

computer science
AN OVERVIEW

This page intentionally left blank

A N O V E R V I E W

computer science

J. Glenn Brookshear

with contributions from

David T. Smith
Indiana University of Pennsylvania

Dennis Brylow
Marquette University

11th Edition

Addison-Wesley

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Editor-in-Chief: Michael Hirsch
Editorial Assistant: Stephanie Sellinger
Vice President of Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Kayla

Smith-Tarbox
Senior Operations Supervisor: Lisa McDowell
Art Directors: Jayne Conte and Kristine

Carney

Cover Designer: Rachael Cronin
Cover Image: “Slot Canyon”

© gettyimages® Inc.
RF Media Editor: Dan Sandin and Wanda

Rockwell
Project Management: GEX Publishing Services
Composition and Illustration: GEX Publishing

Services
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix

Color/Hagerstown

Credits
Figure 0.3: “An abacus ”. © Wayne Chandler. Figure 0.4: “The Mark I computer.” Courtesy of
IBM corporate archives. Unauthorized use is not permitted. Figure 10.1: “A photograph of a viral
world produced by using 3D graphics (from Toy Story by Walt Disney/Pixar Animation Studios) ©
Disney/Pixar. Figure 10.6: “A scene from Shrek 2 by Dreamworks SKG. © Dreamworks/
Picture Desk Inc./Kobal collection. Figure 11.19: “Results of using a neural network to classify
pixels in an image.” Inspired by www.actapress.com. Chapter 11, Robots Making History
feature: a. “A soccer robot kicks a ball during the RoboCup German Open 2010 on April 15, 2010
in Magdeburg, eastern Germany.” © Jens Schlueter/AFP/ Getty Images/ Newscom. b. “Tartan
Racing’s “Boss—winner of the Urban Challenge, a contest sponsored by DARPA to have vehicles
drive themselves an urban environment.” © DARPA. c. “One of NASA’s rovers—a robot geologist
exploring the surface of Mars.” Courtesy of NASA/JPL-Caltech.

Copyright © 2012, 2009, 2007, 2005, 2003 Pearson Education, Inc., publishing as Addison-
Wesley. All rights reserved. Manufactured in the United States of America. This publication is
protected by Copyright, and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s)
to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Catologing-in-Publication Data available upon request.

10 9 8 7 6 5 4 3 2 1—EB—14 13 12 11 10

ISBN 10: 0-13-256903-5
ISBN 13: 978-0-13-256903-3

www.actapress.com
www.actapress.com

v

This book presents an introductory survey of computer science. It explores the
breadth of the subject while including enough depth to convey an honest appre-
ciation for the topics involved.

Audience
I wrote this text for students of computer science as well as students from
other disciplines. As for computer science students, most begin their studies
with the illusion that computer science is programming, Web browsing, and
Internet file sharing since that is essentially all they have seen. Yet computer
science is much more than this. In turn, beginning computer science stu-
dents need exposure to the breadth of the subject in which they are planning
to major. Providing this exposure is the theme of this book. It gives students
an overview of computer science—a foundation from which they can appreci-
ate the relevance and interrelationships of future courses in the field. This
survey approach is, in fact, the model used for introductory courses in the
natural sciences.

This broad background is also what students from other disciplines need if
they are to relate to the technical society in which they live. A computer science
course for this audience should provide a practical, realistic understanding of the
entire field rather than merely an introduction to using the Internet or training
in the use of some popular software packages. There is, of course, a proper place
for training, but this text is about educating.

Thus, while writing this text, maintaining accessibility for nontechnical stu-
dents was a major goal. The result is that previous editions have been used suc-
cessfully in courses for students over a wide range of disciplines and educational
levels, ranging from high school to graduate courses. This eleventh edition is
designed to continue that tradition.

New in the Eleventh Edition
The underlying theme during the development of this eleventh edition was to
update the text to include handheld mobile devices, in particular smartphones.
Thus, you will find that the text has been modified, and at times expanded, to

preface

present the relationship between the subject matter being discussed and smart-
phone technology. Specific topics include:

• Smartphone hardware
• The distinction between 3G and 4G networks
• Smartphone operating systems
• Smartphone software development
• The human/smartphone interface

These additions are most noticeable in Chapters 3 (Operating Systems) and
4 (Networking) but is also observable in Chapters 6 (Programming Languages),
and 7 (Software Engineering).

Other prominent changes to this edition include updates to the following
topics:

• Software ownership and liability: The material in Chapter 7 (Software
Engineering) pertaining to this topic has been rewritten and updated.

• Training artificial neural networks: This material, in Chapter 11 (Artificial
Intelligence), has been modernized.

Finally, you will find that the material throughout the text has been updated
to reflect the state of today’s technology. This is most prevalent in Chapter 0
(Introduction), Chapter 1 (Data Storage), and Chapter 2 (Data Manipulation).

Organization
This text follows a bottom-up arrangement of subjects that progresses from the
concrete to the abstract—an order that results in a sound pedagogical presentation
in which each topic leads to the next. It begins with the fundamentals of informa-
tion encoding, data storage, and computer architecture (Chapters 1 and 2); pro-
gresses to the study of operating systems (Chapter 3) and computer networks
(Chapter 4); investigates the topics of algorithms, programming languages, and
software development (Chapters 5 through 7); explores techniques for enhancing
the accessibility of information (Chapters 8 and 9); considers some major applica-
tions of computer technology via graphics (Chapter 10) and artificial intelligence
(Chapter 11); and closes with an introduction to the abstract theory of computa-
tion (Chapter 12).

Although the text follows this natural progression, the individual chapters
and sections are surprisingly independent and can usually be read as isolated
units or rearranged to form alternative sequences of study. Indeed, the book is
often used as a text for courses that cover the material in a variety of orders. One
of these alternatives begins with material from Chapters 5 and 6 (Algorithms and
Programming Languages) and returns to the earlier chapters as desired. In con-
trast, I know of one course that starts with the material on computability from
Chapter 12. In still other cases the text has been used in “senior capstone”
courses where it serves as merely a backbone from which to branch into projects
in different areas. Courses for less technically oriented audiences may want to
concentrate on Chapters 4 (Networking and the Internet), 9 (Database Systems),
10 (Computer Graphics), and 11 (Artificial Intelligence).

On the opening page of each chapter, I have used asterisks to mark some sec-
tions as optional. These are sections that cover topics of more specific interest or

vi Preface

perhaps explore traditional topics in more depth. My intention is merely to pro-
vide suggestions for alternative paths though the text. There are, of course, other
shortcuts. In particular, if you are looking for a quick read, I suggest the follow-
ing sequence:

Section Topic
1.1–1.4 Basics of data encoding and storage
2.1–2.3 Machine architecture and machine language
3.1–3.3 Operating systems
4.1–4.3 Networking and the Internet
5.1–5.4 Algorithms and algorithm design
6.1–6.4 Programming languages
7.1–7.2 Software engineering
8.1–8.3 Data abstractions
9.1–9.2 Database systems
10.1–10.2 Computer graphics
11.1–11.3 Artificial intelligence
12.1–12.2 Theory of computation

There are several themes woven throughout the text. One is that computer
science is dynamic. The text repeatedly presents topics in a historical perspec-
tive, discusses the current state of affairs, and indicates directions of research.
Another theme is the role of abstraction and the way in which abstract tools are
used to control complexity. This theme is introduced in Chapter 0 and then
echoed in the context of operating system architecture, networking, algorithm
development, programming language design, software engineering, data organi-
zation, and computer graphics.

To Instructors
There is more material in this text than can normally be covered in a single
semester so do not hesitate to skip topics that do not fit your course objectives or
to rearrange the order as you see fit. You will find that, although the text follows
a plot, the topics are covered in a largely independent manner that allows you to
pick and choose as you desire. The book is designed to be used as a course
resource—not as a course definition. I suggest encouraging students to read the
material not explicitly included in your course. I think we underrate students if
we assume that we have to explain everything in class. We should be helping
them learn to learn on their own.

I feel obliged to say a few words about the bottom-up, concrete-to-abstract
organization of the text. I think as academics we too often assume that students
will appreciate our perspective of a subject—often one that we have developed
over many years of working in a field. As teachers I think we do better by pre-
senting material from the student’s perspective. This is why the text starts with
data representation/storage, machine architecture, operating systems, and net-
working. These are topics to which students readily relate—they have most
likely heard terms such as JPEG and MP3; they have probably recorded data on
CDs and DVDs; they have purchased computer components; they have inter-
acted with an operating system; and they have used the Internet. By starting the
course with these topics, students discover answers to many of the “why” ques-
tions they have been carrying for years and learn to view the course as practical

viiTo Instructors

rather than theoretical. From this beginning it is natural to move on to the more
abstract issues of algorithms, algorithmic structures, programming languages,
software development methodologies, computability, and complexity that those
of us in the field view as the main topics in the science. As I’ve said before, the
topics are presented in a manner that does not force you to follow this bottom-up
sequence, but I encourage you to give it a try.

We are all aware that students learn a lot more than we teach them directly, and
the lessons they learn implicitly are often better absorbed than those that are studied
explicitly. This is significant when it comes to “teaching” problem solving. Students
do not become problem solvers by studying problem-solving methodologies. They
become problem solvers by solving problems—and not just carefully posed “textbook
problems.” So this text contains numerous problems, a few of which are intentionally
vague—meaning that there is not necessarily a single correct approach or a single
correct answer. I encourage you to use these and to expand on them.

Another topic in the “implicit learning” category is that of professionalism,
ethics, and social responsibility. I do not believe that this material should be pre-
sented as an isolated subject that is merely tacked on to the course. Instead, it
should be an integral part of the coverage that surfaces when it is relevant. This
is the approach followed in this text. You will find that Sections 3.5, 4.5, 7.8, 9.7,
and 11.7 present such topics as security, privacy, liability, and social awareness
in the context of operating systems, networking, database systems, software en-
gineering, and artificial intelligence. Moreover, Section 0.6 introduces this theme
by summarizing some of the more prominent theories that attempt to place eth-
ical decision making on a philosophically firm foundation. You will also find that
each chapter includes a collection of questions called Social Issues that challenge
students to think about the relationship between the material in the text and the
society in which they live.

Thank you for considering my text for your course. Whether you do or do
not decide that it is right for your situation, I hope that you find it to be a contri-
bution to the computer science education literature.

Pedagogical Features
This text is the product of many years of teaching. As a result, it is rich in peda-
gogical aids. Paramount is the abundance of problems to enhance the student’s
participation—over 1,000 in this eleventh edition. These are classified as Ques-
tions/Exercises, Chapter Review Problems, and Social Issues. The Questions/
Exercises appear at the end of each section (except for the introductory chapter).
They review the material just discussed, extend the previous discussion, or hint at
related topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except for the
introductory chapter). They are designed to serve as “homework” problems in that
they cover the material from the entire chapter and are not answered in the text.

Also at the end of each chapter are the questions in the Social Issues cate-
gory. They are designed for thought and discussion. Many of them can be used
to launch research assignments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains ref-
erences to other material relating to the subject of the chapter. The Web sites
identified in this preface, in the text, and in the sidebars of the text are also good
places to look for related material.

viii Preface

Supplemental Resources
A variety of supplemental materials for this text are available at the book’s
Companion Website: www.pearsonhighered.com/brookshear. The following are
accessible to all readers:

• Chapter-by-chapter activities that extend topics in the text and provide
opportunities to explore related topics

• Chapter-by-chapter “self-tests” that help readers to rethink the material
covered in the text

• Manuals that teach the basics of Java and C++ in a pedagogical sequence
compatible with the text

In addition, the following supplements are available to qualified instruc-
tors at Pearson Education’s Instructor Resource Center. Please visit
www.pearsonhighered.com or contact your Pearson sales representative for
information on how to access them:

• Instructor’s Guide with answers to the Chapter Review Problems
• PowerPoint lecture slides
• Test bank

You may also want to check out my personal Web site at www.mscs.mu
.edu/~glennb. It is not very formal (and it is subject to my whims and sense of
humor), but I tend to keep some information there that you may find helpful. In
particular, you will find an errata page that lists corrections to errors in the text
that have been reported to me.

To Students
I’m a bit of a nonconformist (some of my friends would say more than a bit) so
when I set out to write this text I didn’t always follow the advice I received. In
particular, many argued that certain material was too advanced for beginning
students. But, I believe that if a topic is relevant, then it is relevant even if the ac-
ademic community considers it to be an “advanced topic.” You deserve a text that
presents a complete picture of computer science—not a watered-down version
containing artificially simplified presentations of only those topics that have
been deemed appropriate for introductory students. Thus, I have not avoided
topics. Instead I’ve sought better explanations. I’ve tried to provide enough depth
to give you an honest picture of what computer science is all about. As in the
case of spices in a recipe, you may choose to skip some of the topics in the fol-
lowing pages, but they are there for you to taste if you wish—and I encourage
you to do so.

I should also point out that in any course dealing with technology, the details
you learn today may not be the details you will need to know tomorrow. The
field is dynamic—that’s part of the excitement. This book will give you a current
picture of the subject as well as a historical perspective. With this background
you will be prepared to grow along with technology. I encourage you to start the
growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in me by choosing to read my book.
As an author I have an obligation to produce a manuscript that is worth your
time. I hope you find that I have lived up to this obligation.

ixTo Students

www.pearsonhighered.com/brookshear
www.pearsonhighered.com
www.mscs.mu.edu/~glennb
www.mscs.mu.edu/~glennb
www.pearsonhighered.com/brookshear
www.pearsonhighered.com
www.mscs.mu.edu/~glennb
www.mscs.mu.edu/~glennb

Acknowledgments
I first thank those of you who have supported this book by reading and using it in
previous editions. I am honored.

David T. Smith (Indiana University of Pennsylvania) and Dennis Brylow
(Marquette University) played significant roles in the production this eleventh
edition. David concentrated on Chapters 0, 1, 2, 7, and 11; and Dennis focused on
Chapters 3, 4, 6, and 10. Without their hard work this new edition would not exist
today. I sincerely thank them.

As mentioned in the preface to the tenth edition, I am indebted to Ed Angel,
John Carpinelli, Chris Fox, Jim Kurose, Gary Nutt, Greg Riccardi, and Patrick
Henry Winston for their assistance in the development of that edition. The
results of their efforts remain visible in this eleventh edition.

Others who have contributed in this or previous editions include J. M.
Adams, C. M. Allen, D. C. S. Allison, R. Ashmore, B. Auernheimer, P. Bankston, M.
Barnard, P. Bender, K. Bowyer, P. W. Brashear, C. M. Brown, H. M Brown, B. Cal-
loni, M. Clancy, R. T. Close, D. H. Cooley, L. D. Cornell, M. J. Crowley, F. Deek,
M. Dickerson, M. J. Duncan, S. Ezekiel, S. Fox, N. E. Gibbs, J. D. Harris, D. Has-
com, L. Heath, P. B. Henderson, L. Hunt, M. Hutchenreuther, L. A. Jehn, K. K.
Kolberg, K. Korb, G. Krenz, J. Liu, T. J. Long, C. May, J. J. McConnell, W. Mc-
Cown, S. J. Merrill, K. Messersmith, J. C. Moyer, M. Murphy, J. P. Myers, Jr., D. S.
Noonan, W. W. Oblitey, S. Olariu, G. Rice, N. Rickert, C. Riedesel, J. B. Rogers, G.
Saito, W. Savitch, R. Schlafly, J. C. Schlimmer, S. Sells, G. Sheppard, Z. Shen, J. C.
Simms, M. C. Slattery, J. Slimick, J. A. Slomka, D. Smith, J. Solderitsch, R. Steiger-
wald, L. Steinberg, C. A. Struble, C. L. Struble, W. J. Taffe, J. Talburt, P. Tonellato,
P. Tromovitch, E. D. Winter, E. Wright, M. Ziegler, and one anonymous. To these
individuals I give my sincere thanks.

As already mentioned, you will find Java and C++ manuals at the text’s
Companion Website that teach the basics of these languages in a format compat-
ible with the text. These were written by Diane Christie. Thank you Diane.
Another thank you goes to Roger Eastman who was the creative force behind the
chapter-by-chapter activities that you will also find at the Companion Website.

I also thank the people at Addison-Wesley who have contributed to this proj-
ect. They are a great bunch to work with—and good friends as well. If you are
thinking about writing a textbook, you should consider having it published by
Addison-Wesley.

I continue to be grateful to my wife Earlene and daughter Cheryl who have
been tremendous sources of encouragement over the years. Cheryl, of course,
grew up and left home several years ago. But Earlene is still here. I’m a lucky
man. On the morning of December 11, 1998, I survived a heart attack because
she got me to the hospital in time. (For those of you in the younger generation
I should explain that surviving a heart attack is sort of like getting an extension
on a homework assignment.)

Finally, I thank my parents, to whom this book is dedicated. I close with the
following endorsement whose source shall remain anonymous: “Our son’s book
is really good. Everyone should read it.”

J. G. B.

x Preface

Chapter 0 Introduction 1
0.1 The Role of Algorithms 2
0.2 The History of Computing 4
0.3 The Science of Algorithms 10
0.4 Abstraction 11
0.5 An Outline of Our Study 12
0.6 Social Repercussions 13

Chapter 1 Data Storage 19
1.1 Bits and Their Storage 20
1.2 Main Memory 26
1.3 Mass Storage 29
1.4 Representing Information as Bit Patterns 35

*1.5 The Binary System 42
*1.6 Storing Integers 47
*1.7 Storing Fractions 53
*1.8 Data Compression 58
*1.9 Communication Errors 63

Chapter 2 Data Manipulation 73
2.1 Computer Architecture 74
2.2 Machine Language 77
2.3 Program Execution 83

*2.4 Arithmetic/Logic Instructions 90
*2.5 Communicating with Other Devices 94
*2.6 Other Architectures 100

contents

*Asterisks indicate suggestions for optional sections.

xi

Chapter 3 Operating Systems 109
3.1 The History of Operating Systems 110
3.2 Operating System Architecture 114
3.3 Coordinating the Machine’s Activities 122

*3.4 Handling Competition Among Processes 125
3.5 Security 130

xii Contents

Chapter 4 Networking and the Internet 139
4.1 Network Fundamentals 140
4.2 The Internet 149
4.3 The World Wide Web 158

*4.4 Internet Protocols 167
4.5 Security 173

Chapter 5 Algorithms 187
5.1 The Concept of an Algorithm 188
5.2 Algorithm Representation 191
5.3 Algorithm Discovery 198
5.4 Iterative Structures 204
5.5 Recursive Structures 214
5.6 Efficiency and Correctness 222

Chapter 6 Programming Languages 239
6.1 Historical Perspective 240
6.2 Traditional Programming Concepts 248
6.3 Procedural Units 260
6.4 Language Implementation 268
6.5 Object-Oriented Programming 276

*6.6 Programming Concurrent Activities 283
*6.7 Declarative Programming 286

Chapter 7 Software Engineering 299
7.1 The Software Engineering Discipline 300
7.2 The Software Life Cycle 302
7.3 Software Engineering Methodologies 306
7.4 Modularity 308
7.5 Tools of the Trade 316
7.6 Quality Assurance 324
7.7 Documentation 328
7.8 The Human-Machine Interface 329
7.9 Software Ownership and Liability 332

Chapter 8 Data Abstractions 341
8.1 Basic Data Structures 342
8.2 Related Concepts 345
8.3 Implementing Data Structures 348
8.4 A Short Case Study 362
8.5 Customized Data Types 367

*8.6 Classes and Objects 371
*8.7 Pointers in Machine Language 372

Chapter 9 Database Systems 383
9.1 Database Fundamentals 384
9.2 The Relational Model 389

*9.3 Object-Oriented Databases 400
*9.4 Maintaining Database Integrity 402
*9.5 Traditional File Structures 406
9.6 Data Mining 414
9.7 Social Impact of Database Technology 416

Chapter 10 Computer Graphics 425
10.1 The Scope of Computer Graphics 426
10.2 Overview of 3D Graphics 428
10.3 Modeling 430
10.4 Rendering 439

*10.5 Dealing with Global Lighting 449
10.6 Animation 452

Chapter 11 Artificial Intelligence 461
11.1 Intelligence and Machines 462
11.2 Perception 467
11.3 Reasoning 473
11.4 Additional Areas of Research 484
11.5 Artificial Neural Networks 489
11.6 Robotics 497
11.7 Considering the Consequences 500

Chapter 12 Theory of Computation 509
12.1 Functions and Their Computation 510
12.2 Turing Machines 512
12.3 Universal Programming Languages 516
12.4 A Noncomputable Function 522
12.5 Complexity of Problems 527

*12.6 Public-Key Cryptography 536

xiiiContents

Appendixes 545
A ASCII 547
B Circuits to Manipulate Two’s Complement

Representations 548
C A Simple Machine Language 551
D High-Level Programming Languages 553
E The Equivalence of Iterative and Recursive Structures 555
F Answers to Questions & Exercises 557

Index 597

xiv Contents

Introduction

In this preliminary chapter we consider the scope of computer

science, develop a historical perspective, and establish a

foundation from which to launch our study.

C H A P T E R

0

0.1 The Role of Algorithms

0.2 The History
of Computing

0.3 The Science
of Algorithms

0.4 Abstraction

0.5 An Outline of
Our Study

0.6 Social Repercussions

2 Chapter 0 Introduction

Computer science is the discipline that seeks to build a scientific foundation for
such topics as computer design, computer programming, information process-
ing, algorithmic solutions of problems, and the algorithmic process itself. It pro-
vides the underpinnings for today’s computer applications as well as the
foundations for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a typi-
cal university computer science curriculum. We want to appreciate the full scope
and dynamics of the field. Thus, in addition to the topics themselves, we will be
interested in their historical development, the current state of research, and
prospects for the future. Our goal is to establish a functional understanding of
computer science—one that will support those who wish to pursue more special-
ized studies in the science as well as one that will enable those in other fields to
flourish in an increasingly technical society.

0.1 The Role of Algorithms
We begin with the most fundamental concept of computer science—that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later in Chapter 5.) For example, there are
algorithms for cooking (called recipes), for finding your way through a strange
city (more commonly called directions), for operating washing machines (usu-
ally displayed on the inside of the washer’s lid or perhaps on the wall of a laun-
dromat), for playing music (expressed in the form of sheet music), and for
performing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm for
performing that task must be discovered and represented in a form that is com-
patible with the machine. A representation of an algorithm is called a program.
For the convenience of humans, computer programs are usually printed on
paper or displayed on computer screens. For the convenience of machines, pro-
grams are encoded in a manner compatible with the technology of the machine.
The process of developing a program, encoding it in machine-compatible form,
and inserting it into a machine is called programming. Programs, and the algo-
rithms they represent, are collectively referred to as software, in contrast to the
machinery itself, which is known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the
search for algorithms was a significant activity of mathematicians long before
the development of today’s computers. The goal was to find a single set of direc-
tions that described how all problems of a particular type could be solved. One of
the best known examples of this early research is the long division algorithm for
finding the quotient of two multiple-digit numbers. Another example is the
Euclidean algorithm, discovered by the ancient Greek mathematician Euclid, for
finding the greatest common divisor of two positive integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance of
that task no longer requires an understanding of the principles on which the
algorithm is based. Instead, the performance of the task is reduced to the process
of merely following directions. (We can follow the long division algorithm to find
a quotient or the Euclidean algorithm to find a greatest common divisor without
understanding why the algorithm works.) In a sense, the intelligence required to
solve the problem at hand is encoded in the algorithm.

30.1 The Role of Algorithms

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Effect: The performer places some cards from a normal deck of playing cards face
down on a table and mixes them thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards, the performer turns over cards
of the requested color.

Secret and Patter:

From a normal deck of cards, select ten red cards and ten black cards. Deal these cards
face up in two piles on the table according to color.

Announce that you have selected some red cards and some black cards.

Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Immediately after returning the black cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughy mixing the cards.

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
 appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
 appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
 the remaining cards to prove your claim.

As long as there are face-down cards on the table, repeatedly
execute the following steps:

Figure 0.1 An algorithm for a magic trick

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.

Step 2. Divide M by N, and call the remainder R.

Step 3. If R is not 0, then assign M the value of N, assign N the value of R, and return to step 2;
 otherwise, the greatest common divisor is the value currently assigned to N.

Figure 0.2 The Euclidean algorithm for finding the greatest common divisor of two
positive integers

4 Chapter 0 Introduction

It is through this ability to capture and convey intelligence (or at least intel-
ligent behavior) by means of algorithms that we are able to build machines that
perform useful tasks. Consequently, the level of intelligence displayed by
machines is limited by the intelligence that can be conveyed through algorithms.
We can construct a machine to perform a task only if an algorithm exists for per-
forming that task. In turn, if no algorithm exists for solving a problem, then the
solution of that problem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities solidified as a subject
in mathematics in the 1930s with the publication of Kurt Gödel’s incompleteness
theorem. This theorem essentially states that in any mathematical theory
encompassing our traditional arithmetic system, there are statements whose
truth or falseness cannot be established by algorithmic means. In short, any
complete study of our arithmetic system lies beyond the capabilities of algorith-
mic activities.

This realization shook the foundations of mathematics, and the study of algo-
rithmic capabilities that ensued was the beginning of the field known today as
computer science. Indeed, it is the study of algorithms that forms the core of
computer science.

0.2 The History of Computing
Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it most likely had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine is
quite simple, consisting of beads strung on rods that are in turn mounted in a
rectangular frame (Figure 0.3). As the beads are moved back and forth on the
rods, their positions represent stored values. It is in the positions of the beads
that this “computer” represents and stores data. For control of an algorithm’s exe-
cution, the machine relies on the human operator. Thus the abacus alone is
merely a data storage system; it must be combined with a human to create a
complete computational machine.

In the time period after the Middle Ages and before the Modern Era the quest
for more sophisticated computing machines was seeded. A few inventors began
to experiment with the technology of gears. Among these were Blaise Pascal
(1623–1662) of France, Gottfried Wilhelm Leibniz (1646–1716) of Germany, and
Charles Babbage (1792–1871) of England. These machines represented data
through gear positioning, with data being input mechanically by establishing ini-
tial gear positions. Output from Pascal’s and Leibniz’s machines was achieved by
observing the final gear positions. Babbage, on the other hand, envisioned
machines that would print results of computations on paper so that the possibil-
ity of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of flexibility
in these machines. Pascal’s machine was built to perform only addition.
Consequently, the appropriate sequence of steps was embedded into the structure
of the machine itself. In a similar manner, Leibniz’s machine had its algorithms
firmly embedded in its architecture, although it offered a variety of arithmetic
operations from which the operator could select. Babbage’s Difference Engine (of
which only a demonstration model was constructed) could be modified to perform
a variety of calculations, but his Analytical Engine (the construction for which he

50.2 The History of Computing

Figure 0.3 An abacus (photography by Wayne Chandler)

never received funding) was designed to read instructions in the form of holes in
paper cards. Thus Babbage’s Analytical Engine was programmable. In fact,
Augusta Ada Byron (Ada Lovelace), who published a paper in which she demon-
strated how Babbage’s Analytical Engine could be programmed to perform various
computations, is often identified today as the world’s first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752–1834), who, in
1801, had developed a weaving loom in which the steps to be performed during
the weaving process were determined by patterns of holes in large thick cards
made of wood (or cardboard). In this manner, the algorithm followed by the loom
could be changed easily to produce different woven designs. Another beneficiary
of Jacquard’s idea was Herman Hollerith (1860–1929), who applied the concept of
representing information as holes in paper cards to speed up the tabulation
process in the 1890 U.S. census. (It was this work by Hollerith that led to the cre-
ation of IBM.) Such cards ultimately came to be known as punched cards and sur-
vived as a popular means of communicating with computers well into the 1970s.
Indeed, the technique lives on today, as witnessed by the voting issues raised in
the 2000 U.S. presidential election.

The technology of the time was unable to produce the complex gear-driven
machines of Pascal, Leibniz, and Babbage in a financially feasible manner. But
with the advances in electronics in the early 1900s, this barrier was overcome.
Examples of this progress include the electromechanical machine of George
Stibitz, completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944

6 Chapter 0 Introduction

at Harvard University by Howard Aiken and a group of IBM engineers (Figure 0.4).
These machines made heavy use of electronically controlled mechanical relays. In
this sense they were obsolete almost as soon as they were built, because other
researchers were applying the technology of vacuum tubes to construct totally
electronic computers. The first of these machines was apparently the Atanasoff-
Berry machine, constructed during the period from 1937 to 1941 at Iowa State
College (now Iowa State University) by John Atanasoff and his assistant, Clifford
Berry. Another was a machine called Colossus, built under the direction of Tommy

0

1

2

3

4

5

0

1

4

9

16

1

3

5

7

2

2

2

2

First
difference

Second
difference

x x2

Babbage’s Difference Engine
The machines designed by Charles Babbage were truly the forerunners of modern
computer design. If technology had been able to produce his machines in an eco-
nomically feasible manner and if the data processing demands of commerce and gov-
ernment had been on the scale of today’s requirements, Babbage’s ideas could have
led to a computer revolution in the 1800s. As it was, only a demonstration model of
his Difference Engine was constructed in his lifetime. This machine determined
numerical values by computing “successive differences.” We can gain an insight to
this technique by considering the problem of computing the squares of the integers.
We begin with the knowledge that the square of 0 is 0, the square of 1 is 1, the
square of 2 is 4, and the square of 3 is 9. With this, we can determine the square of 4
in the following manner (see the following diagram). We first compute the differ-
ences of the squares we already know: 12 � 02 � 1, 22 � 12 � 3, and 32 � 22 � 5.
Then we compute the differences of these results: 3 � 1 � 2, and 5 � 3 � 2. Note
that these differences are both 2. Assuming that this consistency continues (mathe-
matics can show that it does) we conclude that the difference between the value
(42 � 32) and the value (32 � 22) must also be 2. Hence (42 � 32) must be 2 greater
than (32 � 22), so 42 � 32 � 7 and thus 42 � 32 � 7 � 16. Now that we know the
square of 4, we could continue our procedure to compute the square of 5 based on the
values of 12, 22, 32, and 42. (Although a more in-depth discussion of successive differ-
ences is beyond the scope of our current study, students of calculus may wish to
observe that the preceding example is based on the fact that the derivative of y � x2 is
a straight line with a slope of 2.)

70.2 The History of Computing

Flowers in England to decode German messages during the latter part of World
War II. (Actually, as many as ten of these machines were apparently built, but mil-
itary secrecy and issues of national security kept their existence from becoming
part of the “computer family tree.”) Other, more flexible machines, such as the
ENIAC (electronic numerical integrator and calculator) developed by John
Mauchly and J. Presper Eckert at the Moore School of Electrical Engineering,
University of Pennsylvania, soon followed.

From that point on, the history of computing machines has been closely
linked to advancing technology, including the invention of transistors (for which
physicists William Shockley, John Bardeen, and Walter Brattain were awarded a
Nobel Prize) and the subsequent development of complete circuits constructed
as single units, called integrated circuits (for which Jack Kilby also won a Nobel
Prize in physics). With these developments, the room-sized machines of the
1940s were reduced over the decades to the size of single cabinets. At the same
time, the processing power of computing machines began to double every two
years (a trend that has continued to this day). As work on integrated circuitry
progressed, many of the circuits within a computer became readily available on
the open market as integrated circuits encased in toy-sized blocks of plastic
called chips.

A major step toward popularizing computing was the development of desk-
top computers. The origins of these machines can be traced to the computer hob-
byists who built homemade computers from combinations of chips. It was within
this “underground” of hobby activity that Steve Jobs and Stephen Wozniak built a
commercially viable home computer and, in 1976, established Apple Computer,
Inc. (now Apple Inc.) to manufacture and market their products. Other compa-
nies that marketed similar products were Commodore, Heathkit, and Radio
Shack. Although these products were popular among computer hobbyists, they

Figure 0.4 The Mark I computer (Courtesy of IBM archives. Unauthorized use is not permitted.)

8 Chapter 0 Introduction

were not widely accepted by the business community, which continued to look
to the well-established IBM for the majority of its computing needs.

In 1981, IBM introduced its first desktop computer, called the personal com-
puter, or PC, whose underlying software was developed by a newly formed com-
pany known as Microsoft. The PC was an instant success and legitimized the
desktop computer as an established commodity in the minds of the business
community. Today, the term PC is widely used to refer to all those machines
(from various manufacturers) whose design has evolved from IBM’s initial desk-
top computer, most of which continue to be marketed with software from
Microsoft. At times, however, the term PC is used interchangeably with the
generic terms desktop or laptop.

As the twentieth century drew to a close, the ability to connect individual
computers in a world-wide system called the Internet was revolutionizing com-
munication. In this context, Tim Berners-Lee (a British scientist) proposed a sys-
tem by which documents stored on computers throughout the Internet could be
linked together producing a maze of linked information called the World Wide
Web (often shortened to “Web”). To make the information on the Web accessible,
software systems, called search engines, were developed to “sift through” the
Web, “categorize” their findings, and then use the results to assist users research-
ing particular topics. Major players in this field are Google, Yahoo, and Microsoft.
These companies continue to expand their Web-related activities, often in direc-
tions that challenge our traditional way of thinking.

Augusta Ada Byron
Augusta Ada Byron, Countess of Lovelace, has been the subject of much commentary
in the computing community. She lived a somewhat tragic life of less than 37 years
(1815–1852) that was complicated by poor health and the fact that she was a non-
conformist in a society that limited the professional role of women. Although she was
interested in a wide range of science, she concentrated her studies in mathematics.
Her interest in “compute science” began when she became fascinated by the
machines of Charles Babbage at a demonstration of a prototype of his Difference
Engine in 1833. Her contribution to computer science stems from her translation
from French into English of a paper discussing Babbage’s designs for the Analytical
Engine. To this translation, Babbage encouraged her to attach an addendum describ-
ing applications of the engine and containing examples of how the engine could be
programmed to perform various tasks. Babbage’s enthusiasm for Ada Byron’s work
was apparently motivated by his hope that its publication would lead to financial
backing for the construction of his Analytical Engine. (As the daughter of Lord Byron,
Ada Byron held celebrity status with potentially significant financial connections.)
This backing never materialized, but Ada Byron’s addendum has survived and is con-
sidered to contain the first examples of computer programs. The degree to which
Babbage influenced Ada Byron’s work is debated by historians. Some argue that
Babbage made major contributions whereas others contend that he was more of an
obstacle than an aid. Nonetheless, Augusta Ada Byron is recognized today as the
world’s first programmer, a status that was certified by the U.S. Department of
Defense when it named a prominent programming language (Ada) in her honor.

90.2 The History of Computing

At the same time that desktop computers (and the newer mobile laptop
computers) were being accepted and used in homes, the miniaturization of
computing machines continued. Today, tiny computers are embedded within
various devices. For example, automobiles now contain small computers run-
ning Global Positioning Systems (GPS), monitoring the function of the engine,
and providing voice command services for controlling the car’s audio and phone
communication systems.

Perhaps the most potentially revolutionary application of computer miniatur-
ization is found in the expanding capabilities of portable telephones. Indeed, what
was recently merely a telephone has evolved into a small hand-held general-
purpose computer known as a smartphone on which telephony is only one of
many applications. These “phones” are equipped with a rich array of sensors
and interfaces including cameras, microphones, compasses, touch screens,
accelerometers (to detect the phone’s orientation and motion), and a number of
wireless technologies to communicate with other smartphones and computers.
The potential is enormous. Indeed, many argue that the smartphone will have a
greater effect on society than the PC.

The miniaturization of computers and their expanding capabilities have
brought computer technology to the forefront of today’s society. Computer tech-
nology is so prevalent now that familiarity with it is fundamental to being a
member of modern society. Computing technology has altered the ability of
governments to exert control; had enormous impact on global economics; led to
startling advances in scientific research; revolutionized the role of data collec-
tion, storage, and applications; provided new means for people to communicate
and interact; and has repeatedly challenged society’s status quo. The result is a
proliferation of subjects surrounding computer science, each of which is now a
significant field of study in its own right. Moreover, as with mechanical engi-
neering and physics, it is often difficult to draw a line between these fields and

Google
Founded in 1998, Google Inc. has become one of the world’s most recoginzed techol-
ogy companies. Its core service, the Google search engine, is used by millions of peo-
ple to find documents on the World Wide Web. In addition, Google provides
electronic mail service (called Gmail), an Internet based video sharing service (called
YouTube), and a host of other Internet services (including Google Maps, Google
Calendar, Google Earth, Google Books, and Google Translate).

However, in addition to being a prime example of the entrepreneurial spirit,
Google also provides examples of how expanding technology is challenging soci-
ety. For example, Google’s search engine has led to questions regarding the extent
to which an international company should comply with the wishes of individual
governments; YouTube has raised questions regarding the extent to which a com-
pany should be liable for information that others distribute through its services as
well as the degree to which the company can claim ownership of that information;
Google Books has generated concerns regarding the scope and limitations of
intelectual property rights; and Google Maps has been accused of violating
privacy rights.

10 Chapter 0 Introduction

computer science itself. Thus, to gain a proper perspective, our study will not
only cover topics central to the core of computer science but will also explore a
variety of disciplines dealing with both applications and consequences of the
science. Indeed, an introduction to computer science is an interdisciplinary
undertaking.

0.3 The Science of Algorithms
Conditions such as limited data storage capabilities and intricate, time-consuming
programming procedures restricted the complexity of the algorithms utilized in
early computing machines. However, as these limitations began to disappear,
machines were applied to increasingly larger and more complex tasks. As
attempts to express the composition of these tasks in algorithmic form began to
tax the abilities of the human mind, more and more research efforts were
directed toward the study of algorithms and the programming process.

