
T H E M A G I C B E H I N D E N C R Y P T I O N ,

C G I , S E A R C H E N G I N E S , A N D

O T H E R E V E R Y D A Y T E C H N O L O G I E S

V . A N T O N S P R A U L

H O W
S O F T W A R E

W O R K S

H O W
S O F T W A R E

W O R K S

SHELVE IN:
COM

PUTERS/COM
PUTER SCIENCE

$29.95 ($34.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

“ I L I E F LAT .”

Th is book uses a durab le b ind ing that won’t snap shut.

Software drives the modern world, but its inner
workings remain a mystery to many. It’s the force
behind stunning CGI graphics, safe online shopping,
and speedy Google searches. We use software every
day, but not all of us understand exactly how it works.

If you’ve ever wondered what really goes on behind
your computer screen, How Software Works will give
you a fascinating look into the software around you.
For example, you’ll learn how computer-generated
animation can be combined with real-world footage to
create realistic special effects, how videogames render
graphics in real time, how hash functions scramble
passwords to protect them from attacks, and how
Google ranks search results.

You’ll also learn:

• How encryption works and how different standards
can be attacked

• How video is compressed for online streaming

• How data is searched (and found) in huge databases

• How programs work together on the same problem
without conflict

• How software interprets a map and directs you
where to go

How Software Works is written in plain English, with
patient explanations and intuitive diagrams that anyone
can understand. No technical background is required,
and there’s no code.

You don’t have to be a computer scientist to understand
how computers perform the common-yet-amazing tasks
that we take for granted every day. Start unraveling the
mysteries of software with How Software Works.

A B O U T T H E A U T H O R

V. Anton Spraul has taught introductory programming
and computer science to students from all over the
world for more than 15 years. He is the author of Think
Like a Programmer (No Starch Press) and Computer
Science Made Simple (Broadway).

A L O O K I N S I D E
T H E S E C R E T

W O R L D O F
S O F T W A R E

A L O O K I N S I D E
T H E S E C R E T

W O R L D O F
S O F T W A R E

HOW SOFTWARE WORKS

H O W
S O F T W A R E

W O R K S
T h e M a g i c B e h i n d E n c r y p t i o n ,

C G I , S e a r c h E n g i n e s , a n d
O t h e r E v e r y d a y T e c h n o l o g i e s

by V. Anton Spraul

San Francisco

HOW SOFTWARE WORKS. Copyright © 2015 by V. Anton Spraul.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

19 18 17 16 15 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-666-4
ISBN-13: 978-1-59327-666-9

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editors: Hayley Baker, Seph Kramer, and Greg Poulos
Technical Reviewer: Randall Hyde
Copyeditor: Rachel Monaghan
Compositor: Susan Glinert Stevens
Proofreader: James Fraleigh

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data:

Spraul, V. Anton.
 How software works : the magic behind encryption, CGI, search engines, and other everyday technologies / by
V. Anton Spraul.
 pages cm
 Includes index.
 Summary: "A guide for non-technical readers that explores topics like data encryption; computer graphics
creation; password protection; video compression; how data is found in huge databases; how programs can work
together on the same problem without conflict; and how map software finds routes."-- Provided by publisher.
 ISBN 978-1-59327-666-9 -- ISBN 1-59327-666-4
 1. Electronic data processing--Popular works. 2. Computer software--Popular works. 3. Computer networks--
Popular works. I. Title.
 QA76.5.S6663 2015
 005.3--dc23
 2015022623

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

http://www.nostarch.com

About the Author
V. Anton Spraul has taught introductory programming and computer
 science to students from all over the world for more than 15 years.
He is also the author of Think Like a Programmer (No Starch Press) and
Computer Science Made Simple (Broadway).

About the Technical Reviewer
Randall Hyde is the author of The Art of Assembly Language and Write
Great Code (both No Starch Press), and is also the co-author of The Waite
Group’s Microsoft Macro Assembler 6.0 Bible (Sams Publishing). Hyde taught
assembly language at the University of California, Riverside, for more
than a decade and has been programming software for nuclear reactor
consoles for the past 12 years.

B R I E F C O N T E N T S

Acknowledgments . xiii

Introduction . xv

Chapter 1: Encryption . 1

Chapter 2: Passwords . 19

Chapter 3: Web Security . 37

Chapter 4: Movie CGI . 57

Chapter 5: Game Graphics . 85

Chapter 6: Data Compression . 115

Chapter 7: Search . 145

Chapter 8: Concurrency . 161

Chapter 9: Map Routes . 175

Index . 191

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xiii

INTRODUCTION xv
Who This Book Is For . xvi
Topics Covered . xvi
Behind the Magic . xvii

1
ENCRYPTION 1
The Goal of Encryption . 2
Transposition: Same Data, Different Order . 2

Cipher Keys . 4
Attacking the Encryption . 5

Substitution: Replacing Data . 6
Varying the Substitution Pattern . 7
Key Expansion . 9

The Advanced Encryption Standard . 9
Binary Basics . 10
AES Encryption: The Big Picture . 12
Key Expansion in AES . 13
AES Encryption Rounds . 14
Block Chaining . 15
Why AES Is Secure . 16
Possible AES Attacks . 17

The Limits of Private-Key Encryption . 18

2
PASSWORDS 19
Transforming a Password into a Number . 20

Properties of Good Hash Functions . 20
The MD5 Hash Function . 21

Encoding the Password . 21
Bitwise Operations . 22
MD5 Hashing Rounds . 24
Meeting the Criteria of a Good Hash Function . 25

Digital Signatures . 25
The Problem of Identity . 26
Collision Attacks . 26

x Contents in Detail

Passwords in Authentication Systems . 26
The Dangers of Password Tables . 26
Hashing Passwords . 27
Dictionary Attacks . 28
Hash Tables . 29
Hash Chaining . 29
Iterative Hashing . 32
Salting Passwords . 34
Are Password Tables Safe? . 35

Password Storage Services . 35
A Final Thought . 36

3
WEB SECURITY 37
How Public-Key Cryptography Solves the Shared Key Problem 38
Math Tools for Public-Key Cryptography . 38

Invertible Functions . 39
One-Way Functions . 39
Trapdoor Functions . 40

The RSA Encryption Method . 42
Creating the Keys . 42
Encrypting Data with RSA . 44
RSA Effectiveness . 45
RSA Use in the Real World . 47
RSA for Authentication . 49

Security on the Web: HTTPS . 52
Handshaking . 52
Transmitting Data Under HTTPS . 54

The Shared Key Problem Solved? . 55

4
MOVIE CGI 57
Software for Traditional Animation . 59

How Digital Images Work . 59
How Colors Are Defined . 60
How Software Makes Cel Animations . 61
From Cel Animation Software to Rendered 2D Graphics 69

Software for 3D CGI . 69
How 3D Scenes Are Described . 70
The Virtual Camera . 71
Direct Lighting . 71
Global Illumination . 76
How Light Is Traced . 77
Full-Scene Anti-Aliasing . 80

Combining the Real and the Fake . 81
The Ideal of Movie-Quality Rendering . 82

Contents in Detail xi

5
GAME GRAPHICS 85
Hardware for Real-Time Graphics . 86
Why Games Don’t Ray Trace . 87
All Lines and No Curves . 87
Projection Without Ray Tracing . 88
Rendering Triangles . 89

The Painter’s Algorithm . 90
Depth Buffering . 91

Real-Time Lighting . 92
Shadows . 94
Ambient Light and Ambient Occlusion . 96
Texture Mapping . 97

Nearest-Neighbor Sampling . 99
Bilinear Filtering . 101
Mipmaps . 102
Trilinear Filtering . 102

Reflections . 103
Faking Curves . 105

Distant Impostors . 105
Bump Mapping . 106
Tessellation . 107

Anti-Aliasing in Real Time . 108
Supersampling . 109
Multisampling . 110
Post-Process Anti-Aliasing . 111

The Rendering Budget . 113
What’s Next for Game Graphics . 113

6
DATA COMPRESSION 115
Run-Length Encoding . 117
Dictionary Compression . 118

The Basic Method . 118
Huffman Encoding . 120

Reorganizing Data for Better Compression . 121
Predictive Encoding . 121
Quantization . 123

JPEG Images . 123
A Different Way to Store Colors . 124
The Discrete Cosine Transform . 125
The DCT for Two Dimensions . 128
Compressing the Results . 132
JPEG Picture Quality . 135

Compressing High-Definition Video . 136
Temporal Redundancy . 138
MPEG-2 Video Compression . 138
Video Quality with Temporal Compression . 142

The Present and Future of Video Compression . 143

xii Contents in Detail

7
SEARCH 145
Defining the Search Problem . 146
Putting Data in Order . 146

Selection Sort . 146
Quicksort . 147

Binary Search . 151
Indexing . 152
Hashing . 154
Web Search . 157

Ranking Results . 158
Using the Index Effectively . 159

What’s Next for Web Search . 160

8
CONCURRENCY 161
Why Concurrency Is Needed . 162

Performance . 162
Multiuser Environments . 162
Multitasking . 162

How Concurrency Can Fail . 163
Making Concurrency Safe . 166

Read-Only Data . 166
Transaction-Based Processing . 166
Semaphores . 167

The Problem of Indefinite Waits . 169
Orderly Queues . 170
Starvation from Circular Waits . 170

Performance Issues of Semaphores . 172
What’s Next for Concurrency . 174

9
MAP ROUTES 175
What a Map Looks Like to Software . 176

Best-First Search . 178
Reusing Prior Search Results . 181

Finding All the Best Routes at Once . 183
Floyd’s Algorithm . 183
Storing Route Directions . 186

The Future of Routing . 189

INDEX 191

A C K N O W L E D G M E N T S

This book was shaped and guided by a platoon of talented editors: Alison
Law, Greg Poulos, Seph Kramer, Hayley Baker, Randall Hyde, Rachel
Monaghan, and the “Big Fish” of No Starch, Bill Pollock. Beyond the edi-
torial staff, I appreciate the support and kindness of everyone I’ve worked
with at No Starch.

The two people who helped me the most, though, are Mary Beth and
Madeline, the best wife and daughter I can imagine. Without their love and
support, this book would not have been written.

I N T R O D U C T I O N

Science fiction author Arthur C. Clarke
wrote that “any sufficiently advanced tech-

nology is indistinguishable from magic.” If
we don’t know how something works, then it

might as well be explained by supernatural forces. By
that standard, we live in an age of magic.

Software is woven into our lives, into everyday things like online trans-
actions, special effects in movies, and streaming video. We’re forgetting
we used to live in a world in which the answer to a question wasn’t just
a Google search away, or where finding a route for a car trip began with
unfolding a cumbersome map.

But few of us have any idea how all this software works. Unlike many
innovations of the past, you can’t take software apart to see what it’s doing.
Everything happens on a computer chip that looks the same whether the
device is performing an amazing task or isn’t even turned on. Knowing how

xvi Introduction

a program works seems to require spending years of study to become a pro-
grammer. So it’s no wonder that many of us assume that software is beyond
our understanding, a collection of secrets known only to a technological
elite. But that’s wrong.

Who This Book Is For
Anyone can learn how software works. All you need is curiosity. Whether
you’re a casual fan of technology, a programmer in the making, or someone
in between, this book is for you.

This book covers the most commonly used processes in software and
does so without a single line of programming code. No prior knowledge of
how computers operate is required. To make this possible, I’ve simplified
a few processes and clipped some details, but that doesn’t mean these are
mere high-level overviews; you’ll be getting the real goods, with enough
details that you’ll truly understand how these programs do what they do.

Topics Covered
Computers are so ubiquitous in the modern world that the list of subjects
I could cover seems endless. I’ve chosen topics that are most central to our
daily lives and with the most interesting explanations.

•	 Chapter 1: Encryption allows us to scramble our data so that only we
can access it. When you lock your phone or password-protect a .zip file,
you’re using encryption. We’ll see how different scrambling techniques
are combined in modern encryption software.

•	 Chapter 2: Passwords are the keys we use to lock our data and how we
identify ourselves to remote systems. You’ll see how passwords are used
in encryption and learn the surprising steps that must be taken to keep
passwords safe from attackers.

•	 Chapter 3: Web Security is what we need to safely purchase goods online
or access our accounts. Locking data for transmission requires a differ-
ent method of scrambling called public-key encryption. You’ll discover
how a secure web session requires all the techniques covered in the first
three chapters.

•	 Chapter 4: Movie CGI is pure software magic, creating whole worlds out
of mathematical descriptions. You’ll discover how software took over
traditional cel animation and then learn the key concepts behind mak-
ing a complete movie set with software.

•	 Chapter 5: Game Graphics are impressive not just for their visuals
but also for how they are created in mere fractions of a second. We’ll
explore a host of clever tricks games use to produce stunning images
when they don’t have time for the techniques discussed in the previous
chapter.

Introduction xvii

•	 Chapter 6: Data Compression shrinks data so that we can get more out
of our storage and bandwidth limits. We’ll explore the best methods for
shrinking data, and then see how they are combined to compress high-
definition video for Blu-ray discs and web streams.

•	 Chapter 7: Search is about finding data instantly, whether it’s a search
for a file on our own computer or a search across the whole Web. We’ll
explore how data is organized for quick searches, how search zeros
in on requested data, and how web searches return the most useful
results.

•	 Chapter 8: Concurrency allows multiple programs to share data.
Without concurrency, multiplayer video games wouldn’t be possible,
and online bank systems could allow only one customer at a time.
We’ll talk about the methods that enable different processors to
access the same data without getting in each other’s way.

•	 Chapter 9: Map Routes are those instant directions we get from map-
ping sites and in-car navigators. You’ll discover what a map looks like
to software and the specialized search techniques that find the best
routes.

Behind the Magic
I think it’s important to share this knowledge. We shouldn’t have to live in
a world we don’t understand, and it’s becoming impossible to understand
the modern world without also understanding software. Clarke’s message
can be taken as a warning that those who understand technology can fool
those who don’t. For example, a company may claim that the theft of its login
data poses little danger to its customers. Could this be true, and how? After
reading this book, you’ll know the answer to questions like these.

Beyond that, though, there’s an even better reason to learn the secrets
of how software works: because those secrets are really cool. I think the best
magic tricks are even more magical once you learn how they are done. Read
on and you’ll see what I mean.

1
E N C R Y P T I O N

We rely on software to protect our data
every day, but most of us know little about

how this protection works. Why does a
“lock” icon in the corner of your browser

mean it’s safe to enter your credit card number? How
does creating a password for your phone actually
protect the data inside? What really prevents other
people from logging into your online accounts?

Computer security is the science of protecting data. In a way, computer
security represents technology solving a problem that technology created.
Not that long ago, most data wasn’t stored digitally. We had filing cabinets
in our offices and shoeboxes of photographs under our beds. Of course, back
then you couldn’t easily share your photographs with friends around the
world or check your bank balance from a mobile phone, but neither could
anyone steal your private data without physically taking it. Today, not only

2 Chapter 1

can you be robbed at a distance, but you might not even know you’ve been
robbed—that is, until your bank calls to ask why you are buying thousands
of dollars in gift cards.

Over these first three chapters, we’ll discuss the most important concepts
behind computer security. In this chapter, we talk about encryption. By itself,
encryption provides us with the capability to lock our data so only we can
unlock it. Additional techniques, discussed in the next two chapters, are
needed to provide the full security suite that we depend on, but encryption
is the core of computer security.

The Goal of Encryption
Think of a file on your computer: it might contain text, a photograph, a
spreadsheet, audio, or video. You want to access the file but keep it secret
from everyone else. This is the fundamental problem of computer security.
To keep the file secret, you can use encryption to transform it into a new for-
mat that is unreadable until the file has been returned to its original form
using decryption. The original file is the plaintext (even if the file isn’t text),
and the encrypted file is the ciphertext.

An attacker is someone who attempts to decrypt the ciphertext without
authorization. The goal of encryption is to create a ciphertext that is easy
for authorized users to decrypt, while practically impossible for attackers
to decrypt. “Practically” is the source of many headaches for security
researchers. Just as no lock is absolutely unbreakable, no encryption can
be absolutely impossible to decrypt. With enough time and enough com-
puting power, any encryption scheme can be broken in theory. The goal
of computer security is to make an attacker’s job so difficult that successful
attacks are impossible in practice, requiring computing resources beyond
an attacker’s means.

Rather than jump headfirst into the intricacies of software-based
encryption, I’ll start this chapter with some simple examples from the pre-
software days of codes and spies. Although the strength of encryption has
vastly improved over the years, these same classic techniques form the basis
of all encryption. Later, you’ll see how these ideas are combined in a mod-
ern digital encryption scheme.

Transposition: Same Data, Different Order
One of the simplest ways to encrypt data is called transposition, which sim-
ply means “changing position.” Transposition is the kind of encryption my
friends and I used when passing notes in grade school. Because these notes
were passed through untrustworthy hands, it was imperative the notes were
unintelligible to anyone but us.

To keep messages secret, we rearranged the order of the letters using a
simple, easy-to-reverse scheme. Suppose I needed to share the vital intelli-
gence that CATHY LIKES KEITH (the names have been changed to protect

Encryption 3

the innocent). To encrypt the message, I copied every third letter of the
plaintext (ignoring any spaces). During the first pass through the message,
I copied five letters, as shown in Figure 1-1.

C A T H Y L I K E S K E I T H

C H I S I

Figure 1-1: The first pass in the transposition of the sample message

Having reached the end of the message, I started back at the beginning
and continued selecting every third remaining letter. The second pass got
me to the state shown in Figure 1-2.

C A T H Y L I K E S K E I T H

C H I S I A Y K K T

Figure 1-2: The second transposition pass

On the last pass I copied the remaining letters, as shown in Figure 1-3.

C A T H Y L I K E S K E I T H

C H I S I A Y K K T T L E E H

Figure 1-3: The final transposition pass

The resulting ciphertext is CHISIAYKKTTLEEH. My friends could
read the message by reversing the transposition process. The first step is
shown in Figure 1-4. Returning all the letters to their original position
reveals the plaintext.

4 Chapter 1

C H I S I A Y K K T T L E E H

C H I S I

Figure 1-4: The first pass in reversing the transposition for decryption

This basic transposition method was fun to use, but it’s terribly weak
encryption. The biggest concern is a leak—one of my friends blabbing
about the encryption method to someone outside the circle. Once that hap-
pens, sending encrypted messages won’t be secure anymore; it will just be
more work. Leaks are sadly inevitable—and not just with schoolchildren.
Every encryption method is vulnerable to leaks, and the more people use
a particular method, the more likely it will leak.

For this reason, all good encryption systems follow a rule formulated
by early Dutch cryptographer Auguste Kerckhoffs, known as Kerckhoffs’s
principle : the security of data should not depend on the encryption method
remaining a secret.

Cipher Keys
This raises an obvious question. If the encryption method is not a secret,
how do we securely encrypt data? The answer lies in following a general,
publically disclosed encryption method, but varying the encryption of indi-
vidual messages using a cipher key (or just key). To understand what a key is,
let’s examine a more general transposition method.

In this method, senders and receivers share a secret number prior to
sending any messages. Let’s say my friends and I agree on 374. We’ll use this
number to alter the transposition pattern in our ciphertexts. This pattern
is shown in Figure 1-5 for the message CATHY LIKES KEITH. The digits of
our secret number dictate which letter should be copied from the plaintext
to the ciphertext. Because the first digit is 3, the third letter of the plain-
text, T, becomes the first letter of the ciphertext. The next digit is 7, so the
next letter is the seventh letter after the T, which is S. Next, we select the
fourth letter from the S. The first three letters of the ciphertext are TST.

Figure 1-6 shows how the next two letters are copied to the ciphertext.
Starting from where we left off (indicated by the circled 1 in the figure), we
count three positions, returning to the beginning of the plaintext when we
reach the end, to select A as the fourth letter of the ciphertext. The next
letter chosen is seven positions after the A, skipping letters that have already
been copied: the K. The process continues until all of the letters of the
plaintext have been transposed.

Encryption 5

C A T H Y L I K E S K E I T H

T S T

1 2 3 1 2 3 4 5 6 7 1 2 3 4

Figure 1-5: The first pass in transposing using the key 374

C A T H Y L I K E S K E I T H

T S T

2 3 1 2 3 4 5 6 7 1

A K

Figure 1-6: The second pass in transposing using the key 374

The secret number 374, then, is our cipher key. Someone who inter-
cepts this message won’t be able to decrypt it without the key, even if they
understand we’re using a transposition method. The code can be regularly
changed to prevent blabbermouths and turncoats from compromising the
encryption.

Attacking the Encryption
Even without the key, attackers can still try to recover the plaintext through
other means. Encrypted data can be attacked through brute force, trying all
the possible ways of applying the encryption method to the ciphertext. For
a message encrypted using transposition, a brute-force attack would exam-
ine all permutations of the ciphertext. Because brute force is almost always
an option, the number of trials an attacker will need to find the plaintext
is a good baseline for encryption strength. In our example, the message
CATHY LIKES KEITH has around 40 billion permutations.

That’s a huge number, so instead of brute force, a smart attacker would
apply some common sense to recover the plaintext faster. If the attacker can
assume the plaintext is in English, then most of the permutations can be
ruled out before they are tested. For example, the attacker can assume the
plaintext won’t start with the letters HT because no English word starts with
those letters. That’s a billion permutations the attacker won’t have to check.

6 Chapter 1

An attacker with some idea of the words in the message can be even
smarter about figuring out the plaintext. In our example, the attacker might
guess the message includes the name of a classmate. They can see what
names can be formed from the ciphertext letters and then determine what
words can be formed from the leftover letters.

Guesses about the plaintext content are known as cribs. The strongest
kind of crib is a known-plaintext attack. To carry out this type of attack, the
attacker must have access to a plaintext A, its matching ciphertext A, and
a ciphertext B that uses the same cipher key as ciphertext A. Although this
scenario sounds unlikely, it does happen. People often leave documents
unguarded when they are no longer considered secret without realizing
they may aid attacks on other documents. Known-plaintext attacks are
power ful; figuring out the transposition pattern is easy when you have
both the plaintext and ciphertext in front of you.

The best defenses against known-plaintext attacks are good security
practices, such as regularly changing passwords. Even with the best secu-
rity practices, though, attackers will almost always have some idea of a plain-
text’s contents (that’s why are they so interested in reading it). In many
cases, they will know most of the plaintext and may have access to known
plaintext-ciphertext pairs. A good encryption system should render cribs
and known plaintexts useless to attackers.

Substitution: Replacing Data
The other fundamental encryption technique is more resistant to cribs.
Instead of moving the data around, substitution methods systematically
replace individual pieces of data. With text messages, the simplest form of
substitution replaces every occurrence of one letter with another letter. For
example, every A becomes a D, every B an H, and so on. A key for this type
of encryption looks like Table 1-1.

Table 1-1: A Substitution Cipher Key

Original A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Replacement M N B V C X Z L K F H G J D S A P O I U Y T R E W Q

Although simple substitution, as this method is called, is an improvement
over transposition, it too has problems: there are only so many possible substi-
tutions, so an attacker can sometimes decrypt ciphertext through brute force.

Simple substitution is also vulnerable to frequency analysis, in which an
attacker applies knowledge of how often letters or letter combinations occur
in a given language. Stated broadly, knowing how often data items are likely
to appear in a plaintext gives the attacker an advantage. For example, the
letter E is the most common letter in English writing, and TH is the most
common letter pair. Therefore, the most frequently occurring letter in a
long ciphertext is likely to represent plaintext E, and the most frequently
occurring letter pair is likely to represent plaintext TH.

Encryption 7

The power of frequency analysis means that substitution encryption
becomes more vulnerable as the text grows longer. Attacks are also easier
when a collection of ciphertexts is known to have been encrypted with the
same key; avoiding such key reuse is an important security practice.

Varying the Substitution Pattern
To strengthen encryption against frequency analysis, we can vary the sub-
stitution pattern during encryption, so the first E in the plaintext might be
replaced with A, but the second E in the plaintext is replaced with a T. This
technique is known as polyalphabetic substitution. One method of polyalpha-
betic substitution uses a grid of alphabets known as a tabula recta, shown
in Figure 1-7. In this table, each row and column is labeled with the letter
of the alphabet that starts the row or column. Every location in the grid is
located with two letters, such as row D, column H, which contains the letter K.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z
C D E F G H I J K L M N O P Q R S T U V W X Y Z
D E F G H I J K L M N O P Q R S T U V W X Y Z
E F G H I J K L M N O P Q R S T U V W X Y Z
F G H I J K L M N O P Q R S T U V W X Y Z
G H I J K L M N O P Q R S T U V W X Y Z
H I J K L M N O P Q R S T U V W X Y Z
I J K L M N O P Q R S T U V W X Y Z
J K L M N O P Q R S T U V W X Y Z
K L M N O P Q R S T U V W X Y Z
L M N O P Q R S T U V W X Y Z
M N O P Q R S T U V W X Y Z
N O P Q R S T U V W X Y Z
O P Q R S T U V W X Y Z
P Q R S T U V W X Y Z
Q R S T U V W X Y Z
R S T U V W X Y Z
S T U V W X Y Z
T U V W X Y Z
U V W X Y Z
V W X Y Z
W X Y Z
X Y Z
Y Z
Z

A
A B

A B C
A B C D

A B C D E
A B C D E F

A B C D E F G
A B C D E F G H

A B C D E F G H I
A B C D E F G H I J

A B C D E F G H I J K
A B C D E F G H I J K L

A B C D E F G H I J K L M
A B C D E F G H I J K L M N

A B C D E F G H I J K L M N O
A B C D E F G H I J K L M N O P

A B C D E F G H I J K L M N O P Q
A B C D E F G H I J K L M N O P Q R

A B C D E F G H I J K L M N O P Q R S
A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T U
A B C D E F G H I J K L M N O P Q R S T U V

A B C D E F G H I J K L M N O P Q R S T U V W
A B C D E F G H I J K L M N O P Q R S T U V W X

A B C D E F G H I J K L M N O P Q R S T U V W X Y

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Figure 1-7: A tabula recta—the shaded first column and row are labels.

When using a tabula recta, the key is textual—letters are used to vary
the encryption instead of numbers, as we used in our transposition example.

8 Chapter 1

The letters of the plaintext select rows in the tabula recta, and the letters of
the key select columns. For example, suppose our plaintext message is the
word SECRET, and our encryption key is the word TOUGH. Because the first
letter of the plaintext is S and the first letter of the key is T, the first letter of
the ciphertext is found at row S, column T in the tabula recta: the letter L.
We then use the O column of the table to encrypt the second plaintext letter
E (resulting in S), and so on, as shown in Figure 1-8. Because the plaintext is
longer than the key, we must reuse the first letter of the key.

S E C R E S T

E

C

R

E

O

U

G

H

Row Column

L

S

W

X

L

ResultPlaintext

L S W X L
Ciphertext

T

M

T T M

Figure 1-8: Encryption using the tabula recta and cipher key TOUGH

Decryption reverses the process, as shown in Figure 1-9. The letters in
the key indicate the columns, which are scanned to find the corresponding
letter in the ciphertext. The row where the ciphertext letter is found indi-
cates the plaintext letter. In our example, the first letter of our key is T, and
the first letter of the ciphertext is L. We scan the T column of the tabula
recta to find L; because L appears in row S, the plaintext letter is S. The
process repeats for every letter of the ciphertext.

L S W X L T L

O

U

G

H

S

W

X

L

Column
Letter in
Column

S

E

C

R

E

RowCiphertext

S E C R E
Plaintext

M

T

T M T

Figure 1-9: Decryption using the tabula recta and cipher key TOUGH

Encryption 9

Polyalphabetic substitution is more effective than simple substitution
because it varies the substitution pattern throughout the message. In our
example, the two occurrences of E in the plaintext become different cipher-
text letters, and the two occurrences of L in the ciphertext represent two
different plaintext letters.

Key Expansion
Although polyalphabetic substitution is a great improvement over simple
substitution, it’s effective only when the key isn’t repeated too often; other-
wise it has the same problems as simple substitution. With a key length of
five, for example, each plaintext letter would be represented by only five
different ciphertext letters, leaving long ciphertexts vulnerable to frequency
analysis and cribs. An attacker would have to work harder, but given enough
ciphertext to work with, an attacker could still break the encryption.

For maximum effectiveness, we need encryption keys that are as long as
the plaintext, a technique known as a one-time pad. But that’s not a practical
solution for most situations. Instead, a method called key expansion allows
short keys to do the work of longer ones. One implementation of this idea
frequently appears in spy novels. Instead of sharing a super-long key, two
spies who need to exchange messages agree on a code book, which is used as
a repository of long keys. To avoid arousing suspicion, the code book is an
ordinary piece of literature, like a specific edition of Shakespeare’s plays.

Let’s suppose a 50-letter message will be sent using this scheme. In addi-
tion to the ciphertext, the message sender also appends the unexpanded
key. Using the works of Shakespeare as the code book, the unexpanded key
might be 2.2.4.9. The first 2 indicates the second of Shakespeare’s plays
when listed alphabetically (As You Like It). The second 2 means Act II of the
play. The 4 means Scene 4 of that act. The 9 means the ninth sentence of
that scene in the specified edition: “When I was at home, I was in a better
place, but travelers must be content.” The number of letters in this sentence
exceeds the number in the plaintext and could be used for encryption and
decryption using a tabula recta as before. In this way, a relatively short key
can be expanded to fit a particular message.

Note that this scheme doesn’t qualify as a one-time pad because the code
book is finite, and therefore the sentence-keys would have to be reused even-
tually. But it does mean our spies only have to remember short cipher keys
while encrypting their messages more securely with longer keys. As you’ll see,
the key expansion concept is important in computer encryption because the
cipher keys required are huge but need to be stored in smaller forms.

The Advanced Encryption Standard
Now that we’ve seen how transposition, substitution, and key expansion
work individually, let’s see how secure digital encryption results from a care-
ful combination of all three techniques.

10 Chapter 1

The Advanced Encryption Standard (AES) is an open standard, which
means the specifications may be implemented by anyone without paying a
license fee. Whether you realize it or not, much of your data is protected
by AES. If you have a secure wireless network at your home or office, if you
have ever password-protected a file in a .zip archive, or if you use a credit
card at a store or make a withdrawal from an ATM, you are probably rely-
ing, at least in part, on AES.

Binary Basics
Up to now, I’ve used text encryption samples to keep the examples simple.
The data encrypted by computers, though, is represented in the form of
binary numbers. If you haven’t worked with these numbers before, here’s
an introduction.

Decimal Versus Binary

The number system we all grew up with
is called the decimal system, deci meaning
“ten,” because the system uses 10 digits, 0
through 9. Each digit in a number repre-
sents the quantity of a unit 10 times greater
than the digit to its right. The units and
quantities for the decimal number 23,065
are shown in Figure 1-10. The 2 in the fifth
position from the left means we have 2
“ten thousands,” for example, and the 6
means 6 “tens.”

In the binary number system, there are
only two possible digits, 0 or 1, which are
called bits, for binary digits. Each bit in a
binary number represents a unit twice as
large as the bit to the right. The units and
quantities for the binary number 110101
are shown in Figure 1-11. As shown, we
have one of each of the following units:
32, 16, 4, and 1. Therefore, the binary
number 110101 represents the sum of
these four unit values, which is the
decimal number 53.

Binary numbers are often written
with a fixed number of bits. The most
common length for a binary number is eight bits, known as a byte. Although
the decimal number 53 can be written as 110101 in binary, writing 53 as a
byte requires eight bits, so leading 0 bits fill out the other positions to make
00110101. The smallest byte value, 00000000, represents decimal 0; the larg-
est possible byte, 11111111, represents decimal 255.

2 3 0 6 5
10

,00
0

1,0
00

10
0

10 1

20,000 + 3,000 + 60 + 5 = 23,065

Figure 1-10: Each digit in the deci-
mal number 23,065 represents a
different unit quantity.

1 1 0 1 0 1
32 16 8 4 2 1

32 16 4 1 53+ + + =

Figure 1-11: Each bit in the binary
number 110101 represents a
different unit quantity.

Encryption 11

Bitwise Operations

Along with the usual mathematical operations such as addition and mul-
tiplication, software also uses some operations unique to binary numbers.
These are known as bitwise operations because they are applied individually
to each bit rather than to the binary number as whole.

The bitwise operation known as exclusive-or, or XOR, is common in
encryption. When two binary numbers are XORed together, the 1s in the
second number flip the corresponding bits in the first number, as shown in
Figure 1-12.

1 0 0 1 1 1 0 0

0 0 1 1 0 1 1 0

1 0 1 0 1 0 1 0Result

XOR with

Original 1 0 0 1 1 1 0 0

0 0 1 1 0 1 1 0

1 0 1 0 1 0 1 0Result

XOR with

Original

Figure 1-12: The exclusive-or (XOR) operation. The 1 bits
in the second byte indicate which bits are “flipped” in the
first byte, as shown in the shaded columns.

Remember, encryption must be reversible. XOR alters the bit patterns
in a way that’s impossible to predict without knowing the binary numbers
involved, but it’s easily reversed. XORing the result with the second number
flips the same bits back to their original state, as shown in Figure 1-13.

1 0 0 1 1 1 0 0

0 0 1 1 0 1 1 0

1 0 1 0 1 0 1 0Result

XOR with

Original

0 0 1 1 0 1 1 0XOR with

Back to 1 0 0 1 1 1 0 0

Figure 1-13: If we XOR a byte with the same byte twice,
we’re back to where we started.

Converting Data to Binary Form

Computers use binary numbers to represent all kinds of data. A plaintext
file could be a text message, a spreadsheet, an image, an audio file, or any-
thing else—but in the end, every file is a sequence of bytes. Most computer

12 Chapter 1

data is already numeric and can therefore be directly converted into binary
numbers. In some cases, though, a special encoding system is needed to
convert non-numeric data into binary form.

For example, to see how a text message becomes a sequence of bytes,
consider this message:

Send more money!

This message has 16 characters, counting the letters, spaces, and excla-
mation point. We can turn each character into a byte using a system such
as the American Standard Code for Information Interchange, which is always
referred to by its acronym, ASCII, pronounced “as-key”. In ASCII, capital
A is represented by the number 65, B by 66, and so on, through 90 for Z.
Table 1-2 shows some selected entries from the ASCII table.

Table 1-2: Selected Entries from the ASCII Table

Character Decimal number Binary byte

(space) 32 00100000

! 33 00100001

, 44 00101100

. 46 00101110

A 65 01000001

B 66 01000010

C 67 01000011

D 68 01000100

E 69 01000101

a 97 01100001

b 98 01100010

c 99 01100011

d 100 01100100

e 101 01100101

AES Encryption: The Big Picture
Before we examine the details of AES encryption, here’s an overview of the
process.

Cipher keys in AES are binary numbers. The size of the key can vary,
but we’ll discuss the simplest version of AES, which uses a 128-bit key. Using
mathematical key expansion, AES transforms the original 128-bit key into
eleven 128-bit keys.

AES divides plaintext data into blocks of 16 bytes in a 4×4 grid; the grid
for the sample message Send more money! is shown in Figure 1-14. Heavy lines
separate the 16 bytes, and light lines separate the bits within the bytes.

Encryption 13

0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 10 1 1 0 0 1 0 10 1 1 0 1 1 1 0

0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 10 0 1 0 0 0 0 00 1 1 0 0 1 0 1

0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 00 1 1 0 1 1 0 10 0 1 0 0 0 0 0

0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 00 1 1 0 0 1 0 10 1 0 1 0 0 1 1

Figure 1-14: The sample message Send more money! transformed into a grid of bytes,
ready for encryption using AES

The plaintext data is divided into as many 16-byte blocks as necessary.
If the last block isn’t full, the rest of the block is padded with random binary
numbers.

AES then subjects each 16-byte block of plaintext data to 10 rounds of
encryption. During a round, the bytes are transposed within the block and
substituted using a table. Then, using the XOR operation, the bytes in the
block are combined with each other and with one of the 128-bit keys.

That’s AES in a nutshell; now let’s look at some of these steps in more
detail.

Key Expansion in AES
Key expansion in a digital encryption system is a bit different than the
“code book” concept we discussed earlier. Instead of just looking up a longer
key in a book, AES expands the key using the same tools it will later use for
the encryption itself: the binary XOR operation, transposition, and simple
substitution.

Figure 1-15 shows the first few stages of the key expansion process. Each
of the blocks in the figure is 32 bits, and one row in this figure represents
one 128-bit key. The original 128-bit key makes up the first four blocks, which
are shaded in the figure. Every other block is the result of an XOR between
two previous blocks; the XOR operation is represented by a plus sign in a
circle. Block 6, for example, results from the XOR of Block 2 and Block 5.

Block 1 Block 2 Block 3 Block 4

Block 5 Block 6 Block 7 Block 8

Block 9 Block 10

+

+

+

+

+ + Extra
Scrambling

Block 11 Block 12

+ + Extra
Scrambling

Figure 1-15: Key expansion process for AES

As you can see on the right of the figure, every fourth block passes
through a box labeled “Extra Scrambling.” This process includes transpos-
ing the bytes inside the block and substituting each byte according to a table
called the S-box.

14 Chapter 1

The S-box table, which is used both in the key expansion and later in
the encryption itself, is carefully designed to amplify differences in the
plaintext. That is, two plaintext bytes that are similar will tend to have
S-box replacements that are quite different. The first eight entries from the
table are shown in Table 1-3.

Table 1-3: Excerpts from the S-Box Table

Original bit pattern Replacement bit pattern

00000000 01100011

00000001 01111100

00000010 01110111

00000011 01111011

00000100 11110010

00000101 01101011

00000110 01101111

00000111 11000101

00001000 00110000

00001001 00000001

AES Encryption Rounds
Once AES has all the required keys, the real encryption can begin. Recall
that the binary plaintext is stored in a grid of 16 bytes or 128 bits, which is
the same size as the original key. This is not a coincidence. The first step
of the actual encryption is to XOR the 128-bit data grid with the original
128-bit key. Now the work begins in earnest, as the data grid is subjected
to 10 rounds of number crunching. There are four steps in each round.

1. Substitution.
Each of the 16 bytes in the grid is replaced using the same S-box table
used in the key expansion process.

2. Row Transposition.
Next, the bytes are moved to different positions within their row in
the grid.

3. Column Combination.
Next, for each byte in the grid, a new byte is calculated from a combi-
nation of all four bytes in that column. This computation involves the
XOR operation again, but also a binary form of transposition. To give
you the flavor of the process, Figure 1-16 shows the computation of the
leftmost byte in the lowest row. The four bytes of the leftmost column
are XORed together, but the top and bottom bytes in the column have
their bits transposed first. This kind of transposition is known as bitwise
rotation; the bits slide one position to the left, with the leftmost bit mov-
ing over to the right end.

Encryption 15

Every byte in the new grid is computed in a similar way, by com-
bining the bytes in the column using XOR; the only variation is which
bytes have their bits rotated before the XOR.

+ + + +

Original Data Grid

New Data Grid

0 1 0 1 0 1 1 1

0 1 0 1 0 1 1 1
1 1 0 0 1 1 0 1
0 1 1 1 1 1 1 0
0 0 1 1 0 0 1 1

1 0 1 0 1 1 1 0

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 1 1 1 1 0 1 1

Figure 1-16: One part of the column-scrambling step in an AES round

4. XOR with Cipher Key.
Finally, the grid that results from the previous step is XORed with the
key for that round. This is why key expansion is needed, so that each
round XORs with a different key.

The AES decryption process performs the same steps as the encryp-
tion process, in reverse. Because the only operations in the encryption are
XORs, simple substitution from the S-box, and transpositions of bits and
bytes, everything is reversible if the key is known.

Block Chaining
AES encryption could be applied individually to each 16-byte block in a file,
but this would create vulnerabilities in the ciphertext. As we’ve discussed, the
more times an encryption key is used, the more likely it is that attackers will
discover and exploit patterns. Computer files are often enormous, and using
the same key to encrypt millions of blocks is a form of large-scale key reuse
that exposes the ciphertext to frequency analysis and related techniques.

For this reason, block-based encryption systems like AES are modified so
that identical blocks in plaintext produce different ciphertext blocks. One
such modification is called block chaining.

When block chaining, the first block of the plaintext is XORed with a
random 128-bit number before encryption. This random number is called
the starting variable and is stored along with the ciphertext. Because each

16 Chapter 1

encryption is assigned a random starting variable, two files that begin with
the same data will have different ciphertexts even when encrypted with the
same key.

Every subsequent plaintext block is XORed with the previous ciphertext
block before encryption, “chaining” the encryption as shown in Figure 1-17.
Chaining ensures that duplicate blocks in a plaintext will result in different
ciphertext blocks. This means files of any length can be encrypted without
fear of frequency analysis.

Starting Variable

+ AES

Unencrypted Data Blocks Encrypted Data Blocks

+ AES

+ AES

1

2

3

1

2

3

Figure 1-17: AES encryption using block chaining

Why AES Is Secure
As you can see, although AES contains many steps, each individual step
is just transposition or simple substitution. Why is AES considered strong
enough to protect the world’s data? Remember, attackers use brute force
or cribs, or exploit patterns in the ciphertext. AES has excellent defenses
against all of these attack methods.

With AES, brute force means running the ciphertext through the
decryption process with every possible key until the plaintext is produced.
In AES, keys have 128, 192, or 256 bits. Even the smallest key size offers
around 300,000,000,000,000,000,000,000,000,000,000,000,000 possible
keys, and a brute-force attack would need to try about half of these before
it could expect to hit the right one. An attacker with a computer that could
try a million keys per second could, in a day, try 1,000,000 keys × 60 seconds ×
60 minutes × 24 hours = 86,400,000,000 keys. In a year, the attacker could
try 31,536,000,000,000 keys. Although that’s a large number, it’s not even
a billionth of a billionth of the possible combinations. An attacker might
acquire more computing power, but trying that many keys still doesn’t seem
feasible—and that’s just for the 128-bit version.

AES also makes using cribs or finding exploitable patterns difficult.
During each encryption round, AES rotates the bytes in each row of the
grid and combines the bytes in each column. After many rounds of this, the
bytes are thoroughly mixed together so the final value of any one byte in
the ciphertext grid depends on the initial plaintext values of all the bytes in
a grid. This encryption property is called diffusion.

Encryption 17

Furthermore, passing the bytes through the S-box, round after round,
amplifies the effect of diffusion, and block chaining passes the diffusion
effects of each block on to the next. Together, these operations give AES
the avalanche property, in which small changes in the plaintext result in
sweeping changes throughout the ciphertext.

