyright © 2006 by Randall Hyde



50 Chapter  4

4.3.3.1 Condition-Code Registers

The condition-code register is 32 bits wide, but it is actually a collection of 
eight 4-bit registers (named CR0, CR1, ..., CR7) that hold the status of a 
previous computation (e.g., the result of a comparison). The PowerPC uses 
CR0 to hold the condition codes after an integer operation, and it uses CR1 
to hold the condition codes after a floating-point operation. Programs typically 
use the remaining condition-code registers to save the status of some operation 
while other operations take place.

The individual bits in the CR0 condition-code register are 

� The LT bit (CR0: bit 0). Set if an operation produces a negative result. 
Also indicates a “less than” condition.

� The GT bit (CR0: bit 1). Set if the result is positive (and nonzero) after 
an operation. Also indicates a “greater than” condition.

� The zero bit (CR0: bit 2). This bit is set when the result of an operation is 
zero. This also indicates the “equality” condition.

� The summary overflow bit (CR0: bit 3). This indicates a signed integer 
overflow during a chain of operations (see the XER register description in 
Section 4.3.3.3, “XER Register”).

The individual bits in the CR1 condition-code register hold the following 
values:

� Floating-point exception bit (CR1:bit 0)

� Common-point enable exception bit (CR1: bit1)

� Floating-point invalid exception bit (CR1: bit 2)

� Floating-point overflow exception bit (CR1: bit 3)

Table 4-1 describes how the PowerPC sets the CRn bits after a comparison 
instruction.

Table 4-1: CRn Field Bit Settings for Comparisons

CRn
Bit Meaning Description

0 Less than (integer 
or floating-point)

For integer registers, this bit is set if one register is less than 
another (or a small immediate constant). Unsigned and signed 
comparisons are possible using different instructions.

For floating-point registers, this bit is set if the value 
in one floating-point register is less than the value in another 
after a floating-point comparison (which is always a signed 
comparison).

1 Greater than (integer 
or floating-point)

For integer registers, this bit is set if one register is greater 
than another (or a small immediate constant). Unsigned and 
signed comparisons are possible using different instructions.

For floating-point registers, this bit is set if the value in one 
floating-point register is greater than the value in another 
after a floating-point comparison (which is always a signed 
comparison).

No Starch Press, Copyright © 2006 by Randall Hyde



PowerPC Assemb ly for the HLL P rogrammer 51

4.3.3.2 Floating-Point Status and Control Register

The floating-point status and control register is a 32-bit register containing 
24 status bits and 8 control bits. The status bits appear in bit positions 0..23, 
and the control bits consume bit positions 24..31. The PowerPC CPU updates 
the status bits at the completion of each floating-point instruction; the 
program is responsible for initializing and manipulating the control bits.

Most of the status bits in the floating-point status and control register 
are sticky. This means that once a bit is set, it remains set until explicitly 
cleared by software. This allows the CPU to execute a sequence of floating-
point operations and test for an invalid result at the end of the sequence 
of operations rather than having to test for an invalid operation after 
each instruction. This reduces the number of tests an application must do 
and, therefore, increases the performance (and reduces the size) of the 
application.

The exact nature of the floating-point status bits are not important here 
(the PowerPC code we’ll be looking at in this book rarely checks the floating-
point status), so we’ll skip their complete discussion. For more details, please 
consult the PowerPC documentation available from IBM (www.ibm.com).

4.3.3.3 XER Register

The PowerPC XER register collects several disparate values that don’t have a 
home elsewhere. The low-order (LO) three bits maintain the summary over-
flow (bit 0), overflow (bit 1), and carry (bit 2) conditions. The high-order 
(HO) eight bits contain a byte count for some PowerPC string operations.

The overflow and summary overflow bits are set by instructions that 
produce a signed integer result that cannot be represented in 32 or 64 bits 
(depending on the instruction). The summary overflow bit is a sticky bit 
that, once set, remains set until the program explicitly clears the bit. The 
overflow bit, on the other hand, simply reflects the status (overflow/no 
overflow) of the last arithmetic operation; in particular, if an arithmetic 

2 Equal (integer 
or floating-point)

For integer registers, this bit is set if one register is equal 
to another (or a small immediate constant). Unsigned and 
signed comparisons are the same when comparing for 
equality.

For floating-point registers, this bit is set if the value in 
one floating-point register is equal to the value in another 
after a floating-point comparison.

3 Summary overflow 
(integer)
Not A Number, NaN 
(floating-point)

After an integer operation, this bit indicates whether an 
overflow has occurred. This bit is sticky insofar as you can 
only clear it, once set, by explicitly clearing the SO bit in the 
XER register.

After a floating-point operation, this bit indicates whether 
one of the two floating-point operands is NaN.

Table 4-1: CRn Field Bit Settings for Comparisons (continued)

CRn
Bit Meaning Description

No Starch Press, Copyright © 2006 by Randall Hyde



52 Chapter  4

operation does not produce an overflow, then that operation clears the 
overflow bit.

The carry flag is set whenever an arithmetic instruction produces an 
unsigned integer result that cannot be held in 32 or 64 bits (depending on 
the instruction); this bit also holds the bits shifted out of a register operand 
in a shift left or right operation.

4.3.3.4 The LINK Register

The PowerPC LINK register holds a return address after the execution of a 
branch and link (bl) instruction. The execution of a branch and link instruc-
tion leaves the address of the instruction following the branch in the LINK 
register. PowerPC applications use this register to implement return from 
subroutine operations as well as compute program-counter relative addresses 
for various operations. The PowerPC can also use the LINK register for 
indirect jumps (e.g., for implementing switch statements).

4.3.3.5 The COUNT Register

The COUNT register (also called CTR) has two purposes: as a loop-control 
register and to hold the target address for an indirect jump. Most compilers 
use the COUNT register for this latter purpose; you’ll see the COUNT register 
used for implementing indirect jumps throughout code in this book.

4.3.3.6 The Time Base Registers (TBL and TBU)

These two registers, Time Base Lower (TBL) and Time Base Upper (TBU), 
are read-only in user mode. Applications can use these two registers (which 
actually concatenate to form a single 64-bit register) to compute the exe-
cution time of an instruction sequence. However, as few compilers consider 
the values in these registers, we’ll ignore them in this book.

4.4 Literal Constants

Like most assemblers, Gas supports literal numeric, character, and string 
constants. This section describes the syntax for the various constants that Gas 
supports and various compilers emit.

4.4.1 Binary Literal Constants

Binary literal constants in Gas begin with the special 0b prefix followed by 
one or more binary digits (0 or 1). Examples:

0b1011

0b10101111

0b0011111100011001

0b1011001010010101

No Starch Press, Copyright © 2006 by Randall Hyde



PowerPC Assemb ly for the HLL P rogrammer 53

4.4.2 Decimal Literal Constants
Decimal literal constants in Gas take the standard form—a sequence of one or 
more decimal digits without any special prefix or suffix. Examples:

123
1209345

4.4.3 Hexadecimal Literal Constants
Hexadecimal literal constants in Gas consist of a string of hexadecimal digits 
(0..9, a..f, or A..F) with a 0x prefix. Examples:

0x1AB0

0x1234ABCD

0xdead

4.4.4 Character and String Literal Constants
Character literal constants in Gas consist of an apostrophe followed by a single 
character. Examples:

'a

''

'!

String literal constants in Gas consist of a sequence of zero or more 
characters surrounded by quotes. String literal constants in Gas use the same 
syntax as C strings. You use the \ escape sequence to embed special char-
acters in a Gas string. Examples:

"Hello World"

"" -- The empty string

"He said \"Hello\" to them"

"\"" -- string containing a single quote character

4.4.5 Floating-Point Literal Constants
Floating-point literal constants in assembly language typically take the same 
form you’ll find in HLLs—a sequence of digits, possibly containing a decimal 
point, optionally followed by a signed exponent. Examples:

3.14159

2.71e+2

1.0e-5

5e1

No Starch Press, Copyright © 2006 by Randall Hyde



54 Chapter  4

4.5 Manifest (Symbolic) Constants in Assembly Language

Almost every assembler provides a mechanism for declaring symbolic (named) 
constants. Gas uses the .equ statement to define a symbolic constant in the 
source file. This statement uses the following syntax:

.equ        symbolName, value

Here are some examples of “equates” within a Gas source file:

.equ        false, 0

.equ        true, 1

.equ        anIntConst, 12345

4.6 PowerPC Addressing Modes

PowerPC instructions can access three types of operands: register operands, 
immediate constants, and memory operands.

4.6.1 PowerPC Register Access
Gas allows assembly programmers (or compiler writers) to access the PowerPC 
general-purpose integer registers by name or number: R0, R1, ..., R31.

Floating-point instructions access the floating-point registers by their 
name (F0..F31). Note that floating-point registers are only legal as floating-
point instruction operands (just as integer instructions are accessible only 
within integer instructions).

4.6.2 The Immediate Addressing Mode
Many integer instructions allow a programmer to specify an immediate con-
stant as a source operand. However, as all PowerPC instructions are exactly 
32 bits in size, a single instruction cannot load a 32-bit (or larger) constant 
into a PowerPC register. The PowerPC’s instruction set does support 
immediate constants that are 16 bits in size (or smaller). The PowerPC 
encodes those constants into the opcode and sign extends their values to 
32 bits (or 64 bits) prior to using them.

For immediate values outside the range 32,768..+32,767, the PowerPC 
requires that you load the constant into a register using a couple of instruc-
tions and then use the value in that register. The most obvious downside to 
this is that the code is larger and slower, but another problem is that you wind 
up using a (precious) register to hold the immediate value. Fortunately, the 
PowerPC has 32 general-purpose registers available, so using a register for this 
purpose isn’t quite as bad as on a CPU with fewer registers (like the 80x86).

No Starch Press, Copyright © 2006 by Randall Hyde



PowerPC Assemb ly for the HLL P rogrammer 55

4.6.3 PowerPC Memory Addressing Modes

The PowerPC CPU is a load/store architecture, meaning that it can only 
access (data) memory using load and store instructions. All other instructions 
operate on registers (or small immediate constants). With a load/store 
architecture, for example, you cannot directly add the contents of some 
memory location to a register value—you must first load the memory data 
into a register and then add that register to the destination register’s value.

RISC CPUs generally eschew complex addressing modes, instead relying 
upon sequences of machine instructions using simple addressing modes to 
achieve the same effect. The PowerPC, true to its RISC heritage, supports 
only three memory addressing modes. One of those is a special addressing 
mode used only by the load string and store string instructions. So for all 
practical purposes, the PowerPC only supports two memory addressing modes. 
They are register plus displacement and register plus register (base plus index).

4.6.3.1 Register Plus Displacement Addressing Mode

The PowerPC register plus displacement addressing mode adds a signed 
16-bit displacement value, signed extended to 32 bits, with the value from a 
general-purpose integer register to compute the effective memory address. 
The Gas syntax for this addressing mode is the following:

displacementValue( Rn )

where displacementValue is a signed 16-bit expression and Rn represents one 
of the PowerPC’s 32-bit general-purpose integer registers (R0..R31). R0 is a 
special case in this addressing mode, however. If you specify R0, then the 
PowerPC CPU substitutes the value zero in place of the value in the R0 
register. This provides an absolute or displacement-only addressing mode that 
accesses memory locations 0..32,767 (and also the final 32KB at the end of 
the address space).

The lbz (load byte with zero extension) instruction is a typical load 
instruction that uses the register plus displacement addressing mode. 
This instruction fetches a byte from memory, zero extends it to 32 bits 
(64 bits on the 64-bit variants of the PowerPC), and then copies the result 
into a destination register. An example of this instruction is

lbz R3, 4(R5)

This particular instruction loads the LO byte of R3 with the byte found in 
memory at the address held in R5 plus four. It zeros out the HO bytes of R3.

Most load and store instructions (like lbz) on the PowerPC support a 
special update form. When using the register plus displacement addressing 
mode, these instructions work just like the standard load instructions except 

No Starch Press, Copyright © 2006 by Randall Hyde



56 Chapter  4

that they update the base address register with the final effective address. 
That is, they add the displacement to the base register’s value after loading 
the value from memory. The lbzu instruction is a good example of this form:

lbzu R3, 4(R5)

This instruction not only copies the value from memory location [R5+4]1

into R3, but it also adds four to R5. Note that you may not specify R0 as a base 
register when using the update form (remember, the PowerPC substitutes 
the value zero for R0, and you cannot store a value into a constant).

4.6.3.2 Register Plus Register (Indexed) Addressing Mode

The PowerPC also supports an indexed addressing mode that uses one 
general-purpose register to hold a base address and a second general-
purpose register to hold an index from that base address. This addressing 
mode is specified as part of the instruction mnemonic. For example, to use 
the indexed addressing mode with the lbz instruction, you’d use the lbzx
mnemonic. Instructions using this addressing mode typically have three 
operands: a destination operation (for loads) or a source operand (for store 
operations), a base register (Rb), and an index register (Rx). The lbzx
instruction, for example, uses the following syntax:

lbzx Rd, Rb, Rx

Example:

lbzx R3, R5, R6

This example loads R3 with the zero-extended byte found at the memory 
address [R5 + R6].

An update form of the indexed addressing mode also exists (e.g., lbzux). 
This form updates the base register with the sum of the base and index 
registers after computing the effective memory address. The index register’s 
value is unaffected by the update form of the instruction.

4.7 Declaring Data in Assembly Language

The PowerPC CPU provides only a few low-level machine data types on 
which individual machine instructions can operate.

These data types are the following:

� Bytes that hold arbitrary 8-bit values

� Words that hold arbitrary 16-bit values (these are called halfwords in 
PowerPC terminology)

� Double words that hold arbitrary 32-bit values (these are called words in 
PowerPC terminology)

1 The brackets ([]) denote indirection. That is, [R5+4] represents the memory at the address 
specified by the contents of R5 plus four.

No Starch Press, Copyright © 2006 by Randall Hyde



PowerPC Assemb ly for the HLL P rogrammer 57

� Quad words that hold 64-bit values (these are called double words in 
PowerPC terminology)

� Single-precision floating-point values (32-bit single floating-point values)

� Double-precision, 64-bit, floating-point values

NOTE Although the standard PowerPC terminology is byte, halfword, word, and double word 
for 8-, 16-, 32-, and 64-bit integer values, outside of this chapter this book will use the 
x86 terminology to avoid confusion with the 80x86 code that also appears herein.

The GNU Gas assembler uses the .byte directive in a .data section to 
declare a byte variable. The generic form of this directive is

variableName: .byte 0

Gas doesn’t provide an explicit form for creating uninitialized variables; 
just supply a zero operand for uninitialized variables. Here is an actual byte 
variable declaration in Gas:

IntializedByte: .byte   5

The GNU assembler does not provide an explicit directive for declaring 
an array of byte objects, but you may use the .rept/.endr directives to create 
multiple copies of the .byte directive as follows:

variableName:

        .rept   sizeOfBlock

        .byte   0

        .endr

Note that you may also supply a comma-delimited list of values if you want 
to initialize the array with different values.

Here are a couple of array declaration examples in Gas:

            .section    .data ;Variables go in this section

InitializedArray0: ; Creates an array with elements 5,5,5,5

            .rept       4

            .byte       5

            .endr

InitializedArray1:  

            .byte       0,1,2,3,4,5

For 16-bit objects Gas uses the .int directive. Other than the size of the 
object these directives declare, their use is identical to the byte declarations, 
for example:

                    .section    .data

GasWordVar:         .int    0

No Starch Press, Copyright © 2006 by Randall Hyde



58 Chapter  4

; Create an array of four words, all initialized to zero:

GasWordArray:

                    .rept   4

                    .int    0

                    .endr

; Create an array of 16-bit words, initialized with

; the value 0, 1, 2, 3, and 4:

GasWordArray2:      .int    0,1,2,3,4

For 32-bit objects, Gas uses the .long directive:

                    .section    .data

GasDWordVar:        .long   0

; Create an array with four double-word values

; initialized to zero:

GasDWordArray:

                    .rept   4

                    .long   0

                    .endr

; Create an array of double words initialized with

; the values 0, 1, 2, 3, 4:

GasDWordArray2:     .long   0,1,2,3,4

For floating-point values, Gas uses the .single and .double directives 
to reserve storage for an IEEE-format floating-point value (32 or 64 bits, 
respectively). Because the PowerPC CPU does not support immediate 
floating-point constants, if you need to reference a floating-point constant 
from a machine instruction, you will need to place that constant in a memory 
variable and access the memory variable in place of the imediate constant. 
Here are some examples of their use:

                    .section    .data

GasSingleVar:       .single  0.0

GasDoubleVar:       .double  1.0

; Create an array with four single-precision values

; initialized to 2.0:

GasSingleArray:

                    .rept   4

                    .single 2.0

                    .endr

No Starch Press, Copyright © 2006 by Randall Hyde



PowerPC Assemb ly for the HLL P rogrammer 59

; Create an array of double-precision values initialized with

; the values 0.0, 1.1, 2.2, 3.3, and 4.4:

GasDWordArray2:     .double 0.0,1.1,2.2,3.3,4.4

4.8 Specifying Operand Sizes in Assembly Language

PowerPC instructions generally operate only upon 32-bit or 64-bit data. 
Unlike CISC processors, individual PowerPC instructions don’t operate on 
differing data types. The add instruction, for example, operates only on 32-bit 
values (except on 64-bit implementations of the PowerPC, where it operates 
on 64-bit values when in 64-bit mode). Generally, this isn’t a problem. If two 
PowerPC registers contain 8-bit values, you’ll get the same result by adding 
those two 32-bit registers together that you’d get if they were 8-bit registers, 
if you only consider the LO 8 bits of the sum.

Memory accesses, however, are a different matter. When reading and 
(especially when) writing data in memory, it’s important that the CPU access 
only the desired data size. Therefore, the PowerPC provides some size-
specific load and store instructions that specify byte, 16-bit halfword, and 
32-bit word sizes.

4.9 The Minimal Instruction Set

Although the PowerPC CPU family supports hundreds of instructions, few 
compilers actually use all of these instructions. If you’re wondering why com-
pilers don’t use more of the available instructions, the answer is because 
many of the instructions have become obsolete over time as newer instruc-
tions reduced the need for older instructions. Some instructions, such as the 
PowerPC’s AltiVec instructions, simply do not correspond to operations you’d 
normally perform in an HLL. Therefore, compilers rarely generate these 
types of machine instructions (such instructions generally appear only in 
handwritten assembly language programs). Therefore, you don’t need to 
learn the entire PowerPC instruction set in order to study compiler output. 
Instead, you need only learn the handful of instructions that the compiler 
actually emits on the PowerPC. The online resources present the subset of 
the PowerPC instruction set that this book uses.

4.10 For More Information

This chapter and the online resources (www.writegreatcode.com) contain 
descriptions of the more common PowerPC instructions. They do not, by 
any means, provide a complete description of the PowerPC instruction set. 
Those who are interested in additional details about the instruction set 
should consult IBM’s document PowerPC Microprocessor Family: The Program-
ming Environments for 32-bit Processors. You can find this on IBM’s website at 
www.ibm.com.

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



5
C O M P I L E R  O P E R A T I O N  A N D  

C O D E  G E N E R A T I O N

In order to write HLL code that produces 
efficient machine code, you really need 

to understand how compilers and linkers 
translate high-level source statements into exe-

cutable machine code. A complete presentation of 
compiler theory is beyond the scope of this book; however, in this chapter 
I do explain the basics of the translation process so you can understand 
the limitations of HLL compilers, and you’ll be able to work within those 
limitations. 

This chapter

� Teaches you about the different types of input files programming lan-
guages use

� Explores the differences between various language implementations 
such as compilers and interpreters

� Shows how typical compilers process source files to produce executable 
programs

No Starch Press, Copyright © 2006 by Randall Hyde



62 Chapter  5

� Discusses the process of optimization and why compilers cannot produce 
the best possible code for a given source file

� Describes the different types of output files that compilers produce

� Provides an in-depth look at some common object-file formats, such as 
COFF and ELF

� Covers memory organization and alignment issues that affect the size 
and efficiency of executable files a compiler produces

� Explains how linker options can affect the efficiency of your code

This material provides the basis for all the chapters that follow, and the 
information this chapter presents is crucial if you want to help a compiler 
produce the best possible code. I will begin with the discussion of compiler 
file formats.

5.1 File Types That Programming Languages Use

A typical program can take many forms. A source file is a human-readable form 
that a programmer creates and supplies to a language translator (e.g., a com-
piler). A typical compiler translates the source file or files into an object code
file. A linker program combines separate object modules to produce a relocat-
able or executable file. Finally, a loader (usually the operating system) loads 
the executable file into memory and makes the final modifications to the 
object code prior to execution. Please note that the modifications are to 
the object code that is now in memory. The actual file on the disk does not 
get modified. These are not the only types of files that language-processing 
systems manipulate, but they are typical. To fully understand compiler 
limitations, understanding how the language processor deals with each 
of these file types is important. I’ll begin with a discussion of source code. 

5.2 Programming Language Source Files

Traditionally, source files contain pure ASCII (or some other character set) 
text that a programmer has created with a text editor. One advantage to 
using pure text files is that a programmer can manipulate a source file using 
any program that processes text files. For example, a program that counts 
the number of lines in an arbitrary text file will also count the number of 
source lines in a program. Because there are hundreds of little filter programs 
that manipulate text files, maintaining source files in a pure text format is a 
good approach. This format is sometimes called plain vanilla text.

5.2.1 Tokenized Source Files
Some language processing systems (especially interpreters) maintain their 
source files in a special tokenized form. Tokenized source files generally use 
special single-byte token values to represent reserved words and other lexical 
elements in the source language. Tokenized source files are often smaller 
than text source files because they compress multicharacter reserved words 

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 63

and values to single byte tokens. Furthermore, maintaining the source file in 
a tokenized form can help an interpreter run faster because processing strings 
of 1-byte tokens is far more efficient than recognizing reserved word strings; 
interpreters that operate on tokenized code are generally an order of 
magnitude faster than interpreters that operate on pure text. 

Reconstructing the original source file (or a close resemblance) from 
the tokenized form of a program is easy. Generally, the tokenized form 
consists of a sequence of bytes that map directly to strings such as if and 
print in the original source file. By using a table of strings and a little extra 
logic, deciphering a tokenized program to obtain the original source file is 
easy. (Usually, you lose any extra whitespace you inserted into the source file, 
but that’s about the only difference.) Many of the original BASIC interpreters 
found on early PC systems worked this way. You’d type a line of BASIC source 
code into the interpreter and the interpreter would immediately tokenize 
that line and store the tokenized form in memory. Later, when you executed 
the LIST command, the interpreter would detokenize the source code in 
memory to produce the listing.

On the flip side, tokenized source files often use a proprietary format and, 
therefore, cannot take advantage of general-purpose tools that manipulate 
text files. This includes programs like word count (wc), entab, and detab. 
(Word count counts the number of lines, words, and characters in a text file, 
entab replaces spaces with tabs, and detab replaces tabs with spaces.)

To overcome this limitation, most languages that operate on tokenized 
files provide the ability to detokenize a source file and produce a standard text 
file from the tokenized data. Such language translators also provide the ability 
to retokenize a source file, given an ASCII text file. To run such a language’s 
source file through a standard text-based filter program, a programmer would 
first detokenize the source file to produce a text file, run the resulting text 
file through some filter program, and then retokenize the output of the 
filter program to produce a new tokenized source file. Although this is a 
considerable amount of work, it does allow language translators that work 
with tokenized files to take advantage of various text-based utility programs.

5.2.2 Specialized Source File Formats
Some programming languages do not use a traditional text-based file format 
at all. They often use graphical elements (such as flowcharts or forms) to 
represent the instructions the program is to perform. Borland’s Delphi 
programming language provides an example of this. The “form designer” 
component of the Delphi programming language provides a good example 
of a nontextual source format.

5.3 Types of Computer Language Processors
We can generally place computer language systems into one of four categories: 
pure interpreters, interpreters, incremental compilers, and compilers. These 
systems differ in how they process the source program and execute the result, 
which affects the efficiency of the execution process.

No Starch Press, Copyright © 2006 by Randall Hyde



64 Chapter  5

5.3.1 Pure Interpreters
Pure interpreters operate directly on a text source file and tend to be very 
inefficient. An interpreter continuously scans the source file (usually an 
ASCII text file), processing it as string data. Recognizing lexemes (language 
components such as reserved words, literal constants, and the like) consumes 
time. Indeed, many interpreters spend more time processing the lexemes 
(that is, performing lexical analysis) than they do actually executing the pro-
gram. Pure interpreters tend to be the smallest of the computer language 
processing programs. This is because every language translator has to do 
lexical analysis, and the actual on-the-fly execution of the lexeme takes only a 
little additional effort. For this reason, pure interpreters are popular where 
a very compact language processor is desirable. Pure interpreters are also 
popular for scripting languages and very high-level languages that let you 
manipulate the language’s source code as string data during program 
execution.

5.3.2 Interpreters
An interpreter executes some representation of a program’s source file at run-
time. This representation isn’t necessarily a text file in human-readable form. 
As noted in the previous section, many interpreters operate on tokenized 
source files in order to avoid lexical analysis during execution. Some interpret-
ers read a text source file as input and translate the input file to a tokenized 
form prior to execution. This allows programmers to work with text files in 
their favorite editor while enjoying fast execution using a tokenized format. 
The only costs are an initial delay to tokenize the source file (which is 
unnoticeable on most modern machines) and the fact that it may not be 
possible to execute strings as program statements.

5.3.3 Compilers
A compiler translates a source program in text form into executable machine 
code. This is a complex process, particularly in optimizing compilers. There 
are a couple of things to note about the code a compiler produces. First, a 
compiler produces machine instructions that the underlying CPU can directly 
execute. Therefore, the CPU doesn’t waste any cycles decoding the source 
file while executing the program—all of the CPU’s resources are dedicated 
to executing the machine code. As such, the resulting program generally 
runs many times faster than an interpreted version does. Of course, some 
compilers do a better job of translating HLL source code into machine code 
than other compilers, but even low-quality compilers do a better job than 
most interpreters. 

A compiler’s translation from source code to machine code is a one-way 
function. It is very difficult, if not impossible, to reconstruct the original 
source file if you’re given only the machine code output from a program. 
(By contrast, interpreters either operate directly on source files or work with 
tokenized files from which it’s easy to reconstruct some semblance of the 
source file.)

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 65

5.3.4 Incremental Compilers
An incremental compiler is a cross between a compiler and an interpreter.1

There is no single definition of an incremental compiler because there are 
many different types of incremental compilers. In general, though, like an 
interpreter, an incremental compiler does not compile the source file into 
machine code. Instead, it translates the source code into an intermediate 
form. Unlike interpreters, however, this intermediate form does not usually 
exhibit a strong relationship to the original source file. This intermediate 
form is generally the machine code for a virtual (hypothetical) machine language.
That is, there is no real CPU that can execute this code. However, it is easy to 
write an interpreter for such a virtual machine, and that interpreter does the 
actual execution. Because interpreters for virtual machines are usually much 
more efficient than interpreters for tokenized code, the execution of this 
virtual machine code is usually much faster than the execution of a list of 
tokens in an interpreter. Languages like Java use this compilation technique, 
along with a Java byte code engine (an interpreter program, see Figure 5-1) that 
interpretively executes the Java “machine code.” The big advantage to virtual 
machine execution is that the virtual machine code is portable; that is, pro-
grams running on the virtual machine can execute anywhere there is an 
interpreter available. True machine code, by contrast, only executes on the 
CPU (family) for which it was written. Generally, interpreted virtual machine 
code runs about two to ten times faster than interpreted code, and pure 
machine code generally runs anywhere from two to ten times faster than 
interpreted virtual machine code.

Figure 5-1: The Java byte-code interpreter

In an attempt to improve the performance of programs compiled via an 
incremental compiler, many vendors (particularly Java systems vendors) have 
resorted to a technique known as just-in-time compilation. The concept is based

1 Actually, in recent years the term incremental compiler has taken on another meaning as well—
the ability to compile pieces of the program and recompile them as necessary (given changes 
in the source file). We will not consider such systems here.

Java byte codes in sequential memory locations

Java byte-code interpreter
(typically written in C)

Actions specified by the execution
of the Java byte-code instructions

Computer system memory

No Starch Press, Copyright © 2006 by Randall Hyde



66 Chapter  5

on the fact that the time spent in interpretation is largely consumed by fetch-
ing and deciphering the virtual machine code at runtime. This interpretation 
occurs repeatedly as the program executes. Just-in-time compilation translates 
the virtual machine code to actual machine code whenever it encounters a 
virtual machine instruction for the first time. By doing so, the interpreter is 
spared the interpretation process the next time it encounters the same state-
ment in the program (e.g., in a loop). Although just in time compilation is 
nowhere near as good as a true compiler, it can typically improve the per-
formance of a program by a factor of two to five times.

An interesting note about older compilers and some freely available com-
pilers is that they would compile the source code to assembly language and 
then you would have to have a separate compiler, known as an assembler, to 
assemble this output to the machine code wanted. Most modern and high 
efficient compilers, skip this step altogether. See Section 5.5, “Compiler 
Output,” for more on this subject.

This chapter describes how compilers generate machine code. By 
understanding how a compiler generates machine code, you can choose 
appropriate HLL statements to generate better, more efficient machine 
code. If you want to improve the performance of programs written with an 
interpreter or incremental compiler, the best advice you can follow is to use 
an optimizing compiler to process your application. For example, GNU 
provides a compiler for Java that produces optimized machine code rather 
than interpreted Java byte code; the resulting executable files run much 
faster than interpreted Java byte code.

5.4 The Translation Process

A typical compiler is broken down into several logical components that com-
piler writers call phases. Although the number and names of these phases may 
change somewhat among different compilers, common phases you’ll find in 
many compilers include:

� The lexical analysis phase

� The syntax analysis phase

� The intermediate code generation phase

� The native code generation phase

� The optimization phase for compilers that support it

Figure 5-2 shows how the compiler logically arranges these phases to 
translate source code in the HLL into machine (object) code.

Although Figure 5-2 suggests that the compiler executes these phases 
sequentially, most compilers do not execute in this order. Instead, the phases 
tend to execute in parallel, with each phase doing a small amount of work, 
passing its output on to the next phase, and then waiting for input from the 
previous phase. In a typical compiler, the parser (the syntax analysis phase) 
is probably the closest thing you will find to the main program or the master 
process. The parser usually drives the compilation process, insofar as it calls

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 67

the scanner (lexical analysis phase) to obtain input and calls the intermediate 
code generator to process the parser’s output. The intermediate code gener-
ator may (optionally) call the optimizer and then call the native code gen-
erator. The native code generator may (optionally) call the optimizer as well. 
The output from the native code generation phase is the executable code. 
After the native code generator/optimizer emits some code, it returns to the 
intermediate code generator, which returns to the parser, which requests 
more input from the scanner, and the process repeats. Note that other com-
piler organizations are possible. Some compilers, for example, don’t have an 
optimization phase; others allow the user to choose whether the compiler 
runs this phase. Similarly, some compilers dispense with intermediate code 
generation and directly call a native code generator. Some compilers include 
additional phases that process object modules compiled at different times. 
The details often vary by compiler, but these phases are the ones you will find 
in a typical optimizing compiler.

Although Figure 5-2 doesn’t correctly show the execution path of a typical 
compiler, it does correctly show the data flow through the compiler. That is, 
the scanner reads the source file, translates it to a different form, and then 
passes this translated data on to the parser. The parser accepts its input 
from the scanner, translates that input to a different form, and then passes 
this new data to the intermediate code generator. Similarly, the remaining 
phases read their input from the previous phase, translate the input to a 
(possibly) different form, and then pass that input on to the next phase. 
The compiler writes the output of its last phase to the executable object file.

Figure 5-2: Phases of compilation

Lexical analysis
phase (scanner)

Syntax analysis
phase (parser)

Intermediate code
generation phase

Native code
generation phase

Optimization phase
(post--code generation)

Optimization phase
(pre--code generation)

Source code

Object code

No Starch Press, Copyright © 2006 by Randall Hyde



68 Chapter  5

5.4.1 Lexical Analysis and Tokens
The scanner is responsible for reading the character/string data found in the 
source file and breaking this data up into tokens that represent the lexical 
items present in the source file. These lexical items, or lexemes, are the char-
acter sequences found in the source file that we would recognize as atomic 
components of the language. For example, a lexical analyzer (lexer) for the 
C language would recognize substrings like if and while as C reserved words. 
The lexer would not, however, pick out the “if ” within the identifier ifReady
and treat that as a reserved word. Instead, the scanner considers the context 
in which a reserved word is used so that it can differentiate between reserved 
words and identifiers. For each lexeme, the scanner creates a small data pack-
age known as a token and passes this data package on to the parser. The token 
typically contains several values:

� A small integer that uniquely identifies the token’s class (whether it’s a 
reserved word, identifier, integer constant, operator, or character string 
literal).

� Another value that differentiates the token within a class (for example, 
this value would indicate which reserved word the scanner has processed).

� Any other attributes the scanner might associate with the lexeme. 

NOTE Do not confuse this reference to a token with the compressed-style tokens in an inter-
preter discussed previously. Tokens are simply a variable-sized block of memory that 
describes a different item or block of memory to the interpreter/compiler.

When the scanner sees the character string 12345 in the source file, for 
example, the token’s class might be literal constant, the second value might 
identify this as an integer constant, and an attribute for this token might be 
the numeric equivalent of this string (i.e., twelve thousand, three hundred, 
and forty-five). Figure 5-3 demonstrates what this token package might look 
like in memory. The value 345 is used as the token value (to indicate a numeric 
constant), the value 5 is used as the token class (indicating a literal constant), 
the attribute value is 12345 (the numeric form of the lexeme), and the lexeme 
string is “12345” as scanned by the lexer. Different code sequences in the 
compiler can refer to this token data structure as appropriate.

Figure 5-3: A token for the lexeme “12345”

Strictly speaking, the lexical analysis phase is optional. A parser could 
work directly with the source file. However, the parser often refers to a token 
(or lexeme if there is no scanner) several times while processing a source 
file. By preprocessing a source file and breaking it up into a sequence of 

345 “Token” value

5

12345

“12345”

Token class

Token attribute

Lexeme

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 69

tokens, the compilation process can be more efficient. Processing the string 
data in a source file is one of the more time-consuming operations. By con-
verting string lexemes into small token packets, the scanner allows the parser 
to deal with tokens as integer values rather than via string manipulation. 
Because most CPUs can handle small integer values much more efficiently 
than string data, and because the parser has to refer to the token data 
multiple times, this preprocessing by the scanner saves considerable time 
during compilation. Generally, pure interpreters are the only language 
systems that rescan each token during parsing, and this is one of the major 
reasons pure interpreters are so slow (compared to, say, an interpreter that 
stores the source file in a tokenized form to avoid constantly processing a 
pure-text source file).

5.4.2 Parsing (Syntax Analysis)
The parser is the part of the compiler that is responsible for checking 
whether the source program is syntactically (and semantically) correct.2

If the compiler discovers an error in the source file, it is usually the parser 
that discovers and reports the error. The parser is also responsible for 
reorganizing the token stream (that is, the source code) into a more 
complex data structure that represents the meaning or semantics of the 
program. The scanner and parser generally process the source file in a linear 
fashion from the beginning to the end of the file, and the compiler usually 
reads the source file only once. Later phases, however, will need to refer to 
the body of the source program in a random-access fashion. By building up 
a data structure representation of the source code (often called an abstract 
syntax tree or AST), the parser makes it possible for the code generation and 
optimization phases to easily reference different parts of the program.

By organizing this data structure according to the semantics of the 
source file, the parser simplifies the translation task faced by the code 
generation and optimization phases. Figure 5-4 shows how a compiler 
might represent the expression “12345+6” using three nodes in an abstract 
syntax tree.

5.4.3 Intermediate Code Generation
The intermediate code generation phase is responsible for translating the 
AST representation of the source file into a quasi-machine code form. There 
are two reasons compilers typically translate a program into an intermediate 
form rather than converting it directly to native machine code. 

First, the compiler’s optimization phase can do certain types of optimi-
zations, such as common subexpression elimination, much more easily on 
this intermediate form. 

Second, many compilers, known as cross-compilers, generate executable 
machine code for several different CPUs. By breaking the code generation 

2 Some compilers actually have separate syntax and semantic analysis phases. Many compilers, 
however, combine both of these activities into the parser.

No Starch Press, Copyright © 2006 by Randall Hyde



70 Chapter  5

Figure 5-4: A portion of an abstract syntax tree

phase into two pieces—the intermediate code generator and the native code 
generator—the compiler writer can move all the CPU-independent activities 
into the intermediate code generation phase and write this code only once. 
This simplifies the native code generation phase. Because the compiler only 
needs one intermediate code generation phase but may need separate native 
code generation phases for each CPU the compiler supports, it’s wise to move 
as much of the CPU-independent code as possible into the intermediate code 
generator to reduce the size of the native code generators. For the same 
reason, the optimization phase is often broken into two components (see 
Figure 5-2): a CPU-independent component (the part following the inter-
mediate code generator) and a CPU-dependent component.

5.4.4 Optimization
The optimization phase, which follows intermediate code generation, 
translates the intermediate code into a more efficient form. This generally 
involves eliminating unnecessary entries from the AST. For example, this 
optimizer might transform the following intermediate code:

move the constant 5 into the variable i

move a copy of i into j

move a copy of j into k

add k to m

to something like:

move the constant 5 into k
add k to m

43 “Token” value

7

---

“+”

Token class (operator)

Token attribute (N/A)

Lexeme

345 “Token” value

5

6

“6”

Token class

Token attribute

Lexeme

345 “Token” value

5

12345

“12345”

Token class

Token attribute

Lexeme

12345 + 6

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 71

If there are no more references to i and j, the optimizer can eliminate 
all references to them. Indeed, if k is never used again, the optimizer can 
replace these two instructions with the single instruction add 5 to m. Note 
that this type of transformation is valid on nearly all CPUs. Therefore, this 
type of transformation/optimization is perfect for first optimization phase.

5.4.4.1 The Problem with Optimization

However, transforming intermediate code “into a more efficient form” is not 
a well-defined process. What makes one form of a program more efficient 
than another? The primary definition of efficiency in a program is that the 
program minimizes the use of some system resource. The two primary system 
resources that programmers consider are memory (space) and CPU cycles 
(speed). A compiler’s optimizer could manage other resources, but space 
and speed are the principal ones. Even if we consider only these two facets of 
optimization, describing the “optimal” result is difficult. The problem is that 
optimizing for one goal (say, better performance) may create conflicts when 
attempting to simultaneously optimize for another goal (such as reduced 
memory usage). For this reason, the optimization process is usually a case 
of compromise management, where you make tradeoffs and sacrifice certain 
subgoals (for example, running certain sections of the code a little slower) 
in order to create a reasonable result (for example, creating a program that 
doesn’t consume too much memory).

5.4.4.2 Optimization’s Effect on Compile Time

You might think that it’s possible to choose a single goal (for example, highest 
possible performance) and optimize strictly for that. However, the compiler 
must also be capable of producing an executable result in a reasonable 
amount of time. The optimization process is an example of what complexity 
theory calls an NP-complete problem. These are problems that are, as far as we 
know, intractable. That is, a guaranteed correct result cannot be produced 
(for example, an optimal version of a program) without computing all possi-
bilities and choosing the best result from those possibilities. Unfortunately, 
the time generally required to solve an NP-complete problem increases 
exponentially with the size of the input, which in the case of compiler 
optimization means roughly the number of lines of source code. 

This means that in the worst case, producing a truly optimal program 
would take longer than it was worth. Adding one line of source code could 
approximately double the amount of time it takes to compile and optimize 
the code. Adding two lines could quadruple the amount of time. In fact, a full 
guaranteed optimization of a modern application could take longer than the 
known lifetime of the universe.3

3 Yes, you read that correctly. Imagine that compiling an n-line program takes 100 years. Adding 
only 40 lines of code to this program will increase the compilation time by about a trillion years 
if the time required by the optimization increases exponentially with the number of lines of 
source code. Now you can change the exponents around and play other games (meaning you 
could add a few more lines of code to the project), but the end result is the same—by adding a 
small number of lines to your code you can increase the compilation time to the point that it will 
never complete, because the machine will die long before the program finishes compilation.

No Starch Press, Copyright © 2006 by Randall Hyde



72 Chapter  5

For all but the smallest source files (a few dozen lines), a perfect opti-
mizer would take far too long to be of any practical value (note that such 
optimizers have been written, search for “superoptimizers” using your favorite 
Internet search engine for all the details). For this reason, compiler optimizers 
rarely produce a truly optimal program. They simply produce the best result 
they can given the limited amount of CPU time the user is willing to allow for 
the process.

Rather than trying all possibilities and choosing the best result, modern 
optimizers use heuristics and case-based algorithms to determine the transforma-
tions they will apply to the machine code they produce. If you want to produce 
the best possible machine code from your HLL programs, you need to be 
aware of the heuristics and algorithms that typical compilers use during 
optimization. By writing your code in a manner that allows an optimizer to 
easily process your code, you can help guide the compiler to produce better 
machine code. In the following subsections, I’ll discuss the techniques you’ll 
need to know in order to help a compiler produce better machine code.

5.4.4.3 Basic Blocks, Reducible Code, and Optimization

Writing great code that works synergistically with your compiler’s optimizer 
requires a basic understanding of the optimization process. In this section 
I will discuss how a compiler organizes the intermediate code it produces in 
order to do a good job during the later optimization phases. The way you 
write your HLL source code has a profound effect on the compiler’s ability 
to organize the intermediate code (to produce better machine code), so 
understanding how the compiler does this is very important if you want to be 
able to help control the operation of the compiler’s optimizer.

When it analyzes code, a compiler’s optimizer will keep track of variable 
values as control flows through the program. The process of tracking this 
information is known as data flow analysis. After careful data flow analysis, a 
compiler can determine where a variable is uninitialized, when the variable 
contains certain values, when the program no longer uses the variable, and 
(just as importantly) when the compiler simply doesn’t know anything about 
the variable’s value. For example, consider the following Pascal code:

    path := 5;

    if( i = 2 ) then begin

        writeln( 'Path = ', path );

    end;

    i := path + 1;

    if( i < 20 ) then begin

        path := path + 1;

        i := 0;

    end;

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 73

A good optimizer will replace this code with something like the following:

    if( i = 2 ) then begin

        (* Because the compiler knows that path = 5 *)

        

        writeln( 'path = ', 5 ); 

    end;

    i := 0;     (* Because the compiler knows that path < 20 *)

    path := 6;  (* Because the compiler knows that path < 20 *)

In fact, the compiler probably would not generate code for the last two 
statements; instead, it would substitute the value 0 for i and 6 for path in later 
references. If this seems impressive to you, just note that some compilers can 
track constant assignments and expressions through nested function calls 
and complex expressions.

Although a complete description of how a compiler achieves this is 
beyond the scope of this book, you should have a basic understanding of 
how compilers keep track of variables during the optimization phase because 
a sloppily written program can thwart the compiler’s optimization abilities. 
Great code works synergistically with the compiler, not against it.

Some compilers can do some truly amazing things when it comes to opti-
mizing high-level code. However, you should note one thing: optimization 
is an inherently slow process. As noted earlier, optimization is provably an 
intractable problem. Fortunately, most programs don’t require full optimiza-
tion. A good approximation of the optimal program, even if it runs a little 
slower than the optimal program, is an acceptable compromise when 
compared to intractable compilation times.

The major concession to compilation time that compilers make during 
optimization is that they search for only so many possible improvements to a 
section of code before they move on. Therefore, if your programming style 
tends to confuse the compiler, it may not be able to generate an optimal 
(or even close to optimal) executable because the compiler has too many 
possibilities to consider. The trick is to learn how compilers optimize the 
source file so you can accommodate the compiler.

To analyze data flow, compilers divide the source code into sequences 
known as basic blocks. A basic block is a sequence of sequential machine 
instructions into and out of which there are no branches except at the begin-
ning and end of the basic block. For example, consider the following C code:

    x = 2;              // Basic Block 1

    j = 5;

    i = f( &x, j );

    j = i * 2 + j;

    if( j < 10 )        // End of Basic Block 1

    {

        j = 0;          // Basic Block 2

        i = i + 10;

        x = x + i;      // End of Basic Block 2

No Starch Press, Copyright © 2006 by Randall Hyde



74 Chapter  5

    }

    else

    {

        temp = i;       // Basic Block 3

        i = j;

        j = j + x;

        x = temp;       // End of Basic Block 3

    }

    x = x * 2;          // Basic Block 4

    ++i;

    --j;

    

    // End of Basic Block 4

    

    printf( "i=%d, j=%d, x=%d\n", i, j, x ); 

    // Basic Block 5 begins here

This code snippet contains four basic blocks. Basic block 1 starts with the 
beginning of the source code. A basic block ends at the point where there is 
a jump into or out of the sequence of instructions. Basic block 1 ends at the 
beginning of the if statement because the if can transfer control to either 
of two locations. The else clause terminates basic block 2. It also marks the 
beginning of basic block 3 because there is a jump (from the if’s then clause) 
to the first statement following the else clause. Basic block 3 ends, not because 
the code transfers control somewhere else, but because there is a jump from 
basic block 2 to the first statement that begins basic block 4 (from the if’s 
then section). Basic block 4 ends with a call to the C printf function.

The easiest way to determine where the basic blocks begin and end is 
to consider the assembly code that the compiler will generate for that code. 
Wherever there is a conditional branch/jump, unconditional jump, or call 
instruction, a basic block will end. Note, however, that the basic block includes 
the instruction that transfers control to a new location. A new basic block 
begins immediately after the instruction that transfers control to a new loca-
tion. Also, note that the target label of any conditional branch, unconditional 
jump, or call instruction begins a basic block.

The nice thing about basic blocks is that it is easy for the compiler to 
track what is happening to variables and other program objects in a basic 
block. As the compiler processes each statement, it can (symbolically) track 
the values that a variable will hold based upon their initial values and the 
computations on them within the basic block. 

A problem occurs when the paths from two basic blocks join into a single 
code stream. For example, at the end of basic block 2 in the current example, 
the compiler could easily determine that the variable j contains zero because 
code in the basic block assigns the value zero to j and then makes no other 
assignments to j. Similarly, at the end of basic block 3, the program knows 
that j contains the value j0+x (assuming j0 represents the initial value of j
upon entry into the basic block). But when the paths merge at the beginning 
of basic block 4, the compiler probably can’t determine whether j will contain 
zero or the value j0+x. So, the compiler has to note that j’s value could be 

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 75

either of two different values at this point. While keeping track of two possible 
values that a variable might contain at a given point is easy for a decent opti-
mizer, it’s not hard to imagine a situation where the compiler would have to 
keep track of many different possible values. In fact, if you have several if
statements that the code executes in a sequential fashion, and each of the 
paths through these if statements modifies a given variable, then the number 
of possible values for each variable doubles with each if statement. In other 
words, the number of possibilities increases exponentially with the number 
of if statements in a code sequence. At some point, the compiler cannot 
keep track of all the possible values a variable might contain, so it has to stop 
keeping track of that information for the given variable. When this happens, 
there are fewer optimization possibilities that the compiler can consider. 

Fortunately, although loops, conditional statements, switch/case state-
ments, and procedure/function calls can increase the number of possible 
paths through the code exponentially, in practice compilers have few prob-
lems with typical well-written programs. This is because as paths from basic 
blocks converge, programs often make new assignments to their variables 
(thereby eliminating the old information the compiler was tracking). Com-
pilers generally assume that programs rarely assign a different value to a 
variable along every distinct path in the program, and their internal data 
structures reflect this. So keep in mind that if you violate this assumption, 
the compiler may lose track of variable values and generate inferior code as a 
result.

Compiler optimizers are generally written to handle well-written programs 
in the source language. Poorly structured programs, however, can create con-
trol flow paths that confuse the compiler, reducing the opportunities for 
optimization. 

Good programs produce reducible flow graphs. A flow graph is a pictorial 
depiction of the control flow through the program. Figure 5-5 is a flow graph 
for the previous code fragment.

As you can see, arrows connect the end of each basic block with the 
beginning of the basic block into which they transfer control. In this partic-
ular example, all of the arrows flow downward, but this isn’t always the case. 
Loops, for example, transfer control backward in the flow graph. As another 
example, consider the following Pascal code:

    write( "Input a value for i:" );

    readln( i );

    j := 0;

    while( j < i and i > 0 ) do begin

        a[j] := i;

        b[i] := 0;

        j := j + 1;

        i := i - 1;

    end; (* while *)

    k := i + j;

    writeln( 'i = ', i, 'j = ', j, 'k = ', k );

No Starch Press, Copyright © 2006 by Randall Hyde



76 Chapter  5

Figure 5-5: An example flow graph

Figure 5-6 shows the flow graph for this simple code fragment.4

Well-structured programs have flow graphs that are reducible. Although a 
complete description of what a reducible flow graph consists of is beyond 
the scope of this book, any program that consists only of structured control 
statements (if, while, repeat..until, etc.) and avoids gotos will be reducible 
(actually, the presence of a goto statement won’t necessarily produce a pro-
gram that is not reducible, but programs that are not reducible generally 
have goto statements in them). This is an important issue because compiler 
optimizers can generally do a much better job when working on reducible 
programs. In contrast, programs that are not reducible tend to confuse 
optimizers.

What makes reducible programs easier for optimizers to deal with is that 
the basic blocks in such a program can be collapsed in an outline fashion 
with enclosing blocks inheriting properties (for example, which variables the 
block modifies) from the enclosed blocks. By processing the source file in an 
outline fashion, the optimizer can deal with a small number of basic blocks, 
rather than a large number of statements. This hierarchical approach to 
optimization is more efficient and allows the optimizer to maintain more 
information about the state of a program. Furthermore, the exponential

4 This flow graph has been somewhat simplified for purposes of clarity. This simplification does 
not affect the discussion of basic blocks.

x = 2;

j = 5;

i = f( &x, j );

j = i * 2 + j;

if( j < 10 )

{

j = 0;

i = i + 10;

x = x + i;

}

else
{

temp = i;
i = j;
j = j + x;
x = temp;

}

x = x * 2;

++i;

--j;

printf ( "i=%d, j=%d,

x=%d\ n",  i, j, x );

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 77

Figure 5-6: Flow graph for a while loop

time complexity of the optimization problem works for us in this case. By 
reducing the number of blocks the code has to deal with (using reduction), 
you dramatically reduce the amount of work the optimizer must do. Again, 
the exact details of how the compiler achieves this are not important here. 
The important thing to note is that if you avoid goto statements and other 
bizarre control transfer algorithms in your programs, your programs will 
usually be reducible, and the optimizer will be able to do a better job of 
optimizing your code.

Attempts to “optimize” your code by sticking in lots of goto statements to 
avoid code duplication and to avoid the execution of unnecessary tests may 
actually work against you. While you may save a few bytes or a few cycles in 
the immediate area you’re working on, the end result might also sufficiently 
confuse the compiler so that it cannot do a good job of global optimization, 
producing an overall loss of efficiency.

5.4.4.4 Common Compiler Optimizations

Later chapters will provide complete definitions and examples of common 
compiler optimizations in programming contexts where compilers typically 
use them. But for now, here’s a quick preview of the basic types:

Constant folding
Constant folding computes the value of constant expressions or subexpres-
sions at compile time rather than emitting code to compute the result at 
runtime. 

write( "Input a value for i:" );

readln ( i );

j := 0;

while( j < i and i > 0 ) do begin

a[j] := i;

b[i] := 0;

j := j + 1;

i := i - 1;

end; (* while *)

k := i + j;

writeln ( 'i = ', i, 'j = ', j, 'k = ', k );

No Starch Press, Copyright © 2006 by Randall Hyde



78 Chapter  5

Constant propagation
Constant propagation replaces a variable access by a constant value if the 
compiler determines that the program assigned that constant to the vari-
able earlier in the code.

Dead code elimination
Dead code elimination is the removal of the object code associated with 
a particular source code statement when the program will never use the 
result of that statement, or when a conditional block will never be true. 

Common subexpression elimination
Frequently, part of an expression will appear elsewhere in the current 
function. If the values of the variables appearing in this subexpression 
haven’t changed, the program does not need to recompute the value 
of the expression. The program can save the value of the subexpression 
on the first evaluation and then use that value everywhere else that the 
subexpression appears.

Strength reduction
Often, the CPU can directly compute a value using a different operator 
than the source code specifies. For example, a shift operation can imple-
ment multiplication or division by a constant that is a power of 2, and 
certain modulo (remainder) operations are possible using bitwise and
instructions (the shift and and instructions generally execute much faster 
than the multiply and divide instructions). Most compiler optimizers are 
good at recognizing such operations and replacing the more expensive 
computation with a less expensive sequence of machine instructions. 

Induction
In many expressions, particularly those appearing within a loop, the 
value of one variable in the expression is completely dependent upon 
some other variable. Frequently, the compiler can eliminate the compu-
tation of the new value or merge the two computations into one for the 
duration of that loop.

Loop invariants
The optimizations so far have all been techniques a compiler can use to 
improve code that is already well written. Handling loop invariants, by 
contrast, is a compiler optimization for fixing bad code. A loop invariant 
is an expression that does not change on each iteration of some loop. An 
optimizer can compute the result of such a calculation just once, outside 
the loop, and then use the computed value within the loop’s body. Many 
optimizers are smart enough to discover loop invariant calculations and 
can use code motion to move the invariant calculation outside the loop. 

Good compilers can perform many other optimizations. However, there 
are the standard optimizations that you should expect any decent compiler 
to do.

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 79

5.4.4.5 Controlling Compiler Optimization

By default most compilers do very little optimization: You must explicitly tell 
the compiler to perform any optimization. This might seem counterintuitive; 
after all, we generally want compilers to produce the best possible code for 
us. However there are many definitions of “optimal,” and no single compiler 
output is going to satisfy every possible definition for this term. Therefore, 
most compilers enable optimization only when you explicitly tell them to.

You might still question why the typical default condition for most com-
pilers is no optimization at all. You might argue that some sort of optimization, 
even if it’s not the particular type you’re interested in, is better than no 
optimization at all. However, no optimization is the default state for a few 
reasons:

� Optimization is a slow process. You get quicker turnaround times on 
compiles when you have the optimizer turned off. This can be a big help 
when going through rapid edit-compile-test cycles.

� Many debuggers don’t work properly with optimized code, and you have 
to turn off optimization in order to use a debugger on your application.

� Most compiler defects occur in the optimizer. By emitting unoptimized 
code, you’re less likely to encounter defects in the compiler (then again, 
the compiler’s author is less likely to be notified about defects in the 
compiler, too).

Most compilers provide command-line options that let you control the 
types of optimization the compiler performs. Early C compilers under Unix 
used command-line arguments like -O, -O1, and -O2 to control the optimiza-
tion phases of the compiler. Many later compilers (C and otherwise) have 
adopted this same strategy, if not exactly the same command-line options. 
The bottom line is that you’ve generally got some control over the type of 
optimizations the compiler performs.

If you’re wondering why a compiler might offer multiple options to con-
trol optimization rather than just having a single option (optimization or no 
optimization), remember that “optimization” means different things to differ-
ent people. Some people might want code that is optimized for space; others 
might want code that is optimized for speed (and the two optimizations could 
be mutually exclusive in a given situation). Some people might want a small 
amount of  optimization, but won’t want the compiler to take forever to 
process their files, so they’d be willing to live with a small set of fast optimi-
zations. Others might want to control optimization for a specific member of 
a CPU family (such as the Pentium 4 processor in the 80x86 family). Further-
more, some optimizations are “safe” (that is, they always produce correct code) 
only if the program is written in a certain way. You certainly don’t want to 
enable such optimizations unless the programmer guarantees that they’ve 
written their code in an appropriate fashion. Finally, for programmers who 
are carefully writing their HLL code, some optimizations the compiler per-
forms may actually produce inferior code, so the ability to choose specific 

No Starch Press, Copyright © 2006 by Randall Hyde



80 Chapter  5

optimizations can be very handy to the programmer who wants to produce 
the best possible code. Therefore, most modern compilers provide consider-
able flexibility over the types of optimizations they perform.

Consider the Microsoft Visual C++ compiler. Here is a list of the 
command-line options that MSVC++ provides to control optimization:

                              -OPTIMIZATION-

/O1 minimize space 

/Op[-] improve floating-pt consistency

/O2 maximize speed 

/Os favor code space

/Oa assume no aliasing 

/Ot favor code speed

/Ob<n> inline expansion (default n=0) 

/Ow assume cross-function aliasing

/Od disable optimizations (default)      

/Ox maximum opts. (/Ogityb1 /Gs)

/Og enable global optimization          

/Oy[-] enable frame pointer omission

/Oi enable intrinsic functions

                             -CODE GENERATION-

/G3 optimize for 80386                   

/Gy separate functions for linker

/G4 optimize for 80486                   

/Ge force stack checking for all funcs

/G5 optimize for Pentium                 

/Gs[num] disable stack checking calls

/G6 optimize for Pentium Pro             

/Gh enable hook function call

/GB optimize for blended model (default) 

/GR[-] enable C++ RTTI

/Gd __cdecl calling convention           

/GX[-] enable C++ EH (same as /EHsc)

/Gr __fastcall calling convention        

/Gi[-] enable incremental compilation

/Gz __stdcall calling convention         

/Gm[-] enable minimal rebuild

/GA optimize for Windows application     

/EHs enable synchronous C++ EH

/GD optimize for Windows DLL             

/EHa enable asynchronous C++ EH

/Gf enable string pooling                

/EHc extern "C" defaults to nothrow

/GF enable read-only string pooling      

/QIfdiv[-] enable Pentium FDIV fix 

/GZ enable runtime debug checks          

/QI0f[-] enable Pentium 0x0f fix

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 81

GCC has a comparable, though much longer list, that you can view 
by specifying -v --help on the GCC command line. Most of the individual 
optimization flags begin with -f. You can also use -On, where n is a single digit 
integer value, to specify different levels of optimization. You should take care 
when using -O3 (or higher), as this may perform some unsafe optimizations 
in certain cases.

5.4.5 Comparing Different Compilers’ Optimizations
One real-world constraint on our ability to produce great code is that differ-
ent compilers provide a wildly varying set of optimizations. Even when two 
different compilers perform the same optimizations, they differ greatly in the 
effectiveness of their optimizations. 

Fortunately, you can visit several websites that have benchmarked 
various compilers. Using your favorite search engine, just search for a topic 
like “compiler benchmarks” or “compiler comparisons” and have fun. A very 
good website that compares several modern compilers is www.willus.com. 
(Click the Compiler Benchmarks link.)

5.4.6 Native Code Generation
The native code generation phase is responsible for translating the inter-
mediate code into machine code for the target CPU. An 80x86 native code 
generator, for example, might translate the intermediate code sequence just 
given into something like the following:

mov( 5, eax ); // move the constant 5 into the EAX register.

mov( eax, k ); // Store the value in EAX (5) into k.

add( eax, m ); // Add the value in EAX to variable m.

The second optimization phase, which takes place after native code gen-
eration, handles machine idiosyncrasies that don’t exist on all machines. For 
example, an optimizer for a Pentium II processor might replace an instruc-
tion of the form add( 1, eax ); with the instruction inc( eax );. Optimizers 
for certain 80x86 processors might arrange the sequence of instructions one 
way to maximize parallel execution of the instructions in a superscalar CPU 
while an optimizer targeting a different (80x86) CPU might arrange the 
instructions differently.

5.5 Compiler Output

In the previous section, I said that compilers typically produce machine code 
as their output. Strictly, this is neither necessary nor even that common. Most 
compiler output is not code that a given CPU can directly execute. Some com-
pilers emit assembly language source code, which requires further processing 
by an assembler prior to execution. Some compilers produce an object file, 
which is similar to executable code but is not directly executable, and some 

No Starch Press, Copyright © 2006 by Randall Hyde



82 Chapter  5

compilers actually produce source code output that requires further proces-
sing by a different HLL compiler. I’ll discuss these different output formats 
and their advantages and disadvantages in this section.

5.5.1 Emitting HLL Code as Compiler Output
Some compilers actually emit output that is source code for a different high-
level programming language (see Figure 5-7). For example, many compilers 
(including the original C++ compiler) emit C code as their output. Indeed, 
compiler writers who emit some high-level source code from their compiler 
frequently choose the C programming language.

Emitting HLL code as compiler output offers several advantages. The 
output is human readable and is generally easy to verify. The HLL code 
emitted is often portable across various platforms; for example, if a compiler 
emits C code, you can usually compile that output on several different 
machines because C compilers exist for most platforms. By emitting HLL 
code, a translator can rely on the optimizer of the target language’s com-
piler, thereby saving the effort of writing an optimizer. Emitting HLL code is 
usually much easier than emitting other types of code output. This allows a 
compiler writer to create a less complex code generator module and rely on 
the robustness of some other compiler for the most complex part of the 
compilation process.

Figure 5-7: Emission of HLL code by a compiler

Of course, emitting HLL code has several disadvantages. First and fore-
most, this technique usually takes more processing time than directly gener-
ating executable code. To produce an executable file a second, otherwise 
unnecessary, compiler might need to be utilized. Worse, the output of that 
second compiler might need to be further processed by another compiler or 
assembler, exacerbating the problem. Another disadvantage to this approach 
is that embedding debugging information that a debugger program can 
use is difficult. Perhaps the most fundamental problem with this approach, 
however, is that HLLs are usually an abstraction of the underlying machine. 
Therefore, it could be quite difficult for a compiler to emit statements in an 
HLL that efficiently map to low-level machine code.

Compiler

HLL source code

HLL source
code as output

Compiler #2

Executable machine code

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 83

Generally, compilers that emit HLL statements as their output translate 
a very high-level language (VHLL) into a lower-level language. For example, 
C is often considered to be a fairly low-level HLL. That is one of the reasons C 
is a popular output format for many compilers. Attempts have been made to 
create a special, portable, low-level language specifically for this purpose, 
but such projects have never been enormously popular. Check out any 
of the “C--” projects on the Internet for examples of such systems 
(www.cminusminus.org).

If you want to write efficient code by analyzing compiler output, you’ll 
probably find it more difficult to work with compilers that output HLL code. 
With a standard compiler, all you have to learn is the particular machine 
code statements that your compiler produces. However, when a compiler 
emits HLL statements as its output, learning to write great code with that 
compiler is more difficult. You need to understand how the main language 
emits the HLL statements and how the second compiler translates the code 
into machine code.

Generally, compilers that produce HLL code as their output are either 
experimental compilers or compilers for VHLLs. As such, expecting those 
compilers to emit efficient code is generally asking too much. If you’re inter-
ested in writing great code that is efficient, you’d probably be wise to avoid 
a compiler that emits HLL statements. A compiler that directly generates 
machine code (or assembly language code) is more likely to produce smaller 
and faster running executables.

5.5.2 Emitting Assembly Language as Compiler Output
Many compilers will emit human-readable assembly language source files 
rather than binary machine code files (see Figure 5-8). Probably the most 
famous example of this is the FSF/GNU GCC compiler suite, which emits 
assembly language output for the FSF/GNU Gas assembler. Like compilers 
that emit HLL source code, emitting assembly language has some advantages 
and disadvantages.

Figure 5-8: Emission of assembly code by a compiler

The principal disadvantage to emitting assembly output is similar to the 
disadvantages of emitting HLL source output—you have to run a second 
language translator (namely the assembler) to produce the actual object 

Compiler

HLL source code

Assembly language
source code as output

Assembler

Executable machine code

No Starch Press, Copyright © 2006 by Randall Hyde



84 Chapter  5

code for execution. Another possible disadvantage is that some assemblers 
may not allow the embedding of debug meta-information that allows a 
debugger to work with the original source code (though many assemblers do 
support the ability to embed this information). These two disadvantages turn 
out to be minimal if a compiler emits code for an appropriate assembler. For 
example, FSF/GNU’s Gas assembler is very fast and supports the insertion 
of debug information for use by source level debuggers. Therefore, the 
FSF/GNU compilers don’t suffer as a result of emitting Gas output.

The advantage of assembly language output, particularly for our purposes, 
is that it is easy to read the compiler’s output and determine which machine 
instructions the compiler emits. Indeed, this compiler facility is one I’ll use 
throughout this book to analyze compiler output. From a compiler writer’s 
perspective, emitting assembly code frees the compiler writer from having to 
worry about several different object code output formats—the underlying 
assembler handles those problems. This allows the compiler writer to create 
a more portable compiler, and if they want to have their compiler generate 
code for different operating systems, they won’t have to incorporate several 
different object output formats into their compiler. True, the assembler has 
to be capable of this, but you only need to repeat this exercise once for each 
object file format, rather than once for each format multiplied by the number 
of compilers you write. The FSF/GNU compiler suite has taken good advan-
tage of this.

Another advantage of compilers that can emit assembly language output 
is that they generally allow you to embed inline assembly language statements 
in the HLL code. This allows you to insert a few machine instructions directly 
into time-critical sections of your code when there is a benefit to using 
assembly language, without the hassle of having to create a separate assembly 
language program and link its output to your HLL program.

5.5.3 Emitting Object Files as Compiler Output
Most compilers translate the source language into an object file format. 
An object file format is an intermediate file format that contains machine 
instructions and binary runtime data along with certain meta-information. 
This meta-information allows a linker/loader program to combine various 
object modules to produce a complete executable. This allows programmers 
to link library modules and other object modules that they’ve written and 
compiled separately from their main application module. 

The advantage of object module output is that you don’t need a separate 
compiler or assembler to convert the compiler’s output to object code form. 
This saves a small amount of time when running the compiler. Note, however, 
that a linker program must still process the object file output, which consumes 
a small amount of time once compilation is complete. Nevertheless, linkers 
are usually quite fast, so it’s usually more cost-effective to compile a single 
module and link it with several previously compiled modules than it is to 
compile all the modules together to form an executable file.

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 85

Object modules are binary files and do not contain human-readable 
data. For this very reason, analyzing compiler output is a bit more difficult 
using object modules. Fortunately, there are utility programs that will 
disassemble the output of an object module into a human-readable form. 
Even though the result isn’t as easy to read as straight assembly output from 
a compiler, you can still do a reasonably good job by studying compiler output 
when the compiler emits object files. Section 5.6, “Object File Formats,” 
provides a detailed look at the elements of an object file, focusing on the 
COFF format.

Because object files are often difficult to analyze, many compiler writers 
provide an option to emit assembly code instead of object code. This handy 
feature makes it much easier to analyze compiler output, a trick I’ll use with 
various compilers throughout this book.

5.5.4 Emitting Executable Files as Compiler Output
Some compilers directly emit an executable output file. Such compilers are 
often very fast, producing almost instantaneous turnaround during the edit-
compile-run-test-debug cycle. Unfortunately, the output from such compilers 
is often the most difficult to analyze, requiring the use of a debugger or 
disassembler program and a lot of manual work to read the machine instruc-
tions the compiler emits. Nevertheless, the fast turnaround offered by such 
compilers tends to make them popular. Later in this book, we’ll look at 
how to analyze executable files that such compilers produce.

5.6 Object File Formats

As previously noted, object files are among the most popular output mech-
anisms that compilers use. Even though it is possible to create a proprietary 
object file format, one that only a single compiler and its associated tools can 
use, most compilers emit code using one or more standardized object file 
formats. This allows different compilers to share the same set of object file 
utilities, including linkers, librarians, dump utilities, disassemblers, and so 
on. Examples of common object module formats include: OMF (Object 
Module Format), COFF (Common Object File Format), PE/COFF (Micro-
soft’s variant on COFF), and ELF (Executable and Linkable Format). Many 
other object file formats exist, and there are several variants of these file 
formats.

COFF is an attempt to create a universal object file format and, in fact, 
many object file formats are simply an extension of the COFF format (e.g., 
ELF, like PE/COFF has its roots in the COFF file format). Although most 
programmers understand that object files contain a representation of the 
machine code that an application executes, they generally don’t realize the 
impact that the organization of the object file has on their application. In 
this section I’ll discuss the internal organization of object files and how they 
can impact the performance and size of an application. Although detailed 
knowledge of the internal representation of an object file isn’t absolutely 

No Starch Press, Copyright © 2006 by Randall Hyde



86 Chapter  5

needed to write great code, having a basic understanding of object file formats 
can help you organize your source files to better take advantage of the way 
compilers and assemblers generate code for your applications.

An object file usually begins with a header that comprises the first 
few bytes of the file. This header contains certain signature information that 
identifies the file as a valid object file along with several other values that 
define the location of various data structures in the file. Beyond the header, 
an object file is usually divided into several sections, each containing appli-
cation data, machine instructions, symbol table entries, relocation data, and 
other metadata (data about the program). In some cases, the actual code 
and data represent only a small part of the entire object code file. To get a 
feeling for how object files are structured, it’s worthwhile to look at a specific 
object file format in detail. I’ll use the COFF format in the following discus-
sion because most object file formats are based on, or very similar to, the 
COFF format. The basic layout of a COFF file is shown in Figure 5-9. The 
following sections describe the difference sections of this format in more 
detail.

Figure 5-9: Layout of a COFF file

5.6.1 The COFF File Header
At the beginning of every COFF file is a COFF file header. Here are the 
definitions that Microsoft Windows and Linux use for the COFF header 
structure:

// Microsoft Windows winnt.h version:

typedef struct _IMAGE_FILE_HEADER {

COFF file header

Optional header

Section headers

Sections’ contents

Relocation information

Line number info

Symbol table

String table

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 87

    WORD    Machine;

    WORD    NumberOfSections;

    DWORD   TimeDateStamp;

    DWORD   PointerToSymbolTable;

    DWORD   NumberOfSymbols;

    WORD    SizeOfOptionalHeader;

    WORD    Characteristics;

} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

// Linux coff.h version:

struct COFF_filehdr {

        char f_magic[2];        /* magic number */

        char f_nscns[2];        /* number of sections */

        char f_timdat[4];       /* time & date stamp */

        char f_symptr[4];       /* file pointer to symtab */

        char f_nsyms[4];        /* number of symtab entries */

        char f_opthdr[2];       /* sizeof(optional hdr) */

        char f_flags[2];        /* flags */

};

The Linux coff.h header file uses traditional Unix names for these 
fields; the Microsoft winnt.h header file uses (arguably) more readable names. 
Despite the differences in field names and declarations, both of these defi-
nitions describe the same object—a COFF header file. Here’s a summary of 
each field in the header:

f_magic/Machine

Identifies the system for which this COFF file was created. In the original 
Unix definition, this value identified the particular port of Unix for which 
the code was created. Today's operating systems define this value some-
what differently, but the bottom line is that this value is a signature that 
specifies whether the COFF file contains data or machine instructions 
that are appropriate for the current operating system and CPU.

f_nscns/NumberOfSections

Specifies how many segments (sections) are present in the COFF file. 
A linker program can iterate through a set of section headers (described 
a little later) using this value.

f_timdat/TimeDateStamp

Contains a Unix-style timestamp (number of seconds since January 1, 
1970) value specifying the file’s create date and time. 

f_symptr/PointerToSymbolTable

Contains a file offset value (that is, the number of bytes from the begin-
ning of the file) that specifies where the symbol table begins in the file. 
The symbol table is a data structure that specifies the names and other 
information about all external, global, and other symbols used by the 
code in the COFF file. Linkers use the symbol table to resolve external 
references. This symbol table information may also appear in the final 
executable file for use by a symbolic debugger.

No Starch Press, Copyright © 2006 by Randall Hyde



88 Chapter  5

f_opthdr/SizeOfOptionalHeader

Specifies the size of the optional header that immediately follows the 
file header in the file (that is, the first byte of the optional header 
immediately follows the f_flags/Characteristics field in the file header 
structure). A linker or other object code manipulation program would 
use the value in this field to determine where the optional header ends 
and the section headers begin in the file. The section headers immedi-
ately follow the optional header, but the optional header's size isn't 
fixed. Different implementations of a COFF file can have different 
optional header structures. If the optional header is not present in a 
COFF file, the f_opthdr/SizeOfOptionalHeader field will contain zero, 
and the first section header will immediately follow the file header.

f_flags/Characteristics

A small bitmap that specifies certain Boolean flags, such as whether the 
file is executable, whether it contains symbol information, whether it 
contains line number information (for use by debuggers), and so on.

5.6.2 The COFF Optional Header
The COFF optional header contains information pertinent to executable 
files. This header may not be present if the file contains object code that is 
not executable (because of unresolved references). Note, however, that this 
optional header is always present in Linux COFF and Microsoft PE/COFF 
files, even when the file is not executable. The Windows and Linux structures 
for this optional file header take the following forms in C:

// Microsoft PE/COFF Optional Header (from winnt.h)

typedef struct _IMAGE_OPTIONAL_HEADER {

    //

    // Standard fields.

    //

    WORD    Magic;

    BYTE    MajorLinkerVersion;

    BYTE    MinorLinkerVersion;

    DWORD   SizeOfCode;

    DWORD   SizeOfInitializedData;

    DWORD   SizeOfUninitializedData;

    DWORD   AddressOfEntryPoint;

    DWORD   BaseOfCode;

    DWORD   BaseOfData;

    //

    // NT additional fields.

    //

    DWORD   ImageBase;

    DWORD   SectionAlignment;

    DWORD   FileAlignment;

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 89

    WORD    MajorOperatingSystemVersion;

    WORD    MinorOperatingSystemVersion;

    WORD    MajorImageVersion;

    WORD    MinorImageVersion;

    WORD    MajorSubsystemVersion;

    WORD    MinorSubsystemVersion;

    DWORD   Win32VersionValue;

    DWORD   SizeOfImage;

    DWORD   SizeOfHeaders;

    DWORD   CheckSum;

    WORD    Subsystem;

    WORD    DllCharacteristics;

    DWORD   SizeOfStackReserve;

    DWORD   SizeOfStackCommit;

    DWORD   SizeOfHeapReserve;

    DWORD   SizeOfHeapCommit;

    DWORD   LoaderFlags;

    DWORD   NumberOfRvaAndSizes;

    IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

// Linux/COFF Optional Header format (from coff.h)

typedef struct 

{

  char  magic[2];  /* type of file */

  char  vstamp[2]; /* version stamp */

  char  tsize[4];  /* text size in bytes, padded to

                      FW bdry */

  char  dsize[4]; /* initialized   data "   " */

  char  bsize[4]; /* uninitialized data "   " */

  char  entry[4]; /* entry pt. */

  char  text_start[4]; /* base of text used for this file */

  char  data_start[4]; /* base of data used for this file */

} COFF_AOUTHDR;

The first thing you will notice is that these structures are not identical. 
The Microsoft version has considerably more information than the Linux 
version. The f_opthdr/SizeOfOptionalHeader field exists in the file header to 
determine the actual size of the optional header.

magic/Magic

Provides yet another signature value for the COFF file. This signature 
value identifies the file type (i.e., COFF) rather than the system under 
which it was created. Linkers use the value of this field to determine if 
they are truly operating on a COFF file (instead of some arbitrary file 
that would confuse the linker).

vstamp/MajorLinkerVersion/MinorLinkerVersion

Specifies the version number of the COFF format so that a linker 
written for an older version of the file format won't try to process 
files intended for newer linkers.

No Starch Press, Copyright © 2006 by Randall Hyde



90 Chapter  5

tsize/SizeOfCode

Attempts to specify the size of the code section found in the file. If the 
COFF file contains more than one code section, the value of this field is 
undefined, although it usually specifies the size of the first code/text sec-
tion in the COFF file.

dsize/SizeOfInitializedData

Specifies the size of the data segment appearing in this COFF file. Once 
again, this field is undefined if there are two or more data sections in the 
file. Usually, this field specifies the size of the first data section if there 
are multiple data sections.

bsize/SizeOfUninitializedData

Specifies the size of the BSS section (the uninitialized data section) in 
the COFF file. As for the text and data sections, this field is undefined if 
there are two or more BSS sections; in such cases this field usually speci-
fies the size of the first BSS section in the file.

Entry/AddressOfEntryPoint

Contains the starting address of the executable program. Like other 
pointers in the COFF file header, this field is actually an offset into the 
file; it is not an actual memory address.

text_start/BaseOfCode

Specifies a file offset into the COFF file where the code section begins. 
If there are two or more code sections, this field is undefined, but it 
generally specifies the offset to the first code section in the COFF file.

data_start/BaseOfData

Specifies a file offset into the COFF file where the data section begins. 
If there are two or more data sections, this field is undefined, but it 
generally specifies the offset to the first data section in the COFF file.

There is no need for a bss_start/StartOfUninitializedData field. The COFF 
file format assumes that the operating system’s program loader will automat-
ically allocate storage for a BSS section when the program loads into memory. 
There is no need to consume space in the COFF file for uninitialized data 
(however, Section 5.7, “Executable File Formats,” describes how some com-
pilers actually merge BSS and DATA sections together for performance 
reasons).

The optional file header structure is actually a throwback to the a.out
format, an older object file format used in Unix systems. This is why it 
doesn’t handle multiple text/code and data sections, even though COFF 
allows them.

The remaining fields in the Windows variant of the optional header hold 
values that Windows’ linkers allow programmers to specify. The purpose of 
most of these should be fairly clear to anyone who has manually run Micro-
soft’s linker from a command line; in any case, their particular purposes are 
not important here. What is important to note is that COFF does not require 

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 91

a specific data structure for the optional header. Different implementations 
of COFF (such as Microsoft’s) may freely extend the definition of the optional 
header.

5.6.3 COFF Section Headers
The section headers follow the optional header in a COFF file. Unlike the 
file and optional headers, a COFF file may contain multiple section headers. 
The f_nscns/NumberOfSections field in the file header specifies the exact 
number of section headers (and, therefore, sections) found in the COFF file. 
Keep in mind that the first section header does not begin at a fixed offset in 
the file. Because the optional header’s size is variable (and, in fact, could even 
be zero if it is not present), you have to add the f_opthdr/SizeOfOptionalHeader
field in the file header to the size of the file header to get the starting offset 
of the first section header in the file. Section headers are a fixed size, so once 
you obtain the address of the first section header you can easily compute the 
address of any other section header by multiplying the desired section header 
number by the section header size and adding this to the base offset of the 
first section header.

Here are the C struct definitions for Windows and Linux section headers:

// Windows section header structure (from winnt.h)

typedef struct _IMAGE_SECTION_HEADER {

    BYTE    Name[IMAGE_SIZEOF_SHORT_NAME];

    union {

            DWORD   PhysicalAddress;

            DWORD   VirtualSize;

    } Misc;

    DWORD   VirtualAddress;

    DWORD   SizeOfRawData;

    DWORD   PointerToRawData;

    DWORD   PointerToRelocations;

    DWORD   PointerToLinenumbers;

    WORD    NumberOfRelocations;

    WORD    NumberOfLinenumbers;

    DWORD   Characteristics;

} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

// Linux section header definition (from coff.h)

struct COFF_scnhdr 

{

  char s_name[8]; /* section name */

  char s_paddr[4]; /* physical address, aliased s_nlib */

  char s_vaddr[4]; /* virtual address */

  char s_size[4]; /* section size */

  char s_scnptr[4]; /* file ptr to raw data */

  char s_relptr[4]; /* file ptr to relocation */

  char s_lnnoptr[4]; /* file ptr to line numbers */

  char s_nreloc[2]; /* number of relocation entries */

No Starch Press, Copyright © 2006 by Randall Hyde



92 Chapter  5

  char s_nlnno[2]; /* number of line number entries */

  char s_flags[4]; /* flags */

};

If you inspect these two structures closely you’ll find that they are roughly 
equivalent (the only structural difference is that Windows overloads the 
physical address field, which in Linux is always equivalent to the VirtualAddress
field, to hold a VirtualSize field).

Here’s a summary of each field:

s_name/Name

Specifies the name of the section. As is apparent in the Linux definition, 
this field is limited to eight characters and, as such, section names will be 
a maximum of eight characters long. (Usually, if a source file specifies a 
longer name, the compiler/assembler will truncate it to eight characters 
when creating the COFF file.) If the section name is exactly eight charac-
ters long, those eight characters will consume all eight bytes of this field 
and there will be no zero-terminating byte. If the section name is shorter 
than eight characters, a zero-terminating byte will follow the name. The 
value of this field is often something like .text, CODE, .data, or DATA. Note, 
however, that the name does not define the segment’s type. You could 
create a code/text section and name it DATA; you could also create a data 
section and name it .text or CODE. The s_flags/Characteristics field 
determines the actual type of this section.

s_paddr/PhysicalAddress/VirtualSize

Not used by most tools. Under Unix-like operating systems (e.g., Linux), 
this field is usually set to the same value as the VirtualAddress field. Differ-
ent Windows tools set this field to different values (including zero); the 
linker/loader seems to ignore whatever value appears here. 

s_vaddr/VirtualAddress

Specifies the section’s loading address in memory (i.e., its virtual mem-
ory address). Note that this is a runtime memory address, not an offset 
into the file. The program loader uses this value to determine where to 
load the section into memory.

s_size/SizeOfRawData

Specifies the size, in bytes, of the section. 

s_scnptr/PointerToRawData

Provides the file offset to the start of the section’s data in the COFF file. 

s_relptr/PointerToRelocations

Provides a file offset to the relocation list for this particular section. 

s_nreloc/NumberOfRelocations

Specifies the number of relocation entries found at that file offset. Relo-
cation entries are small structures that provide file offsets to address data 
in the section’s data area that must be patched when the file is loaded 

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 93

into memory. We won’t discuss these relocation entries in this book 
because of the space limitations. If you’re interested in more details, 
check out one of the references appearing at the end of this chapter.

s_lnnoptr/PointerToLinenumbers

Contains a file offset to the line number records for the current section.

s_nlnno/NumberOfLinenumbers

Specifies how many line number records can be found at that offset. 
Line number information is used by debuggers and is beyond the scope 
of this chapter. Again, see the references at the end of this chapter if 
you’re interested in more information about the line number entries.

s_flags/Characteristics

A bitmap that specifies the characteristics of this section. In particular, 
this field will tell you whether the section requires relocation, whether it 
contains code, whether it is read-only, and so on.

5.6.4 COFF Sections
The section headers provide a directory that describes the actual data and 
code found in the object file. The s_scnptr/PointerToRawData field contains a 
file offset to where the raw binary data or code is sitting in the file, and the 
s_size/SizeOfRawData field specifies the length of the section’s data. Due to 
relocation requirements, the data actually appearing in the section block 
may not be an exact representation of the data that the operating system 
loads into memory. This is because many instruction operand addresses and 
pointer values appearing in the section may need to be patched to relocate 
the file based on where the operating system loads it into memory. The 
relocation list (which is separate from the section’s data) contains offsets into 
the section where the operating system must patch the relocatable addresses. 
The operating system performs this patching when loading the section’s data 
from disk.

Although the bytes in a COFF section may not be an exact representa-
tion of the data that appears in memory at runtime (due to relocation), the 
COFF format requires that all of the bytes in the section map to the corre-
sponding address in memory. This allows the loader to copy the section’s 
data directly from the file into sequential memory locations. The relocation 
operation never inserts or deletes bytes in a section; it only changes the 
values of certain bytes appearing in the section. This requirement helps 
simplify the system loader and improves the performance of the application 
because the operating system doesn’t have to move large blocks of memory 
around when loading the application into memory. The drawback to this 
scheme is that the COFF format misses the opportunity to compress 
redundant data appearing in the section’s data area. However, the designers 
of the COFF format felt it was more important to emphasize performance 
over space in their design.

No Starch Press, Copyright © 2006 by Randall Hyde



94 Chapter  5

5.6.5 The Relocation Section
The relocation section in the COFF file contains the offsets to the pointers 
in the COFF sections that must be relocated when the system loads those 
sections’ code or data into memory.

5.6.6 Debugging and Symbolic Information
The last three sections shown in Figure 5-9 contain information that 
debuggers and linkers use. One section contains line number information 
that a debugger uses to correlate lines of source code with the executable 
machine code instructions. The symbol table and string table sections hold 
the public and external symbols for the COFF file. Linkers use this informa-
tion to resolve external references between object modules; debuggers use 
this information to display symbolic variable and function names during 
debugging.

5.6.7 Learning More About Object File Formats
This book doesn’t provide a complete description of the COFF file format. 
However, understanding the basics of an object file format, such as COFF, 
is important if you want to understand how compilers and linkers work and 
how the organization of your source code impacts the final executable file. 
If you’re interested in writing a great linker program, you’ll definitely want 
to dig deeper into the various object code formats (COFF, ELF, OMF, etc.). 
If you aren’t writing applications such as assemblers, compilers, and linkers, 
you really don’t need to know that much about COFF file formats. If for some 
reason you do need to study this area further, see the references at the end 
of this chapter.

5.7 Executable File Formats
Most operating systems use a special file format for executable files. Often, 
the executable file format is similar to the object file format, the principal 
difference being that there are usually no unresolved external references 
in the executable file. For example, the Microsoft Windows Portable 
Executable (PE) format is a slightly modified version of the COFF file format 
(consisting of the same elements shown in Figure 5-9). 

In addition to machine code and binary data, executable files contain 
other metadata, including debugging information, linkage information for 
dynamically linked libraries, and information that defines how the operating 
system should load different sections of the file into memory. Depending on 
the CPU and operating system, the executable files may also contain relocation 
information so that the operating system (OS) can patch absolute addresses 
when it loads the file into memory. Object code files contain the same infor-
mation, so it’s not surprising to find that the executable file formats used by 
many operating systems are similar to their object file formats.

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 95

The ELF format, employed by Linux, QNX, and other Unix-like operating 
systems, is very typical of a combined “object module format” and executable 
format. Indeed, the name of the format (ELF stands for Executable and 
Linkable Format) suggests the dual nature of this file format. Microsoft’s 
PE file format is a straightforward modification of the COFF format. Most 
modern operating systems use an executable format that is similar to their 
object file format which allows the OS designer to share code between the 
loader (responsible for executing the program) and linker applications. As 
such, there is little reason to discuss the specific data structures found in an 
executable file. Doing so would largely repeat the information found in the 
previous sections (assuming, of course, we were to discuss a COFF-based 
executable file format like PE/COFF).

Although the file structure, internal data structures, and metadata 
appearing in an executable file are very similar to those appearing in an 
object code file, some very practical differences in the layout of these two 
types of files are worth mentioning. In particular, object code files are usually 
designed to be as small as possible while executable files are usually designed 
to load into memory as fast as possible, even if this means that the file is 
larger than absolutely necessary. It may seem paradoxical that a larger file 
could load into memory faster than a smaller file; however, the OS might 
load only a small part of the executable file into memory at one time if it 
supports virtual memory. A well-designed executable file format can take 
advantage of this fact by laying out the data and machine instructions in the 
file to reduce virtual memory overhead.

5.7.1 Pages, Segments, and File Size
As you may recall from Write Great Code, Volume 1: Understanding the Machine,
virtual-memory subsystems and memory-protection schemes generally operate 
on pages in memory. A page on a typical processor is usually between 1KB 
and 64KB in size. Whatever the size, a page is the smallest unit of memory to 
which you can apply discrete protection features (such as whether the data in 
that page is read-only, read/write, or executable). In particular, you cannot 
mix read-only/executable code with read/write data in the same page—the 
two must appear in separate pages in memory. Using the 80x86 CPU family 
as our example, we see that pages in memory are 4KB each. Therefore, the 
minimum amount of code space and the minimum amount of data space we 
can allocate to a process is 8KB if we have read/write data and we want to 
place the machine instructions in read-only memory. In fact, most programs 
contain several segments or sections5 to which we can apply individual protection 
rights, and each of these sections is going to require a unique set of one or 
more pages in memory that are not shared with any of the other sections. A 
typical program has four or more sections in memory: code or text, static 
data, uninitialized data, and stack are the most common sections. In 
addition, many compilers also generate heap segments, linkage segments, 
read-only segments, constant data segments, and application-named data 
segments (see Figure 5-10).

5 The terms section and segments are synonymous and this book will use them interchangeably.

No Starch Press, Copyright © 2006 by Randall Hyde



96 Chapter  5

Figure 5-10: Typical segments found in memory

Because operating systems map segments to pages, a segment will always 
require some number of bytes that are a multiple of the page size. For exam-
ple, if a program has a segment that contains only a single byte of data, that 
segment will still consume 4,096 bytes on an 80x86 processor. Similarly, if an 
80x86 application consists of six different segments (or sections), then that 
application will consume at least 24KB in memory, regardless of the number of 
machine instructions and data bytes that the program uses and regardless 
of the executable file’s size.

Many executable file formats (e.g., ELF and PE/COFF) provide an 
option for a block started by symbol 6 (BSS) section in memory. The BSS section 
is where a programmer can place uninitialized static variables. As their values 
are uninitialized, there is no need to clutter the executable file with random 
data values for each of these variables. Therefore, the BSS section in some 
executable file formats is just a small stub that tells the OS loader the size of 
the BSS section. With such a BSS section in the executable file, you can add 
new uninitialized static variables to your application without affecting the 
executable file’s size. When you increase the amount of BSS data, the com-
piler simply adjusts a value to tell the loader how many bytes to reserve for 
the uninitialized variables. Were you to add those same variables to an 
initialized data section, the size of the executable file would grow with each 
byte of data that you added. Obviously, saving space on your mass storage 
device is a good thing to do, so using BSS sections to reduce your executable 
file sizes is a useful optimization.

The one thing that many people tend to forget, however, is that a BSS 
section still requires main memory at runtime. Even though the executable 
file size may be smaller, each byte of data you declare in your program 
translates to one byte of data in memory. Some programmers get the mistaken 
impression that the executable’s file size is indicative of the amount of memory 
that the program consumes. This, however, isn’t necessarily true, as our BSS 
example shows. A given application’s executable file might consist of only 

6 This is an old assembly language term.

High addresses

Stack

Heap

Code (program instructions)

Read-only data

Static variables

Storage (uninitialized) variables

Constants (not user accessible)

Reserved by OS (typically 128KB)Adrs = $0

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 97

600 bytes, but if that program uses four different sections, with each section 
consuming a 4KB page in memory, the program will require 16,384 bytes 
of memory when the OS loads it into memory. This is because the underlying 
memory protection hardware requires the OS to allocate whole pages of mem-
ory to a given process.

5.7.2 Internal Fragmentation
Another reason an executable file might be smaller than an application’s 
execution memory footprint (the amount of memory the application consumes 
at runtime) is internal fragmentation. Internal fragmentation occurs when you 
must allocate sections of memory in fixed-sized chunks even though you 
might need only a portion of each chunk (see Figure 5-11). 

Figure 5-11: Internal fragmentation

Remember that each section in memory consumes an integral number 
of pages, even if that section’s data size is not a multiple of the page size. All 
bytes from the last data/code byte in a section to the end of the page holding 
that byte are wasted; this is internal fragmentation. Some executable file 
formats allow you to pack each section without padding it to some multiple 
of the page size. However, as you’ll soon see, there may be a performance 
penalty for packing sections together in this fashion, so some executable 
formats don’t pack the sections in the executable file.

Finally, don’t forget that an executable file’s size does not include any 
data (including data objects on the heap and values placed on the CPU’s 
stack) allocated dynamically at runtime. As you can see, an application can 
actually consume much more memory than the executable file’s size.

Hackers commonly compete to see who can write the smallest “Hello 
World” program using their favorite language. Assembly language program-
mers are especially guilty of bragging about how much smaller they can write 
this program in assembly than they can in C or some other HLL language. 
There is something to be said for the exercise as a mental challenge. How-
ever, whether the program’s executable file is 600 or 16,000 bytes long, the 
chances are pretty good that the program will consume exactly the same 
amount of memory at runtime once the operating system allocates four or 
five pages for the program’s different sections. While writing the world’s 
shortest “Hello World” application might afford someone certain bragging 
rights because of the accomplishment, in real-world terms such an applica-
tion saves almost nothing at runtime. Due to internal fragmentation, the 
program still consumes as much memory at runtime as a less-optimized 
version of the application.

Section 1 Section 2 Section 3

Memory the program uses in a section

Memory unused due to internal fragmentation

No Starch Press, Copyright © 2006 by Randall Hyde



98 Chapter  5

5.7.3 So Why Optimize for Space?
This is not to suggest that optimizing for space isn’t worthwhile. Programmers 
who write great code consider all the machine resources their application 
uses, and they avoid wasting those resources. However, attempting to take 
this process to an extreme is a waste of effort. Once you’ve gotten a given 
section below 4,096 bytes (on an 80x86 or other CPU with a 4KB page size), 
additional optimizations save you nothing. Of course, if a given section is 
already larger than 4,096 bytes, and it is possible to shrink the section below 
this threshold, an optimization attempt might be worthwhile. Remember, 
the allocation granularity, that is, the minimum allocation block size, is 4,096 
bytes. If you have a section with 4,097 bytes of data, it’s going to consume 
8,192 bytes at runtime. It would behoove you to reduce that section by 1 byte 
(thereby saving 4,096 bytes at runtime). However, if you have a data section 
that consumes 16,380 bytes, attempting to reduce its size by 4,092 bytes in 
order to reduce the file size is going to be difficult unless the data organi-
zation was very bad to begin with.

You should note that most operating systems allocate disk space in 
clusters (or blocks) that are often comparable to (or even larger than) the 
page size for the memory management unit in the CPU. Therefore, if you 
shrink an executable’s file size down to 700 bytes in an attempt to save disk 
space (an admirable goal, even given the gargantuan size of modern disk 
drive subsystems) the savings won’t be as great as you’d expect. That 700-byte 
application, for example, is still going to consume a minimum of one block 
on the disk’s surface. All you achieve by reducing your application’s code or 
data size is to waste that much more space in the disk file—subject, of course, 
to section/block allocation granularity.

For larger executable files, those larger than the disk block size, internal 
fragmentation has less impact with respect to wasted space. If an executable 
file packs the data and code sections without any wasted space between the 
sections, then internal fragmentation only occurs at the end of the file, in the 
very last disk block. Assuming that file sizes are random (even distribution), 
then internal fragmentation will waste approximately one-half of a disk block 
per file (that is, an average of 2KB per file when the disk block size is 4KB). 
For a very small file, one that is less than 4KB in size, this might represent a 
significant amount of the file’s space. For larger applications, however, the 
wasted space becomes insignificant. So it would seem that as long as an 
executable file packs all the sections of the program sequentially in the file, 
the file will be as small as possible. But is this really desirable?

Assuming all things are equal, having smaller executable files is a good 
thing. However, as is often the case, all things aren’t always equal. Therefore, 
sometimes creating the smallest possible executable file isn’t really best. To 
understand why, recall the earlier discussion of the operating system’s virtual 
memory subsystem. When an operating system loads an application into mem-
ory for execution, it doesn’t actually have to read the entire file. Instead, the 
operating system’s paging system can load only those pages needed to start 
the application. This usually consists of the first page of executable code, a 
page of memory to hold stack-based data, and, possibly, some data pages. 

No Starch Press, Copyright © 2006 by Randall Hyde



Compi ler  Operat ion and Code Genera t ion 99

In theory, an application could begin execution with as few as two or three 
pages of memory and bring in the remaining pages of code and data on 
demand (as the application requests the data or code found in those pages). 
This is known as demand-paged memory management. In practice, most operating 
systems actually preload pages for efficiency reasons (maintaining a working 
set of pages in memory). However, the bottom line is that operating systems 
generally don’t load the entire executable file into memory. Instead, they 
load various blocks as the application requires them. As a result, the effort 
needed to load a page of memory from a file can dramatically affect a pro-
gram’s performance. So one might ask if there is some way to organize the 
executable file to improve performance when the operating system uses 
demand-paged memory management. The answer is yes, if you make the file 
a little larger.

The trick to improving performance is to organize the executable file’s 
blocks to match the memory page layout. This means that sections (segments) 
in memory should be aligned on page-sized boundaries in the executable 
file. It also means that disk blocks should be the size of, or a multiple of the 
size of, a disk sector or block. This being the case, the virtual memory man-
agement system can rapidly copy a single block on the disk into a single page 
of memory, update any necessary relocation values, and continue program 
execution. On the other hand, if a page of data is spread across two blocks on 
the disk and is not aligned on a disk block boundary, the operating system 
has to read two blocks (rather than one) from disk into an internal buffer 
and then copy the page of data from that buffer to the destination page 
where it belongs. This extra work can be very time-consuming and have a 
negative impact on application performance.

For this reason, some compilers will actually pad the executable file to 
ensure that each section in the executable file begins on a block boundary 
that the virtual memory management subsystem can map directly to a page 
in memory. Compilers that produce such files often produce much larger 
executable file sizes than compilers that don’t employ this technique. This is 
especially true if the executable file contains a large amount of BSS (uninitial-
ized) data that a packed file format can represent very compactly.

Because some compilers produce packed files at the expense of execution 
time, while others produce expanded files that load and run faster, it’s danger-
ous to attempt to compare compiler quality by comparing the size of the 
executable files they produce. The best way to determine the quality of a 
compiler’s output is by directly analyzing that output, not by using a weak 
metric such as output file size. Analyzing compiler output is the subject of 
the very next chapter, so if you’re interested in the topic, keep on reading.

5.8 Data and Code Alignment in an Object File

As I pointed out in Write Great Code, Volume 1, aligning data objects on an 
address boundary that is “natural” for that object’s size can improve per-
formance. It’s also true that aligning the start of a procedure’s code or the 
starting instruction of a loop on some nice boundary can also improve 

No Starch Press, Copyright © 2006 by Randall Hyde



100 Chap te r 5

performance. Compiler writers are well aware of this fact and they will often 
emit padding bytes in the data or code stream to properly align data or code 
sequences on an appropriate boundary. However, note that the linker is free 
to move sections of code around when linking two object files to produce a 
single executable result. You may wonder “How does the linker respect the 
wishes of the code generator with respect to data alignment?”

Sections are generally aligned to a page boundary in memory. For a 
typical application, the text/code section will begin on a page boundary, the 
data section will begin on a different page boundary, the BSS section (if it 
exists) will begin on its own page boundary, and so on. However, this does 
not imply that each and every section associated with a section header in the 
object files starts on its own page in memory. The linker program will combine 
sections that have the same name into a single section in the executable file. 
So, for example, if two different object files both contain a .text segment, the 
linker will combine the two into a single .text section in the final executable 
file. By combining sections that have the same name, the linker avoids wast-
ing a large amount of memory to internal fragmentation.7 How does the 
linker respect the alignment requirements of each of the sections it combines? 
The answer, of course, depends on exactly what object file format and operat-
ing system you’re using, but the answer is usually found in the object file format 
itself. For example, in Windows’ PE/COFF file the IMAGE_OPTIONAL_HEADER32
structure contains a field named SectionAlignment. This field specifies the 
address boundary that the linker and operating system must respect when 
combining sections and when loading the section into memory. Under 
Windows, the SectionAlignment field in the PE/COFF optional header will 
usually contain 32 or 4,096. The 4KB value, of course, will align a section to 
a 4KB page boundary in memory. The alignment value of 32 was probably 
chosen because this is a reasonable cache line value (see Write Great Code, 
Volume 1, for a discussion of cache lines). Other values are certainly possible—
an application programmer can usually specify section alignment values by 
using linker (or compiler) command-line parameters.

5.8.1 Choosing a Section Alignment Size
Within a section, a compiler, assembler, or other code-generation tool can 
guarantee any alignment that is a submultiple of the section’s alignment. For 
example, if the section’s alignment value is 32, then alignments of 1, 2, 4, 8, 
16, and 32 are possible within that section. It should be obvious that larger 
alignment values are not possible. If a section’s alignment value is 32 bytes, 
you cannot guarantee alignment within that section on a 64-byte boundary, 
because the operating system or linker will only respect the section’s align-
ment value and it can place that section on any boundary that is a multiple of 
32 bytes. And about half of those will not be 64-byte boundaries. 

7 Imagine combining 20 object files, each containing a short library routine, into an executable 
file. If each routine averaged about 100 bytes of code and the linker was forced to align each 
.text (or code) section on a page boundary, the library routines would wind up requiring 
20 4KB, or 80KB of space when only about 20 100, or 2KB, of space is really necessary.

No Starch Press, Copyright © 2006 by Randall Hyde



Compiler Operat ion and Code Gene ra ti on 101

Perhaps less obvious, but just as true, is the fact that you cannot align 
an object within a section on a boundary that is not a submultiple of the 
section’s alignment. For example, a section with a 32-byte alignment value 
will not allow an alignment of 5 bytes. True, you could guarantee that the 
offset of some object within the section would be a multiple of 5; however, 
if the starting memory address of the section is not a multiple of 5, then the 
address of the object you attempted to align might not fall on a multiple of 
5 bytes. The only solution is to pick a section alignment value that is some 
multiple of 5.

Because memory addresses are binary values, most language translators 
and linkers limit alignment values to a power of 2 that is less than or equal to 
some maximum value, usually the memory management unit’s page size. 
Many languages restrict the alignment value to a small power of 2 (such as 
32, 64, or 256).

5.8.2 Combining Sections
When a linker combines two sections, it has to respect the alignment values 
associated with each section because the application may depend on that 
alignment for correct operation. Therefore, a linker or other program that 
combines sections in object files must not simply concatenate the data for 
the two sections when building the combined section.

When combining two sections, a linker might have to add padding bytes 
between the sections if one or both of the their lengths is not a multiple of 
the sections’ alignment. For example, if two sections have an alignment value 
of 32, and one section is 37 bytes long and the other section is 50 bytes long, 
the linker will have to add 27 bytes of padding between the first and second 
sections, or it will have to add 14 bytes of padding between the second section 
and the first (the linker usually gets to choose in which order it places the 
sections in the combined file).

The situation gets a bit more complicated if the alignment values are not 
the same for the two sections. When a linker combines two sections, it has to 
ensure that the alignment requests are met for the data in both sections. If 
the alignment value of one section is a multiple of the other section’s align-
ment value, then the linker can simply choose the larger of the two alignment 
values. For example, if the alignment values are always powers of 2 (which 
most linkers require), then the linker can simply choose the larger of the two 
alignment values for the combined section.

If one section’s alignment value is not a multiple of the other’s, then 
the only way to guarantee the alignment requirements of both sections when 
combining them is to use an alignment value that is product of the two values 
(or, better yet, the least common multiple of the two values). For example, com-
bining a section aligned on a 32-byte boundary with one aligned on a 5-byte 
boundary requires an alignment value of 160 bytes (5 32). Because of the 
complexities of combining two such sections, most linkers require section 
sizes to be small powers of 2, which guarantees that the larger segment align 
value is always a multiple of the smaller alignment value.

No Starch Press, Copyright © 2006 by Randall Hyde



102 Chap te r 5

5.8.3 Controlling the Section Alignment
You typically use linker options to control the section alignment within your 
programs. For example, with the Microsoft LINK.EXE program, the /ALIGN:value
command-line parameter tells the linker to align all sections in the output 
file to the specified boundary (which must be a power of 2). GNU’s ld linker 
program lets you specify a section alignment by using the BLOCK(value) option 
in a linker script file. The Mac OS X linker (ld) provides a -segalign value
command-line option you can use to specify section alignment. The exact 
command and possible values are specific to the linker; however, almost every 
modern linker allows you to specify the section alignment properties. Please 
see your linker’s documentation for details.

Note one thing about setting the section alignment: more often than 
not a linker will require that all sections in a given file be aligned on the same 
boundary (which is a power of 2). Therefore, if you have different alignment 
requirements for all your sections, then you’ll need to choose the largest 
alignment value for all the sections in your object file.

5.8.4 Section Alignment and Library Modules
Section alignment can have a very big impact on the size of your executable 
files if you use a lot of short library routines. Suppose, for example, that you’ve 
specified an alignment size of 16 bytes for the sections associated with the 
object files appearing in a library. Each library function that the linker proc-
esses will be placed on a 16-byte boundary. If the functions are small (fewer 
than 16 bytes in length), the space between the functions will be unused 
when the linker creates the final executable. This is another form of internal 
fragmentation.

To understand why you would want to align the code (or data) in a 
section on a given boundary, just remember how cache lines work (see Write 
Great Code, Volume 1). By aligning the start of a function on a cache line, you 
may be able to slightly increase the execution speed of that function as it 
may generate fewer cache misses during execution. For this reason, many 
programmers like to align all their functions at the start of a cache line. 
Although the size of a cache line varies from CPU to CPU, a typical cache 
line is 16 to 64 bytes long, so many compilers, assemblers, and linkers will 
attempt to align code and data to one of these boundaries. On the 80x86 
processor, there are some other benefits to 16-byte alignment, so many 
80x86-based tools default to a 16-byte section alignment for object files.

Consider, for example, the following short HLA (High-Level Assembler) 
program, processed by Microsoft tools, that calls two relative small library 
routines:

program t;

#include( "bits.hhf" )

begin t;

bits.cnt( 5 );

No Starch Press, Copyright © 2006 by Randall Hyde



Compiler Operat ion and Code Gene ra ti on 103

bits.reverse32( 10 );

end t;

Here is the source code to the bits.cnt library module:

unit bitsUnit;

#includeonce( "bits.hhf" );

    // bitCount-

    //

    //  Counts the number of "1" bits in a dword value.

    //  This function returns the dword count value in EAX.

    procedure bits.cnt( BitsToCnt:dword ); @nodisplay;

        

    const

        EveryOtherBit       := $5555_5555;

        EveryAlternatePair  := $3333_3333;

        EvenNibbles         := $0f0f_0f0f;

        

    begin cnt;

    

        push( edx );

        mov( BitsToCnt, eax );

        mov( eax, edx );

        

        // Compute sum of each pair of bits

        // in EAX. The algorithm treats 

        // each pair of bits in EAX as a two

        // bit number and calculates the

        // number of bits as follows (description

        // is for bits zero and one, but it generalizes

        // to each pair):

        //

        //  EDX =   BIT1  BIT0

        //  EAX =      0  BIT1

        //

        //  EDX-EAX =   00 if both bits were zero.

        //              01 if Bit0=1 and Bit1=0.

        //              01 if Bit0=0 and Bit1=1.

        //              10 if Bit0=1 and Bit1=1.

        //

        // Note that the result is left in EDX.

        

        shr( 1, eax );

        and( EveryOtherBit, eax );

        sub( eax, edx );

        

        // Now sum up the groups of two bits to

        // produces sums of four bits.  This works

        // as follows:

No Starch Press, Copyright © 2006 by Randall Hyde



104 Chap te r 5

        //

        //  EDX = bits 2,3, 6,7, 10,11, 14,15, ..., 30,31

        //        in bit positions 0,1, 4,5, ..., 28,29 with

        //        zeros in the other positions.

        //

        //  EAX = bits 0,1, 4,5, 8,9, ... 28,29 with zeros

        //        in the other positions.

        //

        //  EDX + EAX produces the sums of these pairs of bits.

        //  The sums consume bits 0,1,2, 4,5,6, 8,9,10, ...

        //                                            28,29,30

        //  in EAX with the remaining bits all containing zero.

        

        mov( edx, eax );

        shr( 2, edx );

        and( EveryAlternatePair, eax );

        and( EveryAlternatePair, edx );

        add( edx, eax );

        

        // Now compute the sums of the even and odd nibbles in

        // the number.  Since bits 3, 7, 11, etc. in EAX all 

        // contain zero from the above calculation, we don't need 

        // to AND anything first, just shift and add the two      

        // values.

        // This computes the sum of the bits in the four bytes

        // as four separate value in EAX (AL contains number of

        // bits in original AL, AH contains number of bits in

        // original AH, etc.)

        

        mov( eax, edx );

        shr( 4, eax );

        add( edx, eax );

        and( EvenNibbles, eax );

        

        // Now for the tricky part.

        // We want to compute the sum of the four bytes

        // and return the result in EAX.  The following

        // multiplication achieves this.  It works

        // as follows:

        //  (1) the $01 component leaves bits 24..31

        //      in bits 24..31.

        //

        //  (2) the $100 component adds bits 17..23

        //      into bits 24..31.

        //

        //  (3) the $1_0000 component adds bits 8..15

        //      into bits 24..31.

        //

        //  (4) the $1000_0000 component adds bits 0..7

        //      into bits 24..31.

        //

        //  Bits 0..23 are filled with garbage, but bits

        //  24..31 contain the actual sum of the bits

No Starch Press, Copyright © 2006 by Randall Hyde



Compiler Operat ion and Code Gene ra ti on 105

        //  in EAX's original value.  The SHR instruction

        //  moves this value into bits 0..7 and zeroes

        //  out the HO bits of EAX.

         

        intmul( $0101_0101, eax );

        shr( 24, eax );

        

        pop( edx );

        

    end cnt;

    

end bitsUnit;

Here is the source code for the bits.reverse32 library function. Note that 
this source file also includes the bits.reverse16 and bits.reverse8 functions 
(to conserve space, the bodies of these functions do not appear below). 
Although the operation of these functions is not pertinent to our discussion, 
note that these functions swap the values in the HO and LO bit positions. 
Because these three functions appear in a single source file, any program 
that includes one of these functions will automatically include all three 
(because of the way compilers, assemblers, and linkers work).

unit bitsUnit;

#include( "bits.hhf" );

    procedure bits.reverse32( BitsToReverse:dword ); @nodisplay; @noframe;

    begin reverse32;

    

        push( ebx );

        mov( [esp+8], eax );

        

        // Swap the bytes in the numbers:

                

        bswap( eax );

        // Swap the nibbles in the numbers

        mov( $f0f0_f0f0, ebx );

        and( eax, ebx );

        and( $0f0f_0f0f, eax );

        shr( 4, ebx );

        shl( 4, eax );

        or( ebx, eax );

        

        // Swap each pair of two bits in the numbers:

        

        mov( eax, ebx );

        shr( 2, eax );

        shl( 2, ebx );

        and( $3333_3333, eax );

No Starch Press, Copyright © 2006 by Randall Hyde



106 Chap te r 5

        and( $cccc_cccc, ebx );

        or( ebx, eax );

        

        // Swap every other bit in the number:

        

        lea( ebx, [eax + eax] );

        shr( 1, eax );

        and( $5555_5555, eax );

        and( $aaaa_aaaa, ebx );

        or( ebx, eax );

        pop( ebx );

        ret( 4 );

        

    end reverse32;

     

    procedure bits.reverse16( BitsToReverse:word ); 

        @nodisplay; @noframe; 

    begin reverse16;

    

        // Uninteresting code that is very similar to

        // that appearing in reverse32 has been snipped...

    end reverse16;

    procedure bits.reverse8( BitsToReverse:byte ); 

        @nodisplay; @noframe; 

    begin reverse8;

    

        // Uninteresting code snipped...

    end reverse8;

    

end bitsUnit;

The Microsoft dumpbin.exe tool allows you to examine the various 
fields of an OBJ or EXE file. Running dumpbin with the /headers command-
line option on the bitcnt.obj and reverse.obj files (produced for the HLA 
standard library) tells us that each of the sections are aligned to a 16-byte 
boundary. Therefore, when the linker combines the bitcnt.obj and 
reverse.obj data with the sample program given earlier, it will align the 
bits.cnt function in the bitcnt.obj file on a 16-bit boundary, and it will 
align the three functions in the reverse.obj file on a 16-byte boundary 
(note that it will not align each function in the file on a 16-byte boundary. 
That task is the responsibility of the tool that created the object file, if 
such alignment is desired). By using the dumpbin.exe program with the
/disasm command-line option on the executable file, you can see that the 

No Starch Press, Copyright © 2006 by Randall Hyde



Compiler Operat ion and Code Gene ra ti on 107

linker has honored these alignment requests (note that an address that is 
aligned on a 16-byte boundary will have a 0 in the LO hexadecimal digit):

  Address   opcodes            Assembly Instructions

  --------- ------------------ -----------------------------

  04001000: E9 EB 00 00 00     jmp         040010F0

  04001005: E9 57 01 00 00     jmp         04001161

  0400100A: E8 F1 00 00 00     call        04001100

; Here's where the main program starts. 

  0400100F: 6A 00              push        0

  04001011: 8B EC              mov         ebp,esp

  04001013: 55                 push        ebp

  04001014: 6A 05              push        5

  04001016: E8 65 01 00 00     call        04001180

  0400101B: 6A 0A              push        0Ah

  0400101D: E8 0E 00 00 00     call        04001030

  04001022: 6A 00              push        0

  04001024: FF 15 00 20 00 04  call        dword ptr ds:[04002000h]

;The following INT3 instructions are used as padding in order

;to align the bits.reverse32 function (which immediately follows)

;to a 16-byte boundary:

  0400102A: CC                 int         3

  0400102B: CC                 int         3

  0400102C: CC                 int         3

  0400102D: CC                 int         3

  0400102E: CC                 int         3

  0400102F: CC                 int         3

; Here's where bits.reverse32 starts. Note that this address

; is rounded up to a 16-byte boundary.

  04001030: 53                 push        ebx

  04001031: 8B 44 24 08        mov         eax,dword ptr [esp+8]

  04001035: 0F C8              bswap       eax

  04001037: BB F0 F0 F0 F0     mov         ebx,0F0F0F0F0h

  0400103C: 23 D8              and         ebx,eax

  0400103E: 25 0F 0F 0F 0F     and         eax,0F0F0F0Fh

  04001043: C1 EB 04           shr         ebx,4

  04001046: C1 E0 04           shl         eax,4

  04001049: 0B C3              or          eax,ebx

  0400104B: 8B D8              mov         ebx,eax

  0400104D: C1 E8 02           shr         eax,2

  04001050: C1 E3 02           shl         ebx,2

  04001053: 25 33 33 33 33     and         eax,33333333h

  04001058: 81 E3 CC CC CC CC  and         ebx,0CCCCCCCCh

  0400105E: 0B C3              or          eax,ebx

  04001060: 8D 1C 00           lea         ebx,[eax+eax]

  04001063: D1 E8              shr         eax,1

No Starch Press, Copyright © 2006 by Randall Hyde



108 Chap te r 5

  04001065: 25 55 55 55 55     and         eax,55555555h

  0400106A: 81 E3 AA AA AA AA  and         ebx,0AAAAAAAAh

  04001070: 0B C3              or          eax,ebx

  04001072: 5B                 pop         ebx

  04001073: C2 04 00           ret         4

; Here's where bits.reverse16 begins. As this function appeared

; in the same file as bits.reverse32, and no alignment option

; was specified in the source file, HLA and the linker won't

; bother aligning this to any particular boundary. Instead, the

; code immediately follows the bits.reverse32 function

; in memory.

  04001076: 53                 push        ebx

  04001077: 50                 push        eax

  04001078: 8B 44 24 0C        mov         eax,dword ptr [esp+0Ch]

.

. ;uninteresting code for bits.reverse16 and 

. ; bits.reverse8 was snipped

; end of bits.reverse8 code

  040010E6: 88 04 24           mov         byte ptr [esp],al

  040010E9: 58                 pop         eax

  040010EA: C2 04 00           ret         4

; More padding bytes to align the following function (used by

; HLA exception handling) to a 16-byte boundary:

  040010ED: CC                 int         3

  040010EE: CC                 int         3

  040010EF: CC                 int         3

; Default exception return function (automatically generated

; by HLA):

  040010F0: B8 01 00 00 00     mov         eax,1

  040010F5: C3                 ret

; More padding bytes to align the internal HLA BuildExcepts 

; function to a 16-byte boundary:

  040010F6: CC                 int         3

  040010F7: CC                 int         3

  040010F8: CC                 int         3

  040010F9: CC                 int         3

  040010FA: CC                 int         3

  040010FB: CC                 int         3

  040010FC: CC                 int         3

  040010FD: CC                 int         3

  040010FE: CC                 int         3

  040010FF: CC                 int         3

No Starch Press, Copyright © 2006 by Randall Hyde



Compiler Operat ion and Code Gene ra ti on 109

; HLA BuildExcepts code (automatically generated by the 

; compiler):

  04001100: 58                 pop         eax

  04001101: 68 05 10 00 04     push        4001005h

  04001106: 55                 push        ebp

.

. ; Remainder of BuildExcepts code goes here

. ; along with some other code and data

.

; Padding bytes to ensure that bits.cnt is aligned

; on a 16-byte boundary:

  0400117D: CC                 int         3

  0400117E: CC                 int         3

  0400117F: CC                 int         3

; Here's the low-level machine code for the bits.cnt function:

  04001180: 55                 push        ebp

  04001181: 8B EC              mov         ebp,esp

  04001183: 83 E4 FC           and         esp,0FFFFFFFCh

  04001186: 52                 push        edx

  04001187: 8B 45 08           mov         eax,dword ptr [ebp+8]

  0400118A: 8B D0              mov         edx,eax

  0400118C: D1 E8              shr         eax,1

  0400118E: 25 55 55 55 55     and         eax,55555555h

  04001193: 2B D0              sub         edx,eax

  04001195: 8B C2              mov         eax,edx

  04001197: C1 EA 02           shr         edx,2

  0400119A: 25 33 33 33 33     and         eax,33333333h

  0400119F: 81 E2 33 33 33 33  and         edx,33333333h

  040011A5: 03 C2              add         eax,edx

  040011A7: 8B D0              mov         edx,eax

  040011A9: C1 E8 04           shr         eax,4

  040011AC: 03 C2              add         eax,edx

  040011AE: 25 0F 0F 0F 0F     and         eax,0F0F0F0Fh

  040011B3: 69 C0 01 01 01 01  imul        eax,eax,1010101h

  040011B9: C1 E8 18           shr         eax,18h

  040011BC: 5A                 pop         edx

  040011BD: 8B E5              mov         esp,ebp

  040011BF: 5D                 pop         ebp

  040011C0: C2 04 00           ret         4

The exact operation of this program really isn’t important (after all, it 
doesn’t actually do anything useful). What is important to note is how the 
linker inserts extra bytes ($cc, the int 3 instruction) before a group of one or 
more functions appearing in a source file to ensure that they are aligned on 
the specified boundary.

No Starch Press, Copyright © 2006 by Randall Hyde



110 Chap te r 5

In this particular example, the bits.cnt function is actually 64 bytes long, 
and the linker inserted only 3 bytes in order to align it to a 16-byte boundary. 
This percentage of waste—the number of padding bytes compared to the 
size of the function—is quite low. However, if you have a large number of 
small functions, the wasted space can become significant (as with the default 
exception handler in this example that has only two instructions). When 
creating your own library modules, you will need to weigh the inefficiencies 
of extra space for padding against the small performance gains you’ll obtain 
by using aligned code.

Object code dump utilities (like dumpbin.exe) are quite useful for 
analyzing object code and executable files in order to determine attributes 
such as section size and alignment. Linux (and most Unix-like systems) 
provide the objdump utility that is comparable. I’ll discuss using these tools in 
the next chapter, as they are great tools for analyzing compiler output.

5.9 Linkers and Their Effect on Code

The limitations of object file formats such as COFF and ELF have a big 
impact on the quality of code that compilers can generate. Because of the 
design of object file formats, linkers and compilers often have to inject extra 
code into an executable file that wouldn’t be otherwise necessary. In the 
following sections I’ll explore some of the problems that generic object code 
formats like COFF and ELF inflict on the executable code.

One problem with generic object file formats like COFF and ELF is that 
they were not designed to produce efficient executable files for specific CPUs. 
Instead, they were created to support a wide variety of different CPUs and to 
make it easy to link together object modules. Unfortunately, their versatility 
often prevents them from creating the best possible object files. In this section 
I’ll explore some of the problems associated with generic object file formats 
and why they force compilers to generate code that is somewhat less than 
great.

Perhaps the biggest problem with the COFF and ELF formats is that 
relocation values in the object file must apply to 32-bit pointers in the object 
code. This creates problems, for example, when an instruction encodes a 
displacement or address value with less than 32 bits. On some processors, 
such as the 80x86, displacements smaller than 32 bits are so small (e.g., the 
80x86’s 8-bit displacement) that you would never use them to refer to code 
outside the current object module. However, on some RISC processors, such 
as the PowerPC, displacements are much larger (26 bits in the case of the 
PowerPC branch instruction). This can lead to code kludges like the function 
stub generation that GCC produces for external function calls. Consider the 
following C program and the PowerPC code that GCC emits for it:

#include <stdio.h>

int main( int argc )

{

No Starch Press, Copyright © 2006 by Randall Hyde



Compiler Operat ion and Code Gene ra ti on 111

      .

      .

      .

    printf

    ( 

        "%d %d %d %d %d ", 

        .

        .

        .

    );

    return( 0 );

}

; PowerPC assembly output from GCC:

            .

            .

            .

        ;The following sets up the

        ; call to printf and calls printf:

        addis r3,r31,ha16(LC0-L1$pb)

        la r3,lo16(LC0-L1$pb)(r3)

        lwz r4,64(r30)

        lwz r5,80(r30)

        lwz r6,1104(r30)

        lwz r7,1120(r30)

        lis r0,0x400

        ori r0,r0,1120

        lwzx r8,r30,r0

        bl L_printf$stub ; Call to printf "stub" routine.

        ;Return from main program:

        li r0,0

        mr r3,r0

        lwz r1,0(r1)

        lwz r0,8(r1)

        mtlr r0

        lmw r30,-8(r1)

        blr

; Stub, to call the external printf function.

; This code does an indirect jump to the printf

; function using the 32-bit L_printf$lazy_ptr

; pointer that the linker can modify.