It was in this context that the theoretical work of mathematicians began to
pay dividends. As a consequence of Gödel’s incompleteness theorem, mathe-
maticians had already been investigating those questions regarding algorithmic
processes that advancing technology was now raising. With that, the stage was
set for the emergence of a new discipline known as computer science.

Today, computer science has established itself as the science of algorithms. The
scope of this science is broad, drawing from such diverse subjects as mathematics,
engineering, psychology, biology, business administration, and linguistics. Indeed,
researchers in different branches of computer science may have very distinct defi-
nitions of the science. For example, a researcher in the field of computer architec-
ture may focus on the task of miniaturizing circuitry and thus view computer
science as the advancement and application of technology. But, a researcher in the
field of database systems may see computer science as seeking ways to make infor-
mation systems more useful. And, a researcher in the field of artificial intelligence
may regard computer science as the study of intelligence and intelligent behavior.

Thus, an introduction to computer science must include a variety of topics,
which is a task that we will pursue in the following chapters. In each case, our
goal will be to introduce the central ideas in the subject, the current topics of
research, and some of the techniques being applied to advance knowledge in the
area. With such a variety of topics, it is easy to lose track of the overall picture.
We therefore pause to collect our thoughts by identifying some questions that
provide a focus for its study.

• Which problems can be solved by algorithmic processes?
• How can the discovery of algorithms be made easier?
• How can the techniques of representing and communicating algorithms

be improved?
• How can the characteristics of different algorithms be analyzed

and compared?
• How can algorithms be used to manipulate information?
• How can algorithms be applied to produce intelligent behavior?
• How does the application of algorithms affect society?

Note that the theme common to all these questions is the study of algorithms
(Figure 0.5).

110.4 Abstraction

0.4 Abstraction
The concept of abstraction so permeates the study of computer science and the
design of computer systems that it behooves us to address it in this preliminary
chapter. The term abstraction, as we are using it here, refers to the distinction
between the external properties of an entity and the details of the entity’s inter-
nal composition. It is abstraction that allows us to ignore the internal details of a
complex device such as a computer, automobile, or microwave oven and use it as
a single, comprehensible unit. Moreover, it is by means of abstraction that such
complex systems are designed and manufactured in the first place. Computers,
automobiles, and microwave ovens are constructed from components, each of
which is constructed from smaller components. Each component represents a
level of abstraction at which the use of the component is isolated from the details
of the component’s internal composition.

It is by applying abstraction, then, that we are able to construct, analyze, and
manage large, complex computer systems, which would be overwhelming if
viewed in their entirety at a detailed level. At each level of abstraction, we view
the system in terms of components, called abstract tools, whose internal com-
position we ignore. This allows us to concentrate on how each component inter-
acts with other components at the same level and how the collection as a whole
forms a higher-level component. Thus we are able to comprehend the part of the
system that is relevant to the task at hand rather than being lost in a sea of details.

We emphasize that abstraction is not limited to science and technology. It is
an important simplification technique with which our society has created a
lifestyle that would otherwise be impossible. Few of us understand how the var-
ious conveniences of daily life are actually implemented. We eat food and wear
clothes that we cannot produce by ourselves. We use electrical devices and com-
munication systems without understanding the underlying technology. We use
the services of others without knowing the details of their professions. With
each new advancement, a small part of society chooses to specialize in its
implementation while the rest of us learn to use the results as abstract tools. In
this manner, society’s warehouse of abstract tools expands, and society’s ability
to progress increases.

Limitations of

Application of

Analysis of

Execution of

Representation ofDiscovery of

Communication of
Algorithms

Figure 0.5 The central role of algorithms in computer science

12 Chapter 0 Introduction

Abstraction is a recurring theme in our study. We will learn that computing
equipment is constructed in levels of abstract tools. We will also see that the
development of large software systems is accomplished in a modular fashion in
which each module is used as an abstract tool in larger modules. Moreover,
abstraction plays an important role in the task of advancing computer science
itself, allowing researchers to focus attention on particular areas within a com-
plex field. In fact, the organization of this text reflects this characteristic of the
science. Each chapter, which focuses on a particular area within the science, is
often surprisingly independent of the others, yet together the chapters form a
comprehensive overview of a vast field of study.

0.5 An Outline of Our Study
This text follows a bottom up approach to the study of computer science, begin-
ning with such hands-on topics as computer hardware and leading to the more
abstract topics such as algorithm complexity and computability. The result is
that our study follows a pattern of building larger and larger abstract tools as our
understanding of the subject expands.

We begin by considering topics dealing with the design and construction of
machines for executing algorithms. In Chapter 1 (Data Storage) we look at how
information is encoded and stored within modern computers, and in Chapter 2
(Data Manipulation) we investigate the basic internal operation of a simple com-
puter. Although part of this study involves technology, the general theme is tech-
nology independent. That is, such topics as digital circuit design, data encoding
and compression systems, and computer architecture are relevant over a wide
range of technology and promise to remain relevant regardless of the direction of
future technology.

In Chapter 3 (Operating Systems) we study the software that controls the
overall operation of a computer. This software is called an operating system. It is
a computer’s operating system that controls the interface between the machine
and its outside world, protecting the machine and the data stored within from
unauthorized access, allowing a computer user to request the execution of vari-
ous programs, and coordinating the internal activities required to fulfill the
user’s requests.

In Chapter 4 (Networking and the Internet) we study how computers are
connected to each other to form computer networks and how networks are con-
nected to form internets. This study leads to topics such as network protocols,
the Internet’s structure and internal operation, the World Wide Web, and numer-
ous issues of security.

Chapter 5 (Algorithms) introduces the study of algorithms from a more for-
mal perspective. We investigate how algorithms are discovered, identify sev-
eral fundamental algorithmic structures, develop elementary techniques for
representing algorithms, and introduce the subjects of algorithm efficiency
and correctness.

In Chapter 6 (Programming Languages) we consider the subject of algorithm
representation and the program development process. Here we find that the
search for better programming techniques has led to a variety of programming
methodologies or paradigms, each with its own set of programming languages.
We investigate these paradigms and languages as well as consider issues of gram-
mar and language translation.

130.6 Social Repercussions

Chapter 7 (Software Engineering) introduces the branch of computer science
known as software engineering, which deals with the problems encountered
when developing large software systems. The underlying theme is that the
design of large software systems is a complex task that embraces problems
beyond those of traditional engineering. Thus, the subject of software engineer-
ing has become an important field of research within computer science, drawing
from such diverse fields as engineering, project management, personnel man-
agement, programming language design, and even architecture.

In next two chapters we look at ways data can be organized within a com-
puter system. In Chapter 8 (Data Abstractions) we introduce techniques tradi-
tionally used for organizing data in a computer’s main memory and then trace
the evolution of data abstraction from the concept of primitives to today’s object-
oriented techniques. In Chapter 9 (Database Systems) we consider methods tra-
ditionally used for organizing data in a computer’s mass storage and investigate
how extremely large and complex database systems are implemented.

In Chapter 10 (Computer Graphics) we explore the subject of graphics and
animation, a field that deals with creating and photographing virtual worlds.
Based on advancements in the more traditional areas of computer science such
as machine architecture, algorithm design, data structures, and software engi-
neering, the discipline of graphics and animation has seen significant progress
and has now blossomed into an exciting, dynamic subject. Moreover, the field
exemplifies how various components of computer science combine with other
disciplines such as physics, art, and photography to produce striking results.

In Chapter 11 (Artificial Intelligence) we learn that in order to develop more
useful machines computer science has turned to the study of human intelli-
gence for leadership. The hope is that by understanding how our own minds rea-
son and perceive, researchers will be able to design algorithms that mimic these
processes and thus transfer these capabilities to machines. The result is the area
of computer science known as artificial intelligence, which leans heavily on
research in such areas as psychology, biology, and linguistics.

We close our study with Chapter 12 (Theory of Computation) by investigat-
ing the theoretical foundations of computer science—a subject that allows us to
understand the limitations of algorithms (and thus machines). Here we identify
some problems that cannot be solved algorithmically (and therefore lie beyond
the capabilities of machines) as well as learn that the solutions to many other
problems require such enormous time or space that they are also unsolvable
from a practical perspective. Thus, it is through this study that we are able to
grasp the scope and limitations of algorithmic systems.

In each chapter our goal is to explore to a depth that leads to a true under-
standing of the subject. We want to develop a working knowledge of computer
science—a knowledge that will allow you to understand the technical society in
which you live and to provide a foundation from which you can learn on your
own as science and technology advance.

0.6 Social Repercussions
Progress in computer science is blurring many distinctions on which our society
has based decisions in the past and is challenging many of society’s long-held
principles. In law, it generates questions regarding the degree to which intellec-
tual property can be owned and the rights and liabilities that accompany that

14 Chapter 0 Introduction

ownership. In ethics, it generates numerous options that challenge the traditional
principles on which social behavior is based. In government, it generates debates
regarding the extent to which computer technology and its applications should be
regulated. In philosophy, it generates contention between the presence of intelli-
gent behavior and the presence of intelligence itself. And, throughout society, it
generates disputes concerning whether new applications represent new free-
doms or new controls.

Although not a part of computer science itself, such topics are important for
those contemplating careers in computing or computer-related fields. Revelations
within science have sometimes found controversial applications, causing serious
discontent for the researchers involved. Moreover, an otherwise successful career
can quickly be derailed by an ethical misstep.

The ability to deal with the dilemmas posed by advancing computer technol-
ogy is also important for those outside its immediate realm. Indeed, technology is
infiltrating society so rapidly that few, if any, are independent of its effects.

This text provides the technical background needed to approach the dilem-
mas generated by computer science in a rational manner. However, technical
knowledge of the science alone does not provide solutions to all the questions
involved. With this in mind, this text includes several sections that are devoted to
social, ethical, and legal issues. These include security concerns, issues of soft-
ware ownership and liability, the social impact of database technology, and the
consequences of advances in artificial intelligence.

Moreover, there is often no definitive correct answer to a problem, and
many valid solutions are compromises between opposing (and perhaps equally
valid) views. Finding solutions in these cases often requires the ability to listen,
to recognize other points of view, to carry on a rational debate, and to alter one’s
own opinion as new insights are gained. Thus, each chapter of this text ends
with a collection of questions under the heading “Social Issues” that investigate
the relationship between computer science and society. These are not neces-
sarily questions to be answered. Instead, they are questions to be considered. In
many cases, an answer that may appear obvious at first will cease to satisfy you
as you explore alternatives. In short, the purpose of these questions is not to
lead you to a “correct” answer but rather to increase your awareness, including
your awareness of the various stakeholders in an issue, your awareness of alter-
natives, and your awareness of both the short- and long-term consequences of
those alternatives.

We close this section by introducing some of the approaches to ethics that
have been proposed by philosophers in their search for fundamental theories
that lead to principles for guiding decisions and behavior. Most of these theories
can be classified under the headings of consequence-based ethics, duty-based
ethics, contract-based ethics, and character-based ethics. You may wish to use
these theories as a means of approaching the ethical issues presented in the text.
In particular, you may find that different theories lead to contrasting conclusions
and thus expose hidden alternatives.

Consequence-based ethics attempts to analyze issues based on the conse-
quences of the various options. A leading example is utilitarianism that proposes
that the “correct” decision or action is the one that leads to the greatest good for
the largest portion of society. At first glance utilitarianism appears to be a fair
way of resolving ethical dilemmas. But, in its unqualified form, utilitarianism

150.6 Social Repercussions

leads to numerous unacceptable conclusions. For example, it would allow the
majority of a society to enslave a small minority. Moreover, many argue that
consequence-based approaches to ethical theories, which inherently emphasize
consequences, tend to view a human as merely a means to an end rather than as
a worthwhile individual. This, they continue, constitutes a fundamental flaw in
all consequence-based ethical theories.

In contrast to consequence-based ethics, duty-based ethics does not consider
the consequences of decisions and actions but instead proposes that members of
a society have certain intrinsic duties or obligations that in turn form the foun-
dation on which ethical questions should be resolved. For example, if one
accepts the obligation to respect the rights of others, then one must reject slav-
ery regardless of its consequences. On the other hand, opponents of duty-based
ethics argue that it fails to provide solutions to problems involving conflicting
duties. Should you tell the truth even if doing so destroys a colleague’s confi-
dence? Should a nation defend itself in war even though the ensuing battles will
lead to the death of many of its citizens?

Contract-based ethical theory begins by imagining society with no ethical
foundation at all. In this “state of nature” setting, anything goes—a situation in
which individuals must fend for themselves and constantly be on guard against
aggression from others. Under these circumstances, contract-based ethical the-
ory proposes that the members of the society would develop “contracts” among
themselves. For example, I won’t steal from you if you won’t steal from me. In
turn, these “contracts” would become the foundation for determining ethical
behavior. Note that contract-based ethical theory provides a motivation for ethi-
cal behavior—we should obey the “contracts of ethics” because we would other-
wise live an unpleasant life. However, opponents of contract-based ethical
theory argue that it does not provide a broad enough basis for resolving ethical
dilemmas since it provides guidance only in those cases in which contracts have
been established. (I can behave anyway I want in situations not covered by an
existing contract.) In particular, new technologies may present uncharted terri-
tory in which existing ethical contracts may not apply.

Character-based ethics (sometimes called virtue ethics), which was pro-
moted by Plato and Aristotle, argues that “good behavior” is not the result of
applying identifiable rules but instead is a natural consequence of “good char-
acter.” Whereas consequence-based ethics, duty-based ethics, and contract-
based ethics propose that a person resolve an ethical dilemma by asking, “What
are the consequences?”; “What are my duties?”; or “What contracts do I have?”
character-based ethics proposes that dilemmas be resolved by asking, “Who do
I want to be?” Thus, good behavior is obtained by building good character,
which is typically the result of sound upbringing and the development of vir-
tuous habits.

It is character-based ethics that underlies the approach normally taken when
“teaching” ethics to professionals in various fields. Rather than presenting specific
ethical theories, the approach is to introduce case studies that expose a variety of
ethical questions in the professionals’ area of expertise. Then, by discussing the
pros and cons in these cases, the professionals become more aware, insightful,
and sensitive to the perils lurking in their professional lives and thus grow in
character. This is the spirit in which the questions regarding social issues at the
end of each chapter are presented.

16 Chapter 0 Introduction

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. The premise that our society is different from what it would have been with-
out the computer revolution is generally accepted. Is our society better than
it would have been without the revolution? Is our society worse? Would your
answer differ if your position within society were different?

2. Is it acceptable to participate in today’s technical society without making an
effort to understand the basics of that technology? For instance, do members
of a democracy, whose votes often determine how technology will be sup-
ported and used, have an obligation to try to understand that technology?
Does your answer depend on which technology is being considered? For
example, is your answer the same when considering nuclear technology as
when considering computer technology?

3. By using cash in financial transactions, individuals have traditionally had the
option to manage their financial affairs without service charges. However, as
more of our economy is becoming automated, financial institutions are
implementing service charges for access to these automated systems. Is
there a point at which these charges unfairly restrict an individual’s access to
the economy? For example, suppose an employer pays employees only by
check, and all financial institutions were to place a service charge on check
cashing and depositing. Would the employees be unfairly treated? What if an
employer insists on paying only via direct deposit?

4. In the context of interactive television, to what extent should a company be
allowed to retrieve information from children (perhaps via an interactive
game format)? For example, should a company be allowed to obtain a child’s
report on his or her parents’ buying patterns? What about information about
the child?

5. To what extent should a government regulate computer technology and its
applications? Consider, for example, the issues mentioned in Questions 3
and 4. What justifies governmental regulation?

6. To what extent will our decisions regarding technology in general, and com-
puter technology in particular, affect future generations?

7. As technology advances, our educational system is constantly challenged to
reconsider the level of abstraction at which topics are presented. Many ques-
tions take the form of whether a skill is still necessary or whether students
should be allowed to rely on an abstract tool. Students of trigonometry are no
longer taught how to find the values of trigonometric functions using tables.
Instead, they use calculators as abstract tools to find these values. Some
argue that long division should also give way to abstraction. What other sub-
jects are involved with similar controversies? Do modern word processors
eliminate the need to develop spelling skills? Will the use of video technol-
ogy someday remove the need to read?

Social Issues

Goldstine, J. J. The Computer from Pascal to von Neumann. Princeton: Princeton
University Press, 1972.

Kizza, J. M. Ethical and Social Issues in the Information Age, 3rd ed. London:
Springer-Verlag, 2007.

17Additional Reading

8. The concept of public libraries is largely based on the premise that all citi-
zens in a democracy must have access to information. As more information
is stored and disseminated via computer technology, does access to this tech-
nology become a right of every individual? If so, should public libraries be
the channel by which this access is provided?

9. What ethical concerns arise in a society that relies on the use of abstract
tools? Are there cases in which it is unethical to use a product or service
without understanding how it works? Without knowing how it is produced?
Or, without understanding the byproducts of its use?

10. As our society becomes more automated, it becomes easier for governments
to monitor their citizens’ activities. Is that good or bad?

11. Which technologies that were imagined by George Orwell (Eric Blair) in his
novel 1984 have become reality? Are they being used in the manner in
which Orwell predicted?

12. If you had a time machine, in which period of history would you like to live?
Are there current technologies that you would like to take with you? Could
your choice of technologies be taken with you without taking others? To what
extent can one technology be separated from another? Is it consistent to
protest against global warming yet accept modern medical treatment?

13. Suppose your job requires that you reside in another culture. Should you
continue to practice the ethics of your native culture or adopt the ethics of
your host culture? Does your answer depend on whether the issue involves
dress code or human rights? Which ethical standards should prevail if you
continue to reside in your native culture but conduct business with a for-
eign culture?

14. Has society become too dependent on computer applications for commerce,
communications, or social interactions? For example, what would be the
consequences of a long-term interruption in Internet and/or cellular tele-
phone service?

15. Most smartphones are able to identify the phone’s location by means of GPS.
This allows applications to provide location-specific information (such as the
local news, local weather, or the presence of businesses in the immediate
area) based on the phone’s current location. However, such GPS capabilities
may also allow other applications to broadcast the phone’s location to other
parties. Is this good? How could knowledge of the phone’s location (thus
your location) be abused?

16. On the basis of your initial answers to the preceding questions, to which eth-
ical theory presented in Section 0.6 do you tend to subscribe?

Additional Reading

18 Chapter 0 Introduction

Mollenhoff, C. R. Atanasoff: Forgotten Father of the Computer. Ames: Iowa State
University Press, 1988.

Neumann, P. G. Computer Related Risks. Boston, MA: Addison-Wesley, 1995.

Ni, L. Smart Phone and Next Generation Mobile Computing. San Francisco: Morgan
Kaufmann, 2006.

Quinn, M. J. Ethics for the Information Age, 2nd ed. Boston, MA: Addison-
Wesley, 2006.

Randell, B. The Origins of Digital Computers, 3rd ed. New York: Springer-
Verlag, 1982.

Spinello, R. A. and H. T. Tavani. Readings in CyberEthics, 2nd ed. Sudbury, MA:
Jones and Bartlett, 2004.

Swade, D. The Difference Engine. New York: Viking, 2000.

Tavani, H. T. Ethics and Technology: Ethical Issues in an Age of Information and
Communication Technology, 3rd ed. New York: Wiley, 2011.

Woolley, B. The Bride of Science, Romance, Reason, and Byron’s Daughter. New
York: McGraw-Hill, 1999.

Data Storage

In this chapter, we consider topics associated with data represen-

tation and the storage of data within a computer. The types of data

we will consider include text, numeric values, images, audio, and

video. Much of the information in this chapter is also relevant to

fields other than traditional computing, such as digital photogra-

phy, audio/video recording and reproduction, and long-distance

communication.

C H A P T E R

1

1.1 Bits and Their Storage
Boolean Operations
Gates and Flip-Flops
Hexadecimal Notation

1.2 Main Memory
Memory Organization
Measuring Memory Capacity

1.3 Mass Storage
Magnetic Systems
Optical Systems
Flash Drives
File Storage and Retrieval

1.4 Representing
Information as Bit Patterns
Representing Text
Representing Numeric Values
Representing Images
Representing Sound

*1.5 The Binary System
Binary Notation
Binary Addition
Fractions in Binary

*1.6 Storing Integers
Two’s Complement Notation
Excess Notation

*1.7 Storing Fractions
Floating-Point Notation
Truncation Errors

*1.8 Data Compression
Generic Data Compression

Techniques
Compressing Images
Compressing Audio and Video

*1.9 Communication Errors
Parity Bits
Error-Correcting Codes

*Asterisks indicate suggestions for
optional sections.

20 Chapter 1 Data Storage

We begin our study of computer science by considering how information is
encoded and stored inside computers. Our first step is to discuss the basics of a
computer’s data storage devices and then to consider how information is
encoded for storage in these systems. We will explore the ramifications of today’s
data storage systems and how such techniques as data compression and error
handling are used to overcome their shortfalls.

1.1 Bits and Their Storage
Inside today’s computers information is encoded as patterns of 0s and 1s. These
digits are called bits (short for binary digits). Although you may be inclined to
associate bits with numeric values, they are really only symbols whose meaning
depends on the application at hand. Sometimes patterns of bits are used to rep-
resent numeric values; sometimes they represent characters in an alphabet and
punctuation marks; sometimes they represent images; and sometimes they rep-
resent sounds.

Boolean Operations
To understand how individual bits are stored and manipulated inside a com-
puter, it is convenient to imagine that the bit 0 represents the value false and
the bit 1 represents the value true because that allows us to think of manipulat-
ing bits as manipulating true/false values. Operations that manipulate
true/false values are called Boolean operations, in honor of the mathemati-
cian George Boole (1815–1864), who was a pioneer in the field of mathematics
called logic. Three of the basic Boolean operations are AND, OR, and XOR
(exclusive or) as summarized in Figure 1.1. These operations are similar to the
arithmetic operations TIMES and PLUS because they combine a pair of values
(the operation’s input) to produce a third value (the output). In contrast to
arithmetic operations, however, Boolean operations combine true/false values
rather than numeric values.

The Boolean operation AND is designed to reflect the truth or falseness of a
statement formed by combining two smaller, or simpler, statements with the
conjunction and. Such statements have the generic form

P AND Q

where P represents one statement and Q represents another—for example,

Kermit is a frog AND Miss Piggy is an actress.

The inputs to the AND operation represent the truth or falseness of the compound
statement’s components; the output represents the truth or falseness of the com-
pound statement itself. Since a statement of the form P AND Q is true only when
both of its components are true, we conclude that 1 AND 1 should be 1, whereas all
other cases should produce an output of 0, in agreement with Figure 1.1.

In a similar manner, the OR operation is based on compound statements of
the form

P OR Q

211.1 Bits and Their Storage

The AND operation

0
0
0

AND
0
1
0

AND
1
0
0

AND
1
1
1

AND

The OR operation

0
0
0

OR
0
1
1

OR
1
0
1

OR
1
1
1

OR

The XOR operation

0
0
0

XOR
0
1
1

XOR
1
0
1

XOR
1
1
0

XOR

Figure 1.1 The Boolean operations AND, OR, and XOR (exclusive or)

where, again, P represents one statement and Q represents another. Such state-
ments are true when at least one of their components is true, which agrees with
the OR operation depicted in Figure 1.1.

There is not a single conjunction in the English language that captures the
meaning of the XOR operation. XOR produces an output of 1 (true) when one of
its inputs is 1 (true) and the other is 0 (false). For example, a statement of the
form P XOR Q means “either P or Q but not both.” (In short, the XOR operation
produces an output of 1 when its inputs are different.)

The operation NOT is another Boolean operation. It differs from AND,
OR, and XOR because it has only one input. Its output is the opposite of that
input; if the input of the operation NOT is true, then the output is false, and
vice versa. Thus, if the input of the NOT operation is the truth or falseness of
the statement

Fozzie is a bear.

then the output would represent the truth or falseness of the statement

Fozzie is not a bear.

Gates and Flip-Flops
A device that produces the output of a Boolean operation when given the opera-
tion’s input values is called a gate. Gates can be constructed from a variety of
technologies such as gears, relays, and optic devices. Inside today’s computers,
gates are usually implemented as small electronic circuits in which the digits 0
and 1 are represented as voltage levels. We need not concern ourselves with such
details, however. For our purposes, it suffices to represent gates in their symbolic

22 Chapter 1 Data Storage

AND

Inputs Output

Inputs

0 0
0 1
1 0
1 1

Output

0
0
0
1

XOR

Inputs Output

Inputs

0 0
0 1
1 0
1 1

Output

0
1
1
0

OR

Inputs Output

Inputs

0 0
0 1
1 0
1 1

Output

0
1
1
1

NOT

Inputs Output

Inputs

0
1

Output

1
0

Figure 1.2 A pictorial representation of AND, OR, XOR, and NOT gates as well as their input
and output values

form, as shown in Figure 1.2. Note that the AND, OR, XOR, and NOT gates are
represented by distinctively shaped symbols, with the input values entering on
one side and the output exiting on the other.

Gates provide the building blocks from which computers are constructed.
One important step in this direction is depicted in the circuit in Figure 1.3. This is
a particular example from a collection of circuits known as a flip-flop. A flip-flop
is a circuit that produces an output value of 0 or 1, which remains constant until a
pulse (a temporary change to a 1 that returns to 0) from another circuit causes it
to shift to the other value. In other words, the output will flip or flop between two
values under control of external stimuli. As long as both inputs in the circuit in
Figure 1.3 remain 0, the output (whether 0 or 1) will not change. However, tem-
porarily placing a 1 on the upper input will force the output to be 1, whereas tem-
porarily placing a 1 on the lower input will force the output to be 0.

Let us consider this claim in more detail. Without knowing the current output
of the circuit in Figure 1.3, suppose that the upper input is changed to 1 while the
lower input remains 0 (Figure 1.4a). This will cause the output of the OR gate to
be 1, regardless of the other input to this gate. In turn, both inputs to the AND
gate will now be 1, since the other input to this gate is already 1 (the output pro-
duced by the NOT gate whenever the lower input of the flip-flop is at 0). The out-
put of the AND gate will then become 1, which means that the second input to

231.1 Bits and Their Storage

Input

Input

Output

Figure 1.3 A simple flip-flop circuit

the OR gate will now be 1 (Figure 1.4b). This guarantees that the output of the
OR gate will remain 1, even when the upper input to the flip-flop is changed
back to 0 (Figure 1.4c). In summary, the flip-flop’s output has become 1, and this
output value will remain after the upper input returns to 0.

In a similar manner, temporarily placing the value 1 on the lower input will
force the flip-flop’s output to be 0, and this output will persist after the input
value returns to 0.

c. The 1 from the AND gate keeps the OR gate from
 changing after the upper input returns to 0.

0

0

1

1

1

1

a. 1 is placed on the upper input.

0

1

b. This causes the output of the OR gate to be 1 and,
 in turn, the output of the AND gate to be 1.

0

1

1

1

1

1

Figure 1.4 Setting the output of a flip-flop to 1

24 Chapter 1 Data Storage

Our purpose in introducing the flip-flop circuit in Figures 1.3 and 1.4 is
threefold. First, it demonstrates how devices can be constructed from gates, a
process known as digital circuit design, which is an important topic in computer
engineering. Indeed, the flip-flop is only one of many circuits that are basic tools
in computer engineering.

Second, the concept of a flip-flop provides an example of abstraction and the
use of abstract tools. Actually, there are other ways to build a flip-flop. One alter-
native is shown in Figure 1.5. If you experiment with this circuit, you will find
that, although it has a different internal structure, its external properties are the
same as those of Figure 1.3. A computer engineer does not need to know which
circuit is actually used within a flip-flop. Instead, only an understanding of the
flip-flop’s external properties is needed to use it as an abstract tool. A flip-flop,
along with other well-defined circuits, forms a set of building blocks from which
an engineer can construct more complex circuitry. In turn, the design of com-
puter circuitry takes on a hierarchical structure, each level of which uses the
lower level components as abstract tools.

The third purpose for introducing the flip-flop is that it is one means of stor-
ing a bit within a modern computer. More precisely, a flip-flop can be set to have
the output value of either 0 or 1. Other circuits can adjust this value by sending
pulses to the flip-flop’s inputs, and still other circuits can respond to the stored
value by using the flip-flop’s output as their inputs. Thus, many flip-flops, con-
structed as very small electrical circuits, can be used inside a computer as a
means of recording information that is encoded as patterns of 0s and 1s. Indeed,
technology known as very large-scale integration (VLSI), which allows mil-
lions of electrical components to be constructed on a wafer (called a chip), is
used to create miniature devices containing millions of flip-flops along with their
controlling circuitry. In turn, these chips are used as abstract tools in the con-
struction of computer systems. In fact, in some cases VLSI is used to create an
entire computer system on a single chip.

Hexadecimal Notation
When considering the internal activities of a computer, we must deal with pat-
terns of bits, which we will refer to as a string of bits, some of which can be quite
long. A long string of bits is often called a stream. Unfortunately, streams are
difficult for the human mind to comprehend. Merely transcribing the pattern
101101010011 is tedious and error prone. To simplify the representation of such
bit patterns, therefore, we usually use a shorthand notation called hexadecimal

Input

Input
Output

Figure 1.5 Another way of constructing a flip-flop

251.1 Bits and Their Storage

notation, which takes advantage of the fact that bit patterns within a machine
tend to have lengths in multiples of four. In particular, hexadecimal notation uses
a single symbol to represent a pattern of four bits. For example, a string of twelve
bits can be represented by three hexadecimal symbols.

Figure 1.6 presents the hexadecimal encoding system. The left column dis-
plays all possible bit patterns of length four; the right column shows the symbol
used in hexadecimal notation to represent the bit pattern to its left. Using this
system, the bit pattern 10110101 is represented as B5. This is obtained by dividing
the bit pattern into substrings of length four and then representing each sub-
string by its hexadecimal equivalent—1011 is represented by B, and 0101 is repre-
sented by 5. In this manner, the 16-bit pattern 1010010011001000 can be reduced
to the more palatable form A4C8.

We will use hexadecimal notation extensively in the next chapter. There you
will come to appreciate its efficiency.

Figure 1.6 The hexadecimal encoding system

Questions & Exercises

1. What input bit patterns will cause the following circuit to produce an
output of 1?

2. In the text, we claimed that placing a 1 on the lower input of the flip-flop
in Figure 1.3 (while holding the upper input at 0) will force the flip-flop’s
output to be 0. Describe the sequence of events that occurs within the
flip-flop in this case.

Inputs Output

3. Assuming that both inputs to the flip-flop in Figure 1.5 are 0, describe the
sequence of events that occurs when the upper input is temporarily set to 1.

4. a. If the output of an AND gate is passed through a NOT gate, the com-
bination computes the Boolean operation called NAND, which has an
output of 0 only when both its inputs are 1. The symbol for a NAND
gate is the same as an AND gate except that it has a circle at its output.
The following is a circuit containing a NAND gate. What Boolean oper-
ation does the circuit compute?

26 Chapter 1 Data Storage

1.2 Main Memory
For the purpose of storing data, a computer contains a large collection of circuits
(such as flip-flops), each capable of storing a single bit. This bit reservoir is
known as the machine’s main memory.

Memory Organization
A computer’s main memory is organized in manageable units called cells, with
a typical cell size being eight bits. (A string of eight bits is called a byte. Thus, a
typical memory cell has a capacity of one byte.) Small computers used in such
household devices as microwave ovens may have main memories consisting of
only a few hundred cells, whereas large computers may have billions of cells in
their main memories.

Input

Input

Input

Output

Input

b. If the output of an OR gate is passed through a NOT gate, the combi-
nation computes the Boolean operation called NOR that has an output
of 1 only when both its inputs are 0. The symbol for a NOR gate is the
same as an OR gate except that it has a circle at its output. The fol-
lowing is a circuit containing an AND gate and two NOR gates. What
Boolean operation does the circuit compute?

5. Use hexadecimal notation to represent the following bit patterns:

a. 0110101011110010 b. 111010000101010100010111
c. 01001000

6. What bit patterns are represented by the following hexadecimal patterns?

a. 5FD97 b. 610A c. ABCD d. 0100

271.2 Main Memory

Although there is no left or right within a computer, we normally envision the
bits within a memory cell as being arranged in a row. The left end of this row is
called the high-order end, and the right end is called the low-order end. The left-
most bit is called either the high-order bit or the most significant bit in reference
to the fact that if the contents of the cell were interpreted as representing a numeric
value, this bit would be the most significant digit in the number. Similarly, the right-
most bit is referred to as the low-order bit or the least significant bit. Thus we may
represent the contents of a byte-size memory cell as shown in Figure 1.7.

To identify individual cells in a computer’s main memory, each cell is
assigned a unique “name,” called its address. The system is analogous to the tech-
nique of identifying houses in a city by addresses. In the case of memory cells,
however, the addresses used are entirely numeric. To be more precise, we envi-
sion all the cells being placed in a single row and numbered in this order starting
with the value zero. Such an addressing system not only gives us a way of
uniquely identifying each cell but also associates an order to the cells (Figure 1.8),
giving us phrases such as “the next cell” or “the previous cell.”

An important consequence of assigning an order to both the cells in main
memory and the bits within each cell is that the entire collection of bits within a
computer’s main memory is essentially ordered in one long row. Pieces of this
long row can therefore be used to store bit patterns that may be longer than the
length of a single cell. In particular, we can still store a string of 16 bits merely by
using two consecutive memory cells.

To complete the main memory of a computer, the circuitry that actually
holds the bits is combined with the circuitry required to allow other circuits to

High-order end Low-order end0 1 0 1 1 0 1 0

Most
significant
bit

Least
significant
bit

Figure 1.7 The organization of a byte-size memory cell

10111110
00011110

10000110
01110010

Cell
7

11110001

Cell
6

00110111

Cell
5

10110001

Cell
4

10100001

Cell
3

01011110

Cell
2

01101101

Cell
1

10001101

Cell
0

10111010

Cell
11

Cell
10

Cell
9

Cell
8

Figure 1.8 Memory cells arranged by address

28 Chapter 1 Data Storage

store and retrieve data from the memory cells. In this way, other circuits can get
data from the memory by electronically asking for the contents of a certain
address (called a read operation), or they can record information in the memory
by requesting that a certain bit pattern be placed in the cell at a particular
address (called a write operation).

Because a computer’s main memory is organized as individual, addressable
cells, the cells can be accessed independently as required. To reflect the ability to
access cells in any order, a computer’s main memory is often called random
access memory (RAM). This random access feature of main memory is in
stark contrast to the mass storage systems that we will discuss in the next sec-
tion, in which long strings of bits are manipulated as amalgamated blocks.

Although we have introduced flip-flops as a means of storing bits, the RAM in
most modern computers is constructed using other technologies that provide
greater miniaturization and faster response time. Many of these technologies store
bits as tiny electric charges that dissipate quickly. Thus these devices require addi-
tional circuitry, known as a refresh circuit, that repeatedly replenishes the charges
many times a second. In recognition of this volatility, computer memory con-
structed from such technology is often called dynamic memory, leading to the
term DRAM (pronounced “DEE–ram”) meaning Dynamic RAM. Or, at times the
term SDRAM (pronounced “ES-DEE-ram”), meaning Synchronous DRAM, is used
in reference to DRAM that applies additional techniques to decrease the time
needed to retrieve the contents from its memory cells.

Measuring Memory Capacity
As we will learn in the next chapter, it is convenient to design main memory systems
in which the total number of cells is a power of two. In turn, the size of the memo-
ries in early computers were often measured in 1024 (which is 210) cell units. Since
1024 is close to the value 1000, the computing community adopted the prefix kilo in
reference to this unit. That is, the term kilobyte (abbreviated KB) was used to refer to
1024 bytes. Thus, a machine with 4096 memory cells was said to have a 4KB mem-
ory (4096 � 4 � 1024). As memories became larger, this terminology grew to include
MB (megabyte), GB (gigabyte), and TB (terabyte). Unfortunately, this application of
prefixes kilo-, mega-, and so on, represents a misuse of terminology because these
are already used in other fields in reference to units that are powers of a thousand.
For example, when measuring distance, kilometer refers to 1000 meters, and when
measuring radio frequencies, megahertz refers to 1,000,000 hertz. Thus, a word of
caution is in order when using this terminology. As a general rule, terms such as
kilo-, mega-, etc. refer to powers of two when used in the context of a computer’s
memory, but they refer to powers of a thousand when used in other contexts.

Questions & Exercises

1. If the memory cell whose address is 5 contains the value 8, what is the
difference between writing the value 5 into cell number 6 and moving
the contents of cell number 5 into cell number 6?

2. Suppose you want to interchange the values stored in memory cells 2
and 3. What is wrong with the following sequence of steps:
Step 1. Move the contents of cell number 2 to cell number 3.
Step 2. Move the contents of cell number 3 to cell number 2.

291.3 Mass Storage

1.3 Mass Storage
Due to the volatility and limited size of a computer’s main memory, most computers
have additional memory devices called mass storage (or secondary storage) sys-
tems, including magnetic disks, CDs, DVDs, magnetic tapes, and flash drives (all of
which we will discuss shortly). The advantages of mass storage systems over main
memory include less volatility, large storage capacities, low cost, and in many cases,
the ability to remove the storage medium from the machine for archival purposes.

The terms on-line and off-line are often used to describe devices that can be
either attached to or detached from a machine. On-line means that the device or
information is connected and readily available to the machine without human
intervention. Off-line means that human intervention is required before the
device or information can be accessed by the machine—perhaps because the
device must be turned on, or the medium holding the information must be
inserted into some mechanism.