AES thwarts attackers no matter how much they know about the gen-
eral layout of the plaintext. For example, a company may send emails to
customers based on a common template, in which the only variables are
the customers’ account numbers and outstanding balances. With diffu-
sion, avalanches, and block chaining, the ciphertexts of these emails will be
very different. Diffusion and avalanches also reduce patterns that could be
exploited through frequency analysis. Even a huge plaintext file consisting
of the same 16-byte block repeated over and over would result in a random-
looking jumble of bits when run through AES encryption with block
chaining.

Possible AES Attacks
AES appears to be strong against conventional encryption attacks, but are
there hidden weaknesses that offer shortcuts to finding the right cipher key?
The answer is unclear because proving a negative is difficult. Stating that
no shortcuts, or cracks, are known to exist is one thing; proving they couldn’t
exist is another. Cryptography is a science, and science is always expanding
its boundaries. We simply don’t understand cryptography and its underlying
mathematics to a point where we can say what’s impossible.

Part of the difficulty in analyzing the vulnerabilities of an open stan-
dard like AES is that programmers implementing the standard in code may
unwittingly introduce security flaws. For example, some AES implementa-
tions are vulnerable to a timing attack, in which an attacker gleans informa-
tion about the data being encrypted by measuring how long the encryption
takes. The attacker must have access to the specific computer on which the
encryption is performed, however, so this isn’t really a flaw in the under-
lying encryption, but that’s no comfort if security is compromised.

The best-understood vulnerability of AES is known as a related-key attack.
When two keys are mathematically related in a specific way, an attacker can
sometimes use knowledge gathered from messages encrypted using one key
to recover a message encrypted using the other key. Researchers have dis-
covered a way to recover the AES encryption key for a particular ciphertext
in less time than a brute-force attack, but the method requires ciphertexts
of the same plaintext encrypted with keys that are related to the original
key in very specific ways.

Although this shortcut counts as a crack, it may not be of practical value
to attackers. First of all, although it greatly reduces the amount of work to
recover the original key, it may not be feasible for any existing computer or
network of computers. Second, it’s not easy to obtain the other ciphertexts
that have been encrypted with the related keys; it requires a breakdown in
the implementation or use of the cipher. Therefore, this crack is currently
considered theoretical, not a practical weakness of the system.

18 Chapter 1

Perhaps the most worrying aspect of this crack is that it’s believed to
work only for the supposedly stronger 256-bit-key version of AES, not the
simpler 128-bit-key version described in this chapter. This demonstrates
perhaps the greatest weakness of modern encryption techniques: their
complexity. Flaws can go undetected for years despite the efforts of expert
reviewers; small changes in the design can have large ramifications for
security; and features intended to increase security may have the opposite
effect.

The Limits of Private-Key Encryption
The real limitation of an encryption method like AES, though, has nothing
to do with a potential hidden flaw.

All the encryption methods in this chapter, AES included, are known as
symmetric-key methods—this means the key that encrypts a message or file is
the same key that is used to decrypt it. If you want to use AES to encrypt a
file on your desktop’s hard drive or the contact list in your phone, that’s not
a problem; only you are locking and unlocking the data. But what happens
when you need to secure a data transmission, as when you enter your credit
card number on a retail website? You could encrypt the data with AES and
send it to the website, but the software on the website couldn’t decrypt the
ciphertext without the key.

This is the shared key problem, and it’s one of the central problems of
cryptography. Without a secure way to share keys, symmetric key encryp-
tion, by itself, is only useful for locking one’s own private data. Encrypting
data for transmission requires a different approach, using different keys for
encryption and decryption—you’ll see how this is done in Chapter 3.

But there’s another problem we need to tackle first. AES requires an
enormous binary number as a key, but users can’t be expected to memorize
a string of 128 bits. Instead, we memorize passwords. As it turns out, the
secure storage and use of passwords presents its own quandaries. Those are
the subject of the next chapter.

2
P A S S W O R D S

One of software’s most crucial tasks is
the protection of passwords. That may be

surprising. After all, aren’t passwords part
of systems that provide protection? Don’t pass-

words secure our accounts with banks, web retailers,
and online games?

The truth is, while passwords are the keystones of computer security,
they can become the targets of attacks. If a remote computer accepts your
identity based on your password, a process known as authentication, it must
have a list of user passwords to compare against. That password list is a
tempting target for attackers. Recent years have seen a number of large-scale
thefts of customer account data. How does this happen, and what can be
done to make breaches less likely? That’s what this chapter is about.

Before you learn how passwords are protected, though, you’ll see how
they are transformed into binary numbers, a process that has important
implications for both password storage and encryption.

20 Chapter 2

Transforming a Password into a Number
In Chapter 1, you saw how an individual character could be replaced by a
number from the ASCII table. Here, you’ll see how a string of characters
can be replaced by one big number, such as the 128-bit key we need for AES.
In computing, transforming something into a number in a specified range
is called hashing, and the resulting number is called a hash code, hash value,
or just plain hash.

Here, the word hash means chopping something up and then cramming
the pieces back together, as with hash browns. A particular hashing method
is known as a hash function. Hashing a password always begins by converting
each character in the password to a number using an encoding system such
as ASCII. Hash functions differ in how they combine those numbers; the
hash functions used in encryption and authentication systems must be
carefully designed or security may be compromised.

Properties of Good Hash Functions
Developing a good hash function is no easy task. To understand what hash
functions are up against, consider the short password dog. That word contains
3 ASCII bytes, or a mere 24 bits of data, while an AES key is a minimum of
128 bits. Therefore a good hash function must be capable of transforming
those 24 bits into a 128-bit hash code with the following properties.

Full Use of All Bits

A major strength of a computer-based encryption system like AES is the key
size, the sheer number of possible keys facing an attacker. This strength dis-
appears, however, if all the possible keys aren’t actually being used. A good
hash function must produce results across the full range of possible hash
codes. Even for our short dog password, all 128 bits of the resulting hash
code must be influenced by the original 24 bits of the password.

No Reversibility

In Chapter 1, you learned that an encryption method has to be reversible.
A good hash function, in contrast, should not be reversible. I’ll discuss why
this is important later in the chapter. For now, know that for a given hash
code, there should be no direct way to recover a password that produced it.
I say a password and not the password because multiple passwords may pro-
duce the same hash code, which is known as a hash collision. Because there
are more possible passwords than hash codes, collisions are inevitable. A
good hash function should make it difficult for attackers to find any pass-
word that produces a given hash code.

Passwords 21

Avalanche

The avalanche property that’s vital to encryption is just as important in
hashing. Small changes in the password should result in large changes in
the hash code—especially since many people, when required to choose a
new password, choose a slight variation of their old one. The hash code
produced for dog should be very different from those produced by similar
passwords such as doge, Dog, or odg.

The MD5 Hash Function
Meeting all these criteria is not easy. Good hash functions solve this prob-
lem in a clever way. They start with a jumble of bits and use the bit patterns
of the password to modify this jumble further. That’s the method of the
widely used hash function called MD5—the fifth version of the Message
Digest hash function.

Encoding the Password
To get started, MD5 converts the password to a 512-bit block; I’ll call this
the encoded password. The first part of this encoding consists of the ASCII
codes of the characters in the password. For example, if the password is
BigFunTime, the first character is a B, which has an ASCII byte of 01000010,
so the first 8 bits of the encoded password are 01000010; the next 8 bits
are the byte for i, which is 01101001; and so on. Thus, the 10 letters in our
sample BigFunTime password will take up 80 bits out of 512.

Now the rest of the bits have to be filled up. The next bit is set to 1, and
all the bits up to the last 64 are set to 0. The final 64 bits store a binary rep-
resentation of the length, in bits, of the original password. In this case, the
password is 10 characters, or 80 bits, long. The 64-bit binary representation
of 80 is:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 01010000

Clearly, we don’t need 64 bits to store the length of a password. Using
64 bits for the length allows MD5 to hash inputs of arbitrary length—the
benefit of which we’ll see later.

Figure 2-1 shows the encoding of the sample password, organized into
16 numbered rows of 32 bits each.

22 Chapter 2

01000010 01101001 01100111 01000110
01110101 01101110 01010100 01101001
01101101 01100101 10000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 01010000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Binary ASCII of
Password Letters

Padding

Number of Bits
in Password

Figure 2-1: The password BigFunTime transformed into the 512 bits used
as input to the MD5 hash function

This encoded password is full of zeros and therefore doesn’t meet the
“fully uses all the bits” property of a good function, but that’s okay because
this is not the hash code; it’s just the starting point.

Bitwise Operations
The MD5 hash function uses a few operations I haven’t discussed before.
Let’s go through these briefly.

Binary Addition

The first new operation is binary addition. Binary addition is much like the
decimal addition you already know but with binary numbers. For example,
the 32-bit representation of the number 5 is:

00000000 00000000 00000000 00000101

The 32-bit representation of 46 is:

00000000 00000000 00000000 00101110

If we add 5 and 46 together, the result is 51. Likewise, the addition of
those two binary representations results in the binary representation of 51:

00000000 00000000 00000000 00110011

Unlike normal addition, though, where sometimes the result has more
digits than the operands, in binary addition the number of bits is fixed. If
the result of adding two 32-bit binary numbers is greater than 32 bits, we

Passwords 23

ignore the “carry” at the left side of the result and keep only the 32 bits on
the right. It’s like working with a cheap calculator that has just a two-digit
display, so when you add 75 and 49, instead of displaying 124, it displays
only the last two digits, 24.

Bitwise NOT

The next new operation is called “not,” often written in all uppercase as
NOT. As demonstrated in Figure 2-2, NOT “flips” all of the bits, replacing
each 1 with a 0 and each 0 with a 1.

1 0 0 1 1 1 0 0

0 1 1 0 0 0 1 1NOT

Original

Figure 2-2: The bitwise NOT operation. All bits are
inverted. The 1 bits are highlighted for clarity.

Bitwise OR

Up next is OR , sometimes called inclusive-OR to distinguish it from the
exclusive-or (XOR) that you saw in Chapter 1. The OR operation lines up
two binary numbers with the same number of bits. In each position of the
resulting binary number, you get a 1 if there’s a 1 in the first number or in
the second number; otherwise, you get a 0, as shown in Figure 2-3.

1 0 0 1 1 1 0 0

0 0 1 1 0 1 1 0

1 0 1 1 1 1 1 0Result

OR with

Original

Figure 2-3: The bitwise OR operation. Bit positions are
1 in the result if they are 1 in either of the two inputs

Notice that unlike XOR, you can’t apply OR twice and get the original
byte back. It’s a one-way trip.

Bitwise AND

The last of the new operations is AND. Two binary numbers are aligned,
and in each position, the result is 1 wherever both bits are 1 in that position;
otherwise, the result is 0. So a 1 in the result means there was a 1 in that posi-
tion in the first number and the second number, as seen in Figure 2-4. As
with OR, the AND operation isn’t reversible.

24 Chapter 2

1 0 0 1 1 1 0 0

0 0 1 1 0 1 1 0

0 0 0 1 0 1 0 0Result

AND with

Original

Figure 2-4: The bitwise AND operation. Bit positions are
1 in the result if they are 1 in both of the two inputs.

MD5 Hashing Rounds
Now we’re ready for some hashing. Pieces of the encoded password make
only brief appearances in the MD5 process, but those appearances make
all the difference. The MD5 process always starts with the same 128 bits,
conceptually split into four 32-bit sections, labeled A through D, as shown
in Figure 2-5.

0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1
1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 1 0

A

B

C

D

Figure 2-5: The starting configuration of the 128 bits of an MD5 hash code

From here, it’s all about shifting these bits around and flipping them,
in a process that repeats a whopping 64 times. In this respect, the process is
a lot like AES but with even more rounds. Figure 2-6 is a broad diagram of
one of the 64 rounds.

Extra
Scrambling

A B C D

D New B C

Row of Encoded
Password

Before

After

Figure 2-6: One round of the MD5 hash function. In the result, three of the sections
are transposed, while all four sections are combined to make a new section.

As shown, sections B, C, and D are simply transposed, so that the D sec-
tion of one round becomes the A section of the next. The main action of
MD5 occurs in the “extra scrambling” of each round, which creates a new

Passwords 25

section from the bits of all four sections of the previous round. The extra
scrambling uses the irreversible operations AND, OR, and NOT to combine
the bits of all four sections with one of the rows of the encoded password.
Different rows of the encoded password are used in different rounds, so that
eventually all the rows of the encoded password are used multiple times.
Because of the transposition, the process needs just four rounds to replace
each of the four original sections with the result of the extra scrambling.
After the complete 64-round process, the original bits of the sections will
have been thoroughly sifted together with the encoded password.

Meeting the Criteria of a Good Hash Function
Because MD5 starts with an assortment of bits, then alters these bits over
and over, adding in pieces of the encoded password, we can be sure that
all the bits are affected along the way, giving us a true 128-bit hash code.
The sheer number of operations that are irreversible—and remember, the
actions described occur 64 times—means the hash function as a whole is
not reversible. This rotation and alteration of the bits in the “extra scram-
bling” each round, combined with the rotation of the sections themselves,
distribute the bits and bytes and create the desired avalanche.

MD5 meets all the baseline requirements for a good hash function. It
does have a few subtle weaknesses, however, as you’ll soon see.

Digital Signatures
Hash functions serve other purposes in security besides creating keys from
passwords. One of the most important is the creation of file signatures. As
stated earlier, MD5 can process any size of input. If the input is larger than
512 bits, it’s first divided into multiple 512-bit blocks. The MD5 process is then
applied once per block. The first block starts with the initial 128 bits and
each subsequent block starts with the hash code produced by the previous
block. In this way, we could run the entire text of this book, an audio file, a
video, or any other digital file through the function and get a single 128-bit
hash code in return. This hash code would become the file’s signature.

Why does a file need a signature? Suppose you have decided to down-
load FreeWrite, a (fictional) freeware word processor application. You’re
wary, though, because of a bad experience in which you downloaded a free-
ware program that turned out to be bogus and riddled with malware. To
avoid this, you want to be sure the FreeWrite file that you download is the
same file that the developers uploaded. The developers could hash the file
with MD5 and post the resulting hash code—the file signature—on their
website, freewrite.com. This allows you to run the file through an MD5 hash
program and compare the result to the code on the developer site. If the
new result doesn’t match the signature, something has changed: the file,
the signature, or both.

26 Chapter 2

The Problem of Identity
Unfortunately, matching the posted hash code proves the FreeWrite file is
legitimate only if the hash code was actually published by the developers.
But what if an attacker copies the developer’s freewrite.com site to a simi-
larly named domain like free-write.com, and then posts a compromised file
along with the hash of that compromised file? A digital signature is only as
trustworthy as its provider. We’ll explore this problem in further detail in
Chapter 3.

Collision Attacks
Even with a matching hash code from a legitimate source, though, a file
might be trouble. Many different files will produce the same hash code,
which means an attacker trying to modify a file for nefarious purposes
can avoid detection if the new, modified file produces the same hash code.

It’s not too difficult to produce two files with the same hash code,
which is known as a collision attack: just randomly generate files until two
hash codes match. Finding a second file to match the particular hash code
of another file is much harder. To be of any real use to an attacker, the file
with the matching code can’t be a bunch of random bytes; it has to be a
program that does something malicious on the attacker’s behalf.

Unfortunately, there are methods to produce a second file with the
same MD5 code that is very similar to the first file. The discovery of this
flaw in the MD5 hash function has led researchers to suggest that other
hash functions be used for signatures. These more advanced hash functions
usually have longer hash codes (up to 512 bits), more hashing rounds, and
more complicated binary math during each round. As with encryption,
though, there are no guarantees that flaws won’t be discovered in the more
complicated hash functions as well. Proper use of signatures means staying
one step ahead of known design flaws because attackers will exploit flaws
mercilessly. Digital security is a cat-and-mouse game in which the good guys
are the mice, trying to avoid being eaten, never able to defeat the cats, and
only hoping to stay alive a little longer.

Passwords in Authentication Systems
Nowhere is this cat-and-mouse game more evident than in authentication
systems. Every place where you enter your password has to have a list of pass-
words to compare against, and properly securing the list requires great care.

The Dangers of Password Tables
Let’s look at the most straightforward way passwords could be stored in a
table. In this example, Northeast Money Bank (NEMB) stores the username
and password of each of its customers, along with the account number and
current balance. An excerpt from the password table is shown in Table 2-1.

Passwords 27

Table 2-1: Poorly Designed Password Table

Username Password Account number Balance

richguy22 ilikemoney 21647365 $27 .21

mrgutman falcon 32846519 $10,000 .00

squire yes90125 70023193 $145,398 .44

burgomeister78 taco999 74766333 $732 .23

Just as Kerckhoffs’s principle says we can’t rely on encryption methods
remaining secret, we shouldn’t rely on the password list remaining a secret,
either. A disgruntled employee in the NEMB information technology
department might easily acquire the file containing the list, or determined
attackers on the outside might worm their way through the company defenses.

This is what’s known as a single point of defense, meaning that once
anyone lays eyes on this table, the game is over. First, this table shows the
account numbers and balances of all of the customers, so at the very least,
that’s a major loss of privacy. What’s even worse is that each password is
stored in the form entered by the user. Accessing this password list will
allow attackers to log on as any customer—a disaster in the making.

Fortunately, the problems with this storage system are easily remedied.
Knowing that, and knowing how dangerous the system is, you would think
that it would never be used. Sadly, you would be wrong. Real companies are
storing user passwords just like this. Some extremely large companies that
probably spent a great deal of money on their websites have been caught
following this practice.

Hashing Passwords
If Table 2-1 shows the wrong thing to do, what’s the right thing to do? One
improvement is leaving the password out of the table and instead storing
the hash code of the password, as shown by Table 2-2. (In the examples
that follow, I show hash codes as decimal numbers to keep their length
manageable.)

Table 2-2: Password Table with Hashed Passwords

Username Hash of password Account
number

Balance

richguy22 330,711,060,038,684,200,901,
827,278,633,002,791,087

21647365 $27 .21

mrgutman 332,375,033,828,033,552,423,
319,316,163,101,084,850

32846519 $10,000 .00

squire 295,149,488,455,763,164,542,
524,060,437,757,020,453

70023193 $145,398 .44

burgomeister78 133,039,589,388,270,767,475,
032,770,360,311,206,892

74766333 $732 .23

28 Chapter 2

When a user tries to log in, the submitted password is hashed and the
result compared to the stored hash code. If they match, the user is logged
in. Because the hash function isn’t reversible, getting access to the table
isn’t the same as getting access to the passwords. An attacker can’t log on
to an account with the hash code.

The account number and balance are still stored as plaintext, though,
and it would be a good idea to encrypt them, making a table with only hash
codes and ciphertext. The problem is if we used the hash of the password
as our cipher key, then encrypting the data provides no additional protec-
tion because anyone who acquires this table will be able to decrypt the
ciphertext.

There are several ways to solve this problem. One solution is to use
one hash function to transform the password for authentication and
another hash function to transform the password into a cipher key to
encrypt the account number and balance. As long as the hash functions
are not reversible, this solution would provide security for the account
data even if an attacker got access to the table.

Dictionary Attacks
Hashing the passwords is a good defense against attackers, but it’s not
enough. Authentication systems are still vulnerable to dictionary attacks.

In a basic dictionary attack, the attacker has no access to the password
table and must guess the password. The attacker could just try random
jumbles of characters but will have much more success with a dictionary,
which in the world of software is simply a list of words. In this case, the
dictionary is a list of the most common passwords, and it begins something
like this:

•	 password

•	 123456

•	 football

•	 mypassword

•	 abcdef

To foil the basic dictionary attack, most sites count the number of failed
logins and, after a certain number (perhaps as few as three), temporarily
prevent further login attempts from a particular computer. This renders
the attack impractical by increasing the time required to find the right
password.

A different form of dictionary attack is used when an attacker has acquired
a copy of a hashed and encrypted password table. In this case, the attacker
hashes each password in the dictionary and compares it to each of the hash
codes in the stolen table. When a match is discovered, the attacker knows
the password that generates that user’s hash code. To save time, the attacker
can run all the passwords in the dictionary through a selected hash function
once and store the results in a dictionary like in Table 2-3.

Passwords 29

Table 2-3: Dictionary with Hash Codes

Password MD5 hash code

password 126,680,608,771,750,945,340,162,210,354,335,764,377

123456 299,132,688,689,127,175,738,334,524,183,350,839,358

football 74,046,754,153,250,065,911,729,167,268,259,247,040

mypassword 69,792,856,232,803,413,714,004,936,714,872,372,804

abcdef 308,439,634,705,511,765,949,277,356,614,095,247,246

Dictionaries demonstrate why it is important for users to choose pass-
words that aren’t obvious. The more obscure a password, the less likely it
will be in an attacker’s dictionary.

Hash Tables
Unfortunately, an attacker can dispense with the dictionary altogether and
build a table of randomly generated passwords and their corresponding
hash codes, which I’ll call a precomputed hash table. Of course, the number of
potential passwords is enormous, so if the attacker wants a decent chance of
getting a match, the hash table needs to be huge. Building a precomputed
hash table takes a lot of computing power and time, but it only has to be
built once, and then it can be used over and over again.

One weakness of the table is that its sheer size can make searching for
a match extremely slow. When you consider how fast a word processor can
find a particular word in a large document, this may seem surprising, but
these precomputed tables are much larger than any file on your computer.
Suppose an attacker has a table of all passwords composed of 10 or fewer
uppercase and lowercase letters and digits. Even with these restrictions, the
number of potential passwords is 6210, which is 839,299,365,868,340,224.
The precomputed hash table won’t need every one of these potential pass-
words as entries, but it would need to have a sizable fraction. The table
would be so large, though, it couldn’t fit in a computer’s internal memory.
It couldn’t even fit on a hard drive—or just to get to the point, it’s so big it
might need to be split across a million hard drives. And that’s just the stor-
age problem. Unless you have the distributed computing power of Google,
it’s not practical to search a table that large. (And searching a huge mass of
data isn’t easy even for Google; we’ll explore searching in detail in Chapter 7.)

Hash Chaining
Because a precomputed hash table is too large to store and search, attackers
use a clever technique called hash chaining to drastically reduce the number
of entries in the table without reducing its effectiveness. This technique uses
a different type of function called a reduction function that does the same

30 Chapter 2

sorts of mathematical gyrations as a hash function but with the opposite
purpose. Instead of creating a hash code from a password, it creates a pass-
word from a hash code—not the password that produced the hash, but sim-
ply a sequence of characters with the form of a valid password.

Here’s an example of hash chaining. When glopp26taz is hashed using
MD5, it produces this hash code:

22,964,925,579,257,552,835,515,378,304,344,866,835

A reduction function transforms this hash code into another valid
password, say, 7HGupp2tss. This, in turn, is sent through the hash func-
tion, producing another hash code, which is sent through the reduction
function to generate another password, and so on. An alternating series
of passwords and hash codes, such as that shown in Figure 2-7, is a hash
chain.

22,964,925,579,257,552,835,515,378,304,344,866,835

glopp26taz

117,182,660,124,686,473,413,705,332,853,526,309,255

7HGupp2tss

H

H

R

pRh7T63y

33,218,269,111,507,728,124,938,049,521,416,301,013

R

H

Figure 2-7: In a hash chain, a hash function (H) alternates with
a reduction function (R) that produces an arbitrary password
from a hash code.

Instead of a table of passwords and hash codes, the attacker gener-
ates a series of hash chains, each of the same length, storing only the
first and last links of each chain. The chain in Figure 2-7 is shown as the
third entry in Table 2-4. This table has 5 entries, but each entry is a chain
of 3 password/hash pairs, making this the equivalent of a plain table of
15 entries.

Passwords 31

Table 2-4: Hash Chain Table

Start End

sop3H4Yzai 302,796,960,148,170,554,741,517,711,430,674,339,836

5jhfHTeu4y 333,226,570,587,833,594,170,987,787,116,324,792,461

glopp26taz 33,218,269,111,507,728,124,938,049,521,416,301,013

YYhs9j2a22 145,483,602,575,738,705,325,298,600,400,764,586,970

Pr2u912mn1 737,08,819,301,203,417,973,443,363,267,460,459,460

Figure 2-8 shows an example of using the table. Our attacker is trying
to recover the password for the target hash code 117,182,660,124,686,473,
413,705,332,853,526,309,255. The attacker must determine which chain
in the table, if any, contains the target hash code. First, the target code is
compared against every number in the End column of the table. In this case,
no match is found, so the attacker runs the target hash code through the
reduction function to make a new password, runs that result through the
hashing function, and then searches for this new hash code in the End col-
umn of the table. This process will continue until a match is found, or after
the process is run three times (the length of the chains in this table).

In this case, the initial target hash value is reduced to the password
pRh7T63y, which, in turn, is hashed, and this new hash value appears in the
third entry of the table, in the chain with the starting password glopp26taz.
That identifies the hash chain in which the target password may appear,
but the attacker must obtain the password by iterating through this chain.
The starting password in that chain is hashed; the resulting hash value is
not a match for the initial hash value, so it is reduced to a new password,
7HGupp2tss, and hashed again. This hash code does match, which means
7HGupp2tss is the password.

Hash code chains dramatically shrink the table while still providing the
same amount of searchable data. For example, if a chain has 100 passwords
and 100 hash codes, then the password matching any of those hash codes
can be indirectly retrieved using that chain, even though the chain has only
one password and hash code in the table. Therefore, a table with chains that
long has the power of a regular precomputed hash table 100 times larger.

There are some potential snags, though. For one, searching takes more
computational effort with hash chains. Also, because of collisions—multiple
passwords that produce the same hash code—a matching chain doesn’t
necessarily contain the searched-for hash code and its matching password,
a problem known as chain merging. These are small consolations for those of
us worried about our data security, however. There are methods for reducing
the chain merging problem, but even without them, it’s clear that effective
precomputed tables can be made for particular hash functions, rendering
the passwords that use them vulnerable.

32 Chapter 2

117,182,660,124,686,473,413,705,332,853,526,309,255
Hash value for which password is sought

Password

Phase 1: Identify chain containing the hash value
117,182,660,124,686,473,413,705,332,853,526,309,255

pRh7T63y

33,218,269,111,507,728,124,938,049,521,416,301,013

R

H

Phase 2: Follow chain from start to find password

22,964,925,579,257,552,835,515,378,304,344,866,835

glopp26taz

7HGupp2tss

H

R

117,182,660,124,686,473,413,705,332,853,526,309,255

H

333,226,570,587,833,594,170,987,787,116,324,792,4615jhfHTeu4y
302,796,960,148,170,554,741,517,711,430,674,339,836sop3H4Yzai

33,218,269,111,507,728,124,938,049,521,416,301,013glopp26taz
145,483,602,575,738,705,325,298,600,400,764,586,970YYhs9j2a22
737,08,819,301,203,417,973,443,363,267,460,459,460Pr2u912mn1

EndStart
Hash chain table

7HGupp2tss

Figure 2-8: Using a hash chain table to find a password that produces a particular hash
code. Neither the password nor the hash code is listed in the table.

Iterative Hashing
One way to thwart the creation of precomputed hash tables is to apply the
hash function more than once. Because the output of a hash function can
itself be hashed, the original password can pass through the same hash
function any number of times. This technique, unhelpfully, is also known
as hash chaining, but to avoid confusion, I will refer to it as iterative hashing.
Figure 2-9 shows a five-deep iterative hashing of the password football.

Passwords 33

74,046,754,153,250,065,911,729,167,268,259,247,040

football

215,740,418,882,503,683,136,771,049,688,419,950,093

H

H

H

46,202,593,210,040,684,251,622,731,805,548,624,146

H

H

195,752,481,240,411,715,496,478,482,864,954,676,468

13,171,899,822,692,340,279,911,684,933,338,601,262

Figure 2-9: Applying a hash function repeatedly

With this technique, passwords are repeatedly hashed when the password
is stored and when the user logs in. To thwart this, the attacker has to pro-
duce a table based on the same idea, running the chosen hash code function
the same number of times. From Kerchkoffs’s principle, we know that crypto-
graphic systems shouldn’t depend on keeping their methods secret. The goal
of iterative hashing isn’t to disguise how many times the password is hashed,
but to make the creation of the attacker’s pre computed hash table as difficult
as possible. In the example, the password runs through the hash function
five times. That would multiply the time needed to create the attacker’s
table by five as well. In real-world use, passwords can be run through hash
functions hundreds or thousands of times. Is this enough to prevent the
creation of useful precomputed hash tables? Maybe. Computers get faster
every day. For the most part, this is wonderful, but the downside to ever-
increasing computational power is that it keeps pushing the boundary of
practical limitations, and so much of our information security is based on
these practical limitations.

Someone setting up a password system based on iterative hashing has
to choose the number of iterations. It’s fairly easy to choose a number that
provides good security today. What’s difficult is predicting the number of
iterations required a year from now, or 2 years, or 10.

You might think the best choice is some impossibly large number to
guard against the power of future computers. The problem is that today’s
computers would have real trouble processing legitimate logins. Would you
be willing to wait five minutes to access one of your online accounts?

34 Chapter 2

Salting Passwords
Authentication systems need a way to strengthen hashing without a
performance-crushing number of hash iterations; that is, they need a
method of storing passwords that requires an impractical time investment
from attackers without creating an equally unrealistic time burden on legit-
imate access. That method is called salt. Salt is an apt term for this concept,
and I commend whoever came up with it. In culinary usage, a pinch of salt
profoundly changes the flavor of a dish. In cryptography, a small quantity of
salt sprinkled on a password dramatically changes its hash code.

Here’s how it works: when a new user signs up for an account and selects
a username and password, the system automatically generates the salt for
that account. The salt is a string of characters, like a short, random pass-
word, that is combined with the user’s password before hashing. For example,
user mrgutman chooses falcon as his password, and the system generates h38T2
as the salt.

The salt and password can be combined in various ways, but the simplest
is appending the salt to the end of the password, resulting in falconh38T2 in
this example. This combination is then hashed, and the hash code stored in
the authentication table along with the username and the salt, as shown in
Table 2-5.

Table 2-5: Password Table Using Salt

Username Salt Hash of password + salt

richguy22 7Pmnq 106,736,954,704,360,738,602,545,963,558,
770,944,412

mrgutman h38T2 142,858,562,082,404,032,402,440,010,972,
328,251,653

squire 93ndy 122,446,997,766,728,224,659,318,737,810,
478,984,316

burgomeister78 HuOw2 64,383,697,378,169,783,622,186,691,431,
070,835,777

Each time a user requests access, the salt is added to the end of the
entered password before hashing. An attacker who acquires a copy of this
authentication table can’t get much use out of a precomputed hash table.
Although the table might have a password that hashes to the given code,
that password won’t produce the right code when combined with the salt.
Instead, the attacker would need to create a table for a specific salt. That
could be done, but remember that the salt is randomly chosen. If there are,
say, 100,000 users in a stolen authentication table, and the salts are numer-
ous enough that no salt is duplicated in the table, the attacker will need to
create 100,000 tables. At this point, we can’t even call them precomputed
tables because the attacker is creating them for each attack.

Passwords 35

Are Password Tables Safe?
Salting and iterative hashing are typically used together, creating real head-
aches for an attacker. Iterative hashing increases the time requirement for
creating a single precomputed hash table, and salting means an attacker
has to make a multitude of tables. But is this combination enough?

There is no definitive answer to that question. Cryptography researchers
and security experts continue to develop new defenses against unauthorized
access. At the same time, though, attackers continue to find new methods
to penetrate defenses. Advances in computational power and programming
theory help whichever side takes advantage of them first.

Perhaps the most important lesson of this discussion is that security
is often out of the user’s hands. There will always be vulnerabilities, but
there’s no way for a user to know if a particular site or service is employing
the best security practices. The salt technique, for example, benefits only
systems that use it, and not every system does.

Password Storage Services
That’s how passwords are stored on remote authentication systems. What
about on the user end? How do we safely store our passwords?

A long time ago, I had so few passwords that I could safely entrust them
to my memory, but eventually I knew I had to store passwords outside of my
head. Writing the passwords on a piece of paper, though, is just a different
kind of security liability. For a while, I had an elaborate homebrew solution
involving a .txt file encrypted with AES and stored on a memory card that was
kept in a metal box that was probably not 100 percent fireproof. This arrange-
ment worked, except that every time I needed to look up a password, I had to
go to the box, get the memory card, slot it into my computer, double-click the
file, type the password (the one password I had to remember), and find the
desired entry in my table.

Eventually I threw in the towel and signed up for a web-based pass-
word storage service. When I created an account with the service, I chose
a master password. I then stored all my other passwords and usernames on
this website. This information is stored in a way that renders it of little use
to anyone who gains access to the raw data, so if my password at Amazon
is chickenfat (it isn’t), then the word chickenfat isn’t stored anywhere on the
password storage server. Instead, the passwords are encrypted by a program
on my browser before being sent to the password storage site, using my cho-
sen master password to generate the encryption key. Therefore, even if the
server were breached, the attacker wouldn’t be able to retrieve my individ-
ual passwords without the master password.

The master password itself is not stored on the password storage site,
either. When the encryption key is needed to encrypt or decrypt an indi-
vidual login, the master password is salted and then hashed repeatedly, for
as many iterations as I specify.

36 Chapter 2

Although using a password storage service puts all of my eggs in one
basket, so to speak, this frees me to use best practices for individual logins.
Whereas previously I might have created passwords that were collages of
words and numbers I thought I could remember, now my passwords are
lengthy random jumbles. And they are all different because I no longer
need to remember them all.

A Final Thought
In all of this talk about authentication systems, I’ve avoided a crucial
detail. Authentication systems compare stored user passwords to passwords
provided during logons, but how does the remote computer doing the
authentication get the users’ chosen passwords in the first place? Secure
transmission requires encryption, which implies the users would have had
to encrypt the passwords—but how could the remote system decrypt the
encrypted passwords without having the passwords already? This brings us
back to the shared key problem—none of what we talked about in this chap-
ter can work unless that problem is solved. So that’s what we’ll do next.

3
W E B S E C U R I T Y

You may not have realized it before, but
the Internet as we know it couldn’t exist

without a solution to the shared key prob-
lem. Think about a typical situation: you’re

buying something at an online retailer that you’ve
never purchased from before. At some point you will
be asked for your credit card data. Your browser tells you that your data
is secure, perhaps by displaying a “lock” icon in the corner. But for the
browser to protect your card number using AES, both your system and
the retailer must use the same encryption key. How do two systems securely
transmit data without getting together beforehand to exchange a key?

Solving this shared key problem is essential to providing any security on
the Web. We’ll explore the solution to the shared key problem in this chapter,
which uses all the techniques we’ve seen in the previous two chapters, plus a
new special ingredient: public-key cryptography.

38 Chapter 3

How Public-Key Cryptography Solves the
Shared Key Problem

In the world of physical security, the shared key problem has a straight-
forward solution because locks and keys are two separate things. Suppose
person A needs to ship confidential physical documents to person B. Person
B could buy a strongbox and a keyed lock and then mail the box and lock to
person A while keeping the key. Then person A puts the documents in the
box, locks the box with B’s lock, and ships the box back to B. Because B has
the only key to the lock, this is a secure delivery method.

This is the desired situation for transmitting data digitally as well. We
need to separate the methods for locking and unlocking data, so that know-
ing how to encrypt data won’t provide the means to decrypt the resulting
ciphertext.

In Chapter 1, we learned about AES, which is a symmetric-key encryption
method, meaning the same key is used for encryption and decryption. For
transmission, we need an asymmetric-key encryption method, with one key for
encryption and another key for decryption. The encryption key is known as
the public key, because it can be freely distributed with no ill effects if it falls
into the hands of an attacker; for this reason, asymmetric-key encryption
is also known as public-key cryptography. The decryption key is known only to
the recipient, so it’s known as the private key. These relationships are shown
in Figure 3-1.

Plaintext Encryption Ciphertext

Public Key

Ciphertext Decryption Plaintext

Private Key

Sender

Receiver

Figure 3-1: Asymmetric-key encryption, with a
public key for encryption and a private key for
decryption. Only the receiver has the private key.

Math Tools for Public-Key Cryptography
What public-key cryptography requires, then, is an encryption method
that’s reversible but not with the cipher key that was used in the encryption.
The basic tools of the encryption methods we’ve seen so far won’t work for
public-key cryptography. The most common operation in AES, for example,
is exclusive-or, which is used precisely because when something is XORed
twice with the same binary number, you get the same number you started
with. Reversible operations such as XOR inevitably lead to having the same
key for encryption and decryption.

Web Security 39

Public-key encryption, therefore, requires a new technique. As it turns
out, the secrets to public-key encryption lie in the hidden relationships
between numbers. In order to explain what those relationships are and how
they can be exploited for cryptography, we need to go over a few pieces of
math terminology.

Invertible Functions
Broadly stated, a function describes any situation where each numerical
input results in a single numerical output. The current Celsius temperature,
for example, is a function of the current Fahrenheit temperature. For any
particular temperature in Fahrenheit degrees, there is exactly one matching
temperature in Celsius degrees.

In the same way, the monetary value of a pile of coins is a function of
the number of coins of each type. A pile containing three quarters, two
nickels, a dime, and four pennies has a monetary value of 99 cents. This
pile of coins cannot be worth any other amount.

Sometimes a function can be reversed to produce another function. If
we know a temperature in degrees Fahrenheit, we also know it in degrees
Celsius, and the reverse is true: if we know a temperature in Celsius, we
can also figure it out in Fahrenheit. In mathematical terms, we would say
that the Celsius-to-Fahrenheit function is the inversion of the Fahrenheit-
to-Celsius function, and that the original function is invertible. The coin
example, though, is not invertible. The same total monetary value can
be produced by multiple combinations of coins. If the coins in my pocket
are worth 99 cents, I might have three quarters, two nickels, a dime, and
four pennies, or I might have nine dimes and nine pennies, or some other
combination.

One-Way Functions
For some invertible functions, computing in one direction may be a lot
easier than the other. For example, the mathematical concepts of square and
square root are complementary functions. Suppose you have a square room in
your home that is covered in black-and-white tiles, as shown in Figure 3-2. To
find the total surface area of the floor, you multiply 12 by 12 to get 144.

We say that 144 is the square of 12. Going in the other direction, we say
that 12 is the square root of 144. These are both functions; each number has
one square and one square root. The difficulty of computing these two
functions is very different, though. Figuring out a number’s square is easy:
you just multiply the number by itself. Figuring out the square root is hard.
Unless you have a table of values to help you, computing a square root is
effectively a trial-and-error process. You make a guess at what the root might
be, multiply that guess by itself, see if your guess was too high or too low, and
then adjust your next guess accordingly, repeating the process until you find
the exact square root or get close enough that you are willing to stop. When
a function is invertible but its inverse is much harder to compute, it is called a
one-way function.

40 Chapter 3

12 feet

12 feet

Figure 3-2: A square room with walls 12 feet long
has a total area of 144 feet.

Trapdoor Functions
Asymmetric encryption requires a one-way function so that the encryption
key can be public—the encryption will be easy, but the decryption will be so
hard as to be infeasible. The problem is, we shouldn’t make the decryption
infeasible for the intended recipient as well. So any old one-way function isn’t
going to do the trick. We need what’s known as a trapdoor function, a one-way
function where the inverse function is hard in general, but easy when some
secret value is known.

Prime Numbers

The particular trapdoor function we’ll discuss involves prime numbers. A
number is prime if it is greater than 1 and can only be divided (without a
remainder) by itself and 1. For example, 5 is prime because it can be divided
only by itself and 1. It cannot be evenly divided into 2, 3, or 4 parts. The
number 6, though, can be divided by 2 and 3 in addition to 1 and itself. It is
therefore a nonprime, or composite, number. Smaller numbers that divide into
a larger number are known as the larger number’s factors. Every number is
divisible by itself and by 1, but we call these trivial factors and tend to ignore
them when discussing factors. A prime number has only trivial factors.

Coprime Numbers

In a related concept, two numbers are said to be coprime if they share only 1
as a factor. Either number may or may not be prime itself, but each can be
thought of as prime as far as the other number knows. For example, the com-
posite numbers 9 and 4 are coprime because there is no number that divides
them both except for 1. In contrast, 6 isn’t coprime with either 9 or 4, because
6 shares factors with both. These relationships are demonstrated in Table 3-1.

Web Security 41

Table 3-1: Showing that 9 and 4 Are Coprime, but 6 Is Not Coprime with 9 or 4

Divisor Remainder from 9 Remainder from 6 Remainder from 4

9 (trivial)

8 1

7 2

6 3 (trivial)

5 4 1

4 1 2 (trivial)

3 0 0 1

2 1 0 0

1 (trivial) (trivial) (trivial)

Although 1 is not a prime number, it’s considered to be coprime with
every other number.

Prime Factors

Now we are getting close to the hidden relationships that make public-key
encryption work. If we multiply two prime numbers, the resulting product
has only those two prime numbers as factors (again, not counting itself and 1).
For example, 5 and 3 are prime numbers. The product of 3 and 5 is 15,
and 15 has only 3 and 5 as factors, as shown in Table 3-2.

Table 3-2: The Product of Prime Numbers 3 and 5 Is 15,
and 15 Has Only 3 and 5 as Factors

Divide 15 by Result Remainder

15 0 0 (trivial)

14 1 1

13 1 2

12 1 3

11 1 4

10 1 5

9 1 6

8 1 7

7 2 1

6 2 3

5 3 0

4 3 3

3 5 0

2 7 1

1 15 0 (trivial)

42 Chapter 3

This is a one-way function. If I give you two prime numbers, you can
easily multiply them together, although you might use a calculator if the
numbers are large. The inverse of this function would mean starting with
the product of two prime numbers and finding the two original primes.
That’s considerably harder.

Let’s take 18,467 as an example. This number is indeed the product
of two primes—but which two primes? To answer this question, you would
need to divide 18,467 by every prime number starting from 2. Eventually
you would discover that 18,467 divided by 59 is 313, which means that 59
and 313 are the two prime factors.

Finding the prime factors is very difficult if all you have is the product.
However, when you have the product and one of the two factors, finding the
other factor is simple, because all you have to do is divide the first prime
into the product. That makes it a trapdoor function—easy in one direction,
hard in another unless you have the extra piece of information. If the prime
numbers are large enough, finding the factors is infeasible without the
trapdoor.

The RSA Encryption Method
This trapdoor function is at the heart of the RSA public-key encryption sys-
tem, named after the initials of its inventors: Rivest, Shamir, and Adleman.
In actual practice, this system uses very large numbers to prevent a simple
brute-force attack, but I’ll use small numbers in a simplified example to
more easily demonstrate how it works.

Suppose that siblings Zed and Abigail share a bank account but live
apart. Zed has just changed the account’s four-digit PIN to 1482 and needs
to send this new number to Abigail via email. Because email transmis-
sions pass through many potentially insecure computers, the PIN must be
encrypted in some way, but Zed and Abigail haven’t previously shared a
cipher key that would allow the use of a method like AES. Instead, Zed will
securely transmit the new PIN using RSA.