        .data

        .picsymbol_stub

L_printf$stub:

        .indirect_symbol _printf

        mflr r0

        bcl 20,31,L0$_printf

No Starch Press, Copyright © 2006 by Randall Hyde



112 Chap te r 5

L0$_printf:

        mflr r11

        addis r11,r11,ha16(L_printf$lazy_ptr-L0$_printf)

        mtlr r0

        lwz r12,lo16(L_printf$lazy_ptr-L0$_printf)(r11)

        mtctr r12

        addi r11,r11,lo16(L_printf$lazy_ptr-L0$_printf)

        bctr

.data

.lazy_symbol_pointer

L_printf$lazy_ptr:

        .indirect_symbol _printf

; The following is where the compiler places a 32-bit

; pointer that the linker can fill in with the address

; of the actual printf function:

        .long dyld_stub_binding_helper

The compiler must generate the L_printf$stub stub because it doesn’t 
know how far away the actual printf routine will be when the linker adds it to 
the final executable file. It’s unlikely that printf would be sitting outside the 
plus or minus 32MB range that the PowerPC’s 24-bit branch displacement 
supports (extended to 26 bits); however, the compiler doesn’t know for a 
fact that this is the case. If printf is part of a shared library that is dynamically 
linked in at runtime, it very well could be outside this range. Therefore, the 
compiler has to make the safe choice and use a 32-bit displacement for the 
address of the printf function. Unfortunately, PowerPC instructions don’t 
support a 32-bit displacement because all PowerPC instructions are 32 bits 
long. A 32-bit displacement would leave no room for the instruction’s opcode. 
Therefore, the compiler has to store a 32-bit pointer to the printf routine in 
a variable and jump indirect through that variable. Unfortunately, accessing 
a 32-bit memory pointer on the PowerPC takes quite a bit of code if you 
don’t already have the address of that pointer in a register. Hence all the 
extra code following the L_printf$stub label.

If the linker were able to adjust 26-bit displacements rather than just 
32-bit values, there would be no need for the L_printf$stub routine or the 
L_printf$lazy_ptr pointer variable. Instead, the bl L_printf$stub instruction 
would be able to branch directly to the printf routine (assuming it’s not more 
than plus or minus 32MB away). Because single program files generally don’t 
contain more than 32MB of machine instructions, there would rarely be the 
need to go through the gymnastics this code does in order to call an external 
routine.

Unfortunately, there is nothing you can do about the object file format; 
you’re stuck with whatever format the operating system specifies (which is 
usually a variant of COFF or ELF on modern 32-bit machines). However, you 
can work within the limitations of the object file format your operating sys-
tem and CPU imposes.

No Starch Press, Copyright © 2006 by Randall Hyde



Compiler Operat ion and Code Gene ra ti on 113

If you expect your code to run on a CPU like the PowerPC (or some 
other RISC processor) that cannot encode 32-bit displacements directly 
within instructions, you can optimize by avoiding cross-module calls as much 
as possible. While it’s not good programming practice to create monolithic 
applications, where all the source code appears in one source file (or is proc-
essed by a single compilation), there really is no need to place all of your own 
functions in separate source modules and compile each of them separately 
from the others—particularly if these routines make calls to one another. 
By placing a set of common routines your code uses into a single compilation 
unit (source file), you allow the compiler to optimize the calls among these 
functions and avoid all the stub generation on processors like the PowerPC. 
Note that this is not a suggestion to simply move all of your external func-
tions into a single source file. The code is better only if the functions in a 
module call one another or share other global objects. If the functions are 
completely independent of one another and are called only by code external 
to the compilation unit, then you’ve saved nothing because the compiler may 
still need to generate stub routines in the external code.

5.10 For More Information

This chapter barely touches on the subject of compiler theory. For more 
information on this subject, you’ll probably want to look at one of the many 
compiler construction textbooks available. The seminal work is Aho, Sethi, 
and Ullman’s Compilers: Principles, Techniques, and Tools (Addison-Wesley, 1986). 
Even though this book is a bit old, it still contains a good discussion of 
general compiler theory that you may find useful. There are, of course, 
dozens of books on this subject.

Object file formats and executable file formats vary by operating system 
and compiler. Your operating system vendor will probably provide the speci-
fications for the file formats they use. For common object file formats, such 
as COFF and ELF, you will also find books available from various publishers—
for example, Understanding and Using COFF by Gintaras R. Gircys (O’Reilly & 
Associates, 1988) and Linkers and Loaders by John Levine (Morgan Kaufmann/
Academic Press, 2000), which covers various object file formats. The Windows 
PE/COFF and OMF (object module format) file formats are documented in 
various papers you can find on the Internet. 

NOTE You can also find various versions of these documents on my Webster webpage at 
http://webster.cs.ucr.edu/Page_TechDocs/index.html. A quick search with Google or 
some other Internet search engine will turn up dozens of additional documents you 
can reference.

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



6
T O O L S  F O R  A N A L Y Z I N G  

C O M P I L E R  O U T P U T

In order to write great code, you’ve got to 
recognize the difference between program-

ming language sequences that just do their 
job and those that do a great job. In the context 

of our discussion, great code sequences use fewer 
instructions, fewer machine cycles, or less memory 
than mediocre code sequences. If you’re working in assembly language, the 
CPU manufacturers’ data sheets and a bit of experimentation are all you need 
to determine which code sequences are great and which are not. When work-
ing with HLLs, however, you need some way to map the high-level language 
statements in a program to the corresponding machine code, so that you can 
determine the quality of those HLL statements. In this chapter, I’ll discuss 
the following:

� How to view and analyze a compiler’s machine-language output so you 
can use that information to write better HLL code

� How to tell certain compilers to produce a human-readable assembly 
language output file

No Starch Press, Copyright © 2006 by Randall Hyde



116 Chap te r 6

� How to analyze binary object output files using various tools such as 
dumpbin.exe and objdump.exe

� How to use a disassembler to examine the machine-code output that a 
compiler produces

� How to use a debugger to analyze compiler output

� How to compare two different assembly language listings for the same 
HLL source file to determine which version is better

Analyzing compiler output is one of the principal skills you’ll need to 
develop in order to determine the quality of the code your compiler produces 
for a given input source file. In this chapter, you’ll learn how to obtain the 
output that you can use for such analysis.

6.1 Background

Most compilers available today emit object-code output that a linker program 
reads and processes in order to produce an executable program. Because the 
object-code file generally consists of binary data that is not human-readable, 
many compilers also provide an option to produce an assembly language 
listing of the code the compiler generates. By activating this option, you can 
observe the compiler’s output and, possibly, adjust your HLL source code 
in order to produce better output. Indeed, with a specific compiler and a 
thorough knowledge of its optimizations, you can write HLL source code 
that compiles to machine code that is almost as good as the best handwritten 
assembly language code. Although you can’t expect such optimizations to 
work with a different compiler, this trick will let you write good code with one 
compiler that is still be able to run your code (possibly less efficiently) on 
other processors. This is an excellent solution for code that needs to run as 
efficiently as possible on a certain class of machines but still needs to run on 
other CPUs.

NOTE Keep in mind that examining compiler output can lead you to implement nonportable 
optimizations. That is, when you examine your compiler’s output you might decide to 
modify your HLL source code to produce better output from your compiler; however, 
those optimizations might not carry over to a different compiler.

The ability to emit assembly language output is compiler specific. Some 
compilers do this by default. GCC, for example, always emits an assembly 
language file. Most compilers, however, must be explicitly told to produce an 
assembly language listing. Some compilers produce an assembly listing that 
can be run through an assembler to produce object code. Some compilers 
may only produce assembly annotation in a listing file and that “assembly 
code” is not syntax compatible with any existing assembler. For your purposes, 
it doesn’t matter if a real-world assembler is capable of processing the com-
piler’s assembly output; you’re only going to read that output to determine 
how to tweak the HLL code to produce better object code.

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 117

For those compilers that can produce assembly language output, the 
readability of the assembly code varies considerably. Some compilers insert 
the original HLL source code into the assembly output as comments which 
makes it easy to correlate the assembly instructions with the HLL code. Other 
compilers (such as GCC) emit pure assembly language code, so unless you’re 
well versed in that particular CPU’s assembly language, analyzing the output 
can be difficult. 

Another problem that may affect the readability of the compiler output 
is the optimization level you choose. If you disable all optimizations, it is 
often easier to determine which assembly instructions correspond to the 
HLL statements. Unfortunately, with the optimizations turned off, most 
compilers generate low-quality code. If you are viewing assembly output 
from a compiler in order to choose better HLL sequences, then you must 
specify the same optimization level that you will use for the production version 
of your application. You should never tweak your high-level code to produce 
better assembly code at one optimization level and then change the optimi-
zation level for your production code. If you do this, you might wind up doing 
extra work that the optimizer would normally do for you. Worse, those hand 
optimizations could actually prevent the compiler from doing a decent job 
when you increase its optimization level. 

When you specify a higher level of optimization for a compiler, the 
compiler will often move code around in the assembly output file, eliminate 
code entirely, and do other code transformations that obfuscate the corre-
spondence between the high-level code and the assembly output. Still, with a 
bit of practice, it is possible to determine which machine instructions corre-
spond to a given statement in the HLL code.

To analyze compiler output, you’ll need to learn a couple of things. First, 
you’ll need to learn enough assembly language programming so that you can 
effectively read compiler output. Second, you’ll need to learn how to tell a 
compiler (or some other tool) to produce human-readable assembly language 
output. Finally, you’ll have to learn how to correlate the assembly instructions 
with the HLL code. Chapters 2 and 3 taught you how to read some basic 
assembly code. This chapter discusses how to translate compiler output into 
a human-readable form. And the rest of this book deals with analyzing that 
assembly code so you can generate better machine code by wisely choosing 
your HLL statements.

6.2 Telling a Compiler to Produce Assembly Output

How you tell a compiler to emit an assembly language output file is specific 
to the compiler. For that information, you’ll need to consult the documen-
tation for your particular compiler. This section will look at four commonly 
used C/C++ compilers: GCC, Borland’s C/C++ v5.0, Borland’s C/C++ v5.0 
with the Intel backend, and Microsoft’s Visual C++.

No Starch Press, Copyright © 2006 by Randall Hyde



118 Chap te r 6

6.2.1 Assembly Output from GNU and Borland Compilers
To emit assembly output with the Borland and GCC compilers, specify the 
-S option on the command line when invoking the compiler. Here are three 
sample command lines for these compilers:

gcc -O2 -S t1.c // -O2 option is for optimization

bcc32 -O2 -S t1.c

bcc32i -O2 -S t1.c // Borland C++ with Intel backend

The -S option, when supplied to GCC, doesn’t actually tell the compiler 
to produce an assembly output file. GCC always produces an assembly output 
file. The -S simply tells GCC to stop all processing after it has produced an 
assembly file. GCC will produce an assembly output file whose root name is 
the same as the original C file (t1 in these examples) with a .s suffix.

When supplied to the Borland compilers, the -S option will cause the 
compiler to emit an assembly language source file (with a .asm suffix) rather 
than an object file. This assembly output file is compatible only with Borland’s 
TASM (the Turbo Assembler). You will not be able to assemble this file 
with MASM or any other assembler (not that you care, because all you’re 
going to do is read the assembly source file).

6.2.2 Assembly Output from Visual C++
The Visual C++ compiler (VC++) uses the -FAs command-line option to 
specify MASM-compatible assembly language output. The following is a 
typical command line to VC++ to tell it to produce an assembly listing:

cc -O2 -FAs t1.c

6.2.3 Example Assembly Language Output
As an example of producing assembly language output from a compiler, 
consider the following (arbitrary) C program:

#include <stdio.h>

int main( int argc, char **argv )

{

    int i;

    int j;

    i = argc;

    j = **argv;

    if( i == 2 )

    {

        ++j;

    }

    else

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 119

    {

        --j;

    }

    printf( "i=%d, j=%d\n", i, j );

    return 0;

}

The following subsections provide the compiler output for Visual C++, 
Borland C++, and GCC from this code sequence in order to get a feeling for 
the differences between the assembly language listings produced for this C 
code sequence.

6.2.3.1 Visual C++ Assembly Language Output

Compiling this file with VC++ using the command line

cc -FAs -O1 t1.c

produces the following (MASM) assembly language output. 
The exact meaning of each assembly language statement appearing in 

this output isn’t important—yet! What is important is seeing the difference 
between the syntax in this listing and the listings for Borland C++ and Gas 
that appear in the following sections.

TITLE   t1.c

        .386P

include listing.inc

if @Version gt 510

.model FLAT

else

_TEXT   SEGMENT PARA USE32 PUBLIC 'CODE'

_TEXT   ENDS

_DATA   SEGMENT DWORD USE32 PUBLIC 'DATA'

_DATA   ENDS

CONST   SEGMENT DWORD USE32 PUBLIC 'CONST'

CONST   ENDS

_BSS    SEGMENT DWORD USE32 PUBLIC 'BSS'

_BSS    ENDS

_TLS    SEGMENT DWORD USE32 PUBLIC 'TLS'

_TLS    ENDS

;       COMDAT ??_C@_0M@NHID@i?$DN?$CFd?0?5j?$DN?$CFd?6?$AA@

_DATA   SEGMENT DWORD USE32 PUBLIC 'DATA'

_DATA   ENDS

;       COMDAT _main

_TEXT   SEGMENT PARA USE32 PUBLIC 'CODE'

_TEXT   ENDS

FLAT    GROUP _DATA, CONST, _BSS

        ASSUME  CS: FLAT, DS: FLAT, SS: FLAT

endif

PUBLIC  _main

PUBLIC  ??_C@_0M@NHID@i?$DN?$CFd?0?5j?$DN?$CFd?6?$AA@   ; `string'

EXTRN   _printf:NEAR

No Starch Press, Copyright © 2006 by Randall Hyde



120 Chap te r 6

;       COMDAT ??_C@_0M@NHID@i?$DN?$CFd?0?5j?$DN?$CFd?6?$AA@

; File t1.c

_DATA   SEGMENT

??_C@_0M@NHID@i?$DN?$CFd?0?5j?$DN?$CFd?6?$AA@ DB 'i=%d, j=%d', 0aH, 00H ; 
`string'

_DATA   ENDS

;       COMDAT _main

_TEXT   SEGMENT

_argc$ = 8

_argv$ = 12

_main   PROC NEAR                                       ; COMDAT

; 4    :        int i;

; 5    :        int j;

; 6    :        

; 7    :        i = argc;

; 8    :        j = **argv;

        mov     eax, DWORD PTR _argv$[esp-4]

; 9    :        

; 10   :        if( i == 2 )

        cmp     DWORD PTR _argc$[esp-4], 2

        mov     eax, DWORD PTR [eax]

        movsx   eax, BYTE PTR [eax]

        jne     SHORT $L776

; 11   :        {

; 12   :                ++j;

        inc     eax

; 13   :        }

; 14   :        else

        jmp     SHORT $L777

$L776:

; 15   :        {

; 16   :                --j;

        dec     eax

$L777:

; 17   :        }

; 18   :        

; 19   :        printf( "i=%d, j=%d\n", i, j );

        push    eax

        push    DWORD PTR _argc$[esp]

        push    OFFSET FLAT:??_C@_0M@NHID@i?$DN?$CFd?0?5j?$DN?$CFd?6?$AA@ ; 
`string'

        call    _printf

        add     esp, 12                                 ; 0000000cH

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 121

; 20   :        return 0;

        xor     eax, eax

; 21   : }

        ret     0

_main   ENDP

_TEXT   ENDS

END

As you can see by reading through this listing, VC++ emits comments 
containing the original C code (as well as line numbers in the original 
source file).

6.2.3.2 Borland C++ Assembly Language Output

Now consider the output that the Borland C++ compiler produces from the 
same C source file with the command line bcc32 -4 -S -O1 t1.c:

.386p

        model flat

        ifndef  ??version

        ?debug  macro

        endm

        endif

        ?debug  S "t1.c"

        ?debug  T "t1.c"

_TEXT   segment dword public use32 'CODE'

_TEXT   ends

_DATA   segment dword public use32 'DATA'

_DATA   ends

_BSS    segment dword public use32 'BSS'

_BSS    ends

DGROUP  group   _BSS,_DATA

_TEXT   segment dword public use32 'CODE'

_main   proc    near

?live1@0:

   ;    

   ;    int main( int argc, char **argv )

   ;    

@1:

        push      ebp

        mov       ebp,esp

   ;    

   ;    {

   ;            int i;

   ;            int j;

   ;            

   ;            i = argc;

   ;    

        mov       edx,dword ptr [ebp+8]

No Starch Press, Copyright © 2006 by Randall Hyde



122 Chap te r 6

   ;    

   ;            j = **argv;

   ;    

?live1@32: ; EDX = i

        mov       eax,dword ptr [ebp+12]

        mov       ecx,dword ptr [eax]

        movsx     eax,byte ptr [ecx]

   ;    

   ;            

   ;            if( i == 2 )

   ;    

?live1@48: ; EAX = j, EDX = i

        cmp       edx,2

        jne       short @2

   ;    

   ;            {

   ;                    ++j;

   ;    

        inc       eax

   ;    

   ;            }

   ;    

        jmp       short @3

   ;    

   ;            else

   ;            {

   ;                    --j;

   ;    

@2:

        dec       eax

   ;    

   ;            }

   ;            

   ;            printf( "i=%d, j=%d\n", i, j );

   ;    

@3:

        push      eax

        push      edx

        push      offset s@

        call      _printf

        add       esp,12

   ;    

   ;            return 0;

   ;    

?live1@128: ; 

        xor       eax,eax

   ;    

   ;    }

   ;    

@5:

@4:

        pop       ebp

        ret 

_main   endp

_TEXT   ends

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 123

_DATA   segment dword public use32 'DATA'

s@      label   byte

        ;       s@+0:

        db      "i=%d, j=%d",10,0

        align   4

_DATA   ends

_TEXT   segment dword public use32 'CODE'

_TEXT   ends

        extrn   _printf:near

        public  _main

        extrn   __setargv__:near

        ?debug  D "F:\BC5\INCLUDE\_null.h" 8277 8192

        ?debug  D "F:\BC5\INCLUDE\_nfile.h" 8277 8192

        ?debug  D "F:\BC5\INCLUDE\_defs.h" 8277 8192

        ?debug  D "F:\BC5\INCLUDE\stdio.h" 8277 8192

        ?debug  D "t1.c" 11825 25587

        end

Although the Borland code output is not radically different from that 
produced by the Microsoft VC++ compiler, you can see that the two are not 
identical. The differences include some segment definitions (which don’t 
affect the executable code these compilers generate), the emission of debug 
directives by bcc32, label names, and the like. In spite of these differences 
between the machine-code sequences produced by these two compilers, an 
experienced assembly language programmer can easily determine that they 
achieve the same results.

One important similarity you’ll notice between the Borland and Visual 
C++ output is that both compilers insert the original C code into the assembly 
output file. This is handy because it’s easier to read the compiler’s output 
when the compiler annotates the assembly output in this fashion.

6.2.3.3 Borland C++/Intel Backend Assembly Output

Borland actually supplies two versions of its compiler with the Borland 
C++ v5.0 package. Both compilers share the same frontend but have different 
backends. The frontend of the compiler processes the source language while 
the backend of the compiler generates native code and optimizes it. The 
bcc32 compiler uses a Borland-written backend to the compiler and the 
bcc32i compiler uses an Intel-written backend. Although both compilers 
produce TASM-compatible assembly output, their output is quite a bit differ-
ent. Consider the following output file produced with the command line 
bcc32i -O1 -S t1.c:

; -- Machine type P

; mark_description "Intel Reference C Compiler Release 5 Version x";

; mark_description "Built Feb 20 1996 16:27:57";

;ident "Intel Reference C Compiler Release 5 Version x"

        .386P

        .387

        ifndef  ??version

?debug  macro

        endm

No Starch Press, Copyright © 2006 by Randall Hyde



124 Chap te r 6

        endif

        ?debug  S "t1.c"

        ?debug  T "t1.c"

DGROUP  group   _DATA,_BSS

        ASSUME  cs:_TEXT,ds:DGROUP,ss:DGROUP

_TEXT SEGMENT PARA PUBLIC USE32  'CODE'

_TEXT ENDS

_DATA SEGMENT PARA PUBLIC USE32  'DATA'

        ALIGN 010H

_DATA ENDS

_BSS SEGMENT PARA PUBLIC USE32  'BSS'

        ALIGN 010H

_BSS ENDS

        ?debug  D "t1.c" 11825 25587

        ?debug  D "F:\BC5\INCLUDE\stdio.h" 8277 8192

        ?debug  D "F:\BC5\INCLUDE\_defs.h" 8277 8192

        ?debug  D "F:\BC5\INCLUDE\_nfile.h" 8277 8192

        ?debug  D "F:\BC5\INCLUDE\_null.h" 8277 8192

_DATA SEGMENT PARA PUBLIC USE32  'DATA'

@p_3@type@template EQU 0

__1BSCTMPLPCK@SI8 EQU 0

_DATA ENDS

_TEXT SEGMENT PARA PUBLIC USE32  'CODE'

; -- Begin _main

; mark_begin;

ALIGN     4                                        ; 0

PUBLIC   _main

_main   PROC NEAR

@B1@3:                  ; preds: B1.2

        push      ebp                                      ; 2

        mov       ebp, esp                                 ; 2

        sub       esp, 3                                   ; 2

        and       esp, -8                                  ; 2

        add       esp, 4                                   ; 2

        mov       eax, DWORD PTR 12[ebp]                   ; 2

        mov       edx, eax                                 ; 2

        mov       eax, DWORD PTR 8[ebp]                    ; 2

        sub       esp, 20                                  ; 2

        mov       edx, DWORD PTR [edx]                     ; 8

        cmp       eax, 2                                   ; 10

        movsx     ecx, BYTE PTR [edx]                      ; 8

        je        @B1@1         ; PROB 5%                  ; 10

                                ; LOE:%eax%ecx%ebx%ebp%esi%edi%esp%al%ah%cl%ch

@B1@4:                  ; preds: B1.3

        lea       edx, DWORD PTR -1[ecx]                   ; 16

                                ; LOE:%eax%edx%ebx%ebp%esi%edi%esp%al%ah%dl%dh

@B1@5:                  ; preds: B1.4 B1.1

        add       esp, 12                                  ; 19

        push      edx                                      ; 19

        push      eax                                      ; 19

        push      OFFSET @p_1@s                            ; 19

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 125

        call      _printf                                  ; 19

                        ; LOE:%ebx%ebp%esi%edi%esp

@B1@6:                  ; preds: B1.5

        xor       eax, eax                                 ; 20

        add       esp, 20                                  ; 20

        mov       esp, ebp                                 ; 20

        pop       ebp                                      ; 20

        ret                                                ; 20

           ; LOE:%ebx%ebp%esi%edi%esp

@B1@1:     ; Infrequent ; preds: B1.3

        lea       edx, DWORD PTR 1[ecx]                    ; 12

        jmp       @B1@5         ; PROB 100%                ; 12

        ALIGN     4                                        ; 0

                                ; LOE:%eax%edx%ebx%ebp%esi%edi%esp%al%ah%dl%dh

; mark_end;

_main ENDP

_TEXT ENDS

_DATA SEGMENT PARA PUBLIC USE32  'DATA'

@2@1_2ab_p@1 EQU 0

@2@1_2pab_p@1 EQU 0

_DATA ENDS

_TEXT SEGMENT PARA PUBLIC USE32  'CODE'

_2@1_2auto_size EQU 20

; -- End _main

_TEXT ENDS

_DATA SEGMENT PARA PUBLIC USE32  'DATA'

@p_1@s  DB      "i=%d, j=%d",10,0

EXTRN   __setargv__:BYTE

_DATA ENDS

_TEXT SEGMENT PARA PUBLIC USE32  'CODE'

EXTRN   _printf:NEAR

EXTRN   __chkstk:NEAR

_TEXT ENDS

        END

Note that the Intel backend does not insert the original C source code 
into the output assembly file. As a result, correlating the assembly and ori-
ginal C source files is more difficult when using the Intel backend for the 
Borland C++ compiler. Beyond this, the bcc32i compiler’s assembly language 
output differs from Visual C++ and bcc32 in many of the same ways that 
bcc32 and VC++ differ: the directives are slightly different, the labels are 
different, and so on. However, for the simple C program in these examples, 
their outputs are more similar than different (for more complex source 
input files you would begin to see some significant differences between the 
compilers).

6.2.3.4 GCC Assembly Language Output (PowerPC)

GCC is another compiler that doesn’t insert the C source code into the 
assembly output file. In GCC’s case, it’s somewhat understandable; pro-
ducing assembly output is something the compiler always does (rather than 

No Starch Press, Copyright © 2006 by Randall Hyde



126 Chap te r 6

something it does because of a user request). By not inserting the C source 
code into the output file, GCC can cut down compilation times by a small 
amount (because the compiler won’t have to write the data and the assembler 
won’t have to read this data). Here’s the output of GCC for a PowerPC 
processor when using the command line gcc -O1 -S t1.c:

.data

.cstring

        .align 2

LC0:

        .ascii "i=%d, j=%d\12\0"

.text

        .align 2

        .globl _main

_main:

LFB1:

        mflr r0

        stw r31,-4(r1)

LCFI0:

        stw r0,8(r1)

LCFI1:

        stwu r1,-80(r1)

LCFI2:

        bcl 20,31,L1$pb

L1$pb:

        mflr r31

        mr r11,r3

        lwz r9,0(r4)

        lbz r0,0(r9)

        extsb r5,r0

        cmpwi cr0,r3,2

        bne+ cr0,L2

        addi r5,r5,1

        b L3

L2:

        addi r5,r5,-1

L3:

        addis r3,r31,ha16(LC0-L1$pb)

        la r3,lo16(LC0-L1$pb)(r3)

        mr r4,r11

        bl L_printf$stub

        li r3,0

        lwz r0,88(r1)

        addi r1,r1,80

        mtlr r0

        lwz r31,-4(r1)

        blr

LFE1:

.data

.picsymbol_stub

L_printf$stub:

        .indirect_symbol _printf

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 127

        mflr r0

        bcl 20,31,L0$_printf

L0$_printf:

        mflr r11

        addis r11,r11,ha16(L_printf$lazy_ptr-L0$_printf)

        mtlr r0

        lwz r12,lo16(L_printf$lazy_ptr-L0$_printf)(r11)

        mtctr r12

        addi r11,r11,lo16(L_printf$lazy_ptr-L0$_printf)

        bctr

.data

.lazy_symbol_pointer

L_printf$lazy_ptr:

        .indirect_symbol _printf

        .long dyld_stub_binding_helper

.data

.constructor

.data

.destructor

        .align 1

As you can see, the output of GCC is quite sparse. Of course, as this is 
PowerPC assembly language comparing this assembly output to the 80x86 
output from the Visual C++ and Borland compilers isn’t really practical. 

6.2.3.5 GCC Assembly Language Output (80x86)

The following code provides the GCC compilation to 80x86 assembly code 
for the t1.c source file:

.file   "t1.c"

        .version        "01.01"

gcc2_compiled.:

.section        .rodata

.LC0:

        .string "i=%d, j=%d\n"

.text

        .align 4

.globl main

        .type    main,@function

main:

        pushl %ebp

        movl %esp,%ebp

        subl $8,%esp

        movl 12(%ebp),%eax

        movl 8(%ebp),%edx

        movl (%eax),%eax

        movsbl (%eax),%eax

        cmpl $2,%edx

        jne .L3

        incl %eax

        jmp .L4

        .align 4

.L3:

No Starch Press, Copyright © 2006 by Randall Hyde



128 Chap te r 6

        decl %eax

.L4:

        addl $-4,%esp

        pushl %eax

        pushl %edx

        pushl $.LC0

        call printf

        xorl %eax,%eax

        leave

        ret

.Lfe1:

        .size    main,.Lfe1-main

        .ident  "GCC: (GNU) 2.95.2 19991024 (release)"

This example should help demonstrate that the massive amount of code 
that GCC emitted for the PowerPC is more a function of the machine’s archi-
tecture rather than the compiler. If you compare this to the code that other 
compilers emit, you’ll discover that it is roughly equivalent.

6.2.4 Analyzing Assembly Output from a Compiler
Unless you’re well versed in assembly language programming, analyzing 
assembly output can be tricky. If you’re not an assembly language program-
mer, about the best you can do is count instructions and assume that if a 
compiler option (or reorganization of your HLL source code) produces 
fewer instructions, the result is better. In reality, this assumption isn’t always 
correct. Some machine instructions (particularly on CISC processors such 
as the 80x86) require substantially more time to execute than other instruc-
tions. A sequence of three or more instructions on a processor such as the 
80x86 could execute faster than a single instruction that does the same oper-
ation. Fortunately, a compiler is not likely to produce both of these sequences 
based on a reorganization of your high-level source code. Therefore, you 
don’t usually have to worry about such issues when examining the assembly 
output.

Note that some compilers will produce two different sequences if you 
change the optimization level. This is because certain optimization settings 
tell the compiler to favor shorter programs while other optimization set-
tings tell the compiler to favor faster executing code. The optimization 
setting that favors smaller executable files will probably pick the single 
instruction over the three instructions that do the same work (assuming 
those three instructions compile into more code); the optimization setting 
that favors speed will probably pick the faster instruction sequence.

This section uses various C/C++ compilers in its examples, but you 
should remember that compilers for other languages also provide the ability 
to emit assembly code. You’ll have to check your compiler’s documentation to 
see if this is possible and what options you use to produce the assembly output. 
Some compilers (Visual C++ and Borland’s C++ Builder, for example) provide 
an integrated development environment (IDE) that you may use in place of 
a command-line tool. Even though most compilers that work through an IDE 

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 129

also work from the command line, you can usually specify assembly output 
from within an IDE as well as from the command line. Once again, see your 
compiler vendor’s documentation for details on doing this.

6.3 Using Object-Code Utilities to Analyze Compiler Output
Although many compilers provide an option to emit assembly language 
rather than object code, a large number of compilers do not provide this 
facility—they can only emit binary machine code to an object code file. 
Because of this, analyzing such compiler output is going to be a bit more 
work and it’s going to require some specialized tools. If your compiler emits 
object-code files (such as PE/COFF or ELF files) to be fed into a linker, you 
can probably find an “object code dump” utility that will help you analyze the 
compiler’s output. For example, Microsoft’s dumpbin.exe program does 
this, and the FSF/GNU dumpobj program provides similar capabilities for ELF 
files under Linux and other operating systems. The following subsections 
discuss using these two tools when analyzing compiler output.

One benefit of working with object files is that they usually contain 
symbolic information. That is, in addition to binary machine code the object 
file contains strings specifying identfier names appearing in the source file 
(such information does not normally appear in an executable file). Object-
code utilities can usually display these source-code symbolic names within 
the machine instructions that reference the memory locations associated 
with these symbols. Although these object-code utilities can’t automatically 
correlate the HLL source code with the machine instructions, you can use 
the symbolic information when you’re studying the output of one of these 
object-code dumping utilities—names like JumpTable are much easier to 
understand than memory addresses like $401_1000.

6.3.1 The Microsoft dumpbin.exe Utility
Microsoft provides a small tool, dumpbin.exe, which allows you to examine 
the contents of a Microsoft PE/COFF file.1 This program is a command-line 
tool that you run as follows:

dumpbin <options> <filename>

The <filename> command-line parameter is the name of the object file 
that you want to examine, and the <options> parameter is a set of optional 
command-line arguments that specify the type of information you want to 
display. Both of these options each begin with a slash (/). Here is a listing 
of the possible options (obtained via the /? command-line option):

Microsoft (R) COFF Binary File Dumper Version 6.00.8447

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

usage: DUMPBIN [options] [files]

1 Actually, dumpbin.exe is just a wrapper program for link.exe; that is, it processes its own 
command-line parameters and builds a link.exe command line and runs the linker.

No Starch Press, Copyright © 2006 by Randall Hyde



130 Chap te r 6

   options:

      /ALL

      /ARCH

      /ARCHIVEMEMBERS

      /DEPENDENTS

      /DIRECTIVES

      /DISASM

      /EXPORTS

      /FPO

      /HEADERS

      /IMPORTS

      /LINENUMBERS

      /LINKERMEMBER[:{1|2}]

      /LOADCONFIG

      /OUT:filename

      /PDATA

      /RAWDATA[:{NONE|BYTES|SHORTS|LONGS}[,#]]

      /RELOCATIONS

      /SECTION:name

      /SUMMARY

/SYMBOLS

Though the primary use of dumpbin is to look at the object code a 
compiler produces, it will also display a considerable amount of interesting 
information about a PE/COFF file. For information on the meaning of 
many of the dumpbin.exe command-line options, you may want to review 
Section 5.6, “Object File Formats,” or Section 5.7, “Executable File Formats.”

The following subsections describe several of the possible dumpbin.exe 
command-line options and provide example output for a simple “Hello 
World” program written in C:

#include <stdio.h>

int main( int argc, char **argv)

{

printf( "Hello World\n" );

}

6.3.1.1 The dumpbin.exe /all Command-Line Option

The /all command-line option instructs dumpbin.exe to display all the infor-
mation it can except for a disassembly of the code found in the object file. 
Here is the (shortened) output that dumpbin.exe produces for the “Hello 
World” example (most of the raw data output has been cut to save space):

G:\>dumpbin /all hw.exe

Microsoft (R) COFF Binary File Dumper Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 131

Dump of file hw.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

             14C machine (i386)

               3 number of sections

        4105413F time date stamp Mon Jul 26 10:37:03 2004

               0 file pointer to symbol table

               0 number of symbols

              E0 size of optional header

             10F characteristics

                   Relocations stripped

                   Executable

                   Line numbers stripped

                   Symbols stripped

                   32 bit word machine

OPTIONAL HEADER VALUES

             10B magic #

            6.00 linker version

            4000 size of code

            3000 size of initialized data

               0 size of uninitialized data

            1043 RVA of entry point

            1000 base of code

            5000 base of data

          400000 image base

            1000 section alignment

            1000 file alignment

            4.00 operating system version

            0.00 image version

            4.00 subsystem version

               0 Win32 version

            8000 size of image

            1000 size of headers

               0 checksum

               3 subsystem (Windows CUI)

               0 DLL characteristics

          100000 size of stack reserve

            1000 size of stack commit

          100000 size of heap reserve

            1000 size of heap commit

               0 loader flags

              10 number of directories

               0 [       0] RVA [size] of Export Directory

            5484 [      28] RVA [size] of Import Directory

               0 [       0] RVA [size] of Resource Directory

               0 [       0] RVA [size] of Exception Directory

               0 [       0] RVA [size] of Certificates Directory

               0 [       0] RVA [size] of Base Relocation Directory

               0 [       0] RVA [size] of Debug Directory

               0 [       0] RVA [size] of Architecture Directory

No Starch Press, Copyright © 2006 by Randall Hyde



132 Chap te r 6

               0 [       0] RVA [size] of Special Directory

               0 [       0] RVA [size] of Thread Storage Directory

               0 [       0] RVA [size] of Load Configuration Directory

               0 [       0] RVA [size] of Bound Import Directory

            5000 [      A4] RVA [size] of Import Address Table Directory

               0 [       0] RVA [size] of Delay Import Directory

               0 [       0] RVA [size] of Reserved Directory

               0 [       0] RVA [size] of Reserved Directory

SECTION HEADER #1

   .text name

    3B56 virtual size

    1000 virtual address

    4000 size of raw data

    1000 file pointer to raw data

       0 file pointer to relocation table

       0 file pointer to line numbers

       0 number of relocations

       0 number of line numbers

60000020 flags

         Code

         Execute Read

RAW DATA #1

  00401000: 55 8B EC 68 30 60 40 00 E8 05 00 00 00 83 C4 04  UÔ8h0`@.F....‚-.

  00401010: 5D C3 53 56 BE 70 60 40 00 57 56 E8 4B 01 00 00  ]+SV+p`@.WVFK...

                .

                .

                .

  00404B50: FF 25 50 50 40 00                                †%PP@.

SECTION HEADER #2

  .rdata name

     80E virtual size

    5000 virtual address

    1000 size of raw data

    5000 file pointer to raw data

       0 file pointer to relocation table

       0 file pointer to line numbers

       0 number of relocations

       0 number of line numbers

40000040 flags

         Initialized Data

         Read Only

RAW DATA #2

  00405000: D8 56 00 00 62 55 00 00 70 55 00 00 7E 55 00 00  +V..bU..pU..~U..

  00405010: 92 55 00 00 A6 55 00 00 C2 55 00 00 D8 55 00 00  ýU..™U..-U..+U..

                .

                .

                .

                

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 133

  004057F0: 00 00 1B 00 43 6C 6F 73 65 48 61 6E 64 6C 65 00  ....CloseHandle.

  00405800: 4B 45 52 4E 45 4C 33 32 2E 64 6C 6C 00 00        KERNEL32.dll..

  Section contains the following imports:

    KERNEL32.dll

                405000 Import Address Table

                4054AC Import Name Table

                     0 time date stamp

                     0 Index of first forwarder reference

                 2DF  WriteFile

                 174  GetVersion

                  7D  ExitProcess

                 29E  TerminateProcess

                  F7  GetCurrentProcess

                 2AD  UnhandledExceptionFilter

                 124  GetModuleFileNameA

                  B2  FreeEnvironmentStringsA

                  B3  FreeEnvironmentStringsW

                 2D2  WideCharToMultiByte

                 106  GetEnvironmentStrings

                 108  GetEnvironmentStringsW

                 26D  SetHandleCount

                 152  GetStdHandle

                 115  GetFileType

                 150  GetStartupInfoA

                 19D  HeapDestroy

                 19B  HeapCreate

                 2BF  VirtualFree

                 19F  HeapFree

                 22F  RtlUnwind

                  CA  GetCommandLineA

                 199  HeapAlloc

                  BF  GetCPInfo

                  B9  GetACP

                 131  GetOEMCP

                 2BB  VirtualAlloc

                 1A2  HeapReAlloc

                 13E  GetProcAddress

                 1C2  LoadLibraryA

                 11A  GetLastError

                  AA  FlushFileBuffers

                 26A  SetFilePointer

                 1E4  MultiByteToWideChar

                 1BF  LCMapStringA

                 1C0  LCMapStringW

                 153  GetStringTypeA

                 156  GetStringTypeW

                 27C  SetStdHandle

                  1B  CloseHandle

SECTION HEADER #3

   .data name

    1E08 virtual size

No Starch Press, Copyright © 2006 by Randall Hyde



134 Chap te r 6

    6000 virtual address

    1000 size of raw data

    6000 file pointer to raw data

       0 file pointer to relocation table

       0 file pointer to line numbers

       0 number of relocations

       0 number of line numbers

C0000040 flags

         Initialized Data

         Read Write

RAW DATA #3

  00406000: 00 00 00 00 00 00 00 00 00 00 00 00 3F 1A 40 00  ............?.@.

                .

                .

                .

  00406FE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  00406FF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

  Summary

        2000 .data

        1000 .rdata

        4000 .text

As you can see, running dumpbin.exe on a Microsoft EXE file produces 
considerable output. The problem with this approach is that an EXE file 
contains all the routines from the language’s standard library (e.g., the 
C Standard Library) that the linker has merged into the application. 
When analyzing compiler output in order to improve your application’s 
code, wading through all this extra information pertaining to code outside 
your program can be tedious. Fortunately, there is an easy way to pare 
down the unnecessary information—run dumpbin on your object (OBJ) 
files rather than your executable (EXE) files. For example, here is the 
output of dumpbin with the /all option when you supply hw.obj rather than 
the hw.exe filename as the command-line parameter:

G:\>dumpbin /all hw.obj

Microsoft (R) COFF Binary File Dumper Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file hw.obj

File Type: COFF OBJECT

FILE HEADER VALUES

             14C machine (i386)

               3 number of sections

        4105413E time date stamp Mon Jul 26 10:37:02 2004

              E5 file pointer to symbol table

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 135

               C number of symbols

               0 size of optional header

               0 characteristics

SECTION HEADER #1

.drectve name

       0 physical address

       0 virtual address

      26 size of raw data

      8C file pointer to raw data

       0 file pointer to relocation table

       0 file pointer to line numbers

       0 number of relocations

       0 number of line numbers

  100A00 flags

         Info

         Remove

         1 byte align

RAW DATA #1

  00000000: 2D 64 65 66 61 75 6C 74 6C 69 62 3A 4C 49 42 43  -defaultlib:LIBC

  00000010: 20 2D 64 65 66 61 75 6C 74 6C 69 62 3A 4F 4C 44   -defaultlib:OLD

  00000020: 4E 41 4D 45 53 20                                NAMES

   Linker Directives

   -----------------

   -defaultlib:LIBC

   -defaultlib:OLDNAMES

SECTION HEADER #2

   .text name

       0 physical address

       0 virtual address

      12 size of raw data

      B2 file pointer to raw data

      C4 file pointer to relocation table

       0 file pointer to line numbers

       2 number of relocations

       0 number of line numbers

60500020 flags

         Code

         16 byte align

         Execute Read

RAW DATA #2

  00000000: 55 8B EC 68 00 00 00 00 E8 00 00 00 00 83 C4 04  UÔ8h....F....‚-.

  00000010: 5D C3                                            ]+

RELOCATIONS #2

                                                Symbol    Symbol

 Offset    Type              Applied To         Index     Name

 --------  ----------------  -----------------  --------  ------

 00000004  DIR32                      00000000         B  $SG340

 00000009  REL32                      00000000         8  _printf

No Starch Press, Copyright © 2006 by Randall Hyde



136 Chap te r 6

SECTION HEADER #3

   .data name

       0 physical address

       0 virtual address

       D size of raw data

      D8 file pointer to raw data

       0 file pointer to relocation table

       0 file pointer to line numbers

       0 number of relocations

       0 number of line numbers

C0300040 flags

         Initialized Data

         4 byte align

         Read Write

RAW DATA #3

  00000000: 48 65 6C 6C 6F 20 57 6F 72 6C 64 0A 00           Hello World..

COFF SYMBOL TABLE

000 00000000 DEBUG  notype       Filename     | .file

    t.c

002 000A1FE8 ABS    notype       Static       | @comp.id

003 00000000 SECT1  notype       Static       | .drectve

    Section length   26, #relocs    0, #linenums    0, checksum        0

005 00000000 SECT2  notype       Static       | .text

    Section length   12, #relocs    2, #linenums    0, checksum 11D64EEB

007 00000000 SECT2  notype ()    External     | _main

008 00000000 UNDEF  notype ()    External     | _printf

009 00000000 SECT3  notype       Static       | .data

    Section length    D, #relocs    0, #linenums    0, checksum E4C58F28

00B 00000000 SECT3  notype       Static       | $SG340

String Table Size = 0x0 bytes

  Summary

           D .data

          26 .drectve

          12 .text

This example clearly demonstrates the quantity of output you get when 
using the /all command-line option. Use this option with care!

6.3.1.2 The dumpbin.exe /disasm Command-Line Option

The /disasm command-line option is the one of greatest interest. It produces 
a disassembled listing of the object file. As for the /all option, you shouldn’t 
try to disassemble an EXE file using the dumpbin.exe program. The dis-
assembled listing you’ll get will be quite long and the vast majority of the 
code will probably be the listings of all the library routines your application 
calls. For example, the simple “Hello World” application generates over 
5,000 lines of disassembled code. All but a small handful of those statements 
correspond to library routines. Wading through that amount of code will 
prove overwhelming to most people.

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 137

However, if you disassemble the hw.obj file rather than the executable 
file, here’s the output you will typically get:

Microsoft (R) COFF Binary File Dumper Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file hw.obj

File Type: COFF OBJECT

_main:

  00000000: 55                 push        ebp

  00000001: 8B EC              mov         ebp,esp

  00000003: 68 00 00 00 00     push        offset _main

  00000008: E8 00 00 00 00     call        0000000D

  0000000D: 83 C4 04           add         esp,4

  00000010: 5D                 pop         ebp

  00000011: C3                 ret

  Summary

           D .data

          26 .drectve

          12 .text

If you look closely at this disassembled code, you’ll find the major problem 
with disassembling object files rather than executable files—most addresses 
in the code are relocatable addresses, which appear as $00000000 in the 
object code listing. As a result, you will probably have a hard time figuring 
out what the various assembly statements are doing. For example, in the 
hw.obj’s disassembled listing you see the following two statements: 

00000003: 68 00 00 00 00     push        offset _main
00000008: E8 00 00 00 00     call        0000000D

In fact, this code is not pushing the offset of the _main label onto the 
stack, and it is not calling the procedure at address $d. As you can see by 
looking at the object code emitted for these two instructions, the address 
field contains all zeros. If you run dumpbin on hw.obj and supply a /all 
command-line parameter, you’ll notice that this file has two relocation 
entries:

RELOCATIONS #2

                                                Symbol    Symbol

 Offset    Type              Applied To         Index     Name

 --------  ----------------  -----------------  --------  ------

 00000004  DIR32                      00000000         B  $SG340

 00000009  REL32                      00000000         8  _printf

No Starch Press, Copyright © 2006 by Randall Hyde



138 Chap te r 6

The Offset column tells you the byte offset into the file where the 
relocations are to be applied. Note, in the disassembly above, that the push
instruction starts at offset $3, so the actual immediate constant is at offset $4. 
Similarly, the call instruction begins at offset $8, so the address of the actual 
routine that needs to be patched is 1 byte later, at offset $9. From the relo-
cation information that dumpbin.exe outputs, you can discern the symbols 
associated with these relocations ($SG340 is an internal symbol that the C 
compiler generates for the “Hello World” string. _printf is, obviously, the 
name associated with the C printf function).

Cross-referencing every call and memory reference against the relocation 
list may seem like a pain, but at least you get symbolic names when you 
do this.

Consider the first few lines of the disassembled code when you apply the 
/disasm option to the hw.exe file:

File Type: EXECUTABLE IMAGE

  00401000: 55                 push        ebp

  00401001: 8B EC              mov         ebp,esp

  00401003: 68 30 60 40 00     push        406030h

  00401008: E8 05 00 00 00     call        00401012

  0040100D: 83 C4 04           add         esp,4

  00401010: 5D                 pop         ebp

  00401011: C3                 ret

                                .

                                .

                                .

Notice that the linker has filled in the addresses (relative to the load 
address for the file) of the offset $SG360 and _print labels. This may seem 
somewhat convenient, however, you should note that these labels (especially 
the _printf label) are no longer present in the file. When you are reading the 
disassembled output, the lack of these labels can make it very difficult to figure 
out which machine instructions correspond to HLL statements. This is yet 
another reason why you should use object files rather than executable files 
when running dumpbin.exe.

If you think it’s going to be a major pain to read the disassembled output 
of the dumpbin.exe utility, don’t get too upset. For optimization purposes, 
you’re often more interested in the code differences between two versions 
of an HLL program than you are in figuring out what each machine instruc-
tion does. Therefore, you can easily determine which machine instructions 
are affected by a change in your code by running dumpbin.exe on two 
versions of your object files (once before the change to the HLL code and 
one created afterward). For example, consider the following modification to 
the “Hello World” program:

#include <stdio.h>

int main( int argc, char **argv )

{

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 139

        char *hwstr = "Hello World\n";

        

        printf( hwstr );

}

Here’s the disassembly output that dumpbin.exe produces:

Microsoft (R) COFF Binary File Dumper Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file hw.obj

File Type: COFF OBJECT

_main:

  00000000: 55                 push        ebp

  00000001: 8B EC              mov         ebp,esp

  00000003: 51                 push        ecx

  00000004: C7 45 FC 00 00 00  mov         dword ptr [ebp-4],offset _main

            00

  0000000B: FF 75 FC           push        dword ptr [ebp-4]

  0000000E: E8 00 00 00 00     call        00000013

  00000013: 59                 pop         ecx

  00000014: 33 C0              xor         eax,eax

  00000016: C9                 leave

  00000017: C3                 ret

  Summary

           D .data

          54 .debug$S

          2A .drectve

          18 .text

By comparing this output with the previous assembly output (either 
manually or by running one of the programs based on the Unix diff
utility), you can see the effects the changes to your HLL source code have 
had on the emitted machine code. Section 6.6, “Comparing Output from 
Two Compilations,” discusses the merits of both methods.

6.3.1.3 The dumpbin.exe /headers Command-Line Option

The /headers option instructs dumpbin.exe to display the COFF header files 
and section header files. The /all option also prints this information, but 
the /header option displays only the header information without all the other 
information. Here’s the sample output for the “Hello World” executable file:

G:\WGC>dumpbin /headers hw.exe

Microsoft (R) COFF Binary File Dumper Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

No Starch Press, Copyright © 2006 by Randall Hyde



140 Chap te r 6

Dump of file hw.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

             14C machine (i386)

               3 number of sections

        41055ABA time date stamp Mon Jul 26 12:25:46 2004

               0 file pointer to symbol table

               0 number of symbols

              E0 size of optional header

             10F characteristics

                   Relocations stripped

                   Executable

                   Line numbers stripped

                   Symbols stripped

                   32 bit word machine

OPTIONAL HEADER VALUES

             10B magic #

            7.00 linker version

            5000 size of code

            4000 size of initialized data

               0 size of uninitialized data

            106E RVA of entry point

            1000 base of code

            6000 base of data

          400000 image base

            1000 section alignment

            1000 file alignment

            4.00 operating system version

            0.00 image version

            4.00 subsystem version

               0 Win32 version

            A000 size of image

            1000 size of headers

               0 checksum

               3 subsystem (Windows CUI)

               0 DLL characteristics

          100000 size of stack reserve

            1000 size of stack commit

          100000 size of heap reserve

            1000 size of heap commit

               0 loader flags

              10 number of directories

               0 [       0] RVA [size] of Export Directory

            6B8C [      28] RVA [size] of Import Directory

               0 [       0] RVA [size] of Resource Directory

               0 [       0] RVA [size] of Exception Directory

               0 [       0] RVA [size] of Certificates Directory

               0 [       0] RVA [size] of Base Relocation Directory

               0 [       0] RVA [size] of Debug Directory

               0 [       0] RVA [size] of Architecture Directory

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 141

               0 [       0] RVA [size] of Special Directory

               0 [       0] RVA [size] of Thread Storage Directory

               0 [       0] RVA [size] of Load Configuration Directory

               0 [       0] RVA [size] of Bound Import Directory

            6000 [      D0] RVA [size] of Import Address Table Directory

               0 [       0] RVA [size] of Delay Import Directory

               0 [       0] RVA [size] of Reserved Directory

               0 [       0] RVA [size] of Reserved Directory

SECTION HEADER #1

   .text name

    4C38 virtual size

    1000 virtual address

    5000 size of raw data

    1000 file pointer to raw data

       0 file pointer to relocation table

       0 file pointer to line numbers

       0 number of relocations

       0 number of line numbers

60000020 flags

         Code

         Execute Read

SECTION HEADER #2

  .rdata name

    1018 virtual size

    6000 virtual address

    2000 size of raw data

    6000 file pointer to raw data

       0 file pointer to relocation table

       0 file pointer to line numbers

       0 number of relocations

       0 number of line numbers

40000040 flags

         Initialized Data

         Read Only

SECTION HEADER #3

   .data name

    1C48 virtual size

    8000 virtual address

    1000 size of raw data

    8000 file pointer to raw data

       0 file pointer to relocation table

       0 file pointer to line numbers

       0 number of relocations

       0 number of line numbers

C0000040 flags

         Initialized Data

         Read Write

  Summary

        2000 .data

No Starch Press, Copyright © 2006 by Randall Hyde



142 Chap te r 6

        2000 .rdata

        5000 .text

If you look back at the discussion of object file formats in Chapter 5 
(see Section 5.6, “Object File Formats”), you’ll be able to make sense of the 
information that dumpbin.exe outputs when you specify the /headers option.

6.3.1.4 The dumpbin.exe /imports Command-Line Option

dumpbin.exe’s /imports option lists all of the dynamic-link symbols that the 
operating system must supply when the program loads into memory. This 
information isn’t particularly useful for analyzing code emitted for HLL 
statements, so this chapter will not consider this option beyond this brief 
mention.

6.3.1.5 The dumpbin.exe /relocations Command-Line Option

The /relocations option displays all the relocation objects in the file. This 
command is quite useful because it provides a list of all the symbols for the 
program and the offsets of their use in the disassembly listing. Of course, 
the /all option also presents this information, but the /relocations option 
provides just this information without all the other output.

6.3.1.6 Other dumpbin.exe Command-Line Options

The dumpbin.exe utility supports many more command-line options beyond 
those this chapter describes. You can get a list of the possible options by spe-
cifying /? on the command line when running dumpbin.exe. You can also 
read more about dumpbin.exe online at www.msdn.com. Just search for 
“dumpbin.exe,” and click the DUMPBIN Reference link.

6.3.2 The FSF/GNU objdump.exe Utility
If you’re running the GNU toolset on your operating system (for example, 
under Linux or BSD), you can use the FSF/GNU objdump.exe utility to 
examine the object files produced by GCC and other GNU-compliant tools. 
Here are the command-line options that objdump.exe supports:

Usage: objdump <option(s)> <file(s)>

 Display information from object <file(s)>.

 At least one of the following switches must be given:

  -a, --archive-headers    Display archive header information

  -f, --file-headers       Display the contents of the overall file header

  -p, --private-headers    Display object format specific file header contents

  -h, --[section-]headers  Display the contents of the section headers

  -x, --all-headers        Display the contents of all headers

  -d, --disassemble        Display assembler contents of executable sections

  -D, --disassemble-all    Display assembler contents of all sections

  -S, --source             Intermix source code with disassembly

  -s, --full-contents      Display the full contents of all sections requested

  -g, --debugging          Display debug information in object file

  -G, --stabs              Display (in raw form) any STABS info in the file

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 143

  -t, --syms               Display the contents of the symbol table(s)

  -T, --dynamic-syms       Display the contents of the dynamic symbol table

  -r, --reloc              Display the relocation entries in the file

  -R, --dynamic-reloc      Display the dynamic relocation entries in the file

  -v, --version            Display this program's version number

  -i, --info               List object formats and architectures supported

  -H, --help               Display this information

Given the following m.hla source code fragment:

begin t;

        // test mem.alloc and mem.free:

        

        for( mov( 0, ebx ); ebx < 16; inc( ebx )) do

        

                // Allocate lots of storage:

                

                for( mov( 0, ecx ); ecx < 65536; inc( ecx )) do

                

                        rand.range( 1, 256 );

                        malloc( eax );

                        mov( eax, ptrs[ ecx*4 ] );

                        

                endfor;

        endfor;

                   .

                   .

                   .

here is some sample output produced on the 80x86, created with the Linux 
command line objdump -S m:

08048246 <_HLAMain>:

.

. // Some deleted code here, 

. // that HLA automatically generated.

.

 8048274:       bb 00 00 00 00          mov    $0x0,%ebx

 8048279:       e9 d5 00 00 00          jmp    8048353 <L1021_StartFor__hla_>

0804827e <L1021_for__hla_>:

 804827e:       b9 00 00 00 00          mov    $0x0,%ecx

 8048283:       eb 1a                   jmp    804829f <L1022_StartFor__hla_>

08048285 <L1022_for__hla_>:

 8048285:       6a 01                   push   $0x1

 8048287:       68 00 01 00 00          push   $0x100

 804828c:       e8 db 15 00 00          call   804986c <RAND_RANGE>

 8048291:       50                      push   %eax

 8048292:       e8 63 0f 00 00          call   80491fa <MEM_ALLOC>

 8048297:       89 04 8d 60 ae 04 08    mov    %eax,0x804ae60(,%ecx,4)

No Starch Press, Copyright © 2006 by Randall Hyde



144 Chap te r 6

0804829e <L1022_continue__hla_>:

 804829e:       41                      inc    %ecx

0804829f <L1022_StartFor__hla_>:

 804829f:       81 f9 00 00 01 00       cmp    $0x10000,%ecx

 80482a5:       72 de                   jb     8048285 <L1022_for__hla_>

080482a7 <L1022_exitloop__hla_>:

 80482a7:       b9 00 00 00 00          mov    $0x0,%ecx

 80482ac:       eb 0d                   jmp    80482bb <L1023_StartFor__hla_>

These listings are only a fragment of the total code (which is why certain 
labels are not present). Nevertheless, you can see how the objdump can be 
useful for analyzing compiler output as this short example demonstrates how 
you can disassemble the object code for a code fragment in question.

As with the Microsoft dumpbin.exe tool, the FSF/GNU objdump utility 
can display additional information beyond the machine code disassembly 
that may prove useful when you’re analyzing compiler output. For most 
purposes, however, the GCC -S (assembly output) is the most useful option. 
Here is an example of a disassembly of some C code using the objdump.exe 
utility. First, the original C code:

#include <stdio.h>

int main( int argc, char **argv )

{

    int i,j,k;

    j = **argv;

    k = argc;

    i = j && k;

    printf( "%d\n", i );

    return 0;

}

Here’s the Gas output from GCC for the C code:

.file   "t.c"

        .section        .rodata

.LC0:

        .string "%d\n"

        .text

.globl main

        .type   main,@function

main:

        pushl   %ebp

        movl    %esp, %ebp

        subl    $24, %esp

        andl    $-16, %esp

        movl    $0, %eax

        subl    %eax, %esp

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 145

        movl    12(%ebp), %eax

        movl    (%eax), %eax

        movsbl  (%eax),%eax

        movl    %eax, -8(%ebp)

        movl    8(%ebp), %eax

        movl    %eax, -12(%ebp)

        movl    $0, -4(%ebp)

        cmpl    $0, -8(%ebp)

        je      .L2

        cmpl    $0, -12(%ebp)

        je      .L2

        movl    $1, -4(%ebp)

.L2:

        subl    $8, %esp

        pushl   -4(%ebp)

        pushl   $.LC0

        call    printf

        addl    $16, %esp

        movl    $0, %eax

        leave

        ret

.Lfe1:

Now here’s the objdump.exe disassembly of the main function:

.file   "t.c"

        .section        .rodata

.LC0:

        .string "%d\n"

        .text

.globl main

        .type   main,@function

main:

        pushl   %ebp

        movl    %esp, %ebp

        subl    $24, %esp

        andl    $-16, %esp

        movl    $0, %eax

        subl    %eax, %esp

        movl    12(%ebp), %eax

        movl    (%eax), %eax

        movsbl  (%eax),%eax

        movl    %eax, -8(%ebp)

        movl    8(%ebp), %eax

        movl    %eax, -12(%ebp)

        movl    $0, -4(%ebp)

        cmpl    $0, -8(%ebp)

        je      .L2

        cmpl    $0, -12(%ebp)

        je      .L2

        movl    $1, -4(%ebp)

No Starch Press, Copyright © 2006 by Randall Hyde



146 Chap te r 6

.L2:

        subl    $8, %esp

        pushl   -4(%ebp)

        pushl   $.LC0

        call    printf

        addl    $16, %esp

        movl    $0, %eax

        leave

        ret

.Lfe1:

As you can see, the assembly code output is somewhat easier to read than 
objdump.exe’s output.

6.4 Using a Disassembler to Analyze Compiler Output

Although using an object-code dump tool is one way to analyze compiler 
output, another possible solution is to run a disassembler on the executable file. 
A disassembler is a utility that translates binary machine code into human-
readable assembly language statements (the phrase “human-readable” is 
debatable, but that’s the idea, anyway). As such, disassemblers are another 
tool you can use to analyze compiler output.

There is a subtle, but important, difference between an object-code dump 
utility (which contains a simple disassembler) and a sophisticated disassembler 
program. Object-code dump utilities are automatic, but they get easily con-
fused if the object code contains funny constructs (such as buried data in 
the instruction stream). An automatic disassembler is very convenient to use, 
requiring little expertise on the part of the user, but such programs rarely 
disassemble the machine code correctly. A full-blown interactive disassembler,
on the other hand, requires more training to use properly, but it is capable 
of disassembling tricky machine-code sequences with a little help from its 
user. As such, decent disassemblers will work in situations where a simplistic 
object-code dump utility will fail. Fortunately, most compilers do not always 
emit the kind of tricky code that confuses object-code dump utilities, so 
you can sometimes get by without having to learn how to use a full-blown 
disassembler program. Nevertheless, having a disassembler handy can be 
useful in situations where a simplistic approach doesn’t work.

Several “free” disassemblers are available, I’m going to describe the use 
of the IDA disassembler in this section. IDA is a very powerful disassembler, 
based on a commercial product (IDA is the free version of IDA Pro, a very 
capable and powerful disassembler system). The IDA Pro disassembler is 
available from www.datarescue.com. A trial version is also available from this 
same address. The free version is available at several software repository sites 
on the Internet. Just search for “IDA Pro disassembler” with your favorite 
search engine to locate a copy of the free version. This chapter will describe 
how to use IDAFRE4.1 (the 4.1 version of the IDA free disassembler).

When you first run IDA, the window appearing in Figure 6-1 is displayed.

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 147

Figure 6-1: IDA opening window

Pressing the ENTER key clears the splash screen and opens up a file 
dialog box, as shown in Figure 6-2.

Figure 6-2: Selecting an EXE file to disassemble in IDA

Enter the filename of the EXE file you want to disassemble (press the 
Tab key to get to the filename entry box if it’s not already selected). Once 
you enter a filename, IDA brings up the format dialog box as shown in 
Figure 6-3. In this dialog box, you can select the binary file type (e.g., MS-
DOS EXE file, PE/COFF executable file, or pure binary) and the options to 
use when disassembling the file. IDA Pro does a good job of choosing 
reasonable default values for these options, so most of the time you’ll just 
accept the defaults unless you’re working with some weird binary files.

No Starch Press, Copyright © 2006 by Randall Hyde



148 Chap te r 6

Figure 6-3: IDA executable file format box

Generally, IDA will figure out the appropriate file type information for a 
standard disassembly and then it will automatically dissassemble the file. To 
produce an assembly language output file, press ALT+F to open the file 
menu, and select Produce Output File. From the resulting submenu, select 
Produce ASM file. Here are the first few lines of the disassembly of the t.c
file given in the earlier section:

; File Name   : G:\t.exe

; Format      : Portable executable for IBM PC (PE)

; Section 1. (virtual address 00001000)

; Virtual size                  : 00003B56 (  15190.)

; Section size in file          : 00004000 (  16384.)

; Offset to raw data for section: 00001000

; Flags 60000020: Text Executable Readable

; Alignment     : 16 bytes ?

; OS type         :  MS Windows

; Application type:  Executable 32bit

                model flat

; --------------------------------------------------------------

; Segment type: Pure code

_text           segment para public 'CODE' use32

                assume cs:_text

                ;org 401000h

                assume es:nothing, ss:nothing, ds:_data, fs:nothing, 
gs:nothing

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 149

; ----------- S U B R O U T I N E ---------------------------

sub_0_401000    proc near               ; CODE XREF: start+AF?p

arg_0           = dword ptr  4

                mov     eax, [esp+arg_0]

                mov     ecx, [esp+arg_0]

                and     eax, ecx

                push    eax

                push    offset unk_0_406030

                call    sub_0_401020

                add     esp, 8

                xor     eax, eax

                retn    

sub_0_401000    endp

Just note that sub_0_401000 turns out to be the body of the main function 
in the C program.

IDA is an interactive disassembler. This means that it provides lots of 
complex features that you can use to guide the disassembly to produce a 
more reasonable assembly language output file. However, the “automatic” 
mode of operation is generally all you will need in order to example compiler 
output files in order to determine the quality of the code that your compiler 
generates. For more details on IDA or IDA Pro, see its user’s manual.

6.5 Using a Debugger to Analyze Compiler Output
Another option you can use to analyze compiler output is a debugger 
program, which usually incorporates a disassembler that you can use to view 
machine instructions. Using a debugger to view the code your compiler emits 
can either be an arduous task or a breeze—depending on the debugger 
you use. Typically, if you use a stand-alone debugger, you’ll find that it 
takes considerably more effort to analyze your compiler’s output than 
if you use a debugger built into a compiler’s integrated development environ-
ment. This section looks at both approaches.

6.5.1 Using an IDE’s Debugger
The Microsoft Visual C++ environment provides excellent tools for observing 
the code produced by a compilation (of course, the compiler also produces 
assembly output, but that can be ignored here). To view the output using the 
Visual Studio debugger, first compile your C/C++ program to an executable 
file and then select Build�Start Debug�Step Into from the Visual Studio 
Build menu. When the debug palette comes up, click the disassembly view 
button (see Figure 6-4).

No Starch Press, Copyright © 2006 by Randall Hyde



150 Chap te r 6

Figure 6-4: Visual Studio disassembly view button 

Pressing the disassembly view button brings up a window with text similar 
to the following:

19:   {

00401010   push        ebp

00401011   mov         ebp,esp

00401013   sub         esp,48h

00401016   push        ebx

00401017   push        esi

00401018   push        edi

00401019   lea         edi,[ebp-48h]

0040101C   mov         ecx,12h

00401021   mov         eax,0CCCCCCCCh

00401026   rep stos    dword ptr [edi]

20:       int i,j;

21:

22:       i = argc & j;

00401028   mov         eax,dword ptr [ebp+8]

0040102B   and         eax,dword ptr [ebp-8]

0040102E   mov         dword ptr [ebp-4],eax

23:       printf( "%d", i );

00401031   mov         ecx,dword ptr [ebp-4]

00401034   push        ecx

00401035   push        offset string "%d" (0042001c)

0040103A   call        printf (00401070)

0040103F   add         esp,8

24:       return 0;

00401042   xor         eax,eax

25:   }

00401044   pop         edi

00401045   pop         esi

00401046   pop         ebx

00401047   add         esp,48h

0040104A   cmp         ebp,esp

0040104C   call        __chkesp (004010f0)

00401051   mov         esp,ebp

00401053   pop         ebp

00401054   ret

Of course, because Microsoft’s Visual C++ package is already capable of 
outputting an assembly language file during compilation, using the Visual 
Studio integrated debugger in this manner isn’t necessary. However, some 
compilers do not provide assembly output, and debugger output may be the 
easiest way to view the machine code the compiler produces. For example, 

This button selects disassembly output

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 151

Borland’s Delphi compiler does not provide an option to produce assembly 
language output. Given the massive amount of class library code that Delphi 
links into an application, attempting to view the code for a small section of 
your program by using a disassembler would be like trying to find a needle 
in a haystack. A better solution is to use the debugger built into the Delphi 
environment. 

To view the machine code that Delphi (or Kylix under Linux) generates, 
set a breakpoint in your code where you wish to view the machine code, and 
then compile and run your application. When the breakpoint triggers, select 
View�Debug Windows�CPU. This brings up a CPU window like the one 
appearing in Figure 6-5. From this window you can examine the compiler’s 
output and adjust your HLL code to produce better output.

Figure 6-5: Delphi CPU window

6.5.2 Using a Stand-Alone Debugger
If your compiler doesn’t provide its own debugger as part of an integrated 
development system, another alternative is to use a separate debugger such 
as OllyDbg, DDD, or GDB to disassemble your compiler’s output. Simply 
load the executable file into the debugger for normal debugging operations. 

Most debuggers that are not associated with a particular programming 
language are machine-level debuggers that disassemble the binary machine 
code into machine instructions for viewing during the debugging operation. 
One problem with using machine-level debuggers is that locating a particular 
section of code to disassemble can be difficult. Remember, when you load 
the entire executable file into a debugger, you also load all the statically linked 
library routines and other runtime support code that don’t normally appear in 
the application’s source file. Searching through all this extraneous code to 
find out how the compiler translates a particular sequence of statements to 

No Starch Press, Copyright © 2006 by Randall Hyde



152 Chap te r 6

machine code can be time-consuming. Some serious code sleuthing may be 
necessary. Fortunately, most linkers collect all the library routines together 
and place them either at the beginning or end of the executable file. There-
fore, the code associated with your application will generally appear near 
the beginning or end of the executable file. Nevertheless, if the application is 
large, finding a particular function or code sequence among all the code in 
that application can be difficult.

Debuggers generally come in one of three different flavors: pure 
machine-level debuggers, symbolic debuggers, and source-level debuggers. 
Symbolic debuggers and source-level debuggers require executable files to 
contain special debugging information2 and, therefore, the compiler must 
specifically include this extra information. 

Pure machine-level debuggers have no access to the original source 
code or symbols in the application. A pure machine-level debugger simply 
disassembles the machine code found in the application and displays the 
listing using literal numeric constants and machine addresses. Reading 
through such code is difficult, but if you understand how compilers generate 
code for the HLL statements (as this book will teach you), then locating the 
machine code is easier. Nevertheless, without any symbolic information to 
provide a “root point” in the code, analysis can be difficult.

Symbolic debuggers use special symbol table information found in the 
executable file (or a separate debugging file, in some instances) to associate 
labels with functions and, possibly, variable names in your executable file. 
This feature makes locating sections of code within the disassembly listing 
much easier. When symbolic labels identify calls to functions, it’s much 
easier to see the correspondence between the disassembled code and your 
original HLL source code. One thing to keep in mind, however, is that 
symbolic information is only available if the application was compiled with 
debugging mode enabled. Check your compiler’s documentation to deter-
mine how to activate this feature for use with your debugger.

Source-level debuggers will actually display the original source code 
associated with the file the debugger is processing. In order to see the actual 
machine code the compiler produced, you often have to activate a special 
machine-level view of the program. As with symbolic debuggers, your compiler 
must produce special executable files (or auxiliary files) containing debug 
information that a source-level debugger can use. Clearly, source-level debug-
gers are much easier to work with because they show the correspondence 
between the original HLL source code and the disassembled machine code.

6.6 Comparing Output from Two Compilations

If you are an expert assembly language programmer and you’re well versed 
in compiler design, it should be pretty easy for you to determine what changes 
you’ll need to make to your HLL source code to improve the quality of the 
output machine code. However, most programmers (especially those who

2 Some debuggers keep the debug information in a separate file rather than the executable file.

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 153

do not have considerable experience studying compiler output) can’t just 
read a compiler’s assembly language output. They have to compare the two 
sets of outputs (before and after a change) to determine which code is better. 
After all, not every change you make to your HLL source files will result in 
better code. Some changes will leave the machine code unaffected (in which 
case, you should use the more readable and maintainable version of the HLL 
source code). In other cases, you could actually make the output machine 
code worse. Therefore, unless you know exactly what a compiler is going to 
do when you make changes to your HLL source file, you should do a before-
and-after comparison of the compiler’s output machine code before accept-
ing any modifications you make.

6.6.1 Before-and-After Comparisons with diff
Of course, the first thought any experienced software developer is going to 
have is, “Well, if we have to compare files, we’ll just use diff!” As it turns out, 
a typical diff (compute file differences) program will be useful for certain 
purposes, but it will not be universally applicable when comparing two differ-
ent output files from a compiler. The problem with a program like diff is that 
it works great when there are only a few differences between two files. Alas, 
diff will not prove very useful when comparing two wildly different machine 
language output files. For example, consider the following C program (t.c)
and two different outputs produced by the Microsoft VC++ compiler:

extern void f( void );

int main( int argc, char **argv )

{

    int boolResult;

    switch( argc )

    {

        case 1:

            f();

            break;

        case 10:

            f();

            break;

        case 100:

            f();

            break;

        case 1000:

            f();

            break;

        case 10000:

            f();

            break;

No Starch Press, Copyright © 2006 by Randall Hyde



154 Chap te r 6

        case 100000:

            f();

            break;

        case 1000000:

            f();

            break;

        case 10000000:

            f();

            break;

        case 100000000:

            f();

            break;

        case 1000000000:

            f();

            break;

    }

    return 0;

}

Here’s the assembly language output MSVC++ produces when using the 
command line cl /Fa t.c (that is, when compiling without optimization):

TITLE  t.c

    .386P

include listing.inc

if @Version gt 510

.model FLAT

else

_TEXT      SEGMENT PARA USE32 PUBLIC 'CODE'

_TEXT      ENDS

_DATA      SEGMENT DWORD USE32 PUBLIC 'DATA'

_DATA      ENDS

CONST      SEGMENT DWORD USE32 PUBLIC 'CONST'

CONST      ENDS

_BSS       SEGMENT DWORD USE32 PUBLIC 'BSS'

_BSS       ENDS

_TLS       SEGMENT DWORD USE32 PUBLIC 'TLS'

_TLS       ENDS

FLAT       GROUP _DATA, CONST, _BSS

    ASSUME CS: FLAT, DS: FLAT, SS: FLAT

endif

PUBLIC     _main

EXTRN      _f:NEAR

_TEXT      SEGMENT

_argc$ = 8

_main      PROC NEAR

; File t.c

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 155

; Line 7

    push   ebp

    mov    ebp, esp

    sub    esp, 8

; Line 11

    mov    eax, DWORD PTR _argc$[ebp]

    mov    DWORD PTR -8+[ebp], eax

    cmp    DWORD PTR -8+[ebp], 100000 

    jg     SHORT $L1207

    cmp    DWORD PTR -8+[ebp], 100000 

    je     $L1199

    cmp    DWORD PTR -8+[ebp], 100    

    jg     SHORT $L1208

    cmp    DWORD PTR -8+[ebp], 100    

    je     SHORT $L1196

    cmp    DWORD PTR -8+[ebp], 1

    je     SHORT $L1194

    cmp    DWORD PTR -8+[ebp], 10     

    je     SHORT $L1195

    jmp    $L1191

$L1208:

    cmp    DWORD PTR -8+[ebp], 1000   

    je     SHORT $L1197

    cmp    DWORD PTR -8+[ebp], 10000  

    je     SHORT $L1198

    jmp    SHORT $L1191

$L1207:

    cmp    DWORD PTR -8+[ebp], 100000000 

    jg     SHORT $L1209

    cmp    DWORD PTR -8+[ebp], 100000000 

    je     SHORT $L1202

    cmp    DWORD PTR -8+[ebp], 1000000   

    je     SHORT $L1200

    cmp    DWORD PTR -8+[ebp], 10000000  

    je     SHORT $L1201

    jmp    SHORT $L1191

$L1209:

    cmp    DWORD PTR -8+[ebp], 1000000000

    je     SHORT $L1203

    jmp    SHORT $L1191

$L1194:

; Line 13

    call   _f

; Line 14

    jmp    SHORT $L1191

$L1195:

; Line 17

    call   _f

; Line 18

    jmp    SHORT $L1191

$L1196:

; Line 21

    call   _f

No Starch Press, Copyright © 2006 by Randall Hyde



156 Chap te r 6

; Line 22

    jmp    SHORT $L1191

$L1197:

; Line 25

    call   _f

; Line 26

    jmp    SHORT $L1191

$L1198:

; Line 29

    call   _f

; Line 30

    jmp    SHORT $L1191

$L1199:

; Line 33

    call   _f

; Line 34

    jmp    SHORT $L1191

$L1200:

; Line 37

    call   _f

; Line 38

    jmp    SHORT $L1191

$L1201:

; Line 41

    call   _f

; Line 42

    jmp    SHORT $L1191

$L1202:

; Line 45

    call   _f

; Line 46

    jmp    SHORT $L1191

$L1203:

; Line 49

    call   _f

$L1191:

; Line 53

    xor    eax, eax

; Line 54

    mov    esp, ebp

    pop    ebp

    ret    0

_main      ENDP

_TEXT      ENDS

END

Here’s the assembly listing VC++ produces when using the command 
line cl /O2 /Fa t.c (/O2 enables optimization for speed in Visual C++; see 
Section 5.4.4.5, “Controlling Compiler Optimization”):

TITLE  t.c

    .386P

include listing.inc

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 157

if @Version gt 510

.model FLAT

else

_TEXT      SEGMENT PARA USE32 PUBLIC 'CODE'

_TEXT      ENDS

_DATA      SEGMENT DWORD USE32 PUBLIC 'DATA'

_DATA      ENDS

CONST      SEGMENT DWORD USE32 PUBLIC 'CONST'

CONST      ENDS

_BSS       SEGMENT DWORD USE32 PUBLIC 'BSS'

_BSS       ENDS

_TLS       SEGMENT DWORD USE32 PUBLIC 'TLS'

_TLS       ENDS

;   COMDAT _main

_TEXT      SEGMENT PARA USE32 PUBLIC 'CODE'

_TEXT      ENDS

FLAT       GROUP _DATA, CONST, _BSS

    ASSUME CS: FLAT, DS: FLAT, SS: FLAT

endif

PUBLIC     _main

EXTRN      _f:NEAR

;   COMDAT _main

_TEXT      SEGMENT

_argc$ = 8

_main      PROC NEAR

; File t.c

; Line 7

    mov    eax, DWORD PTR _argc$[esp-4]

    cmp    eax, 100000

    jg     SHORT $L548

    je     SHORT $L534

    cmp    eax, 100   

    jg     SHORT $L549

    je     SHORT $L534

    dec    eax

    je     SHORT $L534

    sub    eax, 9

    jne    SHORT $L531

; Line 45

    call   _f

; Line 49

    xor    eax, eax

; Line 50

    ret    0

$L549:

; Line 7

    cmp    eax, 1000    

    je     SHORT $L534

    cmp    eax, 10000   

    jne    SHORT $L531

; Line 45

    call   _f

; Line 49

    xor    eax, eax

No Starch Press, Copyright © 2006 by Randall Hyde



158 Chap te r 6

; Line 50

    ret    0

$L548:

; Line 7

    cmp    eax, 100000000

    jg     SHORT $L550

    je     SHORT $L534

    cmp    eax, 1000000  

    je     SHORT $L534

    cmp    eax, 10000000 

    jne    SHORT $L531

; Line 45

    call   _f

; Line 49

    xor    eax, eax

; Line 50

    ret    0

$L550:

; Line 7

    cmp    eax, 1000000000

    jne    SHORT $L531

$L534:

; Line 45

    call   _f

$L531:

; Line 49

    xor    eax, eax

; Line 50

    ret    0

_main      ENDP

_TEXT      ENDS

END

It doesn’t take a very sharp eye to notice that the two assembly language 
output files are radically different. Running them through diff simply produces 
a lot of noise:3

17,19d16

< ; COMDAT _main

< _TEXT SEGMENT PARA USE32 PUBLIC 'CODE'

< _TEXT ENDS

25d21

< ; COMDAT _main

28c24

< _main PROC NEAR

---

3 For those unfamiliar with the output of a Unix diff program, just note that those lines beginning 
with “<” are coming from one file, and those beginning with “>” come from the other file you 
specify. The exact meaning of all these lines is not important; what is important is that if there is 
a lot of output from the diff program, there are a lot of differences between the two files. If the 
two files are identical, diff produces no output at all. So we can use the amount of output from 
diff as a rough metric of the number of differences.

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 159

> _main PROC NEAR

29a26,29

> ; Line 7

>   push    ebp

>   mov ebp, esp

>   sub esp, 8

31,42c31,67

<   mov eax, DWORD PTR _argc$[esp-4]

<   cmp eax, 100000 

<   jg  SHORT $L1242

<   je  SHORT $L1228

<   cmp eax, 100    

<   jg  SHORT $L1243

<   je  SHORT $L1228

<   dec eax

<   je  SHORT $L1228

<   sub eax, 9

<   jne SHORT $L1225

< ; Line 49

---

>   mov eax, DWORD PTR _argc$[ebp]

>   mov DWORD PTR -8+[ebp], eax

>   cmp DWORD PTR -8+[ebp], 100000 

>   jg  SHORT $L1207

>   cmp DWORD PTR -8+[ebp], 100000 

>   je  $L1199

>   cmp DWORD PTR -8+[ebp], 100    

>   jg  SHORT $L1208

>   cmp DWORD PTR -8+[ebp], 100    

>   je  SHORT $L1196

>   cmp DWORD PTR -8+[ebp], 1

>   je  SHORT $L1194

>   cmp DWORD PTR -8+[ebp], 10     

>   je  SHORT $L1195

>   jmp $L1191

> $L1208:

>   cmp DWORD PTR -8+[ebp], 1000 

>   je  SHORT $L1197

>   cmp DWORD PTR -8+[ebp], 10000

>   je  SHORT $L1198

>   jmp SHORT $L1191

> $L1207:

>   cmp DWORD PTR -8+[ebp], 100000000

>   jg  SHORT $L1209

>   cmp DWORD PTR -8+[ebp], 100000000

>   je  SHORT $L1202

>   cmp DWORD PTR -8+[ebp], 1000000  

>   je  SHORT $L1200

>   cmp DWORD PTR -8+[ebp], 10000000 

>   je  SHORT $L1201

>   jmp SHORT $L1191

> $L1209:

>   cmp DWORD PTR -8+[ebp], 1000000000

>   je  SHORT $L1203

>   jmp SHORT $L1191

No Starch Press, Copyright © 2006 by Randall Hyde



160 Chap te r 6

> $L1194:

> ; Line 13

44,54c69,72

< ; Line 53

<   xor eax, eax

< ; Line 54

<   ret 0

< $L1243:

< ; Line 11

<   cmp eax, 1000    

<   je  SHORT $L1228

<   cmp eax, 10000   

<   jne SHORT $L1225

< ; Line 49

---

> ; Line 14

>   jmp SHORT $L1191

> $L1195:

> ; Line 17

56,69c74,77

< ; Line 53

<   xor eax, eax

< ; Line 54

<   ret 0

< $L1242:

< ; Line 11

<   cmp eax, 100000000 

<   jg  SHORT $L1244

<   je  SHORT $L1228

<   cmp eax, 1000000   

<   je  SHORT $L1228

<   cmp eax, 10000000  

<   jne SHORT $L1225

< ; Line 49

---

> ; Line 18

>   jmp SHORT $L1191

> $L1196:

> ; Line 21

71,79c79,111

< ; Line 53

<   xor eax, eax

< ; Line 54

<   ret 0

< $L1244:

< ; Line 11

<   cmp eax, 1000000000 

<   jne SHORT $L1225

< $L1228:

---

> ; Line 22

>   jmp SHORT $L1191

> $L1197:

> ; Line 25

>   call    _f

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 161

> ; Line 26

>   jmp SHORT $L1191

> $L1198:

> ; Line 29

>   call    _f

> ; Line 30

>   jmp SHORT $L1191

> $L1199:

> ; Line 33

>   call    _f

> ; Line 34

>   jmp SHORT $L1191

> $L1200:

> ; Line 37

>   call    _f

> ; Line 38

>   jmp SHORT $L1191

> $L1201:

> ; Line 41

>   call    _f

> ; Line 42

>   jmp SHORT $L1191

> $L1202:

> ; Line 45

>   call    _f

> ; Line 46

>   jmp SHORT $L1191

> $L1203:

82c114

< $L1225:

---

> $L1191:

85a118,119

>   mov esp, ebp

>   pop ebp

Unfortunately, because nearly every line is marked as either an insertion 
or deletion, diff’s output is more difficult to interpret than manually compar-
ing the two assembly language output files.

A differencing program like diff (or better yet, the differencing facility 
built into many advanced programming editors) is useful for comparing two 
different outputs for a given HLL source file when you’ve made a small change 
to the source file. In the current example, if the statement case 1000: was 
changed to case 1001:, a diff of the resulting assembly file against the original 
will produce the following output:

50c50

< cmp eax, 1000

---

> cmp eax, 1001

No Starch Press, Copyright © 2006 by Randall Hyde



162 Chap te r 6

As long as you are comfortable reading diff output, this isn’t too bad 
(though the differencing feature found in advanced programming editors, 
or a utility like Beyond Compare or Araxis Merge, will still do a better job).

6.6.2 Manual Comparison
For nontrivial differences, the best way to compare compiler output is 
manually. Set the two listings side by side (either on paper or on your 
monitor), and start analyzing the two. In the current C example, if you 
compare the two different outputs from the C compiler (without optimi-
zation and with the /O2 optimization option), you’ll discover that both 
versions use a binary search algorithm to compare the switch value against 
a list of widely varying constants. The main difference between the opti-
mized and unoptimized versions has to do with code duplication. In the 
unoptimized version, you see separate calls to the function f throughout 
the assembly listing. For example:

$L1198:

; Line 29

    call   _f

; Line 30

    jmp    SHORT $L1191

$L1199:

; Line 33

    call   _f

; Line 34

    jmp    SHORT $L1191

$L1200:

; Line 37

    call   _f

; Line 38

    jmp    SHORT $L1191

The version of this code produced with the /O2 optimization command-
line option recognizes that these code sequences are semantically identical 
and folds many of them into the same sequence:

$L534:

; Line 45

    call   _f

$L531:

; Line 49

    xor    eax, eax

; Line 50

    ret    0

No Starch Press, Copyright © 2006 by Randall Hyde



Too ls  for Analyzi ng Compi le r Output 163

The compiler doesn’t combine them all into a single section because 
the /O2 compiler option tells Microsoft’s VC++ to optimize for speed, even 
at the expense of space. If you specify the /O1 command-line option, VC++ 
will optimize for space (even at the expense of speed), and it will fold all of 
the calls to function f() into a single instruction sequence.

Of course, in order to properly compare two assembly listings that a com-
piler produces, you’re going to need to learn how to interpret the assembly 
language code that the compiler emits and connect certain assembly language 
sequences with the statements in your HLL code. That’s the purpose of many 
of the following chapters in this book—to teach you how to interpret the 
machine language output from your compilers.

6.7 For More Information

Your compiler’s manual is the first place to look when you’re trying to figure 
out how to view the machine code the compiler produces. Many compilers 
produce assembly language output as an option, and that’s the best way to 
view code produced by your compiler. If your compiler does not provide an 
option to emit assembly code, a debugging tool built into the compiler’s IDE 
(if available) is another good choice. See your compiler’s or IDE’s documen-
tation for details.

Tools like objdump.exe and dumpbin.exe are also useful for examining 
compiler output. Check the Microsoft or FSF/GNU documentation for 
details on using these programs. If you decide to use an external debugger, 
such as OllyDbg or GDB, check out the software’s user documentation, or 
visit the author’s support web page (e.g., http://home.t-online.de/home/
Ollydbg for the OllyDbg debugger).

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



7
C O N S T A N T S  A N D  H I G H - L E V E L  

L A N G U A G E S

Some programmers may not realize it, but 
many CPUs do not treat constant and vari-

able data identically at the machine-code 
level. Most CPUs provide a special immediate 

addressing mode that lets a language translator incorpo-
rate a constant value directly into a machine instruction 
rather than storing that constant’s value in a memory location and accessing 
it as a variable. However, the ability to represent constant data efficiently 
varies by CPU and, in fact, by the type of the data. By understanding how a 
CPU represents constants at the machine-code level, you can appropriately 
represent constants in your HLL source code to produce smaller and faster 
executable programs. To that end, this chapter discusses the following topics:

� How to use literal constants properly to improve the efficiency of your 
programs

� The difference between a literal constant and a manifest constant

� How compilers process compile-time constant expressions to reduce 
program size and avoid runtime calculations

No Starch Press, Copyright © 2006 by Randall Hyde



166 Chap te r 7

� The difference between a compile-time constant and read-only data kept 
in memory

� How compilers represent noninteger constants, such as enumerated data 
types, Boolean data types, floating-point constants, and string constants

� How compilers represent composite data type constants, such as array 
constants and record/struct constants.

By the time you finish this chapter, you should have a clear understanding 
of how the use of various constants can affect the efficiency of the machine 
code your compiler produces.

NOTE If you’ve already read Write Great Code, Volume 1: Understanding the Machine,
you may want to skim through this chapter, which for the sake of completeness repeats 
some of the information from Chapters 6 and 7 of Volume 1.

7.1 Literal Constants and Program Efficiency

High-level programming languages and most modern CPUs allow you to 
specify constant values just about anywhere you can legally read the value of a 
memory variable. Consider the following Visual Basic and HLA statements that 
assign the constant 1,000 to the variable i:

    i = 1000

    mov( 1000, i );

The 80x86, like most CPUs, encodes the constant representation for 
1,000 directly into the machine instruction. This provides a compact and 
efficient way to work with constants at the machine level. Therefore, state-
ments that use literal constants in this manner are often more efficient that 
those that assign constant values to some variable and then reference that 
variable later in the code. Consider the following Visual Basic code sequence:

    oneThousand = 1000

        .

        .

        .

    x = x + oneThousand 'Using "oneThousand" rather than 

' a literal constant.

    y = y + 1000 'Using a literal constant.

Now consider the 80x86 assembly code you would probably write for 
these last two statements. For the first statement, you must use two instruc-
tions because you cannot directly add the value of one memory location to 
another:

        mov( oneThousand, eax ); // x = x + oneThousand
        add( eax, x );            

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 167

But you can add a constant to a memory location, so the second Visual 
Basic statement translates to a single machine instruction:

        add( 1000, y ); // y = y + 1000

As you can see, using a literal constant, rather than a variable, is more 
efficient. You should not, however, get the impression that every processor 
operates more efficiently using literal constants, or that every CPU operates 
more efficiently no matter what the value of the constant. Some very old 
CPUs don’t provide the ability to embed literal constants within a machine 
instruction. Many RISC processors, such as the PowerPC, provide this facility 
only for smaller 8-bit or 16-bit constants. Even those CPUs that allow you to 
load any integer constant may not support literal floating-point constants; 
the ubiquitous 80x86 processor provides an example of such a CPU. Few 
CPUs provide the ability to encode large data structures (such as an array, 
record, or string) as part of a machine instruction. For example, consider the 
following C code:

#include <stdlib.h>

#include <stdio.h >

int main( int argc, char **argv, char **envp )

{

  int i,j,k;

  i = 1;

  j = 16000;

  k = 100000;

  printf( "%d, %d, %d\n", i, j, k );

}

Its compilation to PowerPC assembly by the GCC compiler looks like this 
(edited to remove the code of no interest to this example):

L1$pb:

    mflr r31

    stw r3,120(r30)

    stw r4,124(r30)

    stw r5,128(r30)

; The following two instructions copy the value 1 into the variable "i"

    li r0,1

    stw r0,64(r30)

; The following two instructions copy the value 16,000 into the variable "j"

    li r0,16000

    stw r0,68(r30)

; It takes three instructions to copy the value 100,000 into variable "k"

No Starch Press, Copyright © 2006 by Randall Hyde



168 Chap te r 7

    lis r0,0x1

    ori r0,r0,34464

    stw r0,72(r30)

; The following code sets up and calls the printf function:

    addis r3,r31,ha16(LC0-L1$pb)

    la r3,lo16(LC0-L1$pb)(r3)

    lwz r4,64(r30)

    lwz r5,68(r30)

    lwz r6,72(r30)

    bl L_printf$stub

    mr r3,r0

    lwz r1,0(r1)

    lwz r0,8(r1)

    mtlr r0

    lmw r30,-8(r1)

    blr

The PowerPC CPU allows only 16-bit immediate constants in a single 
instruction. In order to load a larger value into a register, the program has 
to first use the lis instruction to load the HO 16 bits of a 32-bit register and 
then merge in the LO 16 bits using the ori instruction. The exact operation 
of these instructions isn’t too important. What you should note is that the 
compiler emits three instructions for large constants and only two for smaller 
constants. Therefore, using 16-bit constant values on the PowerPC produces 
shorter and faster machine code.

Even though CISC processors like the 80x86 can usually encode any 
constant (up to the register’s maximum size) in a single instruction, don’t 
get the impression that the program’s efficiency is independent of the sizes 
of the constants you use in your programs. CISC processors often use differ-
ent encodings for machine instructions that have large or small immediate 
operands, allowing the program to use less memory for smaller constants. 
For example, consider the following two 80x86/HLA machine instructions:

add( 5, ebx );
add( 500_000, ebx );

On the 80x86 an assembler can encode the first instruction in 3 bytes: 
2 bytes for the opcode and addressing mode information, and 1 byte to hold 
the small immediate constant. The second instruction, on the other hand, 
requires 6 bytes to encode: 2 bytes for the opcode and addressing mode 
information, and 4 bytes to hold the constant 500,000. Certainly the second 
instruction is larger, and in some cases it may even run a little slower.

7.2 Literal Constants Versus Manifest Constants

A manifest constant is a constant value associated with a symbolic name. A 
language translator can directly substitute the value everywhere the name 
appears within the source code. Manifest constants allow programmers to 

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 169

attach meaningful names to constant values so you can create easy-to-read 
and easily maintained programs. The proper use of manifest constants is a 
good indication of professionally written code.

Declaring manifest constants is easy in many programming languages:

� Pascal programmers use the const section. 

� HLA programmers can use the const or the val declaration sections.

� C/C++ programmers can use the #define macro facility. 

Here is a Pascal code fragment that demonstrates an appropriate use of 
manifest constants in a program:

const

    maxIndex = 9;

var

    a :array[0..maxIndex] of integer;

        .

        .

        .

    for i := 0 to maxIndex do

        a[i] := 0;

This code is much easier to read and maintain than code that uses literal 
constants. By changing a single statement in this program (the maxIndex con-
stant declaration) and recompiling the source file, you can easily set the 
number of elements and the program will continue to function properly.

Because the compiler substitutes the literal numeric constant in place of 
the symbolic name for the manifest constant, there is no performance penalty 
when using manifest constants. Because manifest constants improve the 
readability of your programs without any loss in efficiency, they are an 
important component of great code. Use them.

7.3 Constant Expressions
Many compilers have the ability to compute the value of a constant expres-
sion during compilation. A constant expression is one whose component values 
are all known at compile time, so the compiler can compute the result of the 
expression and substitute its value at compile time rather than computing its 
value at runtime. Support for compile-time constant expressions is an impor-
tant tool that you can use to write readable and maintainable code, without 
any runtime efficiency loss.

For example, consider the following C code:

#define smArraySize 128

#define bigArraySize (smArraySize * 8)

      .

      .

      .

char name[ smArraySize ];

int  values[ bigArraySize ];

No Starch Press, Copyright © 2006 by Randall Hyde



170 Chap te r 7

These two array declarations expand to the following:

char name[ 128 ];
int  values[ (smArraySize * 8) ];

The C preprocessor further expands this to

char name[ 128 ];
int  values[ (128 * 8) ];

C compilers allow the use of constant expressions anywhere a simple 
constant is legal. The compiler will compute an expression like 128 * 8 at 
compile time and substitute the result (1,024) for the expression.

Although the C language definition supports constant expressions, this 
feature is not available in every language. You will have to check the language 
reference manual for your particular compiler to determine whether it sup-
ports compile-time constant expression evaluation. The Pascal language 
definition, for example, says nothing about constant expressions. Some 
Pascal implementations support compile-time constant expression calcu-
lations, but others do not. 

Modern optimizing compilers are capable of computing constant sub-
expressions within arithmetic expressions at compile time, thereby saving 
the expense of computing fixed values at runtime. Consider the following 
Pascal code:

var

    i   :integer;

            .

            .

            .

    i := j + ( 5 * 2 - 3 );

Any decent Pascal implementation is going to recognize that the 
subexpression 5 * 2 - 3 is a constant expression, compute the value for this 
expression during compilation (7), and substitute the result at compile time. 
In other words, a good Pascal compiler generally emits machine code that is 
equivalent to the following statement:

i := j + 7;

If your particular compiler fully supports constant expressions, you can 
use this feature to help you write better source code. It may seem somewhat 
of a paradox, but often writing out a full expression at some point in your 
program can sometimes make that particular piece of code easier to read 
and understand. This is because the person reading your code can see exactly 
how you calculated a value in the first place (rather than having to figure 
out how you arrived at some “magic” number). For example, in the context 

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 171

of an invoicing or timesheet routine, the expression 5 * 2 - 3 might better 
describe the computation “two men working for five hours, minus three man-
hours provided for the job” better than the literal constant 7. 

Here is some sample C code and the PowerPC output produced by the 
GCC compiler that demonstrates constant expression optimization in action:

#include <stdlib.h>

int main( int argc, char **argv, char **envp )

{

  int j;

  j = argc + 2 * 5 + 1;

  printf( "%d\n", j, argc );

}

GCC output (PowerPC assembly language):

_main:

    mflr r0

    mr r4,r3            // Register r3 holds the ARGC value upon entry

    bcl 20,31,L1$pb

L1$pb:

    mr r5,r4            // R5 now contains the ARGC value.

    mflr r10

    addi r4,r4,11       // R4 contains argc + 2 * 5 + 1 

                        //  (i.e., argc + 11)

    mtlr r0             // Code that calls the printf function.

    addis r3,r10,ha16(LC0-L1$pb)

    la r3,lo16(LC0-L1$pb)(r3)

    b L_printf$stub

As you can see in this example, GCC has replaced the constant expression 
2 * 5 + 1 with the constant 11.

Making your code more readable is definitely a good thing to do and 
a major component of writing great code; however, do keep in mind that 
some compilers may not support the computation of constant expressions 
at compile time but instead emit code to compute the constant value at 
runtime. Obviously, this will affect the size and execution speed of your 
resulting program. Knowing what your compiler can do will help you 
decide whether to use constant expressions or precompute expressions to 
increase efficiency at the cost of readability.

7.4 Manifest Constants Versus Read-Only Memory Objects

C++ programmers may have noticed that the previous section did not discuss 
the use of C++ const declarations. This is because symbols you declare in a 
C++ const statement aren’t necessarily manifest constants. That is, C++ does 
not always substitute the value for a symbol wherever it appears in a source 

No Starch Press, Copyright © 2006 by Randall Hyde



172 Chap te r 7

file. Instead, C++ compilers may store that const value in memory and then 
reference the const object as it would a static variable. The only difference, 
then, between that const object and a static variable is that the C++ compiler 
doesn’t allow you to assign a value to the const object at runtime.

C++ sometimes treats constants you declare in  const statements as read-
only variables for a very good reason—it allows you to create local constants 
within a function that can actually have a different value each time the func-
tion executes (although while the function is executing, the value remains 
fixed). Therefore, you cannot always use such “constants” within constant 
expressions in C++ and expect the C++ compiler to precompute the expres-
sion’s value. 

Most C++ compilers will accept this:

const int arraySize = 128;

      .

      .

      .

int anArray[ arraySize ];

They will not, however, accept this sequence:

const int arraySizes[2] = {128,256}; //This is legal

const int arraySize = arraySizes[0]; // This is also legal

int array[ arraySize ]; // This is not legal

arraySize and arraySizes are both constants. Yet the C++ compiler will not 
allow you to use the arraySizes constant, or anything based on arraySizes, as 
an array bound. This is because arraySizes[0] is actually a runtime memory 
location and, therefore, arraySize must also be a runtime memory location. 
In theory, you’d think the compiler would be smart enough to figure out that 
arraySize is computable at compile time (128) and just substitute that value. 
The C++ language, however, doesn’t allow this.

7.5 Enumerated Types

Well-written programs often use a set of names to represent real-world 
quantities that don’t have an explicit numeric representation. An example 
of such a set of names might be various display technologies, like crt, lcd, led, 
and plasma. Even though the real world doesn’t associate numeric values with 
these concepts, you must encode the values numerically if you’re going to 
represent them in a computer system. The internal value associated with each 
symbol is generally arbitrary, as long as we associate a unique value with 
each symbol. Many computer languages provide a facility known as the 
enumerated data type that will automatically associate a unique value with 
each name in a list. By using enumerated data types in your programs, 
you can assign meaningful names to your data rather than using “magic” 
numbers such as 0, 1, 2, etc.

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 173

For example, in early versions of the C language, you would create a 
sequence of identifiers, each with a unique value, using a sequence like the 
following:

/* 

   Define a set of symbols representing the 

   different display technologies

*/

#define crt 0

#define lcd (crt + 1)

#define led (lcd + 1)

#define plasma (led + 1)

By assigning consecutive values to each of these symbolic constants, 
you ensure that they each have a unique value. Another advantage to this 
approach is that it orders the values: crt < lcd < led < plasma. Unfortunately, 
creating manifest constants this way is laborious and error-prone. 

Fortunately, most languages provide enumerated constants to solve this 
problem. To “enumerate” means to count, that is exactly what the compiler 
does—it numbers each symbol. Therefore, the compiler handles the book-
keeping details of assigning values to enumerated constants.

Most modern programming languages provide support for declaring 
enumerated types and constants. Here are some examples from C/C++, 
Pascal, and HLA:

typedef displays enum{crt, lcd, led, plasma}; // C++

type displays = (crt, lcd, led, plasma);  // Pascal

type displays :enum{crt, lcd, led, plasma};   // HLA

These three examples associate 0 with crt, 1 with lcd, 2 with led, and 3 
with plasma. In theory, the exact internal representation is irrelevant (as long as 
each value is unique) because the only purpose of the value is to differentiate 
the enumerated objects.

Most languages assign monotonically increasing values (each successive value 
is greater than all previous values) to symbols appearing in an enumerated 
list. Therefore, in these examples, the following relations exist:

crt < lcd < led < plasma

Although a compiler will assign a unique value to each symbol appearing 
in a given enumeration list, don’t get the impression that all enumerated con-
stants appearing in a single program have a unique internal representation. 
Most compilers assign a value of zero to the first member in an enumeration 
list you create, a value of one to the second, and so on. For example, consider 
the following Pascal type declarations:

type

colors = (red, green, blue);

fasteners = (bolt, nut, screw, rivet);

No Starch Press, Copyright © 2006 by Randall Hyde



174 Chap te r 7

Most Pascal compilers would use the value zero as the internal representa-
tion for both red and bolt; they would use one as the internal representation 
for green and nut; and so on. In languages (like Pascal) that enforce type 
checking, you generally cannot use symbols of type colors and fasteners in 
the same expression. Therefore, the fact that these symbols share the same 
internal representation is not an issue because the compiler’s type-checking 
facilities preclude a possible confusion. Some languages, like C/C++ and 
assembly, do not provide strong type checking and so this kind of confusion 
is possible. It is the programmer’s responsibility to avoid mixing different types 
of enumeration constants in an expression in such languages.

Most compilers will allocate the smallest unit of memory the CPU can 
efficiently access in order to represent an enumerated type. Because most 
enumerated type declarations define fewer than 256 symbols, compilers on 
machines that can efficiently access byte data will usually allocate a byte for 
any variable whose type is an enumerated data type. Compilers on many 
RISC machines can allocate a double word (or more) simply because it’s 
faster to access such blocks of data. The exact representation is language and 
compiler/implementation dependent; you’ll have to check your compiler’s 
reference manual for the details.

7.6 Boolean Constants

Many high-level programming languages provide Boolean or logical constants 
that let you represent the values True and False. Because there are only two 
possible Boolean values, their representation requires only a single bit. How-
ever, because most CPUs do not allow you to allocate a single bit of storage, 
most programming languages use a whole byte or even a larger object to 
represent a Boolean value. What happens to any leftover bits in a Boolean 
object? Unfortunately, the answer varies by language.

Many languages treat the Boolean data type as an enumerated type. 
For example, in Pascal, the Boolean type is defined this way:

type
boolean = (false, true);

This declaration associates the internal value zero with false and one 
with true. This association has a couple of desirable attributes:

� Most of the Boolean functions and operators behave as expected—for 
example, (True and True) = True, (True and False) = False, and so on.

� False is less than True when comparing the two values, an intuitive result.

Unfortunately, associating zero with False and one with True isn’t always 
the best solution. Here are some reasons why:

� Certain Boolean operations, applied to a bit string, do not produce 
expected results. For example, you might expect (not False) to be equal 
to True. However, if you store a Boolean variable in an 8-bit object, then 
(not False) is equal to $FF, which is not equal to True (one).

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 175

� Many CPUs provide instructions that easily test for zero or nonzero after 
an operation; few CPUs provide an implicit test for one.

Many languages, such as C, C++, C#, and Java, treat zero as False and 
anything else as True. This has a couple of advantages:

� CPUs that provide easy checks for zero/nonzero can easily test a Boolean 
result.

� The zero/nonzero representation is valid regardless of the size of the 
object holding a Boolean variable.

Unfortunately, this scheme also has some drawbacks:

� Many bitwise logical operations produce incorrect results when applied 
to zero/nonzero Boolean values. For example $A5 (True/nonzero) 
AND $5A (True/nonzero) is equal to zero (False). Logically ANDing 
True and True should not produce False. Similarly, (NOT $A5) pro-
duces $5A. Generally, you’d expect (NOT True) to produce False 
rather than True ($5A).

� When a bit string is treated as a two’s-complement signed-integer value, 
it is possible for certain values of True to be less than zero (e.g., the 8-bit 
value $FF is equivalent to –1, which is less than zero). So, in some cases, 
the intuitive result that False is less than True may not be correct.

Unless you are working in assembly language (where you get to define 
the values for True and False), you’ll have to live with whatever scheme your 
HLL uses to represent True and False as explained in its language reference 
manual.

Knowing how your language represents Boolean values can help you 
write high-level source code that produces better machine code. For example, 
suppose you are writing C/C++ code. In these languages, False is zero and 
True is anything else. Consider the following statement in C:

int i, j, k;

      .

      .

      .

i = j && k;

The machine code produced for this assignment statement by many 
compilers is absolutely horrid. It often looks like the following (Visual C++ 
output):

        mov     eax, DWORD PTR _j$[esp-4]

        test    eax, eax

        je      SHORT $L966

        mov     eax, DWORD PTR _k$[esp-4]

        test    eax, eax

        je      SHORT $L966

        mov     eax, 1

$L966:  mov     DWORD PTR _i$[esp-4], eax

No Starch Press, Copyright © 2006 by Randall Hyde



176 Chap te r 7

Now, suppose that you always ensure that you use the values zero for 
False and one for True (with no possibility of any other value). Under these 
conditions, you could write the previous statement this way:

i = j & k;  /* Notice the bitwise AND operator */

Here’s the code that Visual C++ generates for the statement above:

        mov     eax, DWORD PTR _j$[esp-4]

        and     eax, DWORD PTR _k$[esp-4]

        mov     DWORD PTR _i$[esp-4], eax

As you can see, this code is significantly better. Provided that you always 
use one for True and zero for False, you can get away with using the bitwise 
AND (&) and OR (|) operators in place of the logical operators. As noted 
earlier, you cannot use the bitwise NOT operator and get consistent results, 
but you can do the following to produce correct results for a logical NOT 
operation:

i = ~j & 1; /* "~" is C's bitwise not operator */

This short sequence inverts all the bits in j and then clears all bits except 
bit zero.

The bottom line is that you should be intimately aware of how your 
particular compiler represents Boolean constants. If you’re given a 
choice (such as any nonzero value) of what values you can use for True 
and False, then you can pick appropriate values to help your compiler 
emit better code.

7.7 Floating-Point Constants

Floating-point constants are special cases on most computer architectures. 
Because floating-point representations can consume a large number of bits, 
few CPUs provide an immediate addressing mode to load a constant into a 
floating-point register. This is true even for small (32-bit) floating-point con-
stants. It is even true on many CISC processors such as the 80x86. Therefore, 
compilers often have to place floating-point constants in memory and then 
have the program read them from memory, just as though they were variables. 
Consider, for example, the following C program:

#include <stdlib.h>

#include <stdio.h >

int main( int argc, char **argv, char **envp )

{

  static int j;

  static double i = 1.0; 

  static double a[8] = {0,1,2,3,4,5,6,7};

  j = 0;

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 177

  a[j] = i + 1.0;

 

}

Now consider the PowerPC code that GCC generates for this program 
with the -O2 option:

.lcomm _j.0,4,2

.data

// This is the variable i.

// As it is a static object, GCC emits the data directly

// for the variable in memory. Note that "1072693248" is

// the HO 32 bits of the double-precision floating-point

// value 1.0, 0 is the LO 32 bits of this value (in integer

// form).

    .align 3

_i.1:

    .long       1072693248

    .long       0

// Here is the "a" array. Each pair of double words below

// holds one element of the array. The funny integer values

// are the integer (bitwise) representation of the values

// 0.0, 1.0, 2.0, 3.0, ..., 7.0.

    .align 3

_a.2:

    .long       0

    .long       0

    .long       1072693248

    .long       0

    .long       1073741824

    .long       0

    .long       1074266112

    .long       0

    .long       1074790400

    .long       0

    .long       1075052544

    .long       0

    .long       1075314688

    .long       0

    .long       1075576832

    .long       0

// The following is a memory location that GCC uses to represent

// the literal constant 1.0. Note that these 64 bits match the

// same value as a[1] in the _a.2 array. GCC uses this memory

// location whenever it needs the constant 1.0 in the program.

.literal8

No Starch Press, Copyright © 2006 by Randall Hyde



178 Chap te r 7

    .align 3

LC0:

    .long       1072693248

    .long       0

// Here's the start of the main program:

.text

    .align 2

    .globl _main

_main:

// This code sets up the static pointer register (R10), used to 

// access the static variables in this program.

    mflr r0           

    bcl 20,31,L1$pb

L1$pb:

    mflr r10          

    mtlr r0

    // Load floating-point register F13 with the value 

    // in variable "i":

    addis r9,r10,ha16(_i.1-L1$pb)  // Point R9 at i

    li r0,0

    lfd f13,lo16(_i.1-L1$pb)(r9)   // Load F13 with i's value.

    // Load floating-point register F0 with the constant 1.0

    // (which is held in "variable" LC0:

    addis r9,r10,ha16(LC0-L1$pb) // Load R9 with the 

                                 //  address of LC0

    lfd f0,lo16(LC0-L1$pb)(r9)   // Load F0 with the value 

                                 //  of LC0 (1.0).

    addis r9,r10,ha16(_j.0-L1$pb)  // Load R9 with j's address 

    stw r0,lo16(_j.0-L1$pb)(r9)    // Store a zero into j.

    addis r9,r10,ha16(_a.2-L1$pb)  // Load a[j]'s address into R9

    fadd f13,f13,f0                // Compute i + 1.0

    stfd f13,lo16(_a.2-L1$pb)(r9)  // Store sum into a[j]

    blr                            // Return to caller

Because the PowerPC processor is a RISC CPU, the code that GCC gen-
erates for this simple sequence is rather convoluted. For comparison with a 
CISC equivalent, consider the following HLA code for the 80x86; it is a line-
by-line translation of the C code:

program main;

static

    j:int32;

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 179

    i:real64 := 1.0;

    a:real64[8] := [0,1,2,3,4,5,6,7];

readonly

    OnePointZero : real64 := 1.0;

begin main;

    mov( 0, j );  // j = 0;

    // push i onto the floating-point stack

    fld( i );     

    // push the value 1.0 onto the floating-point stack

    fld( OnePointZero );

    // pop i and 1.0, add them, push sum onto the FP stack

  

    fadd();

               

    // use j as an index

    

    mov( j, ebx );

    // Pop item off FP stack and store into a[j].

        

    fstp( a[ ebx*8 ] );   

end main;

This code is much easier to follow than the PowerPC code (this is one 
advantage of CISC code over RISC code). You’ll note that like the PowerPC,  
the 80x86 does not support an immediate addressing mode for floating-
point operands. Therefore, as on the PowerPC, you have to place a copy of 
the constant 1.0 in some memory location and access that memory location 
whenever you want to work with the value 1.0.1

Because most modern CPUs do not support an immediate addressing 
mode for floating-point constants, using such constants in your programs is 
equivalent to accessing variables initialized with those constants. Don’t forget 
that accessing memory can be very slow if the locations you’re referencing 
are not in the data cache. Therefore, using floating-point constants can be 
very slow, compared with accessing integer or other constant values that fit 
within a register.

On 32-bit processors, a CPU can often do simple 32-bit floating-point 
operations using integer registers and the immediate addressing mode. For 
example, assigning a 32-bit single-precision floating-point value to a variable 

1 Actually, HLA does allow you to specify an instruction like fld( 1.0 );. However, this is not a 
real CPU instruction. HLA will simply create a constant for you in the read-only data section and 
load a copy of that value from memory when you execute the fld instruction.

No Starch Press, Copyright © 2006 by Randall Hyde



180 Chap te r 7

is easily accomplished by loading a 32-bit integer register with the bit pattern 
for that number and then storing the integer register into the floating-point 
variable. Consider the following code:

#include <stdlib.h>

#include <stdio.h >

int main( int argc, char **argv, char **envp )

{

  static float i; 

  i = 1.0;

 

}

Here’s the PowerPC code that GCC generates for this sequence:

.lcomm _i.0,4,2 // Allocate storage for float variable i

.text

    .align 2

    .globl _main

_main:

    // Set up the static data pointer in R10:

    mflr r0

    bcl 20,31,L1$pb

L1$pb:

    mflr r10

    mtlr r0

    // Load the address of i into R9:

    addis r9,r10,ha16(_i.0-L1$pb)

    // Load R0 with the floating-point representation of 1.0

    // (note that 1.0 is equal to 0x3f800000):

    lis r0,0x3f80 // Puts 0x3f80 in HO 16 bits, 0 in LO bits

    // Store 1.0 into variable i:

    stw r0,lo16(_i.0-L1$pb)(r9)

    // Return to whomever called this code:

    blr

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 181

The 80x86, being a CISC processor, makes this task trivial in assembly 
language. Here’s the HLA code that does the same job:

program main;

static

    i:real32;

begin main;

    mov( $3f80_0000, i ); // i = 1.0;

    // (note that 1.0 is equal to $3f80_0000)

end main;

Simple assignments of single-precision floating-point constants to floating-
point variables can often use a CPU’s immediate addressing mode, thereby 
sparing the program the expense of accessing memory (whose data might 
not be in the cache). Unfortunately, compilers don’t always take advantage 
of this trick for assigning a floating-point constant to a double-precision 
variable. GCC on the PowerPC, for example, reverts to keeping a copy of 
the constant in memory and copying that memory location’s value when 
assigning the constant to a floating-point variable. 

Most optimizing compilers are smart enough to maintain a table of 
constants they’ve created in memory. Therefore, if you reference the 
constant 1.0 (or any other floating-point constant) multiple times in your 
source file, the compiler will allocate only one memory object for that con-
stant. Keep in mind, however, that this optimization only works within the 
same source file. If you reference the same constant value, but in different 
source files, the compiler will probably create multiple copies of that constant. 

It’s certainly true that having multiple copies of the data wastes storage, 
but given the amount of memory in most modern systems, this is a minor 
concern. A bigger problem is that the program usually accesses these con-
stants in a random fashion, so they’re rarely sitting in cache and, in fact, they 
often evict some other more-frequently used data from cache. 

One solution to this problem is to manage the floating-point constants 
yourself. Because these constants are effectively variables as far as the 
program is concerned, you can take charge of this process and place the 
floating-point constants you’ll need in initialized static variables. For 
example:

#include <stdlib.h>

#include <stdio.h >

static double OnePointZero_c = 1.0;

int main( int argc, char **argv, char **envp )

{

No Starch Press, Copyright © 2006 by Randall Hyde



182 Chap te r 7

  static double i; 

  i = OnePointZero_c;

}

In this example, of course, you gain absolutely nothing by treating the 
floating-point constants as static variables. However, in more complex situ-
ations where you have several floating-point constants, you can analyze 
your program to determine which constants you access often and place the 
variables for those constants at adjacent memory locations. Because of the 
way most CPUs handle spatial locality of reference (that is, accessing nearby 
variables; see Write Great Code, Volume 1), when you access one of these constant 
objects, the cache line will be filled with the values of the adjacent objects as 
well. Therefore, when you access those other objects within a short period of 
time, it’s likely that their values will be in the cache. Another advantage to 
managing these constants yourself is that you can create a global set of con-
stants that you can reference from different compilation units (source files), 
so the program only accesses a single memory object for a given constant 
rather the multiple memory objects (one for each compilation unit). Com-
pilers generally aren’t smart enough to make decisions like this concerning 
your data.

7.8 String Constants

Like floating-point constants, string constants cannot be processed effi-
ciently by most compilers (even if they are literal or manifest constants). 
Understanding when you should use manifest constants and when you 
should replace such constants with memory references can help you guide 
the compiler to produce better machine code. For example, most CPUs are 
not capable of encoding a string constant as part of an instruction. Using a 
manifest string constant may actually make your program less efficient. 
Consider the following C code:

#define strConst "A string constant"

        .

        .

        .

    printf( "string: %s\n", strConst );

        .

        .

        .

    sptr = strConst;

        .

        .

        .

    result = strcmp( s, strConst );

        .

        .

        .

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 183

The compiler (actually, the C preprocessor) expands the macro strConst
to the string literal A string constant everywhere the identifier strConst
appears in the source file, so this code is actually equivalent to:

        .

        .

        .

    printf( "string: %s\n", "A string constant" );

        .

        .

        .

    sptr = "A string constant";

        .

        .

        .

    result = strcmp( s, "A string constant" );

The problem with this code is that the same string constant appears at 
different places throughout the program. In C/C++, the compiler places the 
string constant in memory and substitutes a pointer to the string. A non-
optimizing compiler might wind up making three separate copies of the 
string in memory, thereby wasting space because the data is exactly the same in 
all three cases. (Remember that I am talking about “constant” strings here.)

Compiler writers discovered this problem a few decades ago and modified 
their compilers to keep track of the strings in a given source file. If a program 
used the same string literal two or more times, the compiler would not allocate 
storage for a second copy of the string. Instead, it would simply use the address 
of the earlier string. Such optimization (constant folding) could reduce the 
size of the code if the same string appeared throughout a source file. 

Unfortunately, this optimization doesn’t always work properly. A problem 
with this approach is that many older C programs assign a string literal 
constant to a character pointer variable and then proceed to change the 
characters in that literal string. For example:

    sptr = "A String Constant";

        .

        .

        .

    *(sptr+2) = 's';

        .

        .

        .

    /* The following displays "string: 'A string Constant'" */

    printf( "string: '%s'\n", sptr ); 

        .

        .

        .

    /* This prints "A string Constant"! */

    printf( "A String Constant" );    

No Starch Press, Copyright © 2006 by Randall Hyde



184 Chap te r 7

Compilers that reuse the same string constant fail if the user stores data 
into the string object, as this code demonstrates. Although this is bad pro-
gramming practice, it occurred frequently enough in older C programs that 
compiler vendors could not use the same storage for multiple copies of the 
same string literal. Even if the compiler vendor were to place the string 
literal constant into write-protected memory to prevent this problem, there 
are other semantic issues that this optimization raise. Consider the following 
C/C++ code:

    sptr1 = "A String Constant";

    sptr2 = "A String Constant";

    s1EQs2 = sptr1 == sptr2;

Will s1EQs2 contain True (1) or False (0) after executing this instruction 
sequence? In programs written before C compilers had good optimizers 
available, this sequence of statements would leave False in s1EQs2. This was 
because the compiler created two different copies of the same string data 
and placed those strings at different addresses in memory (so the addresses 
the program assigns to sptr1 and sptr2 would be different). In a later compiler, 
that kept only a single copy of the string data in memory, this code sequence 
would leave True sitting in s1EQs2 because both sptr1 and sptr2 would be point-
ing at the same memory address. This difference exists regardless of whether 
or not the string data appears in write-protected memory.

To solve this dilemma, many compiler vendors provide an option to give 
the programmer the ability to determine whether the compiler should emit 
a single copy of each string or one copy for each occurrence of the string. 
If you don’t compare the addresses of string literal constants and you don’t 
write data into string literal constants, then you can disable this option to 
reduce the size of your programs. If you have old code that requires separate 
copies of the string data (hopefully, you won’t write new code that requires 
this), then you can enable this option.

A problem is that many programmers are completely unaware of this 
option, and the default condition (which is the safest assumption) is generally 
to make multiple copies of the string data. If you’re using C/C++ or some 
other language that manipulates strings via pointers to the character data, 
you should investigate whether the compiler provides an option to merge 
identical strings, and if this is not the default, you should activate that feature 
in your compiler.

If your (C/C++) compiler does not have this string-merging optimization 
available, you can implement this optimization manually. To do so, just 
create a char array variable in your program and initialize it with the address 
of the string. Then use the name of that array variable exactly as you would a 
manifest constant throughout your program. For example:

char strconst[] = "A String Constant";

        .

        .

        .

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 185

    sptr = strconst; // Rather than sptr = "A String Constant"

        .

        .

        .

    printf( strconst ); // Rather than printf( "A String Constant" );

        .

        .

        .

    // Rather than strcmp( someString, "A String Constant"):

    if( strcmp( someString, strconst ) == 0 ) {

        .

        .

        .

    }

This code will maintain only a single copy of the string literal constant in 
memory, even if the compiler doesn’t directly support the string optimization. 
Even if your compiler directly supports this optimization, there are several 
good reasons why you should use this trick rather than relying on your 
compiler’s optimization facilities to do the work for you. 

� In the future you might have to port your code to a different compiler 
that doesn’t support this optimization.

� By handling the optimization manually, you don’t have to worry about it.

� By using a pointer variable rather than a string literal constant, you have 
the option of easily changing the string whose address this pointer con-
tains under program control 

� In the future you might want to modify the program to switch (natural) 
languages under program control.

This string optimization discussion assumes that your programming 
language manipulates strings by reference (that is, by using a pointer to 
the actual string data). Although this is certainly true for C/C++ programs, 
it is not true of all languages. Pascal implementations that support strings 
(e.g., Turbo Pascal) typically manipulate strings by value rather than by 
reference. Any time you assign a string value to a string variable, the com-
piler makes a copy of the string data and places that copy in the storage 
reserved for the string variable. This copying process can be expensive 
and is unnecessary if your program never changes the data in the string 
variable. Worse still, if the (Pascal) program assigns a string literal to a 
string variable, the program will have two copies of the string floating 
around (the string literal constant appearing somewhere in memory and 
the copy that the program made for the string variable). If the program 
never again changes the string (which is not at all uncommon), then the 
program will waste memory by maintaining two copies of the string when 
one would suffice. These reasons (space and speed) are probably why 

No Starch Press, Copyright © 2006 by Randall Hyde



186 Chap te r 7

Borland went to a much more sophisticated string format when it created 
Delphi 4.0 and abandoned the string format in earlier versions of Delphi 
and Turbo Pascal.2

7.9 Composite Data Type Constants 

Many languages support other composite constant types in addition to strings 
(e.g., arrays, structures/records, and sets). Usually, the languages use such 
constants to statically initialize variables prior to the program’s execution. 
For example, consider the following C/C++ code:

static int arrayOfInts[8] = {1,2,3,4,5,6,7,8};

Note that arrayOfInts is not a constant. Rather, it is the initializer that 
completes this variable declaration that constitutes the array constant 
(i.e., {1,2,3,4,5,6,7,8}). In the executable file, most C compilers will simply 
overlay the eight integers at the address associated with arrayOfInts with these 
eight numeric values.

For example, here’s what GCC emits for this variable:

LC0:          // LC0 is the internal label associated 

              //  with arrayOfInts

    .long       1

    .long       2

    .long       3

    .long       4

    .long       5

    .long       6

    .long       7

    .long       8

There is no extra space consumed to hold the constant data, assuming 
that arrayOfInts is a static object in C.