A major disadvantage of mass storage systems is that they typically require
mechanical motion and therefore require significantly more time to store and
retrieve data than a machine’s main memory, where all activities are per-
formed electronically.

Magnetic Systems
For years, magnetic technology has dominated the mass storage arena. The most
common example in use today is the magnetic disk, in which a thin spinning
disk with magnetic coating is used to hold data (Figure 1.9). Read/write heads are
placed above and/or below the disk so that as the disk spins, each head traverses
a circle, called a track. By repositioning the read/write heads, different concen-
tric tracks can be accessed. In many cases, a disk storage system consists of sev-
eral disks mounted on a common spindle, one on top of the other, with enough
space for the read/write heads to slip between the platters. In such cases, the

Design a sequence of steps that correctly interchanges the contents of
these cells. If needed, you may use additional cells.

3. How many bits would be in the memory of a computer with 4KB memory?

Track divided
into sectors

Disk
Read/write head

Disk motion

Arm motion

Access arm

Figure 1.9 A disk storage system

30 Chapter 1 Data Storage

read/write heads move in unison. Each time the read/write heads are reposi-
tioned, a new set of tracks—which is called a cylinder—becomes accessible.

Since a track can contain more information than we would normally want
to manipulate at any one time, each track is divided into small arcs called
sectors on which information is recorded as a continuous string of bits. All sec-
tors on a disk contain the same number of bits (typical capacities are in the
range of 512 bytes to a few KB), and in the simplest disk storage systems each
track contains the same number of sectors. Thus, the bits within a sector on a
track near the outer edge of the disk are less compactly stored than those on the
tracks near the center, since the outer tracks are longer than the inner ones. In
fact, in high capacity disk storage systems, the tracks near the outer edge are
capable of containing significantly more sectors than those near the center, and
this capability is often utilized by applying a technique called zoned-bit
recording. Using zoned-bit recording, several adjacent tracks are collectively
known as zones, with a typical disk containing approximately ten zones. All
tracks within a zone have the same number of sectors, but each zone has more
sectors per track than the zone inside of it. In this manner, efficient utilization
of the entire disk surface is achieved. Regardless of the details, a disk storage
system consists of many individual sectors, each of which can be accessed as an
independent string of bits.

The location of tracks and sectors is not a permanent part of a disk’s physical
structure. Instead, they are marked magnetically through a process called
formatting (or initializing) the disk. This process is usually performed by the
disk’s manufacturer, resulting in what are known as formatted disks. Most com-
puter systems can also perform this task. Thus, if the format information on a
disk is damaged, the disk can be reformatted, although this process destroys all
the information that was previously recorded on the disk.

The capacity of a disk storage system depends on the number of platters
used and the density in which the tracks and sectors are placed. Lower-capacity
systems may consist of a single platter. High-capacity disk systems, capable of
holding many gigabytes, or even terabytes, consist of perhaps three to six plat-
ters mounted on a common spindle. Furthermore, data may be stored on both
the upper and lower surfaces of each platter.

Several measurements are used to evaluate a disk system’s performance: (1)
seek time (the time required to move the read/write heads from one track to
another); (2) rotation delay or latency time (half the time required for the disk
to make a complete rotation, which is the average amount of time required for
the desired data to rotate around to the read/write head once the head has been
positioned over the desired track); (3) access time (the sum of seek time and
rotation delay); and (4) transfer rate (the rate at which data can be transferred
to or from the disk). (Note that in the case of zone-bit recording, the amount of
data passing a read/write head in a single disk rotation is greater for tracks in an
outer zone than for an inner zone, and therefore the data transfer rate varies
depending on the portion of the disk being used.)

A factor limiting the access time and transfer rate is the speed at which a
disk system rotates. To facilitate fast rotation speeds, the read/write heads in
these systems do not touch the disk but instead “float” just off the surface. The
spacing is so close that even a single particle of dust could become jammed
between the head and disk surface, destroying both (a phenomenon known as a
head crash). Thus, disk systems are typically housed in cases that are sealed at
the factory. With this construction, disk systems are able to rotate at speeds of

311.3 Mass Storage

several thousands times per second, achieving transfer rates that are measured
in MB per second.

Since disk systems require physical motion for their operation, these sys-
tems suffer when compared to speeds within electronic circuitry. Delay times
within an electronic circuit are measured in units of nanoseconds (billionths of a
second) or less, whereas seek times, latency times, and access times of disk sys-
tems are measured in milliseconds (thousandths of a second). Thus the time
required to retrieve information from a disk system can seem like an eternity to
an electronic circuit awaiting a result.

Disk storage systems are not the only mass storage devices that apply mag-
netic technology. An older form of mass storage using magnetic technology is
magnetic tape (Figure 1.10). In these systems, information is recorded on the
magnetic coating of a thin plastic tape that is wound on a reel for storage. To
access the data, the tape is mounted in a device called a tape drive that typically
can read, write, and rewind the tape under control of the computer. Tape drives
range in size from small cartridge units, called streaming tape units, which use
tape similar in appearance to that in stereo systems to older, large reel-to-reel
units. Although the capacity of these devices depends on the format used, most
can hold many GB.

A major disadvantage of magnetic tape is that moving between different posi-
tions on a tape can be very time-consuming owing to the significant amount of
tape that must be moved between the reels. Thus tape systems have much longer
data access times than magnetic disk systems in which different sectors can be
accessed by short movements of the read/write head. In turn, tape systems are not
popular for on-line data storage. Instead, magnetic tape technology is reserved for
off-line archival data storage applications where its high capacity, reliability, and
cost efficiency are beneficial, although advances in alternatives, such as DVDs and
flash drives, are rapidly challenging this last vestige of magnetic tape.

Optical Systems
Another class of mass storage systems applies optical technology. An example is
the compact disk (CD). These disks are 12 centimeters (approximately 5 inches)
in diameter and consist of reflective material covered with a clear protective
coating. Information is recorded on them by creating variations in their reflective

Tape reel

Tape Tape

Take-up reel

Read/write
head

Tape motion

Figure 1.10 A magnetic tape storage mechanism

32 Chapter 1 Data Storage

surfaces. This information can then be retrieved by means of a laser beam that
detects irregularities on the reflective surface of the CD as it spins.

CD technology was originally applied to audio recordings using a recording
format known as CD-DA (compact disk-digital audio), and the CDs used today
for computer data storage use essentially the same format. In particular, informa-
tion on these CDs is stored on a single track that spirals around the CD like a
groove in an old-fashioned record, however, unlike old-fashioned records, the track
on a CD spirals from the inside out (Figure 1.11). This track is divided into units
called sectors, each with its own identifying markings and a capacity of 2KB of
data, which equates to 1⁄75 of a second of music in the case of audio recordings.

Note that the distance around the spiraled track is greater toward the outer
edge of the disk than at the inner portion. To maximize the capacity of a CD,
information is stored at a uniform linear density over the entire spiraled track,
which means that more information is stored in a loop around the outer portion
of the spiral than in a loop around the inner portion. In turn, more sectors will be
read in a single revolution of the disk when the laser beam is scanning the outer
portion of the spiraled track than when the beam is scanning the inner portion of
the track. Thus, to obtain a uniform rate of data transfer, CD-DA players are
designed to vary the rotation speed depending on the location of the laser beam.
However, most CD systems used for computer data storage spin at a faster, con-
stant speed and thus must accommodate variations in data transfer rates.

As a consequence of such design decisions, CD storage systems perform best
when dealing with long, continuous strings of data, as when reproducing music. In
contrast, when an application requires access to items of data in a random manner,
the approach used in magnetic disk storage (individual, concentric tracks divided
into individually accessible sectors) outperforms the spiral approach used in CDs.

Traditional CDs have capacities in the range of 600 to 700MB. However,
DVDs (Digital Versatile Disks), which are constructed from multiple, semi-
transparent layers that serve as distinct surfaces when viewed by a precisely
focused laser, provide storage capacities of several GB. Such disks are capable of
storing lengthy multimedia presentations, including entire motion pictures.
Finally, Blu-ray technology, which uses a laser in the blue-violet spectrum of
light (instead of red), is able to focus its laser beam with very fine precision. As a

Disk motion

CD

Data recorded on a single track,
consisting of individual sectors,
that spirals toward the outer edge

Figure 1.11 CD storage format

331.3 Mass Storage

result, BDs (Blu-ray Disks) provides over five times the capacity of a DVD.
This seemingly vast amount of storage is needed to meet the demands of high
definition video.

Flash Drives
A common property of mass storage systems based on magnetic or optic tech-
nology is that physical motion, such as spinning disks, moving read/write heads,
and aiming laser beams, is required to store and retrieve data. This means that
data storage and retrieval is slow compared to the speed of electronic circuitry.
Flash memory technology has the potential of alleviating this drawback. In a
flash memory system, bits are stored by sending electronic signals directly to the
storage medium where they cause electrons to be trapped in tiny chambers of
silicon dioxide, thus altering the characteristics of small electronic circuits. Since
these chambers are able to hold their captive electrons for many years, this tech-
nology is suitable for off-line storage of data.

Although data stored in flash memory systems can be accessed in small
byte-size units as in RAM applications, current technology dictates that stored
data be erased in large blocks. Moreover, repeated erasing slowly damages the
silicon dioxide chambers, meaning that current flash memory technology is not
suitable for general main memory applications where its contents might be
altered many times a second. However, in those applications in which alter-
ations can be controlled to a reasonable level, such as in digital cameras, cellu-
lar telephones, and hand-held PDAs, flash memory has become the mass
storage technology of choice. Indeed, since flash memory is not sensitive to
physical shock (in contrast to magnetic and optic systems) its potential in
portable applications is enticing.

Flash memory devices called flash drives, with capacities of up to a few
hundred GBs, are available for general mass storage applications. These units are
packaged in small plastic cases approximately three inches long with a remov-
able cap on one end to protect the unit’s electrical connector when the drive is
off-line. The high capacity of these portable units as well as the fact that they are
easily connected to and disconnected from a computer make them ideal for off-
line data storage. However, the vulnerability of their tiny storage chambers dic-
tates that they are not as reliable as optical disks for truly long term applications.

Another application of flash technology is found in SD (Secure Digital)
memory cards (or just SD Card). These provide up to two GBs of storage and are
packaged in a plastic rigged wafer about the size a postage stamp (SD cards are also
available in smaller mini and micro sizes), SDHC (High Capacity) memory
cards can provide up to 32 GBs and the next generation SDXC (Extended
Capacity) memory cards may exceed a TB. Given their compact physical size,
these cards conveniently slip into slots of small electronic devices. Thus, they are
ideal for digital cameras, smartphones, music players, car navigation systems, and
a host of other electronic appliances.

File Storage and Retrieval
Information stored in a mass storage system is conceptually grouped into large
units called files. A typical file may consist of a complete text document, a photo-
graph, a program, a music recording, or a collection of data about the employees in

34 Chapter 1 Data Storage

a company. We have seen that mass storage devices dictate that these files be
stored and retrieved in smaller, multiple byte units. For example, a file stored on a
magnetic disk must be manipulated by sectors, each of which is a fixed predeter-
mined size. A block of data conforming to the specific characteristics of a storage
device is called a physical record. Thus, a large file stored in mass storage will
typically consist of many physical records.

In contrast to this division into physical records, a file often has natural divi-
sions determined by the information represented. For example, a file containing
information regarding a company’s employees would consist of multiple units,
each consisting of the information about one employee. Or, a file containing a
text document would consist of paragraphs or pages. These naturally occurring
blocks of data are called logical records.

Logical records often consist of smaller units called fields. For example, a
logical record containing information about an employee would probably consist
of fields such as name, address, employee identification number, etc. Sometimes
each logical record within a file is uniquely identified by means of a particular
field within the record (perhaps an employee’s identification number, a part
number, or a catalogue item number). Such an identifying field is called a key
field. The value held in a key field is called a key.

Logical record sizes rarely match the physical record size dictated by a mass
storage device. In turn, one may find several logical records residing within a sin-
gle physical record or perhaps a logical record split between two or more physical
records (Figure 1.12). The result is that a certain amount of unscrambling is asso-
ciated with retrieving data from mass storage systems. A common solution to this
problem is to set aside an area of main memory that is large enough to hold sev-
eral physical records and to use this memory space as a regrouping area. That is,
blocks of data compatible with physical records can be transferred between this
main memory area and the mass storage system, while the data residing in the
main memory area can be referenced in terms of logical records.

An area of memory used in this manner is called a buffer. In general, a
buffer is a storage area used to hold data on a temporary basis, usually during the
process of being transferred from one device to another. For example, modern

Logical records correspond
to natural divisions within the data

Physical records correspond
to the size of a sector

Figure 1.12 Logical records versus physical records on a disk

351.4 Representing Information as Bit Patterns

printers contain memory circuitry of their own, a large part of which is used as a
buffer for holding portions of a document that have been received by the printer
but not yet printed.

Questions & Exercises

1. What is gained by increasing the rotation speed of a disk or CD?
2. When recording data on a multiple-disk storage system, should we fill a

complete disk surface before starting on another surface, or should we
first fill an entire cylinder before starting on another cylinder?

3. Why should the data in a reservation system that is constantly being
updated be stored on a magnetic disk instead of a CD or DVD?

4. Sometimes, when modifying a document with a word processor, adding
text does not increase the apparent size of the file in mass storage, but at
other times the addition of a single symbol can increase the apparent
size of the file by several hundred bytes. Why?

5. What advantage do flash drives have over the other mass storage systems
introduced in this section?

6. What is a buffer?

1.4 Representing Information as Bit Patterns
Having considered techniques for storing bits, we now consider how information
can be encoded as bit patterns. Our study focuses on popular methods for encod-
ing text, numerical data, images, and sound. Each of these systems has repercus-
sions that are often visible to a typical computer user. Our goal is to understand
enough about these techniques so that we can recognize their consequences for
what they are.

Representing Text
Information in the form of text is normally represented by means of a code in
which each of the different symbols in the text (such as the letters of the alpha-
bet and punctuation marks) is assigned a unique bit pattern. The text is then rep-
resented as a long string of bits in which the successive patterns represent the
successive symbols in the original text.

In the 1940s and 1950s, many such codes were designed and used in con-
nection with different pieces of equipment, producing a corresponding prolifera-
tion of communication problems. To alleviate this situation, the American
National Standards Institute (ANSI, pronounced “AN–see”) adopted the
American Standard Code for Information Interchange (ASCII, pronounced
“AS–kee”). This code uses bit patterns of length seven to represent the upper-
and lowercase letters of the English alphabet, punctuation symbols, the digits 0
through 9, and certain control information such as line feeds, carriage returns,
and tabs. ASCII is extended to an eight-bit-per-symbol format by adding a 0 at the
most significant end of each of the seven-bit patterns. This technique not only

36 Chapter 1 Data Storage

produces a code in which each pattern fits conveniently into a typical byte-size
memory cell but also provides 128 additional bit patterns (those obtained by
assigning the extra bit the value 1) that can be used to represent symbols beyond
the English alphabet and associated punctuation.

A portion of ASCII in its eight-bit-per-symbol format is shown in Appendix A.
By referring to this appendix, we can decode the bit pattern

01001000 01100101 01101100 01101100 01101111 00101110

as the message “Hello.” as demonstrated in Figure 1.13.
The International Organization for Standardization (also known as ISO,

in reference to the Greek word isos, meaning equal) has developed a number of
extensions to ASCII, each of which were designed to accommodate a major lan-
guage group. For example, one standard provides the symbols needed to express
the text of most Western European languages. Included in its 128 additional pat-
terns are symbols for the British pound and the German vowels ä, ö, and ü.

The ISO extended ASCII standards made tremendous headway toward sup-
porting all of the world’s multilingual communication; however, two major obsta-
cles surfaced. First, the number of extra bit patterns available in extended ASCII
is simply insufficient to accommodate the alphabet of many Asian and some
Eastern European languages. Second, because a given document was con-
strained to using symbols in just the one selected standard, documents contain-
ing text of languages from disparate language groups could not be supported.
Both proved to be a significant detriment to international use. To address this
deficiency, Unicode, was developed through the cooperation of several of the
leading manufacturers of hardware and software and has rapidly gained the sup-
port in the computing community. This code uses a unique pattern of 16 bits
to represent each symbol. As a result, Unicode consists of 65,536 different bit
patterns—enough to allow text written in such languages as Chinese, Japanese,
and Hebrew to be represented.

A file consisting of a long sequence of symbols encoded using ASCII or
Unicode is often called a text file. It is important to distinguish between simple
text files that are manipulated by utility programs called text editors (or often
simply editors) and the more elaborate files produced by word processors such
as Microsoft’s Word. Both consist of textual material. However, a text file contains
only a character-by-character encoding of the text, whereas a file produced by a
word processor contains numerous proprietary codes representing changes in
fonts, alignment information, etc.

Representing Numeric Values
Storing information in terms of encoded characters is inefficient when the infor-
mation being recorded is purely numeric. To see why, consider the problem of
storing the value 25. If we insist on storing it as encoded symbols in ASCII using
one byte per symbol, we need a total of 16 bits. Moreover, the largest number

01001000

H

01101100

I

01101100

I

01101111

o

00101110

.

01100101

e

Figure 1.13 The message “Hello.” in ASCII

371.4 Representing Information as Bit Patterns

The American National Standards Institute
The American National Standards Institute (ANSI) was founded in 1918 by a small
consortium of engineering societies and government agencies as a nonprofit federa-
tion to coordinate the development of voluntary standards in the private sector.
Today, ANSI membership includes more than 1300 businesses, professional organi-
zations, trade associations, and government agencies. ANSI is headquartered in New
York and represents the United States as a member body in the ISO. The Web site for
the American National Standards Institute is at http://www.ansi.org.

Similar organizations in other countries include Standards Australia (Australia),
Standards Council of Canada (Canada), China State Bureau of Quality and Technical
Supervision (China), Deutsches Institut für Normung (Germany), Japanese Industrial
Standards Committee (Japan), Dirección General de Normas (Mexico), State Committee
of the Russian Federation for Standardization and Metrology (Russia), Swiss
Association for Standardization (Switzerland), and British Standards Institution
(United Kingdom).

we could store using 16 bits is 99. However, as we will shortly see, by using
binary notation we can store any integer in the range from 0 to 65535 in these
16 bits. Thus, binary notation (or variations of it) is used extensively for encoded
numeric data for computer storage.

Binary notation is a way of representing numeric values using only the digits
0 and 1 rather than the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as in the traditional dec-
imal, or base ten, system. We will study the binary system more thoroughly in
Section 1.5. For now, all we need is an elementary understanding of the system.
For this purpose consider an old-fashioned car odometer whose display wheels
contain only the digits 0 and 1 rather than the traditional digits 0 through 9. The
odometer starts with a reading of all 0s, and as the car is driven for the first few
miles, the rightmost wheel rotates from a 0 to a 1. Then, as that 1 rotates back to
a 0, it causes a 1 to appear to its left, producing the pattern 10. The 0 on the right
then rotates to a 1, producing 11. Now the rightmost wheel rotates from 1 back to
0, causing the 1 to its left to rotate to a 0 as well. This in turn causes another 1 to
appear in the third column, producing the pattern 100. In short, as we drive the
car we see the following sequence of odometer readings:

0000

0001

0010

0011

0100

0101

0110

0111

1000

This sequence consists of the binary representations of the integers zero
through eight. Although tedious, we could extend this counting technique to dis-
cover that the bit pattern consisting of sixteen 1s represents the value 65535,

http://www.ansi.org
http://www.ansi.org

38 Chapter 1 Data Storage

which confirms our claim that any integer in the range from 0 to 65535 can be
encoded using 16 bits.

Due to this efficiency, it is common to store numeric information in a form of
binary notation rather than in encoded symbols. We say “a form of binary nota-
tion” because the straightforward binary system just described is only the basis for
several numeric storage techniques used within machines. Some of these varia-
tions of the binary system are discussed later in this chapter. For now, we merely
note that a system called two’s complement notation (see Section 1.6) is com-
mon for storing whole numbers because it provides a convenient method for rep-
resenting negative numbers as well as positive. For representing numbers with
fractional parts such as 41⁄2 or 3⁄4, another technique, called floating-point nota-
tion (see Section 1.7), is used.

Representing Images
One means of representing an image is to interpret the image as a collection of
dots, each of which is called a pixel, short for “picture element.” The appearance
of each pixel is then encoded and the entire image is represented as a collection
of these encoded pixels. Such a collection is called a bit map. This approach is
popular because many display devices, such as printers and display screens,
operate on the pixel concept. In turn, images in bit map form are easily format-
ted for display.

The method of encoding the pixels in a bit map varies among applications.
In the case of a simple black and white image, each pixel can be represented by
a single bit whose value depends on whether the corresponding pixel is black or
white. This is the approach used by most facsimile machines. For more elaborate
back and white photographs, each pixel can be represented by a collection of bits
(usually eight), which allows a variety of shades of grayness to be represented.

In the case of color images, each pixel is encoded by more complex system.
Two approaches are common. In one, which we will call RGB encoding, each
pixel is represented as three color components—a red component, a green com-
ponent, and a blue component—corresponding to the three primary colors of
light. One byte is normally used to represent the intensity of each color compo-
nent. In turn, three bytes of storage are required to represent a single pixel in the
original image.

ISO—The International Organization for Standardization
The International Organization for Standardization (more commonly called ISO) was
established in 1947 as a worldwide federation of standardization bodies, one from
each country. Today, it is headquartered in Geneva, Switzerland and has more than
100 member bodies as well as numerous correspondent members. (A correspondent
member is usually a standardization body from a country that does not have a
nationally recognized standardization body. Such members cannot participate
directly in the development of standards but are kept informed of ISO activities.) ISO
maintains a Web site at http://www.iso.org.

http://www.iso.org
http://www.iso.org

391.4 Representing Information as Bit Patterns

An alternative to simple RGB encoding is to use a “brightness” component
and two color components. In this case the “brightness” component, which is
called the pixel’s luminance, is essentially the sum of the red, green, and blue
components. (Actually, it is considered to be the amount of white light in the
pixel, but these details need not concern us here.) The other two components,
called the blue chrominance and the red chrominance, are determined by com-
puting the difference between the pixel’s luminance and the amount of blue or
red light, respectively, in the pixel. Together these three components contain the
information required to reproduce the pixel.

The popularity of encoding images using luminance and chrominance com-
ponents originated in the field of color television broadcast because this
approach provided a means of encoding color images that was also compatible
with older black-and-white television receivers. Indeed, a gray-scale version of
an image can be produced by using only the luminance components of the
encoded color image.

A disadvantage of representing images as bit maps is that an image cannot
be rescaled easily to any arbitrary size. Essentially, the only way to enlarge the
image is to make the pixels bigger, which leads to a grainy appearance. (This is
the technique called “digital zoom” used in digital cameras as opposed to “optical
zoom” that is obtained by adjusting the camera lens.)

An alternate way of representing images that avoids this scaling problem is to
describe the image as a collection of geometric structures, such as lines and
curves, that can be encoded using techniques of analytic geometry. Such a
description allows the device that ultimately displays the image to decide how the
geometric structures should be displayed rather than insisting that the device
reproduce a particular pixel pattern. This is the approach used to produce the
scalable fonts that are available via today’s word processing systems. For example,
TrueType (developed by Microsoft and Apple) is a system for geometrically
describing text symbols. Likewise, PostScript (developed by Adobe Systems) pro-
vides a means of describing characters as well as more general pictorial data. This
geometric means of representing images is also popular in computer-aided
design (CAD) systems in which drawings of three-dimensional objects are dis-
played and manipulated on computer display screens.

The distinction between representing an image in the form of geometric
structures as opposed to bit maps is evident to users of many drawing software
systems (such as Microsoft’s Paint utility) that allow the user to draw pictures
consisting of preestablished shapes such as rectangles, ovals, and elementary
curves. The user simply selects the desired geometric shape from a menu and
then directs the drawing of that shape via a mouse. During the drawing
process, the software maintains a geometric description of the shape being
drawn. As directions are given by the mouse, the internal geometric represen-
tation is modified, reconverted to bit map form, and displayed. This allows for
easy scaling and shaping of the image. Once the drawing process is complete,
however, the underlying geometric description is discarded and only the bit
map is preserved, meaning that additional alterations require a tedious pixel-
by-pixel modification process. On the other hand, some drawing systems pre-
serve the description as geometric shapes, which can be modified later. With
these systems, the shapes can be easily resized, maintaining a crisp display at
any dimension.

Representing Sound
The most generic method of encoding audio information for computer storage
and manipulation is to sample the amplitude of the sound wave at regular inter-
vals and record the series of values obtained. For instance, the series 0, 1.5, 2.0,
1.5, 2.0, 3.0, 4.0, 3.0, 0 would represent a sound wave that rises in amplitude, falls
briefly, rises to a higher level, and then drops back to 0 (Figure 1.14). This tech-
nique, using a sample rate of 8000 samples per second, has been used for years
in long-distance voice telephone communication. The voice at one end of the
communication is encoded as numeric values representing the amplitude of the
voice every eight-thousandth of a second. These numeric values are then trans-
mitted over the communication line to the receiving end, where they are used to
reproduce the sound of the voice.

Although 8000 samples per second may seem to be a rapid rate, it is not suf-
ficient for high-fidelity music recordings. To obtain the quality sound reproduc-
tion obtained by today’s musical CDs, a sample rate of 44,100 samples per second
is used. The data obtained from each sample are represented in 16 bits (32 bits
for stereo recordings). Consequently, each second of music recorded in stereo
requires more than a million bits.

An alternative encoding system known as Musical Instrument Digital
Interface (MIDI, pronounced “MID–ee”) is widely used in the music synthesiz-
ers found in electronic keyboards, for video game sound, and for sound effects
accompanying Web sites. By encoding directions for producing music on a syn-
thesizer rather than encoding the sound itself, MIDI avoids the large storage
requirements of the sampling technique. More precisely, MIDI encodes what
instrument is to play which note for what duration of time, which means that a
clarinet playing the note D for two seconds can be encoding in three bytes
rather than more than two million bits when sampled at a rate of 44,100 sam-
ples per second.

In short, MIDI can be thought of as a way of encoding the sheet music read
by a performer rather than the performance itself, and in turn, a MIDI “record-
ing” can sound significantly different when performed on different synthesizers.

40 Chapter 1 Data Storage

0 1.5 2.0 1.5 2.0 3.0 4.0 3.0 0

Amplitudes

Encoded sound wave

Figure 1.14 The sound wave represented by the sequence 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0

411.4 Representing Information as Bit Patterns

Questions & Exercises

1. Here is a message encoded in ASCII using 8 bits per symbol. What does
it say? (See Appendix A)

2. In the ASCII code, what is the relationship between the codes for an
uppercase letter and the same letter in lowercase? (See Appendix A.)

3. Encode these sentences in ASCII:

a. “Stop!” Cheryl shouted. b. Does 2 � 3 � 5?

4. Describe a device from everyday life that can be in either of two states,
such as a flag on a flagpole that is either up or down. Assign the symbol 1
to one of the states and 0 to the other, and show how the ASCII repre-
sentation for the letter b would appear when stored with such bits.

5. Convert each of the following binary representations to its equivalent
base ten form:

a. 0101 b. 1001 c. 1011
d. 0110 e. 10000 f. 10010

6. Convert each of the following base ten representations to its equivalent
binary form:

a. 6 b. 13 c. 11
d. 18 e. 27 f. 4

7. What is the largest numeric value that could be represented with three
bytes if each digit were encoded using one ASCII pattern per byte? What
if binary notation were used?

8. An alternative to hexadecimal notation for representing bit patterns is
dotted decimal notation in which each byte in the pattern is repre-
sented by its base ten equivalent. In turn, these byte representations are
separated by periods. For example, 12.5 represents the pattern
0000110000000101 (the byte 00001100 is represented by 12, and 00000101
is represented by 5), and the pattern 100010000001000000000111 is repre-
sented by 136.16.7. Represent each of the following bit patterns in dotted
decimal notation.

a. 0000111100001111 b. 001100110000000010000000
c. 0000101010100000

9. What is an advantage of representing images via geometric structures as
opposed to bit maps? What about bit map techniques as opposed to geo-
metric structures?

10. Suppose a stereo recording of one hour of music is encoded using a sam-
ple rate of 44,100 samples per second as discussed in the text. How does
the size of the encoded version compare to the storage capacity of a CD?

01000011 01101111 01101101 01110000 01110101 01110100
01100101 01110010 00100000 01010011 01100011 01101001
01100101 01101110 01100011 01100101

42 Chapter 1 Data Storage

1.5 The Binary System
In Section 1.4 we saw that binary notation is a means of representing numeric
values using only the digits 0 and 1 rather than the ten digits 0 through 9 that are
used in the more common base ten notational system. It is time now to look at
binary notation more thoroughly.

Binary Notation
Recall that in the base ten system, each position in a representation is associated
with a quantity. In the representation 375, the 5 is in the position associated with
the quantity one, the 7 is in the position associated with ten, and the 3 is in the
position associated with the quantity one hundred (Figure 1.15a). Each quantity
is ten times that of the quantity to its right. The value represented by the entire
expression is obtained by multiplying the value of each digit by the quantity
associated with that digit’s position and then adding those products. To illustrate,
the pattern 375 represents (3 � hundred) � (7 � ten) � (5 � one), which, in
more technical notation, is (3 � 102) � (7 � 101) � (5 � 100).

The position of each digit in binary notation is also associated with a
quantity, except that the quantity associated with each position is twice the
quantity associated with the position to its right. More precisely, the rightmost
digit in a binary representation is associated with the quantity one (20), the
next position to the left is associated with two (21), the next is associated with
four (22), the next with eight (23), and so on. For example, in the binary repre-
sentation 1011, the rightmost 1 is in the position associated with the quantity
one, the 1 next to it is in the position associated with two, the 0 is in the posi-
tion associated with four, and the leftmost 1 is in the position associated with
eight (Figure 1.15b).

To extract the value represented by a binary representation, we follow the
same procedure as in base ten—we multiply the value of each digit by the quan-
tity associated with its position and add the results. For example, the value rep-
resented by 100101 is 37, as shown in Figure 1.16. Note that since binary notation
uses only the digits 0 and 1, this multiply-and-add process reduces merely to
adding the quantities associated with the positions occupied by 1s. Thus the
binary pattern 1011 represents the value eleven, because the 1s are found in the
positions associated with the quantities one, two, and eight.

In Section 1.4 we learned how to count in binary notation, which allowed us
to encode small integers. For finding binary representations of large values, you
may prefer the approach described by the algorithm in Figure 1.17. Let us apply
this algorithm to the value thirteen (Figure 1.18). We first divide thirteen by two,

Representation

Position’s quantity

3 7 5

O
neTe
n

H
un

dr
ed

a. Base ten system

Representation

Position’s quantity

01 1 1

Tw
o

O
ne

Fo
ur

b. Base two system

Ei
gh

t

Figure 1.15 The base ten and binary systems

431.5 The Binary System

Binary
pattern

Value
of bit

Total
Position’s
quantity

1 x one
0 x two
1 x four
0 x eight
0 x sixteen
1 x thirty-two

 1

 0
 4
 0
 0

 32

1 1 10 0 0

37

=
=
=
=
=
=

Figure 1.16 Decoding the binary representation 100101

Step 1. Divide the value by two and record the remainder.

Step 2. As long as the quotient obtained is not zero, continue to divide
the newest quotient by two and record the remainder.

Step 3. Now that a quotient of zero has been obtained, the binary
representation of the original value consists of the remainders
listed from right to left in the order they were recorded.

Figure 1.17 An algorithm for finding the binary representation of a positive integer

2
0
1

Remainder 1

2
1
3

Remainder 1

2
3
6

Remainder 0

2
6
13

Remainder 1

Binary representation1 1 0 1

Figure 1.18 Applying the algorithm in Figure 1.17 to obtain the binary representation
of thirteen

obtaining a quotient of six and a remainder of one. Since the quotient was not
zero, Step 2 tells us to divide the quotient (six) by two, obtaining a new quotient
of three and a remainder of zero. The newest quotient is still not zero, so we
divide it by two, obtaining a quotient of one and a remainder of one. Once again,
we divide the newest quotient (one) by two, this time obtaining a quotient of
zero and a remainder of one. Since we have now acquired a quotient of zero, we
move on to Step 3, where we learn that the binary representation of the original
value (thirteen) is 1101, obtained from the list of remainders.

44 Chapter 1 Data Storage

Binary Addition
To understand the process of adding two integers that are represented in binary,
let us first recall the process of adding values that are represented in traditional
base ten notation. Consider, for example, the following problem:

58
� 27

We begin by adding the 8 and the 7 in the rightmost column to obtain the sum 15.
We record the 5 at the bottom of that column and carry the 1 to the next column,
producing

1
58

� 27
5

We now add the 5 and 2 in the next column along with the 1 that was carried
to obtain the sum 8, which we record at the bottom of the column. The result
is as follows:

58
� 27
85

In short, the procedure is to progress from right to left as we add the digits in
each column, write the least significant digit of that sum under the column, and
carry the more significant digit of the sum (if there is one) to the next column.

To add two integers represented in binary notation, we follow the same pro-
cedure except that all sums are computed using the addition facts shown in
Figure 1.19 rather than the traditional base ten facts that you learned in elemen-
tary school. For example, to solve the problem

111010
� 11011

we begin by adding the rightmost 0 and 1; we obtain 1, which we write below the
column. Now we add the 1 and 1 from the next column, obtaining 10. We write
the 0 from this 10 under the column and carry the 1 to the top of the next col-
umn. At this point, our solution looks like this:

1
111010

� 11011
01

0
0
0

�
1
0
1

�
0
1
1

�
1
1
10
+

Figure 1.19 The binary addition facts

451.5 The Binary System

We add the 1, 0, and 0 in the next column, obtain 1, and write the 1 under this
column. The 1 and 1 from the next column total 10; we write the 0 under the col-
umn and carry the 1 to the next column. Now our solution looks like this:

1
111010

� 11011
0101

The 1, 1, and 1 in the next column total 11 (binary notation for the value three);
we write the low-order 1 under the column and carry the other 1 to the top of the
next column. We add that 1 to the 1 already in that column to obtain 10. Again,
we record the low-order 0 and carry the 1 to the next column. We now have

1
111010

� 11011
010101

The only entry in the next column is the 1 that we carried from the previous col-
umn so we record it in the answer. Our final solution is this:

111010
� 11011
1010101

Fractions in Binary
To extend binary notation to accommodate fractional values, we use a radix
point in the same role as the decimal point in decimal notation. That is, the dig-
its to the left of the point represent the integer part (whole part) of the value and
are interpreted as in the binary system discussed previously. The digits to its
right represent the fractional part of the value and are interpreted in a manner
similar to the other bits, except their positions are assigned fractional quanti-
ties. That is, the first position to the right of the radix is assigned the quantity
1⁄2 (which is 2�1), the next position the quantity 1⁄4 (which is 2�2), the next 1⁄8

(which is 2�3), and so on. Note that this is merely a continuation of the rule
stated previously: Each position is assigned a quantity twice the size of the one
to its right. With these quantities assigned to the bit positions, decoding a
binary representation containing a radix point requires the same procedure as
used without a radix point. More precisely, we multiply each bit value by the
quantity assigned to that bit’s position in the representation. To illustrate, the
binary representation 101.101 decodes to 55⁄8, as shown in Figure 1.20.

Binary
pattern

Value
of bit

Total
Position’s
quantity

1 x one-eighth
0 x one-fourth
1 x one-half
1 x one
0 x two
1 x four

 0

 1
 0
 4

1 1 10 1 0

5

=
=
=
=
=
=

.

5
8

18

12

Figure 1.20 Decoding the binary representation 101.101

46 Chapter 1 Data Storage

For addition, the techniques applied in the base ten system are also applica-
ble in binary. That is, to add two binary representations having radix points, we
merely align the radix points and apply the same addition process as before. For
example, 10.011 added to 100.11 produces 111.001, as shown here:

10.011
� 100.110

111.001

Analog Versus Digital
Prior to the twenty-first century, many researchers debated the pros and cons of dig-
ital versus analog technology. In a digital system, a value is encoded as a series of
digits and then stored using several devices, each representing one of the digits. In
an analog system, each value is stored in a single device that can represent any value
within a continuous range.

Let us compare the two approaches using buckets of water as the storage devices. To
simulate a digital system, we could agree to let an empty bucket represent the digit 0 and
a full bucket represent the digit 1. Then we could store a numeric value in a row of buckets
using floating-point notation (see Section 1.7). In contrast, we could simulate an analog
system by partially filling a single bucket to the point at which the water level represented
the numeric value being represented. At first glance, the analog system may appear to be
more accurate since it would not suffer from the truncation errors inherent in the digital
system (again see Section 1.7). However, any movement of the bucket in the analog sys-
tem could cause errors in detecting the water level, whereas a significant amount of
sloshing would have to occur in the digital system before the distinction between a full
bucket and an empty bucket would be blurred. Thus the digital system would be less
sensitive to error than the analog system. This robustness is a major reason why many
applications that were originally based on analog technology (such as telephone commu-
nication, audio recordings, and television) are shifting to digital technology.