Creating the Keys
Although Zed has the confidential data to transmit in this example, the
RSA procedure begins with Abigail, who must produce a public key before
Zed can encrypt the PIN.

Step 1

Abigail begins by choosing two prime numbers; let’s say she chooses 97
and 113.

Step 2

Abigail multiplies these two numbers together to get 10,961. To keep things
straight, I’ll call this number the prime-product.

Web Security 43

Step 3

Next Abigail must compute a totient (which is pronounced TOE-shent, to
rhyme with quotient). For a number N, the totient is the amount of num-
bers that are less than N and coprime with N. For example, the number 15
is coprime with 1, 2, 4, 7, 8, 11, 13, or 14, as shown in Figure 3-3. Because
there are eight numbers coprime with 15, the totient of 15 is 8.

5 315

14
13
12

7 2

6 4 3 2
11
10
9
8

11

13
12

14

10 5 2

24
39

8
7
6
5

7
6

5
3 2

4
3
2
1

4 2
3

2

Figure 3-3: The eight circled numbers have no factors in
common with 15. Therefore the totient of 15 is 8.

Computing the totient of a number normally requires checking every
smaller number for common factors, and therefore it’s a lot of work—for
huge numbers, finding the totient is practically impossible. However, if the
number in question is the product of two prime numbers, there’s a shortcut:
simply subtract 1 from each of the two prime numbers and multiply the
results together. For example, 15 is the product of two primes, 3 and 5. If we
subtract 1 from each of the two primes, we get 2 and 4; if we multiply 2 and 4
we get 8, the totient of 15.

This shortcut greatly aids Abigail, whose next step is computing the
totient of the prime-product, 10,961. Since that is the product of the primes
97 and 113, the totient of 10,961 is 96 × 112, or 10,752.

Step 4

Now Abigail selects a number that meets the following criteria:

•	 Greater than 1

•	 Less than the totient

•	 Coprime with the totient

44 Chapter 3

Let’s say she picks 5. This is acceptable because it is greater than 1, it is less
than 10,752, and there is no number other than 1 that divides both 5 and
10,752. Abigail is going to share this number with Zed, so we’ll call it the
public key.

Step 5

The chosen public key determines Abigail’s private key, the number she has to
keep secret. For any given public key and totient, there is just one number that
can serve as the private key, and we can identify it by testing successive mul-
tiples of the totient. For each multiple, we add 1 and see if the result is divisible
by the public key. When it is, the result of this division is the private key.

The process is demonstrated in Table 3-3. The first multiple of 10,752 is
10,752 itself; Abigail adds 1 to make 10,753, then divides by 5, getting 2,150
with a remainder of 3. She tries the second multiple, 21,504, and when she
adds 1 and divides by 5, she gets 4,301 and no remainder, so her private key
is 4,301.

Table 3-3: Finding the Private Key

Multiple Multiply by 10,752 Add 1 Divide by 5 Remainder

1 10,752 10,753 2,150 3

2 21,504 21,505 4,301 0

Of course, with larger numbers it may take a lot more multiples to find
the private key, but there is always one number that will pass the test. The
number of multiples tested will always be less than the public key (in our
example, Abigail knows she’ll find the private key in four tries or less). In
any case, now that Abigail has her private key, the actual encryption can begin.

Encrypting Data with RSA
Abigail emails both her prime-product (10,961) and public key (5) to Zed.
Because these numbers don’t allow anyone to decrypt the resulting cipher-
text, it doesn’t matter who else reads the email before it reaches Zed.

The actual encryption of the new PIN takes just two steps.

Step 1

Zed raises the PIN, 1,482, to the power of the public key, 5—that is, 1,482 is
multiplied by itself five times:

1,482 × 1,482 × 1,482 × 1,482 × 1,482 = 7,148,929,565,430,432

Step 2

The second step is to find the remainder of dividing the result of step 1
by the prime-product. In this case, 10,961 goes into 7,148,929,565,430,432
about 652 billion times, but all Zed cares about is that the remainder of that
division is 2,122. Zed sends this remainder to Abigail.

Web Security 45

Step 3

On the receiving end, Abigail performs two similar steps to decrypt the
ciphertext. She starts by raising the ciphertext number, 2,122, to the
power of the private key, 4,301. Because 2,1224,301 is enormous—over
14,000 digits—I won’t show it here.

Step 4

Abigail finds the remainder of dividing the enormous number from step 3
by the prime-product. The remainder of that division is exactly 1,482, reveal-
ing Zed’s PIN.

RSA Effectiveness
Remember that the goal of RSA, like any encryption system, is making
encryption easy, decryption easy for the intended recipient, and decryp-
tion very hard for anyone else. A summary of our RSA example is shown in
Figure 3-4.

Even using much larger primes, encryption and authorized decryp-
tion are easy with the aid of the computer, as a review of the steps in our
example will show.

1. Abigail picked two prime numbers and multiplied them together to
produce her prime-product. Multiplying two numbers together is easy.

2. Abigail computed the totient of the prime-product by subtracting one
from each of the two prime numbers before multiplying. Subtraction
and multiplication are easy.

3. Abigail chose a public key, a number that shares no factors with the
totient. For large numbers, this would be impractical to find by hand,
but for a computer, this is easy.

4. Abigail found the appropriate value for her private key, which should,
when multiplied by the number chosen for her public key, produce a
number that’s 1 more than a multiple of the totient. This is a chore to
do by hand, but for a computer, this too is easy.

5. Abigail sent Zed the prime-product and public key.

6. Zed raised the PIN to the power of the public key. For a computer, this
is relatively easy.

7. Zed divided the result from the previous step by the prime-product and
took the remainder. Division is easy.

8. Zed sent the remainder to Abigail.

9. Abigail raised the number Zed sent to the power of the private key. Easy.

10. Abigail divided the result of the previous step by the prime-product and
took the remainder, revealing Zed’s PIN. Easy.

46 Chapter 3

97 113

10,961

Select prime
 numbers

Multiply to get
prime-product

96 112
Subtract 1 from

each prime

10,752
Multiply to
get totient

5
Select public key,

coprime with
totient

4,301

Private key, when multiplied
by public key it’s 1 more
than a multiple of totient

Send to Zed

1,4825

7,148,929,565,30,...

10,961 2,122

2,122

21,472,247,798,...

1,482

Send to Abigail

Zed’s PIN, the data
to be encrypted

Raise PIN to power
of public key (1,4825)

Take remainder of
division by prime-product

Raise number to power
of private key (2,1224,301)

Take remainder of
division by prime-product

Figure 3-4: A summary of the RSA example. The box in the middle shows Zed’s
responsibilities; the rest are Abigail’s.

RSA encryption and decryption by authorized parties is easy work
for a computer, but unauthorized decryption is maddeningly difficult. To
decrypt, an attacker must have both the prime-product, which Abigail gives
out freely, and the private key, which she keeps to herself. How could an
attacker compute the private key? Finding that number means first finding
the totient of the prime-product, but remember, Abigail was only able to
compute the totient quickly because she knows the two prime numbers that
created the prime-product. Without those two prime numbers, an attacker
must find the totient the hard way—by checking every number less than the
prime-product to find all the coprimes.

Web Security 47

In our example, the prime-product is small, so it’s feasible for a com-
puter to find the totient in this brute-force manner. In actual practice,
though, prime-products are huge, and finding their totients isn’t feasible at
all. In fact, an attacker would be better off searching for the two primes that
make the prime-product, to use the shortcut method of making the totient.
That still requires checking all numbers up to the square root of the prime-
product, though, so for large numbers this is as infeasible as finding the
totient the long way.

The RSA encryption method therefore creates our desired digital
equivalent of a “lockbox.” Encryption and decryption no longer share the
same secrets, so knowing how to lock the data doesn’t provide the ability to
unlock it.

RSA Use in the Real World
Our simplified example demonstrates the basics of RSA encryption, but for
real-world use, we have to consider a few other details.

Bidirectional Transmission

The system shown in the example allows for Zed to securely transmit to
Abigail, but not the other way around. If they wanted to send secure mes-
sages in either direction, Zed would have to go through all the steps that
Abigail did, making his own prime-product, totient, public key, and private
key, and sending the prime-product and public key to Abigail.

Key Size

In RSA, the last step of either encryption or decryption is taking the
remainder of division with the prime-product, which means the plaintext
number must be less than the prime-product. In the example with Abigail
and Zed, then, the largest possible plaintext number is 14,960. That’s not
a problem for Zed and his four-digit PIN, but for general use larger ranges
are needed.

Just as important, the larger the value of the prime-product, the more
difficult it will be for an attacker to find the two prime factors. In other
words, the size of the prime-product directly affects the security of encryp-
tion. In current practice, primes are chosen to produce a prime-product
with a minimum of 1,024 bits. As you may recall, the Advanced Encryption
Standard described in Chapter 1 used only 128 or 256 bits for the key. So
we are talking about a truly humongous number—1,024 bits is equivalent
to a decimal number of over 300 digits.

Long Plaintexts and Performance

A 1,024-bit key allows the encryption of very large numbers. But a typical
text, image, or audio file is a long series of small numbers, not one big num-
ber. How do we transmit a long series of numbers using RSA? With AES,
long files would be chopped up into as many 128-bit blocks as necessary.

48 Chapter 3

In theory, we could do the same with RSA, chopping up files into a multi-
tude of 1,024-bit blocks and applying RSA to each block. The problem is
that RSA encryption is much slower than AES.

AES has more steps than the RSA Encryption Standard, but even so,
AES is high-performance because the steps themselves are so simple. The
most common operations are XOR and shifting bits around, and these
operations are individually trivial. You can grasp this by working out the
result of these operations in your head, as shown in Figure 3-5.

1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 0

Result

XOR with

Original

1 0 0 1 1 0 0 1

Rotate Three
Bits Left

Original

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

Figure 3-5: Computing XOR or rotating bits to new posi-
tions is easy.

In contrast, the RSA process has only a few steps, but the reliance on
exponentiation means more work overall. Consider a relatively small expo-
nent: 1716. Written out, that’s . . .

17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 × 17

Try working that out in your head, and you see the problem. Now imag-
ine exponents involving numbers with hundreds of digits. Although a com-
puter can handle these calculations, exponents are clearly a lot more work
than simple XORs. Because exponents take so much time, using RSA for
large amounts of data is impractical.

Combining Systems

The solution to the RSA performance problem is simple: don’t transmit
large amounts of data with RSA. Instead, use RSA to transmit an encryp-
tion key for another, faster method, such as AES.

Returning to Abigail and Zed, suppose Zed needs to send Abigail a
long document that he has already converted to a series of numbers using
the ASCII table. Zed would prefer to encrypt the document using AES
rather than take on the hard work of RSA. To use AES, though, Zed and
Abigail would both need to share an AES encryption key. RSA provides the
means to share that key safely. Zed can create the AES key himself, then
encrypt it with RSA using Abigail’s public key. Then Zed can encrypt the

Web Security 49

long document using AES, and Abigail can decrypt the resulting ciphertext
using the key they now share. This process is illustrated in Figure 3-6.

Abigail’s RSA Public

Document

AES Key

AES

RSA AES Key

R

A

Document

AES Key

R

A

Document

RSA

Abigail’s RSA Private

AES

AES Key

Document

Zed e-mails to Abigail

Figure 3-6: Combining RSA and AES to produce an asymmetric public-key system
with high performance

In this figure, the A-lock symbol means “encrypted with AES” while the
R-lock means “encrypted with RSA.” By sending both the AES-encrypted
document and the AES key encrypted with her public RSA key, Abigail has
everything necessary to decrypt the document, but an attacker intercepting
the transmission won’t be able to decrypt the document without Abigail’s
private key.

By combining the two encryption methods, we combine their strengths
to get the high performance of AES and the shared keys of RSA. Public-key
encryption is typically used this way, to initiate a symmetric-key encryption
process that would otherwise be impossible.

RSA for Authentication
Public-key cryptography creates an authentication problem. Because the
public key is just that—public—anyone can send an encrypted message to
the private key owner; therefore, the recipient of a transmission cannot be

50 Chapter 3

certain of the sender’s identity. This problem doesn’t occur with symmetric-
key encryption, because the secrecy of the one key, when it can be shared,
ensures not only the security of the message but also that the message origi-
nated with the other person who has the key. Luckily, public-key cryptogra-
phy can be also be used to authenticate.

Authentication Using RSA

In our RSA example, Abigail has her prime-product of 10,961 and her pri-
vate key of 4,301, while Zed has the prime-product and Abigail’s public key
of 5. This allows Zed to send a secure message to Abigail, but it also allows
Abigail to send an authenticated message to Zed.

Suppose Abigail wants to send that same PIN, 1482, back to Zed
to acknowledge its receipt, and in such a way that Zed can be sure the
acknowledgment comes from Abigail.

Abigail takes the PIN, 1,482, and raises it to the power of her private
key (instead of the public key used for encryption). 1,4824,301 is another
huge number—it has over 13,000 digits—so I’m not going to write it here,
but when that huge number is divided by the prime-product of 10,961, the
remainder is 8,742. Abigail sends an email with that remainder to Zed. Zed
now raises that 8,742 to the power of Abigail’s public key, 5, which results in
51,056,849,256,616,667,232. Finally, Zed divides that number by the prime-
product, getting a remainder of 1,482. Zed recognizes this number as the
PIN, and knows it must have been transformed using Abigail’s private key,
proving the number came from Abigail. The relationship between security
and authentication in RSA is shown in Figure 3-7.

Original

Public

Decrypt Original

Private

Original

Encrypt

Decrypt Original

Private Public

Encrypt

Transmission

RSA for Security

RSA for Authentication

Figure 3-7: The RSA process provides either encryption or authentication.

We can authenticate entire files by applying this authentication process
to the encryption key of a system like AES and sending the encrypted file
and the authenticated key to the recipient.

Web Security 51

The RSA process can therefore produce an authenticated message or
a secure message, depending on whether we encrypt with a private key
or a public key. Ideally we’d like messages to be both authenticated and
secure. We can accomplish this by applying both variations of the process
to the same message. In our example, illustrated in Figure 3-8, Abigail
could encrypt the number she wants to transmit with her private key, then
encrypt the result with Zed’s public key. Upon receipt, Zed would reverse
the procedures, first decrypting with his private key, then again with
Abigail’s public key.

Transmission

Original Encrypt

Abigail Private

Encrypt

Zed Public

Original

Abigail Public Zed Private

Decrypt Decrypt

Figure 3-8: Applying the RSA with the sender’s private key and
the recipient’s public key provides authentication and security.

Identity Authorities

You may have noticed that authentication introduces a subtler version of
the shared key problem. Zed knew the email came from Abigail because
he recognized the PIN produced when he transformed the number using
Abigail’s public key, which means the sender must have the matching pri-
vate key. But if Zed is worried about someone pretending to be Abigail,
how exactly does he know that the public key was sent by Abigail in the
first place, not by an imposter who has hacked Abigail’s email account?

The solution to this problem is an authority, a third party that helps
verify identities. As you’ll see, authorities provide the digital equivalent of
ID cards. When two computers initiate a secure, authenticated transmission
through the exchange of public keys, they show their IDs, which assures
each computer of the identity of the other. Of course, this assumes each
computer trusts the authority providing the ID, so in the end, authentica-
tion requires having implicit faith in someone. One either trusts that the
transmission comes from the entity that claims to have sent it, or one trusts
some third party to identify the sender. Identity authorities form a crucial
component of the ultimate subject of this chapter, web security.

52 Chapter 3

Security on the Web: HTTPS
Web pages are transferred using HTTP, which stands for Hypertext Transfer
Protocol. When this data is transferred securely, it is called HTTPS, where
the S stands for secure. This is why you’ll see https at the beginning of your
browser’s address bar when you are transferring sensitive data—or I hope
you do. Web security is something most people take for granted, but it’s an
amazing feat to instantly create trust and security between two automated
parties who may have just been introduced, requiring all the tricks and
techniques you’ve seen so far.

For this discussion, suppose you’re purchasing from a retail website
using a computer or phone. In this scenario, your computer is known as the
client. The computer running the website for the retailer is the server. This is
the first time you’ve made a purchase from this retailer, so you have to pro-
vide shipping and billing information such as your address and credit card
number. This situation cries out for security, but it requires authentication
as well.

To see why, you have to remember that your computer is not directly
connected to the server. Your data will be passed along from system to sys-
tem, through computers managed by your Internet service provider (ISP)
and those managed by the retailer’s ISP, and possibly through intermediate
systems managed by neither. It’s possible for any of these systems to be com-
promised by attackers such that the infected system would intercept trans-
missions headed for the retailer, responding in its place. If this happens,
when you place your order, you’re giving your data away to attackers, not
to the retailer. Although the data is encrypted, it is encrypted with the key
provided by the compromised system, so the encryption ensures only that
no one else eavesdrops on the data you are sending to the attackers. This
sort of impersonation is known as a man-in-the-middle attack, and is foiled by
good authentication.

Handshaking
 Secure transmission of data occurs in sessions. A session is the web equiva-
lent of a phone call: an extended conversation that begins when you first
load a page on a site and ends after you have not interacted with the site for
some predetermined amount of time.

Before the transmission can begin, your client and the server must suc-
cessfully perform a ritual called handshaking. The name implies that it’s just
two computers saying howdy, but it’s more like a tense scene in a crime show
where one guy doesn’t want to show the “stuff” in the back of the van until
the other guy shows the cash in the briefcase. The handshaking phase, if
successful, authenticates the server to the client, and creates the key that
will be used for encrypting the data throughout the session. As with Abigail
and Zed, a public-key encryption system is used just long enough to share
the keys needed for the better-performing private-key encryption system.

Web Security 53

Step 1

The client tells the server which encryption methods it supports. The
HTTPS protocol allows computers to choose from a suite of acceptable
methods for encryption, which means that different secure websites that
you access may use different encryption techniques providing higher or
lower levels of security. In addition to the encryption support information,
the client also provides a randomly generated number—the purpose of
which you’ll soon see.

Step 2

The server responds with its own list of supported encryption methods
and also its certificate. The server certificate contains several pieces of data,
including the domain name of the site (such as amazon.com) and the name
of the certificate issuer (the authority that will verify the site’s identity).
It also contains the server’s public key. HTTPS can use several different
public-key cryptographic systems, but RSA is common. The server uses the
same certificate for every client it transacts with, so the public-and-private
key pair only has to be created once for each certificate. Although this
means the server uses the same RSA keys for all clients, as you’ll see, the
RSA keys are used only during this handshaking phase.

The server certificate also contains a signature. As discussed in Chapter 2,
digital signatures are hash codes. In this case, the server hashes the certifi-
cate data and encrypts the hash code using the server’s private key.

In addition, the server also sends a random number to the client, just as
the client has sent a random number to the server.

Step 3

The client validates the certificate. There are two aspects to the validation.
First, the client applies the server’s public key to the hash code in the certifi-
cate, then hashes the certificate itself and compares the two hash codes. If
the codes match, the certificate is internally valid, but it doesn’t prove this
is the actual certificate for the site.

Now the client must check with the issuer of the certificate, a certifica-
tion authority with built-in trust with your browser. If you drill down into
your browser’s options, you will find a list of issuers under a heading such
as “Trusted root certification authorities.” The issuer provides a copy of the
site’s certificate; when this matches the certificate provided by the server,
the client is assured of the identity of the server.

Step 4

The client generates another random number, 48 bytes long, or 384 bits,
known as the premaster secret. As the name implies, this number must remain
a secret. However, the client needs to send it to the server, so the client
encrypts it using the server’s public key.

54 Chapter 3

Step 5

The client and server independently create the 384-bit master secret by hash-
ing a combination of the premaster secret and the two random numbers that
were exchanged in the first two steps. Once the master secret is created, the
premaster secret and the other two random numbers are discarded.

Note that the master secret is not exchanged between client and server.
By this stage, both the client and the server have all the numbers needed to
create the master secret. They independently run the numbers through the
same process to produce the same result.

A summary of the handshaking process is shown in Figure 3-9.

Supported Encryption
Methods

Random Number

Supported Encryption
Methods

Certificate

Random Number

Validate Certificate

Compute Premaster
Secret

Compute Master
Secret

Premaster Secret

Client Server

Compute Master
Secret

Figure 3-9: The HTTPS handshaking procedure

Transmitting Data Under HTTPS
Now the client and server can begin sending actual data—web pages and
media from the server, and user data from the client. The 384 bits of the
master secret are divided into three 128-bit sections, each providing a dif-
ferent aspect of security.

Web Security 55

Data Encryption

The first section of the master secret is used as the key for a private-key
encryption system such as AES. Each of the subsequent data transmissions
during the secure session will be encrypted using this cipher key.

Block Chaining

Because web pages have standard header formats that could provide cribs
to attackers, a method such as block chaining (discussed in Chapter 1) is
employed. As you may recall, such systems need a starting value to encrypt
the first block of the transmission; the middle 128-bit section of the master
secret is used as this starting value.

Message Authentication Code

The final 128-bit section of the master secret is used to create a message
authentication code, or MAC, for each transmission. In this case, we’re not
trying to authenticate the identity of the sender—that was already handled
in the handshaking phase. Instead, the MAC ensures that data isn’t altered
during transmission.

In this process, each transmission is hashed through a function like
MD5, but first the transmission data is combined with the remaining 128-bit
section of the master secret. This is known as keyed hashing, and the 128-
bit section in this context is known as a MAC key. Using a keyed hash helps
foil man-in-the-middle attacks. An attacker who wishes to pass a fake trans-
mission to the receiver will need the MAC key to produce a hash code that
will be accepted as genuine by the receiver.

The hashing occurs before the encryption, so that both the original
message and the hash code are encrypted.

The Shared Key Problem Solved?
So that’s how data is securely transmitted over the Web. As you can see, solv-
ing the shared key problem requires just about every trick in the cryptog-
raphy toolkit. Public-key encryption creates the secure channel for initial
communications. Private-key encryption is used to secure individual trans-
missions of data. Hashing authenticates both the session and individual
messages. If the site uses passwords to authenticate users, then all of the
password techniques from Chapter 2 would come into play as well.

Web security is a complex system of techniques. And therein lies a
potential problem: the complexity of computer security can hide weak-
nesses. Just as a machine with more parts has more parts that can break
down, the layering of so many intricate methods and techniques can mask
undiscovered vulnerabilities. Sometimes the vulnerability is not within any
one part, but in how the parts are connected. Although methods like RSA
and AES are currently considered safe, clever attackers may find ways to
break the security without breaking the underlying encryption methods.

56 Chapter 3

For example, earlier versions of HTTPS were vulnerable to a particular
man-in-the-middle attack that arose from the observation that most secure
sessions begin with a user clicking on a link. Suppose, for example, that you
have received an email from the bank that issues your credit card with a
link to your most recent account statement. The link is an HTTPS address,
which means that when you click it, your browser will launch and request
a secure connection with the bank’s server. However, this request itself is
not secure. An attacker’s program could intercept this request and pass it
along to the bank server as a request for a plain unencrypted HTTP con-
nection, and then eavesdrop on all the unencrypted traffic that followed.
The user might be tipped off by the prefix in the address bar, but how
many users would think to check that? To cover this security hole, web
servers can now tell browsers that all connections must be made through
HTTPS—but that solution doesn’t foil an attacker who can intercept the
announcement as well. The ultimate solution may be to require HTTPS
for all web communications.

Undoubtedly new vulnerabilities will be found in the future, requiring
the invention of new defenses. Computer security is a moving target. We’ll
never be able to declare our data entirely safe, but relying on best practices
may keep us one step ahead of attackers.

4
M O V I E C G I

Some of software’s most impressive work
can be seen in movie theaters. Images that

in earlier eras were painstakingly produced
with models, matte paintings, elaborate cos-

tumes, and trick photography are now created by com-
puters. More than merely simplifying the filmmaking
process, computer-generated imagery (CGI) produces images that would have
been impossible before. For many filmgoers, movies changed forever when
they saw Jurassic Park. When Steven Spielberg was developing the movie, he
expected to create his dinosaurs using old-school effects like automated pup-
pets and animated miniatures, but once he saw some computer-animated test
footage, he decided to use CGI for many of the dinosaur shots. The result
left viewers astounded by images like the panorama shown in Figure 4-1. For
comparison, the old way to put a dinosaur in a movie is shown in Figure 4-2.

58 Chapter 4

Figure 4-1: CGI dinosaurs visit the watering hole in Jurassic Park (Universal Pictures/
Amblin Entertainment, 1993).

Figure 4-2: The Beast from 20,000 Fathoms (Jack Dietz Productions, 1953) munches
on Coney Island.

Amazing as they were, films like Jurassic Park were just the beginning of
the CGI revolution. Now movies like Avatar create whole worlds using CGI,
so that viewers are never sure what parts of a shot are physically real, if any.
With enough time and money, it seems like filmmakers can produce any-
thing imaginable.

Movie CGI 59

Before computers blew our minds with dinosaurs and lush alien planets,
though, they were transforming the world of traditionally animated movies.
Using computers not only radically altered the process of traditional anima-
tion, but as you’ll discover, the concepts and techniques employed are the
foundation for almost everything in computer graphics. This is where the
story of CGI begins.

Software for Traditional Animation
A movie is a series of still images, or frames, presented to the eye in rapid
succession, like a high-speed slideshow. Each frame lingers on the retina for
a moment after it disappears from the screen, effectively blending with the
next frame to provide the illusion of continuous motion—a phenomenon
known as persistence of vision. Traditionally, movies are shown at a rate of
24 frames per second (fps). Making a movie means producing 24 images
for every second of the film.

A live-action movie uses a camera to collect images in real time. A tra-
ditionally animated film like Lady and the Tramp, though, is created a bit
differently: each frame of the movie is an individually photographed, hand-
crafted work of art.

Traditional animation is a huge undertaking requiring a large team
of artists. Typically, each character in an animated film is assigned a lead
animator, but the lead animator does not draw the character on every frame
in which he or she appears, because that’s too much work for one person.
Instead, the lead animator draws only as many keyframes as are needed to
suggest the action—perhaps one out of every few dozen frames of a finished
animation sequence. Other animators draw the in-between frames to com-
plete the sequence, a process known as tweening. At this stage, the animation
is still just a series of pencil drawings on paper. The drawings must be trans-
ferred to transparent cellulose sheets, which is why this style of animation
is also known as cel animation. Then comes what animators call “ink and
paint”: the faint pencil lines are traced over with black ink, and the cel is
colored. Then the sheets are placed in front of a separately painted back-
ground and photographed.

As you might expect, tweening, inking, and painting are tedious, time-
intensive jobs. Beginning around 1990, computer imagery has been used to
mimic the cel animation style with far less manual labor.

How Digital Images Work
In a traditional animated film, each frame is a photograph of physical art,
but computer animation works with digital images—pictures defined by
numerical data.

When you look at a video display such as a television, a smartphone screen,
or a digitally projected theater screen, the image that reaches your eyes is
made up of dots of varying colors, known as pixels. Figure 4-3 depicts a tree
against a blue sky as a grid of pixels. Each of the 100 pixels in this 10×10
grid is assigned a color, here specified by name.

60 Chapter 4

Leafy Green

Sky Blue

Bark Brown

Figure 4-3: A tree made of pixels

Although we can think of each pixel as a solid
color, the underlying reality is a bit different. For
example, at home you might watch a movie on a com-
mon liquid crystal display (LCD) television in which
pixel colors are determined by electrically controlled
crystals. On the back of an LCD screen is a light
source, either a fluorescent lamp or a series of light-
emitting diodes (LEDs). The light source itself is white.
In front of the light is a translucent panel with bars in
the three primary colors—red, green, and blue—as
shown in Figure 4-4.

A layer of liquid crystals lying between the light
source and the color panel puts an individually con-
trolled crystal behind each of the translucent bars.
You can think of these crystals as electrically operated doors, and the
degree to which each crystal door is open determines how much light gets
through. By varying the amount of red, green, or blue, any one of millions
of colors can be produced by each pixel. This is additive color mixing, in
which adding more color makes the result brighter. If we want a particular
pixel to come across as bright yellow, for example, we would set the levels of
red and green high, and the level of blue low. If we wanted a dark gray, we
would set each of the color bars to the same low intensity. All three colors at
maximum intensity produce pure white. Later in this chapter, we’ll see an
example of subtractive color mixing, which is what you might remember from
art class, where adding more color makes the result darker.

How Colors Are Defined
The most common way to define a pixel’s color is with the RGB system,
which uses three numbers to represent the intensity of red, green, and blue
in the pixel. The numbers typically range from 0 to 255 to match the range
of an eight-bit byte. This means that each RGB pixel is specified by three
bytes of data.

Red Green Blue

Figure 4-4: Three
bars of pure primary
colors create one
LCD pixel.

Movie CGI 61

As far as software is concerned, a digital image such as that shown in
Figure 4-3 is just a list of bytes of color data, three bytes for each pixel. This
block of bytes is known as the image’s bitmap. The first three bytes in the
bitmap are the red, green, and blue levels of the pixel in the upper-left cor-
ner of the image, and so on. The width and height of an image or bitmap in
pixels is known as its resolution; for instance, Figure 4-3’s resolution is 10×10.
A bitmap called a display buffer stores the colors of each pixel of a digital
display like an LCD television; ultimately, computer graphics methods are
about setting the numbers in a display buffer.

The location of a particular pixel in a bitmap is specified by two coordi-
nates, an x-coordinate for horizontal position and a y -coordinate for verti-
cal position. The (0,0) coordinate, known as the origin, can be located in a
corner or in the center; it varies among different coordinate systems. When
positioning pixels on a physical display, we refer to coordinates as screen coor-
dinates. Screen coordinate systems commonly set the origin at the upper-left
pixel, so a 1920×1080 screen would locate pixels as shown in Figure 4-5.
Here, the y-axis increases moving down the image, the x-axis increases mov-
ing right across the image, and the center location is (960, 540).

x: 0 y: 0

x:1919 y: 1079

x:960 y: 540

Figure 4-5: Locating pixels on a 1920×1080 screen

Coordinate systems are a ubiquitous part of computer graphics and,
as you’ll see in this chapter and the next, much of the work of producing
graphics involves converting coordinates from one system to another.

How Software Makes Cel Animations
Now that you understand what’s inside a digital image, you’re ready to see
how software can make digital images that look like traditional cels. The
first step is getting the artist’s work inside the computer.

Transforming Drawings into Models

Software-generated cel animation starts the same way as traditional ani-
mation: with an artist sketching a character. Instead of drawing on paper,
though, the artist draws with a mouse or an electronic stylus and the draw-
ings are recorded by software. In order to ultimately produce a bitmapped
image, we need a system that defines the artist’s strokes numerically,

62 Chapter 4

producing a model of the drawing. Locations within a model are called
local coordinates. Figure 4-6 shows a drawing of a bug-man within a box that
defines the local coordinate space.

x: 0 y: 0

x:1000 y: 1000

Figure 4-6: A bug-man drawing inside a box defining coordinate limits

Each line and curve in this model is defined in terms of these local
coordinates. Straight line segments, like the antennae and legs of our charac-
ter, can be defined by the coordinates of the points at either end of the line,
as shown in Figure 4-7. Note that the coordinates here have fractional parts
to increase precision.

x: 450.46 y: 105.33

x: 455.77 y: 201.98

x: 486.07 y: 230.46

Figure 4-7: Defining straight line segments using the
coordinates of the end points

For curves, control points are needed in addition to end points to define
the direction and amount of curvature. Imagine that the control point is
attached to the curve so that moving it controls the degree of curvature, as
illustrated by the simple curves in Figure 4-8. If you’ve ever worked with a
vector graphics application, you’ve likely worked with curves like this.

Movie CGI 63

Figure 4-8: Curves defined by two end points and one control point

Simple curves can be represented by just
two end points and one control point, but
longer, more complicated curves are made
up of sequences of simple curves, as shown
with the bug-man’s shoe in Figure 4-9.

The lines and curves define just the
outline of a character or other drawing; the
colors inside the outline are defined using a
system such as RGB. The character model,
then, is a numerical representation of all the
lines, curves, and color data.

Automatic Tweening

Numerically defining drawings allows for automatic tweening. The animator
draws one frame of a character’s animation sequence, then creates succeed-
ing keyframes by moving the control points of the curves in the previous
frames. The animation software can then generate the other frames through
interpolation. The concept is demonstrated in Figure 4-10. Here, the coor-
dinates of the middle point are calculated as the average of the coordinates
of the other points. The x-coordinate of the interpolated point, 20, is halfway
between 10 and 30; the y-coordinate, 120, is halfway between 100 and 140. In
this example, all the points lie on a line, but the interpolation path can be a
curve as well.

Keyframe 1 Point (10,100)

Keyframe 2 Point (30,140)

Interpolated Point (20,120)

Figure 4-10: Computing a middle point between two keyframe
points via interpolation

Figure 4-9: A complicated
curve made of simple curves

64 Chapter 4

Figure 4-11 shows how interpolation creates new frames of animation.
The leftmost face is the original model; the second face shows some of the
control points; and the third has a wide mouth created by repositioning two
of the control points downward. The rightmost face was created through
linear interpolation, placing each control point halfway between the two
keyframe positions. Animation software can create as many in-between
positions as necessary to fill the gap between keyframes.

Figure 4-11: From left: a model, the model with selected control points, the model with two
of the control points moved, and a tweened model created by interpolation between the
positions of the previous two models

Although basic interpolation tweening can be a huge time-saver, adjust-
ing the positions of lots of little points remains tedious. More advanced
animation software can treat a character drawing as a complete, intercon-
nected body, in which rigid connections and joints are specified. This
means that an animator need only position the feet for each keyframe to
make our bug-man walk, and the software positions the rest of the legs
accordingly. The software might even handle real-world physics, so that a
sequence of images of our bug-man falling over a log could be animated
entirely by the software.

Positioning and Scaling

Numerical modeling also allows the drawings to be placed anywhere in
a frame at any size. Changing the size of a model is called scaling, and is
accomplished by multiplying or dividing the coordinates for each of the
points. Figure 4-12 shows the bug-man model of Figure 4-6 scaled down
to a quarter of its original area by dividing each of the coordinates in half.
One point on his antenna is highlighted to show the idea.

Placing a model in a particular location on the screen is called transla-
tion, and is accomplished by increasing or decreasing coordinates by fixed
amounts. In Figure 4-13, the shrunken bug-man from Figure 4-12 is trans-
lated to the middle of the screen by adding 700 to each x-coordinate and
200 to each y-coordinate.

Movie CGI 65

Local 0,0

Local 1000,1000

Local 580,210

Local 0,0

Local 500,500

Local 290,105

Original Model Scaled-Down Model

Figure 4-12: Scaling a model means multiplying or dividing each of the coordinates.

Screen 0,0

Screen 1919,1079

Local 0,0
Screen 700,200

Local 500,500
Screen 1200,700

Local 290,105
Screen 990,305

Figure 4-13: Translating a model means adding to or subtracting from coordinates.

“Ink and Paint” for Digital Images

Now that the points on the models are mapped to screen coordinates, it’s
time to transform each frame into a bitmap. This is the software version of
cel animation’s “ink and paint.” To keep things simple, let’s look at how just
the right arm of our bug-man model would be converted to a bitmap, or
rasterized, when displayed over a solid white background. Figure 4-14 shows
the arm over a pixel grid, with circles marking the pixel centers.

66 Chapter 4

With the model mathematically defined, the software can place the
arm at any position on the bitmap and then apply the indicated color—in
this case, black—to the appropriate pixels. Right away we see there’s a prob-
lem, though: the contours of the arm don’t match the borders of pixels, so
how do we determine which pixels to color? A simple rule is to color pixels
when their centers are covered. Figure 4-15 shows the result of pixel-center
coloring.

As you can see, though, this result is rather ugly. Because the pixels
are square, this coloring rule replaces the gracefully curving border of the
model with a jagged edge, which is why this problem is known as the jaggies.
The general problem is that the model is smooth and continuous, while the
bitmap is made with square black-and-white pixels. The bitmap is just an
approximation of the model. The discrepancy between continuous models
and their bitmap approximations is known as aliasing, and is the source of
many visual anomalies in computer graphics.

To avoid the jaggies, we need to color pixels using an anti-aliasing tech-
nique. In our example, instead of coloring the pixels black and white, we’ll
use a range of grays to produce a better approximation of the model. Each
pixel will be colored based on how much of it is covered by the arm.

In order to put this idea into action, instead of checking only the center
of each pixel, let’s test several points in each pixel to see how many of them
lie within the model. In Figure 4-16, 7 of the 10 testing points scattered
around the pixel area are covered by the shape, meaning this is 70 percent
coverage.

The percentage of each pixel covered by the model determines the gray
level. The result for our bug-man’s arm is shown in Figure 4-17. Although
this example might not look like much, if you hold the page at arm’s length
and squint, the edges should appear to smoothly blend into the white back-
ground, producing the illusion of a graceful curve.

Figure 4-15: Coloring pixels
solid black based on pixel
centers

Figure 4-14: The right arm
of the bug-man super-
imposed over a pixel grid

Movie CGI 67

Blending into Any Background

We need to generalize the technique just described in order for it to work
with a background other than solid white. Consider Figure 4-18. On the
left is the bug-man model, and in the middle is the background for the
shot in which he’ll appear: a close-up of a setting sun over a rocky terrain.
On the right is the complete image with the model superimposed over the
background.

Model Background Model over Background

Figure 4-18: The bug-man model, a background, and the model superimposed over
the background

This book is printed in black and white, but in this image the sun would
be shades of reddish-orange and the ground would be shades of brown. As
before, pixels along the model’s edge will appear jagged unless we use an
anti-aliasing technique. But using the previous technique to color pixels in
gray tones won’t help the black edge blend into a background of red-orange
and brown pixels.

A more general anti-aliasing technique calculates an alpha level for each
pixel based on the percentage of the pixel that’s covered by the model. You
can think of an alpha level as a measure of opacity. Like the color levels, an
alpha level is typically defined in the range of 0–255. In Figure 4-19, a black

With the model mathematically defined, the software can place the
arm at any position on the bitmap and then apply the indicated color—in
this case, black—to the appropriate pixels. Right away we see there’s a prob-
lem, though: the contours of the arm don’t match the borders of pixels, so
how do we determine which pixels to color? A simple rule is to color pixels
when their centers are covered. Figure 4-15 shows the result of pixel-center
coloring.

As you can see, though, this result is rather ugly. Because the pixels
are square, this coloring rule replaces the gracefully curving border of the
model with a jagged edge, which is why this problem is known as the jaggies.
The general problem is that the model is smooth and continuous, while the
bitmap is made with square black-and-white pixels. The bitmap is just an
approximation of the model. The discrepancy between continuous models
and their bitmap approximations is known as aliasing, and is the source of
many visual anomalies in computer graphics.

To avoid the jaggies, we need to color pixels using an anti-aliasing tech-
nique. In our example, instead of coloring the pixels black and white, we’ll
use a range of grays to produce a better approximation of the model. Each
pixel will be colored based on how much of it is covered by the arm.

In order to put this idea into action, instead of checking only the center
of each pixel, let’s test several points in each pixel to see how many of them
lie within the model. In Figure 4-16, 7 of the 10 testing points scattered
around the pixel area are covered by the shape, meaning this is 70 percent
coverage.

The percentage of each pixel covered by the model determines the gray
level. The result for our bug-man’s arm is shown in Figure 4-17. Although
this example might not look like much, if you hold the page at arm’s length
and squint, the edges should appear to smoothly blend into the white back-
ground, producing the illusion of a graceful curve.

Figure 4-16: A close-up
of one pixel at the end of
the bug-man’s arm, with
a scattering of 10 points
to estimate the area cov-
ered by the model

Figure 4-17: Using grayscale to anti-
alias, shown with and without the
pixel grid.

68 Chapter 4

bar is superimposed over a tree at different
alpha levels. At an alpha level of 255, the bar
is entirely opaque, while at 25 the bar is barely
visible. An alpha level of 0 would make the bar
completely invisible.

The alpha levels of all the pixels in a bitmap
are collectively referred to as its alpha channel.
The process of making an alpha channel for
a model is similar to how we anti-aliased the
black arm against the white background, only
rather than assigning a shade of gray based on
the pixel’s coverage percentage, we assign an
alpha value for the pixel instead. Each model
is thus conceptually transformed into both a
bitmap, showing the color of each pixel covered
by the model, and an alpha channel, showing
the opacity of each pixel. Figure 4-20 shows the color bitmap (here, just black
pixels) and the alpha channel of the bug-man arm separately.

Model Color Bitmap Alpha Channel

Figure 4-20: The arm of the bug-man model with its corresponding color bitmap and
alpha channel

Now the model can be applied to any background. The final color of
each pixel is a blend of the color in the background and the model’s color
bitmap, with the alpha level determining how much of each color goes into
the mix. In the bug-man scene of Figure 4-18, if a black bug-man pixel with
30 percent alpha were placed on top of a red-orange sunset background
pixel, the result would be a darker red-orange, as shown in Figure 4-21. The
resulting amount of each color component lies somewhere between the two
mixed colors, but because the black pixel is only 30 percent alpha, the red-
orange background color dominates. For pixels completely covered by the
model, the alpha level is 100 percent and the color in the final image is the
same as in the model’s color bitmap. In this way, a bitmap with an alpha
channel can be smoothly blended into any background.

57 55200252125

Figure 4-19: A tree covered
by five black bars of varying
alpha level

Movie CGI 69

R G B

Black, 30% Alpha

Red-Orange, Opaque

Result

Figure 4-21: The red, green, and blue components of three colors: the
black of the model, the red-orange of the background pixel, and the
result of mixing these two colors if the black has 30% alpha

From Cel Animation Software to Rendered 2D Graphics
These techniques are now the default way to produce cel-style animation,
and software is as common a tool for animation studios as brushes and
paper were in earlier generations. While some animation studios use pro-
grams they developed themselves, most direct-to-video or television ani-
mation and some feature films are made with off-the-shelf software. One
such program, Toon Boom, has been used for television shows such as The
Simpsons and Phineas and Ferb, while the artists at Studio Ghibli use a pro-
gram called Toonz to animate such movies as Spirited Away.

The usefulness of these techniques is not limited to filmmaking,
though. More generally, the software techniques used to mimic tradi-
tional cel-style animation are called two-dimensional graphics, or 2D
graphics, because the control points for models are located with two coordi-
nates, x and y. The general task of transforming models into final images
is called rendering, and the software that performs the task is the renderer.
Rendered 2D graphics are used throughout computing. Many video games,
such as Angry Birds, use the cel-animation look. These rendering techniques
are also used to display fonts and icons in applications such as browsers and
word processors.