The rules change, however, if the variable you’re initializing is not a 
statically allocated object. Consider the following short C sequence:

int f()

{

  int arrayOfInts[8] = {1,2,3,4,5,6,7,8};

    .

    .

    .

} // end f()

In this example, arrayOfInts is an automatic variable, meaning that the 
program allocates storage on the stack for the variable each time the pro-
gram calls function f(). For this reason, the compiler cannot simply initialize 
the array with the constant data when the program loads into memory. 

2 “Abandoning” is probably too strong a word here. Borland continued to support the old 
format by using a different name for the short string data type.

No Starch Press, Copyright © 2006 by Randall Hyde



Cons tan t s  and High -Leve l Languages 187

The arrayOfInts object could actually lie at a different address on each acti-
vation of the function. In order to obey the semantics of the C programming 
language, the compiler will have to make a copy of the array constant data 
and then physically copy that constant data into the arrayOfInts variable 
whenever the program calls the function. Therefore, using an array constant 
in this fashion consumes extra space (to hold a copy of the array constant) 
and extra time (to copy the data). Sometimes the semantics of your algo-
rithm requires a fresh copy of the data upon each new activation of the 
function f. However, you need to realize when this is necessary (and when 
the extra space and time are necessary) rather than blowing memory and 
CPU cycles due to ignorance.

If your program doesn’t modify the array’s data, you can use a static 
object that the compiler can initialize once when it loads the program into 
memory:

int f()

{

  static int arrayOfInts[8] = {1,2,3,4,5,6,7,8};

    .

    .

    .

} // end f

The C/C++ languages also support struct constants. The same space and 
speed considerations we’ve seen for arrays when initializing automatic vari-
ables also apply to struct constants.

Borland’s Delphi programming language also supports structured con-
stants, though the term constant is a bit misleading here. Borland calls these 
constants “typed constants,” and you declare them in the Delphi const
section like this:

const
ary: array[0..7] of integer := (1,2,3,4,5,6,7,8);

Although these declarations appear in an Object Pascal (Delphi) const
section, the truth is that Delphi treats this declaration as a variable declara-
tion. It is unfortunate that Borland chose to use the const section to declare 
variable objects in this manner, but that’s simply a poor programming 
language design choice. From the perspective of the programmer who wants 
to create structured constants, this mechanism works fine even if it is a little 
strange. Like the C/C++ examples in this section, it’s important to remember 
that the constant in this example is actually the (1,2,3,4,5,6,7,8) object, not 
the ary variable.

Borland’s Delphi (along with most modern Pascals) supports several other 
composite constant types as well. Set constants are good examples. Whenever 
you create a set of objects, the Pascal compiler will generally initialize some 
memory location with a powerset (bitmap) representation of the set’s data. 
Wherever you refer to that set constant in your program, the Pascal compiler 
will generate a memory reference to the set’s constant data in memory.

No Starch Press, Copyright © 2006 by Randall Hyde



188 Chap te r 7

7.10 For More Information

To fully appreciate how a CPU encodes constants in machine instructions 
and how compilers generate code to process those constants, you need to 
look at the low-level encoding of machine instructions. Most CPU manu-
facturers provide documentation for their CPU’s that discusses this topic. 
Studying assembly language is another good way to learn how CPUs deal with 
constant data. My book The Art of Assembly Language (No Starch Press, 2003), 
is a good one to read. Of course, Write Great Code, Volume 1 also provides a 
wealth of information on this subject.

No Starch Press, Copyright © 2006 by Randall Hyde



8
V A R I A B L E S  I N  A  H I G H - L E V E L  

L A N G U A G E

This chapter will explore the low-level 
implementation of variables found in high-

level languages. Although assembly language 
programmers usually have a good feel for the 

connection between variables and memory locations, 
high-level languages add sufficient abstraction to 
obscure this relationship. This chapter will cover 
the following topics:
� The runtime memory organization typical for most compilers

� How the compiler breaks up memory into different sections and how 
the compiler places variables into each of those sections

� The attributes that differentiate variables from other objects

� The difference between static, automatic, and dynamic variables

� How compilers organize automatic variables in a stack frame

� The primitive data types that hardware provides for variables

� How machine instructions encode the address of a variable

No Starch Press, Copyright © 2006 by Randall Hyde



190 Chap te r 8

When you finish reading this chapter, you should have a good under-
standing of how to declare variables in your program to use the least amount 
of memory and produce fast-running code.

8.1 Runtime Memory Organization

An operating system like Linux or Windows puts different types of data into 
different areas (sections or segments) of main memory. Although it is possible 
to control the memory organization by running a linker and specifying 
various command-line parameters, by default Windows loads a typical 
program into memory using the organization appearing in Figure 8-1 
(Linux is similar, although it rearranges some of the sections).

Figure 8-1: Typical runtime memory organization for Windows

The operating system reserves the lowest memory addresses. Generally, 
your application cannot access data (or execute instructions) at the lowest 
addresses in memory. One reason the OS reserves this space is to help detect 
NULL pointer references. Programmers often initialize pointers with NULL 
(zero) to indicate that the pointer is not valid. Should you attempt to access 
memory location zero under such an operating system, the OS will generate 
a general protection fault to indicate that you’ve accessed an invalid memory 
location. 

The remaining six areas in the memory map hold different types of data 
associated with your program. These sections of memory include the stack 
section, the heap section, the code section, the constant section, the initial-
ized static-object section, and the uninitialized data section. Each of these 
memory sections corresponds to some type of data you can create in your 
programs. 

Most of the time, a given application can live with the default layouts 
chosen for these sections by the compiler and linker/loader. In some cases, 
however, knowing the memory layout can allow you to develop shorter pro-
grams. For example, because the code section is usually read-only, it might 

High addresses

Adrs = $0

Stack

Heap

Code (program instructions)

Read-only data

Static variables

Storage (uninitialized) variables

Constants (not user accessible)

Reserved by OS (typically 128KB)

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 191

be possible to combine the code, constant, and read-only data sections into a 
single section, thereby saving any padding space that the compiler/linker 
may place between these sections. Although for large applications this is 
probably insignificant, for small programs it can have a big impact on the 
size of the executable. 

The following sections discuss each of these sections in detail.

8.1.1 The Code, Constant, and Read-Only Sections
The code section in memory contains the machine instructions for a pro-
gram. Your compiler translates each statement you write into a sequence of 
one or more byte values (machine instruction opcodes). The CPU interprets 
these opcode values during program execution.

Most compilers also attach a program’s read-only data and constant pool
(constant table) sections to the code section because, like the code instruc-
tions, the read-only data is already write-protected. However, it is perfectly 
possible under Windows, Linux, and many other operating systems to create 
a separate section in the executable file and mark it as read-only. As a result, 
some compilers do support a separate read-only data section, and some com-
pilers even create a different section (the constant pool) for the constants that 
the compiler emits. Such sections contain initialized data, tables, and other 
objects that the program should not change during program execution.

Many compilers will generate multiple code sections and leave it up to 
the linker to combine those sections into a single code segment prior to exe-
cution. To understand why a compiler might do this, consider the following 
short Pascal code fragment:

    if( SomeBooleanExpression ) then begin

        << Some code that executes 99.9% of the time >>

    end

    else begin

        << Some code that executes 0.1% of the time >>

    end;

Without worrying about how it does so, assume that the compiler can 
figure out that the then section of this if statement executes far more often 
than the else section. An assembly programmer, wanting to write the fastest 
possible code, might encode this sequence as follows:

    << evaluate Boolean expression, leave True/False in EAX >>

    test( eax, eax );

    jz exprWasFalse;

    << Some code that executes 99.9% of the time >>

rtnLabel:

    << Code normally following the last END in the 

               Pascal example >>

No Starch Press, Copyright © 2006 by Randall Hyde



192 Chap te r 8

        .

        .

        .

// somewhere else in the code, not in the direct execution path

// of the above:

exprWasFalse:

    << Some code that executes 0.1% of the time >>

    jmp rtnLabel;

This assembly code might seem a bit convoluted, but keep in mind 
that any control transfer instruction is probably going to consume a lot of 
time because of pipelined operation on modern CPUs (see Write Great Code, 
Volume 1, for the details). Code that executes without branching (or that falls 
straight through) executes the fastest. In the previous example, the common 
case falls straight through 99.9 percent of the time. The rare case winds up 
executing two branches (one to transfer to the else section and one to return 
back to the normal control flow). But because this code rarely executes, it 
can afford to take longer to execute.

Many compilers use a little trick to move sections of code around 
like this in the machine code they generate—they simply emit the 
code in a sequential fashion, but they place the else code in a separate 
section. Here’s some MASM code that demonstrates this principle in 
action:

    << evaluate Boolean expression, leave True/False in EAX >>

    test eax, eax 

    jz exprWasFalse

    << Some code that executes 99.9% of the time >>

alternateCode segment

    << Some code that executes 0.1% of the time >>

    jmp rtnLabel;

alternateCode ends

rtnLabel:

    << Code normally following the last END in the Pascal example >>

Even though the else section code appears to immediately follow the then
section’s code, placing it in a different segment tells the assembler/linker to 
move this code and combine it with other code in the alternateCode segment. 
This little trick, which relies upon the assembler or linker to do the code 
movement, can simplify  HLL compilers. GCC, for example, uses this trick to 
move code around in the assembly language file it emits. As a result, you’ll 
see this trick being used on occasion. Therefore, expect some compilers to 
produce multiple code segments.

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 193

8.1.2 The Static Variables Section
Many languages provide the ability to initialize a global variable during the 
compilation phase. For example, in the C/C++ language, you could use 
statements like the following to provide initial values for these static objects:

static int i = 10;
static char ch[] = ( 'a', 'b', 'c', 'd' };

In C/C++ and other languages, the compiler will place these initial 
values in the executable file. When you execute the application, the oper-
ating system will load the portion of the executable file that contains these 
static variables into memory so that the values appear at the addresses asso-
ciated those variables. Therefore, when the program first begins execution, 
i and ch will magically have these values bound to them.

The static section is often called the DATA or _DATA segment in the assembly 
listings that most compilers produce. As an example, consider the following 
C code fragment and the TASM assembly code that the Borland C++ com-
piler produces for it:

#include <stdlib.h>

#include <stdio.h>

static char *c = NULL;

static int i = 0;

static int j = 1;

static double array[4] = {0.0, 1.0, 2.0, 3.0};

int main( void )

{

      .

      .

      .

And here’s the assembly code emitted by the Borland C++ compiler for 
the declarations in this C example:

_DATA   segment dword public use32 'DATA'

        align   4

_c      label   dword

        dd      0

        align   4

_i      label   dword

        dd      0

        align   4

_j      label   dword

        dd      1

        align   4

No Starch Press, Copyright © 2006 by Randall Hyde



194 Chap te r 8

_array  label   qword

        db        0,0,0,0,0,0,0,0

        db        0,0,0,0,0,0,240,63

        db        0,0,0,0,0,0,0,64

        db        0,0,0,0,0,0,8,64

_DATA   ends

As you can see in this example, Borland’s C++ compiler places these 
variables in the _DATA segment.

8.1.3 The BSS Section
Most operating systems will zero out memory prior to program execution. 
Therefore, if an initial value of zero is suitable, you don’t need to waste any 
disk space with the static object’s initial value. Generally, however, compilers 
treat uninitialized variables in a static section as though you’ve initialized 
them with zero, thereby consuming disk space. Some operating systems 
provide another section type, the BSS section, to avoid this waste of disk 
space.

The BSS section is where compilers typically put static objects that don’t 
have an explicit initial value. BSS stands for block started by a symbol, and it is 
an old assembly language term describing a pseudo-opcode you would use to 
allocate storage for an uninitialized static array. In modern operating systems 
like Windows and Linux, the OS allows the compiler/linker to put all unini-
tialized variables into a BSS section that simply tells the OS how many bytes 
to set aside for that section. When the operating system loads the program 
into memory, it reserves sufficient memory for all the objects in the BSS sec-
tion and fills this range of memory with zeros. It is important to note that the 
BSS section in the executable file doesn’t contain any actual data. For this 
reason, programs that declare large uninitialized static arrays in a BSS sec-
tion will consume less disk space. The following is the C/C++ example from 
the previous section, modified to remove the initializers so that the compiler 
will place the variables in the BSS section:

#include <stdlib.h>

#include <stdio.h>

static char *c;

static int i;

static int j;

static double array[4];

int main( void )

{

      .

      .

      .

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 195

Here is the Borland C++ output:

_BSS    segment dword public use32 'BSS'

        align   4

_c      label   dword

        db      4       dup(?)

        align   4

_i      label   dword

        db      4       dup(?)

        align   4

_j      label   dword

        db      4       dup(?)

        align   4

_array  label   qword

        db      32      dup(?)

_BSS    ends

Not all compilers use a BSS section. Many Microsoft languages and linkers, 
for example, simply combine the uninitialized objects with the static/data 
section and explicitly give them an initial value of zero. Although Microsoft 
claims that this scheme is faster, it certainly makes executable files larger if 
your code has large, uninitialized arrays (because each byte of the array winds 
up in the executable file, something that would not happen if the compiler 
were to place the array in a BSS section). Note, however, that this is a default 
condition and you can change this by setting the appropriate linker flags.

8.1.4 The Stack Section
The stack is a data structure that expands and contracts in response to 
procedure invocations and returns, among other things. At runtime, the 
system places all automatic variables (nonstatic local variables), subroutine 
parameters, temporary values, and other objects in the stack section of 
memory in a special data structure called the activation record (the activation 
record is aptly named because the system creates an activation record when a 
subroutine first begins execution and deallocates the activation record when 
the subroutine returns to its caller). Therefore, the stack section in memory 
is very busy.

Many CPUs implement the stack using a special-purpose register called 
the stack pointer. Other CPUs (particularly RISC) don’t provide an explicit 
stack pointer and, instead, use a general-purpose register for this purpose. 
If a CPU provides an explicit stack pointer register, we say that the CPU 
supports a hardware stack; if a program uses a general-purpose register for 
this purpose, then we say that the CPU uses a software-implemented stack. 
The 80x86 is a good example of a CPU that provides a hardware stack—the 
PowerPC family is a good example of a CPU family that implements the stack 
in software (most PowerPC programs use R1 as the stack pointer register). 
Systems that provide hardware stacks can generally manipulate data on 

No Starch Press, Copyright © 2006 by Randall Hyde



196 Chap te r 8

the stack using fewer instructions than systems that implement the stack in 
software. On the other hand, RISC CPU designers who’ve chosen to use 
a software stack implementation feel that the presence of a hardware stack 
actually slows down all instructions the CPU executes. In theory, you could 
argue that the RISC designers are right; in practice, the 80x86 family includes 
some of the fastest CPUs around, providing ample proof that having a 
hardware stack doesn’t necessarily mean you’ll wind up with a slow CPU.

8.1.5 The Heap Section and Dynamic Memory Allocation
Although simple programs may only need static and automatic variables, 
sophisticated programs need the ability to allocate and deallocate storage 
dynamically (at runtime) under program control. In the C and High-Level 
Assembler (HLA) languages, you would use the malloc and free functions for 
this purpose. C++ provides the new and delete operators. Pascal uses new and 
dispose. Other languages provide comparable routines. These memory-
allocation routines share a few things in common: 

� They let the programmer request how many bytes of storage to allocate.

� They return a pointer to the newly allocated storage (that is, the address 
of that storage).

� They provide a facility for returning the storage space to the system once it 
is no longer needed so the system can reuse it in a future allocation call. 

Dynamic memory allocation takes place in a section of memory known as 
the heap. Generally, an application refers to data on the heap using pointer 
variables, either implicitly or explicitly; some languages, like Java, implicitly 
use pointers behind the programmer’s back. As such, these objects in heap 
memory are usually referred to as anonymous variables because they are referred 
to by their memory address (via pointers) rather than by a name.

The OS and application create the heap section in memory after the 
program begins execution; the heap is never a part of the executable file. 
Generally, the operating system and language runtime libraries maintain 
the heap for an application. Despite the variations in memory management 
implementations, it’s still a good idea for you to have a basic idea of how 
heap allocation and deallocation operate because an inappropriate use of 
the heap management facilities will have a very negative impact on the 
performance of your applications.

8.2 What Is a Variable?

If you consider the word variable, it should be obvious that it describes some-
thing that varies. But exactly what is it that varies? To most programmers the 
answer will seem obvious: it’s the value that can vary during program execu-
tion. In fact, there are several things that can vary, so before attempting to 
describe what a variable is, it is probably a good idea to discuss some attri-
butes that variables (and other objects) may possess. To do this, I must first 
define attribute, binding, static objects, dynamic objects, scope, and lifetime.

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 197

8.2.1 Attributes
An attribute is some feature that is associated with an object. For example, 
common attributes of a variable include that variable’s name, its memory 
address, its runtime value, a data type associated with that value, and the size 
(in bytes) of that variable. Different objects may have different sets of attri-
butes. For example, a data type is an object that possesses attributes such as a 
name and size, but it won’t usually have a value or memory location associ-
ated with it. A constant can have attributes such as a value and a data type, but 
it does not have a memory location and it might not have a name (for exam-
ple, if it is a literal constant). A variable may possess all of these attributes. 
Indeed, the attribute list usually determines whether an object is a constant, 
data type, variable, or something else.

8.2.2 Binding
Binding is the process of associating an attribute with an object. For example, 
when a value is assigned to a variable, the value is bound to that variable at the 
point of the assignment. The value remains bound to the variable until some 
other value is bound to it (via another assignment operation). Likewise, if 
you allocate memory for a variable while the program is running, the variable 
is bound to the memory address at that point. The variable and address are 
bound until you associate a different address with the variable. Binding 
needn’t occur at runtime. For example, values are bound to constant objects 
during compilation, and such bindings cannot change while the program is 
running. Similarly, some variables can have their address bound to them at 
compile time, and the memory address cannot change during program 
execution.

8.2.3 Static Objects
Static objects have an attribute bound to them prior to the execution of the 
application. Constants are good examples of static objects; they have the 
same value bound to them throughout the execution of the application. 
Global (program-level) variables in programming languages like Pascal, C/
C++, and Ada are also examples of static objects because they have the same 
memory address bound to them throughout the program’s lifetime. The 
system binds attributes to a static object before the program begins execu-
tion (usually during compilation or during the linking phase, though it is 
possible to bind values even earlier). 

8.2.4 Dynamic Objects
Dynamic objects have some attribute bound to them during program execu-
tion. The program may choose to change that attribute (dynamically) while 
the program is running. Dynamic attributes usually cannot be determined at 
compile time. Examples of dynamic attributes include values bound to vari-
ables at runtime and memory addresses bound to certain variables at runtime 
(e.g., via a malloc or other memory allocation function call). 

No Starch Press, Copyright © 2006 by Randall Hyde



198 Chap te r 8

8.2.5 Scope
The scope of an identifier is that section of the program where the identifier’s 
name is bound to the object. Because names in most compiled languages 
exist only during compilation, scope is usually a static attribute (although in 
some languages it is possible for scope to be a dynamic attribute). By con-
trolling where a name is bound to an object, it is possible to reuse that name 
elsewhere in the program. 

Most modern imperative programming languages (e.g., C/C++/C#, Java, 
Pascal, and Ada) support the concept of local and global variables. A local 
variable’s name is bound to a particular object only within a given section of 
a program (for example, within a particular function). Outside the scope of 
that object, the name can be bound to a different object. This allows a global 
and a local object to share the same name without any ambiguity. This may 
seem potentially confusing, but being able to reuse variable names like i or j
throughout a project can spare the programmer from having to dream up 
equally meaningless unique variable names for loop indexes and other uses 
in the program. The scope of the object’s declaration determines where the 
name applies to a given object.

In interpretive languages, where the interpreter maintains the identifier 
names during program execution, scope can be a dynamic attribute. For 
example, in various versions of the BASIC programming language, the dim
statement is an executable statement. Prior to the execution of dim, the name 
you define might have a completely different meaning than it does after 
executing dim. SNOBOL4 is another language that supports dynamic scope. 
Generally, most programming languages avoid dynamic scope because 
using it can result in difficult-to-understand programs—but the fact that 
most languages avoid dynamic scope doesn’t mean it doesn’t exist.

In general, scope can apply to any attribute, not just names. In this book, 
however, I’ll only use the term scope to describe where a name is associated 
with a given variable.

8.2.6 Lifetime
The lifetime of an attribute extends from the point when you first bind an 
attribute to an object to the point you break that bond, perhaps by binding 
a different attribute to the object. If the program associates some attribute 
with an object and never breaks that bond, the lifetime of the attribute is 
from the point of association to the point the program terminates. For 
example, the lifetime of a variable is from the time you first allocate 
memory for the variable to the moment you deallocate that variable’s 
storage. As a program binds static objects prior to execution (and such 
attributes do not change during program execution), the lifetime of a 
static object extends from when the program begins execution to when 
the application terminates.

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 199

8.2.7 So What Is a Variable?
A variable is an object that can have a value bound to it dynamically. That is, 
the program can change the variable’s value attribute at runtime. Note the 
operative word can. It is only necessary for the program to be able to change 
a variable’s value at runtime; it doesn’t have to bind multiple values in order 
to consider the object a variable.

Dynamic binding of a value to an object is the defining attribute of a 
variable, though other attributes may be dynamic or static. For example, the 
memory address of a variable can be statically bound to the variable at compile 
time or dynamically bound at runtime. Likewise, variables in some languages 
have dynamic types that change during program execution, while other 
variables have static types that remain fixed over the execution of a given 
program. Only the binding of the value determines whether the object is a 
variable or something else (such as a constant).

8.3 Variable Storage

Values must be stored in and retrieved from memory. To do this, a compiler 
must bind a variable to one or more memory locations. The variable’s type 
determines the amount of storage it requires. Character variables may require 
as little as a single byte of storage, while large arrays or records can require 
thousands or millions of bytes of storage. To associate a variable with some 
memory, a compiler (or runtime system) binds the address of that memory 
location to that variable. When a variable requires two or more memory loca-
tions, the system will usually bind the address of the first memory location to 
the variable and assume that the contiguous locations following that address 
are also bound to the variable at runtime.

Three types of bindings are possible between variables and memory 
locations: static binding, pseudo-static (automatic) binding, and dynamic 
binding. Variables are generally classified as static, automatic, or dynamic based 
upon how the variable is bound to its memory location.

8.3.1 Static Binding and Static Variables
Static binding occurs prior to runtime, at one of four possible times: at 
language-design time, at compile time, at link time, or when the system loads 
the application into memory (but prior to execution). Binding at language 
design time is not all that common, but it does occur in some languages 
(especially assembly languages). Binding at compile time is common in 
assemblers and compilers that directly produce executable code. Binding at 
link time is fairly common (for example, some Windows compilers do this). 
Binding at load time, when the operating system copies the executable into 
memory, is probably the most common for static variables.

No Starch Press, Copyright © 2006 by Randall Hyde



200 Chap te r 8

8.3.1.1 Binding at Language-Design Time

An address can be assigned at language-design time when a language 
designer associates a language-defined variable with a specific hardware 
address (for example, an I/O device or a special kind of memory), and 
that address never changes in any program. Such objects are common in 
embedded systems and rarely found in applications on general-purpose 
computer systems. For example, on an 8051 microcontroller, many C 
compilers and assemblers automatically associate certain names with fixed 
locations in the 128 bytes of data space found on the CPU. CPU register 
references in assembly language are good example of variables bound to 
some location at language-design time.

8.3.1.2 Binding at Compile Time

An address can be assigned at compile-time when the compiler knows the 
memory region where it can place static variables at runtime. Generally, such 
compilers generate absolute machine code that must be loaded at a specific 
address in memory prior to execution. Most modern compilers generate 
relocatable code and, therefore, don’t fall into this category. Nevertheless, 
lower-end compilers, high-speed student compilers, and compilers for 
embedded systems often use this binding technique.

8.3.1.3 Binding at Link Time

Certain linkers (and related tools) have the ability to link together various 
relocatable object modules of an application and create an absolute load 
module. So while the compiler produces relocatable code, the linker binds 
memory addresses to the variables (and machine instructions). Usually, the 
programmer specifies (via command-line parameters or a linker script file) the 
base address of all the static variables in the program; the linker will bind 
the static variables to consecutive addresses starting at the base address. 
Programmers who are placing their applications in ROM memory (such as 
a BIOS ROM for a PC) often employ this scheme.

8.3.1.4 Binding at Load Time

The most common form of static binding occurs at load time. Executable 
formats such as Microsoft’s PE/COFF and Linux’s ELF usually contain 
relocation information embedded in the executable file. The operating 
system, when it loads the application into memory, will decide where to place 
the block of static variable objects and will then patch all the addresses within 
instructions that reference those static objects. This allows the loader (for 
example, the operating system) to assign a different address to a static object 
each time it loads it into memory.

8.3.1.5 Static Variable Binding

A static variable is one that has a memory address bound to it prior to pro-
gram execution. Static variables enjoy a couple of advantages over other 
variable types. Because the compiler knows the address of the variable prior 
to runtime, the compiler can often use an absolute addressing mode or some 

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 201

other simple addressing mode to access that variable. Static variable access is 
often more efficient than other variable accesses because no additional setup 
is needed to access a static variable.1

Another feature of static variables is that they retain any value bound to 
them until you explicitly bind another value or until the program terminates. 
This means that static variables retain values while other events (such as 
procedure activation and deactivation) occur. Different threads in a multi-
threaded application can also share data using static variables.

Static variables also have a few disadvantages worth mentioning. First 
of all, because the lifetime of a static variable matches that of the program, 
static variables consume memory the entire time the program is running. 
This is true even if the program no longer requires the value held by the 
static object. Another disadvantage to static variables (particularly when 
using the absolute addressing mode) is that the entire absolute address must 
usually be encoded as part of the instruction, making the instruction much 
larger. Indeed, on most RISC processors an absolute addressing mode isn’t 
even available because you cannot encode an absolute address in a single 
instruction.

Another disadvantage to using static variables is that code that uses static 
objects is not reentrant (meaning two threads or processes can be concurrently 
executing the same code sequence); more effort is required to use that code 
in a multithreaded environment (where two copies of a section of code could 
be executing simultaneously, both accessing the same static object). However, 
multithreaded operation introduces a lot of complexity that I don’t want to 
get into here, so I’ll ignore this issue for now. See any good textbook on oper-
ating system design or concurrent programming for more details concerning 
the use of static objects. Foundations of Multithreaded, Parallel, and Distributed 
Programming by Gregory R. Andrews (Addison-Wesley, 1999) is a good place 
to start.

The following example demonstrates the use of static variables in a C 
program and shows the 80x86 code that the Borland C++ compiler generates 
to access those variables:

#include <stdio.h>

static int i = 5;

static int j = 6;

 

int main( int argc, char **argv )

{

    

    i = j + 3;

    j = i + 2;      

    printf( "%d %d", i, j );

    return 0;   

1 At least, on an 80x86 CPU or some other CPU that supports absolute addresses. Some RISC 
processors do not support absolute addressing, so the program must set up a “static frame 
pointer” or “global frame register” when the program first begins execution, but this only has to 
be done once, so we can ignore the performance issues associated with this.

No Starch Press, Copyright © 2006 by Randall Hyde



202 Chap te r 8

}

; Following are the memory declarations

; for the 'i' and 'j' variables. Note that

; these are declared in the global '_DATA'

; section.

_DATA   segment dword public use32 'DATA'

        align   4

_i      label   dword

        dd      5

        align   4

_j      label   dword

        dd      6

_DATA   ends

_TEXT   segment dword public use32 'CODE'

_main   proc    near

?live1@0:

   ;    

   ;    int main( int argc, char **argv )

   ;    

        push      ebp

        mov       ebp,esp

   ;    

   ;    {

   ;            

   ;            i = j + 3;

   ;    

@1:

        ; Load the EAX register with the

        ; current value of the global _j

        ; variable using the displacement-only

        ; addressing mode, add three to the

        ; value, and store into '_i':

        mov       eax,dword ptr [_j]

        add       eax,3

        mov       dword ptr [_i],eax

   ;    

   ;            j = i + 2;              

   ;

        ; Load the EDX register with the

        ; current value of the '_i' global

        ; variable using the displacement-

        ; only addressing mode, add two to

        ; this value, and store into

        ; '_j':

    

        mov       edx,dword ptr [_i]

        add       edx,2

        mov       dword ptr [_j],edx

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 203

   ;    

   ;            printf( "%d %d", i, j );

   ;    

        push      dword ptr [_j]

        push      dword ptr [_i]

        push      offset s@

        call      _printf

        add       esp,12

   ;    

   ;            return 0;       

   ;

        ; xor eax, eax sets the main function

        ; return value to zero.

    

        xor       eax,eax

   ;    

   ;    }

   ;    

@3:

@2:

        pop       ebp

        ret 

_main   endp

_TEXT   ends

_DATA   segment dword public use32 'DATA'

; s@ is a string used by the printf function:

s@      label   byte

        ;       s@+0:

        db      "%d %d",0

        align   4

_DATA   ends

As the comments point out, the assembly language code the compiler 
emits uses the displacement-only addressing mode to access all the static 
variables.

8.3.2 Pseudo-Static Binding and Automatic Variables
Automatic variables have an address bound to them when a procedure or 
other block of code begins execution. The program releases that storage 
when the block or procedure completes execution. Such objects are called 
automatic variables because the runtime code automatically allocates and 
deallocates storage for them, as needed.

In most programming languages, automatic variables use a combination 
of static and dynamic binding known as pseudo-static binding. The compiler 
assigns an offset from a base address to a variable name during compilation. 
At runtime the offset always remains fixed, but the base address can vary. 
For example, a procedure or function allocates storage for a block of local 
variables and then accesses the local variables at fixed offsets from the start 

No Starch Press, Copyright © 2006 by Randall Hyde



204 Chap te r 8

of that block of storage. Although the compiler cannot determine the final 
memory address of the variable at runtime, it can select an offset that never 
changes during program execution, hence the name pseudo-static.

Some programming languages use the term local variables in place of 
automatic variables. A local variable is one whose name is statically bound to 
a given procedure or block (that is, the scope of the name is limited to that 
procedure or block of code). Therefore, local is a static attribute in this con-
text. It’s easy to see why the terms local variable and automatic variable are 
often confused. In some programming languages, such as Pascal, local 
variables are always automatic variables and vice versa. Nonetheless, always 
keep in mind that the local attribute is a static attribute, while the automatic
attribute is a dynamic one.

Automatic variables have a couple of important advantages. First, they 
only consume storage while the procedure or block containing them is 
executing. This allows multiple blocks and procedures to share the same 
pool of memory for their automatic variable needs. Although some extra 
code must execute in order to manage automatic variables (in a memory 
structure known as an activation record), this only requires a few machine 
instructions on most CPUs and only has to be done once for each procedure/
block entry and exit. While in certain circumstances, the cost can be signifi-
cant, the extra time and space needed to set up and tear down the activation 
record is usually inconsequential. Another advantage of automatic variables 
is that they often use a base-plus-offset addressing mode, where the base of 
the activation record is kept in a register and the offsets into the activation 
record are small (often 256 bytes or fewer). Therefore, CPUs don’t have to 
encode a full 32-bit or 64-bit address as part of the machine instruction—
just an 8-bit (or other small) displacement, yielding shorter instructions. It’s 
also worth noting that automatic variables are “thread-safe,” and code that 
uses automatic variables can be reentrant. This is because each thread main-
tains its own stack space (or similar data structure) where compilers maintain 
automatic variables; therefore, each thread will have its own copy of any auto-
matic variables the program uses.

Automatic variables do have some disadvantages. If you want to initialize 
an automatic variable, you have to use machine instructions to do so. You 
cannot initialize an automatic variable, as you can static variables, when the 
program loads into memory. Also, any values maintained in automatic vari-
ables are lost whenever you exit the block or procedure containing them. As 
noted in the previous paragraph, automatic variables require a small amount 
of overhead; some machine instructions must execute in order to build and 
destroy the activation record containing those variables.

Here’s a short C example that uses automatic variables and the 80x86 
assembly code that the Microsoft Visual C++ compiler produces for it:

#include <stdio.h>

 

int main( int argc, char **argv )

{

    

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 205

    int i;

    int j;

    

    j = 1;

    i = j + 3;

    j = i + 2;      

    printf( "%d %d", i, j );

    return 0;   

}

Assembly code emitted for the previous C code:

; Data emitted for the string constant

; in the printf function call:

_DATA   SEGMENT

$SG790  DB      '%d %d', 00H

_DATA   ENDS

PUBLIC  _main

EXTRN   _printf:NEAR

; Function compile flags: /Ods

_TEXT   SEGMENT

_j$ = -8

_i$ = -4

_argc$ = 8

_argv$ = 12

_main   PROC NEAR

; File g:\t.c

; Line 7

;

; Build the "activation record" that

; holds the automatic (local) variables:

        push    ebp

        mov     ebp, esp

        push    ecx ; Storage for _i on stack

        push    ecx ; Storage for _j on stack

; Line 13 // j = 1;

        mov     DWORD PTR _j$[ebp], 1

; Line 14 // i = j + 3;

        mov     eax, DWORD PTR _j$[ebp]

        add     eax, 3

        mov     DWORD PTR _i$[ebp], eax

; Line 15 // j = i + 2;

No Starch Press, Copyright © 2006 by Randall Hyde



206 Chap te r 8

        mov     eax, DWORD PTR _i$[ebp]

        inc     eax

        inc     eax

        mov     DWORD PTR _j$[ebp], eax

; Line 16 // printf function call

        push    DWORD PTR _j$[ebp]

        push    DWORD PTR _i$[ebp]

        push    OFFSET FLAT:$SG790

        call    _printf

        add     esp, 12    ; 0000000cH

; Line 17 // Return zero as function result.

        xor     eax, eax

; Line 18 // Deallocates activation record

        leave

; Returns from main.

        ret     0

_main   ENDP

_TEXT   ENDS

Note that when accessing automatic variables, the assembly code uses 
a base-plus-displacement addressing mode (for example, _j$[ebp]). This 
addressing mode is often shorter than the displacement-only addressing 
mode that static variables use (assuming, of course, that the offset to the 
automatic object is within 127 bytes of the base address held in EBP).

8.3.3 Dynamic Binding and Dynamic Variables
A dynamic variable is one that has storage bound to it at runtime. In some 
languages, the application programmer is completely responsible for bind-
ing addresses to dynamic objects; in other languages, the runtime system 
automatically allocates and deallocates storage for a dynamic variable.

Dynamic variables are generally those allocated on the heap via a memory 
allocation function such as malloc or new. The compiler has no way of deter-
mining the runtime address of a dynamic object. Therefore, the program 
must always refer to a dynamic object indirectly by using a pointer.

The big advantage to dynamic variables is that the application controls 
their lifetimes. Dynamic variables consume storage only as long as necessary, 
and the runtime system can reclaim that storage when the variable no longer 
requires it. Unlike automatic variables, the lifetime of a dynamic variable is 
not tied to the lifetime of some other object, such as a procedure or code 
block entry and exit. Memory is bound to a dynamic variable at the point 

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 207

the variable first needs it, and the memory can be released at the point the 
variable no longer needs it.2 For variables that require considerable storage, 
dynamic allocation can make efficient use of memory as dynamically allo-
cated variables hold onto the memory only as long as necessary.

Another advantage to dynamic variables is that most code references 
dynamic objects using a pointer. If that pointer value is already sitting in a 
CPU register, the program can usually reference that data using a short 
machine instruction, requiring no extra bits to encode an offset or address.

Dynamic variables have several disadvantages. First, usually some storage 
overhead is necessary to maintain dynamic variables. Static and automatic 
objects usually don’t require extra storage associated with each such variable 
appearing in a program; the runtime system, on the other hand, often requires 
some number of bytes to keep track of each dynamic variable present in the 
system. This overhead ranges anywhere from 4 or 8 bytes to many dozens of 
bytes (in an extreme case) and keeps track of things like the current memory 
address of the object, the size of the object, and its type. If you’re allocating 
small objects, like integers or characters, the amount of storage required for 
bookkeeping purposes could exceed the storage that the actual data requires. 
Also, most languages reference dynamic objects using pointer variables; as 
such, some additional storage is required by the pointer variable above and 
beyond the actual storage for the dynamic data.

Another problem with dynamic variables is performance. Because 
dynamic data is usually found in memory, the CPU has to access memory 
(which is slower than cached memory) on nearly every dynamic variable 
access.3 Even worse, accessing dynamic data often requires two memory 
accesses—one to fetch the pointer’s value and one to fetch the dynamic data, 
indirectly through the pointer. Another problem is that managing the heap,
the place where the runtime system keeps the dynamic data, can also be 
expensive. Whenever an application requests storage for a dynamic object, 
the runtime system has to search for a contiguous block of free memory 
large enough to satisfy the request. This search operation can be expensive, 
depending on the organization of the runtime heap (which affects the 
amount of overhead storage associated with each dynamic variable). Further-
more, when releasing a dynamic object, the runtime system may need to 
execute some code in order to make that storage available for use by other 
dynamic objects. These runtime heap allocation and deallocation operations 
are usually far more expensive than allocating and deallocating a block of 
automatic variables during procedure entry/exit.

Another problem with dynamic variables that should be considered here 
is that some languages (e.g., Pascal and C/C++) require the application pro-
grammer to explicitly allocate and deallocate storage for dynamic variables. 
Because the allocation and deallocation is not automatic, defects can creep 
into the code because of errors made by the application programmer. This is 

2 In practice, many runtime systems will not bother breaking the address binding until the 
system actually needs the storage for another purpose, but this issue is not important here.
3 Some compilers are smart enough to keep some dynamic data in registers, avoiding memory 
in certain cases, but in many cases the runtime code will have to access main memory when 
referencing dynamic data.

No Starch Press, Copyright © 2006 by Randall Hyde



208 Chap te r 8

why languages such as C# attempt to handle dynamic allocation automatically 
for the programmer, even though this can be more expensive (slower). 
Here’s a short example in C that demonstrates the kind of code that the 
Microsoft Visual C++ compiler will generate in order to access dynamic 
objects allocated with malloc.

#include <stdlib.h>

#include <stdio.h>

 

int main( int argc, char **argv )

{

    

    int *i;

    int *j;

    

    

    i = malloc( sizeof( int ) );

    j = malloc( sizeof( int ) );

    *i = 1;

    *j = 2;     

    printf( "%d %d", *i, *j );

    free( i );

    free( j );

    return 0;   

}

Here’s the machine code the compiler generates, including manually 
inserted comments that describe the extra work needed to access dynamically 
allocated objects:

_DATA   SEGMENT

$SG1139 DB      '%d %d', 00H

_DATA   ENDS

PUBLIC  _main

EXTRN   _free:NEAR

EXTRN   _malloc:NEAR

EXTRN   _printf:NEAR

; Function compile flags: /Ods

_TEXT   SEGMENT

_j$ = -8

_i$ = -4

_argc$ = 8

_argv$ = 12

_main   PROC NEAR

; File g:\t.c

; Line 8 // Construct the activation record

        push    ebp

        mov     ebp, esp

        push    ecx ; Allocates storge for

        push    ecx ; _i and _j.

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 209

; Line 14

; Call malloc and store the returned

; pointer value into the _i variable:

        push    4

        call    _malloc

        pop     ecx

        mov     DWORD PTR _i$[ebp], eax

; Line 15

; Call malloc and store the returned

; pointer value into the _j variable:

        push    4

        call    _malloc

        pop     ecx

        mov     DWORD PTR _j$[ebp], eax

; Line 16

; Store 1 into the dynamic variable pointed

; at by _i. Note that this requires two

; instructions.

        mov     eax, DWORD PTR _i$[ebp]

        mov     DWORD PTR [eax], 1

; Line 17

; Store 2 into the dynamic variable pointed

; at by _j. This also requires two instructions.

        mov     eax, DWORD PTR _j$[ebp]

        mov     DWORD PTR [eax], 2

; Line 18

; Call printf to print the dynamic variables' 

; values:

        mov     eax, DWORD PTR _j$[ebp]

        push    DWORD PTR [eax]

        mov     eax, DWORD PTR _i$[ebp]

        push    DWORD PTR [eax]

        push    OFFSET FLAT:$SG1139

        call    _printf

        add     esp, 12

; Free the two variables

;

; Line 19

        push    DWORD PTR _i$[ebp]

        call    _free

        pop     ecx

; Line 20

        push    DWORD PTR _j$[ebp]

        call    _free

No Starch Press, Copyright © 2006 by Randall Hyde



210 Chap te r 8

        pop     ecx

; Line 21 

; Return a function result of zero:

        xor     eax, eax

; Line 22

; Deallocate the activation record and

; return from main.

        leave

        ret     0

_main   ENDP

_TEXT   ENDS

END

As you can see, a lot of extra work is needed to access dynamically 
allocated variables via a pointer.

8.4 Common Primitive Data Types
Computer data always has a data type attribute that describes how the pro-
gram interprets that data. The data type also determines the size (in bytes) of 
the data in memory. Data types can be divided into two classes: those that the 
CPU can hold in a CPU register and operate upon directly and those that are 
composed of the following smaller data types. I’ll use the term primitive data 
type to describe atomic objects upon which the CPU may operate directly, 
and I’ll use the term composite data types to describe those aggregate objects 
made up of smaller, primitive data types. In the following sections we’ll 
review (from Volume 1) the primitive data types found on most modern 
CPUs, and in the next chapter I’ll begin discussing composite data types.

8.4.1 Integer Variables
Most programming languages provide some mechanism for storing integer 
values in memory variables. In general, a programming language uses either 
unsigned binary representation, two’s-complement representation, or binary-
coded decimal representation (or a combination of these) to represent 
integer values.

Perhaps the most fundamental property of an integer variable in a pro-
gramming language is the number of bits allocated to represent that integer 
value. In most modern programming languages, the number of bits used to 
represent an integer value is usually 8, 16, 32, 64, or some other power of 2. 
Many languages only provide a single size for representing integers, but some 
languages let you select from one of several different sizes. You choose the 
size based on the range of values you want to represent, the amount of mem-
ory you want the variable to consume, and the performance of arithmetic 
operations involving that value. Table 8-1 lists some common sizes and 
ranges for various signed, unsigned, and decimal integer variables.

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 211

Not all languages will support all of these different sizes (indeed, to 
support all of these different sizes in the same program, you would probably 
have to use assembly language). As noted earlier, some languages provide 
only a single size, which is usually the processor’s native integer size (that is, 
the size of a CPU general-purpose integer register).

Languages that do provide multiple integer sizes often don’t give you an 
explicit choice of sizes from which to choose. For example, the C program-
ming language provides up to four different integer sizes: char (which is 
always 1 byte), short, int, and long. With the exception of the char type, C 
does not specify the sizes of these integer types other than to state that short 
integers are less than or equal to int objects in size, and int objects are less 
than or equal to long integers in size. (In fact, all three could be the same 
size.) C programs that depend on integers being a certain size may fail when 
compiled with different compilers that don’t use the same sizes as the first 
compiler.

While it may seem inconvenient that various programming languages 
avoid providing an exact specification of the size of an integer variable in the 
language definition, keep in mind that this ambiguity is intentional. When 
one declares an “integer” variable in a given programming language, the 
language leaves it up to the compiler’s implementer to choose the best size 
for that integer, based on performance and other considerations. The 
definition of “best” may change based on the CPU for which the compiler 
generates code. For example, a compiler for a 16-bit processor may choose to 
implement 16-bit integers because the CPU processes them most efficiently. 
A compiler for a 32-bit processor, however, may choose to implement 32-bit 
integers (for the same reason). Languages that specify the exact size of various 

Table 8-1: Common Integer Sizes and Their Ranges

Size, in Bits Representation Unsigned Range

8 Unsigned 0..255

Signed 128..+127

Decimal 0..99

16 Unsigned 0..65,535

Signed 32768..+32,767

Decimal 0..9999

32 Unsigned 0..4,294,967,295

Signed 2,147,483,648..+2,147,483,647

Decimal 0..99999999

64 Unsigned 0..18,446,744,073,709,551,615

Signed 9,223,372,036,854,775,808..+9,223,372,036,854,775,807

Decimal 0..9999999999999999

128 Unsigned 0..340,282,366,920,938,463,463,374,607,431,768,211,455

Signed 170,141,183,460,469,231,731,687,303,715,884,105,728 ..
+170,141,183,460,469,231,731,687,303,715,884,105,727

Decimal 0..99,999,999,999,999,999,999,999,999,999,999

No Starch Press, Copyright © 2006 by Randall Hyde



212 Chap te r 8

integer formats (such as Java) can suffer as processor technology marches 
along and it becomes more efficient to process larger data objects. For exam-
ple, when the world switched from 16-bit processors to 32-bit processors in 
general-purpose computer systems, it was actually faster to do 32-bit arith-
metic on most of the newer processors. Therefore, compiler writers redefined 
“integer” to mean “32-bit integer” in order to maximize the performance of 
programs employing integer arithmetic.

Some programming languages provide support for unsigned integer 
variables as well as signed integers. At first glance, it might seem that the 
whole purpose behind supporting unsigned integers is to provide twice the 
number of positive values when negative values aren’t required. In fact, there 
are many other reasons why great programmers might choose unsigned over 
signed integers when writing efficient code.

On some CPUs, unsigned integer multiplication and division are faster 
than their signed counterparts. Comparing values within the range 0..n can 
be done more efficiently using unsigned integers rather than signed integer 
(requiring only a single comparison against n in the unsigned case); this is 
especially important when checking bounds of array indices when the array’s 
element indexes begin at zero.

Many programming languages will allow you to include variables of 
different sizes within the same arithmetic expression. The compiler will 
automatically sign-extend or zero-extend operands to the larger size within 
an expression as needed to compute the final result. The problem with this 
automatic conversion is that it hides the fact that extra work is required when 
processing the expression, and the expressions themselves don’t explicitly 
show this. An assignment statement such as

x = y + z - t;

could be a short sequence of machine instructions if the operands are all the 
same size, or it could require some additional instructions if the operands have 
different sizes. For example, consider the following C code:

#include <stdio.h>

static char c;

static short s;

static long l;

static long a;

static long b;

static long d;

 

int main( int argc, char **argv )

{

    

    l = l + s + c;  

    printf( "%ld %ld %ld", l, s, c );

    a = a + b + d;  

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 213

    printf( "%ld %ld %ld", a, b, d );

    return 0;   

}

Compiled with the Borland C++ compiler, you get the following two 
assembly language sequences for the two assignment statements:

;            l = l + s + c;  

;

@1:

        movsx     eax,word ptr [_s]

        add       eax,dword ptr [_l]

        movsx     edx,byte ptr [_c]

        add       eax,edx

        mov       dword ptr [_l],eax

;            a = a + b + d;  

;

        mov       edx,dword ptr [_a]

        add       edx,dword ptr [_b]

        add       edx,dword ptr [_d]

        mov       dword ptr [_a],edx

As you can see, the statement that operates on variables whose sizes are 
all the same uses fewer instructions than the one that mixes operand sizes in 
the expression.

Another thing to note, when using different-sized integers in an 
expression, is that not all CPUs support all operand sizes as efficiently. 
While it should be fairly obvious that using an integer size that is larger 
than the CPU’s general-purpose integer registers will produce inefficient 
code, it might not be quite as obvious that using smaller integer values can 
be inefficient as well. Many RISC CPUs only work on operands that are 
exactly the same size as the general-purpose registers. Smaller operands 
must first be zero-extended or sign-extended to the size of a general-
purpose register prior to any calculations involving those values. Even 
on CISC processors, such as the 80x86, that have hardware support for 
different sizes of integers, using certain sizes can be more expensive. For 
example, under 32-bit operating systems, instructions that manipulate 16-
bit operands require an extra opcode prefix byte and are, therefore, larger 
than instructions that operate on 8-bit or 32-bit operands.

8.4.2 Floating-Point/Real Variables
Like integers, many HLLs provide multiple floating-point variable sizes. 
Most languages provide at least two different sizes, a 32-bit single-precision 
floating-point format and a 64-bit double-precision floating-point format, 
based on the IEEE 754 floating-point standard. A few languages provide 
80-bit floating-point variables, based on Intel’s 80-bit extended-precision 
floating-point format, but such usage is becoming rare.

No Starch Press, Copyright © 2006 by Randall Hyde



214 Chap te r 8

Different floating-point formats trade off space and performance for 
precision. Calculations involving smaller floating-point formats are usually 
quicker than calculations involving the larger formats. However, you give up 
precision to achieve improved performance and size savings (see Write Great 
Code, Volume 1, Chapter 4 for details).

As with expressions involving integer arithmetic, you should avoid 
mixing different-sized floating-point operands in an expression. The CPU 
(or FPU) must convert all floating-point values to the same format before 
using them. This can involve additional instructions (consuming more 
memory) and additional time. Therefore, you should try to use the same 
floating-point types throughout an expression, wherever possible.

Conversion between integer and floating-point formats is another 
expensive operation you should avoid. Modern HLLs attempt to keep vari-
ables’ values in registers as much as possible. Unfortunately, on most modern 
CPUs it is impossible to move data between the integer and floating-point 
registers without first copying that data to memory (which is expensive, 
because memory access is slow compared with register access). Furthermore, 
conversion between integer and floating-point numbers often involves several 
specialized instructions. All of this consumes time and memory. Whenever 
possible, avoid these conversions.

8.4.3 Character Variables
Standard character data in most modern HLLs consumes one byte per 
character. On CPUs that support byte addressing, such as the Intel 80x86 
processor, a compiler can reserve a single byte of storage for each character 
variable and efficiently access that character variable in memory. Some RISC 
CPUs, however, cannot access data in memory except in 32-bit chunks (or 
some other size other than 8 bits). 

For CPUs that cannot address individual bytes in memory, HLL compilers 
usually reserve 32 bits for a character variable and only use the LO byte of 
that double-word variable for the character data. Because few programs have 
a large number of scalar character variables,4 the amount of space wasted is 
hardly an issue in most systems. However, if you have an unpacked array of 
characters, the wasted space can become significant. I’ll return to this issue 
in Chapter 9.

Modern programming languages support the Unicode character set. 
Unicode characters require 2 bytes of memory to hold the character’s data 
value. On CPUs that support byte or word addressing, HLL compilers gen-
erally reserve only 2 bytes for a Unicode character variable. On CPUs that 
cannot efficiently access objects smaller than 32 bits, HLL compilers usually 
reserve 32 bits and use only the LO 16 bits for the Unicode character data.

Lately, because 16 bits cannot encode a sufficient number of characters 
to represent all the world’s different alphabets and symbol sets, applications 
have begun using multibyte character sets such as UTF-8. These encode 
individual characters using a variable-length string of 1 to 5 characters (see 
Chapter 10).

4 Scalar, in this context, means “not an array of characters.”

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 215

8.4.4 Boolean Variables
A Boolean variable requires only a single bit to represent the two values True
or False. HLLs will usually reserve the smallest amount of memory possible 
for such variables (a byte on machines that support byte addressing, and a 
larger amount of memory on those CPUs that can only address words or 
double words).

Although most HLL compilers usually reserve the smallest amount of 
addressable memory possible for a Boolean variable, this isn’t always the 
case. Some languages (like FORTRAN) allow you to create multibyte 
Boolean variables (for example, the FORTRAN LOGICAL*4 data type).

Some languages (C for example) don’t support an explicit Boolean data 
type. They use an integer data type to represent Boolean values. In such 
languages, you get to choose the size of your Boolean variables by choosing 
the size of the integer you use to hold the Boolean value. For example, in a 
typical 32-bit implementation of the C/C++ languages, you can define 1-byte, 
2-byte, or 4-byte Boolean values as shown here:5

Some languages, under certain circumstances, will use only a single bit of 
storage for a Boolean variable when that variable is a field of a record or an 
element of an array. I’ll return to this discussion in Chapter 9 when consider-
ing composite data structures.

8.5 Variable Addresses and High-level Languages

The organization, class, and type of variables in your programs can affect the 
efficiency of the code that a compiler produces. Additionally, issues like the 
order of declaration, the size of the object, and the placement of the object 
in memory can have a big impact on the running time of your programs. In 
this section, I’ll describe how you can organize your variable declarations to 
produce efficient code.

As for immediate constants encoded in machine instructions, many 
CPUs provide specialized addressing modes that access memory more effi-
ciently than other, more general, addressing modes. Just as you can reduce 
the size and improve the speed of your programs by carefully selecting the 
constants you use, you can make your programs more efficient by carefully 
choosing how you declare variables. But whereas with constants you are 
primarily concerned with their values, with variables you must consider the 
address in memory where the compiler places those variables.

C Integer Data Type Size of Boolean Object

char 1 byte

short int 2 bytes

long int 4 bytes

5 Assuming, of course, that your C/C++ compiler uses 16-bit integers for short integers and 32-
bit integers for long integers.

No Starch Press, Copyright © 2006 by Randall Hyde



216 Chap te r 8

The 80x86 is a typical example of a CISC processor that provides 
multiple address sizes. When running on a modern 32-bit operating system 
like Linux or Windows, the 80x86 CPU supports three address sizes: 0-bit, 
8-bit, and 32-bit. The 80x86 uses 0-bit displacements for register-indirect 
addressing modes. I’ll ignore the 0-bit displacement addressing for the time 
being because 80x86 compilers generally don’t use this particular addressing 
mode to access variables you explicitly declare in your code. The 8-bit and 
32-bit displacement addressing modes are the more interesting ones for the 
current discussion. 

8.5.1 Storage Allocation for Global and Static Variables
The 32-bit displacement is, perhaps, the easiest to understand. Variables 
you declare in your program, which the compiler allocates in memory rather 
than in a register, have to appear somewhere in memory. On most 32-bit 
processors, the address bus is 32 bits wide, so it takes a 32-bit address to 
access a variable at an arbitrary location in memory. An instruction that 
encodes this 32-bit address as part of the instruction can access any memory 
variable. The 80x86 provides the displacement-only addressing mode whose 
effective address is exactly the 32-bit constant embedded in the instruction. 

A problem with 32-bit addresses (one that gets even worse as we move to 
64-bit processors with a 64-bit address) is that the address winds up consuming 
the largest portion of the instruction’s encoding. Certain forms of the dis-
placement-only addressing mode on the 80x86, for example, have a 1-byte 
opcode and a 4-byte address. Therefore, 80 percent of the instruction’s size is 
consumed by the address. On typical RISC processors, the situation is even 
worse. Because the instructions are uniformly 32 bits long on a typical RISC 
CPU, you cannot encode a 32-bit address as part of the instruction. In order 
to access a variable at an arbitrary 32-bit address in memory, you need to load 
the 32-bit address of that variable into a register and then use the register 
indirect addressing mode to access the memory variable. This could require 
three 32-bit instructions as Figure 8-2 demonstrates; that’s expensive in terms 
of both speed and space.

Figure 8-2: RISC CPU access of an absolute address

32-bit address
32-bit-wide
instructions

1.

2.

3.
1. Load immediate constant
    into the HO word of a
    register.
2. Load immediate constant
    into the LO word of a
    register.

3. Load memory value indirect
    from register loaded in (1,2).

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 217

Because RISC CPUs don’t run horribly slower than CISC processors, it 
should be obvious that compilers rarely generate code this bad. In reality, 
programs running on RISC CPUs often keep base addresses to blocks of 
objects in registers, so they can efficiently access variables in those blocks 
using short offsets from the base register. But how do compilers deal with 
arbitrary addresses in memory?

8.5.2 Using Automatic Variables to Reduce Offset Sizes
One way to avoid large instruction sizes with large displacements is to use 
an addressing mode with a smaller displacement. The 80x86, for example, 
provides an 8-bit displacement form for the base-plus-indexed addressing 
mode. This form allows you to access data at an offset of –128 through +127 
bytes around a base address contained in a 32-bit register. RISC processors 
have similar features, although the number of displacement bits is usually 
larger (16 bits), allowing a greater range of addresses. 

By pointing a 32-bit register at some base address in memory and placing 
your variables near that base address, you can use the shorter forms of these 
instructions so your program will be smaller and will run more quickly. Obvi-
ously, this isn’t too difficult if you’re working in assembly language and you 
have direct access to the CPU’s registers. However, if you’re working in an 
HLL, you may not have direct access to the CPU’s registers and even if you 
did, you probably couldn’t convince the compiler to allocate your variables at 
convenient addresses. How do you take advantage of this small-displacement 
addressing mode in your HLL programs? The answer is that you don’t 
explicitly specify the use of this addressing mode, the compiler does it for 
you automatically.

Consider the following trivial function in Pascal:

function trivial( i:integer; j:integer ):integer;

var

k:integer;

begin

k := i + j;

trivial := k;

end;

Upon entry into this function, the compiled code constructs an activation 
record (sometimes called a stack frame). An activation record is a data structure 
in memory where the system keeps the local data associated with a function 
or procedure. The activation record includes parameter data, automatic 
variables, the return address, temporary variables that the compiler allocates, 
and machine-state information (for example, saved register values). The 
runtime system allocates storage for an activation record on the fly and, in 
fact, two different calls to the procedure or function may place the activation 
record at different addresses in memory. In order to access the data in an 
activation record, most HLLs point a register (usually called the frame pointer)
at the activation record, and then the procedure or function references 

No Starch Press, Copyright © 2006 by Randall Hyde



218 Chap te r 8

automatic variables and parameters at some offset from this frame pointer. 
Unless you have many automatic variables and parameters or your local 
variables6 and parameters are quite large, these variables generally appear in 
memory at an offset that is near the base address. This means that the CPU 
can use a small offset when referencing variables near the base address held 
in the frame pointer. In the Pascal example given earlier, parameters i and j
and the local variable k would most likely be within a few bytes of the frame 
pointer’s address, so the compiler can encode these instructions using a small 
displacement rather than a large displacement. If your compiler allocates 
local variables and parameters in an activation record, all you have to do is 
arrange your variables in the activation record so that they appear near the 
base address of the activation record. But how do you do that?

Construction of an activation record begins in the code that calls a 
procedure. The caller places the parameter data (if any) in the activation 
record. Then the execution of an assembly language call instruction adds 
the return address to the activation record. At this point, construction of the 
activation record continues within the procedure itself. The procedure copies 
the register values and other important state information and then makes 
room in the activation record for local variables. The procedure must also 
update the frame-pointer register (e.g., EBP on the 80x86) so that it points at 
the base address of the activation record.

To see what a typical activation record looks like, consider the following 
HLA procedure declaration:

procedure ARDemo( i:uns32; j:int32; k:dword ); @nodisplay;

var

a:int32;

r:real32;

c:char;

b:boolean;

w:word;

begin ARDemo;

.

.

.

end ARDemo;

Whenever an HLA program calls this ARDemo procedure, it builds the 
activation record by pushing the data for the parameters onto the stack. 
The calling code for this procedure will push the parameters onto the stack 
in the order they appear in the parameter list, from left to right. Therefore, 
the calling code first pushes the value for the i parameter, then pushes the 
value for the j parameter, and finally pushes the data for the k parameter. 
After pushing the parameters, the program calls the ARDemo procedure. 
Immediately upon entry into the ARDemo procedure, the stack contains these 
four items arranged as shown in Figure 8-3, assuming the stack grows from 
high memory addresses to low memory addresses (as it does on most 
processors).

6 Remember, in Pascal local variables are always automatic variables, so this discussion will use 
the two terms interchangeably.

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 219

Figure 8-3: Stack organization immediately 
upon entry into ARDemo

The first few instructions in ARDemo will push the current value of the 
frame-pointer register (e.g., EBP on the 80x86) onto the stack and then copy 
the value of stack pointer (ESP on the 80x86) into the frame-pointer register. 
Next, the code drops the stack pointer down in memory to make room for 
the local variables. This produces the stack organization shown in Figure 8-4 
on the 80x86 CPU.

To access objects in the activation record you must use offsets from the 
frame-pointer register (EBP in Figure 8-4) to the desired object.

Figure 8-4: Activation record for ARDemo

The two items of immediate interest are the parameters and the 
local variables. You can access the parameters at positive offsets from the 
frame-pointer register; you can access the local variables at negative offsets 
from the frame-pointer register, as Figure 8-5 shows.

Previous
stack

contents

Stack pointerReturn address

k‘s value

j‘s value

i‘s value

Previous
stack

contents

ESP

i‘s value

j‘s value

k‘s value

Return address

Old EBP value EBP

a

r
c
b
w

No Starch Press, Copyright © 2006 by Randall Hyde



220 Chap te r 8

Figure 8-5: Offsets of objects in the ARDemo 
activation record on the 80x86

Intel specifically reserves the EBP (extended base pointer) to point at 
the base of the activation record. Therefore, compilers will typically use this 
register as the frame-pointer register when allocating activation records on 
the stack. Some compilers attempt to use the 80x86 ESP (stack pointer) 
register as the pointer to the activation record because this reduces the 
number of instructions in the program. Whether the compiler uses EBP, 
ESP, or some other register, the bottom line is that the compiler typically 
points some register at the activation record, and most of the local variables 
and parameters are near the base address of the activation record. That is the 
important issue for the discussion that follows.

As you can see in Figure 8-5, all the local variables and parameters in the 
ARDemo procedure are within 127 bytes of the frame-pointer register (EBP). 
This means that on the 80x86 CPU, an instruction that references one of 
these variables or parameters will be able to encode the offset from EBP 
using a single byte. Because of the way the program builds the activation 
record, parameters will appear at positive offsets from the frame-pointer 
register, and local variables will appear at negative offsets from the frame-
pointer register.

For procedures that have only a few parameters and local variables, the 
CPU will be able to access all parameters and local variables using a small 
offset (that is, 8 bits on the 80x86, 16 bits on various RISC processors). 
Consider, however, the following C/C++ function:

int BigLocals( int i, int j );

{

int array[256];

int k;

.

.

.

}

Previous
stack

contents

i‘s value

j‘s value

k‘s value

Return address

Old EBP value EBP

a

r
c
b
w

+0

--4

--8
--9
--10
--12

+4

+8

+12

+16

Offset from EBP

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 221

The activation record for this function appears in Figure 8-6. One 
difference you’ll notice between this activation record and the ones for the 
Pascal and HLA functions is that C pushes its parameters on the stack in the 
reverse order (that is, it pushes the last parameter first, and it pushes the first 
parameter last). This difference, however, does not impact our discussion.

Figure 8-6: Activation record for BigLocals function

The important thing to note in Figure 8-6 is that the local variables 
array and k have large negative offsets. With offsets of –1,024 and –1,028 
(assuming an integer is 32 bits), the displacements from EBP to array and 
k are well outside the range that the compiler can encode into a single 
byte on the 80x86. Therefore, the compiler will have no choice but to 
encode these displacements using a 32-bit value. Of course, this will make 
accessing these local variables in the function quite a bit more expensive.

Nothing can be done about the array variable in this example (no matter 
where you put it, the offset to the base address of the array will be at least 
1,024 bytes from the activation record’s base address). However, consider the 
activation record appearing in Figure 8-7.

Figure 8-7: Another possible activation record 
layout for the BigLocals function

Previous
stack

contents

i‘s value

j‘s value

Return address

Old EBP value EBP

array

k

+0

--1,024
--1,028

+4

+8

+12

Offset from EBP

Previous
stack

contents

i‘s value

j‘s value

Return address

Old EBP value EBP

array --1,028

k
+0

--4

+4

+8

+12

Offset from EBP

No Starch Press, Copyright © 2006 by Randall Hyde



222 Chap te r 8

In this figure, the compiler has rearranged the local variables in the 
activation record. Although it will still take a 32-bit displacement to access 
the array variable, accessing k now uses an 8-bit displacement (on the 80x86) 
because k’s offset is –4. You can produce these offsets with the following code:

int BigLocals( int i, int j );

{

    int k;

    int array[256];

        .

        .

        .

}

In theory, this isn’t a terribly difficult optimization for a compiler to do 
(rearranging the order of the variables in the activation record), so you’d 
expect the compiler to make this modification for you so that it can access as 
many local variables as possible using small displacements. In practice, not all 
compilers actually do this optimization for various technical and practical 
reasons (specifically, it can break some poorly written code that makes 
assumptions about the placement of variables in the activation record).

If you want to ensure that the maximum number of local variables in 
your procedure have the smallest possible displacements, the solution is 
trivial: declare all your 1-byte variables first, your 2-byte variables second, 
your 4-byte variables next, and so on up to the largest local variable in your 
function. Generally, though, you’re probably more interested in reducing 
the size of the maximum number of instructions in your function rather than 
reducing the size of the offsets required by the maximum number of vari-
ables in your function. For example, if you have 128 1-byte variables and you 
declare these variables first, you’ll only need a single byte displacement if 
you access them. However, if you never access these variables, the fact that 
they have a 1-byte displacement rather than a 4-byte displacement saves you 
nothing. The only time you save any space is when you actually access that 
variable’s value in memory via some machine instruction that is using a 1-byte 
displacement rather than a 4-byte displacement. Therefore, to reduce your 
function’s object code size, you want to maximize the number of instructions 
that use a small displacement. If you refer to a 100-byte array far more often 
than any other variable in your function, you’re probably better off declaring 
that array first, even if it only leaves 28 bytes of storage (on the 80x86) for 
other variables that will use the shorter displacement.

RISC processors typically use a 16-bit offset to access fields of the activa-
tion record. Therefore, you have more latitude with your declarations when 
using a RISC chip (which is good, because when you do exceed the 16-bit 
limitation, accessing a local variable gets really expensive). Unless you’re declar-
ing one or more arrays that consume more than 32,768 bytes (combined), 
the typical compiler for a RISC chip is going to generate decent code.

This same argument applies to parameters as well as local variables. 
However, it’s rare to find code passing a large data structure (by value) to a 
function because of the expense involved.

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 223

8.5.3 Storage Allocation for Intermediate Variables
Intermediate variables are those that are local to one procedure/function 
but global to another. You’ll find intermediate variables in block-structured 
languages like Pascal/Delphi/Kylix, Ada, Modula-2, and HLA that support 
nested procedures. Consider the following example program in Pascal:

program nestedProcedures;

var

    globalVariable: integer;

    procedure procOne;

    var

        intermediateVariable: integer;

        procedure procTwo;

        var

            localVariable:integer;

        begin

            localVariable := intermediateVariable +

                                    globalVariable;

                .

                .

                .

        end; (* procTwo *)

    begin (* procOne *)

        .

        .

        .

    end; (* procOne *)

begin (* main program *)

        .

        .

        .

end. (* main program*)

As you can see in this code fragment, nested procedures can access vari-
ables found in the main program (that is, global variables) as well as variables 
found in procedures containing the nested procedure (that is, the interme-
diate variables). As you’ve seen, local variable access is inexpensive compared 
to global variable access (because you always have to use a larger offset to 
access global objects within a procedure). Intermediate variable access, as is 
done in the procTwo procedure, is expensive. The difference between local 
and global variable accesses is the size of the offset/displacement coded into 
the instruction—with local variables typically using a shorter offset than is 
possible for global objects. Intermediate accesses, on the other hand, typically 
require several machine instructions. This makes the instruction sequence 
that accesses an intermediate variable several times slower and several times 
larger than accessing a local (or even global) variable.

No Starch Press, Copyright © 2006 by Randall Hyde



224 Chap te r 8

The problem with using intermediate variables is that the compiler must 
maintain either a linked list of activation records or a table of pointers to the 
activation records (this table is called the display) in order to reference inter-
mediate objects. To access an intermediate variable, the procTwo procedure 
must either follow a chain of links (there would be only one link in this 
example) or it would have to do a table lookup in order to get a pointer to 
procOne’s activation record. Worse still, maintaining the display of this linked 
list of pointers isn’t exactly cheap. The work needed to maintain these objects 
has to be done on every procedure/function entry and exit, even when the 
procedure or function doesn’t access any intermediate variables on a partic-
ular call. Although there are, arguably, some software engineering benefits 
to using intermediate variables (having to do with information hiding) 
versus a global variable, keep in mind that access to intermediate objects 
is expensive.

8.5.4 Storage Allocation for Dynamic Variables and Pointers
Pointer access in an HLL provides another opportunity for optimization in 
your code. Pointers can be expensive to use but, under certain circumstances, 
they can actually make your programs more efficient by reducing displace-
ment sizes. 

A pointer is simply a memory variable whose value is the address of 
some other memory object (therefore, pointers are the same size as an 
address on the machine). Because most modern CPUs only support 
indirection via a machine register, indirectly accessing an object is typically a 
two-step process: First the code has to load the value of the pointer variable 
into a register and then the program has to refer (indirectly) to the object 
through that register. 

Consider the following C/C++ code fragment and the corresponding 
HLA assembly code: 

    int *pi;

        .

        .

        .

    i = *pi;    // Assume pi is initialized with a 

                //  reasonable address at this point.

And here is the corresponding 80x86/HLA assembly code:

    pi: pointer to int32;

        .

        .

        .

    mov( pi, ebx );     // Again, assume pi has 

    mov( [ebx], eax );  //  been properly initialized

    mov( eax, i );

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 225

Had pi been a regular variable rather than pointer object, this code 
could have dispensed with the mov( [ebx], eax ); instruction. Therefore, the 
use of this pointer variable has both increased the size of the program and 
reduced the execution speed by inserting an extra instruction into the code 
sequence that the compiler generates.

Note that if you indirectly refer to an object several times in close 
succession, then the compiler may be able to reuse the pointer value it has 
loaded into the register, thus amortizing the cost of the extra instruction 
across several different instructions. Consider the following C/C++ code 
sequence and the corresponding HLA code. Here is the C/C++ source code:

    int *pi;

        .

        .   // Assume code in this area 

        .   //  initializes pi appropriately.

        .

    *pi = i;

    *pi = *pi + 2;

    *pi = *pi + *pi;

    printf( "pi = %d\n", *pi );

Here’s the corresponding 80x86/HLA code:

    pi: pointer to int32;

        .

        . // Assume code in this area 

        . //  initializes pi appropriately.

        .

    // Extra instruction that we need to initialize EBX

    mov( pi, ebx );

  

    mov( i, eax );

    mov( eax, [ebx] );  // This code can clearly be optimized; 

    mov( [ebx], eax );  //  we'll ignore that fact for the 

    add( 2, eax );      //  sake of the discussion here.

    mov( eax, [ebx] );

    mov( [ebx], eax );

    add( [ebx], eax );

    mov( eax [ebx] );

    stdout.put( "pi = ", (type int32 [ebx]), nl );

Note that this code loads the actual pointer value into EBX only once. 
From that point forward the code will simply use the pointer value contained 
in EBX to reference the object at which pi is pointing. Of course, any com-
piler that can do this optimization can probably eliminate five redundant 
memory loads and stores from this assembly language sequence, but I’ll 
assume that they aren’t redundant for the time being. The first thing about 
this code you should note is that it didn’t have to reload EBX with the value 

No Starch Press, Copyright © 2006 by Randall Hyde



226 Chap te r 8

of pi every time it wanted to access the object at which pi points. Therefore, 
we only have one instruction of overhead (mov( pi, ebx );) amortized across 
six of these instructions. That’s not too bad at all.

Indeed, a good argument could be made that this code is more optimal 
than accessing a local or global variable directly. An instruction of the form

mov( [ebx], eax ); 

uses a 0-bit displacement encoded into the instruction. Therefore, this move 
instruction is only 2 bytes long rather than 3, 5, or even 6 bytes long. If pi is a 
local variable, then it’s quite possible that the original instruction that copies 
pi into EBX is only 3 bytes long (a 2-byte opcode and a 1-byte displacement). 
Because instructions of the form mov( [ebx], eax ); are only 2 bytes long, 
it only takes three instructions to “break even” on the byte count using indirec-
tion rather than an 8-bit displacement. After the third instruction that 
references whatever pi points at, the code involving the pointer is actually 
shorter.

You can even use indirection to provide efficient access to a block of 
global variables. As noted earlier, the compiler generally cannot determine 
the address of a global object while it is compiling your program. Therefore, 
it has to assume the worst case and allow for the largest possible displacement/
offset when generating machine code to access a global variable. Of course, 
you’ve just seen that you can reduce the size of the displacement value from 
32 bits down to 0 bits by using a pointer to the object rather than accessing 
the object directly. Therefore, you could take the address of the global object 
(with the C/C++ & operator, for example) and then use indirection to access 
the variable. The problem with this approach is that it requires a register 
(a precious commodity on any processor, but especially on the 80x86 that has 
only six general-purpose registers to utilize). If you access the same variable 
many times in rapid succession, then this 0-bit displacement trick can make 
your code more efficient. However, it’s somewhat rare to access the same 
variable a large number of times in a short sequence of code without also 
needing to access several other variables. Therefore, the compiler may have 
to flush the pointer from the register and reload the pointer value later 
(thereby reducing the efficiency of this approach). If you’re working on a 
RISC chip with many registers, you can probably employ this trick to your 
advantage. On a processor with a limited number of registers, you won’t be 
able to employ this trick as often.

8.5.5 Using Records/Structures to Reduce Instruction Offset Sizes
There is a trick that you can use to gain access to several variables with a single 
pointer: put all those variables into a structure, and then use the address of 
the structure. By accessing the fields of the structure via the pointer, you can 
get away with using smaller instructions to access the objects. This works 
almost exactly as you’ve seen for activation records (indeed, activation 
records are, literally, records that the program references indirectly via the 
frame-pointer register). About the only difference between accessing objects 

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 227

indirectly in a user-defined record/structure and accessing objects in the 
activation record is that most compilers won’t let you refer to fields in a user 
structure/record using negative offsets. Therefore, you’re limited to about 
half the number of bytes that are normally accessible in an activation record. 
For example, on the 80x86 you can access the object at offset zero from a 
pointer using a 0-bit displacement and objects at offsets 1..+127 using a single 
byte displacement. Consider the following C/C++ example that uses this trick:

typedef struct vars

{

    int i;

    int j;

    char *s;

    char name[20];

    short t;

};

static vars v;

vars *pv = &v;  // Initialize pv with the address of v.

        .

        .

        .

    pv->i = 0;

    pv->j = 5;

    pv->s = &pv->name;

    pv->t = 0;

    strcpy( pv->name, "Write Great Code!" );

        .

        .

        .

A well-designed compiler will load the value of pv into a register exactly 
once for this code fragment. Because all the fields of the vars structure are 
within 127 bytes of the base address of the structure in memory, an 80x86 
compiler can emit a sequence of instructions that require only 1-byte offsets, 
even though the v variable itself is a static/global object. Note, by the way, 
that the first field in the vars structure is special. Because this is at offset zero 
in the structure, this allows the use of a 0-bit displacement when accessing 
this field. Therefore, it’s a good idea to put your most-often-referenced field 
first in a structure if you’re going to refer to that structure indirectly.

Using indirection in your code does come at a cost. On a limited-register 
CPU such as the 80x86, using this trick will tie up a register for some period 
and that may, effectively cause the compiler to generate worse code. If the 
compiler must constantly reload the register with the address of the structure 
in memory, you can watch the savings that this trick buys you evaporate rather 
quickly. When using this trick, you should look at the assembly code the com-
piler generates and verify that you’re actually saving something. Tricks such 
as using pointers to structures vary in effectiveness across different processors 
(and different compilers for the same processor). Therefore, it’s a really good 
idea to look at the code generated by your compiler when using a trick such 
as this in order to make sure that your trick is actually saving you something 
rather than costing you something.

No Starch Press, Copyright © 2006 by Randall Hyde



228 Chap te r 8

8.5.6 Register Variables
While on the subject of registers, it’s worthwhile to point out one other 0-bit 
displacement way to access variables in your programs. You can also access 
your variables by keeping them in machine registers. Machine registers are 
always the most efficient place to keep variables and parameters. Unfortu-
nately, only in assembly language and, to a limited extent, C/C++, do you 
have any control over whether the compiler should keep a variable or para-
meter in a register. In some respects, this is not bad. Good compilers do a 
much better job of register allocation than the casual programmer does. 
However, an expert programmer can do a better job of register allocation 
than a compiler because the expert programmer understands the data the 
program will be processing and the frequency of access to a particular mem-
ory location. (And of course, the expert programmer can first look at what 
the compiler is doing, whereas the compiler doesn’t have the benefit of first 
looking at what the expert programmer has done.)

Some languages, such as Delphi and Kylix, provide limited support for 
programmer-directed register allocation. In particular, the Delphi/Kylix 
compilers provide a compiler option that you can use to tell the compiler to 
pass the first three (ordinal) parameters for a function or procedure in the 
EAX, EDX, and ECX registers. This is known as the fastcall calling convention
and several C/C++ compilers support it as well (e.g., Borland’s C++ and 
C++Builder compilers).

In Delphi/Kylix and certain other languages, control of the fastcall 
parameter passing convention is the only control you get. The C/C++ 
language, however, provides the register keyword, a storage specifier (much 
like the const, static, and auto keywords) that tells the compiler that the 
programmer expects to use the variable frequently and the compiler should 
attempt to keep the variable in a register. Note that the compiler can choose 
to ignore the register keyword (in which case the compiler reserves variable 
storage using automatic allocation). Many compilers ignore the register
keyword altogether because the compiler’s authors feel that they can do a 
better job of register allocation than any programmer (a somewhat arrogant 
assumption). Of course, on some register-starved machines such as the 80x86, 
there are so few registers to work with that it might not even be possible to 
allocate a variable to a register throughout the execution of some function. 
Nevertheless, some compilers do respect the programmer’s wishes and will
allocate a few variables in registers if you request that they do so.

Most RISC compilers reserve several registers for passing parameters and 
several registers for local variables. Therefore, it’s a good idea (if possible) to 
place the parameters you access most frequently first in the parameter declara-
tion because they’re probably the ones that the compiler would allocate in a 
register.7 The same is true for local variable declarations. Always declare 
frequently used local variables first because many compilers may allocate 
those (ordinal) variables in registers. 

7 Many optimizing compilers are smart enough to choose which variables they keep in registers 
based on how the program uses those variables.

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 229

One problem with compiler register allocation is that it is static. That is, 
the compiler determines which variables to place in registers based on an 
analysis of your source code during compilation, not during runtime. Com-
pilers often make assumptions (that are usually correct) like “this function 
references variable xyz far more often than any other variable, so it’s a good 
candidate for a register variable.” Indeed, by placing the variable in a register, 
the compiler will certainly reduce the size of the program. However, it could 
also be the case that all those references to xyz sit in code that rarely, if ever, 
executes. Although the compiler might save some space (by emitting 
smaller instructions to access registers rather than memory), the code won’t 
run appreciably faster. After all, if the code rarely or never executes, then 
making that code run faster does not contribute much to the execution time 
of the program. On the other hand, it’s also quite possible to bury a single 
reference to some variable in a deeply nested loop that executes many times. 
With only one reference in the entire function, the compiler’s optimizer may 
overlook the fact that the executing program references the variable fre-
quently. Although compilers have gotten smarter about handling variables 
inside loops, the fact is that no compiler can predict how many times an 
arbitrary loop will execute at runtime. Human beings are much better at 
predicting this sort of behavior (or, at least, measuring it with a profiler); 
therefore, humans are the best ones to make better decisions concerning 
variable allocation in registers.

8.6 Variable Alignment in Memory
On many processors (particularly RISC), there is another efficiency concern 
you must take into consideration. Many modern processors will not let you 
access data at an arbitrary address in memory. Instead, all accesses must take 
place on some native boundary (usually 4 bytes) that the CPU supports. 
Even when a CISC processor allows memory accesses at arbitrary byte 
boundaries, it’s often more efficient to access primitive objects (bytes, 
words, and double words) on a boundary that is a multiple of the 
object’s size (see Figure 8-8).

Figure 8-8: Variable alignment in memory

If the CPU supports unaligned accesses—that is, if the CPU allows you to 
access a memory object on a boundary that is not a multiple of the object’s 
primitive size—then it should be possible to pack the variables into the 

Address n +
(n is divisible by 4)

0 2 3 41 5 76 8 9 10 11

Double words

Words

Bytes

On many CPUs, memory objects must
start at an address that is a multiple of
the object’s size.

No Starch Press, Copyright © 2006 by Randall Hyde



230 Chap te r 8

activation record. This way, you would obtain the maximum number of 
variables having a short offset. However, because unaligned accesses are 
sometimes slower than aligned accesses, many optimizing compilers will 
insert padding bytes into the activation record in order to ensure that all 
variables are aligned on a reasonable boundary for their native size (see 
Figure 8-9). This trades off slightly better performance for a slightly larger 
program.

Figure 8-9: Padding bytes in an 
activation record

However, if you put all your double-word declarations first, your 
word declarations second, your byte declarations third, and your array/
structure declarations last, you can improve both the speed and size of 
your code. The compiler will usually ensure that the first local variable you 
declare appears at a reasonable boundary (typically a double-word bound-
ary). By declaring all your double-word variables first, you ensure that all 
such variables appear at an address that is a multiple of 4 (because compilers 
usually allocate adjacent variables in your declarations in adjacent locations 
in memory). The first word-sized object you declare will also appear at an 
address that is a multiple of 4, and that means its address is also a multiple 
of 2 (which is best for word accesses). By declaring all your word variables 
together, you ensure that each word variable appears at an address that is a 
multiple of 2. On processors that allow byte access to memory, the placement 
of the byte variables (with respect to efficiently accessing the byte data) is 
irrelevant. By declaring all your local byte variables last in a procedure or 
function, you generally ensure that such declarations do not impact the 
performance of the double-word and word variables you also use in the 
function. Figure 8-10 shows what a typical activation record will look like if 
you declare your variables as in the following function.

char oneByte ;

short twoBytes ;

char oneByte2 ;

int fourBytes ;

Activation record produced
by a typical C compiler

oneByte

twoBytes

oneByte2

fourBytes

Offset

--1

--2

--4

--8

Padding bytes

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 231

int someFunction( void )

{

    int d1;   // Assume ints are 32-bit objects

    int d2;

    int d3;

    short w1; // Assume shorts are 16-bit objects

    short w2;

    char b1;  // Assume chars are 8-bit objects

    char b2;

    char b3;

        .

        .

        .

} // end someFunction

Note in Figure 8-10 how all the double-word variables (d1, d2, and d3)
begin at addresses that are multiples of 4 ( 4, 8, and 12). Also, notice how 
all the word-sized variables (w1 and w2) begin at addresses that are multiples 
of 2 ( 14 and 16). The byte variables (b1, b2, and b3) begin at arbitrary 
addresses in memory (both even and odd addresses).

Figure 8-10: Aligned variables in an activation 
record

Now consider the following function that has arbitrary (unordered) 
variable declarations and the corresponding activation record (appearing in 
Figure 8-11): 

int someFunction2( void )

{

Previous
stack

contents

Return address

Old EBP value EBP+0

--4

+4

+8

Offset from EBP

Parameters

d1

d2

d3

w1

w2

b1

b2

b3

--8

--12

--16

--17

--14

--18

--19

No Starch Press, Copyright © 2006 by Randall Hyde



232 Chap te r 8

    char b1;  // Assume chars are 8-bit objects

    int d1;   // Assume ints are 32-bit objects

    short w1; // Assume shorts are 16-bit objects

    int d2;

    short w2;

    char b2;

    int d3;

    char b3;

        .

        .

        .

} // end someFunction2

As you can see in Figure 8-11, every variable except the byte variables 
appear at an address that is inappropriate for the object. On processors that 
allow memory accesses at arbitrary addresses, it may take more time to access 
a variable that is not aligned on an appropriate boundary.

Figure 8-11: Unaligned variables in an activation 
record

Some processors do not allow a program to access an object at an 
unaligned address. Most RISC processors, for example, cannot access 
memory except at 32-bit address boundaries. To access a short or byte value, 
some RISC processors require the software to read a 32-bit value and extract 
the 16-bit or 8-bit value (that is, the CPU forces the software to treat bytes 
and words as packed data). The extra instructions and memory accesses 
needed to pack and unpack this data reduce the speed of memory access by a 
considerable amount (that is, two or more instructions—usually more—may 
be needed to fetch a byte or word from memory). Writing data to memory is 
even worse because the CPU must first fetch the data from memory, merge 

Previous
stack

contents

Return address

Old EBP value EBP+0

--1

+4

+8

Offset from EBP

Parameters

--5

--7

--13

--14

--11

--18

--19

d1

d2

d3

w1

w2

b1

b2

b3

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 233

the new data with the old data, and then write the result back to memory. 
Therefore, most RISC compilers won’t create an activation record similar 
to the one in Figure 8-11. Instead, they will add padding bytes so that every 
memory object begins at an address boundary that is a multiple of four bytes 
(see Figure 8-12). 

In Figure 8-12 notice that all of the variables are at addresses that are 
multiples of 32 bits. Therefore, a RISC processor has no problems accessing 
any of these variables. The cost, of course, is that the activation record is 
quite a bit larger (the local variables consume 32 bytes rather than 19 bytes).

Although the example in Figure 8-12 is typical for RISC-based compilers, 
don’t get the impression that compilers for CISC CPUs won’t do this as well. 
Many compilers for the 80x86, for example, will also build this activation 
record in order to improve performance of the code the compiler generates. 
Although declaring your variables in a misaligned fashion may not slow down 
your code on a CISC CPU, it may result in additional memory usage.

Figure 8-12: RISC compilers force aligned access by adding 
padding bytes

Of course, if you work in assembly language, it is generally up to you to 
declare your variables in a manner that is appropriate or efficient for your 
particular processor. In HLA (on the 80x86), for example, the following 
two procedure declarations result in the activation records appearing in 
Figures 8-10, 8-11, and 8-12:

procedure someFunction; @nodisplay; @noalignstack;

var

    d1  :dword;

    d2  :dword;

    d3  :dword;

Previous
stack

contents

Return address

Old EBP value EBP+0

–4

+4

+8

Offset from EBP

d1

d2

d3

w1

w2

b1

b2

Parameters

b3

–8

–12

–20

–24

–16

–28

–32

Padding bytes

No Starch Press, Copyright © 2006 by Randall Hyde



234 Chap te r 8

    w1  :word;

    w2  :word;

    b1  :byte;

    b2  :byte;

    b3  :byte;

begin someFunction;

        .

        .

        .

end someFunction;

procedure someFunction2; @nodisplay; @noalignstack;

var

    b1  :byte;

    d1  :dword;

    w1  :word;

    d2  :dword;

    w2  :word;

    b2  :byte;

    d3  :dword;

    b3  :byte;

begin someFunction2;

        .

        .

        .

end someFunction2;

procedure someFunction3; @nodisplay; @noalignstack;

var

    // HLA align directive forces alignment of the next declaration.

    align(4); 

    b1  :byte;

    align(4);

    d1  :dword;

    align(4);

    w1  :word;

    align(4);

    d2  :dword;

    align(4);

    w2  :word;

    align(4);

    b2  :byte;

    align(4);

    d3  :dword;

    align(4);

    b3  :byte;

begin someFunction3;

        .

        .

        .

end someFunction3;

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 235

HLA procedures someFunction and someFunction3 will produce the fastest-
running code on any 80x86 processor because all variables are aligned on an 
appropriate boundary. HLA procedures someFunction and someFunction2 will 
produce the most compact activation records on an 80x86 CPU because 
there is no padding between variables in the activation record. If you’re 
working in assembly language on a RISC CPU, then you’ll probably want to 
choose the equivalent of someFunction or someFunction3 to make it easier to 
access the variables in memory.

8.6.1 Records and Alignment

Records/structures in HLLs also have alignment issues about which you 
should worry. Recently, CPU manufacturers have been promoting Application 
Binary Interface (ABI) standards to promote interoperability between different 
programming languages and implementations of those languages. Although 
not all languages and compilers adhere to these suggestions, many of the 
newer compilers do. Among other things, these ABI specifications describe 
how the compilers should organize fields within a record or structure object 
in memory. Although the rules vary by CPU, a generic description that is 
applicable to most ABIs is that a compiler should align a record/structure 
field at an offset that is a multiple of the object’s size. If two adjacent fields 
in the record or structure have different sizes, and the placement of the first 
field in the structure would cause the second field to appear at an offset that 
is not a multiple of that second field’s native size, then the compiler will insert 
some padding bytes to push the second field to a higher offset that is appro-
priate for that second object’s size.

In actual practice, ABIs for different CPUs have minor differences based 
on the CPUs’ ability to access objects at different addresses in memory. Intel, 
for example, suggests that compiler writers align bytes at any offset, words 
at even offsets, and everything else at offsets that are a multiple of 4. Some 
ABIs recommend placing 64-bit objects at 8-byte boundaries within a record. 
Some CPUs, which have a difficult time accessing objects smaller than 32 
bits, may suggest a minimum alignment of 32 bits for all objects in a record/
structure. The rules vary depending on the CPU and whether the manu-
facturer wants to promote faster executing code (the usual case) or smaller 
data structures.

If you are writing code for a single CPU (e.g., an Intel-based PC) with a 
single compiler, you should learn that compiler’s rules for padding fields 
and adjust your declarations for maximum performance and minimal waste. 
However, if you ever need to compile your code using several different com-
pilers, particularly compilers for several different CPUs, following one set of 
rules will work fine on one machine and produce less efficient code on 
several others. Fortunately, there are some rules that can help reduce the 
inefficiencies created by recompiling for a different ABI.

From a performance/memory usage standpoint, the best solution is the 
same rule we saw earlier for activation records: When declaring fields in a 
record, group all like-sized objects together and put all the larger (scalar)

No Starch Press, Copyright © 2006 by Randall Hyde



236 Chap te r 8

objects first and the smaller objects last in the record/structure.8 This scheme 
will produce the least amount of waste (padding bytes) and provide the high-
est performance across most of the ABIs in existence. The only drawback to 
this approach is that you have to organize the fields by their native size rather 
than by their logical relationship to one another. However, because all fields 
of a record/structure are logically related insofar as they are all members of 
that same record/structure, this problem isn’t as bad as employing this 
organization for all of a particular function’s local variables.

Many programmers try to add padding fields themselves to a structure. 
For example, the following type of code is common in the Linux kernel and 
other bits and pieces of overly hacked software:

typedef struct IveAligned

{

    char byteValue;

    char padding0[3];

    int  dwordValue;

    short wordValue;

    char padding1[2];

    unsigned long dwordValue2;

        .

        .

        .

};

The padding0 and padding1 fields in this structure were added to manually 
align the dwordValue and dwordValue2 fields at offsets that are even multiples of 4. 

While this padding is not unreasonable, if you’re using a compiler that 
doesn’t automatically align the fields, keep in mind that an attempt to compile 
this code in a different machine can produce unexpected results. For exam-
ple, if a compiler aligns all fields on a 32-bit boundary, regardless of size, then 
this structure declaration will consume two extra double words to hold the 
two paddingX arrays. This winds up wasting space for no good reason. So, keep 
this fact in mind if you decide to manually add the padding fields yourself.

Many compilers that automatically align fields in a structure provide an 
option to turn off this facility. This is particularly true for compilers gener-
ating code for CPUs where the alignment is optional and the compiler only 
does this to achieve a slight performance boost. If you’re going to manually 
add padding fields to your record/structure, you obviously need to specify 
this option so that the compiler doesn’t realign the fields after you’ve 
manually aligned them.

In theory, a compiler is free to rearrange the offsets of local variables 
within an activation record. However, it would be extremely rare for a com-
piler to rearrange the fields of a user-defined record or structure. Too many 
external programs and data structures depend on the fields of a record 
appearing in the same order as they are declared. This is particularly true 

8 Generally, arrays and records/structures appearing as fields wind up at the end of the list of 
fields, though you could group arrays with the objects whose size matches the array’s element 
size as well.

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 237

when passing record/structure data between code written in two separate 
languages (for example, when calling a function written in assembly 
language). 

In assembly language, the amount of effort needed to align fields varies 
from pure manual labor to a rich set of features capable of automatically 
handling almost any ABI. Some (low-end) assemblers don’t even provide 
record or structure data types. In such systems, the assembly programmer has 
to manually specify the offsets into a record structure (typically by declaring, 
as constants, the numeric offsets into the structure). Other assemblers (e.g., 
NASM) provide macros that automatically generate the equates for you. In 
such systems as these, the programmer has to manually provide padding 
fields to align certain fields on a given boundary. Some assemblers, such as 
MASM and TASM, provide simple alignment facilities. You can specify the 
value 1, 2, or 4 when declaring a struct in MASM or TASM, and the assembler 
will align all fields on either the alignment value you specify or at an offset 
that is a multiple of the object’s size, whichever is smaller. It accomplishes 
this by automatically adding padding bytes to the structure. Also, note that 
MASM (and TASM) will add a sufficient number of padding bytes to the end 
of the structure so that the whole structure’s length is a multiple of the 
alignment size. Consider the following struct declaration in MASM:

Student  struct  2

score    word    ?   ;offset 0

id       byte    ?   ;offset 2, one byte of padding appears after this field

year     dword   ?   ;offset 4

id2      byte    ?   ;offset 8

Student  ends

In this example, MASM will add an extra byte of padding to the end of 
the structure so that the structure’s length is a multiple of 2 bytes.

MASM and TASM also let you control the alignment of individual fields 
within a structure by using the align directive. The following structure decla-
ration is equivalent to the current example (note the absence of the align-
ment value operand in the struct operand field):

Student  struct

score    word    ?   ;offset 0

id       byte    ?   ;offset 2

         align   2   ;Injects one byte of padding.

year     dword   ?   ;offset 4

id2      byte    ?   ;offset 8

         align   2   ;Adds one byte of padding to the end of the struct.

Student  ends

The default field alignment for MASM/TASM structures is unaligned. 
That is, a field begins at the next available offset within the structure, regard-
less of the field’s (and the previous field’s) size.

The High-Level Assembler (HLA) probably provides the greatest control 
(both automatic and manual) over record field alignment. Like MASM, the 

No Starch Press, Copyright © 2006 by Randall Hyde



238 Chap te r 8

default record alignment is unaligned. Also, like MASM, you can use HLA’s 
align directive to manually align fields in an HLA record. The following is 
the HLA version of the previous MASM example:

type

    Student :record

        score :word;

        id    :byte;

        align(2);

        year  :dword;

        id2   :byte;

        align(2);

    endrecord;

HLA also lets you specify an automatic alignment for all fields in a record. 
For example:

type

    Student :record[2]  //This tells HLA to align all 

                        // fields on a word boundary

        score :word;

        id    :byte;

        year  :dword;

        id2   :byte;

    endrecord;

There is a subtle difference between this HLA record and the earlier 
MASM structure (with automatic alignment). When you specify a directive of 
the form Student struct 2 MASM will align all fields on a boundary that is an 
multiple of 2 or a multiple of the object’s size, whichever is smaller. HLA, on 
the other hand, will always align all fields on a 2-byte boundary using this 
declaration, even if the field is a byte.

The fact that you can force field alignment to a minimum size is a nice 
feature if you’re working with data structures generated on a different 
machine (or compiler) that forces this kind of alignment. However, this 
type of alignment can unnecessarily waste space in a record for certain 
declarations if you only want the fields to be aligned on their natural 
boundaries (which is what MASM is doing). Fortunately, HLA provides 
another syntax for record declarations that let you specify both the maximum 
and minimum alignment that HLA will apply to a field. That syntax takes 
the following form:

recordID: record[ maxAlign : minAlign ]

<<fields>>

endrecord;

The maxAlign item specifies the largest alignment that HLA will use within 
the record. HLA will align any object whose native size is larger than maxAlign
on a boundary of maxAlign bytes. Similarly, HLA will align any object whose 
size is smaller than minAlign on a boundary of at least minAlign bytes. HLA 

No Starch Press, Copyright © 2006 by Randall Hyde



Var iab le s in  a High -Leve l Language 239

will align objects whose native size is between minAlign and maxAlign on a 
boundary that is a multiple of that object’s size. The following HLA and 
MASM record/struct declarations are equivalent. Here’s MASM code:

Student  struct  4

score    word    ?   ;offset:0

id       byte    ?   ;offset 2

; One byte of padding appears here

year     dword   ?   ;offset 4

id2      byte    ?   ;offset:8

; 3 padding bytes appear here

courses  dword   ?   ;offset:12

Student  ends

Here’s the HLA code:

type

    // Align on 4-byte offset, or object's size, whichever

    //  is the smaller of the two. Also, make sure that the

    //  entire record is a multiple of 4 bytes long.

    Student  :record[4:1] 

        score   :word;      

        id      :byte;      

        year    :dword

        id2     :byte;

      courses   :dword;

    endrecord;

Although few HLLs provide facilities within the language’s design to 
control the alignment of fields within records (or other data structures), 
many compilers do provide extensions to those languages, in the form of 
compiler pragmas, that let programmers specifying default variable and field 
alignment. Because there are no standards for this, you’ll have to check 
your particular compiler’s reference manual. Although such extensions 
are nonstandard, they are often quite useful, especially when linking code 
compiled by different languages or if you’re trying to squeeze the last bit of 
performance out of a system.

8.7 For More Information

One of the best places to look for more information on how HLLs imple-
ment variables is a programming language textbook. Dozens of decent 
programming design textbooks are available, for example:

� Programming Languages, Design and Implementation, Terrence Pratt and 
Marvin Zelkowitz (Prentice Hall, 2001)

No Starch Press, Copyright © 2006 by Randall Hyde



240 Chap te r 8

� Programming Languages, Principles and Practice, Kenneth Louden (Course 
Technology, 2002)

� Concepts of Programming Languages, Robert Sebesta (Addison-Wesley, 2003)

� Programming Languages, Structures and Models, Herbert Dershem and 
Michael Jipping (Wadsworth, 1990)

� The Programming Language Landscape, Henry Ledgard and Michael 
Marcotty (SRA, 1986)

� Programming Language Concepts, Carlo Ghezzi and Jehdi Jazayeri 
(Wiley, 1997)

Of course, any textbook on compiler design and construction can be a 
source of information about implementating variables in an HLL. Here are a 
few examples of compiler-construction textbooks you may want to consider 
looking at:

� Compilers, Principles, Techniques, and Tools, Alfred Aho, Ravi Sethi, and 
Jeffrey Ullman (Addison-Wesley, 1986)

� Compiler Construction: Theory and Practice, William Barret and John Couch 
(SRA, 1986)

� A Retargetable C Compiler: Design and Implementation, Christopher Fraser 
and David Hansen (Addison-Wesley Professional, 1995)

� Introduction to Compiler Design, Thomas Parsons (W. H. Freeman, 1992)

� Compiler Construction, Principles and Practice, Kenneth Louden (Course 
Technology, 1997)

CPU manufacturers’ literature, data sheets, and books are also quite useful 
for determining how compilers will often implement variables. For example, 
The PowerPC Compiler Writer’s Guide, edited by Steve Hoxey, Faraydon Karim, 
Bill Hay, and Hank Warren,9 is a great reference for programmers writing 
code to run on a PowerPC processor; most PowerPC compiler writers have 
used this reference to help them decide how to generate code for the PowerPC 
processor. Similarly, many compiler writers have used Intel’s Pentium manual 
set (including their Optimization Guide) to help them write code generators 
for their compilers. These manuals may prove handy to someone who wants 
to understand how 80x86-based compilers generate code.

Of course, the ultimate suggestion is to learn assembly language. If you 
become an expert assembly language programmer, someone who knows 
the intricacies of all the machine instructions for a particular processor, 
then you’ll have a much better understanding of how a compiler will 
generate code for that processor. If you’re interested in learning 80x86 
assembly language, you might consider The Art of Assembly Language (No 
Starch Press, 2003).

9 This document is available in PDF format on IBM’s website (www.ibm.com).

No Starch Press, Copyright © 2006 by Randall Hyde



9
A R R A Y  D A T A  T Y P E S

High-level language abstractions hide how 
the machine deals with composite data types

(a complex data type built from, or composed 
of, smaller data objects). Although these abstrac-

tions are often convenient, if you don’t understand the 
details behind them you might inadvertently use some construct that gener-
ates unnecessary code or runs slower than is necessary.  In this chapter, I’ll 
take a look at one of the most important composite data types: the array. 
I’ll consider the following topics:

� The definition of an array

� How to declare arrays in various languages

� The memory representation of arrays

� Accessing elements of arrays

� Multidimensional arrays: their declaration, representation, and access

� Row-major and column-major multidimensional array access

No Starch Press, Copyright © 2006 by Randall Hyde



242 Chap te r 9

� Dynamic versus static arrays

� How your use of arrays can impact the performance and size of your 
applications

Arrays are very common in modern applications. Therefore, you should 
have a solid understand of how programs implement and use arrays in mem-
ory in order to write efficient code. This chapter will teach you all about arrays 
so you can use them more efficiently in your programs.

9.1 What Is an Array?

Arrays are one of the most common composite data types. Yet, few programmers 
fully understand how arrays operate and know about their efficiency trade-
offs. Programmers frequently view arrays from a completely different perspec-
tive once they understand how arrays operate at the machine level.

Abstractly, an array is an aggregate data type whose members (elements)
are all of the same type. A member from the array is selected by specifying 
the member’s array index with an integer (or with some value whose under-
lying representation is integer, such as character, enumerated, and Boolean 
types). In this chapter, I’ll assume that all of the integer indexes of an array 
are numerically contiguous. That is, if both x and y are valid indexes of the 
array, and if x < y, then all i such that x < i < y are also valid indexes. I will 
also assume that array elements occupy contiguous locations in memory, 
although this is not required by the general definition of an array. An array 
with five elements appears in memory as shown in Figure 9-1.

Figure 9-1: Array layout in memory

The base address of an array is the address of the first element of the array, 
and it is at the lowest memory location. The second array element directly 
follows the first in memory, the third element follows the second, and so on. 
Note that the indexes do not have to start at zero. They may start with any 
number as long as they are contiguous. However, discussing array access is 
easier if the first index is zero. So for this discussion, I’ll generally begin most 
arrays at index zero unless there is a good reason to do otherwise.

Whenever you apply the indexing operator to an array, the result is the 
unique array element specified by that index. For example, A[i] chooses the 
ith element from array A.

9.1.1 Array Declarations
Array declarations are very similar across many high-level languages. In this 
section I’ll look at some examples in several languages.

Low memory
addresses

High memory
addressesBase address of A

A[0] A[1] A[2] A[3] A[4]

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 243

9.1.1.1 Declaring Arrays in C, C++, and Java

C, C++, and Java all let you declare an array by specifying the total 
number of elements in it. The syntax for an array declaration in these 
languages is

data_type  array_name [ number_of_elements ];

Here are some sample C/C++ array declarations:

char CharArray[ 128 ];

int intArray[ 8 ];

unsigned char ByteArray[ 10 ];

int *PtrArray[ 4 ];

If these arrays are declared as automatic variables, C/C++ “initializes” 
them with whatever bit patterns happen to be present in memory. If, on the 
other hand, you declare these arrays as static objects, then C/C++ zeros out 
(sets to zero) each array element. If you want to initialize an array yourself, 
then you can use the following C/C++ syntax:

data_type array_name[ number_of_elements ] = {element_list};

Here’s a typical example:

int intArray[8] = {0,1,2,3,4,5,6,7};

The C/C++ compiler will store these initial array values in the 
object code file and the operating system will load these values into 
the memory locations assocated with intArray when the OS loads the 
program into memory. To see how this works, consider the following C/
C++ program:

static int intArray[8] = {1,2,3,4,5,6,7,8};

static int array2[8];

int main( int argc, char **argv )

{

    int i;

    for(i = 0; i < 8; ++i )

    {

        array2[i] = intArray[i];

    }

    for(i = 7; i >= 0; --i )

    {

        printf( "%d\n", array2[i] );

    }

    return 0;

}

No Starch Press, Copyright © 2006 by Randall Hyde



244 Chap te r 9

Here is the 80x86 assembly code that Microsoft’s Visual C++ compiler 
emits for the two array declarations:

_DATA      SEGMENT

_intArray DD       01H

    DD     02H

    DD     03H

    DD     04H

    DD     05H

    DD     06H

    DD     07H

    DD     08H

_DATA      ENDS

_BSS       SEGMENT

_array2    DD      08H DUP (?)

_BSS       ENDS

The DD (define double word) statement reserves 4 bytes of storage each, 
and the operand specifies their initial value when the operating system loads 
the program into memory. The intArray declaration appears in the _DATA
segment, which in the Microsoft memory model can contain initialized data. 
The array2 variable, on the other hand, is declared inside the BSS segment, 
where MSVC++ places uninitialized variables (the ? character appearing 
in the operand field tells the assembler that the data is uninitialized; the 
8 dup (?) operand tells the assembler to duplicate the declaration eight 
times). When the operating system loads the BSS segment into memory, it 
simply zeros out all the memory associated with the BSS segment. In both of 
these cases (initialized or uninitialized), you can see that the compiler allocates 
all eight elements of these arrays in sequential memory locations.

9.1.1.2 Declaring Arrays in HLA

HLA’s array declaration syntax takes the following form, which is semantically 
equivalent to the C/C++ declaration:

array_name : data_type [ number_of_elements ];

Here are some examples of HLA array declarations that allocate storage 
for uninitialized arrays (the second example assumes that you have defined 
the integer data type in a type section of the HLA program):

static

 // Character array with elements 0..127.

 CharArray: char[128];  

 // "integer" array with elements 0..7.

 IntArray: integer[8]; 

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 245

 // Byte array with elements 0..9.

 ByteArray: byte[10];    

 // Double-word array with elements 0..3.

 PtrArray: dword[4];     

You can also initialize the array elements using declarations like the 
following:

    RealArray: real32[8] := 

        [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 ];

    IntegerAry: integer[8] := 

        [ 8, 9, 10, 11, 12, 13, 14, 15 ];

Both of these definitions create arrays with eight elements. The first 
definition initializes each 4-byte real32 array element with one of the values 
in the range 0.0..7.0. The second declaration initializes each integer array 
element with one of the values in the range 8..15.

9.1.1.3 Declaring Arrays in Pascal, Delphi, and Kylix

Pascal/Delphi/Kylix uses the following syntax to declare an array:

array_name : array[ lower_bound..upper_bound ] of data_type;

As in the previous examples, array_name is the identifier and data_type is 
the type of each element in this array. In Pascal/Delphi/Kylix (unlike C/
C++, Java, and HLA) you specify the upper and lower bounds of the array 
rather than the array’s size. The following are typical array declarations in 
Pascal:

type

    ptrToChar = ^char;

var

    CharArray: array[0..127] of char;     // 128 elements

    IntArray: array[0..7] of integer;   // 8 elements

    ByteArray: array[0..9] of char;       // 10 elements

    PtrArray: array[0..3] of ptrToChar;   // 4 elements

Although these Pascal examples start their indexes at zero, Pascal does 
not require a starting index of zero. The following is a perfectly valid array 
declaration in Pascal:

var
   ProfitsByYear : array[ 1998..2009 ] of real; // 12 elements

The program that declares this array would use indexes 1,998 through 
2,009 when accessing elements of this array, not 0 through 11.

No Starch Press, Copyright © 2006 by Randall Hyde



246 Chap te r 9

Many Pascal compilers provide an extra feature to help you locate defects 
in your programs. Whenever you access an element of an array, these com-
pilers automatically insert code that will verify that the array index is within 
the bounds specified by the declaration. This extra code will stop the pro-
gram if the index is out of range. For example, if an index into ProfitsByYear
is outside the range 1,998..2,009 the program will abort with an error. This is 
a very useful feature that helps verify the correctness of your program.1

9.1.1.4 Declaring Arrays with Noninteger Index Values

Generally, array indexes are integer values, although some languages allow 
other ordinal types (data types that use an underlying integer representation). 
For example, Pascal allows char and boolean array indexes. In Pascal, it’s 
perfectly reasonable and useful to declare an array as follows:

alphaCnt : array[ 'A'..'Z' ] of integer;

You access elements of alphaCnt using a character expression as the array 
index. For example, consider the following Pascal code that initializes each 
element of alphaCnt to zero:

    for ch := 'A' to 'Z' do
        alphaCnt[ ch ] := 0;

Assembly language and C/C++ treat most ordinal values as special 
instances of integer values, so they are certainly legal array indexes. Most 
implementations of BASIC allow a floating-point number as an array index, 
although BASIC always truncates the value to an integer before using it as an 
index (BASIC allows you to use floating-point values as array indexes because 
the original BASIC language did not provide support for integer expressions; 
it only provided real and string values). 

9.1.2 Array Representation in Memory
Abstractly, an array is a collection of variables that you access using an index. 
Semantically, you can define an array any way you please as long as it maps 
distinct indexes to distinct objects in memory and always maps the same 
index to the same object. In practice, however, most languages utilize a few 
common algorithms that provide efficient access to the array data. 

The most common implementation of arrays is to store array elements in 
consecutive memory locations. Most programming languages store the first 
element of an array at a low memory address and then store the following 
elements in successively higher memory locations.

1 Many Pascal compilers provide an option to turn off this array index range checking once 
your program is fully tested. Turning off the bounds checking improves the efficiency of the 
resulting program.

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 247

Consider the following C program and the PowerPC assembly code that 
GCC emits for it:

#include <stdio.h>

static char array[8] = {0,1,2,3,4,5,6,7};

int main( void )

{

printf( "%d\n", array[0] );

}

Here is the PowerPC assembly code that corresponds to the array
declaration:

        .align 2

_array:

        .byte   0   ;Note that the assembler stores the byte

        .byte   1   ; values on successive lines into

        .byte   2   ; contiguous memory locations.

        .byte   3

        .byte   4

        .byte   5

        .byte   6

        .byte   7

The number of bytes an array consumes is the number of elements 
multiplied by the number of bytes per element. In the previous example, 
each array element is a single byte, so the array consumes the same number 
of bytes as it has elements. However, for arrays with larger elements, the entire 
array would consume the product of the number of elements and the ele-
ment size. Consider the following C code and the corresponding GCC 
assembly language output:

#include <stdio.h>

static int array[8] = {0,0,0,0,0,0,0,1};

int main( void )

{

printf( "%d\n", array[0] );

}

No Starch Press, Copyright © 2006 by Randall Hyde



248 Chap te r 9

Consider the conversion to PowerPC assembly language by GCC:

        .align 2

_array:

        .long   0

        .long   0

        .long   0

        .long   0

        .long   0

        .long   0

        .long   0

        .long   1

Many languages also add a few additional bytes of padding at the end 
of an array so that the total length of the array will be a multiple of a con-
venient value like 2 or 4 (making it easy to compute indexes into the array 
using shifts; see Write Great Code, Volume 1, for details). However, a program 
must not access the extra padding bytes because they may or may not be 
present. Some compilers put them in, some will not, and some will only put 
them in depending on the type of object that immediately follows the array 
in memory.

Many optimizing compilers try to start an array at a memory address that 
is a multiple of a common size like 2, 4, or 8 bytes. This, effectively, adds pad-
ding bytes before the beginning of the array or, if you prefer to think of it 
this way, it adds padding bytes to the end of the previous object in memory 
(see Figure 9-2).

Figure 9-2: Adding padding bytes before an array

On machines that do not support byte-addressable memory, compilers 
that attempt to place the first element of an array on an easily accessed 
boundary will allocate storage for an array on whatever boundary the 
machine supports. In the previous example, the .align 2 directive precedes 
the _array declaration. In Gas syntax, the .align directive tells the assembler 
to adjust the memory address of the next object declared in the source file so 
that it starts at an address that is a multiple of some power of 2 (specified by 

}

Array of eight double-word objects in memory

Single-byte object at an address that is an
even multiple of four in memory

Three bytes of padding the compiler adds to make
sure the array is aligned on a double-word boundary

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 249

.align’s operand). In this example, the .align 2 directive tells the assembler to 
align the first element of _array on an address boundary that is a multiple of 4 
(that is, 22).

If the size of each array element is less than the minimum-sized memory 
object the CPU supports, then the compiler implementer has two options: 

� Allocate the smallest accessible memory object for each element of the 
array

� Pack multiple array elements into a single memory cell

Option 1 has the advantage of being fast, but it wastes memory because 
each array element carries some extra storage that it doesn’t need. The 
following C example creates an array of structures (I’ll look at C structures 
in a later chapter) in order to allocate storage for an array whose element 
size is 5 bytes (each array element is a structure object consisting of a 4-byte 
long object and a 1-byte char object). When GCC compiles this code to run on 
a PowerPC processor that requires double-word alignment for long objects, 
the compiler automatically inserts 3 bytes of padding between each element. 
Here’s the sample C code that demonstrates this:

#include <stdio.h>

typedef struct

{

long a;

char b;

} FiveBytes;

static FiveBytes shortArray[2] = {{2,3}, {4,5}};

int main( void )

{   

    printf( "%d\n", shortArray[0].a );

}

Here is the pertinent PowerPC assembly code that GCC generates for the 
FiveBytes array declaration:

.data

        .align 2   ;Ensure that _shortArray begins on an

                   ; address boundary that is a multiple

                   ; of four.

_shortArray:

        .long   2  ;shortArray[0].a

        .byte   3  ;shortArray[0].b

        .space 3   ;Padding, to align next element to 4 bytes

        .long   4  ;shortArray[1].a

        .byte   5  ;shortArray[1].b

        .space 3   ;Padding, at end of array.

No Starch Press, Copyright © 2006 by Randall Hyde



250 Chap te r 9

Option 2 is compact, but it requires extra instructions to pack and 
unpack data when accessing array elements, which means that accessing 
elements is slower. Compilers on such machines often provide an option that 
lets you specify whether you want the data packed or unpacked so you can 
choose between space and speed. Keep in mind that if you’re working on a 
byte-addressable machine (like the 80x86) then you probably don’t have to 
worry about this issue. However, if you’re using a high-level language and 
your code might wind up running on a different machine at some point in 
the future, you should choose an array organization that is efficient on all 
machines (that is, choose an organization that pads each element of the 
array with extra bytes).

9.1.3 Accessing Elements of an Array
If you allocate all the storage for an array in contiguous memory locations 
and the first index of the array is zero, then accessing an element of a single-
dimensional array is simple. You can compute the byte address of any given 
element of an array using the following formula:

Element_Address = Base_Address + ( index * Element_Size )

The Element_Size item is the number of bytes that each array element 
occupies. Therefore, if the array contains elements of type byte, the
Element_Size field is 1 and the computation is very simple. If each element 
of the array is a word (or other 2-byte type) then Element_Size is 2, and so 
on. Consider the following Pascal array declaration:

var  SixteenInts : array[ 0..15 ] of integer;

To access an element of the SixteenInts on a byte-addressable machine, 
assuming 4-byte integers, you’d use this calculation:

Element_Address = AddressOf( SixteenInts ) + index * 4

In assembly language (where you would actually have to do this calcula-
tion manually rather than having the compiler do the work for you), you’d 
use code like the following to access array element SixteenInts[index]:

        mov( index, ebx );
        mov( SixteenInts[ ebx*4 ], eax );

To demonstrate this in action, consider the following Pascal/Delphi 
program and the resulting 80x86 code (obtained by disassembling the EXE 
output from the Delphi compiler and pasting the result back into the original 
Pascal code):

program x(input,output);

var

    i :integer;

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 251

    sixteenInts :array[0..15] of integer;

    function changei(i:integer):integer;

    begin

        changei := 15 - i;

    end;

    // changei         proc near

    //                 mov     edx, 0Fh

    //                 sub     edx, eax

    //                 mov     eax, edx

    //                 retn

    // changei         endp

begin

    for i := 0 to 15 do

        sixteenInts[ changei(i) ] := i;

    //                 xor     ebx, ebx

    // 

    // loc_403AA7:

    //                 mov     eax, ebx

    //                 call    changei

    //

    // Note the use of the scaled-indexed addressing mode

    // to multiply the array index by four prior to accessing

    // elements of the array:

    //

    //                 mov     ds:sixteenInts[eax*4], ebx

    //                 inc     ebx

    //                 cmp     ebx, 10h

    //                 jnz     short loc_403AA7

    

end.

As in the HLA example, the Delphi compiler uses the 80x86 scaled-
indexed addressing mode to multiply the index into the array by the element 
size (4 bytes). The 80x86 provides four different scaling values for the scaled-
indexed addressing mode: 1, 2, 4, or 8 bytes. If the array’s element size is not 
one of these four values, the machine code must explicitly multiply the index 
by the array element’s size. The following Delphi/Pascal code (and corre-
sponding 80x86 code from the disassembly) demonstrates this using a record 
that has 9 bytes of active data (Delphi rounds this up to the next multiple of 
4 bytes, so Delphi actually allocates 12 bytes for each element of the array of 
records).

program x(input,output);

type

    NineBytes=

        record

            FourBytes       :integer;

No Starch Press, Copyright © 2006 by Randall Hyde



252 Chap te r 9

            FourMoreBytes   :integer;

            OneByte         :char;

        end;

var

    i               :integer;

    NineByteArray   :array[0..15] of NineBytes;

    function changei(i:integer):integer;

    begin

        changei := 15 - i;

    end;

    // changei         proc near

    //                 mov     edx, 0Fh

    //                 sub     edx, eax

    //                 mov     eax, edx

    //                 retn

    // changei         endp

begin

    for i:= 0 to 15 do

        NineByteArray[ changei(i) ].FourBytes := i;

//                  xor     ebx, ebx

//  

//  loc_403AA7:

//                  mov     eax, ebx

//                  call    changei

//

//                  // Compute EAX = EAX * 3

//

//                  lea     eax, [eax+eax*2]

//

//            // Actual index used is index * 12 ((EAX * 3) * 4)

//

//                  mov     ds:NineByteArray[eax*4], ebx

//                  inc     ebx

//                  cmp     ebx, 10h

//                  jnz     short loc_403AA7

    

end.

Microsoft and Borland C/C++ compilers emit comparable code (also 
allocating 12 bytes for each element of the array of records).

9.1.4 Padding Versus Packing
These Pascal examples demonstrate an important issue: compilers generally  
pad each array element to a multiple of 4 bytes, or whatever size is most con-
venient for the machine’s architecture. Compilers do this in order to improve 

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 253

access to array elements (and record fields) by ensuring that those elements 
are always aligned on a memory boundary that is reasonable for the array 
element. Some compilers give you the option of eliminating the padding at 
the end of each array element, so that successive array elements immediately 
follow the previous element in memory. In Pascal/Delphi, for example, you 
can achieve this by using the packed keyword:

program x(input,output);

// Note the use of the "packed" keyword.

// This tells Delphi to pack each record

// into nine consecutive bytes, without

// any padding at the end of the record.

type

    NineBytes=

        packed record

            FourBytes       :integer;

            FourMoreBytes   :integer;

            OneByte         :char;

        end;

var

    i               :integer;

    NineByteArray   :array[0..15] of NineBytes;

    function changei(i:integer):integer;

    begin

        changei := 15 - i;

    end;

    // changei         proc near

    //                 mov     edx, 0Fh

    //                 sub     edx, eax

    //                 mov     eax, edx

    //                 retn

    // changei         endp

begin

    for i := 0 to 15 do

        NineByteArray[ changei(i) ].FourBytes := i;

//                 xor     ebx, ebx

// 

// loc_403AA7:

//                 mov     eax, ebx

//                 call    changei

//

//      // Compute index (eax) = index * 9 

//      // (computed as index = index + index * 8):

//

//                 lea     eax, [eax+eax*8]

No Starch Press, Copyright © 2006 by Randall Hyde



254 Chap te r 9

//

//                 mov     ds:NineBytes[eax], ebx

//                 inc     ebx

//                 cmp     ebx, 10h

//                 jnz     short loc_403AA7

    

end.

Note that the packed reserved word is just a hint to a Pascal compiler. 
A generic Pascal compiler can choose to ignore this keyword—the Pascal 
standard does not make any explicit claims about its impact on a compiler’s 
code generation. Borland’s Pascal products (including Delphi and Kylix) use 
the packed keyword to tell the compiler to pack array (and record) elements 
on a byte boundary rather than a 4-byte boundary. Other Pascal compilers 
actually use this keyword to align objects on bit boundaries. See your com-
piler’s documentation for more information about the packed keyword. Few 
other languages provide a way, within the generic language definition, to 
pack data into a given boundary. In the C/C++ languages, for example, many 
compilers provide pragmas or command-line switches to control array ele-
ment padding, but these facilities are almost always specific to a particular 
compiler.

In general, choosing between packed and padded array elements (when 
the choice is possible) is usually a trade-off between speed and space. Packed 
array elements let you save a small amount of space for each array element at 
the expense of slower access to those elements (for example, when accessing 
a double-word object at an odd address in memory). Furthermore, computing 
the index into an array whose element size is not a convenient multiple of 2 
(or better yet, a power of 2) can require more instructions, thereby reducing 
the speed of programs that access elements of such arrays.

Of course, some machine architectures don’t allow misaligned data 
access, so if you’re writing portable code that must compile and run on 
different CPUs, you shouldn’t count on the fact that array elements can be 
tightly packed into memory. Some compilers may not give you this option.

Before closing this discussion, it’s worthwhile to point out that the best 
array element sizes are those that are some power of 2. Generally, it will take 
only a single instruction to multiply any array index by a power of 2 (that 
single instruction is a shift-left instruction). Consider the following C program 
and the assembly output produced by Borland’s C++ compiler; this compiler 
uses arrays that have 32-byte elements:

typedef struct

{

    double EightBytes;

    double EightMoreBytes;

    float  SixteenBytes[4];

} PowerOfTwoBytes;

int i;

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 255

PowerOfTwoBytes ThirtyTwoBytes[16];

int changei(int i)

{

    return 15 - i;

}

int main( int argc, char **argv )

{

    for( i = 0; i < 16; ++i )

    {

        ThirtyTwoBytes[ changei(i) ].EightBytes = 0.0;

    }

    // @5:

    //  push      ebx

    //  call      _changei

    //  pop       ecx           // Remove parameter

    //

    // Multiply index (in EAX) by 32.

    // Note that (eax << 5) = eax * 32

    //

    //  shl       eax,5

    //

    // Eight bytes of zeros are the coding for

    // (double) 0.0:

    //

    //  xor       edx,edx

    //  mov       dword ptr [eax+_ThirtyTwoBytes],edx

    //  mov       dword ptr [eax+_ThirtyTwoBytes+4],edx

    //

    // Finish the for loop here:

    //

    //  inc       dword ptr [esi]   ;ESI points at i.