Questions & Exercises

1. Convert each of the following binary representations to its equivalent
base ten form:

a. 101010 b. 100001 c. 10111 d. 0110 e. 11111

2. Convert each of the following base ten representations to its equivalent
binary form:

a. 32 b. 64 c. 96 d. 15 e. 27

3. Convert each of the following binary representations to its equivalent
base ten form:

a. 11.01 b. 101.111 c. 10.1 d. 110.011 e. 0.101

4. Express the following values in binary notation:

a. 41⁄2 b. 23⁄4 c. 11⁄8 d. 5⁄16 e. 55⁄8

471.6 Storing Integers

1.6 Storing Integers
Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of dig-
ital circuitry. In this section we consider two of these notational systems, two’s
complement notation and excess notation, which are used for representing inte-
ger values in computing equipment. These systems are based on the binary sys-
tem but have additional properties that make them more compatible with
computer design. With these advantages, however, come disadvantages as well.
Our goal is to understand these properties and how they affect computer usage.

Two’s Complement Notation
The most popular system for representing integers within today’s computers is
two’s complement notation. This system uses a fixed number of bits to repre-
sent each of the values in the system. In today’s equipment, it is common to use
a two’s complement system in which each value is represented by a pattern of
32 bits. Such a large system allows a wide range of numbers to be represented
but is awkward for demonstration purposes. Thus, to study the properties of
two’s complement systems, we will concentrate on smaller systems.

Figure 1.21 shows two complete two’s complement systems—one based on
bit patterns of length three, the other based on bit patterns of length four. Such a

5. Perform the following additions in binary notation:
a. 11011 b. 1010.001 c. 11111 d. 111.11

�1100 � 1.101 � 0001 � 00.01

a. Using patterns of length three b. Using patterns of length four

�

�

�

�

�

�

�

�

�

�

�

�

Figure 1.21 Two’s complement notation systems

48 Chapter 1 Data Storage

system is constructed by starting with a string of 0s of the appropriate length and
then counting in binary until the pattern consisting of a single 0 followed by 1s is
reached. These patterns represent the values 0, 1, 2, 3, The patterns repre-
senting negative values are obtained by starting with a string of 1s of the appro-
priate length and then counting backward in binary until the pattern consisting
of a single 1 followed by 0s is reached. These patterns represent the values �1,
�2, �3, (If counting backward in binary is difficult for you, merely start at
the very bottom of the table with the pattern consisting of a single 1 followed by
0s, and count up to the pattern consisting of all 1s.)

Note that in a two’s complement system, the leftmost bit of a bit pattern indi-
cates the sign of the value represented. Thus, the leftmost bit is often called the
sign bit. In a two’s complement system, negative values are represented by the
patterns whose sign bits are 1; nonnegative values are represented by patterns
whose sign bits are 0.

In a two’s complement system, there is a convenient relationship between
the patterns representing positive and negative values of the same magnitude.
They are identical when read from right to left, up to and including the first 1.
From there on, the patterns are complements of one another. (The
complement of a pattern is the pattern obtained by changing all the 0s to 1s
and all the 1s to 0s; 0110 and 1001 are complements.) For example, in the 4-bit
system in Figure 1.21 the patterns representing 2 and �2 both end with 10, but
the pattern representing 2 begins with 00, whereas the pattern representing �2
begins with 11. This observation leads to an algorithm for converting back and
forth between bit patterns representing positive and negative values of the same
magnitude. We merely copy the original pattern from right to left until a 1 has
been copied, then we complement the remaining bits as they are transferred to
the final bit pattern (Figure 1.22).

Understanding these basic properties of two’s complement systems also
leads to an algorithm for decoding two’s complement representations. If the
pattern to be decoded has a sign bit of 0, we need merely read the value as

Two’s complement notation
for 6 using four bits

Two’s complement notation
for –6 using four bits

Copy the bits from
right to left until a
1 has been copied

Complement the
remaining bits

0 1 1 0

1 0 1 0

Figure 1.22 Encoding the value �6 in two’s complement notation using 4 bits

491.6 Storing Integers

though the pattern were a binary representation. For example, 0110 represents the
value 6, because 110 is binary for 6. If the pattern to be decoded has a sign bit of
1, we know the value represented is negative, and all that remains is to find the
magnitude of the value. We do this by applying the “copy and complement” pro-
cedure in Figure 1.22 and then decoding the pattern obtained as though it were a
straightforward binary representation. For example, to decode the pattern 1010,
we first recognize that since the sign bit is 1, the value represented is negative.
Hence, we apply the “copy and complement” procedure to obtain the pattern
0110, recognize that this is the binary representation for 6, and conclude that the
original pattern represents �6.

Addition in Two’s Complement Notation To add values represented in two’s comple-
ment notation, we apply the same algorithm that we used for binary addition,
except that all bit patterns, including the answer, are the same length. This
means that when adding in a two’s complement system, any extra bit generated
on the left of the answer by a final carry must be truncated. Thus “adding” 0101
and 0010 produces 0111, and “adding” 0111 and 1011 results in 0010 (0111 � 1011 �
10010, which is truncated to 0010).

With this understanding, consider the three addition problems in Figure 1.23.
In each case, we have translated the problem into two’s complement notation
(using bit patterns of length four), performed the addition process previously
described, and decoded the result back into our usual base ten notation.

Observe that the third problem in Figure 1.23 involves the addition of a pos-
itive number to a negative number, which demonstrates a major benefit of two’s
complement notation: Addition of any combination of signed numbers can be
accomplished using the same algorithm and thus the same circuitry. This is in
stark contrast to how humans traditionally perform arithmetic computations.
Whereas elementary school children are first taught to add and later taught to
subtract, a machine using two’s complement notation needs to know only how
to add.

Problem in
base ten

Answer in
base ten

Problem in
two's complement

�

� �

� �

�

�

�

�

�

Figure 1.23 Addition problems converted to two’s complement notation

50 Chapter 1 Data Storage

For example, the subtraction problem 7 � 5 is the same as the addition prob-
lem 7 � (�5). Consequently, if a machine were asked to subtract 5 (stored as
0101) from 7 (stored as 0111), it would first change the 5 to �5 (represented as
1011) and then perform the addition process of 0111 � 1011 to obtain 0010, which
represents 2, as follows:

7 0111 0111
�5 S � 0101 S � 1011

0010 S 2

We see, then, that when two’s complement notation is used to represent numeric
values, a circuit for addition combined with a circuit for negating a value is suffi-
cient for solving both addition and subtraction problems. (Such circuits are
shown and explained in Appendix B.)

The Problem of Overflow One problem we have avoided in the preceding examples
is that in any two’s complement system there is a limit to the size of the values
that can be represented. When using two’s complement with patterns of 4 bits,
the largest positive integer that can be represented is 7, and the most negative
integer is �8. In particular, the value 9 can not be represented, which means that
we cannot hope to obtain the correct answer to the problem 5 � 4. In fact, the
result would appear as �7. This phenomenon is called overflow. That is, over-
flow is the problem that occurs when a computation produces a value that falls
outside the range of values that can be represented. When using two’s comple-
ment notation, this might occur when adding two positive values or when adding
two negative values. In either case, the condition can be detected by checking
the sign bit of the answer. An overflow is indicated if the addition of two positive
values results in the pattern for a negative value or if the sum of two negative
values appears to be positive.

Of course, because most computers use two’s complement systems with
longer bit patterns than we have used in our examples, larger values can be
manipulated without causing an overflow. Today, it is common to use patterns of
32 bits for storing values in two’s complement notation, allowing for positive val-
ues as large as 2,147,483,647 to accumulate before overflow occurs. If still larger
values are needed, longer bit patterns can be used or perhaps the units of meas-
ure can be changed. For instance, finding a solution in terms of miles instead of
inches results in smaller numbers being used and might still provide the accu-
racy required.

The point is that computers can make mistakes. So, the person using the
machine must be aware of the dangers involved. One problem is that computer
programmers and users become complacent and ignore the fact that small values
can accumulate to produce large numbers. For example, in the past it was com-
mon to use patterns of 16 bits for representing values in two’s complement nota-
tion, which meant that overflow would occur when values of 215 � 32,768 or
larger were reached. On September 19, 1989, a hospital computer system mal-
functioned after years of reliable service. Close inspection revealed that this date
was 32,768 days after January 1, 1900, and the machine was programmed to com-
pute dates based on that starting date. Thus, because of overflow, September 19,
1989, produced a negative value—a phenomenon for which the computer’s pro-
gram was not designed to handle.

511.6 Storing Integers

Excess Notation
Another method of representing integer values is excess notation. As is the
case with two’s complement notation, each of the values in an excess nota-
tion system is represented by a bit pattern of the same length. To establish
an excess system, we first select the pattern length to be used, then write
down all the different bit patterns of that length in the order they would
appear if we were counting in binary. Next, we observe that the first pattern
with a 1 as its most significant bit appears approximately halfway through
the list. We pick this pattern to represent zero; the patterns following this are
used to represent 1, 2, 3, . . .; and the patterns preceding it are used for �1,
�2, �3, The resulting code, when using patterns of length four, is
shown in Figure 1.24. There we see that the value 5 is represented by the
pattern 1101 and �5 is represented by 0011. (Note that the difference
between an excess system and a two’s complement system is that the sign
bits are reversed.)

The system represented in Figure 1.24 is known as excess eight notation.
To understand why, first interpret each of the patterns in the code using the
traditional binary system and then compare these results to the values repre-
sented in the excess notation. In each case, you will find that the binary inter-
pretation exceeds the excess notation interpretation by the value 8. For
example, the pattern 1100 in binary notation represents the value 12, but in
our excess system it represents 4; 0000 in binary notation represents 0, but in
the excess system it represents negative 8. In a similar manner, an excess sys-
tem based on patterns of length five would be called excess 16 notation,

Figure 1.24 An excess eight conversion table

52 Chapter 1 Data Storage

Questions & Exercises

1. Convert each of the following two’s complement representations to its
equivalent base ten form:

a. 00011 b. 01111 c. 11100
d. 11010 e. 00000 f. 10000

2. Convert each of the following base ten representations to its equivalent
two’s complement form using patterns of 8 bits:

a. 6 b. �6 c. �17
d. 13 e. �1 f. 0

3. Suppose the following bit patterns represent values stored in two’s com-
plement notation. Find the two’s complement representation of the neg-
ative of each value:

a. 00000001 b. 01010101 c. 11111100
d. 11111110 e. 00000000 f. 01111111

4. Suppose a machine stores numbers in two’s complement notation. What
are the largest and smallest numbers that can be stored if the machine
uses bit patterns of the following lengths?

a. four b. six c. eight
5. In the following problems, each bit pattern represents a value stored in

two’s complement notation. Find the answer to each problem in two’s
complement notation by performing the addition process described in

Figure 1.25 An excess notation system using bit patterns of length three

because the pattern 10000, for instance, would be used to represent zero
rather than representing its usual value of 16. Likewise, you may want to
confirm that the three-bit excess system would be known as excess four nota-
tion (Figure 1.25).

531.7 Storing Fractions

the text. Then check your work by translating the problem and your
answer into base ten notation.
a. 0101 b. 0011 c. 0101 d. 1110 e. 1010

� 0010 � 0001 � 1010 � 0011 � 1110

6. Solve each of the following problems in two’s complement notation, but
this time watch for overflow and indicate which answers are incorrect
because of this phenomenon.
a. 0100 b. 0101 c. 1010 d. 1010 e. 0111

� 0011 � 0110 � 1010 � 0111 � 0001

7. Translate each of the following problems from base ten notation into
two’s complement notation using bit patterns of length four, then con-
vert each problem to an equivalent addition problem (as a machine
might do), and perform the addition. Check your answers by converting
them back to base ten notation.
a. 6 b. 3 c. 4 d. 2 e. 1

�(�1) �2 �6 �(�4) �5

8. Can overflow ever occur when values are added in two’s complement nota-
tion with one value positive and the other negative? Explain your answer.

9. Convert each of the following excess eight representations to its equiva-
lent base ten form without referring to the table in the text:

a. 1110 b. 0111 c. 1000
d. 0010 e. 0000 f. 1001

10. Convert each of the following base ten representations to its equivalent
excess eight form without referring to the table in the text:

a. 5 b. �5 c. 3
d. 0 e. 7 f. �8

11. Can the value 9 be represented in excess eight notation? What about rep-
resenting 6 in excess four notation? Explain your answer.

1.7 Storing Fractions
In contrast to the storage of integers, the storage of a value with a fractional part
requires that we store not only the pattern of 0s and 1s representing its binary
representation but also the position of the radix point. A popular way of doing
this is based on scientific notation and is called floating-point notation.

Floating-Point Notation
Let us explain floating-point notation with an example using only one byte of
storage. Although machines normally use much longer patterns, this 8-bit format
is representative of actual systems and serves to demonstrate the important con-
cepts without the clutter of long bit patterns.

We first designate the high-order bit of the byte as the sign bit. Once again, a
0 in the sign bit will mean that the value stored is nonnegative, and a 1 will mean
that the value is negative. Next, we divide the remaining 7 bits of the byte into

54 Chapter 1 Data Storage

two groups, or fields: the exponent field and the mantissa field. Let us desig-
nate the 3 bits following the sign bit as the exponent field and the remaining
4 bits as the mantissa field. Figure 1.26 illustrates how the byte is divided.

We can explain the meaning of the fields by considering the following exam-
ple. Suppose a byte consists of the bit pattern 01101011. Analyzing this pattern
with the preceding format, we see that the sign bit is 0, the exponent is 110, and
the mantissa is 1011. To decode the byte, we first extract the mantissa and place a
radix point on its left side, obtaining

.1011

Next, we extract the contents of the exponent field (110) and interpret it as an
integer stored using the 3-bit excess method (see again Figure 1.25). Thus the
pattern in the exponent field in our example represents a positive 2. This tells us
to move the radix in our solution to the right by 2 bits. (A negative exponent
would mean to move the radix to the left.) Consequently, we obtain

10.11

which is the binary representation for 23⁄4. Next, we note that the sign bit in our
example is 0; the value represented is thus nonnegative. We conclude that the
byte 01101011 represents 23⁄4. Had the pattern been 11101011 (which is the same as
before except for the sign bit), the value represented would have been �23⁄4.

As another example, consider the byte 00111100. We extract the mantissa
to obtain

.1100

and move the radix 1 bit to the left, since the exponent field (011) represents the
value �1. We therefore have

.01100

which represents 3⁄8. Since the sign bit in the original pattern is 0, the value
stored is nonnegative. We conclude that the pattern 00111100 represents 3⁄8.

To store a value using floating-point notation, we reverse the preceding
process. For example, to encode 11⁄8, first we express it in binary notation and
obtain 1.001. Next, we copy the bit pattern into the mantissa field from left to
right, starting with the leftmost 1 in the binary representation. At this point, the
byte looks like this:

1 0 0 1

We must now fill in the exponent field. To this end, we imagine the contents
of the mantissa field with a radix point at its left and determine the number of bits
and the direction the radix must be moved to obtain the original binary number.

Sign bit

Exponent
Mantissa

Bit positions
— — —— — — — —

Figure 1.26 Floating-point notation components

551.7 Storing Fractions

In our example, we see that the radix in .1001 must be moved 1 bit to the right to
obtain 1.001. The exponent should therefore be a positive one, so we place 101
(which is positive one in excess four notation as shown in Figure 1.25) in the
exponent field. Finally, we fill the sign bit with 0 because the value being stored is
nonnegative. The finished byte looks like this:

0 1 0 1 1 0 0 1

There is a subtle point you may have missed when filling in the mantissa field.
The rule is to copy the bit pattern appearing in the binary representation from left
to right, starting with the leftmost 1. To clarify, consider the process of storing the
value 3⁄8, which is .011 in binary notation. In this case the mantissa will be

1 1 0 0

It will not be

0 1 1 0

This is because we fill in the mantissa field starting with the leftmost 1 that
appears in the binary representation. Representations that conform to this rule
are said to be in normalized form.

Using normalized form eliminates the possibility of multiple representations
for the same value. For example, both 00111100 and 01000110 would decode to the
value 3⁄8, but only the first pattern is in normalized form. Complying with nor-
malized form also means that the representation for all nonzero values will have
a mantissa that starts with 1. The value zero, however, is a special case; its
floating-point representation is a bit pattern of all 0s.

Truncation Errors
Let us consider the annoying problem that occurs if we try to store the value 25⁄8

with our one-byte floating-point system. We first write 25⁄8 in binary, which gives
us 10.101. But when we copy this into the mantissa field, we run out of room, and
the rightmost 1 (which represents the last 1⁄8) is lost (Figure 1.27). If we ignore

Lost bit

1 0 . 1 0 1

25/8

1 0 1 0 1

1 0 1 0

Original representation

Base two representation

Raw bit pattern

Sign bit

Exponent
Mantissa

— — — — — — —

Figure 1.27 Encoding the value 25⁄8

this problem for now and continue by filling in the exponent field and the sign
bit, we end up with the bit pattern 01101010, which represents 21⁄2 instead of
25⁄8. What has occurred is called a truncation error, or round-off error—
meaning that part of the value being stored is lost because the mantissa field is
not large enough.

The significance of such errors can be reduced by using a longer mantissa
field. In fact, most computers manufactured today use at least 32 bits for storing
values in floating-point notation instead of the 8 bits we have used here. This
also allows for a longer exponent field at the same time. Even with these longer
formats, however, there are still times when more accuracy is required.

Another source of truncation errors is a phenomenon that you are already
accustomed to in base ten notation: the problem of nonterminating expan-
sions, such as those found when trying to express 1⁄3 in decimal form. Some val-
ues cannot be accurately expressed regardless of how many digits we use. The
difference between our traditional base ten notation and binary notation is that
more values have nonterminating representations in binary than in decimal
notation. For example, the value one-tenth is nonterminating when expressed
in binary. Imagine the problems this might cause the unwary person using
floating-point notation to store and manipulate dollars and cents. In particular,
if the dollar is used as the unit of measure, the value of a dime could not be
stored accurately. A solution in this case is to manipulate the data in units of
pennies so that all values are integers that can be accurately stored using a
method such as two’s complement.

Truncation errors and their related problems are an everyday concern for
people working in the area of numerical analysis. This branch of mathematics
deals with the problems involved when doing actual computations that are often
massive and require significant accuracy.

The following is an example that would warm the heart of any numerical
analyst. Suppose we are asked to add the following three values using our one-
byte floating-point notation defined previously:

21⁄2 � 1⁄8 � 1⁄8

56 Chapter 1 Data Storage

Single Precision Floating Point
The floating-point notation introduced in this chapter (Section 1.7) is far too simplis-
tic to be used in an actual computer. After all, with just 8 bits only 256 numbers out of
set of all real numbers can be expressed. Our discussion has used 8 bits to keep the
examples simple, yet still cover the important underlying concepts.

Many of today’s computers support a 32 bit form of this notation called Single
Precision Floating Point. This format uses 1 bit for the sign, 8 bits for the exponent
(in an excess notation), and 23 bits for the mantissa. Thus, single precision floating
point is capable of expressing very large numbers (order of 1038) down to very small
numbers (order of 10�37) with the precision of 7 decimal digits. That is to say, the
first 7 digits of a given decimal number can be stored with very good accuracy (a
small amount of error may still be present). Any digits passed the first 7 will certainly
be lost by truncation error (although the magnitude of the number is retained).
Another form, called Double Precision Floating Point, uses 64 bits and provides a
precision of 15 decimal digits.

571.7 Storing Fractions

If we add the values in the order listed, we first add 21⁄2 to 1⁄8 and obtain 25⁄8,
which in binary is 10.101. Unfortunately, because this value cannot be stored
accurately (as seen previously), the result of our first step ends up being stored
as 21⁄2 (which is the same as one of the values we were adding). The next step is
to add this result to the last 1⁄8. Here again a truncation error occurs, and our final
result turns out to be the incorrect answer 21⁄2 .

Now let us add the values in the opposite order. We first add 1⁄8 to 1⁄8 to obtain
1⁄4. In binary this is .01; so the result of our first step is stored in a byte as
00111000, which is accurate. We now add this 1⁄4 to the next value in the list, 21⁄2 ,
and obtain 23⁄4 , which we can accurately store in a byte as 01101011. The result
this time is the correct answer.

To summarize, in adding numeric values represented in floating-point nota-
tion, the order in which they are added can be important. The problem is that if
a very large number is added to a very small number, the small number may be
truncated. Thus, the general rule for adding multiple values is to add the smaller
values together first, in hopes that they will accumulate to a value that is signifi-
cant when added to the larger values. This was the phenomenon experienced in
the preceding example.

Designers of today’s commercial software packages do a good job of shielding
the uneducated user from problems such as this. In a typical spreadsheet sys-
tem, correct answers will be obtained unless the values being added differ in size
by a factor of 1016 or more. Thus, if you found it necessary to add one to the value

10,000,000,000,000,000

you might get the answer

10,000,000,000,000,000

rather than

10,000,000,000,000,001

Such problems are significant in applications (such as navigational systems) in
which minor errors can be compounded in additional computations and ulti-
mately produce significant consequences, but for the typical PC user the degree
of accuracy offered by most commercial software is sufficient.

Questions & Exercises

1. Decode the following bit patterns using the floating-point format dis-
cussed in the text:

a. 01001010 b. 01101101 c. 00111001 d. 11011100 e. 10101011

2. Encode the following values into the floating-point format discussed in
the text. Indicate the occurrence of truncation errors.

a. 23⁄4 b. 51⁄4 c. 3⁄4 d. �31⁄2 e. �43⁄8

3. In terms of the floating-point format discussed in the text, which of the
patterns 01001001 and 00111101 represents the larger value? Describe a

58 Chapter 1 Data Storage

1.8 Data Compression
For the purpose of storing or transferring data, it is often helpful (and sometimes
mandatory) to reduce the size of the data involved while retaining the underlying
information. The technique for accomplishing this is called data compression.
We begin this section by considering some generic data compression methods
and then look at some approaches designed for specific applications.

Generic Data Compression Techniques
Data compression schemes fall into two categories. Some are lossless, others are
lossy. Lossless schemes are those that do not lose information in the compres-
sion process. Lossy schemes are those that may lead to the loss of information.
Lossy techniques often provide more compression than lossless ones and are
therefore popular in settings in which minor errors can be tolerated, as in the
case of images and audio.

In cases where the data being compressed consist of long sequences of the
same value, the compression technique called run-length encoding, which is a
lossless method, is popular. It is the process of replacing sequences of identical
data elements with a code indicating the element that is repeated and the num-
ber of times it occurs in the sequence. For example, less space is required to indi-
cate that a bit pattern consists of 253 ones, followed by 118 zeros, followed by
87 ones than to actually list all 458 bits.

Another lossless data compression technique is frequency-dependent
encoding, a system in which the length of the bit pattern used to represent a data
item is inversely related to the frequency of the item’s use. Such codes are exam-
ples of variable-length codes, meaning that items are represented by patterns of
different lengths as opposed to codes such as Unicode, in which all symbols are
represented by 16 bits. David Huffman is credited with discovering an algorithm
that is commonly used for developing frequency-dependent codes, and it is com-
mon practice to refer to codes developed in this manner as Huffman codes. In
turn, most frequency-dependent codes in use today are Huffman codes.

As an example of frequency-dependent encoding, consider the task of
encoded English language text. In the English language the letters e, t, a, and i
are used more frequently than the letters z, q, and x. So, when constructing a
code for text in the English language, space can be saved by using short bit pat-
terns to represent the former letters and longer bit patterns to represent the lat-
ter ones. The result would be a code in which English text would have shorter
representations than would be obtained with uniform-length codes.

In some cases, the stream of data to be compressed consists of units, each of
which differs only slightly from the preceding one. An example would be con-
secutive frames of a motion picture. In these cases, techniques using relative

simple procedure for determining which of two patterns represents the
larger value.

4. When using the floating-point format discussed in the text, what is the
largest value that can be represented? What is the smallest positive value
that can be represented?

591.8 Data Compression

encoding, also known as differential encoding, are helpful. These techniques
record the differences between consecutive data units rather than entire units;
that is, each unit is encoded in terms of its relationship to the previous unit.
Relative encoding can be implemented in either lossless or lossy form depending
on whether the differences between consecutive data units are encoded pre-
cisely or approximated.

Still other popular compression systems are based on dictionary encoding
techniques. Here the term dictionary refers to a collection of building blocks
from which the message being compressed is constructed, and the message itself
is encoded as a sequence of references to the dictionary. We normally think of
dictionary encoding systems as lossless systems, but as we will see in our dis-
cussion of image compression, there are times when the entries in the dictionary
are only approximations of the correct data elements, resulting in a lossy com-
pression system.

Dictionary encoding can be used by word processors to compress text docu-
ments because the dictionaries already contained in these processors for the
purpose of spell checking make excellent compression dictionaries. In particu-
lar, an entire word can be encoded as a single reference to this dictionary rather
than as a sequence of individual characters encoded using a system such as
ASCII or Unicode. A typical dictionary in a word processor contains approxi-
mately 25,000 entries, which means an individual entry can be identified by an
integer in the range of 0 to 24,999. This means that a particular entry in the dic-
tionary can be identified by a pattern of only 15 bits. In contrast, if the word
being referenced consisted of six letters, its character-by-character encoding
would require 48 bits using 8-bit ASCII or 96 bits using Unicode.

A variation of dictionary encoding is adaptive dictionary encoding (also
known as dynamic dictionary encoding). In an adaptive dictionary encoding sys-
tem, the dictionary is allowed to change during the encoding process. A popular
example is Lempel-Ziv-Welsh (LZW) encoding (named after its creators,
Abraham Lempel, Jacob Ziv, and Terry Welsh). To encode a message using LZW,
one starts with a dictionary containing the basic building blocks from which the
message is constructed, but as larger units are found in the message, they are
added to the dictionary—meaning that future occurrences of those units can be
encoded as single, rather than multiple, dictionary references. For example,
when encoding English text, one could start with a dictionary containing indi-
vidual characters, digits, and punctuation marks. But as words in the message
are identified, they could be added to the dictionary. Thus, the dictionary would
grow as the message is encoded, and as the dictionary grows, more words (or
recurring patterns of words) in the message could be encoded as single refer-
ences to the dictionary.

The result would be a message encoded in terms of a rather large dictionary
that is unique to that particular message. But this large dictionary would not
have to be present to decode the message. Only the original small dictionary
would be needed. Indeed, the decoding process could begin with the same small
dictionary with which the encoding process started. Then, as the decoding
process continues, it would encounter the same units found during the encoding
process, and thus be able to add them to the dictionary for future reference just
as in the encoding process.

To clarify, consider applying LZW encoding to the message

xyx xyx xyx xyx

60 Chapter 1 Data Storage

starting with a dictionary with three entries, the first being x, the second being y,
and the third being a space. We would begin by encoding xyx as 121, meaning
that the message starts with the pattern consisting of the first dictionary entry,
followed by the second, followed by the first. Then the space is encoded to pro-
duce 1213. But, having reached a space, we know that the preceding string of
characters forms a word, and so we add the pattern xyx to the dictionary as the
fourth entry. Continuing in this manner, the entire message would be encoded
as 121343434.

If we were now asked to decode this message, starting with the original
three-entry dictionary, we would begin by decoding the initial string 1213 as xyx
followed by a space. At this point we would recognize that the string xyx forms a
word and add it to the dictionary as the fourth entry, just as we did during the
encoding process. We would then continue decoding the message by recognizing
that the 4 in the message refers to this new fourth entry and decode it as the
word xyx, producing the pattern

xyx xyx

Continuing in this manner we would ultimately decode the string 121343434 as

xyx xyx xyx xyx

which is the original message.

Compressing Images
In Section 1.4, we saw how images are encoded using bit map techniques.
Unfortunately, the bit maps produced are often very large. In turn, numerous
compression schemes have been developed specifically for image representations.

One system known as GIF (short for Graphic Interchange Format and pro-
nounced “Giff” by some and “Jiff” by others) is a dictionary encoding system that
was developed by CompuServe. It approaches the compression problem by
reducing the number of colors that can be assigned to a pixel to only 256. The
red-green-blue combination for each of these colors is encoded using three bytes,
and these 256 encodings are stored in a table (a dictionary) called the palette.
Each pixel in an image can then be represented by a single byte whose value
indicates which of the 256 palette entries represents the pixel’s color. (Recall that
a single byte can contain any one of 256 different bit patterns.) Note that GIF is a
lossy compression system when applied to arbitrary images because the colors
in the palette may not be identical to the colors in the original image.

GIF can obtain additional compression by extending this simple dictionary
system to an adaptive dictionary system using LZW techniques. In particular, as
patterns of pixels are encountered during the encoding process, they are added
to the dictionary so that future occurrences of these patterns can be encoded
more efficiently. Thus, the final dictionary consists of the original palette and a
collection of pixel patterns.

One of the colors in a GIF palette is normally assigned the value “transpar-
ent,” which means that the background is allowed to show through each region
assigned that “color.” This option, combined with the relative simplicity of the
GIF system, makes GIF a logical choice in simple animation applications in
which multiple images must move around on a computer screen. On the other
hand, its ability to encode only 256 colors renders it unsuitable for applications
in which higher precision is required, as in the field of photography.

611.8 Data Compression

Another popular compression system for images is JPEG (pronounced “JAY-
peg”). It is a standard developed by the Joint Photographic Experts Group
(hence the standard’s name) within ISO. JPEG has proved to be an effective stan-
dard for compressing color photographs and is widely used in the photography
industry, as witnessed by the fact that most digital cameras use JPEG as their
default compression technique.

The JPEG standard actually encompasses several methods of image com-
pression, each with its own goals. In those situations that require the utmost in
precision, JPEG provides a lossless mode. However, JPEG’s lossless mode does
not produce high levels of compression when compared to other JPEG options.
Moreover, other JPEG options have proven very successful, meaning that JPEG’s
lossless mode is rarely used. Instead, the option known as JPEG’s baseline stan-
dard (also known as JPEG’s lossy sequential mode) has become the standard of
choice in many applications.

Image compression using the JPEG baseline standard requires a sequence of
steps, some of which are designed to take advantage of a human eye’s limita-
tions. In particular, the human eye is more sensitive to changes in brightness
than to changes in color. So, starting from an image that is encoded in terms of
luminance and chrominance components, the first step is to average the chromi-
nance values over two-by-two pixel squares. This reduces the size of the chromi-
nance information by a factor of four while preserving all the original brightness
information. The result is a significant degree of compression without a notice-
able loss of image quality.

The next step is to divide the image into eight-by-eight pixel blocks and to
compress the information in each block as a unit. This is done by applying a
mathematical technique known as the discrete cosine transform, whose details
need not concern us here. The important point is that this transformation con-
verts the original eight-by-eight block into another block whose entries reflect
how the pixels in the original block relate to each other rather than the actual
pixel values. Within this new block, values below a predetermined threshold are
then replaced by zeros, reflecting the fact that the changes represented by these
values are too subtle to be detected by the human eye. For example, if the origi-
nal block contained a checkerboard pattern, the new block might reflect a uni-
form average color. (A typical eight-by-eight pixel block would represent a very
small square within the image so the human eye would not identify the checker-
board appearance anyway.)

At this point, more traditional run-length encoding, relative encoding, and
variable-length encoding techniques are applied to obtain additional compression.
All together, JPEG’s baseline standard normally compresses color images by a fac-
tor of at least 10, and often by as much as 30, without noticeable loss of quality.

Still another data compression system associated with images is TIFF (short
for Tagged Image File Format). However, the most popular use of TIFF is not as
a means of data compression but instead as a standardized format for storing
photographs along with related information such as date, time, and camera set-
tings. In this context, the image itself is normally stored as red, green, and blue
pixel components without compression.

The TIFF collection of standards does include data compression techniques,
most of which are designed for compressing images of text documents in fac-
simile applications. These use variations of run-length encoding to take advan-
tage of the fact that text documents consist of long strings of white pixels. The

62 Chapter 1 Data Storage

color image compression option included in the TIFF standards is based on
techniques similar to those used by GIF, and are therefore not widely used in
the photography community.

Compressing Audio and Video
The most commonly used standards for encoding and compressing audio and
video were developed by the Motion Picture Experts Group (MPEG) under
the leadership of ISO. In turn, these standards themselves are called MPEG.

MPEG encompasses a variety of standards for different applications. For
example, the demands for high definition television (HDTV) broadcast are dis-
tinct from those for video conferencing in which the broadcast signal must find
its way over a variety of communication paths that may have limited capabili-
ties. And, both of these applications differ from that of storing video in such a
manner that sections can be replayed or skipped over.

The techniques employed by MPEG are well beyond the scope of this text,
but in general, video compression techniques are based on video being con-
structed as a sequence of pictures in much the same way that motion pictures
are recorded on film. To compress such sequences, only some of the pictures,
called I-frames, are encoded in their entirety. The pictures between the I-frames
are encoded using relative encoding techniques. That is, rather than encode the
entire picture, only its distinctions from the prior image are recorded. The
I-frames themselves are usually compressed with techniques similar to JPEG.

The best known system for compressing audio is MP3, which was developed
within the MPEG standards. In fact, the acronym MP3 is short for MPEG layer 3.
Among other compression techniques, MP3 takes advantage of the properties of
the human ear, removing those details that the human ear cannot perceive. One
such property, called temporal masking, is that for a short period after a loud
sound, the human ear cannot detect softer sounds that would otherwise be audi-
ble. Another, called frequency masking, is that a sound at one frequency tends
to mask softer sounds at nearby frequencies. By taking advantage of such char-
acteristics, MP3 can be used to obtain significant compression of audio while
maintaining near CD quality sound.

Using MPEG and MP3 compression techniques, video cameras are able to
record as much as an hour’s worth of video within 128MB of storage and portable
music players can store as many as 400 popular songs in a single GB. But, in con-
trast to the goals of compression in other settings, the goal of compressing audio
and video is not necessarily to save storage space. Just as important is the goal of
obtaining encodings that allow information to be transmitted over today’s commu-
nication systems fast enough to provide timely presentation. If each video frame
required a MB of storage and the frames had to be transmitted over a communica-
tion path that could relay only one KB per second, there would be no hope of suc-
cessful video conferencing. Thus, in addition to the quality of reproduction
allowed, audio and video compression systems are often judged by the transmis-
sion speeds required for timely data communication. These speeds are normally
measured in bits per second (bps). Common units include Kbps (kilo-bps, equal
to one thousand bps), Mbps (mega-bps, equal to one million bps), and Gbps (giga-
bps, equal to one billion bps). Using MPEG techniques, video presentations can
be successfully relayed over communication paths that provide transfer rates of
40 Mbps. MP3 recordings generally require transfer rates of no more than 64 Kbps.

631.9 Communication Errors

1.9 Communication Errors
When information is transferred back and forth among the various parts of a
computer, or transmitted from the earth to the moon and back, or, for that mat-
ter, merely left in storage, a chance exists that the bit pattern ultimately retrieved
may not be identical to the original one. Particles of dirt or grease on a magnetic
recording surface or a malfunctioning circuit may cause data to be incorrectly
recorded or read. Static on a transmission path may corrupt portions of the data.
And, in the case of some technologies, normal background radiation can alter
patterns stored in a machine’s main memory.

To resolve such problems, a variety of encoding techniques have been devel-
oped to allow the detection and even the correction of errors. Today, because
these techniques are largely built into the internal components of a computer
system, they are not apparent to the personnel using the machine. Nonetheless,
their presence is important and represents a significant contribution to scientific
research. It is fitting, therefore, that we investigate some of these techniques that
lie behind the reliability of today’s equipment.

Parity Bits
A simple method of detecting errors is based on the principle that if each bit
pattern being manipulated has an odd number of 1s and a pattern with an
even number of 1s is encountered, an error must have occurred. To use this
principle, we need an encoding system in which each pattern contains an odd
number of 1s. This is easily obtained by first adding an additional bit, called a
parity bit, to each pattern in an encoding system already available (perhaps
at the high-order end). In each case, we assign the value 1 or 0 to this new bit

Questions & Exercises

1. List four generic compression techniques.
2. What would be the encoded version of the message

xyx yxxxy xyx yxxxy yxxxy

if LZW compression, starting with the dictionary containing x, y, and a
space (as described in the text), were used?

3. Why would GIF be better than JPEG when encoding color cartoons?
4. Suppose you were part of a team designing a spacecraft that will travel

to other planets and send back photographs. Would it be a good idea to
compress the photographs using GIF or JPEG’s baseline standard to
reduce the resources required to store and transmit the images?

5. What characteristic of the human eye does JPEG’s baseline standard
exploit?

6. What characteristic of the human ear does MP3 exploit?
7. Identify a troubling phenomenon that is common when encoding

numeric information, images, and sound as bit patterns.

64 Chapter 1 Data Storage

so that the entire resulting pattern has an odd number of 1s. Once our encod-
ing system has been modified in this way, a pattern with an even number of
1s indicates that an error has occurred and that the pattern being manipulated
is incorrect.

Figure 1.28 demonstrates how parity bits could be added to the ASCII codes
for the letters A and F. Note that the code for A becomes 101000001 (parity bit 1)
and the ASCII for F becomes 001000110 (parity bit 0). Although the original 8-bit
pattern for A has an even number of 1s and the original 8-bit pattern for F has an
odd number of 1s, both the 9-bit patterns have an odd number of 1s. If this tech-
nique were applied to all the 8-bit ASCII patterns, we would obtain a 9-bit encod-
ing system in which an error would be indicated by any 9-bit pattern with an
even number of 1s.

The parity system just described is called odd parity, because we designed
our system so that each correct pattern contains an odd number of 1s. Another
technique is called even parity. In an even parity system, each pattern is
designed to contain an even number of 1s, and thus an error is signaled by the
occurrence of a pattern with an odd number of 1s.