Although rendered 2D graphics are ubiquitous in computing and can
make great cel-style animations, creating the mind-blowing visuals of films
like Avatar requires extending these ideas to three dimensions.

Software for 3D CGI
Breathtaking CGI in films like Avatar use 3D graphics. The “3D” here doesn’t
refer to simulated depth perception, like in a 3D movie, but rather to the
three coordinates of each control point in the animation models: x- and
y-coordinates for horizontal and vertical positioning and a z-coordinate to
indicate depth. Figure 4-22 shows a three-dimensional model of a box with
a highlighted point defined by x-, y-, and z-coordinates.

70 Chapter 4

–z

–x

–y

x: 100
y: 0
z: –100

+x

+y

+z

Figure 4-22: A box in three-dimensional space

As with 2D graphics, 3D graphics are all about rendering models into
bitmaps. The rendering methods that produce the most realistic results
require the most processing time. Movie CGI is impressive largely because
the renderer can process each frame for a very long time, resulting in the
high-quality result that I’ll call movie-quality rendering. We’ll discuss the keys
to movie-quality rendering in this chapter. Then, in Chapter 5, we’ll talk
about graphics for video games, and see how many of the techniques shown
here have to be modified, faked, or scrapped altogether when images must
be produced in real time in response to user interaction.

How 3D Scenes Are Described
3D models are built out of lines and curves just like 2D models, but these
lines and curves stretch across three dimensions instead of two. The box in
Figure 4-22 is a very simple model defined by eight points; the models used
in movie CGI tend to be complex, defined by hundreds, thousands, or even
tens of thousands of points. As with 2D rendering, models in 3D rendering
are defined by local coordinates. The points at the corners of the box in
Figure 4-22, for example, are defined relative to the local origin at the bot-
tom of the box.

While 2D rendering can directly map from local coordinates to screen
coordinates, 3D models are first placed into scenes in a virtual world that
has its own coordinate space called world coordinates. Designing a 3D scene
is the CGI equivalent of building a movie set. We can place as many models as
we want in the virtual world, of any size and at any location, and the renderer
can figure out the world coordinates for all the locations on the models.

Introducing another coordinate system might seem like an unnecessary
complication, but world coordinates actually make 3D graphics much easier
in the long run. For example, an artist can model a dining room chair inde-
pendently of the other models for the scene in which it will be used. Then
the artist can copy the single chair model to make as many seats as needed

Movie CGI 71

for the dining room scene. Also, a scene, like a movie set, isn’t built to pro-
duce a single image but to create a space that will be shown in many images
from many different angles, as we’ll see in the next section.

The Virtual Camera
With the scenery in place, a viewpoint is needed. On a movie set, a cine-
ma tographer determines what image is captured by placing the camera
and choosing a lens. For CGI, the viewpoint determines how the three-
dimensional scene is transformed into a two-dimensional rendered image.

Transformation from three dimensions to two is known as projection. To
better understand projection, consider Figure 4-23, in which an imaginary
pyramid originates from the eye of a viewer looking at a table. A translu-
cent grid lies in the pyramid between the viewer and the scene. Looking
through the grid, the viewer can map each visible location on the three-
dimensional table to a particular square on the two-dimensional grid. That’s
projection, but instead of a grid of squares, it’s a grid of pixels in a bitmap.

Figure 4-23: Projecting a three-dimensional scene onto a flat display is like
viewing a real-world scene through a translucent grid.

Direct Lighting
There are many different methods of projection, but projection methods in
movie-quality rendering are part of the larger issue of lighting. Although
we don’t often realize it, our perception of an object’s color is determined

72 Chapter 4

not only by the object itself but also by the lighting under which we view the
object. Knowing this, filmmakers carefully light their scenes for dramatic
effect, but the problem of lighting in CGI is more fundamental. Without an
accurate model of scene lighting, the resulting images won’t look realistic
at all.

To understand why this is true, let’s take a simple scene of a yellow
metal table in a green room, as shown in Figure 4-24.

Yellow Table

Green Walls
and Floor

Viewpoint

Figure 4-24: A 3D scene

From this viewpoint, some of the pixels will be “table” pixels and the
others will be “wall” or “floor” pixels. A simple renderer might color every
table pixel the same shade of yellow, while coloring all the other pixels an
identical green. But because this coloring ignores the effect of lighting, the
resulting image would be flat and unrealistic. (The blocks of solid color
would make the image resemble an animation cel—an interesting effect,
but not realistic.) A movie-quality renderer needs a lighting model so that the
colors in our scenes are influenced by virtual light sources.

The essential real-world lighting effects modeled by CGI renderers
include distance, diffuse reflection, and specular reflection.

The Distance Effect

To understand the distance effect, imagine a lamp emitting pure white light
hanging directly over the middle of the table, as in Figure 4-25.

The closer this light is to the table, the brighter the table appears. In
the physical world, this effect is caused by the beam of light widening as it
gets farther from its source. The more narrowly focused a light source is,
the less the light diminishes with distance—which explains why the highly
focused light of a laser hardly diminishes at all.

Movie CGI 73

Figure 4-25: The closer a light is to a surface, the brighter
the surface appears.

Renderers can model the distance effect realistically, but they also allow
unrealistic distance effects in order to create a particular look or mood.
For example, in a scene where a character carries a torch through a cave, a
lighting designer will decide whether the torchlight extends a long way or
barely penetrates the gloom.

All of the lighting effects we’ll discuss allow these kinds of adjustments.
Although it may seem strange to intentionally create unrealistic light when
the whole point of the lighting model is to make a realistic scene, there’s
a subtle but important distinction between reality and viewers’ expecta-
tions of reality. Using light in unrealistic ways is an old cinematic trick. For
example, when a character in a darkened bedroom turns on a lamp, a stage
light in the ceiling of the set also turns on, so that the entire scene is softly
lit. Without the extra, unrealistic light, the scene won’t look right—it will
appear too dark. In the same way, CGI lighting models allow their controls
to be tweaked to produce results that are a little wrong, but feel right.

The Diffuse Reflection Effect

Light that strikes a surface head-on appears brighter than light that strikes
a surface at a sharp angle. In Figure 4-26, the center of the table seems
brighter, or yellower, than the corners.

74 Chapter 4

Figure 4-26: Diffuse lighting depends on the angle at
which light strikes a surface.

This is due in part to the distance effect—the center is closer to the
lamp than the corners—but is mostly due to the diffuse reflection effect, a
change in brightness caused by variation in the light’s angle of incidence. In
Figure 4-27, the solid lines show the incident light rays, while the dashed
lines are reflections. As you can see, the light strikes point B at a much
larger angle than at point A, and therefore point B appears brighter than
point A. But note that the viewing angle, or angle of ref lectance, makes no
difference in the diffuse reflection effect. Therefore, point A will look the
same to both viewers, and so will point B.

A B

Angles of Incidence

Figure 4-27: Diffuse lighting varies based on the angle at which the light strikes
the surface, but is the same for all viewpoints.

Movie CGI 75

The Specular Reflection Effect

Because the metal tabletop is highly reflective, it partially acts as a mir-
ror. As with any mirror, what you see in it depends on what lies on the
opposite angle to your point of view. Figure 4-28 shows a shiny spot on the
table where the hanging light is at the opposite angle from our viewpoint,
approximately midway between the center of the table and the closest edge.
Because this spot is a mirror-like reflection of the white light bulb, the spot
will be white.

Figure 4-28: Specular lighting depends on both the angle
at which the light strikes the surface and the view angle.

These shiny spots are known as specular reflections, and appear where
the light’s angle of incidence matches the angle of reflectance. Figure 4-29
shows the location of specular reflections for two different viewpoints;
notice that each ray rebounds at the same angle that it struck the table.
Both viewers see a shiny spot on the table, but they see the spot in different
places.

In the real world, some materials reflect differently than others. A
shiny material like plastic has a high level of specular reflection, while a
dull material like cotton cloth has more diffuse reflection. CGI lighting
models allow artists to set different reflection properties for each surface
on a model to match the appearance of real-world materials.

76 Chapter 4

A B

Figure 4-29: The specular light on the table appears in different places for
different viewpoints.

Global Illumination
So far we’ve been discussing direct lighting, the result of light flowing directly
from a source to a surface. In reality, the color of every object in the physi-
cal world is influenced by the color of every other object nearby. A light-
brown sofa in a room with white walls looks very different than it does in a
room with blue walls, because the sofa gains a subtle tint from the reflected
light of the walls. This is indirect lighting, and for a computer-generated
image to look realistic, it must account for this effect. A lighting model that
accounts for all of the light in the scene, both direct and indirect, is known
as a global illumination model.

An example of indirect lighting is shown in Figure 4-30. Let’s assume
the light bulb emits pure white light. The beam first hits a wall that is
painted cyan (a light blue). The light reflecting from the wall is likewise
cyan, and when the reflected cyan light strikes the yellow rug, the resulting
reflected light is green. The bouncing colors therefore result in a subtle
greenish tint in the yellow rug. This sequence of color changes is caused
by subtractive color, where mixing colors results in a darker shade, the way
a color inkjet makes different shades by mixing cyan, yellow, and magenta
ink. Subtractive color is the opposite of the additive RGB system we dis-
cussed early in the chapter, in which mixing results in a brighter color.

Movie CGI 77

Cyan Wall

Yellow Rug

Pure White Spotlight

Figure 4-30: Light bouncing off multiple surfaces influences
apparent color.

How Light Is Traced
A global illumination model seems to require following the paths of light
beams as they bounce around the scene. A naive renderer, then, would use
three-dimensional coordinate math to trace the path of every beam of
light from each light source as it bounces from surface to surface. This
would waste a lot effort, though, because it would deduce the color of every
surface in the scene—including surfaces the viewer can’t actually see because
they lie outside of the viewpoint’s field of view, are obscured by other objects,
or are facing away from the viewpoint.

Why Light Is Traced Backward

Renderers avoid this inefficiency by tracing beams backward from the
viewpoint into the scene, a technique known as ray tracing. In ray tracing,
an imaginary line is traced from the viewpoint through the center of each
square in a pixel grid, as shown in Figure 4-31. The geometry of each model
in the scene is compared with the imaginary line to see if the two intersect.
The closest point of intersection to the viewpoint indicates the visible sur-
face that will color the pixel. Note that this method of projection closely
follows the explanation of Figure 4-23.

Next, more lines are traced outward from this known visible point.
The goal is to discover which lines end at light sources, either directly or
after bouncing off other objects. As shown in Figure 4-31, specular reflec-
tions trace only the rebound at the same angle of each impact, but diffuse
reflections trace a number of lines in random directions. As the diffuse
beams strike other objects, they will spawn more diffuse reflections, which
means the number of paths to trace keeps multiplying the more the pro-
cess continues. Renderers apply a cut-off to limit the number of bounces
for each beam.

78 Chapter 4

Specular

Diffuse

Figure 4-31: Tracing a beam of light from a viewpoint, through the center of the
shaded pixel, until it reaches a model in the scene. To determine specular lighting,
the tracing rebounds at the same angle as impact; for diffuse lighting, it rebounds
at several random angles.

How Ray Tracing Models Real-World Effects

Although ray tracing is a lot of work for even a network of computers, the
method can accurately model many real-world visual effects.

One such effect is translucency. Although a bitmap can be made trans-
lucent by assigning low alpha values to pixels, that’s not the whole story
for transparent materials like glass. A glass tumbler, for example, doesn’t
merely allow light to pass through it, but also distorts whatever is behind it,
as shown in Figure 4-32.

Figure 4-32: The distortion of curved glass

Movie CGI 79

A ray tracing renderer can refract light beams according to the laws of
optics as they pass through translucent materials. This will not only allow
the renderer to model glass in CGI, but will also help to reproduce the dis-
torting effects of transparent materials and liquids like water.

Ray tracing can also be extended to simulate camera lenses. Normally,
all objects in a computer-generated image are perfectly in focus. In images
shot by a movie camera, though, only objects at a certain distance from the
camera are in focus, leaving other objects less focused the farther they are
from that distance. While one might consider having everything in focus
an advantage of computer-generated imagery, skilled cinematographers
use selective focus to help tell their stories. In Figure 4-33, Jimmy Stewart
and Grace Kelly are in focus in the foreground, while the apartments in
the background are blurry; the viewer’s attention is drawn to the actors,
but the distant, open background is a subtle reminder of how visible the
apartments in this courtyard are from each other—an important detail in
the film. Because movie viewers have grown accustomed to receiving depth
information about scenes through the use of focus, computer-generated
images and movies often must simulate the use of photography lenses to
match viewer expectations.

Figure 4-33: Focus depth in Rear Window (Paramount Pictures/Patron Inc., 1954)

Shadows are another key component of a realistic computer-generated
image. Ray tracing produces shadows naturally, as shown in Figure 4-34.
Because no beam of light can reach the shadowed area, no beam traced
back from the viewpoint can reach the light, so the area will remain dark.

80 Chapter 4

Figure 4-34: Tracing beams of light renders shadows naturally.

Ray tracing can also model highly reflective surfaces simply by setting
a very high specular reflection property on the material. For example, when
you’re standing inside a well-lit room when it’s dark outside, the room in
which you stand is clearly reflected in the window.

So although ray tracing is computationally intense, adding these real-
world effects doesn’t add much extra work, and the effects add greatly to
the realism of the final image. In the next chapter, you’ll see the tricks video
games use to render reflective surfaces and shadowing in real time, when
ray tracing isn’t an option. Some effects, like glass distortion, are usually
not even attempted in real-time rendering; there’s simply not enough time.

Full-Scene Anti-Aliasing
While the images rendered by ray tracing can be stunning, they can suffer
from the same aliasing problems we saw with 2D graphics. Whenever one
object is in front of another, each projected light beam will either hit the
foreground object or miss and hit what lies behind the object. Figure 4-35
shows a chair on a rug as seen from a particular viewpoint. Beams traced
from this viewpoint near the edge of the chair seat hit either the chair or
the rug, which assigns the associated pixel the color of one surface or the
other. This causes a jagged edge like those we saw for 2D images.

The renderer can avoid the jaggies by applying anti-aliasing to the
whole image. There are many methods for full-screen anti-aliasing, but with
ray tracing, a direct way to anti-alias the entire scene is to project more
beams from the viewpoint than necessary. For example, rather than just
sending out a beam at the center of every pixel, the renderer might also
send out beams into the spaces between the pixel centers. After the color
for every beam is determined, the final color of each pixel is blended from
the colors of the center beam and the beams at the neighboring corners.
Pixels that lie along an edge in the image are thereby assigned intermediate
colors, avoiding the jagged “staircase” effect.

Movie CGI 81

Figure 4-35: In the highlighted area, each light beam trace ends on the
chair or the rug, resulting in jaggies.

Figure 4-36 demonstrates this idea. Each circle represents a beam pro-
jected into a scene. The pixels are colored based on the average of colors in
the center and corners of each pixel, which results in the anti-aliased edge
shown on the right. More beams can be traced for even better results, at the
expense of more processing time.

Figure 4-36: Each pixel’s final color is a blend of
five beams traced into the scene, one at the center
of the pixel, and four at the corners.

Combining the Real and the Fake
In a completely computer-animated film, rendering is the final step in pro-
ducing each frame, but when CGI is integrated into live-action films, there’s
more work to be done. Imagine, for example, a scene in which a computer-
generated Tyrannosaurus rex stalks through a real field of grass.

82 Chapter 4

To make this happen, we first need two sequences of digital images.
One sequence shows the grass field, and has either been shot on a digital
camera or on a traditional film camera and then subsequently scanned.
Either way, the movements of the camera are computer controlled, which
allows the camera movement to match up precisely with the movement of
the virtual camera in the other sequence, the computer-generated anima-
tion of the dinosaur.

Next, the two sequences are combined, frame-by-frame, in a process
called digital composition. Although the dinosaur sequence was produced
from 3D models, at this point both sequences are simply two-dimensional
bitmaps and are combined using the same method used to place our bug-
man on top of the sunset back in Figure 4-18. Through the use of alpha
blending, the edges of the dinosaur in each frame are smoothly blended
with the field-of-grass background. Without this blending, the dinosaur will
have a shimmering edge like that of a weatherman standing in front of the
five-day forecast.

Digital composition is used throughout modern moviemaking, even
when no computer-generated imagery is involved, such as for dissolves (a
transition where one scene smoothly fades into the next). Formerly, dis-
solves were produced by a device known as an optical printer, which pointed
a camera at a screen onto which several projectors were aimed. The camera
would make a new film that combined the images of the projected films.
A dissolve was accomplished by turning down the light in one projector
while turning up the light on another. The results were acceptable, but
you could always spot an optical printer sequence in a movie because the
second-generation images would be blurry compared to the rest of the film.
Now, dissolves, superimposed titles, and all sorts of other movie effects
that you might not really think of as “effects” are performed with digital
composition.

The Ideal of Movie-Quality Rendering
When all the advanced rendering techniques described in this chapter
come together, the results can be stunningly realistic, highly stylized, or
anything in between. The only real limitation on CGI is time, but that’s a
big limitation. The truth is, what I’ve been calling movie-quality rendering
can be an unattainable ideal even for Hollywood. Although films can be
in production for several years, there’s only so much time that can be allot-
ted for each frame. Consider the computer-animated Pixar film WALL-E.
With a running time of 98 minutes, the film required the rendering of over
140,000 high-resolution computer images. If Pixar wanted to produce all
of the images for WALL-E in two years, it would have to render images, on
average, every eight minutes.

Movie CGI 83

Even on a networked “render farm,” eight minutes is not sufficient
to use ray tracing, global illumination, glass refraction, and all the other
high-end techniques for every single image. Faced with these practical
constraints, filmmakers pick and choose which techniques to use on each
sequence to maximize visual impact. When ideal rendering is required, the
time is spent, but when the best effects won’t be missed or the budget won’t
allow it, they aren’t used. The renderer used at Pixar—a program called
RenderMan that was originally developed at Lucasfilm—can forgo ray trac-
ing and its massive associated computational effort, but that means many of
the realism-enhancing effects have to be produced some other way.

But how is that done? What kinds of tricks are needed to render images
without ray tracing—images that may not be perfectly realistic but are still
amazing? To answer this question, we’ll turn from Hollywood to the world
of video games, where rendering is under an extreme time limitation. How
extreme? If eight minutes isn’t enough time to produce an ideal render,
imagine trying to render an image in under 20 milliseconds. In the next
chapter, we’ll see how video games produce great graphics in a hurry.

5
G A M E G R A P H I C S

A modern video game is like a modern
movie—a big production that requires

expertise in many different technical
areas. Teams of programmers develop code

for audio, artificial intelligence, network connectiv-
ity, and so on. Still, the first thing you notice about a
video game is the graphics.

Early video game systems like the Atari 2600 and Sega Genesis relied
on premade bitmap graphics; that is, there was no rendering, not even the
2D rendering described in the previous chapter. Instead, if a video game
needed to show the game’s hero walking, an artist would draw several bit-
maps to be shown in a repeating sequence. Backgrounds, too, were hand-
drawn. Displays were low resolution and offered only a few choices for
pixel colors.

As the quality of displays improved, game developers turned to other
techniques to produce their bitmaps. Fighting games like Mortal Kombat
would scan photographs of stunt actors in costume or at least use them for

86 Chapter 5

reference. Some games in this era would actually use rendered graphics,
but not real-time rendering; instead they would prerender the bitmaps on
more powerful systems over a longer period of time. The 3D game as we
know it today was unknown outside of a few early experiments.

That started to change in the mid-1990s. Game consoles like the Sony
PlayStation were built around 3D graphics capabilities instead of bitmaps.
PC gamers began to purchase what were then called graphics accelerators—
plug-in hardware to assist in the creation of 3D graphics. Those early 3D
games were crude, both graphically and otherwise, compared to games
today. Also, few 3D games were made for the PC because Microsoft had
yet to build DirectX, a standardized interface between game software and
graphics hardware, which meant that games had to include different code
to match each manufacturer’s graphics accelerator.

Even so, gamers were hooked on the new 3D gaming, and each suc-
ceeding generation of graphics hardware blew away the capabilities of the
previous one. Nowhere was this generational leap more apparent than in
cut scenes—short, prerendered videos shown at the beginning of the game
to set the scene, or at critical points during the game to advance the plot.
Because these videos were prerendered on expensive hardware, just like
the movie CGI we discussed in Chapter 4, early cut scenes were much more
impressive than the graphics during actual gameplay. As the hardware
advanced, though, gameplay visuals began to match or even exceed the
cut scenes of earlier games.

These days, few games use prerendered cut scenes. Although the game
may still include noninteractive “movie” sequences to set up or advance the
plot, they’re much more likely to be rendered in real time, just like the rest
of the game. That’s because the real-time rendering looks so good, it’s not
worth it for game developers to do anything else.

And that, I think, is why I find video game graphics so amazing. They
look as good as or better than the prerendered graphics I saw in earlier
video games, or even in early CGI movies, and they’re being produced in
real time. Those two words—real time—look innocent enough, but they
encapsulate an enormous challenge for a game renderer. To put it into
numbers: if your typical gamer wants a refresh rate of 60 frames per sec-
ond, each image must be rendered in a mere 1/60 of a second.

Hardware for Real-Time Graphics
The increasing quality of real-time graphics is tied to advancements in
graphics hardware. Today’s graphics hardware is powerful and optimized
for the tasks involved in 3D graphical rendering. Although this book is
about software, a brief discussion of hardware is necessary to understand
why game graphics work the way they do.

The main processor inside a computer or video game console is the
central processing unit (CPU). These processors might have multiple cores, or
independent processing subunits. Think of a core as an office worker. The
cores inside a CPU are like fast, widely trained workers. They are good at

Game Graphics 87

doing just about any task, and doing it very quickly. However, they are so
expensive that you can afford to have only a few of them, usually eight or
fewer in a typical desktop processor, although this number will continue
to rise.

By contrast, a graphics processing unit (GPU) will have hundreds or even
thousands of cores. These cores are much simpler, and individually slower,
than the cores in a CPU. Think of them as workers who can do only a few
tasks well, and don’t do those tasks especially fast, but they are so affordable
that you can have an army of them. This hardware approach for GPUs was
adopted because there’s only so much improvement that can be made to
the speed of individual cores. Even though the raw speed of cores increased
with each generation, that wasn’t nearly enough to close the performance gap
to allow high-quality real-time rendering; the only solution was more cores.

CPUs, then, are great at tasks with steps that have to be completed in a
specified order, like filling in a tax form. GPUs, though, are better at tasks
that can be easily divided among many workers, like painting the outside of
a house. Game renderers are designed to keep all of the GPU cores as busy
as possible.

Why Games Don’t Ray Trace
We saw in the preceding chapter how ray tracing can produce amazing
graphics. But games don’t ray trace, because it’s too slow for real-time render-
ing. There are several reasons for this.

One reason is that ray tracing doesn’t match up well with the “army of
workers” GPU design. For example, ray tracing sends out a beam of light
for each pixel, determines where that beam strikes, and from that point of
impact, sends out a bunch more light beams, determines where they strike,
and so on. This job is better suited for a CPU, because the renderer must
determine each point of impact before it knows what beams to check next.

More broadly, realtime renders should expend computational effort
where the result makes a difference to the viewer. Consider a computer-
generated scene in which you face a chair in the middle of a polished wooden
floor. A ray tracer, pinballing light around the room, would still indirectly
determine the color of every point on the back of the chair, because that data
is necessary for proper global illumination of the floor. A game renderer,
though, could never afford the luxury of coloring a surface that won’t be
directly seen.

All Lines and No Curves
To understand how a video game renders without ray tracing, we start
with the basic building block of game graphics: the triangle. In the previ-
ous chapter we learned how CGI models in movies are made of lines and
curves. In game rendering, models are normally made exclusively of lines.
If you remember graphing parabolas in high school algebra, you’ll recall
that the math for describing curves is a lot more complicated than the math

88 Chapter 5

for describing lines, and there’s just not enough time to deal with curves
in a game. That’s why game renderers use lines, and this means that the
surfaces defined by the control points are flat. The simplest flat surface is a
triangle, defined by three points in space.

Triangles are ubiquitous in games. In a game, whatever you think
you’re looking at, you’re actually looking at millions of triangles, joined at
angles to create surfaces and shapes. Triangles used in rendering are often
generically called polygons, even though almost all the polygons are simple
triangles.

Games simulate curved surfaces by using lots and lots of triangles. A
round tumbler, for example, can be approximated as a ring of interlocking
triangles, as shown in Figure 5-1. On the right, the outlines of each triangle
are shown for clarity.

Figure 5-1: A curved tumbler approximated with triangles

Projection Without Ray Tracing
To render the triangles in the scene models, the renderer must project the
control points that define the triangle to locate these points on the screen.
Ray tracing projects by following an imaginary beam of light through the
center of each pixel, but in this case we have to do something different.

The good news is that a direct mathematical relationship exists
between world coordinates and screen coordinates, and this makes map-
ping the points fairly straightforward. We know the location—the x, y,
and z world coordinates—of the viewpoint and of the point on the model
we want to project. We also know the location of the virtual projection
screen. Figure 5-2 shows how we use these locations to determine the exact
y-coordinate where the line aimed at the model point crosses the projec-
tion screen. In this example, the depth (the distance from the viewpoint
along the z-coordinate) of the projection screen is four-tenths of the depth
from the viewpoint to the point on the model, as shown by the large blocks
along the bottom. Knowing this proportion, we can calculate the x- and

Game Graphics 89

y-coordinates of the projected point. The y-coordinate of the projected point
is four-tenths of the distance between the y-coordinate of the viewpoint
and the y-coordinate of the point on the model, as shown by the shaded
boxes on the projection screen. Also, though we can’t see this from the
perspective of Figure 5-2, the x-coordinate of the projected point will be
four-tenths of the distance between the x-coordinates of the viewpoint and
model point.

Point on Model
Projection Screen
(Seen from Side)

Viewpoint

Point Projected on Screen

Figure 5-2: Projecting a point in the virtual world to the screen

Note that the position of the imaginary projection screen in the virtual
world affects the resulting projection. To see this effect, make a rectangle
using the forefinger and thumb of both hands and look through it while
moving your hands close and then farther away. The farther away your
hands are from your eyes, the narrower your field of view. In the same way,
games can adjust field of view by altering the distance between the view-
point and the projection screen in the virtual world. For example, games
that let you look through binoculars or a gun scope accomplish the zoom
effect by moving the projection screen deeper into the scene.

Rendering Triangles
With all three points of a triangle located in
screen space, rendering a triangle follows the same
rasterization process we saw in Chapter 4 to make
a bitmap out of a 2D model. In Figure 5-3, the
pixel centers inside the triangle boundaries are
colored gray.

From reading the previous chapter, you prob-
ably have some objections to this simple method
of triangle rendering. First, how can we just color
every pixel the same—what about all those light-
ing effects? And second, look at those jaggies—
how do we get rid of them?

These questions will be answered, but first we
have to deal with a more fundamental problem.
Simply determining where every triangle is located on the screen and color-
ing its pixels doesn’t work because every pixel on the screen will probably be

Figure 5-3: With the ver-
tices of a triangle located
on the screen, the triangle
can be rendered.

90 Chapter 5

inside more than one triangle. Consider the image shown in Figure 5-4. The
flowerpot is behind a cube, which is behind a tall cup. Pixel A lies within
four different triangles: one on the front of the cup, one on the back of
the cup, one on the front of the cube, and one on the side of the cube.
Likewise, four triangles enclose pixel B. In each case, only one triangle
should actually determine the color of the pixel. In order to render the
image correctly, the renderer must always map each pixel to the model sur-
face in the scene that is closest to the viewpoint. Ray tracing already finds
the closest intersection point between the light beam and a model in the
scene, so this problem is handled without any additional effort. Without ray
tracing, though, what should the renderer do?

B

A

Figure 5-4: Three overlapping models in a scene

The Painter’s Algorithm
A simple solution is known as the painter’s algorithm. First, all of the triangles
in the scene are ordered according to their distance from the viewpoint.
Then the models are “painted” back to front, the way Bob Ross would paint
a landscape on The Joy of Painting. This algorithm is easy for the program-
mer to implement, but it has several problems.

First, it’s highly inefficient: the renderer will wind up coloring the same
pixel over and over again as foreground models are rendered over previous
background models, which is a huge waste of effort.

Second, it doesn’t allow for easy subdivision to keep the army of workers
busy on the GPU. The painter’s algorithm requires the models to be drawn
in a certain order, so it’s difficult to effectively divide the work among sepa-
rate processing units.

Third, there’s not always an easy way to determine which of two triangles
is farther way from the viewpoint. Figure 5-5 shows a perspective view of
two triangles, with numbers indicating the depth of each vertex. The top
view makes it clear which triangle is in front, but because the depths of one

Game Graphics 91

triangle’s vertices are between those of the other triangle, there’s no easy
way to figure out which triangle is closer by direct comparison of the vertex
depths.

Viewpoint

Top ViewPerspective View

4

4

4

3

3
6

Figure 5-5: Perspective and top views of two triangles

Depth Buffering
Because of all the deficiencies of the painter’s algorithm, the most com-
mon solution to projection in games is a method known as depth buffering.
As introduced in the previous chapter, computer graphics require a bitmap
called a display buffer to store the color of each pixel in a display. This
technique also uses a corresponding depth buffer to track the depth of each
pixel—how far away it is from the viewpoint. Of course, a screen is flat, so
pixels don’t really have depth. What the depth buffer actually stores is the
depth of the point in the scene that was used to determine the color of that
pixel. This allows the renderer to process the objects in the scene in any order.

Here’s how depth buffering would work with the example scene from
Figure 5-4. Initially, the depth of each pixel would be set to some maximal
value that’s greater than the depth of any actual object in the scene—let’s
say 100,000 virtual feet. If the cup is drawn first, the depth of those pixels in
the depth buffer is set to the corresponding distances from the viewpoint.
Suppose the flowerpot is drawn next; the renderer then sets the depth of its
pixels. We can picture the depth buffer as a grayscale image, where pixels
are darker the closer they are to the viewpoint. The depth buffer at this
stage is shown in Figure 5-6.

The depth buffer solves the problem of projecting the right point onto
the pixel. Before rendering a pixel, the renderer checks the depth buffer
value for that pixel’s location to see if the new pixel would be in front of
or behind the pixel that’s already in the display buffer. When a new pixel
appears behind the pixel in that location in the display buffer, the renderer
skips it and moves on. Continuing with our example, when the cube is drawn,
the pixels on the left side of the cube that overlap with the cup are not
drawn, because the values in the depth buffer show that the cup’s pixels are
in front of the cube. The cube would overwrite the pixels of the flowerpot,
because the depth of the flowerpot pixels is greater than those of the cube.

92 Chapter 5

Figure 5-6: A depth buffer with two objects drawn. Darker colors are
closer to the viewpoint.

Depth buffering is an efficient solution to projection because less work
is thrown away. Models can be roughly preordered so that they are painted
approximately front to back, to minimize overwritten pixels. Also, because
depth buffers allow for rendering models in any order, work can more eas-
ily be divided among the cores of the graphics processor. In our example,
different cores can be working on the cup, cube, and flowerpot at the same
time, and the right model will be projected to each pixel in the final ren-
dered image.

Real-Time Lighting
Now that the renderer knows which triangle each pixel belongs to, the pixel
must be colored. In real-time rendering this is known as pixel shading. Once
a particular pixel has passed the depth buffer test, all the data needed to
color the pixel is processed by an algorithm called a pixel shader. Because
each pixel can be independently colored, pixel shading is a great way to
keep the army of workers busy inside the GPU.

The data needed by the shader will vary based on the complexity of the
lighting model, including the location, direction, and color of the lights
in the scene. Without a method like ray tracing, a full global illumination
model, in which reflections from near surfaces color each other, isn’t pos-
sible. However, shaders can include the basic effects of distance, diffuse
reflections, and specular reflections.

In Figure 5-7, a beam of light represented by the solid arrow reflects
from a triangle. The dashed arrow represents the normal (or surface normal)
of the triangle in that location; a normal is simply a perpendicular line
pointing away from the surface. In Chapter 4 we learned how the angles
between light beams, surfaces, and viewpoints affect diffuse and specular
reflections. The normal is used by the pixel shader for these calculations;

Game Graphics 93

so, for example, in Figure 5-7, if the dark arrow represents a light beam, this
would have high diffuse reflection because the angle between the light and
the normal is small.

Figure 5-7: A triangle with a surface normal (dashed arrow) perpendicular
to the triangle surface, and a light beam (dark arrow) striking the surface.

In Figure 5-7, the normal points straight
up, meaning it is perpendicular to the plane
of the triangle. Triangles with straight-up
normals for every point on the surface are
completely flat, which makes the individual
triangles clearly visible in the rendering.
For example, with straight-up normals, the
tumbler in Figure 5-8 appears faceted like a
gemstone.

For a more rounded appearance, the nor-
mals are bent as shown in Figure 5-9. Here,
the normals at the corners are bent outward,
and the normal at any location inside the tri-
angle is a weighted average of the normals at
the corner. Because the normal at the point
of impact for the light beam no longer points
straight up, the light beam reflects more
sharply. If this were part of a diffuse light-
ing calculation, the resulting color would be
brighter.

Figure 5-9: The normal at the point of light impact is affected by the bent corner
normals, which changes the angle of reflection.

Figure 5-8: If the normals
for each location on a tri-
angle point the same way,
this model will be rendered
as a series of flat triangles.

94 Chapter 5

Bending normals allows the flat triangle to reflect light as though it
were the bent triangle shown in Figure 5-10.

Figure 5-10: Bending the normals gives the triangle a bent shape so far
as the lighting calculations are concerned.

This goes only so far in fixing the problem, though, because the under-
lying shape is unchanged. Bending normals doesn’t affect which pixels
are matched to which triangle; it affects only the lighting calculations in
the pixel shader. Therefore, the illusion breaks down along the edges of a
model. With our tumbler, bending normals helps the sides of the tumbler
to appear smooth, but it doesn’t affect the tumbler’s silhouette, and the rim
is still a series of straight lines. Smoother model renderings require addi-
tional techniques that we’ll see later in this chapter.

Shadows
Shadowing plays an important part in convincing the viewer to accept the
reality of an image by giving models weight and realism. Producing shad-
ows requires tracing beams of light; a shadow is, after all, the outline of
an object between a light source and a surface. Game renderers don’t have
time for full ray tracing, so they use clever shortcuts to produce convincing
shadow effects.

Consider the scene outline shown in Figure 5-11. This scene will be
rendered in a nighttime environment, so the lamppost on the left will cast
strong shadows. To render the shadows properly, the renderer must deter-
mine which pixels visible from this viewpoint would be illuminated by the
lamppost and which will be lit only by other light sources. In this example,
the renderer must determine that the point labeled Scene-A is not visible
from the lamppost, but Scene-B is.

Scene-B

Scene-A

Figure 5-11: The light from the lamppost should cast shadows in this scene.

Game Graphics 95

A common solution to this problem in games is a shadow map, a quickly
rendered image from the point of view of a light source looking into the scene
that calculates only the depth buffer, not the display buffer. Figure 5-12 is a
shadow map for the lamppost in Figure 5-11, showing the distance from the
lamppost to every point in the scene; as with the depth buffer, this is shown
in grayscale with closer pixels colored darker.

Shadow-A

Shadow-B

Figure 5-12: The depth buffer from a rendering of the viewpoint of the lamppost

Shadow maps are created for each light source before scene pixels
are colored. When coloring a pixel, the pixel shader checks each light’s
shadow map to determine if the point being rendered is visible from that
light. Consider the points Scene-A and Scene-B in Figure 5-11. The shader
computes the distance from each of these points to the top of the lamppost
and compares this distance to the depth of the same points projected onto
the shadow map, labeled Shadow-A and Shadow-B in Figure 5-12. In this
case, the depth of Shadow-A in Figure 5-12 is less than the distance between
Scene-A and the lamppost in Figure 5-11, which means something is block-
ing that light from reaching Scene-A. In contrast, the depth of Shadow-B
matches the distance from Scene-B to the lamppost. So Scene-A is in shadow,
but Scene-B is not.

I deliberately gave the shadow map in Figure 5-12 a blocky appearance;
to improve performance, shadow maps are often created at lower resolutions,
making blocky shadows. If a game offers a “shadow quality” setting, this set-
ting most likely controls the resolution of the shadow maps.

96 Chapter 5

Ambient Light and Ambient Occlusion
The simpler lighting model in real-time rendering tends to produce images
that are too dark. It’s easy to overlook the effect of indirect lighting in the
world around us. For example, standing outside in the daytime, you’ll have
enough light to read even if you stand in a solid shadow, because of indirect
sunlight bouncing off nearby surfaces.

To produce images with natural-looking light levels, a game renderer
will typically apply a simple ambient light model. This lighting is omnipres-
ent, illuminating the surface of every model without regard to light beams
or angles of incidence, so that even surfaces missed by in-scene lighting
are not totally dark. Ambient lighting is used throughout games, even for
indoor scenes. This is a situation where a little fakery produces a more real-
istic result.

Ambient lighting can also be used to adjust the mood of a scene.
When you leave behind a golden, autumnal field to enter a dusky forest in
an open-world game like World of Warcraft, a large part of the effect is the
ambient lighting changing from bright yellow to dim blue.

Although the simple ambient lighting model keeps the rendering from
being too dark, the method doesn’t produce any shadows, which hurts a
scene’s realism. Ambient occlusion methods fake shadows from ambient light
by following the observation that such shadows should occur in crevices,
cracks, holes, and the like. Figure 5-13 shows the key idea. Point A is much
less occluded than point B because the angle through which light can reach
the point is much larger, letting more light through. Therefore, ambient
light should have a greater influence on point A than point B.

For a renderer to measure the occlusion precisely, though, it would have
to send out light beams in every direction, much like the scattering of light
from diffuse lighting, but we already know that tracing light beams is not an
option for real-time rendering. Instead, a technique called screen space ambi-
ent occlusion (SSAO) approximates the amount of occlusion for each pixel
after the main rendering is over, using data that was already computed ear-
lier in the rendering process.

In Figure 5-14 we see SSAO approximation in action. Note that the
viewpoint is looking straight down at the surface. The dashed arrow is the
normal for the point on the surface. The gray area is a hemisphere aligned
with that normal, shown as a semicircle in this 2D representation. The
shader examines a scattering of points inside the hemisphere. Each point
is projected into screen coordinates, just like the projection of the model
point shown back in Figure 5-2. Then the depth of the point is compared
to he depth buffer for the pixel location, which tells the shader whether
the point is in front of (shown in white) or behind (black) the model sur-
face. The percentage of points behind the surface is a good approximation
of the amount of ambient occlusion.

Viewpoint

Figure 5-14: Screen space ambient
occlusion approximates the degree
of occlusion by the percentage of
points behind the model surface.

Game Graphics 97

SSAO is heavy work for the renderer because it requires projecting and
examining a lot of extra points—at least 16 per pixel for acceptable results.
However, the calculations for each pixel are independent, which allows the
work to be easily divided among the army of worker cores. If a gamer has
the hardware to handle it, SSAO produces believable ambient shadowing.

Texture Mapping
Throughout these discussions of graphics, we have discussed models as
though their surfaces were one solid color, but that describes few surfaces
in the actual world. Tigers have stripes, rugs have patterns, wood has grain,
and so on. To reproduce surfaces with complex coloring, pixel shaders
employ texture mapping, which conceptually wraps a flat image onto the
surface of a model, much like an advertising wrap on the side of a city bus.
To be clear, texture mapping is not just for game rendering; movie CGI
employs it extensively, too. But texture mapping is a special problem for
games, in which textures have to be applied in milliseconds. The sheer
number of textures and texture operations needed for a single frame pres-
ents one of the greatest challenges of game rendering.

Figure 5-15 shows a texture bitmap (an image of a zigzag pattern) and
a scene in which the pattern has been applied. Bitmap images used for tex-
ture mapping are called textures. In this case, the surface of the rug rectangle
is covered by a single large texture, although for regular patterns like the one
on this rug, a smaller texture can be applied repeatedly to tile the surface.

The pixel shader is responsible for choosing the base color of the pixel
using the associated texture; this base color is later modified by the light-
ing model. Because the textured surface is an arbitrary distance from the
viewpoint, and at an arbitrary orientation, there’s not a one-to-one corre-
spondence between pixels in the texture and pixels on the model’s surface.
Choosing pixel colors in a textured area based on the applied texture is
known as sampling.

Ambient Light and Ambient Occlusion
The simpler lighting model in real-time rendering tends to produce images
that are too dark. It’s easy to overlook the effect of indirect lighting in the
world around us. For example, standing outside in the daytime, you’ll have
enough light to read even if you stand in a solid shadow, because of indirect
sunlight bouncing off nearby surfaces.

To produce images with natural-looking light levels, a game renderer
will typically apply a simple ambient light model. This lighting is omnipres-
ent, illuminating the surface of every model without regard to light beams
or angles of incidence, so that even surfaces missed by in-scene lighting
are not totally dark. Ambient lighting is used throughout games, even for
indoor scenes. This is a situation where a little fakery produces a more real-
istic result.

Ambient lighting can also be used to adjust the mood of a scene.
When you leave behind a golden, autumnal field to enter a dusky forest in
an open-world game like World of Warcraft, a large part of the effect is the
ambient lighting changing from bright yellow to dim blue.

Although the simple ambient lighting model keeps the rendering from
being too dark, the method doesn’t produce any shadows, which hurts a
scene’s realism. Ambient occlusion methods fake shadows from ambient light
by following the observation that such shadows should occur in crevices,
cracks, holes, and the like. Figure 5-13 shows the key idea. Point A is much
less occluded than point B because the angle through which light can reach
the point is much larger, letting more light through. Therefore, ambient
light should have a greater influence on point A than point B.

For a renderer to measure the occlusion precisely, though, it would have
to send out light beams in every direction, much like the scattering of light
from diffuse lighting, but we already know that tracing light beams is not an
option for real-time rendering. Instead, a technique called screen space ambi-
ent occlusion (SSAO) approximates the amount of occlusion for each pixel
after the main rendering is over, using data that was already computed ear-
lier in the rendering process.

In Figure 5-14 we see SSAO approximation in action. Note that the
viewpoint is looking straight down at the surface. The dashed arrow is the
normal for the point on the surface. The gray area is a hemisphere aligned
with that normal, shown as a semicircle in this 2D representation. The
shader examines a scattering of points inside the hemisphere. Each point
is projected into screen coordinates, just like the projection of the model
point shown back in Figure 5-2. Then the depth of the point is compared
to he depth buffer for the pixel location, which tells the shader whether
the point is in front of (shown in white) or behind (black) the model sur-
face. The percentage of points behind the surface is a good approximation
of the amount of ambient occlusion.