    // @6:

    //  mov       ebx,dword ptr [esi]

    //  cmp       ebx,16

    //  jl        short @5

    return 0;

}

As you can see in this code, the Borland C++ compiler emits a shl
instruction to multiply the index by 32.

9.1.5 Multidimensional Arrays
A multidimensional array is one that lets you select an element of the array 
using two or more independent index values. A classic example is a two-
dimensional data structure (array) that tracks product sales versus date. One 
index into the table could be the date; the other index into the table would 
be the product value. The element of the array selected by these two indexes 

No Starch Press, Copyright © 2006 by Randall Hyde



256 Chap te r 9

would be the total sales of that product on a given date. A three-dimensional 
extension of this example could be sales of products by date and by country. 
Again, a combination of product value, date value, and country value would 
address an element in the array to give you the sales of that product within 
that country on the specified date.

Most CPUs can easily handle single-dimensional arrays using an indexed 
addressing mode. Unfortunately, there is no magic addressing mode that lets 
you easily access the elements of multidimensional arrays. That’s going to 
take some work and several machine instructions.

9.1.5.1 Declaring Multidimensional Arrays

If you have an m -by-n array, it will have m n elements and require m n

Element_Size bytes of storage. With single-dimensional arrays, the syntax that 
the different HLLs employ is very similar. However, their syntax starts to 
differ when you consider multidimensional arrays.

In C, C++, and Java, you would use the following syntax to declare a 
multidimensional array:

data_type array_name [dim1][dim2]...[dimn];

Here is a concrete example of a three-dimensional array declaration in 
C/C++:

int threeDInts[ 4 ][ 2 ][ 8 ];

This example creates an array with 64 elements organized with a depth 
of 4 by 2 rows by 8 columns. Assuming each int object requires 4 bytes, this 
array consumes 256 bytes of storage.

Pascal’s syntax actually supports two equivalent ways of declaring multi-
dimensional arrays. The following example demonstrates both of these two 
forms:

var

threeDInts: 

array[0..3] of array[0..1] of array[0..7] of integer;

threeDInts2: array[0..3, 0..1, 0..7] of integer;

Semantically, there are only two major differences in the way different 
languages handle multidimensional arrays. The first difference is whether 
the array declaration specifies the overall size of each array dimension or 
whether it specifies the upper and lower bounds. The second difference 
is whether the starting index is zero, one, or a user-specified value.

9.1.5.2 Mapping Multidimensional Array Elements to Memory

Now that you’ve seen some example array declarations, you need to figure 
out how to implement them in memory. The first problem is learning to 
store a multidimensional object into a one-dimensional memory space. 

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 257

Consider for a moment a Pascal array of the following form:

A:array[0..3,0..3] of char;

This array contains 16 bytes organized as four rows of four characters. 
Somehow, you have to draw a correspondence between each of the 16 bytes 
in this array and each of the 16 contiguous bytes in main memory. Figure 9-3 
shows one way to do this.

The actual mapping of positions within the array grid to memory 
addresses can be done in different ways as long as two things occur: 

� No two entries in the array occupy the same memory location.

� Each element in the array always maps to the same memory location.

Figure 9-3: Mapping a 4 4 array to sequential memory locations

Therefore, what you really need is a function with two input parameters 
(one for a row and one for a column value) that produces an offset into a 
contiguous block of 16 memory locations.

Now any old function that satisfies these two constraints will work fine. 
However, what you really want is a mapping function that is efficient to 
compute at runtime and works for arrays with any number of dimensions 
and any bounds on those dimensions. While there are a large number of 
possible functions that fit this bill, most HLLs use one of two different 
organizations: row-major ordering and column-major ordering. 

9.1.5.3 Row-Major Ordering

Row-major ordering assigns array elements to successive memory locations by 
moving across the rows and then down the columns. Figure 9-4 demonstrates 
this mapping.

Row-major ordering is the method employed by most high-level pro-
gramming languages including Pascal, C/C++/C#, Java, Ada, and Modula-2. 
It is very easy to implement and is easy to use in machine language. The 
conversion from a two-dimensional structure to a linear sequence is very 
intuitive. Figure 9-5 provides another view of the ordering of a 4 4 array.

0

1

2

3

Memory

0 1 2 3

No Starch Press, Copyright © 2006 by Randall Hyde



258 Chap te r 9

Figure 9-4: Row-major array element ordering

The function that converts the set of multidimensional array indexes 
into a single offset is a slight modification of the formula for computing the 
address of an element of a single-dimensional array. The generic formula to 
compute the offset into a two-dimensional row-major ordered array given an 
access of the form:

ary[ colindex ][ rowindex ]

is

Element_Address = 

Base_Address + 

((colindex * row_size) + rowindex) * Element_Size

Figure 9-5: Another view of row-major ordering for a 4 4 array

As usual, Base_Address is the address of the first element of the array 
(A[0][0] in this case), and Element_Size is the size of an individual element of 
the array, in bytes. Row_size is the number of elements in one row of the array 
(4, in this case, because each row has four elements). Assuming Element_Size
is 1 and row_size is 4, this formula computes the following offsets from the 
base address.

0

1

2

3

Memory

15  A[3,3]
14  A[3,2]
13  A[3,1]
12  A[3,0]
11  A[2,3]
10  A[2,2]
9    A[2,1]
8    A[2,0]
7    A[1,3]
6    A[1,2]
5    A[1,1]
4    A[1,0]
3    A[0,3]
2    A[0,2]
1    A[0,1]
0    A[0,0]

A:array [0..3,0..3] of char;

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Low addresses High addresses

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 259

For a three-dimensional array, the formula to compute the offset into 
memory is only slightly more complex. Consider a C/C++ array declaration 
given as follows:

someType array[depth_size][col_size][row_size];

If you have an array access similar to array[depth_index][col_index]
[row_index], then the computation that yields the offset into memory is the 
following:

Address = 

    Base + 

        ((((depth_index * col_size) + col_index) * 

            row_size) + row_index) * Element_Size

Element_size is the size, in bytes, of a single array element.
For a four-dimensional array, declared in C/C++ as type A[bounds0] 

[bounds1] [bounds2] [bounds3]; the formula for computing the address of an 
array element when accessing element A[i][j][k][m] is

Address = 

Base + 

((((((i * bounds1) + j) * bounds2) + k) * row_size) + bounds3) *

Element_Size

Column
Index

Row
Index

Offset into
Array

0 0 0

0 1 1

0 2 2

0 3 3

1 0 4

1 1 5

1 2 6

1 3 7

2 0 8

2 1 9

2 2 10

2 3 11

3 0 12

3 1 13

3 2 14

3 3 15

No Starch Press, Copyright © 2006 by Randall Hyde



260 Chap te r 9

If you have an n-dimensional array declared in C/C++ as follows:

dataType array[bn-1][bn-2]...[b0];

and you want to access the following element of this array

array[an-1][an-2]...[a1][a0]

then you can compute the address of a particular array element using the 
following algorithm:

    Address := an - 1

    for i := n - 2 downto 0 do

        Address := Address * bi + ai

    Address := Base_Address + Address * Element_Size

It would be very rare for a compiler to actually execute a loop such as this 
one in order to compute an array index. Usually, there is a small number of 
dimensions and the compiler will typically unroll the loop, thereby avoiding 
the overhead of the loop control instructions.

9.1.5.4 Column-Major Ordering

Column-major ordering is the other common array-element address function. 
FORTRAN and various dialects of BASIC (such as older versions of Microsoft 
BASIC) use this scheme to index arrays. Pictorially, a column-major ordered 
array is organized as shown in Figure 9-6. 

Figure 9-6: Column-major array element ordering

The formulae for computing the address of an array element when using 
column-major ordering is very similar to that for row-major ordering. The 
difference is that you reverse the order of the index and size variables in 
the computation. That is, rather than working from the leftmost index to the 
rightmost, you operate on the indexes from the rightmost toward the leftmost.

0

1

2

3

Memory

15  A[3,3]
14  A[2,3]
13  A[1,3]
12  A[0,3]
11  A[3,2]
10  A[2,2]
9    A[1,2]
8    A[0,2]
7    A[3,1]
6    A[2,1]
5    A[1,1]
4    A[0,1]
3    A[3,0]
2    A[2,0]
1    A[1,0]
0    A[0,0]

A:array [0..3,0..3] of char;

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 261

For a two-dimensional column-major array:

        Element_Address = 

            Base_Address + 

                ((rowindex * col_size) + colindex) * 

                    Element_Size

For a three-dimensional column-major array:

        Element_Address = 

            Base_Address + 

                ((((rowindex * col_size) + colindex) * 

                    depth_size) + depthindex) * 

                        Element_Size

And so on. Other than using these new formulae, accessing elements of an 
array using column-major ordering is identical to accessing arrays using row-
major ordering.

9.1.5.5 Accessing Elements of a Multidimensional Array

Accessing an element of a multidimensional array in an HLL is so easy that 
a typical programmer will do so without considering the associated cost. In 
this section, I’ll look at some of the assembly language sequences compilers 
commonly generate to access elements of a multidimensional array to give 
you a clearer picture of these costs. Because arrays are one of the more 
common data structures found in modern applications, and multidimen-
sional arrays are also quite common, compiler designers have put a lot of 
work into ensuring that they compute array indexes as efficiently as possible. 
Given a declaration such as:

int ThreeDInts[ 8 ][ 2 ][ 4 ];

and an array reference like the following:

ThreeDInts[ i ][ j ][ k ] = n;

accessing the array element requires the computation of the following:

        Element_Address = 

            Base_Address + 

                ((((rowindex * col_size) + colindex) * 

                    depth_size) + depthindex) * 

                        Element_Size

which in brute-force assembly code might be:

intmul( 2, i, ebx );    // EBX = 2 * i

add( j, ebx );          // EBX = 2 * i + j

intmul( 4, ebx );       // EBX = (2 * i + j) * 4

No Starch Press, Copyright © 2006 by Randall Hyde



262 Chap te r 9

add( k, ebx );          // EBX = (2 * i + j) * 4 + k

mov( n, eax );

mov( eax, ThreeDInts[ebx*4] );  // ThreeDInts[i][j][k] = n

In practice, however, compiler authors avoid using the 80x86 intmul
(imul) instruction because it is so slow. Many different machine idioms can 
be used to simulate multiplication using a short sequence of addition, shift, 
and “load effective address” instructions. Most optimizing compilers use 
sequences that compute the array element address rather than the brute-
force code that uses a multiply instruction.

Consider the following C program that initializes the 16 elements of a 
4 4 array:

int i, j;

int TwoByTwo[4][4];

int main( int argc, char **argv )

{

    for( j = 0; j < 4; ++j )

    {

        for( i = 0; i < 4; ++i )

        {

            TwoByTwo[i][j] = i + j;

        }

    }

    return 0;

}

Now consider the assembly code that the Borland C++ compiler emits 
for the for loop in this example:

    mov       ecx,offset _i

    mov       ebx,offset _j

   ;    

   ;    {

   ;        for( j = 0; j < 4; ++j )

   ;    

?live1@16: ; ECX = &i, EBX = &j

    xor       eax,eax

    mov       dword ptr [ebx],eax ;i = 0

    jmp       short @3

   ;    

   ;        {

   ;            for( i = 0; i < 4; ++i )

   ;    

@2:

    xor       edx,edx

    mov       dword ptr [ecx],edx ; j = 0

; Compute the index to the start of the

; current column of the array as

; base( TwoByTwo ) + eax*4. Leave this

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 263

; "column base address" in EDX:

    mov       eax,dword ptr [ebx]

    lea       edx,dword ptr [_TwoByTwo+4*eax]

    jmp       short @5

   ;    

   ;            {

   ;                TwoByTwo[i][j] = i + j;

   ;    

?live1@48: ; EAX = @temp0, EDX = @temp1, ECX = &i, EBX = &j

@4:

; 

    mov       esi,eax                ;Compute i + j

    add       esi,dword ptr [ebx]    ;EBX points at j's value

    shl       eax,4                  ;Multiply row index by 16

; Store the sum (held in ESI) into the specified array element.

; Note that EDX contains the base address plus the column

; offset into the array. EAX contains the row offset into the

; array. Their sum produces the address of the desired array

; element.

    mov       dword ptr [edx+eax],esi  ;Store sum into element

    inc       dword ptr [ecx]     ;increment i by one

@5:

    mov       eax,dword ptr [ecx] ;Fetch i's value

    cmp       eax,4               ;Is i less than four?

    jl        short @4            ;If so, repeat inner loop

    inc       dword ptr [ebx]     ;Increment j by one

@3:

    cmp       dword ptr [ebx],4   ;Is j less than four?

    jl        short @2            ;If so, repeat outer loop.

   ;    

   

       .

       .

       .

; Storage for the 4x4 (x4 bytes) two-dimensional array:

; Total = 4 * 4 * 4 = 64 bytes:

    align   4

_TwoByTwo   label   dword

    db  64  dup(?)

In this example, the computation rowIndex * 4 + columnIndex is handled 
by the following four instructions (which also store the array element, by 
the way): 

; EDX = base address + columnIndex * 4

    mov       eax,dword ptr [ebx]

No Starch Press, Copyright © 2006 by Randall Hyde



264 Chap te r 9

    lea       edx,dword ptr [_TwoByTwo+4*eax]

      .

      .

      .

; EAX = rowIndex, ESI = i + j

    shl       eax,4                  ;Multiply row index by 16

    mov       dword ptr [edx+eax],esi  ;Store sum into element

Note that this code sequence used the scaled-indexed addressing mode 
(along with the lea instruction) and the shl instruction to do the necessary 
multiplications. Because multiplication tends to be an expensive operation, 
most compilers avoid using it when calculating indexes into multidimen-
sional arrays. Nevertheless, by comparing this code against the examples 
given for single-dimensional array access, you can see that two-dimensional 
array access is a bit more expensive in terms of the number of machine 
instructions you must use to compute the index into the array.

Three-dimensional array access is even worse than two-dimensional array 
access. Here is a C/C++ program and the Visual C++ assembly language output 
that initializes the elements of a three-dimensional array:

#include <stdlib.h>

int i, j, k;

int ThreeByThree[3][3][3];

int main( int argc, char **argv )

{

    for( j = 0; j < 4; ++j )

    {

        for( i = 0; i < 4; ++i )

        {

            for( k = 0; k < 3; ++k )

            {

                // Initialize the 27 array elements

                // with a set of random values:

                ThreeByThree[i][j][k] = rand();

            }

        }

    }

    return 0;

}

Here is the 80x86 assembly language output that the Microsoft Visual 
C++ compiler produces:

; Line 8

    xor ebx, ebx

    push    esi

    push    edi

    mov DWORD PTR _j, ebx ;Initialize j = 0

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 265

$L836:

; Line 10

    mov DWORD PTR _i, ebx ;Initialize i = 0

$L839:

; Line 12

    mov DWORD PTR _k, ebx ;Initialize k = 0

$L842:

; Line 14

    call    _rand  ;Get a random value into EAX

    mov esi, DWORD PTR _i

    mov edi, DWORD PTR _j

; Compute ecx = ESI * 3 + EDI  (i * 3 + j):

    mov ecx, esi

    lea edx, DWORD PTR [edi+esi * 2]

    add ecx, edx

; compute ebp = ecx * 3 + EDX (above * 3 + k):

    mov edx, DWORD PTR _k

    lea ebp, DWORD PTR [edx+ecx*2]

    add ecx, ebp

; ECX now contains the (dword) index into the array.

    inc edx         ;++k

    cmp edx, 3      ;exceed for loop bounds?

    mov DWORD PTR _k, edx ;Save away ++k

; Store away the random value into array location

; ThreeByThree[i][j][k]:

    mov DWORD PTR _ThreeByThree[ecx*4], eax

; Repeat loop if k < 4:

    jl  SHORT $L842

; Bump up i by one and see if i >= 4, repeat loop if i < 4:

    inc esi

    cmp esi, 4

    mov DWORD PTR _i, esi

    jl  SHORT $L839

; Bump up j by one and see if j >= 4, repeat loop if j < 4:

    inc edi

    cmp edi, 4

    mov DWORD PTR _j, edi

    jl  SHORT $L836

No Starch Press, Copyright © 2006 by Randall Hyde



266 Chap te r 9

If you are interested, you can write your own short HLL programs and 
analyze the assembly code emitted for n-dimensional arrays (n being greater 
than or equal to 4).

9.1.5.6 Emulating Column-Major or Row-Major Ordering

The choice of column-major or row-major array ordering is generally dictated 
by your compiler, if not by the programming language definition. No com-
piler I’m aware of will let you choose which array ordering you prefer on 
an array-by-array basis (or even across a whole program, for that matter). 
However, there really is no need to do this, as you can easily simulate either 
storage mechanism by simply changing the definitions of “rows” and 
“columns” in your programs.

Consider the following C/C++ array declaration:

int array[ NumRows ][ NumCols ];

Normally, you’d access an element of this array using a reference 
like this:

element = array[ rowIndex ][ colIndex ]

If you increment through all the column index values for each row index 
value (that you also increment), then you’ll access sequential memory loca-
tions when accessing elements of this array. That is, the following C for loop 
initializes sequential locations in memory with zero:

for( row = 0; row < NumRows; ++row )

{

for( col = 0; col < NumCols; ++col )

{

array[ row ][ col ] = 0;

}

}

If NumRows and NumCols are the same value, then accessing the array 
elements in column-major rather than row-major order is trivial—just swap 
the indexes in the previous code fragment to obtain:

for( row = 0; row < NumRows; ++row )

{

for( col = 0; col < NumCols; ++col )

{

array[ col ][ row ] = 0;

}

}

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 267

If NumCols and NumRows are not the same value, you’re going to have to 
manually compute the index into the column-major array yourself, and 
you’ll have to allocate the storage in a single-dimensional array, as follows:

int columnMajor[ NumCols * NumRows ]; // Allocate storage

.

.

.

for( row = 0; row < NumRows; ++row)

{

for( col = 0; col < NumCols; ++col )

{

columnMajor[ col * NumRows + row ] = 0;

}

}

Although it is possible to access arrays using a column-major organiza-
tion, if your application requires it, you should exercise extreme caution 
when accessing arrays in a manner other than the language’s default scheme. 
Many optimizing compilers are smart enough to recognize when you’re 
accessing arrays in the default manner, and they generate far better code in 
those circumstances. Indeed, the examples presented so far have explicitly 
accessed arrays in uncommon ways in order to thwart the compilers’ opti-
mizers. Consider the following C code and the Visual C++ output (with 
optimization enabled):

#include <stdlib.h>

int i, j, k;

int ThreeByThreeByThree[3][3][3];

int main( int argc, char **argv )

{

    // The important difference to note here is how

    // the loops are arranged with the indexes i, j, and k

    // used so that i changes the slowest and k changes

    // most rapidly (corresponding to row-major ordering).

    for( i = 0; i < 3; ++i )

    {

        for( j = 0; j < 3; ++j )

        {

            for( k = 0; k < 3; ++k )

            {

                ThreeByThreeByThree[i][j][k] = 0;

            }

        }

    }

    return 0;

}

No Starch Press, Copyright © 2006 by Randall Hyde



268 Chap te r 9

Here is the Visual C++ assembly language output for the for loops in the 
previous code. In particular, note how the compiler substituted an 80x86 
stosd instruction in place of the three loops:

    push    edi

; 

; The following code zeros out the 27 (3 * 3 * 3) elements

; of the ThreeByThreeByThree array.

    mov ecx, 27                 ; 0000001bH

    xor eax, eax

    mov edi, OFFSET FLAT:_ThreeByThreeByThree

    rep stosd

If you rearrange your indexes so that you’re not storing zeros into con-
secutive memory locations, then Visual C++ will not compile to the stosd
instruction. Even if the end result is the zeroing of the entire array, the 
compiler believes that the semantics of stosd are different. (Imagine, if you 
will, two concurrent threads in a program that are both reading and writing 
ThreeByThreeByThree array elements concurrently; the program’s behavior 
could be different based on the order of the writes to the array.)

In addition to compiler semantics, there are also good hardware reasons 
why you shouldn’t change the default array ordering. Modern CPU perfor-
mance is highly dependent on the effectiveness of the CPU’s cache. Because 
cache performance depends on the temporal and spatial locality2 of the data 
present in the cache, you want to be careful about accessing data in such a 
way that disturbs temporality. In particular, accessing array elements in a 
manner that is inconsistent with their storage order will dramatically impact 
spatial locality, thereby hurting the performance of your applications. The 
moral of the story is: “Adopt the compiler’s array organization and don’t play 
around unless you really know what you’re doing.”

9.1.5.7 Improving Array Access Efficiency in Your Applications

You should follow these rules when you’re using arrays in your applications:

� Never use a multidimensional array when a single-dimensional array will 
work. This is not to suggest that you should simulate multidimensional 
arrays by manually computing a row-major (or column-major) index into 
a single-dimensional array, but if you can express an algorithm using a 
single-dimensional array rather than a multidimensional array, do so.

� When you must use multidimensional arrays in your application, try to 
use array bounds that are powers of 2 or, at least, multiples of 4. Compil-
ers can compute indexes into such arrays much more efficiently than 
arrays whose elements’ size is an arbitrary number of bytes.

2 Quickly, termporal locality concerns accessing the same varaible multiple times during a short 
time period and spatial locality means accessing adjacent variables in memory. See Write Great 
Code, Volume 1 for more details. 

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 269

� When accessing elements of a multidimensional array, try to do so in a 
manner than supports sequential memory access. For row-major ordered 
arrays, this implies sequencing through the rightmost index the fastest 
and the leftmost index the slowest (and just the opposite for column-
major ordered arrays).

� If your language supports operations on entire rows (or columns), 
or other large pieces of the array, with a single operation, use those 
facilities rather than accessing individual elements using nested loops. 
Often, the loop overhead, amortized over each array element you 
access, is greater than the cost of the index calculation and element 
access. This is particularly important when the array operation is the 
only thing taking place in the loop(s).

� Always keep in mind the issues of spatial and temporal locality when 
accessing array elements. Accessing a large number of array elements in 
a random (or non–cache-friendly) fashion can cause thrashing in the 
cache and virtual memory subsystem.3

The last point is particularly important. Consider the following HLA 
program:

program slow; 

#include ( "stdlib.hhf" )

begin slow;

    // A dynamically allocated array accessed as follows:

    // array [12][1000][1000]

    malloc( 12_000_000 ); // Allocate 12,000,000 bytes

    mov( eax, esi );

    // Initialize each byte of the array to zero:

    for( mov( 0, ecx ); ecx < 1000; inc( ecx )) do

        for( mov( 0, edx ); edx < 1000; inc( edx )) do

            for( mov( 0, ebx ); ebx < 12; inc( ebx )) do

        

                // Compute the index into the array

                // as EBX*1_000_000 + EDX*1_000 + ECX

                intmul( 1_000_000, ebx, eax );

                intmul( 1_000, edx, edi );

                add( edi, eax );

                add( ecx, eax );

                mov( 0, (type byte [esi+eax]));

                

            endfor;

            

3 See Write Great Code, Volume 1 for a discussion of thrashing.

No Starch Press, Copyright © 2006 by Randall Hyde



270 Chap te r 9

        endfor;

        

    endfor;

    

end slow;  

By simply swapping the loops around so that the EBX loop is the outer-
most loop and the ECX loop is the innermost loop, this program can run up 
to ten times faster. The reason for the speed difference is that the program, 
as it is currently written, accesses an array stored in row-major order in a non-
sequential fashion. By changing the rightmost index (ECX) most frequently 
and the leftmost index (EBX) least frequently, this program will access mem-
ory sequentially. This allows the cache to work better and dramatically 
improves program performance.

9.1.6 Dynamic Versus Static Arrays
Some languages provide the ability to declare arrays whose size isn’t known 
until the program is running. Such arrays are quite useful because many 
programs cannot predict how much space they will need for a data structure 
until the program receives input from a user. For example, consider a pro-
gram that reads a text file from disk, line by line, into an array of strings. 
Until the program actually reads the file and counts the number of lines in 
the file, it doesn’t know how many elements it will need for the array of 
strings. The programmer had no way of knowing how large the array would 
need to be when the program was being written. Languages that provide 
support for such arrays generally call them dynamic arrays. In this section, 
I’ll explore the issues surrounding dynamic (and static) arrays.

I’ll begin our exploration with some definitions for static and dynamic 
arrays.

Static array (or “pure static array”)
A pure static array is an array whose size the program knows during com-
pilation and the compiler/linker/operating system can allocate storage 
for the array before the program begins execution.

Pseudo-static array
A pseudo-static array is one whose size is known to the compiler, but 
the program doesn’t actually allocate storage for the array until runtime. 
Automatic variables (i.e., nonstatic local variables in a function or proce-
dure) are good examples of pseudo-static objects. The compiler knows 
their exact size while compiling the program, but the program doesn’t 
actually allocate storage for the array in memory until the function or 
procedure containing the declaration executes.

Pseudo-dynamic array
A pseudo-dynamic array is one whose size the compiler cannot determine 
prior to program execution. Typically, the program determines the size 
of the array at runtime as a result of user input or as part of some other 
calculation. Once the program allocates storage for a pseudo-dynamic 

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 271

array, however, the size of the array remains fixed until the program 
either terminates or deallocates storage for that array. In particular, 
you cannot change the size of a pseudo-dynamic array to add or delete 
selected elements (without completely deallocating the storage for the 
whole array).

Dynamic array (or “pure dynamic array”)
A pure dynamic array is one whose size the compiler cannot determine 
until the program runs and, indeed, cannot even be sure of once it cre-
ates the array. A program may change the size of a dynamic array at any 
time, adding or deleting elements, without affecting the values already 
present in the array (of course, if you delete some array elements, their 
values are lost).

Static and pseudo-static arrays are examples of the usual static and auto-
matic objects I’ve discussed elsewhere in this book, and there is really no need 
to discuss their storage semantics any further in this section. See Chapter 8 if 
you have any questions about static or automatic variables.

9.1.6.1 Single-Dimensional Pseudo-Dynamic Arrays

Most languages that claim support for dynamic arrays generally support 
pseudo-dynamic arrays rather than true dynamic arrays. That is, you may 
specify the size of an array when you first create it, but once you’ve specified 
the size of the array, you cannot easily change the array’s size without first 
deallocating the original storage for the array. Consider the following Visual 
Basic statement:

dim dynamicArray[ i * 2 ]

Assuming i is an integer variable that you’ve assigned some value prior 
to the execution of this statement, Visual Basic will create an array with i 2

elements upon encountering this statement. In languages that do support 
dynamic arrays, array declarations are usually executable statements, whereas 
in languages that don’t support dynamic arrays, such as C and Pascal, array 
declarations are not executable statements. They are simply declarations that 
the compiler processes for bookkeeping reasons, but for which the compiler 
generates no machine code.

Although standard C/C++ does not support pseudo-dynamic arrays, the 
GNU C/C++ implementation does. Therefore, it’s legal to write a function 
like the following in GNU C/C++:

void usesPDArray( int aSize )

{

    int array[ aSize ];

        .

        .

        .

} /* end of function usesPDArray */

No Starch Press, Copyright © 2006 by Randall Hyde



272 Chap te r 9

Of course, if you use this feature in GCC, you’ll only be able to compile 
your programs with GCC. Therefore, you won’t see many C/C++ program-
mers using this type of code in their programs.

If you’re using a language like C/C++ that doesn’t support pseudo-
dynamic arrays, but does provide a generic memory allocation function, 
then you can easily create arrays that act just like single-dimension pseudo-
dynamic arrays. This is particularly easy in languages that don’t check the 
range of array indexes, like C/C++. Consider the following code:

void usesPDArray( int aSize )

{

    int *array;

    array = malloc( aSize * sizeof( int ));

        .

        .

        .

    free( array );

} /* end of function usesPDArray */

Of course, one issue with using a memory allocation function like malloc
is that you must remember to explicitly free the storage prior to returning 
from the function (as the free call does in this code fragment). Some 
versions of the C standard library include a talloc function that allocates 
dynamic storage on the stack. Calls to talloc are much faster than calls to 
malloc/free and the function automatically frees up the storage when you 
return (without an explicit call to free). 

9.1.6.2 Multidimensional Pseudo-Dynamic Arrays

If you want to create pseudo-dynamic multidimensional arrays, that’s 
another problem altogether. When creating a single-dimensional pseudo-
dynamic array, the program really doesn’t need to keep track of the array 
bounds for any reason but to verify that the array index is valid. For multi-
dimensional arrays, however, the program must maintain additional 
information about the upper and lower bounds of each dimension of the 
array. This is necessary because the code needs to use that size information 
when computing the offset of an array element from a list of array indexes, as 
you saw in the discussion of static multidimensional arrays. So in addition to 
maintaining a pointer containing the address of the base element of the 
array, the code that uses pseudo-dynamic arrays must also keep track of the 
array bounds.4 This collection of information (the base address, number of 
dimensions, and the bounds for each dimension) is known as a dope vector.
In a language like HLA, C/C++, or Pascal, you’d typically create a struct or 

4 Technically, the code doesn’t need to maintain the size of the last array dimension if the 
program doesn’t bother to check the validity of array indexes applied to the array. In general, 
however, most languages that support pseudo-dynamic arrays maintain all the information.

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 273

record to maintain the dope vector (see Chapter 12 for more information 
about structs and records). Here’s an example of a dope vector you might 
create for a two-dimensional integer array using HLA:

type

    dopeVector2D :

        record

            ptrToArray :pointer to int32;

            bounds :uns32[2];

        endrecord;

Here’s the HLA code you would use to read the bounds of a two-
dimensional array from the user and allocate storage for the pseudo-dynamic 
array using this dope vector:

var

    pdArray :dopVector2D;

        .

        .

        .

stdout.put( "Enter array dimension #1:" );

stdin.get( pdArray.bounds[0] );

stdout.put( "Enter array dimension #2:" );

stdin.get( pdArray.bounds[4] );  //Remember, '4' is a 

                                 // byte offset into bounds.

// To allocate storage for the array, we must 

// allocate bounds[0]*bounds[4]*4 bytes:

mov( pdArray.bounds[0], eax );

// bounds[0]*bounds[4] -> EAX

intmul( pdArray.bounds[4], eax ); 

// EAX := EAX * 4 (4=size of int32).

shl( 2, eax );

// Allocate the bytes for the array.

malloc( eax );                    

// Save away base address.

mov( eax, pdArray.ptrToArray );   

This example emphasizes that the program must compute the size of the 
array as the product of the array dimensions and the element size. When 
processing static arrays, the compiler can compute this product during 
compilation. When working with dynamic arrays, the compiler must emit 

No Starch Press, Copyright © 2006 by Randall Hyde



274 Chap te r 9

machine instructions to compute this product at runtime, which means your 
program will be slightly larger and slightly slower than if you had used a static 
array. 

If a language doesn’t directly support pseudo-dynamic arrays, you will 
have to translate a list of indexes into a single offset using the row-major 
function (or something comparable). This is true in HLLs as well as assembly 
language. Consider the following C++ example that uses row-major ordering 
to access an element of a pseudo-dynamic array:

typedef struct dopeVector2D

{

    int *ptrtoArray;

    int bounds[2];

};

dopeVector2D pdArray;

        .

        .

        .

    // Allocate storage for the pseudo-dynamic array:

    cout << "Enter array dimension #1:";

    cin >> pdArray.bounds[0];

    cout << "Enter array dimension #2:" ;

    cin >> pdArray.bounds[1];

    pdArray.ptrtoArray = 

        new int[ pdArray.bounds[0] * pdArray.bounds[1] ];

        .

        .

        .

    // Set all the elements of this dynamic array to 

    //  successive integer values:

    k = 0;

    for( i = 0; i < pdArray.bounds[0]; ++i );

    {

        for( j = 0; j < pdArray.bounds[1]; ++j )

        {

            // Use row-major ordering to access 

            //  element [i][j]:

            *(pdArray.ptrtoArray + i * pdArray.bounds[1] + j) = k;

            ++k;

        }

    }

As for single-dimensional pseudo-dynamic arrays, memory allocation 
and deallocation can be more expensive than the actual array access—
particularly if you allocate and deallocate many small arrays.

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 275

A big problem with multidimensional dynamic arrays is that the compiler 
doesn’t know the array bounds at compile time, so it cannot generate array 
access code that is as efficient as is possible for pseudo-static and static arrays. 
As an example, consider the following C code:

#include <stdlib.h>

int main( int argc, char **argv )

{

    // Allocate storage for a 3x3x3 dynamic array:

    

    int *iptr = (int*) malloc( 3 * 3 * 3 * 4 );

    int depthIndex;

    int rowIndex;

    int colIndex;

    // A pseudo-static 3x3x3 array for comparison:

    int ssArray[3][3][3];

    // The following nested for loops initialize all

    // the elements of the dynamic 3x3x3 array with

    // zeros:

    

    for( depthIndex = 0; depthIndex < 3; ++depthIndex ) 

    {

        for( rowIndex = 0; rowIndex < 3; ++rowIndex )

        {

            for( colIndex = 0; colIndex < 3; ++colIndex )

            {

                iptr

                [

                    // Row-major order computation:

 

                      ((depthIndex * 3) + rowIndex) * 3 

                    + colIndex

                ] = 0;

            }

        }

    }

    // The following three nested loops are comparable

    // to the above, but they initialize the elements

    // of a pseudo-static array. Because the compiler

    // knows the array bounds at compile time, it can

    // generate better code for this sequence.

    for( depthIndex = 0; depthIndex < 3; ++depthIndex ) 

No Starch Press, Copyright © 2006 by Randall Hyde



276 Chap te r 9

    {

        for( rowIndex = 0; rowIndex < 3; ++rowIndex )

        {

            for( colIndex = 0; colIndex < 3; ++colIndex )

            {

                ssArray[depthIndex][rowIndex][colIndex] = 0;

            }

        }

    }

    

    return 0;

}

Here’s the pertinent portion of the PowerPC code that GCC emits for 
this C program (manually annotated). The important thing to notice here is 
that the dynamic array code is forced to use an expensive multiply instruction, 
whereas the pseudo-static array code doesn’t need this instruction.

    .section __TEXT,__text,regular,pure_instructions

_main:

// Allocate storage for local variables

// (192 bytes, includes the ssArray,

// loop control variables, other stuff,

// and padding to 64 bytes):

    mflr r0

    stw r0,8(r1)

    stwu r1,-192(r1)

// Allocate 108 bytes of storage for

// the 3x3x3 array of 4-byte ints.

// This call to  malloc leaves the

// pointer to the array in R3:

    li r3,108

    bl L_malloc$stub

    li r8,0     // R8= depthIndex

    li r0,0 

    // R10 counts off the number of

    // elements in rows we've processed:

    li r10,0

// Top of the outermost for loop

L16:

    // Compute the number of bytes

    // from the beginning of the

    // array to the start of the

    // row we are about to process.

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 277

    // Each row contains 12 bytes and

    // R10 contains the number of rows

    // processed thus far. The product

    // of 12 by R10 gives us the number

    // of bytes to the start of the

    // current row. This value is put

    // into R9:

    mulli r9,r10,12

    li r11,0    // R11 = rowIndex

// Top of the middle for loop

L15:

    li r6,3     // R6/CTR = colIndex

    // R3 is the base address of the array.

    // R9 is the index to the start of the

    // current row, computed by the MULLI

    // instruction, above. R2 will now

    // contain the base address of the

    // current row in the array.

    add r2,r9,r3

    // CTR = 3

    mtctr r6

    // Repeat the following loop

    // once for each element in

    // the current row of the array:

L45:

    stw r0,0(r2)    // Zero out current element

    addi r2,r2,4    // Move on to next element

    bdnz L45        // Repeat loop CTR times

    addi r11,r11,1  // Bump up RowIndex by one

    addi r9,r9,12   // Index of next row in array

    cmpwi cr7,r11,2 // Repeat for RowIndex=0..2

    ble+ cr7,L15

    addi r8,r8,1    // Bump up depthIndex by one

    addi r10,r10,3  // Bump up element cnt by three 

    cmpwi cr7,r8,2  // Repeat for depthIndex=0..2

    ble+ cr7,L16

/////////////////////////////////////////////////////

//

// Here's the code that initializes the pseudo-static

// array:

    li r8,0         // DepthIndex = 0

No Starch Press, Copyright © 2006 by Randall Hyde



278 Chap te r 9

    addi r10,r1,64  // Compute base address of ssArray

    li r0,0

    li r7,0         // R7 is index to current row

L31:

    li r11,0        // RowIndex = 0

    slwi r9,r7,2    // Convert row/int index to

                    //  row/byte index (int_index*4)

L30:

    li r6,3         // # iterations for colIndex

    add r2,r9,r10   // Base + row_index = row address

    mtctr r6        // CTR = 3

// Repeat innermost loop three times:

L44:

    stw r0,0(r2)    // Zero out current element

    addi r2,r2,4    // Bump up to next element

    bdnz L44        // Repeat CTR times

    addi r11,r11,1  // Bump up RowIndex by one

    addi r9,r9,12   // R9 = Adrs of start of next row

    cmpwi cr7,r11,2 // Repeat until RowIndex >= 3

    ble+ cr7,L30

    addi r8,r8,1    // Bump up depthIndex by one

    addi r7,r7,9    // Index of next depth in array

    cmpwi cr7,r8,2

    ble+ cr7,L31

    lwz r0,200(r1)

    li r3,0

    addi r1,r1,192

    mtlr r0

    blr

Different compilers and different optimization levels will handle 
dynamic array access and pseudo-static array access in different ways. Some 
compilers will generate the same code for both sequences, many will not. But 
the bottom line is that multidimensional dynamic array access is never faster 
than pseudo-static multidimensional array access, and it is sometimes slower.

9.1.6.3 Pure Dynamic Arrays

Pure dynamic arrays are even more difficult to manage. You’ll rarely find 
pure dynamic arrays outside of very high-level languages like APL, SNOBOL4, 
Lisp, and Prolog. Most languages that support pure dynamic arrays don’t 
force you to explicitly declare or allocate storage for an array. Instead, you 
just use elements of an array and if that element isn’t currently present in the 
array, the language will automatically create it for you. So, what happens if 
you currently have an array with elements 0 through 9 and you decide to use 
element 100? Well, the result is language dependent. Some languages that 

No Starch Press, Copyright © 2006 by Randall Hyde



Array Da ta  Types 279

support pure dynamic arrays will automatically create array elements 10 
through 100 and initialize elements 10 through 99 with 0 (or some other 
default value). Other languages may allocate only element 100 and keep 
track of the fact that the other elements are not yet present in the array. 
Regardless, the extra bookkeeping that is necessary for each access to the 
array can be quite expensive. That is why languages that support pure dynamic 
arrays aren’t more popular—they tend to execute programs slowly.

If you’re using a language that supports dynamic arrays, just keep in 
mind the costs associated with array access in that language. If you’re using a 
language that doesn’t support dynamic arrays, but does support memory 
allocation/deallocation (e.g., C/C++, Java, or assembly), you can implement 
dynamic arrays yourself. You’ll be painfully aware of the costs of using such 
arrays because you’re probably going to have to write all the code that manip-
ulates the array’s elements, although this is not an altogether bad thing. If 
you’re using C++, you can even overload the array index operator ([]) to 
hide the complexity of dynamic array element access. Generally, though, 
programmers who need the true semantics of dynamic arrays will usually 
choose a language that directly supports them. Just be aware of the costs if 
you choose to go this route.

9.2 For More Information

This chapter dealt with the low-level implementation of arrays. For more 
information on data types, you can head off in two directions at this point: 
lower or higher. To learn more about the low-level implementation of 
various data types, you’ll probably want to start learning and mastering 
assembly language. The Art of Assembly Language (No Starch Press, 2003) is a 
good place to begin that journey. Higher-level data structure information is 
available in just about any decent college textbook on data structures and 
algorithm design. There are, literally, hundreds of these books available 
covering a wide range of subjects. For those interested in a combination 
of low-level and high-level concepts, a good choice is Donald Knuth’s 
The Art of Computer Programming, Volume 1 (Third Edition, Addison-Wesley 
Professional, 1997) This text is available in almost every bookstore that 
carries technical books.

As noted in the previous chapter, textbooks on programming language 
design and compiler design and implementation are good sources of infor-
mation about the low-level implementation of data types, including composite 
data types. See the last section of the previous chapter for more details.

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



10
S T R I N G  D A T A  T Y P E S

After integers, character strings are prob-
ably the most common data type used in 

modern programs; they are also the second 
most commonly used composite data type (arrays 

are the most commonly used composite data type).  
A string is a sequence of objects. Most often, the term 
string describes a sequence of character values, but it’s quite possible to have 
strings of integers, real values, Boolean values, and so on. I’ve already discussed 
bit strings in this book and in Write Great Code, Volume 1. Nevertheless, in this 
section I’ll stick to the common use of the term string and use it to refer to 
character strings.

In general, a character string is a sequence of characters that possesses two 
main attributes: a length and some character data. Character strings can also 
possess other attributes, such as the maximum length allowable for that par-
ticular variable or a reference count that specifies how many different string 
variables refer to the same character string. I’ll look at these attributes and 

No Starch Press, Copyright © 2006 by Randall Hyde



282 Chap te r 10

how programs can use them in the following sections that describe various 
string formats and some of the possible string operations. This chapter 
discusses the following topics:

� Character string formats including zero-terminated strings, length-
prefixed strings, HLA strings, and 7-bit strings

� When to use (and when not to use) standard library string processing 
functions

� Static, pseudo-dynamic, and dynamic strings

� Reference counting and strings

� Unicode and UTF-8 character data in strings

String manipulation consumes a fair amount of CPU time in today’s 
applications. Therefore, understanding how programming languages repre-
sent and operate on character strings is important if you want to write efficient 
code that manipulates those strings. This chapter provides the basic informa-
tion you’ll need to write great code that manipulates character string data.

10.1 Character String Formats

Different languages use different data structures to represent strings. Some 
string formats use less memory, others allow faster processing, some are more 
convenient to use, some are easy for the compiler writers to implement, and 
some provide additional functionality for the programmer and operating 
system. 

Although their internal representations vary, every string format has one 
thing in common: the character data. This is a sequence of zero or more bytes 
(the term sequence implies that the order of the characters is important). How a 
program references this sequence of characters varies by format. In some 
string formats, the sequence of characters is kept in an array of characters; 
in other string formats the program maintains a pointer to the sequence of 
characters elsewhere in memory.

All character string formats share the length attribute. However, different 
string formats use a lot of different ways to represent the length of a string. 
Some string formats use a special sentinel character to mark the end of the 
string. Other formats precede the character data with a numeric value that 
specifies the number of characters in the sequence. Still other string formats 
encode the length as a numeric value in a variable that is not connected to 
the character sequence. Some character string formats use a special bit (set 
or cleared) to mark the end of a string. Some string formats use a combina-
tion of these methods. How a particular string format determines the length 
of a string can have a big impact on the performance of the functions that 
manipulate those strings. This method can also affect how much extra storage 
is needed to represent string data.

Some string formats provide additional attributes such as a maximum 
length and reference count values that certain string functions can use to 
operate on string data more efficiently. These extra attributes are optional 

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 283

insofar as they aren’t strictly necessary to define a string value. They do, 
however, allow string manipulation functions to provide certain tests for 
correctness or to work more efficiently than had these attributes not been 
present.

To help you better understand the reasoning behind the design of 
character strings, I’ll look at some common string representations pop-
ularized by various languages.

10.1.1 Zero-Terminated Strings
Without question, zero-terminated strings (see Figure 10-1) are probably the 
most common string representation in use today because this is the native 
string format for C, C++, Java, and several other languages. In addition, you’ll 
find zero-terminated strings used in programs written in languages that don’t 
have a specific native string format, such as assembly language.

Figure 10-1: Zero-terminated string format

A zero-terminated ASCII string (also called an ASCIIz string or a zstring)
is a sequence containing zero or more 8-bit character codes and ending with a 
byte containing zero (or, in the case of Unicode [UTF-16], a sequence con-
taining zero or more 16-bit character codes ending with a 16-bit word contain-
ing zero). For example, in C/C++, the ASCIIz string abc requires 4 bytes: 1 byte 
for each of the 3 characters a, b, and c, followed by a zero byte. 

Zero-terminated strings have several advantages over other string 
formats:

� Zero-terminated strings can represent strings of any practical length with 
only 1 byte of overhead (2 bytes in Unicode). 

� Given the popularity of the C/C++ programming languages, high-
performance string processing libraries are available that work well 
with zero-terminated strings. 

� Zero-terminated strings are easy to implement. Indeed, except for dealing 
with string literal constants, the C/C++ programming languages don’t 
provide native string support. As far as the C and C++ languages are 
concerned, strings are just arrays of characters. That’s probably why C’s 
designers chose this format in the first place—so they wouldn’t have to 
clutter up the language with string operators. 

� This format allows you to easily represent zero-terminated strings 
in any language that provides the ability to create an array of 
characters.

S t r i n g #0

Character data
Zero-terminating byte

No Starch Press, Copyright © 2006 by Randall Hyde



284 Chap te r 10

However, despite these advantages, zero-terminated strings also have 
disadvantages—they are not always the best choice for representing char-
acter string data. These disadvantages are as follows:

� String functions often aren’t very efficient when operating on zero-
terminated strings. Many string operations need to know the length of 
the string before working on the string data. The only reasonable way to 
compute the length of a zero-terminated string is to scan the string from 
the beginning to the end. The longer your strings are, the slower this 
function runs. Therefore, the zero-terminated string format isn’t the 
best choice if you need to process long strings.

� Although this is a minor problem, you cannot easily represent the 
character code zero (such as the ASCII NUL character) with the zero-
terminated string format. 

� With zero-terminated strings no information is contained within the string 
data itself that tells you how long a string can grow beyond the terminat-
ing zero byte. Therefore, some string functions, like concatenation, can 
only extend the length of an existing string variable and check for over-
flow if the caller explicitly passes the maximum length.

One nice feature of zero-terminated strings is that you can easily imple-
ment them using pointers and arrays of characters. This is probably the main 
reason the C programming language originally adopted them—they are easy 
to implement. Consider the following C/C++ statement:

someCharPtrVar = "Hello World";

If you look at the code a compiler generates for this statement, it will 
probably look like the following (emitted by the Borland C++ compiler):

;       char *someCharPtrVar;

   ;        someCharPtrVar = "Hello World";

   ;    

@1:

; "offset" means "take the address of" and "s@" is

; the compiler-generated label where the string

; "Hello World" can be found.

    mov       eax,offset s@

        .

        .

        .

_DATA   segment dword public use32 'DATA'

;       s@+0:

; Zero-terminated sequence of characters

; emitted for the literal string "Hello World":

s@      label   byte

        db      "Hello World",0

_DATA   ends

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 285

The Borland C++ compiler simply emits the literal string Hello World to 
the global data segment in memory and then loads the someCharPtrVar vari-
able with the address of the first character of this string literal in the data 
segment. From that point forward, the program can refer to the string data 
indirectly via this pointer. This is a very convenient scheme from the 
compiler writer’s point of view.

When using zero-terminated strings in a language like C, C++, C#, Java, 
or any of a dozen other languages that have adopted C’s string format, you 
can improve the performance of your string-handling code sequences by 
keeping a few points in mind:

� Try to use the language’s runtime library functions rather than attempting 
to code comparable functions yourself. Most compiler vendors provide 
highly optimized versions of their string functions that will run many 
times faster than code you would probably write yourself. 

� Once you are forced to compute the length of a string by scanning the 
entire string, save that length for future use (rather than recomputing 
the length every time you need it).

� Avoid copying string data from one string variable to another. Copying 
string data from one place to another in memory is one of the more 
expensive costs (after length computation) in applications using zero-
terminated strings.

I’ll consider each of these points, in turn, in the following subsections.

10.1.1.1 Utilize C Standard Library String Functions

Some programmers, especially assembly language programmers, find it hard 
to believe that someone else could write faster or higher-quality code. When 
it comes to replicating standard library functions, avoid the temptation to 
replace the standard library code with code of your own choosing. Unless the 
library code you’re considering is especially bad, chances are pretty good you 
won’t come close to duplicating the efficiency of the existing library code. This 
is especially true for string functions that handle zero-terminated strings in 
languages like C and C++.

Standard libraries are generally better than the code you might write 
yourself for three main reasons: experience, maturity, and inline substitution.

The first reason you should avoid writing your own string functions 
is experience—your lack of experience with string-handling functions 
compared to the experience of the typical programmer who writes compiler 
runtime libraries. New compilers often have notoriously inefficent libraries 
accompanying them. However, as time passes, the compiler vendor’s pro-
gramming staff gains considerable experience writing those library routines 
and they figure out how to do a good job writing various string-handling 
functions. Unless you’ve spent considerable time writing those same types 
of routines, chances are pretty good that you’ll write inferior code. Many 
compiler vendors purchase their standard library code from some other 
party that specializes in writing library code, so even if the compiler you’re 
using is fairly new, it may have a good library accompanying it. Today, few 

No Starch Press, Copyright © 2006 by Randall Hyde



286 Chap te r 10

commercial compilers contain horribly inefficient library code. For the 
most part, only research or “hobby” compilers contain library code that 
is so bad you can easily improve on it by rewriting that code. Consider a 
simple example—the C standard library strlen (string length) function. 
Here’s a typical implementation of strlen that an inexperienced pro-
grammer might write:

#include <stdlib.h>

int myStrlen( char *s )

{

    char *start;

    start = s;

    while( *s != 0 )

    {

        ++s;

    }

    return s - start;

}

int main( int argc, char **argv )

{

    

    printf( "myStrlen = %d", myStrlen( "Hello World" ));    

    return 0;

}

The 80x86 machine code that Microsoft’s Visual C++ compiler generates 
for myStrlen is probably what any assembly programmer would expect:

_myStrlen PROC NEAR 

; File t.c

; Line 7

        mov     eax, DWORD PTR _s$[esp-4]

        mov     ecx, eax

; Line 8

        cmp     BYTE PTR [eax], 0

        je      SHORT $L833

$L832:

        mov     dl, BYTE PTR [eax+1]

; Line 10

        inc     eax

        test    dl, dl

        jne     SHORT $L832

$L833:

; Line 12

        sub     eax, ecx

; Line 13

        ret     0

_myStrlen ENDP

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 287

No doubt, an experienced assembly language programmer could 
rearrange these particular instructions to speed them up a bit. Indeed, 
even an average 80x86 assembly language programmer could point out 
that the 80x86 scasb instruction does most of the work found in this code 
sequence.1 Although this code is fairly short and easy to understand, by no 
means will it run as fast as possible. An expert assembly language program-
mer might note that this loop repeats one iteration for each character in the 
string and accesses the characters in memory 1 byte at a time. The perfor-
mance of this string function could be improved by unrolling the loop and 
processing more than one character per loop iteration. For example, con-
sider the following HLA standard library str.zlen function that computes the 
length of a zero-terminated string by processing four characters at a time:

unit stringUnit;

#include( "strings.hhf" );

/*

* zlen- 

* 

* Returns the current length of the z-string 

* passed as a parameter.

*                                                                 */

procedure str.zlen( var zstr:byte ); 

    @noalignstack; 

    @nodisplay; 

    @noframe;

const

    zstrp   :text := "[esp+8]";

    

begin zlen;

    push( esi );

    mov( zstrp, esi );

    

    // We need to get ESI dword-aligned before proceeding.

    // If the L.O. two bits of ESI contain zeros, then

    // the address in ESI is a multiple of four. If they

    // are not both zero, then we need to check the one,

    // two, or three bytes starting at ESI to see if they

    // contain a zero-terminator byte.

    

    test( 3, esi );             

    jz ESIisAligned;            

    

    // Does the byte at ESI contain zero?

    // If so, we're done.

1 Of course, a really good assembly programmer also knows that the scasb instruction is usually 
slower than the discrete set of instructions that accomplish the same task.

No Starch Press, Copyright © 2006 by Randall Hyde



288 Chap te r 10

    cmp( (type char [esi]), #0 );

    je SetESI;

    // If not, move on to the next byte and

    // see if ESI is now dword-aligned:

    inc( esi );

    test( 3, esi );

    jz ESIisAligned;

    

    // If we're still not dword-aligned,

    // check this byte to see if it contains

    // a zero (marking the end of the string):

    cmp( (type char [esi]), #0 );

    je SetESI;

    // Okay, still not at the end of the string,

    // bump up ESI by one and try again:

    inc( esi );

    test( 3, esi );

    jz ESIisAligned;

    // Check the third byte to see if it

    // is the zero-terminating byte.

    

    cmp( (type char [esi]), #0 );

    je SetESI;

    inc( esi ); 

    

    // At this point, we have to be

    // dword-aligned.

    // The following loops process 32 bytes

    // at a time (it is unrolled to help 

    // reduce loop overhead cost).

    ESIisAligned:

        // To counteract add immediately below.

        sub( 32, esi ); 

        

    ZeroLoop:

        // Skip the chars this loop just processed.

        add( 32, esi );         

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 289

    ZeroLoop2:

        // The following code grabs

        // four bytes and does a quick

        // check to see if any of these

        // bytes might be zero.

        mov( [esi], eax );

        // Clear H.O. bit (note:$80->$00!)

        and( $7f7f7f7f, eax );  

        

        // $00 and $80->$FF, 

        // all others have pos val.

        sub( $01010101, eax );

        // Test all H.O. bits.  

        // If any are set, then 

        // we've got a $00 or $80 byte.

        and( $80808080, eax );  

        jnz MightBeZero0;       

        

        // The following are all 

        // inline expansions of the above

        // (we'll process 32 bytes on 

        // each iteration of this loop).

        mov( [esi+4], eax );    

        and( $7f7f7f7f, eax );  

        sub( $01010101, eax );   

        and( $80808080, eax );

        jnz MightBeZero4;

        

        mov( [esi+8], eax );

        and( $7f7f7f7f, eax );

        sub( $01010101, eax );

        and( $80808080, eax );

        jnz MightBeZero8;

        

        mov( [esi+12], eax );

        and( $7f7f7f7f, eax );

        sub( $01010101, eax );

        and( $80808080, eax );

        jnz MightBeZero12;

        

        mov( [esi+16], eax );

        and( $7f7f7f7f, eax );

        sub( $01010101, eax );

        and( $80808080, eax );

        jnz MightBeZero16;

        

No Starch Press, Copyright © 2006 by Randall Hyde



290 Chap te r 10

        mov( [esi+20], eax );

        and( $7f7f7f7f, eax );

        sub( $01010101, eax );

        and( $80808080, eax );

        jnz MightBeZero20;

        

        mov( [esi+24], eax );

        and( $7f7f7f7f, eax );

        sub( $01010101, eax );

        and( $80808080, eax );

        jnz MightBeZero24;

        

        mov( [esi+28], eax );

        and( $7f7f7f7f, eax );

        sub( $01010101, eax );

        and( $80808080, eax );

        jz ZeroLoop;

    

    // The following code handles the case where we 

    // found a $80 or a $00 byte.  We need to determine 

    // whether it was a 0 byte and the exact position 

    // of the 0 byte.  If it was a $80 byte, then 

    // we've got to continue processing characters

    // in the string.

     

    

    // Okay, we've found a $00 or $80 byte in positions

    // 28..31.  Check for the location of the 0 byte, 

    // if any.

        

        add( 28, esi );

        jmp MightBeZero0;

    // If we get to this point, we've found a 0 byte in

    // positions 4..7:

    

    MightBeZero4:

        add( 4, esi );

        jmp MightBeZero0;

    // If we get to this point, we've found a 0 byte in

    // positions 8..11:

    

    MightBeZero8:

        add( 8, esi );

        jmp MightBeZero0;

    // If we get to this point, we've found a 0 byte in

    // positions 12..15:

    

    MightBeZero12:

        add( 12, esi );

        jmp MightBeZero0;

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 291

    // If we get to this point, we've found a 0 byte in

    // positions 16..19:

    

    MightBeZero16:

        add( 16, esi );

        jmp MightBeZero0;

    // If we get to this point, we've found a 0 byte in

    // positions 20..23:

    

    MightBeZero20:

        add( 20, esi );

        jmp MightBeZero0;

    // If we get to this point, we've found a 0 byte in

    // positions 24..27:

    

    MightBeZero24:

        add( 24, esi );

    // If we get to this point, we've found a 0 byte in

    // positions 0..3 or we've branched here from one of

    // the above conditions

    

    MightBeZero0:

        

        // Get the original 4 bytes.

        mov( [esi], eax );

        // See if the first byte contained a 0.

          

        cmp( al, 0 );               

        je SetESI;

        // See if the second byte contained a 0.

        cmp( ah, 0 );               

        je SetESI1;

        // See if the third byte contained a 0.

        test( $FF_0000, eax );      

        je SetESI2;

    

        // See if the H.O. byte contained a 0.

        test( $FF00_0000, eax );    

        je SetESI3;

        

    // Well, it must have been a $80 byte we encountered.

    // (Fortunately, they are rare in ASCII strings, so 

    // all this extra computation rarely occurs).  Jump 

    // back into the zero loop and continue processing.

    

No Starch Press, Copyright © 2006 by Randall Hyde



292 Chap te r 10

        add( 4, esi );  // Skip bytes we just processed.

        jmp ZeroLoop2;  // Don't add 32 in the ZeroLoop!

        

    // The following computes the length of the string by 

    // subtracting the current ESI value from the original 

    // value and then adding zero, one, two, or three, 

    // depending on where we branched out of the 

    // MightBeZero0 sequence above.

    

    SetESI3:

        // Compute length +3 since it was in the H.O. byte.

        sub( zstrp, esi );      

        lea( eax, [esi+3] );

        pop( esi );

        ret(4);

        

    // Compute length +2 since zero was in the third byte.

    SetESI2:

        sub( zstrp, esi );      

        lea( eax, [esi+2] );

        pop( esi );

        ret(4);

        

    // Compute length +1 since zero was in the second byte.

    SetESI1:

        sub( zstrp, esi );

        lea( eax, [esi+1] );

        pop( esi );

        ret(4);

      

    // Compute length. No extra addition 

    // because zero was in the L.O. byte.

  

    SetESI:

        mov( esi, eax );

        sub( zstrp, eax );

        pop( esi );

        ret(4);

        

end zlen;

    

end stringUnit;

Even though this function is much longer and much more complex 
than the simple example given earlier, it manages to run faster because it 
executes far fewer loop iterations because it processes four characters per 
loop iteration rather than one. Also, this code reduces loop overhead by 
“unrolling” eight copies of the loop (that is, expanding eight copies of the 
loop body inline), thereby saving the execution of 87 percent of the loop 

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 293

control instructions. As a result, this code runs anywhere from two to six 
times faster than the code given earlier; the exact savings depend upon the 
length of the string.2

The second reason that writing your own library functions is a bad idea 
is due to the maturity of the code. Most popular optimizing compilers avail-
able today have been around for a while. This time has allowed the compiler 
vendors to use their routines, determine where the bottlenecks lie, and 
optimize their code. When you write your own version of a standard library 
string-handling function, chances are pretty good you won’t have the time to 
dedicate to optimizing that particular function—you’ve got your entire appli-
cation to worry about. Because of project time limitations, chances are pretty 
good you will never go back and rewrite that string function to improve its 
performance. Even if there is a slight performance advantage to your routine, 
don’t forget that the compiler vendor may very well update their library in 
the future, and you could take advantage of those improvements by simply 
relinking the new code with your project. However, if you write the library 
code yourself, it will never improve unless you explicitly improve it yourself. 
Of course, most people are too busy working on new projects to go back and 
clean up their old code, so the likelihood of improving self-written string 
functions in the future is quite low.

The third reason for using standard library string functions in a language 
like C or C++ is the most important: inline expansion. Many compilers recog-
nize certain standard library function names expand them inline to efficient 
machine code in place of the function call. This inline expansion can be many 
times faster than an explicit function call, especially if the function call con-
tains several parameters. As a simple example, consider the following (almost 
trivial) C program:

#include <stdlib.h>

int main( int argc, char **argv )

{

    char localStr[256];

    

    strcpy( localStr, "Hello World" );

    printf( localStr );    

    return 0;

}

The 80x86 assembly code that Visual C++ produces is quite interesting:

; Storage for the literal string appearing in the

; strcpy invocation:

_DATA   SEGMENT

??_C@_0M@FEIK@Hello?5World?$AA@ DB 'Hello World', 00H

2 It is worth pointing that this code is not an exact replacement for the simplistic C code given in 
this section. The HLA code assumes that all strings are padded to a multiple of 4 bytes in length 
(a reasonable assumption in HLA). This isn’t necessarily true for standard C strings.

No Starch Press, Copyright © 2006 by Randall Hyde



294 Chap te r 10

_DATA   ENDS

_TEXT   SEGMENT

_localStr$ = -256

_main   PROC NEAR

; Allocate storage for the localStr variable on the stack:

    sub esp, 256

; strcpy( localStr, "Hello World" );

;

; Note how this code directly copies the 12 bytes

; (11 characters plus a zero byte) in the string 

; literal object to localStr.

    mov eax, DWORD PTR ??_C@_0M@FEIK@Hello?5World?$AA@

    mov ecx, DWORD PTR ??_C@_0M@FEIK@Hello?5World?$AA@+4

    mov edx, DWORD PTR ??_C@_0M@FEIK@Hello?5World?$AA@+8

    mov DWORD PTR _localStr$[esp+256], eax

    mov DWORD PTR _localStr$[esp+260], ecx

    mov DWORD PTR _localStr$[esp+268], edx

; printf( localStr );

    lea eax, DWORD PTR _localStr$[esp+256]

    push    eax

    call    _printf

; return 0;

    xor eax, eax

    add esp, 260

    ret 0

_main   ENDP

The impressive thing to note here is how the compiler recognizes what is 
going on and substitutes six inline instructions that copy the 12 bytes of the 
string from the literal constant in memory to the localStr variable. The over-
head of a call and return to an actual strcpy function is going to be more 
expensive than this (and that’s without considering the work needed to copy 
the string data). This example demonstrates quite well why you should usually 
call standard library functions rather than writing your own “optimized” 
functions to do the same job.

10.1.1.2 When Not to Use Standard Library Functions

Although it is usually better to call a standard library routine rather than to 
write your own version of the routine, there are some special situations when 
you should write your own code rather than rely on one or more library 
functions in the standard library. 

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 295

Library functions work great when they perform exactly the function you 
need—no more and no less. One area where programmers get into trouble 
is when they misuse a library function and call it to do something that the 
function wasn’t really intended to do, or the programmer only needs part of 
the work done that the function provides. For example, consider the C 
standard library strcspn function:

size_t strcspn( char *source, char *cset );

This function scans for the first character in source that is not found in 
the set of characters specified in the cset string. This function returns the 
number of characters in source up to the first character it finds that is present 
(somewhere) in the cset string. It is not at all uncommon to see calls to this 
function that look like this:

len = strcspn( SomeString, "a" );

The intent here is to return the number of characters in SomeString
before the first occurrence of an a character in that string. That is, to do 
something like the following:

len = 0;

while

( 

SomeString[ len ] != '\0' 

&& SomeString[ len ] != 'a' 

){

++len;

}

Unfortunately, the call to the strcspn function is probably a lot slower 
than this simple while loop implementation. That’s because strcspn actually 
does a lot more work than search for a single character within a string. It 
looks for any character from a set of characters within the source string. The 
generic implementation of this function might be something like:

len = 0;

for(;;) // Infinite loop

{

ch = SomeStr[ len ];

if( ch == '\0' ) break;

for( i=0; i<strlen( cset ); ++i )

{

if( ch == cset[i] ) break;

}

if( ch == cset[i] ) break;

++len;

}

No Starch Press, Copyright © 2006 by Randall Hyde



296 Chap te r 10

With a little analysis (and noting that we have a pair of nested loops here), 
it should be pretty obvious that this code is slower than the code given earlier, 
even if you pass in a cset string containing a single character. This is a classic 
example of calling a function that is more general than you need (it searches 
for any of several termination characters rather than the special case of a 
single terminating character). When a function does exactly what you want, 
using the standard library’s version of that function is a good idea. However, 
when it does more than you need to do, using the standard library function 
can be more trouble than it’s worth from a program efficiency point of view.

10.1.1.3 Avoid Recomputing Data

The last example in the previous section demonstrates a common C pro-
gramming mistake. Consider the coded fragment:

for( i = 0; i < strlen( cset ); ++i )

{

if( ch == cset[i] ) break;

}

On each iteration of this loop, the code tests the loop index to see if it is 
less than the length of the cset string. Because this loop body does not modify 
the cset string (and because, presumably, this is not a multithreaded appli-
cation with another thread modifying the cset string), there really is no need 
to recompute the string length on each iteration of this loop. Look at the 
code that the Microsoft Visual C++ compiler emits for this code fragment:

; (EAX = src)

    mov eax, DWORD PTR _src$[esp-4]

;   len = 0;

    xor ebp, ebp

;   for( ;; )

;   {

;       ch = src[ len ];

    mov bl, BYTE PTR [eax]

;       if( ch ==  '\0' ) break;

    test    bl, bl

    je  SHORT $L872

; (ESI = cset )

    mov esi, DWORD PTR _cset$[esp+12]

;       for( i = 0; i < strlen( cset ); ++i )

;       {

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 297

$L836:

; i = 0

    xor edx, edx    

;strlen( cset )

    mov edi, esi    ;Scan through cset

    or  ecx, -1     ;Scan all chars

    xor eax, eax    ;Scan for 0 byte

    repne scasb

    not ecx         ;Compute strlen

    dec ecx

    je  SHORT $L867

$L839:

;           if( ch == cset[i] ) break;

    cmp bl, BYTE PTR [edx+esi]

    je  SHORT $L872

; ++i;

    inc edx

; Note: The compiler unrolled the 

; while test down here; this is another

; copy of the strlen function call.

;

; ** IMPORTANT **

;

; Note how the program executes this

; strlen "function" on each iteration

; of the loop.

    mov edi, esi

    or  ecx, -1

    xor eax, eax

    repne scasb

    not ecx

    dec ecx

    cmp edx, ecx

    jb  SHORT $L839

$L867:

;       if( ch == cset[i] ) break;

    cmp bl, BYTE PTR [edx+esi]

    je  SHORT $L872

No Starch Press, Copyright © 2006 by Randall Hyde



298 Chap te r 10

;       ch = src[ len ];

    mov ecx, DWORD PTR _src$[esp+12]

;       ++len;

    inc ebp

; The following is the first if statement

; in the "for(;;)" loop that the compiler

; has copied down here for efficiency

; reasons:

;

;       if( ch ==  '\0' ) break;

    mov bl, BYTE PTR [ecx+ebp]

    test    bl, bl

    jne SHORT $L836

; } // end for(;;)

As mentioned in the comments, the important thing to note is that the 
machine code will recompute the string’s length on each and every iteration 
of the innermost for loop. Because the cset string’s length never changes, it 
is not necessary to recompute this value on each iteration of the loop. This 
problem can be easily rectified by rewriting the code fragment this way:

slen = strlen( cset );

len = 0;

for(;;) // Infinite loop

{

ch = SomeStr[ len ];

if( ch == '\0' ) break;

for( i = 0; i < slen; ++i )

{

if( ch == cset[i] ) break;

}

if( ch == cset[i] ) break;

++len;

}

A fair number of string operations require the string’s length before 
operations on the string are possible. Consider the strdup function com-
monly found in many C libraries.3 The following code is a common 
implementation of this function:

char *strdup( char *src )

{

char *result;

3
strdup is not defined in the original C standard library, but it is very common for vendors to 

include this function as an extension to the C standard library.

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 299

result = malloc( strlen( src ) + 1 );

assert( result != NULL ); // Check malloc check

strcpy( result, src );

return result;

}

Fundamentally, nothing is wrong with this implementation of strdup. If 
you know absolutely nothing about the string object you’re passing as a 
parameter, then you must compute the string’s length so you know how 
much memory to allocate for a copy of that string. Consider, however, the 
following code sequence that calls strdup:

len = strlen( someStr );

if( len == 0 )

{

newStr = NULL;

}

else

{

newStr = strdup( someStr );

}

The problem here is that you wind up calling strlen twice: once for the 
explicit call to strlen in this code fragment, and once for the call buried in 
the strdup function. The worst part of this problem is that it isn’t obvious that 
you’re calling strlen twice, so it’s not even clear that you’re wasting CPU cycles 
in this code. This is another example of calling a function that is more general 
than you need, causing the recomputation of the string’s length (an inefficient 
process). One solution is to provide a less general version of strdup, say 
strduplen, that lets you pass it the length of the string you’ve already 
computed. You could implement strduplen as follows:

char *strduplen( char *src, size_t len)

{

char *result;

// Allocate storage for new string:

result = malloc( len + 1 );

assert( result != NULL );

// Copy the source string and

// zero byte to the new string:

memcpy( result, src, len+1 );

return result;

}

Notice the use of memcpy rather than strcpy (or, better yet, strncpy). Again, 
we already know the length of the string, there is no need to execute any code 
looking for the zero-terminating byte (as both strcpy and strncpy will do). 

No Starch Press, Copyright © 2006 by Randall Hyde



300 Chap te r 10

Of course, this function implementation assumes that the caller passes the 
correct length, but that’s a standard C assumption for most string and array 
operations.

10.1.1.4 Avoid Copying Data

Copying strings, especially long strings, can be a time-consuming process on 
a computer. Keep in mind that most programs maintain string data in memory 
and memory is much slower than the CPU (often by an order of magnitude, 
or more). Although cache memory can help mitigate this problem, proces-
sing a lot of string data can eliminate other data from the cache and lead 
to thrashing problems if you don’t frequently reuse all the string data you 
move through the cache. Although it isn’t always possible to avoid moving 
string data around, many programs needlessly copy data—and that can have 
a detrimental impact on program performance.

A better solution is to pass around pointers to zero-terminated strings 
rather than copying those strings from string variable to string variable. 
Pointers to zero-terminated strings can fit in registers and don’t consume 
much memory when you use memory variables to hold them. Therefore, 
passing pointers has far less impact on cache and CPU performance than 
copying string data amongst string variables.

10.1.1.5 A Final Comment on Zero-Terminated Strings

Zero-terminated string functions are generally less efficient than functions 
that manipulate other types of strings. Furthermore, programs that utilize 
zero-terminated strings tend to make mistakes, such as calling strlen
multiple times or abusing generic functions to achieve specific goals. 
Fortunately, designing and using a more efficient string format is easy 
enough in languages whose native string format is the zero-terminated 
string.

10.1.2 Length-Prefixed Strings
A second common string format, length-prefixed strings, overcomes some of the 
problems with zero-terminated strings. Length-prefixed strings are common 
in languages like Pascal; they generally consist of a single byte that specifies 
the length of the string, followed by zero or more 8-bit character codes (see 
Figure 10-2). In a length-prefixed scheme, the string abc would consist of 
4 bytes: the length byte ($03) followed by the characters a, b, and c.

Figure 10-2: Length-prefixed string format

S t r i n g#6

Character data
Length prefix byte

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 301

Length-prefixed strings solve two of the problems associated with zero-
terminated strings. 

� NUL characters can be represented in length-prefixed strings

� String operations are more efficient.

Another advantage to length-prefixed strings is that the length is 
usually sitting at position zero in the string (when viewing the string as an 
array of characters), so the first character of the string begins at index one 
in the array representation of the string. For many string functions, having 
a 1-based index into the character data is much more convenient than a 
0-based index (which zero-terminated strings use). 

Length-prefixed strings do suffer from their own drawbacks, the principal 
drawback being that they are limited to a maximum of 255 characters in 
length (assuming a 1-byte length prefix). You can remove this limitation by 
using a 2- or 4-byte length value, but doing so increases the amount of over-
head data from 1 to 2 or 4 bytes. However, extending the length field to 2 or 4 
bytes also changes the starting index of the string from 1 to either 2 or 4, 
eliminating the 1-based index feature. While there are ways to overcome 
this problem, they entail extra overhead.

Many string functions are much more efficient when using length-
prefixed strings. Obviously, computing the length of a string is a trivial opera-
tion; it’s just a memory access. Other string functions that ultimately need the 
string’s length (such as concatenation and assignment) are usually more effi-
cient than similar functions for zero-terminated strings. Furthermore, you 
don’t have to worry about recomputing the string’s length every time you call 
a string function that is built into the language’s standard library.

Although length-prefixed string functions are generally faster than the 
comparable functions you’d find in a zero-terminated string package, don’t 
get the impression that programs using length-prefixed string functions are 
always going to be efficient. You can still waste many CPU cycles by needlessly 
copying data. And as with zero-terminated strings, if you only use a subset of 
a string function’s capabilities, you can waste lots of CPU cycles performing 
unnecessary tasks.

As with zero-terminated strings, you should keep the following points 
in mind:

� Try to use the language’s runtime library functions rather than attempt-
ing to code comparable functions yourself. Most compiler vendors provide 
highly optimized versions of their string functions that will run many 
times faster than code you would probably write yourself. 

� Although computing the string length when using the length-prefixed 
string format is fairly trivial, many (Pascal) compilers will actually emit a 
function call to extract the length value from the string’s data. The func-
tion call and return is far more expensive than retrieving the length 
value from a variable. So once you compute the string’s length, you 
might want to save that length in a local variable if you intend to use that 

No Starch Press, Copyright © 2006 by Randall Hyde



302 Chap te r 10

same value again. Of course, if a compiler is smart enough to replace a 
call to the length function with a simple data fetch from the string’s data 
structure, this “optimization” won’t buy you much.

� Avoid copying string data from one string variable to another. Copying 
string data from one memory location to another in an application is 
one of the more expensive costs in programs using length-prefixed 
strings.

10.1.3 7-Bit Strings
The 7-bit string format is an interesting string format that works for 7-bit encod-
ings like ASCII. It uses the (normally unused) HO bit of the characters in 
the string to indicate the end of the string. All but the last character code 
in the string has its HO bit clear, and the last character in the string would 
have its HO bit set (see Figure 10-3).  

Figure 10-3: 7-bit string format

This 7-bit string format has several disadvantages:

� You have to scan the entire string in order to determine the length of 
the string.

� You cannot have 0-length strings in this format.

� Few languages provide literal string constants for 7-bit strings. 

� You are limited to a maximum of 128 character codes, although this is 
fine when you are using plain ASCII.

However, the big advantage of 7-bit strings is that they don’t require any 
overhead bytes to encode the length. Assembly language (using a macro to 
create literal string constants) is probably the best language to use when 
dealing with 7-bit strings. The advantage of 7-bit strings is their compactness, 
and assembly language programmers tend to be the ones who worry most 
about compactness, so this is a good match. Here’s an HLA macro that will 
convert a literal string constant to a 7-bit string:

    #macro sbs( s );

        // Grab all but the last character of the string:

        (@substr( s, 0, @length(s) - 1) + 

            // Concatenate the last character 

S t r i n g

Character code with HO bit clear

Character code with HO bit set

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 303

            // with its HO bit set:

            char

            ( 

                uns8

                ( 

                   char( @substr( s, @length(s) - 1, 1))

                ) | $80 

            )

        )

    #endmacro

        .

        .

        .

    byte sbs( "Hello World" );

Because few languages provide support for 7-bit strings, the first 
suggestion that applied to zero-terminated and length-prefixed strings 
doesn’t apply to 7-bit strings: You’re probably going to have to write your 
own string-handling functions. Standard libraries generally don’t provide 
support for 7-bit strings. Computing lengths and copying data are still 
expensive operations, even with 7-bit strings, so these two suggestions do 
apply:

� Once you are forced to compute the length of a string by scanning the 
entire string, save that length for future use (rather than recomputing 
the length every time you need it).

� Avoid copying string data from one string variable to another. Copying 
string data from one memory location to another in an application is 
one of the more expensive costs (after length computation) in programs 
using 7-bit strings.

10.1.4 HLA Strings
As long as you’re not too concerned about a few extra bytes of overhead per 
string, it’s quite possible to create a string format that combines the advantages 
of both length-prefixed and zero-terminated strings without their disadvan-
tages. The HLA language has done this with its native string format.4

The biggest drawback to the HLA character string format is the amount 
of overhead required for each string (which can be significant, percentage-
wise, if you’re in a memory-constrained environment and you process many 
small strings). HLA strings contain a length prefix and a zero-terminating 
byte, as well as some other information, that cost 9 bytes of overhead per 
string.5

4 Note that HLA is an assembly language, so it’s perfectly possible, and easy in fact, to support 
any reasonable string format. HLA’s native string format is the one it uses for literal string 
constants, and this is the format that most of the routines in the HLA standard library support.
5 Actually, because of memory alignment restrictions, there can be up to 12 bytes of overhead, 
depending on the string.

No Starch Press, Copyright © 2006 by Randall Hyde



304 Chap te r 10

The HLA string format uses a 4-byte length prefix, allowing character 
strings to be just over 4 billion characters long (obviously, this is far more 
than any practical application will use). HLA also sticks a zero byte at the end 
of the character string data, so HLA strings are compatible with string func-
tions that reference (but do not change the length of) zero-terminated 
strings. The remaining 4 bytes of overhead in an HLA string contain the 
maximum legal length for that string. Having this extra field allows HLA 
string functions to check for string overflow, if necessary. In memory, HLA 
strings take the form shown in Figure 10-4. 

The 4 bytes immediately before the first character of the string contain 
the current string length. The 4 bytes preceding the current string length 
contain the maximum string length. Immediately following the character 
data is a zero byte. Finally, HLA always ensures that the string data structure’s 
length is a multiple of 4 bytes (for performance reasons). There may be up to 
3 additional bytes of padding at the end of the object in memory (note that 
the string appearing in Figure 10-4 only requires 1 byte of padding to 
ensure that the data structure is a multiple of 4 bytes in length).

Figure 10-4: HLA string format 

HLA string variables are actually pointers that contain the byte address 
of the first character in the string. To access the length fields, you would load 
the value of the string pointer into a 32-bit register. You’d access the Length
field at offset –4 from the base register and the MaxLength field at offset –8 
from the base register. Here’s an example:

static

    s :string := "Hello World";

        .

        .

        .

// Move the address of 'H' in 

//  "Hello World" into esi.

mov( s, esi );        

// Puts length of string 

//  (11 for "Hello World") into ECX.

mov( [esi-4], ecx );  

        .

        .

        .

mov( s, esi );

// See if value in EAX exceeds the 

// maximum string length.

MaxLength Length S t r i n g #0

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 305

cmp( eax, [esi-8] );  

ja StringOverflow;

As noted earlier, the amount of memory reserved to hold an HLA 
string’s character data is always a multiple of 4 bytes. Therefore, you’re 
always guaranteed that you can move data from one HLA string to another by 
copying double words rather than individual bytes. This allows string copy 
routines to run up to four times faster, because you execute one-fourth the 
number of loop iterations copying a string of double words as you would 
copying the string a byte at a time. For example, here is the highly modified 
version of the pertinent code in the HLA str.cpy function that copies one 
string to another:

// Get the source string pointer into ESI,

// and the destination pointer into EDI:

    mov( dest, edi );

    mov( src, esi );

    

// Get the length of the source string 

// and make sure that the source string 

// will fit in the destination string.

    

    mov( [esi-4], ecx );

    

// Save as the length of the destination string.

    

    mov( ecx, [edi-4] );

    

// Add one byte to the length so we will 

// copy the zero byte. Also compute the 

// number of dwords to copy (rather than bytes).

// Then copy the data.

    

    add( 4, ecx );  // Adds one, after division by 4.

    shr( 2, ecx );  // Divides length by four

    rep.movsd();    // Moves length/4 dwords

The HLA str.cpy function also checks for string overflows and NULL 
pointer references (for clarity, that code does not appear in this example). 
However, the important thing to see in this example is that HLA copies the 
strings as double words in order to improve performance.

One nice thing about HLA string variables is that (as read-only objects) 
HLA strings are compatible with zero-terminated strings. For example, if you 
have a function written in C or some other language that expects you to pass 
a zero-terminated string to it, you can call that function and pass an HLA 
string variable to it, like this:

someCFunc( hlaStringVar );

No Starch Press, Copyright © 2006 by Randall Hyde



306 Chap te r 10

The only catch is that the C function must not make any changes to 
the string that would affect its length (because the C code won’t update the 
Length field of the HLA string). Of course, you can always call a C strlen
function upon returning to update the length field yourself, but generally, 
it’s best not to pass HLA strings to a function that modifies zero-terminated 
strings.

The comments on length-prefixed strings generally apply to HLA strings, 
specifically:

� Try to use the HLA standard library functions rather than attempting to 
code comparable functions yourself. Although you might want to check 
out the library function’s source code (available with HLA), most of the 
string functions do a good job on generic string data. 

� Although, in theory, you shouldn’t count on the explicit length field 
appearing in the HLA string data format, most programs simply grab 
the length from the 4 bytes immediately preceding the string data, so 
there generally is no need to save the length. Careful HLA program-
mers will actually call the strlen function in the HLA standard library 
and simply save this value in a local variable for future use. However, 
accessing the length directly is probably a safe thing to do.

� Avoid copying string data from one string variable to another. Copying 
string data from one memory to another in an application is one of the 
more expensive costs in programs using HLA strings.

10.1.5 Descriptor-Based Strings
The string formats I’ve considered up to this point have kept the attribute 
information (the lengths and terminating bytes) for a string in memory along 
with the character data. Perhaps a slightly more flexible scheme is to main-
tain information like the maximum and current lengths of a string in a record 
structure that also contains a pointer to the character data (see  Figure 10-5).  
Such records are called descriptors. Consider the following Pascal/Delphi/Kylix 
data structure:

type

    dString :record

        curLength  :integer;

        strData    :^char;

    end;

Figure 10-5: String descriptors

S t r i n g

6Length

Pointer to data

Descriptor
record

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 307

Note that this data structure does not hold the actual character data. 
Instead, the strData pointer contains the address of the first character of the 
string. The curLength field specifies the current length of the string. Of course, 
you could add any other fields you like to this record, such as a maximum 
length field, although a maximum length isn’t usually necessary because 
most string formats employing a descriptor are dynamic (as will be discussed 
in the next section). Most string formats employing a descriptor just maintain 
the length field.

An interesting attribute of a descriptor-based string system is that the 
actual character data associated with a string could be part of a larger 
string. Because no length or terminating bytes are in the actual character 
data, it is possible to have the character data for two strings overlap. For 
example, take a look at Figure 10-6. In this example, there are two strings: 
one representing the string Hello World and the second representing World.
Notice that the two strings overlap. This can save memory and make certain 
functions (like substring) very efficient. Of course, when strings overlap as 
these do, you cannot modify the string data because that could wipe out 
part of some other string.

Figure 10-6: Overlapping strings using descriptors

The suggestions given for other string formats don’t apply as strongly to 
descriptor-based strings as they do to the other formats. Certainly, if standard 
libraries are available, you should call those functions because they’re 
probably better than the ones you would write yourself. There is no need 
to save the length, because extracting the length field from the string’s 
descriptor is usually a minor task. Also, many descriptor-based string systems 
use copy on write (see Volume 1 for a discussion of copy on write) to reduce 
string copy overhead. In a string descriptor system, you should avoid mak-
ing changes to a string because the copy-on-write semantics generally require 
the system to make a complete copy of the string whenever you change a 
single character (something that isn’t necessary with other string formats).

10.2 Static, Pseudo-Dynamic, and Dynamic Strings

So far, I’ve discussed the various string data formats. Now it is time to 
consider where to store string data in memory. Strings can be classified 
according to when (and where) the system allocates storage for the string. 
This set has three members: static strings, pseudo-dynamic strings, and 
dynamic strings.

H e l l o W o r l d

11 5

Descriptor #1 Descriptor #2

No Starch Press, Copyright © 2006 by Randall Hyde



308 Chap te r 10

10.2.1 Static Strings
Pure static strings are those whose maximum size a programmer chooses when 
writing the program. Pascal strings and Delphi short strings fall into this cate-
gory. Arrays of characters that you will use to hold zero-terminated strings in 
C/C++ also fall into this category as do fixed-length arrays of characters. 
Consider the following declaration in Pascal:

(* Pascal static string example *)

var

    //Max length will always be 255 characters.

    pascalString :string(255); 

And here’s an example in C/C++:

// C/C++ static string example:

//Max length will always be 255 characters (plus zero byte).

char cString[256];

While the program is running, there is no way to increase the maximum 
sizes of these static strings or to reduce the storage they will use. These 
string objects will consume 256 bytes at runtime, period. One advantage to 
pure static strings is that the compiler can determine their maximum length at 
compile time and implicitly pass this information to a string function so it 
can test for bounds violations at runtime.

10.2.2 Pseudo-Dynamic Strings
Pseudo-dynamic strings are those whose length the system sets at runtime by 
calling a memory-management function like malloc to allocate storage for the 
string. However, once the system allocates storage for the string, the maximum 
length of the string is fixed. HLA strings generally operate in this manner.6

An HLA programmer would typically call the stralloc function to allocate 
storage for a string variable. Once created via stralloc, however, that 
particular string object has a fixed length that cannot change.7

10.2.3 Dynamic Strings
Dynamic string systems, which typically use a descriptor-based format, will 
automatically allocate sufficient storage for a string object whenever you 
create a new string or otherwise do something that affects an existing string. 

6 Though, being assembly language, of course it’s possible to create static strings and pure 
dynamic strings in HLA, as well.
7 Actually, you could call strrealloc to change the size of an HLA string, but dynamic string 
systems generally do this automatically, something that the existing HLA string functions will 
not do for you if they detect a string overflow.

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 309

Operations like string assignment and substring extraction are relatively trivial 
in dynamic string systems—generally they copy only the string descriptor data, 
so such operations are fast. However, as noted in the section on descriptor 
strings, when using strings this way, you cannot store data back into a string 
object, because it could modify data that is part of other string objects in the 
system. 

The solution to this problem is to use a technique known as copy on write.
Whenever a string function needs to change some characters in a dynamic 
string, the function first makes a copy of the string and then makes whatever 
modifications are necessary to the copy of the data. Research with typical 
programs suggests that copy-on-write semantics can improve the performance 
of many applications because operations like string assignment and substring 
extraction (which is just a partial string assignment) are far more common 
than the modification of character data within strings. The only drawback to 
this mechanism is that after several modifications to string data in memory, 
there may be sections of the string heap area that contain character data that 
is no longer in use. To avoid a memory leak, dynamic string systems employing 
copy on write usually provide garbage collection code that scans through the 
string area looking for stale character data in order to recover that memory 
for other purposes. Unfortunately, depending on the algorithms in use, 
garbage collection can be quite slow.

10.3 Reference Counting for Strings

Consider the case where you have two string descriptors (or just pointers) 
pointing at the same string data in memory. Clearly, you can’t deallocate 
(that is, reuse for a different purpose) the storage associated with one of 
these pointers while the program is still using the other pointer to access 
the same data. One common solution is to make the programmer responsi-
ble for keeping track of such details. Unfortunately, as applications become 
more complex, relying on the programmer to keep track of such details 
often leads to dangling pointers, memory leaks, and other pointer-related 
problems in the software. A better solution is to allow the programmer to 
deallocate the storage for the character data in the string and to have the 
deallocation process hold off on the actual deallocation until the programmer 
releases the last pointer referencing the character data for the string. 
To accomplish this, a string system can use reference counters to track the 
pointers and their associated data.

A reference counter is an integer that counts the number of pointers 
that reference a string’s character data in memory. Every time you assign the 
address of the string to some pointer, you increment the reference counter 
by one. Likewise, whenever you want to deallocate the storage associated with 
the character data for the string, you decrement the reference counter. 
Deallocation of the storage for the actual character data doesn’t happen 
until the reference counter decrements to zero. 

Reference counting works great when the language handles the details 
of string assignment automatically for you. If you try to implement reference 
counting manually, the only difficulty is ensuring that you always increment 

No Starch Press, Copyright © 2006 by Randall Hyde



310 Chap te r 10

the reference counter when you assign a string pointer to some other pointer 
variable. The best way to do this is to never assign pointers directly but handle 
all string assignments via some function (or macro) call that updates the 
reference counters in addition to copying the pointer data. If your code fails 
to update the reference counter properly, you’ll wind up with dangling 
pointers or memory leaks.

10.4 Delphi/Kylix Strings

Although Delphi and Kylix provide a “short string” format that is compatible 
with the length-prefixed strings in earlier versions of Delphi and Turbo Pascal, 
later versions of Delphi (v4.0 and later) and Kylix use dynamic strings for 
their native string format. Although this string format is unpublished (there-
fore, subject to change), experiments with Delphi at the time of this writing 
indicate that Delphi’s string format is very similar to HLA’s. Delphi uses a 
zero-terminated sequence of characters with a leading string length and a 
reference counter (rather than a maximum length as HLA uses). Figure 10-7 
shows the layout of a Delphi/Kylix string in memory.

Figure 10-7: Delphi/Kylix string data format

Just like HLA, Delphi/Kylix string variables are pointers that point to the 
first character of the actual string data. To access the length and reference-
counter fields, the Delphi/Kylix string routines use a negative offset of –4 
and –8 from the character data’s base address. However, because this string 
format is not published, applications should never access the length or refer-
ence counter fields directly. Delphi/Kylix provides a length function that 
extracts the string length for you, and there really is no need for your appli-
cations to access the reference counter field because the Delphi/Kylix string 
functions maintain this field automatically.

10.5 Using Strings in a High-Level Language

Strings are a very common data type found in high-level programming 
languages. Because applications often make extensive use of string data, 
many HLLs provide libraries with lots of complex string manipulation 
routines that hide considerable complexity from the programmer. Unfor-
tunately, it is easy to forget the amount of work involved in a typical string 
operation when you execute a statement like:

aLengthPrefixedString := 'Hello World';

Ref Count Length S t r i n g #0

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 311

In a typical Pascal implementation, this assignment statement calls a 
function that winds up copying each character from the string literal to the 
storage reserved for the aLengthPrefixedString variable. That is, this statement 
roughly expands to the following:

(* Copy the characters in the string *)

    for i := 1 to length( HelloWorldLiteralString ) do begin

        aLengthPrefixedString[ i ] := 

            HelloWorldLiteralString[ i ];

    end;

    (* Set the string's length *)

    aLengthPrefixedString[0] := 

        char( length( HelloWorldLiteralString ));

This code doesn’t even include the overhead of the procedure call, 
return, and parameter passing. Copying string data is one of the more 
expensive operations programs commonly do. This is why many HLLs have 
switched to dynamic strings and copy-on-write semantics—string assignments 
are far more efficient when you only copy a pointer rather than all of the 
character data. This is not to suggest that copy on write is always better. But 
for many string operations, such as assignment, substring, and other oper-
ations that do not change the string’s character data, copy on write can be 
very efficient.

Although few programming languages give you the option of choosing 
which string format you want to use, many programming languages do let 
you create pointers to strings, so you can manually support copy on write. 
If you’re willing to write your own string-handling functions, you can create 
some very efficient programs by avoiding the use of your language’s built-in 
string-handling capabilities. For example, the substring operation in C is 
usually handled by the strncpy function and is often implemented in a 
fashion similar to the following:8

char *

strncpy( char* dest, char *src, int max )

{

    char *result = dest;

    while( max > 0 )

    {

        *dest = *src++;

        if( *dest++ == '\0) break;

8 Most real-world strncpy routines are often more efficient than this example; indeed, many are 
written in assembly language, but we will ignore that here. 

No Starch Press, Copyright © 2006 by Randall Hyde



312 Chap te r 10

        --max;

    }

    return result;

}

A typical “substring” operation might use strncpy as follows:

    strncpy( substring, fullString+start, length );
    substring[ length ] = '\0';

where substring is the destination string object, fullString is the source string, 
start is the starting index of the substring to copy, and length is the length of 
the substring to copy.

If you create a descriptor-based string format in C using a struct, similar 
to the HLA record in Section 10.1.5, “Descriptor-Based Strings,” you could 
do a substring operation with the following two statements in C:

// Assumption: ".strData" field is char*

substring.strData = fullString.strData + start;

substring.curLength = length;

This code executes much faster than the strncpy version.
Sometimes, a particular programming language won’t provide access to 

the underlying string data representation that the language supports, and 
you will have to live with the performance loss, switch languages, or write your 
own string-handling code in assembly language. Generally, though, there 
are alternatives to copying string data in your applications. The example just 
given, using a string descriptor, demonstrates a common way that programs 
can avoid copying data when performing string functions.

10.6 Character Data in Strings

To this point, this chapter has made the tacit assumption that each character 
in a string consumes exactly 1 byte of storage. This chapter has also explicitly 
assumed the use of the 7-bit ASCII character set when discussing the char-
acter data appearing in a string. Traditionally, this has been the way program-
ming languages have represented a string’s character data. Today, however, 
the ASCII character set is too limited for worldwide use and several new 
character sets have risen in popularity including Unicode (or UTF-16), 
UTF-32, UTF-8, and UTF-7. Because these character formats can have a big 
impact on the efficiency of string functions that operate upon them, I’ll 
spend a few moments discussing them.

The original Unicode character format was devised as a way of represent-
ing all the possible characters in use in the world, something that was not 
possible with 7-bit ASCII characters. The thought at the time was that 65,536 
different character codes would prove sufficient. This turned out to be incor-
rect, as there were far more than 65,536 different characters that people 

No Starch Press, Copyright © 2006 by Randall Hyde



St r ing Da ta  Types 313

needed to represent, and this hobbled the acceptance of 16-bit Unicode 
(UTF-16) as a universal standard. Still, Windows and Windows CE use UTF-16 
internally, so this is an important character set on that basis alone.

The big advantage to the UTF-16 encoding is that it is very easy to com-
pute the number of characters in a string based on the amount of memory 
the string consumes (and vice versa; it’s easy to compute the memory require-
ments based on the string’s length). Because each character consumes exactly 
2 bytes, you can compute the memory requirements for a string by multiply-
ing that string’s length by 2. There are four main disadvantages to the UTF-16 
format. The first is pretty obvious: character strings consume twice as much 
storage as their 7-bit ASCII counterparts. The second limitation was the incor-
rect assumption that 65,536 different values would be sufficient to handle all 
the world’s different characters. The third limitation has to do with data trans-
mission of a UTF-16 string; if you drop a byte along the way, there is no way to 
resynchronize the transmission stream. A final problem with UTF-16 encod-
ing is that Unicode strings are completely incompatible with all ASCII string 
functions and formats that operate on single byte values.

UTF-8 (UTF stands for Unicode Transformational Format, though it’s 
often called the Unix Transformational Format, too) addressed many of the 
major issues with Unicode/UTF-16. The advantages of UTF-8 include:

� Characters from the 7-bit ASCII character set require only 1 byte of stor-
age and use the existing ASCII format. Therefore, existing ASCII strings 
are compatible with UTF-8.

� UTF-8 supports up to 31 bits for character code values, certainly enough 
to represent all characters found in modern languages.

� UTF-8 strings are self-synchronizing. If you drop a character during trans-
mission, you can resynchronize within no more than five characters.

� Although UTF-8 does require special string functions, many existing 
ASCII string functions will operate properly on UTF-8 strings, thus 
reducing the number of functions that need to be rewritten.

UTF-8 does offer some additional advantages; see www.unicode.org or 
http://czyborra.com/utf/#UTF-8 for details.

UTF-8 does have one big disadvantage: it is a multibyte character set. This 
means that some character values will require 2 or more bytes (up to 6 bytes 
in the current definition) to represent a single character. This makes the 
computation of certain string functions (such as string length) quite difficult 
because you cannot simply “count bytes” as is possible with ASCII strings. 
Because the number of bytes in a string is not equal to the number of charac-
ters in a string, string functions that use the formats discussed in this chapter 
will have to manually scan each character of the string to compute the number 
of characters in that string. Certainly, it is possible to create a string format that 
encodes both the number of bytes and the number of characters in the string, 
although none of the string formats this chapter describes do that.

UTF-32 is an attempt to create a character format that can represent all 
possible characters found on the planet today, and to do so using a character 
format that allows a simple conversion between the number of characters in 
a string and the number of bytes within a string. The problem, of course, is 

No Starch Press, Copyright © 2006 by Randall Hyde



314 Chap te r 10

that if a program manipulates a large amount of string data, the 32-bit UTF-32 
consumes considerable memory. Given that most programs simply manip-
ulate 7-bit ASCII characters, this can be quite wasteful. Nevertheless, for 
internal computations it may be more convenient to convert Unicode strings 
in UTF-16 or UTF-8 to UTF-32 prior to a long series of operations.

The UTF-8 format is upward compatible with the 7-bit ASCII character 
set, but it redefines some 8-bit codes commonly used for some accented Latin 
characters. UTF-7 (or, technically, UTF-7.5) modifies UTF-8 slightly in 
order to maintain certain ANSI character codes for those Latin characters. 
Note that in exchange for supporting single-byte Latin characters, UTF-7 
extends some other character representations from 2 to 3 bytes. So UTF-7 
can save memory if you use the extra Latin characters it encodes in a single 
byte, but it can waste some memory (compared with UTF-8) when using 
other character sets.

As this book is being written, Unicode and UTF support in HLLs is still 
in its infancy. Many compilers will support UTF strings and even provide 
some library routines to manipulate those strings. However, the support for 
these non-ASCII character sets is still not as mature as the support for ASCII 
character strings. You’ll have to evaluate the support your compiler provides 
to determine the quality of its implementation.

10.7 For More Information
This chapter dealt with the low-level implementation of strings that you’ll 
find in various languages. For more information on strings and string func-
tions, a good place to start is with a book on assembly language, such as The 
Art of Assembly Language (No Starch Press, 2003). If you have access to the 
library source code for any compilers you own, perusing the sources for its 
string functions might be a good idea. For more information on the evolving 
Unicode character sets, you’ll definitely want to visit the Unicode website at 
www.unicode.org.

No Starch Press, Copyright © 2006 by Randall Hyde



11
P O I N T E R  D A T A  T Y P E S

Pointers are the data type equivalent of a 
goto statement. Used carelessly, they can 

reduce a well-written program to unreadable 
junk; they can turn a robust and efficient program 

into a buggy and inefficient junk pile. Unlike gotos,
however, pointers and their use can be difficult to 
avoid in many common programming languages. 
There are no “pointers considered harmful” papers in academic journals like 
the “Gotos Considered Harmful” paper. Although many languages attempt to 
do away with explicit control of pointers (e.g., Java), the truth is that great 
programmers need to be able to deal with pointers because too many pop-
ular languages still use them. In this chapter, I’ll discuss:

� The memory representation of pointers

� How high-level languages implement pointers

� Dynamic memory allocation and its relationship to pointers

� Pointer arithmetic

No Starch Press, Copyright © 2006 by Randall Hyde



316 Chap te r 11

� How memory allocators work

� Garbage collection

� Common pointer problems

By understanding the low-level implementation and use of pointers, you 
will be able to write better high-level code that is more efficient, safer, and 
more readable. Although pointer abuse could be considered harmful in your 
programs, knowing how to properly use pointers can help you avoid all the 
problems people normally associate with their use. This chapter will provide 
the information you need to use pointers appropriately.

11.1 Defining and Demystifying Pointers

You probably experienced pointers firsthand in Pascal, C/C++, or some 
other high-level language, and you may feel a little anxious right now. HLL 
programmers generally rely on the high degree of abstraction provided by 
the language because they don’t want to know what’s going on behind the 
scenes. They just want a “black box” that produces predictable results. In 
the case of pointers, the abstraction may be too effective; pointers seem 
intimidating and opaque to many programmers. Well, fear not! Pointers are 
actually easy to deal with. 

Exactly what is a pointer? A pointer is a variable whose value refers to 
some other object. OK, but what does that mean? High-level languages like 
Pascal and C/C++ hide the simplicity of pointers behind a wall of abstraction. 
This added complexity tends to frighten programmers because they don’t 
understand what’s going on behind the scenes. However, a little knowledge can 
erase all such fears.

To understand how pointers work, I’ll use the array data type as an 
example. Consider the following array declaration in Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is easy to understand. 
M is an array of 1,024 integers, indexed from M[0] to M[1023]. Each of these array 
elements can hold an independent integer value. In other words, this array 
gives you 1,024 different integer variables, each of which you access via an array 
index (the variable’s sequential position within the array) rather than by name.

You can probably figure out what the statement M[0] := 100; is doing. 
It stores the value 100 into the first element of the array M. Now consider the 
following two statements:

        i := 0; (* assume "i" is an integer variable *)
        M [i] := 100;

Clearly, these two statements do the same thing as M[0] := 100;. Indeed, 
you’ll probably agree that you can use any integer expression producing a 

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 317

value in the range 0..1,023 as an index into this array. The following state-
ments still perform the same operation as our earlier statements:

        i := 5;         (* assume all variables are integers *)

        j := 10;

        k := 50;

        m [i * j - k] := 100;

But now look at the following:

        M [1] := 0;
        M [ M [1] ] := 100;

At first glance these statements might seem confusing. However, you 
should agree that these two instructions perform the same operation I’ve 
been considering. The first statement stores 0 into array element M[1]. The 
second statement fetches the value of M[1], which is 0, and uses that value to 
determine where it stores the value 100.

If you think this example is reasonable—perhaps bizarre, but usable 
nonetheless—then you’ll have no problems with pointers—because M[1] is a 
pointer! Well, not really, but if you were to change M to “memory” and treat 
each element of this array as a separate memory location, then it would meet 
the definition of a pointer. That is, a pointer is a memory variable whose value 
is the address of some other memory object. 

11.2 Pointer Implementation in High-Level Languages

Although most languages implement pointers using memory addresses, a 
pointer is actually an abstraction of a memory address. Therefore, a language 
could define a pointer using any mechanism that maps the value of the 
pointer to the address of some object in memory. Some implementations 
of Pascal, for example, use offsets from a fixed memory address as pointer 
values. Some languages (e.g., dynamic languages like Lisp or even Java) 
might actually implement pointers by using double indirection. That is, the 
pointer object contains the address of some memory variable whose value
is the address of the object to access. This double indirection may seem 
somewhat convoluted, but it does offer certain advantages when using a 
complex memory management system, making it easier and more efficient 
to reuse blocks of memory. However, this chapter will assume that a pointer 
is a variable whose value is the address of some other object in memory. 
This is a safe assumption for many of the high-performance HLLs you’re 
likely to encounter, such as C, C++, C#, and Delphi/Kylix.

You can indirectly access an object using a pointer with two 80x86 
machine instructions, as follows:

// Load the pointer variable into a register.

mov( PointerVariable, ebx ); 

No Starch Press, Copyright © 2006 by Randall Hyde



318 Chap te r 11

// Use register indirect mode to access data.

mov( [ebx], eax ); 

Now consider the double-indirect pointer implementation described 
earlier. Access to data via double indirection is less efficient than the straight 
pointer implementation because it takes an extra machine instruction to 
fetch the data from memory. This isn’t obvious even in an HLL like C/C++ 
or Pascal, where using double indirection is explicit: 

        i = **cDblPtr; // C/C++
        i := ^^pDblPtr; (* Pascal/Delphi *)

This is syntactically similar to single indirection. In assembly language, 
however, you’ll see the extra work involved:

mov( hDblPtr, ebx );  // Get the pointer to a pointer

mov( [ebx], ebx );    // Get the pointer to the value

mov( [ebx], eax );    // Get the value.

Contrast this with the two assembly instructions (given earlier) needed 
to access an object using single indirection. Because double indirection 
requires 50 percent more code (and twice as many slow memory accesses) 
than single indirection, you can see why many languages implement 
pointers using single indirection. To verify this, consider the machine 
code produced by a couple of different compilers when processing to the 
following C code:

static int i;

static int j;

static int *cSnglPtr;

static int **cDblPtr;

int main( void )

{

        .

        .

        .

    j = *cSnglPtr;

    i = **cDblPtr;

Here’s the GCC output for the PowerPC processor.

; j = *cSnglPtr;

        addisr11,r31,ha16(_j-L1$pb)

        la r11,lo16(_j-L1$pb)(r11)

        addisr9,r31,ha16(_cSnglPtr-L1$pb)

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 319

        la r9,lo16(_cSnglPtr-L1$pb)(r9)

        lwz r9,0(r9) // Get the ptr into register R9

        lwz r0,0(r9) // Get the data at the pointer

        stw r0,0(r11) // Store into j

; i = **cDblPtr;

;

; Begin by getting the address of cDblPtr into R9:

        addisr11,r31,ha16(_i-L1$pb)

        la r11,lo16(_i-L1$pb)(r11)

        addisr9,r31,ha16(_cDblPtr-L1$pb)

        la r9,lo16(_cDblPtr-L1$pb)(r9)

        lwz r9,0(r9) // Get the dbl ptr into R9

        lwz r9,0(r9) // Get the ptr into R9

        lwz r0,0(r9) // Get the value into R9

        stw r0,0(r11) // Store value into i

As you can see in this PowerPC example, fetching the value using double 
indirection takes one more instruction than it does using single indirection. 
Of course, the total number of instructions is rather large here, so this extra 
instruction doesn’t contribute as much to the execution time as it does on 
the 80x86 where fewer instructions are involved. Consider the following GCC 
code output for the 80x86:

; j = *cSnglPtr;

        movl    cSnglPtr, %eax

        movl    (%eax), %eax

        movl    %eax, j

; i = **cDblPtr;

        movl    cDblPtr, %eax

        movl    (%eax), %eax

        movl    (%eax), %eax

        movl    %eax, i

As we saw with the PowerPC code, double indirection requires extra 
machine instructions, so programs using double indirection will be larger 
and slower.

As a side issue, note that the PowerPC instruction sequences are twice 
as long as the 80x86 instruction sequences.1 One positive way of viewing this 
is to realize that double indirection has less impact on the execution time 
of the PowerPC code than it does on the 80x86 code. That is, the extra 
instruction represents only 13 percent of the total, versus 25 percent of the 

1 This, by the way, is not a general rule concerning PowerPC versus 80x86 code. Memory 
references on the PowerPC are very costly, that’s why the PowerPC code here is so long. 
However, the PowerPC has four times as many registers, so in real applications the code isn’t 
always larger.

No Starch Press, Copyright © 2006 by Randall Hyde



320 Chap te r 11

total in the 80x86 code.2 This little example should help demonstrate that 
execution time and code space are not processor independent. And bad 
coding practices (such as using double indirection when it’s not required) 
can have more impact on some processors than with others.

11.3 Pointers and Dynamic Memory Allocation

Pointers typically reference anonymous variables that you allocate on the 
heap (a region in memory reserved for dynamic storage allocation) using 
memory allocation/deallocation functions like malloc/free, new/dispose, and 
new/delete. Objects that you allocate on the heap are known as anonymous 
variables because you refer to them by their address; you do not associate a 
name with them. True, the pointer variable may have a name, but that name 
applies to the pointer’s data (an address), not the object referenced by this 
address.

Dynamic languages automatically handle memory allocation and dealloca-
tion operations in a transparent, automatic fashion. That is, the application 
simply uses the dynamic data and leaves it up to the runtime system to allocate 
memory as needed and reuse storage for a different purpose when it is no 
longer needed. Without the need to explicitly allocate and deallocate 
memory for pointer variables, applications written in dynamic languages 
(such as AWK or Perl) are usually much easier to program and often contain 
far fewer errors. But this comes at the cost of efficiency—programs written in 
dynamic languages often run much slower than programs written in other 
languages. Conversely, traditional languages (such as C/C++) that require 
the programmer to explicitly manage memory often produce more efficient 
applications, although the memory management code the programmer 
writes often contains a higher percentage of defects due to the additional 
complexity of that code.

11.4 Pointer Operations and Pointer Arithmetic

Most HLLs that provide a pointer data type let you assign addresses to 
pointer variables, compare pointer values for equality or inequality, and 
indirectly reference an object via a pointer. Some languages also allow 
additional operations; we’re going to look at the possibilities in this section.

Many programming languages provide the ability to do limited arith-
metic with pointers. At the very least, these languages will provide the ability 
to add an integer constant to a pointer or subtract an integer constant from 
a pointer. To understand the purpose of these two arithmetic operations, 
recall the syntax of the malloc function in the C standard library:

ptrVar = malloc( bytes_to_allocate );

2 Do keep in mind, however, that memory accesses are very slow if the data is not sitting in the 
cache. If the data is not sitting in the cache, the majority of the time spent in this code will be 
waiting for memory, not executing instructions, so the two code sequences will have more 
comparable execution times, all other things being equal.

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 321

The parameter you pass malloc specifies the number of bytes of storage 
to allocate. A good C programmer will generally supply an expression like 
sizeof(int) as the parameter to malloc. The sizeof function returns the 
number of bytes needed by its single parameter. Therefore, sizeof( int ) tells 
malloc to allocate at least enough storage for an int variable. Now consider 
the following call to malloc:

ptrVar = malloc( sizeof( int ) * 8 );

If the size of an integer is 4 bytes, this call to malloc will allocate storage 
for 32 bytes. The malloc function allocates these 32 bytes at consecutive 
addresses in memory (see Figure 11-1).

Figure 11-1: Memory allocation via malloc( sizeof( int ) * 8 )

The pointer that malloc returns contains the address of the first integer 
in this set, so the C program will only be able to directly access the very first 
of these eight integers. To access the individual addresses of the other seven 
integers, you will need to add an integer offset to that base address. On 
machines that support byte-addressable memory (such as the 80x86), the 
address of each successive integer in memory is the address of the previous 
integer plus the size of an integer. For example, if a call to the C standard 
library malloc routine returns the memory address $0300_1000, then the eight 
integers that malloc allocates will reside at the following memory addresses:

Integer Memory address

First $0300_1000..$0300_1003

Second $0300_1004..$0300..1007

Third $0300_1008..$0300_100b

Fourth $0300_100c..$0300_100f

Fifth $0300_1010..$0300_1013

Sixth $0300_1014..$0300..1017

Seventh $0300_1018..$0300_101b

Eighth $0300_101c..$0300_101f

Low heap
addresses

High heap
addresses

Pointer (address) that malloc( sizeof( int ) * 8 ) returns

32 bytes (eight ints)

No Starch Press, Copyright © 2006 by Randall Hyde



322 Chap te r 11

11.4.1 Adding an Integer to a Pointer
Because the eight integers in the previous section are exactly 4 bytes 
apart, you only need to add 4 bytes to the address of the first integer to 
obtain the address of the second integer. Likewise, the address of the 
third integer is the address of the second integer plus 4 bytes, and so on. 
In assembly language, you could access these eight integers using code like 
the following:

// malloc returns storage for eight 

//  int32 objects in EAX.

malloc( @size( int32 ) * 8 );

  

mov( 0, ecx );

mov( ecx, [eax] );     // Zero out the 32 bytes (four 

mov( ecx, [eax+4] );   // bytes at a time).

mov( ecx, [eax+8] );

mov( ecx, [eax+12] );

mov( ecx, [eax+16] );

mov( ecx, [eax+20] );

mov( ecx, [eax+24] );

mov( ecx, [eax+28] );

Notice the use of the 80x86 indexed addressing mode to access the eight 
integers that malloc allocates. The EAX register maintains the base address 
(first address) of the eight integers that this code allocates, and the constant 
appearing in the addressing mode of the mov instruction specifies the offset 
of the specific integer from this base address.

Most CPUs use byte addresses for memory objects. Therefore, when 
allocating multiple copies of some n-byte object in memory, the objects 
will not begin at consecutive memory addresses; instead, they will appear in 
memory at addresses that are n bytes apart. Some machines, however, do not 
allow a program to access memory at any arbitrary address; they require that 
applications access data on address boundaries that are a multiple of a word, 
a double word, or even a quad word. Any attempt to access memory on some 
other boundary will raise an exception and (possibly) halt the application. 
If an HLL supports pointer arithmetic, it must take this fact into considera-
tion and provide a generic pointer arithmetic scheme that is portable across 
different CPU architectures. The most common solution that HLLs use 
when adding an integer offset to a pointer is to multiply that offset by the size 
of the object that the pointer references. That is, if you have a pointer p to a 
16-byte object in memory, then p + 1 points 16 bytes beyond where p points. 
Likewise, p + 2 points 32 bytes beyond the address contained in the pointer p.
As long as the size of the data object is a multiple of the required alignment 
size (which the compiler can enforce by adding padding bytes, if necessary), 
this scheme avoids problems on those architectures that require aligned data 
access.

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 323

Consider, for example, the following C/C++ code:

int *intPtr;

.

.

.

// Allocate storage for eight integers:

intPtr = malloc( sizeof( int ) * 8 );

// Initialize each of these integer values:

*(inPtr+0) = 0;

*(intPtr+1) = 1;

*(intPtr+2) = 2;

*(intPtr+3) = 3;

*(intPtr+4) = 4;

*(intPtr+5) = 5;

*(intPtr+6) = 6;

*(intPtr+7) = 7;

This example demonstrates how C/C++ uses pointer arithmetic to specify 
an integer-sized offset, rather than a byte offset, from the base pointer address.

An important thing to realize is that the addition operator only makes 
sense between a pointer and an integer value. For example, in the C/C++ 
language, you can indirectly access objects in memory using an expression like 
*(p + i) (where p is a pointer to an object and i is an integer value). It doesn’t 
make any sense to add two pointers together. Similarly, it isn’t reasonable to 
add other data types with a pointer. For example, adding a floating-point 
value to a pointer makes no sense. What does it mean to reference the data 
at some base address plus 1.5612? Operations on pointers involving strings, 
characters, and other data types don’t make much sense, either. Integers 
(signed and unsigned) are the only reasonable values to add to a pointer.

On the other hand, not only can you add an integer to a pointer, but you 
can add a pointer to an integer and the result is still a pointer (both p + i and 
i + p are legal). This is because addition is commutative; in other words, the 
order of the operands does not affect the result.

11.4.2 Subtracting an Integer from a Pointer
Another reasonable pointer arithmetic operation is subtraction. Subtracting 
an integer from a pointer references a memory location immediately before 
the base address held in the pointer. However, subtraction is not commu-
tative and subtracting a pointer from an integer is not a legal operation 
(p - i is legal, but i - p is not).

In C/C++, *(p - i) accesses the ith object immediately before the object 
at which p points. In 80x86 assembly language, as in assembly on many 
processors, you can also specify a negative constant offset when using an 
indexed addressing mode. For example:

mov( [ebx-4], eax );

No Starch Press, Copyright © 2006 by Randall Hyde



324 Chap te r 11

Keep in mind that 80x86 assembly language uses byte offsets, not object 
offsets (as C/C++ does). Therefore, this statement loads into EAX the double 
word in memory immediately preceding the memory address in EBX.

11.4.3 Subtracting a Pointer from a Pointer
Unlike addition, it actually makes sense to subtract the value of one pointer 
variable from another. Consider the following C/C++ code that marches 
through a string of characters looking for the first e character that follows the 
first a that it finds (you could use the result of such a calculation, for example, 
to extract a substring):

int distance;

char *aPtr;

char *ePtr;

    .

    .

    .

aPtr = someString;  // Get ptr to start of string in aPtr.

// While we're not at the end of the string 

// and the current char isn't 'a':

while( *aPtr != '\0' && *aPtr != 'a' )

{

    // Move on to the next character pointed at by aPtr.

    aPtr = aPtr + 1;  

}

// while we're not at the end of the string 

// and the current characters isn't 'e' 

//

// Start at the 'a' char (or end of string if no 'a').

ePtr = aPtr;         

while( *ePtr != '\0' && *ePtr != 'e' )

{

    // Move on to the next character pointed at by ePtr.

    ePtr = ePtr + 1;  

}

// Now compute the number of characters between 

// the 'a' and the 'e' (counting the 'a' but not

// counting the 'e'):

distance = (ePtr - aPtr);

The subtraction of these two pointers produces the number of data 
objects that exist between the two pointers (in this case, ePtr and aPtr point at 
characters, so this subtraction produces the number of characters, or bytes if 
1-byte characters, between the two pointers).

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 325

The subtraction of two pointer values makes sense only if the two pointers 
reference the same data structure (e.g., an array, string, or record) in memory. 
Although assembly language will allow you to subtract two pointers that point 
at completely different objects in memory, their difference will probably have 
very little meaning.

When using pointer subtraction in C/C++ the base types of the two point-
ers must be identical (that is, the two pointers must contain the address of 
two objects whose types are identical). This restriction exists because pointer 
subtraction in C/C++ produces the number of objects between the two point-
ers, not the number of bytes. Computing the number of objects between a 
byte in memory and a double word in memory wouldn’t make any sense. The 
result would be neither a byte count nor a double-word count.

The subtraction of two pointers can return a negative number if the left 
pointer operand is at a lower memory address than the right pointer operand. 
Depending on your language and its implementation, you might need to 
take the absolute value of the result if you’re only interested in the distance 
between the two pointers and you don’t care which pointer contains the 
greater address.

11.4.4 Comparing Pointers
Comparisons are another set of operations that make sense for pointers. 
Almost every language (that supports pointers) will let you compare two 
pointers to see if they are equal or not equal. A pointer comparison will tell 
you whether the pointers reference the same object in memory. Some 
languages (e.g., assembly and C/C++) will also let you compare two pointers 
to see if one pointer is less than or greater than another. Like subtraction of 
two pointers, comparing two pointers only makes sense if the pointers have 
the same base type and point into the same data structure. If one pointer is 
less than another, this tells you that the pointer references an object within 
the data structure that appears before the object whose address the second 
pointer contains. The converse is equally true for the greater-than compar-
ison. Here is a short example in C that demonstrates pointer comparison:

#include <stdio.h>

int iArray[256];

int *ltPtr;

int *gtPtr;

int main( int argc, char **argv )

{

    int lt;

    int gt;

    // Put the address of the "argc" element

    // of iArray into ltPtr. This is done

    // so that the optimizer doesn't completely

No Starch Press, Copyright © 2006 by Randall Hyde



326 Chap te r 11

    // eliminate the following code (as would

    // happen if we just specified a constant

    // index):

    ltPtr = &iArray[argc];

    // Put the address of the eighth array

    // element into gtPtr.

    gtPtr = &iArray[7];

    // Assuming you don't type seven or more

    // command-line parameters when running

    // this program, the following two

    // assignments should set lt and gt to 1 (True).

    lt = ltPtr < gtPtr;

    gt = gtPtr > ltPtr;

    printf( "lt:%d, gt:%d\n", lt, gt );

    return 0;

}

At the (80x86) machine-language level, addresses are simply 32-bit 
quantities so the machine code can compare these pointers as though they 
were 32-bit integer values. Here’s the 80x86 assembly code that MSVC emits 
for this example:

; Line 23

;

; Grab ARGC (passed to the program on the stack), use

; it as an index into iArray (four bytes per element,

; hence the "*4" in the scaled-indexed addressing mode),

; compute the address of this array element (using the

; LEA -- load effective address -- instruction), and

; store the resulting address into ltPtr:

    mov eax, DWORD PTR _argc$[esp-4]

    lea eax, DWORD PTR _iArray[eax*4]

    mov DWORD PTR _ltPtr, eax

; Line 28

;

; Put the address of iArray[7] into gtPtr. Because

; the compiler computes the address of iArray[7]

; at compile time (base address of the static variable

; iArray + 7 * 4), this instruction sequence is much

; simpler than the above (which had a variable index

; into the array):

    mov DWORD PTR _gtPtr, OFFSET FLAT:_iArray+28

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 327

; Line 36

;

; Set ECX to 1 if the address of iArray[argc] (held

; in EAX) is less than the address of iArray[7].

;

; Note that "sbb ecx, ecx" and "neg ecx" is a

; sneaky way of setting ECX to 0 or 1 depending

; on whether EAX is less than the address of

; iArray[7] after the comparison.

    cmp eax, OFFSET FLAT:_iArray + 28

    sbb ecx, ecx

    neg ecx

; Line 37

; As above. It is interesting to note that

; the compiler (MSVC) failed to notice that

; it is recomputing exactly the same value as

; the above instruction sequence. Oh well,

; compilers aren't perfect (a good example

; of why human programmers can still beat

; compilers in some instances):

    cmp eax, OFFSET FLAT:_iArray + 28

    sbb edx, edx

    neg edx

    push    ecx

    push    edx

    push    OFFSET FLAT:FormatString

    call    _printf

Other than the trickery behind computing True (1) or False (0) after 
comparing the two addresses, this code is a very straightforward compilation 
to machine code.

11.4.5 Logical AND/OR and Pointers
On byte-addressable machines, it makes sense to logically AND an address 
with a bit string value because masking off the low-order (LO) bits in an 
address is an easy way to align an address on a boundary that is a power of 2. 
For example, if the 80x86 EBX register contains an arbitrary address, then 
the following assembly language statement rounds the pointer in EBX down 
to an address that is a multiple of 4 bytes:

and( $FFFF_FFFC, ebx );

This is a very useful operation when you want to ensure that memory is 
accessed on a nice memory boundary. For example, suppose that you have a 
memory-allocation function that can return a pointer to a block of memory 

No Starch Press, Copyright © 2006 by Randall Hyde



328 Chap te r 11

that begins at an arbitrary byte boundary. If you want to ensure that the data 
structure the pointer points to begins on a double-word boundary, you can 
use (assembly) code like the following:

// # of bytes to allocate

mov( nBytes, eax ); 

// Provide a "cushion" for rounding.

add( 3, eax ); 

// Allocate the memory (returns pointer in EAX).

memAlloc( eax ); 

// Round up to the next-higher dword, if not dword-aligned.

add( 3, eax ); 

// Make the address a multiple of four.

and( $ffff_fffc, eax ); 

This code allocates an extra 3 bytes when calling memAlloc so that it can 
add 0, 1, or 3 to the address that memAlloc returns (in order to align the object 
on a double-word address). On return from memAlloc, this code adds 3 to the 
address and if it was not already a multiple of four, this will cause it to cross the 
next double-word boundary. Using the AND instruction reduces the address 
back to the previous double-word boundary (either the next double-word 
boundary, or the original address if it was already double-word aligned).