Today it is not unusual to find parity bits being used in a computer’s main
memory. Although we envision these machines as having memory cells of 8-bit
capacity, in reality each has a capacity of 9 bits, 1 bit of which is used as a parity
bit. Each time an 8-bit pattern is given to the memory circuitry for storage, the
circuitry adds a parity bit and stores the resulting 9-bit pattern. When the pattern
is later retrieved, the circuitry checks the parity of the 9-bit pattern. If this does
not indicate an error, then the memory removes the parity bit and confidently
returns the remaining 8-bit pattern. Otherwise, the memory returns the 8 data
bits with a warning that the pattern being returned may not be the same pattern
that was originally entrusted to memory.

The straightforward use of parity bits is simple but it has its limitations. If a
pattern originally has an odd number of 1s and suffers two errors, it will still
have an odd number of 1s, and thus the parity system will not detect the errors.
In fact, straightforward applications of parity bits fail to detect any even number
of errors within a pattern.

One means of minimizing this problem is sometimes applied to long bit
patterns, such as the string of bits recorded in a sector on a magnetic disk. In
this case the pattern is accompanied by a collection of parity bits making up
a checkbyte. Each bit within the checkbyte is a parity bit associated with a
particular collection of bits scattered throughout the pattern. For instance,
one parity bit may be associated with every eighth bit in the pattern starting

Parity bit Parity bit

1 0 1 10 0 0 0 0 0 0 1 00 0 0 1 1

ASCII A containing an even
number of 1s

ASCII F containing an odd
number of 1s

Total pattern has an odd
number of 1s

Total pattern has an odd
number of 1s

Figure 1.28 The ASCII codes for the letters A and F adjusted for odd parity

651.9 Communication Errors

with the first bit, while another may be associated with every eighth bit start-
ing with the second bit. In this manner, a collection of errors concentrated in
one area of the original pattern is more likely to be detected, since it will be
in the scope of several parity bits. Variations of this checkbyte concept lead
to error detection schemes known as checksums and cyclic redundancy
checks (CRC).

Error-Correcting Codes
Although the use of a parity bit allows the detection of an error, it does not pro-
vide the information needed to correct the error. Many people are surprised
that error-correcting codes can be designed so that errors can be not only
detected but also corrected. After all, intuition says that we cannot correct
errors in a received message unless we already know the information in the
message. However, a simple code with such a corrective property is presented
in Figure 1.29.

To understand how this code works, we first define the term Hamming
distance, which is named after R. W. Hamming who pioneered the search for
error-correcting codes after becoming frustrated with the lack of reliability of the
early relay machines of the 1940s. The hamming distance between two bit pat-
terns is the number of bits in which the patterns differ. For example, the
Hamming distance between the patterns representing A and B in the code in
Figure 1.29 is four, and the Hamming distance between B and C is three. The
important feature of the code in Figure 1.29 is that any two patterns are sepa-
rated by a Hamming distance of at least three.

If a single bit is modified in a pattern from Figure 1.29, the error can be
detected since the result will not be a legal pattern. (We must change at least
3 bits in any pattern before it will look like another legal pattern.) Moreover, we
can also figure out what the original pattern was. After all, the modified pattern
will be a Hamming distance of only one from its original form but at least two
from any of the other legal patterns.

Thus, to decode a message that was originally encoded using Figure 1.29, we
simply compare each received pattern with the patterns in the code until we find
one that is within a distance of one from the received pattern. We consider this
to be the correct symbol for decoding. For example, if we received the bit pattern
010100 and compared this pattern to the patterns in the code, we would obtain

Symbol

A
B
C
D
E
F
G
H

000000
001111
010011
011100
100110
101001
110101
111010

Code

Figure 1.29 An error-correcting code

66 Chapter 1 Data Storage

the table in Figure 1.30. Thus, we would conclude that the character transmitted
must have been a D because this is the closest match.

You will observe that using this technique with the code in Figure 1.29 actu-
ally allows us to detect up to two errors per pattern and to correct one error. If we
designed the code so that each pattern was a Hamming distance of at least five
from each of the others, we would be able to detect up to four errors per pattern
and correct up to two. Of course, the design of efficient codes associated with
large Hamming distances is not a straightforward task. In fact, it constitutes a
part of the branch of mathematics called algebraic coding theory, which is a sub-
ject within the fields of linear algebra and matrix theory.

Error-correcting techniques are used extensively to increase the reliability of
computing equipment. For example, they are often used in high-capacity mag-
netic disk drives to reduce the possibility that flaws in the magnetic surface will
corrupt data. Moreover, a major distinction between the original CD format used
for audio disks and the later format used for computer data storage is in the
degree of error correction involved. CD-DA format incorporates error-correcting
features that reduce the error rate to only one error for two CDs. This is quite
adequate for audio recordings, but a company using CDs to supply software to
customers would find that flaws in 50 percent of the disks would be intolerable.
Thus, additional error-correcting features are employed in CDs used for data
storage, reducing the probability of error to one in 20,000 disks.

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 0 0 1
1 1 0 1 0 1
1 1 1 0 1 0

Code
Pattern

received

0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0

2
4
3
1
3
5
2
4

Distance between
received pattern
and codeCharacter

A
B
C
D
E
F
G
H

Smallest
distance

Figure 1.30 Decoding the pattern 010100 using the code in Figure 1.29

Questions & Exercises

1. The following bytes were originally encoded using odd parity. In which
of them do you know that an error has occurred?

a. 100101101 b. 100000001 c. 000000000
d. 111000000 e. 011111111

2. Could errors have occurred in a byte from Question 1 without your
knowing it? Explain your answer.

67Chapter Review Problems

3. How would your answers to Questions 1 and 2 change if you were told
that even parity had been used instead of odd?

4. Encode these sentences in ASCII using odd parity by adding a parity bit
at the high-order end of each character code:

a. “Stop!” Cheryl shouted. b. Does 2 � 3 � 5?

5. Using the error-correcting code presented in Figure 1.29, decode the fol-
lowing messages:

a. 001111 100100 001100 b. 010001 000000 001011
c. 011010 110110 100000 011100

6. Construct a code for the characters A, B, C, and D using bit patterns of
length five so that the Hamming distance between any two patterns is at
least three.

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

1. Determine the output of each of the following
circuits, assuming that the upper input is 1
and the lower input is 0. What would be the
output when upper input is 0 and the lower
input is 1?

2. a. What Boolean operation does the circuit
compute?

b. What Boolean operation does the circuit
compute?

*3. a. If we were to purchase a flip-flop circuit from
an electronic component store, we may find
that it has an additional input called flip.
When this input changes from a 0 to 1, the
output flips state (if it was 0 it is now 1 and
vice versa). However, when the flip input
changes from 1 to a 0, nothing happens.
Even though we may not know the details of
the circuitry needed to accomplish this
behavior, we could still use this device as an
abstract tool in other circuits. Consider the
circuitry using two of the following flip-flops.
If a pulse were sent on the circuit’s input, the
bottom flip-flop would change state.
However, the second flip-flop would not
change, since its input (received from the
output of the NOT gate) went from a 1 to a 0.
As a result, this circuit would now produce
the outputs 0 and 1. A second pulse would

Input

Output

Input

Input

Input

Output

a.

b.

c.

68 Chapter 1 Data Storage

flip the state of both flip-flops, producing an
output of 1 and 0. What would be the output
after a third pulse? After a fourth pulse?

b. It is often necessary to coordinate activities
of various components within a computer.
This is accomplished by connecting a pul-
sating signal (called a clock) to circuitry
similar to part a. Additional gates (as
shown) will then send signals in a coordi-
nated fashion to other connected circuits.
On studying this circuit you should be able
to confirm that on the 1st, 5th, 9th . . . pulses
of the clock, a 1 will be sent on output A.
On what pulses of the clock will a 1 be sent
on output B? On what pulses of the clock
will a 1 be sent on output C? On which out-
put is a 1 sent on the 4th pulse of the clock?

4. Assume that both of the inputs in the follow-
ing circuit are 1. Describe what would happen
if the upper input were temporarily changed
to 0. Describe what would happen if the lower
input were temporarily changed to 0. Redraw
the circuit using NAND gates.

5. The following table represents the addresses
and contents (using hexadecimal notation) of

some cells in a machine’s main memory.
Starting with this memory arrangement, follow
the sequence of instructions and record the
final contents of each of these memory cells:

Step 1. Move the contents of the cell whose
address is 03 to the cell at address 00.

Step 2. Move the value 01 into the cell at
address 02.

Step 3. Move the value stored at address 01
into the cell at address 03.

6. How many cells can be in a computer’s main
memory if each cell’s address can be repre-
sented by two hexadecimal digits? What if four
hexadecimal digits are used?

7. What bit patterns are represented by the fol-
lowing hexadecimal notations?
a. CD b. 67 c. 9A
d. FF e. 10

8. What is the value of the most significant bit in
the bit patterns represented by the following
hexadecimal notations?
a. 8F b. FF
c. 6F d. 1F

9. Express the following bit patterns in hexadeci-
mal notation:
a. 101000001010
b. 110001111011
c. 000010111110

10. Suppose a digital camera has a storage capac-
ity of 256MB. How many photographs could
be stored in the camera if each consisted of
1024 pixels per row and 1024 pixels per column
if each pixel required three bytes of storage?

11. Suppose a picture is represented on a
display screen by a rectangular array
containing 1024 columns and 768 rows
of pixels. If for each pixel, 8 bits are required
to encode the color and another 8 bits to
encode the intensity, how many byte-size
memory cells are required to hold the
entire picture?

Address Contents
00 AB
01 53
02 D6
03 02

Flip-flop

Flip-flop

flip

flip

Clock

Output C

Output B

Output A

Flip-flop

Flip-flop

flip

flip

Input

1

0

0

0

0 0Output

69Chapter Review Problems

12. a. Identify two advantages that main memory
has over magnetic disk storage.

b. Identify two advantages that magnetic disk
storage has over main memory.

13. Suppose that only 50GB of your personal com-
puter’s 120GB hard-disk drive is empty. Would
it be reasonable to use CDs to store all the
material you have on the drive as a backup?
What about DVDs?

14. If each sector on a magnetic disk contains
1024 bytes, how many sectors are required to
store a single page of text (perhaps 50 lines of
100 characters) if each character is repre-
sented in Unicode?

15. How many bytes of storage space would be
required to store a 400-page novel in which
each page contains 3500 characters if ASCII
were used? How many bytes would be
required if Unicode were used?

16. How long is the latency time of a typical
hard-disk drive spinning at 360 revolutions
per second?

17. What is the average access time for a hard disk
spinning at 360 revolutions per second with a
seek time of 10 milliseconds?

18. Suppose a typist could type 60 words per
minute continuously day after day. How long
would it take the typist to fill a CD whose
capacity is 640MB? Assume one word is five
characters and each character requires one
byte of storage.

19. Here is a message in ASCII. What does it say?

20. The following is a message encoded in ASCII
using one byte per character and then repre-
sented in hexadecimal notation. What is the
message?

68657861646563696D616C

21. Encode the following sentences in ASCII using
one byte per character.
a. Does 100 / 5 � 20?
b. The total cost is $7.25.

22. Express your answers to the previous prob-
lem in hexadecimal notation.

23. List the binary representations of the inte-
gers from 8 to 18.

24. a. Write the number 23 by representing the 2
and 3 in ASCII.

b. Write the number 23 in binary
representation.

25. What values have binary representations in
which only one of the bits is 1? List the
binary representations for the smallest six
values with this property.

*26. Convert each of the following binary represen-
tations to its equivalent base ten representation:
a. 1111 b. 0001 c. 10101
d. 1000 e. 10011 f. 000000
g. 1001 h. 10001 i. 100001
j. 11001 k. 11010 l. 11011

*27. Convert each of the following base ten represen-
tations to its equivalent binary representation:
a. 7 b. 11 c. 16
d. 17 e. 31

*28. Convert each of the following excess 16
representations to its equivalent base ten
representation:
a. 10001 b. 10101 c. 01101
d. 01111 e. 11111

*29. Convert each of the following base ten
representations to its equivalent excess four
representation:
a. 0 b. 3 c. �2
d. �1 e. 2

*30. Convert each of the following two’s comple-
ment representations to its equivalent base
ten representation:
a. 01111 b. 10100 c. 01100
d. 10000 e. 10110

*31. Convert each of the following base ten repre-
sentations to its equivalent two’s comple-
ment representation in which each value is
represented in 7 bits:
a. 13 b. �13 c. �1
d. 0 e. 16

*32. Perform each of the following additions
assuming the bit strings represent values in
two’s complement notation. Identify each

01010111 01101000 01100001 01110100
00100000 01100100 01101111 01100101
01110011 00100000 01101001 01110100
00100000 01110011 01100001 01111001
00111111

70 Chapter 1 Data Storage

case in which the answer is incorrect
because of overflow.

a. 00101 b. 11111 c. 01111
�01000 �00001 �00001

d. 10111 e. 11111 f. 00111
�11010 �11111 �01100

*33. Solve each of the following problems by trans-
lating the values into two’s complement nota-
tion (using patterns of 5 bits), converting any
subtraction problem to an equivalent addition
problem, and performing that addition. Check
your work by converting your answer to base
ten notation. (Watch out for overflow.)

a. 5 b. 5 c. 12
�1 �1 �5

d. 8 e. 12 f. 5
�7 �5 �11

*34. Convert each of the following binary
representations into its equivalent base
ten representation:
a. 11.11 b. 100.0101 c. 0.1101
d. 1.0 e. 10.01

*35. Express each of the following values in
binary notation:
a. 53⁄4 b. 1515⁄16 c. 53⁄8

d. 11⁄4 e. 65⁄8

*36. Decode the following bit patterns using the
floating-point format described in Figure 1.26:
a. 01011001 b. 11001000
c. 10101100 d. 00111001

*37. Encode the following values using the 8-bit
floating-point format described in Figure 1.26.
Indicate each case in which a truncation
error occurs.
a. �71⁄2 b. 1⁄2 c. �33⁄4

d. 7⁄32 e. 31⁄32

*38. Assuming you are not restricted to using nor-
malized form, list all the bit patterns that could
be used to represent the value 3⁄8 using the
floating-point format described in Figure 1.26.

*39. What is the best approximation to the square
root of 2 that can be expressed in the 8-bit
floating-point format described in Figure 1.26?
What value is actually obtained if this approxi-
mation is squared by a machine using this
floating-point format?

*40. What is the best approximation to the value one-
tenth that can be represented using the 8-bit
floating-point format described in Figure 1.26?

*41. Explain how errors can occur when measure-
ments using the metric system are recorded
in floating-point notation. For example, what
if 110 cm was recorded in units of meters?

*42. One of the bit patterns 01011 and 11011 repre-
sents a value stored in excess 16 notation and
the other represents the same value stored in
two’s complement notation.
a. What can be determined about this com-

mon value?
b. What is the relationship between a pattern

representing a value stored in two’s com-
plement notation and the pattern repre-
senting the same value stored in excess
notation when both systems use the same
bit pattern length?

*43. The three bit patterns 10000010, 01101000,
and 00000010 are representations of the same
value in two’s complement, excess, and the
8-bit floating-point format presented in
Figure 1.26, but not necessarily in that order.
What is the common value, and which pat-
tern is in which notation?

*44. Which of the following values cannot be rep-
resented accurately in the floating-point for-
mat introduced in Figure 1.26?
a. 61⁄2 b. 13⁄16 c. 9
d. 17⁄32 e. 15⁄16

*45. If you changed the length of the bit strings
being used to represent integers in binary
from 4 bits to 6 bits, what change would be
made in the value of the largest integer you
could represent? What if you were using
two’s complement notation?

*46. What would be the hexadecimal representa-
tion of the largest memory address in a mem-
ory consisting of 4MB if each cell had a
one-byte capacity?

*47. What would be the encoded version of
the message

xxy yyx xxy xxy yyx

if LZW compression, starting with the diction-
ary containing x, y, and a space (as described
in Section 1.8), were used?

71Social Issues

*48. The following message was compressed using
LZW compression with a dictionary whose
first, second, and third entries are x, y, and
space, respectively. What is the decompressed
message?

22123113431213536

*49. If the message

xxy yyx xxy xxyy

were compressed using LZW with a starting
dictionary whose first, second, and third
entries were x, y, and space, respectively, what
would be the entries in the final dictionary?

*50. As we will learn in the next chapter, one
means of transmitting bits over traditional
telephone systems is to convert the bit pat-
terns into sound, transfer the sound over the
telephone lines, and then convert the sound
back into bit patterns. Such techniques are
limited to transfer rates of 57.6 Kbps. Is this
sufficient for teleconferencing if the video is
compressed using MPEG?

*51. Encode the following sentences in ASCII
using even parity by adding a parity bit

at the high-order end of each character
code:
a. Does 100/5 � 20?
b. The total cost is $7.25.

*52. The following message was originally transmit-
ted with odd parity in each short bit string. In
which strings have errors definitely occurred?

11001 11011 10110 00000 11111 10001
10101 00100 01110

*53. Suppose a 24-bit code is generated by repre-
senting each symbol by three consecutive
copies of its ASCII representation (for example,
the symbol A is represented by the bit string
010000010100000101000001). What error-
correcting properties does this new code have?

*54. Using the error-correcting code described in
Figure 1.30, decode the following words:
a. 111010 110110
b. 101000 100110 001100
c. 011101 000110 000000 010100
d. 010010 001000 001110 101111

000000 110111 100110
e. 010011 000000 101001 100110

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. A truncation error has occurred in a critical situation, causing extensive dam-
age and loss of life. Who is liable, if anyone? The designer of the hardware?
The designer of the software? The programmer who actually wrote that part
of the program? The person who decided to use the software in that particu-
lar application? What if the software had been corrected by the company that
originally developed it, but that update had not been purchased and applied
in the critical application? What if the software had been pirated?

2. Is it acceptable for an individual to ignore the possibility of truncation errors
and their consequences when developing his or her own applications?

3. Was it ethical to develop software in the 1970s using only two digits to repre-
sent the year (such as using 76 to represent the year 1976), ignoring the fact
that the software would be flawed as the turn of the century approached? Is
it ethical today to use only three digits to represent the year (such as 982 for
1982 and 015 for 2015)? What about using only four digits?

72 Chapter 1 Data Storage

4. Many argue that encoding information often dilutes or otherwise distorts the
information, since it essentially forces the information to be quantified. They
argue that a questionnaire in which subjects are required to record their opin-
ions by responding within a scale from one to five is inherently flawed. To what
extent is information quantifiable? Can the pros and cons of different locations
for a waste disposal plant be quantified? Is the debate over nuclear power and
nuclear waste quantifiable? Is it dangerous to base decisions on averages and
other statistical analysis? Is it ethical for news agencies to report polling results
without including the exact wording of the questions? Is it possible to quantify
the value of a human life? Is it acceptable for a company to stop investing in the
improvement of a product, even though additional investment could lower the
possibility of a fatality relating to the product’s use?

5. Should there be a distinction in the rights to collect and disseminate data
depending on the form of the data? That is, should the right to collect and
disseminate photographs, audio, or video be the same as the right to collect
and disseminate text?

6. Whether intentional or not, a report submitted by a journalist usually
reflects that journalist’s bias. Often by changing only a few words, a story can
be given either a positive or negative connotation. (Compare, “The majority
of those surveyed opposed the referendum.” to “A significant portion of those
surveyed supported the referendum.”) Is there a difference between altering
a story (by leaving out certain points or carefully selecting words) and alter-
ing a photograph?

7. Suppose that the use of a data compression system results in the loss of sub-
tle but significant items of information. What liability issues might be raised?
How should they be resolved?

Drew, M. and Z. Li. Fundamentals of Multimedia. Upper Saddle River, NJ:
Prentice-Hall, 2004.

Halsall, F. Multimedia Communications. Boston, MA: Addison-Wesley, 2001.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky. Computer Organization, 5th ed.
New York: McGraw-Hill, 2002.

Knuth, D. E. The Art of Computer Programming, Vol. 2, 3rd ed. Boston, MA:
Addison-Wesley, 1998.

Long, B. Complete Digital Photography, 3rd ed. Hingham, MA: Charles River
Media, 2005.

Miano, J. Compressed Image File Formats. New York: ACM Press, 1999.

Petzold, C. CODE: The Hidden Language of Computer Hardware and Software.
Redman, WA: Microsoft Press, 2000.

Salomon, D. Data Compression: The Complete Reference, 4th ed. New York:
Springer, 2007.

Sayood, K. Introduction to Data Compression, 3rd ed. San Francisco: Morgan
Kaufmann, 2005.

Additional Reading

In this chapter we will learn how a computer manipulates data and

communicates with peripheral devices such as printers and key-

boards. In doing so, we will explore the basics of computer archi-

tecture and learn how computers are programmed by means of

encoded instructions, called machine language instructions.

C H A P T E R

2

2.1 Computer Architecture
CPU Basics
The Stored-Program Concept

2.2 Machine Language
The Instruction Repertoire
An Illustrative Machine Language

2.3 Program Execution
An Example of Program

Execution
Programs Versus Data

*2.4 Arithmetic/Logic
Instructions
Logic Operations
Rotation and Shift Operations
Arithmetic Operations

*2.5 Communicating with
Other Devices
The Role of Controllers
Direct Memory Access
Handshaking
Popular Communication Media
Communication Rates

*2.6 Other Architectures
Pipelining
Multiprocessor Machines

*Asterisks indicate suggestions for
optional sections.

Data Manipulation

74 Chapter 2 Data Manipulation

In Chapter 1 we studied topics relating to the storage of data inside a computer.
In this chapter we will see how a computer manipulates that data. This manipu-
lation consists of moving data from one location to another as well as performing
operations such as arithmetic calculations, text editing, and image manipulation.
We begin by extending our understanding of computer architecture beyond that
of data storage systems.

2.1 Computer Architecture
The circuitry in a computer that controls the manipulation of data is called the
central processing unit, or CPU (often referred to as merely the processor). In
the machines of the mid-twentieth century, CPUs were large units comprised of
perhaps several racks of electronic circuitry that reflected the significance of the
unit. However, technology has shrunk these devices drastically. The CPUs found
in today’s desktop computers and notebooks are packaged as small flat squares
(approximately two inches by two inches) whose connecting pins plug into a
socket mounted on the machine’s main circuit board (called the motherboard).
In smartphones, mini-notebooks, and other Mobile Internet Devices (MID),
CPU’s are around half the size of a postage stamp. Due to their small size, these
processors are called microprocessors.

CPU Basics
A CPU consists of three parts (Figure 2.1): the arithmetic/logic unit, which
contains the circuitry that performs operations on data (such as addition and
subtraction); the control unit, which contains the circuitry for coordinating the
machine’s activities; and the register unit, which contains data storage cells
(similar to main memory cells), called registers, that are used for temporary
storage of information within the CPU.

Some of the registers within the register unit are considered general-purpose
registers whereas others are special-purpose registers. We will discuss some of

Arithmetic/logic
unit

Register unit

Central processing unit Main memory

Control
unit

Bus

Registers

.

.

.

Figure 2.1 CPU and main memory connected via a bus

752.1 Computer Architecture

the special-purpose registers in Section 2.3. For now, we are concerned only with
the general-purpose registers.

General-purpose registers serve as temporary holding places for data being
manipulated by the CPU. These registers hold the inputs to the arithmetic/logic
unit’s circuitry and provide storage space for results produced by that unit. To per-
form an operation on data stored in main memory, the control unit transfers the
data from memory into the general-purpose registers, informs the arithmetic/logic
unit which registers hold the data, activates the appropriate circuitry within the
arithmetic/logic unit, and tells the arithmetic/logic unit which register should
receive the result.

For the purpose of transferring bit patterns, a machine’s CPU and main memory
are connected by a collection of wires called a bus (see again Figure 2.1). Through
this bus, the CPU extracts (reads) data from main memory by supplying the address
of the pertinent memory cell along with an electronic signal telling the memory cir-
cuitry that it is supposed to retrieve the data in the indicated cell. In a similar man-
ner, the CPU places (writes) data in memory by providing the address of the
destination cell and the data to be stored together with the appropriate electronic sig-
nal telling main memory that it is supposed to store the data being sent to it.

Based on this design, the task of adding two values stored in main memory
involves more than the mere execution of the addition operation. The data must
be transferred from main memory to registers within the CPU, the values must
be added with the result being placed in a register, and the result must then be
stored in a memory cell. The entire process is summarized by the five steps
listed in Figure 2.2.

The Stored-Program Concept
Early computers were not known for their flexibility—the steps that each device
executed were built into the control unit as a part of the machine. To gain more
flexibility, some of the early electronic computers were designed so that the CPU
could be conveniently rewired. This flexibility was accomplished by means of a
pegboard arrangement similar to old telephone switchboards in which the ends
of jumper wires were plugged into holes.

Step 1.

Step 2. Get the other value to be
 added from memory and
 place it in another register.

Step 3. Activate the addition circuitry
 with the registers used in
 Steps 1 and 2 as inputs and
 another register designated
 to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

Get one of the values to be
added from memory and
place it in a register.

Figure 2.2 Adding values stored in memory

76 Chapter 2 Data Manipulation

A breakthrough (credited, apparently incorrectly, to John von Neumann)
came with the realization that a program, just like data, can be encoded and
stored in main memory. If the control unit is designed to extract the program
from memory, decode the instructions, and execute them, the program that the
machine follows can be changed merely by changing the contents of the com-
puter’s memory instead of rewiring the CPU.

The idea of storing a computer’s program in its main memory is called
the stored-program concept and has become the standard approach used
today—so standard, in fact, that it seems obvious. What made it difficult orig-
inally was that everyone thought of programs and data as different entities:
Data were stored in memory; programs were part of the CPU. The result was
a prime example of not seeing the forest for the trees. It is easy to be caught
in such ruts, and the development of computer science might still be in
many of them today without our knowing it. Indeed, part of the excitement
of the science is that new insights are constantly opening doors to new theo-
ries and applications.

Cache Memory
It is instructive to compare the memory facilities within a computer in relation to their
functionality. Registers are used to hold the data immediately applicable to the oper-
ation at hand; main memory is used to hold data that will be needed in the near
future; and mass storage is used to hold data that will likely not be needed in the
immediate future. Many machines are designed with an additional memory level,
called cache memory. Cache memory is a portion (perhaps several hundred KB) of
high-speed memory located within the CPU itself. In this special memory area, the
machine attempts to keep a copy of that portion of main memory that is of current
interest. In this setting, data transfers that normally would be made between regis-
ters and main memory are made between registers and cache memory. Any changes
made to cache memory are then transferred collectively to main memory at a more
opportune time. The result is a CPU that can execute its machine cycle more rapidly
because it is not delayed by main memory communication.

Questions & Exercises

1. What sequence of events do you think would be required to move the
contents of one memory cell in a computer to another memory cell?

2. What information must the CPU supply to the main memory circuitry to
write a value into a memory cell?

3. Mass storage, main memory, and general-purpose registers are all stor-
age systems. What is the difference in their use?

772.2 Machine Language

2.2 Machine Language
To apply the stored-program concept, CPUs are designed to recognize instruc-
tions encoded as bit patterns. This collection of instructions along with the
encoding system is called the machine language. An instruction expressed in
this language is called a machine-level instruction or, more commonly, a
machine instruction.

The Instruction Repertoire
The list of machine instructions that a typical CPU must be able to decode and
execute is quite short. In fact, once a machine can perform certain elementary
but well-chosen tasks, adding more features does not increase the machine’s the-
oretical capabilities. In other words, beyond a certain point, additional features
may increase such things as convenience but add nothing to the machine’s fun-
damental capabilities.

The degree to which machine designs should take advantage of this fact has
lead to two philosophies of CPU architecture. One is that a CPU should be designed
to execute a minimal set of machine instructions. This approach leads to what is
called a reduced instruction set computer (RISC). The argument in favor of
RISC architecture is that such a machine is efficient, fast, and less expensive to
manufacture. On the other hand, others argue in favor of CPUs with the ability to
execute a large number of complex instructions, even though many of them are
technically redundant. The result of this approach is known as a complex
instruction set computer (CISC). The argument in favor of CISC architecture is
that the more complex CPU can better cope with the ever increasing complexities

Who Invented What?
Awarding a single individual credit for an invention is always a dubious undertaking.
Thomas Edison is credited with inventing the incandescent lamp, but other
researchers were developing similar lamps, and in a sense Edison was lucky to be the
one to obtain the patent. The Wright brothers are credited with inventing the airplane,
but they were competing with and benefited from the work of many contemporaries,
all of whom were preempted to some degree by Leonardo da Vinci, who toyed with the
idea of flying machines in the fifteenth century. Even Leonardo’s designs were appar-
ently based on earlier ideas. Of course, in these cases the designated inventor still
has legitimate claims to the credit bestowed. In other cases, history seems to have
awarded credit inappropriately—an example is the stored-program concept. Without
a doubt, John von Neumann was a brilliant scientist who deserves credit for numerous
contributions. But one of the contributions for which popular history has chosen to
credit him, the stored-program concept, was apparently developed by researchers led
by J. P. Eckert at the Moore School of Electrical Engineering at the University of
Pennsylvania. John von Neumann was merely the first to publish work reporting the
idea and thus computing lore has selected him as the inventor.

78 Chapter 2 Data Manipulation

of today’s software. With CISC, programs can exploit a powerful rich set of instruc-
tions, many of which would require a multi-instruction sequence in a RISC design.

In the 1990s and into the millennia, commercially available CISC and RISC
processors were actively competing for dominance in desktop computing. Intel
processors, used in PCs, are examples of CISC architecture; PowerPC processors
(developed by an alliance between Apple, IBM, and Motorola) are examples of
RISC architecture and were used in the Apple Macintosh. As time progressed,
the manufacturing cost of CISC was drastically reduced; thus Intel’s processors
(or their equivalent from AMD—Advanced Micro Devices, Inc.) are now found in
virtually all desktop and laptop computers (even Apple is now building comput-
ers based on Intel products).

While CISC secured its place in desktop computers, it has an insatiable thirst
for electrical power. In contrast, the company Advanced RISC Machine (ARM) has
designed a RISC architecture specifically for low power consumption. (Advanced
RISC Machine was originally Acorn Computers and is now ARM Holdings.) Thus,
ARM-based processors, manufactured by a host of vendors including Qualcomm
and Texas Instruments, are readily found in game controllers, digital TVs, naviga-
tion systems, automotive modules, cellular telephones, smartphones, and other
consumer electronics.

Regardless of the choice between RISC and CISC, a machine’s instructions
can be categorized into three groupings: (1) the data transfer group, (2) the
arithmetic/logic group, and (3) the control group.

Data Transfer The data transfer group consists of instructions that request the
movement of data from one location to another. Steps 1, 2, and 4 in Figure 2.2 fall
into this category. We should note that using terms such as transfer or move to iden-
tify this group of instructions is actually a misnomer. It is rare that the data being
transferred is erased from its original location. The process involved in a transfer
instruction is more like copying the data rather than moving it. Thus terms such as
copy or clone better describe the actions of this group of instructions.

While on the subject of terminology, we should mention that special terms
are used when referring to the transfer of data between the CPU and main
memory. A request to fill a general-purpose register with the contents of a

Variable-Length Instructions
To simplify explanations in the text, the machine language used for examples in this
chapter (and described in Appendix C) uses a fixed size (two bytes) for all instruc-
tions. Thus, to fetch an instruction, the CPU always retrieves the contents of two con-
secutive memory cells and increments its program counter by two. This consistency
streamlines the task of fetching instructions and is characteristic of RISC machines.
CISC machines, however, have machine languages whose instructions vary in length.
Today’s Intel processors, for example, have instructions that range from single-byte
instructions to multiple-byte instructions whose length depends on the exact use of
the instruction. CPUs with such machine languages determine the length of the
incoming instruction by the instruction’s op-code. That is, the CPU first fetches the
op-code of the instruction and then, based on the bit pattern received, knows how
many more bytes to fetch from memory to obtain the rest of the instruction.

792.2 Machine Language

memory cell is commonly referred to as a LOAD instruction; conversely, a
request to transfer the contents of a register to a memory cell is called a STORE
instruction. In Figure 2.2, Steps 1 and 2 are LOAD instructions, and Step 4 is a
STORE instruction.

An important group of instructions within the data transfer category consists
of the commands for communicating with devices outside the CPU-main memory
context (printers, keyboards, display screens, disk drives, etc.). Since these
instructions handle the input/output (I/O) activities of the machine, they are
called I/O instructions and are sometimes considered as a category in their own
right. On the other hand, Section 2.5 describes how these I/O activities can be
handled by the same instructions that request data transfers between the CPU
and main memory. Thus, we shall consider the I/O instructions to be a part of the
data transfer group.

Arithmetic/Logic The arithmetic/logic group consists of the instructions that tell
the control unit to request an activity within the arithmetic/logic unit. Step 3 in
Figure 2.2 falls into this group. As its name suggests, the arithmetic/logic unit is
capable of performing operations other than the basic arithmetic operations. Some
of these additional operations are the Boolean operations AND, OR, and XOR,
introduced in Chapter 1, which we will discuss in more detail later in this chapter.

Another collection of operations available within most arithmetic/logic units
allows the contents of registers to be moved to the right or the left within the reg-
ister. These operations are known as either SHIFT or ROTATE operations,
depending on whether the bits that “fall off the end” of the register are merely
discarded (SHIFT) or are used to fill the holes left at the other end (ROTATE).

Control The control group consists of those instructions that direct the execution
of the program rather than the manipulation of data. Step 5 in Figure 2.2 falls
into this category, although it is an extremely elementary example. This group
contains many of the more interesting instructions in a machine’s repertoire,
such as the family of JUMP (or BRANCH) instructions used to direct the CPU to
execute an instruction other than the next one in the list. These JUMP instruc-
tions appear in two varieties: unconditional jumps and conditional jumps.

Step 1. LOAD a register with a value
 from memory.

Step 2. LOAD another register with
 another value from memory.

Step 3. If this second value is zero,
 JUMP to Step 6.

Step 4. Divide the contents of the
 first register by the second
 register and leave the result
 in a third register.

Step 5. STORE the contents of the
 third register in memory.

Step 6. STOP.

Figure 2.3 Dividing values stored in memory

80 Chapter 2 Data Manipulation

An example of the former would be the instruction “Skip to Step 5”; an example
of the latter would be, “If the value obtained is 0, then skip to Step 5.” The dis-
tinction is that a conditional jump results in a “change of venue” only if a certain
condition is satisfied. As an example, the sequence of instructions in Figure 2.3
represents an algorithm for dividing two values where Step 3 is a conditional
jump that protects against the possibility of division by zero.

An Illustrative Machine Language
Let us now consider how the instructions of a typical computer are encoded.
The machine that we will use for our discussion is described in Appendix C and
summarized in Figure 2.4. It has 16 general-purpose registers and 256 main
memory cells, each with a capacity of 8 bits. For referencing purposes, we label
the registers with the values 0 through 15 and address the memory cells with
the values 0 through 255. For convenience we think of these labels and
addresses as values represented in base two and compress the resulting bit pat-
terns using hexadecimal notation. Thus, the registers are labeled 0 through F,
and the memory cells are addressed 00 through FF.

The encoded version of a machine instruction consists of two parts: the op-code
(short for operation code) field and the operand field. The bit pattern appearing
in the op-code field indicates which of the elementary operations, such as
STORE, SHIFT, XOR, and JUMP, is requested by the instruction. The bit patterns
found in the operand field provide more detailed information about the opera-
tion specified by the op-code. For example, in the case of a STORE operation, the
information in the operand field indicates which register contains the data to be
stored and which memory cell is to receive the data.

The entire machine language of our illustrative machine (Appendix C) con-
sists of only twelve basic instructions. Each of these instructions is encoded
using a total of 16 bits, represented by four hexadecimal digits (Figure 2.5). The
op-code for each instruction consists of the first 4 bits or, equivalently, the first
hexadecimal digit. Note (Appendix C) that these op-codes are represented by
the hexadecimal digits 1 through C. In particular, the table in Appendix C shows

Central processing unit

Bus

Registers

0

1

2

F

.

.

.

Program counter

Instruction register

Main memory

Address

00

01

02

03

FF

.

.

.

.

.

.

Cells

Figure 2.4 The architecture of the machine described in Appendix C

812.2 Machine Language

us that an instruction beginning with the hexadecimal digit 3 refers to a STORE
instruction, and an instruction beginning with hexadecimal A refers to a
ROTATE instruction.

The operand field of each instruction in our illustrative machine consists
of three hexadecimal digits (12 bits), and in each case (except for the HALT
instruction, which needs no further refinement) clarifies the general instruc-
tion given by the op-code. For example (Figure 2.6), if the first hexadecimal
digit of an instruction were 3 (the op-code for storing the contents of a regis-
ter), the next hexadecimal digit of the instruction would indicate which regis-
ter is to be stored, and the last two hexadecimal digits would indicate which
memory cell is to receive the data. Thus the instruction 35A7 (hexadecimal)
translates to the statement “STORE the bit pattern found in register 5 in the
memory cell whose address is A7.” (Note how the use of hexadecimal notation
simplifies our discussion. In reality, the instruction 35A7 is the bit pattern
0011010110100111.)

(The instruction 35A7 also provides an explicit example of why main mem-
ory capacities are measured in powers of two. Because 8 bits in the instruction
are reserved for specifying the memory cell utilized by this instruction, it is pos-
sible to reference exactly 28 different memory cells. It behooves us therefore to
build main memory with this many cells—addressed from 0 to 255. If main
memory had more cells, we would not be able to write instructions that distin-
guished between them; if main memory had fewer cells, we would be able to
write instructions that referenced nonexisting cells.)