Viewpoint

Figure 5-14: Screen space ambient
occlusion approximates the degree
of occlusion by the percentage of
points behind the model surface.

A B

Figure 5-13: Measuring the occlusion at
given points

98 Chapter 5

Texture Bitmap

Texture Applied to Surface in Scene

Figure 5-15: Texture mapping. The zigzag texture on top is
applied to the rug object under the chair.

To illustrate the decisions involved in sampling,
let’s start with a bitmap of a robot with a hat, shown
in Figure 5-16. The pixels in a texture are called
texels. This 20×20 texture has 400 texels.

In this example, this texture will appear as a
painting in the frame on the wall in Figure 5-17.

Suppose that the area inside the frame fills
a 10×10 block of pixels in the rendered image.
The texture will be applied head-on without any
adjustment for perspective, which means all the
renderer has to do is shrink the 20×20 block of
texels to fit the 10×10 block of pixels in the final
image.

Figure 5-16: A texture of
a robot wearing a hat

Game Graphics 99

Figure 5-17: In this scene, the texture of Figure 5-16 will be applied
inside the picture frame on the wall.

Nearest-Neighbor Sampling
Because 10×10 pixels are needed to fill the textured area, let’s imagine a
grid of 100 sample points overlaying the texture. Figure 5-18 shows a close-
up section of the original robot texture from Figure 5-16. Here, the centers
of the texels are shown as squares, and the crosses represent the sample
points for the pixels in the scene. Sampling resolves this mismatch of pixels
to texels.

The simplest method of sampling is choosing the color of the near-
est texel, an approach known as nearest-neighbor sampling. This approach is
easy to implement and fast to compute, but tends to look horrible. In this
example, each of four texels is equally close to the pixel centers, so I’ve arbi-
trarily chosen the texel in the lower right of each pixel center. Figure 5-19
shows the texels chosen by this sampling method, and the 10×10-pixel block
that would appear in the final image.

As you can see, the result looks more like a skeletal aerobics instructor
than a robot with a hat. If you’ve ever looked closely at an oil painting, you
may guess why the nearest-neighbor technique produces such an unattract-
ive result. Up close, an oil painting reveals a wealth of detail, a multitude
of individual brushstrokes. Take a few steps back, though, and the strokes
vanish as the colors blend together in the eye. In the same way, when a
texture is represented with fewer pixels, the colors of neighboring texels
should blend. Nearest-neighbor sampling, though, simply picks the color of
one texel with no blending; in our example, three out of four texels have no
influence on the result at all.

100 Chapter 5

When a texture is expanded to
fill a larger area, the results are just as
ugly. In this case, some of the texels
will simply be repeated in the textured
area, producing a blocky result. To see
the problem, let’s start with a triangle
and its representation as a 16×16 anti-
aliased texture, as shown in Figure 5-20.

Now suppose this texture is applied
over a 32×32 area. Ideally, it should look
smoother than the original, smaller tex-
ture; the greater resolution offers the
opportunity for a finer edge. As shown
in Figure 5-21, though, nearest-neighbor sampling puts four sample points
in each texel, so every texel in the original 16×16 texture simply becomes
four identically colored pixels at the larger size.

Nearest Neighbor Sampling 32×32 Bitmap Results

Figure 5-21: When used to enlarge textures, nearest-neighbor sampling
merely duplicates pixels.

Texels Chosen by
Nearest-Neighbor Sampling

Textured Area
in Scene

Figure 5-19: The result of 10×10 nearest-
neighbor sampling on Figure 5-16. On the
left are the selected texels of the original tex-
ture, and on the right is the resulting bitmap.

Figure 5-18: A close-up section of
the Figure 5-16 texture. Squares
are texel centers; crosses are
sample points.

Triangle 16×16 Triangle
Bitmap

Figure 5-20: A triangle and its repre-
sentation as an anti-aliased 16×16-
pixel texture.

Game Graphics 101

Bilinear Filtering
A better-looking sampling method is bi linear filtering. Instead of taking the
color of the nearest texel, each texture sample is a proportional blend of
the four nearest texels. The method is called bilinear because it uses the
position of the sample point along two axes within the square formed
by the four nearest texels. For example, in Figure 5-22, the sample point
toward the bottom and just left of center results in the mixing percentages
shown. The final color of this sample is computed from the colors of the
texels at the given percentages.

Figure 5-23 shows the robot texture after reduction via bilinear filtering.
With only a fourth of the original pixels, the reduced version necessarily
lacks detail, but if you hold the original at arm’s length and compare to the
reduced version held close, you’ll see the reduction is a good representa-
tion, and much better than the nearest-neighbor result.

Figure 5-24 shows a 32×32 area blown up from the 16×16 triangle tex-
ture using bilinear filtering—a clear improvement over the chunky nearest-
neighbor sampling.

Original 16×16 Texture Bilinear Filtered 32×32 Bitmap

Figure 5-24: The triangle texture expanded through bilinear filtering

Position of
Sample Point

Color Mixing

11% 6%

55% 28%

Figure 5-22: Bilinear filtering measures
the position of a sample point vertically
and horizontally within the square of
neighboring texels, and uses these posi-
tions to determine the percentage that
each texel influences the sample color.

Figure 5-23: The robot texture reduced
through bilinear filtering

Original 20×20 Texture Bilinear Filtered
10×10 Bitmap

102 Chapter 5

Mipmaps
The examples in the previous section show the limit of what is possible with
bilinear filtering. For bilinear filtering to look good, the texture needs to be
at least half, but no more than twice, the resolution of the textured area. If
the texture is any smaller, bilinear filtering still produces blocky results. If the
texture is too large, even though four texels are used per sample, some texels
won’t contribute to any samples.

Avoiding these problems requires a set of different-sized bitmaps for each
texture: a large, full-resolution version for viewing up close, and smaller ver-
sions for when the textured area is also small. This collection of progressively
smaller textures is known as a mipmap. An example is shown in Figure 5-25.
Each texture in the mipmap is one-quarter of the area of the next larger
texture.

Figure 5-25: A mipmap is a collection of
textures, each one-quarter the size of the
previous.

With a mipmap, the renderer can always find a texture that will pro-
duce good results with bilinear filtering. If a 110×110 texture is needed, for
example, the 128×128 texture is shrunk. If a 70×70 texture is required, the
64×64 texture is magnified.

Trilinear Filtering
While bilinear filtering and mipmaps work reasonably well, they introduce
a distracting visual anomaly when transitioning from one mipmap tex-
ture to another. Suppose, in a first-person game, you’re running toward
a brick wall that uses a mipmapped texture. As you get closer to the wall,
the smaller texture will get blown up more and more until you reach the
point where you get a shrunk-down version of the next larger texture in the
mipmap. Unfortunately, a larger texture that has been reduced through
bilinear filtering doesn’t quite match a smaller version of the same texture
that has been expanded, so at the moment of this transition the texture will
“pop.” The problem can also occur with no movement at all on a surface
that stretches out to the distance, such as a long rug in a corridor, that has
been tiled with a repeating texture; because the parts of rug at different
distances are covered by different textures in the mipmap, seams will be
clearly visible where the textures touch.

To smooth over the texture transition, the renderer can blend samples
from different textures in addition to blending between texels in a texture.
Suppose the area to be textured is 70×70, a size that falls between the 64×64
and 128×128 textures in a mipmap. Instead of just using bilinear filtering on

Game Graphics 103

the nearer-sized 64×64 texture, the renderer can use bilinear filtering on
both the larger and smaller textures, then blend the two resulting samples.
As with the bilinear filtering itself, this final step is proportional: in our
example, the color would be mostly determined by the result from the
64×64 texture, with a little of the 128×128 result mixed in. Because we are
filtering in two dimensions on each texture, then blending the results, this
technique is known as trilinear filtering. It is demonstrated in Figure 5-26.

Trilinear filtering eliminates popping and seaming between textures
in a mipmap, but because it requires two bilinear samples and then a final
blend, it does over twice as much work as bilinear filtering.

Bilinear
Sample

Bilinear
Sample

Trilinear
Sample

Figure 5-26: Trilinear filtering takes bilinear samples from the larger and
smaller textures in a mipmap and blends the results.

Reflections
As discussed in Chapter 4, ray tracing naturally captures all the effects of
light reflecting from one surface to another. Unfortunately, the subtle influ-
ence of colors of nearby surfaces is nearly impossible to capture without ray
tracing, but game renderers do have a way to fake what I’ll call clear reflec-
tions: the more obvious, mirror-like reflections on such surfaces as polished
countertops, windows, and of course mirrors themselves.

Games limit which surfaces produce clear reflections. Having just a few
objects with such reflections maintains the realism of the scene at a much
lower computational cost. To reduce the workload further, renderers use
environment mapping, in which shiny objects are conceptually placed inside
cubes that are texture-mapped with a previously rendered image of the
object’s surroundings.

Figure 5-27 shows a sample situation: a shiny sports car on a showroom
turntable. To compute the effect of clear reflections, the renderer conceptu-
ally places the car in a cube; the cube itself is not rendered, but used only
to map reflections. The inside of the cube is texture-mapped with an image
of the showroom interior, as shown in Figure 5-28. Because the reflected
images will be somewhat distorted anyway by the surface of the car body,
viewers won’t notice that the reflections don’t perfectly match the rendered
world in which the car is placed.

104 Chapter 5

 SUMMER SALES EVENT

Figure 5-27: For realism, the shiny car body should reflect the showroom.

MER SALES EVENT
 SUM

Figure 5-28: For the purpose of mapping reflections, the car is considered
to be in a cube, the insides of which are covered by a bitmap image of
the showroom.

Game Graphics 105

Instead of tracing light as it pinballs around the scene, mapping reflec-
tions becomes an indirect texture-map reference, a relatively simple calcu-
lation. Of course, the surface of the car is probably also texture-mapped,
which means that adding reflections is at least doubling the per-pixel effort,
but the gain in realism is usually worth the extra work.

The job becomes harder when a reflecting model is moving, as would
happen if our car were racing down a desert road in a driving game. The
renderer can’t simply paste a static image of a desert inside a cube and
expect this to fool the viewer. Because the viewpoint will be moving with
the car as the car travels down the road, the reflections must likewise travel—
or at least give that appearance.

There’s an old Hollywood trick that was used to convey the illusion of
sideways movement in relation to the camera. An actor would stand on a
treadmill so he could walk without going anywhere. Behind him an illustra-
tion of scenery on a continuous roll would slide past at the same speed as
the treadmill. As long as the audience didn’t notice the same trees going by,
it looked as though the actor was actually moving sideways.

The same idea can be applied inside the cube around the shiny car. A
portion of a wide continuous image is selected, as shown in Figure 5-29.
Sliding the selection “window” across the wide image to match the move-
ment of the car creates the illusion that the car is reflecting the arid moun-
tains depicted in the scene.

Figure 5-29: Sliding a window down a wide, continuous image creates the effect of
movement in mapped reflections.

Faking Curves
Nothing in a video game destroys realism faster than a model with easily
recognizable triangles trying to represent a rounded shape. Early 3D games
were filled with car tires shaped like octagons and human characters that
looked like they were made of toy bricks. We’ve already seen one part of the
solution to this problem—bending the normals of triangle vertices—but
producing smooth models requires a whole set of techniques.

Distant Impostors
An obvious solution to the problem of flat triangles is to break models
down into so many small triangles that the individual facets are too small
to be recognized. That works in theory, but even though triangles are

106 Chapter 5

simple shapes, there’s still a limit to how many can be rendered in the time
allowed. Trying to design each model at the highest possible detail would
slow rendering to a crawl.

A renderer could, however, use lots of extra triangles to smooth out just
those models closest to the viewpoint. This is the idea behind distant impos-
tors. Here, each object in a game is modeled twice—a fully detailed high-
triangle model and a simplified model with relatively few triangles.
This simplified model is the “impostor” of the original, and is swapped in
for the high-quality model whenever the model gets beyond a certain dis-
tance from the viewpoint.

Distant impostors make effective use of rendering time, but because the
two models are so dissimilar, if a player is watching a particular model while
moving closer to it, the transition between the models can be visually jarring.
Ideally, you’d like to give the viewer the feeling that the distant object is
revealing greater detail as it comes closer, but in practice the two models
are so different that the replacement looks like one object magically trans-
forming into another.

Bump Mapping
Another technique for smoothing models keeps the triangle count the
same, but alters the lighting calculations at each pixel to give the appear-
ance of an irregular surface.

To understand why this bump mapping method can be so effective, imag-
ine a game featuring a hacienda with stucco walls. To get the appearance
of stucco, the renderer can apply a texture made from an image of an actual
stucco wall to the walls of the hacienda model. Because stucco is wavy, its
undulations should be visible under the scene lighting. Merely applying a
texture to a flat wall wouldn’t convince the eye; it would look like a flat wall
with a picture of stucco on it.

Bump mapping allows flat surfaces to react to light as though they were
wavy like stucco, bumpy like popcorn ceilings, crumpled, louvered, or any-
thing else. The process starts with a grayscale bitmap the same size as the
texture that will be applied to the model surface. This bitmap is known as a
height map, because the brightness of each pixel indicates the height of the
surface.

The height map allows a pixel shader to approximate the surface nor-
mal at each pixel location. This is easiest to understand in 2D. Figure 5-30
shows a row of 10 pixels. The numbers at the bottom represent the height
of each pixel. The 10 points are shown at proportionate heights, along
with the surface normals. I’ve added gray lines to show how the normals for
the fourth and seventh points are computed. An imaginary line is drawn
between the two points on either side of a chosen point; then, the normal
for the chosen point is set perpendicular to this line.

Game Graphics 107

6 4 7 14 10 11 2 8 6 10

Figure 5-30: A row of pixels with light calculations altered by bump mapping.
The numbers indicate the artificial height of each pixel. The renderer determines
the normal at each pixel based on the heights of neighboring pixels.

These bent normals affect the calculations for both diffuse and specu-
lar lighting, allowing a flat surface to react to light as though it were rough
or wavy. As with previous tricks that involved bending normals, though, a
surface with a bump map is still a flat surface. The points on the surface are
not actually raised or lowered, but merely react to light as though they were
pointing in different directions. As a player moving through a 3D scene
passes a bump-mapped model, the lighting on the surface will change in a
realistic manner, but the edges of the model will still be straight, possibly
giving the game away. Just as the rim of the tumbler back in Figure 5-8
betrayed the straight lines on the model, the outside corners of our bump-
mapped hacienda will be perfectly straight when they should be wavy,
because bump mapping doesn’t alter the shape of the flat wall.

Tessellation
Suppose you’re playing a fantasy game, and all your attention is focused on
a huge ogre slowly approaching with an axe in his hands. As a gamer, you
want this ogre to look as good as possible even as he gets close enough to
nearly fill the screen, but you don’t want him made out of so many triangles
that the frame rate is too low for you to effectively fight him.

If the renderer uses a distant impostor, though, there will be a jarring
transition that will remind you that you’re just playing a game. If the ren-
derer bump-maps the ogre model, the light will reflect realistically off the
rivets in his armor, but the neat lighting effect won’t hide the fact that the
model just has too few triangles to be viewed up close.

A process known as tessellation solves this problem. First, each triangle
in the ogre model is subdivided into more triangles. The corners of these
new triangles are then manipulated independently inward or outward (that
is, up or down in relation to the original triangle) using a height map.
Instead of merely bending normals to trick the lighting model as bump
mapping does, tessellation actually produces a model with more detail.
Figure 5-31 demonstrates the process for a single triangle.

This method is a great way to cover up the straight lines of triangles
and is a clear improvement in appearance over bump mapping and distant
impostors. Because the model is actually deformed into a new, more com-
plicated shape, even the edges of the model are properly affected, unlike

108 Chapter 5

with bump mapping. Also, unlike the distant impostor technique, the
model improves gradually as the distance from the viewpoint decreases,
avoiding the sharp transition when models are swapped.

Single Triangle

Tessellation

Displacement of Vertices Using Height Map

Figure 5-31: A triangle is tessellated, producing a
web of smaller triangles. These new triangle vertices
are then manipulated using a height map to produce
the more complex surface on the bottom.

Though you might think that tessellation is used extensively in games,
it’s not, because it inflicts a much larger performance hit than the simpler
methods discussed earlier. Creating more complex models on the fly is a lot
more work than accessing one of several premade models as in the distant
impostor method, or adjusting normals in bump mapping.

Tessellation is therefore used where the results are most obvious. For
example, in a game set outdoors, the ground beneath the avatar’s feet may
stretch far into the distance. Modeling the ground in great detail would
require a huge number of triangles, creating a performance bottleneck,
but if the ground model has a low triangle count, the ground closest to
the viewer will have an unrealistic, angular appearance. Tessellation can
smooth out just the closest part of the ground.

Anti-Aliasing in Real Time
All of the renderer’s hard work can go down the drain if individual pixels
become clearly visible through aliasing. As with movie CGI, games need
some form of full-screen anti-aliasing to smooth over the edges of models

Game Graphics 109

and surfaces. With ray tracing, anti-aliasing is conceptually simple: send out
more beams than pixels and blend the results. Game renderers, though,
must use more efficient techniques.

Supersampling
The most direct approximation to casting multiple beams is known as
supersampling anti-aliasing (SSAA). Instead of casting multiple beams per
pixel, supersampling renders an intermediate image that is much larger
than the desired final image. The color of each pixel in the final image is
a blend of a sample of pixels from the larger image.

Consider the two white triangles covered by a gray triangle shown in
Figure 5-32. Note that the edges of the white triangles won’t be visible in
the rendered image but are shown here for clarity.

Figure 5-32: An arrangement of three triangles

Figure 5-33 demonstrates a basic rendering of these triangles at an
8×4 resolution. Each pixel is colored gray or white depending on whether
the pixel center lies within the area of the gray triangle in the foreground.

Figure 5-33: Coloring pixels without anti-aliasing

To produce an 8×4 supersampled image, the triangles are first ren-
dered at a 16×8 resolution as shown in Figure 5-34.

110 Chapter 5

Figure 5-34: Supersampling the three triangles. Here, each pixel in the
final bitmap is represented by four subpixels with scattered sample points.

As you can see, each pixel in Figure 5-33 has become four smaller pixels
in Figure 5-34. These smaller pixels are called subpixels. Using this higher-
resolution rendering, the color of each pixel in the final rendering is a pro-
portional blend of the colors of its four subpixels, as shown in Figure 5-35.

Figure 5-35: Coloring each pixel by blending subpixels

Supersampling does a nice job of smoothing out the jaggies, but as you
might expect, rendering the image at a much higher resolution incurs a
large performance penalty. Sampling four pixels to make one pixel in the
final image is four times as much work for the pixel shader. In this example,
I’ve kept things simple by assigning a flat color to each triangle, but in a
typical game render each subpixel represents, at a minimum, a texture map
sample followed by lighting calculations. Although earlier generations of
video games commonly used SSAA, it’s rare to see this method now.

Multisampling
In the previous example you can see that when all four subpixels are inside
the same triangle, supersampling doesn’t accomplish anything. To reduce the

Game Graphics 111

performance hit of anti-aliasing, the subpixel work can be limited to the
edges of triangles where the jaggies occur, a technique known as multisample
anti-aliasing (MSAA).

Figure 5-36 demonstrates one version of this concept. Two pixels lie
across the edge between two triangles. With supersampling, each of the
eight subpixels is texture-sampled and individually colored by scene light-
ing. With multisampling, there are still eight subpixels for the two pixels,
but not eight samples. Instead, the renderer first determines which triangle
contains each subpixel. Each of the four subpixels that lie within the same
triangle is given the same color, which has been sampled from a point mid-
way between the subpixel sample points. So while supersampling colors eight
subpixels A through H, multisampling colors only four subpixels A through
D, which means substantially less work in texture mapping and lighting.

Supersampling Multisampling

A C E

B D

G

HF

A B D

A A

D

DC

Figure 5-36: Comparing supersampling and multisampling

When all four subpixels lie within the interior of the same triangle,
multisampling colors only one subpixel per final pixel, introducing little
computational overhead. Multisampling puts in extra effort where it is
most needed—reducing jaggies at edges—and thus is an efficient use of
rendering time.

Post-Process Anti-Aliasing
Performance can be improved even further by delaying anti-aliasing until
the image is rendered, an idea known as post-process anti-aliasing. That is, the
image is first rendered normally at the desired final resolution, and then
the jaggies are identified and smoothed over. In essence, a post-process anti-
aliasing technique decides that some of the pixels in an image are colored
incorrectly based on nothing more than the colors of the pixels themselves.

One such method is called fast approximate anti-aliasing, or FXAA. (Why
that wouldn’t be FAAA is perhaps a question we’re not supposed to ask.)
The idea behind FXAA is to find pixels that are likely to be along the edge
between overlapping triangles, and then blend neighboring pixel colors to
smooth the jarring transition.

FXAA examines each pixel in the image separately—let’s call the pixel
under examination the current pixel. The process starts by computing the per-
ceived brightness of the current pixel and its four immediate neighbors, simi-
lar to examining a black-and-white version of the image. The brightest and
dimmest pixels in the neighborhood are selected, as shown in Figure 5-37,

112 Chapter 5

and their difference is compared to a cut-off value. This test ensures that the
anti-aliasing is applied only to pixel neighborhoods of high contrast—areas
where the difference between the brightest and dimmest pixels is large.

Darkest Pixel

Brightest Pixel

Current Pixel

Figure 5-37: Checking the level of contrast in a
pixel’s neighborhood

These high-contrast areas likely represent jagged edges that need to be
smoothed, and each such area is further examined as shown in Figure 5-38.
The 3×3 block of pixels centered on the current pixel is considered both
as a set of three columns and a set of three rows to determine whether this
is a horizontal or vertical edge. In this example, because the columns are
similar to each other but one row strongly contrasts with the other two, this
would be classified as a horizontal edge.

Row ComparisonColumn Comparison3×3 Pixel Neighborhood

Figure 5-38: Looking for contrast in the columns and rows of a pixel neighborhood

Because this is a horizontal edge, the
next step is to compare the pixels above
and below the current pixel to find which
contrasts the most with the current pixel.
In this case, the pixel above is much brighter
than the current pixel, while the pixel below is
quite similar. This means the detected edge
is between the current pixel and its topside
neighbor. To anti-alias this edge, the current
pixel will be replaced by a bilinear sample
between the pixel centers, shown as the white
circle in Figure 5-39. FXAA examines other
pixels along the edge to determine how jagged

Figure 5-39: To smooth this
edge, FXAA will replace
the color of the center pixel
with a bilinear sample at the
circle point.

Game Graphics 113

the edge is, adjusting the degree of blending by placing the sample point
farther from the center of the current pixel.

A post-process anti-aliasing method like FXAA is very fast compared
to supersampling or even multisampling because it doesn’t create any sub-
pixels at all. However, the results of FXAA are not always as impressive as
other methods. In particular, FXAA can sometimes blur areas that weren’t
actually aliased; unlike supersampling, post-process methods like FXAA are
only guessing where the edges are, so areas of high contrast within textures
may fool the algorithm.

The Rendering Budget
The trade-offs that accompany different anti-aliasing techniques mean
that developers of real-time graphics applications must choose between
best quality and best performance. Is FXAA good enough for this situa-
tion? Or is MSAA necessary? This choice, though, is not made in isolation.
More broadly, game developers must review all the techniques available for
real-time rendering—lighting and shadows and anti-aliasing, and lots of
other possibilities we don’t have the space to discuss, like motion blur and
particle systems—and select a set that maximizes the quality of the images
without exceeding the time allowed for rendering. Within that 1/60 of a sec-
ond, a surprising amount of work can be done, but all of the best-looking
techniques can’t be used, so sacrifices have to be made somewhere.

On a console or in a mobile game, these choices are usually all made
by the game designer. On PCs, a degree of choice is usually afforded to the
user, who is given controls to raise or lower the resolution of textures, select
the method of texture filtering, choose among anti-aliasing methods, turn
shadows and reflections on or off, and tweak the renderer in a host of other
ways. In part, this control is given so the user can adjust the render work-
load to match the performance of the particular system, since the PC in
question might be top of the line, or an aging clunker.

Beyond that, though, detailed rendering options reflect the truth that
beauty is subjective: what impresses one viewer might have no effect on
another. Some gamers are horrified by jagged edges, for example, and
always crank up anti-aliasing to the maximum, while others wouldn’t
dream of devoting precious processor cycles to removing jaggies when
there are more realistic shadows to be had instead. In a sense, video games
are all about placing ourselves inside believable illusions, and what we
believe is up to us.

What’s Next for Game Graphics
So where do game graphics go from here? We can expect game program-
mers to continue to be challenged by advancements in displays. Monitors
keep increasing in resolution, eating away some of the benefit of each new
GPU generation. A special challenge will come from virtual reality (VR)
headsets, which combine displays mounted inside helmets with sensors to

114 Chapter 5

track the gamer’s head movements. VR headsets can be trouble if the dis-
play lags behind the movement—our brains don’t like conflicting informa-
tion, and when our eyes are saying one thing, and our inner ear something
else, the result for many people is nausea. In a game played on a normal flat
screen, gamers would prefer a consistently high frame rate but don’t get too
bent out of shape by sporadic dips in the number; with VR devices, an abso-
lutely rock-steady frame rate is imperative.

Beyond matching the needs of displays, it’s difficult to predict exactly
how game graphics will progress. Over the past decade, every time I’ve played
a new AAA game (as the industry calls the biggest-budget titles), I find myself
thinking the graphics can’t get any better, that whatever improvements the
next generation of hardware brings will be insignificant. And every time,
I’ve been proven wrong. So I’m confident that I’ll continue to be blown
away by the advances in game graphics, even if I can’t be sure what those
advances will be.

Raw hardware power is only part of the equation. Buying a new GPU
with twice as many cores as an older GPU means the hardware can process
twice as many triangles in the same allotment of time, but once triangle
counts get high enough, doubling them doesn’t improve the resulting
images very much. Indeed, at some point, models may get so detailed and
triangle counts so high that the average triangle will occupy less than a one-
pixel area on the screen. When that happens, it will call into question the
whole idea of rendering the scene as a series of triangles. Rather than pro-
jecting three triangle vertices to determine the color of one pixel, renderers
may replace triangles with single points of fixed volume—imagine building
a sculpture out of tiny marshmallows.

What ultimately drives advancements in game graphics, though,
isn’t hardware, but the creativity of graphics programmers. Many of the
techniques in Chapter 4 are about making accurate, or at least plausible,
simulations of how light and vision work in the real world. Game graph-
ics are just about making results that look good. That gives programmers
enormous leeway to experiment, to find new ways to spend part of the pre-
cious rendering budget, to find new tricks to put silly grins on the faces of
gamers. I don’t know for sure what game developers are cooking up for the
next generation of games, but I’m sure that they’ll continue to put my GPU
to work in ways that will thrill and amaze.

6
D A T A C O M P R E S S I O N

Sometimes the hard work of software is
obvious to everyone, as it is with movie

CGI and video game graphics. You don’t
have to know anything about how comput-

ers work to be impressed with the visuals in films like
Avatar and games like Crysis. Sometimes, though, soft-
ware is doing its most amazing work when it looks like
it’s not working hard at all.

Watching a high-definition movie on a disc or streamed over the Internet
is something most of us take for granted. Isn’t that just storing and display-
ing images? Why would that require special techniques? To understand why
we should be impressed with Blu-ray video and Netflix streaming, let’s look
at what video was like before these formats came to be.

Videocassettes, the earliest home video medium, recorded images on a
roll of magnetic tape. These were analog recordings—magnetic transcrip-
tions of the same signal that would’ve been broadcast by television anten-
nas. The video resolution was even lower than what we now call “standard

116 Chapter 6

definition,” and as with other analog recordings like audiocassettes and
vinyl records, the quality of the video would degrade over time. The one
upside to videocassettes was their capacity: a longer movie merely required
a longer spool of tape.

Next came the LaserDisc. About the size of LP records, these discs
looked like larger versions of today’s DVDs and Blu-ray discs, but like
videocassettes, they were still storing the analog broadcast-format signal.
However, LaserDiscs recorded a higher-resolution picture that came close
to standard definition, and allowed you to jump to particular places in the
video without having to rewind or fast-forward the way you would with a
videocassette. For a while, the LaserDisc seemed like the future of video,
but now capacity was a problem. Unlike the effectively limitless capacity of
a magnetic tape roll, LaserDiscs could hold only 60 minutes of video per
side, so watching a movie meant flipping the disc halfway through or even
switching discs.

Today, the problem of capacity is even more serious. Our Blu-ray discs
are much smaller than LaserDiscs, but our videos are a much higher resolu-
tion. Let me put the problem into numbers. In high-definition video each
frame is a 1920×1080 bitmap, a total of 2,073,600 pixels. If each pixel is
stored in three-byte RGB format, one frame of a high-definition movie would
require 6,220,800 bytes, or about 6.2 megabytes (mega means “million”).
Movies are recorded at 24 or 30 frames per second, which is 1,800 frames
per minute, 108,000 frames per hour, or 216,000 frames for a two-hour film.
If each frame is 6,220,800 bytes, then 216,000 frames is 1,343,693 megabytes,
or about 1,345 gigabytes (giga means “billion”).

How can all of that data fit on a Blu-ray disc? Part of the answer is
the “blu-ray” itself, a blue laser that’s narrower than the laser used on
LaserDiscs or even conventional DVDs, allowing more data to be packed
into a smaller area, just as smaller print allows more words on a page. Even
so, a Blu-ray can store only about 50 gigabytes(GB) of data, less than 4 per-
cent of what’s required.

Streaming video has the same problem. If one frame of video is 6.2 mega-
bytes (MB), and the video is running at 30 frames per second, then stream-
ing requires an Internet connection of 186 megabytes per second (MBps).
A typical home broadband connection is more like 4MBps. What’s worse,
because of traffic congestion and hiccups in the network, you can’t count
on maintaining the full rated bandwidth over the course of a long trans-
mission. Realistically, streaming video should use no more than a couple of
MBps at most.

So how can we fit giant amounts of video data into these small
con tainers? The answer is data compression—storing data in a format that
requires fewer bytes than the original format. Compression techniques
can be broadly divided into two categories. With lossless compression, the
compressed data can be restored to its exact original state. In contrast,
lossy compression accepts that the restored data may be slightly different
than the original. Video streaming and storage uses a combination of both
types of compression. In this chapter, we’ll first investigate some general

Data Compression 117

compression techniques using simple examples. Then we’ll see how these
ideas apply to video, producing highly compressed sequences of images that
look nearly as good as the uncompressed originals.

Run-Length Encoding
Most of us have employed some form of lossless compression, though we
wouldn’t have called it that, because many techniques for lossless compres-
sion are commonsense ideas. One such method is run-length encoding. Suppose
I were to show you a 27-digit number for one minute to see whether you could
remember it an hour later. That might sound hard, but look at the number:

777,777,777,555,555,555,222,222,222

I suspect you wouldn’t try to remember each digit individually. Instead,
you’d count the occurrences of each digit, and remember it as “nine sevens,
nine fives, and nine twos.”

That’s run-length encoding in action. Repeats of the same piece of data
(in this case, a digit) are called runs, and when runs are common, we can
shorten the data by recording the lengths of the runs rather than the whole
number. Run-length encoding is lossless compression, because if we remem-
ber the shorthand version of the number, we can reproduce the number in
its original form whenever needed.

Just by itself, run-length encoding can provide excellent compression for
certain types of images, such as icons, logos, comic-book-style illustrations—
any image with large blocks of solid color. When pixels have the same color
as their neighbors, we can reduce the storage requirements considerably.
As an example, I’ll describe the system used by the TGA image file format.
TGA is short for Truevision Graphics Adapter, an early piece of graphics hard-
ware designed for video editors. The file format, if not the adapter, is still in
use in the video industry, and is probably the simplest example of run-length
encoding for images.

The image data in a TGA file is compressed on a row-by-row basis.
Within each row, each run of two or more pixels of exactly the same color
is identified. The remaining pixels are called raw pixels. Consider the
selected row in the sample image in Figure 6-1. In this row, there are sev-
eral short runs of pixels, and several raw pixels that are different from their
neighbors.

2 3 2raw raw

Figure 6-1: The selected row has a mix of runs and raw pixels.

118 Chapter 6

The TGA format organizes runs and raw pixels into packets. Each
packet begins with a one-byte header. The leftmost bit of the header byte
determines whether it is a run packet or a raw packet. The other seven bits
denote the size of the packet in pixels. Because the smallest packet has one
pixel, TGA encodes the packet’s size as one less than its actual size; that is,
a size field of 0000000 represents a size of 1, and 0000001 represents 2, and
so on. Following the header is either the encoded color of all the pixels in
the run, or for a raw packet, the colors of each individual pixel. Using the
RGB color format, the row of pixels from Figure 6-1 would be encoded as
shown in Table 6-1.

Table 6-1: TGA Encoding of Pixel Row

Run/raw Size Red Green Blue Description

1 0000001 11111111 11111111 11111111 Run of two white pixels

1 0000010 11001100 11001100 00000000 Run of three yellow pixels

0 0000001 11111111 11111111 11111111 Raw packet of two pixels;
first is white

00000000 10000000 00000000 Second pixel in raw packet;
dark green

1 0000001 00000000 00000000 11111111 Run of two blue pixels

0 0000000 11111111 11111111 11111111 One raw white pixel

This encoding requires 23 bytes versus the uncompressed size of
30 bytes. This compression ratio of 30:23, or about 4:3, isn’t very high, but
note that a mere 4 bytes are needed to store rows where every pixel is the
same color, like the top row of Figure 6-1. The overall compression ratio
of this bitmap in TGA format is an impressive 300:114, or about 5:2.

Dictionary Compression
Just by itself, run-length encoding can compress pictures with large blocks
of solid colors, but most of the images in movies aren’t like that. For photo-
graphs and other types of digital images with lots of color variation, soft-
ware has to work much harder to find patterns exploitable by compression.
One of the key tools is known as dictionary compression.

The Basic Method
Later we’ll see how dictionary compression is used on images, but the idea
is easiest to understand when it is applied to a text document, so let’s start
there. An uncompressed text document is stored as a series of character
codes such as ASCII.

Data Compression 119

We’ll compress this sample paragraph:

Those pictures created by a computer are called computer
 graphics. When these pictures created by the computer are
viewed in a sequence, that sequence is called an animation. An
entire movie created from an animation, a sequence of pictures
created by a computer, is called a computer-animated movie.

To make this example simpler, I’ll ignore the spaces and punctuation in
this text and just worry about the letters. There are 234 letters in this para-
graph; stored as uncompressed ASCII text, the letters would require 234 bytes.
To employ dictionary compression on this text, we first need a dictionary,
which in this context is a numbered list of every word in the document being
compressed. Table 6-2 is our list of words, numbered both in decimal and
binary. Note that capitalization counts: an and An are separate entries.

Table 6-2: Dictionary Compression

Position Binary-encoded position Word

1 00000 a

2 00001 an

3 00010 An

4 00011 animated

5 00100 animation

6 00101 are

7 00110 by

8 00111 called

9 01000 computer

10 01001 created

11 01010 entire

12 01011 from

13 01100 graphics

14 01101 in

15 01110 is

16 01111 movie

17 10000 of

18 10001 pictures

19 10010 sequence

20 10011 the

21 10100 these

22 10101 Those

23 10110 viewed

24 10111 When

120 Chapter 6

As shown, 5 bits are sufficient to represent the range of positions used.
Each word in the original paragraph is replaced with its position in this
table. For example, instead of using eight ASCII codes (64 bits) for each
appearance of the word computer, the 5-bit dictionary entry is used instead.

The dictionary itself takes up space, however, and must be included
in the compressed document, so we save space only when a word appears
more than once. In this example, the total number of letters for all words in
our dictionary is 116, requiring 116 bytes. Replacing each of the 48 words in
the sample paragraph with a 5-bit dictionary reference requires 235 bits,
or about 30 bytes. The total compressed storage, then, is 146 bytes, which
compared to the original 234 uncompressed bytes is a compression ratio of
about 8:5. With longer documents the savings will be even better, because
the text grows much faster than the dictionary. A typical novel, for example,
is about 80,000 words long, but uses a vocabulary of only a few thousand words.

Huffman Encoding
In almost every text, some words are used much more than others. A tech-
nique called Huffman encoding takes advantage of this fact to improve on
basic dictionary compression.

To create a Huffman code, the words in the document are ranked by
frequency. Imagine a children’s story with the 10-word vocabulary shown
in Table 6-3. As with basic dictionary compression, each word is assigned a
binary code, but here shorter codes are assigned to the words that appear
most frequently in the story.

Table 6-3: Huffman Code for a Children’s Story

Word Frequency Binary code

the 25% 01

a 20% 000

princess 12% 100

good 11% 110

witch 10% 111

evil 8% 0010

ate 7% 0011

magic 4% 1010

toadstool 2% 10110

forevermore 1% 10111

With the table in place, Huffman code compression is the same as
basic dictionary compression: each word is replaced with its corresponding

Data Compression 121

binary code. For example, the encoding for the princess ate a magic toadstool
would start with 01 for the, then 100 for princess, and so on. In full, the
encoding is:

011000011000101010110

As you may have noticed, the list of binary codes in Table 6-3 skips some
possible codes, such as 011 or 0110. Skipping codes is necessary to make this
a prefix code, in which no binary code appears at the start of another. For
example, because 01 is the code for the, other codes that begin with 01, such
as 011 or 0110, are forbidden. Because the individual codes vary in length, a
prefix code is necessary to know where each code ends. With our example,
the 01 that begins the bit sequence must be the code for the because no other
code starts with 01; the only way to partition the whole sequence is as:

01 100 0011 000 1010 10110

If we allowed a code that broke the prefix rule, the sequences could
become ambiguous. Suppose forevermore is assigned the code 00. While this
is a shorter code, it means the example sequence could also be partitioned as:

01 100 00 110 00 1010 10110

This would decode as the phrase the princess forevermore good forevermore
magic toadstool.

By assigning the shortest codes to the most common words, Huffman
encoding can achieve greater compression than dictionary compression
alone when data can be stored as a relatively small set of codes and some
codes are more common than others.

Reorganizing Data for Better Compression
Unfortunately, the images we see in videos are not good candidates for
Huffman encoding. Unlike the color-block images we compressed with
the run-length technique, the pixels in a video image vary across the full
range of possible colors. With 16 million different possible RGB colors, it’s
unlikely video images will have enough repetition to allow Huffman encod-
ing to work. However, sometimes it’s possible to create repetition in varied
data by changing how the data is stored.

Predictive Encoding
For one such approach, consider a weather station that records the tem-
perature once per hour, and over the course of one day stores the following
readings:

51, 52, 53, 54, 55, 55, 56, 58, 60, 62, 65, 67, 68, 69, 71, 70, 68, 66, 63, 61, 59, 57, 54, 51

122 Chapter 6

If we assume a temperature range of 120 to –50, we can store each tem-
perature in an 8-bit byte, using 192 bits total. There aren’t many duplicates
in this list, though, so Huffman encoding won’t be effective. The situation
improves if we rewrite this list using predictive encoding. For every temperature
after the first, we’ll record not the temperature itself, but its difference from
the previous temperature. Now the list looks like this:

(51): 1, 1, 1, 1, 0, 1, 2, 2, 2, 3, 2, 1, 1, 2, -1, -2, -2, -3, -2, -2, -2, -3, -3

Whereas the original data had few duplicates, the predictive-encoded
data has many. Now we can apply Huffman encoding with excellent
results.

COMPR E SSION IN Z IP F IL E S

Dictionary compression and Huffman encoding are at the heart of most gen-
eral compression schemes . The .zip archive format, for example, can choose
from a half-dozen compression methods but usually employs an algorithm
called deflate . Rather than replacing duplicated data with a reference number
from a list of words, this algorithm employs a variation of dictionary compres-
sion called a sliding window .

With this method, duplicate data is replaced with numerical indica-
tors showing where the data occurred previously . In the textual example of
Figure 6-2, there are three duplicate runs of characters . The first member of
each pair is the number of characters to go back, and the second number is
the length of the run . For example, the pair 5, 2 means “go back five charac-
ters, and copy two characters .”

T h e n t h e s c a r s c a r e d t h e m .

5, 2 5, 5

16, 4

Figure 6-2: Sliding-window compression

The compressed version of this text can be symbolically written as “Then
t[5,2] scar[5,5]ed[16,4]m .” Instead of the number pairs being stored directly,
though, they are Huffman-encoded, so the most commonly occurring pairs
are assigned shorter codes . The deflate method is a highly effective general
compression scheme, capable of reducing the 3,138,473 characters in a raw
text version of Tolstoy’s War and Peace to a .zip file of around 930,000 bytes,
about a 10:3 ratio .

Data Compression 123

Quantization
Another approach, if we are willing to accept some degradation of the
data, is quantization, where we store the data with less precision. Suppose
the weather station from the previous example also records daily rainfall
amounts, taking the following readings over the course of three weeks:

0.01, 1.23, 1.21, 0.02, 0.01, 0.87, 0.57, 0.60, 0.02, 0.00, 0.03, 0.03, 2.45,
2.41, 0.82, 0.53, 1.29, 0.02, 0.01, 0.01, 0.04

These readings have two decimal places, but maybe we don’t actually
need this much precision in the data. For one thing, any amount below 0.05
might represent condensation on the collector rather than actual rain; like-
wise, condensation might also be the only difference between readings like
1.23 and 1.21. So let’s leave off the last digit of every number:

0.0, 1.2, 1.2, 0.0, 0.0, 0.8, 0.5, 0.6, 0.0, 0.0, 0.0, 0.0, 2.4, 2.4, 0.8,
0.5, 1.2, 0.0, 0.0, 0.0, 0.0

By itself, this compresses the data, since storing one place after the deci-
mal will take fewer bits than storing two. In addition, the quantized data also
has several runs of zeros that can be compressed with run-length encoding,
and some duplicates that can be compressed by Huffman encoding.

These techniques point to a general multistage approach for compres-
sion. First, reorganize the data to increase the runs and duplicates, by
storing small differences between numbers rather than the raw numbers
themselves, quantizing the data, or both. Then compress the data with run-
length and Huffman encoding.

JPEG Images
We now have almost all the tools needed to compress video. The logical
first step in compressing a video is to compress the individual images in the
video. However, we can’t directly apply predictive encoding and quantization
to digital photographs and other images with lots of subtle color variation;
we need to convert these pictures to another format first.

That’s the idea behind JPEG, a common compressed-image format
designed specifically for digital photographs. (The name is the acronym for
the Joint Photography Experts Group that developed the format.) The compres-
sion method for this format is based on a couple of key observations of
photography and human perception.