11.4.6 Other Operations with Pointers
Beyond addition, subtraction, comparisons, and possibly AND or OR, very few 
arithmetic operations make sense with pointer operands. What does it mean 
to multiply a pointer by some integer value (or another pointer)? What does 
division of pointers mean? What do you get when you shift a pointer to the 
left by one bit position? You could make up some sort of definition for these 
operations, but considering the original arithmetic definitions, these opera-
tions just don’t make much sense for pointers.

Several languages (including C/C++ and Pascal) restrict the operations 
possible on a pointer. There are several good reasons for limiting what a 
programmer can do with a pointer. Here are some of those reasons:

� Code involving pointers is notoriously difficult to optimize. By limiting 
the number of pointer operations, the compiler can make assumptions 
about the code it would not otherwise be able to make. This allows the 
compiler (in theory) to produce better machine code.

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 329

� Code containing pointer manipulations is more likely to be defective. 
Limiting the programmer’s options in this area helps prevent pointer 
abuse and produces more robust code.

NOTE Section 11.9, “Common Pointer Problems,” describes the most serious of these errors 
and ways to avoid them in your code.

� Some pointer operations are not portable across CPU architectures (par-
ticularly certain arithmetic operations). For example, on some segmented 
architectures (such as the original 16-bit 80x86), subtracting the values 
of two pointers may not produce an expected result.

� Although the proper use of pointers can help create efficient pro-
grams, the improper use of pointers can destroy program efficiency. 
By limiting the number of pointer operations that a language supports, 
that language helps prevent gratuitous use of pointers that often lead 
to inefficiencies in the code.

The major problem with these “good reasons” for limiting pointer 
operations is that most exist to protect programmers from themselves. 
Many programmers (especially beginning programmers) benefit from the 
discipline these restrictions enforce. However, for the careful programmer 
who does not abuse pointers, the restrictions on pointer use may eliminate 
some opportunities that would otherwise be present for writing some great 
code. Therefore, languages that provide a rich set of pointer operations, like 
C/C++ and assembly language, are popular with advanced programmers who 
need absolute control over the use of pointers in their programs.

11.5 A Simple Memory Allocator Example

To help you understand the performance and memory costs of using 
dynamically allocated memory and pointers to such memory, this section 
presents a simple memory-allocation/deallocation system. By considering 
the operations associated with memory allocation and deallocation, you’ll be 
aware of the costs of using these facilities, and you will be better able to use 
them in an appropriate fashion.

An extremely simple (and fast) memory-allocation scheme would 
maintain a single variable that forms a pointer into the heap region of 
memory. Whenever a memory-allocation request comes along, the system 
makes a copy of this heap pointer to return to the application. The heap 
management routines add the size of the memory request to the address 
held in the pointer variable and verify that the memory request won’t try 
to use more memory than is available in the heap region. (Some memory 
managers return an error indication, like a NULL pointer, when the memory 
request is too great; others raise an exception.) The problem with this simple 
memory management scheme is that it wastes memory because there is no 
mechanism to allow the application to free the memory so that the applica-
tion can reuse that freed memory later. One of the main purposes of a heap 

No Starch Press, Copyright © 2006 by Randall Hyde



330 Chap te r 11

management system is to perform garbage collection, that is, reclaim unused 
memory when an application finishes using that memory.

The only catch is that supporting garbage collection requires some 
overhead. The memory management code will need to be more sophisti-
cated, will take longer to execute, and will require some additional memory 
to maintain internal data structures the heap management system uses. 
Consider an easy implementation of a heap manager that supports garbage 
collection. This simple system maintains a (linked) list of free memory 
blocks. Each free memory block in the list will require two double-word 
values: one double-word value specifies the size of the free block, and the 
other double-word value contains the address of the next free block in the 
list (i.e., the link), see Figure 11-2.

Figure 11-2: Heap management using a list of free memory blocks

The system initializes the heap with a NULL link pointer, and the size 
field contains the size of the entire free space of the heap. When a memory 
request comes along, the heap manager first determines if a sufficiently large 
block is available for the allocation request. To do this, the heap manager 
has to search through the list to find a free block with enough memory to 
satisfy the request. One of the defining characteristics of a heap manager is 
how it searches through the list of free blocks to satisfy the request. Some 
common search algorithms are first-fit search and best-fit search. The first-fit 
search, as its name suggests, scans through the list of blocks until it finds the 
first block of memory large enough to satisfy the allocation request. The best-
fit algorithm scans through the entire list and finds the smallest block large 
enough to satisfy the request. The advantage of the best-fit algorithm is that 
it tends to preserve larger blocks better than the first-fit algorithm, thereby 
allowing the system to handle larger subsequent allocation requests when 
they arrive, though using more time to find the best-fit block. The first-fit 

L
I
N
K

S
I
Z
E

Free/unused memory

Memory in use

Free memory list

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 331

algorithm, on the other hand, just grabs the first sufficiently large block it 
finds, even if there is a smaller block that would satisfy the request. As a 
result, the first-fit algorithm may reduce the number of large free blocks in 
the system that could satisfy large memory requests.

The first-fit algorithm does have a couple of advantages over the best-fit 
algorithm. The most obvious advantage is that the first-fit algorithm is usually 
faster. The best-fit algorithm has to scan through every block in the free block 
list in order to find the smallest block large enough to satisfy the allocation 
request (unless, of course, it finds a perfectly sized block along the way). 
The first-fit algorithm, on the other hand, can stop once it finds a block large 
enough to satisfy the request. 

Another advantage to the first-fit algorithm is that it tends to suffer less 
from a degenerate condition known as external fragmentation. Fragmenta-
tion occurs after a long sequence of allocation and deallocation requests. 
Remember, when the heap manager satisfies a memory-allocation request 
it usually creates two blocks of memory—one in-use block for the request 
and one free block that contains the remaining bytes in the original block 
(assuming the request did not exactly match the block size). After operating 
for a while, the best-fit algorithm may wind up producing lots of smaller, 
leftover blocks of memory that are too small to satisfy an average memory 
request (because the best-fit algorithm also produces the smallest leftover 
blocks as a result of its behavior). As a result, the heap manager will probably 
never allocate these small blocks; hence they are effectively unusable. 
Although each individual fragment may be small, as multiple fragments 
accumulate throughout the heap they can wind up consuming a fair amount 
of memory. This can lead to a situation where the heap doesn’t have a 
sufficiently large block to satisfy a memory-allocation request even though 
there is enough free memory available (spread throughout the heap). See 
Figure 11-3 for an example of this condition.

Figure 11-3: Memory fragmentation

In addition to the first-fit and best-fit search algorithms, other memory-
allocation strategies exist. Some execute faster, some have less (memory) 
overhead, some are easy to understand (and some are very complex), some 
produce less fragmentation, and some have the ability to combine and use 
noncontiguous blocks of free memory. Memory/heap management is one 
of the more heavily studied subjects in computer science. A considerable 
amount of literature exists that explains the benefits of one scheme over 
another. For more information on memory-allocation strategies, check out a 
good book on operating system design.

Free/unused memory

Memory in use
Desired allocation size

No Starch Press, Copyright © 2006 by Randall Hyde



332 Chap te r 11

11.6 Garbage Collection

Memory allocation is only half of the story. In addition to a memory-
allocation routine, the heap manager has to provide a call that allows an 
application to free memory it no longer needs for future reuse. In C and 
HLA, for example, an application accomplishes this by calling the free
function. At first blush, free might seem to be a very simple function to write. 
All it has to do is append the previously allocated and now unused block 
onto the end of the free list, right? The problem with this trivial imple-
mentation of free is that it almost guarantees that the heap will become 
fragmented and unusable in very short order. Consider the situation in 
Figure 11-4. 

Figure 11-4: Freeing a memory block

If a trivial implementation of free simply takes the block to be freed and 
appends it to the free list, the memory organization in Figure 11-4 produces 
three free blocks. However, because these three blocks are all contiguous, 
the heap manager should really coalesce these three blocks into a single 
free block, so that it will be able to satisfy a larger request. Unfortunately, 
this coalescing operation would require our simple heap manager to scan 
through the free block list to determine if there are any free blocks adjacent 
to the block the system is freeing. While it is possible to come up with a data 
structure that makes it easier to coalesce adjacent free blocks, such schemes 
generally involve the use of additional overhead bytes (usually 8 or more) 
with each block on the heap. Whether this is a reasonable trade-off depends 
on the average size of a memory allocation. If the applications that use the 
heap manager tend to allocate small objects, the extra overhead for each 
memory block could wind up consuming a large percentage of the heap space. 
However, if most allocations are large, then the few bytes of overhead will be 
of little consequence.

11.7 The OS and Memory Allocation
The performance of the algorithms and data structures that the heap 
manager uses are only a part of the performance problem. Ultimately, 
the heap manager needs to request blocks of memory from the operating 
system. At one extreme, the operating system handles all memory-allocation 
requests. At the other extreme, the heap manager is a runtime library 
routine that links with your application; the heap manager first requests 
large blocks of memory from the operating system and then doles out 
pieces of this block as memory requests arrive from the application.

Free/unused memory

Memory in useBlock to be freed

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 333

The problem with making direct memory-allocation requests to the 
operating system is that OS API calls are often very slow. If an application 
calls the operating system for every memory request it makes, the perfor-
mance of the application will probably suffer if the application makes several 
memory-allocation and deallocation calls. OS API calls are very slow because 
they generally involve switching between kernel mode and user mode on 
the CPU (which is not fast). Therefore, a heap manager that the operating 
system implements directly will not perform well if your application makes 
frequent calls to the memory-allocation and deallocation routines. 

Because of the high overhead of an operating system call, most lan-
guages implement their own versions of malloc and free (or whatever they 
call them) within the language’s runtime library. On the very first memory 
allocation, the malloc routine will request a large block of memory from the 
operating system, and then the application’s malloc and free routines will 
manage this block of memory themselves. If an allocation request comes 
along that the malloc function cannot fulfill in the block it originally created, 
then malloc will request another large block (generally much larger than the 
request) from the operating system and add that block to the end of its free 
list. Because the calls to the application’s malloc and free routines only call 
the operating system on an occasional basis, this dramatically reduces the 
overhead associated with OS calls.

However, you should keep in mind that the procedure illustrated in 
the previous paragraph is very implementation and language specific; it’s 
dangerous for you to assume that malloc and free are relatively efficient 
when writing software that requires high-performance components. The 
only portable way to ensure a high-performance heap manager is to develop 
your own application-specific set of routines.

Most standard heap-management functions perform reasonably well 
for a typical program. For your specific application, however, you might be 
able to write a specialized set of functions that are much faster or have less 
memory overhead. If your application’s allocation routines effectively handle 
the program’s memory-allocation patterns, the allocation/deallocation 
functions may be able to handle the application’s requests in a more efficient 
manner. Writing such routines is beyond the scope of this book (see an oper-
ating system textbook for more details), but you should be aware of this 
possibility.

11.8 Heap Memory Overhead

A heap manager often exhibits two types of overhead: performance (speed) 
and memory (space). Until now, this discussion has mainly dealt with the 
performance characteristics of a heap manager, now it’s time to turn our 
attention to the memory overhead associated with the heap manager.

Each block the system allocates is going to require some amount of 
overhead above and beyond the storage the application requests. At the very 
least, each block the heap manager allocates requires a few bytes to keep 
track of the block’s size. Fancier (higher-performance) schemes may require 

No Starch Press, Copyright © 2006 by Randall Hyde



334 Chap te r 11

additional bytes, but typically the number of overhead bytes will be between 
4 and 16. The heap manager can keep this information in a separate internal 
table or it can attach the block size and other memory-management informa-
tion directly to the block it allocates. 

Saving this information in an internal table has a couple of advantages. 
First, it is difficult for the application to accidentally overwrite the information 
stored there; attaching the data to the heap memory blocks themselves 
doesn’t provide as much protection against the application wiping out this 
control information (thereby corrupting the memory manager’s data 
structures). Second, putting memory management information in an 
internal data structure allows the memory manager to easily determine if 
a given pointer is valid (one that points at some block of memory that the 
heap manager believes it has allocated). 

Attaching the control information to each block that the heap manager 
allocates makes it very easy to locate this information, which is an advantage. 
When the heap manager maintains this information in an internal table, a 
search operation of some sort might be required in order to locate the 
information.

Another issue that affects the overhead associated with the heap 
manager is the allocation granularity. Although most heap managers allow 
you to request an allocation as small as 1 byte, they may actually allocate 
some minimum number of bytes greater than 1. The minimum amount is 
the allocation granularity that the heap manager supports. Generally, the 
engineer designing the memory-allocation functions chooses a granularity 
that will guarantee that any object allocated on the heap will begin at a 
reasonably aligned memory address for that object. As such, most heap 
managers allocate memory blocks on a 4-, 8-, or 16-byte boundary. For 
performance reasons, many heap managers begin each allocation on a 
cache-line boundary (see Write Great Code, Volume 1, for details on cache 
lines), usually 16, 32, or 64 bytes. Whatever the granularity, if the applica-
tion requests some number of bytes that is less than the heap manager’s 
granularity or is not a multiple of the granularity value, the heap manager 
will allocate extra bytes of storage. Therefore, a few unrequested bytes 
may be tacked on to each request to fill out the minimum-sized block the 
heap manager allocates (see Figure 11-5). Of course, this amount varies 
by heap manager (and possibly even by version of a specific heap manager), 
so an application should never assume that it has more memory available 
than it requests. Doing so would be silly, because the application could have 
requested more memory in the initial allocation call.

The extra memory the heap manager allocates to ensure that the request 
is a multiple of the granularity size results in another form of fragmentation 
called internal fragmentation (see Figure 11-5). Like external fragmentation, 
internal fragmentation results in the loss of small amounts of memory 
throughout the system that cannot satisfy future allocation requests. 
Assuming random-sized memory allocations, the average amount of 
internal fragmentation that will occur on each allocation is one-half the 
granularity size. Fortunately, the granularity size is quite small for most 

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 335

memory managers (typically 16 bytes or less), so after thousands and 
thousands of memory allocations you’ll only lose a couple dozen or so 
kilobytes to internal fragmentation.

Figure 11-5: Allocation granularity and internal fragmentation

Between the costs associated with allocation granularity and the memory 
control information, a typical memory request may require between 4 and 16 
bytes plus whatever the application requests. If you are making large memory-
allocation requests (hundreds or thousands of bytes), the overhead bytes 
won’t consume a large percentage of memory on the heap. However, if you 
allocate lots of small objects, the memory consumed by internal fragmenta-
tion and control information may represent a significant portion of your 
heap area. For example, consider a simple memory manager that always 
allocates blocks of data on 4-byte boundaries and requires a single 4-byte 
length value that it attaches to each allocation request for control purposes. 
This means that the minimum amount of storage the heap manager will 
require for each allocation is 8 bytes. If you make a series of malloc calls to 
allocate a single byte, the application will not be able to use almost 88 percent 
of the memory it allocates. Even if you allocate 4-byte values on each alloca-
tion request, the heap manager consumes two-thirds of the memory for over-
head purposes. However, if your average allocation is a block of 256 bytes, 
the overhead only requires about 2 percent of the total memory allocation. 
The moral of the story is, “The larger your allocation request, the less impact 
the control information and internal fragmentation will have on your heap.”

Many software engineering studies in computer science journals have 
found that memory-allocation/deallocation requests cause a significant 
loss of performance. In such studies, the authors often obtained perfor-
mance improvements of 100 percent or better by simply implementing 
their own simplified, application-specific, memory-management algorithms 
rather than calling the standard runtime library or OS kernel memory-
allocation code. Hopefully, this section has made you aware of this 
potential problem in your own code.

11.9 Common Pointer Problems

Programmers make five common mistakes when using pointers. Some 
of these mistakes will immediately stop a program with a diagnostic 
message. Others are subtler, yielding incorrect results without otherwise 

Free/unused memory (internal fragmentation)

Memory in use
Allocation granularity

Unusable memory (internal fragmentation)

No Starch Press, Copyright © 2006 by Randall Hyde



336 Chap te r 11

reporting an error. Still others simply negatively affect the program’s 
performance. Needless to say, programmers who write great code are 
always aware of these problems when using pointers and avoid them. 
These five mistakes are:

� Using an uninitialized pointer

� Using a pointer that contains an illegal value like NULL

� Continuing to use storage after it has been freed
� Failing to free storage once the program is done using it

� Accessing indirect data using the wrong data type

11.9.1 Using an Uninitialized Pointer
Using a pointer variable before you have assigned a valid memory address to 
the pointer is a very common problem. Beginning programmers often don’t 
realize that declaring a pointer variable only reserves storage for the pointer 
itself; it does not reserve storage for the data that the pointer references. The 
following short C/C++ program demonstrates this problem:

int main()

{

static int *pointer;

*pointer = 0;

}

Although static variables you declare are, technically, initialized with 
zero (i.e., NULL), static initialization doesn’t initialize the pointer with a 
valid address. Therefore, when this program executes, the variable pointer
will not contain a valid address, and the program will fail. To avoid this 
problem, you should ensure that all pointer variables contain a valid address 
prior to dereferencing those pointers. For example:

int main()

{

static int i;

static int *pointer = &i;

*pointer = 0;

}

Of course, there is no such thing as a truly uninitialized variable on most 
CPUs.3 Variables are initialized in two different ways: 

� The programmer explicitly gives them an initial value.

� They inherit whatever bit pattern happens to be in memory when the 
system binds storage to the variable.

3 There are a few CPUs that have special tag bits to denote uninitialized values; however, few 
mainstream CPUs support this feature.

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 337

Much of the time, garbage bit patterns laying around in memory don’t 
correspond to a valid memory address. Attempting to dereference such an invalid 
pointer (that is, access the data in memory at which it points) raises a Memory 
Access Violation exception, assuming that your operating system is capable of 
trapping this exception. 

Sometimes, however, those random bits in memory just happen to 
correspond to a valid memory location you can access. In this situation, the 
CPU will access the specified memory location without aborting the program. 
A naive programmer might think that accessing random memory is prefer-
able to aborting a program. However, ignoring the error is far worse because 
your defective program continues to run without alerting you. If you store 
data using an uninitialized pointer, you may very well overwrite the values of 
other important variables in memory. This can produce some problems that 
are very difficult to locate.

11.9.2 Using a Pointer That Contains an Illegal Value
The second problem programmers have with pointers is assigning them 
invalid values (invalid in the sense of not containing the address of an actual 
object in memory). This can be considered a more general case of the first 
problem; without initialization, the garbage bits in memory supply the invalid 
address. The effects are the same. If you attempt to dereference a pointer 
containing an invalid address, either you will get a Memory Access Violation 
exception or you will access an unexpected memory location. Therefore, you 
must be careful when dereferencing a pointer variable and make sure that 
you’ve assigned a valid address to the pointer before using it.

11.9.3 Continuing to Use Storage After It Has Been Freed
The third problem is also known as the dangling pointer problem. To understand 
this problem, consider the following Pascal code fragment:

(* Allocate storage for a new object of type p  *)

new( p ); 

(* Use the pointer *)

p^ := 0; 

    .

    . (* Code that uses the storage associated with p *)

    .

(* free the storage associated with pointer p *)

dispose( p ); 

    .

    . (* Code that doesn't reference p *)

    .

No Starch Press, Copyright © 2006 by Randall Hyde



338 Chap te r 11

(* Dangling pointer                             *)

p^ := 5; 

In this example, you will note that the program allocates some storage 
and saves the address of that storage in the p variable. The code uses the 
storage for a while and then frees it, returning it to the system for other uses. 
Note that calling dispose doesn’t change any data in the allocated memory. 
It doesn’t change the value of p in any way; p still points at the block of mem-
ory allocated earlier by new. However, note that the call to dispose does tell 
the system that the program no longer needs this block of memory and 
that the system can use this region of memory for other purposes. The dispose
function cannot enforce the fact that you will never access this data again. 
You are simply promising that you won’t. Of course, this code fragment breaks 
that promise. The last statement in the program stores the value 4 at the 
address pointed to by p in memory.

The biggest problem with dangling pointers is that sometimes you can 
get away with using them, so you won’t immediately know there is a prob-
lem. As long as the system doesn’t reuse the storage you’ve freed, using a 
dangling pointer produces no ill effects in your program. However, with 
each additional call to new, the system may decide to reuse the memory 
released by that previous call to dispose. When it does reuse the memory, 
any subsequent attempt to dereference the dangling pointer may produce 
some unintended consequences. The problems can include reading data 
that has been overwritten, overwriting the new data, and (in the worst case) 
overwriting system heap management pointers (doing so will probably cause 
your program to crash). The solution is clear: Never use a pointer value once 
you free the storage associated with that pointer.

11.9.4 Failing to Free Storage When Done with It
Of all these problems, failing to free allocated storage will probably have the 
least impact on the proper operation of your program. The following C code 
fragment demonstrates this problem:

// Pointer to storage in "ptr" variable.

ptr = malloc( 256 ); 

    .

    . // Code that doesn't free "ptr"

    .

ptr = malloc( 512 );

// At this point, there is no way to reference the 

// original block of 256 bytes allocated by malloc.

In this example, the program allocates 256 bytes of storage and refer-
ences this storage using the ptr variable. Later, the program allocates another 
block of 512 bytes and overwrites the value in ptr with the address of this 
new block. The former address value in ptr is lost. And because the program 

No Starch Press, Copyright © 2006 by Randall Hyde



Poin ter Da ta  Types 339

has overwritten this former value, there is no way to pass the address of the 
first 256 bytes to the free function. As a result, these 256 bytes of memory are 
no longer available to your program. 

While making 256 bytes of memory inaccessible to your program might 
not seem like a big deal, imagine that this code executes within a loop. With 
each iteration of the loop, the program will lose another 256 bytes of mem-
ory. After a sufficient number of repetitions, the program will exhaust the 
memory available on the heap. This problem is often called a memory leak
because the effect is as if the memory bits were leaking out of your computer 
during program execution.

Memory leaks are less of a problem than dangling pointers. Indeed, 
there are only two problems with memory leaks: 

� The danger of running out of heap space (which, ultimately, may cause 
the program to abort, though this is rare)

� Performance problems due to virtual memory page swapping

Nevertheless, you should develop the habit of freeing all of the storage 
you allocate. 

NOTE When your program quits, the operating system will reclaim all of the storage, includ-
ing the data lost via memory leaks. Therefore, memory lost via a leak is only lost to your 
program, not the whole system.

11.9.5 Accessing Indirect Data Using the Wrong Data Type
The last problem with pointers is that their lack of type-safe access makes it 
easy to accidentally use the wrong data type. Some languages, like assembly, 
cannot and do not enforce pointer type checking. Others, like C/C++, make it 
very easy to override the type of the object a pointer references. For example, 
consider the following C/C++ program fragment:

    char *pc;

        .

        .

        .

    pc = malloc( sizeof( char ) );

        .

        .

        .

    // Type-cast pc to be a pointer to an integer

    // rather than a pointer to a character:

    *((int *) pc) = 5000;

Generally, if you attempt to assign the value 5000 to the object pointed 
to by pc, the compiler will complain bitterly. The value 5000 won’t fit in the 
amount of storage associated with a character (char) object, which is 1 byte. 
This example, however, uses type casting (or coercion) to tell the compiler that 
pc really contains a pointer to an integer rather than a pointer to a character. 
Therefore, the compiler will assume that this assignment is legal. 

No Starch Press, Copyright © 2006 by Randall Hyde



340 Chap te r 11

Of course, if pc doesn’t actually point at an integer object, then the last 
statement in this sequence can be disastrous. Characters are 1 byte long and 
integers are usually larger. If the integer is larger than 1 byte, this assignment 
will overwrite some number of bytes beyond the 1 byte of storage that malloc
allocated. Whether or not this is a problem depends upon what data immedi-
ately follows the character object in memory.

11.10 For More Information

This chapter dealt with the low-level implementation of pointers. For more 
information on pointers, you’ll probably want to start learning and master-
ing assembly language. The Art of Assembly Language (No Starch Press, 2003) 
is a good place to begin that journey. There are a number of books that 
deal with the problems of errant pointers in C and C++; Steve Oualline’s 
How Not to Program in C++ (No Starch Press, 2003) is an example. Any title 
that describes common C/C++ programming mistakes should pay proper 
respect to pointer problems.

No Starch Press, Copyright © 2006 by Randall Hyde



12
R E C O R D ,  U N I O N ,  A N D  

C L A S S D A T A  T Y P E S

Records, unions, and classes are popular 
composite data types found in many modern 

programming languages. Incorrectly used, 
these data types can have a very negative impact 

on the performance of your software. Correctly used, 
they can actually improve the performance of your 
applications (compared with using alternative data structures). In this 
chapter we will explore the implementation of these data types so that you 
can understand how to use them to maximize the efficiency of your pro-
grams and make the most of these data structures. The topics this chapter 
covers include:

� Definitions for the record, union, and class data types

� Declaration syntax for records, unions, and classes in various languages

� Record variables and instantiation

� Compile-time initialization of records

� Memory representation of record, union, and class data

No Starch Press, Copyright © 2006 by Randall Hyde



342 Chap te r 12

� Using records to improve runtime memory performance

� Dynamic record types

� Namespaces

� Variant data types and their implementation as a union

� Virtual method tables for classes and their implementation

� Inheritance and polymorphism in classes

� The performance cost associated with classes and objects

By properly using composite data types such as unions, records, and 
classes in your applications, you can produce code that is more efficient and 
easier to read and maintain. This chapter introduces the basic concepts you 
will need to effectively use these data types in your applications.

12.1 Records

The Pascal record and the C/C++ structure are terms used to describe com-
parable composite data structures. Language design textbooks sometimes 
refer to these types as cartesian products or tuples. The Pascal terminology is 
probably better because it avoids confusion with the term data structure.
Therefore, I’ll adopt the term record here. Regardless of what you call these 
data types, records are a great tool for organizing data in an application, and 
a good understanding of how languages implement records can help you 
write more efficient code.

An array is homogeneous, meaning that its elements are all of the same 
type. A record, on the other hand, is heterogeneous, and its elements can 
have differing types. The purpose of a record is to let you encapsulate logically 
related values into a single object.

Arrays let you select a particular element via an integer index. With 
records, you must select an element, known as a field, by the field’s name. 
Each of the field names within the record must be unique. That is, the same 
name may not be used more than once in the same record. However, all field 
names are local to their record, and you may reuse those names elsewhere in 
the program.1

12.1.1 Record Declarations in Various Languages
Before discussing how various languages implement record data types, I need 
to provide a quick look at the declaration syntax for some of these languages. 
The following subsections provide quick glimpses at the declaration syntax 
for Pascal, C/C++, and HLA.

1 Technically, nested records may reuse field names within the nested records but those are 
different record structures so the basic rule remains true.

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 343

12.1.1.1 Records in Pascal/Delphi

Here’s a typical record declaration for a “student” data type in Pascal/
Delphi/Kylix:

type

    student = 

        record

            Name:     string [64];

            Major:    smallint;    // 2-byte integer in Delphi

            SSN:      string[11];

            Mid1:     smallint;

            Midt:     smallint;

            Final:    smallint;

            Homework: smallint;

            Projects: smallint;

        end;

A record declaration consists of the keyword record followed by a sequence 
of field declarations, ending with the keyword end. The field declarations are 
syntactically identical to variable declarations in the Pascal language.

Many Pascal compilers allocate all of the fields in contiguous memory 
locations. This means that Pascal will reserve the first 65 bytes for the name,2

the next 2 bytes for the major code, the next 12 bytes for the Social Security 
number, and so on.

12.1.1.2 Records in C/C++

Here’s the same declaration in C/C++:

typedef

    struct 

    {

        // Room for a 64-character zero-terminated string:

        char Name[65];

        // Typically a 2-byte integer in C/C++:

        short Major;   

        // Room for an 11-character zero-terminated string:

        char SSN[12];  

2 Pascal strings usually require an extra byte, in addition to all the characters in the string, to 
encode the length.

No Starch Press, Copyright © 2006 by Randall Hyde



344 Chap te r 12

        short Mid1;

        short Mid2;

        short Final;

        short Homework;

        short Projects

    } student;

Record declarations in C/C++ begin with the keyword typedef, which is 
followed by the struct keyword, a set of field declarations enclosed by a pair of 
braces, and a structure name (note that C++ allows an alternative syntax, which 
I will ignore here as it is totally equivalent for the purposes of discussion). As 
for Pascal, most C/C++ compilers will assign memory offsets to the fields in 
the order of their declaration in the record.

12.1.1.3 Records in HLA

In HLA, you can create record types using the record/endrecord declaration. 
You would encode the record from the previous sections as follows:

type

    student:

        record

            Name:     char[65];

            Major:    int16;

            SSN:      char[12];

            Mid1:     int16;

            Mid2:     int16;

            Final:    int16;

            Homework: int16;

            Projects: int16;

        endrecord;

As you can see, the HLA declaration is very similar to the Pascal declara-
tion. Note that, to stay consistent with the Pascal declaration, this example 
uses character arrays rather than strings for the Name and SSN (Social Security 
number) fields. In a typical HLA record declaration you’d probably use a 
string type for at least the Name field (keeping in mind that a string variable is 
only a 4-byte pointer).

12.1.2 Instantiation of a Record
Generally, record declations do not reserve storage for a record object. 
A record declaration specifies a data type that you can use as a template 
when declaring record variables. Instantiation is the process of using a record 
template, or type, to create a record variable. 

Consider the HLA type declaration for student from the following section. 
This type declaration does not allocate any storage for a record variable. It 
simply provides the structure for the record object to use. To create an actual 

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 345

student variable, you must set aside some storage for the record variable, either 
at compile time or at runtime. In HLA, for example, you can set aside storage 
for a student object at compile time by using variable declarations such as:

var

automaticStudent :student;

static

staticStudent :student;

The var declaration tells HLA to reserve sufficient storage for a student
object in the current activation record when the program enters the current 
procedure. The second statement tells HLA to reserve sufficient storage for a 
student object in the static data section; this is done at compilation time.

You can also allocate storage for a record object dynamically using 
memory allocation functions. For example, in the C language you can use 
the malloc function to allocate storage for a student object thusly:

student *ptrToStudent;

.

.

.

ptrToStudent = malloc( sizeof( student ));

A record is simply a collection of (otherwise) unrelated variables. You 
might wonder why records are really necessary. Why not just create separate 
variables? In C, for example, why not just write:

// Room for a 64-character zero-terminated string:

char someStudent_Name[65];

// Typically a 2-byte integer in C/C++:

short someStudent_Major;   

// Room for an 11-character zero-terminated string:

char someStudent_SSN[12];  

short someStudent_Mid1;

short someStudent_Mid2;

short someStudent_Final;

short someStudent_Homework;

short someStudent_Projects

There are several reasons why this approach fails. On the software 
engineering side of things, there are maintenance issues to consider. For 
example, what happens if you create several sets of “student” variables and 
then decide you want to add a field? Now you’ve got to go back and edit every 

No Starch Press, Copyright © 2006 by Randall Hyde



346 Chap te r 12

set of declarations you’ve created—not a pretty sight. With struct/record dec-
larations, however, you only need to make a single change to the type declara-
tion and all the variable declarations automatically get the new field. Also, 
consider what happens if you want to create an array of “student” objects.

Software engineering issues aside, collecting disparate fields into a 
record is a good idea for efficiency reasons. Many compilers allow you to 
treat a whole record as a single object for the purposes of assignment, param-
eter passing, and so on. In Pascal, for example, if you have two variables, s1
and s2, of type student, you can assign all the values of one student object to 
the other with a single assignment statement like this:

s2 := s1;

Not only is this more convenient than assigning the individual fields, but 
the compiler can often generate better code by using a block move operation. 
Consider the following C++ code and associated x86 assembly language 
output:

#include <stdlib.h>

// A good-sized, but otherwise arbitrary structure, that

// demonstrates how a C++ compiler can handle structure

// assignments.

typedef struct 

{

    int x;

    int y;

    char *z;

    int a[16];

}aStruct;

int main( int argc, char **argv )

{

    static aStruct s1;

    aStruct s2;

    int i;

    // Give s1 some nonzero values so

    // that the optimizer doesn't simply

    // substitute zeros everywhere fields

    // of s1 are referenced:

    s1.x = 5;

    s1.y = argc;

    s1.z = *argv;

    // Do a whole structure assignment

    // (legal in C++!)

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 347

    s2 = s1;

    // Make an arbitrary change to S2

    // so that the compiler's optimizer

    // won't eliminate the code to build

    // s2 and just use s1 because s1 and

    // s2 have the same values.

    s2.a[2] = 2;

    // The following loop exists, once again,

    // to thwart the optimizer from eliminating

    // s2 from the code:

    for( i = 0; i < 16; ++i)

    {

        printf( "%d\n", s2.a[i] );

    }

    // Now demonstrate a field-by-field assignment

    // so we can see the code the compiler generates:

    s1.y = s2.y;

    s1.x = s2.x;

    s1.z = s2.z;

    for( i = 0; i < 16; ++i )

    {

        s1.a[i] = s2.a[i];

    }

    for( i = 0; i < 16; ++i)

    {

        printf( "%d\n", s2.a[i] );

    }

    return 0;

}

Here’s the relevant portion of the 80x86 assembly code that Microsoft’s 
Visual C++ compiler produces (with the /O2 optimization option):

;Storage for the s1 array in the BSS segment:

_BSS    SEGMENT

_?s1@?1??main@@9@9 DB 04cH DUP (?)

_BSS    ENDS

_main   PROC NEAR

; Line 14

;

; Allocate storage for the local variables

; (including s2):

    sub esp, 76

    

No Starch Press, Copyright © 2006 by Randall Hyde



348 Chap te r 12

; Line 25

;

; Get argc value passed on the stack into EAX:

    mov eax, DWORD PTR _argc$[esp+72]

    

; Line 26

;

; Get argv value passed on stack into ECX:

    mov ecx, DWORD PTR _argv$[esp+72]

    

; Initialize fields of the s1 struct:

    push    esi

    

    ; s1.x = 5;

    

    mov DWORD PTR _?s1@?1??main@@9@9, 5

    

    ; s2.y = argc;

    

    mov DWORD PTR _?s1@?1??main@@9@9+4, eax

    

    ; s2.z = *argv;

    

    mov edx, DWORD PTR [ecx]

    mov DWORD PTR _?s1@?1??main@@9@9+8, edx

    push    edi

    

    

; Line 31

;

; s2 = s1;

; Note how the compiler copies the entire structure

; using a block move operation (movsd).

    mov ecx, 19                 ; 00000013H

    mov esi, OFFSET FLAT:_?s1@?1??main@@9@9

    lea edi, DWORD PTR _s2$[esp+84]

    rep movsd

    

    

    

; Line 39

;

; s2.a[2] = 2;

    mov DWORD PTR _s2$[esp+104], 2

    

; For loop to print the 16 values in s2.a in

; order to thwart the optimizer from eliminating

; s2 altogether:

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 349

    lea esi, DWORD PTR _s2$[esp+96]

    mov edi, 16                 ; 00000010H

$L52953:

; Line 47

    mov eax, DWORD PTR [esi]

    push    eax

    push    OFFSET FLAT:??_C@_03HMFC@?$CFd?6?$AA@   ; 'string'

    call    _printf

    add esp, 8

    add esi, 4

    dec edi

    jne SHORT $L52953

    

    

; Line 53

;   s1.y = s2.y;

    mov ecx, DWORD PTR _s2$[esp+88]

    mov DWORD PTR _?s1@?1??main@@9@9+4, ecx

; Line 54

;   s1.x = s2.x;

    mov edx, DWORD PTR _s2$[esp+84]

    mov DWORD PTR _?s1@?1??main@@9@9, edx

; Line 55

;   s1.z = s2.z;

    mov eax, DWORD PTR _s2$[esp+92]

    mov DWORD PTR _?s1@?1??main@@9@9+8, eax

; Line 58

;

; For loop that copies s2.a to s1.a (note how

; the optimizer converts this to a block move,

; too.

    mov ecx, 16

    lea esi, DWORD PTR _s2$[esp+96]

    mov edi, OFFSET FLAT:_?s1@?1??main@@9@9+12

    rep movsd

; Line 60

;

; For loop that prints out the 16 values in

; s1.a (to thwart the optimizer):

    lea esi, DWORD PTR _s2$[esp+96]

    mov edi, 16

$L52961:

No Starch Press, Copyright © 2006 by Randall Hyde



350 Chap te r 12

; Line 62

    mov ecx, DWORD PTR [esi]

    push    ecx

    push    OFFSET FLAT:??_C@_03HMFC@?$CFd?6?$AA@   ; 'string'

    call    _printf

    add esp, 8

    add esi, 4

    dec edi

    jne SHORT $L52961

The important thing to see in this example is that the MSVC compiler 
emits a block copy instruction sequence (movsd) whenever you assign whole 
structures, but may degenerate to a sequence of individual mov instructions 
for each of the fields when you do a field-by-field assignment of two structures. 
Likewise, if you had not encapsulated all the fields into a struct, assignment 
of the variables associated with your struct via a block copy operation would 
not have been possible.

Combining fields together into a record has many advantages. Some of 
these advantages are listed here:

� It is much easier to maintain the record structure (that is, add, remove, 
rename, and change fields).

� Compilers can do additional type and semantic checking on records, 
thereby helping catch logic errors in your programs when you use a 
record improperly.

� Compilers can treat records as monolithic objects, generating more 
efficient code (for example, movsd instructions) than they can when 
working with individual field variables.

� Most compilers respect the order of declaration in a record, allocating 
successive fields to consecutive memory locations. This is important 
when interfacing data structures from two different languages. There is 
no guarantee for the organization of separate variables in memory in 
most languages.

� As you’ll soon see, you can use records to improve cache memory 
performance and reduce virtual memory thrashing.

� Records can contain pointer fields that contain the address of other 
(like-typed) record objects. This isn’t possible when using bulk variables 
in memory.

You’ll certainly see some other advantages of records in the following 
sections.

12.1.3 Initialization of Record Data at Compile Time
Some languages, for example C/C++ and HLA, allow you to initialize record 
variables at compile time. For static objects, this spares your application the 
code and time needed to manually initialize each field of a record. For exam-
ple, consider the following C code. This example provides initializers for 
both static and automatic struct variables.

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 351

#include <stdlib.h>

// Arbitrary structure that consumes a nontrivial

// amount of space:

typedef struct 

{

    int x;

    int y;

    char *z;

    int a[4];

}initStruct;

// The following exists just to thwart

// the optimizer and make it think that

// all the fields of the structure are

// needed.

extern thwartOpt( initStruct *i );

int main( int argc, char **argv )

{

    static initStruct staticStruct = {1,2,"Hello", {3,4,5,6}};

    initStruct autoStruct = {7,8,"World",{9,10,11,12}};

    thwartOpt( &staticStruct );

    thwartOpt( &autoStruct );

    return 0;

    

}

Compiled with MSVC using the /O2 and /Fa command-line options, 
the following 80x86 machine code (edited manually to eliminate irrelevant 
output) is obtained:

; Static structure declaration.

; Note how each of the fields are

; initialized with the initial values

; specified in the C source file:

_DATA   SEGMENT

_?staticStruct@?1??main@@9@9 DD 01H  ;x field

    DD  02H                  ;y field

    DD  FLAT:$SG52954        ;z field

    DD  03H                  ;a[0] field

    DD  04H                  ;a[1] field

    DD  05H                  ;a[2] field

    DD  06H                  ;a[3] field

$SG52954 DB 'Hello', 00H  ;String constant used above.

    ORG $+2

No Starch Press, Copyright © 2006 by Randall Hyde



352 Chap te r 12

$SG52956 DB 'World', 00H

    ORG $+2

$SG52957 DB 'World', 00H  ;Used by autoStruct

_DATA   ENDS

_TEXT   SEGMENT

_autoStruct$ = -28

_main   PROC NEAR

; File t.c

; Line 20

    push    ebp

    mov ebp, esp

    sub esp, 28 ;Allocate storage for autoStruct

; Line 24

;

; Programmatically initialize all the fields of the

; autoStruct variable:

    mov DWORD PTR _autoStruct$[ebp], 7

    mov DWORD PTR _autoStruct$[ebp+4], 8

    mov DWORD PTR _autoStruct$[ebp+8], OFFSET FLAT:$SG52957

    mov DWORD PTR _autoStruct$[ebp+12], 9

    mov DWORD PTR _autoStruct$[ebp+16], 10  ; 0000000aH

    mov DWORD PTR _autoStruct$[ebp+20], 11  ; 0000000bH

    mov DWORD PTR _autoStruct$[ebp+24], 12  ; 0000000cH

; Calls to thwart:

    push    OFFSET FLAT:_?staticStruct@?1??main@@9@9

    call    _thwartOpt

; Line 25

    lea eax, DWORD PTR _autoStruct$[ebp]

    push    eax

    call    _thwartOpt

Look carefully at the machine code the compiler emits for the initializa-
tion of the autoStruct variable. Unlike static initialization, the compiler cannot 
initialize memory at compile time because it doesn’t know the addresses of 
the various fields of the automatic record that the system allocates at runtime. 
Sadly, this particular compiler generates a field-by-field sequence of assign-
ments to initialize the fields of the structure. While this is relatively fast, it can 
consume quite a bit of memory, especially if you’ve got a large structure. If you 
want to reduce the size of the automatic structure variable initialization, one 
possibility is to create an initialized static structure and assign that structure 
to the automatic variable upon each entry into the function in which you’ve 
declared the automatic variable. Consider the following C++ and 80x86 
assembly code:

#include <stdlib.h>

typedef struct 

{

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 353

    int x;

    int y;

    char *z;

    int a[4];

}initStruct;

// The following exists just to thwart

// the optimizer and make it think that

// all the fields of the structure are

// needed.

extern thwartOpt( initStruct *i );

int main( int argc, char **argv )

{

    static initStruct staticStruct = {1,2,"Hello", {3,4,5,6}};

    // initAuto is a "readonly" structure used to initialize

    // autoStruct upon entry into this function:

    static initStruct initAuto = {7,8,"World",{9,10,11,12}};

    // Allocate autoStruct on the stack and assign the initial

    // values kept in initAuto to this new structure:

    initStruct autoStruct = initAuto;

    thwartOpt( &staticStruct );

    thwartOpt( &autoStruct );

    return 0;

    

}

Here’s the corresponding 80x86 assembly code that MSVC emits:

_DATA   SEGMENT

; Static initialized data for the staticStruct structure:

_?staticStruct@?1??main@@9@9 DD 01H

    DD  02H

    DD  FLAT:??_C@_05DPEH@Hello?$AA@

    DD  03H

    DD  04H

    DD  05H

    DD  06H

; Static initialized data for the initAuto structure:

    ORG $+4

_?initAuto@?1??main@@9@9 DD 07H

    DD  08H

    DD  FLAT:??_C@_05MKFP@World?$AA@

    DD  09H

No Starch Press, Copyright © 2006 by Randall Hyde



354 Chap te r 12

    DD  0aH

    DD  0bH

    DD  0cH

; Initial string data:

??_C@_05DPEH@Hello?$AA@ DB 'Hello', 00H

??_C@_05MKFP@World?$AA@ DB 'World', 00H

_DATA   ENDS

_TEXT   SEGMENT

_autoStruct$ = -28

_main   PROC NEAR

; 

; Allocate storage for the autoStruc structure:

    sub esp, 28

; Line 31

;

; Initialize autoStruct by copying the data from

; initAuto to autoStruct (using a block move

; operation):

    mov ecx, 7

    push    esi

    push    edi

    mov esi, OFFSET FLAT:_?initAuto@?1??main@@9@9

    lea edi, DWORD PTR _autoStruct$[esp+36]

    rep movsd

; Line 33

    push    OFFSET FLAT:_?staticStruct@?1??main@@9@9

    call    _thwartOpt

; Line 34

    lea eax, DWORD PTR _autoStruct$[esp+40]

    push    eax

    call    _thwartOpt

As you can see in this assembly code, it only takes a six-instruction 
sequence to copy the data from the statically initialized record into the 
automatically allocated record. This code is quite a bit shorter. Note, how-
ever, that it isn’t necessarily faster. Copying data from one structure to another 
involves memory-to-memory moves, which can be quite slow if all the memory 

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 355

locations are not currently cached. Moving immediate constants directly to 
the individual fields will often be faster, though it may take many instructions 
to accomplish this.

Of course, this example should remind you that if you attach an 
initializer to an automatic variable, the compiler is going to have to emit 
some code to handle that initialization at runtime. Unless your variables 
need to be re-initialized on each entry to your function, you should consider 
using static record objects instead.

12.1.4 Memory Storage of Records
The following Pascal example demonstrates a typical student record variable 
declaration:

var
John: Student;

Given the earlier declaration for the Pascal Student data type, this 
allocates 81 bytes of storage laid out in memory as shown in Figure 12-1. 
If the label John corresponds to the base address of this record, then the Name
field is at offset John+0, the Major field is at offset John+65, the SSN field is at 
offset John+67, and so on.

Figure 12-1: Student data structure storage in memory

Most programming languages let you refer to a record field by its name 
rather than by its numeric offset into the record (indeed, only a few low-end 
assemblers require that you reference fields by numeric offset; it’s safe to say 
that such assemblers don’t really support records). The typical syntax for a 
field access uses the dot operator to select a field from a record variable. Given 
the variable John from the previous example, here’s how you could access 
various fields in this record:

    John.Mid1 = 80;           // C/C++ example

    John.Final := 93;         (* Pascal Example *)

    mov( 75, John.Projects ); // HLA example

Figure 12-1 suggests that all fields of a record appear in memory in the 
order of their declaration. In theory, a compiler can freely place the fields 
anywhere in memory that it chooses. In practice, almost every compiler 
places the fields in memory in the same order they appear within the record 

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)

No Starch Press, Copyright © 2006 by Randall Hyde



356 Chap te r 12

declaration. The first field usually appears at the lowest address in the 
record, the second field appears at the next-highest address, the third field 
follows the second field in memory, and so on. 

Figure 12-1 also suggests that compilers pack the fields into adjacent 
memory locations with no gaps between the fields. While this is true for many 
languages, this certainly isn’t the most common memory organization for a 
record. For performance reasons, most compilers will actually align the fields 
of a record on appropriate memory boundaries. The exact details vary by 
language, compiler implementation, and CPU, but a typical compiler will 
place fields at an offset within the record’s storage area that is “natural” for 
that particular field’s data type. On the 80x86, for example, compilers that 
follow the Intel ABI (Application Binary Interface) will allocate single-byte 
objects at any offset within the record, words only at even offsets, and double-
word or larger objects on double-word boundaries. Although not all 80x86 
compilers support the Intel ABI, most do, which allows records to be shared 
among functions and procedures written in different languages on the 80x86. 
Other CPU manufacturers provide their own ABI for their processors 
and programs that adhere to an ABI can share binary data at runtime 
with other programs that adhere to the same ABI.

In addition to aligning the fields of a record at reasonable offset bound-
aries, most compilers will also ensure that the length of the entire record is a 
multiple of 2, 4, or 8 bytes. They accomplish this by adding padding bytes at 
the end of the record to fill out the record’s size. The reason that compilers 
pad the size of a record is to ensure that the record’s length is a multiple of 
the largest scalar (non-array/non-record) object in the record.3 For example, 
if a record has fields whose lengths are 1, 2, 4, and 8 bytes long, then an 80x86 
compiler will generally pad the record’s length so that it is a multiple of 8. 
This allows you to create an array of records and be assured that each record 
in the array starts at a reasonable address in memory.

Although some CPUs don’t allow access to objects in memory at 
misaligned addresses, many compilers allow you to disable the automatic 
alignment of fields within a record. Generally, the compiler will have an 
option you can use to globally disable this feature. Many of these compilers 
also provide a pragma or a packed keyword of some sort that lets you turn off 
field alignment on a record-by-record basis. Disabling the automatic field 
alignment feature may allow you to save some memory by eliminating the 
padding bytes between the fields (and at the end of the record), provided 
that field misalignment is acceptable on your CPU. The cost, of course, is that 
the program may run a little more slowly when it needs to access misaligned 
values in memory.

One reason to use a packed record is to gain manual control over the 
alignment of the fields within the record. For example, suppose you have a 
couple of functions written in two different languages, and both of these 
functions need to access some data in a record. Further, suppose that the two 

3 Or a multiple of the CPU’s maximum boundary size, if it is smaller than the size of the largest 
field in the record.

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 357

compilers for these functions do not use the same field alignment algorithm. 
A record declaration like the following (in Pascal) may not be compatible 
with the way both functions access the record data:

type

    aRecord: record

        (* assume Pascal compiler supports a 

        ** byte, word, and dword type 

        *)

        bField : byte;  

        wField : word;

        dField : dword;

    end; (* record *)

The problem here is that the first compiler could use the offsets 0, 2, 
and 4 for the bField, wField, and dField fields, respectively, while the second 
compiler might use offsets 0, 4, and 8.

Suppose, however, that the first compiler allows you to specify the packed
keyword before the record keyword, causing the compiler to store each field 
immediately following the previous one. Although using the packed keyword 
will not make the records compatible with both functions, it will allow you to 
manually add padding fields to the record declaration, as follows:

type

    aRecord: packed record

        bField   :byte;

        

        (* add padding to dword align wField *)

        padding0 :array[0..2] of byte;

  

        wField   :word;

        (* add padding to dword align dField *)

        padding1 :word;                 

        dField   :dword; 

    end; (* record *)

Maintaining code where you’ve handled the padding in a manual 
fashion can be a real chore. However, if incompatible compilers need to 
share data, this trick is worth knowing because it can make data sharing 
possible. For the exact details concerning packed records, you’ll have to 
consult your language’s reference manual.

No Starch Press, Copyright © 2006 by Randall Hyde



358 Chap te r 12

12.1.5 Using Records to Improve Memory Performance
From the perspective of someone who wants to write great code, records 
offer an important capability: the ability to control variable placement in 
memory. By controlling the placement of variables in memory, you can 
better control cache usage by those variables. This can help you write code 
that executes much faster.

Consider, for a moment, the following C global/static variable 
declarations:

int i;

int j = 5;

int cnt = 0;

char a = 'a';

char b;

You might think that the compiler would allocate storage for these 
variables in consecutive memory locations. However, few if any languages 
guarantee this. C certainly doesn’t and, in fact, C compilers like Microsoft’s 
Visual C++ compiler don’t allocate these variables in sequential memory 
locations. Consider the MSVC assembly language output for the variable 
declarations above:

PUBLIC  _j

PUBLIC  _cnt

PUBLIC  _a

_DATA   SEGMENT

COMM    _i:DWORD

_DATA   ENDS

_BSS    SEGMENT

_cnt    DD      01H DUP (?)

_BSS    ENDS

_DATA   SEGMENT

COMM    _b:BYTE

_j      DD      05H

_a      DB      061H

_DATA   ENDS

Even if you don’t understand the purpose of all the directives here, it’s 
pretty obvious that MSVC has rearranged all the variable declarations in 
memory. Therefore, you cannot count on adjacent declarations in your 
source file yielding adjacent storage cells in memory. Indeed, there is 
nothing to stop the compiler from allocating one or more variables in a 
machine register. 

Of course, you might question why you would be concerned about the 
placement of variables in memory. After all, one of the main reasons for 
using named variables as an abstraction for memory is to avoid having 

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 359

to think about low-level memory allocation strategies. There are times, 
however, when being able to control the placement of variables in memory 
is important. For example, if you want to maximize program performance, 
you should try to place sets of variables that you access together in adjacent 
memory locations. This way, those variables will tend to sit in the same 
cache line, and you won’t pay a heavy latency cost for accessing variables 
not currently held in cache. Furthermore, by placing variables you use 
together adjacent to one another in memory, you’ll use fewer cache lines 
and, therefore, have less thrashing.

Universally, programming languages that support the traditional notion 
of records maintain the fields of their records in adjacent memory locations. 
Therefore, if you have some reason to keep different variables in adjacent 
memory locations (so that they share cache lines as much as possible), putting 
your variables into a record is a reasonable approach.

12.1.6 Dynamic Record Types and Databases
As stated in the previous section, “Universally, programming languages that 
support the traditional notion of records maintain the fields of their records 
in adjacent memory locations.” The key word here is traditional. Some dynamic 
languages employ a dynamic type system, and object types can change at run-
time. I’ll discuss dynamic types a little later in this chapter, but suffice to say 
that if your language uses a dynamic type record structure, then all bets are 
off concerning the placement of fields in memory. Chances are pretty good 
that the fields will not be sitting in adjacent memory locations. Then again, 
if you’re using a dynamic language, the fact that you’re sacrificing a little 
performace because you’re not getting maximal benefit from your cache will 
be the least of your worries.

A classical example of a dynamic record is the data you read from a 
database engine. The engine itself has no preconceived (that is, compile-
time) notion of what structure the database records will take. Instead, the 
database itself provides metadata that tells the database the record structure. 
The database engine reads this metadata from the database and uses it to 
organize the field data into a single record prior to returning this data to the 
database application. In a dynamic language, the actual field data is typically 
spread out across memory, and the database application references that data 
indirectly.

Of course, if you’re using a dynamic language, you have much greater 
concerns about performance than the placement or organization of your 
record fields in memory. Dynamic languages, such as database engines, 
execute many instructions processing the metadata (or otherwise deter-
mining the type of their data operands), so losing a few cycles to cache 
thrashing here and there is going to be the least of your worries. For more 
information about the overhead associated with a dynamic typing system, 
see Section 12.6, “Variant Types.”

No Starch Press, Copyright © 2006 by Randall Hyde



360 Chap te r 12

12.2 Discriminant Unions

A discriminant union (or just union) is very similar to a record. A discriminant 
is something that distinguishes or separates items in a quantity. In the case of 
a discriminant union, the term means that different field names are used to 
distinguish the various ways that a given memory location’s data type can be 
interpreted. 

Like records, unions in typical languages that support them have fields 
that you access using dot notation. In fact, in many languages, about the only 
syntactical difference between records and unions is the use of the keyword 
union rather than record. Semantically, however, there is a big difference 
between a record and a union. In a record, each field has its own offset from 
the base address of the record, and the fields do not overlap. In a union, 
however, all fields have the same offset, 0, and all the fields of the union 
overlap. As a result, the size of a record is the sum of the sizes of all the fields 
(plus, possibly, some padding bytes), whereas a union’s size is the size of its 
largest field (plus, possibly, some padding bytes at the end).

Because the fields of a union overlap, you might think that a union has 
little use in a real-world program. After all, if all the fields overlap, then chang-
ing the value of one field changes the values of all the other fields as well. This 
generally means that the use of a union’s field is mutually exclusive—that is, you 
can use only one field at any given time. This observation is generally correct, 
but although this means that unions aren’t as generally applicable as records, 
they still have many uses. As you’ll see later in this chapter, you can use unions 
to save memory by reusing memory for different values, to coerce data types, 
and to create variant data types. For the most part, though, programs use 
unions to share memory between different variable objects whose use never 
overlaps (that is, the variables’ use is mutually exclusive).

For example, imagine that you have a 32-bit dword variable, and you find 
yourself constantly extracting out the LO or the HO 16-bit word. In most 
HLLs, this would require a 32-bit read and then a mask to AND out the 
unwanted word. If that wasn’t enough, if you want the HO word, you have 
to then shift the result to the right 16 bits. With a union, you can declare 
memory addresses to the 32-bit double word and to each 16-bit word and not 
have to do the mask or possible shift. I explain how to do this later in this 
chapter (see Section 12.5, “Other Uses of Unions”).

12.3 Union Declarations in Various Languages

Before discussing how various languages implement union data types, I need 
to provide a quick look at the declaration syntax for some of these languages. 
The following subsections provide quick glimpses at the declaration syntax 
for Pascal, C/C++, and HLA.

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 361

12.3.1 Union Declarations in C/C++
Here’s an example of a union declaration in C/C++:

typedef union

{

    unsigned int  i;

    float         r;

    unsigned char c[4];

} unionType;

Assuming the C/C++ compiler in use allocates 4 bytes for unsigned 
integers, the size of a unionType object will be 4 bytes (because all three fields 
are 4-byte objects).

12.3.2 Union Declarations in Pascal/Delphi/Kylix
Pascal, Delphi, and Kylix use case-variant records to create a discriminant union. 
The syntax for a case-variant record is the following:

type

    typeName = 

        record

            <<non-variant/union record fields go here>>

            case tag of

                const1:( field_declaration );

                const2:( field_declaration );

                    .

                    .

                    .

                constn:( field_declaration )

        end;

The tag item can be either a type identifier (e.g., boolean, char, or some 
user-defined type), or it can be a field declaration of the form identifier:type.
If the tag item takes the latter form, then identifier becomes another field of 
the record (and not a member of the variant section) and has the specified 
type. When using the second form, the Pascal compiler could generate code 
that raises an exception whenever the application attempts to access any of 
the variant fields except the one specified by the value of the tag field. In 
practice, almost no Pascal compilers do this. Still, keep in mind that the Pascal 
language standard suggests that compilers should do this, so some compilers 
might actually do this check.

No Starch Press, Copyright © 2006 by Randall Hyde



362 Chap te r 12

Here’s an example of two different case-variant record declarations in 
Pascal:

type

    noTagRecord=

        record

            someField: integer;

            case boolean of

                true:( i:integer );

                false:( b:array[0..3] of char)

        end; (* record *)

    hasTagRecord=

        record

            case which:(0..2) of

                0:( i:integer );

                1:( r:real );

                2:( c:array[0..3] of char )

        end; (* record *)

As you can see in the hasTagRecord union, a Pascal case-variant record 
does not require any normal record fields. This is true even if you do not 
have a tag field.

12.3.3 Union Declarations in HLA

HLA supports unions as well. Here’s a typical union declaration in HLA:

type

    unionType:

        union

            i: int32;

            r: real32;

            c: char[4];

        endunion;

12.4 Memory Storage of Unions

Remember that the big difference between a union and a record is the fact 
that records allocate storage for each field at different offsets, whereas unions 
overlay each of the fields at the same offset in memory. For example, con-
sider the following HLA record and union declarations:

type

    numericRec:

        record

            i: int32;

            u: uns32;

            r: real64;

        endrecord;

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 363

    numericUnion:

        union

            i: int32;

            u: uns32;

            r: real64;

        endunion;

If you declare a variable, say n, of type numericRec, you access the fields as 
n.i, n.u, and n.r, exactly as though you had declared the n variable to be type 
numericUnion. However, the size of a numericRec object is 16 bytes because the 
record contains two double-word fields and a quad-word (real64) field. The 
size of a numericUnion variable, however, is 8 bytes. Figure 12-2 shows the mem-
ory arrangement of the i, u, and r fields in both the record and union.

Figure 12-2: Layout of a union versus a record variable

12.5 Other Uses of Unions

In addition to conserving memory, programmers often use unions to create 
aliases in their code. As you may recall, an alias is a different name for the 
same memory object. Although aliases are often a source of confusion in a 
program and should be used sparingly, using an alias can sometimes be 
convenient. For example, in some section of your program you might need 
to constantly use type coercion to refer to a particular object. One way to 
avoid this is to use a union variable with each field representing one of the 
different types you want to use for the object. As an example, consider the 
following HLA code fragment:

type

    CharOrUns:

        union

            c:char;

            u:uns32;

        endunion;

static

    v:CharOrUns;

i u r

r

i, u

Offset zero Offset eight Offset sixteen

Union variable

Record variable

No Starch Press, Copyright © 2006 by Randall Hyde



364 Chap te r 12

With a declaration like this one, you can manipulate an uns32 object by 
accessing v.u. If, at some point, you need to treat the LO byte of this uns32
variable as a character, you can do so by simply accessing the v.c variable, as 
follows:

    mov( eax, v.u );
    stdout.put( "v, as a character, is '", v.c, "'" nl );

Another common practice is to use unions to disassemble a larger object 
into its constituent bytes. Consider the following C/C++ code fragment:

typedef union

{

    unsigned int u;

    unsigned char bytes[4];

} asBytes;

asBytes composite;

        .

        .

        .

    composite.u = 1234576890;

    printf

    ( 

        "HO byte of composite.u is %u, LO byte is %u\n",

        composite.u[3],

        composite.u[0]

    );

Although composing and decomposing data types using unions is a 
useful trick every now and then, be aware that this code is not portable. 
Remember that the HO and LO bytes of a multibyte object appear at 
different addresses on big endian versus little endian machines. This code 
fragment works fine on little endian machines, but fails to display the correct 
bytes on big endian CPUs. Any time you use unions to decompose larger 
objects, you should be aware that the code might not be portable across 
different machines. Still, disassembling larger values into the correspond-
ing bytes, or assembling a larger value from bytes, is usually much more 
efficient that using shift lefts, shift rights, and AND operations. Therefore, 
you’ll see this trick used quite a bit.

12.6 Variant Types

A variant object is one whose type is dynamic—that is, the object’s type can 
vary at runtime. This spares the programmer from having to decide on a data 
type when designing the program and allows the end user to enter whatever 
data they like as the program operates. Programs written in a dynamically 
typed language are typically far more compact than languages written in a 
traditional statically typed language. This makes dynamically typed languages 

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 365

very popular for rapid prototyping, interpretive, and very high-level languages. 
A few mainstream languages (including Visual Basic and Delphi/Kylix) also 
support variant types. In this section, I’ll show how compilers implement 
variant types and the efficiency costs associated with them.

To implement a variant type, most languages use a union to reserve 
storage for all the different types the variant supports. This means that vari-
ant objects will consume at least as much space as the largest primitive data 
type the variant type supports. In addition to the storage required to keep 
the variant’s value, the variant data structure will also need some additional 
storage to keep track of the object’s current type. And if the language allows 
variants to assume an array type, additional storage may be necessary to specify 
how many elements are in the array (or the bounds on each dimension if the 
language allows multidimensional variant arrays). The bottom line is that a 
variant will consume a fair amount of memory, even if the actual data only 
consumes a single byte.

Perhaps the best way to illustrate how variant data types work is to imple-
ment a variant type manually. Consider the following Delphi case-variant 
record declaration:

type

    dataTypes = 

        ( 

            vBoolean, paBoolean, vChar, paChar, 

            vInteger, paInteger, vReal, paReal,

            vString, paString 

        );

    varType =

        record

            elements : integer;

            case theType: varType of

                vBoolean:  ( b:boolean );

                paBoolean: ( pb:^boolean[0..0] );

                vChar:     ( c:char );

                paChar:    ( pc:^char[0..0] );

                vInteger:  ( i:integer );

                paInteger: ( pi:^integer[0..0] );

                vReal:     ( r:real );

                paReal:    ( pr:&real[0..0] );

                vString:   ( s:string );

                paString:  ( ps:^string[0..0] )

        end;

In this record, elements will contain the number of elements in the array 
if the object is a single-dimensional array (this particular data structure does 
not support multidimensional arrays). If, on the other hand, the object is a 
scalar variable, then the elements value will be irrelevant. The theType field 
specifies the current type of the object. If this tag field contains one of the 
enumerated constants vBoolean, vChar, vInteger, vReal, or vString, then the 

No Starch Press, Copyright © 2006 by Randall Hyde



366 Chap te r 12

object is a scalar variable, and if this field contains one of the constants 
paBoolean, paChar, paInteger, paReal, or paString then the object is a single-
dimensional array of the specified type.

The fields in the case-variant section of the Pascal record hold the 
variant’s value if it is a scalar object, or they hold a pointer to an array of 
objects if the variant is an array object. Technically, Pascal requires that you 
specify the bounds of the array in its declaration. But fortunately, Delphi lets 
you turn off bound checking (as well as allowing you to allocate memory for 
an array of arbitrary size), hence the dummy array bounds in this example.

Manipulating two variant objects that have the same type is easy. For 
example, suppose you want to add two variant values together. First, you’d 
determine the current type of both objects and whether the addition opera-
tion even makes sense for the data types.4 Once you’ve decided that the 
addition operation is reasonable, it’s easy enough to use a case (or switch)
statement based on the tag field of the two variant types:

// Handle the addition operation:

// Load variable theType with either left.theType 

// or right.theType  (which, presumably, contain 

// the same value at this point).

case( theType ) of

    vBoolean: writeln( "Cannot add two Boolean values!" );

    vChar: writeln( "Cannot add two character values!" );

    vString: writeln( "Cannot add two string values!" );

    vInteger: intResult := left.vInteger + right.vInteger;

    vReal: realResult := left.vReal + right.vReal;

    paBoolean: writeln( "Cannot add two Boolean arrays!" );

    paChar: writeln( "Cannot add two character arrays!" );

    paInteger: writeln( "Cannot add two integer arrays!" );

    paReal: writeln( "Cannot add two real arrays!" );

    paString: writeln( "Cannot add two Boolean arrays!" );

        

end;

If the left and right operands are not the same type, then the operation 
is a bit more complex. Some mixed-type operations are legal. For example, 
adding an integer operand and a real operand together is reasonable (it 
produces a real type result in most languages). Other operations may be legal 
only if the values of the operands can be added. For example, it’s reasonable 
to add a string and an integer together if the string happens to contain a string 
of digits that could be converted to an integer prior to the addition (likewise 
for string and real operands). What is needed here is a two-dimensional 
case/switch statement. Unfortunately, outside of assembly language, you 
won’t find such a creature (you won’t really find it in assembly language, 

4 For example, you can’t add two Boolean values together.

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 367

either, but you can easily write assembly code that does the same thing as a 
two-dimensional switch/case statement). However, you can simulate one 
easily enough by nesting case/switch statements: 

case( left.theType ) of

    vInteger: 

        case( right.theType ) of

            vInteger: 

(* code to handle integer+integer operands *)

            vReal: 

(* code to handle integer+real operands *)

            vBoolean: 

(* code to handle integer+boolean operands *)

            vChar: 

(* code to handle integer+char operands *)

            vString: 

(* code to handle integer+string operands *)

            paInteger: 

(* code to handle integer+intArray operands *)

            paReal: 

(* code to handle integer+realArray operands *)

            paBoolean: 

(* code to handle integer+booleanArray operands *)

            paChar: 

(* code to handle integer+charArray operands *)

            paString: 

(* code to handle integer+stringArray operands *)

        end;

    vReal:

        case( right.theType ) of

            (* cases for each of the right operand types  

                REAL + type *)

        end;

    Boolean:

        case( right.theType ) of

            (* cases for each of the right operand types: 

                BOOLEAN + type *)

        end;

    vChar:

        case( right.theType ) of

            (* cases for each of the right operand types: 

                CHAR + type *)

        end;

    vString:

        case( right.theType ) of

            (* cases for each of the right operand types: 

                STRING + type *)

        end;

No Starch Press, Copyright © 2006 by Randall Hyde



368 Chap te r 12

    paInteger:

        case( right.theType ) of

            (* cases for each of the right operand types: 

                intArray + type *)

        end;

    paReal:

        case( right.theType ) of

            (* cases for each of the right operand types: 

                realArray + type *)

        end;

    paBoolean:

        case( right.theType ) of

            (* cases for each of the right operand types: 

                booleanArray + type *)

        end;

    paChar:

        case( right.theType ) of

            (* cases for each of the right operand types: 

                charArray + type *)

        end;

    paString:

        case( right.theType ) of

            (* cases for each of the right operand types: 

                stringArray + type *)

        end;

end;

Once you expand all the code alluded to in these comments, you can 
see that this will be quite a few statements. And this is just for one operator! 
Obviously, it is going to take considerable work to implement all the basic 
arithmetic, string, character, and Boolean operations. Clearly, expanding 
this code inline whenever you need to add two variant values together is out 
of the question. Generally, you’d write a function like vAdd that would accept 
two variant parameters and produce a variant result (or raise some sort of 
exception if the addition of the operands is illegal).

The important thing to note by looking at this code is not that the code 
to do a variant addition is long. The real problem is performance. It’s not at 
all unreasonable to expect a variant addition operation to require dozens, 
if not hundreds, of machine instructions to accomplish. By contrast, it only 
takes two or three machine instructions to add two integer or floating-point 
values together. Therefore, you can expect operations involving variant objects 
to run approximately one to two orders of magnitude slower than the standard 
operations. This, in fact, is one of the major reasons “typeless” languages 
(usually very high-level languages) are so slow. When you truly need a variant 
type, the performance is often just as good (or even better) than the alterna-
tive code you’d have to write to get around using the variant type. However, if 

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 369

you’re using variant objects to hold values whose type you know when you 
first write the program, you’re going to pay a heavy performance penalty for 
not using typed objects.

12.7 Namespaces

As your programs become larger, and particularly as these large programs 
use third-party software libraries to reduce development time, the more 
likely it is that name conflicts will develop in your source files. A name 
conflict occurs when you want to use a specific identifier at one point in your 
program, but that name is already in use elsewhere (for example, in some 
library you’re using). At some point in a very large project you may find 
yourself dreaming up a new name to resolve a naming conflict only to 
discover that the new name is also already in use. Software engineers call this 
the namespace pollution problem. Like environmental pollution, the problem is 
easy to live with when it’s small and localized. As your programs get larger, 
however, dealing with the fact that “all the good identifiers are already used 
up” gets to be a real problem.

At first blush, it might seem that the namespace pollution problem is a 
synthetic problem. After all, a programmer can always dream up a different 
name: the global namespace, the set of all possible names, is huge. However, 
programmers who write great code often adhere to certain naming conven-
tions so that their source code is consistent and easy to read (I’ll come back to 
this subject in Volume 3 of the Write Great Code series). Constantly dreaming 
up new names, even if those new names aren’t all that bad, tends to produce 
inconsistencies in the source code that make programs a little harder to 
read. It would be nice to choose whatever name you like for your identifiers 
and not have to worry about conflicts with other code or libraries. Namespaces 
provide just this ability.

A namespace is a mechanism by which you can associate a set of iden-
tifiers with a namespace identifier. In many respects, a namespace is like a 
record declaration. Indeed, you can use a record declaration as a poor man’s 
namespace in languages that don’t support namespaces directly (with a 
few major restrictions). For example, consider the following Pascal variable 
declarations:

var

    myNameSpace:

        record

            i: integer;

            j: integer;

            name: string(64);

            date: string(10);

            grayCode: integer;

        end;

    yourNameSpace:

        record

            i: integer;

No Starch Press, Copyright © 2006 by Randall Hyde



370 Chap te r 12

            j: integer;

            profits: real;

            weekday: integer;

        end;

It should be obvious from what you learned earlier that the i and j
fields in these two records are distinct variables. There will never be a 
naming conflict because the program must qualify these two field names 
with the record variable name. That is, you refer to these variables using 
the following names:

myNameSpace.i, myNameSpace.j, 
yourNameSpace.i, yourNameSpace.j

The record variable that prefixes the fields uniquely identifies each of 
these field names. This is obvious to anyone who has ever written code that 
uses a record or structure. Therefore, in languages that don’t support name-
spaces, you can use records in their place.

There is one major problem with creating namespaces by using records 
or structures: most languages let you declare only variables within a record. 
Namespace declarations (like those available in C++ and HLA) specifically 
allow you to include other types of objects as well. In HLA, for example, a 
namespace declaration takes the following form:

namespace nsIdentifier;

<< constant, type, variable, procedure, 

and other declarations >>

end nsIdentifier;

Namespaces are a declaration section unto themselves. In particular, 
they do not have to go in a var or static (or any other) section. You can 
create constants, types, variables, static objects, procedures, and so on, all 
within a namespace.

Access to namespace objects in HLA uses the familiar dot notation that 
records, classes, and unions use. As long as the namespace identifier is unique 
and all the fields within the namespace are unique to that namespace, you 
won’t have any problems. By carefully partitioning a project into various name-
spaces, you can easily avoid most of the problems that occur because of 
namespace pollution.

Another interesting aspect to namespaces is that they are extensible. 
For example, consider the following declarations in C++:

namespace aNS

{

    int i;

    int j;

}

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 371

int i;  // Outside the namespace, so this is unique.

int j;  // ditto.

namespace aNS

{

    int k;

}

This example code is perfectly legal. The second declaration of aNS does 
not conflict with the first; it extends the aNS namespace to include identifier k
as well as i and j. This feature is very handy when, for example, you want to 
extend a set of library routines and header files without modifying the original 
header files for that library (assuming the library names all appear within a 
namespace).

From an implementation point of view, there really is no difference 
between a namespace and a set of declarations appearing outside a name-
space. The compiler typically deals with both types of declarations in a nearly 
identical fashion with the only difference being that the program prefixes all 
objects located within the namespace with the namespace’s identifier.

12.8 Classes and Objects

The class data type is the bedrock of modern object-oriented programming. 
In most object-oriented programming languages the class is closely related to 
the record or structure. However, unlike records (which have a surprisingly 
uniform implementation across most languages), class implementations tend 
to vary. Nevertheless, many contemporary object-oriented languages achieve 
their results using similar approaches, so this section will use a few concrete 
examples from C++. HLA and Delphi users will find that these languages 
work in a similar manner.

12.8.1 Classes Versus Objects
Many programmers often confuse the terms object and class. A class is a data 
type. It is a template for how the compiler organizes memory with respect to 
the class’s fields. An object is an instantiation of a class—that is, an object is a 
variable of some class type that has memory allocated to hold the data asso-
ciated with the class’s fields. For a given class, there is only one class defini-
tion. You may, however, have several objects (variables) of that class type.

12.8.2 Simple Class Declarations in C++
Structs and classes are syntactically and semantically similar in C++. Indeed, 
there is only one syntactical difference between a struct and a class in C++: 
the use of the class keyword versus the struct keyword. Consider the 
following two valid type declarations in C++:

struct student

{

No Starch Press, Copyright © 2006 by Randall Hyde



372 Chap te r 12

        // Room for a 64-character zero-terminated string:

        char Name[65];

        // Typically a 2-byte integer in C/C++:

        short Major;   

        // Room for an 11-character zero-terminated string:

        char SSN[12];  

        // Each of the following is typically a 2-byte integer

        short Mid1;

        short Mid2;

        short Final;

        short Homework;

        short Projects

};

class myClass

{

public:

// Room for a 64-character zero-terminated string:

        char Name[65];

        // Typically a 2-byte integer in C/C++:

        short Major;   

        // Room for an 11-character zero-terminated string:

        char SSN[12];  

        // Each of the following is typically a 2-byte integer

        short Mid1;

        short Mid2;

        short Final;

        short Homework;

        short Projects

};

Although these two data structures both contain the same fields, and you 
would access those fields the same way, their memory implementation is 
slightly different. Figure 12-3 compares the memory layout for the struct with 
the memory layout for the class (in Figure 12-4).

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 373

Figure 12-3: Student struct storage in memory

Figure 12-4: Student class storage in memory

12.8.3 Virtual Method Tables
If you look at these two figures, you can see that the difference between them 
is the VMT field that is present in the class definition and absent from the struct.
VMT stands for virtual method table, and these 4 bytes contain a pointer to an 
array of “method pointers” for the class. Virtual methods (also known as 
virtual member functions in C++) are special class-related functions that you 
declare as fields in the class. In the current student example, the class doesn’t 
actually have any virtual methods, so some C++ compilers might eliminate 
the VMT field, but most object-oriented languages will still allocate storage 
for the VMT pointer within the class.

Here’s a little C++ class that actually has a virtual member function and, 
therefore, also has a virtual method table:

class myclass

{

public:

int a;

int b;

virtual int f( void );

};

When C++ calls a standard function, it directly calls that function. Virtual 
member functions are another story altogether. Each object in the system 
carries a pointer to a virtual method table which is an array of pointers to all 
the member functions (methods) appearing within the object’s class (see 
Figure 12-5).

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid 1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid 2
(2 bytes)

VMT
pointer

(4 Bytes)

No Starch Press, Copyright © 2006 by Randall Hyde



374 Chap te r 12

Figure 12-5: A virtual method table (VMT)

Calling a virtual member function requires two indirect accesses. First, 
the program has to fetch the VMT pointer from the class object and use 
that to indirectly fetch a particular virtual function address from the VMT. 
Then the program has to make an indirect call to the virtual member func-
tion via the pointer it retrieved from the VMT. As an example, consider the 
following C++ function and the corresponding 80x86 assembly code that 
Visual C++ generates for it:

#include <stdlib.h>

// A C++ class with two trivial

// member functions (so the VMT

// will have two entries).

class myclass 

{

    public:

        int a;

        int b;

        virtual int f( void );

        virtual int g( void );

};

                     

// Some trivial member functions,

// We're really only interested

// in looking at the calls, so

// these functions will suffice

// for now.                  

                     

int myclass::f( void )

{

    return b;

}

int myclass::g( void )

{

    return a;

}

VMT

field1

field2

...

SomeObject

Virtual function #1

Virtual function #2

...

Virtual function #m

fieldn

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 375

// A main function that creates

// a new instance of myclass and

// then calls the two member functions

                     

int main( int argc, char **argv )

{

    myclass *c;

    // Create a new object:

    c = new myclass;

    // Call both member functions:

    c->a = c->f() + c->g();

    return 0;

    

}

Here’s the 80x86 assembly code the MSVC generates:

CONST   SEGMENT

; Here is the VMT for myclass. It contains

; two entries, a pointer to the myclass::f

; member function and a pointer to the

; myclass::g member function.

??_7myclass@@6B@ DD FLAT:?f@myclass@@UAEHXZ ;myclass::f

    DD  FLAT:?g@myclass@@UAEHXZ     ;myclass::g

CONST   ENDS

    .

    .

    .

; Line 23

;

; Allocate storage for a new instance of myclass:

    push    12      ;12 bytes (two 4-byte fields+VMT)

    call    ??2@YAPAXI@Z    ; operator new

    add esp, 4      ;Remove parameter from NEW call.

    test    eax, eax    ;Did NEW FAIL (returning NULL)?

    je  SHORT $L628

    ;Initialize VMT field with the address of the VMT:

    mov DWORD PTR [eax], OFFSET FLAT:??_7myclass@@6B@

    mov esi, eax

    jmp SHORT $L629

No Starch Press, Copyright © 2006 by Randall Hyde



376 Chap te r 12

$L628:

    xor esi, esi    ;For failure, put NULL in esi

$L629:

; At this point, ESI contains the "THIS" pointer

; that refers to the object in question. In this

; particular code sequence, "THIS" is the address

; of the object whose storage we allocated above.

; Line 25

;

; Get the VMT into EAX (first indirect access

; needed to make a virtual member function call)

    mov eax, DWORD PTR [esi]

; Member function expects us to pass THIS in

; the ECX register, so move it there. 

    mov ecx, esi

; Call the virtual member function indirectly

; through the VMT pointer (remember, EAX

; holds the pointer to the VMT). This particular

; instruction is calling the myclass:g member

; function, whose address appears at VMT+4, above.

    call    DWORD PTR [eax+4]

    mov edi, eax    ;Save g's return result

; Okay, now let's call the myclass:f member

; function. ESI still contains a copy of THIS.

; VMT+0 holds the pointer to myclass::f.

; Again, a double-indirect fetch is required

; to call this virtual member function:

    mov edx, DWORD PTR [esi]

    mov ecx, esi    ;Pass THIS in ECX.

    call    DWORD PTR [edx]

; Compute c->f() + c->g()

    add edi, eax

; Line 26

; Store the sum into c->b.

    mov DWORD PTR [esi+4], edi

This example amply demonstrates why object-oriented programs 
generally run a little more slowly than standard procedural programs—
extra indirection that you don’t have when calling functions at a fixed 
address in memory is associated with each virtual member function. C++ 

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 377

attempts to address this inefficiency by providing static member functions, but 
static member functions lose many of the benefits of virtual member func-
tions that make object-oriented programming possible.

12.8.4 Sharing VMTs
For a given class there is only one copy of the VMT in memory. This is a static 
object so all objects of a given class type share the same VMT. This is reason-
able because all objects of the same class type have exactly the same member 
functions (see Figure 12-6).

Figure 12-6: Objects sharing the same VMT

Because the addresses in a virtual method table never change during 
program execution, most languages place the VMT in a constant (write-
protected) section in memory. In the previous example of the last section 
the compiler places the myclass VMT in the CONST segment.

12.8.5 Inheritance in Classes
Inheritance is one of the fundamental ideas behind object-oriented program-
ming. The basic idea is that a class inherits, or copies, all the fields from some 
existing class and then possibly expands the number of fields in the new class 
data type. For example, suppose you created a data type point which describes 
a point in the planar (two-dimensional) space. The class for this point might 
look like the following:

class point 

{

    public:

        float x;

        float y;

        virtual float distance( void );

};

Object1

Object2

Object3

VMT

Note: Objects are all the same class type

No Starch Press, Copyright © 2006 by Randall Hyde



378 Chap te r 12

The distance member function would probably compute the distance 
from the origin (0,0) to the coordinate specified by the (x,y) fields of the 
object.

Here’s a typical implementation of this member function:

float point::distance( void )

{

    return sqrt( x*x + y*y );

}

Inheritance allows you to extend an existing class by adding new fields or 
replacing existing fields. For example, suppose you want to extend the two-
dimensional point definition to a third spatial dimension. You can easily do 
this with the following C++ class definition:

class point3D :public point

{

    public:

        float z;

        virtual void rotate( float angle1, float angle2 );

};

The point3D class inherits the x and y fields, as well as the distance
member function. Of course, distance does not compute the proper result 
for a point in three-dimensional space, but I’ll address that in just a moment. 
By inherits, I mean that  point3D objects can find their x and y fields at exactly 
the same offsets in the object as for point objects (see Figure 12-7).

Figure 12-7: Inheritance in classes

As you’ve probably noticed, there were actually two items added to the 
point3D class—a new data field (z) and a new member function (rotate). If 
you look at Figure 12-7 you’ll discover that adding the rotate virtual member 
function has had no impact at all on the layout of a point3D object. This is 
because virtual member functions’ addresses appear in the VMT, not in the 

VMT

x

VMT

x

y

z

Derived (child) classes locate their inherited fields
at the same offsets as those fields in the base class.

point point3D

y

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 379

object itself. Although both point and point3D contain a field named VMT,
these fields do not point at the same table in memory. Every class has its own 
unique VMT (see Figure 12-8). That VMT consists of an array of pointers to 
all of the member functions (inherited or explicitly declared) for the class.

Figure 12-8: Virtual method tables for inherited classes

All the objects for a given class share the same VMT, but this is not true 
for objects of different classes. Because point and point3D are different 
classes, their objects’ VMT fields will point at different VMTs in memory 
(see Figure 12-9).

Figure 12-9: Virtual method table access

One problem with the point3D definition given thus far is that it inherits 
the distance function from the point class. By default, if a class inherits 
member functions from some other class, the entries in the VMT corre-
sponding to those inherited functions will point at the functions associated 
with the base class. If you have an object pointer variable of type point3D,
let’s say “p3D,” and you invoke the member function p3D->distance(), you 
will not get a correct result. Because point3D inherits the distance function 
from class point, p3->distance() will compute the distance to the projection 

distance

point

distance

rotate

point3D

+0

Offset

+4

p1
VMT point

p2

VMT point3D

p3

point        p1;
point        p2;
point        p3;

point3D      t1;
point3D      t2;

t1

t2

VMT pointer

No Starch Press, Copyright © 2006 by Randall Hyde



380 Chap te r 12

of (x,y,z) onto the two-dimensional plane rather than the correct value. 
In C++ you can overcome this problem by overloading the inherited function 
and writing a new, point3D-specific member function, as shown here:

class point3D :public point

{

    public:

        float z;

        virtual void distance( void );

        virtual void rotate( float angle1, float angle2 );

};

float point3D::distance( void )

{

    return sqrt( x*x + y*y + z*z );

}

Creating an overloaded member function does not change the layout of 
the class’s data nor does it change the layout of the point3D virtual method 
table. The only change this function evokes is that the C++ compiler initializes 
the distance entry in the point3D VMT with the address of the point3D::distance
function rather than the address of the point::distance function.

12.8.6 Polymorphism in Classes

Inheritance and overloading are two of the essential components needed 
for object-oriented programming; polymorphism is the other anchor upon 
which object-oriented programming is based. Polymorphism literally means 
“many-faced” (or translated a little better, “many forms” or “many shapes”) 
and the concept describes how a single instance of a function call in your 
program, such as x->distance(), could wind up calling different functions 
(in the examples from the previous section, this could be point::distance
or point3D::distance). The trick that makes this possible is the fact that C++ 
relaxes its type-checking facilities a bit when dealing with derived (inherited) 
classes.

Normally, a C++ compiler will generate an error if you try to assign the 
address of some item to a pointer whose base type doesn’t match the type of 
that item. For example, consider the following code fragment:

float f;

int *i;

.

.

.

i = &f; // C++ isn't going to allow this.

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 381

When you are assigning addresses to a pointer, the type of the object 
whose address you’re taking must exactly match the base type of the pointer 
variable to which you’re assigning the address, well, with one major exception. 
C++ relaxes this restriction so you can assign the address of some object to 
a pointer as long as the base type of the pointer is the same as the object or 
the base type is an ancestor of that object’s type (an ancestor class is one from 
which some other class type is derived, directly or indirectly, via inheritance). 
That is, something like the following code is legal:

point *p;

point3d t;

point generic;

p = new point;

t = new point3D;

.

.

.

generic = t;

If you’re wondering how this could be legitimate, take another look at 
Figure 12-7. If generic’s base type is point, then the C++ compiler will allow 
access to a VMT at offset 0 in the object, an x field at offset 4 in the object, 
and a y field at offset 8 in the object. Similarly, any attempt to invoke the 
distance member function is going to access the function pointer at offset 0 
into the virtual method table pointed at by the object’s VMT field. If generic
points at an object of type point, of course, all of these requirements are 
satisified. This is also true if generic points at any derived class of point (that is, any 
class that inherits the fields from point). Of course, none of the extra fields in 
the derived class (point3D) will be accessible via the generic pointer, but that’s 
to be expected because generic’s base class is point.

A crucial thing to note, however, is that when you invoke the distance 
member function, you’re calling the one pointed at by the point3D VMT, 
not the one pointed at by the point VMT. This fact is the complete basis for 
polymorphism in an object-oriented programming language such as C++. 
The code a compiler emits is exactly the same code it would emit if generic
contained the address of an object of type point. All of the “magic” occurs 
because the compiler allows the programmer to load the address of a point3D
object into generic.

12.8.7 Classes, Objects, and Performance
As you saw in the sample code earlier in this chapter, the direct cost 
associated with object-oriented programming isn’t terribly significant. Calls 
to member functions (methods) are a bit more expensive because of the 
double indirection that takes place; however, the added expense is a small 
price to pay for the flexibility you’ll obtain when doing object-oriented 

No Starch Press, Copyright © 2006 by Randall Hyde



382 Chap te r 12

programming. The extra instructions and memory accesses will probably 
only cost about 10 percent of your application’s total performance. And 
some languages, like C++ and HLA, support the notion of a static member 
function that allows direct calls to member functions when polymorphism is 
unnecessary.

The big problem that object-oriented programmers sometimes have is 
that they tend to take things to an extreme. Rather than directly accessing 
the fields of an object, they write accessor functions to read and write those 
field values. Unless the compiler does a very good job of inlining such accessor 
functions, the cost of accessing the object’s fields increases by about an order 
of magnitude. These are the types of applications whose performance suffers 
because of the overuse of the object-oriented programming paradigms. There 
may be good reasons for doing things the “object-oriented way” (such as 
using accessor functions to access all fields of an object), but keep in mind 
that these costs add up rather quickly. Unless you absolutely need the facilities 
provided by using such techniques, your programs may wind up running 
considerably slower (and taking up a whole lot more space) than necessary.

Another common problem with many object-oriented programs is 
overgeneralization. This typically occurs when a programmer uses a lot of class 
libraries, often extending classes through inheritance in order to solve some 
problem with as little programming effort as possible. While saving program-
ming effort is generally a good idea, extending class libraries often leads to 
situations where you need some little task done and you call a library routine 
that does everything you want. The only problem is that in object-oriented 
systems, library routines tend to be highly layered. That is, you need some 
work done, so you invoke some member function from a class you’ve 
inherited. That function probably does a little bit of work on the data you 
pass it and then it calls a member function in a class that it inherits. And 
then that function massages the data a little and calls a member function it 
inherits, and so on down the line. Before too long, the CPU spends more time 
calling and returning from functions than it does doing any useful work. 
While this same situation could occur in standard (non–object-oriented) 
libraries, it’s far more common in object-oriented applications. 

Carefully designed object-oriented programs needn’t run significantly 
slower than comparable procedural-oriented programs. Just be careful not to 
make a lot of expensive function calls to do trivial little tasks.

12.9 For More Information

This chapter dealt with the low-level implementation of common data 
structures you’ll find in various programming languages. It concludes our 
exploration of composite data types that began in Chapter 9. For more 
information on data types, you can head off in two directions from this point. 
To learn more about the low-level implementation of various data types, you’ll 
probably want to start learning and mastering assembly language. The Art 
of Assembly Language (No Starch Press, 2003) is a good place to begin that 
journey. If you want to learn high-level implementations, you can find a 
wealth of information. Higher-level data structure information is available in 

No Starch Press, Copyright © 2006 by Randall Hyde



Record , Union, and Class Da ta  Types 383

just about any decent college textbook on data structures and algorithm 
design. There are, literally, hundreds of these books available covering a 
wide range of subjects. If you are interested in a combination of low-level and 
high-level concepts, Donald Knuth’s The Art of Computer Programming, Volume I
(Addison-Wesley Professional, 1997) is a good choice. This text is available in 
nearly every bookstore that carries technical books.

As noted in the previous chapter, textbooks on programming language 
design and compiler design and implementation are another good source 
of information about the low-level implementation of data types, including 
composite data types such as records, unions, and classes. Some good books 
to consider on this subject include:

� Programming Languages, Design and Implementation, Terrence Pratt and 
Marvin Zelkowitz (Prentice Hall, 2001)

� Programming Languages, Principles and Practice, Kenneth Louden (Course 
Technology, 2002)

� Concepts of Programming Languages, Robert Sebesta (Addison-Wesley, 2003)

� Programming Languages, Structures and Models, Herbert Dershem and 
Michael Jipping (Wadsworth, 1990)

� The Programming Language Landscape, Henry Ledgard and Michael 
Marcotty (SRA, 1986)

� Programming Language Concepts, Carlo Ghezzi and Jehdi Jazayeri 
(Wiley, 1997)

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



13
A R I T H M E T I C  A N D  L O G I C A L  

E X P R E S S I O N S

One of the major advances that high-level 
languages provide over low-level languages 

is the use of algebraic arithmetic and logical 
expressions (from now on, I’ll just refer to them 

as arithmetic expressions). High-level language arithmetic 
expressions are an order of magnitude more readable 
than the sequence of machine instructions the compiler produces. However, 
the conversion process (from arithmetic expressions into machine code) 
is also one of the more difficult transformations to do efficiently, and a 
fair percentage of a typical compiler’s optimization phase is dedicated to 
handling the transformation. Because of the difficulty with translation, 
this is one area where you can help the compiler. In this chapter, I’ll 
briefly describe:

� How computer architecture affects the computation of arithmetic 
expressions

� The optimization of arithmetic expressions

� Side effects of arithmetic expressions

No Starch Press, Copyright © 2006 by Randall Hyde



386 Chap te r 13

� Sequence points in arithmetic expressions

� Order of evaluation in arithmetic expression

� Short-circuit and complete evaluation of arithmetic expressions

� The computational cost of arithmetic expressions

Armed with this information, you should be able to write more efficient 
and more robust applications.

13.1 Arithmetic Expressions and Computer Architecture
With respect to arithmetic expressions, we can classify traditional computer 
architectures into three basic types: stack-based machines, register-based 
machines, and accumulator-based machines. The major difference between 
these architectural types has to do with where the CPUs keep the operands 
for the arithmetic operations. Once the CPU fetches the data from these 
operands, the data is passed along to the arithmetic and logical unit where 
the actual arithmetic or logical calculation occurs.1 I’ll explore each of these 
architectures in the following sections.

13.1.1 Stack-Based Machines
Stack-based machines use memory for most calculations, employing a stack 
in memory to hold all operands and results. Computer systems employing a 
stack architecture offer some important advantages over other architectures:

� The instructions are often smaller (each consuming fewer bytes) than 
those found in other architectures because the instructions generally 
don’t have to specify any operands.

� It is generally easier to write compilers for stack architectures than for 
other machines because converting arithmetic expressions to a sequence 
of stack operations is very easy.

� Temporary variables are rarely needed in a stack architecture, because 
the stack itself serves that purpose.

Unfortunately, stack machines also suffer from some serious disadvantages:

� Almost every instruction references memory (which is slow on modern 
machines). Though caches can help mitigate this problem, memory per-
formance is still a major problem on stack machines.

� Even though conversion from HLLs to a stack machine is very easy, there 
is less opportunity for optimization than there is with other architectures.

1 As it turns out, all calculations are logical in nature. Even arithmetic operations such as 
addition and subtraction are “logical” in the sense that the CPU computes their result based on a 
series of Boolean expressions. For our purposes, therefore, the phrases “logical expression” and 
“arithmetic expression” are synonymous. Please see Write Great Code, Volume 1 for more details 
concerning Boolean expressions and low-level arithmetic.

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 387

� Because stack machines are constantly accessing the same data elements 
(that is, data on the top of the stack), pipelining and instruction parallelism 
is difficult to achieve (see Write Great Code, Volume 1 for details on pipe-
lining and instruction parallelism).

A stack is a data structure that allows operations only on a few limited 
elements of the stack (often called the top of stack and next on stack). With a 
stack you generally do one of three things: push new data onto the stack, pop 
data from the stack, or operate on the data that is currently sitting on the top 
of the stack (and possibly the data immediately below it).

13.1.1.1 Basic Stack Machine Organization

I’ll create a hypothetical stack machine to help demonstrate how stack 
machines operate. A typical stack machine will maintain a couple of registers 
inside the CPU (see Figure 13-1). In particular, you can expect to find a 
program counter register (like the 80x86’s EIP register) and a stack pointer register
(like the 80x86 ESP register).

Figure 13-1: Typical stack machine architecture

The stack pointer register contains the memory address of the current 
top-of-stack element in memory. The CPU increments or decrements the stack 
pointer register whenever a program places data onto the stack or removes 
data from the stack. On some architectures the stack expands from higher 
memory locations to lower memory locations; on other architectures the 
stack grows from lower memory locations toward higher memory locations. 
Fundamentally, the direction of stack growth is irrelevant; all this really 
determines is whether the machine decrements the stack pointer register 
when placing data on the stack (if the stack grows toward lower memory 
addresses) or increments the stack pointer register (when the stack grows 
toward higher memory addresses).

Stack-based CPU

Stack pointer

Program counter .
.
.

Memory

No Starch Press, Copyright © 2006 by Randall Hyde



388 Chap te r 13

13.1.1.2 Pushing Data onto a Stack

A typical machine instruction used to place data on the stack is a push instruc-
tion. This instruction typically takes a single operand that specifies the value 
to push onto the stack and a typical syntax for a push instruction might be:

push <<memory or constant operand>>

Here are a couple of concrete examples:

push 10 ;Pushes the constant 10 onto the stack
push mem ;Pushes the contents of memory location mem

A push operation will typically increase the value of the stack pointer 
register by the size of its operand in bytes and then copy that operand to the 
memory location the stack pointer now specifies. For example, Figure 13-2 
and Figure 13-3 illustrate what the stack looks like before and after a push 10
operation.

Figure 13-2: Before a push 10 operation

Figure 13-3: After a push 10 operation

13.1.1.3 Popping Data from a Stack

To remove a data item from the top of a stack, most stack machines use a pop
or pull instruction. I’ll use the term “pop” in this book; just be aware that some 
architectures use the term “pull” instead. A typical pop instruction might use 
syntax like the following:

pop <<memory location>>

Note that you cannot pop data into a constant. The pop operand must be a 
memory location.

Stack pointer

Memory

Previous
Stack
Data

Stack pointer

Memory

Previous
Stack
Data

10

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 389

The pop instruction makes a copy of the data pointed at by the stack 
pointer and stores it into the destination memory location. Then it decre-
ments the stack pointer register to point at the next-lower item on the stack 
(see Figures 13-4 and 13-5). The value in stack memory that the pop instruc-
tion removes from the stack is still physical present in memory above the new 
top of stack. However, the next time the program pushes data onto the stack 
it will overwrite this value with the new value. 

Figure 13-4: Before a pop mem operation

Figure 13-5: After a pop mem operation

13.1.1.4 Arithmetic Operations on a Stack Machine

The arithmetic and logical instructions found on a stack machine generally 
do not allow any operands. This is why stack machines are often called zero-
address machines; the arithmetic instructions themselves do not encode any 
operand addresses. For example, consider an add instruction on a typical 
stack machine. This instruction will pop two values from the stack (top of stack 
and next on stack), compute, and push the sum back onto the stack (see 
Figures 13-6 and 13-7).

Figure 13-6: Before an add operation

Stack pointer

Memory

Previous
Stack
Data

10

Stack pointer

Memory

Previous
Stack
Data

10

10mem

Stack pointer

Memory

Previous
Stack
Data

10
25

No Starch Press, Copyright © 2006 by Randall Hyde



390 Chap te r 13

Figure 13-7: After an add operation 

Because arithmetic expressions are recursive in nature, and recursion 
requires a stack for proper implementation, it should come as no surprise 
that converting arithmetic expressions to a sequence of stack-machine 
instructions is relatively simple. Arithmetic expressions found in common 
programming languages use an infix notation where the operator appears 
between two operands. For example, a + b and c - d are examples of infix 
notation because the operators (+ and –) appear between the operands 
([a, b] and [c, d]). If we convert these infix expressions into postfix notation 
(also known as reverse polish notation), where the operator immediately follows 
the operands to which the operator applies, converting the (postfix) notation 
to a sequence of stack machine instructions is a simple process. For example, 
the previous two infix expressions would have these corresponding postfix 
forms:

Once you have an expression in postfix form, converting it to a sequence 
of stack machine instructions is very easy. You simply emit a push instruction 
for each operand and the corresponding arithmetic instruction for the oper-
ators. For example, a b + becomes:

push a

push b

add

and c d - becomes:

push c

push d

sub

assuming, of course, that add adds the top two items on the stack and sub
subtracts the top of stack from the value immediately below it on the stack. 

Infix Form Postfix Form

a + b a b +

c - d c d -

Stack pointer

Memory

Previous
Stack
Data

35
25

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 391

13.1.1.5 Real-World Stack Machines

A big advantage of the stack architecture is that it is easy to write a compiler 
for such a machine. It’s also very easy to write an emulator for a stack-based 
machine. For these reasons, stack architectures are popular in virtual machines
(VMs) such as the Java Virtual Machine and the Microsoft Visual Basic p-code 
interpreter. A few real-world stack-based CPUs do exist, such as a hardware 
implementation of the Java VM; however, they are not very popular because 
of the performance limitations of memory access. Nonetheless, understanding 
the basics of a stack architecture is important because many compilers trans-
late HLL source code into a stack-based form prior to translating to actual 
machine code. Indeed, in the worst case (though rare), compilers are forced 
to emit code that emulates a stack-based machine when compiling complex 
arithmetic expressions. 

13.1.2 Accumulator-Based Machines
The simplicity of a stack machine-instruction sequence hides an enormous 
amount of complexity. Consider the following stack-based instruction from 
the previous section:

add

This instruction looks simple, but it actually specifies a large number of 
operations:

� Fetch an operand from the memory location pointed to by the stack 
pointer.

� Send the stack pointer’s value to the ALU (arithmetic/logical unit).

� Instruct the ALU to decrement the stack pointer’s value just sent to it.

� Route the ALU’s value back to the stack pointer.

� Fetch the operand from the memory location pointed to by the stack 
pointer.

� Send the values from the previous step and the first step to the ALU.

� Instruct the ALU to add those values.

� Store the sum away in the memory location pointed to by the stack 
pointer.

The organization of a typical stack machine prevents many parallel 
operations that are possible with pipelining (see Write Great Code, Volume 1 for 
more details on pipelining). So stack architectures are hit twice: typical instruc-
tions require many steps to complete, and those steps are difficult to execute 
in parallel with other operations.

No Starch Press, Copyright © 2006 by Randall Hyde



392 Chap te r 13

One big problem with the stack architecture is that it goes to memory for 
just about everything. In particular, if you simply want to compute the sum of 
two variables and store this sum in a third variable, you have to fetch the two 
variables and write them to the stack (four memory operations), then you 
have to fetch the two values from the stack, add them, and write their sum 
back to the stack (three memory operations), and finally, you have to pop 
the item from the stack and store the result into the destination memory 
location (two memory operations). That’s a total of nine memory operations. 
When memory access is slow, this is an expensive way to compute the sum of 
two numbers.

One way to avoid this large number of memory accesses is to provide a 
general-purpose arithmetic register within the CPU. The idea behind an 
accumulator-based machine is that you provide a single accumulator register, 
where the CPU computes temporary results, rather than computing tem-
porary values in memory (on the stack). Accumulator-based machines are 
also known as one-address or single-address machines because most instructions 
that operate on two operands use the accumulator as the default destination 
operand and require a single memory or constant operand to use as the 
source operand for the computation. A typical example of an accumulator 
machine is the 6502 that includes the following instructions:

LDA <<constant or memory>> ;Load accumulator register

STA <<memory>> ;Store accumulator register

ADD <<constant or memory>> ;Add operand to accumulator

SUB <<constant or memory>> ;Subtract operand from accumulator

Because one-address instructions require an operand that is not present 
in many of the zero-address instructions, individual instructions found on an 
accumulator-based machine tend to be larger than those found on a typical 
stack-based machine (because you have to encode the operand address as 
part of the instruction, see Write Great Code Volume 1 for details). In practice, 
however, programs are often smaller because fewer instructions are needed 
to do the same thing. Suppose, for example, you want to compute x = y + z;.
On a stack machine, you might use an instruction sequence like the following:

push y

push z

add

pop x

On an accumulator machine, you might use a sequence like this:

lda y

add z

sta x

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 393

Assuming that the push and pop instructions are roughly the same size as 
the accumulator machine’s lda, add, and sta instructions (a good assumption), 
it should be fairly obvious that the stack machine’s instruction sequence is 
actually longer (because it requires more instructions). Furthermore, assum-
ing all other things are equal, the accumulator machine will probably execute 
the code faster (even ignoring the extra instruction) because the accumulator 
machine only requires three memory accesses (to fetch y and z and to store x), 
compared with the nine memory accesses the stack machine will require. 
Furthermore, the accumulator machine doesn’t waste any time manipulating 
the stack pointer register during computation.

Even though accumulator-based machines generally have higher perfor-
mance than stack-based machines (for reasons you’ve just seen), they are not 
without their own problems. Having only one general-purpose register avail-
able for arithmetic operations creates a bottleneck in the system, resulting in 
data hazards (see Write Great Code, Volume 1, for a discussion of data hazards). 
Many calculations result in the production of temporary results that the appli-
cation must write to memory in order to compute other components of the 
expression. This results in extra memory accesses that could be avoided if the 
CPU provided additional accumulator registers. 

Accumulator-based architectures were popular in early computer 
systems when the manufacturing process limited the number of features 
within the CPU, but today you rarely see accumulator-based architectures 
outside of low-cost embedded microcontrollers.

13.1.3 Register-Based Machines
Of the three architectures I am discussing here, register-based machines are 
the most prevalent today because they offer the highest performance. By 
providing a fair number of on-CPU registers, this architecture spares the 
CPU from expensive memory accesses during the computation of complex 
expressions.

In theory, a register-based machine could have as few as two general-
purpose (arithmetic-capable) registers. In practice, about the only machines 
that fall into this category (include only two general-purpose registers) are 
the Motorola 680x processors, and most people consider them to be a special 
case of the accumulator architecture with two separate accumulators. Register 
machines generally contain at least eight “general-purpose” registers (this 
number isn’t arbitrary; it’s the number of general-purpose registers found 
on the 80x86 CPU, the 8080 CPU, and the Z80 CPU, which are probably the 
minimalist examples of what a computer architect would call a “register-based” 
machine). 

Although some register-based machines (e.g., the 80x86) have a small 
number of registers available, a general principle is “the more, the better.” 
Typical RISC machines (such as the PowerPC) have at least 32 general-purpose 
registers. Intel’s Itanium processor, for example, provides 128 general-purpose 

No Starch Press, Copyright © 2006 by Randall Hyde



394 Chap te r 13

integer registers. IBM’s CELL processor provides 128 registers in each of the 
processing units found on the device (each processing unit is a mini-CPU 
capable of certain operations); a typical CELL processor contains eight such 
processing units along with a PowerPC CPU core.

The main reason for having as many general-purpose registers as possi-
ble is to be able to avoid memory access. In an accumulator-based machine, 
the accumulator register is a transient register used for calculations, but you 
cannot keep a variable’s value in the accumulator for long periods of time 
because you’ll need the accumulator for other purposes. In a register machine 
with a large number of registers, it’s possible to keep certain (often-used) 
variables in registers so you don’t have to access memory at all when using 
those variables. Consider the assignment statement x = y + z;. On a register-
based machine (such as the 80x86), we could compute this result using the 
following HLA code:

// Note: Assume x is held in EBX, y is held in ECX,

// and z is held in EDX:

mov( ecx, ebx );

add( edx, ebx );

Only two instructions and no memory accesses (for the variables) are 
required here. This is quite a bit more efficient than the accumulator or 
stack architectures. From this example, you can see why the register arch-
itecture has become prevalent in modern computer systems.

As you will see in the following sections, register machines are often 
described as either two-address machines or three-address machines, depend-
ing on the particular CPU’s architecture.

13.1.4 Typical Forms of Arithmetic Expressions

Computer architects have made extensive studies of typical source files, and 
one thing they’ve discovered is that a large percentage of assignment state-
ments in such programs take one of the following forms:

var = var2;

var = constant;

var = op var2;

var = var op var2;

var = var2 op var3;

Although other assignments do exist, the set of statements in a program 
that takes one of these forms is generally larger than any other group of 
assignment statements. Therefore, computer architects usually optimize 
their CPUs to efficiently handle these forms.

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 395

13.1.5 Three-Address Architectures
Many machines use what is known as a three-address architecture. This means 
that an arithmetic statement supports three operands: two source operands 
and a destination operand. For example, most RISC CPUs offer an add
instruction that will add together the values of two operands and store the 
result into a third operand:

add source1, source2, dest

On such architectures, the operands are usually machine registers 
(or small constants), so typically you would write this instruction as follows 
(assuming you use the names R0, R1, ..., Rn to denote registers):

add r0, r1, r2   ;computes r2 := r0 + r1

Because RISC compilers attempt to keep variables in registers, this single 
instruction handles the last assignment statement given in the previous 
section:

var = var2 op var3;

Handling an assignment of the form:

var = var op var2;

is also relatively easy—just use the destination register as one of the source 
operands. For example:

add r0, r1, r0  ; computes r0 := r0 + r1

The drawback to a three-address architecture is that you must encode all 
three operands into each instruction that supports three operands. This is why 
three-operand instructions generally operate only upon register operands—
encoding three separate memory addresses can be quite expensive. (Just ask 
any VAX programmer. The DEC VAX computer system is a good example of 
a three-address CISC machine; instructions are up to 150 bytes long on VAX 
machines, because one could arbitrarily encode memory operands in an 
instruction.)

13.1.6 Two-Address Architectures
The 80x86 architecture is known as a two-address machine. In a two-address 
machine, one of the source operands is also the destination operand. Con-
sider the following 80x86/HLA add instruction:

add( ebx, eax );  ; computes eax := eax + ebx;

No Starch Press, Copyright © 2006 by Randall Hyde



396 Chap te r 13

Two-address machines, such as the 80x86, can handle the first four forms 
of the assignment statement given earlier with a single instruction. The last 
form, however, requires two or more instructions and a temporary register. 
For example, to compute 

var1 = var2 + var3;

you would need to use the following code (assuming var2 and var3 are 
memory variables and the compiler is keeping var1 in the EAX register):

mov( var2, eax );
add( var3, eax );  //Result (var1) is in EAX.

13.1.7 Architectural Differences and Your Code
One-address, two-address, and three-address architectures form the following 
hierarchy:

That is, two-address machines are capable of doing anything a one-
address machine is capable of, and three-address machines are capable of 
doing anything one-address or two-address machines are capable of doing. 
The proof is trivial:2

� To show that a two-address machine is capable of anything a one-address 
machine is, simply choose one register on the two-address machine and 
use it as the “accumulator” when simulating a one-address architecture.

� To show that a three-address machine is capable of anything a two-
address machine can do, simply use the same register for one of the 
source operands and the destination operand, thereby limiting yourself 
to two registers (operands/addresses) for all operations.

Given this hierarchy, you might think that if you limit the code you 
write so that it runs well on a one-address machine, you’ll get good results 
on all machines. In reality, most general-purpose CPUs available today are two-
address or three-address machines, so writing your code to favor a one-address 
machine may limit the optimizations that are possible on a two-address or 
three-address machine. Furthermore, there is such a difference in the opti-
mization quality among compilers that backing up an assertion such as this 
one would be very difficult. You should probably try to create expressions that 
take one of the five forms given earlier if you want your compiler to produce 
the best possible code. Because most modern programs run on two-address 
or three-address machines, the remainder of this chapter will assume that 
environment. 

2 Technically, we must also show that you can do things with a two-address machine that cannot 
be done with a one-address machine and that you can do things with a three-address machine 
that cannot be done with a two-address machine to complete this proof. I’ll leave that as an 
exercise to the reader. It’s still a fairly trivial proof.

1Address 2Address 3Address

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 397

13.1.8 Handling Complex Expressions
Once your expressions get more complex than the five forms given earlier, 
the compiler will have to generate a sequence of two or more instructions 
to evaluate the expression. When compiling the code, most compilers will 
internally translate complex expressions into a sequence of “three-address 
statements” that are semantically equivalent to the more complex expression. 
The following is an example of a complex expression and a sequence of 
three-address instructions that a typical compiler might produce:

// complex = ( a + b ) * ( c - d ) - e / f;

temp1 = a + b;

temp2 = c - d;

temp1 = temp1 * temp2;

temp2 = e / f;

complex = temp1 - temp2;

If you study these five statements, you should be able to determine that 
they are semantically equivalent to the complex expression appearing in the 
comment. The major difference in the computation is the introduction of 
two temporary values (temp1 and temp2). Most compilers will attempt to use 
machine registers to maintain these temporary values.

Because the compiler will internally translate a complex instruction into 
a sequence of three-address statements, you may wonder if you can help the 
compiler by manually converting complex expressions into three address 
forms. Well, it depends on your compiler. For many (good) compilers, break-
ing a complex calculation into smaller pieces may, in fact, thwart the compiler’s 
ability to optimize certain sequences. So, most of the time you should do 
your job (write the code as clearly as possible) and let the compiler do its job 
(optimize the result) when it comes to arithmetic expressions. However, if you 
can specify a calculation using a form that naturally converts to a two-address 
or three-address form, by all means do so. At the very least it, will have no effect 
on the code the compiler generates. It could, however, help the compiler pro-
duce better code under some special circumstances. Not to mention that the 
resulting code will probably be easier to read and maintain if it is less complex.

13.2 Optimization of Arithmetic Statements
Because HLL compilers were originally designed to let programmers use 
algebraic-like expressions in their source code, this is one area in computer 
science that has been well researched. Most modern compilers that provide a 
reasonable optimizer will do a decent job of translating arithmetic expres-
sions into machine code. You can usually assume that the compiler you’re 
using doesn’t need a whole lot of help with optimizing arithmetic expressions 
(and if it does, perhaps you should consider switching to a better compiler 
before worrying about how to manually optimize the code).

No Starch Press, Copyright © 2006 by Randall Hyde



398 Chap te r 13

To help you appreciate the job the compiler is doing for you, I’ll discuss 
some of the typical optimizations you can expect from modern optimizing 
compilers. By understanding what a (decent) compiler will do for you, you 
can avoid hand-optimizing those things that the compiler can deal with 
just fine.

13.2.1 Constant Folding
Constant folding is an optimization that computes the value of constant expres-
sions or subexpressions at compile time rather than emitting code to compute 
their result at runtime. For example, a Pascal compiler that supports this 
optimization would translate a statement of the form i := 5 + 6; to i := 11;
prior to generating machine code for the statement. This, obviously, saves 
the emission of an add instruction that would have to execute at runtime. 
As another example, suppose that you want to allocate an array containing 
16MB of storage. One way to do this is as follows:

char bigArray[ 16777216 ]; // 16MB of storage

The only problem with this approach is that 16,777,216 is a magic number.
It represents the value 224 and not some other arbitrary value. Now consider 
the following C/C++ declaration:

char bigArray[ 16*1024*1024 ]; // 16MB of storage

Most programmers realize that 1,024 times 1,024 is a binary million, and 
16 times this value corresponds to 16 mega-somethings. Yes, you need to 
recognize that the subexpression 16*1024*1024 is equivalent to 16,777,216. 
But this pattern is easier to recognize as 16MB (at least, when used within a 
character array) than 1677216 is (or was it 16777214?). In both cases the 
amount of storage the compiler allocates is exactly the same, but the second 
case is, arguably, more readable. Hence, it is better code.

Variable declarations aren’t the only place a compiler can use this opti-
mization. Any arithmetic expression (or subexpression) containing constant 
operands is a candidate for constant folding optimization. Therefore, if an 
arithmetic expression can be written more clearly by using constant expres-
sions rather than computing the results by hand, you should definitely go for 
the more readable version and leave it up to the compiler to handle the con-
stant calculation at compile time. 

If your compiler doesn’t support constant folding you can certainly 
simulate it by performing all constant calculations manually. However, you 
should do this only as a last resort. Finding a better compiler is almost always 
a better choice.

Some good optimizing compilers may take some extreme steps when 
folding constants. For example, some compilers with a sufficiently high 
optimization level enabled will replace certain function calls, with constant 
parameters, to the corresponding constant value. For example, a compiler 
might translate a C/C++ statement of the form sineR = sin(0); to sineR = 0;

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 399

during compilation (as the sine of zero radians is zero). This type of constant 
folding, however, is not all that common and you usually have to enable a 
special compiler mode to get it.

13.2.2 Constant Propagation
Constant propagation is an optimization a compiler uses to replace a variable 
access with a constant value if the compiler determines that this is possible. 
For example, a compiler that supports constant propagation will make the 
following optimization:

// original code:

    variable = 1234;

    result = f( variable );

// code after constant propagation optimization

    variable = 1234;

    result = f( 1234 );

In object code, manipulating immediate constants is more efficient than 
manipulating variables; therefore, constant propagation often produces much 
better code. In some cases, constant propagation also allows the compiler to 
eliminate certain variables and statements altogether (in this example, the 
compiler could remove variable = 1234; from the code if there are no later 
references to the variable object in the source code).

In some cases, well-written compilers can do some outrageous optimi-
zations involving constant folding. Consider the following C code and the 
80x86 output that GCC produces with the -O3 (maximum) optimization 
option:

#include <stdio.h>

static int rtn3( void )

{

    return 3;

}

int main( void )

{

    printf( "%d", rtn3() + 2 );

    return( 0 );

}

Here’s the 80x86 code emitted by GCC:

.LC0:

        .string "%d"

        .text

        .p2align 2,,3

.globl main

No Starch Press, Copyright © 2006 by Randall Hyde



400 Chap te r 13

        .type   main,@function

main:

        ;Build main's activation record:

        pushl   %ebp

        movl    %esp, %ebp

        subl    $8, %esp

        andl    $-16, %esp

        subl    $8, %esp

        ;Print the result of "rtn3()+5":

        pushl   $5      ;Via constant propagation/folding!

        pushl   $.LC0

        call    printf

        xorl    %eax, %eax

        leave

        ret

A quick glance shows that the rtn3 function is nowhere to be found. 
With the -O3 command-line option enabled, GCC figured out that rtn3 simply 
returns a constant and it propagates that constant return result everywhere 
you call rtn3. In the case of the printf function call, the combination of con-
stant propagation and constant folding yielded a single constant (5) that the 
code passes on to the printf function.

As with constant folding, if your compiler doesn’t support constant 
propagation you can certainly simulate it manually. However, you should 
only do this as a last resort. Finding a better compiler is almost always a better 
choice.

13.2.3 Dead Code Elimination
Dead code elimination is the removal of the object code associated with a 
particular source code statement if the program never again uses the result 
of that statement. Often, this is a result of a programming error. (Why would 
someone compute a value and not use it?) If a compiler encounters dead code 
in the source file, it may warn you to check the logic of your code. In some 
cases, however, earlier optimizations can produce dead code. For example, 
the constant propagation for the value variable in the former example could 
result in the statement variable = 1234; being dead. Compilers that support 
dead code elimination will quietly remove the object code for this statement 
from the object file.

As an example of dead code elimination, consider the following C pro-
gram and the 80x86 assembly code that GCC emits when supplied the -O3
command-line option:

static int rtn3( void )

{

    return 3;

}

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 401

int main( void )

{

    int i = rtn3() + 2;

    

    // Note that this program

    //  never again uses the value of i.

    

    return( 0 );

}

Here’s the 80x86 code emitted by GCC:

.file   "t.c"

        .text

        .p2align 2,,3

.globl main

        .type   main,@function

main:

        ;Build main's activation record:

        pushl   %ebp

        movl    %esp, %ebp

        subl    $8, %esp

        andl    $-16, %esp

        ;Notice that there is no

        ; assignment to i here.

        ;Return zero as main's function result.

        xorl    %eax, %eax

        leave

        ret

Now consider the 80x86 output from GCC when optimization is not 
enabled:

.file   "t.c"

        .text

        .type   rtn3,@function

rtn3:

        pushl   %ebp

        movl    %esp, %ebp

        movl    $3, %eax

        leave

        ret

.Lfe1:

        .size   rtn3,.Lfe1-rtn3

.globl main

        .type   main,@function

main:

        pushl   %ebp

        movl    %esp, %ebp

No Starch Press, Copyright © 2006 by Randall Hyde



402 Chap te r 13

        subl    $8, %esp

        andl    $-16, %esp

        movl    $0, %eax

        subl    %eax, %esp

        ;Note the call and computation:

        call    rtn3

        addl    $2, %eax

        movl    %eax, -4(%ebp)

        ;Return zero as the function result.

        movl    $0, %eax

        leave

        ret

In fact, one of the main reasons that program examples throughout this 
book call a function like printf to display various values is to explicitly use those 
variables’ values to prevent dead code elimination from erasing the code 
under study from the assembly output file. If you remove the final printf
from the C program in many of these examples, most of the assembly code 
will disappear because of dead code elimination.

13.2.4 Common Subexpression Elimination
Often, a small (or even a large) portion of some expressions may appear 
elsewhere in the current function. If there are no changes to the values of 
the variables appearing in this subexpression, the program does not need to 
compute the value of the expression twice. Instead, the program can save the 
value of the subexpression on the first evaluation and then use that value 
everywhere the subexpression appears again. For example, consider the 
following Pascal code:

    complex := ( a + b ) * ( c - d ) - ( e div f );

    lessSo  := ( a + b ) - ( e div f );

    quotient := e div f;

A decent compiler might translate these to the following sequence of 
three-address statements:

    temp1 := a + b;

    temp2 := c - d;

    temp3 := e div f;

    complex := temp1 * temp2;

    complex := complex - temp3;

    lessSo := temp1 - temp3;

    quotient := temp3;

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 403

Although the former statements use the subexpression (a + b) twice and 
the subexpression (e div f) three times, the three-address code sequence 
only computes these subexpressions once, and it uses their values when the 
common subexpressions appear later.

As another example, consider the following C/C++ code:

#include <stdio.h>

static int i, j, k, m, n;

static int expr1, expr2, expr3;

extern int someFunc( void );

int main( void )

{

    // The following is a trick to

    // confuse the optimizer. When we call

    // an external function, the optimizer

    // knows nothing about the value this

    // function returns, so it cannot optimize

    // the values away. This is done to demonstrate

    // the optimizations that this example is

    // trying to show (that is, the compiler

    // would normally optimize away everything

    // and we wouldn't see the code the optimizer

    // would produce in a real-world example without

    // the following trick).

    

    i = someFunc();

    j = someFunc();

    k = someFunc();

    m = someFunc();

    n = someFunc();

    

    expr1 = (i + j) * (k * m + n);

    expr2 = (i + j);

    expr3 = (k * m + n);

    

    printf( "%d %d %d", expr1, expr2, expr3 );

    return( 0 );

}

Here’s the 80x86 assembly file that GCC generates (with the -O3 option) 
for the above C code:

.file   "t.c"

        .section        .rodata.str1.1,"aMS",@progbits,1

.LC0:

        .string "%d %d %d"

        .text

No Starch Press, Copyright © 2006 by Randall Hyde



404 Chap te r 13

        .p2align 2,,3

.globl main

        .type   main,@function

main:

        ;Build the activation record:

        pushl   %ebp

        movl    %esp, %ebp

        subl    $8, %esp

        andl    $-16, %esp

        ;Initialize i, j, k, m, and n:

        call    someFunc

        movl    %eax, i

        call    someFunc

        movl    %eax, j

        call    someFunc

        movl    %eax, k

        call    someFunc

        movl    %eax, m

        call    someFunc ;n's value is in EAX.

        ;Compute EDX = k*m+n

        ; and ECX = i+j

 

        movl    m, %edx

        movl    j, %ecx

        imull   k, %edx

        addl    %eax, %edx

        addl    i, %ecx

        ;EDX is expr3, so push it

        ; on the stack for printf

        pushl   %edx

        ; Save away n's value:

        movl    %eax, n

        movl    %ecx, %eax

        ;ECX is expr2, so push it onto

        ; the stack for printf:

        pushl   %ecx

        ;expr1 is the product of the

        ; two subexpressions (currently

        ; held in EDX and EAX), so compute

        ; their product and push the result

        ; for printf.

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 405

        imull   %edx, %eax

        pushl   %eax

        ;Push the address of the format string

        ; for printf:

        pushl   $.LC0

        ;Save the variable's values and then

        ; call printf to print the values

        ; previously pushed on the stack:

        movl    %eax, expr1

        movl    %ecx, expr2

        movl    %edx, expr3

        call    printf

        ;Return zero as the main function's result:

        xorl    %eax, %eax

        leave

        ret

Note how the compiler maintains the results of the common subexpres-
sions in various registers (see the comments in the assembly output for details).