Op-code Operand

0011 0101 1010 0111

3 5 A 7

Actual bit pattern (16 bits)

Hexadecimal form (4 digits)

Figure 2.5 The composition of an instruction for the machine in Appendix C

3 5 A 7

This part of the operand identifies
the address of the memory cell
that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Op-code 3 means
to store the contents
of a register in a
memory cell.

Instruction

Figure 2.6 Decoding the instruction 35A7

82 Chapter 2 Data Manipulation

As another example of how the operand field is used to clarify the general
instruction given by op-code, consider an instruction with the op-code 7 (hexa-
decimal), which requests that the contents of two registers be ORed. (We will see
what it means to OR two registers in Section 2.4. For now we are interested
merely in how instructions are encoded.) In this case, the next hexadecimal digit
indicates the register in which the result should be placed, while the last two
hexadecimal digits indicate which two registers are to be ORed. Thus the instruc-
tion 70C5 translates to the statement “OR the contents of register C with the con-
tents of register 5 and leave the result in register 0.”

A subtle distinction exists between our machine’s two LOAD instructions.
Here we see that the op-code 1 (hexadecimal) identifies an instruction that loads
a register with the contents of a memory cell, whereas the op-code 2 (hexa-
decimal) identifies an instruction that loads a register with a particular value.
The difference is that the operand field in an instruction of the first type con-
tains an address, whereas in the second type the operand field contains the
actual bit pattern to be loaded.

Note that the machine has two ADD instructions: one for adding two’s com-
plement representations and one for adding floating-point representations. This
distinction is a consequence of the fact that adding bit patterns that represent val-
ues encoded in two’s complement notation requires different activities within the
arithmetic/logic unit from adding values encoded in floating-point notation.

We close this section with Figure 2.7, which contains an encoded version of
the instructions in Figure 2.2. We have assumed that the values to be added are
stored in two’s complement notation at memory addresses 6C and 6D and the
sum is to be placed in the memory cell at address 6E.

156C

166D

5056

306E

C000

Load register 5 with the bit pattern
found in the memory cell at
address 6C.

Load register 6 with the bit pattern
found in the memory cell at
address 6D.

Add the contents of register 5 and
6 as though they were two’s
complement representation and
leave the result in register 0.

Store the contents of register 0
in the memory cell at address 6E.

Halt.

Encoded
instructions Translation

Figure 2.7 An encoded version of the instructions in Figure 2.2

832.3 Program Execution

2.3 Program Execution
A computer follows a program stored in its memory by copying the instructions
from memory into the CPU as needed. Once in the CPU, each instruction is
decoded and obeyed. The order in which the instructions are fetched from mem-
ory corresponds to the order in which the instructions are stored in memory
unless otherwise altered by a JUMP instruction.

To understand how the overall execution process takes place, it is necessary
to consider two of the special purpose registers within the CPU: the instruction
register and the program counter (see again Figure 2.4). The instruction regis-
ter is used to hold the instruction being executed. The program counter contains
the address of the next instruction to be executed, thereby serving as the
machine’s way of keeping track of where it is in the program.

The CPU performs its job by continually repeating an algorithm that guides
it through a three-step process known as the machine cycle. The steps in the

Questions & Exercises

1. Why might the term move be considered an incorrect name for the oper-
ation of moving data from one location in a machine to another?

2. In the text, JUMP instructions were expressed by identifying the desti-
nation explicitly by stating the name (or step number) of the destination
within the JUMP instruction (for example, “Jump to Step 6”). A draw-
back of this technique is that if an instruction name (number) is later
changed, we must be sure to find all jumps to that instruction and
change that name also. Describe another way of expressing a JUMP
instruction so that the name of the destination is not explicitly stated.

3. Is the instruction “If 0 equals 0, then jump to Step 7” a conditional or
unconditional jump? Explain your answer.

4. Write the example program in Figure 2.7 in actual bit patterns.
5. The following are instructions written in the machine language

described in Appendix C. Rewrite them in English.

a. 368A b. BADE c. 803C d. 40F4

6. What is the difference between the instructions 15AB and 25AB in the
machine language of Appendix C?

7. Here are some instructions in English. Translate each of them into the
machine language of Appendix C.

a. LOAD register number 3 with the hexadecimal value 56.
b. ROTATE register number 5 three bits to the right.
c. AND the contents of register A with the contents of register 5 and

leave the result in register 0.

84 Chapter 2 Data Manipulation

machine cycle are fetch, decode, and execute (Figure 2.8). During the fetch step,
the CPU requests that main memory provide it with the instruction that is stored
at the address indicated by the program counter. Since each instruction in our
machine is two bytes long, this fetch process involves retrieving the contents of
two memory cells from main memory. The CPU places the instruction received
from memory in its instruction register and then increments the program
counter by two so that the counter contains the address of the next instruction
stored in memory. Thus the program counter will be ready for the next fetch.

With the instruction now in the instruction register, the CPU decodes the
instruction, which involves breaking the operand field into its proper compo-
nents based on the instruction’s op-code.

The CPU then executes the instruction by activating the appropriate cir-
cuitry to perform the requested task. For example, if the instruction is a load
from memory, the CPU sends the appropriate signals to main memory, waits for
main memory to send the data, and then places the data in the requested regis-
ter; if the instruction is for an arithmetic operation, the CPU activates the appro-
priate circuitry in the arithmetic/logic unit with the correct registers as inputs
and waits for the arithmetic/logic unit to compute the answer and place it in the
appropriate register.

Once the instruction in the instruction register has been executed, the CPU
again begins the machine cycle with the fetch step. Observe that since the pro-
gram counter was incremented at the end of the previous fetch, it again provides
the CPU with the correct address.

A somewhat special case is the execution of a JUMP instruction. Consider, for
example, the instruction B258 (Figure 2.9), which means “JUMP to the instruction
at address 58 (hexadecimal) if the contents of register 2 is the same as that of reg-
ister 0.” In this case, the execute step of the machine cycle begins with the com-
parison of registers 2 and 0. If they contain different bit patterns, the execute step

1. Retrieve the next
 instruction from
 memory (as indicated
 by the program
 counter) and then
 increment the
 program counter.

Fe
tc

h

D
ecode

Execute

3. Perform the action
 required by the
 instruction in the
 instruction register.

2. Decode the bit pattern
 in the instruction register.

Figure 2.8 The machine cycle

852.3 Program Execution

terminates and the next machine cycle begins. If, however, the contents of these
registers are equal, the machine places the value 58 (hexadecimal) in its program
counter during the execute step. In this case, then, the next fetch step finds 58 in
the program counter, so the instruction at that address will be the next instruction
to be fetched and executed.

Note that if the instruction had been B058, then the decision of whether the
program counter should be changed would depend on whether the contents of
register 0 was equal to that of register 0. But these are the same registers and
thus must have equal content. In turn, any instruction of the form B0XY will
cause a jump to be executed to the memory location XY regardless of the con-
tents of register 0.

B 2 5 8

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in
register 0.

Instruction

Figure 2.9 Decoding the instruction B258

Comparing Computer Power
When shopping for a personal computer, you will find that clock speeds are often
used to compare machines. A computer’s clock is a circuit, called an oscillator, which
generates pulses that are used to coordinate the machine’s activities—the faster this
oscillating circuit generates pulses, the faster the machine performs its machine
cycle. Clock speeds are measured in hertz (abbreviated as Hz) with one Hz equal to
one cycle (or pulse) per second. Typical clock speeds in desktop computers are in the
range of a few hundred MHz (older models) to several GHz. (MHz is short for mega-
hertz, which is a million Hz. GHz is short for gigahertz, which is 1000 MHz.)

Unfortunately, different CPU designs might perform different amounts of work in
one clock cycle, and thus clock speed alone fails to be relevant in comparing
machines with different CPUs. If you are comparing a machine based on an Intel
processor to one based on ARM, it would be more meaningful to compare perform-
ance by means of benchmarking, which is the process of comparing the performance
of different machines when executing the same program, known as a benchmark. By
selecting benchmarks representing different types of applications, you get meaning-
ful comparisons for various market segments.

86 Chapter 2 Data Manipulation

An Example of Program Execution
Let us follow the machine cycle applied to the program presented in Figure 2.7,
which retrieves two values from main memory, computes their sum, and stores
that total in a main memory cell. We first need to put the program somewhere in
memory. For our example, suppose the program is stored in consecutive
addresses, starting at address A0 (hexadecimal). With the program stored in this
manner, we can cause the machine to execute it by placing the address (A0) of the
first instruction in the program counter and starting the machine (Figure 2.10).

The CPU begins the fetch step of the machine cycle by extracting the
instruction stored in main memory at location A0 and placing this instruction
(156C) in its instruction register (Figure 2.11a). Notice that, in our machine,
instructions are 16 bits (two bytes) long. Thus the entire instruction to be fetched
occupies the memory cells at both address A0 and A1. The CPU is designed to
take this into account so it retrieves the contents of both cells and places the bit
patterns received in the instruction register, which is 16 bits long. The CPU then
adds two to the program counter so that this register contains the address of the
next instruction (Figure 2.11b). At the end of the fetch step of the first machine
cycle, the program counter and instruction register contain the following data:

Program Counter: A2
Instruction Register: 156C

Next, the CPU analyzes the instruction in its instruction register and con-
cludes that it is to load register 5 with the contents of the memory cell at address
6C. This load activity is performed during the execution step of the machine
cycle, and the CPU then begins the next cycle.

This cycle begins by fetching the instruction 166D from the two memory
cells starting at address A2. The CPU places this instruction in the instruction

CPU Main memory

Registers

Program counter

Instruction register

Bus
0

1

2

F

A0

CellsAddress

15A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

6C

16

6D

50

56

30

6E

C0

00

Program counter contains
address of first instructions.

Program is
stored in
main memory
beginning at
address A0.

.

.

.

Figure 2.10 The program from Figure 2.7 stored in main memory ready for execution

872.3 Program Execution

register and increments the program counter to A4. The values in the program
counter and instruction register therefore become the following:

Program Counter: A4
Instruction Register: 166D

Now the CPU decodes the instruction 166D and determines that it is to load
register 6 with the contents of memory address 6D. It then executes the instruc-
tion. It is at this time that register 6 is actually loaded.

Since the program counter now contains A4, the CPU extracts the next
instruction starting at this address. The result is that 5056 is placed in the
instruction register, and the program counter is incremented to A6. The CPU
now decodes the contents of its instruction register and executes it by activating
the two’s complement addition circuitry with inputs being registers 5 and 6.

During this execution step, the arithmetic/logic unit performs the requested
addition, leaves the result in register 0 (as requested by the control unit), and
reports to the control unit that it has finished. The CPU then begins another
machine cycle. Once again, with the aid of the program counter, it fetches the

Bus

Bus

CPU Main memory

CellsAddress

15A0

A1

A2

A3

6C

16

6D

Instruction register

Program counter

A0

156C

a. At the beginning of the fetch step the instruction starting at address A0 is
 retrieved from memory and placed in the instruction register.

CPU Main memory

CellsAddress

15A0

A1

A2

6C

16

A3 6D

Instruction register

Program counter

A2

156C

b. Then the program counter is incremented so that it points to the next instruction.

Figure 2.11 Performing the fetch step of the machine cycle

88 Chapter 2 Data Manipulation

next instruction (306E) from the two memory cells starting at memory location
A6 and increments the program counter to A8. This instruction is then decoded
and executed. At this point, the sum is placed in memory location 6E.

The next instruction is fetched starting from memory location A8, and the
program counter is incremented to AA. The contents of the instruction register
(C000) are now decoded as the halt instruction. Consequently, the machine stops
during the execute step of the machine cycle, and the program is completed.

In summary, we see that the execution of a program stored in memory
involves the same process you and I might use if we needed to follow a detailed
list of instructions. Whereas we might keep our place by marking the instructions
as we perform them, the CPU keeps its place by using the program counter. After
determining which instruction to execute next, we would read the instruction and
extract its meaning. Then, we would perform the task requested and return to the
list for the next instruction in the same manner that the CPU executes the instruc-
tion in its instruction register and then continues with another fetch.

Programs Versus Data
Many programs can be stored simultaneously in a computer’s main memory, as
long as they occupy different locations. Which program will be run when the
machine is started can then be determined merely by setting the program
counter appropriately.

One must keep in mind, however, that because data are also contained in main
memory and encoded in terms of 0s and 1s, the machine alone has no way of know-
ing what is data and what is program. If the program counter were assigned the
address of data instead of the address of the desired program, the CPU, not knowing
any better, would extract the data bit patterns as though they were instructions and
execute them. The final result would depend on the data involved.

We should not conclude, however, that providing programs and data with a
common appearance in a machine’s memory is bad. In fact, it has proved a use-
ful attribute because it allows one program to manipulate other programs (or
even itself) the same as it would data. Imagine, for example, a program that mod-
ifies itself in response to its interaction with its environment and thus exhibits
the ability to learn, or perhaps a program that writes and executes other pro-
grams in order to solve problems presented to it.

Questions & Exercises

1. Suppose the memory cells from addresses 00 to 05 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
00 14
01 02
02 34
03 17
04 C0
05 00

892.3 Program Execution

If we start the machine with its program counter containing 00, what bit
pattern is in the memory cell whose address is hexadecimal 17 when the
machine halts?

2. Suppose the memory cells at addresses B0 to B8 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

a. If the program counter starts at B0, what bit pattern is in register
number 3 after the first instruction has been executed?

b. What bit pattern is in memory cell B8 when the halt instruction
is executed?

3. Suppose the memory cells at addresses A4 to B1 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
B0 13
B1 B8
B2 A3
B3 02
B4 33
B5 B8
B6 C0
B7 00
B8 0F

Address Contents
A4 20
A5 00
A6 21
A7 03
A8 22
A9 01
AA B1
AB B0
AC 50
AD 02
AE B0
AF AA
B0 C0
B1 00

When answering the following questions, assume that the machine is
started with its program counter containing A4.

a. What is in register 0 the first time the instruction at address AA
is executed?

b. What is in register 0 the second time the instruction at address AA
is executed?

c. How many times is the instruction at address AA executed before the
machine halts?

90 Chapter 2 Data Manipulation

2.4 Arithmetic/Logic Instructions
As indicated earlier, the arithmetic/logic group of instructions consists of
instructions requesting arithmetic, logic, and shift operations. In this section, we
look at these operations more closely.

Logic Operations
We introduced the logic operations AND, OR, and XOR (exclusive or) in Chapter 1
as operations that combine two input bits to produce a single output bit. These
operations can be extended to operations that combine two strings of bits to pro-
duce a single output string by applying the basic operation to individual
columns. For example, the result of ANDing the patterns 10011010 and 11001001
results in

10011010
AND 11001001

10001000

where we have merely written the result of ANDing the 2 bits in each column at the
bottom of the column. Likewise, ORing and XORing these patterns would produce

4. Suppose the memory cells at addresses F0 to F9 in the machine
described in Appendix C contain the (hexadecimal) bit patterns
described in the following table:

Address Contents
F0 20
F1 C0
F2 30
F3 F8
F4 20
F5 00
F6 30
F7 F9
F8 FF
F9 FF

If we start the machine with its program counter containing F0, what
does the machine do when it reaches the instruction at address F8?

10011010
OR 11001001

11011011

10011010
XOR 11001001

01010011

One of the major uses of the AND operation is for placing 0s in one part of a
bit pattern while not disturbing the other part. Consider, for example, what hap-
pens if the byte 00001111 is the first operand of an AND operation. Without know-
ing the contents of the second operand, we still can conclude that the four most
significant bits of the result will be 0s. Moreover, the four least significant bits of

912.4 Arithmetic/Logic Instructions

the result will be a copy of that part of the second operand, as shown in the fol-
lowing example:

00001111
AND 10101010

00001010

This use of the AND operation is an example of the process called masking.
Here one operand, called a mask, determines which part of the other operand
will affect the result. In the case of the AND operation, masking produces a
result that is a partial replica of one of the operands, with 0s occupying the
nonduplicated positions.

Such an operation is useful when manipulating a bit map, a string of bits in
which each bit represents the presence or absence of a particular object. We have
already encountered bit maps in the context of representing images, where each
bit is associated with a pixel. As another example, a string of 52 bits, in which
each bit is associated with a particular playing card, can be used to represent a
poker hand by assigning 1s to those 5 bits associated with the cards in the hand
and 0s to all the others. Likewise, a bit map of 52 bits, of which thirteen are 1s,
can be used to represent a hand of bridge, or a bit map of 32 bits can be used to
represent which of thirty-two ice cream flavors are available.

Suppose, then, that the 8 bits in a memory cell are being used as a bit map,
and we want to find out whether the object associated with the third bit from the
high-order end is present. We merely need to AND the entire byte with the mask
00100000, which produces a byte of all 0s if and only if the third bit from the
high-order end of the bit map is itself 0. A program can then act accordingly by
following the AND operation with a conditional branch instruction. Moreover, if
the third bit from the high-order end of the bit map is a 1, and we want to change
it to a 0 without disturbing the other bits, we can AND the bit map with the mask
11011111 and then store the result in place of the original bit map.

Where the AND operation can be used to duplicate a part of a bit string while
placing 0s in the nonduplicated part, the OR operation can be used to duplicate a
part of a string while putting 1s in the nonduplicated part. For this we again use
a mask, but this time we indicate the bit positions to be duplicated with 0s and
use 1s to indicate the nonduplicated positions. For example, ORing any byte with
11110000 produces a result with 1s in its most significant 4 bits while its remain-
ing bits are a copy of the least significant 4 bits of the other operand, as demon-
strated by the following example:

11110000
OR 10101010

11111010

Consequently, whereas the mask 11011111 can be used with the AND operation to
force a 0 in the third bit from the high-order end of a byte, the mask 00100000 can
be used with the OR operation to force a 1 in that position.

A major use of the XOR operation is in forming the complement of a bit
string. XORing any byte with a mask of all 1s produces the complement of the
byte. For example, note the relationship between the second operand and the
result in the following example:

11111111
XOR 10101010

01010101

92 Chapter 2 Data Manipulation

In the machine language described in Appendix C, op-codes 7, 8, and 9 are
used for the logic operations OR, AND, and XOR, respectively. Each requests
that the corresponding logic operation be performed between the contents of
two designated registers and that the result be placed in another designated reg-
ister. For example, the instruction 7ABC requests that the result of ORing the
contents of registers B and C be placed in register A.

Rotation and Shift Operations
The operations in the class of rotation and shift operations provide a means for
moving bits within a register and are often used in solving alignment prob-
lems. These operations are classified by the direction of motion (right or left)
and whether the process is circular. Within these classification guidelines are
numerous variations with mixed terminology. Let us take a quick look at the
ideas involved.

Consider a register containing a byte of bits. If we shift its contents 1 bit to the
right, we imagine the rightmost bit falling off the edge and a hole appearing at the
leftmost end. What happens with this extra bit and the hole is the distinguishing
feature among the various shift operations. One technique is to place the bit that
fell off the right end in the hole at the left end. The result is a circular shift, also
called a rotation. Thus, if we perform a right circular shift on a byte-size bit pat-
tern eight times, we obtain the same bit pattern we started with.

Another technique is to discard the bit that falls off the edge and always fill
the hole with a 0. The term logical shift is often used to refer to these opera-
tions. Such shifts to the left can be used for multiplying two’s complement rep-
resentations by two. After all, shifting binary digits to the left corresponds to
multiplication by two, just as a similar shift of decimal digits corresponds to mul-
tiplication by ten. Moreover, division by two can be accomplished by shifting the
binary string to the right. In either shift, care must be taken to preserve the sign
bit when using certain notational systems. Thus, we often find right shifts that
always fill the hole (which occurs at the sign bit position) with its original value.
Shifts that leave the sign bit unchanged are sometimes called arithmetic shifts.

Among the variety of shift and rotate instructions possible, the machine
language described in Appendix C contains only a right circular shift, desig-
nated by op-code A. In this case the first hexadecimal digit in the operand spec-
ifies the register to be rotated, and the rest of the operand specifies the number
of bits to be rotated. Thus the instruction A501 means “Rotate the contents of
register 5 to the right by 1 bit.” In particular, if register 5 originally contained
the bit pattern 65 (hexadecimal), then it would contain B2 after this instruction
is executed (Figure 2.12). (You may wish to experiment with how other shift
and rotate instructions can be produced with combinations of the instructions
provided in the machine language of Appendix C. For example, since a register
is 8 bits long, a right circular shift of 3 bits produces the same result as a left
circular shift of 5 bits.)

Arithmetic Operations
Although we have already mentioned the arithmetic operations of add, sub-
tract, multiply, and divide, a few loose ends should still be connected. First, we
have already seen that subtraction can be simulated by means of addition and
negation. Moreover, multiplication is merely repeated addition and division is
repeated subtraction. (Six divided by two is three because three two’s can be

932.4 Arithmetic/Logic Instructions

subtracted from six.) For this reason, some small CPUs are designed with only
the add or perhaps only the add and subtract instructions.

We should also mention that numerous variations exist for each arithmetic
operation. We have already alluded to this in relation to the add operations avail-
able on our machine in Appendix C. In the case of addition, for example, if the
values to be added are stored in two’s complement notation, the addition process
must be performed as a straightforward column by column addition. However, if
the operands are stored as floating-point values, the addition process must
extract the mantissa of each, shift them right or left according to the exponent
fields, check the sign bits, perform the addition, and translate the result into
floating-point notation. Thus, although both operations are considered addition,
the action of the machine is not the same.

1 The original bit pattern0 1 1 0 0 1 0

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

The final bit pattern1 0 1 1 0 0 1 0

0 1 1 0 0 1 0

Figure 2.12 Rotating the bit pattern 65 (hexadecimal) one bit to the right

Questions & Exercises

1. Perform the indicated operations.

a. 01001011 b. 10000011 c. 11111111
AND 10101011 AND 11101100 AND 00101101

d. 01001011 e. 10000011 f. 11111111
OR 10101011 OR 11101100 OR 00101101

g. 01001011 h. 10000011 i. 11111111
XOR 10101011 XOR 11101100 XOR 00101101

2. Suppose you want to isolate the middle 4 bits of a byte by placing 0s in
the other 4 bits without disturbing the middle 4 bits. What mask must
you use together with what operation?

94 Chapter 2 Data Manipulation

2.5 Communicating with Other Devices
Main memory and the CPU form the core of a computer. In this section, we
investigate how this core, which we will refer to as the computer, communicates
with peripheral devices such as mass storage systems, printers, keyboards, mice,
display screens, digital cameras, and even other computers.

3. Suppose you want to complement the 4 middle bits of a byte while leav-
ing the other 4 bits undisturbed. What mask must you use together with
what operation?

4. a. Suppose you XOR the first 2 bits of a string of bits and then continue
down the string by successively XORing each result with the next bit
in the string. How is your result related to the number of 1s appearing
in the string?

b. How does this problem relate to determining what the appropriate
parity bit should be when encoding a message?

5. It is often convenient to use a logical operation in place of a numeric
one. For example, the logical operation AND combines 2 bits in the same
manner as multiplication. Which logical operation is almost the same as
adding 2 bits, and what goes wrong in this case?

6. What logical operation together with what mask can you use to change
ASCII codes of lowercase letters to uppercase? What about uppercase
to lowercase?

7. What is the result of performing a 3-bit right circular shift on the follow-
ing bit strings:

a. 01101010 b. 00001111 c. 01111111

8. What is the result of performing a 1-bit left circular shift on the following
bytes represented in hexadecimal notation? Give your answer in hexa-
decimal form.

a. AB b. 5C c. B7 d. 35

9. A right circular shift of 3 bits on a string of 8 bits is equivalent to a left cir-
cular shift of how many bits?

10. What bit pattern represents the sum of 01101010 and 11001100 if the pat-
terns represent values stored in two’s complement notation? What if the
patterns represent values stored in the floating-point format discussed in
Chapter 1?

11. Using the machine language of Appendix C, write a program that places
a 1 in the most significant bit of the memory cell whose address is A7
without modifying the remaining bits in the cell.

12. Using the machine language of Appendix C, write a program that copies
the middle 4 bits from memory cell E0 into the least significant 4 bits of
memory cell E1, while placing 0s in the most significant 4 bits of the cell
at location E1.

952.5 Communicating with Other Devices

The Role of Controllers
Communication between a computer and other devices is normally handled
through an intermediary apparatus known as a controller. In the case of a per-
sonal computer, a controller may consist of circuitry permanently mounted on
the computer’s motherboard or, for flexibility, it may take the form of a circuit
board that plugs into a slot on the motherboard. In either case, the controller
connects via cables to peripheral devices within the computer case or perhaps to
a connector, called a port, on the back of the computer where external devices
can be attached. These controllers are sometimes small computers themselves,
each with its own memory circuitry and simple CPU that performs a program
directing the activities of the controller.

A controller translates messages and data back and forth between forms
compatible with the internal characteristics of the computer and those of the
peripheral device to which it is attached. Originally, each controller was
designed for a particular type of device; thus, purchasing a new peripheral
device often required the purchase of a new controller as well.

Recently, steps have been taken within the personal computer arena to
develop standards, such as the universal serial bus (USB) and FireWire, by
which a single controller is able to handle a variety of devices. For example, a
single USB controller can be used as the interface between a computer and any
collection of USB-compatible devices. The list of devices on the market today
that can communicate with a USB controller includes mice, printers, scanners,
mass storage devices, digital cameras, and smartphones.

Each controller communicates with the computer itself by means of connec-
tions to the same bus that connects the computer’s CPU and main memory
(Figure 2.13). From this position it is able to monitor the signals being sent between
the CPU and main memory as well as to inject its own signals onto the bus.

With this arrangement, the CPU is able to communicate with the controllers
attached to the bus in the same manner that it communicates with main mem-
ory. To send a bit pattern to a controller, the bit pattern is first constructed in one
of the CPU’s general-purpose registers. Then an instruction similar to a STORE
instruction is executed by the CPU to “store” the bit pattern in the controller.

CD drive

Controller

Controller Controller

Modem

Controller

Disk driveMonitor

Bus
CPU

Main
memory

Figure 2.13 Controllers attached to a machine’s bus

96 Chapter 2 Data Manipulation

Likewise, to receive a bit pattern from a controller, an instruction similar to a
LOAD instruction is used.

In some computer designs the transfer of data to and from controllers is
directed by the same LOAD and STORE op-codes that are already provided for
communication with main memory. In these cases, each controller is designed
to respond to references to a unique set of addresses while main memory is
designed to ignore references to these locations. Thus when the CPU sends a
message on the bus to store a bit pattern at a memory location that is assigned to
a controller, the bit pattern is actually “stored” in the controller rather than main
memory. Likewise, if the CPU tries to read data from such a memory location, as
in a LOAD instruction, it will receive a bit pattern from the controller rather than
from memory. Such a communication system is called memory-mapped I/O
because the computer’s input/output devices appear to be in various memory
locations (Figure 2.14).

An alternative to memory-mapped I/O is to provide special op-codes in the
machine language to direct transfers to and from controllers. Instructions with
these op-codes are called I/O instructions. As an example, if the language
described in Appendix C followed this approach, it might include an instruction
such as F5A3 to mean “STORE the contents of register 5 in the controller identi-
fied by the bit pattern A3.”

Direct Memory Access
Since a controller is attached to a computer’s bus, it can carry on its own com-
munication with main memory during those nanoseconds in which the CPU is
not using the bus. This ability of a controller to access main memory is known as
direct memory access (DMA), and it is a significant asset to a computer’s per-
formance. For instance, to retrieve data from a sector of a disk, the CPU can send
requests encoded as bit patterns to the controller attached to the disk asking the
controller to read the sector and place the data in a specified area of main mem-
ory. The CPU can then continue with other tasks while the controller performs
the read operation and deposits the data in main memory via DMA. Thus two
activities will be performed at the same time. The CPU will be executing a pro-
gram and the controller will be overseeing the transfer of data between the disk
and main memory. In this manner, the computing resources of the CPU are not
wasted during the relatively slow data transfer.

The use of DMA also has the detrimental effect of complicating the commu-
nication taking place over a computer’s bus. Bit patterns must move between the
CPU and main memory, between the CPU and each controller, and between
each controller and main memory. Coordination of all this activity on the bus is
a major design issue. Even with excellent designs, the central bus can become an

CPU
Bus Main

memory

Controller Peripheral device

Figure 2.14 A conceptual representation of memory-mapped I/O

972.5 Communicating with Other Devices

impediment as the CPU and the controllers compete for bus access. This imped-
iment is known as the von Neumann bottleneck because it is a consequence of
the underlying von Neumann architecture in which a CPU fetches its instruc-
tions from memory over a central bus.

Handshaking
The transfer of data between two computer components is rarely a one-way
affair. Even though we may think of a printer as a device that receives data, the
truth is that a printer also sends data back to the computer. After all, a computer
can produce and send characters to a printer much faster than the printer can
print them. If a computer blindly sent data to a printer, the printer would quickly
fall behind, resulting in lost data. Thus a process such as printing a document
involves a constant two-way dialogue, known as handshaking, in which the
computer and the peripheral device exchange information about the device’s sta-
tus and coordinate their activities.

Handshaking often involves a status word, which is a bit pattern that is gen-
erated by the peripheral device and sent to the controller. The status word is a bit
map in which the bits reflect the conditions of the device. For example, in the
case of a printer, the value of the least significant bit of the status word may indi-
cate whether the printer is out of paper, while the next bit may indicate whether
the printer is ready for additional data. Still another bit may be used to indicate
the presence of a paper jam. Depending on the system, the controller may
respond to this status information itself or make it available to the CPU. In either
case, the status word provides the mechanism by which communication with a
peripheral device can be coordinated.

USB and FireWire
The universal serial bus (USB) and FireWire are standardized serial communication
systems that simplify the process of adding new peripheral devices to a personal
computer. USB was developed under the lead of Intel. The development of FireWire
was led by Apple. In both cases the underlying theme is for a single controller to pro-
vide external ports at which a variety of peripheral devices can be attached. In this
setting, the controller translates the internal signal characteristics of the computer to
the appropriate USB or FireWire standard signals. In turn, each device connected to
the controller converts its internal idiosyncrasies to the same USB or FireWire stan-
dard, allowing communication with the controller. The result is that attaching a new
device to a PC does not require the insertion of a new controller. Instead, one merely
plugs any USB compatible device into a USB port or a FireWire compatible device
into a FireWire port.

Of the two, FireWire provides a faster transfer rate, but the lower cost of USB
technology has made it the leader in the lower-cost mass market arena. USB com-
patible devices on the market today include mice, keyboards, printers, scanners, dig-
ital cameras, smartphones, and mass storage systems designed for backup
applications. FireWire applications tend to focus on devices that require higher trans-
fer rates such as video recorders and online mass storage systems.

98 Chapter 2 Data Manipulation

Popular Communication Media
Communication between computing devices is handled over two types of paths:
parallel and serial. These terms refer to the manner in which signals are trans-
ferred with respect to each other. In the case of parallel communication, sev-
eral signals are transferred at the same time, each on a separate “line.” Such a
technique is capable of transferring data rapidly but requires a relatively com-
plex communication path. Examples include a computer’s internal bus where
multiple wires are used to allow large blocks of data and other signals to be trans-
ferred simultaneously.

In contrast, serial communication is based on transferring signals one
after the other over a single line. Thus serial communication requires a simpler
data path than parallel communication, which is the reason for its popularity.
USB and FireWire, which offer relatively high-speed data transfer over short dis-
tances of only a few meters, are examples of serial communication systems. For
slightly longer distances (within a home or office building), serial communica-
tion over Ethernet connections (Section 4.1), either by wire or radio broadcast,
are popular.

For communication over greater distances, traditional voice telephone lines
dominated the personal computer arena for many years. These communication
paths, consisting of a single wire over which tones are transferred one after the
other, are inherently serial systems. The transfer of digital data over these lines
is accomplished by first converting bit patterns into audible tones by means of a
modem (short for modulator-demodulator), transferring these tones serially over
the telephone system, and then converting the tones back into bits by another
modem at the destination.

For faster long-distance communication over traditional telephone lines,
telephone companies offer a service known as DSL (Digital Subscriber Line),
which takes advantage of the fact that existing telephone lines are capable of
handling a wider frequency range than that used by traditional voice communi-
cation. More precisely, DSL uses frequencies above the audible range to transfer
digital data while leaving the lower frequency spectrum for voice communica-
tion. Although DSL has been highly successful, telephone companies are rapidly
upgrading their systems to fiber-optic lines, which support digital communica-
tion more readily than traditional telephone lines.

Other technologies that compete with DSL and fiber optics include cable,
as used in cable television systems, and satellite links via high-frequency
radio broadcast.

Communication Rates
The rate at which bits are transferred from one computing component to
another is measured in bits per second (bps). Common units include Kbps
(kilo-bps, equal to one thousand bps), Mbps (mega-bps, equal to one million
bps), and Gbps (giga-bps, equal to one billion bps). (Note the distinction between
bits and bytes—that is, 8 Kbps is equal to 1 KB per second. In abbreviations, a
lowercase b usually means bit whereas an uppercase B means byte.)

For short distance communication, USB and FireWire provide transfer rates
of several hundred Mbps, which is sufficient for most multimedia applications.

992.5 Communicating with Other Devices

This, combined with their convenience and relatively low cost, is why they are
popular for communication between home computers and local peripherals
such as printers, external disk drives, and cameras.

By combining multiplexing (the encoding or interweaving of data so that a
single communication path serves the purpose of multiple paths) and data com-
pression techniques, traditional voice telephone systems were able to support
transfer rates of 57.6 Kbps, which falls short of the needs of today’s multimedia
and Internet applications, such as YouTube and Facebook. To play MP3 music
recordings requires a transfer rate of about 64 Kbps, and to play even low quality
video clips requires transfer rates measured in units of Mbps. This is why alter-
natives such as DSL, cable, and satellite links, which provide transfer rates well
into the Mbps range, have replaced traditional audio telephone systems. (For
example, DSL offers transfer rates on the order of 54 Mbps.)

The maximum rate available in a particular setting depends on the type of
the communication path and the technology used in its implementation. This
maximum rate is often loosely equated to the communication path’s
bandwidth, although the term bandwidth also has connotations of capacity
rather than transfer rate. That is, to say that a communication path has a high
bandwidth (or provides broadband service) means that the communication
path has the ability to transfer bits at a high rate as well as the capacity to carry
large amounts of information simultaneously.

Questions & Exercises

1. Assume that the machine described in Appendix C uses memory-
mapped I/O and that the address B5 is the location within the printer
port to which data to be printed should be sent.

a. If register 7 contains the ASCII code for the letter A, what machine
language instruction should be used to cause that letter to be printed
at the printer?

b. If the machine executes a million instructions per second, how many
times can this character be sent to the printer in one second?

c. If the printer is capable of printing five traditional pages of text per
minute, will it be able to keep up with the characters being sent to
it in (b)?

2. Suppose that the hard disk on your personal computer rotates at 3000
revolutions a minute, that each track contains 16 sectors, and that each
sector contains 1024 bytes. Approximately what communication rate is
required between the disk drive and the disk controller if the controller
is going to receive bits from the disk drive as they are read from the spin-
ning disk?

3. Estimate how long it would take to transfer a 300-page novel encoded in
Unicode at a transfer rate of 54 Mbps.

100 Chapter 2 Data Manipulation

2.6 Other Architectures
To broaden our perspective, let us consider some alternatives to the traditional
machine architecture we have discussed so far.

Pipelining
Electric pulses travel through a wire no faster than the speed of light. Since light
travels approximately 1 foot in a nanosecond (one billionth of a second), it
requires at least 2 nanoseconds for the CPU to fetch an instruction from a mem-
ory cell that is 1 foot away. (The read request must be sent to memory, requiring
at least 1 nanosecond, and the instruction must be sent back to the CPU, requiring
at least another nanosecond.) Consequently, to fetch and execute an instruction in
such a machine requires several nanoseconds—which means that increasing the
execution speed of a machine ultimately becomes a miniaturization problem.

However, increasing execution speed is not the only way to improve a com-
puter’s performance. The real goal is to improve the machine’s throughput,
which refers to the total amount of work the machine can accomplish in a given
amount of time.

An example of how a computer’s throughput can be increased without
requiring an increase in execution speed involves pipelining, which is the
technique of allowing the steps in the machine cycle to overlap. In particular,
while one instruction is being executed, the next instruction can be fetched,
which means that more than one instruction can be in “the pipe” at any one
time, each at a different stage of being processed. In turn, the total throughput
of the machine is increased even though the time required to fetch and execute
each individual instruction remains the same. (Of course, when a JUMP
instruction is reached, any gain that would have been obtained by prefetching
is not realized because the instructions in “the pipe” are not the ones needed
after all.)

Modern machine designs push the pipelining concept beyond our simple
example. They are often capable of fetching several instructions at the same
time and actually executing more than one instruction at a time when those
instructions do not rely on each other.

The Multi-Core CPU
As technology provides ways of placing more and more circuitry on a silicon chip, the
physical distinction between a computer’s components diminishes. For instance, a
single chip might contain a CPU and main memory. This is an example of the “system-
on-a-chip” approach in which the goal is to provide a complete apparatus in a single
device that can be used as an abstract tool in higher level designs. In other cases
multiple copies of the same circuit are provided within a single device. This latter tac-
tic originally appeared in the form of chips containing several independent gates or
perhaps multiple flip-flops. Today’s state of the art allows for more than one entire
CPU to be placed on a single chip. This is the underlying architecture of devices
known as multi-core CPUs, which consist of two or more CPUs residing on the same
chip along with shared cache memory. (Multi-core CPUs containing two processing
units are typically called dual-core CPUs.) Such devices simplify the construction of
MIMD systems and are readily available for use in home computers.