First, although pixel colors may vary widely throughout an image, indi-
vidual pixels tend to be similar to their neighbors. If you take a picture of
a leafy tree against a partly cloudy sky, lots of green leaf pixels will be next
to other green pixels, blue sky pixels will neighbor blue sky pixels, and gray
cloud pixels will neighbor gray cloud pixels.

Second, among neighboring pixels, there will be more noticeable varia-
tion in brightness levels than in color tone. For our tree photograph, each

124 Chapter 6

of the myriad leaf pixels will reflect a different quantity of sunlight, but the
underlying color of each pixel will be roughly similar. Also, although the
mechanisms of human vision are not completely understood, tests indicate
that we perceive differences in brightness more distinctly than differences
in color.

High compression of digital photographs is possible only with lossy
compression; we have to accept some degradation of the image. Following
these key observations, though, allows the JPEG format to throw away the
data that is least likely to be missed. In our tree photograph, the most impor-
tant distinctions are the broad differences between leaf and sky, or sky
and cloud, not between two neighboring cloud pixels. After that, the most
important distinction is the relative brightness of pixels, more so than rela-
tive color. The JPEG format therefore gives priority to broad differences
over fine differences, and brightness over color.

A Different Way to Store Colors
JPEG compression divides images into 8×8 blocks of pixels that are indepen-
dently compressed. To compress brightness and color differently, each pixel’s
R, G, and B values are converted to three other numbers Y, Cb, and Cr. Here,
Y is the luminance of the pixel, or how much light the pixel produces. Cb
is the blue difference, and Cr is the red difference. The simplest way to envision
the YCbCr system is to imagine a dark green video screen with three knobs
labeled Y, Cb, and Cr initially set to zero: turn up Y and the screen is brighter;
turn up Cb and the screen becomes more blue and less green; turn up Cr
and the screen becomes more red and less green. Table 6-4 lists a few named
colors in both systems for comparison. (A historical note: YCbCr is derived
from the color system used in broadcast television. In the early days of color
television, the remaining black-and-white televisions could properly display
color transmissions by interpreting only the Y component of the signal.)

Table 6-4: Select Colors in the RGB and YCbCr Color Systems

R G B Color description Y Cb Cr

0 255 0 Lime green 145 54 34

255 255 255 Pure white 235 128 128

0 255 255 Aqua 170 166 16

128 0 0 Maroon 49 109 184

JPEG compresses the Y, Cb, and Cr data separately, so we can think
of each 8×8 block of pixels as becoming three 8×8 blocks of Y, Cb, and Cr
data. Separating the data this way takes advantage of the greater variation
in brightness than in color. Under the YCbCr system, most of the differ-
ences between the pixels will be concentrated in the Y component. The
lower variance in the Cb and Cr blocks will make them easier to compress,
and because we’re more sensitive to variations in luminance than variations
of color, the Cb and Cr blocks can be compressed more heavily.

Data Compression 125

The Discrete Cosine Transform
The conversion to YCbCr follows the observation that brightness is more
important than color. To take advantage of the greater importance of broad
changes over narrow changes, though, we need to convert each 8×8 data
blocks yet again. The discrete cosine transform (DCT) converts the absolute
luminance and color data into relative measurements of how these values
differ from pixel to pixel. Although this transformation is applied to an
entire 8×8 block of numbers, I’ll first illustrate the idea with a single row
of eight numbers from the luminance (Y) block, shown as shades of gray
in Figure 6-3.

402 552552 204 153 102 51 153

Figure 6-3: A row of luminance levels

To begin the DCT, we subtract 128 from each number, which has the
effect of moving the 0–255 range to a range centered around 0, so that
maximum brightness is 127 and absolute black is –128. The resulting lumi-
nance levels for the row are depicted as a line chart in Figure 6-4.

67 721721 76 25 26 25

127

0

−128

−77

Figure 6-4: Subtracting 128 from each luminance
level centers the range of possible numbers around 0.

The DCT produces eight new numbers that each combine the eight
luminance levels in a different way. Figure 6-5 shows the DCT of the previ-
ous figure.

−128

127

0

Coarse Fine

Figure 6-5: The discrete cosine transform of the
data in Figure 6-4.

126 Chapter 6

Note that the numbers are labeled with a range from “coarse” to “fine.”
The leftmost number in the DCT is the simplest combination of the lumi-
nance levels: their sum. Thus, the first number is the overall brightness of
the pixels, and will be positive for a bright row of pixels and negative for
a dark row. The second number effectively compares the luminance levels
on the left end of the row against those on the right, and is positive in this
example because our luminance levels are brighter on the left than on the
right. The rightmost number effectively compares each luminance value
against its immediate neighbors, and is close to 0 here because the numbers
in Figure 6-4 change gradually.

These DCT numbers are the coefficients that result from an operation
called matrix multiplication. If your eyes just glazed over, don’t worry: the
operation involves nothing more than multiplication and addition. We pro-
duce each coefficient by multiplying the luminance values by a different,
predetermined vector. In this context, a vector is just an ordered list of num-
bers. The eight vectors used in the DCT are illustrated in Figure 6-6. (The
numbers in each vector are related to the cosine function from trigonom-
etry, which is where the discrete cosine transform gets its name, but we can
safely ignore that for this discussion.)

1 2 3 4 5 6 7 8

0

0.5

Vector 1

1 2 3 4 5 6 7 8

0

0.5

Vector 2

1 2 3 4 5 6 7 8

0

0.5

Vector 3

1 2 3 4 5 6 7 8

0

0.5

Vector 4

1 2 3 4 5 6 7 8

0

0.5

Vector 5

1 2 3 4 5 6 7 8

0

0.5

Vector 6

1 2 3 4 5 6 7 8

0

0.5

Vector 7

1 2 3 4 5 6 7 8

0

0.5

Vector 8

−0.5 −0.5 −0.5

−0.5 −0.5 −0.5

−0.5 −0.5

Figure 6-6: The vectors needed for our single-row DCT

To produce a coefficient for our luminance row, we multiply each num-
ber in a vector by the luminance in the same position. For example, Table 6-5
shows the computation of the Vector 2 coefficient for our luminance row.
Each number from the luminance row is multiplied by the number in the
same position in Vector 1; then, these products are summed to get 157.386.

Data Compression 127

Table 6-5: Computing the Coefficient for Vector 2

Position Luminance
(from Figure 6-4)

Vector Product

1 76 0 .49 37 .24

2 127 0 .416 52 .832

3 127 0 .278 35 .306

4 76 0 .098 7 .448

5 25 –0 .098 –2 .45

6 –26 –0 .278 7 .228

7 –77 –0 .416 32 .032

8 25 –0 .49 –12 .25

Total 157 .386

Looking at the vectors of Figure 6-6, you can see how each combines
the luminance levels differently. Because every number in Vector 1 is the
same positive number, the Vector 1 coefficient becomes a measure of over-
all brightness. Because Vector 2’s numbers gradually sweep from high to
low, the second coefficient will be positive when luminance tends to fall off
from the left to right in the pixel row, and negative when luminance tends
to increase. Vector 3’s coefficient is a measure of how the ends of the row
differ from the middle, and so on. You’ve already seen the resulting coeffi-
cients charted in Figure 6-5; Table 6-6 shows the result numerically.

Table 6-6: Coefficients from the
Discrete Cosine Transform of the
Sample Luminance Row

Vector number Coefficient

1 124 .804

2 157 .296

3 –9 .758

4 –87 .894

5 18 .031

6 –49 .746

7 23 .559

8 –13 .096

The process is reversible: we can retrieve the original luminance num-
bers from Figure 6-4 by multiplying the eight coefficients against eight
different vectors, a process called the inverse discrete cosine transform (IDCT).
Table 6-7 shows how the second luminance value, 127, is extracted from the
coefficients.

128 Chapter 6

Table 6-7: Computing the Second Luminance Value
from the Coefficients

Position Coefficient Vector Product

1 124 .804 0 .354 44 .125

2 157 .296 0 .416 65 .393

3 –9 .758 0 .191 –1 .867

4 –87 .894 –0 .098 8 .574

5 18 .031 –0 .354 –6 .375

6 –49 .746 –0 .49 24 .395

7 –23 .559 –0 .462 –10 .833

8 –13 .096 –0 .278 3 .638

Total 127

The DCT, then, gives us a different way of storing the same numbers:
as the relationship between the data rather than the data itself. Why is this
useful? Remember that fine distinctions between pixels are less noticeable
than broader distinctions. Later, you’ll see how the DCT allows the JPEG
format to compress the fine details more than the broad.

The DCT for Two Dimensions
JPEG compression works not on rows of pixels but on 8×8 pixel blocks, so
now let’s see how the DCT operates in two dimensions. The one-dimen-
sional DCT multiplies eight vectors with the original eight numbers to
produce eight coefficients. The two-dimensional DCT, though, requires
64 matrices, each matrix being an 8×8 table of numbers. Like the vectors,
each matrix will multiply all 64 pieces of data in the 8×8 block.

The matrices themselves are two-dimensional combinations of the vec-
tors we saw earlier. This is easiest to understand pictorially. Figure 6-7 shows
the combination of a horizontal Vector 1 and a vertical Vector 1. Because the
numbers in Vector 1 are all the same, the numbers in the resulting matrix are
as well. In these matrix illustrations, lighter gray means a higher number.

1 2 3 4 5 6 7 8
0.5

0

0.5

Vector 1 (Horizontal) Vector 1 (Vertical)

1
2
3
4
5
6
7
8

0 0.50.5

Matrix Combination

Figure 6-7: The matrix combination of Vector 1 and itself

Data Compression 129

In Figure 6-8, horizontal Vector 1 is combined with vertical Vector 2.
The resulting matrix gradually varies from top to bottom as Vector 2 gradu-
ally varies, but doesn’t vary left to right because the numbers in Vector 1
don’t vary.

1 2 3 4 5 6 7 8
0.5

0

0.5

Vector 1 (Horizontal) Vector 2 (Vertical)

1
2
3
4
5
6
7
8

0 0.50.5

Matrix Combination

Figure 6-8: The matrix combination of Vector 1 and Vector 2

Figure 6-9 shows a last example, Vector 8 combined with Vector 8.
Because Vector 8 swings back and forth from positive to negative, the com-
bination matrix has a checkerboard quality.

1 2 3 4 5 6 7 8
0.5

0

0.5

Vector 8 (Horizontal) Vector 8 (Vertical)

1
2
3
4
5
6
7
8

0 0.50.5

Matrix Combination

Figure 6-9: The matrix combination of Vector 8 and itself

The two-dimensional DCT replaces each of the 64 numbers in an 8×8
block with a matrix coefficient. Figure 6-10 shows which matrices are used
for a few locations. Similar to the one-dimensional DCT, the coefficient in
the upper left, which is the same shown in Figure 6-7, sums all the numbers
in the original block equally. As we progress downward and to the right, the
distinctions being measured grow finer.

130 Chapter 6

Figure 6-10: Some of the matrices used in the two-dimensional DCT

To demonstrate the two-dimensional DCT, I’ll use just the luminance
values of the pixel block shown in Figure 6-11.

129 133 128 120 128 66 71 86

152 157 157 152 120 100 82 79

171 176 178 169 162 141 120 109

167 168 179 175 168 154 142 128

159 155 168 173 162 157 153 136

163 161 157 163 159 162 154 132

161 159 157 149 141 155 149 138

151 147 147 149 141 143 145 138

8×8 Block of Pixels Luminance (Y) Values

Figure 6-11: A block of pixels and the associated luminance (Y) block

Data Compression 131

Figure 6-12 shows the same luminance block with 128 subtracted from
each number to make a range from –127 to 128 centered around 0.

1 5 0 −8 0 −62 −57 −42

24 29 29 24 −8 −28 −46 −49

43 48 50 41 34 13 −8 −19

39 40 51 47 40 26 14 0

31 27 40 45 34 29 25 8

35 33 29 35 31 34 26 4

33 31 29 21 13 27 21 10

23 19 19 21 13 15 17 10

Figure 6-12: The luminance block from Figure 6-11
with the range of possible values centered around 0

Figure 6-13 shows the luminance block after DCT. Each number is
the coefficient resulting from multiplying the matrix of luminance values
in Figure 6-12 with one of the matrices from Figure 6-10. Remember that
these numbers, too, are centered around 0. So the 132 in the upper left, for
example, indicates a high luminance level for the block as a whole. Notice
that the numbers in the upper left are largest in magnitude (furthest from 0
in either direction), indicating that broad luminance differences are much
greater than the fine differences in this pixel block. This result is typical of
JPEG-encoded photographs.

132 110 −43 −3 1 5 −3 −3

−85 71 −22 −20 19 −15 −5 10

−103 13 20 −12 11 −10 −5 3

−34 −13 6 2 7 −2 −6 4

−15 −21 −1 −7 12 −2 −4 10

9 −5 6 3 0 −9 0 8

9 −6 −4 7 5 −7 −6 6

3 −5 2 −1 1 −2 1 3

Figure 6-13: The DCT of the block in Figure 6-12

132 Chapter 6

Compressing the Results
Now the real compression can begin, the first step of which is quantization.
Figure 6-14 shows the 8×8 block of divisors used for quantizing the lumi-
nance block. Each number in the coefficient block of Figure 6-13 is divided
by the number in the same position in Figure 6-14, with results rounded to
the nearest whole number. This degrades the image through quantization
error, but note that the divisors in Figure 6-14 are smallest in the upper left.
Thus, the quantization error is most pronounced in the coefficients that
measure the finest distinctions, where the error is least likely to be noticed.
The actual values of the divisors varies according to the compression qual-
ity, with larger divisors used to quantize the Cr and Cb blocks, but the divi-
sor block always follows this general pattern (lower values in the upper left,
higher in the bottom right).

16 11 10 16 25 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 59

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Figure 6-14: The divisors used to quantize lumi-
nance blocks

The result of quantization for our sample block is shown in Figure 6-15.
You can see how suitable these numbers are for run-length and Huffman

encoding. Most of the coefficients have been quantized all the way down to 0,
with many duplicate coefficients among the rest.

After quantization, nonzero results tend to cluster in the upper left of
the matrix, so the quantized numbers are listed in the zigzag pattern shown
in Figure 6-16.

Data Compression 133

8 10 −4 0 0 0 0 0

−7 6 −2 −1 1 0 0 0

−7 1 1 0 0 0 0 0

−2 −1 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 6-15: The quantized luminance block

8 10 −4 0 0 0 0 0

−7 6 −2 −1 1 0 0 0

−7 1 1 0 0 0 0 0

−2 −1 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 6-16: Storing coefficients in a zigzag order

This zigzag pattern tends to produce a very long run of zeros at the
end, as it does in our example:

8 10 -7 -7 6 -4 0 -2 1 -2 -1 -1 1 -1 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0

To encode the runs of zeros, we replace each nonzero entry in the list
by a pair of numbers: the number of zeros skipped (possibly none), and the

134 Chapter 6

coefficient itself. For example, the eighth number in our list is a –2 that is
preceded by one 0. This would become the number pair 1, –2. At this stage,
our list looks like this:

0, 8
0, 10
0, -7
0, -7
0, 6
0, -4
1, -2
0, 1
0, -2
0, -1
0, -1
0, 1
0, -1
1, -1
2, 1
2, -1
(all the rest are zero)

Some of these number pairs, such as 0, –1, appear very frequently in
these lists compared to other pairs like 0, 10. For maximum compression,
the JPEG standard defines a Huffman encoding for every possible number
pair in these lists. The common 0, –1 pair, for example, becomes the short
Huffman code 001, while the uncommon 0, 10 pair becomes the longer
code 10110010. There’s also a special code, 1010, to signal that all the rest
of the coefficients in the list are 0. The Huffman encoding for our list is
shown in Table 6-8.

Table 6-8: The Huffman Encoding of the Coefficients from Figure 6-15

Zeros skipped Coefficient Huffman encoding

0 8 10110000

0 10 10110010

0 –7 100111

0 –7 100111

0 6 100010

0 –4 100100

1 –2 11100110

0 1 000

0 –2 0110

0 –1 001

0 –1 001

0 1 000

0 –1 001

Data Compression 135

Zeros skipped Coefficient Huffman encoding

1 –1 11001

2 1 110110

2 –1 110111

(Nothing left but zeros) 1010

All of the bits in the rightmost column, strung together, represent the
compressed encoding of our original luminance block. The original block
represented the luminance levels as 64 bytes, or 512 bits total. In contrast,
the encoding in Table 6-8 uses a mere 88 bits.

The two color blocks, Cr and Cb, would show even higher compression
because the divisors used on the color blocks are even larger, which pro-
duces smaller numbers with shorter Huffman codes and more zeros for the
run-length encoding. Overall, JPEG images typically achieve a 10:1 com-
pression ratio. The amount of compression can be increased or reduced by
using smaller or larger divisors than those shown in Figure 6-14. These divi-
sors are adjusted by the “quality” slider in image-manipulation programs.
Sliding the control to “low quality” increases the divisors, reducing the file
size while increasing the quantization error.

JPEG Picture Quality
High compression is great only if the restored image is indistinguishable from
the original, or nearly so. Typically the alterations JPEG compression makes
to an image are difficult to see. To get a feel for the changes introduced by
compression, let’s compare the original block of luminance values to the block
that results from compressing and decompressing, as shown in Figure 6-17.

129 133 128 120 128 66 71 86

152 157 157 152 120 100 82 79

171 176 178 169 162 141 120 109

167 168 179 175 168 154 142 128

159 155 168 173 162 157 153 136

163 161 157 163 159 162 154 132

161 159 157 149 141 155 149 138

151 147 147 149 141 143 145 138

Original Luminance Block

130 127 129 130 112 84 71 74

158 154 155 153 132 102 86 85

174 173 174 172 155 129 111 107

165 168 173 174 166 150 137 130

156 161 165 166 165 160 150 141

159 163 162 158 158 159 151 139

159 161 156 146 147 154 148 136

151 153 145 135 138 150 147 135

Reconstructed Luminance Block

Figure 6-17: The original luminance block, and the result of compressing and decompressing the block

136 Chapter 6

Since it’s tough to visually compare these two blocks of numbers,
Figure 6-18 shows the differences as a grayscale matrix. As you can see,
most of the matrix is neutral gray, indicating numbers very close to the
original.

Within +/−4

+15 or More

−15 or Less

Figure 6-19: The amount of error in each location of the luminance block

The best evidence for the quality of JPEGs is shown in Figure 6-19.
On the top is an uncompressed digital photograph. Because this photo is
in grayscale, we don’t need RGB pixel color, just a single byte indicating
the grayscale level. At a resolution of 975×731, this uncompressed photo
requires just under 713 kilobytes of storage. In the middle is a compressed
JPEG version of the original photo, requiring just 75 kilobytes of storage,
which is virtually indistinguishable from the original. The photo on the
bottom is a low-quality JPEG using larger divisors. While the photo takes
up only about 7 kilobytes, compression artifacts are clearly visible. Many of
the individual 8×8 pixel blocks have been reduced to solid squares of the
same gray level. In general, JPEG can result in a 10:1 compression ratio
without sacrificing visual quality.

Compressing High-Definition Video
The JPEG format does a fantastic job of compressing images with only
small sacrifices in quality, but for high-definition video we need even more
compression. Remember, uncompressed high-definition video requires
about 186MBps. Individually compressing each image as a JPEG would
reduce that requirement to about 18MBps—a big improvement, but for
streaming or disc storage we need to shrink the data to just a few MBps
per second.

Figure 6-18: An uncompressed photo (top), high-quality JPEG
compression (middle), and low-quality JPEG compression (bottom)

Data Compression 137

Since it’s tough to visually compare these two blocks of numbers,
Figure 6-18 shows the differences as a grayscale matrix. As you can see,
most of the matrix is neutral gray, indicating numbers very close to the
original.

Within +/−4

+15 or More

−15 or Less

Figure 6-19: The amount of error in each location of the luminance block

The best evidence for the quality of JPEGs is shown in Figure 6-19.
On the top is an uncompressed digital photograph. Because this photo is
in grayscale, we don’t need RGB pixel color, just a single byte indicating
the grayscale level. At a resolution of 975×731, this uncompressed photo
requires just under 713 kilobytes of storage. In the middle is a compressed
JPEG version of the original photo, requiring just 75 kilobytes of storage,
which is virtually indistinguishable from the original. The photo on the
bottom is a low-quality JPEG using larger divisors. While the photo takes
up only about 7 kilobytes, compression artifacts are clearly visible. Many of
the individual 8×8 pixel blocks have been reduced to solid squares of the
same gray level. In general, JPEG can result in a 10:1 compression ratio
without sacrificing visual quality.

Compressing High-Definition Video
The JPEG format does a fantastic job of compressing images with only
small sacrifices in quality, but for high-definition video we need even more
compression. Remember, uncompressed high-definition video requires
about 186MBps. Individually compressing each image as a JPEG would
reduce that requirement to about 18MBps—a big improvement, but for
streaming or disc storage we need to shrink the data to just a few MBps
per second.

Figure 6-18: An uncompressed photo (top), high-quality JPEG
compression (middle), and low-quality JPEG compression (bottom)

138 Chapter 6

Temporal Redundancy
To hit this target, video compression techniques take advantage of similari-
ties between images in sequence. Figure 6-20 shows an image sequence
from a movie’s opening credits.

The Bird
&

The Robot

A Film
by

Tom Morrow

Figure 6-20: A few frames of an opening title sequence

Each of these images will be shown for several seconds; which means
that the sequence will contain many duplicate frames in a row. Also, even
as the video transitions from one image to the next, most of the picture
remains unchanged. Only the area in the center varies.

Now consider the image sequence shown in Figure 6-21. Although each
frame differs from the next, the same elements are present in each frame,
just in different places on the screen.

Figure 6-21: An image sequence with a moving object

These examples show two different forms of temporal redundancy, con-
tinuity of data from one frame to the next. Compression that exploits
such redundancy is called temporal compression, and as we’ll see in the next
section, it’s the key to achieving the compression ratios needed for video
streaming and storage.

MPEG-2 Video Compression
One method of temporal compression is employed by MPEG-2, a common
video format supported by Blu-ray discs and digital broadcast television.
More advanced techniques exist, but they are extensions of the ideas
demonstrated here.

Groups of Frames

MPEG-2 videos are divided into sequences of around 15 frames called
groups of pictures (GOPs). Exactly one frame in each GOP is selected to be a
basic JPEG-encoded image called an intracoded frame (I-Frame). This frame
is the rock upon which the rest of the GOP is built. All of the other frames

Data Compression 139

use temporal compression, which means they are stored not as the absolute
colors of the pixels in the image, but by how those colors differ from those
in another image in the GOP, as we’ll see shortly.

The other frames in the group are assigned one of two types, predicted
frames (P-Frames) and bidirectional frames (B-Frames). A P-Frame stores the dif-
ference between its pixels and those of a previous frame, while a B-Frame
stores the difference between its pixels and those of a previous and a later
frame.

A GOP is shown in Figure 6-22, with arrows indicating the frames refer-
enced by the temporal compression. As you can see, everything depends on
the I-Frame. During playback, it must be decoded before any other image
in the GOP, after which the frames that directly reference the I-Frame can
be decoded, and so on.

P B B I B B P B B P B B P

P-Frame in
Previous GOP

Figure 6-22: A GOP, or group of pictures

Grouping pictures this way simplifies encoding and decoding, and
also limits the length of the reference “chain.” Just like a photocopy of a
photocopy, the longer the chain of temporal compression, the fuzzier the
image gets. The regular appearance of I-Frames is also what allows you to
see images as you fast-forward or rewind; the video player just picks out the
I-Frames, which can be decoded and displayed independently of the other
frames in its GOP.

The MPEG specification gives encoding software wide discretion in
forming GOPs. The number of I-Frames, which directly determines the size
of GOPs, is up to the encoder, as is the number of B-Frames between the
other frame types. Like the divisors used in JPEG quantization, the ability
to change the relative numbers of the three frame types offers a trade-off
between quality and compression. In applications where compression is
paramount, like videoconferencing, I-Frames are rare and B-Frames are
common, while in a Blu-ray, the encoder will use as many I-Frames as pos-
sible while still fitting all the video data on the disc.

Temporal Compression

So how does the temporal compression of P-Frames and B-Frames work?
In this example, we’re compressing a P-Frame by referencing an I-Frame.
First, the pixels in the P-Frame are divided into 16×16 macroblocks. For each
macroblock, the I-Frame is searched for a matching block of pixels with
the same color data. This matching block may not appear in exactly the

140 Chapter 6

same place in the I-Frame, though, so it is indicated by its offset: the differ-
ence between the location in the P-Frame and the location in the I-Frame,
expressed in screen coordinates. For example, an offset of –100, 50 indicates
that the macroblock’s location in the I-Frame is 100 pixels left and 50 pixels
down from its location in the P-Frame, as shown in Figure 6-23.

Frame 88 (I-Frame) Frame 89 (P-Frame)

Figure 6-23: A macroblock in a P-Frame referencing a
matching block of pixels in a previous frame

In most cases, an exact match won’t be found, so in addition to storing
the location of the best match, the differences between the two macroblocks
must also be stored. Figure 6-24 shows a luminance block from the P-Frame
and the best match in the I-Frame. (I’m using 8×8 blocks instead of a full
16×16 macroblock to keep the example manageable.)

129 111 125 116 147 66 99 86

155 157 165 150 123 100 88 79

171 188 178 166 166 146 75 111

167 168 175 175 174 159 142 130

159 158 164 171 173 157 160 136

175 168 150 160 160 157 163 130

172 164 157 149 142 150 143 138

151 144 147 149 145 143 142 150

129 133 128 120 128 66 71 86

152 157 157 152 120 100 82 79

171 176 178 169 162 141 120 109

167 168 179 175 168 154 142 128

159 155 168 173 162 157 153 136

163 161 157 163 159 162 154 132

161 159 157 149 141 155 149 138

151 147 147 149 141 143 145 138

Luminance Block from I-FrameLuminance Block from P-Frame

Figure 6-24: A luminance block and its best match in a prior frame

Next, a block of differences is computed: each number in the I-Frame
block is subtracted from the number in the same position in the P-Frame
block. The result for our example is shown in Figure 6-25.

Data Compression 141

0 22 3 4 −19 0 −28 0

−3 0 −8 2 −3 0 −6 0

0 −12 0 3 −4 −5 45 −2

0 0 4 0 −6 −5 0 −2

0 −3 4 2 −11 0 −7 0

−12 −7 7 3 −1 5 −9 2

−11 −5 0 0 −1 5 6 0

0 3 0 0 −4 0 3 −12

Luminance Difference

Figure 6-25: The difference between the two lumi-
nance blocks in Figure 6-24

Because the blocks are a close match, these values are all small. This
is a form of predictive encoding, just like the list of temperatures shown
earlier in the chapter. By storing differences, we’ve made the range of data
much smaller, and therefore more easily compressed. When we apply the
DCT and quantize the results, the numbers are downright tiny, as shown in
Figure 6-26.

0 0 0 −1 0 0 0 0

0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Luminance Difference after DCT

Figure 6-26: The result of quantizing the block
in Figure 6-25 and applying the DCT

142 Chapter 6

This block is highly susceptible to the last stage of compression: the
combination of run-length and Huffman encoding. As shown in Table 6-9,
the original luminance block has been reduced to a mere 39 bits.

Table 6-9: The Huffman Encoding of the Numbers in Figure 6-26

Run length Coefficient Huffman encoding

4 1 1110110

1 –1 11001

0 1 000

0 1 000

0 –1 001

1 1 11000

7 1 111110100

(Nothing left but zeros) 1010

Not every macroblock in the P-Frame is encoded in this way. In some
cases, a macroblock may not be similar enough to any block of pixels in
the previous frame to save any space by storing the difference. Those macro-
blocks can be recorded directly, like the macroblocks in an I-Frame. For a
B-Frame, matching macroblocks can be found in a previous frame or a later
frame, which improves the odds of a close match.

Video Quality with Temporal Compression
Temporal compression depends upon temporal redundancy—sequences of
frames with few changes. For this reason, some videos compress much better
than others. Movies with lots of camera movement, like Cloverfield or The Blair
Witch Project, are difficult to compress, while movies with long takes where
the camera doesn’t move, like 2001: A Space Odyssey, are ideal.

Ultimately, video compression is a bit of an art as well as a science. As
stated earlier, different MPEG-2 encoders can produce different results for
the same sequence of images. Shorter GOPs, with more I-Frames and fewer
B-Frames, produce better-looking video than longer GOPs, but longer
GOPs mean better compression. An encoder can vary the mix of frames
even within the same video, using longer GOPs when there’s high temporal
redundancy and shorter GOPs when there isn’t. Also, good encoders will try
to line up GOP boundaries with sharp cuts in a movie; if you’ve ever seen a
video that was momentarily very blocky when the scene changed, it’s likely
because a GOP stretched over the cut.

There’s also the question of performance, especially if the video is being
compressed in real time, as with a live event. There might not be enough
time to find the absolute best match for a macroblock in the other frame.

Data Compression 143

Playback quality can vary as well. For example, because of how frames
are broken into individually processed macroblocks, seams may appear
along the borders of the blocks. To reduce this effect, a decoder may apply
a deblocking filter. This smoothes block boundaries by averaging pixel col-
ors, much like the anti-aliasing methods shown in previous chapters. The
strength of the filter can be adjusted based on the likelihood of a clean
boundary. In a B-Frame, for example, if one block references the previous
frame while an adjacent block references the next frame, there’s a greater
likelihood of a rough boundary, which calls for stronger filtering.

In other cases, the resolution of the video and the display resolution
may not match. For example, when you’re streaming an episode of the old cop
show Adam-12 (it’s not just me, right?) on a high-definition television, either the
television or the player has to convert the original 640×480 images to fill
the 1920×1080 display. This is the same problem we solved in Chapter 5 with
texture mapping—applying a bitmap to a larger area—and video devices
can employ the same sorts of techniques. Early high-definition players effec-
tively used nearest-neighbor sampling, which produced poor results. Newer
players employ techniques similar to trilinear filtering. Instead of blending
between bilinear samples from two different levels in a mipmap, however,
they blend between successive frames. This is especially effective in smooth-
ing objects in motion.

Although not as computationally intense as the original encoding, play-
ing back a temporally compressed video is still a lot of work for a processor.
Also, the structure of a GOP requires decoding the frames out of order. This
in turn requires that frames be buffered, held in a queue prior to display. For
streaming video, much larger buffers are used so that minor hiccups in the
network don’t disrupt playback.

The Present and Future of Video Compression
The latest video compression standard, known as H.264 or MPEG-4, extends
the techniques used in MPEG-2 but isn’t fundamentally different. The pri-
mary differences improve the quality of macroblock matching. Instead of
being matched against just one or two other frames, macroblocks can be
matched against 32 other frames. Also, the 16×16 macroblocks themselves
can be broken down into separately matched 8×8 blocks.

Through such improvements, MPEG-4 can often achieve twice the
compression ratio of MPEG-2 with the same quality result. For that rea-
son, MPEG-4 is an industry standard for both streaming and storage. Most
Blu-ray videos use it, as do YouTube and Netflix. Its chief competition is a
format called Theora, which uses similar compression methods but is freely
licensed, unlike the proprietary MPEG-4.

Today’s compression formats do an amazing job at shrinking video
data, but they do so at a high computational cost. The next time you watch a
clip on YouTube, think about a GOP, all the macroblocks being copied and

144 Chapter 6

updated from one frame to the next, and all the number crunching that
goes into performing the DCT over and over again. It’s a dizzying amount
of calculation just to show a cat falling off a piano.

Even more computational horsepower will be needed in the future.
The new ultra high definition (UHD) format, seen in theaters in films like
Peter Jackson’s Hobbit series, is starting to trickle down to home video. UHD
images are 3840×2160, which is four times the number of pixels as current
high definition. The frame rate will also increase, from today’s 24 or 30 fps
to 48, 60, or even 120 fps. UHD video could increase the bit requirements
from today’s 1,400Mbps to over 23,000, which will require a corresponding
increase in bandwidth and disc storage capacity—unless someone clever
comes up with an even better way for software to shrink the data.

7
S E A R C H

This chapter is about a topic that, perhaps
more than any other subject covered in

this book, we all take for granted: find-
ing the data we want, known as a search.

Searching happens so often, and so quickly, that
it’s easy to miss the magic. When a word processor
underlines a misspelled word that you just typed, a
fast search has taken place behind the scenes. When you enter part of a
filename and get a list of matching files on your laptop’s hard drive, that’s
another near-instant search. And then there’s the ultimate search achieve-
ment: the Web. The Web is so unfathomably large that we can only guess
its true size, and yet, web search engines can find relevant web pages in a
fraction of a second.

How does software find what we want so fast?

146 Chapter 7

Defining the Search Problem
Let’s start by getting our terminology straight. A collection of data is
known, appropriately enough, as a data collection. Each item in the data
collection is a record. A record is uniquely identified by a key (no relation to
the cryptography term). A search retrieves the record that matches a given
key. For a real-world example, when you use a dictionary the word you’re
looking up is the key, and the definition of that word is the record.

The main goal of searching is to find the right record. But the speed of
the search is just as important. If searches could go on indefinitely, search-
ing would be simple. But as the wait time increases, so does our frustration.
The length of time we’ll wait on a search varies, but it’s never very long, and
in many situations, the search must appear to finish instantaneously.

Putting Data in Order
Efficient searching requires well-organized data. When you visit a book-
store, for example, finding a novel by a particular author is easy if the store
has ordered the shelves by authors’ last names. For one thing, you know
where to start looking. Once you look at the first book on the shelf and see
how close its author’s name is alphabetically to the author you seek, you
would have a good idea where to look next.

If the store didn’t shelve its books in any particular order, then finding
a book would be hard work. The best option is to start at one end of the
shelf and examine every single book, which is known as a sequential search.
In the worst case, the book you want isn’t even on the shelf, but you wouldn’t
know that until you’ve looked through the whole collection.

Therefore, putting the data collection in a particular order, known as
sorting, is essential for efficient searching. There are many different ways
to sort; entire books have been written to describe different sorting algo-
rithms for software. We’ll look at two methods here.

Selection Sort
If I asked you to put a list of numbers in order, you would most likely use
what is known as a selection sort. First, you’d scan the list to find the lowest
number, and then you’d cross the number out and copy it to a new list. You
would repeat the process until all the numbers were in order in the new,
sorted list.

The first three steps of a selection sort of nine numbers are shown in
Figure 7-1. In the first step, the lowest number is copied to the beginning of
a new list. In the steps that follow, the lowest remaining numbers are copied
to the new list.

Search 147

47 93 56 33 45 52 22 11 74

11

47 93 56 33 45 52 22 74

11 22

47 93 56 33 45 52 74

11 22 33

Step 1

Step 2

Step 3

Figure 7-1: The first three steps in a selection sort of nine numbers

Quicksort
While selection sort is easy to understand, software rarely uses it because it
isn’t efficient. Each step requires us to process every number in the unsorted
list, and for that effort all we get is one number in its correct position.

A better sorting method, called quicksort, partially orders all of the data
processed during each pass, reducing later effort and time. Instead of scan-
ning the entire list for the lowest number, we select a number in the list to
be the pivot. We use the pivot to partition the list, dividing the list around
the pivot. Numbers that are less than the pivot go to the front of the list,
and those that are greater go to the back.

For this example we’ll use the same list of numbers used in the selec-
tion sort. Figure 7-2 shows the first step of partitioning. Different versions of
quicksort select the pivot in different way; we’ll keep things simple and use
the first number in the list, 47, as the pivot. The next number, 93, is copied
to the end of the new list because it is greater than 47.

148 Chapter 7

93 56 33 45 52 22 11 74

93

47

More than
Pivot

Less than
Pivot

Figure 7-2: The number 93 is more than the pivot, so it moves to the
end of the new list.

In Figure 7-3, 56 is also greater than 47, so it’s copied to the next space
on the end.

56 33 45 52 22 11 74

93

47

More than
Pivot

Less than
Pivot 56

Figure 7-3: The number 56 is more than the pivot, so it moves to the
end of the new list.

In Figure 7-4, 33 is less than 47, so it’s copied to the front of the new list.

33 45 52 22 11 74

93

47

More than
Pivot

Less than
Pivot 5633

Figure 7-4: The number 33 is less than the pivot, so it moves to the
front of the new list.

Figure 7-5 combines the next five steps. Three of the remaining num-
bers go to the front of the list and two go to the back. This leaves a gap for
one more number.

45 52 22 11 7447

93 More than
Pivot

Less than
Pivot 5633 45 5222 11 74

Figure 7-5: The remaining numbers in the list are partitioned.

Search 149

In Figure 7-6, this gap is filled with 47, the pivot. This completes the
initial partitioning.

93 More than
Pivot

Less than
Pivot 5633 45 5222 11 74

47

47

Figure 7-6: The pivot fills the open space in the new list.

This new list isn’t sorted, but it’s in better shape than before. The pivot
is in its correct sorted position, indicated by the shading. The first four
numbers in the list are less than 47, and the last four are greater than 47. A
single partitioning does more than put one number in its correct place, like
one step of a selection sort; it also divides the remaining numbers in the list
into sublists, as shown in Figure 7-7. These sublists can be sorted indepen-
dently. Sorting two shorter lists requires less effort than sorting one longer
list. If you doubt this, consider an extreme case: would you rather sort 50
short lists of 2 numbers, or 1 long list of 100 numbers?

935633 45 5222 11 7447

Sublist 1 Sublist 2

Figure 7-7: Partitioning has transformed the list
into two separate, smaller lists that can be sorted
independently.

The two sublists are now independently partitioned. In Figure 7-8, the
first number in the sublist, 33, becomes the new pivot and the four numbers
of sublist 1 are partitioned. This puts 22 and 11 to the left of the 33, and 45
to the right.

93

More than
Pivot

Less than
Pivot

5622 11 5233 45 7447

Pivot

Figure 7-8: Partitioning sublist 1 of Figure 7-7

In Figure 7-9, sublist 2 is partitioned using 74 as a pivot.

150 Chapter 7

937422 11 5633 45 5247

More than
Pivot

Less than
Pivot

Pivot

Figure 7-9: Partitioning sublist 2 of Figure 7-7

These partitions put both of their pivots in their correct sorted places in
the list. The partitions also create four new sublists, as shown in Figure 7-10.

937422 11 5633 45 5247

Sublist 3 Sublist 4 Sublist 5 Sublist 6

Figure 7-10: Now four sublists remain. Single-number
sublists are trivial.

Sublists 4 and 6 contain a single number, which means there’s nothing
to partition. In Figure 7-11, sublists 3 and 5 are partitioned.

937411 22 5633 45 5247

Partitioned
Sorted

PartitionedAlready
Sorted

Already

Figure 7-11: Only two trivial sublists remain,
which means the whole list is sorted.

Now we have just two single-number sublists left, which means that the
sort is complete.

In this example, the pivots evenly divided their partitions, but quicksort
isn’t always so lucky. Sometimes the split is uneven, and in the worst case,
the pivot could be the lowest or highest number in the list, which means the
partitioning produces the same result as a step in a selection sort. But most
partitions will be roughly even, which tends to result in a much faster sort.

More generally, quicksort scales much better than selection sort. For
any sorting method, sorting time increases as the size of the data collec-
tion increases, but selection sort slows down much more than quicksort.
Let’s say a particular computer can sort 10,000 records in around a second
using either method. On the same computer, a selection sort of 1,000,000
records would take nearly 3 hours, while a quicksort would take only about
11 minutes.

Search 151

Binary Search
When data is in order, software can find a particular record easily. One
simple search method for ordered data is binary search. The word binary
in this case doesn’t refer to binary numbers, but to choosing between two
alternatives.

Figure 7-12 shows binary search in action. The record we want has a
key of 48. Initially, all we know is that the data in the collection is ordered
on our key, so the record could appear anywhere. In step 1, we examine
the record in the middle of the collection. If this record had a key of 48,
we would we be done, but this is unlikely. However, because this record
has a key of 62, which is larger than 48, we know that the desired record
must appear among the first seven records. Thus, examining one record
has eliminated not just that record from consideration, but also the seven
records that appear later in the collection.

In step 2, we examine the fourth record, the midpoint of the remaining
seven records. This record has a key of 23, which is lower than 48. Therefore
the desired record must be in the three records between 23 and 62.

In step 3, we examine the middle of these remaining three records,
which has a key of 47. This tells us the desired record must be the one
record between 47 and 62. If that record did not have a key of 48, it would
mean the collection did not include a record with that key.

1915 17 23 33 47 6648 62 67 74 77 89 92 94

?? ? ? ? ? ?? 62 ? ? ? ? ? ?

?? ? 23 ? ? ?? 62 ? ? ? ? ? ?

?? ? 23 ? 47 ?? 62 ? ? ? ? ? ?

?? ? 23 ? 47 ?48 62 ? ? ? ? ? ?

Sorted Data

Step 1

Step 2

Step 3

Step 4

Figure 7-12: Binary search taking four steps to find a particular record in a
collection of size 15

Each step in a binary search eliminates half of the records from con-
sideration, which means binary search scales fantastically well. With a

152 Chapter 7

sequential search, doubling the size of a data collection doubles the time
needed for the average search. With binary search, doubling the number of
records requires just one more step. If we start with 31 records, for example,
after examining the middle record, either we get lucky and find the desired
record, or we find out whether the desired record is in the first or last
15 records. Either way we would now have only 15 records left to search,
putting us back where we started in Figure 7-12. For huge data collections,
the difference between binary and sequential search is dramatic. A sequen-
tial search of 1,000,000 records will examine 500,000 records on average,
while a binary search of 1,000,000 records will examine no more than 20.

Indexing
To keep the figures simple, our examples to this point have used just record
keys. In practice, though, the rest of the record has to be stored somewhere,
and this can cause problems. To see why, we have to understand the choice
software faces when allocating storage space for data, whether in main
memory, on a hard drive, or anywhere else.

Fixed-size storage allocation assigns each record the same amount of
space and is used for data that is either always the same size or has a small
maximum size. Credit card numbers, for example, are always 16 digits. The
names of credit card owners, on the other hand, vary in size, but there are
only so many letters that will fit on the card. Both card numbers and card-
holder names could be stored in a fixed number of bytes. In Figure 7-13,
the maximum size of a last name is 15 characters, just long enough for
Hammond-Hammond. The other names are shorter, resulting in wasted
bytes, shown as shaded squares. Because the space needed to store a name
is small, though, this wasted space is of no great concern.

H A M M O N D - H A M M O N D

S M I T H

J O H N S O N

Figure 7-13: Fixed allocation of storage
results in wasted space

Variable-size storage allocation exactly fits the data. Consider a collection
of MP3 files. Roughly speaking, the longer the song, the larger the MP3 file.
A short pop song might be 3 or 4MB, while a progressive-rock epic might
be as large as 20MB. We wouldn’t want to store song data in fixed space
because this would waste too much space for shorter songs, and this would
limit the length of a song. Instead, the data should be stored in just as much
space as needed.