If the compiler you’re using doesn’t support common subexpression 
optimizations (you can determine this by examining the assembly output), 
chances are pretty good that the compiler’s optimizer is subpar, and you 
should consider using a different compiler. However, if you are forced to 
use a compiler that doesn’t perform this common optimization, you can 
always explicitly code this optimization yourself. Consider the following 
version of the former C code, which manually computes common 
subexpressions:

#include <stdio.h>

static int i, j, k, m, n;

static int expr1, expr2, expr3;

static int ijExpr, kmnExpr;

extern int someFunc( void );

int main( void )

{

    // The following is a trick to

    // confuse the optimizer. By calling

    // an external function, the optimizer

    // knows nothing about the value this

    // function returns, so it cannot optimize

    // the values away because of constant propagation.

    

No Starch Press, Copyright © 2006 by Randall Hyde



406 Chap te r 13

    i = someFunc();

    j = someFunc();

    k = someFunc();

    m = someFunc();

    n = someFunc();

    

    ijExpr = i + j;

    kmnExpr = (k * m + n);

    expr1 = ij * kmn;

    expr2 = ij;

    expr3 = kmn;

    

    printf( "%d %d %d", expr1, expr2, expr3 );

    return( 0 );

}

Of course, there was no reason to create the ijExpr and kmnExpr variables 
because we could have simply used the expr2 and expr3 variables for this pur-
pose. However, this code was written to make the changes to the original 
program as obvious as possible.

13.2.5 Strength Reduction
Often, the CPU can directly compute some value using a different operator 
than the source code specifies, thereby replacing a more complex (or stronger) 
instruction with a simpler instruction. For example, a shift operation can 
implement multiplication or division by a constant that is a power of 2 and 
certain modulo (remainder) operations are possible using a bitwise and
instruction (the shift and and instructions generally execute much faster 
than multiply and divide instructions). Most compiler optimizers are good at 
recognizing such operations and replacing the more expensive computation 
with a less expensive sequence of machine instructions. Here is some C code 
and 80x86 GCC output that shows strength reduction in action:

#include <stdio.h>

unsigned i, j, k, m, n;

extern unsigned someFunc( void );

extern void preventOptimization( unsigned arg1, ... );

int main( void )

{

    // The following is a trick to

    // confuse the optimizer. By calling

    // an external function, the optimizer

    // knows nothing about the value this

    // function returns, so it cannot optimize

    // the values away.

    

    i = someFunc();

    j = i * 2;

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 407

    k = i % 32;

    m = i / 4;

    n = i * 8;

    

    // The following call to "preventOptimization" is done

    // to trick the compiler into believing the above results

    // are used somewhere else (GCC will eliminate all the 

    // code above if you don't actually use the computed result,

    // and that would defeat the purpose of this example).

    preventOptimization( i,j,k,m,n );

    return( 0 );

}

Here’s the resulting 80x86 code generated by GCC:

.file   "t.c"

        .text

        .p2align 2,,3

.globl main

        .type   main,@function

main:

        ;Build main's activation record:

        pushl   %ebp

        movl    %esp, %ebp

        pushl   %esi

        pushl   %ebx

        andl    $-16, %esp

        ;Get i's value into EAX:

        call    someFunc

        ;compute i * 8 using the scaled

        ; indexed addressing mode and

        ; the LEA instruction (leave

        ; n's value in EDX):

        leal    0(,%eax,8), %edx

        ;Adjust stack for call to

        ; preventOptimization:

        subl    $12, %esp

        movl    %eax, %ecx      ;ECX = i

        pushl   %edx            ;Push n for call

        movl    %eax, %ebx      ;Save i in k

        shrl    $2, %ecx        ;ECX = i / 4 (m)

        pushl   %ecx            ;Push m for call

        andl    $31, %ebx       ;EBX = i%32

        leal    (%eax,%eax), %esi ;j = i * 2

No Starch Press, Copyright © 2006 by Randall Hyde



408 Chap te r 13

        pushl   %ebx            ;Push k for call

        pushl   %esi            ;Push j for call

        pushl   %eax            ;Push i for call

        movl    %eax, i         ;Save values in memory

        movl    %esi, j         ; variables.

        movl    %ebx, k

        movl    %ecx, m

        movl    %edx, n

        call    preventOptimization

        ;Clean up the stack and return

        ; zero as main's result:

        leal    -8(%ebp), %esp

        popl    %ebx

        xorl    %eax, %eax

        popl    %esi

        leave

        ret

.Lfe1:

        .size   main,.Lfe1-main

        .comm   i,4,4

        .comm   j,4,4

        .comm   k,4,4

        .comm   m,4,4

        .comm   n,4,4

The important thing to note in this 80x86 code is that GCC never emitted 
a multiplication or division instruction, even though the C code used these 
two operators extensively. GCC replaced each of these (expensive) operations 
with less expensive address calculations, shifts, and logical AND operations.

This C example declared its variables as unsigned rather than as int.
There is a very good reason for this modification: strength reduction produces 
more efficient code for certain unsigned operands than it does for signed 
operands. This is a very important point! If you can choose between using 
either signed or unsigned integer operands, you should always try to use 
unsigned values because compilers can often generate better code when 
processing unsigned operands. To show the difference, I’ll rewrite the previous 
C code using signed integers and take a look at GCC’s 80x86 output:

#include <stdio.h>

// Change from unsigned to int:

int i, j, k, m, n;

extern int someFunc( void );

extern void preventOptimization( int arg1, ... );

// The remainder of the code is the same as the earlier C program...

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 409

Here is GCC’s 80x86 assembly output for this modification to the C code:

.file   "t.c"

        .text

        .p2align 2,,3

        .globl main

        .type   main,@function

main:

        ;Build main's activation record:

        pushl   %ebp

        movl    %esp, %ebp

        pushl   %esi

        pushl   %ebx

        andl    $-16, %esp

        ; Call someFunc to get i's value:

        call    someFunc

        leal    (%eax,%eax), %esi ;j = i * 2

        testl   %eax, %eax        ;Test i's sign

        movl    %eax, %ecx

        movl    %eax, i

        movl    %esi, j

        js      .L4

; Here's the code we execute if i is non-negative:

.L2:

        andl    $-32, %eax       ;MOD operation

        movl    %ecx, %ebx

        subl    %eax, %ebx

        testl   %ecx, %ecx       ;Test i's sign

        movl    %ebx, k

        movl    %ecx, %eax

        js      .L5

.L3:

        subl    $12, %esp

        movl    %eax, %edx

        leal    0(,%ecx,8), %eax ;i * 8

        pushl   %eax

        sarl    $2, %edx         ;Signed div by 4

        pushl   %edx

        pushl   %ebx

        pushl   %esi

        pushl   %ecx

        movl    %eax, n

        movl    %edx, m

        call    preventOptimization

        leal    -8(%ebp), %esp

        popl    %ebx

        xorl    %eax, %eax

        popl    %esi

No Starch Press, Copyright © 2006 by Randall Hyde



410 Chap te r 13

        leave

        ret

        .p2align 2,,3

; For signed division by four,

;  using a sarl operation, we need

;  to add 3 to i's value if i was

;  negative.

.L5:

        leal    3(%ecx), %eax

        jmp     .L3

        .p2align 2,,3

; For signed % operation, we need to

;  first add 31 to i's value if it was

;  negative to begin with:

.L4:

        leal    31(%eax), %eax

        jmp     .L2

The difference in these two coding examples demonstrates why you 
should try to use unsigned integers (rather than signed integers) whenever 
you don’t absolutely need to deal with negative numbers.

Attempting strength reduction manually is risky. While certain opera-
tions (like division) are almost always slower than others (like shifting to the 
right) on most CPUs, many strength reduction optimizations are not portable 
across CPUs. That is, substituting a left shift operation for multiplication may 
not always produce faster code when you compile for different CPUs. Some 
older C programs contain manual strength reductions that were originally 
added to improve performance. Today, those strength reductions can actually 
cause the programs to run slower than they should. Be very careful about 
incorporating strength reductions directly into your HLL code. This is one 
area where you should let the compiler do its job. 

13.2.6 Induction

In many expressions, particularly those appearing within a loop, the value of 
one variable in the expression is completely dependent on some other variable. 
As an example, consider the following for loop in Pascal:

    for i := 0 to 15 do begin

        j := i * 2;

        vector[ j ] := j;

        vector[ j + 1 ] := j + 0.5;

    end;

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 411

A compiler’s optimizer may recognize that j is completely dependent on 
the value of i and rewrite this code as follows:

    ij := 0;  {ij is the combination of i and j from the previous code}

    while( ij < 30 ) do

        vector[ ij ] := j;

        vector[ ij + 1 ] := ij + 0.5;

        ij := ij + 2;

    end;

This optimization saves some work in the loop (specifically, the compu-
tation of j := i * 2;).

As another example, consider the following C code and the MASM 
output that Microsoft’s Visual C++ compiler produces:

extern unsigned vector[16];

extern void someFunc( unsigned v[] );

extern void preventOptimization( int arg1, ... );

int main( void )

{

    unsigned i, j;

    // "Initialize" vector (or, at least,

    //  make the compiler believe this is

    //  what's going on):

    

    someFunc( vector );

    

    // For loop to demonstrate induction:

    

    for( i = 0; i < 16; ++i )

    {

        j = i * 2;

        vector[ j ] = j;

        vector[ j + 1 ] = j + 1;

    }

    

    // The following prevents dead code elimination

    // of the former calculations:

    

    preventOptimization( vector[0], vector[15] );

    return( 0 );

}

Here’s the MASM (80x86) output from Visual C++:

_main   PROC NEAR ; COMDAT

; File t.c

No Starch Press, Copyright © 2006 by Randall Hyde



412 Chap te r 13

; Line 19 -- call someFunc to initialize vector:

        push    OFFSET FLAT:_vector

        call    _someFunc

        add     esp, 4

        ;ECX is roughly "j".

        ;EAX points at the current vector element.

        xor     ecx, ecx

        mov     eax, OFFSET FLAT:_vector+4

;This is what the for loop translates to:

$L403:

; Line 23

        ;vector[j] = j;

        mov     DWORD PTR [eax-4], ecx

; Line 24

        ;vector[ j + 1 ] = j + 1;

        lea     edx, DWORD PTR [ecx+1]

        mov     DWORD PTR [eax], edx

        ;Advance EAX (pointer to vector

        ; element) past two elements:

        add     eax, 8

        ;Bump up j by two:

        add     ecx, 2

        ;Repeat for each element of the array

        ; that we process:

        cmp     eax, OFFSET FLAT:_vector+132

        jl      SHORT $L403

; Line 26 - call preventOptimization:

        mov     eax, DWORD PTR _vector+60

        mov     ecx, DWORD PTR _vector

        push    eax

        push    ecx

        call    _preventOptimization

        add     esp, 8

; Line 27

        xor     eax, eax

; Line 28

        ret     0

_main   ENDP

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 413

As you can see in this MASM output, the Visual C++ compiler recognizes 
that i is not used in this loop. There are no calculations involving i, and it is 
completely optimized away. Furthermore, there is no j = i * 2 computation. 
Instead, the compiler uses induction to determine that j increases by 2 on 
each iteration, and the compiler emits the code to do this rather than com-
puting j’s value from i. Finally, note that the compiler doesn’t index into the 
vector array. Instead it marches a pointer through the array on each iteration 
of the loop—once again using induction to produce a faster and shorter 
code sequence than you’d get without this optimization.

As for common subexpressions, you can manually incorporate induction 
optimization into your programs. The result is almost always harder to read 
and understand, but if your compiler’s optimizer fails to produce good 
machine code in a section of your program, you can always resort to a 
manual optimization.

13.2.7 Loop Invariants
The optimizations I’ve shown so far have all been techniques a compiler can 
use to improve code that is already well written. Handling loop invariants, by 
contrast, is a compiler optimization for fixing bad code. A loop invariant is 
an expression that does not change on each iteration of some loop. The 
following Basic code demonstrates a trivial loop-invariant calculation:

    i = 5;

    for j = 1 to 10

        k = i * 2

    next j

The value of k does not change during the execution of this loop. Once 
the loop completes execution, k’s value is exactly the same as if the calcula-
tion of k had been moved before or after the loop. For example:

    i = 5;

    k = i * 2

    for j = 1 to 10

    next j

' At this point, k will contain the same

' value as in the previous example

The difference between these two code fragments, of course, is that the 
second example computes the value k = i * 2 only once rather than on each 
iteration of the loop.  

Many compilers’ optimizers are smart enough to discover whenever a 
loop invariant calculation occurs and use code motion to move the invariant 
calculation outside the loop. As an example of this operation, consider the 
following example C program and the output that the Microsoft Visual C++ 
compiler produces:

extern unsigned someFunc( void );

extern void preventOptimization( unsigned arg1, ... );

No Starch Press, Copyright © 2006 by Randall Hyde



414 Chap te r 13

int main( void )

{

    unsigned i, j, k, m;

    k = someFunc();

    m = k;

    for( i = 0; i < k; ++i )

    {

        j = k + 2;    // Loop-invariant calculation

        m += j + i;

    }

    preventOptimization( m, j, k, i );

    return( 0 );

}

Here’s the 80x86 MASM code emitted by Visual C++:

_main   PROC NEAR ; COMDAT

; File t.c

; Line 5

        push    ecx

        push    esi

; Line 8

        call    _someFunc

; Line 10

        xor     ecx, ecx  ; i = 0

        test    eax, eax  ; see if k == 0

        mov     edx, eax  ; m = k

        jbe     SHORT $L108

        push    edi

; Line 12

; Compute j = k + 2, but only execute this

; once (code was moved out of the loop):

        lea     esi, DWORD PTR [eax+2] ;j = k + 2

; Here's the loop the above code was moved

;  out of:

$L99:

; Line 13

        ;m(edi) = j(esi) + i(ecx)

        lea     edi, DWORD PTR [esi+ecx]

        add     edx, edi

        ; ++i

        inc     ecx

        ;While i < k, repeat:

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 415

        cmp     ecx, eax

        jb      SHORT $L99

        pop     edi

; Line 15

;

; This is the code after the loop body:

        push    ecx

        push    eax

        push    esi

        push    edx

        call    _preventOptimization

        add     esp, 16                                 ; 00000010H

; Line 16

        xor     eax, eax

        pop     esi

; Line 17

        pop     ecx

        ret     0

$L108:

; Line 10

        mov     esi, DWORD PTR _j$[esp+8]

; Line 15

        push    ecx

        push    eax

        push    esi

        push    edx

        call    _preventOptimization

        add     esp, 16                                 ; 00000010H

; Line 16

        xor     eax, eax

        pop     esi

; Line 17

        pop     ecx

        ret     0

_main   ENDP

As you can see by reading the comments in the assembly code, the loop-
invariant expression j = k + 2 was moved out of the loop and executed prior 
to the start of the loop’s code, thereby saving some execution time on each 
iteration of the loop.

Unlike most optimizations, which you should leave up to the compiler if 
possible, you should try to move all loop-invariant calculations out of a loop 
unless there is a justifiable reason for leaving them in the loop. Loop-invariant 
calculations raise questions in the mind of someone reading your code 
(e.g., “Isn’t this supposed to change in the loop?”), and their presence 
actually makes the code harder to read and understand. Therefore, you 
should move the code out of the loop. If, for some reason, you want to leave 
the invariant code in the loop, be sure to comment your reasoning so 
that the next person to look at your code won’t question your sanity.

No Starch Press, Copyright © 2006 by Randall Hyde



416 Chap te r 13

13.2.8 Optimizers and Programmers
One can divide HLL programmers into three groups based on their under-
standing of these compiler optimizations: 

� The first group of HLL programmers is unaware of how compiler opti-
mizations work, and they write their code without considering the effect 
that their code organization will have on the optimizer. 

� The second group understands how compiler optimizations work; these 
programmers write their code to be more readable. They assume that 
the optimizer will handle issues such as converting multiplication and 
division to shifts (where appropriate) and preprocessing constant expres-
sions. This second group places a fair amount of faith in the compiler’s 
ability to correctly optimize their code. 

� The third group of programmers is also aware of the general types of 
optimizations that compilers can do, but they don’t trust the compilers 
to do the optimization for them. Instead, they manually incorporate 
those optimizations into their code.

Interestingly enough, compiler optimizers are actually designed for the 
first group of programmers who are ignorant of how the compiler operates. 
Therefore, a good compiler will usually produce roughly the same quality of 
code for all three types of programmers (at least, with respect to arithmetic 
expressions). This is particularly true when compiling the same program 
across different compilers. However, do keep in mind that this assertion is 
only valid for compilers that have decent optimization capabilities. If you 
have to compile your code on a large number of compilers and you can’t be 
assured that all of them have good optimizers, manual optimization may be 
one way to achieve consistently good performance across all compilers.

Of course, the real question is, “Which compilers are good, and which are 
not?” It would be nice to provide a table or chart in this book that describes the 
optimization capabilities of all the different compilers you might encounter. 
Unfortunately, the rankings change as compiler vendors improve their 
products, so anything appearing in this book would rapidly become obsolete. 
Fortunately, there are several websites that try to keep up-to-date compari-
sons of different compilers. For example, by searching with Google using the 
phrase “C C++ compiler benchmarks Visual Watcom Intel GCC,” I found 
www.willus.com/ccomp_benchmark.shtml, which does an excellent job of 
benchmarking PC compilers. (The Google search listed several other sites. 
Of course, with a more generic search request, you can obtain information 
about other compilers as well.)

13.3 Side Effects in Arithmetic Expressions

You will definitely want to give a compiler some guidance with respect to side 
effects that may occur in an expression. If you do not understand how com-
pilers deal with side effects in arithmetic expressions, you may write code 
that doesn’t always produce correct results, particularly when moving source 
code between different compilers. Wanting to write the fastest or the smallest 

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 417

possible code is all well and good, but if it doesn’t produce the correct answer, 
any optimizations you make on the code are all for naught. Therefore, learn-
ing how compilers deal with side effects in an expression is important because 
ignorance in this area may lead you to write incorrect code.

A side effect is any modification to the global state of a program outside 
the immediate result a piece of code is producing. The primary purpose of an 
arithmetic expression is to produce the expression’s result. Any other change 
to the system’s state in an expression is a side effect. The C, C++, C#, Java, 
and other C-based languages are especially guilty of allowing side effects in 
an arithmetic expression. For example, consider the following C code 
fragment:

i = i + *pi++ + (j = 2) * --k

This expression exhibits four separate side effects: 

� The decrement of k at the end of the expression

� The assignment to j prior to using j’s value

� The increment of the pointer pi after dereferencing pi

� The assignment to i3

Although few non–C-based languages provide as many ways to create 
side effects in arithmetic expressions as C does, most languages do allow the 
creation of side effects within an expression via a function call.4 Side effects 
in functions are useful, for example, when you need to return more than a 
single value as a function result. Consider the following Pascal code fragment:

var

   k:integer;

   m:integer;

   n:integer;

function hasSideEffect( i:integer; var j:integer ):integer;

begin

    k := k + 1;

    hasSideEffect := i + j;

    j = i;

end;

        .

        .

        .

    m := hasSideEffect( 5, n );

3 Generally, if this expression is converted to a stand-alone statement by placing a semicolon 
after the expression, we consider the assignment to i to be the purpose of the statement, not a 
side effect.
4 There are some languages that prohibit side effects within an expression. The advantage of 
such languages is that the compiler can do a much better job of optimizing code when there is 
no possibility of a side effect in the program. However, side effects are sometimes useful in real-
world applications, so most languages allow them.

No Starch Press, Copyright © 2006 by Randall Hyde



418 Chap te r 13

In this example, the call to the hasSideEffect function produces two 
different side effects: 

� The modification of the global variable k

� The modification of the pass by reference parameter j (the actual 
parameter is n in this code fragment).

The real purpose of the function is to compute the function’s return 
result; any modification of global values or reference parameters constitutes 
a side effect of that function, hence the invocation of such a function within 
an expression produces side effects. Obviously, any language that allows the 
modification of global values (either directly or through parameters) from a 
function is capable of producing side effects within an expression; this concept 
is not limited to Pascal programs.

The problem with side effects in an expression is that most languages do 
not guarantee the order of evaluation of the components that make up an 
expression. Many naive programmers (incorrectly) assume that when they 
write an expression such as the following:

i := f(x) + g(x);

the compiler will emit code that first calls function f and then calls function g.
Very few programming languages, however, require this order of execution. 
That is, some compilers will indeed call f, then call g, and then add their 
return results together. Some other compilers, however, will call g first, then f,
and then compute the sum of the function return results. That is, the com-
piler could translate this expression into either of the following simplified 
code sequences before actually generating native machine code:

{ Conversion #1 for "i := f(x) + g(x);" }

    temp1 := f(x);

    temp2 := g(x);

    i := temp1 + temp2;

{ Conversion #2 for "i := f(x) + g(x);" }

    temp1 := g(x);

    temp2 := f(x);

    i := temp2 + temp1;

These two different function call sequences could produce completely 
different results if f or g produce a side effect. For example, if function f
modifies the value of the x parameter you pass to it, the preceding sequence 
could produce different results.

Note that issues such as precedence, associativity, and commutativity 
have no bearing on whether the compiler evaluates one subcomponent 
of an expression before another.

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 419

For example, consider the following arithmetic expression and several 
possible intermediate forms for the expression:

    j := f(x) - g(x) * h(x);

{ Conversion #1 for this expression: }

    temp1 := f(x);

    temp2 := g(x);

    temp3 := h(x);

    temp4 := temp2 * temp3

    j := temp1 - temp4;

{ Conversion #2 for this expression: }

    temp2 := g(x);

    temp3 := h(x);

    temp1 := f(x);

    temp4 := temp2 * temp3

    j := temp1 - temp4;

{ Conversion #3 for this expression: }

    temp3 := h(x);

    temp1 := f(x);

    temp2 := g(x);

    temp4 := temp2 * temp3

    j := temp1 - temp4;

Other combinations are also possible.
The specifications for most programming languages explicitly leave the 

order of evaluation undefined. This may seem somewhat bizarre, but there is 
a good reason for it: Sometimes the compiler can produce better machine 
code by rearranging the order it uses to evaluate certain subexpressions 
within an expression. Any attempt on the part of the language designer to 
force a particular order of evaluation on a compiler’s implementer could 
limit the range of optimizations possible. Therefore, few languages explicitly 
state the order of evaluation for an arbitrary expression.

There are, of course, certain rules that most languages do enforce. 
Although the rules vary by language, there are some obvious rules that 
most languages (and their implementations) always follow because intuition 
suggests the behavior. Probably the most common rule you can count on is 
that all side effects within an expression will occur prior to the completion 
of that statement’s execution. For example, if the function f modifies the 
global variable x, then the following statements will always print the value 
of x after f modifies it:

    i := f(x);
    writeln( "x=", x );

No Starch Press, Copyright © 2006 by Randall Hyde



420 Chap te r 13

Another rule you can count on is that the assignment to a variable on 
the left-hand side of an assignment statement does not occur prior to the use 
of that same variable on the right-hand side of the expression. That is, the 
following code will not write the result of the expression into variable n until 
it uses the previous value of n within the expression:

n := f(x) + g(x) - n;

Because the order of the production of side effects within an expression 
is undefined in most languages, the result of the following code is generally 
undefined (in Pascal):

function incN:integer;

begin

    incN := n;

    n := n + 1;

end;

        .

        .

        .

    n := 2;

    writeln( incN + n * 2 );

The compiler is free to first call the incN function (so n will contain 3 
prior to executing the subexpression n * 2) or the compiler is allowed to first 
compute n * 2 and then call the incN function. As a result, one compilation 
of this statement could produce the output 8, while a different compilation 
might produce 6. In both cases, n would contain 3 after the writeln statement 
is executed, but the order of computation of the expression in the writeln
statement could vary.

Don’t make the mistake of thinking you can run some experiments to 
determine the order of evaluation. At the very best, such experiments will tell 
you only the order a particular compiler uses. A different compiler may well 
compute subexpressions in a different order. Indeed, the same compiler 
might also compute the components of a subexpression differently based 
on the context of that subexpression. This means that a compiler might 
compute the result using one ordering at one point in the program and 
using a different ordering somewhere else in the same program. Therefore, it 
is dangerous to “determine” the ordering your particular compiler uses and 
rely on that ordering. Even if the compiler is consistent in the ordering of 
the computation of side effects, the compiler vendor could change the 
ordering in a later version. If you must depend upon the order of evaluation, 
you need to break the computation down into to a sequence of simpler 
statements, whose computational order you can control. For example, if you 
really need to have your program call f before g in the statement

i := f(x) + g(x);

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 421

then you should write the code this way:

temp1 := f(x);

temp2 := g(x);

i := temp1 + temp2;

If you must control the order of evaluation within an expression, take 
special care when doing so in order to ensure that all side effects are com-
puted at the appropriate time. To see how to do this, you need to learn about 
sequence points.

13.4 Containing Side Effects: Sequence Points

As noted earlier, most languages guarantee that the computation of side 
effects completes before certain points in your program’s execution. For 
example, almost every language guarantees the completion of all side effects 
by the time the statement containing the expression completes execution. 
The point at which a compiler guarantees that the computation of a side 
effect is completed is called a sequence point. The end of a statement is an 
example of a sequence point.

The C programming language provides several important sequence 
points within expressions, in addition to the semicolon at the end of a 
statement. C defines sequence points between each of the following 
operators:

expression1, expression2                 (comma operator in an expression)

expression1 && expression2               (logical AND operator)

expression1 || expression2               (logical OR operator)

expression1 ? expression2 : expression3  (conditional expression operator)

C5 guarantees that all side effects in expression1 are completed before the 
computation of expression2 or expression3 in these examples. Note that for 
the conditional expression, C only evaluates one of expression2 or expression3,
so the side effects of only one of these subexpressions ever occurs on a given 
execution of the conditional expression.

To understand how side effects and sequence points can affect the oper-
ation of your program, consider the following example in C:

    int array[6] = {0, 0, 0, 0, 0, 0};

    int i;

        .

        .

        .

    i = 0;

    array[i] = i++;

5 C++ compilers generally provide the same sequence points as C, although the original C++ 
standard did not define any sequence points.

No Starch Press, Copyright © 2006 by Randall Hyde



422 Chap te r 13

Note that C does not define a sequence point across the assignment oper-
ator. Therefore, the C language makes no guarantees about the value of the 
expression i it uses as an index. The compiler can choose to use the value of 
i before or after indexing into array. That the ++ operator is a post-increment 
operation only implies that i++ returns the value of i prior to the increment; 
this does not guarantee that the compiler will use the pre-increment value of i
anywhere else in the expression. The bottom line is that the last statement in 
this example could be semantically equivalent to either of the following 
statements:

array[0] = i++;

-or-

array[1] = i++;

The C language definition allows either form, and does not require the 
first form simply because the array index appears in the expression before 
the post-increment operator.

To control the assignment to array in this example, you will have to ensure 
that no part of the expression depends upon the side effects of some other 
part of the expression. That is, you cannot both use the value of i at one 
point in the expression and apply the post-increment operator to i in another 
part of the expression unless there is a sequence point between the two uses. 
Because no such sequence point exists between the two uses of i in this state-
ment, the result is undefined by the C language standard.

To guarantee that a side effect occurs at an appropriate point, you must 
have a sequence point between two subexpressions. For example, if you’d 
like to use the value of i prior to the increment as the index into the array, 
you could write the following code:

array [i] = i; //<-semicolon marks a sequence point
++i;

To use the value of i after the increment operation as the array index, 
you could use code such as the following:

++i;               //<-semicolon marks a sequence point.
array[ i ] = i - 1;

Note, by the way, that a decent compiler will not increment i and then 
compute i - 1. A reasonable compiler will recognize the symmetry here, grab 
the value of i prior to the increment, and use that value as the index into array.
This is an example of where someone who is familiar with the optimizations 
found in typical compilers could take advantage of this behavior to write code 
that is more readable. A programmer who inherently mistrusts compilers and 
their ability to optimize well might write code such as the following:

j = i;

++i;             //<-semicolon marks a sequence point.

array[ i ] = j;

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 423

An important distinction to make is that a sequence point does not 
specify when a computation will take place. A sequence point tells you that 
any outstanding side effects will be computed before crossing the sequence 
point. The computation of the side effect could have actually taken place 
much earlier in the code, at any point between the previous sequence point 
and the current sequence point. Another important fact to remember is that 
sequence points do not force the compiler to complete some computations 
between a pair of sequence points if that computation does not produce any 
side effects. The optimization of eliminating common subexpressions, for 
example, would be far less useful if the compiler could only use the result of 
common subexpression computations between sequence points. The com-
piler is free to compute the result of a subexpression as far ahead as necessary 
as long as that subexpression produces no side effects. Similarly, a compiler 
can compute the result of a subexpression as late as it cares to, as long as that 
result doesn’t become part of a side effect. 

Because statement endings (i.e., the semicolons) are a sequence point in 
most languages, one way to control the computation of side effects is to man-
ually break a complex expression down into a sequence of three-address-like 
statements. For example, rather than relying on the Pascal compiler to trans-
late an earlier example into three-address code using its own rules, you can 
explicitly write the code using whichever set of semantics you prefer. For 
example:

{ Statement with an undefined result in Pascal }

    i := f(x) + g(x);

{ Corresponding statement with well-defined semantics }

    temp1 := f(x);

    temp2 := g(x);

    i := temp1 + temp2;

{ Another version, also with well-defined but different semantics }

    temp1 := g(x);

    temp2 := f(x);

    i := temp2 + temp1;

Again, operator precedence and associativity do not control when a 
computation takes place in an expression. Even though addition is left 
associative, the compiler may compute the value of the addition operator’s 
right operand before it computes the value of the addition operator’s left 
operand. Precedence and associativity control how the compiler arranges the 
computation to produce the result. They do not control when the program 
computes the subcomponents of the expression. As long as the final compu-
tation produces the results one would expect based on precedence and 
associativity, the compiler is free to compute the subcomponents in any 
order and at any time it pleases.

No Starch Press, Copyright © 2006 by Randall Hyde



424 Chap te r 13

Thus far, this section has given the impression that a compiler will always 
compute the value of an assignment statement and complete that assignment 
(and any other side effects) upon encountering the semicolon at the end of 
the statement. Strictly speaking, this isn’t true. What many compilers will do 
is ensure that all side effects occur between a sequence point and the next 
reference of the object changed by the side effect. For example, consider the 
following two statements:

j = i++;
k = m * n + 2;

Although the first statement in this code fragment has a side effect, some 
compilers may compute the value (or portions thereof) of the second state-
ment before completing the execution of the first statement. For example, 
many compilers will rearrange various machine instructions to avoid data 
hazards and other execution dependencies in the code that might result in 
lower performance (for details on data hazards, see Write Great Code, Volume 1). 
The semicolon sitting between these two statements does not guarantee that 
all computations for the first statement are complete before the CPU begins 
any new computation. Its presence only guarantees that the program 
computes any side effects occurring before the first semicolon prior to 
the execution of any code that depends on those side effects. Because the 
second statement does not depend upon the values of j or i, the compiler 
may freely start the computation of the second assignment prior to the 
completion of the first statement.

Sequence points act as barriers. A code sequence must complete its 
execution before following code affected by the side effect can execute. A 
compiler cannot compute the value of a side effect before some other code 
that appears before the previous sequence point in the program.

Consider the following two code fragments:

// Code fragment #1:

    i = j + k;

    m = ++k;

// Code fragment #2:

    i = j + k;

    m = ++n;

In the first example, the compiler must not rearrange the code so that it 
produces the side effect ++k prior to using k in the previous statement. The 
end-of-statement sequence point guarantees that the first statement in this 
example uses the value of k prior to any side effects produced in subsequent 
statements. In code fragment 2, however, the result of the side effect that ++n
produces does not affect anything in the i = j + k; statement, so the com-
piler is free to move the ++n operation into the code that computes i’s value 
if doing so is more convenient or more efficient.

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 425

13.5 Avoiding Problems Caused by Side Effects

Because it is often difficult to see the impact side effects have in your code, 
it’s a good idea to try to limit your program’s exposure to problems with side 
effects. Of course, the best way to do this is to eliminate side effects altogether 
in your programs. Unfortunately, that isn’t a realistic option. Many algorithms 
depend upon side effects for proper operation (functions returning multiple 
results via reference parameters or even global variables are good examples). 
You may, however, reduce unintended consequences of side effects by observ-
ing a few simple rules. Here are a few suggestions:

� Avoid placing side effects in Boolean expressions within program flow-
control statements such as if, while, do..until, and so on.

� If a side effect exists on the right side of an assignment operator, try mov-
ing the side effect into its own statement before or after the assignment 
(depending on whether the assignment statement uses the value of the 
object before or after it applies the side effect).

� Avoid multiple assignments in the same statement; break them into 
separate statements.

� Avoid calling more than one function (that might produce a side effect) 
in the same expression.

� Avoid modifications to global objects (e.g., side effects) when writing 
functions.

� Always document side effects thoroughly. For functions, you should 
document the side effect in the function’s documentation, and you 
should document the side effect on every call to that function as well.

13.6 Forcing a Particular Order of Evaluation

As noted earlier, operator precedence and associativity do not control when 
a compiler may compute subexpressions. For example, if X, Y, and Z are each 
subexpressions (which could be anything from a single constant or variable 
reference to a complex expression in and of themselves), then an expression 
of the form X / Y * Z does not imply that the compiler computes the value 
for X before it computes the value for Y and Z. In fact, the compiler is free to 
compute the value for Z first, then Y, and finally X. All that operator prece-
dence and associativity require is that the compiler must compute the value 
of X and Y (in any order) before computing X / Y, and the compile must 
compute the value of the subexpression X / Y before computing (X / Y) * Z.
Of course, compilers are free to transform expressions via applicable algebraic 
transformations, but compilers are generally careful about this because not 
all standard algebraic transformations apply when using limited-precision 
arithmetic.

Although compilers are free to compute subexpressions in any order 
they choose (which is why side effects can create obscure problems), com-
pilers generally avoid rearranging the order of actual computations. For 

No Starch Press, Copyright © 2006 by Randall Hyde



426 Chap te r 13

example, mathematically, the following two expressions are equivalent 
following the standard rules of algebra (versus limited precision computer 
arithmetic):

    X / Y * Z
    Z * X / Y

In standard mathematics, this identity exists because the multiplication 
operator is commutative. That is, A * B is equal to B * A. Indeed, these two 
expressions will generally produce the same result as long as they are com-
puted as follows:

    (X / Y) * Z
    Z * (X / Y)

The parentheses exist here not to show precedence, but to group calcu-
lations that the CPU must perform as a unit. That is, the statements are 
equivalent to:

    A = X / Y;

    B = Z

    C = A * B

    D = B * A

In most systems, C and D should have the same value. To understand why 
the former examples are not equivalent, consider what happens when X, Y,
and Z are all integer objects with the values 5, 2, and 3, respectively:

        X / Y * Z

    =   5 / 2 * 3

    =   2 * 3

    =   6

        Z * X / Y

    =   3 * 5 / 2

    =   15 / 2

    =   7

For this reason, compilers are careful about algebraically rearranging 
expressions.

Any competent programmer understands the rules of integer arithmetic 
and, in fact, many algorithms depend upon the truncation that integer divi-
sion produces in order to obtain a correct answer. Most programmers realize 
that X * (Y / Z) is not the same thing as (X * Y) / Z. Most compilers realize 
this too. In theory, a compiler should translate an expression of the form 
X * Y / Z as though it were (X * Y) / Z because the multiplication and division 
operators have the same precedence and are left associative. However, 
good programmers never rely on the rules of associativity to guarantee this. 
Although most compilers will correctly translate this expression as intended, 

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 427

the next engineer who comes along might not realize what’s going on. There-
fore, explicitly including the parentheses to make the intended evaluation 
clear is a good idea. Better still, treat integer truncation as a side effect and 
break the expression down into its constituent computations (using three-
address–like expressions) to ensure the proper order of evaluation.

Integer arithmetic obviously obeys its own rules, and the rules of real 
algebra don’t always apply. However, don’t get the impression that floating-
point arithmetic doesn’t suffer from the same set of problems. Any time 
you’re doing limited-precision arithmetic involving the possibility of rounding, 
truncation, overflow, or underflow, standard real-arithmetic algebraic transfor-
mations may not be legal. Because floating-point arithmetic is still a limited-
precision format and suffers from rounding, truncation, underflow, and 
overflow, applying arbitrary real-arithmetic transformations to a floating-point 
expression can introduce inaccuracies in the computation. Therefore, a good 
compiler will not perform these types of transformations on real expressions. 
Unfortunately, some compilers apply the rules of real arithmetic to floating-
point operations. Most of the time, the results they produce are reasonably 
correct (within the limitations of the floating-point representation); in some 
special cases, however, the assumption that real arithmetic and floating-point 
arithmetic are the same can produce especially bad results.

In general, if you must control the order of evaluation and when the 
program computes subcomponents of an expression, your only choice is to 
use assembly language. Subject to minor issues such as out-of-order instruction 
execution, you can specify exactly when your software will compute various 
components of an expression when implementing the expression in assembly 
code. For very accurate computations, when the order of evaluation can 
affect the results you obtain, assembly language may be the safest approach. 
Although fewer programmers are capable of reading and understanding 
assembly language code, there is no question that you can exactly specify the 
semantics of an arithmetic expression in assembly language—what you read is 
what you get without any modification by the assembler. This simply isn’t 
true for most HLL systems.

13.7 Short-Circuit Evaluation

Certain arithmetic and logical operators exhibit the property that if one 
component of the expression has a certain value, the value for the whole 
expression is automatically known regardless of the values of the remaining 
components that make up the expression. A classic example is the multipli-
cation operator. If you have an expression A * B and you know that either A or 
B is zero, there is no need to compute the other component because the 
result is already zero. If the cost of computing the subexpressions is rather 
expensive relative to the cost of a comparison, then a program can save some 
time by testing the first component to determine if it needs to bother com-
puting the second component of the expression. This optimization is known 
as short-circuit evaluation because the program skips over (“short-circuits” in 
electronics terminology) the computation of the remainder of the expression.

No Starch Press, Copyright © 2006 by Randall Hyde



428 Chap te r 13

Although a couple of arithmetic operations could employ short-circuit 
evaluation, the cost of checking for short-circuit evaluation is usually more 
expensive than completing the computation. Multiplication, for example, 
could use short-circuit evaluation to avoid multiplication by zero. However, 
in real programs, multiplication by zero occurs so infrequently that the cost 
of the comparison against zero in all the other cases generally overwhelms 
any savings achieved by avoiding multiplication by zero. Therefore, you’ll 
rarely see a language system that supports short-circuit evaluation for 
arithmetic operations.

13.7.1 Short-Circuit Evaluation and Boolean Expressions
One type of expression that can benefit from short-circuit evaluation is a 
Boolean/logical expression. Boolean expressions are good candidates for 
short-circuit evaluation for three reasons: 

� Boolean expressions only produce two results, True and False; therefore 
it’s highly likely (50-50 chance assuming random distribution) that one 
of the short-circuit “trigger” values will appear.

� Boolean expressions tend to be complex.

� Boolean expressions occur frequently in programs. 

Therefore, you’ll find that many compilers use short-circuit evaluation 
when processing Boolean expressions.

Consider the following two C statements:

A = B && C;
D = E || F;

Note that if B is False, then A will be False regardless of C’s value. Similarly, 
if E is True, then D will be True regardless of F’s value. We can, therefore, 
compute the values for A and D as follows:

    A = B;

    if( A )

    {

        A = C;

    }

    D = E;

    if( !D )

    {

        D = F;

    }

Now this might seem like a whole lot of extra work (it certainly is more 
typing), but if C and F represent complex Boolean expressions, then this code 
sequence could possibly run much faster if B is usually False and E is usually 

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 429

True. Of course, if your compiler fully supports short-circuit evaluation, you 
would never type this code; the compiler would generate the equivalent code 
for you.

By the way, the converse of short-circuit evaluation is complete Boolean evalu-
ation. In complete Boolean evaluation, the compiler emits code that always 
computes each subcomponent of a Boolean expression. Some languages 
(such as C, C++, C#, and Java) specify the use of short-circuit evaluation. 
A few languages (such as Ada) let the programmer specify whether to use 
short-circuit or complete Boolean evaluation. Most languages (such as Pascal) 
don’t define whether expressions will use short-circuit or complete Boolean 
evaluation—the language leaves it up to the implementer to decide which to 
use. Indeed, the same compiler could use complete Boolean evaluation for 
one instance of an expression and use short-circuit evaluation for another 
occurrence of that same expression in the same program. Unless you’re using 
a language that strictly defines the type of Boolean evaluation, you will have 
to check with your specific compiler’s documentation to determine how it 
processes Boolean expressions. Of course, you should avoid compiler-specific 
mechanisms if there is a chance you’ll have to compile your code with a 
different compiler at some point in the future.

Look again at the expansions of the earlier Boolean expressions. It should 
be easy to see that the program will not evaluate C and F if A is False and D is 
True. Therefore, the left-hand side of a conjunction (&&) or disjunction (||)
operator can act as a gate, preventing the execution of the right-hand side 
of the expression. This is an important fact and, indeed, many algorithms 
depend on this property for correct operation. Consider the following (very 
common) C statement:

    if( ptr != NULL && *ptr != '\0' )

    {

        << process current character in string pointed at by ptr >>

    }

This example could fail if it used complete Boolean evaluation. Consider 
the case where the ptr variable contains NULL. With short-circuit evaluation, the 
program will not compute the subexpression *ptr != '\0'; because the pro-
gram realizes the result is always false. As such, control immediately transfers 
to the first statement beyond the ending bracket (}) in this if statement. 
Consider, however, what would happen if this compiler utilized complete 
Boolean evaluation rather than short-circuit evaluation. After determining 
that ptr contains NULL, the program would still attempt to dereference ptr.
Unfortunately, such an attempt would probably produce a runtime error. 
Therefore, complete Boolean evaluation would cause this program to fail, 
even though it dutifully checks to make sure that access via pointer is legal.

Another semantic difference between complete and short-circuit Boolean 
evaluation has to do with side effects. In particular, if a subexpression does 
not execute because of short-circuit evaluation, then that subexpression 
doesn’t produce any side effects. This behavior is incredibly useful but inher-
ently dangerous. It is useful insofar as some algorithms absolutely depend 

No Starch Press, Copyright © 2006 by Randall Hyde



430 Chap te r 13

upon short-circuit evaluation. It is dangerous because some algorithms also 
expect all the side effects to occur, even if the expression evaluates to False 
at some point. As an example, consider the following bizarre (but absolutely 
legal) C statement that advances a “cursor” pointer to the next 8-byte 
boundary in a string, or the end of the string (whichever comes first):

*++ptr && *++ptr && *++ptr && *++ptr && *++ptr && *++ptr && *++ptr && *++ptr;

For the benefit of those who don’t immediately see how this statement 
works (and that covers the majority of C programmers, so don’t feel bad), 
this statement begins by incrementing a pointer and then fetching a byte 
from memory (pointed to by ptr). If the byte fetched was zero, then 
execution of this expression/statement immediately stops as the entire 
expression evaluates to False at that point. If the character fetched is not 
zero, then the process repeats up to seven more times. At the end of this 
sequence, either ptr points at a zero byte or it points 8 bytes beyond the 
original position. The trick here (involving short-circuit Boolean evaluation) 
is that the expression immediately terminates upon reaching the end of the 
string rather than blindly skipping beyond that point.

Of course, there are complementary examples that demonstrate desirable 
behavior when side effects occur in Boolean expressions involving complete 
Boolean evaluation. The important thing to note is that no one scheme is 
correct and the other scheme incorrect. In different situations, a given 
algorithm may require the use of short-circuit Boolean evaluation or complete 
Boolean evaluation to produce correct results. Only a few programming 
languages (such as Ada) provide a standardized way to select either scheme 
under program control. Some languages (such as C, C++, C#, and Java) specify 
one form or the other. Most languages, however, leave it up to the compiler 
implementation to determine which scheme to use. If the definition of the 
language you’re using doesn’t explicitly specify which form, or you want to 
use the other form (such as complete Boolean evaluation in C), then you 
have to write your code in such a fashion so that it forces the evaluation 
scheme you desire.

13.7.2 Forcing Short-Circuit or Complete Boolean Evaluation
Forcing complete Boolean evaluation in a language where short-circuit 
evaluation is used (or may be used) is relatively easy. All you have to do is 
break the expression into individual statements, place the result of each 
subexpression into a variable, and then apply the conjunction and disjunction 
operators to these temporary variables. For example, consider the following 
conversion:

// Complex expression:

if( (a < f(x)) && (b != g(y)) || predicate( a + b ))

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 431

{

    <<stmts to execute if this expression is True>>

}

// Translation to a form that uses complete Boolean evaluation:

temp1 = a < f(x);

temp2 = b != g(y);

temp3 = predicate( a + b );

if( temp1 && temp2 || temp3 )

{

    <<stmts to execute if this expression is True>>

}

The Boolean expression appearing within the if statement still uses 
short-circuit evaluation. However, because this code evaluates the sub-
expressions prior to the if statement, this code ensures that all of the side 
effects that the f, g, and predicate functions produce will occur.

Suppose you want to go the other way? That is, what if your language 
only supports complete Boolean evaluation (or doesn’t specify the evalu-
ation type), and you want to force short-circuit evaluation? This direction is a 
little more work than forcing complete Boolean evaluation, but it is still not 
difficult.

Consider the following Pascal code:6

if( ((a < f(x)) and (b <> g(y))) or predicate( a + b )) then begin

    

    <<stmts to execute if the expression is True>>

end; (*if*)

To force short-circuit Boolean evaluation, you need to test the value 
of the first subexpression and evaluate the second subexpression (and the 
conjunction of the two expressions) only if the first subexpression evaluates 
to True. You can do this with the following code:

    boolResult := a < f(x);

    if( boolResult ) then

        boolResult := b <> g(y);

    if( not boolResult ) then

        boolResult := predicate( a + b );

    if( boolResult ) then begin

        <<stmts to execute if the IF's expression is True>>

    end; (*if*)

6 The standard definition for Pascal doesn’t specify whether the compiler uses complete or 
short-circuit Boolean evaluation. Most Pascal compilers, however, implement complete Boolean 
evaluation.

No Starch Press, Copyright © 2006 by Randall Hyde



432 Chap te r 13

This code simulates short-circuit evaluation by using if statements to 
block (or force) execution of the g and predicate functions based on the 
current state of the Boolean expression (kept in the boolResult variable).

Converting an expression to force short-circuit evaluation or complete 
Boolean evaluation looks as though it requires far more code than the 
original forms. If you’re concerned about the efficiency of this translation 
(and you should be), relax. Internally, the compiler translates those Boolean 
expressions to three-address code that is similar to the translation that you 
did manually. 

13.7.3 Efficiency Issues
Don’t infer from the preceding discussion that complete Boolean evaluation 
and short-circuit evaluation have equivalent efficiencies. If you’re processing 
complex Boolean expressions or the cost of some of your subexpressions is 
rather high, then short-circuit evaluation is generally faster than complete 
Boolean evaluation. As to which form produces less object code, they’re 
roughly equivalent, and the exact difference will depend entirely upon the 
expression you’re evaluating.

To understand the efficiency issues surrounding complete versus short-
circuit Boolean evaluation, look at some assembly code that implements the 
examples discussed in this section. The following HLA code implements 
this Boolean expression using both forms:7

// Complex expression:

 //  if( (a < f(x)) && (b != g(y)) || predicate( a + b ))

 //  {

 //      <<stmts to execute if the IF's expression is True>>

 //  }

 //

 // Translation to a form that uses complete 

 //  Boolean evaluation:

 //

 //  temp1 = a < f(x);

 //  temp2 = b != g(y);

 //  temp3 = predicate( a + b );

 //  if( temp1 && temp2 || temp3 )

 //  {

 //      <<stmts to execute if the expression evaluates to True>>

 //  }

 //

 //

 // Translation into 80x86 assembly language code, 

 //  assuming all variables and return results are 

 //  unsigned 32-bit integers:

7 HLA, of course, supports an if statement with short-circuit Boolean evaluation. We won’t use 
that feature here because the whole purpose of this exercise is to avoid the high-level abstractions 
of an if statement.

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 433

     f(x);            // Assume f returns its result in EAX

     cmp( a, eax );   // Compare a with f(x)'s return result.

     setb( bl );      // bl = a < f(x)

     g(y);            // Assume g returns its result in EAX

     cmp( b, eax );   // Compare b with g(y)'s return result

     setne( bh );     // bh = b != g(y)

     mov( a, eax );   // Compute a + b to pass along to the 

     add( b, eax );   //  predicate function.

     predicate( eax );// al holds predicate's result (0/1)

     and( bh, bl );   // bl = temp1 && temp2

     or( bl, al );    // al = (temp1 && temp2) || temp3

     jz skipStmts;    // Zero if false, not zero if true.

       <<stmts to execute if the condition is True>>

skipStmts:

Here’s the same expression using short-circuit Boolean evaluation:

    //  if( (a < f(x)) && (b != g(y)) || predicate( a + b ))

    //  {

    //      <<stmts to execute if the IF's expression evaluates to True>>

    //  }

        f(x);

        cmp( a, eax );

        jnb TryOR;       // If a is not less than f(x), try the OR clause

        g(y);

        cmp( b, eax );

        jne DoStmts      // If b is not equal g(y) [and a < f(x)], then do  
// the body.

TryOR:

        mov( a, eax );

        add( b, eax );

        predicate( eax );

        test( eax, eax );   // EAX = 0?

        jz SkipStmts;

DoStmts:

        <<stmts to execute if the condition is True>>

SkipStmts:

As you can see by simply counting statements, the version using short-
circuit evaluation is slightly shorter (11 instructions versus 12). However, the 
short-circuit version will probably run much faster because half the time the 
code will only evaluate two of the three expressions. This code evaluates all 
three subexpressions only when the first subexpression (a < f(x)) evaluates 
to True and the second expression (b != g(y)) evaluates to False. If the 
outcomes of these Boolean expressions are equally probable, then this code 
will test all three subexpressions 25 percent of the time. The remainder of 
the time it only has to test two subexpressions (50 percent of the time it 

No Starch Press, Copyright © 2006 by Randall Hyde



434 Chap te r 13

will test a < f(x) and predicate(a + b), 25 percent of the time it will test 
a < f(x) and b != g(y), and the remaining 25 percent of the time it will 
need to test all three conditions).

The interesting thing to note about these two assembly language 
sequences is that complete Boolean evaluation tends to maintain the state 
of the expression (True or False) in an actual variable, whereas short-circuit 
evaluation maintains the current state of the expression by the program’s 
position in the code. Take another look at the short-circuit example. Note 
that it does not maintain the Boolean results from each of the subexpres-
sions anywhere other than the position in the code. For example, if you get 
to the TryOR label in this code, you know that the subexpression involving 
conjunction (logical AND) is False. Likewise, if the program executes the call 
to g(y), you know that the first subexpression in the example [a < f(x)] has 
evaluated to True. When you make it to the DoStmts label, you know that the 
entire expression has evaluated to True.

If the time needed to execute the functions f, g, and predicate is roughly 
the same in the current example, you can greatly improve the performance 
of this code with a nearly trivial modification. Consider the following modi-
fication to the previous example:

    //  if( predicate( a + b ) || (a < f(x)) && (b != g(y)))

    //  {

    //      <<stmts to execute if the expression evaluates to True>>

    //  }

        mov( a, eax );

        add( b, eax );

        predicate( eax );

        test( eax, eax );   // EAX = True (nonzero)?

        jnz DoStmts;

        f(x);

        cmp( a, eax );

        jnb SkipStmts;      // If a is not less than f(x), try the OR clause

        g(y);

        cmp( b, eax );

        je SkipStmts;       // If b is not equal g(y) (and a < f(x)), then 
// do the body.

DoStmts:

        <<stmts to execute if the condition is true>>

SkipStmts:

Again, if you assume that the outcome of each subexpression is random 
and evenly distributed (that is, there is a 50-50 chance that each subexpression 
produces True), then this code will, on the average, run about 50 percent 
faster than the previous version. Why? By moving the test for predicate to the 
beginning of the code fragment the code can now determine with one test 
whether it needs to execute the body. Because 50 percent of the time predicate

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 435

returns True, you can determine if you’re going to execute the loop body with 
a single test about half the time. In the earlier example, it always took at least 
two tests to determine if we were going to execute the loop body.

The two assumptions here (that the Boolean expressions are equally 
likely to produce True or False and that the costs of computing each of the 
subexpressions are equal) rarely hold in practice. However, this means that 
you have an even greater opportunity to optimize your code, not less. For 
example, if the cost of calling the predicate function is high (relative to the 
computation of the remainder of the expression), then you’ll want to arrange 
the expression so that it only calls predicate when it absolutely must. Con-
versely, if the cost of calling predicate is low compared to the cost of comput-
ing the other subexpressions, then you’ll want to call it first. A similar situation 
exists for the f and g functions. Because the logical AND operation is 
commutative, the following two expressions are semantically equivalent 
(in the absence of side effects):

a < f(x) && b != g(y)
b != g(y) && a < f(x)

When the compiler uses short-circuit evaluation, the first expression 
executes faster than the second if the cost of calling function f is less than the 
cost of calling function g. Conversely, if calling f is more expensive than 
calling g, then the second expression usually executes faster.

Another factor that affects the performance of short-circuit Boolean 
expression evaluation is the likelihood that a given Boolean expression will 
return the same value on each call. Consider the following two templates:

expr1 && expr2
expr3 || expr4

When working with conjunctions, you should try to place the expression 
that is more likely to return True on the right-hand side of the conjunction 
operator (&&). Remember, for the logical AND operation, if the first operand 
is False, a Boolean system employing short-circuit evaluation will not bother 
to evaluate the second operand. For performance reasons, you want to place 
the operand that is most likely to return False on the left-hand side of the 
expression. This will avoid the computation of the second operand more 
often than had you reversed the operands.

The situation is reversed for disjunction (||). In this case, you’d arrange 
your operands so that expr3 is more likely to return True than expr4. By 
organizing your disjunction operations this way, you’ll skip the execution of 
the right-hand expression more often than if you had switched the operands.

It goes without saying that you cannot arbitrarily reorder Boolean 
expression operands if those expressions produce side effects. The proper 
computation of those side effects may depend upon the exact order of the 
subexpressions. Rearranging the subexpressions may cause a side effect to 
happen that wouldn’t otherwise occur. So, be cognizant of this when you 
are trying to improve performance by rearranging operands in a Boolean 
expression.

No Starch Press, Copyright © 2006 by Randall Hyde



436 Chap te r 13

13.8 The Relative Cost of Arithmetic Operations

Most algorithm analysis methodologies use a simplifying assumption that all 
operations take the same amount of time.8 This assumption is rarely correct 
because some arithmetic operations are two orders of magnitude slower than 
other computations. For example, a simple integer addition is often much 
faster than an integer multiplication. Similarly, integer operations are usually 
much faster than the corresponding floating-point operations. For algorithm 
analysis purposes, it may be okay to ignore the fact that one operation may 
be n times faster than some other operation. For someone interested in 
writing great code, however, knowing which operators are the most efficient 
is important, especially when you have the option of choosing among them.

Unfortunately, we can’t create a table of operators that lists their relative 
speeds. The performance of a given arithmetic operator is going to vary by 
CPU. Even within the same CPU family, you see a wide variance in perfor-
mance for the same arithmetic operation. For example, shift and rotate 
operations are relatively fast on a Pentium III (relative, say, to an addition 
operation). On a Pentium 4, however, they’re considerably slower. So an oper-
ator such as the C/C++ << or >> can be fast or slow, relative to an addition 
operation, depending upon which CPU it executes.

Although I can’t summarize at a glance the relative performances of 
various arithmetic operations in most major programming languages, I can 
provide some general guidelines. For example, on most CPUs the addition 
operation is one of the most efficient arithmetic and logical operations 
around. Few CPUs support faster arithmetic or logical operations than 
addition. Therefore, it’s useful to group various operations into classes based 
on their performance relative to an operation like addition. Table 13-1 
provides an attempt to estimate relative performance.

8 Actually, to be technically correct, these methodologies assume that different arithmetic 
operations vary by a constant amount and that they ignore constant multiplicative differences.

Table 13-1: Relative Performances of Arithmetic Operations (Guidelines)

Relative Performance Operations

Fastest Integer addition, subtraction, negation, logical AND, logical OR, logical 
XOR, logical NOT, and comparisons

Logical shifts

Logical rotates

Multiplication

Division

Floating-point comparisons and negation

Floating-point addition and subtraction

Floating-point multiplication

Slowest Floating-point division

No Starch Press, Copyright © 2006 by Randall Hyde



Ari thme ti c and Logical  Expre ssions 437

The estimates in Table 13-1 are not accurate for all CPUs, but they do 
provide a “first approximation” from which you can work until you gain 
more experience with a particular processor. On many processors you’ll 
find anywhere between two and three orders of magnitude difference in the 
performances between the fastest and slowest operations. In particular, divi-
sion tends to be quite slow on most processors (floating-point division is even 
slower). Multiplication is usually slower than addition, but the exact variance 
differs greatly between processors. 

Of course, if you absolutely need to do floating-point division, there is 
little you can do to improve your application’s performance by using a differ-
ent operation. However, note that many integer arithmetic calculations can 
be computed using different algorithms. For example, a left shift is often less 
expensive than multiplication by two. While most compilers will automatically 
handle such “operator conversions” for you, compilers aren’t omniscient and 
can’t always figure out the best way to calculate some result. However, if you 
manually do the “operator conversion” yourself, you don’t have to rely on 
the compiler to get this right for you.

13.9 For More Information

There are many textbooks on compiler design and implementation that spend 
a fair amount of time discussing code generation for arithmetic expressions 
and the optimization of the code for those expressions. Here are a few 
compiler-construction textbooks you may want to investigate:

� Compilers, Principles, Techniques, and Tools, Alfred Aho, Ravi Sethi, 
and Jeffrey Ullman (Addison-Wesley, 1986)

� Compiler Construction: Theory and Practice, William Barret and John Couch 
(SRA, 1986)

� A Retargetable C Compiler: Design and Implementation, Christopher Fraser 
and David Hansen (Addison-Wesley Professional, 1995)

� Introduction to Compiler Design, Thomas Parsons (W. H. Freeman, 1992)

� Compiler Construction: Principles and Practice, Kenneth Louden (Course 
Technology, 1997)

One of the best ways to learn how to write better HLL code that 
generates good machine code is to learn assembly language programming. 
The Art of Assembly Language (No Starch Press, 2003) is a great resource for 
learning more about how to evaluate arithmetic expression in assembly 
language.

For more information about compiler benchmarks and compiler 
optimizer capabilities, you’ll want to visit the Willus.com compiler bench-
mark page at www.willus.com/ccomp_benchmark.shtml.

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



14
C O N T R O L  S T R U C T U R E S  A N D  
P R O G R A M M A T I C  D E C I S I O N S

Control structures are the bread and butter 
of high-level language programming. The 

ability to make decisions based on the evalu-
ation of stated conditions is fundamental to 

practically every kind of automation that computers 
provide. The translation of HLL control structures 
into machine code has, perhaps, the largest impact on program perfor-
mance and size. Knowing which control structures to use in a given situation 
is the key to writing great code. This chapter discusses the conversion of 
high-level control structures into machine code so that you can choose the 
best HLL statements to produce the best machine code. In particular, this 
chapter describes the machine implementation of control structures related 
to decision making and unconditional flow control, including:

� if statements

� switch and case statements

� goto and related statements

No Starch Press, Copyright © 2006 by Randall Hyde



440 Chap te r 14

The following two chapters will expand this discussion to loop control 
structures and procedure/function calls and returns.

14.1 Control Structures Are Slower Than Computations!

A fair percentage of the machine instructions in a program control the 
execution path through that program. Because control transfer instructions 
often flush the instruction pipeline (see Write Great Code, Volume 1), they tend 
to be slower than instructions that perform simple calculations. To produce 
effficient programs, you should reduce the number of control transfer 
instructions or, if this is not possible, choose the fastest ones.

The exact set of instructions that CPUs use to control program flow 
varies across processors. Nevertheless, many CPUs (including the two 
families covered in this book) control program flow using the compare and 
jump paradigm; that is, after a compare or another instruction that modifies 
the CPU flags, a conditional jump instruction transfers control to another 
location based on the CPU flag settings. Some CPUs can do all this with a 
single instruction; some require two, three, or more instructions to achieve 
this. Some CPUs allow you to compare two values for a large range of differ-
ent conditions; some allow only a few tests. Regardless of the mechanism, 
HLL statements that map to a given sequence on one CPU will map to a 
comparable sequence on a second CPU. Therefore, if you understand the 
basic conversion for one CPU, you’ll have a good idea how the compiler 
works across all CPUs. 

14.2 Introduction to Low-Level Control Structures

Most CPUs use a two-step process to make a programmatic decision. First, 
the program will compare two values and save the result of the comparison 
in a machine register or flag. Then the program will execute a second 
instruction that tests the result of that comparison and transfers control to 
one of two locations based on the result of the comparison. With little more 
than this compare and conditional branch sequence, it is possible to synthesize 
most of the major HLL control structures.

Even within the compare and conditional branch paradigm, CPUs 
commonly implement conditional code sequences using two different 
approaches. One technique, especially common on stack-based architectures 
(such as the Java Virtual Machine), is to have different forms of the compare 
instruction that test for specific conditions. For example, you might have 
compare if equal, compare if not equal, compare if less than, compare if greater than,
and so on. The result of each is a Boolean value. Then a pair of conditional 
branch instructions, branch if true and branch if false, can test the result of the 
comparison and transfer control to some other location depending on the 
sense of the branch.

The second, and historically more popular approach, is for the CPU’s 
instruction set to contain a single comparison instruction that sets (or clears) 
several bits in the CPU’s program status or flags register. Then the program 
uses one of several more specific conditional branch instructions to transfer 

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 441

control to some other location. These conditional branch instructions might 
have names such as jump if equal, jump if not equal, jump if less than, or jump if 
greater than. Because this “compare and jump” technique is the one the 80x86 
and PowerPC use, I’ll employ this approach in the examples appearing in 
this chapter; however, conversion to the multiple comparisons/jump true/
jump false paradigm is easy.

Conditional branches are typically two-way branches. That is, they 
transfer control to one location in the program if the condition they’re 
testing is true and a different location if the condition is false. To reduce the 
size of the instruction, the conditional branches on most CPUs only encode 
the address of one of the two possible branch locations, and they use an 
implied address for the opposite condition. Specifically, most conditional 
branches transfer control to some target location if the condition is true and 
they fall through to the next instruction if the condition is false. For 
example, consider the following 80x86 je (jump if equal) instruction 
sequence:

// Compare the value in EAX to the value in EBX

        cmp( eax, ebx ); 

// Branch to label EAXequalsEBX if EAX==EBX

        je EAXequalsEBX; 

        mov( 4, ebx );      // Drop down here if EAX != EBX

            .

            .

            .

EAXequalsEBX:

This instruction sequence begins by comparing the value in the EAX 
register against the value in EBX (the cmp instruction); this sets the condition-
code bits in the 80x86 EFLAGS register. In particular, this instruction sets the 
80x86 zero flag to 1 if the value in EAX is equal to the value in EBX. The je
instruction tests the zero flag to see if it is set; if it is set, the je instruction 
transfers control to the machine instruction immediately following the EAX-
equalsEBX label in this code example. If the value in EAX is not equal to EBX, 
then the cmp instruction clears the zero flag, and the je instruction falls 
through to the mov instruction rather than transferring control to the 
destination label.

In Volume 1 of this series, you learned that certain machine instructions 
that access data can be smaller (and faster) if the memory location the 
machine instruction accesses is near the base address of the activation record 
containing that variable. This rule also applies to conditional jump instruc-
tions. The 80x86 provides two forms of the conditional jump instructions. 
One form is only 2 bytes long (1 byte for an opcode and 1 byte for a signed 
displacement in the range 128...+127). The other form is 6 bytes long 
(2 bytes for the opcode and 4 bytes for a signed displacement in the range

No Starch Press, Copyright © 2006 by Randall Hyde



442 Chap te r 14

2 billion...+2 billion). The displacement value specifies how far (in bytes) 
the program must jump to reach the target location. To transfer control to a 
nearby location, the program can use the short form of the branch. Because 
80x86 instructions are between 1 and 15 bytes long (and are typically around 
3 or 4 bytes long), the short forms of the conditional jump instructions can 
usually skip over about 32 to 40 machine instructions. Once the target loca-
tion is out of the plus or minus 127-byte range, the 6-byte version of these 
conditional jump instructions extends the range to 2 billion bytes around 
the current instruction. Obviously, if you’re interested in writing the most 
efficient code, you’ll want to use the 2-byte form as often as possible.

Branching is an expensive operation in a modern (pipelined) CPU 
because a branch may require the CPU to flush the pipeline and reload it 
(see Write Great Code, Volume 1 for more details). For conditional branches, 
this cost occurs only if the branch is taken. If the conditional branch instruc-
tion falls through to the next instruction, then the CPU will continue to use 
the instructions found in the pipeline without flushing them. Therefore, on 
many systems the branch that falls through to the next instruction is is faster than 
the branch that is taken. Note, however, that some CPUs (like the PowerPC) 
support a feature known as branch prediction that tells the CPU to begin fetch-
ing instructions for the pipeline from the branch’s target location rather 
than from the instructions that immediately follow the conditional jump. 
Unfortunately, branch prediction algorithms vary from processor to processor 
(even within the 80x86 CPU family), so it’s difficult to predict, in general, 
how branch prediction will affect your HLL code. Probably the safest thing 
to assume, unless you’re writing code for a specific processor, is that falling 
through to the next instruction is more efficient than taking the jump.

Although the compare and conditional branch paradigm is the most 
common control structure found in machine code programs, there are other 
ways to transfer control another location in memory based on some com-
puted result. Without question, the indirect jump (especially via a table of 
addresses) is the most common alternative form. Consider the following 
80x86 jmp instruction:

readonly

    jmpTable: dword[4] := [&label1, &label2, &label3, &label4];

            .

            .

            .

        jmp( jmpTable[ ebx*4 ] );

This jmp instruction fetches the double-word value at the index specified 
by the value in EBX in the jmpTable array. That is, the instruction transfers 
control to one of four different locations based upon the value (0..3) in 
EBX. For example, if EBX contains zero then the jmp instruction fetches 
the double word at index 0 in jmpTable (the address of the instruction 
prefixed by label1). Likewise, if EBX contains 2, then this jmp instruction 

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 443

fetches the third double word from this table (which is the address of label3
in the program). This is roughly equivalent to, but usually shorter than, the 
following sequence of instructions:

        cmp( ebx, 0 );

        je label1;

        cmp( ebx, 1 );

        je label2;

        cmp( ebx, 2 );

        je label 3;

        cmp( ebx, 3 );

        je label4;

        // Results are undefined if EBX <> 0, 1, 2, or 3

A few other conditional control transfer mechanisms are available on 
various CPUs, but these two mechanisms (compare/conditional branch and 
indirect jump) are the mechanisms most HLL compilers will use to imple-
ment standard control structures in the HLL.

14.3 The goto Statement

The goto statement is, perhaps, the most fundamental low-level control 
structure. Since the wave of “structured programming” in the late 1960s and 
1970s, the use of the goto statement in HLL code has diminished. Indeed, 
some modern high-level programming languages don’t even provide an 
unstructured (traditional) goto statement. Even in those languages where an 
unrestricted goto is available, programming style guidelines usually restrict 
the use of the goto statement to special circumstances. Combined with the 
fact that student programmers have been religiously taught to avoid goto
statements in their programs since the middle 1970s, it’s now rare to find 
many goto statements in a modern program. From a readability point of view, 
this is a good thing (and if you don’t believe this, try reading some 1960s-era 
FORTRAN programs to get an idea of how hard-to-read code can be when 
it’s peppered with goto statements). Nevertheless, some programmers believe 
that they can write code that is more efficient by using goto statements in 
their code. While this is sometimes true, the resulting efficiency gains are 
rarely worth the loss of readability that ultimately occurs.

One of the big efficiency arguments that is made for the goto statement 
is that it helps avoid duplicate code. Consider the following trivial C/C++ 
example:

    if( a == b || c < d )

    {

        << execute some number of statements >>

        if( x == y )

        {

            << execute some statements if x == y >>

No Starch Press, Copyright © 2006 by Randall Hyde



444 Chap te r 14

        }

        else

        {

            << execute some statements if x != y >>

        }

    }

    else

    {

        << execute the same sequence of statements 

            that the code executes if x != y in the 

            previous else section >>

    }

A programmer who is constantly looking for ways to make programs 
more efficient will immediately notice all the duplicated code and might be 
tempted to rewrite the code as follows:

    if( a == b || c < d )

    {

        << execute some number of statements >>

        if( x != y ) goto DuplicatedCode;

        << execute some statements if x == y >>

    }

    else

    {

DuplicatedCode:

        << execute the same sequence of statements 

            if x != y or the original

            Boolean expression is false >>

    }

There are, of course, several software engineering problems with this 
code, including the fact that it is a little bit harder to read, modify, and main-
tain than the original example. However, you could argue that it’s actually a 
little easier to maintain, because you no longer have duplicated code and 
you only have to fix defects in the common code at one spot in this example. 
However, there is no denying that there is less code in this example. Or is 
there?

The optimizers in many modern compilers will actually look for code 
sequences similar to the former example and generate code that is identical 
to what you would expect to get for the second example. Therefore, a good
compiler will avoid generating duplicate machine code even when the 
source file contains duplication, as in the first example appearing here.

Consider the following C/C++ example compiled to PowerPC code 
by GCC:

#include <stdio.h>

static int a;

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 445

static int b;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    if( a==f(x))

    {

        if( b==g(y))

        {

            a = 0;

        }

        else

        {

            printf( "%d %d\n", a, b );

            a = 1;

            b = 0;

        }

    }

    else

    {

        printf( "%d %d\n", a, b );

        a = 1;

        b = 0;

    }

            

    return( 0 );

}

Here’s the compilation of the if sequence to PowerPC code by GCC:

        ; f(x):

        lwz r3,0(r9)

        bl L_f$stub

        ; Compute a==f(x), jump to L2 if false

        lwz r4,0(r30)

        cmpw cr0,r4,r3

        bne+ cr0,L2

        ; g(y):

        addis r9,r31,ha16(L_y$non_lazy_ptr-L1$pb)

        addis r29,r31,ha16(_b-L1$pb)

        lwz r9,lo16(L_y$non_lazy_ptr-L1$pb)(r9)

        la r29,lo16(_b-L1$pb)(r29)

        lwz r3,0(r9)

        bl L_g$stub

No Starch Press, Copyright © 2006 by Randall Hyde



446 Chap te r 14

        ; Compute b==g(y), jump to L3 if false:

        lwz r5,0(r29)

        cmpw cr0,r5,r3

        bne- cr0,L3

        ; a = 0

        li r0,0

        stw r0,0(r30)

        b L5

        ;Set up a and b parameters if

        ; a==f(x) but b != g(y):

L3:

        lwz r4,0(r30)

        addis r3,r31,ha16(LC0-L1$pb)

        b L6

        ; Set up parameters if a != f(x):

L2:

        addis r29,r31,ha16(_b-L1$pb)

        addis r3,r31,ha16(LC0-L1$pb)

        la r29,lo16(_b-L1$pb)(r29)

        lwz r5,0(r29)

        ; Common code shared by both

        ; ELSE sections:

L6:

        la r3,lo16(LC0-L1$pb)(r3) ;Call printf

        bl L_printf$stub

        li r9,1                 ;a = 1

        li r0,0                 ;b = 0

        stw r9,0(r30)           ;Store a

        stw r0,0(r29)           ;Store b

L5:

Of course, not every compiler has an optimizer that will recognize the 
duplicated code. So if you want to write a program that compiles to efficient 
machine code regardless of the compiler, you might be tempted to go ahead 
and use the version of the code that employs the goto statement. Indeed, a 
strong software engineering argument could be made that having duplicate 
code in a source file makes the program harder to read and harder to 
maintain. (If you fix a defect in one copy of the code, chances are that you’ll 
forget to correct the defect in the other copies of the code.) While this is 
definitely true, if you make changes to the code at the target label it’s not 
immediately obvious that the change is appropriate for each and every 
section of code that jumps to the target label. And it’s not immediately 
obvious how many different goto statements transfer control to the same 
target label when you’re reading through the source code.

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 447

The traditional software engineering approach is to put the common 
code into a procedure or function and simply call that function. However, 
the overhead of a function call and return can be rather large (especially if 
there isn’t much duplicated code), so from a performance point of view, 
using a procedure or function may not be satisfactory. For short sequences 
of common code, creating a macro or an inline function is probably the 
best solution. To complicate the issue, you might need a change that only 
affects one instance of the duplicated code (that is, it would no longer be a 
duplicate). The bottom line is that using a goto statement to gain efficiency 
in this manner should be your last resort.

Another common use for goto statements is for exceptional conditions. 
When you find yourself nested deeply in several statements and you encounter 
a situation where you need to exit all those statements, the common consensus 
is that a goto is acceptable if restructuring the code would not make it more 
readable. However, jumps out of nested blocks may thwart the optimizer’s 
ability to generate decent code for the entire procedure or function. The use 
of the goto statement may save a few bytes or processor cycles in the code 
immediately affected by the goto, but the presence of the goto could have some 
detrimental effects on the rest of the function, resulting in less efficient code 
overall. Therefore, take care when inserting goto statements into your code. 
They could make your source code harder to read, and they might wind up 
making it less efficient, as well.

14.4 break, continue, next, return, and Other Limited Forms 
of the goto Statement

In an effort to support structured goto-less programming, many program-
ming languages have added restricted forms of the goto statement that 
allow a programmer to immediately exit some control structure such as a 
loop or a procedure or function. Typical statements include break/exit,
which jump out of an enclosing loop; continue/cycle/next, which restart 
an enclosing loop; and return/exit, which immediately return from an 
enclosing procedure/function. These statements are more structured than 
a standard goto because the programmer doesn’t choose the destination; 
instead, control transfers to a fixed location based upon whatever control 
statement (or function/procedure) encloses the statement.

Almost every one of these statements compiles into a single jmp instruc-
tion. The statements that jump out of some loop (e.g., break) compile into a 
single jmp instruction that transfers control to the first statement beyond the 
bottom of the loop. The statements that restart a loop (e.g., continue, next, or 
cycle) also compile into a single jmp instruction; that jmp transfers control to 
the loop termination test (in the case of while or repeat..until/do..while) or 
to the top of the loop (in the case of most other loops).

Although these statements typically compile to a single machine instruc-
tion (jmp), don’t get the impression that they are efficient to use. Even ignoring 
the fact that a jmp can be somewhat expensive (because it forces the CPU to 
flush the instruction pipeline), statements that branch out of a loop can have 

No Starch Press, Copyright © 2006 by Randall Hyde



448 Chap te r 14

a serious impact on the compiler’s optimizer, dramatically reducing the 
opportunity to generate high quality code. Therefore, you should attempt to 
use these statements as sparingly as possible.

14.5 The if Statement

Perhaps the most basic high-level control structure is the if statement. 
Indeed, with nothing more than an if and a goto statement, you can 
(semantically) implement all other control structures.1 I’ll use this fact 
when discussing other control structures, but for now I’ll show how a 
typical compiler will convert an if statement into machine code.

For a simple if statement that compares two values and executes the 
body if the condition is true, you can easily implement the if statement with 
a single compare and a conditional branch instruction. Consider the 
following Pascal if statement and its 80x86 conversion:

    if( EAX = EBX ) then begin

        writeln( "EAX is equal to EBX" );

        i := i + 1;

    end;

Here’s the conversion to 80x86/HLA assembly language code:

    cmp( EAX, EBX );

    jne skipIfBody;

    stdout.put( "EAX is equal to EBX", nl );

    inc( i );

skipIfBody:

In this Pascal source code, the body of the if statement executes if the 
value of EAX is equal to EBX. In the resulting assembly code, the program 
compares EAX with EBX and then branches over the statements that 
correspond to the if statement’s body if EAX does not equal EBX. This is 
the “boilerplate” conversion of an HLL if statement into machine code: 
Test some condition and branch over the if statement’s body if the condi-
tion turns out to be false.

The implementation of an if..then..else statement is only slightly more 
complicated than the basic if statement. An if..then..else statement 
typically employs syntax and semantics such as the following:

    if( some_boolean_expression ) then

        << Statements to execute if the expression is true >>

    else

1 Doing so isn’t a good idea for reasons of maintainability, but it’s certainly possible.

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 449

        << Statements to execute if the expression is false >>

    endif

To implement this code sequence in machine code requires only a single 
machine instruction beyond what a simple if statement requires. Consider 
this example C/C++ code:

    if( EAX == EBX )

    {

        printf( "EAX is equal to EBX\n" );

        ++i;

    }

    else

    {

        printf( "EAX is not equal to EBX\n" );

    }

Here is the conversion to 80x86/HLA assembly language code:

    cmp( EAX, EBX );        // See if EAX == EBX

    jne doElse;             // Branch around "Then" code

    stdout.put( "EAX is equal to EBX", nl );

    inc( i );

    jmp skipElseBody        // Skip over "else" section.

// if they are not equal.

doElse:

    stdout.put( "EAX is not equal to EBX", nl );

skipElseBody:

You should note two things about this code. First, if the condition 
evaluates to False, the code transfers to the first statement of the else block 
rather than the first statement following the (entire) if statement. The 
second thing to note is the jmp instruction at the end of the true clause skips 
the else block.

Some languages, including HLA, support an elseif clause in their if
statement to evaluate a second condition if the first one fails. This is a 
straightforward extension of the code generation of the if statement I’ve 
shown. Consider the following HLA if..elseif..else..endif statements and 
the corresponding pure machine code that HLA compiles it to. Here’s the 
HLA source code:

    if( EAX = EBX ) then

    

        stdout.put( "EAX is equal to EBX" nl );

        inc( i );

    

    elseif( EAX = ECX ) then

No Starch Press, Copyright © 2006 by Randall Hyde



450 Chap te r 14

        stdout.put( "EAX is equal to ECX" nl );

    else

    

        stdout.put( "EAX is not equal to EBX or ECX" nl);

    

    endif;

And here’s the conversion to pure 80x86/HLA assembly language code:

// Test to see if EAX = EBX

    cmp( eax, ebx );                                    

    jne tryElseif; // Skip "then" section if not equal

// Start of the "then" section

    stdout.put( "EAX is equal to EBX", nl );            

    inc( i );

    jmp skipElseBody // End of "then" section, skip 

                     // over the elseif clause.

tryElseif:

    cmp( eax, ecx ); // ELSEIF test for EAX = ECX

    jne doElse;      // Skip "then" clause if not equal

    // ELSEIF "then" clause

    stdout.put( "EAX is equal to ECX", nl ); 

    jmp skipElseBody; // Skip over the "else" section

doElse: // ELSE clause begins here

    stdout.put( "EAX is not equal to EBX or ECX", nl );

skipElseBody:

As you can see in this pure machine code version, the translation of the 
elseif clause is very straightforward; the machine code for the elseif clause is 
identical to an if statement. The only thing to note here is how the compiler 
emits a jmp instruction at the end of the if..then clause to skip around the 
Boolean test emitted for the elseif clause.

14.5.1 Improving the Efficiency of Certain if/else Statements
From an efficiency point of view, the important thing to note about the 
if..else statement is that there is no path through the statement that 
doesn’t involve a transfer of control (unlike the simple if statement, that 
simply falls through if the conditional expression is true). As this chapter 
points out repeatedly, branches are bad because they often flush the CPU’s 
instruction pipeline and it takes several CPU cycles to refill the pipeline. 
If either outcome of the Boolean expression (True or False) is equally 
likely, there is little you can do to improve the performance of your code 

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 451

by rearranging the if..else statement. For most if statements, however, one 
outcome is often more likely—perhaps much more likely—than the other. 
Assembly coders who understand the likelihood of one comparison over 
another will often encode their if..else statements as follows:

// if( eax == ebx ) then

//    //<likely case>

//    stdout.put( "EAX is equal to EBX", nl );

// else

//    // unlikely case

//    stdout.put( "EAX is not equal to EBX" nl );

// endif;

    cmp( EAX, EBX );

    jne goDoElse;

    stdout.put( "EAX is equal to EBX", nl );

backFromElse:

        .

        .

        .

// Somewhere else in the code:

doElse:

    stdout.put( "EAX is not equal to EBX", nl );

    jmp backFromElse

Note that in the most common case (where the expression evaluates to 
True), the code falls through to the then section, which then falls straight 
through to the code that follows the entire if statement. Therefore, if the 
Boolean expression (EAX == EBX) is true most of the time, then this code 
executes straight through without any branches. In the rare case when EAX 
does not equal EBX, the program actually has to execute two branches, one 
to transfer control to the section of code that handles the else clause and one 
to return control back to the first statement following the if. As long as this 
occurs less than half of the time, the software sees an overall performance 
boost. You can achieve this same result in an HLL such as C using goto
statements. For example:

    if( eax != ebx ) goto doElseStuff;

        // << body of the if statement goes here>>

        // (statements between THEN and ELSE)

    endOfIF:

    // << statements following the IF..ENDIF statement >>

        .

        .

        .

    doElseStuff:

        << Code to do if the expression is false >>

        goto endOfIF;

No Starch Press, Copyright © 2006 by Randall Hyde



452 Chap te r 14

Of course, the drawback to this scheme is that it produces spaghetti code
that becomes unreadable once you add more than a few of these kludges to 
your code. Assembly language programmers get away with this type of code 
because most assembly language code is, by definition, spaghetti code.2 For 
HLL code, however, this type of coding is generally unacceptable program-
ming style and you should use it only when necessary. (See Section 14.3, 
“The goto Statement.”)

The following generic if statement is common in programs written in 
HLLs such as C:

    if( eax == ebx )

    {

        // Set i to some value along this execution path.

        i = j + 5;  

    }

    else

    {

        // Set i to a different value along this path

        i = 0;    

    }

Here’s the conversion of this C code into 80x86/HLA assembly code:

        cmp( eax, ebx );

        jne doElse;

        mov( j, edx );

        add( 5, edx );

        mov( edx, i );

        jmp ifDone;

doElse:

        mov( 0, i );

ifDone:

As you’ve seen in previous examples, the if..then..else statement con-
version to assembly language requires two transfer of control instructions:

� The jne instruction that tests the comparison between EAX and EBX

� The unconditional jmp instruction that skips over the else section of the 
if statement

Regardless of which path the program takes (through the then or the else
section), the CPU executes a slow branch instruction that winds up flushing 
the instruction pipeline. Consider the following code that does not have this 
problem:

    i = 0;

    if( eax == ebx )

2 Though it is quite easy to write structured code with an assembler such as HLA.

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 453

    {

        i = j + 5;

    }

Here is its conversion to pure 80x86 assembly code:

        mov( 0, i );

        cmp( eax, ebx );

        jne skipIf;

        mov( j, edx );

        add( 5, edx );

        mov( edx, i );

skipIf:

As you can see, if the expression evaluates to True, then the CPU 
executes no transfer of control statements at all. True, the CPU will execute 
an extra mov instruction whose result is immediately overwritten (so the 
execution of the first mov instruction is wasted); however, the execution of 
this extra mov instruction happens much more rapidly than the execution of 
the jmp instruction. This trick is a prime example of why it’s a good idea to 
know some assembly language code (and know how compilers generate 
machine code from high-level code). It’s not at all obvious that the second 
sequence is better than the first. Beginning programmers, in fact, would 
probably believe it to be inferior because the program “wastes” an assign-
ment to i when the expression evaluates to True (and no such assignment 
is made in the first version). This is a prime example of why this chapter 
exists—to make sure you understand the costs associated with using high-
level control structures.

14.5.2 Forcing Complete Boolean Evaluation in an if Statement
Because complete Boolean evaluation and short-circuit Boolean evaluation 
can produce different results (see Section 13.7, “Short-Circuit Evaluation”), 
there are times when you will need to ensure that your code uses one form or 
the other when computing the result of a Boolean expression. In this 
section, I’ll discuss how to force complete Boolean evaluation even if the 
language doesn’t guarantee this form of computation.

The general way to force complete Boolean evaluation is to evaluate 
each subcomponent of the expression and store the subresult into tem-
porary variables. Then you can combine the temporary results after their 
computation to produce the complete result. For example, consider the 
following Pascal code fragment:

if( i < g(y) and k > f(x) ) then begin

    i := 0;

end;

No Starch Press, Copyright © 2006 by Randall Hyde



454 Chap te r 14

Because Pascal does not guarantee complete Boolean evaluation, 
function f might not be called in this expression [if i is less than g(y)], and 
any side effects produced by the call to f might not occur. (See Section 13.3, 
“Side Effects in Arithmetic Expressions,” to learn more about side effects.) If 
the logic of the application depends on any side effects produced by the calls 
to f and g, then you must ensure that this application calls both functions. 
Note that simply swapping the two subexpressions around the AND operator 
is insufficient to solve this problem; with that change the application might 
not call g.

One way to solve this problem is to compute the Boolean results of the 
two subexpressions using separate assignment statements and then compute 
the logical AND of the two results within the if expression:

lexpr := i < g(y);

rexpr := k > f(x);

if( lexpr AND rexpr ) then begin

    i := 0;

end;

Don’t be too concerned about the efficiency loss that could occur 
because of the use of these temporary variables. Any compiler that provides 
optimization facilities is going to put these values into registers and not 
bother using actual memory locations (and if your compiler doesn’t do this, 
then the efficiency loss associated with these two temporary variables is going 
to be the least of your concerns). Consider the following variant of the 
previous Pascal program written in C and compiled with the Borland C++ 
compiler:

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    int lExpr;

    int rExpr;

    

    lExpr = i < g(y);

    rExpr = k > f(x);

    if( lExpr && rExpr )

    {

        printf( "Hello" );

    }

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 455

    

    return( 0 );

}

Here’s the conversion to TASM code by Borland C++ compiler:

_main   proc    near

?live1@0:

   ;    

   ;    int main( void )

   ;    

@1:

    push      ebx

   ;    

   ;    {

   ;        int lExpr;

   ;        int rExpr;

   ;        

   ;        lExpr = i < g(y);

   ;    

    mov       eax,dword ptr [_y]

    push      eax

    call      _g

    pop       ecx

    cmp       eax,dword ptr [_i]

    setg      bl

    and       ebx,1

   ;    

   ;        rExpr = k > f(x);

   ;    

?live1@32: ; EBX = lExpr

    mov       eax,dword ptr [_x]

    push      eax

    call      _f

    pop       ecx

    cmp       eax,dword ptr [_k]

    setl      al

    and       eax,1

   ;    

   ;        if( lExpr && rExpr )

   ;    

?live1@48: ; EBX = lExpr, EAX = rExpr

    test      ebx,ebx

    je        short @2

    test      eax,eax

    je        short @2

   ;    

   ;        {

   ;            printf( "Hello" );

   ;    

?live1@64: ; 

    push      offset s@

    call      _printf

    pop       ecx

No Starch Press, Copyright © 2006 by Randall Hyde



456 Chap te r 14

   ;    

   ;        }

   ;        

   ;        return( 0 );

   ;    

@2:

    xor       eax,eax

   ;    

   ;    }

   ;    

@4:

@3:

    pop       ebx

    ret 

_main   endp

If you scan through the assembly code, you’ll see that this code fragment 
always executes the calls to both f and g. Contrast this with the following C 
code and assembly output:

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    if( i < g(y) && k > f(x) )

    {

        printf( "Hello" );

    }

    

    return( 0 );

}

Here’s the TASM assembly output:

_main   proc    near

?live1@0:

   ;    

   ;    int main( void )

   ;    {

   ;        if( i < g(y) && k > f(x) )

   ;    

@1:

    mov       eax,dword ptr [_y]

    push      eax

    call      _g

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 457

    pop       ecx

    cmp       eax,dword ptr [_i]

    jle       short @2 

; Note that the branch above may cause this code

; sequence to skip the call to the _f function.

    mov       edx,dword ptr [_x]

    push      edx

    call      _f

    pop       ecx

    cmp       eax,dword ptr [_k]

    jge       short @2

   ;    

   ;        {

   ;            printf( "Hello" );

   ;    

    push      offset s@

    call      _printf

    pop       ecx

   ;    

   ;        }

   ;        

   ;        return( 0 );

   ;    

@2:

    xor       eax,eax

   ;    

   ;    }

   ;    

@4:

@3:

    ret 

_main   endp

In the C programming language, you can use another trick to force 
complete Boolean evaluation in any Boolean expression. The C bitwise 
operators do not support short-circuit Boolean evaluation. If your 
subexpressions in a Boolean expression always produce 0 or 1, the bitwise 
Boolean conjunction and disjunction operators (i.e., & and |) produce 
identical results to the logical Boolean operators (&& and ||). Consider the 
following C code and the TASM code that Borland’s C++ compiler produces:

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

No Starch Press, Copyright © 2006 by Randall Hyde



458 Chap te r 14

int main( void )

{

    if(( i < g(y)) & k > f(x) )

    {

        printf( "Hello" );

    }

    return( 0 );

}

Here’s the TASM code produced by Borland’s C++ compiler:

_main   proc    near

?live1@0:

   ;    

   ;    int main( void )

   ;    

@1:

        push      ebx

   ;    

   ;    {

   ;            if( i < g(y) & k > f(x) )

   ;    

        mov       eax,dword ptr [_y]

        push      eax

        call      _g

        pop       ecx

        cmp       eax,dword ptr [_i]

        setg      bl

        and       ebx,1

        mov       eax,dword ptr [_x]

        push      eax

        call      _f

        pop       ecx

        cmp       eax,dword ptr [_k]

        setl      dl

        and       edx,1

        and       ebx,edx

        je        short @2

   ;    

   ;            {

   ;                    printf( "Hello" );

   ;    

        push      offset s@

        call      _printf

        pop       ecx

   ;    

   ;            }

   ;            

   ;            return( 0 );

   ;    

@2:

        xor       eax,eax

   ;    

   ;    }

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 459

   ;    

@4:

@3:

        pop       ebx

        ret 

_main   endp

Note how the use of the bitwise operators produces comparable code to 
the earlier sequence that used temporary variables. This creates less clutter 
in your original C source file. 

Do keep in mind, however, that C’s bitwise operators only produce the 
same results as the logical operators if the operands are 0 and 1. Fortunately, 
you can use a little C trick to convert any zero/nonzero logical value to 0 and 1. 
Just write !!(expr) and C will convert the result to 0 or 1 if the expression’s 
value is zero or nonzero. To see this in action, consider the following C/C++ 
code fragment:

#include <stdlib.h>

#include <math.h>

#include <stdio.h>

int main( int argc, char **argv )

{

    int boolResult;

    boolResult = !!argc;

    printf( "!!(argc) = %d\n", boolResult );

    return 0;

}

Here’s the 80x86 assembly code that Microsoft’s Visual C++ compiler 
produces for this short program:

; Line 9

;

; ECX = argc

    mov ecx, DWORD PTR _argc$[esp-4]

; EAX (32 bits) = 0;

    xor eax, eax

; Is ARGC (ECX) zero or nonzero?

; Set zero flag if it is, clear zero

; flag if it is not.

    test    ecx, ecx

; Set AL (and, therefore, EAX) to zero

; if ARGC (ECX) was zero, set AL (EAX)

; to one if ARGC was nonzero:

No Starch Press, Copyright © 2006 by Randall Hyde



460 Chap te r 14

    setne   al

; Line 10

; print the value of boolResult (in EAX):

    push    eax

    push    OFFSET FLAT:formatString

    call    _printf

    add esp, 8

As you can see in the 80x86 assembly output, only three machine 
instructions (involving no expensive branches) are needed to convert “zero/
nonzero” to 0/1.

14.5.3 Forcing Short-Circuit Boolean Evaluation in an if Statement
Although being able to force complete Boolean evaluation on occasion is 
important, the need for short-circuit evaluation is probably more common. 
Consider the following Pascal statement:

    if( ptrVar <> NIL AND ptrVar^ < 0 ) then begin

        ptrVar^ := 0;

    end;

The Pascal language definition leaves it up to whomever writes the 
compiler to decide whether to use complete Boolean evaluation or short-
circuit evaluation. In fact, the compiler’s author is free to use both schemes 
whenever they feel like it. So it’s quite possible that the same compiler could 
use complete Boolean evaluation for the statement above in one section of 
the code and short-circuit evaluation in another. Running a few tests on your 
Pascal compiler does not provide any guarantees about how that compiler 
will operate.

It should be clear that this Boolean expression will fail if ptrVar contains 
the NIL pointer value and if the compiler uses complete Boolean evaluation. 
The only way for this statement to work properly is by using short-circuit 
Boolean evaluation.

Simulating short-circuit Boolean evaluation with the AND operator 
is actually quite simple. All you have to do is create a pair of nested if
statements and place each subexpression in each one. For example, 
you could guarantee short-circuit Boolean evaluation in the current 
Pascal example by rewriting it as follows:

    if( ptrVar <> NIL ) then begin

        

        if( ptrVar^ < 0 ) then begin

            ptrVar^ := 0;

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 461

        end;

    end;

This statement is semantically identical to the previous one. It should be 
clear that the second subexpression will not execute if the first expression 
evaluates to False. Even though this approach clutters up the source file a 
little bit, it does guarantee short-circuit evaluation regardless of whether the 
compiler supports this.

Handling the logical OR operation is a little more difficult. Guaran-
teeing that the right operand of a logical OR does not execute if the left 
operand evaluates to True requires an extra test. Consider the following C 
code (remember that C supports short-circuit evaluation by default):

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    if( i < g(y) || k > f(x) )

    {

        printf( "Hello" );

    }

    

    return( 0 );

}

Here’s the machine code that the Microsoft Visual C++ compiler 
produces for this C code:

_main   PROC NEAR                                       ; COMDAT

; File t.c

; Line 13

;

; if( i < g(y) 

        mov     eax, DWORD PTR _y

        push    eax

        call    _g

        mov     ecx, DWORD PTR _i

        add     esp, 4

        cmp     ecx, eax

        jl      SHORT $L403

No Starch Press, Copyright © 2006 by Randall Hyde



462 Chap te r 14

;       || k > f(x) )

        mov     ecx, DWORD PTR _x

        push    ecx

        call    _f

        mov     ecx, DWORD PTR _k

        add     esp, 4

        cmp     ecx, eax

        jle     SHORT $L410

; {

;    printf( "Hello" );

;

$L403:

; Line 15

        push    OFFSET FLAT:??_C@_05DPEH@Hello?$AA@ ; 'string'

        call    _printf

        add     esp, 4

$L410:

; Line 18

        xor     eax, eax

; Line 19

        ret     0

_main   ENDP

Here’s a version of the C program that implements short-circuit evalu-
ation without relying on the C compiler to do this (not that this is necessary 
for C, as the C language definition guarantees short-circuit evaluation, but 
this code does demonstrate the approach you could use in any language):

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    int temp;

        

        // Compute left subexpression and

        // save.

    

    temp = i < g(y);

        

        // If the left subexpression

        // evaluates to False, then try

        // the right subexpression.

        

    if( !temp )

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 463

    {

        temp = k > f(x);

    }

    

        // If either subexpression evaluates

        // to True, then print "Hello"

        

        if( temp )

    {

        printf( "Hello" );

    }

    

    return( 0 );

}

Here’s the corresponding MASM code emitted by the Microsoft Visual 
C++ compiler:

_main   PROC NEAR                                       ; COMDAT

; File t.c

; Line 15:

;

;  temp = i < g(y); // EAX is used to hold temp.

        mov     eax, DWORD PTR _y

        push    eax

        call    _g

        mov     edx, DWORD PTR _i

        add     esp, 4

        xor     ecx, ecx

        cmp     edx, eax

        setl    cl

        mov     eax, ecx

; Line 16

;

;  if( !temp )

;  {

        test    eax, eax

        jne     SHORT $L411

; Line 18

;

;      temp = k > f(x);  // EAX (ultimately) is temp.

        mov     edx, DWORD PTR _x

        push    edx

        call    _f

        mov     edx, DWORD PTR _k

        add     esp, 4

        xor     ecx, ecx

        cmp     edx, eax

        setg    cl

        mov     eax, ecx

No Starch Press, Copyright © 2006 by Randall Hyde



464 Chap te r 14

; Line 20

;

; if( temp )

; {

        test    eax, eax

        je      SHORT $L412

$L411:

; Line 22

;

;     printf( "Hello" );

        push    OFFSET FLAT:??_C@_05DPEH@Hello?$AA@ ; 'string'

        call    _printf

        add     esp, 4

; }

$L412:

; Line 25

;

; return 0;

        xor     eax, eax

; Line 26

        ret     0

_main   ENDP

As you can see in this example, the code the compiler emits for the 
second version of the routine, which manually forces short-circuit evaluation, 
isn’t quite as good as that emitted by the C compiler for the first example. 
However, if you need the semantics for short-circuit evaluation so the pro-
gram will execute correctly, you’ll have to live with possibly less-efficient code 
than you’d get if the compiler supported this facility directly.

If speed, minimal size, and short-circuit evaluation are all three necessary, 
and you’re willing to sacrifice a little readability and maintainability in your 
code to achieve them, then you can destructure the code and create some-
thing that is comparable to what the C compiler produces using short-circuit 
evaluation. Consider the following C code and the output of the Microsoft 
Visual C++ compiler:

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 465

{

    if( i < g(y)) goto IntoIF;

    if( k > f(x) )

    {

      IntoIF:

      

        printf( "Hello" );

    }

    

    return( 0 );

}

Here’s the MASM output from Visual C++:

_main   PROC NEAR

; File t.c

; Line 13

        mov     eax, DWORD PTR _y

        push    eax

        call    _g

        mov     ecx, DWORD PTR _i

        add     esp, 4

        cmp     ecx, eax

        jl      SHORT $IntoIF$403

; Line 14

        mov     ecx, DWORD PTR _x

        push    ecx

        call    _f

        mov     ecx, DWORD PTR _k

        add     esp, 4

        cmp     ecx, eax

        jle     SHORT $L411

$IntoIF$403:

; Line 18

        push    OFFSET FLAT:formatString

        call    _printf

        add     esp, 4

$L411:

; Line 21

        xor     eax, eax

; Line 22

        ret     0

_main   ENDP

If you compare this code to the MASM output for the original C example 
(that relies on short-circuit evaluation), you’ll see that this code is just as 
efficient. This is a classic example of why there was considerable resistance to 
structured programming in the 1970s—sometimes the structured program-
ming approach leads to less-efficient code. Of course, readability and main-
tainability are usually more important than a few bytes or machine cycles. 
But never forget that if performance is paramount for a small section of 
code, destructuring that code can improve efficiency in some special cases.

No Starch Press, Copyright © 2006 by Randall Hyde



466 Chap te r 14

14.6 The switch/case Statement

The switch (or case) high-level control statement is another conditional 
statement found in HLLs. An if statement tests a Boolean expression and 
executes one of two different paths in the code based on the result of the 
expression. A switch/case statement, on the other hand, can branch to one 
of several different points in the code based on the result of an ordinal 
(integer) expression. The following examples demonstrate the switch and 
case statements in C/C++, Pascal, and HLA. First, the C/C++ switch
statement:

    switch( expression )

    {

      case 0:

        << statements to execute if the 

            expression evaluates to zero >>

        break;

      case 1:

        << statements to execute if the 

            expression evaluates to one >>

        break;

      case 2:

        << statements to execute if the 

           expression evaluates to two >>

        break;

      <<etc>>

      default:

        << statements to execute if the expression is 

            not equal to any of these cases >>

    }

Here is an example of a Pascal case statement:

    case ( expression ) of

      0: begin

        << statements to execute if the 

            expression evaluates to zero >>

        end;

      1: begin

        << statements to execute if the 

            expression evaluates to one >>

        end;

      2: begin

        << statements to execute if the 

            expression evaluates to two >>

        end;

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 467

      <<etc>>

    end; (* case *)

And finally, here is the HLA switch statement:

    switch( REG32 )

      case( 0 )

        << statements to execute if 

            EAX contains zero >>

      case( 1 )

        << statements to execute 

            REG32 contains one >>

      case( 2 )

        << statements to execute if 

            REG32 contains two >>

      <<etc>>

      default

        << statements to execute if 

            REG32 is not equal to any of these cases >>

    endswitch;

As you can tell by these examples, these statement all share a similar 
syntax.

14.6.1 Semantics of a switch/case Statement
In most beginning programming classes and textbooks, the semantics of the 
switch/case statement are taught by comparing this statement with a chain of 
if..else..if statements. This is done in order to introduce the switch/case
statement using a concept the student already understands. To see why this 
approach can be misleading, consider the following code, which an intro-
ductory book on Pascal programming might claim is equivalent to our Pascal 
case statement:

  if( expression = 0 ) then begin

    << statements to execute if expression is zero >>

  end

  else if( expression = 1 ) then begin

    << statements to execute if expression is one >>

  end

  else if( expression = 2 ) then begin

No Starch Press, Copyright © 2006 by Randall Hyde



468 Chap te r 14

    << statements to execute if expression is two >>

  end;

Although this particular sequence will achieve the same result as the 
case statement, there are several fundamental differences between the 
if..then..elseif sequence and the case implementation. First, the case 
labels in a case statement must all be constants, in an if..then.elseif chain 
you can actually compare variables and other nonconstant values against 
the control variable. Another limitation of the switch/case statement is that 
you may only compare the value of a single expression against a set of 
constants; you cannot compare one expression against a constant for one 
case and a separate expression against a second constant as you can with an 
if..then..elseif chain. The reason for these limitations will become clear 
in a moment, but the important thing to note is that an if..then..elseif
chain is semantically different from a switch/case statement (and more 
powerful).

14.6.2 Jump Tables Versus Chained Comparisons
Although a switch/case statement is arguably more readable and convenient 
than an if..then..elseif chain, this type of statement was orginally added 
to an HLL for efficiency, not readability or convenience. Consider an 
if..then..elseif chain with ten separate expressions to test. If all the cases 
are mutually exclusive and equally likely, then on the average the program 
will execute five comparisons before encountering an expression that 
evaluates to True. In assembly language, it’s possible to transfer control to 
one of several different locations in a fixed amount of time, independent 
of the number of cases, by using a table lookup and an indirect jump. 
Effectively, such code uses the value of the switch/case expression as an 
index into a table of addresses and then jumps (indirectly) to the statement 
specified by the table entry. When you have more than about three or four 
cases, this scheme is typically faster and consumes less memory than the 
corresponding if..then..elseif chain. Consider the following simple 
implementation of a switch/case statement in assembly language:

// Conversion of 

//    switch(i)

//    { case 0:...case 1:...case 2:...case 3:...} 

// into assembly

static

  jmpTable: dword[4] := 

    { &label0, &label1, &label2, &label3 };

      .

      .

      .

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 469

    // jmps to address specified by jmpTable[i]

    mov( i, eax );

    jmp( jmpTable[ eax*4 ] );  

label0:

    << code to execute if i = 0 >>

    jmp switchDone;

label1:

    << code to execute if i = 1 >>

    jmp switchDone;

label2:

    << code to execute if i = 2 >>

    jmp switchDone;

label3:

    << code to execute if i = 3 >>

switchDone:

  << Code that follows the switch statement >>

To see how this code operates, I’ll describe its operation one instruction 
at a time. The jmpTable declaration defines an array of four double-word 
pointers, one pointer for each case in our switch statement emulation. Entry 
0 holds the address of the statement to jump to when the switch expression 
evaluates to 0, entry 1 of this array contains the address of the statement to 
execute with the switch expression evaluates to 1, and so on. Note that the 
array must have one element whose index matches each of the possible cases 
in the switch statement (0 through 3 in this particular example).

The first machine instruction in this example code loads the value of the 
switch expression (variable i’s value) into the EAX register. Because this code 
uses the value of the switch expression as an index into the jmpTable array, this 
value must be an ordinal (integer) value in an 80x86 32-bit register. The next 
instruction (jmp) does the real work of the switch statement emulation: It 
jumps to the address specified by the entry found in the jmpTable array, 
indexed by EAX. If EAX contains 0 upon execution of this jmp statement, the 
program fetches the double word from jmpTable[0] and transfers control to 
that address; this is the address of the first instruction following the label0
label in the program code. If EAX contains 1, then the jmp instruction fetches 
the double word at address jmpTable + 4 in memory (note that the *4 scaled-
indexed addressing mode is in use in this code; see Section 3.6.5, “Indexed 
Addressing Mode,” for more details). Likewise, if EAX contains 2 or 3, then 
the jmp instruction transfers control to the double-word address held at 
jmpTable + 8 or jmpTable + 12 (respectively). Because the jmpTable array is 
initialized with the addresses of label0, label1, label2, and label3, at respective 
offsets 0, 4, 8, and 12, this particular indirect jmp instruction will transfer 
control to the statement at the label corresponding to i’s value (label0,
label1, label2, or label3, respectively).

No Starch Press, Copyright © 2006 by Randall Hyde



470 Chap te r 14

The first thing of interest to note about this switch statement emulation is 
that it only requires two machine instructions (and a jump table) to transfer 
control to any of the four possible cases. Contrast this with an if..then..elseif
implementation that will require at least two machine instructions for each 
case. Indeed, as you add additional cases to the if..then..elseif implemen-
tation, the number of compare and conditional branch instructions increases, 
yet the number of machine instructions for the jump table implementation 
remains fixed at two (even though the size of the jump table increases by one 
entry for each case). As such, the if..then..elseif implementation gets 
progressively slower as you add more cases while the jump table implemen-
tation takes a constant amount of time to execute (regardless of the number 
of cases). Assuming your HLL compiler uses a jump table implementation for 
switch statements, a switch statement will typically be much faster than an 
if..then..elseif sequence if there are a large number of cases.

The jump table implementation of switch statements does have a 
couple of drawbacks. First, because the jump table is an array in memory 
and accessing (noncached) memory can be slow, accessing the jump table 
array could possibly impair system performance.

Another problem with the jump table implementation is that you must 
have one entry in the table for every possible case between the largest and 
the smallest case values, including those values for which you haven’t actually 
supplied an explicit case. In the example up to this point, this hasn’t been an 
issue because the case values started with 0 and were contiguous through 3. 
However, consider the following Pascal case statement:

  case( i ) of

    0: begin

        << statements to execute if i = 0 >>

       end;

    1: begin

        << statements to execute if i = 1 >>

       end;

    5: begin

        << statements to execute if i = 5 >>

       end;

    8: begin

        << statements to execute if i = 8 >>

       end;

  end; (* case *)

We cannot implement this case statement with a jump table containing 
four entries. If the value of i were 0 or 1, then it would fetch the correct 
address. However, for case five, the index into the jump table would be 20 
(5*4), not 8. If the jump table contained only four entries (16 bytes), 
indexing into the jump table using the value 20 (5*4) would grab an address 

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 471

beyond the end of the table and would likely crash the application. This is 
exactly why in the original definition of Pascal, the results were undefined if 
the program supplied a case value that was not present in the set of labels for 
a particular case statement.

To solve this problem in assembly language, a programmer should make 
sure there are entries for each of the possible case labels as well as all values 
in between the case labels. In the current example, the jump table would 
need nine entries to handle all the possible case values 0 through 8:

// Conversion of 

//    switch(i)

//    { case 0:...case 1:...case 5:...case 8:} 

// into assembly

static

  jmpTable: dword[9] := 

          { 

            &label0, &label1, &switchDone, 

            &switchDone, &switchDone, 

            &label5, &switchDone, &switchDone, 

            &label8

          };

      .

      .

      .

    // jumps to address specified by jmpTable[i]

    mov( i, eax );

    jmp( jmpTable[ eax*4 ] );  

label0:

    << code to execute if i = 0 >>

    jmp switchDone;

label1:

    << code to execute if i = 1 >>

    jmp switchDone;

label5:

    << code to execute if i = 5 >>

    jmp switchDone;

label8:

    << code to execute if i = 8 >>

switchDone:

  << Code that follows the switch statement >>

Notice that if i is equal to 2, 3, 4, 6, or 7, then this code transfers control 
to the first statement beyond the switch statement (e.g., the standard 
semantics for C’s switch statement and the case statement in most modern 
variants of Pascal). Of course, C will also transfer control to this point in the 

No Starch Press, Copyright © 2006 by Randall Hyde



472 Chap te r 14

code if the switch/case expression value is greater than the largest case value. 
Most compilers implement this feature with a comparison and conditional 
branch immediately before the indirect jump. For example:

// Conversion of 

//    switch(i)

//    { case 0:...case 1:...case 5:...case 8:} 

// into assembly, that automatically 

// handles values greater than eight.

static

  jmpTable: dword[9] := 

          { 

            &label0, &label1, &switchDone, 

            &switchDone, &switchDone, 

            &label5, &switchDone, &switchDone, 

            &label8

          };

      .

      .

      .

    // Check to see if the value is outside the range

    //  of values allowed by this switch/case stmt.

    mov( i, eax );

    cmp( eax, 8 );             

    ja switchDone; 

    // jmps to address specified by jmpTable[i]

            

    jmp( jmpTable[ eax*4 ] );  

      .

      .

      .

switchDone:

  << Code that follows the switch statement >>

You may have noticed another assumption that this code is making—that 
the case values start at zero. Modifying the code to handle an arbitrary range 
of case values is simple. Consider the following code:

// Conversion of 

//    switch(i)

//    { case 10:...case 11:...case 12:...case 15:...case 16:} 

// into assembly, that automatically handles values 

// greater than 16 and values less than 10.

static

  jmpTable: dword[7] := 

          { 

            &label10, &label11, &label12, 

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 473

            &switchDone, &switchDone, 

            &label15, &label16

          };

      .

      .

      .

    // Check to see if the value is outside the

    //  range 10..16.

    mov( i, eax );

    cmp( eax, 10 );            

    jb switchDone;             

    cmp( eax, 16 );

    ja switchDone;

    // The "- 10*4" part of the following expression 

    // adjusts for the fact that EAX starts at 10 

    // rather than zero, we still need a zero-based

    // index into our array.

    jmp( jmpTable[ eax*4 - 10*4] );

      .

      .

      .

switchDone:

  << Code that follows the switch statement >>

There are two differences between this example and the previous one. 
First, of course, this one compares the value in EAX against the range 10..16 
and branches to the switchDone label if the value in EAX falls outside this range 
(in other words, there is no case label for the value in EAX). The second 
difference you will notice is that the jmpTable index has been modified to be 
[eax*4 – 10*4]. Arrays at the machine level always begin at index 0; the - 10*4

component of this expression adjusts for the fact that EAX actually contains 
a value starting at 10 rather than 0. Effectively, this expression makes jmpTable
start 40 bytes earlier in memory than its declaration states. Because EAX is 
always 10 or greater (40 bytes or greater because of the eax*4 component), 
this code begins accessing table at its declared beginning location. Note that 
HLA subtracts this offset from the address of jmpTable; the CPU doesn’t 
actually perform this subtraction at runtime. Hence, there is no additional 
efficiency loss to create this zero-based index.

You’ll notice that a fully generalized switch/case statement actually 
requires six instructions to implement: the original two instructions plus 
four instructions to test the range.3 This, plus the fact that an indirect jump 
is slightly more expensive to execute than a conditional branch, is why the 
break-even point for a switch/case statement (versus an if..then..elseif
chain) is around three to four cases.

3 Actually, with a little assembly language trickery, a good programmer or compiler can reduce 
this from four to three machine instructions.

No Starch Press, Copyright © 2006 by Randall Hyde



474 Chap te r 14

One serious drawback to the jump table implementation of the
switch/case statement is the fact that you must have one table entry for 
every possible value between the smallest case and the largest case. 
Consider the following C/C++ switch statement:

  switch( i )

  {

    case 0:

        << statements to execute if i == 0 >>

        break;

    case 1:

        << statements to execute if i == 1 >>

        break;

    case 10:

        << statements to execute if i == 10 >>

        break;

    case 100:

        << statements to execute if i == 100 >>

        break;

    case 1000:

        << statements to execute if i == 1000 >>

        break;

    case 10000:

        << statements to execute if i == 10000 >>

        break;

  }

If the C/C++ compiler implements this switch statement using a jump 
table, that table will require 10,001 entries (i.e., 40,004 bytes of memory). 
That’s quite a chunk of memory for such a simple statement! Although the 
wide separation of the cases has a major effect on memory usage, it has only a 
minor effect on the execution speed of the switch statement. The program 
executes the same four instructions it would execute if the values were all 
contiguous (only four instructions are necessary because the cases start at 
zero, so there is no need to check the switch expression against a lower 
bound). Indeed, the only reason there is a performance difference at all is 
because of the effects of the table size on the cache (it’s less likely you will 
find a particular table entry in the cache when the table is large). Speed 
issues aside, the memory usage by the jump table is difficult to justify for most 
applications. Therefore, if you know that your particular compiler emits a 
jump table for all switch/case statements (by looking at the code it produces), 
then you should be careful about creating switch/case statements whose cases 
are widely separated.

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 475

14.6.3 Other Implementations of switch/case
Because of the issue with jump table sizes, some HLL compilers do not imple-
ment switch/case statements using jump tables. Some compilers will simply 
convert a switch/case statement into the corresponding if..then..elseif chain. 
Obviously, such compilers tend to produce low-quality code (from a speed 
point of view) whenever a jump table would be appropriate. Many modern 
compilers are relatively smart about their code generation. They’ll deter-
mine the number of cases in a switch/case statement and also determine the 
spread of the case values. Then the compiler will choose a jump table or 
if..then..elseif implementation based on some threshold criteria (code size 
versus speed). Some compilers might even use a combination of techniques. 
For example, consider the following Pascal case statement:

    case( i ) of

      0: begin

          << statements to execute if i = 0 >>

         end;

      1: begin

          << statements to execute if i = 1 >>

         end;

      2: begin

          << statements to execute if i = 2 >>

         end;

      3: begin

          << statements to execute if i = 3 >>

         end;

      4: begin

          << statements to execute if i = 4 >>

         end;

      1000: begin

          << statements to execute if i = 1000 >>

            end;

    end; (* case *)

A good compiler will recognize that the majority of the cases work well in 
a jump table with only one (or a few) cases proving to be the exception. Such 
a compiler will translate this to a sequence of instructions that is a combina-
tion of the if..then and jump table implementation. For example:

    mov( i, eax );

    cmp( eax, 4 );

    ja try1000;

    jmp( jmpTable[ eax*4 ] );

      .

      .

      .

No Starch Press, Copyright © 2006 by Randall Hyde



476 Chap te r 14

try1000:

    cmp( eax, 1000 );

    jne switchDone;

    << code to do if i = 1000 >>

switchDone:

Although the switch/case statement was originally created to allow the 
use of an efficient jump table transfer mechanism in an HLL, there are few 
language definitions that require a specific implementation for a control 
structure. Therefore, unless you stick with a specific compiler and you know 
how that compiler generates code under all circumstances, there is abso-
lutely no guarantee that your switch/case statements will compile to a jump 
table, an if..then..elseif chain, some combination of the two, or something 
else entirely. For example, consider the following short C program and the 
80x86 assembly output that the Borland C++ compiler emits for it:

extern void f( void );

extern void g( void );

extern void h( void );

int main( int argc, char **argv )

{

    int boolResult;

    switch( argc )

    {

        case 1:

            f();

            break;

        case 2:

            g();

            break;

        case 10:

            h();

            break;

        case 11:

            f();

            break;

    }

    return 0;

}

Here’s the 80x86 output from the Borland C++ compiler:

_main   proc    near

?live1@0:

   ;    

   ;    int main( int argc, char **argv )

   ;    

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 477

@1:

    push      ebp

    mov       ebp,esp

   ;    

   ;    {

   ;        int boolResult;

   ;    

   ;        switch( argc )

   ;    

; Is ARGC == 1?

    mov       eax,dword ptr [ebp+8]

    dec       eax

    je        short @7

; Is ARGC == 2?

    dec       eax

    je        short @6

; Is ARGC == 10?

    sub       eax,8

    je        short @5

; Is ARGC == 11?

    dec       eax

    je        short @4

; If none of the above

    jmp       short @2

   ;    

   ;        {

   ;            case 1:

   ;                f();

   ;    

@7:

    call      _f

   ;    

   ;                break;

   ;    

    jmp       short @8

   ;    

   ;    

   ;            case 2:

   ;                g();

   ;    

@6:

    call      _g

   ;    

   ;                break;

   ;    

No Starch Press, Copyright © 2006 by Randall Hyde



478 Chap te r 14

    jmp       short @8

   ;    

   ;    

   ;            case 10:

   ;                h();

   ;    

@5:

    call      _h

   ;    

   ;                break;

   ;    

    jmp       short @8

   ;    

   ;    

   ;            case 11:

   ;                f();

   ;    

@4:

    call      _f

   ;    

   ;                break;

   ;    

   ;        }

   ;        return 0;

   ;    

@2:

@8:

    xor       eax,eax

   ;    

   ;    }

   ;    

@10:

@9:

    pop       ebp

    ret 

_main   endp

As you can see at the beginning of the main program, this code com-
pares the value in argc against the four values (1, 2, 10, and 11) in a sequen-
tial fashion. For a switch statement as small as this one, this isn’t a bad 
implementation.

Many modern optimizing compilers will generate a binary search tree to 
test the cases when there are a fair number of cases and a jump table would 
be too large. For example, consider the following C program and the output 
from the MSVC compiler:

#include <stdio.h>

extern void f( void );

int main( int argc, char **argv )

{

    int boolResult;

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 479

    switch( argc )

    {

        case 1:

            f();

            break;

        case 10:

            f();

            break;

        case 100:

            f();

            break;

        case 1000:

            f();

            break;

        case 10000:

            f();

            break;

        case 100000:

            f();

            break;

        case 1000000:

            f();

            break;

        case 10000000:

            f();

            break;

        case 100000000:

            f();

            break;

        case 1000000000:

            f();

            break;

    }

    return 0;

}

Here’s the MASM output from the MSVC compiler. Note how Microsoft’s 
compiler generates a binary search through each of the ten cases:

_main   PROC NEAR                   ; COMDAT

; File t.c

; Line 11

;

; Binary search. Is argc less or greater than 100,000?

No Starch Press, Copyright © 2006 by Randall Hyde



480 Chap te r 14

    mov eax, DWORD PTR _argc$[esp-4]

    cmp eax, 100000             ; 000186a0H

    jg  SHORT $L1242

    je  SHORT $L1228

; Binary search: is argc less than 100 or

; greater than 100 (but less than 100,000)

    cmp eax, 100                ; 00000064H

    jg  SHORT $L1243

    je  SHORT $L1228

; Is argc == 1?

    dec eax

    je  SHORT $L1228

; is argc == 10? If not, branch to default

; case.

    sub eax, 9

    jne SHORT $L1225

; argc == 10 at this point.

;

; Line 49

    call    _f

; Line 53

    xor eax, eax

; Line 54

    ret 0

; Cases where argc is greater than 100

; but less than 100,000 (1,000 & 10,000)

$L1243:

; Line 11

    cmp eax, 1000

    je  SHORT $L1228

    cmp eax, 10000

    jne SHORT $L1225    ;Default case

; Line 49

    call    _f

; Line 53

    xor eax, eax

; Line 54

    ret 0

;Cases where argc is greater than 100,000

$L1242:

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 481

; Line 11

; Above or below 100,000,000?

    cmp eax, 100000000

    jg  SHORT $L1244

    je  SHORT $L1228    ;100,000,000

; Below 100,000,000 and above 10,000

    cmp eax, 1000000    ;1,000,000

    je  SHORT $L1228

    cmp eax, 10000000   ;10,000,000

    jne SHORT $L1225    ;Default case

; Line 49

    call    _f

; Line 53

    xor eax, eax

; Line 54

    ret 0

; Handle the case where it's 1,000,000,000

$L1244:

; Line 11

    cmp eax, 1000000000

    jne SHORT $L1225

$L1228:

; Line 49

    call    _f

; Default case and BREAK come down here:

$L1225:

; Line 53

    xor eax, eax

; Line 54

    ret 0

_main   ENDP

_TEXT   ENDS

END

Borland’s compiler also generates a binary search for this example.
Some compilers, especially those for some microcontroller devices, will 

generate a table of 2-tuples (records/structures) with one element of the 
tuple being the value of the case and the second element being the address 
to jump to if the value matches. Then the compiler emits a loop that scans 
through this little table searching for the current switch/case expression 
value. If this is a linear search, then this implementation is even slower than 
the if..then..elseif chain. If the compiler emits a binary search, then the 
code may be faster than an if..then.elseif chain (although probably not as 
fast as a jump table implementation).