1012.6 Other Architectures

Multiprocessor Machines
Pipelining can be viewed as a first step toward parallel processing, which is the
performance of several activities at the same time. However, true parallel pro-
cessing requires more than one processing unit, resulting in computers known
as multiprocessor machines.

A variety of computers today are designed with this idea in mind. One strat-
egy is to attach several processing units, each resembling the CPU in a single-
processor machine, to the same main memory. In this configuration, the
processors can proceed independently yet coordinate their efforts by leaving mes-
sages to one another in the common memory cells. For instance, when one
processor is faced with a large task, it can store a program for part of that task in
the common memory and then request another processor to execute it. The result
is a machine in which different instruction sequences are performed on different
sets of data, which is called a MIMD (multiple-instruction stream, multiple-data
stream) architecture, as opposed to the more traditional SISD (single-instruction
stream, single-data stream) architecture.

A variation of multiple-processor architecture is to link the processors
together so that they execute the same sequence of instructions in unison, each
with its own set of data. This leads to a SIMD (single-instruction stream, multiple-
data stream) architecture. Such machines are useful in applications in which the
same task must be applied to each set of similar items within a large block of data.

Another approach to parallel processing is to construct large computers as
conglomerates of smaller machines, each with its own memory and CPU. Within
such an architecture, each of the small machines is coupled to its neighbors so
that tasks assigned to the whole system can be divided among the individual
machines. Thus if a task assigned to one of the internal machines can be broken
into independent subtasks, that machine can ask its neighbors to perform these
subtasks concurrently. The original task can then be completed in much less
time than would be required by a single-processor machine.

Questions & Exercises

1. Referring back to Question 3 of Section 2.3, if the machine used the
pipeline technique discussed in the text, what will be in “the pipe” when
the instruction at address AA is executed? Under what conditions would
pipelining not prove beneficial at this point in the program?

2. What conflicts must be resolved in running the program in Question 4 of
Section 2.3 on a pipeline machine?

3. Suppose there were two “central” processing units attached to the same
memory and executing different programs. Furthermore, suppose that
one of these processors needs to add one to the contents of a memory
cell at roughly the same time that the other needs to subtract one from
the same cell. (The net effect should be that the cell ends up with the
same value with which it started.)

a. Describe a sequence in which these activities would result in the cell
ending up with a value one less than its starting value.

b. Describe a sequence in which these activities would result in the cell
ending up with a value one greater than its starting value.

102 Chapter 2 Data Manipulation

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

1. a. In what way are general-purpose registers
and main memory cells similar?

b. In what way do general-purpose registers
and main memory cells differ?

2. Answer the following questions in terms of
the machine language described in Appendix C.
a. Write the instruction 2304 (hexadecimal) as

a string of 16 bits.
b. Write the op-code of the instruction B2A5

(hexadecimal) as a string of 4 bits.
c. Write the operand field of the instruction

B2A5 (hexadecimal) as a string of 12 bits.

3. Suppose a block of data is stored in the mem-
ory cells of the machine described in
Appendix C from address 98 to A2, inclusive.
How many memory cells are in this block?
List their addresses.

4. What is the value of the program counter in
the machine described in Appendix C immedi-
ately after executing the instruction B0CD?

5. Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following bit patterns:

Assuming that the program counter initially
contained 00, record the contents of the pro-
gram counter, instruction register, and memory
cell at address 02 at the end of each fetch phase
of the machine cycle until the machine halts.

6. Suppose three values x, y, and z are stored in a
machine’s memory. Describe the sequence of
events (loading registers from memory, saving
values in memory, and so on) that leads to the
computation of x � y � z. How about (2x) � y?

7. The following are instructions written in the
machine language described in Appendix C.
Translate them into English.

a. 7123 b. 40E1 c. A304
d. B100 e. 2BCD

8. Suppose a machine language is designed with
an op-code field of 4 bits. How many different
instruction types can the language contain?
What if the op-code field is increased to 6 bits?

9. Translate the following instructions from
English into the machine language described
in Appendix C.
a. LOAD register 6 with the hexadecimal

value 77.
b. LOAD register 7 with the contents of mem-

ory cell 77.
c. JUMP to the instruction at memory loca-

tion 24 if the contents of register 0 equals
the value in register A.

d. ROTATE register 4 three bits to the right.
e. AND the contents of registers E and 2 leav-

ing the result in register 1.

10. Rewrite the program in Figure 2.7 assuming
that the values to be added are encoded using
floating-point notation rather than two’s com-
plement notation.

11. Classify each of the following instructions (in
the machine language of Appendix C) in
terms of whether its execution changes the
contents of the memory cell at location 3B,
retrieves the contents of the memory cell at
location 3C, or is independent of the contents
of the memory cell at location 3C.
a. 353C b. 253C c. 153C
d. 3C3C e. 403C

12. Suppose the memory cells at addresses 00
through 03 in the machine described in
Appendix C contain the following bit patterns:

a. Translate the first instruction into English.
b. If the machine is started with its program

counter containing 00, what bit pattern is
in register 6 when the machine halts?

Address Contents
00 26
01 55
02 C0
03 00

Address Contents
00 22
01 11
02 32
03 02
04 C0
05 00

103Chapter Review Problems

13. Suppose the memory cells at addresses 00
through 02 in the machine described in
Appendix C contain the following bit patterns:

a. What would be the first instruction exe-
cuted if we started the machine with its
program counter containing 00?

b. What would be the first instruction exe-
cuted if we started the machine with its
program counter containing 01?

14. Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following bit patterns:

When answering the following questions,
assume that the machine starts with its pro-
gram counter equal to 00.
a. Translate the instructions that are executed

into English.
b. What bit pattern is in the memory cell at

address 42 when the machine halts?
c. What bit pattern is in the program counter

when the machine halts?

15. Suppose the memory cells at addresses 00
through 09 in the machine described in
Appendix C contain the following bit patterns:

Assume that the machine starts with its pro-
gram counter containing 00.

a. What will be in the memory cell at address
00 when the machine halts?

b. What bit pattern will be in the program
counter when the machine halts?

16. Suppose the memory cells at addresses 00
through 07 in the machine described in
Appendix C contain the following bit patterns:

a. List the addresses of the memory cells that
contain the program that will be executed if
we start the machine with its program
counter containing 00.

b. List the addresses of the memory cells that
are used to hold data.

17. Suppose the memory cells at addresses 00
through 0D in the machine described in
Appendix C contain the following bit patterns:

Assume that the machine starts with its pro-
gram counter containing 00.
a. What bit pattern will be in register 0 when

the machine halts?
b. What bit pattern will be in register 1 when

the machine halts?
c. What bit pattern is in the program counter

when the machine halts?

Address Contents
00 20
01 04
02 21
03 01
04 40
05 12
06 51
07 12
08 B1
09 0C
0A B0
0B 06
0C C0
0D 00

Address Contents
00 2B
01 07
02 3B
03 06
04 C0
05 00
06 00
07 23

Address Contents
00 1C
01 03
02 2B
03 03
04 5A
05 BC
06 3A
07 00
08 C0
09 00

Address Contents
00 12
01 02
02 32
03 42
04 C0
05 00

Address Contents
00 12
01 21
02 34

104 Chapter 2 Data Manipulation

18. Suppose the memory cells at addresses F0
through FD in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

If we start the machine with its program
counter containing F0, what is the value in
register 0 when the machine finally executes
the halt instruction at location FC?

19. If the machine in Appendix C executes an
instruction every microsecond (a millionth of
a second), how long does it take to complete
the program in Problem 18?

20. Suppose the memory cells at addresses 20
through 28 in the machine described in
Appendix C contain the following bit patterns:

Assume that the machine starts with its pro-
gram counter containing 20.
a. What bit patterns will be in registers 0, 1,

and 2 when the machine halts?
b. What bit pattern will be in the memory cell

at address 30 when the machine halts?
c. What bit pattern will be in the memory cell

at address B0 when the machine halts?

21. Suppose the memory cells at addresses AF
through B1 in the machine described in
Appendix C contain the following bit patterns:

What would happen if we started the machine
with its program counter containing AF?

22. Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

If we start the machine with its program counter
containing 00, when does the machine halt?

23. In each of the following cases, write a short
program in the machine language described in
Appendix C to perform the requested activi-
ties. Assume that each of your programs is
placed in memory starting at address 00.
a. Move the value at memory location D8 to

memory location B3.
b. Interchange the values stored at memory

locations D8 and B3.
c. If the value stored in memory location 44 is

00, then place the value 01 in memory loca-
tion 46; otherwise, put the value FF in
memory location 46.

24. A game that used to be popular among com-
puter hobbyists is core wars—a variation of
battleship. (The term core originates from an
early memory technology in which 0s and 1s
were represented as magnetic fields in little
rings of magnetic material. The rings were
called cores.) The game is played between two
opposing programs, each stored in different
locations of the same computer’s memory.
The computer is assumed to alternate
between the two programs, executing an
instruction from one followed by an instruc-
tion from the other. The goal of each program

Address Contents
00 25
01 B0
02 35
03 04
04 C0
05 00

Address Contents
AF B0
B0 B0
B1 AF

Address Contents
20 12
21 20
22 32
23 30
24 B0
25 21
26 24
27 C0
28 00

Address Contents
F0 20
F1 00
F2 22
F3 02
F4 23
F5 04
F6 B3
F7 FC
F8 50
F9 02
FA B0
FB F6
FC C0
FD 00

105Chapter Review Problems

is to cause the other to malfunction by writing
extraneous data on top of it; however, neither
program knows the location of the other.
a. Write a program in the machine language

of Appendix C that approaches the game
in a defensive manner by being as small
as possible.

b. Write a program in the language of
Appendix C that tries to avoid any attacks
from the opposing program by moving to
different locations. More precisely, begin-
ning at location 00, write a program that
will copy itself to location 70 and then
jump to location 70.

c. Extend the program in (b) to continue relo-
cating to new memory locations. In particu-
lar, make your program move to location 70,
then to E0 (� 70 � 70), then to 60 (� 70 �
70 � 70), etc.

25. Write a program in the machine language of
Appendix C to compute the sum of floating-
point values stored at memory locations A0,
A1, A2, and A3. Your program should store the
total at memory location A4.

26. Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

What happens if we start the machine with its
program counter containing 00?

27. What happens if the memory cells at
addresses 08 and 09 of the machine described
in Appendix C contain the bit patterns B0 and
08, respectively, and the machine is started with
its program counter containing the value 08?

28. Suppose the following program, written in the
machine language of Appendix C, is stored in
main memory beginning at address 30 (hexa-
decimal). What task will the program perform
when executed?
2003
2101

2200
2310
1400
3410
5221
5331
3239
333B
B248
B038
C000

29. Summarize the steps involved when the
machine described in Appendix C performs
an instruction with op-code B. Express your
answer as a set of directions as though you
were telling the CPU what to do.

*30. Summarize the steps involved when the
machine described in Appendix C performs
an instruction with op-code 5. Express your
answer as a set of directions as though you
were telling the CPU what to do.

*31. Summarize the steps involved when the
machine described in Appendix C performs
an instruction with op-code 6. Express your
answer as a set of directions as though you
were telling the CPU what to do.

*32. Suppose the registers 4 and 5 in the machine
described in Appendix C contain the bit pat-
terns 3A and C8, respectively. What bit pat-
tern is left in register 0 after executing each
of the following instructions:
a. 5045 b. 6045 c. 7045
d. 8045 e. 9045

*33. Using the machine language described in
Appendix C, write programs to perform each
of the following tasks:
a. Copy the bit pattern stored in memory

location 44 into memory location AA.
b. Change the least significant 4 bits in the

memory cell at location 34 to 0s while
leaving the other bits unchanged.

c. Copy the least significant 4 bits from
memory location A5 into the least signifi-
cant 4 bits of location A6 while leaving the
other bits at location A6 unchanged.

d. Copy the least significant 4 bits from
memory location A5 into the most signifi-
cant 4 bits of A5. (Thus, the first 4 bits in
A5 will be the same as the last 4 bits.)

Address Contents
00 20
01 C0
02 30
03 04
04 00
05 00

106 Chapter 2 Data Manipulation

*34. Perform the indicated operations:
a. 111001 b. 000101

AND 101001 AND 101010

c. 001110 d. 111011
AND 010101 AND 110111

e. 111001 f. 010100
OR 101001 OR 101010

g. 000100 h. 101010
OR 010101 OR 110101

i. 111001 j. 000111
XOR 101001 XOR 101010

k. 010000 l. 111111
XOR 010101 XOR 110101

*35. Identify both the mask and the logical opera-
tion needed to accomplish each of the follow-
ing objectives:
a. Put 1s in the upper4 bits of an 8-bit pat-

tern without disturbing the other bits.
b. Complement the most significant bit of an

8-bit pattern without changing the other bits.
c. Complement a pattern of 8 bits.
d. Put a 0 in the least significant bit of an 8-bit

pattern without disturbing the other bits.
e. Put 1s in all but the most significant bit of

an 8-bit pattern without disturbing the
most significant bit.

*36. Identify a logical operation (along with a corre-
sponding mask) that, when applied to an input
string of 8 bits, produces an output string of all
0s if and only if the input string is 10000001.

*37. Describe a sequence of logical operations
(along with their corresponding masks) that,
when applied to an input string of 8 bits, pro-
duces an output byte of all 0s if the input string
both begins and ends with 1s. Otherwise, the
output should contain at least one 1.

*38. What would be the result of performing a 4-bit
left circular shift on the following bit patterns?
a. 10101 b. 11110000 c. 001
d. 101000 e. 00001

*39. What would be the result of performing a
2-bit right circular shift on the following
bytes represented in hexadecimal notation
(give your answers in hexadecimal notation)?
a. 3F b. 0D
c. FF d. 77

*40. a. What single instruction in the machine
language of Appendix C could be used to

accomplish a 5-bit right circular shift of
register B?

b. What single instruction in the machine lan-
guage of Appendix C could be used to accom-
plish a 2-bit left circular shift of register B?

*41. Write a program in the machine language of
Appendix C that reverses the contents of the
memory cell at address 8C. (That is, the final
bit pattern at address 8C when read from left
to right should agree with the original pat-
tern when read from right to left.)

*42. Write a program in the machine language of
Appendix C that subtracts the value stored at
A1 from the value stored at address A2 and
places the result at address A0. Assume that
the values are encoded in two’s complement
notation.

*43. High definition video can be delivered at a
rate of 30 frames per second (fps) where each
frame has a resolution of 1920 � 1080 pixels
using 24 bits per pixel. Can an uncompressed
video stream of this format be sent over a
USB 1.1 serial port? USB 2.0 serial port?
USB 3.0 serial port? (Note: The maximum
speeds of USB 1.1, USB 2.0, and USB 3.0 serial
ports are 12Mbps, 480Mbps, and 5Gbps
respectively.)

*44. Suppose a person is typing forty words per
minute at a keyboard. (A word is considered
to be five characters.) If a machine executes
500 instructions every microsecond (millionth
of a second), how many instructions does the
machine execute during the time between the
typing of two consecutive characters?

*45. How many bits per second must a keyboard
transmit to keep up with a typist typing forty
words per minute? (Assume each character is
encoded in ASCII and each word consists of
six characters.)

*46. Suppose the machine described in Appendix
C communicates with a printer using the
technique of memory-mapped I/O. Suppose
also that address FF is used to send characters
to the printer, and address FE is used to
receive information about the printer’s status.
In particular, suppose the least significant bit
at the address FE indicates whether the
printer is ready to receive another character
(with a 0 indicating “not ready” and a 1 indi-
cating “ready”). Starting at address 00, write a
machine language routine that waits until the

107Social Issues

printer is ready for another character and
then sends the character represented by the
bit pattern in register 5 to the printer.

*47. Write a program in the machine language
described in Appendix C that places 0s in all
the memory cells from address A0 through C0
but is small enough to fit in the memory cells
from address 00 through 13 (hexadecimal).

*48. Suppose a machine has 200 GB of storage
space available on a hard disk and receives
data over a broadband connection at the rate
of 15 Mbps. At this rate, how long will it take
to fill the available storage space?

*49. Suppose a satellite system is being used to
receive a serial data stream at 250 Kbps. If a
burst of atmospheric interference lasts 6.96 sec-
onds, how many data bits will be affected?

*50. Suppose you are given 32 processors, each
capable of finding the sum of two multidigit
numbers in a millionth of a second. Describe
how parallel processing techniques can be
applied to find the sum of 64 numbers in
only six-millionths of a second. How much
time does a single processor require to find
this same sum?

*51. Summarize the difference between a CISC
architecture and a RISC architecture.

*52. Identify two approaches to increasing
throughput.

*53. Describe how the average of a collection of
numbers can be computed more rapidly with
a multiprocessor machine than a single-
processor machine.

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. Suppose a computer manufacturer develops a new machine architecture. To
what extent should the company be allowed to own that architecture? What
policy would be best for society?

2. In a sense, the year 1923 marked the birth of what many now call planned
obsolescence. This was the year that General Motors, led by Alfred Sloan,
introduced the automobile industry to the concept of model years. The idea
was to increase sales by changing styling rather than necessarily introducing
a better automobile. Sloan is quoted as saying, “We want to make you dissat-
isfied with your current car so you will buy a new one.” To what extent is this
marketing ploy used today in the computer industry?

3. We often think in terms of how computer technology has changed our society.
Many argue, however, that this technology has often kept changes from occur-
ring by allowing old systems to survive and, in some cases, become more
entrenched. For example, would a central government’s role in society have
survived without computer technology? To what extent would centralized
authority be present today had computer technology not been available? To
what extent would we be better or worse off without computer technology?

4. Is it ethical for an individual to take the attitude that he or she does not need
to know anything about the internal details of a machine because someone
else will build it, maintain it, and fix any problems that arise? Does your
answer depend on whether the machine is a computer, automobile, nuclear
power plant, or toaster?

5. Suppose a manufacturer produces a computer chip and later discovers a flaw
in its design. Suppose further that the manufacturer corrects the flaw in
future production but decides to keep the original flaw a secret and does not

108 Chapter 2 Data Manipulation

recall the chips already shipped, reasoning that none of the chips already in
use are being used in an application in which the flaw will have conse-
quences. Is anyone hurt by the manufacturer’s decision? Is the manufac-
turer’s decision justified if no one is hurt and the decision keeps the
manufacturer from loosing money and possibly having to layoff employees?

6. Does advancing technology provide cures for heart disease or is it a source of
a sedentary life style that contributes to heart disease?

7. It is easy to imagine financial or navigational disasters that may occur as the
result of arithmetic errors due to overflow and truncation problems. What con-
sequences could result from errors in image storage systems due to loss of
image details (perhaps in fields such as reconnaissance or medical diagnosis)?

8. ARM Holdings is a small company that designs the processors for a wide vari-
ety of consumer electronic devices. It does not manufacture any of the proces-
sors; instead the designs are licensed to semiconductor vendors (such as
Qualcomm, Samsung, and Texas Instruments) who pay a royalty for each unit
produced. This business model spreads the high cost of research and develop-
ment of computer processors across the entire consumer electronic market.
Today, over 95 percent of all cellular phones (not just smartphones), over
40 percent of all digital cameras, and 25 percent of Digital TVs use an ARM
processor. Furthermore, ARM processors are found in mini-notebooks, MP3
players, game controllers, electronic book readers, navigation systems, and the
list goes on. Given this, do you consider this company to be a monopoly? Why or
why not? As consumer devices play an ever increasing role in today’s society, is
the dependency on this little known company good, or does it raise concerns?

Carpinelli, J. D. Computer Systems Organization and Architecture. Boston, MA:
Addison-Wesley, 2001.

Comer, D. E. Essentials of Computer Architecture. Upper Saddle River, NJ:
Prentice- Hall, 2005.

Dandamudi, S P. Guide to RISC Processors for Programmers and Engineers. New
York: Springer, 2005.

Furber, S. ARM System-on-Chip Architecture, 2nd ed. Boston, MA: Addison-
Wesley, 2000.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky. Computer Organization, 5th ed.
New York: McGraw-Hill, 2002.

Knuth, D. E. The Art of Computer Programming, Vol. 1, 3rd ed. Boston, MA:
Addison-Wesley, 1998.

Murdocca, M. J. and V. P. Heuring. Computer Architecture and Organization: An
Integrated Approach. New York: Wiley, 2007.

Stallings, W. Computer Organization and Architecture, 7th ed. Upper Saddle River,
NJ: Prentice-Hall, 2006.

Tanenbaum, A. S. Structured Computer Organization, 5th ed. Upper Saddle River,
NJ: Prentice-Hall, 2006.

Additional Reading

Operating
Systems

In this chapter we study operating systems, which are software

packages that coordinate a computer’s internal activities as well as

oversee its communication with the outside world. It is a computer’s

operating system that transforms the computer hardware into a

useful tool. Our goal is to understand what operating systems do

and how they do it. Such a background is central to being an

enlightened computer user.

C H A P T E R

3

3.1 The History of Operating
Systems

3.2 Operating System
Architecture
A Software Survey
Components of an Operating System
Getting It Started

3.3 Coordinating the Machine’s
Activities
The Concept of a Process
Process Administration

*3.4 Handling Competition
Among Processes
Semaphores
Deadlock

3.5 Security
Attacks from the Outside
Attacks from Within

*Asterisks indicate suggestions for
optional sections.

An operating system is the software that controls the overall operation of a com-
puter. It provides the means by which a user can store and retrieve files, provides
the interface by which a user can request the execution of programs, and provides
the environment necessary to execute the programs requested.

Perhaps the best known example of an operating system is Windows, which
is provided in numerous versions by Microsoft and widely used in the PC
arena. Another well-established example is UNIX, which is a popular choice for
larger computer systems as well as PCs. In fact, UNIX is the core of two other
popular operating systems: Mac OS, which is the operating system provided
by Apple for its range of Mac machines, and Solaris, which was developed by
Sun Microsystems (now owned by Oracle). Still another example of an operat-
ing system found on both large and small machines is Linux, which was origi-
nally developed noncommercially by computer enthusiasts and is now
available through many commercial sources, including IBM.

For casual computer users, the differences between operating systems are
largely cosmetic. For computing professionals, different operating systems can
represent major changes in the tools they work with or the philosophy they
follow in disseminating and maintaining their work. Nevertheless, at their core
all mainstream operating systems address the same kinds of problems that
computing experts have faced for more than half a century.

3.1 The History of Operating Systems
Today’s operating systems are large, complex software packages that have grown
from humble beginnings. The computers of the 1940s and 1950s were not very
flexible or efficient. Machines occupied entire rooms. Program execution
required significant preparation of equipment in terms of mounting magnetic
tapes, placing punched cards in card readers, setting switches, and so on. The
execution of each program, called a job, was handled as an isolated activity—the
machine was prepared for executing the program, the program was executed,
and then all the tapes, punched cards, etc. had to be retrieved before the next
program preparation could begin. When several users needed to share a
machine, sign-up sheets were provided so that users could reserve the machine
for blocks of time. During the time period allocated to a user, the machine was
totally under that user’s control. The session usually began with program setup,
followed by short periods of program execution. It was often completed in a hur-
ried effort to do just one more thing (“It will only take a minute”) while the next
user was impatiently starting to set up.

In such an environment, operating systems began as systems for simplifying
program setup and for streamlining the transition between jobs. One early devel-
opment was the separation of users and equipment, which eliminated the phys-
ical transition of people in and out of the computer room. For this purpose a
computer operator was hired to operate the machine. Anyone wanting a pro-
gram run was required to submit it, along with any required data and special
directions about the program’s requirements, to the operator and return later for
the results. The operator, in turn, loaded these materials into the machine’s mass
storage where a program called the operating system could read and execute

110 Chapter 3 Operating Systems

them one at a time. This was the beginning of batch processing—the execution
of jobs by collecting them in a single batch, then executing them without further
interaction with the user.

In batch processing systems, the jobs residing in mass storage wait for exe-
cution in a job queue (Figure 3.1). A queue is a storage organization in which
objects (in this case, jobs) are ordered in first-in, first-out (abbreviated FIFO
and pronounced “FI-foe”) fashion. That is, the objects are removed from the
queue in the order in which they arrived. In reality, most job queues do not rig-
orously follow the FIFO structure, since most operating systems provide for con-
sideration of job priorities. As a result, a job waiting in the job queue can be
bumped by a higher-priority job.

In early batch processing systems, each job was accompanied by a set of
instructions explaining the steps required to prepare the machine for that
particular job. These instructions were encoded, using a system known as a
job control language (JCL), and stored with the job in the job queue. When
the job was selected for execution, the operating system printed these
instructions at a printer where they could be read and followed by the com-
puter operator. This communication between the operating system and the
computer operator is still seen today, as witnessed by PC operating systems
that report such errors as “disk drive not accessible” and “printer not
responding.”

A major drawback to using a computer operator as an intermediary between
a computer and its users is that the users have no interaction with their jobs once
they are submitted to the operator. This approach is acceptable for some applica-
tions, such as payroll processing, in which the data and all processing decisions
are established in advance. However, it is not acceptable when the user must
interact with a program during its execution. Examples include reservation
systems in which reservations and cancellations must be reported as they occur;
word processing systems in which documents are developed in a dynamic
write and rewrite manner; and computer games in which interaction with the
machine is the central feature of the game.

To accommodate these needs, new operating systems were developed that
allowed a program being executed to carry on a dialogue with the user through

1113.1 The History of Operating Systems

ResultsJobs: Program, data,
and directions

User domain

Machine
domain Job queue

Figure 3.1 Batch processing

112 Chapter 3 Operating Systems

Programs, data,
directions, and results

User domain

Machine
domain

Program
execution

Figure 3.2 Interactive processing

remote terminals—a feature known as interactive processing (Figure 3.2).
(A terminal consisted of little more than an electronic typewriter by which the user
could type input and read the computer’s response that was printed on paper. Today
terminals have evolved into more sophisticated devices called workstations and
even into complete PCs that can function as stand-alone computers when desired.)

Paramount to successful interactive processing is that the actions of the com-
puter be sufficiently fast to coordinate with the needs of the user rather than forcing
the user to conform to the machine’s timetable. (The task of processing payroll can
be scheduled to conform to the amount of time required by the computer, but using
a word processor would be frustrating if the machine did not respond promptly as
characters are typed.) In a sense, the computer is forced to execute tasks under a
deadline, a process that became known as real-time processing in which the
actions performed are said to occur in real-time. That is, to say that a computer
performs a task in real time means that the computer performs the task in
accordance with deadlines in its (external real-world) environment.

If interactive systems had been required to serve only one user at a time,
real-time processing would have been no problem. But computers in the 1960s
and 1970s were expensive, so each machine had to serve more than one user. In
turn, it was common for several users, working at remote terminals, to seek
interactive service from a machine at the same time, and real-time considera-
tions presented obstacles. If the operating system insisted on executing only one
job at a time, only one user would receive satisfactory real-time service.

The solution to this problem was to design operating systems that provided
service to multiple users at the same time: a feature called time-sharing. One
means of implementing time-sharing is to apply the technique called
multiprogramming in which time is divided into intervals and then the execu-
tion of each job is restricted to only one interval at a time. At the end of each inter-
val, the current job is temporarily set aside and another is allowed to execute
during the next interval. By rapidly shuffling the jobs back and forth in this man-
ner, the illusion of several jobs executing simultaneously is created. Depending on
the types of jobs being executed, early time-sharing systems were able to provide
acceptable real-time processing to as many as 30 users simultaneously. Today,
multiprogramming techniques are used in single-user as well as multiuser sys-
tems, although in the former the result is usually called multitasking. That is,
time-sharing refers to multiple users sharing access to a common computer,
whereas multitasking refers to one user executing numerous tasks simultaneously.

1133.1 The History of Operating Systems

With the development of multiuser, time-sharing operating systems, a typi-
cal computer installation was configured as a large central computer connected
to numerous workstations. From these workstations, users could communicate
directly with the computer from outside the computer room rather than submit-
ting requests to a computer operator. Commonly used programs were stored in
the machine’s mass storage devices and operating systems were designed to exe-
cute these programs as requested from the workstations. In turn, the role of a
computer operator as an intermediary between the users and the computer
begins to fade.

Today, the existence of a computer operator has essentially disappeared, espe-
cially in the arena of personal computers where the computer user assumes all of
the responsibilities of computer operation. Even most large computer installations
run essentially unattended. Indeed, the job of computer operator has given way to
that of a system administrator who manages the computer system—obtaining and
overseeing the installation of new equipment and software, enforcing local regula-
tions such as the issuing of new accounts and establishing mass storage space limits
for the various users, and coordinating efforts to resolve problems that arise in the
system—rather than operating the machines in a hands-on manner.

In short, operating systems have grown from simple programs that retrieved
and executed programs one at a time into complex systems that coordinate time-
sharing, maintain programs and data files in the machine’s mass storage devices,
and respond directly to requests from the computer’s users.

But the evolution of operating systems continues. The development of multi-
processor machines has led to operating systems that provide time-sharing/
multitasking capabilities by assigning different tasks to different processors as well as
by sharing the time of each single processor. These operating systems must wrestle
with such problems as load balancing (dynamically allocating tasks to the various
processors so that all processors are used efficiently) as well as scaling (breaking
tasks into a number of subtasks compatible with the number of processors available).

Moreover, the advent of computer networks in which numerous machines
are connected over great distances has led to the creation of software systems to
coordinate the network’s activities. Thus the field of networking (which we will
study in Chapter 4) is in many ways an extension of the subject of operating

What’s in a Smartphone?
As cell phones have become more powerful, it has become possible for them to offer
services well beyond simply processing voice calls. A typical smartphone can now be
used to text message, browse the Web, provide directions, view multimedia
content—in short, it can be used to provide many of the same services as a tradi-
tional PC. As such, smartphones require full-fledged operating systems, not only to
manage the limited resources of the smartphone hardware, but also to provide fea-
tures that support the rapidly expanding collection of smartphone application soft-
ware. The battle for dominance in the smartphone operating system market place
promises to be fierce and will likely be settled on the basis of which system can pro-
vide the most imaginative features at the best price. Competitors in the smartphone
operating system arena include Apple’s iPhone OS, Research In Motion’s BlackBerry
OS, Microsoft’s Windows Phone, Nokia’s Symbian OS, and Google’s Android.

3.2 Operating System Architecture
To understand the composition of a typical operating system, we first consider
the complete spectrum of software found within a typical computer system.
Then we will concentrate on the operating system itself.

A Software Survey
We approach our survey of the software found on a typical computer system by
presenting a scheme for classifying software. Such classification schemes invari-
ably place similar software units in different classes in the same manner as the
assignment of time zones dictates that nearby communities must set their clocks
an hour apart even though there is no significant difference between the occur-
rence of sunrise and sunset. Moreover, in the case of software classification, the
dynamics of the subject and the lack of a definitive authority lead to contradictory
terminology. For example, users of Microsoft’s Windows operating systems will
find groups of programs called “Accessories” and “Administrative Tools” that include
software from what we will call the application and utility classes. The following

114 Chapter 3 Operating Systems

1. Identify examples of queues. In each case, indicate any situations that
violate the FIFO structure.

2. Which of the following activities require real-time processing?

a. Printing mailing labels
b. Playing a computer game
c. Displaying numbers on a smartphone screen as they are dialed
d. Executing a program that predicts the state of next year’s economy
e. Playing an MP3 recording

3. What is the difference between embedded systems and PCs?
4. What is the difference between time-sharing and multitasking?

Questions & Exercises

systems—the goal being to manage resources across many users on many
machines rather than a single, isolated computer.

Still another direction of research in operating systems focuses on devices that
are dedicated to specific tasks such as medical devices, vehicle electronics, home
appliances, cell phones, or other hand-held computers. The computer systems
found in these devices are known as embedded systems. Embedded operating sys-
tems are often expected to conserve battery power, meet demanding real-time
deadlines, or operate continuously with little or no human oversight. Successes in
this endeavor are marked by systems such as VxWORKS, developed by Wind River
Systems and used in the Mars Exploration Rovers named Spirit and Opportunity;
Windows CE (also known as Pocket PC) developed by Microsoft; and Palm OS
developed by PalmSource, Inc., especially for use in hand-held devices.

taxonomy should therefore be viewed as a means of gaining a foothold in an exten-
sive, dynamic subject rather than as a statement of universally accepted fact.

Let us begin by dividing a machine’s software into two broad categories:
application software and system software (Figure 3.3). Application software
consists of the programs for performing tasks particular to the machine’s utiliza-
tion. A machine used to maintain the inventory for a manufacturing company
will contain different application software from that found on a machine used by
an electrical engineer. Examples of application software include spreadsheets,
database systems, desktop publishing systems, accounting systems, program
development software, and games.

In contrast to application software, system software performs those tasks
that are common to computer systems in general. In a sense, the system soft-
ware provides the infrastructure that the application software requires, in much
the same manner as a nation’s infrastructure (government, roads, utilities, finan-
cial institutions, etc.) provides the foundation on which its citizens rely for their
individual lifestyles.

Within the class of system software are two categories: one is the operating
system itself and the other consists of software units collectively known as
utility software. The majority of an installation’s utility software consists of
programs for performing activities that are fundamental to computer installa-
tions but not included in the operating system. In a sense, utility software con-
sists of software units that extend (or perhaps customize) the capabilities of
the operating system. For example, the ability to format a magnetic disk or to
copy a file from a magnetic disk to a CD is often not implemented within the oper-
ating system itself but instead is provided by means of a utility program. Other
instances of utility software include software to compress and decompress data,
software for playing multimedia presentations, and software for handling net-
work communication.

Implementing certain activities as utility software allows system software to
be customized to the needs of a particular installation more easily than if they

1153.2 Operating System Architecture

User Interface Kernel

Utility

Application

Software

System

Operating
system

Figure 3.3 Software classification

were included in the operating system. Indeed, it is common to find companies
or individuals who have modified, or added to, the utility software that was orig-
inally provided with their machine’s operating system.

Unfortunately, the distinction between application software and utility soft-
ware can be vague. From our point of view, the difference is whether the pack-
age is part of the computer’s “software infrastructure.” Thus a new application
may evolve to the status of a utility if it becomes a fundamental tool. When still
a research project, software for communicating over the Internet was considered
application software; today such tools are fundamental to most PC usage and
would therefore be classified as utility software.

The distinction between utility software and the operating system is equally
vague. In particular, antitrust lawsuits in the United States and Europe have been
founded on questions regarding whether units such as browsers and media play-
ers are components of Microsoft’s operating systems or utilities that Microsoft has
included merely to squash competition.

Components of an Operating System
Let us focus now on components that are within the domain of an operating sys-
tem. In order to perform the actions requested by the computer’s users, an
operating system must be able to communicate with those users. The portion of
an operating system that handles this communication is often called the user
interface. Older user interfaces, called shells, communicated with users
through textual messages using a keyboard and monitor screen. More modern
systems perform this task by means of a graphical user interface (GUI—
pronounced “GOO–ee”) in which objects to be manipulated, such as files and
programs, are represented pictorially on the display as icons. These systems
allow users to issue commands by using one of several common input devices.
For example, a computer mouse, with one or more buttons, can be used to click
or drag icons on the screen. In place of a mouse, special-purpose pointing
devices or styluses are often used by graphic artists or on several types of hand-
held devices. More recently, advances in fine-grained touch screens allow users
to manipulate icons directly with their fingers. Whereas today’s GUIs use two-
dimensional image projection systems, three-dimensional interfaces that allow
human users to communicate with computers by means of 3D projection

116 Chapter 3 Operating Systems

For the computer enthusiast who wants to experiment with the internal components
of an operating system, there is Linux. Linux is an operating system originally
designed by Linus Torvalds while a student at the University of Helsinki. It is a non-
proprietary product and available, along with its source code (see Chapter 6) and
documentation, without charge. Because it is freely available in source code form, it
has become popular among computer hobbyists, students of operating systems, and
programmers in general. Moreover, Linux is recognized as one of the more reliable
operating systems available today. For this reason, several companies now package
and market versions of Linux in an easily useable form, and these products are now
challenging the long-established commercial operating systems on the market. You
can learn more about Linux from the Web site at http://www.linux.org.

Linux

http://www.linux.org
http://www.linux.org

systems, tactile sensory devices, and surround sound audio reproduction systems
are subjects of current research.

Although an operating system’s user interface plays an important role in
establishing a machine’s functionality, this framework merely acts as an inter-
mediary between the computer’s user and the real heart of the operating system
(Figure 3.4). This distinction between the user interface and the internal parts of
the operating system is emphasized by the fact that some operating systems
allow a user to select among different interfaces to obtain the most comfortable
interaction for that particular user. Users of the UNIX operating system, for exam-
ple, can select among a variety of shells including the Bourne shell, the C shell,
and the Korn shell, as well as a GUI called X11. The earliest versions of Microsoft
Windows were a GUI application program that could be loaded from the MS-DOS
operating system’s command shell. The DOS cmd.exe shell can still be found as a
utility program in the latest versions of Windows, although this interface is
almost never required by casual users. Similarly, Apple’s OS X retains a Terminal
utility shell that hearkens back to that system’s UNIX ancestors.

An important component within today’s GUI shells is the window manager,
which allocates blocks of space on the screen, called windows, and keeps track of
which application is associated with each window. When an application wants to
display something on the screen, it notifies the window manager, and the win-
dow manager places the desired image in the window assigned to the applica-
tion. In turn, when a mouse button is clicked, it is the window manager that
computes the mouse’s location on the screen and notifies the appropriate appli-
cation of the mouse action. Window managers are responsible for what is gener-
ally called the “style” of a GUI, and most managers offer a range of configurable
choices. Linux users even have a range of choices for a window manager, with
popular choices including KDE and Gnome.