Search 153

Variable-size storage allocation uses space efficiently, but fixed-size
storage allocation is required for software to use efficient search methods.
When all the records in a collection are the same size, software can quickly
find a record in a particular position.

This is because storage locations are identified by numerical addresses.
Every byte in digital storage—whether in a computer’s main memory, or
on a flash drive or hard drive—can be precisely located by its address. If
a computer has 8GB of main memory, for example, those bytes are num-
bered from zero to just over eight trillion. Collections of fixed-size records
are stored contiguously, which makes finding a record’s address simple.
Suppose a collection has 100 records, each 20 bytes in size, and the collec-
tion begins at address 1,000. That puts the first record at address 1,000, the
second at 1,020, the third at 1,040, and so on. We can calculate the address
of any record by multiplying its position number by 20 and adding the result
to 1,000. In this way, software can quickly locate any record in any collec-
tion of fixed-size records.

Finding records quickly is essential for a method like binary search.
Without fixed-size records, the only way to find a record in a particular
position is to start from the beginning of the data collection and count the
records. That’s just a sequential search, and defeats the point.

Choosing between fixed-size and variable-size storage allocation means
choosing between efficient search and efficient storage. However, a tech-
nique called indexing gives us both. Indexing separates the keys from the
rest of the records, much as a library card catalog allows patrons to search
for books on cards before ultimately retrieving the books from the shelves.

An index is a table of record keys and addresses. The addresses themselves
are stored as binary numbers with a fixed number of bits. For example,
when Microsoft releases versions of Windows in “32-bit” and “64-bit” edi-
tions, those bit counts refer to the size of the addresses for main memory.
Because the addresses are a fixed size, we can store the addresses and keys
together in an index of fixed-size records that can be searched efficiently
using a method like binary search. The rest of each record’s data is stored
in a variable-size allocation. This produces a data collection that is efficient
for storage and searching.

Figure 7-14 shows an indexed data collection of four songs. On the left, the
index contains the song titles and the addresses for the remaining data of each
song, such as the artist name and the encoded music. On the right is a block of
memory cells numbered from 1 to 400. The arrows point to each address.

As shown in the example, this split data allocation allows each record
to use as much or as little space as needed. It even allows the index and
remaining data to be on different storage devices. For example, the index
might be kept in a computer’s fast main memory, while the encoded music
data is left on its relatively slow hard drive. Because only the index is
needed for search, such an arrangement allows for efficient search while
using the minimum amount of main memory.

154 Chapter 7

The True Wheel 293

Surrender 92

Nite Flights 1

Life on Mars 204

1

400

Figure 7-14: An indexed data collection of digital music

We can also have multiple indexes for the same data collection. The
arrangement in Figure 7-14 allows individual songs to be quickly located
by song title, but doesn’t help us search for a song based on artist name
or album title. Data collections can have multiple indexes for different
search criteria, and because the main record data is simply referenced by
an address, having multiple indexes doesn’t greatly affect the total storage
requirements for the data collection.

Hashing
Although ordered data is required for efficient searching, sorting data takes
time. So far we’ve discussed sorting as though data collections need to be
sorted just once. Sometimes that is the case; for example, a word proces-
sor needs a list of correctly spelled words for spell checking, but that list
is created once and supplied as part of the application. A spellcheck word
list is a static data collection, one that changes infrequently. However, many
of the collections we search are dynamic—records are frequently added or
removed. Because efficient searching requires ordered data, collections
must be re-sorted following each addition or removal. When insertions and
deletions are common, the time spent re-sorting the data collection can
negate the benefit of a faster search. In such cases, it may be better to struc-
ture the data to facilitate frequent changes.

One data structure that eases additions and removals of records involves
hash functions, which were introduced in Chapter 2. For this example let’s
imagine a hash function that produces a mere 3-bit hash, equivalent to a
decimal number in the range of 0 to 7. We can use this to store records in
a hash table with slots for 8 records. A slot is a place where a record could
be stored.

Search 155

To store a record in the hash table, we hash the record’s key to deter-
mine which slot to use. Suppose we are storing MP3 files with song titles as
the keys. Four titles and their associated hash codes are shown in Table 7-1.

Table 7-1: Hash Codes for Sample Song Titles

Song title Hash code

Life on Mars 6

Nite Flights 4

Surrender 1

The True Wheel 4

Figure 7-15 shows the hash table after the insertion of the first three
songs from Table 7-1. The first column in each record is a bit, which is 1 if
the slot is in use and 0 if not. The second column is the title, and the third
column holds the address of the remaining data.

0

Surrender (Address of Other Data Including Encoded Music)1

2

3

Nite Flights (Address of Other Data Including Encoded Music)4

5

Life on Mars (Address of Other Data Including Encoded Music)6

7

1

0

0

0

0

0

1

1

Figure 7-15: An eight-slot hash table

The beauty of a hash table is that a search doesn’t really require search-
ing. We just run the key through the hash function and the result tells us
where the record should be. If there’s no record in that slot, we know right
away that the collection doesn’t contain a record with that key. Even better,
hash tables avoid the effort of sorting. This makes a hash table an excellent
choice for a collection with frequent additions and deletions of records.

However, we haven’t inserted the fourth song in the list. The song title
“The True Wheel” hashes to 4, the same number as “Nite Flights.” As you
may remember from Chapter 2, a hash function is not guaranteed to pro-
duce a different hash value for every input, and indeed, some matching
hash values, or collisions, are inevitable. Since we can put only one record in
a slot, we need a rule for handling collisions. The simplest rule is to use the
first empty slot after the collision point. Because slot 4 is already occupied
with “Nite Flights,” we would place “The True Wheel” in the next open slot,
which is slot 5, as shown in Figure 7-16.

156 Chapter 7

0

Surrender (Address of Other Data Including Encoded Music)1

2

3

Nite Flights (Address of Other Data Including Encoded Music)4

5

Life on Mars (Address of Other Data Including Encoded Music)6

7

1

0

0

0

1

0

1

1

The True Wheel (Address of Other Data Including Encoded Music)

Figure 7-16: Resolving a collision. The second song that hashes to 4 is placed in
the next empty slot, which is slot 5.

This handles the collision problem, but it complicates the use of the
hash table.

With this collision rule in place, finding a record is no longer a one-step
process. Each search still starts at the slot indicated by the hash code, but
then checks the slots one by one until it finds the matching song title. If the
search reaches an empty slot, the song isn’t in the collection.

Collisions can also cause records to be stored far from the position
indicated by the hash code. For example, if a title with a hash code of 5 is
inserted into the table shown in Figure 7-16, even though no previous song
title has hashed to 5, the slot is already filled by “The True Wheel,” and the
new song would move all the way to slot 7. As a hash table fills, these situ-
ations become more common, degrading search performance; in effect,
some hash table searches become miniature sequential searches.

Collisions also complicate the deletion of records. Suppose “Nite Flights”
is removed from the hash table of Figure 7-16. The obvious way to remove
a record is just to mark the slot “empty” again, but that doesn’t work. To
see why, remember that the song title “The True Wheel” hashed to 4, and
the song was stored in slot 5 only because slot 4 was occupied at the time.
A search for “The True Wheel” will begin at slot 4 as indicated by the hash
code, find the slot empty, and end the search unsuccessfully. The song is
still in the index table, but can’t be found by a hash search.

To avoid this problem, we can remove the song data but keep the slot
marked as occupied, as shown in Figure 7-17.

Slot 4 is now what is called a tombstone. By leaving the slot marked
as occupied while deleting the data, we ensure that searches still work.
However, tombstones waste space. Furthermore, because the table never
really frees any record slots, the performance issues of congestion remain.

For these reasons, hash tables are periodically rehashed. Once a certain
percentage of the slots in a table are occupied, a new, larger table is cre-
ated, and each key in the original table is hashed with a new hash function,
producing a fresh, sparsely populated table without any tombstones.

Search 157

0

Surrender (Address of Other Data Including Encoded Music)1

2

3

4

5

Life on Mars (Address of Other Data Including Encoded Music)6

7

1

0

0

0

1

0

1

1

The True Wheel (Address of Other Data Including Encoded Music)

Figure 7-17: Leaving slot 4 marked as occupied after deletion of its data

Web Search
All of the techniques shown in this chapter are needed for efficiently
searching large data collections, and no collection is larger than the Web.
A search engine such as Google depends upon a vast index, where the
keys are search terms, the addresses are URLs, and the web pages are the
records. The size of the Google index is estimated at around 100 petabytes,
or 100,000,000 gigabytes. To find something in an index this large requires
all of the best search techniques. Although these techniques help illustrate
how an index this large could be searched, they don’t tell us how the index
was created in the first place.

Search engines use robots, programs that run without direct human
intervention, to build their indexes. The robots crawl all over the Web.
Starting at some particular web page, they make a list of all the links on
that page. Those linked pages are then processed to find links to other
pages, and so on. Eventually the robot has links to most of the content on
the Web.

Some content, though, is more difficult to locate. Some pages can’t be
reached from a site’s home page but are instead found through the site’s
own search engine. A news site, for example, may not link to older articles
but does provide a local search for its archives. This unlinked but valuable
content is known as the deep web. Incorporating deep web content into a
search engine index usually requires some assistance from the site. Site
managers have several ways to provide web-crawling robots a “table of con-
tents” for all the pages on the site, such as a document called a Sitemap. This
document is named after the site map page some sites provide for users to
quickly find the content they are looking for, but has a specific format that’s
easy for robots to process. Sitemaps keep search engines updated with con-
tent changes and are especially useful for sites with deep content that would
otherwise be left out of search engine indexes.

158 Chapter 7

Ranking Results
As robots gather pages, search engines mine the pages for keywords, count-
ing how often each keyword appears on each page. Early search engines
employed little more than a list of keywords along with their page counts.
If you searched for cake, the page where cake most often appeared would be
at the top of the returned list. That’s logical enough, but a mere word count
doesn’t produce what we now consider to be good search results.

The first problem is that it’s too easy for someone to exploit the system
for personal gain. Suppose the operator of a site selling knockoff pharma-
ceuticals wants to get a lot of traffic and doesn’t care how it’s done. When the
operator discovers that legions of people are searching for omelette recipe,
the operator might put those words on the home page as many times as pos-
sible, even hiding the words in the behind-the-scenes formatting code. As a
result, the site might be among the first returned on searches for omelette
recipes, even though no such recipes appear on the site. Word counts do
not guarantee a match between search terms and content.

Another website operator might build a site that is legitimately about
omelettes, but it’s filled with content stolen from Wikipedia, in order to gen-
erate revenue from ads about a zero-cholesterol egg substitute. In this case,
the word count correctly connects the search term to matching content,
but the quality of the content is poor.

The underlying issue is that the websites are self-reporting the nature
and the quality of their content. What’s missing is the opinion of a disin-
terested viewer. Ideally, search engines could employ an army of reviewers
to determine what pages are about and how well they cover their chosen
topics. The Web is so vast and ever-changing, though, that this is a practical
impossibility.

Instead, search engines rely on the opinions of other websites. They
acquire these opinions in the form of inbound links. The number of links
to a particular page is a good metric for how that page is regarded by the
online community. In Figure 7-18, page C has four inbound links, page D
has none, and each of the others has one. On this basis alone, page C
appears to be the most valued resource, while A, B, and E appear equally
useful.

A

1
B

1

C

4

D

0

E

1

Figure 7-18: The number of links pointing to a page is
one factor used by search engines to determine ranking.

Search 159

There’s more to the story though. A page with a high inbound link
count grants more points to the pages it links to. In the previous figure,
three pages have only one inbound link, but the quality of each link is dif-
ferent. Page E is linked from page C, which has a high inbound link count,
while pages A and B are linked only from each other. Factoring the qual-
ity of each link into the link count helps to foil link farming, in which large
numbers of pointless websites are created, often through free host services,
for the purpose of increasing a target site’s inbound link count.

In effect, this turns the Web into a collection of self-organized expert
communities. When a number of well-regarded cooking sites begin linking
to a new omelette-focused site, which in turn links back to omelette-related
content in the established sites, the new site is inducted into the online
cooking community. Thereafter, the new site’s links count as much as the
older, established sites.

Using the Index Effectively
While building the index is the bulk of the work of making a search engine,
how the index is used during a search is just as important. Good search
results require attention to detail.

For one thing, a search engine cannot merely use the supplied search
terms as keywords. Consider the differences in word forms. You might type
frozen rain in a search box, but most pages with relevant information use
the form freezing rain. By linking together different forms of keywords in its
index, a search engine can maximize the usefulness of results. This idea
applies to synonymous terms as well. Because the words insomnia and sleep-
lessness mean the same thing, searching for either term produces similar
results, even though some pages predominantly use one word or the other.
For example, the Wikipedia article on insomnia appears in the first few
results for either search term, even though, at the time of this writing, the
word sleeplessness appears only twice in the article, while the word insomnia
appears over 200 times.

The results from these search terms are not identical, though. A search
for insomnia will also include links to the 2002 film Insomnia, but these links
aren’t returned by a search for sleeplessness. That result makes sense—pre-
sumably, no one searching for the film would have entered a synonym of
the film’s title—but how can a search engine know the two terms are linked
in some ways but not others?

Tracking how search terms are combined can yield valuable clues. If
searchers frequently add the terms movie or film to the term insomnia, then
searches for just insomnia may indicate someone interested in the film and
not the medical condition.

Furthermore, the links on a search results page are not actually direct
links to the listed pages. Instead, they are pass-through links. For example,
if you search Google for insomnia, then click on the link for the Wikipedia
entry, you’ll first be taken to the google.com server, which will then redirect
you to wikipedia.org. Google tracks which result you selected, and this data,
collected from countless users over time, allows Google to fine-tune the
results, keeping the links that users actually find useful near the top.

160 Chapter 7

Search engines can also make use of the location of the person search-
ing. For example, when you search for smiley’s pizza while you’re standing
in a particular town, the search engine appends the town’s name to the
search, so that the results are localized, instead of returning the websites
of the most popular pizzerias with that name in the entire world.

What’s Next for Web Search
As impressive as current web search capabilities are, there’s still room for
improvement.

For example, images provide unique challenges for search engines.
Currently, image files are indexed based on accompanying text. A search
engine might gather clues from an image’s filename, or make educated
guesses based on the text surrounding the image on the page.

We can soon expect the use of computer vision techniques in web
indexes. Such software techniques transform an image into a description
of the image. In some ways this is the reverse of the graphics techniques
described in Chapters 4 and 5, where mathematical models were rendered
into images. With computer vision, images are simplified into mathematical
descriptions that are then categorized by pattern. Such software is currently
used in self-governing robots, so that they can recognize an object they
have been sent to retrieve. Future search engines may process the Web’s
images using these techniques, identifying both general subjects (“clear
sky,” “kittens”) and specific subjects (“Eiffel Tower,” “Abraham Lincoln”)
within the images.

Indexes will also be updated faster. Currently web indexes update only
when a web-crawling robot passes through. In the future, indexes may
be updated in near real time, so that conversations quickly developing
throughout social media can be indexed as they happen. Eventually, real-
time search may be combined with artificial intelligence to automatically
generate basic news stories from social media for fast-breaking events like
natural disasters.

But those are tomorrow’s marvels. The Web and its search engines are
the marvel of today, a powerhouse of information unfathomable just a few
decades ago.

8
C O N C U R R E N C Y

Usually we can tell when software is doing
something interesting, even if we don’t

know how it’s done. We know that com-
puters make graphics, encrypt our transmis-

sions, and stream our videos. What we miss, though,
is that these tasks often involve multiple programs,
multiple processors, or even multiple computers con-
nected via a network, accessing the same data at the
same time.

This overlapping access of data, known as concurrency, is a vital part
of modern technology. High-performance tasks like graphics and shared
resources like websites wouldn’t be possible without it. But concurrency
causes big problems when it’s not carefully managed. In this chapter, we’ll
see how results can become scrambled when multiple processors access
the same data. Then we’ll look at the clever software (and hardware) tech-
niques that keep processors from getting in each other’s way.

162 Chapter 8

Why Concurrency Is Needed
Situations that require concurrency fall into three basic categories: per-
formance, multiuser environments, and multitasking.

Performance
Concurrency is needed when there’s more work to do than a single processor
can handle. Until recently, the number of instructions a processor could
execute in a second was steadily increasing, but now the pace of improve-
ment has slowed. In order to execute more instructions in the same amount
of time, a processor has to run faster. The faster it runs, the more power
courses through it and the hotter it gets, which can eventually damage the
components.

To mitigate that problem, the size of the components in the processor
keeps getting smaller so that they draw less current and remain relatively
cool. But it’s getting difficult to make processor components any smaller,
which in turn makes it difficult to make them run any faster. When a single
processor can’t get the job done, the only solution is to use multiple process-
ing cores. We saw this with video game graphics in Chapter 5, but it’s not
just high-end game graphics that need multiple processors. Even today’s
basic graphics tasks may require multiple processor cores.

Multiuser Environments
Concurrency also allows networked computer systems to work together.
Suppose you are playing an online game such as World of Warcraft. The game
tracks each player’s actions as well as those of the computer-controlled mon-
sters. The game’s servers tally every spell and axe swing, and calculate the
damage done, the monsters slain, and the loot dropped.

Concurrency is required here because the processor in every player’s
computer must share the data of nearby players and computer-controlled
creatures.

Multitasking
Concurrency can occur even in situations where only one processor is
involved. Modern computers multitask, which means they are constantly
switching between different programs, even when we think we’re doing
only one thing on the computer at a time. For example, multitasking is what
allows your email client to receive a new message while you surf the Web. In
these cases, whether or not the computer has multiple processor cores, it’s
definitely running multiple processes—different programs with overlapping
executions.

Printing is another typical example. When you print a recipe from a
website, the software that manages the printer, known as the driver, collects
the print data in an orderly queue and then passes it on to the printer as
needed. This is called print spooling. Without print spooling, the browser

Concurrency 163

could send the data only as fast as the printer processed it, which means
that you would have to wait for the print job to finish before you could do
anything else with the browser.

Print spooling can’t work without
concurrency. You can think of a print
spool as one of those carousels that
sit in the window between the front
counter and the kitchen in a short-
order restaurant, like the one shown
in Figure 8-1. Someone in the front
puts new orders on the carousel, and
someone in the back takes down the
orders as they are fulfilled. The shared
data storage of the carousel allows the
order takers and the cooks to work
independently.

This arrangement is known as
a shared buffer and is frequently used
behind the scenes in software. For
example, suppose you are typing an email, but your computer momentarily
slows down so that nothing you typed appears on screen. Then the system
catches up, and everything you typed is now in the email. That happens
because the keyboard doesn’t communicate directly with the email pro-
gram, but uses the operating system as an intermediary. The operating
system queues the keystrokes in a shared buffer so the email program can
access them when ready.

Multitasking also allows programs to sit in the background and inter-
rupt you when something significant happens. When a new email alert
appears in the corner of your desktop’s screen while you are working in a
word processor, or your phone signals a newly received text message while
you’re playing a game, that’s multitasking at work.

Beyond the performance benefits of multiple processors and distrib-
uted processing, the importance of multitasking means some form of con-
currency is required to provide the basic computing functionality we rely
on daily.

How Concurrency Can Fail
Although concurrency is a vital part of everyday computing, it creates enor-
mous headaches for software and can produce serious problems if proper
safeguards aren’t in place to prevent them.

The underlying issue is how data is copied when it’s used in calcula-
tions. Essentially, all a computer processor does is retrieve numbers from
storage and either perform math with them or compare them. To do these
tasks, though, it must copy the numbers from wherever they are stored to
locations inside the processor. Stored data isn’t changed directly. Instead,
the computer fetches the value from main memory, or a hard drive, or

New Orders Added in Front

Existing Orders Retrieved in Back

Figure 8-1: An order-ticket carousel

164 Chapter 8

across a network, and delivers it to the innermost part of the processor.
The processor performs the math on this internal copy, and then sends
the updated value back to storage to replace the original data.

Suppose you’re playing a first-person shooter game. You have 300 bul-
lets in reserve when you run over an ammo clip, picking up 20 more bullets.
Figure 8-2 shows the steps involved. To update your bullet count, the pro-
cessor first retrieves your current bullet count and the number of bullets in
the clip from their places in storage, shown in step 1. These values are fed
into the inputs of an “adder” circuit in the processor, as shown in step 2,
which performs the actual math. Then the result is sent back to main mem-
ory, replacing the old value in the bullet count storage location, as shown in
step 3.

300

30020

Adder

StorageProcessor

20

300

30020

Adder

320

20

320

30020

Adder

320

20

Step 2

Step 3

Step 1

Figure 8-2: Three steps to update a number from 300 to 320

This update sequence causes problems when multiple processes
attempt to make alterations to the same storage location. Take, for
example, a massively multiplayer online game (MMO). Trina Orcslayer and
Skylar Rockguardian are two players. They are both officers of the same
“guild,” and this game allows guilds to hold shared bank accounts across
multiple game servers. On Friday morning, the balance of the guild
account is exactly 10,000 gold, and Skylar and Trina each have 500 gold
in their personal accounts. Sometime that day, Skylar withdraws 300 gold

Concurrency 165

from the guild account while Trina deposits 200 gold into it. If these are
the only transactions that happen, the final balance should be 9,900 in the
guild account (10,000 – 300 + 200), 800 in Skylar’s account (500 + 300),
and 300 in Trina’s account (500 – 200).

And that’s what will happen if the transactions are kept separate. Suppose
Skylar makes the withdrawal in the morning, and Trina makes her deposit
that afternoon. We won’t get into programming here, but let’s consider the
steps that the game software will take to carry out these transactions. Let’s
start with Skylar’s withdrawal:

1. Retrieve the balance of the guild account. Call this Skylar’s copy.

2. Subtract 300 gold from Skylar’s copy.

3. Add 300 gold to Skylar’s personal stash.

4. Update the guild bank balance to Skylar’s copy.

Now suppose Trina makes the deposit in the afternoon. The steps of
her transaction are:

1. Retrieve the balance of the guild account. Call this Trina’s copy.

2. Subtract 200 gold from Trina’s personal stash.

3. Add 200 gold to Trina’s copy.

4. Update the guild bank balance to Trina’s copy.

In this example everything works fine. But what happens if Skylar and
Trina perform their transactions at the same time? In that case, the final
balance of the guild account could be incorrect. This happens if the origi-
nal guild balance of 10,000 gold is retrieved for calculation by both processes
before either of them completes the transaction.

Take a look at the details shown in Table 8-1. When Trina and Skylar
initiate transactions at the same time, the same 10,000 balance is retrieved
into their separate copies of the balance. Trina’s copy is increased to 10,200,
while Skylar’s copy is decreased to 9,700. Then both of the updated figures
overwrite the guild account balance. In the example shown in the table,
Skylar’s updated number arrives last, which means 9,700 is the new account
balance and 200 gold has simply vanished.

It could have worked out the other way—Trina’s copy could have arrived
after Skylar’s, increasing the guild’s gold balance, but of course neither result
is correct. The only correct final balance is 9,900 gold, the balance that cor-
responds to the two transactions occurring separately.

Situations similar to this example are possible whenever two or more
processes use the same data simultaneously. The general term for this
situation is a race condition, since all the processes involved are racing to
complete their task first. In this case the process that finishes last “wins,”
because it determines the final value of the data.

While this example features two different processors, Trina’s and Skyler’s,
it’s important to note that race conditions can happen even with a single

166 Chapter 8

processor. Because multitasking involves switching the processor to a dif-
ferent program many times a second, multiple processes operating on the
same data could interleave, creating a race condition.

Table 8-1: The Danger of Overlapping Bank Transactions

Step Description Skylar’s copy Trina’s copy Guild balance

Trina 1 Retrieve the guild balance
from the bank .

10,000 10,000

Skylar 1 Retrieve the guild balance
from the bank .

10,000 10,000

Trina 2 Subtract 200 gold from
Trina’s stash .

10,000 10,000

Trina 3 Add 200 gold to Trina’s
copy of the guild balance .

10,200 10,000

Skylar 2 Subtract 300 gold from
Skylar’s copy of the guild
balance .

9,700 10,000

Skylar 3 Add 300 gold to Skylar’s
stash .

9,700 10,000

Trina 4 Send Trina’s copy of the
guild balance to the bank .

10,200 10,200

Skylar 4 Send Skylar’s copy of the
guild balance to the bank .

9,700 9,700

Making Concurrency Safe
In order to make concurrency useful, then, we need to prevent race condi-
tions. This requires enforcing rules on how processes can access data. The
tighter the restrictions, the easier it is to prevent problems from occurring,
but these restrictions can have an adverse effect on performance.

Read-Only Data
One possible restriction is to allow processes to retrieve data simultane-
ously, but prohibit them from changing it; this is known as read-only data.
This eliminates the possibility of a race condition but at an enormous
cost. Most applications that require shared data access simply can’t work
without the ability to change the data. So this method is rarely considered.
However, as we’ll see later, distinguishing which processes want to change
data from those that merely want to read data can improve the perfor-
mance of concurrency.

Transaction-Based Processing
Another straightforward, comprehensive solution eliminates simultaneous
data access entirely. The race condition occurs in the example because
Skylar’s and Trina’s transactions overlap. What if we prevent overlapping

Concurrency 167

transactions? To enforce this rule, once any bank transaction begins, we
wait for it to signal its completion before any other transaction may start.
For example, the steps in Skylar’s process now might look like this:

1. Signal Start Transaction to the bank server.

2. Retrieve the balance of the guild account. Call this Skylar’s copy.

3. Subtract 300 gold from Skylar’s copy.

4. Add 300 gold to Skylar’s personal stash.

5. Update the guild bank balance to Skylar’s copy.

6. Signal End Transaction to the bank server.

The steps in Trina’s process would be likewise bracketed:

1. Signal Start Transaction to the bank server.

2. Retrieve the balance of the guild account. Call this Trina’s copy.

3. Subtract 200 gold from Trina’s personal stash.

4. Add 200 gold to Trina’s copy.

5. Update the guild bank balance to Trina’s copy.

6. Signal End Transaction to the bank server.

The bank server process enforces the transaction rules. When no
transaction is under way, a signal to start a new transaction is immediately
accepted. So if Trina’s transaction began during an idle period, it would
continue. If, however, the start transaction signal from Skylar’s process arrived
while Trina’s transaction was being processed, Skylar’s transaction would
have to wait until Trina’s transaction finished. And if other transactions
arrived during this time, the bank server would put them in a queue, to
process them in the order in which they arrived.

This rule transforms the guild bank into the equivalent of a lobby with
a single teller. If a customer arrives and the teller is available, the customer
gets immediate service; otherwise, the customer must wait until the teller is
free. This prevents race conditions but robs the system of the performance
benefit of having multiple processors. Just as having one teller in a busy
bank means a long wait for each customer, allowing only one transaction
through the bank server at a time means a relatively long wait for each
transaction.

The rule is much too strict. At any given time, the bank may be handling
a large number of transactions, and few (if any) of them involve the same
accounts. This rule prevents race conditions by preventing all overlapping
transactions, even when the overlap is harmless.

Semaphores
Another idea takes advantage of the fact that most of the transactions are
not interacting with the same data. If the transaction rule is like a bank
with a single teller, a better rule would be like a bank where every account

168 Chapter 8

has its own personal teller. Two or more customers attempting to access the
same account at the same time will form a queue, but customers accessing
different accounts won’t slow each other down at all.

The secret ingredient behind this technique is a special type of data
called a semaphore. In nautical language, semaphores are flags that ships
hoist to signal other ships; in software, semaphores are the numerical
equivalent of flags, signaling whether or not logically connected data is in
use. The simplest type of semaphore has just two possible values, 0 or 1, and
is called a binary semaphore.

How Semaphores Prevent Race Conditions

Returning to our guild bank account, we can avoid the race condition by
creating semaphores on the bank server for each of the account balances.
Each semaphore begins with a value of 1.

Before requesting an account balance, a process must first acquire the
semaphore associated with that account. This acquire operation will check
the value of the semaphore. If the semaphore is 1, it means no other process
is using the associated balance; in this case, the semaphore changes to 0, and
the process will be allowed to continue.

If the semaphore is already 0, though, it means another process is currently
accessing the associated balance. In this case, the software will have to wait.

When a process completes its transaction, it releases the semaphore,
which immediately sets its value back to 1. This allows one of the processes
waiting for the semaphore to continue.

Using semaphores, Skylar’s process would look like this:

1. Acquire the semaphore for the guild account.

2. Retrieve the balance of the guild account. Call this Skylar’s copy.

3. Subtract 300 gold from Skylar’s copy.

4. Add 300 gold to Skylar’s personal stash.

5. Update the guild bank balance to Skylar’s copy.

6. Release the semaphore for the guild account.

And Trina’s:

1. Acquire the semaphore for the guild account.

2. Retrieve the balance of the guild account. Call this Trina’s copy.

3. Subtract 200 gold from Trina’s personal stash.

4. Add 200 gold to Trina’s copy.

5. Update the guild bank balance to Trina’s copy.

6. Release the semaphore for the guild account.

In this way, Skylar and Trina are prevented from accessing the guild
balance at the same time, preventing the race condition. Additionally, nei-
ther transaction will affect any other transaction that doesn’t deal with this
particular account.

Concurrency 169

How Semaphores Are Made

Now let’s look at how semaphores are actually made. If semaphores aren’t
implemented with care, they can produce the very race conditions they are
intended to prevent. Although the acquire operation is just one step for
Skylar’s and Trina’s processes, in reality, it takes several steps itself:

1. Retrieve the value of the semaphore.

2. If the value is 0, go back to step 1 and try again.

3. Set the semaphore to 0.

Now consider what happens if both Skylar’s and Trina’s processes
attempt to acquire the guild account semaphore at the same time. If the
semaphore had a value of 1, both processes could retrieve this initial value
(in step 1) before either had a chance to check the value and set it to 0. In
this case, both processes would think that they were the only process that
had acquired the semaphore, and were therefore free to do whatever they
wanted with the accompanying bank balance. We’re right back where we
started.

To make a semaphore, then, software needs some help from hardware.
The processor on the bank server must be able to implement the acquire
and release operations in such a way that nothing can interrupt them.
This is known as making the operations atomic, which in this sense means
indivisible.

Modern processors implement a hardware operation known as test-and-
set. This sets a byte in main memory to a particular value, while retrieving the
previous value for inspection. Test-and-set makes semaphores possible. In the
list of semaphore steps, the problem is the potential interruption between
steps 1 and 3. If two different processes execute the first step before either
reaches the third step, both will be able to alter the data that the sema-
phore is supposed to protect. Using the atomic test-and-set operation,
though, a semaphore acquire operation can be implemented like this:

1. Using test-and-set, set the semaphore to 0 and retrieve the old value.

2. If the old value was 0, go back to step 1 and try again.

Now the race condition cannot happen. If two processes attempt to
acquire the same semaphore at the same time, they will each execute the
test-and-set in step 1. Both operations will set the semaphore value to 0,
but only the semaphore that tests-and-sets first will retrieve a 1. The other
process will retrieve a 0. One process will immediately continue, while the
other will have to wait.

The Problem of Indefinite Waits
A process acquiring a semaphore using this two-step plan—continuously
checking the semaphore’s value until it changes back to 1—is said to be
in a spin lock. This is the simplest way to wait for a semaphore to become

170 Chapter 8

available, but it has two major problems. First, it wastes processor time. A
process in a spin lock is continuously executing code, but the code isn’t
doing anything useful. Secondly, spin locks can be unfair. In some cases,
some processes cannot check the semaphore as fast as others. Perhaps the
process is executing on a slower processor, or perhaps the process is com-
municating with a server across a slower network. Regardless of the reason,
if a semaphore’s resource is so popular that multiple processes are always
waiting, a slower-checking process might never be able to snag the sema-
phore. This is known as starvation; picture the least-assertive person at a
busy restaurant with only one waiter, and you’ll get the idea.

Orderly Queues
Avoiding starvation requires a more organized approach to waiting. Banks
organize the wait in their lobbies with cordons, forming groups of waiting
customers into orderly queues. Semaphores can be designed to do the same
thing. Rather than waste time continually checking the value of the sema-
phore, many acquire operations written so that when they do not succeed
immediately, they put their process to sleep, so to speak. Putting a computer
or phone to sleep means suspending all running applications in a way that
allows the applications to be restored quickly. In the same way, if a process
cannot immediately acquire a semaphore, it will be suspended and flushed
out of the processor, but its internal data will remain in storage.

To accomplish this, the computer’s operating system assigns each pro-
cess a unique identification number. When an acquire operation has to
wait, the process identifier is placed at the end of that semaphore’s wait
list. When the process currently holding that semaphore releases it, the
first process on the list is awakened. In this way, processes acquire the
semaphore in the same order they request it. A process may have to wait to
acquire a popular semaphore, but will eventually get to the top of the list—
it won’t starve.

Starvation from Circular Waits
Although semaphores prevent race conditions when implemented and used
correctly, they can cause starvation when processes need to access multiple
pieces of data that are protected by semaphores.

Suppose Skylar and Trina’s guild opens a second account that is acces-
sible to lower-ranked guild officers, so now the guild has a main account
and a secondary account. The banking system has implemented semaphores
for each individual account, eliminating the chance of a race condition on
any guild transactions.

But on a particular day, Skylar and Trina are each transferring 200 gold
from one account to the other in opposite directions. Both transactions
involve debiting one account and crediting the other. Skylar’s transaction
would have these steps:

1. Acquire the semaphore of the main account balance.

2. Retrieve the balance of the main account.

Concurrency 171

3. Acquire the semaphore of the secondary account balance.

4. Retrieve the balance of the secondary account.

5. Add 200 gold to the secondary account balance.

6. Subtract 200 gold from the main account balance.

7. Update the secondary account balance.

8. Update the main account balance.

9. Release the semaphore of the secondary account.

10. Release the semaphore of the main account.

Trina’s transaction would run like this:

1. Acquire the semaphore of the secondary account balance.

2. Retrieve the balance of the secondary account.

3. Acquire the semaphore of the main account balance.

4. Retrieve the balance of the main account balance.

5. Add 200 gold to the main account balance.

6. Subtract 200 gold from the secondary account balance.

7. Update the main account balance.

8. Update the secondary account balance.

9. Release the semaphore of the main account.

10. Release the semaphore of the secondary account.

Because all shared value access is properly bracketed by the acquisition
and release of associated semaphores, no race conditions can occur from
the overlapping execution of these transactions. However, suppose both
transactions begin around the same time and the first few steps interleave
as shown in Table 8-2.

Table 8-2: Multiple Semaphores Leading to Indefinite Waiting

Step Description Main account
semaphore

Secondary account
semaphore

Initial state . 1 1

Skylar 1 Acquire the semaphore of the
main account balance .

0 1

Skylar 2 Retrieve the balance of the main
account .

0 1

Trina 1 Acquire the semaphore of the
secondary account balance .

0 0

Trina 2 Retrieve the balance of the sec-
ondary account .

0 0

Skylar 3 Acquire the semaphore of the
secondary account balance .

0 0

Trina 3 Acquire the semaphore of the
main account balance .

0 0

172 Chapter 8

I’ve shown only these steps because these are the only steps that would
occur. Both Skylar’s and Trina’s processes would halt at step 3, because both
are trying to acquire semaphores that aren’t available. What’s worse is that
they can never become available, because each is being held by the other
process. This is like waiting for traffic to clear so you can turn left on a two-
lane road, but someone going the other way wants to turn left behind you,
as shown in Figure 8-3.

Figure 8-3: If both white cars are waiting to turn left, traffic is stopped.

Because neither process in this example can continue until the other
process completes, this situation is known as a circular wait. In this case,
the circular wait involves only two processes, but circular waits sometimes
involve many processes, and is therefore difficult to detect or foresee. A
circular wait is one form of deadlock, which describes a situation in which
a process cannot be expected to continue. Circular waits are one way that
concurrency can cause deadlocks, and unless precautions are taken, a cir-
cular wait can occur whenever processes hold multiple semaphores at once.
Fortunately, such precautions can be easy to implement.

One solution is a rule by which semaphores must be acquired in some
specified order. In our example, the game’s bank management system can
internally assign each account a number, and require processes to acquire
account semaphores in numerical order. Or, put more broadly, a process
can acquire an account’s semaphore only when it does not currently hold a
semaphore for an account with a higher number. This rule prevents the cir-
cular wait in the previous example. Let’s suppose the main account is 39785
and the secondary account is 87685. Because the main account number is
lower, both Skylar’s and Trina’s processes would attempt to acquire its sema-
phore first. If both processes tried at the same time, only one process would
succeed. That process would then acquire the semaphore for the secondary
account and complete the transaction, at which point both account sema-
phores would be released, allowing the other process to continue through
completion.

Performance Issues of Semaphores
With the proper rules in place, semaphores enable concurrency without
fear of race conditions, deadlock, or starvation. However, in situations
where we are trying to boost performance by having multiple processors
work together on the same job, enforcing these semaphore rules can limit
the performance benefit we hoped to create. Instead of lots of processors

Concurrency 173

working together, we are left instead with lots of processors waiting in line
for an opportunity to work. Concurrent software can mitigate these perfor-
mance issues by creating additional rules.

Sometimes a process needs access to a piece of data but doesn’t need
to change it. In our running guild bank example, suppose Skylar and
Trina are both inspecting the main guild account at the same time—that
is, neither player is depositing or withdrawing, but is merely checking the
balance. In this case, no danger arises from the simultaneous access of the
account. Even though the processes would have potentially overlapping
retrieval operations, as long as neither one of them updated the balance,
everything would be fine.

Allowing simultaneous access during “read-only” situations greatly
improves multiprocessor performance, and requires only a modification of
the semaphore concept. Instead of having one semaphore for each piece of
data to be shared, we’ll have two: a read semaphore and a write semaphore,
subject to the following rules:

•	 Acquiring the associated write semaphore allows data to be retrieved or
updated, just like how the semaphores worked in previous examples.

•	 Acquiring the associated read semaphore allows data to be retrieved,
but not updated.

•	 A write semaphore can be acquired only when no process holds a sema-
phore (of either type) for that data.

•	 A read semaphore can be acquired only when no process holds a write
semaphore for that data.

Following these rules means that at any given time, either one process
will have acquired the write semaphore for a piece of data or one or more
processes will have acquired read semaphores for that data. At first, this
appears to be what we want. So long as processes are merely looking at, but
not changing data, they can share access. Once a process needs to change
the data, all other processes are locked out until the updating process com-
pletes its work.

Unfortunately, these rules potentially reintroduce the starvation prob-
lem. As long as read-only processes keep arriving, a process that needs a
write semaphore might wait indefinitely. To prevent this from happening,
we can modify the last rule as follows: “a read semaphore can be acquired
only when no process is holding or waiting for a write semaphore.” In other
words, once a process attempts to acquire a write semaphore, all processes
arriving later must wait behind it.

Another potential concern for performance is known as granularity,
which in this context refers to whether we lock up individual pieces or col-
lections of data. For example, the bank system could use semaphores to
protect individual data elements, such as the balance of the main guild
account, or it could apply a single read/write pair for all data related to a
particular guild’s finances, such as the balances of all guild accounts, the
list of guild officers who are allowed to access that account, and so on.

174 Chapter 8

Protecting data as a group can cause more waiting, because a process
that may need only one or two numbers in a data group will have to lock up
all the data in the group, potentially blocking another process that needs
other, nonoverlapping data from the group. Very fine granularity can also
hinder performance. Acquiring and releasing semaphores takes time, and
with lots of semaphores, it’s possible for processes to spend most of their
time dealing with them. Developers must therefore carefully determine the
best granularity for a particular application.

What’s Next for Concurrency
For several reasons, we can expect concurrency to be an even greater con-
cern for the future.

These days, multiple processing cores can be found even in our simplest
computing devices. The push for more processing power will continue, and
until the arrival of a new processing paradigm like quantum computing,
more processing power will mean more processor cores.

Multitasking is now the norm. We expect our computing devices to run
multiple applications at the same time, and to interrupt our foreground
tasks when something interesting happens in the background.

Data and devices are becoming more connected than ever. Data and
processing are increasingly being moved from client devices onto servers or
clouds of interconnected servers. In computer gaming, socialization is the
new paradigm, and in some games, even single-player game modes require
an Internet connection.

In short, properly handling concurrency is becoming essential in
everyday computing. What looks like a single computer running a single-
user application may contain a multiprocessor that provides a multitasking
environment with shared cloud storage for data. The vital power of concur-
rency is thus often invisible. As the trend toward even greater concurrency
continues, we may take for granted the way in which so many processes
work together without running into one another. But future improvements
in computing depend upon further advancements in concurrency control.
We don’t know yet whether current methods of preventing deadlock, star-
vation, and race conditions will be sufficient as concurrency increases. If
current methods are inadequate for solving future challenges, they will
become the bottleneck until better methods are developed.

9
M A P R O U T E S

Because we can instantly get directions
using sites like Google Maps, we forget

that not long ago people often got lost
driving to unfamiliar destinations. Now soft-

ware plans our route for us and even alters the route
mid-trip if an accident or road closure blocks our way.

In computing, this task is called finding the shortest path. Despite the
name, the goal isn’t always to find the shortest path, but more generally to
minimize the cost, where the definition of cost varies. If the cost is time, the
software finds the fastest route. If the cost is distance, the software mini-
mizes the mileage, truly finding the shortest path. By changing how cost is
defined, the same software methods can find routes to match different goals.

176 Chapter 9

What a Map Looks Like to Software
Although software can provide directions, it can’t actually read a map.
Instead, it uses tables of data. To see how we get from a map to a table of
data, let’s begin with Figure 9-1, which shows a portion of a city map for a
simple routing problem. The goal is to find the quickest route from the
corner of 3rd Street and West Avenue to the corner of 1st Street and Morris
Avenue. The numbered arrows alongside the streets show the average driv-
ing time in seconds between intersections. Note that 1st Street and Morris
Avenue are one-way streets.

9 26

915

23 7

3317

25 28

35 35

18

14

1214 1119

18 21

1st Street

2nd Street

3rd Street

M
or

ris
 A

ve
nu

e

Ke
nt

uc
ky

 A
ve

nu
e

W
es

t A
ve

nu
e

Start

Goal

Figure 9-1: A simple routing problem: find the fastest route from 3rd and West to
1st and Morris.

To produce a data table that can be processed by software, we first
reconceptualize the map as the directed graph shown in Figure 9-2. Here,
the street intersections are represented as points labeled A through I. The
arrows in Figure 9-1 become connections between points on the graph,
known as edges.