No Starch Press, Copyright © 2006 by Randall Hyde



482 Chap te r 14

Sometimes, compilers will resort to some code tricks to generate 
marginally better code under certain circumstances. Consider again the 
short switch statement that led the Borland compiler to produce a linear 
search:

switch( argc )

    {

        case 1:

            f();

            break;

        case 2:

            g();

            break;

        case 10:

            h();

            break;

        case 11:

            f();

            break;

    }

Here’s the code that the Microsoft Visual C++ compiler generates for 
this switch statement:

; File t.c

; Line 13

;

; Use ARGC as an index into the $L1240 table,

; which returns an offset into the $L1241 table:

    mov eax, DWORD PTR _argc$[esp-4]

    dec eax         ;--argc, 1 = 0, 2 = 1, 10 = 9, 11 = 10

    cmp eax, 10     ;Out of range of cases?

    ja  SHORT $L1229

    xor ecx, ecx

    mov cl, BYTE PTR $L1240[eax]

    jmp DWORD PTR $L1241[ecx*4]

    npad    3

$L1241:

    DD  $L1232  ;cases that call f

    DD  $L1233  ;cases that call g

    DD  $L1234  ;cases that call h

    DD  $L1229  ;Default case

$L1240:

    DB  0   ;case 1 calls f

    DB  1   ;case 2 calls g

    DB  3   ;default

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 483

    DB  3   ;default

    DB  3   ;default

    DB  3   ;default

    DB  3   ;default

    DB  3   ;default

    DB  3   ;default

    DB  2   ;case 10 calls h

    DB  0   ;case 11 calls f

; Here is the code for the various cases:

$L1233:

; Line 19

    call    _g

; Line 31

    xor eax, eax

; Line 32

    ret 0

$L1234:

; Line 23

    call    _h

; Line 31

    xor eax, eax

; Line 32

    ret 0

$L1232:

; Line 27

    call    _f

$L1229:

; Line 31

    xor eax, eax

; Line 32

    ret 0

The trick in this 80x86 code is that MSVC first does a table lookup to 
make an argc value in the range 1..11 to a value in the range 0..3 (that 
corresponds to the three different code bodies appearing in the cases, plus a 
default case). This code is shorter than a jump table (with the corresponding 
double-word entries mapping to the default case), although it is a little 
slower than the jump table because it needs to access two different tables in 
memory. As for how the speed of this code compares with a binary search or 
linear search, that research is left up to you (the answer will probably vary by 
processor).

Few compilers give you the option of explicitly specifying how the com-
piler will translate a specific switch/case statement. For example, if you really 
want the switch statement with cases 0, 1, 10, 100, 1,000, and 10,000 given 
earlier to generate a jump table, you’ll have to write the code in assembly 
language or use a specific compiler whose code generation traits you under-
stand. Certainly, any HLL code you’ve written that depends on the compiler 

No Starch Press, Copyright © 2006 by Randall Hyde



484 Chap te r 14

generating a jump table is not going to be portable to other compilers 
because few languages specify the actual machine-code implementation of 
high-level control structures.

Of course, you don’t have to totally rely on the compiler to generate 
decent code for a switch/case statement. Assuming your compiler uses the 
jump table implementation for all switch/case statements, you can help the 
compiler produce better code when modifications to your HLL source code 
would generate a huge jump table. For example, consider the switch state-
ment given earlier with the cases 0, 1, 2, 3, 4, and 1,000. If your compiler 
generates a jump table with 1,001 entries (consuming a little more than 4KB 
of memory), you can help the compiler generate better code by writing the 
following Pascal code:

  if( i = 1000 ) then begin

    << statements to execute if i = 1000 >>

  end

  else begin

    case( i ) of

      0: begin

          << statements to execute if i = 0 >>

         end;

      1: begin

          << statements to execute if i = 1 >>

         end;

      2: begin

          << statements to execute if i = 2 >>

         end;

      3: begin

          << statements to execute if i = 3 >>

         end;

      4: begin

          << statements to execute if i = 4 >>

         end;

    end; (* case *)

  end; (* if *)

By handling case value 1,000 outside the switch statement, the compiler 
can produce a short jump table for the main cases, which are contiguous.

Another possibility (which is arguably easier to read) is the following
C/C++ code:

  switch( i )

  {

    case 0: 

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 485

        << statements to execute if i == 0 >>

        break;

    case 1: 

        << statements to execute if i == 1 >>

        break;

    case 2:

        << statements to execute if i == 2 >>

        break;

    case 3: 

        << statements to execute if i == 3 >>

        break;

    case 4:

        << statements to execute if i == 4 >>

       break;

    default:

      if( i == 1000 )

      {

        << statements to execute if i == 1000 >>

      }

      else

      {

        << Statements to execute if none of the cases match >>

      }

  }

The difference that makes this code slightly easier to read is that the 
code for the case when i is equal to 1,000 has been moved into the switch
statement (thanks to the default clause), so it doesn’t appear to be separate 
from all the tests taking place in the switch.

Some compilers simply won’t generate a jump table for a switch/case
statement. Obviously, there is little you can do (short of dropping into 
assembly language) if you’re using such a compiler and you want to generate 
a jump table. On the other hand, if your compiler does not generate jump 
tables for switch/case statements, chances are good that this is one of the least 
of your optimization problems (i.e., the compiler probably generates poor 
code for other statements as well).

Although jump table implementations of switch/case statements are 
generally efficient when you have a fair number of cases and each case 
is equally likely, do keep in mind that an if..then..elseif chain can be 
faster if one or two cases are far more likely than the other cases. For 
example, if some variable has the value 15 more than half the time, the 
value 20 about a quarter of the time, and one of several other different 
values the remaining 25 percent of the time, it’s probably more efficient 
to implement the multi-way test using an if..then..elseif chain (or a 
combination of if..then..elseif and a switch/case statement). By testing 

No Starch Press, Copyright © 2006 by Randall Hyde



486 Chap te r 14

the most common case(s) first, you can often reduce the average time the 
multiway statement needs to execute. For example:

  if( i == 15 )

  {

    // If i = 15 better than 50% of the time, 

    // then we only execute a single test

    // better than 50% of the time:

  }

  else if( i == 20 )

  {

    // if i == 20 better than 25% of the time, 

    // then we only execute one or

    // two comparisons 75% of the time.

  }

  else if etc....

If i is equal to 15 more often than not, then most of the time this code 
sequence will execute the body of the first if statement after executing only 
two instructions. Even in the best switch statement implementation, you’re 
going to need more instructions than this.

14.6.4 Compiler Output for switch Statements
Before you run off to “help” your compiler produce better code for switch
statements, you might want to examine the actual code your compiler 
produces. This chapter described several of the techniques that various 
compilers use for implementing switch/case statements at the machine-code 
level, but you can rest assured that there are several additional implemen-
tations that this book has not covered (nor could cover). Although you 
cannot assume that a compiler will always generate the same code for a 
switch/case statement, observing the code the compiler produces can help 
demonstrate the different implementations that compiler authors use.

14.7 For More Information

One of the best places to look for more information on how HLLs implement 
control statements is a programming language design textbook. There are 
dozens of decent programming design textbooks available. Here are some 
examples:

� Programming Languages: Design and Implementation, Terrence Pratt and 
Marvin Zelkowitz (Prentice Hall, 2001)

� Programming Languages: Principles and Practice, Kenneth Louden (Course 
Technology, 2002)

� Concepts of Programming Languages, Robert Sebesta (Addison-Wesley, 
2003)

No Starch Press, Copyright © 2006 by Randall Hyde



Cont rol  S t ructures and Programmat ic  Deci sions 487

� Programming Languages: Structures and Models, Herbert Dershem and 
Michael Jipping (Wadsworth Publishing, 1990)

� The Programming Language Landscape, Henry Ledgard and Michael 
Marcotty (SRA, 1986)

� Programming Language Concepts, Carlo Ghezzi and Jehdi Jazayeri 
(Wiley, 1997)

Of course, another source of information about the implementation 
of control structures in an HLL is any textbook on compiler design and 
construction. Here are a few compiler-construction textbooks you may 
want to investigate:

� Compilers, Principles, Techniques, and Tools, Alfred Aho, Ravi Sethi, and 
Jeffrey Ullman (Addison-Wesley, 1986)

� Compiler Construction: Theory and Practice, William Barret and John Couch 
(SRA, 1986)

� A Retargetable C Compiler: Design and Implementation, Christopher Fraser 
and David Hansen (Addison-Wesley Professional, 1995)

� Introduction to Compiler Design, Thomas Parsons (W. H. Freeman, 1992)

� Compiler Construction: Principles and Practice, Kenneth Louden (Course 
Technology, 1997)

CPU manufacturers’ literature, data sheets, and books are also quite 
useful for determining how compilers will often implement variables. 
For example, The PowerPC Compiler Writer’s Guide, edited by Steve Hoxey, 
Faraydon Karim, Bill Hay, and Hank Warren4 is a great reference for those 
programmers writing code to run on a PowerPC processor; most PowerPC 
compiler writers have used this reference. Similarly, many compiler writers 
have used Intel’s Pentium manual set (including their Optimization Guide)
to help them when writing code generators for their compilers. These 
manuals may prove handy to someone wanting to understand how 80x86-
based compilers generate code.

Of course, the ultimate suggestion is to learn assembly language. If you 
become an expert assembly language programmer, someone who knows 
the intricacies of all the machine instructions for a particular processor, 
then you’ll have a much better understanding of how a compiler will 
generate code for that processor. If you’re interested in learning 80x86 
assembly language, you might consider The Art of Assembly Language (No 
Starch Press, 2003).

4 This document is available in PDF format on IBM’s website at www.ibm.com.

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



15
I T E R A T I V E  C O N T R O L  

S T R U C T U R E S

Most programs spend the majority of their 
time executing program instructions within 

a loop. Therefore, if you want to improve the 
execution speed of your applications, you should 

first look to see if you can improve the performance of 
the loops that execute in your code. In this chapter, I’ll 
describe the following varieties of loops:
� while loops

� repeat..until/do..while loops

� forever (infinite) loops

� for (definite) loops

15.1 The while Loop

The while loop is, perhaps, the most general-purpose iterative statement that 
HLLs provide. For this reason, compilers generally work hard at emitting 
optimal code for while loops. The while loop tests a Boolean expression at the 

No Starch Press, Copyright © 2006 by Randall Hyde



490 Chap te r 15

top of a loop body and executes the loop body if the expression evaluates to 
True. When the loop body completes execution, control transfers back to 
the test and the process repeats. When the Boolean control expression 
evaluates to False, the program transfers control to the first statement 
beyond the loop’s body. Note that if the Boolean expression evaluates to 
False when the program first encounters the while statement, the program 
immediately skips over all statements in the loop’s body without executing 
any of them. The following example demonstrates a Pascal while loop:

  while( a < b ) do begin

    << statements to execute if a is less than b,

      presumably, these statements modify the value 

      of either a or b so that this loop ultimately 

      terminates >>

  end; (* while *)

  << statements that execute when a is not less than b >>

It is easy to simulate a while loop in an HLL by using an if statement 
and a goto statement. Consider the following C/C++ while loop and the 
(semantically) equivalent code that uses an if and a goto:

  // While loop:

  while( x < y )

  {

    array[x] = y;

    ++x;

  }

  // Conversion to an if and a goto:

  whlLabel:

  if( x < y )

  {

    array[x] = y;

    ++x;

    goto whlLabel;

  }

Tracing through the if/goto implementation should convince you that 
this code is semantically equivalent to the former while loop. Assume for the 
sake of this example that x is less than y when the if/goto combination first 
executes. This being the case, the “body” of the loop (the then portion of the 
if statement) will execute. At the bottom of the “loop body” a goto statement 
transfers control to just before the if statement. This means that the code 
will test the expression again, just as the while loop does. Whenever the if
expression evaluates to False, control will transfer to the first statement after 
the if (and this transfers control beyond the goto statement in this code).

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 491

Although the if/goto arrangement is semantically identical to the while
loop, don’t get the impression that the if/goto scheme presented here is 
more efficient than what a typical compiler would generate. It’s not. The 
following assembly code shows what you’d get from a mediocre compiler for 
the previous while loop:

  // while( x < y )

whlLabel:

    mov( x, eax );

    cmp( eax, y );

    jnl exitWhile;  // jump to exitWhile label if 

                    // x is not less than y

    mov( y, edx );

    mov( edx, array[ eax*4 ] );

    inc( x );

    jmp whlLabel;

exitWhile:

A decent compiler will improve upon this slightly by using a technique 
known as code movement (or expression rotation). Consider the following 
implementation of the previous while loop that is slightly more efficient:

// while( x < y )

    // Skip over the while loop's body.

    jmp testExpr;   

          

whlLabel:

    // This is the body of the while loop (same as

    //  before, except moved up a few instructions).

    mov( y, edx );            

    mov( edx, array[ eax*4 ] );   

    inc( x );

// Here is where we test the expression to

// determine if we should repeat the loop body.

testExpr:

    mov( x, eax );                

    cmp( eax, y );                

    jl whlLabel;    // Transfer control to loop body if x < y.

You’ll notice that this example has exactly the same number of machine 
instructions as the previous example, but the test for loop termination has 
been moved to the bottom of the loop. To preserve the semantics of a while
loop (so that we don’t execute the loop body if the expression evaluates to 
False upon first encountering the loop), the first statement in this sequence 

No Starch Press, Copyright © 2006 by Randall Hyde



492 Chap te r 15

is a jmp statement that transfers control down to the code that tests the loop 
termination expression. If that test evaluates to True, this code transfers 
control to the body of the while loop (immediately after whlLabel). 

Although this code has the same number of statements as the previous 
example, there is a subtle difference between these two implementations. 
In this latter example, the initial jmp instruction executes only once, the very 
first time the loop executes. For each iteration thereafter, the code skips the 
execution of this statement. In the original example, the corresponding jmp
statement is at the bottom of the loop’s body and it executes on each itera-
tion of the loop. Therefore, if the loop body executes more than once, the 
second version runs faster (on the other hand, if the while loop rarely exe-
cutes the loop body even once, then the former implementation is slightly 
more efficient). If your compiler does not generate the best code for a while
statement, you should consider getting a different compiler. Attempting to 
write optimal code in an HLL by using if and goto statements will produce 
difficult-to-read spaghetti code and, more often than not, the presence of 
gotos in your code will actually impair the compiler’s ability to produce 
decent code. When this chapter discusses the repeat..until/do..while loop, 
you’ll see an alternative to the if..goto scheme that will produce more struc-
tured code that the compiler may be able to handle. Still, if your compiler 
cannot make a simple transformation like this one, chances are the efficiency 
of the compiled while loops are among the least of your problems.

Compilers that do a decent job of optimizing while loops typically make 
certain assumptions about the loop. Probably the biggest assumption that 
an optimizer will make is that the loop has exactly one entry point and one 
exit point. Many languages provide statements that allow the premature exit 
of a loop (e.g., break, as discussed in Section 14.4, “break, continue, next, 
return, and Other Limited Forms of the goto Statement”). Of course, many 
languages provide some form of the goto statement that will allow you to 
enter or exit the loop at an arbitrary point. However, keep in mind that the 
use of such statements, while probably legal, may severely affect the com-
piler’s ability to optimize the code. So use them with caution.1 The while
loop is one area where you should let the compiler do its job and not try to 
manually optimize the code yourself (actually, this statement is true for all 
loops; compilers generally do a good job of optimizing loops).

15.1.1 Forcing Complete Boolean Evaluation in a while Loop
The execution of a while statement depends upon the semantics of Boolean 
expression evaluation. As with the if statement, sometimes the correct 
execution of a while loop may depend upon whether the Boolean expression 
uses complete evaluation or short-circuit evaluation. In this section I’ll 
describe ways to force a while loop to use full Boolean evaluation. In the 
following section, I’ll demonstrate ways to force short-circuit evaluation.

1 It is a paradox that many programmers will attempt to use multiple entries or exits within a 
loop in order to optimize their code, yet their hard work often destroys the very thing they are 
trying to achieve.

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 493

Without thinking too much about the problem, you might guess that 
forcing complete Boolean evaluation in a while loop is done the same way as 
in an if statement. However, if you look back at the solutions given for the if
statement earlier (see Section 14.5.2, “Forcing Complete Boolean Evaluation 
in an if Statement”), you’ll discover that the approaches we used for the if
statement (nesting ifs and temporary calculations) won’t work for a while
statement. A different approach will be necessary.

15.1.1.1 The Easy but Inefficient Approach

One easy way to force complete Boolean evaluation is to write a function that 
computes the result of the Boolean expression and use complete Boolean 
evaluation within that function. Consider the following C code that imple-
ments this idea:

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

/*

** Complete Boolean evaluation

** for the expression:

** i < g(y) || k > f(x)

*/

int func( void )

{

    int temp;

    int temp2;

    

    temp = i < g(y);

    temp2 = k > f(x);

    return temp || temp2;

}

int main( void )

{

    /*

    ** The following while loop

    ** uses complete Boolean evaluation

    */

    

    while( func() )

    {

      IntoIF:

      

        printf( "Hello" );

No Starch Press, Copyright © 2006 by Randall Hyde



494 Chap te r 15

    }

    

    return( 0 );

}

Here’s the code that GCC (x86) emits for this C code:

func:

        pushl   %ebp

        movl    %esp, %ebp

        pushl   %ebx

        subl    $16, %esp

        pushl   y

        call    g

        popl    %edx

        xorl    %ebx, %ebx

        pushl   x

        cmpl    %eax, i

        setl    %bl

        call    f

        addl    $16, %esp

        cmpl    %eax, k

        setg    %al

        xorl    %edx, %edx

        testl   %ebx, %ebx

        movzbl  %al, %eax

        jne     .L3

        testl   %eax, %eax

        je      .L2

.L3:

        movl    $1, %edx

.L2:

        movl    %edx, %eax

        movl    -4(%ebp), %ebx

        leave

        ret

.Lfe1:

        .size   func,.Lfe1-func

        .section        .rodata.str1.1,"aMS",@progbits,1

.LC0:

        .string "Hello"

        .text

        .p2align 2,,3

.globl main

        .type   main,@function

main:

        pushl   %ebp

        movl    %esp, %ebp

        subl    $8, %esp

        andl    $-16, %esp

        .p2align 2,,3

.L5:

        call    func

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 495

        testl   %eax, %eax

        je      .L10

.L8:

        subl    $12, %esp

        pushl   $.LC0

        call    printf

        addl    $16, %esp

        jmp     .L5

.L10:

        xorl    %eax, %eax

        leave

        ret

As the assembly code demonstrates, the problem with this approach is 
that this code must make a function call and return (both of which are slow 
operations) in order to compute the value of the expression. For many 
expressions, the overhead of the call and return is more expensive than the 
actual computation of the expression’s value.

15.1.1.2 Using Inline Functions

The big problem with this code is that the use of the function introduces 
considerable overhead, both in terms of space and speed. It’s definitely not 
the greatest code you could obtain. If your compiler supports inline functions, 
then you can produce a much better result by inlining func in this example:

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

inline int func( void )

{

    int temp;

    int temp2;

    

    temp = i < g(y);

    temp2 = k > f(x);

    return temp || temp2;

}

int main( void )

{

    while( func() )

    {

      IntoIF:

      

        printf( "Hello" );

No Starch Press, Copyright © 2006 by Randall Hyde



496 Chap te r 15

    }

    

    return( 0 );

}

Here’s the conversion to Gas assembly by the GCC compiler:

main:

        pushl   %ebp

        movl    %esp, %ebp

        pushl   %ebx

        pushl   %ecx

        andl    $-16, %esp

        .p2align 2,,3

.L2:

        subl    $12, %esp

; while( i < g(y) || k > f(x) )

;

; Compute g(y) into %EAX:

        pushl   y

        call    g

        popl    %edx

        xorl    %ebx, %ebx

        pushl   x

; See if i < g(y) and leave Boolean result

; in %EBX:

        cmpl    %eax, i

        setl    %bl

; Compute f(x) and leave result in %EAX:

        call    f          ; Note that we call f, even if the

        addl    $16, %esp  ; above evaluates to True

; Compute k > f(x), leaving the result in %EAX.

        cmpl    %eax, k

        setg    %al

; Compute the logical OR of the above two expressions.

        xorl    %edx, %edx

        testl   %ebx, %ebx

        movzbl  %al, %eax

        jne     .L6

        testl   %eax, %eax

        je      .L7

.L6:

        movl    $1, %edx

.L7:

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 497

        testl   %edx, %edx

        je      .L10

.L8:

; Loop body:

        subl    $12, %esp

        pushl   $.LC0

        call    printf

        addl    $16, %esp

        jmp     .L2

.L10:

        xorl    %eax, %eax

        movl    -4(%ebp), %ebx

        leave

        ret

As this example demonstrates, GCC compiles the function directly into 
the while loop’s test, sparing this program the overhead associated with the 
function call and return.

15.1.1.3 Using Bitwise Logical Operations

In the C programming language, which supports Boolean operations on bits 
(also called bitwise logical operations in C), you can use the same trick employed 
for the if statement to force complete Boolean evaluation—just use the 
bitwise operators. In the special case where the left and right operands of the 
&& or || operators are always 0 or 1, you can use code like the following to 
force complete Boolean evaluation:

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    // Use "|" rather than "||"

    // to force complete Boolean

    // evaluation here.

    

    while( i < g(y) | k > f(x) )

    {

        printf( "Hello" );

    }

    

    return( 0 );

}

No Starch Press, Copyright © 2006 by Randall Hyde



498 Chap te r 15

Here’s the assembly code that Borland C++ generates for this C 
source code:

_main   proc    near

?live1@0:

   ;    

   ;    int main( void )

   ;    

@1:

        push      ebx

        jmp       short @3 ;Skip to expr test.

   ;    

   ;    {

   ;            while( i < g(y) | k > f(x) )

   ;            {

   ;                    printf( "Hello" );

   ;    

@2:

        ;Loop body.

        push      offset s@

        call      _printf

        pop       ecx

; Here's where the test of the expression

; begins:

@3:

        ; Compute "i < g(y)" into ebx:

        mov       eax,dword ptr [_y]

        push      eax

        call      _g

        pop       ecx

        cmp       eax,dword ptr [_i]

        setg      bl

        and       ebx,1

        ;  Compute "k > f(x)" into EDX:

        mov       eax,dword ptr [_x]

        push      eax

        call      _f

        pop       ecx

        cmp       eax,dword ptr [_k]

        setl      dl

        and       edx,1

        ; Compute the logical OR of

        ; the two results above:

        or        ebx,edx

        ; Repeat loop body if true:

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 499

        jne       short @2

   ;    

   ;            }

   ;            

   ;            return( 0 );

   ;    

        xor       eax,eax

   ;    

   ;    }

   ;    

@5:

@4:

        pop       ebx

        ret 

_main   endp

As you can see in this 80x86 output, the compiler generates semantically 
equivalent code when using the bitwise logical operators. Just keep in mind 
that this code is valid only if you use 0/1 for the Boolean values False/True.

15.1.1.4 Using Unstructured Code

If you don’t have inline function capability or if bitwise logical operators 
aren’t available, you can use unstructured code to force complete Boolean 
evaluation as a last resort. The basic idea is to create an infinite loop and 
then write code to explicitly exit the loop if the condition fails. Generally, 
you’d use a goto statement (or a limited form of the goto statement like C’s 
break or continue statements) to control loop termination. Consider the 
following example in C:

#include <stdio.h>

static int i;

static int k;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    int temp;

    int temp2;

    

    for( ;; ) //Infinite loop in C/C++

    {

        temp = i < g(y);

        temp2 = k > f(x);

        if( !temp && !temp2 ) break;

        printf( "Hello" );

    }

No Starch Press, Copyright © 2006 by Randall Hyde



500 Chap te r 15

    

    return( 0 );

}

By using an infinite loop with an explicit break, we were able to compute 
the two components of the Boolean expression using separate C statements 
(hence, forcing the compiler to execute both subexpressions). Here’s the 
TASM code that Borland’s C++ compiler produces for this C code:

_main   proc    near

?live1@0:

   ;    

   ;    int main( void )

   ;    

@1:

        push      ebx

   ;    

   ;    {

   ;            int temp;

   ;            int temp2;

   ;            

   ;            for( ;; )

   ;            {

   ;                    temp = i < g(y);

   ;    

@2:

        mov       eax,dword ptr [_y]

        push      eax

        call      _g

        pop       ecx

        cmp       eax,dword ptr [_i]

        setg      bl

        and       ebx,1

   ;    

   ;                    temp2 = k > f(x);

   ;    

?live1@32: ; EBX = temp

        mov       eax,dword ptr [_x]

        push      eax

        call      _f

        pop       ecx

        cmp       eax,dword ptr [_k]

        setl      al

        and       eax,1

   ;    

   ;                    if( !temp && !temp2 ) break;

   ;    

?live1@48: ; EBX = temp, EAX = temp2

        test      ebx,ebx

        jne       short @3

        test      eax,eax

        je        short @4

   ;    

   ;                    printf( "Hello" );

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 501

   ;    

?live1@64: ; 

@3:

        push      offset s@

        call      _printf

        pop       ecx

        jmp       short @2

   ;    

   ;            }

   ;            

   ;            return( 0 );

   ;    

@4:

        xor       eax,eax

   ;    

   ;    }

   ;    

@7:

@6:

        pop       ebx

        ret 

_main   endp

As you can see by studying the assembly code, this program always 
evaluates both parts of the original Boolean expression (that is, you get 
complete Boolean evaluation).

You should be careful using unstructured code in this fashion. Not only 
is the result harder to read, but it’s difficult to coerce the compiler into 
producing the code you want when using this approach. Furthermore, you 
can automatically assume that code sequences that produce good code on 
one compiler will not produce comparable code with other compilers.

If your particular language doesn’t support a statement like break, you 
can always use a goto statement to break out of the loop and achieve the same 
result. Of course, injecting gotos into your code is not a great idea. However, 
if you need complete Boolean evaluation semantics and using a goto is the 
only way to accomplish this in your language, you have no choice.

15.1.2 Forcing Short-Circuit Boolean Evaluation in a while Loop
Sometimes you need to guarantee short-circuit evaluation of the Boolean 
expression in a while statement even if the language (such as BASIC or 
Pascal) doesn’t implement short-circuit evaluation. As for the if statement, 
you can achieve this in your program by rearranging the way you compute 
the loop-control expression. Unlike the if statement, you cannot use nested 
while statements or preface your while loop with other statements to achieve 
this, but it is still possible to do in most programming languages.

Consider the following C code fragment:

while( ptr != NULL && ptr->data != 0 )

{

    << loop body >>

No Starch Press, Copyright © 2006 by Randall Hyde



502 Chap te r 15

    ptr = ptr->Next; // Step through a linked list.

}

This code could fail if C didn’t guarantee short-circuit evaluation of the 
Boolean expression.

As with forcing complete Boolean evaluation, the easiest way to do this in 
a language like Pascal is to write a function that computes and returns the 
Boolean result using short-circuit Boolean evaluation. However, this scheme 
is relatively slow because of the high overhead of a function call. Consider 
the following Pascal example, compiled with the Borland Delphi compiler:2

program shortcircuit;

{$APPTYPE CONSOLE}

uses SysUtils;

var

    ptr     :Pchar;

    function shortCir( thePtr:Pchar ):boolean;

    begin

        shortCir := false;

        if( thePtr <> NIL ) then begin

            shortCir := thePtr^ <> #0;

        end; //if

    end;  // shortCircuit

begin

    ptr := 'Hello world';

    while( shortCir( ptr )) do begin

        write( ptr^ );

        inc( ptr );

    end; // while

end.

And then consider this 80x86 assembly code produced by Borland’s 
Delphi compiler (and disassembled with IDAPro):

; function shortCir( thePtr:Pchar ):boolean

;

; Note: thePtr is passed into this function in

; the EAX register.

2 Note that Delphi provides the ability to choose short-circuit or complete Boolean evaluation, so 
you wouldn’t need to use this scheme with Delphi. However, Delphi will compile this code, 
hence the use of the Delphi compiler for this example.

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 503

sub_408570  proc near

            ;EDX holds function return

            ; result (assume false).

            ;

            ; shortCir := false;

            xor     edx, edx

            ;if( thePtr <> NIL ) then begin

            test    eax, eax

            jz      short loc_40857C    ;branch if NIL

            ; shortCir := thePtr^ <> #0;

            cmp     byte ptr [eax], 0

            setnz   dl  ;DL = 1 if not #0

loc_40857C:

            ;Return result in EAX:

            mov     eax, edx

            retn

sub_408570  endp

; Main Program (pertinent section):

;

; Load EBX with the address of the global "ptr" variable and 

; then enter the "WHILE" loop (Delphi moves the test for the

; while loop to the physical end of the loop's body):

                mov     ebx, offset loc_408628

                jmp     short loc_408617

; --------------------------------------------------------

loc_408600:

                ; Print the current character whose address

                ; "ptr" contains:

                mov     eax, ds:off_4092EC  ;ptr pointer

                mov     dl, [ebx]           ;fetch char

                call    sub_404523          ;print char

                call    sub_404391

                call    sub_402600

                inc     ebx             ;inc( ptr )

; while( shortCir( ptr )) do ...

loc_408617:

                mov     eax, ebx         ;Pass ptr in EAX

No Starch Press, Copyright © 2006 by Randall Hyde



504 Chap te r 15

                call    sub_408570       ;shortCir

                test    al, al           ;Returns True/False

                jnz     short loc_408600 ;branch if true

The sub_408570 procedure contains the function that will compute the 
short-circuit Boolean evaluation of an expression similar to the one appear-
ing in the earlier C code. As you can see (by reading through that function), 
the code that dereferences thePtr never executes if thePtr contains NIL 
(zero).

If a function call is out of the question, then about the only reasonable 
solution is to use an unstructured approach. The following is a Pascal version 
of the while loop in the earlier C code that forces short-circuit Boolean 
evaluation:

    while( true ) do begin

        if( ptr = NIL ) then goto 2;

        if( ptr^.data = 0 ) then goto 2;

        << loop body >>

        ptr = ptr^.Next;

    end;

2:

Again, producing unstructured code, like the code appearing in this 
example, is something that should only be done as a last resort. But if the 
language (or compiler) you’re using doesn’t guarantee short-circuit evalu-
ation and you need those semantics, unstructured code, or inefficient code 
(using a function call), might be the only solution.

15.2 The repeat..until (do..until/do..while) Loop

Another common loop appearing in most modern programming languages is 
the repeat..until loop. The repeat..until loop tests for its terminating condi-
tion at the bottom of the loop. This means that the body of the loop always 
executes at least once, even if the Boolean control expression evaluates to 
False on the first iteration of the loop. Although the repeat..until loop is a 
little less broadly applicable than the while loop, and you won’t use it any-
where near as often as a while loop, there are many situations where the 
repeat..until loop is the best choice of control structure for the job. Perhaps 
the classic example is reading input from the user until the user inputs a 
certain value. The following Pascal code fragment is very typical:

repeat

write( 'Enter a value (negative quits): ');

readln( i );

// do something with i's value

until( i < 0 );

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 505

This loop always executes the body once. Which, of course, is necessary 
because you must execute the loop’s body to read the value from the user 
that the program checks to determine when loop execution is complete.

The repeat..until loop terminates when its Boolean control expression 
evaluates to True (rather than False, as for the while loop). This makes sense, 
because the phrase “until” suggests that the loop terminates when the control 
expression evaluates to True. Note, however, that this is a minor syntactical 
issue, the C/C++/Java languages (and many languages that share a C 
heritage) provide a do..while loop that repeats the execution of the loop’s 
body as long as the loop condition evaluates to True. From an efficiency 
point of view, there is absolutely no difference between these two loops, and 
you can easily convert one loop termination condition to the other by simply 
using your language’s logical NOT operator. The following examples demon-
strate the syntax of the Pascal, HLA, and C/C++ repeat..until and do..while
loops. Here’s the Pascal repeat..until loop example:

    repeat

        (* Read a raw character from the "input" file, which in this case is 
the keyboard *)

        ch := rawInput( input );  

        (* Save the character away. *)

        inputArray[ i ] := ch;    

        i := i + 1;

        (* Repeat until the user hits the enter key   *)

    until( ch = chr( 13 ));      

Now here’s the C/C++ do..while version of the same loop:

    do

    {

        /* Read a raw character from the "input" file, which in this case is 
the keyboard */

        ch = getKbd();

        

        /* Save the character away. */

            

        inputArray[ i++ ] = ch;

        /* Repeat until the user hits the enter key   */   

    }

    while( ch != '\r' );         

No Starch Press, Copyright © 2006 by Randall Hyde



506 Chap te r 15

And here is the HLA repeat..until loop:

    repeat

        // Read a character from the standard input device.

        stdin.getc();

        // Save the character away.

        mov( al, inputArray[ ebx ] );

        inc( ebx );

        // Repeat until the user hits the enter key.

    until( al = stdin.cr );

Converting the repeat..until (or do..while) loop into assembly language 
is relatively easy and straightforward. All the compiler needs to do is substi-
tute code for the Boolean loop-control expression and branch back to the 
beginning of the loop’s body if the expression evaluates affirmative (False 
for repeat..until or True for do..while). Here’s the straightforward pure 
assembly implementation of the HLA repeat..until loop appearing earlier 
(compilers for C/C++ and Pascal would generate nearly identical code for 
the other examples):

    rptLoop:

        

        // Read a character from the standard input.

        call stdin.getc; 

        // Store away the character.

          

        mov( al, inputArray[ ebx ] );  

        inc( ebx );

        // Repeat the loop if the user did not hit

        //  the enter key.

        cmp( al, stdio.cr );           

        jne rptLoop;                   

As you can see, the code that a typical compiler generates for a 
repeat..until (or do..while) loop is usually a tiny bit more efficient than 
the code you’ll get for a regular while loop. 

Because a compiler can often generate slightly more efficient code for 
a repeat..until/do..while loop (than a while loop), you should consider 
using the repeat..until/do..while form if semantically possible. In many 
programs, the Boolean control expression always evaluates to True on 

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 507

the first iteration of some loop constructs. For example, it’s not that 
uncommon to find a loop like the following in an application:

i = 0;

while( i < 100 )

{

printf( "i: %d\n", i );

i = i * 2 + 1;

if( i < 50 )

{

i += j;

}

}

This while loop is easily converted to a do..while loop as follows:

i = 0;

do

{

printf( "i: %d\n", i );

i = i * 2 + 1;

if( i < 50 )

{

i += j;

}

} while( i < 100 );

This conversion is possible because we know that i’s initial value (zero) is 
less than 100, so the loop’s body always executes at least once.

You can help the compiler generate better code by using the more 
appropriate repeat..until/do..while loop rather than a regular while loop. 
Note that the efficiency gain is small, so be careful about sacrificing reada-
bility or maintainability when doing this. The bottom line is this: Always use 
the most logically appropriate loop construct. If the body of the loop always 
executes at least once, you should use a repeat..until/do..while loop, even if a 
while loop would work equally well.

15.2.1 Forcing Complete Boolean Evaluation in a repeat..until Loop
Because the test for loop termination occurs at the bottom of the loop on a 
repeat..until (or do..while) loop, forcing complete Boolean evaluation in 
a repeat..until loop is done in a similar manner to forcing complete Boolean 
evaluation in an if statement. Consider the following C/C++ code:

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

No Starch Press, Copyright © 2006 by Randall Hyde



508 Chap te r 15

    

    do

        {

            ++a;

            --b;

        }while( a < f(x) && b > g(y));

            

    return( 0 );

}

Here’s the GCC output for the PowerPC (using short-circuit evaluation, 
standard for C) for the do..while loop:

L2:

        // ++a

        // --b

        lwz r9,0(r30)  ; get a

        lwz r11,0(r29) ; get b

        addi r9,r9,-1  ; --a

        lwz r3,0(r27)  ; Set up x parm for f

        stw r9,0(r30)  ; store back into a

        addi r11,r11,1 ; ++b

        stw r11,0(r29) ; store back into b

        ; compute f(x)

        bl L_f$stub    ; call f, result to R3

        ; is a >= f(x)? If so, quit loop

        lwz r0,0(r29)  ; get a

        cmpw cr0,r0,r3 ; Compare a with f's value

        bge- cr0,L3

        lwz r3,0(r28)  ; Set up y parm for g

        bl L_g$stub    ; call g

        lwz r0,0(r30)  ; get b

        cmpw cr0,r0,r3 ; Compare b with g's value

        bgt+ cr0,L2    ; Repeat if b > g's value

L3:

As you can see in this code example, the program skips over the test for 
b > g(y) to label L3 if the expression a < f(x) is False (that is, if a >= f(x)).

To force complete Boolean evaluation in this situation, our C source 
code needs to compute the subcomponents of the Boolean expression just 
prior to the while clause (keeping the results of the subexpressions in 
temporary variables) and then test only the results in the while clause:

static int a;

static int b;

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 509

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    int temp1;

    int temp2;

    

    do

        {

            ++a;

            --b;

            temp1 = a < f(x);

            temp2 = b > g(y);

        }while( temp1 && temp2 );

            

    return( 0 );

}

Here’s the conversion to PowerPC code by GCC:

L2:

        lwz r9,0(r30)    ;r9 = b

        li r28,1         ;temp1 = True

        lwz r11,0(r29)   ;r11 = a

        addi r9,r9,-1    ;--b

        lwz r3,0(r26)    ;r3 = x (set up f's parm)

        stw r9,0(r30)    ;Save b

        addi r11,r11,1   ;++a

        stw r11,0(r29)   ;Save a

        bl L_f$stub      ;Call f

        lwz r0,0(r29)    ;Fetch a

        cmpw cr0,r0,r3   ;Compute temp1 = a < f(x)

        blt- cr0,L5      ;Leave temp1 true if a < f(x)

        li r28,0         ;temp1 = false

L5:

        lwz r3,0(r27)    ;r3 = y, set up g's parm

        bl L_g$stub      ;Call g

        li r9,1          ;temp2 = True

        lwz r0,0(r30)    ;Fetch b

        cmpw cr0,r0,r3   ;Compute b > g(y)

        bgt- cr0,L4      ;Leave temp2 true if b > g(y)

        li r9,0          ;Else set temp2 false

L4:

        ;Here's the actual termination test in

        ;the while clause:

        cmpwi cr0,r28,0

        beq- cr0,L3

        cmpwi cr0,r9,0

        bne+ cr0,L2

L3:

No Starch Press, Copyright © 2006 by Randall Hyde



510 Chap te r 15

You’ll note, of course, that the actual Boolean expression (temp1 && 
temp2) still uses short-circuit evaluation. However, this short-circuit evaluation 
only involves the temporary variables created. The loop computes both of 
the original subexpressions regardless of the result of the first one.

15.2.2 Forcing Short-Circuit Boolean Evaluation in a repeat..until Loop
If your programming language provides a facility to break out of a 
repeat..until loop, such as C’s break statement, then forcing short-circuit 
evaluation is fairly easy. Consider the C do..while loop from the previous 
section that forces complete Boolean evaluation:

    do

    {

        ++a;

        --b;

        temp1 = a < f(x);

        temp2 = b > g(y);

    }while( temp1 && temp2 );

The following shows one way to convert this code so that it evaluates the 
termination expression using short-circuit Boolean evaluation:

static int a;

static int b;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    do

    {

        ++a;

        --b;

        if( !( a < f(x) )) break;

    }while( b > g(y) );

            

    return( 0 );

}

Here’s the code that GCC emits for the PowerPC for the do..while loop 
in this code sequence:

L2:

        lwz r9,0(r30)   ;r9 = b

        lwz r11,0(r29)  ;r11 = a

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 511

        addi r9,r9,-1   ;--b

        lwz r3,0(r27)   ;Set up f(x) parm

        stw r9,0(r30)   ;Save b

        addi r11,r11,1  ;++a

        stw r11,0(r29)  ;Save a

        bl L_f$stub     ;Call f

        ; break if a < f(x):

        lwz r0,0(r29)

        cmpw cr0,r0,r3

        bge- cr0,L3

        ; while( b > g(y) ):

        lwz r3,0(r28)   ;Set up y parm

        bl L_g$stub     ;Call g

        lwz r0,0(r30)   ;Compute b > g(y)

        cmpw cr0,r0,r3

        bgt+ cr0,L2     ;Branch if true

L3:

If a is less than the value that f(x) returns, this code immediately breaks 
out of the loop (at label L3) without testing to see if b is greater than the value 
g(y) returns. Hence, this code simulates short-circuit Boolean evaluation of 
the expression a < f(x) && b > g(y).

If the compiler you’re using doesn’t support a statement equivalent to 
C/C++’s break statement, you’ll have to use slightly more sophisticated logic. 
One way to do that might be as follows:

static int a;

static int b;

extern int x;

extern int y;

extern int f( int );

extern int g( int );

int main( void )

{

    int temp;

    do

    {

        ++a;

        --b;

        temp = a < f(x);

        if( temp )

        {

            temp = b > g(y);

        };

    }while( temp );

            

No Starch Press, Copyright © 2006 by Randall Hyde



512 Chap te r 15

    return( 0 );

}

Here is the PowerPC code that GCC produces for this example:

L2:

        lwz r9,0(r30)   ;r9 = b

        lwz r11,0(r29)  ;r11 = a

        addi r9,r9,-1   ;--b

        lwz r3,0(r27)   ;Set up f(x) parm

        stw r9,0(r30)   ;Save b

        addi r11,r11,1  ;++a

        stw r11,0(r29)  ;Save a

        bl L_f$stub     ;Call f

        li r9,1         ;Assume temp is True

        lwz r0,0(r29)   ;Set temp false if

        cmpw cr0,r0,r3  ;a < f(x)

        blt- cr0,L5

        li r9,0

L5:

        cmpwi cr0,r9,0  ;If !(a < f(x)) then bail

        beq- cr0,L10    ; on the do..while loop

        lwz r3,0(r28)   ;Compute temp = b > f(y)

        bl L_g$stub     ; using a code sequence

        li r9,1         ; that is comparable to

        lwz r0,0(r30)   ; the above.

        cmpw cr0,r0,r3

        bgt- cr0,L9

        li r9,0

L9:

        ; Test the while termination expression:

        cmpwi cr0,r9,0

        bne+ cr0,L2

L10:

Even though these examples have been using the conjunction operation 
(logical AND), using the disjunction operator (logical OR) is just as easy. To 
close off this section, here’s a Pascal sequence and its conversion for your 
consideration:

repeat

a := a + 1;

b := b - 1;

until( a < f(x) OR b > g(y) );

Here’s the conversion to force complete Boolean evaluation:

repeat

a := a + 1;

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 513

b := b - 1;

temp := a < f(x);

if( not temp ) then begin

temp := b > g(y);

end;

until( temp );

Here’s the code that Borland’s Delphi produces for the two loops 
(assuming you select complete Boolean evaluation in the compiler’s options):

;    repeat

;

;        a := a + 1;

;        b := b - 1;

;

;    until( (a < f(x)) or (b > g(y)));

loc_4085F8:

                inc     ebx         ; a := a + 1;

                dec     esi         ; b := b - 1;

                mov     eax, [edi]  ;EDI points at x

                call    locret_408570

                cmp     ebx, eax    ;Set AL to 1 if

                setl    al          ; a < f(x)

                push    eax         ;Save Boolean result.

                mov     eax, ds:dword_409288    ;y

                call    locret_408574           ;g(6)

                cmp     esi, eax    ;Set AL to 1 if

                setnle  al          ; b > g(y)

                pop     edx         ;Retrieve last value.

                or      dl, al      ;Compute their OR

                jz      short loc_4085F8 ;Repeat if false.

;    repeat

;

;        a := a + 1;

;        b := b - 1;

;        temp := a < f(x);

;        if( not temp ) then begin

;

;            temp := b > g(y);

;

;        end;

;

;    until( temp );

loc_40861B:

                inc     ebx     ;a := a + 1;

                dec     esi     ;b := b - 1;

                mov     eax, [edi]  ;Fetch x

No Starch Press, Copyright © 2006 by Randall Hyde



514 Chap te r 15

                call    locret_408570 ;call f

                cmp     ebx, eax    ;is a < f(x)?

                setl    al          ;Set AL to 1 if so.

            ; If the result of the above calculation is

            ; True, then don't bother with the second

            ; test (i.e., short-circuit evaluation)

                test    al, al

                jnz     short loc_40863C

            ;Now check to see if b > g(y)

                mov     eax, ds:dword_409288

                call    locret_408574

            ;Set AL = 1 if b > g(y):

                cmp     esi, eax

                setnle  al

; Repeat loop if both conditions were false:

loc_40863C:

                test    al, al

                jz      short loc_40861B

The code that the Delphi compiler generates for this forced short-
circuit evaluation is nowhere near as good as the code it would generate if 
you allowed the compiler to do this job for you (by not selecting complete 
Boolean evaluation in the Delphi compiler options). Here’s the Delphi code 
with complete Boolean evaluation unselected (that is, instructing Delphi to 
use short-circuit evaluation):

loc_4085F8:

                inc     ebx

                dec     esi

                mov     eax, [edi]

                call    nullsub_1 ;f

                cmp     ebx, eax

                jl      short loc_408613

                mov     eax, ds:dword_409288

                call    nullsub_2 ;g

                cmp     esi, eax

                jle     short loc_4085F8

While this trick is useful for forcing short-circuit evaluation when the 
compiler does not support that facility, this latter Delphi example amply 
demonstrates that you should use the compiler’s facilities if at all possible—
you will generally get better machine code.

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 515

15.3 The forever..endfor Loop

The while loop tests for loop termination at the beginning (top) of the 
loop. The repeat..until loop tests for loop termination at the end (bottom) 
of the loop. The only place left to test for loop termination is somewhere in 
the middle of the loop’s body. The forever..endfor loop, along with some 
special loop-termination statements, handles this case.

Most modern programming languages provide a while loop and a 
repeat..until loop (or loops that are equivalent to these). Interestingly 
enough, only a few modern imperative programming languages (that is, 
languages like C/C++, Java, Pascal, BASIC, and Ada) provide an explicit 
forever..endfor loop. Ada provides one—so do C and C++ (the for(;;) loop)—
but this loop is missing in many other languages. This is especially surprising, 
because the forever..endfor loop (along with a loop-termination test) is 
actually the most general of the three forms. You can easily synthesize a 
while loop or a repeat..until loop from a single forever..endfor loop.

Of course, it is easy to create a simple forever..endfor loop in any 
language that provides a while loop or a repeat..until/do..while loop. All 
you need do is supply a Boolean control expression that always evaluates 
to False for repeat..until or True for do..while. In Pascal, for example, you 
could use code such as the following:

const

    forever := true;

        .

        .

        .

    while( forever ) do begin

        << code to execute in an infinite loop >>

    end;

The big problem with (standard) Pascal is that it doesn’t provide a 
mechanism for explicitly breaking out of a loop (other than a generic goto
statement). Fortunately, many modern Pascals (e.g., Delphi) provide a 
statement like break to immediately exit the current loop.

Although the C/C++ language does not provide an explicit statement 
that creates a forever loop, the syntactically bizarre for(;;) statement has 
served this purpose since the very first C compiler was written. Therefore, 
C/C++ programmers can create a forever..endfor loop as follows:

    for(;;)

    {

        << code to execute in an infinite loop >>

    }

No Starch Press, Copyright © 2006 by Randall Hyde



516 Chap te r 15

C/C++ programmers can use C’s break statement (along with an if
statement) to place a loop-terminate condition in the middle of a loop. 
For example:

    for(;;)

    {

        << Code to execute (at least once) 

           prior to the termination test >>

        if( termination_expression ) break;

        << Code to execute after the loop-termination test >>

    }

The HLA language provides an explicit (high-level) forever..endfor
statement (along with a break and a breakif statement) that lets you termi-
nate the loop somewhere in the middle. Here is an example of an HLA 
forever..endfor loop that tests for loop termination in the middle of the loop:

    forever

        << Code to execute (at least once) prior to 

            the termination test >>

        breakif( termination_expression );

        << Code to execute after the loop-termination test >>

    endfor;

Converting a forever..endfor loop into pure assembly language is a 
trivial matter. All you need is a single jmp instruction that can transfer control 
from the bottom of the loop back to the top of the loop. The implementa-
tion of the break statement is just as trivial, it’s just a jump (or conditional 
jump) to the first statement following the loop. The following two code 
fragments demonstrate an HLA forever..endfor loop (along with a breakif)
and the corresponding “pure” assembly code:

    // High-level forever statement in HLA:

    forever

        stdout.put

        ( 

         "Enter an unsigned integer less than five:" 

        );

        stdin.get( u );

        breakif( u < 5);

        stdout.put

        ( 

          "Error: the value must be between zero and five" nl 

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 517

        );

    endfor;

    // Low-level coding of the forever loop in HLA:

    foreverLabel:

        stdout.put

        ( 

          "Enter an unsigned integer less than five:" 

        );

        stdin.get( u );

        cmp( u, 5 );

        jbe endForeverLabel;

        stdout.put

        ( 

          "Error: the value must be between zero and five" nl 

        );

        jmp foreverLabel;

    endForeverLabel:

Of course, you can also rotate this code to create a slightly more efficient 
version:

    // Low-level coding of the forever loop in HLA 

    // using code rotation:

    jmp foreverEnter;

    foreverLabel:

            stdout.put

            ( 

              "Error: the value must be between zero and five" 

              nl 

            );

        foreverEnter:

            stdout.put

            ( 

              "Enter an unsigned integer less "

              "than five:" 

            );

            stdin.get( u );

            cmp( u, 5 );

            ja foreverLabel;

If the language you’re using doesn’t support a forever..endfor loop, 
any decent compiler will convert a while(true) statement into a single 
jump instruction. For reasons you’ll soon see, you shouldn’t try to create 
the forever..endfor loop using a goto statement. If your compiler doesn’t 
translate while(true) into a single jump instruction, then it does a poor 
job of optimization, and any attempts to manually optimize the code are 
a lost cause.

No Starch Press, Copyright © 2006 by Randall Hyde



518 Chap te r 15

15.3.1 Forcing Complete Boolean Evaluation in a forever Loop
Because you exit from a forever loop using an if statement, the techniques 
for forcing complete Boolean evaluation when exiting a forever loop are the 
same you use with an if statement. See Section 14.5.2, “Forcing Complete 
Boolean Evaluation in an if Statement,” for details.

15.3.2 Forcing Short-Circuit Boolean Evaluation in a forever Loop
Likewise, because you exit from a forever loop using an if statement, the 
techniques for forcing short-circuit Boolean evaluation when exiting a forever
loop are the same you use with an if statement. See Section 15.2.2, “Forcing 
Short-Circuit Boolean Evaluation in a repeat..until Loop,” for details.

15.4 The Definite Loop (for Loops)

The forever..endfor loop is an infinite loop (assuming you don’t break out 
of the loop via a break statement). The while and repeat..until loops are 
examples of indefinite loops. They are known as indefinite loops because, in 
general, the program cannot determine how many iterations the loop will 
execute when the program first encounters the loop. A definite loop, on the 
other hand, is one for which the program can determine exactly how many 
iterations the loop will repeat prior to executing the first statement of the 
loop’s body. The Pascal for loop is a good example of a definite loop in a 
traditional HLL, and it uses the following syntax:

for <<variable>> := <<expr1>> to <<expr2>> do
        <<statement>>

which iterates over the range expr1..expr2 if expr1 is less than or equal to 
expr2, or

for <<variable>> := <<expr1>> downto <<expr2>> do
        <<statement>>

which iterates over the range expr1..expr2 if expr1 is greater than or equal to 
expr2. Here is a typical example of a Pascal for loop:

    for i := 1 to 10 do
        writeln( "hello world" );

This loop always executes exactly ten times (obviously); hence it’s a 
definite loop. However, don’t get the impression that a compiler has to be 
able to determine the number of loop iterations at compile time. Definite 
loops also allow the use of expressions that force the program to determine 
the number of iterations at runtime. For example:

    write( "Enter an integer:" );

    readln( cnt );

No Starch Press, Copyright © 2006 by Randall Hyde



I t erat ive Con t rol  St ructure s 519

    for i := 1 to cnt do

        writeln( "Hello World" );

The Pascal compiler cannot determine the number of iterations this 
loop will execute. Indeed, because the number of iterations is dependent 
upon user input, the exact number of iterations could vary each time this 
loop executes in a single execution of the enclosing program. However, the 
program can determine exactly how many iterations the loop will execute 
whenever the program encounters this loop (specifically, the value in the cnt
variable determines the number of iterations in this example). Note that 
Pascal (like most languages that support definite loops) expressly forbids 
code such as the following:

    for i := 1 to j do begin

        << some statements >>

        i := <<some value>>;

        << some other statements >>

    end;

You are not allowed to the change the value of the loop control variable 
during the execution of the loop’s body. A high-quality Pascal compiler will 
detect an attempt to change the for loop’s control variable and report an 
error should you try this. Also, a definite loop computes the starting and 
ending values only once. Therefore, if the for loop modifies a variable that 
appears as the second expression, the for loop does not reevaluate the 
expression on each iteration of the loop. For example, if the body of the for
loop in the previous example modifies the value of j, this will not affect the 
number of iterations of the for loop.3

 Definite loops have certain special properties that allow a (good) com-
piler to generate better machine code. In particular, because the compiler 
can determine how many iterations the loop will execute prior to executing 
the first statement of the loop’s body, the compiler can often dispense with 
complex tests for loop termination and simply decrement a register down 
to zero to control the number of loop iterations. The compiler can also 
use induction to optimize access to the loop control variable in a definite 
loop (see the description of induction in Section 13.2, “Optimization of 
Arithmetic Statements”).

C/C++/Java users should note that the for loop appearing in these 
languages is not a true definite loop; rather, it is a special case of the 
indefinite while loop. Most good C/C++ compilers will attempt to deter-
mine if a for loop is a definite loop and generate decent code if the 
compiler can determine beforehand that the loop is a definite loop. 

3 Of course, some compilers might actually recompute this on each iteration, but the Pascal 
language standard doesn’t require this; indeed, the standard suggests that these values 
shouldn’t change during the execution of the loop body.

No Starch Press, Copyright © 2006 by Randall Hyde



520 Chap te r 15

To help the compiler generate good code for your C/C++ for loops, you 
should ensure the following:

� Your C/C++ for loops should use the same semantics as the definite (for)
loops in languages such as Pascal. That is, the for loop should initialize a 
single loop control variable, test for loop termination when that value is 
less than or greater than some ending value, and increment or decre-
ment the loop control variable by one.

� Your C/C++ for loops do not modify the value of the loop control vari-
able within the loop.

� The test for loop termination remains static over the execution of the 
loop’s body. That is, the loop body should not be able to change the ter-
mination condition (which, by definition, would make the loop an indef-
inite loop). For example, if the loop termination condition is i < j, the 
loop body should not modify the value of i or j.

� The loop body does not pass the loop control variable or any variable 
appearing in the loop termination condition by reference to a function 
if that function modifies the actual parameter.

15.5 For More Information

Section 14.7, “For More Information,” applies to this chapter as well. Please 
see that section for more details.

No Starch Press, Copyright © 2006 by Randall Hyde



16
F U N C T I O N S  A N D  P R O C E D U R E S

Since the beginning of the structured 
programming revolution in the 1970s, 

subroutines (procedures and functions) have 
been one of the primary tools software engineers 

use to organize, modularize, and otherwise structure 
their programs. Because programmers use procedure 
and function calls so frequently in their code, CPU manufacturers have 
responded by attempting to make these calls as efficient as possible. Never-
theless, a procedure or function call (and the associated return) has costs 
that many programmers don’t consider when creating functions. The 
inappropriate use of procedures and functions within a program can yield a 
huge increase in size and execution time. In this chapter, I’ll discuss those 
costs and how to avoid them. I’ll cover the following subjects:

� Function and procedure calls

� Macros and inline functions

� Parameter passing and calling conventions

No Starch Press, Copyright © 2006 by Randall Hyde



522 Chap te r 16

� Activation records and local variables

� Function return results

By understanding these topics, you can avoid the efficiency pitfalls that 
are common in modern programs that make heavy use of procedures and 
functions.

16.1 Simple Function and Procedure Calls

A function is a section of code that computes and returns some value (the 
function result); a procedure (or void function, in C/C++ terminology) simply 
accomplishes some action. Function calls generally appear within an arith-
metic or logical expression; procedure calls look like statements in the 
programming language. For the purpose of discussion in this section, you 
can generally assume that a procedure call and a function call are the same 
and simply use the terms function and procedure interchangeably. For the 
most part, a compiler implements procedure and function calls identically.

NOTE There are, however, some differences. At the end of the chapter I’ll consider some effi-
ciency issues related to function results. (See Section 16.7, “Function Return Values.”)

With most CPUs, you invoke procedures via an instruction similar to the 
80x86 call and use the ret (return) instruction for a return back to the caller. 
The call instruction performs three discrete operations:

� It determines the address of the instruction to execute upon returning 
from the procedure (this is usually the instruction immediately following 
the call instruction).

� It saves this address (commonly known as the return address or the link 
address) into a known location.

� It transfers control (via a jump mechanism) to the first instruction of the 
procedure.

Execution starts with the first instruction of the procedure and continues 
until the CPU encounters a ret (return) instruction. The ret instruction 
fetches the return address and transfers control to the machine instruction 
at that address. Consider the following C function and the corresponding 
80x86 and PowerPC code produced by GCC. Here’s the C source code:

#include <stdio.h>

void func( void )

{

    return;

}

int main( void )

{

    func();

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 523

    return( 0 );

}

Here’s the conversion to PowerPC Code by GCC:

.text

; void func( void )

        .align 2

        .globl _func

_func:

        ; Set up activation record for function.

        ; Note R1 is used as the stack pointer by

        ; the PowerPC ABI (Application Binary

        ; Interface, defined by IBM).

        stmw r30,-8(r1)

        stwu r1,-48(r1)

        mr r30,r1

        ; Clean up activation record prior to the return

        lwz r1,0(r1)

        lmw r30,-8(r1)

        ; Return to caller (branch to address

        ; in the link register):

        blr

        .align 2

        .globl _main

_main:

        ; Save return address from

        ; main program (so we can

        ; return to the OS):

        mflr r0

        stmw r30,-8(r1) ;Preserve r30/31

        stw r0,8(r1)    ;Save rtn adrs

        stwu r1,-80(r1) ;Update stack for func()

        mr r30,r1       ;Set up frame pointer

        ; Call func:

        bl _func

        ; Return zero as the main

        ; function result:

        li r0,0

        mr r3,r0

        lwz r1,0(r1)

No Starch Press, Copyright © 2006 by Randall Hyde



524 Chap te r 16

        lwz r0,8(r1)

        mtlr r0

        lmw r30,-8(r1)

        blr

And here’s the conversion of the same source code to 80x86 code 
by GCC:

.file   "t.c"

        .text

        .p2align 2,,3

; Conversion of void func( void )

        .globl func

        .type   func,@function

func:

        ; Construct activation record:

        pushl   %ebp

        movl    %esp, %ebp

        ; Clean up activation record:

        leave

        ; Return to main program:

        ret

        .globl main

        .type   main,@function

main:

        ; Build activation record for

        ; the main program.

        pushl   %ebp

        movl    %esp, %ebp

        subl    $8, %esp

        andl    $-16, %esp

        ; call func():

        call    func

        ; Return zero as the main

        ; function's result:

        xorl    %eax, %eax

        leave

        ret

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 525

As you can see, both the 80x86 and the PowerPC devote considerable 
effort building and managing activation records (see Section 8.1.4, “The 
Stack Section”). The important things to see in these two assembly language 
sequences are the bl _func and blr instructions in the PowerPC code and the 
call func and ret instructions in the 80x86 code. These are the instructions 
that call the function and return from it.

16.1.1 Storing the Return Address
But where, exactly, does the CPU store the return address? In the absence of 
recursion and certain other program control constructs, the CPU could store 
the return address in any arbitrary location that is large enough to hold the 
address and that will still contain that address when the procedure returns to 
its caller. For example, the program could choose to store the return address 
in a machine register (in which case the return operation would consist of an 
indirect jump to the address contained in that register). One problem with 
using registers, however, is that CPUs generally have a limited number of 
them. Every register that holds a return address is unavailable for other 
purposes. For this reason, on CPUs that save the return address in a register 
the applications usually moves the return address to memory so they can 
reuse that register for other purposes.

Consider the PowerPC bl (branch then link) instruction. This instruc-
tion transfers control to the target address specified by its operand and 
copies the address of the instruction following bl into the LINK register. 
Inside a procedure, if no code modifies the value of the LINK register, the 
procedure can return to its caller by executing a blr (branch to LINK 
register) instruction. In our trivial example, the func() function does not 
execute any code that modifies the value of the LINK register, so this is 
exactly how func returns to its caller. However, if this function had used the 
LINK register for some other purpose, it would have been the procedure’s 
responsibility to save the return address so that it could restore the value 
prior to returning via a blr instruction at the end of the function call.

A more common place to keep return addresses is in memory. Although 
accessing memory on most modern processors is much slower than accessing 
a CPU register, keeping return addresses in memory allows a program to 
have a large number of nested procedure calls. Most CPUs actually use a 
stack to hold return addresses. For example, the 80x86 call instruction pushes
the return address onto a stack data structure in memory and the ret instruc-
tion pops this return address off the stack. Using a stack of memory locations 
to hold return addresses offers several advantages:

� Stacks, because of their last-in, first-out (LIFO) organization, fully support 
nested procedure calls and returns as well as recursive procedure calls 
and returns.

� Stacks are memory efficient because they reuse the same memory loca-
tions for different procedure return addresses (rather than requiring a 
separate memory location to hold each procedure’s return address).

No Starch Press, Copyright © 2006 by Randall Hyde



526 Chap te r 16

� Even though stack access is slower than register access, the CPU can gen-
erally access memory locations on the stack faster than separate return 
addresses elsewhere because the CPU frequently accesses the stack, 
and the stack contents tend to remain in the cache.

� As discussed in Chapter 8, stacks are also great places to store activation 
records (e.g., parameters, local variables, and other procedure state 
information).

The use of a stack does incur a few penalties as well. Most importantly, 
maintaining a stack generally requires dedicating a CPU register to keep 
track of the stack in memory. This could be a register that the CPU explicitly 
dedicates for this purpose (e.g., the ESP register on the 80x86) or a general-
purpose register on a CPU that doesn’t provide explicit hardware stack 
support (for example, applications running on the PowerPC processor 
family typically use R1 for this purpose). 

On CPUs that provide a hardware stack implementation and a call/ret
instruction pair, making a procedure call is easy. As shown earlier in the 
80x86 GCC example output, the program simply executes a call instruction 
to transfer control to the beginning of the procedure and then executes a ret
instruction to return from the procedure. 

The PowerPC approach, using a “branch then link” instruction might 
seem less efficient than the call/ret mechanism. While it is certainly the 
case that the “branch then link” approach requires a little more code, it is 
not so clear that the “branch then link” approach is slower than the call/ret
approach. A call instruction is a complex instruction (accomplishing several 
independent tasks with a single instruction). As a result, a typical call instruc-
tion requires several CPU clock cycles to execute. The execution of the ret
instruction is similar. Whether the extra overhead is more costly than main-
taining a software stack varies by CPU and compiler. However, a “branch then 
link” instruction and an indirect jump through the link address, without the 
overhead of maintaining the software stack, is usually faster than the corre-
sponding call/ret instruction pair. If a procedure does not call any other 
procedures and it can maintain parameters and local variables in machine 
registers, then it’s possible to skip the software stack maintenance instructions 
altogether. For example, the call to func() in the previous example is probably 
more efficient on the PowerPC than on the 80x86 because func() doesn’t 
need to save the LINK register’s value into memory—it simply leaves that 
value in LINK throughout the execution of the function.

Because many procedures are short and have few parameters and local 
variables, a good RISC compiler can often dispense with the software stack 
maintenance entirely. Therefore, for many common procedures, this RISC 
approach is faster than the CISC (call/ret) approach. However, don’t get 
the impression that the RISC approach is always better. The brief example in 
this section is a very special case. In our simple demonstration program the 
function that this code calls, via the bl instruction, is near the bl instruction. 
In a complete application, func might be very far away, and the compiler 
would not be able to encode the target address as part of the instruction. 
That’s because RISC processors (like the PowerPC) must encode their entire 

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 527

instruction within a single 32-bit value (which must include both the opcode 
and the displacement to the function). If func is farther away than can be 
encoded in the remaining displacement bits (24, in the case of the PowerPC 
bl instruction), the compiler has to emit a sequence of instructions that 
will compute the address of the target routine and indirectly transfer 
control through that indirect address. Most of the time, this shouldn’t be 
a problem. After all, few programs are so large that the functions would be 
outside this range (64MB, in the case of the PowerPC). However, there is a 
very common case where GCC (and other compilers, presumably) must 
generate this type of code—when the compiler doesn’t know the target 
address of the function because it’s an external symbol that the linker 
must merge in after compilation is complete. Because the compiler doesn’t 
know where the routine will be sitting in memory (and also because most 
linkers only work with 32-bit addresses, not 24-bit displacement fields), 
the compiler must assume that the function’s address is out of range and 
emit the long version of the function call. Consider the following slight 
modification to the earlier example:

#include <stdio.h>

extern void func( void );

int main( void )

{

    func();

            

    return( 0 );

}

I’ve declared func() to be an external function. Now look at the PowerPC 
code that GCC produces and compare it with the earlier code:

.text

        .align 2

        .globl _main

_main:

        ; Set up main's activation record:

        mflr r0

        stw r0,8(r1)

        stwu r1,-80(r1)

        ; Call a "stub" routine that will

        ; do the real call to func():

        bl L_func$stub

        ; Return zero as Main's function

        ; result:

        lwz r0,88(r1)

No Starch Press, Copyright © 2006 by Randall Hyde



528 Chap te r 16

        li r3,0

        addi r1,r1,80

        mtlr r0

        blr

; The following is a stub that calls the

; real "func" function, wherever it is in

; memory.

        .data

        .picsymbol_stub

L_func$stub:

        .indirect_symbol _func

        ; Begin by saving the LINK register

        ; value in R0 so we can restore it

        ; later.

        mflr r0

        ; The following code sequence gets

        ; the address of the L_func$lazy_ptr

        ; pointer object into R12:

        bcl 20,31,L0$_func      ; R11<-adrs(L0$func)

L0$_func:

        mflr r11

        addis r11,r11,ha16(L_func$lazy_ptr-L0$_func)

        ; Restore the LINK register (used by the

        ; preceeding code) from R0:

        mtlr r0

        ; Compute the address of func and move it

        ; into the PowerPC COUNT register:

        lwz r12,lo16(L_func$lazy_ptr-L0$_func)(r11)

        mtctr r12

        ; Set up R11 with an environment pointer:

        addi r11,r11,lo16(L_func$lazy_ptr-L0$_func)

        ; Branch to address held in the COUNT

        ; register (that is, to func):

        bctr

; The linker will initialize the following

; dword (.long) value with the address of

; the actual "func" function:

        .data

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 529

        .lazy_symbol_pointer

L_func$lazy_ptr:

        .indirect_symbol _func

        .long dyld_stub_binding_helper

This code effectively winds up calling two functions in order to call func.
First, it calls a stub function (L_func$stub), which then transfers control to 
the actual func routine. Clearly there is considerable overhead here. Without 
actually benchmarking the PowerPC code against the 80x86 code, it’s probably 
a safe bet that the 80x86 solution is a bit more efficient. (The 80x86 version 
of the GCC compiler emits the same code for the main program as in the 
earlier example, even when compiling in the external reference.) You’ll soon 
see that the PowerPC also generates stub functions for things other than 
external functions. Therefore, the CISC solution often is more efficient than 
the RISC solution (presumably, RISC CPUs make up the difference in 
performance in other areas).

16.1.2 Other Sources of Overhead
Of course, there is additional overhead to a typical procedure call and return
beyond the execution of the actual procedure call and return instructions. 
Prior to calling the procedure, the calling code must compute and pass any 
parameters to the procedure. Upon entry into the procedure, it may also 
need to complete the construction of the activation record (that is, allocate 
space for local variables). The costs of these operations vary by CPU and 
compiler. For example, if the calling code can pass parameters in registers 
rather than on the stack (or some other memory location) this is usually 
more efficient. Similarly, if the procedure can keep all its local variables in 
registers rather than in the activation record on the stack, accessing those 
local variables is much more efficient. This is one area where RISC proc-
essors have a considerable advantage over CISC processors. A typical RISC 
compiler can reserve eight or so registers for passing parameters and eight 
or so registers for local variables (RISC processors typically have 32 or more 
general-purpose registers so setting aside 16 registers for this purpose is not 
entirely outrageous). For procedures that don’t call any other procedures 
(known as leaf procedures, as discussed in the next section), there is no need 
to preserve these register values, so parameter and local variable access is 
very efficient. On CPUs with a limited number of registers (e.g., the 80x86), 
it is still possible to pass a small number of parameters in registers or main-
tain a few local variables in registers. Many 80x86 compilers, for example, will 
keep up to three values (parameters or local variables) in the registers. Clearly, 
though, the RISC processors have an advantage in this regard.1

1 The 80x86’s saving grace is that, paradoxically, the CPU runs so much faster than typical RISC 
devices, so it can afford to execute a few more instructions or execute instructions that take 
multiple clock cycles, and it will still run faster than contemporary RISC CPUs. This is a paradox 
because the whole purpose of RISC design in the first place was to create a CPU that could run 
at a higher clock frequency, even if it took more instructions to accomplish the same thing as a 
CISC CPU.

No Starch Press, Copyright © 2006 by Randall Hyde



530 Chap te r 16

Armed with this knowledge, along with the discussion of activation 
records and stack frames appearing earlier in this book (see Section 8.1.4, 
“The Stack Section”), we can now discuss how to write procedures and 
functions that operate as efficiently as possible. The exact rules are highly 
dependent upon your CPU and the compiler you’re using, but some of the 
concepts are generic enough to apply to all programs. As usual, the following 
sections assume that you’re writing for an 80x86 or PowerPC CPU (as most of 
the world’s software runs on one of these two CPUs).

16.2 Leaf Functions and Procedures

Compilers can often generate better code for leaf procedures and functions. 
The metaphor comes from a graphical representation of procedure/function 
invocations known as a call tree. A call tree consists of a set of circles (called 
nodes) that represent the functions and procedures in a program. An arrow 
from one node to another implies that the first node contains a call to the 
second. Figure 16-1 illustrates a typical call tree. In this example, the main 
program directly calls procedure prc1 and functions fnc1 and fnc2. Function 
fnc1 directly calls procedure prc2. Function fnc2 directly calls procedures prc2
and prc3 as well as function fnc3. The leaf procedures and functions in this 
call tree are prc1, prc2, fnc3, and prc3, which do not call any other procedures 
or functions. With this in mind, remember that leaf procedures and functions 
don’t further call other procedures or functions.

Figure 16-1: A call tree

Working with leaf procedures and functions has an advantage. They do 
not need save parameters passed to them in registers or preserve the values 
of local variables they maintain in registers. For example, if main passes two 
parameters to fnc1 in the EAX and EDX registers, and fnc1 passes a different 
pair of parameters to prc2 in EAX and EDX, then fnc1 must first save the 
values it found in EAX and EDX before calling prc2. The prc2 procedure, on 
the other hand, doesn’t have to save the values in EAX and EDX prior to 

main

fnc1 fnc2

fnc3

prc1

prc2 prc3

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 531

some procedure or function call, because it doesn’t make such calls. In a 
similar vein, if fnc1 allocates any local variables in registers, then fnc1 will 
need to preserve those registers across a call to prc2 because prc2 can use the 
registers for its own purposes. By contrast, if prc2 uses a register for a local vari-
able, it never has to save the value of that variable if it were to make another 
procedure or function call because it never makes such a call. Therefore, good 
compilers tend to generate better code for leaf procedures and functions 
because they don’t have to preserve the register values.

One way to flatten the call tree is to take the code associated with proce-
dures and functions appearing in interior nodes of the call tree and inlining 
that code into functions higher in the call tree. In Figure 16-1, for example, if 
it is practical to move the code for fnc1 into main, you don’t need to save and 
restore registers (among other operations). Keep in mind, however, that you 
should not sacrifice readability and maintainability when flattening the call 
tree. You want to avoid writing procedures and functions that simply call other 
procedures and functions without doing any work on their own, but you don’t 
want to destroy the modularity of your application’s design by expanding 
function and procedure calls throughout your code. 

You’ve already seen that having a leaf function is handy when you’re 
using a RISC processor, like the PowerPC, that uses a “branch then link” 
instruction to make a subroutine call. The PowerPC LINK register is a 
perfect example of a register that you have to preserve across procedure 
calls. Because a leaf procedure does not (normally) modify the value in the 
LINK register, no extra code is necessary in a leaf procedure to preserve 
the LINK register’s value. To see the benefits of calling leaf functions on a 
RISC CPU, consider the following C code:

void g( void )

{

    return;

}

void f( void )

{

    g();

    g();

    return;

}

int main( void )

{

    f();

    return( 0 );

}

GCC emits the following PowerPC assembly code:

.text

; g's function code:

No Starch Press, Copyright © 2006 by Randall Hyde



532 Chap te r 16

        .align 2

        .globl _g

_g:

        ;Set up g's environment

        ; (set up activation record):

        stmw r30,-8(r1)

        stwu r1,-48(r1)

        mr r30,r1

        ;Tear down the activation

        ; record.

        lwz r1,0(r1)

        lmw r30,-8(r1)

        ; Return to caller via LINK:

        blr

; f's function code:

        .align 2

        .globl _f

_f:

        ;Set up activation record,

        ; including saving the value

        ; of the LINK register:

        mflr r0         ;R0 = LINK

        stmw r30,-8(r1)

        stw r0,8(r1)    ;Save LINK

        stwu r1,-80(r1)

        mr r30,r1

        ; Call g (twice):

        bl _g

        bl _g

        ;Restore LINK from the

        ; activation record and

        ; then clean up activation

        ; record:

        lwz r1,0(r1)

        lwz r0,8(r1)    ;R0 = saved adrs

        mtlr r0         ;LINK = RO

        lmw r30,-8(r1)

        ; Return to main function:

        blr

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 533

; Main function code:

        .align 2

        .globl _main

_main:

        ;Save main's return

        ; address into main's

        ; activation record:

        mflr r0

        stmw r30,-8(r1)

        stw r0,8(r1)

        stwu r1,-80(r1)

        mr r30,r1

        ; Call the f function:

        bl _f

        ;Return zero to whomever

        ; called main:

        li r0,0

        mr r3,r0

        lwz r1,0(r1)

        lwz r0,8(r1)    ;Move saved return

        mtlr r0         ; address to LINK

        lmw r30,-8(r1)

        ;Return to caller:

        blr

You’ll note an important difference between the implementations of the 
f and g functions in this PowerPC code—f has to preserve the value of the 
LINK register, whereas g does not. Note that not only does this involve extra 
instructions, but it also involves accessing memory, which can be slow.

Another advantage to using leaf procedures, which isn’t obvious from the 
call tree, is that you can reduce the amount of work needed to construct 
the activation record for such procedures and functions. On the 80x86, 
for example, a good compiler doesn’t have to preserve the value of the EBP 
register, load EBP with the address of the activation record, and then restore 
the original value by accessing local objects via the stack pointer register (ESP). 
On RISC processors, which maintain the stack manually, this can be a signi-
ficant difference. For such procedures, the overhead of the procedure call/
return and activation record maintenance is greater than the actual work 
done by the procedure. Therefore, eliminating the activation record main-
tenance code could nearly double the speed of the procedure. For these 
and other reasons, you should try to keep your call trees as shallow as 
possible. The more leaf procedures your program uses, the more efficient 
it may become when you compile the program with a decent compiler.

No Starch Press, Copyright © 2006 by Randall Hyde



534 Chap te r 16

16.3 Macros and Inline Functions

One offshoot of the structured programming revolution was that computer 
programmers were taught to write small, modular, and logically coherent 
functions. A function that is logically coherent does one thing well. All of the 
statements in such a procedure or function are dedicated to doing the task at 
hand without producing any side computations or doing any extraneous 
operations. Years of software engineering research indicate that decomposing 
a problem into small components and implementing those small components 
in code produces programs that are easier to read, maintain, and modify. 
Unfortunately, it is easy to get carried away with this process and produce 
functions similar to the following Pascal example:

function sum( a:integer; b:integer ):integer;

begin

       (* returns sum of a & b as function result *)

        sum := a + b; 

end;

.

.

.

sum( aParam, bParam );

On the 80x86, it would probably take about three instructions to compute 
the sum of two values and store that sum into a memory variable somewhere. 
For example:

        mov( aParam, eax );

        add( bParam, eax );

        mov( eax, destVariable );

Contrast this with the code necessary to simply call the function sum:

        push( aParam );

        push( bParam );

        call sum;

Within the procedure sum (assuming a mediocre compiler), you might 
expect to find code similar to the following HLA sequence:

        // Construct the activation record

        

        push( ebp ); 

        mov( esp, ebp );

        // Get aParam's value

        mov( [ebp+12], eax ); 

    

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 535

        // Compute their sum and return in EAX

        add( [ebp+8], eax );  

        // Restore EBP's value

        pop( ebp );

        // Return to caller, cleaning up 

        //  the activation record.

 

        ret( 8 ); 

As you can see in this simple example, with a function it takes three times 
as many instructions to compute the sum of these two objects as the straight-
line (no function call) code. Worse still, these nine instructions are generally 
slower than the three that make up the inline code. The inline code could 
run five to ten times faster than the code with the function call.

The one redeeming quality about the overhead associated with a function 
or procedure call is that it’s fixed. It takes the same number of instructions to 
set up the parameters and the activation record (as well as tear them down) 
if the procedure or function has one machine instruction as its body or 1,000 
instructions. Although the percentage of overhead of a procedure call is 
huge when the procedure’s body is small, the overhead associated with a 
procedure call is inconsequential when the procedure’s body is large. There-
fore, to reduce the impact of procedure/function call overhead in your 
programs, you should try to place larger code procedures and functions, 
and write shorter sequences as inline code.

Finding the optimum balance between the benefits of modular structure 
and the cost of too-frequent procedure calls can be difficult. Unfortunately, 
good program design often prevents us from increasing the size of our pro-
cedures and functions to the point that the overhead of the call and return 
reduces to an inconsequential level. Sure, we could combine several functions 
and procedure calls into a single procedure or function, but this would violate 
several rules of programming style, so we usually don’t want to resort to such 
tactics when writing great code. (One problem with such programs is that 
few people can figure out how those programs work in order to optimize 
them.) However, if you can’t make the overhead of a procedure’s body trivial 
by increasing the size of the procedure, you can still improve the overall 
performance of the procedure by reducing the overhead in other ways. As 
you’ve seen, one way to do that is to use leaf procedures and functions. Good 
compilers emit fewer instructions for leaf nodes in the call tree, thereby reduc-
ing the call/return overhead. However, if the procedure’s body is short, you 
need a way to completely eliminate the procedure call/return overhead. 
Some languages provide a way to do this with macros.

A pure macro expands the body of a procedure or function in place of 
the invocation of that procedure/function. Because there is no call and no 
return to code elsewhere in the program, a macro expansion avoids the over-
head associated with the call/ret instructions. Furthermore, macros also save 

No Starch Press, Copyright © 2006 by Randall Hyde



536 Chap te r 16

considerable expense by using textual substitution for parameters rather than 
pushing the parameter data onto the stack or moving the parameter data 
into registers. The drawback to a macro is that the compiler expands the 
macro’s body for each invocation of the macro. If the macro body is large 
and you invoke it in many different places, the size of the executable pro-
gram can grow by a fair amount. Macros represent the classic time/space 
trade-off—they can produce faster code at the expense of greater size. For 
this reason, you should only use macros to replace procedures and functions 
that have a small number of statements (say, between one and five short 
statements)—except in some rare cases where speed is paramount.

A few languages (e.g., C/C++) provide inline functions and procedures. 
An inline function or procedure is a cross between a true function (or proce-
dure) and a pure macro. Most languages that support inline functions and 
procedures do not guarantee that the compiler will expand the code inline. 
Inline expansion or a call to an actual function in memory is done at the 
compiler’s discretion. Most compilers will not expand an inline function if 
the function’s body is too large or if it has an excessive number of parameters. 
Furthermore, unlike pure macros, which don’t have any procedure call 
overhead associated with them, inline functions may still need to build an 
activation record in order to handle local variables, temporaries, and other 
requirements. As such, even if the compiler expands such a function inline, 
there may still be some overhead that you wouldn’t get with a pure macro. 

To see the result of function inlining, consider the following C source 
file prepared for compilation by Microsoft Visual C++:

#include <stdio.h>

// Make geti and getj external functions

// to thwart constant propagation so we

// can see the effects of the following

// code.

extern int geti( void );

extern int getj( void );

// Inline function demonstration. Note

// that "_inline" is the MSVC++ "C" way

// of specifying an inline function (the

// actual "inline" keyword is a C++ feature,

// which this code avoids in order to make

// the assembly output a little more readable).

//

//

// "inlineFunc" is a simple inline function

// that demonstrates how the C/C++ compiler

// does a simple inline macro expansion of

// the function:

_inline int inlineFunc( int a, int b )

{

    return a + b;

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 537

}

_inline int ilf2( int a, int b )

{

    // Declare some variable that will require

    // an activation record to be built (i.e.,

    // register allocation won't be sufficient):

    int m;

    int c[4];

    int d;

    // Make sure we use the "c" array so that

    // the optimizer doesn't ignore its

    // declaration:

    for( m = 0; m < 4; ++m )

    {

        c[m] = geti();

    }

    d = getj();

    for( m = 0; m < 4; ++m )

    {

        d += c[m];

    }

    // Return a result to the calling program:

    return (a + d) - b;

}

int main( int argc, char **argv )

{

    int i;

    int j;

    int sum;

    int result;

    i = geti();

    j = getj();

    sum = inlineFunc( i, j );

    result = ilf2( i, j );

    printf( "i+j=%d, result=%d\n", sum, result );

    return 0;

}

Here’s the MASM-compatible assembly language code that MSVC emits 
when you specify a C compilation (versus a C++ compilation, which produces 
messier output):

_main      PROC NEAR 

; Allocate storage for the "c" array declared

No Starch Press, Copyright © 2006 by Randall Hyde



538 Chap te r 16

; in the ilf2 function (that gets expanded

; inline in this main program):

    sub    esp, 20

; Preserve the registers as required by

; the caller:

    push   ebx

    push   ebp

    push   esi

    push   edi

;   i = geti();

    call   _geti

    mov    ebx, eax

;   j = getj();

    call   _getj

    mov    ebp, eax

    

;   sum = inlineFunc( i,j );

;       = i + j (expanded inline)

    lea    eax, DWORD PTR [ebx+ebp]

    mov    DWORD PTR _sum$[esp+36], eax

    

;   result = ilf2( i, j );

;   Expanded inline to:

;

;   for( m = 0; m < 4; ++m )

;   {

;          c[m] = geti();

;   }

    lea    esi, DWORD PTR _c$874[esp+36]   ; ESI = c[m]

    mov    edi, 4                          ; # of iterations

$L876:

    call   _geti

    mov    DWORD PTR [esi], eax        ;c[m] = geti();

    

    add    esi, 4                      ;Next element

    dec    edi                         ;Next iteration

    jne    SHORT $L876

    

;   d = getj();

    

    call   _getj

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 539

    lea    ecx, DWORD PTR _c$874[esp+36]   ;ECX = c[m]

;   for( m = 0; m < 4; ++m )

;   {

;          d += c[m];

;   }

    mov    edx, 4      ;Loop iterations

$L879:

    mov    esi, DWORD PTR [ecx]

    add    ecx, 4      ;Next element

    add    eax, esi    ;d += c[m]

    dec    edx         ;Next iteration

    jne    SHORT $L879

    

;   return (a + d) - b;

    mov    ecx, DWORD PTR _sum$[esp+36]

    sub    eax, ebp

    add    eax, ebx

    

;   printf( "i+j=%d, result=%d\n", sum, result );

    push   eax

    push   ecx

    push   OFFSET FLAT:formatString ; `string'

    call   _printf

    add    esp, 12 ;Pop printf parameters

;    return 0;

    xor    eax, eax

    pop    edi

    pop    esi

    pop    ebp

    pop    ebx

; Line 72

    add    esp, 20 ;Clean up activation record

    ret    0

_main      ENDP

_TEXT      ENDS

END

As you can see in this assembly output, there are no function calls to the 
inlinefunc and ilf2 functions. Instead, the compiler expanded these func-
tions in place in the main function, at the point where the main program calls 
these functions. You’ll also notice that the local variables declared in the ilf2
function were allocated in the main function’s activation record. Because of 
the inline expansion, this program does not incur the overhead of a proce-
dure call and return (as well as building an activation record) for these two 
functions.

No Starch Press, Copyright © 2006 by Randall Hyde



540 Chap te r 16

16.4 Passing Parameters to a Function or Procedure

The number and type of parameters can also have a big impact on the effi-
ciency of the code a compiler generates for your procedures and functions. 
Simply put, the more parameter data you pass, the more expensive the 
procedure or function call is going to be. Often, programmers call generic 
functions (or design generic functions) that require you to pass several 
optional parameters whose values the function won’t use. This scheme can 
make functions more generally applicable to different applications, but as 
you’ll see in this section there is a cost associated with that generality, so you 
might want to consider using a version of the function specific to your appli-
cation if space or speed is an issue.

The parameter-passing mechanism (for example, pass-by-reference or 
pass-by-value) also has an impact on the overhead associated with a proce-
dure call and return. Some languages allow you to pass large data objects by 
value. (Pascal lets you pass strings, arrays, and records by value and C/C++ 
allows you to pass structures by value.) Whenever you pass a large data object 
by value, the compiler must emit machine code that makes a copy of that 
data into the procedure’s activation record. This can be time-consuming 
(especially when copying large arrays or structures). Furthermore, large 
objects probably won’t fit in the CPU’s register set, so accessing such data 
within a procedure or function is going to be expensive. It is usually more 
efficient to pass large data objects such as arrays and structures by reference 
than by value. The extra cost of accessing the data indirectly is usually saved 
many times over by not having to copy the data into the activation record. 
Consider the following C code that passes a large structure by value to a C 
function:

#include <stdio.h>

typedef struct

{

    int array[256];

} a_t;

void f( a_t a )

{

    a.array[0] = 0;

    return;

}

int main( void )

{

    a_t b;

    f( b );

    return( 0 );

}

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 541

Here’s the PowerPC code that GCC emits:

.text

        .align 2

        .globl _f

_f:

        li r0,0 ; To set a.array[0] = 0

        ;Note: the PowerPC ABI passes the

        ; first eight dwords of data in

        ; R3..R10. We need to put that

        ; data back into the memory array

        ; here:

        stw r4,28(r1)

        stw r5,32(r1)

        stw r6,36(r1)

        stw r7,40(r1)

        stw r8,44(r1)

        stw r9,48(r1)

        stw r10,52(r1)

        ;Okay, store zero into a.array[0]:

        stw r0,24(r1)

        ;Return to caller:

        blr

; Main function:

        .align 2

        .globl _main

_main:

        ;Set up main's activation record:

        mflr r0

        li r5,992

        stw r0,8(r1)

        ;Allocate storage for a:

        stwu r1,-2096(r1)

        ;Copy all but the first

        ; eight dwords to the

        ; activation record for f:

        addi r3,r1,56

        addi r4,r1,1088

        bl L_memcpy$stub

No Starch Press, Copyright © 2006 by Randall Hyde



542 Chap te r 16

        ;Load the first eight dwords

        ; into registers (as per the

        ; PowerPC ABI):

        lwz r9,1080(r1)

        lwz r3,1056(r1)

        lwz r10,1084(r1)

        lwz r4,1060(r1)

        lwz r5,1064(r1)

        lwz r6,1068(r1)

        lwz r7,1072(r1)

        lwz r8,1076(r1)

        ;Call the f function:

        bl _f

        ;Clean up the activation record

        ; and return zero to main's caller:

        lwz r0,2104(r1)

        li r3,0

        addi r1,r1,2096

        mtlr r0

        blr

;Stub function that copies the structure

; data to the activation record for the

; main function (this calls the C standard

; library memcpy function to do the actual copy):

        .data

        .picsymbol_stub

L_memcpy$stub:

        .indirect_symbol _memcpy

        mflr r0

        bcl 20,31,L0$_memcpy

L0$_memcpy:

        mflr r11

        addis r11,r11,ha16(L_memcpy$lazy_ptr-L0$_memcpy)

        mtlr r0

        lwz r12,lo16(L_memcpy$lazy_ptr-L0$_memcpy)(r11)

        mtctr r12

        addi r11,r11,lo16(L_memcpy$lazy_ptr-L0$_memcpy)

        bctr

.data

.lazy_symbol_pointer

L_memcpy$lazy_ptr:

        .indirect_symbol _memcpy

        .long dyld_stub_binding_helper

As you can see, the call to function f calls memcpy to transfer a copy of 
the data from main’s local array to f’s activation record. Copying memory 
is a slow process and this code amply demonstrates that you should avoid 

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 543

passing large objects by value. Consider the same code when you pass 
the structure by reference:

#include <stdio.h>

typedef struct

{

    int array[256];

} a_t;

void f( a_t *a )

{

    a->array[0] = 0;

    return;

}

int main( void )

{

    a_t b;

    f( &b );

    return( 0 );

}

Here’s the conversion of this C source code to PowerPC assembly 
by GCC:

.text

        .align 2

        .globl _f

; function f:

_f:

        li r0,0         ;Store zero into

        stw r0,0(r3)    ; a.array[0]

        blr             ;Return to main

        .align 2

        .globl _main

; The main function:

_main:

        ; Build main's activation record

        mflr r0         ;Save return adrs

        stw r0,8(r1)

        stwu r1,-1104(r1) ;Allocate a

        ;Pass the address of a to f in R3:

        addi r3,r1,64

No Starch Press, Copyright © 2006 by Randall Hyde



544 Chap te r 16

        ;Call f:

        bl _f

        

        ;Tear down activation record

        ; and return:

        lwz r0,1112(r1)

        li r3,0

        addi r1,r1,1104

        mtlr r0

        blr

Depending on your CPU and compiler, it may be slightly more efficient 
to pass small (scalar) data objects by value rather than by reference. For 
example, if you’re using an 80x86 compiler that passes parameters on the 
stack, two instructions will be needed to pass a memory object by reference 
but only a single instruction to pass that same object by value. So, although 
trying to pass large objects by reference is a good idea, the reverse is gen-
erally true for small objects. However, this is not a hard and fast rule; its 
validity varies based on the CPU and compiler you’re using.

Some programmers may feel that it’s more efficient to pass data to a 
procedure or function via global variables. After all, if the data is already 
sitting in a global variable that is accessible to the procedure or function, a 
call to that procedure or function won’t require any extra instructions to pass 
the data to the subroutine, thus reducing the call overhead. While this seems 
like a big win, one thing you should consider before doing this is that com-
pilers have a difficult time optimizing programs that make excessive use of 
global variables. Although using globals may reduce the function/procedure 
call overhead, doing so may also prevent the compiler from handling other 
optimizations that would have been otherwise possible. Here’s a simple 
example using Microsoft Visual C++ that demonstrates this problem:

#include <stdio.h>

// Make geti an external function

// to thwart constant propagation so we

// can see the effects of the following

// code.

extern int geti( void );

// globalValue is a global variable that

// we use to pass data to the "usesGlobal"

// function:

int globalValue = 0;

// Inline function demonstration. Note

// that "_inline" is the MSVC++ "C" way

// of specifying an inline function (the

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 545

// actual "inline" keyword is a C++ feature,

// which this code avoids in order to make

// the assembly output a little more readable).

_inline int usesGlobal( int plusThis )

{

    return globalValue+plusThis;

}

_inline int usesParm( int plusThis, int globalValue )

{

    return globalValue+plusThis;

}

    

int main( int argc, char **argv )

{

    int i;

    int sumLocal;

    int sumGlobal;

    // Note: the call to geti inbetween setting globalValue

    // and calling usesGlobal is intentional. The compiler

    // doesn't know that geti doesn't modify the value of

    // globalValue (and neither do we, frankly), therefore,

    // the compiler cannot use constant propagation here.

    globalValue = 1;

    i = geti();

    sumGlobal = usesGlobal( 5 );

    // If we pass the "globalValue" as a parameter rather

    // than setting a global variable, then the compiler

    // can optimize the code away:

    sumLocal = usesParm( 5, 1 );

    printf( "sumGlobal=%d, sumLocal=%d\n", sumGlobal, sumLocal );

    return 0;

}

Here’s the MASM source code (with manual annotations) that the 
MSVC++ compiler generates for this code:

_main      PROC NEAR

;   globalValue = 1;

    mov    DWORD PTR _globalValue, 1

;   i = geti();

;

; Note that because of dead code elimination,

; MSVC++ doesn't actually store the result

No Starch Press, Copyright © 2006 by Randall Hyde



546 Chap te r 16

; away into i, but it must still call geti()

; because geti() could produce side-effects

; (such as modifying globalValue's value).

    call   _geti

;   sumGlobal = usesGlobal( 5 );

;

; Expanded inline to:

;

; globalValue+plusThis

    mov    eax, DWORD PTR _globalValue

    add    eax, 5          ; plusThis = 5

; The compiler uses constant propagation

; to compute:

;   sumLocal = usesParm( 5, 1 );

; at compile time. The result is six, which

; the compiler directly passes to print here:

    push   6

    

; Here's the result for the usesGlobal expansion,

; computed above:

    push   eax

    push   OFFSET FLAT:formatString ; 'string'

    call   _printf

    add    esp, 12     ;Remove printf parameters

    

; return 0;

    xor    eax, eax

    ret    0

_main      ENDP

_TEXT      ENDS

END

As you can see in this assembly language output, the compiler’s ability to 
optimize around global variables can be easily thwarted by the presence of 
some seemingly unrelated code. In this example, the compiler cannot deter-
mine that the call to the external geti() function doesn’t modify the value 
of the globalValue variable. Therefore, the compiler cannot assume that 
globalValue still has the value 1 when it computes the inline function result 
for usesGlobal. Use extreme caution when using global variables to communi-
cate information between a procedure or function and its caller. Code that 
is unrelated to the task at hand (such as the call to geti(), which probably 
doesn’t affect globalValue’s value) can prevent the compiler from optimizing 
code that uses global variables.

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 547

16.5 Activation Records and the Stack

Because of how a stack works, the last procedure activation record the soft-
ware creates will be the first activation record that the system deallocates. 
Because activation records hold procedure parameters and local variables, a 
last-in, first-out (LIFO) organization is a very intuitive mechanism for imple-
menting activation records. To see how this works, consider the following 
(trivial) Pascal program:

program ActivationRecordDemo;

    procedure C;

    begin

        (* Stack Snapshot here *)

    end;

    procedure B;

    begin

        C;

    end;

    procedure A;

    begin

        B;

    end;

begin (* Main Program *)

    A;

end.

Figure 16-2 shows the stack layout as this program executes. When the 
program begins execution, it first creates an activation record for the main 
program. The main program calls the A procedure (step 1 in Figure 16-2). 
Upon entry into the A procedure, the code completes the construction of the 
activation record for A; this effectively pushes A’s activation record onto the 
stack. Once inside procedure A, the code calls procedure B (step 2). Note that 
A is still active while the code calls B, so A’s activation record remains on the 
stack. Upon entry into B, the system builds B’s activation record and pushes 
this activation record onto the top of the stack (step 3). Once inside B, the 
code calls procedure C and C builds its activation record on the stack. Upon 
arriving at the comment (* Stack Snapshot here *) the stack looks like that 
shown at step 4 in Figure 16-2.

No Starch Press, Copyright © 2006 by Randall Hyde



548 Chap te r 16

Figure 16-2: Stack layout after three nested procedure calls

Because procedures keep their local variables and parameter values in 
their activation record, the lifetime of these variables extends from the point 
the system first creates the activation record until the system deallocates the 
activation record when the procedure returns to its caller. In the diagram 
above, you’ll notice that A’s activation record remains on the stack during the 
execution of the B and C procedures. Therefore, the lifetime of A’s parameters 
and local variables completely brackets the lifetimes of B’s and C’s activation 
records.

Now consider the following C/C++ code with a recursive function:

void recursive( int cnt )

{

    if( cnt != 0 )

    {

        recursive( cnt - 1 );

    }

}

int main( int argc; char **argv )

{

    recursive( 2 );

}

It should be clear that this program will call the recursive function three 
times before it begins returning (the main program calls recursive once with 
the parameter value 2; recursive calls itself twice with the parameter values 1 
and 0). Because each recursive call to recursive pushes another activation 
record before the current call returns, when this program finally hits the if
statement in the code above with cnt equal to 0, the stack looks something 
like that in Figure 16-3. 

Stack
pointer

Call procedure A

Activation record just pushed onto stack

Unused stack memory

Previous stack contents

A A A

B B

C

Call procedure B Call procedure C At the comment
(* Stack Snapshot here *)

4

Stack
pointer

Stack
pointer

Stack
pointer

1 2 3

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 549

Figure 16-3: Stack layout after three recursive procedure calls

Because each procedure invocation has a separate activation record, 
each activation of the procedure will have its own copy of the parameters and 
local variables. While the code for a procedure or function is executing, it 
will access only those local variables and parameters in the activation record 
it has most recently created,2 thus preserving the values from previous calls 
(as we would expect).

16.5.1 Composition of the Activation Record
Now that you’ve seen how procedures manipulate activation records on the 
stack, it’s time to take a look at the internal composition of a typical activa-
tion record. In this section we’ll use a typical activation record layout that 
you’ll see when executing code on an 80x86. Although different languages, 
different compilers, and different CPUs lay out the activation record differ-
ently, these differences, if they exist at all, will be minor.

The 80x86 maintains the stack and activation records using two registers: 
ESP (the stack pointer) and EBP (the frame-pointer register, which Intel 
calls the base pointer register). The ESP register points at the current top of 
stack, and the EBP register points at the base address of an activation record.3

A procedure can access objects within its activation record by using the 
indexed addressing mode (see Section 3.6.5, “Indexed Addressing Mode”) 
and supplying a positive or negative offset from the value in the EBP register. 
Generally, a procedure will allocate memory storage for local variables at 

2 The only exception occurs when a procedure recursively calls itself and passes one of its local 
variables or parameters by reference to the new invocation.
3 Some people call activation records stack frames which is where the phrase frame pointer comes 
from. Intel chose the name base pointer for the EBP register because it points at the base address 
of the stack frame.

Activation record just pushed onto stack

Unused stack memory

Previous stack contents

Call procedure A

A(2) A(2) A(2)

A(1) A(1)

A(0)

Call procedure A Call procedure A At the if statement
after the third call

Stack
pointer

Stack
pointer

Stack
pointer

Stack
pointer

1 2 3 4

No Starch Press, Copyright © 2006 by Randall Hyde



550 Chap te r 16

negative offsets from EBP’s value and for parameters at positive offsets from 
EBP. Consider the following Pascal procedure that has both parameters and 
local variables:

procedure HasBoth( i:integer; j:integer; k:integer );

var

    a  :integer;

    r  :integer;

    c  :char;

    b  :char;

    w  :smallint;  (* smallints are 16 bits *)

begin

        .

        .

        .

end;

Figure 16-4 shows a typical activation record for this Pascal procedure 
(remember, when looking at this diagram, that the stack grows toward lower 
member on the 80x86).

Figure 16-4: A typical activation record

When you see the term base associated with a memory object, you 
probably think that the base address is the lowest address of that object in 
memory. However, there is no such requirement. The base address is simply 
the address in memory on which you base the offsets to particular fields of 
that object. As this activation record demonstrates, 80x86 activation record 
base addresses are actually in the middle of the record.

Construction of the activation record occurs in two phases. The first 
phase begins in the code that calls the procedure when that code pushes the 
parameters for the call onto the stack. For example, consider the following 
call to HasBoth in the previous example:

HasBoth( 5, x, y + 2 );

Previous
stack

contents

i‘s value

j‘s value

k‘s value

Return address

Old EBP value EBP

a

r
c
b
w

+0

–4

–8
–9
–10
–12

+4

+8

+12

+16

Offset from EBP

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 551

The HLA/x86 assembly code that might correspond to this call is

        pushd( 5 );

        push( x );

        mov( y, eax );

        add( 2, eax );

        push( eax );

        call HasBoth;

The three push instructions in this code sequence build the first three 
double words of the activation record, and the call instruction pushes a 
return address onto the stack, thereby creating the fourth double word in the 
activation record. After the call, execution continues in the HasBoth proce-
dure itself, where the program continues to build the activation record.

The first few instructions of the HasBoth procedure are responsible for 
finishing the construction of the activation record. Immediately upon entry 
into HasBoth, the stack takes the form shown in Figure 16-5. 

Figure 16-5: Activation record upon entry to HasBoth

The first thing the procedure’s code should to do is to preserve the value 
in the 80x86 EBP register. On entry, EBP probably points at the base address 
of the caller’s activation record. On exit from HasBoth, EBP needs to contain 
its original value. Therefore, upon entry, HasBoth will need to push the current 
value of EBP on the stack in order to preserve EBP’s value. Next, the HasBoth
procedure needs to change EBP so that it points at the base address of HasBoth's
activation record. The following HLA/x86 code takes care of these two 
operations:

// Preserve caller's base address.

        

        push( ebp ); 

        

        // ESP points at the value we just saved. Use its address

        //  as the activation record's base address.

        

        mov( esp, ebp ); 

Finally, the code at the beginning of the HasBoth procedure needs to 
allocate storage for its local (automatic) variables. As you saw in Figure 16-4, 
those variables sit below the frame pointer in the activation record. To prevent 

Previous
stack

contents

i‘s value

j‘s value

k‘s value

Return address ESP+0

+4

+8

+12

Offset from ESP

No Starch Press, Copyright © 2006 by Randall Hyde



552 Chap te r 16

future pushes from wiping out the values in those local variables, the code 
has to set ESP to the address of the last double word of local variables in the 
activation record. This is easily accomplished by simply subtracting the num-
ber of bytes of local variables from ESP with the following single machine 
instruction:

sub( 12, esp );

The standard entry sequence for a procedure like HasBoth consists of the 
three machine instructions just considered: push( ebp );, mov( esp, ebp );,
and sub( 12, esp );. These three instructions complete the construction of 
the activation record inside the procedure. Just before returning, the Pascal 
procedure is responsible for deallocating the storage associated with the 
activation record. The standard exit sequence usually takes the following form 
(in HLA) for a Pascal procedure:

        // Deallocates the local variables 

        //  by copying EBP to ESP.

        mov( ebp, esp );

        

        // Restore original EBP value.

        

        pop( ebp );

        

        // Pops return address and 

        //  12 parameter bytes (3 dwords)

        

        ret( 12 ); 

The first instruction in this standard exit sequence deallocates storage 
for the local variables shown in Figure 16-4. Note that EBP is pointing at the 
old value of EBP; this value is stored at the memory address just above all the 
local variables. By copying the value in EBP to ESP, we move the stack pointer 
past all the local variables, effectively deallocating them. After copying the 
value in EBP to ESP, the stack pointer now points at the old value of EBP on 
the stack; therefore, the pop instruction in the sequence above restores EBP’s 
original value and leaves ESP pointing at the return address on the stack. The 
ret instruction in the standard exit sequence does two things: it pops the 
return address from the stack (and, of course, transfers control to this 
address), and it also removes 12 bytes of parameters from the stack. Because 
HasBoth has three double-word parameters, popping 12 bytes from the stack 
removes those parameters.

16.5.2 Assigning Offsets to Local Variables
This HasBoth example allocates local (automatic) variables in the order the 
compiler encounters them. A typical compiler maintains a current offset into 
the activation record for local variables (the initial value of current offset will 

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 553

be 0). Whenever the compiler encounters a local variable it simply subtracts 
the size of that variable from the current offset and then uses the new current 
offset value as the offset of the local variable (from EBP) in the activation 
record. For example, upon encountering the declaration for variable a, the 
compiler subtracts the size of a (4 bytes) from the current offset (0) and uses 
the result as the offset for a (–4). Next, the compiler encounters variable r
(which is also 4 bytes) and sets the current offset to –8 and assigns this offset 
to variable r. This process repeats for each of the local variables in the proce-
dure. This is a typical way compilers assign offsets to local variables.

Most languages, however, give compiler implementers a free reign with 
respect to how they allocate local objects. A compiler can rearrange the 
objects in the activation record if doing so will be more convenient. So while 
the previous paragraph describes the basic idea, you should not design any 
algorithms that depend on this allocation scheme because many compilers 
do it differently.

Many compilers will try to ensure that all local variables you declare have 
an offset that is a multiple of the object’s size. For example, suppose you have 
the following two declarations in a C function:

        char c;
        int  i;

Normally, you’d expect that the compiler would attach an offset like –1 
to the c variable and –5 to the (4-byte) int variable i. However, some CPUs 
(e.g., RISC CPUs) require the compiler to allocate double-word objects on a 
double-word boundary. Even on CPUs that don’t require this (for example, 
the 80x86), it may be faster to access a double-word variable if the compiler 
aligns it on a double-word boundary. For this reason, many compilers auto-
matically add padding bytes between local variables so that each variable 
resides at a natural offset in the activation record. In general, bytes may 
appear at any offset, words are happiest on even address boundaries, and 
double words should have a memory address that is a multiple of 4.

Although an optimizing compiler might automatically handle this 
alignment for you, the alignment does extract a certain cost—those extra 
padding bytes. Although compilers are usually free to rearrange the variables 
in an activation record as they see fit, most compilers do not always do this. 
Therefore, if you intertwine the definitions for several byte, word, double-
word, and other-sized objects in your local variable declarations, the compiler 
may wind up inserting several bytes of padding into the activation record. 
You can minimize this problem in your software by attempting to group as 
many like-sized objects together as is reasonable in your procedures and 
functions. Consider the following C/C++ code:

    char c0;

    int  i0;

    char c1;

    int  i1;

    char c2;

    int  i2;

No Starch Press, Copyright © 2006 by Randall Hyde



554 Chap te r 16

    char c3;

    int  i3;

An optimizing compiler may elect to insert 3 bytes of padding between 
each of the character variables above and the (4-byte) integer variable that 
immediately follows. This means that the code above will have about 12 bytes 
of wasted space (3 bytes for each of the character variables above). Now con-
sider the following declarations in the same C code:

    char c0;

    char c1;

    char c2;

    char c3;

    int  i0;

    int  i1;

    int  i2;

    int  i3;

In this example, the compiler will emit no extra padding bytes to the 
code. Why? Because characters (being 1 byte each) may begin at any address 
in memory. Therefore, the compiler can place the character variables above 
at offsets –1, –2, –3, and –4 within the activation record. Because the last char-
acter variable appears at an address that is a multiple of four, the compiler 
does not need to insert any padding bytes between c3 and i0 (i0 will naturally 
appear at offset –8 in the preceding declarations).

Therefore, you can help the compiler generate better code by arranging 
your declarations so that all like-sized objects are next to one another. Of 
course, you shouldn’t take this suggestion to an extreme. If such rearrange-
ment would make your program more difficult to read or maintain, you 
should carefully consider whether this idea is worthwhile in your program. 
But in the absence of other negative factors, organizing your local variable 
declarations by size is probably a good idea.

16.5.3 Associating Offsets with Parameters
Compilers are given considerable leeway with respect to how they assign offsets 
to local (automatic) variables within a procedure. As long as the compiler uses 
these offsets consistently, the exact allocation algorithm the compiler uses is 
almost irrelevant; indeed, a compiler could use a different allocation scheme 
in different procedures of the same program. Note, however, that a proce-
dure doesn’t have a free hand when assigning offsets to parameters. The 
compiler has to live with certain restrictions on the assignment of offsets to 
parameters because other code outside the procedure accesses those param-
eters. Specifically, the procedure and the calling code must agree on the 
layout of the parameters in the activation record because the calling code 
needs to build the parameter list. Note that the calling code might not be in 
the same source file. Indeed, the code calling a procedure could be in a differ-
ent programming language. Therefore, compilers need to adhere to certain 

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 555

calling conventions to ensure interoperability between a procedure and what-
ever code calls that procedure. This section will explore the three common 
calling conventions for Pascal/Delphi/Kylix and C/C++.

16.5.3.1 The Pascal Calling Convention

In Pascal (including Delphi and Kylix) the standard parameter-passing 
convention is to push the parameters on the stack in the order of their 
appearance in the parameter list. Consider, again, the following call to the 
HasBoth procedure from the earlier example:

HasBoth( 5, x, y + 2 );

The following assembly code implements this call:

        // Push the value for parameter i:

        

        pushd( 5 );       

        

        // Push x's value for parameter j:

        

        push( x );

        

        // Compute y + 2 in EAX and push this as the value

        //  for parameter k:

        

        mov( y, eax );          

        add( 2, eax );    

        push( eax );

        

        // Call the HasBoth procedure with these 

        // three parameter values:

        

        call HasBoth; 

When assigning offsets to a procedure’s formal parameters, the compiler 
assigns the highest offset to the first parameter and the lowest offset to the 
last parameter. Because the old value of EBP is at offset 0 in the activation 
record and the return address is at offset 4, the last parameter in the activa-
tion record (when using the Pascal calling convention on the 80x86 CPU) 
will reside at offset 8 from EBP. Looking back at Figure 16-4 you can see that 
parameter k is at offset +8, parameter j is at offset +12, and parameter i (the 
first parameter) is at offset +16 in the activation record.

The Pascal calling convention also stipulates that it is the procedure’s 
responsibility to remove the parameters the caller pushes when the procedure 
returns to its caller. As you saw earlier, the 80x86 CPU provides a variant of 
the ret instruction that lets you specify how many bytes of parameters to 
remove from the stack upon return. Therefore, a procedure that uses the 
Pascal calling convention will typically supply the number of parameter bytes 
as an operand to the ret instruction when returning to its caller.

No Starch Press, Copyright © 2006 by Randall Hyde



556 Chap te r 16

16.5.3.2 The C Calling Convention

The C/C++/Java languages employ another very popular calling convention, 
generally known as the cdecl calling convention (or, simply, the C calling 
convention). There are two major differences between the  C and Pascal 
calling conventions. First, calls to functions that use the C calling convention 
must push their parameters on the stack in the reverse order. That is, the 
first parameter must appear at the lowest address on the stack (assuming the 
stack grows downward), and the last parameter must appear at the highest 
address in memory. The second difference is that C requires the caller, 
rather than the function, to remove all parameters from the stack. 

Consider the following version of HasBoth written in C instead of Pascal:

void HasBoth( int i, int j, int k )

{

    int a;

    int r;

    char c;

    char b;

    short w;  /* assumption: short ints are 16 bits */

        .

        .

        .

}

Figure 16-6 provides the layout for a typical HasBoth activation record 
(written in C). If you look closely, you’ll see the difference between it and 
Figure 16-4. The positions of the i and k variables are reversed in the acti-
vation record (it is only a coincidence that j happens to appear at the same 
offset in both activation records). 

Figure 16-6: HasBoth activation record in C

Previous
stack

contents

k’s value

j‘s value

i‘s value

Return address

Old EBP value EBP

a

r
c
b
w

+0

–4

–8
–9
–10
–12

+4

+8

+12

+16

Offset from EBP

ESP

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 557

Because the C calling convention reverses the order of the parameters 
and it is the caller’s responsibility to remove all parameter values from the 
stack, the calling sequence for HasBoth is a little different in C than in Pascal. 
Consider the following call to HasBoth and its corresponding assembly code:

HasBoth( 5, x, y + 2 );

Here’s the HLA assembly code for this call:

        // Compute y + 2 in EAX and push this 

        //  as the value for parameter k

        mov( y, eax );    

        add( 2, eax );    

        push( eax );

        

        // Push x's value for parameter j

        

        push( x );

        

        // Push the value for parameter i

        

        pushd( 5 ); 

        

        // Call the HasBoth procedure with 

        //  these three parameter values

        

        call HasBoth; 

        

        // Remove parameters from the stack.

        

        add( 12, esp ); 

This code differs in two ways with the assembly code for the Pascal imple-
mentation; both differences are a result of the use of the C calling convention. 
First, this assembly code pushes the values of the actual parameters in the 
opposite order of the Pascal code; that is, it first computes y+2 and pushes 
that value, then it pushes x and finally it pushes the value 5. The second 
difference above is the inclusion of the add(12,esp); instruction immediately 
after the call. This instruction removes 12 bytes of parameters from the stack 
upon return. The return from HasBoth will use only the ret instruction, not 
the ret n instruction.

16.5.3.3 Passing Parameters in Registers

As you can see by looking at these examples, a fair amount of code is needed 
to pass parameters between two procedures or functions when passing param-
eters on the stack. Good assembly language programmers have long known 
that it is better to pass parameters in registers. Therefore, several 80x86 
compilers following Intel’s ABI (Application Binary Interface) rules may 
attempt to pass as many as three parameters in the EAX, EDX, and ECX 

No Starch Press, Copyright © 2006 by Randall Hyde



558 Chap te r 16

registers.4 Most RISC processors specifically set aside a set of registers for 
passing parameters between functions and procedures; for example, the 
PowerPC reserves eight general-purpose registers, R3..R10, to hold param-
eter values. The only problem with passing parameters in the registers is 
that both the caller and callee need to agree on which registers and how 
many registers to use for the parameters. Fortunately, many CPU manu-
facturers specify a convention (e.g., Intel’s 80x86 ABI and IBM’s PowerPC 
ABI), so as long as the compiler follows the convention a small degree of 
interoperability is possible.

Most CPUs require that the stack pointer remain aligned on some rea-
sonable boundary (for example, a double-word boundary), and CPUs that 
don’t absolutely require this may perform much better if you keep the stack 
pointer aligned properly. Furthermore, many CPUs (the 80x86 included) 
cannot easily push certain small-sized objects, like bytes, onto the stack. There-
fore, most compilers reserve a minimum number of bytes for a parameter 
(typically 4), regardless of its actual size. As an example, consider the 
following HLA procedure fragment:

    procedure OneByteParm( b:byte ); @nodisplay;

        // local variable declarations

    begin OneByteParm;

        .

        .

        .

    end OneByteParm;

The activation record for this procedure appears in Figure 16-7. As you 
can see in this diagram, the HLA compiler reserves 4 bytes for the b parameter 
even though b is only a byte variable. This extra padding ensures that the ESP 
register will remain aligned on a double-word boundary.5 We will be able to 
easily push the value of b onto the stack in the code that calls OneByteParm
using a 4-byte push instruction.6

Even if your program could access the extra bytes of padding associated 
with the b parameter, doing so is never a good idea. Unless you’ve explicitly 
pushed the parameter onto the stack (e.g., using assembly language code), 
there is no guarantee about the data values that appear in the padding 
bytes. In particular, they may not contain 0. Nor should your code assume 
that the padding is present or that the compiler pads such variables out to 
4 bytes. Some 16-bit processors may only require a single byte of padding. 
Some 64-bit processors may require 7 bytes of padding. Some compilers 
on the 80x86 may use 1 byte of padding while others use 3 bytes. Unless 

4  The number of parameters chosen, three, is not arbitrary. Studies in software engineering 
strongly suggest that most user-written procedures have three or fewer parameters.
5  Assuming, of course, it was so aligned prior to appearance of the b parameter on the stack.
6  The 80x86 does not directly support 1-byte pushes onto the stack, so if the compiler only 
reserved 1 byte of storage for this parameter, it would take several machine instructions in order 
to simulate that 1-byte push.

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 559

you’re willing to live with code that only one compiler can compile (and 
code that could break when the next version of the compiler comes along), 
it’s best to ignore these padding bytes.

Figure 16-7: OneByteParm activation record

16.5.4 Accessing Parameters and Local Variables
Once a subroutine sets up the activation record, accessing local (automatic) 
variables and parameters is easy. The machine code simply uses the indexed 
addressing mode to access such objects. Consider again the activation record 
in Figure 16-4. The variables in the HasBoth procedure have the offsets found in 
Table 16-1.

The compiler allocates static local variables in a procedure at a fixed 
address in memory. Static variables do not appear in the activation record. 
Therefore, the CPU accesses static objects using the direct addressing mode.7

As you may recall from Chapter 3, in 80x86 assembly language instructions 
that use the direct address mode need to encode the full 32-bit address as 
part of the machine instruction. Therefore, instructions that use the direct

Table 16-1: Offsets to Local Variables and Parameters in HasBoth (Pascal Version)

Variable Offset Addressing Mode Example

i +16 mov( [ebp+16], eax );

j +12 mov( [ebp+12], eax );

k +8 mov( [ebp+8], eax );

a –4 mov( [ebp-4], eax );

r –8 mov( [ebp-8], eax );

c –9 mov( [ebp-9], al );

b –10 mov( [ebp-10], al );

w –12 mov( [ebp-12], ax );

7 Assuming the object is a scalar object. If it is an array, for example, the machine code may use 
the indexed addressing mode to access elements of the static array.

Previous stack contents

Return address

ESP

EBP
Old EBP value

Local variables

b‘s current value EBP + 8
EBP + 9
EBP + 10
EBP + 11

Unused bytes

No Starch Press, Copyright © 2006 by Randall Hyde



560 Chap te r 16

addressing mode are usually at least 5 bytes long (and are often longer). On 
the 80x86, if the offset from EBP is –128 through +127, then a compiler can 
encode an instruction of the form [ebp+constant] in as few as 2 or 3 bytes. 
Such instructions will be more efficient that those that encode a full 32-bit 
address. The same principle applies on other processors, even if those CPUs 
provide different addressing modes, address sizes, and so on. Specifically, 
access to local variables whose offset is relatively small is generally more 
efficient than accessing static variables or variables with larger offsets.

Because most compilers allocate offsets for local (automatic) variables as 
the compiler encounters them, the first 128 bytes of local variables will be the 
ones with the shortest offsets (at least, on the 80x86; this value may be differ-
ent for other processors).

Consider the following two sets of local variable declarations (presumably 
appearing with some C function):

    // Declaration set #1:

    char string[256];

    int i;

    int j;

    char c;

Here’s a second version of the declarations above:

    // Declaration set #2

    int i;

    int j;

    char c;

    char string[256];

Although these two declaration’s sections are semantically identical, 
there is a big difference in the code a compiler for the 80x86 generates to 
access these variables. In the first preceding declaration, the variable string
appears at offset –256 within the activation record, i appears at offset –260, 
j appears at offset –264, and c appears at offset –265. Because these offsets 
are outside the range –128..+127, the compiler will have to emit machine 
instructions that encode a 4-byte offset constant rather than a 1-byte con-
stant. As such, the code associated with these declarations will be larger and 
may run slower.

Now consider the second preceding declaration. In this example the 
programmer declares the scalar (non-array) objects first. Therefore, the 
variables have the following offsets: i =– 4, j =– 8, c =– 9, and string =– 265.
This turns out to be the optimal configuration for these variables (i, j, and 
c will use 1-byte offsets; string will require a 4-byte offset). 

This example demonstrates another rule you should try to follow when 
declaring local (automatic) variables: declare smaller, scalar, objects first 
within a procedure and put all the arrays, structures/records, and other 
large objects after the smaller objects.

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 561

As you may recall from an earlier discussion (Section 16.5.3, “Associating 
Offsets with Parameters”), if you declare several local objects with differing 
sizes adjacent to one another, the compiler may need to insert padding bytes 
to keep the larger objects aligned at an appropriate memory address. While 
worrying about a few wasted bytes here and there may seem ridiculous on 
machines with a gigabyte (or more) of RAM, those few extra bytes of padding 
may be just enough to push the offsets of certain local variables beyond –128. 
This would cause the compiler to emit 4-byte offsets rather than 2-byte offsets 
for those variables. So here is one more reason you should try to declare like-
sized local variables adjacent to one another.

On RISC processors, such as the PowerPC, the range of possible offsets 
is usually much greater than plus or minus 128. This is good, because once 
you exceed the range of the activation record offset that a RISC CPU can 
encode directly into an instruction, parameter and local variable access gets 
very expensive. Consider the following C program and PowerPC output 
(from GCC):

#include <stdio.h>

int main( int argc )

{

    int a;

    int b[256];

    int c;

    int d[16*1024*1024];

    int e;

    int f;

    a = argc;

    b[0] = argc + argc;

    b[255] = a + b[0];

    c = argc + b[1];

    d[0] = argc + a;

    d[4095] = argc + b[255];

    e = a + c;

    printf

    ( 

        "%d %d %d %d %d ", 

        a, 

        b[0], 

        c, 

        d[0], 

        e

    );

    return( 0 );

}

Here’s the PowerPC assembly output from GCC:

.data

        .cstring

        .align 2

        LC0:

No Starch Press, Copyright © 2006 by Randall Hyde



562 Chap te r 16

        .ascii "%d %d %d %d %d \0"

        .text

; Main function:

        .align 2

        .globl _main

_main:

        ;Set up main's activation record:

        mflr r0

        stmw r30,-8(r1)

        stw r0,8(r1)

        lis r0,0xfbff

        ori r0,r0,64384

        stwux r1,r1,r0

        mr r30,r1

        bcl 20,31,L1$pb

L1$pb:

        mflr r31

        ; The following allocates

        ; 16MB of storage on the

        ; stack (R30 is the stack

        ; pointer here).

        addis r9,r30,0x400

        stw r3,1176(r9)

        ;Fetch the value of argc

        ; into the R0 register:

        addis r11,r30,0x400

        lwz r0,1176(r11)

        stw r0,64(r30)      ;a = argc

        ;Fetch the value of argc

        ; into r9

        addis r11,r30,0x400

        lwz r9,1176(r11)

        ;Fetch the value of argc

        ; into R0:

        addis r11,r30,0x400

        lwz r0,1176(r11)

        ;Compute argc + argc and

        ; store it into b[0]:

        add r0,r9,r0

        stw r0,80(r30)

        ;Add a + b[0] and

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 563

        ; store into c:

        lwz r9,64(r30)

        lwz r0,80(r30)

        add r0,r9,r0

        stw r0,1100(r30)

        ;Get argc's value, add in

        ; b[1], and store into c:

        addis r11,r30,0x400

        lwz r9,1176(r11)

        lwz r0,84(r30)

        add r0,r9,r0

        stw r0,1104(r30)

        ;Compute argc + a and

        ; store into d[0]:

        addis r11,r30,0x400

        lwz r9,1176(r11)

        lwz r0,64(r30)

        add r0,r9,r0

        stw r0,1120(r30)

        ;Compute argc + b[255] and

        ; store into d[4095]:

        addis r11,r30,0x400

        lwz r9,1176(r11)

        lwz r0,1100(r30)

        add r0,r9,r0

        stw r0,17500(r30)

        ;Compute argc + b[255]:

        lwz r9,64(r30)

        lwz r0,1104(r30)

        add r9,r9,r0

; ************************************************

        ;Okay, here's where it starts

        ; to get ugly. We need to compute

        ; the address of e so we can store

        ; the result currently held in r9

        ; into e. But e's offset exceeds

        ; what we can encode into a single

        ; instruction, so we have to use

        ; the following sequence rather

        ; than a single instruction.

        lis r0,0x400

        ori r0,r0,1120

        stwx r9,r30,r0

; ************************************************

No Starch Press, Copyright © 2006 by Randall Hyde



564 Chap te r 16

        ;The following sets up the

        ; call to printf and calls printf:

        addis r3,r31,ha16(LC0-L1$pb)

        la r3,lo16(LC0-L1$pb)(r3)

        lwz r4,64(r30)

        lwz r5,80(r30)

        lwz r6,1104(r30)

        lwz r7,1120(r30)

        lis r0,0x400

        ori r0,r0,1120

        lwzx r8,r30,r0

        bl L_printf$stub

        li r0,0

        mr r3,r0

        lwz r1,0(r1)

        lwz r0,8(r1)

        mtlr r0

        lmw r30,-8(r1)

        blr

; Stub, to call the external printf function:

        .data

        .picsymbol_stub

L_printf$stub:

        .indirect_symbol _printf

        mflr r0

        bcl 20,31,L0$_printf

L0$_printf:

        mflr r11

        addis r11,r11,ha16(L_printf$lazy_ptr-L0$_printf)

        mtlr r0

        lwz r12,lo16(L_printf$lazy_ptr-L0$_printf)(r11)

        mtctr r12

        addi r11,r11,lo16(L_printf$lazy_ptr-L0$_printf)

        bctr

.data

.lazy_symbol_pointer

L_printf$lazy_ptr:

        .indirect_symbol _printf

        .long dyld_stub_binding_helper

This compilation was done under GCC without optimization to show 
what happens when your activation record grows to the point you can no 
longer encode activation record offsets into the instruction.

To encode the address of e, whose offset is too large, we need these three 
instructions:

        lis r0,0x400

        ori r0,r0,1120

        stwx r9,r30,r0

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 565

instead of a single instruction that stores R0 into the a variable, such as:

        stw r0,64(r30)      ;a = argc

While two extra instructions in a program of this size might seem 
insignificant, keep in mind that the compiler will generate these extra 
instructions for each such access. If you access a local variable with a huge 
offset frequently, the compiler may generate a significant number of extra 
instructions throughout your function or procedure.

Of course, in a standard application running on a RISC, this problem 
rarely occurs because we rarely allocate local storage beyond the range that a 
single instruction can encode. Also, RISC compilers generally allocate scalar 
(non-array/non-structure) objects in registers rather than blindly allocating 
them at the next memory address in the activation record. For example, if 
you turn on GCC’s optimization with the -O2 command-line switch, you’ll get 
the following PowerPC output:

.globl _main

_main:

; Build main's activation record:

        mflr r0

        stw r31,-4(r1)

        stw r0,8(r1)

        bcl 20,31,L1$pb

L1$pb:

        ;Compute values, set up parameters,

        ; and call printf:

        lis r0,0xfbff

        slwi r9,r3,1

        ori r0,r0,64432

        mflr r31

        stwux r1,r1,r0

        add r11,r3,r9

        mr r4,r3

        mr r0,r3

        lwz r6,68(r1)

        add r0,r0,r11 ;c = argc + b[1]

        stw r0,17468(r1)

        mr r5,r9

        add r6,r3,r6

        stw r9,64(r1)

        addis r3,r31,ha16(LC0-L1$pb)

        stw r11,1084(r1)

        stw r9,1088(r1)

        la r3,lo16(LC0-L1$pb)(r3)

        mr r7,r9

        add r8,r4,r6

        bl L_printf$stub

No Starch Press, Copyright © 2006 by Randall Hyde



566 Chap te r 16

; Clean up main's activation

; record and return zero:

        lwz r1,0(r1)

        li r3,0

        lwz r0,8(r1)

        lwz r31,-4(r1)

        mtlr r0

        blr

One thing that you’ll notice in this version with optimization enabled 
is that GCC did not allocate variables in the activation record as they were 
encountered. Instead, it placed most of the objects in registers (even array 
elements). Keep in mind that an optimizing compiler may very well rearrange 
all the local variables you declare.

If you find the optimized PowerPC code a bit hard to follow, consider 
the following 80x86 GCC output for the same C program:

.file   "t.c"

        .section        .rodata.str1.1,"aMS",@progbits,1

.LC0:

        .string "%d %d %d %d %d "

        .text

        .p2align 2,,3

        .globl main

        .type   main,@function

main:

        ;Build main's activation record:

        pushl   %ebp

        movl    %esp, %ebp

        pushl   %ebx

        subl    $67109892, %esp

        ;Fetch ARGC into ECX:

        movl    8(%ebp), %ecx

        ; EDX = 2*argc:

        leal    (%ecx,%ecx), %edx

        ; EAX = a (ECX) + b[0] (EDX):

        leal    (%edx,%ecx), %eax

        ; c (ebx) = argc (ecx) + b[1]:

        movl    %ecx, %ebx

        addl    -1028(%ebp), %ebx

        movl    %eax, -12(%ebp)

        ;Align stack for printf call:

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 567

        andl    $-16, %esp

        ;d[0] (eax) = argc (ecx) + a (eax);

        leal    (%eax,%ecx), %eax

        ; Make room for printf parameters:

        subl    $8, %esp

        movl    %eax, -67093516(%ebp)

        ; e = a + c

        leal    (%ebx,%ecx), %eax

        pushl   %eax    ;e

        pushl   %edx    ;d[0]

        pushl   %ebx    ;c

        pushl   %edx    ;b[0]

        pushl   %ecx    ;a

        pushl   $.LC0

        movl    %edx, -1032(%ebp)

        movl    %edx, -67109896(%ebp)

        call    printf

        xorl    %eax, %eax

        movl    -4(%ebp), %ebx

        leave

        ret

Of course, the 80x86 doesn’t have as many registers to use for passing 
parameters and holding local variables, so the 80x86 code has to allocate 
more locals in the activation record. Also, the 80x86 only provides an offset 
range of –128 to +127 bytes around the EBP register, so a larger number of 
instructions have to use the 4-byte offset rather than the 1-byte offset. For-
tunately, the 80x86 does allow you to encode a full 32-bit address as part of 
the instructions that access memory, so you don’t have to execute multiple 
instructions in order to access a variable stored a long distance away from 
where EBP points in the stack frame.

16.6 Parameter-Passing Mechanisms

Most high-level languages provide at least two mechanisms for passing actual 
parameter data to a subroutine: pass-by-value and pass-by-reference.8 In 
languages like Visual Basic, Pascal, and C++, declaring and using both types 
of parameters is so easy that a programmer may conclude that there is little 
difference in efficiency between the two mechanisms. That’s a fallacy this 
section intends to eradicate.

8 The C language only allows pass-by-value, but it easily lets you take an address of some object so 
that you can easily simulate pass-by-reference. C++ fully supports pass-by-reference parameters.

No Starch Press, Copyright © 2006 by Randall Hyde



568 Chap te r 16

NOTE Before discussing the details of the pass-by-value and pass-by-reference parameter-passing 
mechanisms, I should briefly mention that there are other parameter-passing mechanisms. 
FORTRAN and HLA, for example, support a mechanism known as pass-by-value/result 
(or pass-by-value/returned). Ada and HLA support a pass-by-result parameter-passing 
mechanism. HLA and Algol support a parameter-passing mechanism known as pass-
by-name. There are even some other parameter-passing schemes. This text will not discuss 
these alternative parameter-passing mechanisms because you probably won’t see them 
very often. To use one of these parameter-passing schemes, consult a good book on 
programming language design or the HLA documentation.

16.6.1 Pass-by-Value
Pass-by-value is the easiest parameter-passing mechanism to understand. The 
code that calls a procedure makes a copy of the parameter’s data and passes 
this copy to the procedure. For small values, passing a parameter by value 
generally requires little more than a push instruction (or an instruction that 
moves the value into a register when passing parameters in the registers). 
Therefore, passing parameters by value is often very efficient.

One big advantage of pass-by-value parameters is that the CPU treats 
them just like a local variable within the activation record. Because you’ll 
rarely have more than 120 bytes of parameter data that you pass to a pro-
cedure, CPUs that provide a shortened displacement with the indexed 
addressing mode will be able to access most parameter values using a 
shorter (and, therefore, more efficient) instruction.

The one time when passing a parameter by value can be inefficient is 
when you need to pass a large data structure such as an array or record. The 
calling code needs to make a byte-for-byte copy of the actual parameter into 
the procedure’s activation record, as you saw in an earlier example. This can 
be a very slow process, for example, if you decide to pass a million-element 
array to a subroutine by value. Therefore, you should avoid passing large 
objects by value unless absolutely necessary.

16.6.2 Pass-by-Reference
The pass-by-reference mechanism passes the address of an object rather than 
its value. This has a couple of distinct advantages over pass-by-value. First, 
regardless of the parameter’s size, pass-by-reference parameters always 
consume the same amount of memory—the size of a pointer (usually a 
double word). Second, pass-by-reference parameters provide the ability to 
modify the value of the actual parameter, something that is impossible with 
pass-by-value parameters.

Pass-by-reference parameters are not without their drawbacks. Usually, 
accessing a reference parameter within a procedure is more expensive 
than accessing a value parameter. This is because the subroutine needs to 
dereference that address on each access of the object. This generally involves 
loading a register with the pointer in order to dereference the pointer using 
a register indirect addressing mode.

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 569

For example, consider the following Pascal code:

    procedure RefValue

    ( 

        var dest:integer; 

        var passedByRef:integer; 

            passedByValue:integer 

    );      

    begin

        dest := passedByRef + passedByValue;

    end;

Here’s the HLA/x86 assembly code that is equivalent to this procedure:

    procedure RefValue

    ( 

    var     dest:int32;

    var     passedByRef:int32;  

            passedByValue:int32 

    ); @noframe;

    begin RefValue;

        // Standard Entry Sequence (needed because of @noframe).

        // Set up base pointer. 

        // Note: don't need SUB(nn,esp) because

        // we don't have any local variables.

    

        push( ebp );       

        mov( esp, ebp );   

                           

        // Get pointer to actual value.

        

        mov( passedByRef, edx );

        

        // Fetch value pointed at by passedByRef

        

        mov( [edx], eax );

        

        // Add in the value parameter.

        

        add( passedByValue, eax );

        

        // Get address of destination reference parameter.

        

        mov( dest, edx );

        

        // Store sum away into dest.

        

        mov( eax, [edx] );         

        // Exit sequence doesn't need to deallocate any local

        //  variables because there are none.

No Starch Press, Copyright © 2006 by Randall Hyde



570 Chap te r 16

        

        pop( ebp );        

        ret( 12 );         

    end RefValue;

If you look closely at this code, you’ll notice that it requires two more 
instructions than a version that uses pass-by-value specifically, the two instruc-
tions that load the addresses of dest and passedByRef into the EDX register. 
In general, only a single instruction is needed to access the value of a pass-
by-value parameter. However, two instructions are needed to manipulate the 
value of a parameter when you pass it by reference (one instruction to fetch 
the address and one to manipulate the data at that address). Therefore, 
unless you need the semantics of pass-by-reference, you should try to use 
pass-by-value rather than pass-by-reference.

The issues with pass-by-reference tend to diminish when your CPU has 
lots of available registers that it can use to maintain the pointer values. In 
such situations, the CPU can use a single instruction to fetch or store a value 
via a pointer that is maintained in the register.

16.7 Function Return Values

Most HLLs return function results in one or more CPU registers. Exactly 
which register the compiler uses depends on the data type, CPU, and 
compiler. For the most part, however, functions return their results in 
registers.

On the 80x86, most functions that return ordinal (integer) values 
return their function results in the AL, AX, or EAX register. Functions 
that return 64-bit values (long long int) generally return the function result 
in the EDX:EAX register pair (with EDX containing the HO double word 
of the 64-bit value). On 64-bit variants of the 80x86 family, 64-bit compilers 
return 64-bit results in the RAX register. On the PowerPC, most compilers 
follow the IBM ABI and return 8-, 16-, and 32-bit values in the R3 register. 
Compilers for the 32-bit versions of the PowerPC return 64-bit ordinal 
values in the R4:R3 register pair (with R4 containing the HO word of the 
function result). Presumably, compilers running on 64-bit variants of the 
PowerPC can return 64-bit ordinal results directly in R3.

Generally, compilers return floating-point results in one of the CPU’s 
(or FPU’s) floating-point registers. On 32-bit variants of the 80x86 CPU family, 
most compilers return a floating-point result in the 80-bit ST0 floating-point 
register. Although the 64-bit versions of the 80x86 family also provide the same 
FPU registers as the 32-bit members, some OSes such as Windows64 typically 
use one of the SSE registers (XMM0) to return floating-point values. PowerPC 
systems generally return floating-point function results in the F1 floating-point 
register. Other CPUs return floating-point results in comparable locations.

Some languages allow a function to return a nonscalar (aggregate) 
value. The exact mechanism that compilers use to return large function 
return results varies from compiler to compiler. However, a typical solution is 

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 571

to pass a function the address of some storage where the function can place 
the return result. As an example, consider the following short C++ program 
whose func function returns a structure object:

#include <stdio.h>

typedef struct

{

    int a;

    char b;

    short c;

    char d;

} s_t;

s_t func( void )

{

    s_t s;

    s.a = 0;

    s.b = 1;

    s.c = 2;

    s.d = 3;

    return s;

}

int main( void )

{

    s_t t;

    t = func();

    printf( "%d", t.a, func().a );

    return( 0 );

}

Here’s the PowerPC code that GCC emits for this C++ program:

.text

        .align 2

        .globl _func

; func() -- Note: upon entry, this

;           code assumes that R3

;           points at the storage

;           to hold the return result.

_func:

        li r0,1

        li r9,2

        stb r0,-28(r1) ;s.b = 1

        li r0,3

        stb r0,-24(r1) ;s.d = 3

        sth r9,-26(r1) ;s.c = 2

        li r9,0        ;s.a = 0

No Starch Press, Copyright © 2006 by Randall Hyde



572 Chap te r 16

        ;Okay, set up the return

        ; result.

        lwz r0,-24(r1) ;r0 = d::c

        stw r9,0(r3)   ;result.a = s.a   

        stw r0,8(r3)   ;result.d/c = s.d/c

        lwz r9,-28(r1)

        stw r9,4(r3)   ;result.b = s.b

        blr

        .data

        .cstring

        .align 2

LC0:

        .ascii "%d\0"

        .text

        .align 2

        .globl _main

_main:

        mflr r0

        stw r31,-4(r1)

        stw r0,8(r1)

        bcl 20,31,L1$pb

L1$pb:

        ;Allocate storage for t and

        ; temporary storage for second

        ; call to func:

        stwu r1,-112(r1)

        ; Restore LINK from above:

        mflr r31

        ;Get pointer to destination 

        ; storage (t) into R3 and call func:

        addi r3,r1,64

        bl _func

        ;Compute "func().a"

        addi r3,r1,80

        bl _func

        ;Get t.a and func().a values

        ; and print them:

        lwz r4,64(r1)

        lwz r5,80(r1)

        addis r3,r31,ha16(LC0-L1$pb)

        la r3,lo16(LC0-L1$pb)(r3)

        bl L_printf$stub

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 573

        lwz r0,120(r1)

        addi r1,r1,112

        li r3,0

        mtlr r0

        lwz r31,-4(r1)

        blr

;stub for printf function:

        .data

        .picsymbol_stub

L_printf$stub:

        .indirect_symbol _printf

        mflr r0

        bcl 20,31,L0$_printf

L0$_printf:

        mflr r11

        addis r11,r11,ha16(L_printf$lazy_ptr-L0$_printf)

        mtlr r0

        lwz r12,lo16(L_printf$lazy_ptr-L0$_printf)(r11)

        mtctr r12

        addi r11,r11,lo16(L_printf$lazy_ptr-L0$_printf)

        bctr

.data

.lazy_symbol_pointer

L_printf$lazy_ptr:

        .indirect_symbol _printf

        .long dyld_stub_binding_helper

Here’s the 80x86 code that GCC emits for this same function:

.file   "t.c"

        .text

        .p2align 2,,3

        .globl func

        .type   func,@function

;On entry, assume that the address

; of the storage that will hold the

; function's return result is passed

; on the stack immediately above the

; return address.

func:

        pushl   %ebp

        movl    %esp, %ebp

        subl    $24, %esp       ;Allocate storage for s.

        movl    8(%ebp), %eax   ;Get address of result

        movb    $1, -20(%ebp)   ;s.b = 1

        movw    $2, -18(%ebp)   ;s.c = 2

        movb    $3, -16(%ebp)   ;s.d = 3

        movl    $0, (%eax)      ;result.a = 0;

        movl    -20(%ebp), %edx ;Copy the rest of s

No Starch Press, Copyright © 2006 by Randall Hyde



574 Chap te r 16

        movl    %edx, 4(%eax)   ; to the storage for

        movl    -16(%ebp), %edx ; the return result.

        movl    %edx, 8(%eax)

        leave

        ret     $4

.Lfe1:

        .size   func,.Lfe1-func

        .section        .rodata.str1.1,"aMS",@progbits,1

.LC0:

        .string "%d"

        .text

        .p2align 2,,3

        .globl main

        .type   main,@function

main:

        pushl   %ebp

        movl    %esp, %ebp

        subl    $40, %esp       ;Allocate storage for

        andl    $-16, %esp      ; t and temp result.

        ;Pass the address of t to func:

        leal    -24(%ebp), %eax

        subl    $12, %esp

        pushl   %eax

        call    func

        ;Pass the address of some temporary storage

        ; to func:

        leal    -40(%ebp), %eax

        pushl   %eax

        call    func

        ;Remove junk from stack:

        popl    %eax

        popl    %edx

        ;Call printf to print the two values:

        pushl   -40(%ebp)

        pushl   -24(%ebp)

        pushl   $.LC0

        call    printf

        xorl    %eax, %eax

        leave

        ret

The one thing that you should note from these 80x86 and PowerPC 
examples is that functions returning large objects often copy the function 
result data just prior to returning. This extra copying can take considerable 
time, especially if the return result is large. Instead of returning a large 

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 575

structure as a function result, as I’ve done above, it is usually a better 
solution to explicitly pass a pointer to some destination storage to a 
function that returns a large result and let the function do whatever 
copying is necessary. This often saves some time and code. Consider 
the following C code that implements this policy:

#include <stdio.h>

typedef struct

{

    int a;

    char b;

    short c;

    char d;

} s_t;

void func( s_t *s )

{

    s->a = 0;

    s->b = 1;

    s->c = 2;

    s->d = 3;

    return;

}

int main( void )

{

    s_t s,t;

    func( &s );

    func( &t );

    printf( "%d", s.a, t.a );

    return( 0 );

}

Here’s the conversion to 80x86 code by GCC:

.file   "t.c"

        .text

        .p2align 2,,3

.globl func

        .type   func,@function

func:

        pushl   %ebp

        movl    %esp, %ebp

        movl    8(%ebp), %eax

        movl    $0, (%eax)      ;s->a = 0

        movb    $1, 4(%eax)     ;s->b = 1

        movw    $2, 6(%eax)     ;s->c = 2

        movb    $3, 8(%eax)     ;s->d = 3

        leave

        ret

No Starch Press, Copyright © 2006 by Randall Hyde



576 Chap te r 16

.Lfe1:

        .size   func,.Lfe1-func

        .section        .rodata.str1.1,"aMS",@progbits,1

.LC0:

        .string "%d"

        .text

        .p2align 2,,3

.globl main

        .type   main,@function

main:

        ;Build activation record and allocate

        ; storage for s and t:

        pushl   %ebp

        movl    %esp, %ebp

        subl    $40, %esp

        andl    $-16, %esp

        subl    $12, %esp

        ;Pass address of s to func and

        ; call func:

        leal    -24(%ebp), %eax

        pushl   %eax

        call    func

        ;Pass address of t to func and

        ; call func:

        leal    -40(%ebp), %eax

        movl    %eax, (%esp)

        call    func

        ;Remove junk from stack:

        addl    $12, %esp

        ;Print the results:

        pushl   -40(%ebp)

        pushl   -24(%ebp)

        pushl   $.LC0

        call    printf

        xorl    %eax, %eax

        leave

        ret

As you can see, this approach is more efficient because the code doesn’t 
have to copy the data twice, once to a local copy of the data and once to the 
final destination variable.

No Starch Press, Copyright © 2006 by Randall Hyde



Func ti ons and Procedure s 577

16.8 For More Information

A good textbook on compiler design and implementation or programming 
language design is an excellent source of information concerning functions, 
procedures, and parameters. Many such books were listed in the previous 
chapters on control structures (Section 14.7, “For More Information”). The 
HLA programming language supports a wide variety of parameter-passing 
mechanisms beyond pass-by-value and pass-by-reference. You might check 
out the HLA reference manual at http://webster.cs.ucr.edu for more details 
on those parameter types.

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



E N G I N E E R I N G  S O F T W A R E

The goal of this volume, Thinking Low-
Level, Writing High-Level, was to get you 

to consider the impact of your high-level 
coding techniques on the machine code that 

the compiler generates for that code. Unless you 
understand the efficiency trade-offs of statements and 
data structures in your HLL programs, you won’t be 
able to produce efficient programs consistently. And if you want to write 
great code, you can’t write inefficient programs. However, as noted in 
Chapter 1 of this book, efficiency isn’t the only attribute that great code 
possesses. The first two volumes of this series, Understanding the Machine and 
Thinking Low-Level, Writing High-Level, have addressed some of the efficiency 
concerns facing modern programmers. The next volume in this series, 
Engineering Software, will head off in a different direction and discuss other 
attributes that great code possesses.

Write Great Code, Volume 3: Engineering Software begins discussing the 
personal software engineering aspects of programming. The field of software 
engineering is principally concerned with the management of large software 
systems. Personal software engineering, on the other hand, covers those 

No Starch Press, Copyright © 2006 by Randall Hyde



580 Engineer ing Software

topics germane to writing great code at a personal level: craftsmanship, art, 
and pride in workmanship. Engineering Software discusses things like coding 
styles, commenting, code layout, and other coding tasks that make code 
readable and easy to maintain. No matter how efficient your code is, if it 
is not readable and maintainable by others, then it’s not great code. In 
Engineering Software, I’ll begin to describe how to write code so that other 
people think it’s great, too.

Congratulations on your progress thus far toward knowing how to write 
great code. See you in Volume 3.

No Starch Press, Copyright © 2006 by Randall Hyde



A  B R I E F  C O M P A R I S O N  O F  
T H E 8 0 X 8 6  A N D  P O W E R P C  

C P U F A M I L I E S

The CPUs from the Intel/AMD 80x86 
and IBM/Motorola PowerPC families are 

the most popular CPUs found in personal 
computer systems and game consoles today. As 

such, more applications are written for these two 
CPU families than for any other. Although other 
processor families, such as MIPS and ARM, are quite popular in embedded 
systems, the majority of software applications are written for 80x86 or 
PowerPC CPUs. This is the main reason 80x86 and PowerPC examples 
appear in this book. 

Another reason this book’s examples use code produced for these two 
processors is that they provide representative samples of the two fundamental 
CPU designs in common use today: CISC and RISC. If you understand how to 
generate good code for one CISC processor, then you can do a decent job on 
any other CISC processor. The same is true for RISC processors. As the exam-
ples in this book demonstrate, however, there are some fundamental differ-
ences between RISC and CISC CPUs, so you should understand the differences 
between these two basic architectures when you write code that might have 

No Starch Press, Copyright © 2006 by Randall Hyde



582 Appendix

to run on either technology. The purpose of this appendix is to compare and 
contrast the 80x86 (CISC) and PowerPC (RISC) families and their impact on 
high-level language code.

A.1 Architectural Differences Between RISC and CISC

The architectural differences between the two processor families can be 
grouped into these categories:

� The amount of work accomplished per instruction

� The size of an individual instruction

� The clock speed and clock cycles per instruction

� Their methods of memory access and their addressing modes

� The number of registers they provide, and the way they use those registers

� Their use of immediate (constant) operands

� Their use of the stack

A.1.1 Work Accomplished per Instruction
Perhaps the most fundamental difference between the RISC and CISC philos-
ophies is the amount of work accomplished by a single instruction. Although 
today’s 80x86 CPUs aren’t “pure” CISC processors and the PowerPC CPUs 
aren’t “pure” RISC processors, the amount of work accomplished by individ-
ual instructions is one of the fundamental differences between these CPU 
families.

The original CISC philosophy was to do as much work per instruction 
as possible. Doing more work with fewer instructions meant that writing 
programs (in assembly language) was easier, and it was easier to write code 
generators for compilers.

RISC designs, on the other hand, attempt to perform only one operation 
per instruction. For this reason, it often takes two or more RISC instructions 
to do the same work as a single CISC instruction. As a result, RISC programs 
generally execute between 1.5 and 2.5 times as many instructions to do the 
same work as an equivalent program running on a CISC processor.

If all things were equal (and they are not), the CISC philosophy would 
win, hands down. In practice, however, there are several problems with design-
ing instructions to do as much work as possible. The main problem is that all 
this extra work isn’t achieved without cost. Instructions that do complex things 
often take longer to execute than simpler instructions. If you’re not fully 
utilizing all the features of a given instruction, then you’re paying an 
execution-time penalty for all those extra features you’re not using. In 
extreme cases, executing two or more simple instructions that accomplish 
only what you need may execute quicker than executing a single complex 
instruction that does more than you require.

As stated, the 80x86 is not a “pure” CISC processor, and the PowerPC 
is not a “pure” RISC processor. In order to remain competitive, Intel’s 
designers have utilized many RISC design principles in later variants of the 

No Starch Press, Copyright © 2006 by Randall Hyde



A Br ief  Compari son of the 80x86 and PowerPC CPU Fami lie s 583

80x86 family. They’ve provided a RISC instruction subset (called the RISC core); 
these instructions execute quickly by avoiding complex operations. Likewise, 
IBM’s designers have “corrupted” the RISC design philosophies in a couple 
of places in order to improve the CPU’s performance for many common 
operations by doing several operations with a single instruction. By and large, 
though, the 80x86 is still a representative CISC CPU and the PowerPC follows 
RISC design philosophies.

A.1.2 Instruction Size
Most CISC designs use a variable instruction length, whereas RISC designs 
use fixed instruction lengths. Instructions on the 80x86, for example, range 
in length from 1 byte to 15 bytes. PowerPC instructions, on the other hand, 
are always 4 bytes long.

From a memory-usage point of view, CISC designs are more efficient 
than RISC designs. A well-designed CISC instruction set can pack more 
instructions into the same memory, thereby using less memory to hold the 
same number of instructions. Combined with the fact that those (smaller) 
instructions often do more work than individual RISC instructions, CISC 
processors usually have a big advantage over RISC processors when it comes 
to instruction density (that is, the number of instructions appearing in a 
given block of memory).

Because many CISC instructions are greater than 4 bytes in length, you 
might wonder why CISC programs wouldn’t average more instruction bytes 
per program than a RISC counterpart. The answer is “work per instruction.” 
For example, loading a 32-bit constant into a 32-bit register typically requires 
a single 5-byte or 6-byte instruction on the 80x86. On the PowerPC, however, 
all instructions are 4 bytes long, so you cannot load a 32-bit constant into a 
register using a single instruction. You must leave some bits to hold the instruc-
tion’s opcode. This is why two (or more) 4-byte instructions are needed to 
load a 32-bit constant into a register on a typical RISC CPU.

A.1.3 Clock Speed and Clocks per Instruction
So far, it appears that the CISC design philosophy is the outright winner 
when comparing the two designs. CISC instructions do more work and, on 
the average, require less memory to do that work. All other things being 
equal, you might expect that programs running in a CISC processor would 
run faster than equivalent programs running on a RISC processor.

In fact, this assumption turns out to be false. The implicit assumption 
here is that all instructions take the same amount of time to execute, regard-
less of their size and complexity. In the real world, and especially for CISC 
processors, complex instructions often take far longer to execute than 
simpler instructions. Indeed, the holy grail of RISC design has always been 
to reduce instruction execution time to one clock per instruction (CPI) or 
less. Although contemporary 80x86 designs also attempt to achieve this goal 

No Starch Press, Copyright © 2006 by Randall Hyde



584 Appendix

for the “RISC core” instruction set, in reality the RISC CPUs (such as the 
PowerPC) tend to achieve the goal of one clock per instruction (or less) 
better than the 80x86.

Another stated goal for RISC design is to achieve higher operating 
frequencies than comparable CISC designs. By simplifying the instruction 
set, circuit paths within the CPU are also simplified, allowing the manufac-
turer to run their CPUs at a higher clock frequency. In practice, CPU clock 
frequency is dependent upon many things besides the instruction complexity. 
As this book was being written, the 80x86 was still the champion at the clock 
frequency competition. However, because 80x86 instructions typically take 
multiple clocks cycles to execute, the higher clock frequency does not always 
equate to faster running programs. In the area of clock speed, the 80x86 has 
the (current) advantage, but RISC CPUs such as the PowerPC still use fewer 
clocks per instruction, on the average.

A.1.4 Memory Access and Addressing Modes
One of the most fundamental differences between RISC and CISC designs 
has to do with memory access. RISC CPUs typically utilize a load/store architecture
that allows memory access only via specialized load and store instructions. No 
other instructions can access memory. Instead, they must operate on data in 
registers. CISC processors, on the other hand, allow most instructions to access 
operands in memory. If a program needs to access an object in memory, 
then the CISC approach is more efficient—the instruction that needs to 
access the data can do so directly. On a RISC CPU (such as the PowerPC), 
the program must first execute an instruction to load the memory value into 
a register and then operate on the data in that register. This assumes, of 
course, that a register is available to hold the data (the CISC approach doesn’t 
require an available register, because it can operate directly on the object in 
memory without first loading it into a register). Worse still, because RISC 
instructions are generally only 32 bits long, you cannot encode a full static 
memory address as part of an instruction; instead, RISC CPUs might need to 
execute two or more instructions to load the address of a memory location 
into a register prior to accessing that memory location indirectly through the 
register.

At first blush, the ability to access objects in memory would seem to give 
CISC processors a big advantage. There are, however, two problems with 
memory access:

� Memory access is slow. If the memory data is not in cache, the memory 
access could take one or two orders of magnitude longer than a corre-
sponding register access (and if the data has been paged out to disk by 
the virtual memory subsystem, access will be even slower).

� Encoding the address of the memory operand in the instruction takes 
considerable space. Accessing a simple global static object rather than a 
register, for example, can turn a 2-byte 80x86 instruction into a 6-byte 
80x86 instruction.

No Starch Press, Copyright © 2006 by Randall Hyde



A Br ief  Compari son of the 80x86 and PowerPC CPU Fami lie s 585

On modern computer systems, memory access is so slow (compared with 
register access) that efficient programs tend to minimize memory operations. 
Therefore, the advantage of superior memory access by CISC CPUs is under-
utilized, diminishing this advantage of CISC processors.

A.1.5 Registers
Most CPUs perform intermediate calculations in registers and use registers 
to hold parameter and local variable values (to avoid accessing memory). 
The more registers you have, the more data a CPU can manipulate without 
accessing main memory. This is one area where RISC processors have a huge 
advantage over CISC processors. A typical RISC CPU, like the PowerPC, pro-
vides 32 general-purpose registers, compared to the eight general-purpose 
registers found on a 32-bit 80x86 CPU.1 As a result, RISC CPUs do not have 
to access memory anywhere near as often as the 80x86 CPU does. Because 
register access is much faster than memor access, having these extra registers 
helps RISC CPUs overcome the fact that many operations require the exe-
cution of two or more RISC instructions to do the same work as one CISC 
instruction that can directly access memory.

A.1.6 Immediate (Constant) Operands
RISC and CISC CPUs often vary considerably with respect to the type of 
immediate operands that instructions allow. CISC CPUs support variable-
sized instructions that allow a program to specify 8-, 16-, 32-, and even 64-bit 
constant operands as part of a single instruction.2 RISC processors only allow 
a single 32-bit instruction format and, therefore, cannot encode an instruc-
tion opcode, destination register operand, and a large immediate constant 
into a single instruction. RISC CPUs, therefore, have to use two or more 
instructions to load large constant values into a register. This situation worsens 
as the instruction operands become larger (e.g., loading a 64-bit constant 
into a 64-bit variant of the PowerPC).

Although the 80x86 handles immediate integer constants well, you should 
note that it does not allow the encoding of immediate floating-point, MMX, 
or SSE values into an instruction. To load such constants into the 80x86, most 
programmers (or compilers) initialize a memory location with the constant 
value and load the contents of that memory location into the desired register. 
Code on the PowerPC CPU often works this same way for floating-point and 
Altivec constant operands.

A.1.7 Stacks
CISC CPUs generally provide a hardware stack that maintains subroutine 
return addresses, parameters, local variables, and other temporary values. 
Machine instructions such as call, ret, push, and pop automatically maintain 
data on the stack. These are classic examples of CISC instructions that perform 

1 The 64-bit variants of the 80x86 provide 16 general-purpose registers.
2 64-bit immediate operands are only available on 64-bit variants of the 80x86.

No Starch Press, Copyright © 2006 by Randall Hyde



586 Appendix

multiple operations. Because of their complexity, you rarely see instructions 
such as these in a RISC instruction set. As such, RISC processors do not 
provide a hardware stack—return addresses and other objects that need to 
be maintained on a stack data structure must be maintained under software 
control.

Maintaining a stack in software is definitely more expensive than doing it 
in hardware (in terms of CPU cycles). The main reason PowerPC (and other 
RISC) function calls aren’t considerably slower than 80x86 code is because 
the PowerPC doesn’t use the stack as much as the 80x86 does. The PowerPC, 
for example, sets aside eight registers to use to pass parameters to a function. 
Therefore, a PowerPC program can load parameter values into registers 
(cheap and easy) rather than “pushing” them onto a software-maintained 
stack (slow and expensive). Similarly, for many short procedures and func-
tions (see Section 16.2, “Leaf Functions and Procedures”), there is no need 
to copy the return address onto the software stack, you can keep the return 
address in a register. The PowerPC sets aside eight additional registers to 
hold local variables for a procedure or function; so if you don’t need more 
than eight local variables, you can avoid using the stack for this purpose as 
well. A surprising number of procedures on the PowerPC can be coded into 
machine code that does not manipulate the data on the stack at all. In such 
cases, the code will execute faster than it would even if a hardware stack were 
available.

High-quality 80x86 compilers also attempt to maintain parameters and 
local variables in registers (rather than on the stack). However, because the 
80x86 has a very limited number of general-purpose registers available, most 
compilers only have three registers to use for local variable and parameter 
objects (compared to a total of 16 registers for locals and parameters on the 
PowerPC). Clearly, the PowerPC, with its larger register set, is better able to 
allocate parameters and local variables to registers.

A.2 Compiler and Application Binary Interface Issues

As a general rule, compilers adhere to an Application Binary Interface (ABI)
when emitting code for a particular machine and operating system. The 
choice of ABI often places some restrictions on the compiler’s code gen-
eration capabilities that result in less efficient code than would otherwise be 
possible. Although a hardware manufacturer typically specifies an ABI in 
order to create a standard, the truth is that ABIs are computer system– 
and operating system–specific, not simply CPU-specific. For example, the 
Linux operating system could use a different ABI than the Windows operat-
ing system, even when both are using the same 80x86 processor. Similarly, 
the Mac OS X operating system places restrictions on the code that might 
not be present in an embedded PowerPC application. In order to produce 
high-quality code, you need to understand how an ABI can affect a compiler’s 
code generation strategies and adjust your coding style appropriately. 

No Starch Press, Copyright © 2006 by Randall Hyde



A Br ief  Compari son of the 80x86 and PowerPC CPU Fami lie s 587

While there are a wide variety of other operating systems and ABIs we 
could consider, these two operating systems and ABI provide a good contrast 
with respect to the things we should consider when writing code.

Global and external objects are two areas where code quality differs 
dramatically between the PowerPC and 80x86 architectures. The problem 
is the lack of 32-bit offset encodings on the PowerPC. 

A.3 Writing Great Code for Both Architectures

Furndamentally, efficient code possesses three important attributes: (1) it 
executes as few instructions as possible to do a given job; (2) it accesses 
memory as infrequently as possible (and tries to access data in the cache 
when memory accesses are necessary); and (3) it uses as little memory as 
possible. These facts remain true whether the CPU is a RISC or CISC design. 
If you are writing code that must exhibit excellent properties on both proc-
essor types, you should give priority to RISC optimizations in your code. 
Optimizations like minimizing constant size, trying to keep offsets to variables 
short (so you can encode their offsets in a 32-bit instruction format) and so 
on will only have a small deterimental effect on a CISC compiler’s code 
generation capabilities. However, optimizing for a CISC processor, taking 
advantage of its ability to easily access memory and deal with large immediate 
constants, can have a very deterimental effect on the code a RISC compiler 
generates.

Ultimately, the best solution is to tailor your code for a given CPU 
architecture. Given the fact that almost all personal computers (including 
Apple) are using the 80x86 architecture, you would probably be advised to 
develop your code for the CISC architecture if you’re targeting personal 
computers with your applicaation. On the other hand, as most embedded 
systems use RISC processors, you would be well-advised to apply RISC 
optimiations to embedded code.

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



O N L I N E  A P P E N D I C E S

Write Great Code: Thinking Low-Level, Writing High-Level includes supplimentary 
materials online at www.writegreatcode.com. These two appendices are 
published in electronic form to allow them to be kept up to date.

Online Appendix A

The Minimal 80x86 Instruction Set

Online Appendix B

The Minimal PowerPC Instruction Set

Visit www.writegreatcode.com. Under Volume 2, you will find the PDFs of 
these two resources available for download.

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



I N D E X

Symbols
#-prefix notation for HLA character 

constants, 28
$-prefix notation for hexadecimal 

constants, 27
%-prefix notation for binary 

constants, 26
& (address-of) operator (C/C++), 226
-FAs command-line option (Microsoft 

Visual C++), 118
-O, -O2, and -O3 compiler options, 79
-S (GCC and Borland C++ command-

line option), 118
.byte declarations (Gas), 42
.byte directive (Gas), 57
.double directive (Gas), 58
.endr directive (Gas), 42, 57
.equ directive 

in Gas, 30
on the PowerPC, 54

.int directive (Gas), 57

.long declaration (Gas), 43

.rept directive (Gas), 42, 57

.single directive (Gas), 58
/align option (Microsoft linker), 102
/all command-line option to 

dumpbin.exe, 130
/disasm command-line option to 

dumpbin.exe, 106, 136
/headers command-line option to 

dumpbin.exe, 106, 139
/imports command-line option to 

dumpbin.exe, 142
/relocations command-line option to 

dumpbin.exe, 142
= operator (MASM/TASM), 31
? compile-time operator (HLA), 30

\ escape sequence in Gas string 
constants, 29

_DATA section in memory, 193

Numerics
0b-prefix notation for binary 

constants (Gas), 26, 52
0x-prefix notation for hexadecimal 

constants, 28
on the PowerPC, 53

8-bit registers, 24
16-bit registers, 24
32-bit data declarations (80x86), 43
32-bit registers, 24
80-bit floating-point variables, 213
80x86, 2

32-bit data declarations, 43
ABI (Application Binary 

Interface), 356
addressing modes, 31
architecture, 23
assembly language, 21
auxiliary carry flag, 25
carry flag, 25
condition codes, 25
conditional jump instructions, 441
direct addressing mode, 33–34
direction flag, 25
displacement-only memory address-

ing mode, 33–34, 216
effective address, 36
general-purpose registers, 25
immediate addressing mode, 32
immediate operands, 31
indexed addressing mode, 36, 322
indirect access via a pointer, 319
instruction set, 46

No Starch Press, Copyright © 2006 by Randall Hyde



592 INDEX

80x86, continued
instructions

call instruction, 522
cmp instruction, 441
je instruction, 441
jne instruction, 452
mov instruction, 31
ret instruction, 522
sub instruction, 17

interrupt disable flag, 25
machine architecture, 21
memory operands, 31
optimizations, 22
overflow flag, 25
parity flag, 25
registers, 23

8-bit, 24
16-bit, 24
32-bit, 24
addressing modes, 31
AH, 24
AL, 24
AX, 24
BH, 24
BL, 24
BP, 24
BX, 24
calculations involving, 23
CH, 24
CL, 24
CX, 24
DH, 24
DI, 24
DL, 24
DX, 24
EAX, 24
EBP, 24
EBP as a frame-pointer 

register, 549
EBX, 24
ECX, 24
EDI, 24
EDX, 24
EFLAGS, 25
ESI, 24
ESP, 24
indirect addressing mode, 35
operands, 31
overlapping, 24
segment, 23
SI, 24
SP, 24

short offsets to local variables, 560
sign flag, 25
standard entry sequence for a 

procedure, 552
standard exit sequence for a 

procedure, 552
zero flag, 25, 441

680x0 processor family, 48
6502 microprocessor, 392
8051 microcontrollers, 200
8080 CPU, 393

A

a.out file format, 90
ABI (Application Binary Interface), 

235, 356, 586
Absolute addressing mode, 200
Abstract optimization levels, 4
Abstract syntax tree (AST), 69–70
Abstract view of a pointer, 317
Accessing

byte variables in assembly 
language, 42

elements of arrays, 241, 250
multidimensional, 259–261

indirect data using the wrong data 
type, 339

intermediate variables, 223
local variables, 559
an object using a pointer, 317
parameters, 559

Accumulator register, 392
Accumulator-based machines, 391
Activation record base addresses, 550
Activation records, 195, 217, 522, 526, 

529, 547, 549
Ada programming language, 7, 197
add instruction on a stack machine, 

389–391
Adding

an integer to a pointer, 322–323
padding fields to a record, 236
variant objects, 366

Address binding, 197
Address bus, 23, 49
Address zero in memory, 190
Addressing mode, 31, 584

on the PowerPC, 55
AddressOfEntryPoint field in a 

COFF file, 90

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 593

Advantages 
of records, 350
of seven-bit strings, 302
of zero-terminated strings, 283

Aggregate data types, 242
structure function return values, 570

AH register (80x86), 24
AL register (80x86), 24
Aliases, 363
align directive 

in HLA, 238
in MASM/TASM, 237

Aligned data access, 322
Aligning 

an address on a boundary that is a 
power of 2, 327

data objects to improve 
performance, 99

fields of a record, 236, 356
memory allocation requests, 327
procedure code on a boundary, 99
records, 235
stack pointer on some reasonable 

boundary, 558
Allocating local variables, 552

efficiently, 220
in registers, 531

Allocating objects in contiguous 
memory, 322

Allocation granularity, 98, 334
Allocation overhead for a memory 

allocation request, 335
AltaVec instructions (PowerPC), 59
Alternate implementations of a 

switch/case statement, 476
ALU (arithmetic/logical unit), 391
Analyzing compiler output, 115, 128

with object-code utilities, 129
to produce efficient code, 83

Ancestor class, 381
AND/OR and pointers, 327
Anonymous variables, 196, 320
APL programming language, 278
Apostrophes appearing in an HLA 

character constant, 28
Application Binary Interface (ABI), 

235, 356, 586
Application memory

consumption, 5
management, 333

Application-specific memory 
managers, 333–335

Araxis Merge differencing utility, 162
Architectural differences between 

RISC and CISC, 582
Arithmetic and logical expressions, 

385–386, 394
Arithmetic operations 

cost, 436
on a stack machine, 389

Arithmetic/logical unit (ALU), 391
ARM processor family, 48
Arrays

accessing elements of, 250
access efficiency, 268
alignment in memory, 248
allocation storage, 321
base address, 242
bounds checking, 246
of characters (as strings), 308
column-major ordering, 257, 260
declarations, 242
definition, 242
dope vectors, 272
dynamic, 270–271, 278
element size, 250
elements, 242
four-dimensional, 259
indexes, 242

in BASIC, 246
index bounds checking, 246

mapping indexes to addresses, 257
memory utilitization by, 247
multidimensional, 255
multidimensional access, 261
multidimensional pseudo-

static, 272
passed by value to a function/

procedure, 568
performance, 242
pseudo-dynamic, 270
pseudo-static, 270
representation in memory, 246
row-major ordering, 257
size of, 273
static, 270
three-dimensional, 259

Art of Assembly Language, The, 8, 10, 
18–19

ASCIIz string, 283

No Starch Press, Copyright © 2006 by Randall Hyde



594 INDEX

Assembler syntax, 22
Assemblers

See Gas (GNU assembler)
See HLA (High-Level Assembler)
See MASM (Microsoft Macro 

Assembler)
See TASM (Borland Turbo 

Assembler)
FASM assembler, 22
GoAsm assembler, 22
NASM assembler, 22

Assembly language, 1–2
80x86, 21. See also 80x86
as compiler output, 83
macro to declare seven-bit 

strings, 302
operand sizes, 44
output from a compiler, 84, 

115–116
from Borland C++, 121
from a C/C++ compiler, 118

programming paradigm, 16
Assigning offsets to local variables, 552
Associating offsets with parameters, 554
AST (abstract syntax tree), 69–70
Attributes

for a token, 68
of variables and other program 

objects, 196
Automatic disassemblers, 146
Automatic variables, 186, 189, 203

advantages of, 204
disadvantages of, 204
versus local variables, 204
and offset sizes, 217

Auxiliary carry flag (80x86), 25
Avoiding data copying, 300
Avoiding problems with side 

effects, 425
AWK programming language, 320
AX register (80x86), 24

B
Back end to a compiler, 123
Base address, 550

of an allocated memory region, 321
of an array, 242, 322
of a record, 355

Base of an activation record, 220
Base pointer register, 549

Base register (PowerPC), 56
Base-2 (binary) literal constants, 26
BaseOfCode field in a COFF file, 90
BaseOfData field in a COFF file, 90
Basic blocks, 72–77
BASIC programming language, 7

and dynamic scoping, 198
interpreters, 63

bcc32/bcc32i compilers, 123
Benchmarks, 4
Best size of an integer, 211
Best-fit memory allocation, 330
Beyond Compare differencing 

utility, 162
BH register (80x86), 24
Big endian issues when using 

unions, 364
Binary

constants, 33
literal constants, 26

in Gas, 26
in HLA, 26
in MASM/TASM, 26

numbering system, 7
search, 4

Binary-coded decimal 
representation, 210

Binding
attributes to objects, 197
at compile time, 199, 200
dynamic, 206
at language design time, 199, 200
at link time, 199, 200
at load time, 199, 200
objects dynamically, 197
values dynamically, 199
variables

pseudo-static, 203
static, 199–200

BIOS ROM, 200
Bit strings, 281
bits functions

bits.cnt function, 110
bits.reverse8 library function, 105
bits.reverse16 library function, 105
bits.reverse32 library function, 105

Bitwise logical operations, 176, 497
BL register (80x86), 24
bl instruction (PowerPC), 525
BLOCK alignment option (GNU’s ld 

linker), 102

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 595

Block started by a symbol (BSS), 96, 
194. See also BSS sections

blr instruction (PowerPC), 525
Boolean

constants, 174
operations producing unexpected 

results, 174
strings, 281
value representation, 174
variables, 215

Borland 
C++, 8

assembly language output, 
117, 121

assembly language output 
(command-line option), 118

Intel backend assembly 
output, 123

Turbo Assembler. See TASM
Bounds checking of array indexes, 246
BP register (80x86), 24
Branch instruction

and link (bl) for the PowerPC, 52
then link (versus calling a 

procedure), 526
if true/if false, 440

Branch prediction, 442
Branches, 441
break statement, 447, 516
Break-even point for a switch/case

versus if/elseif statement 
sequence, 468

breakif statement, 516
bsize field in a COFF file, 90
BSS sections, 96

in a COFF file, 90
in a program, 194

BSS variables in the DATA section, 195
b-suffix notation for binary constants, 26
BX register (80x86), 24
Byte code engine ( Java), 65
Byte data (80x86), 39
byte declarations (MASM/TASM), 41
Byte variables (PowerPC), 56
Byte variables in assembly language, 

accessing, 42
Byte-addressable memory, 248, 321, 327

C
C and C++ programming languages, 7
C calling convention, 556
C code as compiler output, 82

C-- language, 83
C++ 

const declarations, 171
namespaces, 370

C# dynamic memory allocation, 208
C Standard Library, 134
C/C++, 197

array declarations, 243
array initializers, 186
pointers, 316
structs/records, 343
switch statement, 466
unions, 361

Cache lines, 100, 102, 182
Calculations, 80x86 CPU, 23
Call trees, 530

shallow, 533
Calling conventions, 521, 555
Carry bit (PowerPC), 51
Carry flag (80x86), 25
Cartesian products, 342
case statements, 466

versus if statements, 468
Case-based algorithms in 

optimization, 72
Case-variant records in Pascal, Delphi, 

and Kylix, 361
cdecl (C) calling convention, 556
Central processing unit, 23, 49.

See also CPU
CH register (80x86), 24
char size (C/C++), 211
Characters 

constants, 26
data in strings, 312
literal constants, 53

in Gas, 29
in HLA, 28
in MASM/TASM, 29

string formats, 282
strings, 281
variables, 214

Characteristics (Windows COFF 
header field), 88, 92, 93

Characteristics of great code, 8
Choosing unsigned over signed 

integers, 212
CL register (80x86), 24
Classes, 371

data types, 341
declarations in C++, 371
representation in memory, 341

No Starch Press, Copyright © 2006 by Randall Hyde



596 INDEX

Clock speed, 583
Clusters on the disk, 98
cmp instruction, 441
Code

alignment and linkers, 100
generation, 61
motion, 78, 413
movement (optimization), 491

via sections, 192
sections 

in memory, 95
in a program, 191

straight-line, 535
Coercion and pointers, 339
COFF (Common Object File Format)

AddressOfEntryPoint field, 90
BaseOfCode field, 90
BaseOfData field, 90
bsize field, 90
Characteristics field, 88, 92, 93
data segment size, 90
data_start field, 90
dsize field, 90
Entry field, 90
f_flags field, 88
f_magic field, 87
f_nscns field, 87, 91
f_opthdr field, 88, 91
f_symptr field, 87
f_timdat field, 87
file header, 86
format, 85
headers, 139
Machine field, 87
Magic field, 89
MajorLinkerVersion field, 89
MinorLinkerVersion field, 89
Name field, 92
NumberOfLinenumbers field, 93
NumberOfRelocations field, 92
NumberOfSections field, 87, 91
object files, 62
optional header, 88
PhysicalAddress field, 92
PointerToLinenumbers field, 93
PointerToRawData field, 92
PointerToRelocations field, 92
PointerToSymbolTable field, 87
s_flags field, 92–93
s_lnnoptr field, 93
s_name field, 92

s_nlnno field, 93
s_nreloc field, 92
s_paddr field, 92
s_relptr field, 92
s_scnptr field, 92
s_size field, 92
s_vaddr field, 92
section headers, 91
SectionAlignment field, 100
sections, 93
SizeOfCode field, 90
SizeOfInitializedData field, 90
SizeOfOptionalHeader field, 88, 91
SizeOfRawData field, 92
SizeOfUninitializedData field, 90
symbol table, 87
text_start field, 90
TimeDateStamp field, 87
tsize field, 90
VirtualAddress field, 92
VirtualSize field, 92
vstamp field, 89

Column-major ordering, 241, 257, 
260, 266

Combined object module and execut-
able formats, 95

Combining sections, 191
with different alignment values, 101
in an object file, 101

Command-line options to control 
optimization, 79

Common Object File Format. See COFF
Common pointer problems, 316
Common subexpression elimination, 

69, 78, 402
Compare and conditional branch 

sequences, 440
Compare-and-jump paradigm, 440
Comparing 

assembly language listings, 116
compiler output using diff, 153
pointer values, 320
pointers, 325
strings and string constants, 184

Compilers, 64
benchmarks, 4, 81
construction theory, 10
defects, 79
machine-language output, 115
operation, 61
optimizations, 77

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 597

output, 81
output analysis with a debugger, 149
performance, 2
phases, 66
quality, 2

Compile-time 
binding, 197
constant expressions, 165, 169

and read-only data kept in mem-
ory, differences between, 166

initialization of records, 341
Compiling source code to assembly 

language, 66
Complete evaluation

arithmetic expressions, 386
Boolean, 453, 492, 507, 518

Complex expressions, 397
Composite data types, 210, 241–242, 

281, 315, 341
constants, 166, 186
as function return results, 570

Computational cost of arithmetic 
expressions, 386

Computer architecture, 10
Computer language processors, 63
Computing the number of memory 

objects between two 
pointers, 324

Condition codes, 25
flags, 18
registers (PowerPC), 50

Conditional branch sequences, 440
Conditional jump instructions, 18
Conditional statements, 466
Condition-code bits, 441
Conjunction, 512
const declarations (C++), 171
const section in an HLA program, 30
Constants, 30, 197

array, 186
Boolean, 174
C++ const declarations, 171
C/C++ array initializers, 186
cache effects, 181
comparing string constants, 184
compiler options to merge 

strings, 184
compile-time constant 

expressions, 169
composite data type constants, 186
constant folding, 77, 183, 398

constant pool section, 191
constant propagation, 78, 399
constant sections in memory, 

190–191
constant table section, 191
encoded into a machine instruction, 

166, 168
enumerated, 172
expressions, 169
floating-point, 167, 176
and high-level languages, 165
immediate addressing mode, 165
large data structures, 167
literal, 168
logical constants, 174
magic numbers, 170
manifest, 168
manually merging string 

constants, 184
optimization, 170

of string constants, 183
PowerPC limitations, 168
read-only memory objects, 171
size limitations in various CPUs, 167
string, 182

merging, 183
struct and record, 187
tables of constants, 181
typed, in Delphi, 187
using variables to maintain a con-

stant pool, 181
Visual Basic, 166

Constructing an activation record, 218
continue statement, 447, 499
Continuing to use storage after it has 

been freed, 337
Control bus, 23, 49
Control flow paths, 75
Control structures versus 

computations, 440
Controlling compiler optimization, 79
Conversion

of high-level control structures to 
machine code, 439

of if statements to assembly 
language, 448

between integer and floating-point 
formats, 214

of postfix notation to stack machine 
instructions, 390

of repeat..until (or do..while) loops 
into assembly language, 506

No Starch Press, Copyright © 2006 by Randall Hyde



598 INDEX

Copy on write, 309, 311
Copying string data, 185, 311
Correlating assembly instructions with 

HLL code, 117
Cost

of arithmetic operations, 436
of interpretation, 66
of using indirection, 227

COUNT register (PowerPC), 49, 52
Counting references to a string, 309
CPU (central processing unit), 23, 49

addresses, 23
communication with memory, 23

CR0 condition-code register 
(PowerPC), 50

CR1 condition-code register 
(PowerPC), 50

Cross-compilers, 69
CTR (PowerPC), 52
CX register (80x86), 24

D
Dangling pointers, 337
Data bus, 23, 49
Data declarations 

in Gas, 41
in HLA, 40
in MASM/TASM, 41

Data flow
analysis, 72
through a compiler, 67

Data hazards, 393
DATA section 

in memory, 193
in a program, 193

Data segment size in a COFF field, 90
data_start field in a COFF file, 90
db declarations (MASM/TASM), 41
DD declaration 

in assembly, 244
in MASM/TASM, 43

DDD, 151
Dead code elimination, 78, 400
Deallocating storage for local 

variables, 552
Debuggers 

and compiler output, 82–83
and compiler output analysis, 149

Debugging
information in a COFF file, 94
information in an object 

code file, 152

Decimal constants, 33
Decimal literal constants, 27

in Gas, 27
in HLA, 27
in MASM/TASM, 27

Declaration order of local variables 
(to reduce instruction size), 
222, 554

Declaring 
arrays, 241

in C, C++, and Java, 243
in HLA, 244
in memory, 242
with noninteger index values, 246
in Pascal, Delphi, and Kylix, 245

data in assembly language, 39, 56
manifest constants, 169
multidimensional arrays, 256

Decomposing a problem, 534
Definite loops (for loops), 518
Definition

of an array, 242. See also arrays
of a basic block, 73
of record, union, and class data 

types, 341
delete function, memory allocation, 320
delete memory deallocation operator 

(C++), 196
Delphi, 8

Kylix 
array declarations, 245
strings, 310
unions (case-variant records), 361
variant types, 365

records/structures, 343
short strings, 308
and Turbo Pascal string formats, 186
viewing object code, 151

Demand-paged memory 
management, 99

Dependent values within an 
expression, 78

Dereferencing invalid pointers, 337
Derived class, 381
Descriptor-based strings, 306
Descriptors, 306
Destination operand for a mov

instruction, 31
detab program, 63
Detokenization of a source file, 63
DH register (80x86), 24

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 599

DI register (80x86), 24
diff utility and comparing compiler 

output, 139
Differences between a compile-time 

constant and read-only data 
kept in memory, 166

Direct addressing mode, 33–34
Direction flag (80x86), 25
Disadvantages 

of HLA strings, 303
of seven-bit strings, 302
of zero-terminated strings, 284

Disassembled listings of object files, 136
Disassemblers, 146
Disassembling

large objects using unions, 364
object code, 85

Discriminant unions, 360
Disjunction, 512
Displacement-only addressing 

mode (80x86), 33–34, 216
Display (table of pointers to activation 

records), 224
dispose function, memory allocation, 

320, 338
memory deallocation operator 

(Pascal), 196
Division by a constant, 78
DL register (80x86), 24
do..until statements, 504
do..while loops, 489, 504
Documented code, 9
Dope vectors, 272
Double indirection, 318

and pointers, 317
Double word data 

on 80x86, 39
on PowerPC, 56

Double-indirect pointers, 318
Double-precision (64-bit) floating-

point values, 57
dsize field in a COFF file, 90
dumpbin.exe (Microsoft COFF 

file dump utility), 106, 
110, 116, 129

/all command-line option, 130
/disasm command-line option, 136
/headers command-line option, 139
/imports command-line option, 142
/relocations command-line 

option, 142

dumpobj utility, 129
Duplicated code and goto

statements, 444
dw declaration (MASM/TASM), 42
dword declaration 

in HLA, 43
in MASM/TASM, 43

DX register (80x86), 24
Dynamic

arrays, 270–271
attributes, 197–198
binding, 206
languages, 320
memory allocation, 196, 315, 320
objects, 197
record types, 342, 359
scoping in SNOBOL4, 198
versus static arrays, 242
strings, 307–308
type systems, 359
types, 364
variables, 189, 206

overhead, 207
storage allocation, 224

Dynamically allocated memory, 329
Dynamically binding values to an 

object, 199

E
EAX register (80x86), 24
EBP register (80x86), 24, 549

as a frame-pointer register, 218
EBX register (80x86), 24
ECX register (80x86), 24
EDI register (80x86), 24
EDX register (80x86), 24
Effective address (80x86), 36
Efficiency 

of different integer sizes, 213
EFLAGS register, 25, 441
and great code, 8
of if..else statements, 450
issues with Boolean evaluation, 432
of length-prefixed strings, 301
of a repeat..until versus a while

loop, 506
of a switch/case statement, 468

Efficient access to a block of global 
variables, 226

No Starch Press, Copyright © 2006 by Randall Hyde



600 INDEX

ELF (Executable and Linkable 
Format), 95

files, 95
format, 200
object files, 62

else clause in an if statement, 448–449
Emitting, as compiler output

assembly language, 83
executable files, 85
HLL code, 82
object files, 84

Emulating column-major or row-major 
ordering, 266

Encoding
the address of a variable, 189
constants into a machine 

instruction, 166
string constants in machine 

code, 182
Enhanceable code, 9
entab program, 63
Entry field in a COFF file, 90
enum (C/C++), 173
Enumeration 

and constant representation, 173
of data types, 172

Equates, in a Gas file, 31
ESI register (80x86), 24
ESP register (80x86), 24

as a frame pointer, 220
Executable and Linkable Format. 

See ELF
Executable files, 95

as compiler output, 85
sizes and BSS sections, 96

Execution 
memory footprint, 97
path through a program, 440
time of an application, 5

Exponential growth of paths through a 
program, 75

Expression rotation (optimization), 491
Extended-precision floating-point 

format, 213
External fragmentation, 334

in a memory manager, 331
Extra code injected into a program by 

a linker, 110

F
f_ header fields (in Unix COFF)

f_flags, 88
f_magic, 87
f_nscns, 87, 91
f_opthdr, 88, 91
f_symptr, 87
f_timdat, 87

Failing to free allocated storage, 338
False, 174, 215
FASM assembler, 22
Fast code, 8
Fastcall calling convention, 228
Field alignment of records

algorithms used by compilers, 357
in HLA, 237

Fields in a record/structure, 342
File header (COFF), 86. See also COFF
File types that programming lan-

guages use, 62
Filter programs and source files, 62
First-fit memory allocation, 330
Flags, 25
Flags register, 440
Flattening a call tree, 531
Floating-point

assignments using integer 
registers, 179

constants, 167, 176
exception bit (PowerPC), 50
invalid exception bit (PowerPC), 50
literal constants, 29, 53 
overflow exception bit 

(PowerPC), 50
registers (PowerPC), 49
representation as integer 

constants, 176
status and control register 

(PowerPC), 49, 51
variables, 213

Flow graphs, 75
Flushing the instruction pipeline, 440
Footprint, 97
for loops, 268, 275, 489, 518–520
for(;;) statement (C/C++), 515
Forcing Boolean evaluation

short-circuit, 460, 518
in a repeat..until loop, 510
in a while loop, 501

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 601

using bitwise logical operations, 497
in a while loop using unstructured 

code, 499
Forcing short-circuit evaluation, 430
Forcing the order of evaluation, 425
forever..endfor loops, 515
FORTRAN programming language, 7

logical variables, 215
Frame pointer register, 217, 226, 549
free function, 332–333

memory allocation, 320
memory deallocation, 196

Free memory blocks on the heap, 330
Front end to a compiler, 123
Full optimization, 73
Functions, 521 

alignment in memory, 102
calls to functions, 522
parameters, 540
and procedure calls, 521 
return results, 522
return values, 570

G
Garbage collection, 309, 316, 330

memory management, 332
Gas (GNU assembler), 8, 22

.byte declarations, 42

.byte directive, 57

.double directive, 58

.equ directive, 30
on the PowerPC, 54

.int declaration, 42

.int directive, 57

.long declaration, 43

.single directive, 58
assembler (PowerPC), 48
binary constants, 26

on the PowerPC, 52
character constants 

literal, 29
on the PowerPC, 53

constant declarations, 30
creating initialized variables, 57
data declarations, 41
decimal constants (PowerPC), 53
direct addressing mode, 33–34
displacement-only addressing mode, 

33–34, 216
equates, 31
floating-point literal constants, 29

hexadecimal constants
literal, 28
on the PowerPC, 53

indexed addressing mode, 37
manifest constants (PowerPC), 54
mov instruction, 32
operand sizes, 45
register

indirect addressing mode, 36
names (80x86), 32
plus displacement addressing 

mode (PowerPC), 55
scaled-indexed addressing modes, 39
string literal constants, 29

GCC, 5, 8, 22
assembly language output, 117

for the 80x86, 127
command-line option, 118
on the PowerPC, 125

compiler assembly output, 125
support for pseudo-dynamic 

arrays, 271
GDB (GNU debugger), 151
General protection fault, 190
General-purpose registers, 23, 24, 49

for the 80x86, 24–25
for the PowerPC, 49, 54–56

Global constant sets, 182
Global variables, 198, 223

access (efficiently), 226
GNU

assembler. See Gas
C compiler. See GCC
debugger (GDB), 151

Goals of optimization, 71
GoAsm assembler, 22
goto statements, 443
Granularity of memory allocation, 334
Great code, 8

definition, 9
GT bit (PowerPC condition-code 

register), 50

H

Halfwords (PowerPC), 56
Hand-optimized assembly code, 2

to produce better code, 117
Hardware stacks, 195
Headers in a COFF file, 139. 

See also COFF

No Starch Press, Copyright © 2006 by Randall Hyde



602 INDEX

Heaps, 207 
allocation, 206

memory allocation, 320
management systems, 329
memory overhead, 333
section, 196

Helping optimizing compilers, 7
Heuristics in optimization, 72
Hexadecimal constants, 33

literal, 27
in Gas, 28
in HLA, 27
in MASM/TASM, 28

numbering system, 7
High-Level Assembler. See HLA
High-level language. See HLL
HLA (High-Level Assembler), 8, 11, 

13–14, 22
array declarations, 244
binary constants, 26
character literal constants, 28
const section, 30
constant declarations, 30
data declarations, 40
decimal literal constants, 27
direct addressing mode, 33–34
displacement-only addressing mode, 

33–34, 216
dword declarations, 43
floating-point literal constants, 29
hexadecimal literal constants, 27
indexed addressing mode, 36
initialized data, 40
manifest symbolic constants, 30
mov instruction, 31
namespaces, 370
operand sizes, 44
records/structures, 344
register indirect addressing mode, 35
scaled-indexed addressing modes, 38
standard library, 15
strings, 303

literal constants, 28
sub instruction, 17
type coercion, 45
underscores in literal constants, 27
uninitialized variable declarations, 40
unions, 362
val section, 30

HLL (high-level language), 2
code as compiler output, 82
data declarations versus assembly, 14

h-suffix notation for hexadecimal 
constants, 28

hypothetical machine languages, 65

I
I/O, 23, 49

device addresses and variables, 200
routines in assembly language, 15

IA-64 processor family, 48
IBM CELL processor, 394
IDA disassembler, 146
IDE (integrated development 

environment), 128
IEEE 754 floating-point standard, 213
if statements, 439, 448

basic blocks, 74
versus switch/case statements, 468
versus a switch statement in C/C++, 5

Illegal pointer values, 336–337
Immediate (constant) operands, 585

for the 80x86, 31
Immediate addressing mode, 165

for the 80x86, 32
and floating-point constants, 181
on the PowerPC, 54

Immediate constant size limitations for 
the PowerPC, 54

Impact of procedure/function call 
overhead in programs, 535

Imperative (procedural) program-
ming languages, 7

Implementation of
control structures with an if and 

a goto, 448
a forever..endfor loop, 515
pointers, 317
a repeat..until loop, 505
variables, 189
a variant type, 365
a while statement, 490

Improving 
array access efficiency, 268
efficiency of if/else statements, 450
memory performance using 

records, 358
performance of applications that 

use string functions, 300

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 603

Incremental compilers, 65
Indefinite loops, 518
Index register (PowerPC), 56
Indexed addressing mode 

on the 80x86, 36
in Gas, 37
in HLA, 36
in MASM/TASM, 37

Indexing into a column-major ordered 
array, 260

Indirect jumps, 442
on the PowerPC, 52

Indirect access of an object, 317
Induction, 78

optimization, 410
Inefficiency, 9
Infix notation, 390
Inheritance, 342

in classes, 377
Initialization 

of pointers with NULL, 190
of record data, 350
of records, 341

Initialized data in memory, 191, 193
Initialized static-object section in 

memory, 190
Inline

assembly language, 84
expansion of C/C++ standard 

library string functions, 293
functions 

and complete Boolean 
evaluation, 495, 499

and procedures, 536
Input/output, 23, 49. See also I/O
Instantiation, 344

of a class, 371
of a record, 344
of record variables, 341

Instruction 
execution time, 128
pipelines, 440
set (80x86), 46
size, 583

Integers
int size in C/C++, 211
size conversion, 212
strings, 281
variables, 210

Integrated development environment 
(IDE), 128

Intel backend assembly output from 
Borland C++, 123

Intel-Architecture CPUs, 9
Interactive disassemblers, 146, 149
Intermediate code generation, 69

phase of a compiler, 66
Intermediate variables, 223
Internal fragmentation, 97, 334

and linkers, 100
Internal representation of enumer-

ated data, 173
Interpreted code

and program performance, 3
virtual machine code, 65

Interpreters, 61, 62, 64
Interrupt disable flag, 25
Intractability of optimization, 73
Invalid floating-point results 

(PowerPC), 51

J
Java, 3, 65

array declarations, 243
byte code engine, 65
Virtual Machine, 391, 440

je instruction, 441
jne instruction, 452
Jump tables, 468, 470
Just-in-time compilation, 65

K
Kernel mode (CPU), 333
Kylix, 8

array declarations, 245
records/structures, 343
strings, 310
unions (case-variant records), 361
variant types, 365

L
Last-in, first-out organization. See LIFO
Layout of parameters in a procedure’s 

activation record, 554
lbz instruction (PowerPC), 55
lbzu instruction (PowerPC), 56
lbzx instruction (PowerPC), 56
Leaf procedures, 529

and functions, 530
Learning assembly language, 3, 13, 16

No Starch Press, Copyright © 2006 by Randall Hyde



604 INDEX

Least common multiple, 101
Length-prefixed strings, 300

advantages, 300
disadvantages, 301
implementation, 300

Levels of abstraction (optimization), 5
Lexemes, 64, 68
Lexical analysis, 64, 68

phase (of a compiler), 66
Lexical items in a source file, 68
Library code appearing in object code 

dumps, 134
Library modules, 84, 102
Library routines

statically linked, 151
when not to call, 294

Lifetime 
of an attribute, 198
of parameters and local 

variables, 548
LIFO (last-in, first-out) 

organization, 547
of a stack, 525

Line number information in a COFF 
file, 93

Linear search, 4
Link address, 522
LINK register (PowerPC), 49, 52, 525, 

526, 531
Linker programs, 62

and code alignment, 100
and their effect on code, 110

Linker/loader programs, 84
Linux kernel development, 5
lis instruction (PowerPC), 168
Lisp programming language, 278, 317
LIST command in BASIC, 63
Literal constants, 26, 68, 165–166, 168
Load/store architecture, 55, 584
Loader programs, 62
Loading large immediate constants 

into a register (PowerPC), 54
Local variables, 198, 204, 522, 526, 

548–549, 552
access, 559
versus automatic variables, 204
declaration organization, 554

Logical AND/OR and pointers, 327–328
Logical constants, 174
Logical OR operation in a Boolean 

expression, 461

LOGICAL*4 variables in 
FORTRAN, 215

Logically coherent functions, 534
long integer size in C/C++, 211
Loops

control variables in a for loop, 519
invariant calculations, 78, 413
invariants, 413

Low memory addresses in the address 
space, 190

Low-level control structures, 440
Low-level implementation of 

variables, 189
LT bit (PowerPC condition code 

register), 50

M
Mac OS X, 48
Machine (Windows COFF header 

field), 87
Machines 

idiosyncrasies, 81
language, 5

Machine-level debuggers, 152
Macros, 534

and inline functions, 521
Magic (COFF optional file header 

field), 89
Maintainable code, 8
MajorLinkerVersion field in a 

COFF file, 89
malloc function, 320, 333

memory allocation, 196, 206, 208
and string data allocation, 308

Manifest constants, 30, 54, 165, 
168–169

versus read-only memory objects, 171
Manual comparison of two assembly 

language output files, 162
merging string constants, 184
optimization, 4

Mapping 
array indexes to addresses, 257
executable file blocks to memory, 99
multidimensional array elements to 

memory, 256
MASM (Microsoft Macro Assembler), 

8, 11, 22
= operator, 31
assembler, 22

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 605

assembly language output from 
VC++, 119

binary constants, 26
character literal constants, 29
constant declarations, 31
data declarations, 41
db declarations, 41
dd/dword declarations, 43
direct addressing mode, 33–34
displacement-only addressing mode, 

33–34, 216
dw declaration, 42
equ directive, 31
floating-point literal constants, 29
hexadecimal literal constants, 28
indexed addressing mode, 37
initialized data, 41
mov instruction, 32
operand sizes, 44
register indirect addressing mode, 35
register names, 32
scaled-indexed addressing modes, 39
string literal constants, 29
struct field alignment, 237
type coercion, 45
uninitialized variable declarations, 41
word declaration, 42

Maximum alignment 
field, for a record in HLA, 238
section values, 101

Memory, 23, 49
access, 584

violation exception, 337
addresses and pointers, 317
addressing modes (PowerPC), 55
allocation, 316, 320, 329

for Boolean values, 174
for enumerated types, 174
granularity of, 98, 334
search algorithms, 330
under an OS, 332

application-specific heap manage-
ment functions, 333

best-fit algorithm in a memory 
allocator, 330

control information in a heap 
block, 334

consumption by static variables, 201
corrupting the memory manager’s 

data structures, 334
efficiency of a stack, 525

failing to free storage, 336
first-fit algorithm in a memory 

allocator, 330
footprint, 97
garbage collection in a memory 

allocator, 332
heap memory allocation 

overhead, 333
internal fragmentation, 334
leaks, 309, 339
management, 99

data structures, 334
operands (80x86), 31
performance of memory allocation 

calls, 333
problems with pointers, 335
representation 

of arrays, 241
of record, union, and 

class data, 341
storage 

of records, 355
of unions, 362

tracking memory use in a heap 
manager, 333

usage in great code, 8
using internal tables to track 

heap use, 334
Merging 

BSS and DATA sections in a 
COFF file, 90

paths of two basic blocks, 74
Metadata, 359
Microsoft 

LINK.EXE alignment options, 102
Macro Assembler. See MASM
Visual Basic, 8

p-code interpreter, 391
Visual C++, 8

compiler, 118
compiler optimization options, 80

Minimum field alignment in an HLA 
record, 238

MinorLinkerVersion field in a 
COFF file, 89

MIPS processor family, 48
MMX instructions, 46
Modifying a loop-control variable in a 

for loop, 519
Modula-2 programming language, 7
Monotonically increasing, 173

No Starch Press, Copyright © 2006 by Randall Hyde



606 INDEX

MOV instruction (80x86), 31
Moving code during optimization, 

78, 413
Multibyte character set, 313
Multidimensional arrays, 241, 255, 261

access, 241
declaration, 241
elements in memory, 256
pseudo-dynamic, 272
representation, 241

Multiplication by a constant, 78
Multithreaded applications, 201

program operation, 201

N
Name conflicts, 369
Name field in a COFF file, 92
Named constants, 30
Namespaces, 342, 369

in C++, 370
in HLA, 370
pollution of, 369

NASM assembler, 22
Native code generation phase (of a 

compiler), 66, 81
Natural address boundaries, 99
Natural offsets in an activation 

record, 553
Nested procedures, 223
new (memory allocation) 

function, 206, 320
operator (C++ or Pascal), 196

next statement, 447
NIL, 460
Nodes in a call tree, 530
Non-numeric constants, 172
Nonportable optimizations, 116
Nonscalar function return results, 570
NOT operator, 505
NP-complete problems, 71
NULL pointer references, 190
NumberOfLinenumbers field in a 

COFF file, 93
NumberOfRelocations field in a 

COFF file, 92
NumberOfSections field in a 

COFF file, 87, 91
Numeric constants, 26

O
objdump

command-line options, 142
utility, 110

for GNU/Gas/GCC code, 142
Object code files, 62
Object files, 81

as compiler output, 84
formats, 94
sections and memory 

consumption, 97
Object-oriented programs, 

overgeneralization in, 382
Objects, 371
One-address machines, 392
Operand sizes in assembly language, 44

ambiguity (80x86), 45
on the PowerPC, 59

operating system. See OS
Operator, 37
Optimization, 62, 72

on the 80x86, 22
of arithmetic expressions, 385
of code involving pointers, 328
of compilers, 2
of constant expressions, 170
control of, 79

via command-line options, 79
levels, 4

for compilers, 117
effects on code generation, 128

phase for a compiler, 66, 70
for space, 79, 98
for speed, 79
of strings by a compiler, 183
of a while statement, 492

Optimizers, 416
Optional header in a COFF file, 88
OR and pointers, 327
Order of evaluation, 425

in arithmetic expressions, 386
Ordinal data types, 246
Organization 

of fields in a record/structure, 355
of local variable declarations, 554

ori instruction (PowerPC), 168
OS (operating system)

API calls, 333
memory allocation, 332
system call overhead, 333

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 607

Out-of-order instruction execution, 427
Overflow bit (PowerPC), 51
Overflow flag (80x86), 25
Overgeneralization in object-oriented 

programs, 382
Overhead

associated with garbage 
collection, 330

associated with memory 
allocation, 335

in call and return sequences, 529
Overlapping fields in a union, 360
Overlapping registers (80x86), 24
Overlapping strings, 307
Overloading, 380

P
packed keyword, 356

and packed records, 357
Packing array elements, 252
Padding

array elements, 252
bytes, 100, 101, 230, 248, 322, 356, 

553, 558, 561
Pages in virtual memory, 95
Parameters, 526

offsets, 554
passing and calling conventions, 521
passing mechanisms, 567. See also

pass by
Parity flag (80x86), 25
Parsers, 66, 69
Pascal, 197

calling convention, 555
case statement, 466
and complete Boolean 

evaluation, 454
and Delphi and Kylix array 

declarations, 245
and Delphi and Kylix unions (case-

variant records), 361
pointers, 316
programming language, 7
records/structures, 343
and short-circuit Boolean 

evaluation, 460
strings, 300, 308

Pass by 
name, 568
reference, 540, 567, 568
value, 540, 567, 568

value/result, 568
value/returned, 568

Passing arrays by value, 568
Passing parameters 

to a function or procedure, 18, 540. 
See also pass by

in registers, 228, 529, 557
Patched addresses in an object-code 

file, 93
PE/COFF, 200. See also COFF
Pentium instructions, 46
Performance

of 80x86 versus PowerPC when 
using indirection, 319

cost associated with classes and 
objects, 342

loss due to memory allocation, 335
of objects (classes), 381
of OS API calls, 333

Perl programming language, 320
Phases of a compiler, 66
PhysicalAddress field in a COFF file, 92
Pipeline flush, 440
Plain vanilla text, 62
Pointers, 196, 224

adding an integer to a pointer, 322
address assignment in byte-

addressable memory, 321
allocating a block of storage, 321
AND operations on pointers, 327
arithmetic, 315, 320, 322
base addresses (of an allocated 

block), 321
coercion, 339
comparing pointers, 325
continuing to use storage after it 

has been freed, 337
dangling pointer problem, 337
dereferencing uninitialized 

pointers, 337
double indirection, 317–318
explained, 316
failing to free allocated storage, 338
illegal pointer values, 336, 337
implementation, 315, 317
limiting pointer operations, 329
logical operations on pointers, 327
malloc function, 320
memory 

addresses, 317
leaks, 336, 339

No Starch Press, Copyright © 2006 by Randall Hyde



608 INDEX

Pointers, continued
negative results after a pointer 

subtraction, 325
offsets from a fixed address in 

memory (implementation 
of a pointer), 317

operations, 320, 328
optimizing code involving 

pointers, 328
OR operations on pointers, 327
Pascal, 316
program efficiency concerns, 329
problems, 316, 335
sizeof function, 321
subtraction

integer from a pointer, 323
pointer from a pointer, 324
rules, 325

type casting, 339
types, 316
type-safe access, 339
uninitialized, 336
using storage after it has been freed, 

336
PointerToLinenumbers field in a 

COFF file, 93
PointerToRawData field in a COFF file, 92
PointerToRelocations field in a 

COFF file, 92
PointerToSymbolTable field in a 

COFF file, 87
Polymorphism, 342

in classes, 380
Popping data from a stack, 388
Popping return addresses off the 

stack, 525
Portability

of byte code interpreters, 65
of code, 9
of machine code, 65

Postfix notation, 390
Power Macintosh, 9, 47
PowerPC

addressing modes, 54
AltaVec instructions, 59
architecture, 49
assembly language, 47
base register, 56
bl instruction, 525, 527
blr instruction, 525
branch and link instruction, 52

byte count field in XER register, 51
byte variables, 56
carry bit, 51
condition-code registers, 49
COUNT register, 49, 52
CTR register, 52
CPU, 9, 47

registers, 49
declaring data, 56
double word variables, 57
double-precision floating-point 

variables, 57
floating-point 

enable exception bit, 50
exception bit, 50
invalid exception bit, 50
literal constants, 53
overflow exception bit, 50
registers, 49
status and control register, 49, 51

general-purpose integer registers, 49
GT bit, 50
halfword variables, 56
immediate addressing mode, 54
index register, 56
indirect access via a pointer, 319
lbz instruction, 55
lbzu instruction, 56
lbzx instruction, 56
LINK register, 49, 52
lis instruction, 168
load/store architecture, 55
LT bit, 50
memory addressing modes, 55
operand sizes, 59
ori instruction, 168
quad word variables, 57
register addressing modes, 54

plus displacement, 55
plus register (indexed), 56

registers, 49
single-precision floating-point 

variables, 57
stack pointer, 195
summary overflow bit, 50–51
time base registers (TBR), 49, 52

TBL register, 52
TBU register, 52

word variables, 56
XER register, 49, 51
zero bit, 50

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 609

Pragmas, 356
Preserving register values in a leaf pro-

cedure/function, 531
Primitive data types, 189, 210
Problem decomposition, 534
Problem with optimizing compilers, 3
Procedural programming languages, 7
Procedures, 521

calls, 522
parameters, 540

Producing assembly output from a 
compiler, 117

Producing an assembly language list-
ing during compilation, 116

Program status register, 440
Programming language source files, 62
Programming paradigm (assembly 

language), 16
Prolog programming language, 278
Pseudo-dynamic arrays, 270, 272

in GCC, 271
Pseudo-dynamic strings, 307, 308
Pseudo-static arrays, 270
Pseudo-static binding of variables, 203
Pull operation on a stack, 388
Pure dynamic arrays, 271, 278
Pure interpreters, 64, 69
Pure macros, 535
Pure static arrays, 270
Pure static strings, 308
Pushing onto a stack 

data, 387–388
return addresses, 525

Q
Quad words (PowerPC), 57
Quotes in an HLA string, 28

R
R0 register as a base register 

(PowerPC), 55
Readability 

of code, 8
of the compiler output, 117

Read-only data section in memory, 191
Read-only memory objects as 

constants, 171
Real (floating-point) strings, 281
Real variables, 213
Real32/Real4 data (80x86), 40

Real64/Real8 data (80x86), 40
Real80/Real10 data (80x86), 40
Records, 342

advantages, 350
and alignment, 235
alignment of fields in a record, 356
base address, 355
C/C++, 343
data types, 341
definition, 342
dot operator (field selector), 355
fields, 342

alignment in an assembly 
language, 237

alignment in HLA, 237
HLA, 344
initialization, 341
memory 

representation, 341
storage, 355

organization of fields in a 
record/structure, 355

passed by value to a proce-
dure/function, 568

Pascal/Delphi, 343
variables, 341

Recursion, 525
Recursive functions and activation 

records, 548
Reducible flow

diagrams, 72
graphs, 75–76

Reducing variable offset sizes by using 
a pointer, 226

Reentrant code, 201
Reference counting for strings, 281, 309
register keyword (C/C++), 228
Register-based machines, 393
Registers, 23, 49, 585

addressing modes 
on the 80x86, 31, 36
on the PowerPC, 54
register-plus-displacement 

(PowerPC), 55
register-plus-register 

(PowerPC), 56
and calculations (80x86), 23
indirect modes 

in Gas, 36
in HLA, 35
in MASM/TASM, 35

No Starch Press, Copyright © 2006 by Randall Hyde

V413HAV
Typewritten Text
V413HAV



610 INDEX

Registers, continued
names in Gas (80x86), 32
operands (80x86), 31
relative cost of arithmetic 

operations, 436
variables, 228

Relocation
of entries in an object file, 137
list in a COFF file, 93
of an object-code file, 93
sections in a COFF file, 94

repeat..until

loops, 489
statements, 504

Representation of
arrays in memory, 246
Boolean values, 174
noninteger constants, 166
record, union, and class data, 341

ret instruction, 522
Return address, 522, 551

on the PowerPC, 52
storage, 525

return statement, 447
Returning nonscalar (aggregate) val-

ues as function results, 570
Reverse Polish notation, 390
RISC

core (80x86), 583
CPU character variables, 214
processors and activation record 

size, 222
Robust code, 9
Row-major ordering, 241, 257, 266
Rules for the subtraction of two 

pointer values, 325
Runtime 

binding, 197
dynamic memory allocation, 207
memory 

consumption, 97
organization, 190
used by compilers, 189

S

s_flags field in a COFF file, 92, 93
s_lnnoptr field in a COFF file, 93
s_name field in a COFF file, 92
s_nlnno field in a COFF file, 93
s_nreloc field in a COFF file, 92

s_paddr field in a COFF file, 92
s_relptr field in a COFF file, 92
s_scnptr field in a COFF file, 92
s_size field in a COFF file, 92
s_vaddr field in a COFF file, 92
Safe optimizations, 79
Scaled-indexed addressing modes 

on the 80x86, 38
in Gas, 39
in HLA, 38
in MASM/TASM, 39

Scanners, 68
in a compiler, 67

Scope, 198
variable attribute, 196

Searching for a particular routine in 
a disassembly listing of an 
object file, 151

Section alignment 
and library modules, 102
sizes, 100

Section headers in a COFF file, 88, 
91, 139

SectionAlignment field in a 
COFF file, 100

Sections, 95, 190
in a COFF file, 93

segalign linker option (Mac OS X), 
102

Segment registers, 23
Segments, 95, 190
Selecting a member of an array, 242
Semantic correctness of a program, 69
Semantic equivalence, 6
Semantics of a switch/case

statement, 467
Sentinel characters (making the end 

of a string), 282
Sequence (of characters), 282
Sequence points, 386, 421
Set constants, 187
Seven-bit strings

advantages, 302
assembly language macro 

implementation, 302
disadvantages, 302

Shallow call trees, 533
Sharing VMTs, 377
Short displacements to local 

variables (80x86), 560
short integer type (C/C++), 211

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 611

Short strings, 308
Short-circuit and complete evaluation 

of arithmetic expressions, 386
Short-circuit Boolean evaluation, 453, 

460, 518
and Boolean expressions, 428
in a repeat..until loop, 510
in a while loop, 501

SI register (80x86), 24
Side effects, 416, 425

of arithmetic expressions, 385
Sign flag (80x86), 25
Signed integer variables, 212
Signed versus unsigned operands, 408
Simulating a while loop, 490
Single indirection, 318
Single-address machines, 392
Single-dimensional pseudo-dynamic 

arrays, 271
Single-precision floating-point 

constants, 181
Single-precision floating-point 

values, 57
Size

of an array, 273
of an integer variable, 210
of a procedure call (PowerPC), 527

sizeof function (C/C++), 321
SizeOfCode field in a COFF file, 90
SizeOfInitializedData field in a 

COFF file, 90
SizeOfOptionalHeader field in a 

COFF file, 88, 91
SizeOfRawData field in a COFF file, 92
SizeOfUninitializedData field in a 

COFF file, 90
SNOBOL4 programming language, 

198, 278
Software engineering conventions and 

great code, 9
Software-implemented stack, 195
Source files, 62
Source operand to a mov instruction 

(80x86), 31
Source-level debuggers, 152
SP register (80x86), 24
Space optimization, 79
Spaghetti code, 452
SPARC processor family, 48
Spatial locality of reference, 182
Specialized source file formats, 63

Speed optimization, 79
Speeding up string function calls, 296
SSE instructions, 46
ST0 floating-point register (80x86), 570
Stack-based CPU architectures, 440
Stack-based machines, 386
Stacks, 525, 585

access versus register access, 526
frames, 217, 549
machine organization, 387
machines in the real world, 391
pointer, 549
pointer register, 25, 195, 387, 526
section in memory, 195
software-implemented, 195

Stacking up activation records, 547
Stale character data, 309
Standard entry and exit sequences for 

a procedure, 552
Starting address of an executable 

program in a COFF file, 90
Static

arrays, 270
binding, 199
data sections in a program, 193
initial values, 193
local variable allocation, 559
member functions, 377, 382
objects, 197
strings, 308
variable binding, 200
variables, 189, 199, 200

Statically linked library routines and 
disassembly, 151

Sticky bits, 51
Storage allocation, 216

for dynamic variables, 224
for intermediate variables, 223

Storage of variables, 199
Straight-line code, 535
stralloc function, 308
Strength reduction, 78, 406
Strings

assignment, 309
C/C++ strings, 283
character data, 281
constants, 26, 182

and manual merging, 184
Delphi/Kylix strings, 310
descriptor-based strings, 306
dynamic strings, 308

No Starch Press, Copyright © 2006 by Randall Hyde



612 INDEX

Strings, continued
formats, 282
function calls, speeding up, 296
in high-level languages, 310
HLA strings, 303

implementation, 304
and zero-terminated strings, 305

Java strings, 283
length of a string, 281

maximum, 281
length-prefixed strings, 300
literal constants, 53

in Gas, 29
in HLA, 28

manipulation by reference and 
by value, 185

maximum length, 281
merging by compilers, 183
overlapping string data in 

memory, 307
pseudo-dynamic, 308
reference counters, 281, 309
seven-bit, advantages of, 302
static, 308
strlen (for zero-terminated strings) 

in assembly language, 287
zero-terminated, advantages of, 283

strncpy function, 312
struct assembler directive, 344
struct constants, 187
Struct/record field alignment in an 

assembly language, 237
Structures

alignment of fields in a record, 356
base address, 355
C/C++, 343
definition, 342
dot operator (field selector), 355
fields, 342
HLA, 344
memory storage, 355
organization of fields in a 

record/structure, 355
Pascal/Delphi, 343

Style guidelines, 8
Subexpressions, 78, 402
substring function, 309
Subtracting 

an integer from a pointer, 323
instructions in assembly language, 16
a pointer from a pointer, 324

Summary overflow bit (PowerPC), 
50, 51

Superoptimizers, 72
Superscalar CPU optimization, 81
switch statements versus if

statements, 468
switch/case statements, 466

implementations, 475
alternate implementations, 476
using a binary search, 478

semantics, 467
Symbol table information in an object 

code file, 152
Symbolic constants, 30, 33
Symbolic debuggers, 152
Symbolic information in a COFF file, 94
Syntax analysis phase of a compiler, 66
System resources and great code, 8

T
Table data in memory, 191
Tables of constants, 181
Tag fields in a case-variant record, 361
TASM (Borland Turbo Assembler), 

8, 11, 22, 118
= operator, 31
binary constants, 26
character literal constants, 29
compatible assembly output from 

Borland C++, 123
constant declarations, 31
data declarations, 41
db declarations, 41
dd/dword declarations, 43
direct addressing mode, 33–34
displacement-only addressing mode, 

33–34, 216
dw declaration, 42
equ directive, 31
floating-point literal constants, 29
hexadecimal literal constants, 28
indexed addressing mode, 37
initialized data, 41
mov instruction, 32
operand sizes, 44
register indirect addressing mode, 35
register names, 32
scaled-indexed addressing modes, 39
string literal constants, 29
type coercion, 45
word declaration, 42

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 613

TBL register (PowerPC), 52
TBU register (PowerPC), 52
TByte data (80x86), 40
Tested code, 9
Text sections in an executable file, 95
text_start field in a COFF file, 90
Textual substitution for 

parameters, 536
Thread-safe code, 204
Three-address architectures, 395
Three-dimensional array access, 264
Time Base facility (TBR) registers 

(PowerPC), 49
Time Base registers (TBL and TBU) 

(PowerPC), 52
Time required to optimize a program 

(NP-Completeness), 71
Time/space trade-off for macros, 536
TimeDateStamp (Windows COFF 

header field), 87
Tokens, 68

attributes, 68
composition, 68
representing a source file, 62
in a source file, 62
streams, 69

Top-of-stack, 387, 389
Tracking changes to variables through 

a basic block, 74
Tracking memory use in a heap 

manager, 333
Transfer of control at the machine 

level, 440
Translation from source code to 

machine code, 64
True, 174
tsize field in a COFF file, 90
Tuples, 342
Turbo Assembler. See TASM
Turbo Pascal and Delphi string 

formats, 186
Two’s-complement representation 

of integer variables, 210
Two-address architectures, 395
Two-way branches, 441
Types 

casting and pointers, 339
checking of enumerated 

constants, 174
coercion 

in Gas, 45
in HLA/MASM/TASM, 45

Typed constants in Delphi, 187
Typeless languages, 368
Type-safe access via pointers, 339

U
Unaligned variable access, 229, 232
Underscores

in binary literal constants, 26
in decimal literal constants, 27
in hexadecimal constants, 27

Unexpected results in Boolean 
expressions, 174

Unicode Transformational Format 
(UTF), 214, 282, 313

UTF-8, 312–313
character encoding, 282

UTF-16, 313
UTF-32, 312–313

Uninitialized data sections in a 
COFF file, 90

Uninitialized pointers, 336
Uninitialized static variables in 

memory, 96
Uninitialized variable declarations 

in HLA, 40
in MASM/TASM, 41

Unions, 360
and aliases, 363
in C/C++, 361
case-variant records in 

Pascal/Delphi/Kylix, 361
data types, 341
declarations, 360
in Delphi/Kylix (case-variant 

records), 361
disassembling large objects with, 364
endian issues, 364
in HLA, 362
in Kylix (case-variant records), 361
memory storage of, 362
offsets of fields, 360
overlapping fields, 360
in Pascal/Delphi/Kylix (case-variant 

records), 361
representation in memory, 341
tag fields in a case-variant 

record, 361
uses, 363

Unix, 9
Unsigned integer variables, 212
Unsigned versus signed operands, 408

No Starch Press, Copyright © 2006 by Randall Hyde



614 INDEX

Update register addressing mode 
(PowerPC), 55–56

User mode (CPU), 333
Usage

of allocated storage after it has been 
freed, 336

of bitwise logical operations to 
improve code generation, 176

of a debugger to analyze compiler 
output, 116, 149

of a disassembler to analyze com-
piler output, 146

of function calls to force short-
circuit Boolean evaluation, 502

of IDE’s Debugger to disassemble 
object code, 149

of inline functions to force com-
plete Boolean evaluation in a 
while loop, 495

of integer operations to operate on 
floating-point data, 176

of object code utilities to analyze 
compiler output, 129

of strings in a high-level 
language, 310

UTF. See Unicode Transformational 
Format

V
val section in an HLA program, 30
Variables, 196, 199

addresses, 189, 215
alignment in memory, 229
allocation for global and static 

variables, 216
automatic, 203

and memory consumption, 204
and offset sizes, 217

in basic blocks, 74
Boolean, 215
byte, accessing in assembly 

language, 42
character, 214
dynamic, 206
efficient access using short 

offsets, 215
floating-point, 213

FORTRAN LOGICAL*4 
variables, 215

global, 223
in high-level languages, 189
integer variables, 210

size and efficiency, 213
intermediate, accessing, 223
local, accessing, 559
offset sizes, reducing by using a 

pointer, 226
ordering declarations for 

efficiency, 230
pseudo-static binding, 203–204
real, 213
signed integer, 212
size of an integer, 210
static, 199

memory consumption, 201
static binding, 199
storage, 199
type, 199
unsigned integer, 212

Variant data types, 342
Variant types, 364–365
VC++ (Visual C++), 8, 118

compiler, 118
optimization options, 80
output, 117–119

command-line option, 118
Version number of a COFF format, 89
VHLL (very high-level language), 83
Viewing Delphi-produced object code 

in a debugger, 151
Virtual (hypothetical) machine 

language, 65
Virtual machines, 391
Virtual member functions, 373
Virtual method table. See VMT
VirtualAddress field in a COFF file, 92
VirtualSize field in a COFF file, 92
Visual Basic, 8

arrays, 271
variant types, 365

Visual C++. See VC++
Visual Studio debugger, 149
VLIW (very large instruction word) 

processors, 48
VM (virtual machine), 391

No Starch Press, Copyright © 2006 by Randall Hyde



INDEX 615

VMT (virtual method table), 342, 373
pointers, 373

void function (C/C++), 522
Von Neuman architecture, 23, 49
vstamp field in a COFF file, 89

W
When not to call a standard library 

routine, 294
while loops, 489

with complete Boolean 
evaluation, 492

conversion to an if and a goto, 490
Windows runtime memory 

organization, 190
Word (halfword) values (PowerPC), 56
Word count program, 63
Word data (80x86), 39
word declaration (MASM/TASM), 42
Work accomplished per 

instruction, 582
Working set, 99
Worst case performance of an 

optimizer, 71

X
XER register (PowerPC), 49, 51

Z
Z80 CPU, 393
Zero (NULL) address, 190
Zero bit (PowerPC condition code 

register), 50
Zero flag (80x86), 25, 441
Zero/nonzero Boolean 

representation, 175
Zero/one Boolean representation, 174
Zero-address machines, 389
Zero-terminated string (zstring), 283

advantages, 283
disadvantages, 284
implementation, 284
overhead, 283

zstring (zero-terminated string), 283

No Starch Press, Copyright © 2006 by Randall Hyde



More No-Nonsense Books from

WRITE PORTABLE CODE
An Introduction to Developing Software for Multiple Platforms
by BRIAN HOOK

Write Portable Code contains the lessons, patterns, and knowledge for develop-
ing cross-platform software that programmers usually must acquire through 
trial and error. This book is targeted at intermediate- to advanced-level pro-
grammers and will be a valuable resource for designers of cross-platform 
software, programmers looking to extend their skills to additional platforms, 
and programmers faced with the tricky task of moving code from one platform 
to another.

JULY 2005, 272 PP., $34.95 ($47.95 CDN)
ISBN 1-59327-056-9

WICKED COOL JAVA
Code Bits, Open-Source Libraries, and Project Ideas
by BRIAN D. EUBANKS

Wicked Cool Java contains 101 fun, interesting, and useful ways to get more 
out of Java. It is not intended as a Java tutorial—it’s targeted at developers 
and system architects who have some basic Java knowledge but may not be 
familiar with the wide range of libraries available. Full of example code and 
ideas for combining it into useful projects, this book is perfect for hobbyists 
and professionals looking for tips and open-source projects to enhance their 
code and make their jobs easier.

NOVEMBER 2005, 248 PP., $29.95 ($40.95 CDN)
ISBN 1-59327-061-5

THE BOOK OF™ VISUAL BASIC 2005
.NET Insight for Classic VB Developers
by MATTHEW MACDONALD

The Book of Visual Basic 2005 is a comprehensive introduction to Microsoft’s 
newest programming language, Visual Basic 2005, the next iteration of Visual 
Basic .NET. A complete revision of the highly-acclaimed Book of VB .NET, the 
book is organized as a series of lightning-fast tours and real-world examples 
that show developers the VB 2005 way of doing things. Perfect for old-school 
Visual Basic developers who haven’t made the jump to .NET, the book is also 
useful to developers from other programming backgrounds (like Java) who 
want to cut to the chase and quickly learn how to program with VB 2005.

APRIL 2006, 528 PP., $39.95 ($51.95 CDN)
ISBN 1-59327-074-7

NO STARCH PRESS

No Starch Press, Copyright © 2006 by Randall Hyde



WRITE GREAT CODE, VOLUME 1
Understanding the Machine

by RANDALL HYDE

Write Great Code, Volume 1 teaches machine organization, including numeric 
representation; binary arithmetic and bit operations; floating point represen-
tation; system and memory organization; character representation; constants 
and types; digital design; CPU, instruction set, and memory architecture; 
input and output; and how compilers work.

NOVEMBER 2004, 464 PP., $39.95 ($55.95 CDN)
ISBN 1-59327-003-8

THE ART OF ASSEMBLY LANGUAGE
by RANDALL HYDE

Presents assembly language from the high-level programmer’s point of view 
so programmers can start writing meaningful programs within days. The CD-
ROM includes the author’s High Level Assembler (HLA), the first assembler 
that allows programmers to write portable assembly language programs that 
run under either Linux or Windows with nothing more than a recompile.

SEPTEMBER 2003, 928 PP. W/CD, $59.95 ($89.95 CDN)
ISBN 1-886411-97-2

PHONE:
800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)

FAX:
415.863.9950
24 HOURS A DAY,
7 DAYS A WEEK

EMAIL:
SALES@NOSTARCH.COM

WEB:
HTTP://WWW.NOSTARCH.COM

MAIL:
NO STARCH PRESS

555 DE HARO ST, SUITE 250
SAN FRANCISCO, CA 94107
USA

No Starch Press, Copyright © 2006 by Randall Hyde



No Starch Press, Copyright © 2006 by Randall Hyde



C O L O P H O N

Write Great Code: Thinking Low-Level, Writing High-Level was laid out in Adobe 
FrameMaker. The font families used are New Baskerville for body text, Futura 
for headings and tables, and Dogma for titles.

The book was printed and bound at Malloy Incorporated in Ann Arbor, 
Michigan. The paper is Glatfelter Thor 50# Antique, which is made from 
50 percent recycled materials, including 30 percent postconsumer content. 
The book uses a RepKover binding, which allows it to lay flat when open.

No Starch Press, Copyright © 2006 by Randall Hyde



U P D A T E S

Visit http://www.nostarch.com/greatcode2.htm for updates, errata, and other 
information.

No Starch Press, Copyright © 2006 by Randall Hyde




	ACKNOWLEDGMENTS
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	INTRODUCTION
	1 THINKING LOW-LEVEL, WRITING HIGH-LEVEL
	1.1 Misconceptions About Compiler Quality
	1.2 Why Learning Assembly Language Is Still a Good Idea
	1.3 Why Learning Assembly Language Isn’t Absolutely Necessary
	1.4 Thinking Low-Level
	1.4.1 Compilers Are Only as Good as the Source Code You Feed Them
	1.4.2 Helping the Compiler Produce Better Machine Code
	1.4.3 How to Think in Assembly While Writing HLL Code

	1.5 Writing High-Level
	1.6 Assumptions
	1.7 Language-Neutral Approach
	1.8 Characteristics of Great Code
	1.9 The Environment for This Text
	1.10 For More Information

	2 SHOULDN’T YOU LEARN ASSEMBLY LANGUAGE?
	2.1 Roadblocks to Learning Assembly Language
	2.2 Write Great Code, Volume 2, to the Rescue
	2.3 High-Level Assemblers to the Rescue
	2.4 The High-Level Assembler (HLA)
	2.5 Thinking High-Level, Writing Low-Level
	2.6 The Assembly Programming Paradigm (Thinking Low-Level)
	2.7 The Art of Assembly Language and Other Resources

	3 80X86 ASSEMBLY FOR THE HLL PROGRAMMER
	3.1 Learning One Assembly Language Is Good, LearningMore Is Better
	3.2 80x86 Assembly Syntaxes
	3.3 Basic 80x86 Architecture
	3.3.1 Registers
	3.3.2 80x86 General-Purpose Registers
	3.3.3 The 80x86 EFLAGS Register

	3.4 Literal Constants
	3.4.1 Binary Literal Constants
	3.4.1.1 Binary Literal Constants in HLA
	3.4.1.2 Binary Literal Constants in Gas
	3.4.1.3 Binary Literal Constants in MASM and TASM

	3.4.2 Decimal Literal Constants
	3.4.2.1 Decimal Literal Constants in HLA
	3.4.2.2 Decimal Literal Constants in Gas, MASM, and TASM

	3.4.3 Hexadecimal Literal Constants
	3.4.3.1 Hexadecimal Literal Constants in HLA
	3.4.3.2 Hexadecimal Literal Constants in Gas
	3.4.3.3 Hexadecimal Literal Constants in MASM and TASM

	3.4.4 Character and String Literal Constants
	3.4.4.1 Character and String Literal Constants in HLA
	3.4.4.2 Character and String Literal Constants in Gas
	3.4.4.3 Character/String Literal Constants in MASM and TASM

	3.4.5 Floating-Point Literal Constants

	3.5 Manifest (Symbolic) Constants in Assembly Language
	3.5.1 Manifest Constants in HLA
	3.5.2 Manifest Constants in Gas
	3.5.3 Manifest Constants in MASM and TASM

	3.6 80x86 Addressing Modes
	3.6.1 80x86 Register Addressing Modes
	3.6.1.1 Register Access in HLA
	3.6.1.2 Register Access in Gas
	3.6.1.3 Register Access in MASM and TASM

	3.6.2 Immediate Addressing Mode
	3.6.3 Displacement-Only Memory Addressing Mode
	3.6.4 Register Indirect Addressing Mode
	3.6.4.1 Register Indirect Modes in HLA
	3.6.4.2 Register Indirect Modes in MASM and TASM
	3.6.4.3 Register Indirect Modes in Gas

	3.6.5 Indexed Addressing Mode
	3.6.5.1 Indexed Addressing Mode in HLA
	3.6.5.2 Indexed Addressing Mode in MASM and TASM
	3.6.5.3 Indexed Addressing Mode in Gas

	3.6.6 Scaled-Indexed Addressing Modes
	3.6.6.1 Scaled-Indexed Addressing in HLA
	3.6.6.2 Scaled-Indexed Addressing in MASM and TASM
	3.6.6.3 Scaled-Indexed Addressing in Gas


	3.7 Declaring Data in Assembly Language
	3.7.1 Data Declarations in HLA
	3.7.2 Data Declarations in MASM and TASM
	3.7.3 Data Declarations in Gas
	3.7.3.1 Accessing Byte Variables in Assembly Language


	3.8 Specifying Operand Sizes in Assembly Language
	3.8.1 Type Coercion in HLA
	3.8.2 Type Coercion in MASM and TASM
	3.8.3 Type Coercion in Gas

	3.9 The Minimal 80x86 Instruction Set
	3.10 For More Information

	4 POWERPC ASSEMBLY FOR THE HLL PROGRAMMER
	4.1 Learning One Assembly Language Is Good; More Is Better
	4.2 Assembly Syntaxes
	4.3 Basic PowerPC Architecture
	4.3.1 General-Purpose Integer Registers
	4.3.2 General-Purpose Floating-Point Registers
	4.3.3 User-Mode-Accessible Special-Purpose Registers
	4.3.3.1 Condition-Code Registers
	4.3.3.2 Floating-Point Status and Control Register
	4.3.3.3 XER Register
	4.3.3.4 The LINK Register
	4.3.3.5 The COUNT Register
	4.3.3.6 The Time Base Registers (TBL and TBU)


	4.4 Literal Constants
	4.4.1 Binary Literal Constants
	4.4.2 Decimal Literal Constants
	4.4.3 Hexadecimal Literal Constants
	4.4.4 Character and String Literal Constants
	4.4.5 Floating-Point Literal Constants

	4.5 Manifest (Symbolic) Constants in Assembly Language
	4.6 PowerPC Addressing Modes
	4.6.1 PowerPC Register Access
	4.6.2 The Immediate Addressing Mode
	4.6.3 PowerPC Memory Addressing Modes
	4.6.3.1 Register Plus Displacement Addressing Mode
	4.6.3.2 Register Plus Register (Indexed) Addressing Mode


	4.7 Declaring Data in Assembly Language
	4.8 Specifying Operand Sizes in Assembly Language
	4.9 The Minimal Instruction Set
	4.10 For More Information

	5 COMPILER OPERATION AND CODE GENERATION
	5.1 File Types That Programming Languages Use
	5.2 Programming Language Source Files
	5.2.1 Tokenized Source Files
	5.2.2 Specialized Source File Formats

	5.3 Types of Computer Language Processors
	5.3.1 Pure Interpreters
	5.3.2 Interpreters
	5.3.3 Compilers
	5.3.4 Incremental Compilers

	5.4 The Translation Process
	5.4.1 Lexical Analysis and Tokens
	5.4.2 Parsing (Syntax Analysis)
	5.4.3 Intermediate Code Generation
	5.4.4 Optimization
	5.4.4.1 The Problem with Optimization
	5.4.4.2 Optimization’s Effect on Compile Time
	5.4.4.3 Basic Blocks, Reducible Code, and Optimization
	5.4.4.4 Common Compiler Optimizations
	5.4.4.5 Controlling Compiler Optimization

	5.4.5 Comparing Different Compilers’ Optimizations
	5.4.6 Native Code Generation

	5.5 Compiler Output
	5.5.1 Emitting HLL Code as Compiler Output
	5.5.2 Emitting Assembly Language as Compiler Output
	5.5.3 Emitting Object Files as Compiler Output
	5.5.4 Emitting Executable Files as Compiler Output

	5.6 Object File Formats
	5.6.1 The COFF File Header
	5.6.2 The COFF Optional Header
	5.6.3 COFF Section Headers
	5.6.4 COFF Sections
	5.6.5 The Relocation Section
	5.6.6 Debugging and Symbolic Information
	5.6.7 Learning More About Object File Formats

	5.7 Executable File Formats
	5.7.1 Pages, Segments, and File Size
	5.7.2 Internal Fragmentation
	5.7.3 So Why Optimize for Space?

	5.8 Data and Code Alignment in an Object File
	5.8.1 Choosing a Section Alignment Size
	5.8.2 Combining Sections
	5.8.3 Controlling the Section Alignment
	5.8.4 Section Alignment and Library Modules

	5.9 Linkers and Their Effect on Code
	5.10 For More Information

	6 TOOLS FOR ANALYZING COMPILER OUTPUT
	6.1 Background
	6.2 Telling a Compiler to Produce Assembly Output
	6.2.1 Assembly Output from GNU and Borland Compilers
	6.2.2 Assembly Output from Visual C++
	6.2.3 Example Assembly Language Output
	6.2.3.1 Visual C++ Assembly Language Output
	6.2.3.2 Borland C++ Assembly Language Output
	6.2.3.3 Borland C++/Intel Backend Assembly Output
	6.2.3.4 GCC Assembly Language Output (PowerPC)
	GCC Assembly Language Output (80x86)

	6.2.4 Analyzing Assembly Output from a Compiler

	6.3 Using Object-Code Utilities to Analyze Compiler Output
	6.3.1 The Microsoft dumpbin.exe Utility
	6.3.1.1 The dumpbin.exe /all Command-Line Option
	6.3.1.2 The dumpbin.exe /disasm Command-Line Option
	6.3.1.3 The dumpbin.exe /headers Command-Line Option
	6.3.1.4 The dumpbin.exe /imports Command-Line Option
	6.3.1.5 The dumpbin.exe /relocations Command-Line Option
	6.3.1.6 Other dumpbin.exe Command-Line Options

	6.3.2 The FSF/GNU objdump.exe Utility

	6.4 Using a Disassembler to Analyze Compiler Output
	6.5 Using a Debugger to Analyze Compiler Output
	6.5.1 Using an IDE’s Debugger
	6.5.2 Using a Stand-Alone Debugger

	6.6 Comparing Output from Two Compilations
	6.6.1 Before-and-After Comparisons with diff
	6.6.2 Manual Comparison

	6.7 For More Information

	7 CONSTANTS AND HIGH-LEVEL LANGUAGES
	7.1 Literal Constants and Program Efficiency
	7.2 Literal Constants Versus Manifest Constants
	7.3 Constant Expressions
	7.4 Manifest Constants Versus Read-Only Memory Objects
	7.5 Enumerated Types
	7.6 Boolean Constants
	7.7 Floating-Point Constants
	7.8 String Constants
	7.9 Composite Data Type Constants
	7.10 For More Information

	8 VARIABLES  IN A HIGH-LEVEL LANGUAGE
	8.1 Runtime Memory Organization
	8.1.1 The Code, Constant, and Read-Only Sections
	8.1.2 The Static Variables Section
	8.1.3 The BSS Section
	8.1.4 The Stack Section
	8.1.5 The Heap Section and Dynamic Memory Allocation

	8.2 What Is a Variable?
	8.2.1 Attributes
	8.2.2 Binding
	8.2.3 Static Objects
	8.2.4 Dynamic Objects
	8.2.5 Scope
	8.2.6 Lifetime
	8.2.7 So What Is a Variable?

	8.3 Variable Storage
	8.3.1 Static Binding and Static Variables
	8.3.1.1 Binding at Language-Design Time
	8.3.1.2 Binding at Compile Time
	8.3.1.3 Binding at Link Time
	8.3.1.4 Binding at Load Time
	8.3.1.5 Static Variable Binding

	8.3.2 Pseudo-Static Binding and Automatic Variables
	8.3.3 Dynamic Binding and Dynamic Variables

	8.4 Common Primitive Data Types
	8.4.1 Integer Variables
	8.4.2 Floating-Point/Real Variables
	8.4.3 Character Variables
	8.4.4 Boolean Variables

	8.5 Variable Addresses and High-level Languages
	8.5.1 Storage Allocation for Global and Static Variables
	8.5.2 Using Automatic Variables to Reduce Offset Sizes
	8.5.3 Storage Allocation for Intermediate Variables
	8.5.4 Storage Allocation for Dynamic Variables and Pointers
	8.5.5 Using Records/Structures to Reduce Instruction Offset Sizes
	8.5.6 Register Variables

	8.6 Variable Alignment in Memory
	8.6.1 Records and Alignment

	8.7 For More Information

	9 ARRAY DATA TYPES
	9.1 What Is an Array?
	9.1.1 Array Declarations
	9.1.1.1 Declaring Arrays in C, C++, and Java
	9.1.1.2 Declaring Arrays in HLA
	9.1.1.3 Declaring Arrays in Pascal, Delphi, and Kylix
	9.1.1.4 Declaring Arrays with Noninteger Index Values

	9.1.2 Array Representation in Memory
	9.1.3 Accessing Elements of an Array
	9.1.4 Padding Versus Packing
	9.1.5 Multidimensional Arrays
	9.1.5.1 Declaring Multidimensional Arrays
	9.1.5.2 Mapping Multidimensional Array Elements to Memory
	9.1.5.3 Row-Major Ordering
	9.1.5.4 Column-Major Ordering
	9.1.5.5 Accessing Elements of a Multidimensional Array
	9.1.5.6 Emulating Column-Major or Row-Major Ordering
	9.1.5.7 Improving Array Access Efficiency in Your Applications

	9.1.6 Dynamic Versus Static Arrays
	9.1.6.1 Single-Dimensional Pseudo-Dynamic Arrays
	9.1.6.2 Multidimensional Pseudo-Dynamic Arrays
	9.1.6.3 Pure Dynamic Arrays


	9.2 For More Information

	10 STRING DATA TYPES
	10.1 Character String Formats
	10.1.1 Zero-Terminated Strings
	10.1.1.1 Utilize C Standard Library String Functions
	10.1.1.2 When Not to Use Standard Library Functions
	10.1.1.3 Avoid Recomputing Data
	10.1.1.4 Avoid Copying Data
	10.1.1.5 A Final Comment on Zero-Terminated Strings

	10.1.2 Length-Prefixed Strings
	10.1.3 7-Bit Strings
	10.1.4 HLA Strings
	10.1.5 Descriptor-Based Strings

	10.2 Static, Pseudo-Dynamic, and Dynamic Strings
	10.2.1 Static Strings
	10.2.2 Pseudo-Dynamic Strings
	10.2.3 Dynamic Strings

	10.3 Reference Counting for Strings
	10.4 Delphi/Kylix Strings
	10.5 Using Strings in a High-Level Language
	PARSE ERROR: 10.6 Character Data in Strings
	10.7 For More Information

	11 POINTER DATA TYPES
	11.1 Defining and Demystifying Pointers
	11.2 Pointer Implementation in High-Level Languages
	11.3 Pointers and Dynamic Memory Allocation
	11.4 Pointer Operations and Pointer Arithmetic
	11.4.1 Adding an Integer to a Pointer
	11.4.2 Subtracting an Integer from a Pointer
	11.4.3 Subtracting a Pointer from a Pointer
	11.4.4 Comparing Pointers
	11.4.5 Logical AND/OR and Pointers
	11.4.6 Other Operations with Pointers

	11.5 A Simple Memory Allocator Example
	11.6 Garbage Collection
	11.7 The OS and Memory Allocation
	11.8 Heap Memory Overhead
	11.9 Common Pointer Problems
	11.9.1 Using an Uninitialized Pointer
	11.9.2 Using a Pointer That Contains an Illegal Value
	11.9.3 Continuing to Use Storage After It Has Been Freed
	11.9.4 Failing to Free Storage When Done with It
	11.9.5 Accessing Indirect Data Using the Wrong Data Type

	11.10 For More Information

	12 RECORD, UNION , AND CLASS DATA TYPES
	12.1 Records
	12.1.1 Record Declarations in Various Languages
	12.1.1.1 Records in Pascal/Delphi
	12.1.1.2 Records in C/C++
	12.1.1.3 Records in HLA

	12.1.2 Instantiation of a Record
	12.1.3 Initialization of Record Data at Compile Time
	12.1.4 Memory Storage of Records
	12.1.5 Using Records to Improve Memory Performance
	12.1.6 Dynamic Record Types and Databases

	12.2 Discriminant Unions
	12.3 Union Declarations in Various Languages
	12.3.1 Union Declarations in C/C++
	12.3.2 Union Declarations in Pascal/Delphi/Kylix
	12.3.3 Union Declarations in HLA

	12.4 Memory Storage of Unions
	12.5 Other Uses of Unions
	12.6 Variant Types
	12.7 Namespaces
	12.8 Classes and Objects
	12.8.1 Classes Versus Objects
	12.8.2 Simple Class Declarations in C++
	12.8.3 Virtual Method Tables
	12.8.4 Sharing VMTs
	12.8.5 Inheritance in Classes
	12.8.6 Polymorphism in Classes
	12.8.7 Classes, Objects, and Performance

	12.9 For More Information

	13 ARITHMETIC AND LOGICAL EXPRESSIONS
	13.1 Arithmetic Expressions and Computer Architecture
	13.1.1 Stack-Based Machines
	13.1.1.1 Basic Stack Machine Organization
	13.1.1.2 Pushing Data onto a Stack
	13.1.1.3 Popping Data from a Stack
	13.1.1.4 Arithmetic Operations on a Stack Machine
	13.1.1.5 Real-World Stack Machines

	13.1.2 Accumulator-Based Machines
	13.1.3 Register-Based Machines
	13.1.4 Typical Forms of Arithmetic Expressions
	13.1.5 Three-Address Architectures
	13.1.6 Two-Address Architectures
	13.1.7 Architectural Differences and Your Code
	13.1.8 Handling Complex Expressions

	13.2 Optimization of Arithmetic Statements
	13.2.1 Constant Folding
	13.2.2 Constant Propagation
	13.2.3 Dead Code Elimination
	13.2.4 Common Subexpression Elimination
	13.2.5 Strength Reduction
	13.2.6 Induction
	13.2.7 Loop Invariants
	13.2.8 Optimizers and Programmers

	13.3 Side Effects in Arithmetic Expressions
	13.4 Containing Side Effects: Sequence Points
	13.5 Avoiding Problems Caused by Side Effects
	13.6 Forcing a Particular Order of Evaluation
	13.7 Short-Circuit Evaluation
	13.7.1 Short-Circuit Evaluation and Boolean Expressions
	13.7.2 Forcing Short-Circuit or Complete Boolean Evaluation
	13.7.3 Efficiency Issues

	13.8 The Relative Cost of Arithmetic Operations
	13.9 For More Information

	14 CONTROL STRUCTURES AND PROGRAMMATIC DECISIONS
	14.1 Control Structures Are Slower Than Computations!
	14.2 Introduction to Low-Level Control Structures
	14.3 The goto Statement
	14.4 break, continue, next, return, and Other Limited Formsof the goto Statement
	14.5 The if Statement
	14.5.1 Improving the Efficiency of Certain if/else Statements
	14.5.2 Forcing Complete Boolean Evaluation in an if Statement
	14.5.3 Forcing Short-Circuit Boolean Evaluation in an if Statement

	14.6 The switch/case Statement
	14.6.1 Semantics of a switch/case Statement
	14.6.2 Jump Tables Versus Chained Comparisons
	14.6.3 Other Implementations of switch/case
	14.6.4 Compiler Output for switch Statements

	14.7 For More Information

	15 ITERATIVE CONTROL  STRUCTURES
	15.1 The while Loop
	15.1.1 Forcing Complete Boolean Evaluation in a while Loop
	15.1.1.1 The Easy but Inefficient Approach
	15.1.1.2 Using Inline Functions
	15.1.1.3 Using Bitwise Logical Operations
	15.1.1.4 Using Unstructured Code

	15.1.2 Forcing Short-Circuit Boolean Evaluation in a while Loop

	15.2 The repeat..until (do..until/do..while) Loop
	15.2.1 Forcing Complete Boolean Evaluation in a repeat..until Loop
	15.2.2 Forcing Short-Circuit Boolean Evaluation in a repeat..until Loop

	15.3 The forever..endfor Loop
	15.3.1 Forcing Complete Boolean Evaluation in a forever Loop
	15.3.2 Forcing Short-Circuit Boolean Evaluation in a forever Loop

	15.4 The Definite Loop (for Loops)
	15.5 For More Information

	16 FUNCTIONS AND PROCEDURES
	16.1 Simple Function and Procedure Calls
	16.1.1 Storing the Return Address
	16.1.2 Other Sources of Overhead

	16.2 Leaf Functions and Procedures
	16.3 Macros and Inline Functions
	16.4 Passing Parameters to a Function or Procedure
	16.5 Activation Records and the Stack
	16.5.1 Composition of the Activation Record
	16.5.2 Assigning Offsets to Local Variables
	16.5.3 Associating Offsets with Parameters
	16.5.3.1 The Pascal Calling Convention
	16.5.3.2 The C Calling Convention
	16.5.3.3 Passing Parameters in Registers

	16.5.4 Accessing Parameters and Local Variables

	16.6 Parameter-Passing Mechanisms
	16.6.1 Pass-by-Value
	16.6.2 Pass-by-Reference

	16.7 Function Return Values
	16.8 For More Information

	ENGINEERING SOFTWARE
	A BRIEF COMPARISON OF THE 80X86 AND POWERPC CPU FAMILI ES
	A.1 Architectural Differences Between RISC and CISC
	A.1.1 Work Accomplished per Instruction
	A.1.2 Instruction Size
	A.1.3 Clock Speed and Clocks per Instruction
	A.1.4 Memory Access and Addressing Modes
	A.1.5 Registers
	A.1.6 Immediate (Constant) Operands
	A.1.7 Stacks

	A.2 Compiler and Application Binary Interface Issues
	A.3 Writing Great Code for Both Architectures

	ONLINE APPENDICES
	INDEX