Map Routes 177

9 26

915

23 7

3317

25 28

35 35

18

14

1214 1119

18 21

A B C

D E F

G H I

Figure 9-2: The map from Figure 9-1 as a directed graph

Using the directed graph, we put the data into the tabular form shown
in Table 9-1. This table contains all of the information from the map in
Figure 9-2 that software needs to find the fastest route. In Figure 9-2, for
example, travel time from A to B is 23 seconds; the same information is pro-
vided by the first row of the table. Note that travel in impossible directions,
such as from H to G, is not listed.

Table 9-1: The Data from the Directed
Graph of Figure 9-2 in Tabular Form

From To Time

A B 23

A D 19

B A 15

B C 7

B E 11

C B 9

D A 14

D E 17

178 Chapter 9

Table 9-1 (continued)

From To Time

D G 18

E B 18

E D 9

E F 33

E H 21

F C 12

F E 26

G D 35

G H 25

H E 35

H I 28

I F 14

Best-First Search
Now we’re ready to find the quickest route on the map, which means find-
ing the lowest-cost path from A to I on our graph. Many methods exist for
solving this problem; the variation I’ll describe is a type of algorithm called
a best-first search. Calling this algorithm a “search” may be a little misleading,
because this method doesn’t aim for the destination. Instead, at each step it
finds the best new route from the starting point to any point it hasn’t already
routed to. Eventually, this procedure stumbles upon a route to the destina-
tion, which will be the cheapest route possible from the start to the goal.

Here’s how best-first search works for our
example. All routes starting at A must first travel
to either B or D. The algorithm starts by compar-
ing these two choices, as shown in Figure 9-3.

In these figures, black circles mark the points
we’ve found the best paths to, while gray circles
indicate points we can reach directly from one of
the marked (black) points. The numbers inside the
circles represent the cost of the route to that point.
In each step, the search examines all edges extend-
ing from marked to unmarked points to find the
edge that produces the lowest-cost route. In this first
step, the choice is between the A-to-B edge and the A-to-D edge. Because
the travel time to D is less than the travel time to B, the lowest-cost route
is from A to D, as shown in Figure 9-4.

We’ve just found the cheapest possible route from A to D. No matter
what the rest of the graph looks like, it can’t contain a lower-cost route from
A to D, because this is the lowest-cost route of all routes starting from A. In
the same way, each step will produce a new route that will be the lowest-cost
route possible from A to some other point.

A
0

B
23

D
19

Figure 9-3: The first step
in our best-first search.
Starting from A, we can
travel either to B or D.

Map Routes 179

In the second step, there are four edges to consider: the A-to-B edge
and the three edges extending from D. Again, the algorithm will choose
the edge that creates the fastest new route. In considering the edges
extending from D, we have to include the 19 seconds from A to D. For
example, the time required to travel from A to E through D is the sum
of the A-to-D edge time (19) and the D-to-E edge time (17), which is
36 seconds.

Note that one edge from D leads back to A. In Figure 9-4, the circle at
the end of that edge is white to indicate that it will never be chosen. There’s
no benefit in taking a round trip back to our starting point. More generally,
once a point has been included in a route (marked black in the figures),
later appearances of that point are ignored, because a better route to it has
already been found.

At this stage, the lowest-cost new route is made using the A-to-B edge.
This brings us to the stage shown in Figure 9-5. Again, because we’ve found
the lowest-cost route of all remaining routes, that makes this A-to-B route the
fastest possible way to get from A to B.

We have six edges to consider next, although the edges leading back
to A aren’t contenders. The best choice uses the B-to-C edge to make an
A-to-C route of 30 seconds, as shown in Figure 9-6.

Figure 9-4: In the second step of our search,
the best new route leads to D. Marking D
exposes three new routing possibilities, one
of which leads back to our starting point.

Figure 9-5: The third step in our best-first
search finds the best route to point B.

A
0

B
23

A
33

E
36

G
37

D
19

A
0

B
23

A
33

E
36

E
34

A
38

C
30

G
37

D
19

180 Chapter 9

A
0

B
23

A
33

E
36

E
34

A
38

B
39

C
30

G
37

D
19

Figure 9-6: The fourth step in our search finds the best route to point C.

Finding the fastest route to C doesn’t help us reach our ultimate goal,
though. From C, we can only return to B, to which we already know the
fastest route.

At this stage, the fastest new route is the one going through B to E, as
shown in Figure 9-7.

A
0

B
23

A
33

E
36

E
34

A
38

D
41

B
52

B
39

C
30

G
37

F
52

H
55

D
19

Figure 9-7: The fifth step in our best-first search finds the best route to E.

Map Routes 181

This process continues until we have reached the state shown in Fig-
ure 9-8. At this stage, the lowest-cost new route uses the edge from H to I,
which means we’ve finally identified the best route from A to I.

A
0

B
23

A
33

E
36

E
34

A
38

D
41

B
52

B
39

C
30

D
72

H
62

G
37

E
90

I
83

E
78

C
64

F
52

H
55

D
19

Figure 9-8: The ninth and final step in our best-first search reaches point I.

As shown, the fastest route from A to I is A-B-E-H-I. Looking at our
original map in Figure 9-1 and its graph equivalent in Figure 9-2, we can
see that this corresponds to taking 3rd Street to Kentucky Avenue, taking
a left on 1st Street, and driving one block to our destination.

Reusing Prior Search Results
In this example, the best-first search found not only the fastest route from
A to I, but also the fastest route to every other point on the map. Although
this is an unusual result, the best-first process typically produces a surplus
of information. At a minimum, the search results will also provide the best
routes between intermediate points that lie along the route between the
start and destination points. In our example, the best route from A to I
contains the best routes from B to H, and from E to I, and so on. For this
reason, the results of best-first searches can be stored for later use.

We can even use this data in searches involving points that weren’t part
of the original map data. To see why, consider Figure 9-9. This is the same
directed graph in Figure 9-2 except that it includes a new point, J, that has
edges to A and B.

182 Chapter 9

9 26

915

23 7

3317

25 28

35 35

18

14

1214 1119

18 21

A B C

D E F

G H I

J

3619

Figure 9-9: The directed graph from Figure 9-2 with an additional point, J

Suppose we need to find the fastest route from J to I. Any route from J
begins by going to either A or B. We already know the fastest routes from A
and B to I from the results in Figure 9-8. The fastest route from A to I takes
83 seconds. The fastest route from B to I takes 60 seconds; we find this by
subtracting the A-to-B edge time of 23 seconds from the total A-to-I time
of 83 seconds.

This means that the J-to-I route that starts by heading to A takes
102 seconds—19 seconds to reach A, and 83 seconds to follow the best
route from A to I. The route that heads directly to B takes 96 seconds:
36 seconds to reach B, and 60 seconds from there to reach I. Using the
previous search results makes finding the fastest J-to-I route much
simpler.

Map Routes 183

Finding All the Best Routes at Once
In general, then, storing past search results benefits future searches. This
idea can be extended to efficiently find the best routes between any two
points on a given map, which is known as the all-pairs shortest paths problem.

Floyd’s Algorithm
We’ll solve the all-pairs shortest paths problem using Floyd’s algorithm
(sometimes called the Floyd-Warshall algorithm), which starts with simple
routes of individual edges, then builds longer routes by connecting the
existing routes using each point on the map in turn. This method uses a
grid, the initial state of which is shown in Figure 9-10. At each step in the
process, the grid contains the costs of the best routes between every pair of
points. At the start, the only known routes are the edges that directly con-
nect points, the same data from Figure 9-2 and Table 9-1. For example, the
23 in row A, column B, represents the cost of travel from A to B. The cost is
0 where the “from” and “to” points are the same.

A

B

C -

15

0

A B

23

0

9 0

7

-

C D

19

-

- -

11

-

E F

-

-

- -

-

-

G H

-

-

- -

-

-

I

D

E

F

G -

-

-

14 -

18

-

- -

12

-

- 0

9

-

35 -

26

0

17 -

33

0

- 0

-

-

18 -

21

-

25 -

-

-

-

H

I -

- -

- -

- -

- -

35 -

14 -

- 0

- 0

28

from
to

Figure 9-10: The initial grid of numbers for Floyd’s algo-
rithm. At this stage the only routes in the grid are the
direct connections between points.

As the process continues, this grid will be filled in and modified. New
routes will be added where none initially exist, such as from A to F. Routes
with lower costs will replace existing routes; if we can find a way to get from
G to D in less than 35 seconds, for example, we’ll replace the 35 currently
in the grid.

We start by considering point A as a route connector. From Figure 9-10,
we can see that B and D have routes to A. Because A has routes back to B
and D, A can connect B to D and D to B. These new routes are shown as
gray squares in Figure 9-11.

184 Chapter 9

A

B

C -

0

A B

23

0

9 0

7

-

C D

19

34

- -

11

-

E F

-

-

- -

-

-

G H

-

-

- -

-

-

I

D

E

F

G -

-

-

14 37

18

-

- -

12

-

- 0

9

-

35 -

26

0

17 -

33

0

- 0

-

-

18 -

21

-

25 -

-

-

-

H

I -

- -

- -

- -

- -

35 -

14 -

- 0

- 0

28

from
to

15

Figure 9-11: Discovering new routes using point A as a connector

The cost of new routes is the sum of the costs of the two routes we are
connecting. In Figure 9-11, the cost of the B-to-D route (34) is the cost of
the B-to-A route (15) plus the cost of the A-to-D route (19), as indicated
by the arrows. The cost of the D-to-B route (37) is computed the same way,
as the sum of the D-to-A route (14) and the A-to-B route (23).

In the next step, we use point B to connect existing routes. This produces
a whopping eight new routes, as shown in Figure 9-12.

A

B

C 24

15

0

A B

23

0

9 0

7

30

C D

19

34

43 20

11

34

E F

-

-

- -

-

-

G H

-

-

- -

-

-

I

D

E

F

G -

-

33

14 37

18

-

- -

12

25

44 0

9

-

35 -

26

0

17 -

33

0

- 0

-

-

18 -

21

-

25 -

-

-

-

H

I -

- -

- -

- -

- -

35 -

14 -

- 0

- 0

28

from
to

Figure 9-12: Discovering new routes using point B as a connector

Map Routes 185

As with the previous step, the cost of each new route is the sum of the
costs of the two routes we are connecting. For example, the cost of the new
A-to-E route (34) is the sum of the A-to-B cost (23) and the B-to-E cost (11).

In the next step, using C to connect existing routes reveals three new
routes, as shown in Figure 9-13.

A

B

C 24

15

0

A B

23

0

9 0

7

30

C D

19

34

43 20

11

34

E F

-

-

- -

-

-

G H

-

-

- -

-

-

I

D

E

F

G -

36

33

14 37

18

21

- -

12

25

44 0

9

55

35 -

26

0

17 -

33

0

- 0

-

-

18 -

21

-

25 -

-

-

-

H

I -

- -

- -

- -

- -

35 -

14 -

- 0

- 0

28

from
to

Figure 9-13: Discovering new routes using point C as a connector

In the next step, we have our first instance of a better route. Previously we
found a 33-second route from E to A. In this step, we discover a 23-second
route from E to A through D, and update the grid with the lower cost. Nine
new routes are also found, bringing us to the state shown in Figure 9-14.

A

B

C 24

15

0

A B

23

0

9 0

7

30

C D

19

34

43 20

11

34

E F

-

-

- 61

52

37

G H

-

-

- -

-

-

I

D

E

F

G 49

36

23

14 37

18

21

72 79

12

25

44 0

9

55

35 52

26

0

17 -

33

0

- 0

73

27

18 -

21

-

25 -

-

-

-

H

I -

- -

- -

- -

- -

35 -

14 -

- 0

- 0

28

from
to

Figure 9-14: Discovering new routes using point D as a connector

186 Chapter 9

This process continues, using the points E through I to connect routes
in turn, resulting in the complete grid shown in Figure 9-15. By relating the
points back to the street names on the original map, routing software can
use this grid to provide the fastest time between any two locations on the
map. If you want to know how many seconds it should take to get from the
corner of 1st and West to the corner of 3rd and Morris, the software will
translate this into a query about the G-to-C route on the graph. Then the
answer can be found right there in the grid: 77 seconds.

A

B

C 24

15

0

A B

23

0

9 0

7

30

C D

19

20

29 20

11

34

E F

67

44

53 47

38

37

G H

55

32

41 69

60

83

I

D

E

F

G 49

36

23

14 35

18

21

70 77

12

25

42 0

9

35

35 52

26

0

17 50

33

0

67 0

53

27

18 38

21

47

25 53

75

49

66

H

I 50

58 53

35 26

54 44

49 40

35 42

14 67

62 0

61 0

28

from
to

Figure 9-15: The complete grid produced by Floyd’s
algorithm, showing the fastest time possible from
each point to every other point

Storing Route Directions
What this grid doesn’t tell you, as you may have noticed, is what that fast-
est route is—only how much time it takes. For example, you can see that
the fastest route from A to I takes 83 seconds, but does that route begin
by going east or south, and where do you make the first turn? In order to
record the route itself, we must record the initial direction of the routes
when updating route times in the grid.

Figure 9-16 shows the starting grid. As before, the grid will be used to
store the costs of the best routes found so far, but now it will also store the
initial direction of travel for each route. This starting grid contains just the
edges of the original graph. The 23 and B in the second column of the first
row means the best route from A to B costs 23 and starts by heading toward B.

Map Routes 187

A

B

C

A B C D E F G H I

D

E

F

G

H

I

from
to

0
-

23
B

-
-

19
D

-
-

-
-

-
-

-
-

-
-

15
A

0
-

7
C

-
-

11
E

-
-

-
-

-
-

-
-

-
-

9
B

0
-

-
-

-
-

-
-

-
-

-
-

-
-

14
A

-
-

-
-

0
-

17
E

-
-

18
G

-
-

-
-

-
-

18
B

-
-

9
D

0
-

33
F

-
-

21
H

-
-

-
-

-
-

12
C

-
-

26
E

0
-

-
-

-
-

-
-

-
-

-
-

-
-

35
D

-
-

-
-

0
-

25
H

-
-

-
-

-
-

-
-

-
-

35
E

-
-

-
-

0
-

28
I

-
-

-
-

-
-

-
-

-
-

14
F

-
-

-
-

0
-

Figure 9-16: The initial grid for Floyd’s algorithm,
amended to store the direction of travel for each route

In Figure 9-17, we use A to connect existing routes, as we did in Figure 9-11.
But now, adding or updating a route in the grid means recording the direc-
tion as well. The new route from B to D, for example, begins by going to A.
The logic is: “We’ve just discovered a route from B to D that goes through
A. The fastest known route from B to A heads directly to A. Therefore, the
route from B to D must also start by going to A.”

A

B

C

A B C D E F G H I

D

E

F

G

H

I

from
to

0
-

23
B

-
-

19
D

-
-

-
-

-
-

-
-

-
-

15
A

0
-

7
C

34
A

11
E

-
-

-
-

-
-

-
-

-
-

9
B

0
-

-
-

-
-

-
-

-
-

-
-

-
-

14
A

37
A

-
-

0
-

17
E

-
-

18
G

-
-

-
-

-
-

18
B

-
-

9
D

0
-

33
F

-
-

21
H

-
-

-
-

-
-

12
C

-
-

26
E

0
-

-
-

-
-

-
-

-
-

-
-

-
-

35
D

-
-

-
-

0
-

25
H

-
-

-
-

-
-

-
-

-
-

35
E

-
-

-
-

0
-

28
I

-
-

-
-

-
-

-
-

-
-

14
F

-
-

-
-

0
-

Figure 9-17: Discovering new routes using point A as
a connector

188 Chapter 9

Skipping over the steps for B and C, Figure 9-18 shows the grid just
after we’ve added the routes for D. Here we’ve found a new route from B to
G that takes 52 seconds. Because this new route goes through D, the route
must begin the same way the route to D begins—by traveling to A.

A

B

C

A B C D E F G H I

D

E

F

G

H

I

from
to

0
-

23
B

30
B

19
D

34
B

-
-

37
D

-
-

-
-

15
A

0
-

7
C

34
A

11
E

-
-

52
A

-
-

-
-

24
B

9
B

0
-

43
B

20
B

-
-

61
B

-
-

-
-

14
A

37
A

44
A

0
-

17
E

-
-

18
G

-
-

-
-

23
D

18
B

25
B

9
D

0
-

33
F

27
G

21
H

-
-

36
C

21
C

12
C

55
C

26
E

0
-

73
C

-
-

-
-

49
D

72
D

79
D

35
D

52
D

-
-

0
-

25
H

-
-

-
-

-
-

-
-

-
-

35
E

-
-

-
-

0
-

28
I

-
-

-
-

-
-

-
-

-
-

14
F

-
-

-
-

0
-

Figure 9-18: Discovering new routes using point D as
a connector

Figure 9-19 shows the completed grid, with the times removed for clarity.

A

B

C B

A

-

A B

B

-

B -

C

B

C D

D

E

B B

E

B

E F

B

E

B B

E

D

G H

B

E

B B

E

B

I

D

E

F

G D

C

D

A E

B

C

D D

C

B

E -

D

E

D D

E

-

E E

F

-

H -

E

D

G E

H

E

H H

E

H

E

H

I F

E E

F F

I E

F F

E I

F F

E -

F -

I

from
to

Figure 9-19: The complete routing grid produced by Floyd’s
algorithm, showing the direction of travel. The fastest route
from A to I is highlighted.

Map Routes 189

The fastest route from A to I is highlighted in the grid. We start at row
A, column I, and see the fastest route from A to I starts by going to B. So
then we look at row B and see the fastest route from B to I heads to E. The
route from E heads to H, and the route from H reaches I. Using this grid is
like stopping at every street corner and asking, “Which way should I turn?”

The Future of Routing
Today’s software can provide accurate directions in an instant, so what can
tomorrow’s mapping software possibly do better?

Improvements in mapping will come from improvements in data. For
example, if the software has access to hourly traffic data, it can tailor direc-
tions to the time of the trip.

Real-time traffic data may also be integrated into mapping software.
For example, most mapping programs don’t know about traffic issues
until the user requests a new route. In the future, your mapping software
may find out about accidents and road closures before you do and route
you around the problems. Weather data may also be included to provide
more accurate estimates of travel time, and to accommodate the prefer-
ences of drivers who wish to avoid driving in heavy rain or other troubling
conditions.

Routing is just a small part of a larger area of software called geographic
information systems (GIS), which uses software to answer questions about
maps and location-tagged data. Some GIS tasks have nothing to do with
routing, such as determining if an area contains enough potential custom-
ers to support a new grocery store. But many interesting GIS projects com-
bine the map routing concepts from this chapter with data about what’s
inside buildings along a map’s roadways. By tracking where schoolchildren
live, for example, GIS software can plan the most efficient routes for school
buses.

In the future, routing software may expand to encompass more of the
abilities of general GIS tools. When you need a route for a long drive out of
town, the software may not provide just the turns you need to take, but also
highlight places where you might want to stop, like the best-priced gas sta-
tions and the restaurants that serve your favorite food.

Numbers
2001: A Space Odyssey, 142
2D graphics, 61–69
3D graphics, 69. See also rendering

A
acquire operation, 168, 170
adder circuit, 164
additive color mixing, 60
AES (Advanced Encryption Standard),

9–18, 55
block chaining, 15, 55
combining with RSA, 48–49
data organization under, 11
key expansion, 13–14
overview, 12
performance vs. RSA, 48
possible weaknesses, 17–18
S-box, 13, 14
security of, 16

aliasing, 66, 80, 99
all-pairs shortest path, 183. See also

Floyd’s algorithm
alpha blending, 67–68, 82
alpha channel, 68, 78, 82
alpha level, 67
ambient lighting, 96–97
ambient occlusion, 96
American Standard Code for

Information Interchange
(ASCII), 12, 20–22, 119–120

AND (bitwise operation), 23, 25
angle of incidence, 74, 75
angle of reflectance, 74
animation

cel, 59
ink and paint, 59, 65
interpolation, 63

anti-aliasing, 66–67
alpha blending, 67–68
full-screen, 80
FXAA, 111
multisampling, 111
post-process, 111

real-time, 108–113
supersampling, 109

ASCII (American Standard Code for
Information Interchange),
12, 20–22, 119–120

atomic operation, 169
attacks, 2

brute-force, 5, 16, 20, 47
collision, 26
dictionary, 28
frequency analysis, 6, 9, 15, 17
known-plaintext, 6
man-in-the-middle, 52, 56
related-key, 17
timing, 17

authentication, 19, 26, 34. See also RSA
authority, 51, 53
avalanche, 17, 21
Avatar, 69
axis, 61

B
best-first search, 178–181

marked points, 178, 179, 180
reusing results, 181–182
surplus information, 181

B-frame, 139
bidirectional frame, 139
bilinear filtering, 101

in FXAA, 112
binary, 10

ASCII, 12
bit, 10
byte, 10
search, 151

binary addition, 22
binary search, 151–152, 153
binary semaphore, 168
bit, 10
bitmap, 61, 116

alpha channel, 68, 78, 82
coordinate, 61
depth buffer, 91, 95, 96
display buffer, 61
height map, 106

I N D E X

192 Index

bitmap (continued)
mipmap, 102
origin, 61
resolution, 61
shadow map, 95
texture, 97
translucency, 68, 78

bitwise operations, 11
AND, 23, 25
binary addition, 22
NOT, 23, 25
OR, 23, 25
rotation, 14
XOR, 11, 14, 15

bitwise rotation, 14
Blair Witch Project, The, 142
block chaining, 15
blue difference (Cb), 124
Blu-ray, 116, 143
brute force attack, 5, 16, 20, 47
buffer, shared, 163
buffering, 143
bump mapping, 106, 107
byte, 10

C
Cb (blue difference), 124
cel animation, 59
central processing unit. See CPU

(central processing unit)
certificate, 53
CGI (computer-generated imagery),

57–59, 82–83. See also
3D graphics; rendering

chain merging, 31
cipher key. See key (encryption)
ciphertext, 2, 3, 8
circular wait, 172
clear reflection, 103
client, 52
Cloverfield, 142
code book, 9
coefficient, 126
collision, 20, 26
collision attack, 26
color

additive, 60
RGB, 60, 116, 124
subtractive, 60, 76
YCbCr, 124

composite number, 40
compression, 116

deflate, 122
dictionary, 118–122

Huffman encoding, 120, 134
of JPEG pixel blocks, 132
lossless, 116
lossy, 116, 124
MPEG-2, 138
predictive encoding, 122
quantization, 123, 132
run-length encoding, 117, 123,

133, 142
sliding window, 122
temporal, 138
TGA file format, 117
.zip file format, 122

compression ratio, 118
dictionary compression, 120
JPEG, 135
MPEG-4, 143
TGA, 118
.zip file, 122

computer security. See security
computer vision, 160
computer-generated imagery (CGI),

57–59, 82–83. See also
3D graphics; rendering

concurrency, 161
atomic operation, 169
deadlock, 172
multitasking, 162–163, 174
multiuser environments, 162
performance, 162
print spooling, 162
problems of, 163–166
race condition, 165–169
read-only data, 166, 173
semaphore, 168–174
shared buffer, 163
starvation, 170, 172, 173
transaction, 166–167

control point, 62
coordinates, 61

axis, 61
control point, 62
conversion, 61, 71, 88, 96
interpolation, 63
local, 62
model, 62
origin, 61
projection, 71
scaling, 64
screen, 61, 88, 96
translation, 64
world, 70, 88
x, 61
y, 61
z, 69

Index 193

coprime number, 40
core, 86, 162, 174
cost, 175, 178, 183, 184

computing route cost, 179, 182
defining per problem, 175

CPU (central processing unit), 86
adder, 164
core, 86, 162, 174
performance characteristics, 86
test-and-set, 169
updating data, 163, 165

Cr (red difference), 124
crack, 17
crib, 6, 9, 16
cut scene, 86

D
data collection, 146

dynamic, 154
hash table, 154
static, 154

data compression. See compression
DCT (discrete cosine transform),

125–131, 141
deadlock, 172
deblocking filter, 143
decimal, 10
decryption, 2
deep web, 157
deflate, 122
depth buffer, 91, 95, 96
depth buffering, 91–92
dictionary, 28
dictionary attack, 28
dictionary compression, 118–122
diffuse reflection, 74, 77, 92, 93, 107
diffusion, 16
digital composition, 82
digital image, 59
digital signature, 25–26, 53

validation, 53
weaknesses, 26

direct lighting, 76
directed graph, 176

coverting to table, 176
edge, 176
point, 176

discrete cosine transform (DCT),
125–131, 141

display buffer, 61
dissolve, 82
distance effect, 72–73, 92
distant impostor, 106, 108
dynamic data collection, 154

E
edge, 176
encryption, 2

avalanche, 17
crack, 17
diffusion, 16
key. See key (encryption)
one-time pad, 9
public-key, 38
RSA. See RSA
shared key problem, 18, 37
substitution, 6
symmetric key, 18
transposition, 2

environment mapping, 103–105
exclusive-or. See XOR

F
factor, 40, 41
fast approximate anti-aliasing

(FXAA), 111
field of view, 89
finding the shortest path, 175
fixed-size storage, 152, 153
Floyd’s algorithm, 183–189

connecting routes, 183, 187
grid, 183, 186
improving routes, 185
route directions, 186–189

focus, 79
fps (frames per second), 59, 116, 144
frame, 59, 116

buffering, 143
macroblock, 139

frame rate, 59
frames per second (fps), 59, 116, 144
frequency analysis, 6, 9, 15, 17
full-screen anti-aliasing, 80
functions, 39

hash, 20–21
invertible, 39–42
one-way, 39, 42
square, 39
square root, 39
trapdoor, 40

FXAA (fast approximate
anti-aliasing), 111

G
geographic information

systems (GIS), 189
global illumination model, 76

194 Index

GPU (graphics processing unit), 87, 90
granularity, 173
graph, directed. See directed graph
graphics accelerator, 86
graphics processing unit (GPU), 87, 90
group of pictures, 138

H
H.264 standard, 143
handshaking, 52–54
hash chaining, 29–31

chain merging, 31
reduction function, 29, 31

hash table, 29, 31
hashing, 20–23, 154–156

avalanche, 17, 21
collision, 20, 26
desirable properties, 20–21
digital signature. See digital signature
encoded password, 21
irreversibility, 20, 25
iterative, 32–33
keyed, 55
MAC, 55
MD5. See MD5
reduction function, 29, 31
rehashing, 156
salt, 34, 35
slot, 154
tombstone, 156

height map, 106
HTTPS, 52–56

authority, 53
certificate, 53
handshaking, 52–54
issuer, 53
MAC, 55
master secret, 54
premaster secret, 53
security of, 55–56
session, 52
transmission, 54–56

Huffman encoding, 120, 142
code creation, 120
in JPEG, 134

I
IDCT (inverse discrete cosine

transform), 127
I-frame, 138, 139
images

digital, 51–60
searching for, 160

inbound link, 158
indexing, 152–154
indirect lighting, 76
ink and paint, 59, 65
interpolation, 63
intracoded frame, 138
inverse discrete cosine transform

(IDCT), 127
issuer, 53
iterative hashing, 32–33

J
jaggies, 66, 80, 89, 109, 112
Joint Photography Experts Group, 123
JPEG, 123–136

adjusting quality, 135
compressing pixel blocks, 132
compression ratio, 135
DCT, 125
picture quality, 135–136

Jurassic Park, 57–58

K
Kerckhoffs’s principle, 4, 5, 27, 33
key (encryption), 4

AES, 9–14
asymmetric, 38
code book, 9
expansion, 9
keyed hashing, 55
MAC, 55
private, 38, 44, 45, 50
public, 38, 43, 44, 45, 50
related-key attack, 17
shared key problem, 18, 37
size, 20, 47
symmetric, 18

key (search), 146, 151
key expansion, 9
keyframe, 59
known-plaintext attack, 6

L
Lady and the Tramp, 59
LaserDisc, 116
LCD (liquid crystal display), 60
light-emitting diode (LED), 60
lighting, 71–80

ambient, 96–97
angle of incidence, 74, 75
angle of reflectance, 74
bump mapping, 106, 107

Index 195

diffuse reflection, 74, 77, 92, 93, 107
direct, 76
distance effect, 72–73, 92
indirect, 76
model, 72
normal, 92, 93, 107
ray tracing. See ray tracing
real-time, 92–97
reflection, 80

clear, 103
environment mapping, 103–105

shadow. See shadow
specular reflection, 75, 77, 92, 107

link farming, 159
links

farming, 159
inbound, 158
pass-through, 159

liquid-crystal display (LCD), 60
local coordinate, 62
lossless compression, 116
lossy compression, 116, 124
luminance, 124

M
MAC, 55
macroblock, 139

deblocking filter, 143
man-in-the-middle attack, 52, 56
map

converting to table, 176
directed graph, 176
routing. See routing

massively multiplayer online
game (MMO), 164

master secret, 54
matrix, 128
matrix multiplication, 126
MD5, 21–25

digital signature, 25–26
encoding password for, 21–22
quality of, 25
round, 24–25

message authentication code, 55
mipmap, 102
MMO (massively multiplayer

online game), 164
model, 61–63, 70, 87

ambient light, 96
bump mapping, 106
control point, 62
distant impostor, 106
drawing, transforming into, 62, 88,

93, 105

global illumination, 76
interpolation, 63
lighting, 72
line, 62
scaling, 64
tessellation, 107–108
translation, 64

Mortal Kombat, 85
movie-quality rendering, 70, 82–83
MPEG-2, 138–142

adjusting quality, 139
B-frame, 139
GOP, 138, 142
I-frame, 138, 139
macroblock, 139
P-frame, 139

MPEG-4, 143
multisample anti-aliasing (MSAA),

110–111
vs. supersampling, 111

multitasking, 162–163, 174

N
nearest-neighbor sampling, 99–100,

101, 143
normal, 92, 93, 107
NOT (bitwise operation), 23, 25
numerical address, 153

O
offset, 139
one-time pad, 9
one-way function, 39, 42
optical printer, 82
OR (bitwise operation), 23, 25
origin, 61

P
packet, 118
painter’s algorithm, 90
partition, 147
pass-through link, 159
password, 6, 19

common, 28, 29
encoding, 21–22
hashing, 20–23
salt, 34, 35
storage service, 35–36
table, 26, 27

performance scaling, 150
persistence of vision, 59
P-frame, 139

196 Index

Phineas and Ferb, 69
pivot, 147
pixel, 59, 66

alpha channel, 68
alpha level, 67, 78, 82
bitmap, 61
contrast, 112
depth, 91, 95, 96
luminance, 124
raw, 117
run, 117
sampling, 97
shader, 92. See also lighting
subpixel, 110
texel, 98
variation in photographs, 123

plaintext, 2, 3, 4, 8, 27, 28
known-plaintext attack, 6

polyalphabetic substitution, 7–9
polygon, 88. See also triangle
post-process anti-aliasing, 111
precomputed hash table, 29, 31
predicted frame, 139
predictive encoding, 122
prefix code, 121
premaster secret, 53
prime number, 40

as factor, 41
coprime, 40

prime-product, 42, 44, 45
print spooling, 162
private key, 38, 44, 45, 50
process, 162
projection, 71, 88, 96

field of view, 89
ray tracing, 77

public key, 38, 43, 44, 45, 50

Q
quantization, 123, 132, 141
queue, 163, 170
quicksort, 147–150

partition, 147
pivot, 147
sublist, 149

R
race condition, 165–169
rasterization, 65–68, 89
raw pixel, 117
ray tracing, 77–81, 105

anti-aliasing, 80
focus, 79

laws of optics, 79
performance, 87
projection, 77
reflection, 80
shadow, 79

read semaphore, 173
read-only data, 166, 173
real-time lighting, 92–97
record, 146
red difference (Cr), 124
reduction function, 29, 31
reflection, 80

clear, 103
environment mapping, 103–105

rehashing, 156
related-key attack, 17
release operation, 168
renderer, 69
rendering, 69

2D, 61–69
budget, 113
depth buffering, 91–92
depth ordering, 89–92
field of view, 89
focus, 79
lighting, 71–80
movie-quality, 70, 82–83
pixel shader, 92
polygon, 88
projection, 71
rasterization, 89
ray tracing, 77–81
realism, 72, 79, 94, 96, 105
reflection, 80
translucency, 78
triangle, 88, 90
viewpoint, 71

resolution, 61
RGB color system, 60, 124

vs. YCbCr, 124
Rivest, Shamir, and Adleman method.

See RSA (Rivest, Shamir, and
Adleman method)

robot, 157, 160
rotation, 14
routing

cost, 175, 178, 179, 182, 183, 184
directed graph, 176
finding the shortest path, 175
using real-time data, 189

RSA (Rivest, Shamir, and Adleman
method), 42–51

authentication, 49–51
authority, 51

Index 197

bidirectional transmission, 47
combining with AES, 48–49
effectiveness, 45–47
encryption process, 44–45
key creation, 42–44
key size, 47
performance, 47–48
prime-product, 42, 44, 45
real-world use, 47–49
totient, 43, 45

run of pixels, 117
run-length encoding, 117, 123, 133, 142

S
salt method, 34, 35
sampling, 97

bilinear filtering, 101, 112
mipmap, 102
nearest-neighbor, 99–100, 101, 143
trilinear filtering, 102–103

S-box, 13, 14
scaling, 64, 150
screen coordinate, 61, 88, 96
screen space ambient occlusion (SSAO),

96–97
search, 29, 145

all-pairs shortest path, 183
best-first, 178–181
binary, 151–152, 153
engine, 157
images, 160
location use, 160
page ranking, 158–159
robot, 157, 160
sequential, 146, 153
Sitemap, 157
storage requirements, 153
term, 159–160
Web, 157–160

security, 1, 17, 19, 35
of AES, 16
best practices, 6, 27, 29, 34, 56
single point of defense, 27
Web, 52–56

selection sort, 146
performance scaling, 150

semaphore, 168–174
acquire, 168, 170
binary, 168
circular wait, 172
granularity, 173
implementation, 169
performance, 172–174

read, 173
release, 168
spin lock, 169
test-and-set, 169
wait list, 170
write, 173

sequential search, 146, 153
server, 52
session, 52
shadow, 79, 94–97

ambient occlusion, 96
mapping, 94–95
quality, 95

shadow map, 95
shared buffer, 163
shared key problem, 18, 37
signature. See digital signature
simple substitution, 6
Simpsons, The, 69
single point of defense, 27
Sitemap, 157
sliding window, 122
slot, 154
sort, 146

quicksort, 147
selection sort, 146

specular reflection, 75, 77, 92, 107
spin lock, 169
square function, 39
square root function, 39
SSAA (supersampling anti-aliasing),

109–110
vs. multisampling, 111

SSAO (screen space ambient occlusion),
96–97

starting variable, 15
starvation, 170, 172, 173
static data collection, 154
storage

address, 153
fixed-size, 152, 153
requirements for search, 153
variable-size, 152, 153

subpixel, 110
substitution, 6–9

polyalphabetic, 7
S-box, 13
simple, 6
tabula recta, 7

subtractive color mixing, 60, 76
supersampling anti-aliasing (SSAA),

109–110
vs. multisampling, 111

surface normal. See normal
symmetric key, 18

198 Index

T
tabula recta, 7
temporal compression, 138
temporal redundancy, 138, 142
tessellation, 107–108
test-and-set, 169
texel, 98
texture mapping, 97–103, 143

bump mapping, 106
sampling, 97

TGA file format, 117
compression ratio, 118
packet, 118

Theora, 143
timing attack, 17
tombstone, 156
Toon Boom, 69
Toonz, 69
totient, 43, 45
transaction, 164, 166–167
translation, 64
translucency, 68, 78
transposition, 2–6

rotation, 14
trapdoor function, 40
triangle, 88, 90, 107
trilinear filtering, 102–103, 143
trivial factor, 40
tweening, 59

automatic, 63–64

U
ultra high definition video (UHD), 144

V
variable-size storage, 152, 153
vector, 126
video streaming, 116
videocassette, 115
view angle, 74
viewpoint, 71
virtual camera, 71

W
War and Peace, 122
web search, 157–160
web session, 52
world coordinate, 70, 88
write semaphore, 173

X
x-axis, 61
x-coordinate, 61
XOR (bitwise operation), 11, 14, 15

Y
y-axis, 61
YCbCr color system, 124

vs. RGB, 124
y-coordinate, 61
Y (luminance), 124

Z
z-coordinate, 69
.zip file format, 122

T H E M A G I C B E H I N D E N C R Y P T I O N ,

C G I , S E A R C H E N G I N E S , A N D

O T H E R E V E R Y D A Y T E C H N O L O G I E S

V . A N T O N S P R A U L

H O W
S O F T W A R E

W O R K S

H O W
S O F T W A R E

W O R K S

SHELVE IN:
COM

PUTERS/COM
PUTER SCIENCE

$29.95 ($34.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

“ I L I E F LAT .”

Th is book uses a durab le b ind ing that won’t snap shut.

Software drives the modern world, but its inner
workings remain a mystery to many. It’s the force
behind stunning CGI graphics, safe online shopping,
and speedy Google searches. We use software every
day, but not all of us understand exactly how it works.

If you’ve ever wondered what really goes on behind
your computer screen, How Software Works will give
you a fascinating look into the software around you.
For example, you’ll learn how computer-generated
animation can be combined with real-world footage to
create realistic special effects, how videogames render
graphics in real time, how hash functions scramble
passwords to protect them from attacks, and how
Google ranks search results.

You’ll also learn:

• How encryption works and how different standards
can be attacked

• How video is compressed for online streaming

• How data is searched (and found) in huge databases

• How programs work together on the same problem
without conflict

• How software interprets a map and directs you
where to go

How Software Works is written in plain English, with
patient explanations and intuitive diagrams that anyone
can understand. No technical background is required,
and there’s no code.

You don’t have to be a computer scientist to understand
how computers perform the common-yet-amazing tasks
that we take for granted every day. Start unraveling the
mysteries of software with How Software Works.

A B O U T T H E A U T H O R

V. Anton Spraul has taught introductory programming
and computer science to students from all over the
world for more than 15 years. He is the author of Think
Like a Programmer (No Starch Press) and Computer
Science Made Simple (Broadway).

A L O O K I N S I D E
T H E S E C R E T

W O R L D O F
S O F T W A R E

A L O O K I N S I D E
T H E S E C R E T

W O R L D O F
S O F T W A R E

	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who This Book Is For
	Topics Covered
	Behind the Magic

	Chapter 1: Encryption
	The Goal of Encryption
	Transposition: Same Data, Different Order
	Cipher Keys
	Attacking the Encryption

	Substitution: Replacing Data
	Varying the Substitution Pattern
	Key Expansion

	The Advanced Encryption Standard
	Binary Basics
	AES Encryption: The Big Picture
	Key Expansion in AES
	AES Encryption Rounds
	Block Chaining
	Why AES Is Secure
	Possible AES Attacks

	The Limits of Private-Key Encryption

	Chapter 2: Passwords
	Transforming a Password into a Number
	Properties of Good Hash Functions

	The MD5 Hash Function
	Encoding the Password
	Bitwise Operations
	MD5 Hashing Rounds
	Meeting the Criteria of a Good Hash Function

	Digital Signatures
	The Problem of Identity
	Collision Attacks

	Passwords in Authentication Systems
	The Dangers of Password Tables
	Hashing Passwords
	Dictionary Attacks
	Hash Tables
	Hash Chaining
	Iterative Hashing
	Salting Passwords
	Are Password Tables Safe?

	Password Storage Services
	A Final Thought

	Chapter 3: Web Security
	How Public-Key Cryptography Solves the
Shared Key Problem
	Math Tools for Public-Key Cryptography
	Invertible Functions
	One-Way Functions
	Trapdoor Functions

	The RSA Encryption Method
	Creating the Keys
	Encrypting Data with RSA
	RSA Effectiveness
	RSA Use in the Real World
	RSA for Authentication

	Security on the Web: HTTPS
	Handshaking
	Transmitting Data Under HTTPS

	The Shared Key Problem Solved?

	Chapter 4: Movie CGI
	Software for Traditional Animation
	How Digital Images Work
	How Colors Are Defined
	How Software Makes Cel Animations
	From Cel Animation Software to Rendered 2D Graphics

	Software for 3D CGI
	How 3D Scenes Are Described
	The Virtual Camera
	Direct Lighting
	Global Illumination
	How Light Is Traced
	Full-Scene Anti-Aliasing

	Combining the Real and the Fake
	The Ideal of Movie-Quality Rendering

	Chapter 5: Game Graphics
	Hardware for Real-Time Graphics
	Why Games Don’t Ray Trace
	All Lines and No Curves
	Projection Without Ray Tracing
	Rendering Triangles
	The Painter’s Algorithm
	Depth Buffering

	Real-Time Lighting
	Shadows
	Ambient Light and Ambient Occlusion
	Texture Mapping
	Nearest-Neighbor Sampling
	Bilinear Filtering
	Mipmaps
	Trilinear Filtering

	Reflections
	Faking Curves
	Distant Impostors
	Bump Mapping
	Tessellation

	Anti-Aliasing in Real Time
	Supersampling
	Multisampling
	Post-Process Anti-Aliasing

	The Rendering Budget
	What’s Next in Game Graphics

	Chapter 6: Data Compression
	Run-Length Encoding
	Dictionary Compression
	The Basic Method
	Huffman Encoding

	Reorganizing Data for Better Compression
	Predictive Encoding
	Quantization

	JPEG Images
	A Different Way to Store Colors
	The Discrete Cosine Transformation
	The DCT for Two Dimensions
	Compressing the Results
	JPEG Picture Quality

	Compressing High-Definition Video
	Temporal Redundancy
	MPEG-2 Video Compression
	Video Quality with Temporal Compression

	The Present and Future of Video Compression

	Chapter 7: Search
	Defining the Search Problem
	Putting Data in Order
	Selection Sort
	Quicksort

	Binary Search
	Indexing
	Hashing
	Searching the Web
	Ranking Results
	Using the Index Effectively

	What’s Next for Web Search

	Chapter 8: Concurrency
	Why Concurrency Is Needed
	Performance
	Multiuser Environments
	Multitasking

	How Concurrency Can Fail
	Making Concurrency Safe
	Read-Only Data
	Transaction-Based Processing
	Semaphores

	The Problem of Indefinite Waits
	Orderly Queues
	Starvation from Circular Waits

	Performance Issues of Semaphores
	What’s Next for Concurrency

	Chapter 9: Map Routes
	What a Map Looks Like to Software
	Best-First Search
	Reusing Prior Search Results

	Finding All the Best Routes at Once
	Floyd’s Algorithm
	Storing Route Directions

	The Future of Routing

	Index