In contrast to an operating system’s user interface, the internal part of an oper-
ating system is called the kernel. An operating system’s kernel contains those
software components that perform the very basic functions required by the com-
puter installation. One such unit is the file manager, whose job is to coordinate
the use of the machine’s mass storage facilities. More precisely, the file manager

1173.2 Operating System Architecture

User User

User User

Kernel

User interface

User

Figure 3.4 The user interface acts as an intermediary between users and the operating
system’s kernel

maintains records of all the files stored in mass storage, including where each
file is located, which users are allowed to access the various files, and which por-
tions of mass storage are available for new files or extensions to existing files.
These records are kept on the individual storage medium containing the related
files so that each time the medium is placed on-line, the file manager can retrieve
them and thus know what is stored on that particular medium.

For the convenience of the machine’s users, most file managers allow files to
be grouped into a bundle called a directory or folder. This approach allows a
user to organize his or her files according to their purposes by placing related
files in the same directory. Moreover, by allowing directories to contain other
directories, called subdirectories, a hierarchical organization can be constructed.
For example, a user may create a directory called MyRecords that contains sub-
directories called FinancialRecords, MedicalRecords, and HouseHold-
Records. Within each of these subdirectories could be files that fall within that
particular category. (Users of a Windows operating system can ask the file man-
ager to display the current collection of folders by executing the utility program
Windows Explorer.)

A chain of directories within directories is called a directory path. Paths are
often expressed by listing the directories along the path separated by slashes. For
instance, animals/prehistoric/dinosaurs would represent the path start-
ing at the directory named animals, passing through its subdirectory named
prehistoric, and terminating in the sub-subdirectory dinosaurs. (For Win-
dows users the slashes in such a path expression are reversed as in animals\
prehistoric\dinosaurs.)

Any access to a file by other software units is obtained at the discretion of
the file manager. The procedure begins by requesting that the file manager grant
access to the file through a procedure known as opening the file. If the file man-
ager approves the requested access, it provides the information needed to find
and to manipulate the file.

Another component of the kernel consists of a collection of device drivers,
which are the software units that communicate with the controllers (or at times,
directly with peripheral devices) to carry out operations on the peripheral
devices attached to the machine. Each device driver is uniquely designed for its
particular type of device (such as a printer, disk drive, or monitor) and translates
generic requests into the more technical steps required by the device assigned to
that driver. For example, a device driver for a printer contains the software for
reading and decoding that particular printer’s status word as well as all the other
handshaking details. Thus, other software components do not have to deal with
those technicalities in order to print a file. Instead, the other components can
merely rely on the device driver software to print the file, and let the device
driver take care of the details. In this manner, the design of the other software
units can be independent of the unique characteristics of particular devices. The
result is a generic operating system that can be customized for particular periph-
eral devices by merely installing the appropriate device drivers.

Still another component of an operating system’s kernel is the memory
manager, which is charged with the task of coordinating the machine’s use of
main memory. Such duties are minimal in an environment in which a computer
is asked to perform only one task at a time. In these cases, the program for per-
forming the current task is placed at a predetermined location in main memory,
executed, and then replaced by the program for performing the next task. How-
ever, in multiuser or multitasking environments in which the computer is asked

118 Chapter 3 Operating Systems

to address many needs at the same time, the duties of the memory manager are
extensive. In these cases, many programs and blocks of data must reside in main
memory concurrently. Thus, the memory manager must find and assign mem-
ory space for these needs and ensure that the actions of each program are
restricted to the program’s allotted space. Moreover, as the needs of different
activities come and go, the memory manager must keep track of those memory
areas no longer occupied.

The task of the memory manager is complicated further when the total main
memory space required exceeds the space actually available in the computer. In
this case the memory manager may create the illusion of additional memory
space by rotating programs and data back and forth between main memory and
mass storage (a technique called paging). Suppose, for example, that a main
memory of 8GB is required but the computer only has 4GB. To create the illusion
of the larger memory space, the memory manager reserves 4GB of storage space
on a magnetic disk. There it records the bit patterns that would be stored in main
memory if main memory had an actual capacity of 8GB. This data is divided into
uniform sized units called pages, which are typically a few KB in size. Then the
memory manager shuffles these pages back and forth between main memory
and mass storage so that the pages that are needed at any given time are actually
present in the 4GB of main memory. The result is that the computer is able to
function as though it actually had 8GB of main memory. This large “fictional”
memory space created by paging is called virtual memory.

Two additional components within the kernel of an operating system are the
scheduler and dispatcher, which we will study in the next section. For now we
merely note that in a multiprogramming system the scheduler determines
which activities are to be considered for execution, and the dispatcher controls
the allocation of time to these activities.

Getting It Started
We have seen that an operating system provides the software infrastructure
required by other software units, but we have not considered how the operating
system gets started. This is accomplished through a procedure known as

1193.2 Operating System Architecture

In addition to the boot loader, a PC’s ROM contains a collection of software routines for
performing fundamental input/output activities such as receiving information from the
keyboard, displaying messages on the computer screen, and reading data from mass
storage. Being stored in nonvolatile memory such as FlashROM, this software is not
immutably etched into the silicon of the machine—the hardware—but is also not as
readily changeable as the rest of the programs in mass storage—the software. The term
firmware was coined to describe this middle ground. Firmware routines can be used by
the boot loader to perform I/O activities before the operating system becomes func-
tional. For example, they are used to communicate with the computer user before the
boot process actually begins and to report errors during booting. Widely used firmware
systems include the BIOS (Basic Input/Output System) long used in “PCs”, the newer
EFI (Extensible Firmware Interface), Sun’s Open Firmware (now a product of Oracle),
and the CFE (Common Firmware Environment) used in many embedded devices.

Firmware

boot strapping (often shortened to booting) that is performed by a computer
each time it is turned on. It is this procedure that transfers the operating system
from mass storage (where it is permanently stored) into main memory (which
is essentially empty when the machine is first turned on). To understand the
boot strap process and the reason it is necessary, we begin by considering the
machine’s CPU.

A CPU is designed so that its program counter starts with a particular prede-
termined address each time the CPU is turned on. It is at this location that the
CPU expects to find the beginning of the program to be executed. Conceptually,
then, all that is needed is to store the operating system at this location. However,
for technical reasons, a computer’s main memory is typically constructed from
volatile technologies—meaning that the memory loses the data stored in it when
the computer is turned off. Thus, the contents of main memory must be replen-
ished each time the computer is restarted.

In short, we need a program (preferably the operating system) to be present
in main memory when the computer is first turned on, but the computer’s
volatile memory is erased each time the machine is turned off. To resolve this
dilemma, a small portion of a computer’s main memory where the CPU expects
to find its initial program is constructed from special nonvolatile memory cells.
Such memory is known as read-only memory (ROM) because its contents
can be read but not altered. As an analogy, you can think of storing bit patterns
in ROM as blowing tiny fuses (some blown open—ones—and some blown
closed—zeros), although the technology used is more advanced. More precisely,
most ROM in today’s PCs is constructed with flash memory technology
(which means that it is not strictly ROM because it can be altered under special
circumstances).

In a general-purpose computer, a program called the boot loader is perma-
nently stored in the machine’s ROM. This, then, is the program that is initially
executed when the machine is turned on. The instructions in the boot loader
direct the CPU to transfer the operating system from a predetermined location
into the volatile area of main memory (Figure 3.5). Modern boot loaders can copy
an operating system into main memory from a variety of locations. For example,
in embedded systems, such as smartphones, the operating system is copied from
special flash (nonvolatile) memory; in the case of small workstations at large
companies or universities, the operating system may be copied from a distant
machine over a network. Once the operating system has been placed in main
memory, the boot loader directs the CPU to execute a jump instruction to that
area of memory. At this point, the operating system takes over and begins con-
trolling the machine’s activities. The overall process of executing the boot loader
and thus starting the operating system is called booting the computer.

You may ask why desktop computers are not provided with enough ROM to
hold the entire operating system so that booting from mass storage would not be
necessary. While this is feasible for embedded systems with small operating sys-
tems, devoting large blocks of main memory in general-purpose computers to
nonvolatile storage is not efficient with today’s technology. Moreover, com-
puter operating systems undergo frequent updates in order to maintain security
and keep abreast of new and improved device drivers for the latest hardware.
While it is possible to update operating systems and boot loaders stored in ROM,

120 Chapter 3 Operating Systems

(often called a firmware update) the technological limits make mass storage
the most common choice for more traditional computer systems.

In closing we should point out that understanding the boot process as well as
the distinctions between an operating system, utility software, and application
software allows us to comprehend the overall methodology under which most
general-purpose computer systems operate. When such a machine is first turned
on, the boot loader loads and activates the operating system. The user then
makes requests to the operating system regarding the utility or application pro-
grams to be executed. As each utility or application is terminated, the user is put
back in touch with the operating system, at which time the user can make addi-
tional requests. Learning to use such a system is therefore a two-layered process.
In addition to learning the details of the specific utility or application desired,
one must learn enough about the machine’s operating system to navigate among
the applications.

1213.2 Operating System Architecture

Boot
loader

Operating
system

Step 1: Machine starts by executing the boot loader
 program already in memory. Operating
 system is stored in mass storage.

Disk storage

Main memory

ROM

Volatile
memory

Main memory

Boot
loaderROM

Volatile
memory

Step 2: Boot loader program directs the transfer of
 the operating system into main memory
 and then transfers control to it.

Operating
system

Disk storage

Operating
system

Figure 3.5 The booting process

Questions & Exercises

1. List the components of a typical operating system and summarize the
role of each in a single phrase.

2. What is the difference between application software and utility software?
3. What is virtual memory?
4. Summarize the booting procedure.

122 Chapter 3 Operating Systems

3.3 Coordinating the Machine’s Activities
In this section we consider how an operating system coordinates the execution
of application software, utility software, and units within the operating system
itself. We begin with the concept of a process.

The Concept of a Process
One of the most fundamental concepts of modern operating systems is the dis-
tinction between a program and the activity of executing a program. The former
is a static set of directions, whereas the latter is a dynamic activity whose prop-
erties change as time progresses. (This distinction is analogous to a piece of
sheet music, sitting inert in a book on the shelf, versus a musician performing
that piece by taking actions that the sheet music describes.) The activity of exe-
cuting a program under the control of the operating system is known as a
process. Associated with a process is the current status of the activity, called the
process state. This state includes the current position in the program being
executed (the value of the program counter) as well as the values in the other
CPU registers and the associated memory cells. Roughly speaking, the process
state is a snapshot of the machine at a particular time. At different times during
the execution of a program (at different times in a process) different snapshots
(different process states) will be observed.

Unlike a musician, who normally tries to play only one musical piece at a
time, typical time-sharing/multitasking computers are running many processes,
all competing for the computer’s resources. It is the task of the operating system
to manage these processes so that each process has the resources (peripheral
devices, space in main memory, access to files, and access to a CPU) that it
needs, that independent processes do not interfere with one another, and that
processes that need to exchange information are able to do so.

Process Administration
The tasks associated with coordinating the execution of processes are handled
by the scheduler and dispatcher within the operating system’s kernel. The
scheduler maintains a record of the processes present in the computer system,
introduces new processes to this pool, and removes completed processes from
the pool. Thus when a user requests the execution of an application, it is the
scheduler that adds the execution of that application to the pool of current
processes.

To keep track of all the processes, the scheduler maintains a block of infor-
mation in main memory called the process table. Each time the execution of a
program is requested, the scheduler creates a new entry for that process in the
process table. This entry contains such information as the memory area assigned
to the process (obtained from the memory manager), the priority of the process,
and whether the process is ready or waiting. A process is ready if it is in a state
in which its progress can continue; it is waiting if its progress is currently
delayed until some external event occurs, such as the completion of a mass stor-
age operation, the pressing of a key at the keyboard, or the arrival of a message
from another process.

The dispatcher is the component of the kernel that overseas the execu-
tion of the scheduled processes. In a time-sharing/multitasking system this

task is accomplished by multiprogramming; that is, dividing time into
short segments, each called a time slice (typically measured in milli-
seconds or microseconds), and then switching the CPU’s attention among
the processes as each is allowed to execute for one time slice (Figure 3.6).
The procedure of changing from one process to another is called a process
switch (or a context switch).

Each time the dispatcher awards a time slice to a process, it initiates a timer
circuit that will indicate the end of the slice by generating a signal called an
interrupt. The CPU reacts to this interrupt signal in much the same way that you
react when interrupted from a task. You stop what you are doing, record where
you are in the task (so that you will be able to return at a later time), and take care
of the interrupting entity. When the CPU receives an interrupt signal, it completes
its current machine cycle, saves its position in the current process and begins exe-
cuting a program, called an interrupt handler, which is stored at a predeter-
mined location in main memory. This interrupt handler is a part of the dispatcher,
and it describes how the dispatcher should respond to the interrupt signal.

Thus, the effect of the interrupt signal is to preempt the current process and
transfer control back to the dispatcher. At this point, the dispatcher selects the
process from the process table that has the highest priority among the ready
processes (as determined by the scheduler), restarts the timer circuit, and allows
the selected process to begin its time slice.

Paramount to the success of a multiprogramming system is the ability to
stop, and later restart, a process. If you are interrupted while reading a book,
your ability to continue reading at a later time depends on your ability to
remember your location in the book as well as the information that you had
accumulated to that point. In short, you must be able to re-create the environ-
ment that was present immediately prior to the interruption.

In the case of a process, the environment that must be re-created is the
process’s state, which as already mentioned, includes the value of the program
counter as well as the contents of the registers and pertinent memory cells.
CPUs designed for multiprogramming systems incorporate the task of saving this
information as part of the CPU’s reaction to the interrupt signal. These CPUs also

1233.3 Coordinating the Machine’s Activities

Process
switch

Process
switch

Process
switch

Process
switch

Proc

Interrupt

Process B

Time slice

Interrupt

ss A

Advancing
time

Interrupt

Process A

Time slice

Interrupt

Process A

Time slice

Interrupt

Process B

Time slice

Process
switch

Figure 3.6 Multiprogramming between process A and process B

tend to have machine-language instructions for reloading a previously saved
state. Such features simplify the task of the dispatcher when performing a
process switch and exemplify how the design of modern CPUs is influenced by
the needs of today’s operating systems.

In closing, we should note that the use of multiprogramming has been found
to increase the overall efficiency of a machine. This is somewhat counterintu-
itive since the shuffling of processes required by multiprogramming introduces
an overhead. However, without multiprogramming each process runs to comple-
tion before the next process begins, meaning that the time that a process is wait-
ing for peripheral devices to complete tasks or for a user to make the next
request is wasted. Multiprogramming allows this lost time to be given to another
process. For example, if a process executes an I/O request, such as a request to
retrieve data from a magnetic disk, the scheduler will update the process table to
reflect that the process is waiting for an external event. In turn, the dispatcher
will cease to award time slices to that process. Later (perhaps several hundred
milliseconds), when the I/O request has been completed, the scheduler will
update the process table to show that the process is ready, and thus that process
will again compete for time slices. In short, progress on other tasks will be made
while the I/O request is being performed, and thus the entire collection of tasks
will be completed in less time than if executed in a sequential manner.

124 Chapter 3 Operating Systems

Questions & Exercises

1. Summarize the difference between a program and a process.
2. Summarize the steps performed by the CPU when an interrupt occurs.
3. In a multiprogramming system, how can high-priority processes be allowed

to run faster than others?

The use of interrupts for terminating time slices, as described in the text, is only one
of many applications of a computer’s interrupt system. There are many situations in
which an interrupt signal is generated, each with its own interrupt routine. Indeed,
interrupts provide an important tool for coordinating a computer’s actions with its
environment. For example, both clicking a mouse and pressing a key on the keyboard
generate interrupt signals that cause the CPU to set aside its current activity and
address the cause of the interrupt.

To manage the task of recognizing and responding to incoming interrupts, the
various interrupt signals are assigned priorities so that the more important tasks can
be taken care of first. The highest priority interrupt is usually associated with a power
failure. Such an interrupt signal is generated if the computer’s power is unexpectedly
disrupted. The associated interrupt routine directs the CPU through a series of
“housekeeping” chores during the milliseconds before the voltage level drops below
an operational level.

Interrupts

1253.4 Handling Competition Among Processes

3.4 Handling Competition Among Processes
An important task of an operating system is the allocation of the machine’s
resources to the processes in the system. Here we are using the term resource in
a broad sense, including the machine’s peripheral devices as well as features
within the machine itself. The file manager allocates access to files as well and
allocates mass storage space for the construction of new files; the memory man-
ager allocates memory space; the scheduler allocates space in the process table;
and the dispatcher allocates time slices. As with many problems in computer
systems, this allocation task may appear simple at first glance. Below the sur-
face, however, lie several subtleties that can lead to malfunctions in a poorly
designed system. Remember, a machine does not think for itself; it merely fol-
lows directions. Thus, to construct reliable operating systems, we must develop
algorithms that cover every possible contingency, regardless of how minuscule
it may appear.

Semaphores
Let us consider a time-sharing/multitasking operating system controlling the
activities of a computer with a single printer. If a process needs to print its
results, it must request that the operating system give it access to the printer’s
device driver. At this point, the operating system must decide whether to grant
this request, depending on whether the printer is already being used by another
process. If it is not, the operating system should grant the request and allow the
process to continue; otherwise, the operating system should deny the request

You can gain insight to some of the internal activity of a Microsoft Windows operating
system by executing the utility program called Task Manager. (Press the Ctrl, Alt, and
Delete keys simultaneously.) In particular, by selecting the Processes tab in the Task
Manager window, you can view the process table. Here is an experiment you can per-
form: Look at the process table before you activate any application program. (You
may be surprised that so many processes are already in the table. These are neces-
sary for the system’s basic operation.) Now activate an application and confirm that
an additional process has entered the table. You will also be able to see how much
memory space was allocated to the process.

Microsoft’s Task Manager

4. If each time slice in a multiprogramming system is 50 milliseconds and
each context switch requires at most a microsecond, how many
processes can the machine service in a single second?

5. If each process uses its complete time slice in the machine in Question 4,
what fraction of the machine’s time is spent actually performing
processes? What would this fraction be if each process executed an I/O
request after only a microsecond of its time slice?

and perhaps classify the process as a waiting process until the printer becomes
available. After all, if two processes were given simultaneous access to the com-
puter’s printer, the results would be worthless to both.

To control access to the printer, the operating system must keep track of
whether the printer has been allocated. One approach to this task would be to
use a flag, which in this context refers to a bit in memory whose states are
often referred to as set and clear, rather than 1 and 0. A clear flag (value 0) indi-
cates that the printer is available and a set flag (value 1) indicates that the
printer is currently allocated. On the surface, this approach seems well-
founded. The operating system merely checks the flag each time a request for
printer access is made. If it is clear, the request is granted and the operating
system sets the flag. If the flag is set, the operating system makes the request-
ing process wait. Each time a process finishes with the printer, the operating
system either allocates the printer to a waiting process or, if no process is
waiting, merely clears the flag.

However, this simple flag system has a problem. The task of testing and pos-
sibly setting the flag may require several machine instructions. (The value of
the flag must be retrieved from main memory, manipulated within the CPU,
and finally stored back in memory.) It is therefore possible for a task to be inter-
rupted after a clear flag has been detected but before the flag has been set.
In particular, suppose the printer is currently available, and a process requests
use of it. The flag is retrieved from main memory and found to be clear, indi-
cating that the printer is available. However, at this point, the process is inter-
rupted and another process begins its time slice. It too requests the use of the
printer. Again, the flag is retrieved from main memory and found still clear
because the previous process was interrupted before the operating system had
time to set the flag in main memory. Consequently, the operating system allows
the second process to begin using the printer. Later, the original process
resumes execution where it left off, which is immediately after the operating
system found the flag to be clear. Thus the operating system continues by set-
ting the flag in main memory and granting the original process access to the
printer. Two processes are now using the same printer.

The solution to this problem is to insist that the task of testing and possibly
setting the flag be completed without interruption. One approach is to use the
interrupt disable and interrupt enable instructions provided in most machine
languages. When executed, an interrupt disable instruction causes future inter-
rupts to be blocked, whereas an interrupt enable instruction causes the CPU to
resume responding to interrupt signals. Thus, if the operating system starts the
flag-testing routine with a disable interrupt instruction and ends it with an enable
interrupt instruction, no other activity can interrupt the routine once it starts.

Another approach is to use the test-and-set instruction that is available in
many machine languages. This instruction directs the CPU to retrieve the value
of a flag, note the value received, and then set the flag—all within a single
machine instruction. The advantage here is that because the CPU always com-
pletes an instruction before recognizing an interrupt, the task of testing and set-
ting the flag cannot be split when it is implemented as a single instruction.

A properly implemented flag, as just described, is called a semaphore, in
reference to the railroad signals used to control access to sections of track. In
fact, semaphores are used in software systems in much the same way as they are
in railway systems. Corresponding to the section of track that can contain only

126 Chapter 3 Operating Systems

one train at a time is a sequence of instructions that should be executed by only
one process at a time. Such a sequence of instructions is called a critical region.
The requirement that only one process at a time be allowed to execute a critical
region is known as mutual exclusion. In summary, a common way of obtaining
mutual exclusion to a critical region is to guard the critical region with a sema-
phore. To enter the critical region, a process must find the semaphore clear and
then set the semaphore before entering the critical region; then upon exiting the
critical region, the process must clear the semaphore. If the semaphore is found
in its set state, the process trying to enter the critical region must wait until the
semaphore has been cleared.

Deadlock
Another problem that can arise during resource allocation is deadlock, the con-
dition in which two or more processes are blocked from progressing because
each is waiting for a resource that is allocated to another. For example, one
process may have access to the computer’s printer but be waiting for access to
the computer’s CD player, while another process has access to the CD player but
is waiting for the printer. Another example occurs in systems in which processes
are allowed to create new processes (an action called forking in the UNIX ver-
nacular) to perform subtasks. If the scheduler has no space left in the process
table and each process in the system must create an additional process before it
can complete its task, then no process can continue. Such conditions, as in other
settings (Figure 3.7), can severely degrade a system’s performance.

Analysis of deadlock has revealed that it cannot occur unless all three of the
following conditions are satisfied:

1. There is competition for nonshareable resources.
2. The resources are requested on a partial basis; that is, having received

some resources, a process will return later to request more.
3. Once a resource has been allocated, it cannot be forcibly retrieved.

1273.4 Handling Competition Among Processes

Figure 3.7 A deadlock resulting from competition for nonshareable railroad intersections

The point of isolating these conditions is that the deadlock problem can be
removed by attacking any one of the three. Techniques that attack the third con-
dition fall into the category known as deadlock detection and correction
schemes. In these cases, the occurrence of deadlock is considered so remote
that no effort is made to avoid the problem. Instead, the approach is to detect it
should it occur and then correct it by forcibly retrieving some of the allocated
resources. Our example of a full process table might fall in this class. If deadlock
should occur due to a full table, routines within the operating system (or per-
haps a human administrator using his or her powers as “super user”) can
remove (the technical term is kill) some of the processes. This releases space in
the process table, breaking the deadlock and allowing the remaining processes
to continue their tasks.

Techniques that attack the first two conditions are known as deadlock
avoidance schemes. One, for example, attacks the second condition by requir-
ing each process to request all its resources at one time. Another scheme
attacks the first condition, not by removing the competition directly but by
converting nonshareable resources into shareable ones. For example, suppose
the resource in question is a printer and a variety of processes require its use.
Each time a process requests the printer, the operating system could grant
the request. However, instead of connecting the process to the printer’s device
driver, the operating system would connect it to a device driver that stores the
information to be printed in mass storage rather than sending it to the printer.
Thus each process, thinking it has access to the printer, could execute in its
normal way. Later, when the printer is available, the operating system could
transfer the data from mass storage to the printer. In this manner, the operat-
ing system would make the nonshareable resource appear shareable by creat-
ing the illusion of more than one printer. This technique of holding data for
output at a later but more convenient time is called spooling.

We have introduced spooling as a technique for granting several processes
access to a common resource—a theme that has many variations. For example, a

128 Chapter 3 Operating Systems

Traditional time-sharing/multitasking systems give the illusion of executing many
processes at once by switching rapidly between time slices faster than a human can
perceive. Modern systems continue to multitask in this way, but in addition, the lat-
est multi-core CPUs are genuinely capable of running two, four, or many more
processes simultaneously. Unlike a group of single-core computers working
together, a multi-core machine contains multiple independent processors (in this
case called cores) that share the computer's peripherals, memory, and other
resources. For a multi-core operating system, this means that the dispatcher and
scheduler must consider which processes to execute on each core. With different
processes running on different cores, handling competition among processes
becomes more challenging because disabling interrupts on all cores whenever one
needs to enter a critical region would be highly inefficient. Computer science has
many active research areas related to building operating system mechanisms better
suited to the new multi-core world.

Multi-Core Operating Systems

1293.4 Handling Competition Among Processes

file manager could grant several processes access to the same file if the
processes are merely reading data from the file, but conflicts can occur if more
than one process tries to alter a file at the same time. Thus, a file manager may
allocate file access according to the needs of the processes, allowing several
processes to have read access but allowing only one to have write access. Other
systems may divide the file into pieces so that different processes can alter
different parts of the file concurrently. Each of these techniques, however, has
subtleties that must be resolved to obtain a reliable system. How, for example,
should those processes with only read access to a file be notified when a process
with write access alters the file?

Questions & Exercises

1. Suppose process A and process B are sharing time on the same machine,
and each needs the same nonshareable resource for short periods of
time. (For example, each process may be printing a series of independ-
ent, short reports.) Each process may then repeatedly acquire the re-
source, release it, and later request it again. What is a drawback to
controlling access to the resource in the following manner:

Begin by assigning a flag the value 0. If process A requests the resource and
the flag is 0, grant the request. Otherwise, make process A wait. If process B
requests the resource and the flag is 1, grant the request. Otherwise, make
process B wait. Each time process A finishes with the resource, change the
flag to 1. Each time process B finishes with the resource, change the flag to 0.

2. Suppose a two-lane road converges to one lane to pass through a tunnel.
To coordinate the use of the tunnel, the following signal system has been
installed:

A car entering either end of the tunnel causes red lights above the tunnel
entrances to be turned on. As the car exits the tunnel, the lights are turned
off. If an approaching car finds a red light on, it waits until the light is turned
off before entering the tunnel.

What is the flaw in this system?
3. Suppose the following solutions have been proposed for removing the

deadlock that occurs on a single-lane bridge when two cars meet. Iden-
tify which condition for deadlock given in the text is removed by each
solution.

a. Do not let a car onto the bridge until the bridge is empty.
b. If cars meet, make one of them back up.
c. Add a second lane to the bridge.

4. Suppose we represent each process in a multiprogramming system with
a dot and draw an arrow from one dot to another if the process repre-
sented by the first dot is waiting for a (nonshareable) resource being
used by the second. Mathematicians call the resulting picture a directed
graph. What property of the directed graph is equivalent to deadlock in
the system?

3.5 Security
Since the operating system oversees the activities in a computer, it is natural for
it to play a vital role in maintaining security as well. In the broad sense, this
responsibility manifests itself in multiple forms, one of which is reliability. If a
flaw in the file manager causes the loss of part of a file, then the file was not
secure. If a defect in the dispatcher leads to a system failure (often called a sys-
tem crash) causing the loss of an hour’s worth of typing, we would argue that our
work was not secure. Thus the security of a computer system requires a well-
designed, dependable operating system.

The development of reliable software is not a subject that is restricted to
operating systems. It permeates the entire software development spectrum and
constitutes the field of computer science known as software engineering, which
we will study in Chapter 7. In this section, then, we focus on security problems
that are more closely related to the specifics of operating systems.

Attacks from the Outside
An important task performed by operating systems is to protect the computer’s
resources from access by unauthorized personnel. In the case of computers used
by multiple people, this is usually approached by means of establishing
“accounts” for the various authorized users—an account being essentially a
record within the operating system containing such entries as the user’s name,
password, and privileges to be granted to that user. The operating system can
then use this information during each login procedure (a sequence of transac-
tions in which the user establishes initial contact with a computer’s operating
system) to control access to the system.

Accounts are established by a person known as the super user or the
administrator. This person gains highly privileged access to the operating
system by identifying him- or herself as the administrator (usually by name
and password) during the login procedure. Once this contact is established,
the administrator can alter settings within the operating system, modify criti-
cal software packages, adjust the privileges granted to other users, and per-
form a variety of other maintenance activities that are denied normal users.

From this “lofty perch,” the administrator is also able to monitor activity
within the computer system in an effort to detect destructive behavior, whether
malicious or accidental. To assist in this regard, numerous software utilities,
called auditing software, have been developed that record and then analyze the
activities taking place within the computer system. In particular, auditing soft-
ware may expose a flood of attempts to login using incorrect passwords, indicat-
ing that an unauthorized user may be trying to gain access to the computer.
Auditing software may also identify activities within a user’s account that do not
conform to that user’s past behavior, which may indicate that an unauthorized
user has gained access to that account. (It is unlikely that a user who traditionally
uses only word processing and spreadsheet software will suddenly begin to access
highly technical software applications or try to execute utility packages that lie
outside that user’s privileges.)

Another culprit that auditing systems are designed to detect is the presence
of sniffing software, which is software that, when left running on a computer,

130 Chapter 3 Operating Systems

records activities and later reports them to a would-be intruder. An old, well-
known example is a program that simulates the operating system’s login
procedure. Such a program can be used to trick authorized users into thinking
they are communicating with the operating system, whereas they are actually
supplying their names and passwords to an impostor.

With all the technical complexities associated with computer security, it is
surprising to many that one of the major obstacles to the security of computer
systems is the carelessness of the users themselves. They select passwords that
are relatively easy to guess (such as names and dates), they share their pass-
words with friends, they fail to change their passwords on a timely basis, they
subject off-line mass storage devices to potential degradation by transferring
them back and forth between machines, and they import unapproved software
into the system that might subvert the system’s security. For problems like these,
most institutions with large computer installations adopt and enforce policies
that catalog the requirements and responsibilities of the users.

Attacks from Within
Once an intruder (or perhaps an authorized user with malicious intent) gains
access to a computer system, the next step is usually to explore, looking for
information of interest or for places to insert destructive software. This is a
straightforward process if the prowler has gained access to the administrator’s
account, which is why the administrator’s password is closely guarded. If, how-
ever, access is through a general user’s account, it becomes necessary to trick the
operating system into allowing the intruder to reach beyond the privileges
granted to that user. For example, the intruder may try to trick the memory man-
ager into allowing a process to access main memory cells outside its allotted
area, or the prowler may try to trick the file manager into retrieving files whose
access should be denied.

Today’s CPUs are enhanced with features that are designed to foil such
attempts. As an example, consider the need to restrict a process to the area of
main memory assigned to it by the memory manager. Without such restric-
tions, a process could erase the operating system from main memory and take
control of the computer itself. To counter such attempts, CPUs designed for
multiprogramming systems typically contain special-purpose registers in which
the operating system can store the upper and lower limits of a process’s allot-
ted memory area. Then, while performing the process, the CPU compares each
memory reference to these registers to ensure that the reference is within the
designated limits. If the reference is found to be outside the process’s desig-
nated area, the CPU automatically transfers control back to the operating sys-
tem (by performing an interrupt sequence) so that the operating system can
take appropriate action.

Embedded in this illustration is a subtle but significant problem. Without fur-
ther security features, a process could still gain access to memory cells outside of
its designated area merely by changing the special-purpose registers that contain
its memory limits. That is, a process that wanted access to additional memory
could merely increase the value in the register containing the upper memory
limit and then proceed to use the additional memory space without approval
from the operating system.

1313.5 Security

To protect against such actions, CPUs for multiprogramming systems are
designed to operate in one of two privilege levels; we will call one “privileged
mode,” the other we will call “nonprivileged mode.” When in privileged mode,
the CPU is able to execute all the instructions in its machine language. However,
when in nonprivileged mode, the list of acceptable instructions is limited. The
instructions that are available only in privileged mode are called privileged
instructions. (Typical examples of privileged instructions include instructions
that change the contents of memory limit registers and instructions that change
the current privilege mode of the CPU.) An attempt to execute a privileged
instruction when the CPU is in nonprivileged mode causes an interrupt. This
interrupt converts the CPU to privileged mode and transfers control to an
interrupt handler within the operating system.

When first turned on, the CPU is in privileged mode. Thus, when the oper-
ating system starts at the end of the boot process, all instructions are exe-
cutable. However, each time the operating system allows a process to start a
time slice, it switches the CPU to nonprivileged mode by executing a “change
privilege mode” instruction. In turn, the operating system will be notified if
the process attempts to execute a privileged instruction, and thus the operat-
ing system will be in position to maintain the integrity of the computer
system.

Privileged instructions and the control of privilege levels is the major tool
available to operating systems for maintaining security. However, the use of
these tools is a complex component of an operating system’s design, and errors
continue to be found in current systems. A single flaw in privilege level control
can open the door to disaster from malicious programmers or from inadvertent
programming errors. If a process is allowed to alter the timer that controls the
system’s multiprogramming system, that process can extend its time slice and
dominate the machine. If a process is allowed to access peripheral devices
directly, then it can read files without supervision by the system’s file manager.
If a process is allowed to access memory cells outside its allotted area, it can read
and even alter data being used by other processes. Thus, maintaining security
continues to be an important task of an administrator as well as a goal in operat-
ing system design.

132 Chapter 3 Operating Systems

1. Give some examples of poor choices for passwords and explain why they
would be poor choices.

2. Processors in Intel’s Pentium series provide for four privilege levels.
Why would the designers of CPUs decide to provide four levels rather
than three or five?

3. If a process in a multiprogramming system could access memory cells
outside its allotted area, how could it gain control of the machine?

Questions & Exercises

133Chapter Review Problems

1. List four activities of a typical operating system.

2. Summarize the distinction between batch pro-
cessing and interactive processing.

3. Suppose three items R, S, and T are placed in a
queue in that order. Then one item is removed
from the queue before a fourth item, X, is
placed in the queue. Then one item is removed
from the queue, the items Y and Z are placed in
the queue, and then the queue is emptied by
removing one item at a time. List all the items
in the order in which they were removed.

4. What is the difference between embedded sys-
tems and PCs?

5. What is a multitasking operating system?

6. If you have a PC, identify some situations in
which you can take advantage of its multitask-
ing capabilities.

7. On the basis of a computer system with
which you are familiar, identify two units of
application software and two units of utility
software. Then explain why you classified
them as you did.

8. a. What is the role of the user interface of an
operating system?

b. What is the role of the kernel of an operat-
ing system?

9. What directory structure is described by the
path X/Y/Z?

10. Define the term “process” as it is used in the
context of operating systems.

11. What information is contained in a process
table within an operating system?

12. What is the difference between a process that
is ready and a process that is waiting?

13. What is the difference between virtual mem-
ory and main memory?

14. Suppose a computer contained 512MB (MiB)
of main memory, and an operating system
needed to create a virtual memory of twice
that size using pages of 2KB (KiB). How many
pages would be required?

15. What complications could arise in a time-sharing/
multitasking system if two processes require
access to the same file at the same time? Are
there cases in which the file manager should
grant such requests? Are there cases in which
the file manager should deny such requests?

16. What is the distinction between application
software and system software? Give an exam-
ple of each.

17. Define load balancing and scaling in the con-
text of multiprocessor architectures.

18. Summarize the booting process.

19. Why is the booting process necessary?

20. If you have a PC, record the sequence activities
that you can observe when you turn it on. Then
determine what messages appear on the com-
puter screen before the booting process actually
begins. What software writes these messages?

21. Suppose a multiprogramming operating system
allocated time slices of 10 milliseconds and the
machine executed an average of five instruc-
tions per nanosecond. How many instructions
could be executed in a single time slice?

22. If a typist types sixty words per minute
(where a word is considered five characters),
how much time would pass between typing
each character? If a multiprogramming oper-
ating system allocated time slices in
10 millisecond units and we ignore the time
required for process switches, how many time
slices could be allocated between characters
being typed?

23. Suppose a multiprogramming operating sys-
tem is allotting time slices of 50 milliseconds.
If it normally takes 8 milliseconds to position a
disk’s read/write head over the desired track
and another 17 milliseconds for the desired
data to rotate around to the read/write head,
how much of a program’s time slice can be
spent waiting for a read operation from a disk
to take place? If the machine is capable of exe-
cuting ten instructions each nanosecond, how
many instructions can be executed during this

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

134 Chapter 3 Operating Systems

waiting period? (This is why when a process
performs an operation with a peripheral
device, a multiprogramming system terminates
that process’s time slice and allows another
process to run while the first process is waiting
for the services of the peripheral device.)

24. List five resources to which a multitasking oper-
ating system might have to coordinate access.

25. A process is said to be I/O-bound if it requires
a lot of I/O operations, whereas a process that
consists of mostly computations within the
CPU/memory system is said to be compute-
bound. If both a compute-bound process and
an I/O-bound process are waiting for a time
slice, which should be given priority? Why?

26. Would greater throughput be achieved by a
system running two processes in a multi-
programming environment if both processes
were I/O-bound (refer to Problem 25) or if one
were I/O-bound and the other were compute-
bound? Why?

27. Write a set of directions that tells an operating
system’s dispatcher what to do when a
process’s time slice is over.

28. What information is contained in the state of a
process?

29. Identify a situation in a multiprogramming
system in which a process does not consume
the entire time slice allocated to it.

30. List in chronological order the major events
that take place when a process is interrupted.

31. Answer each of the following in terms of an
operating system that you use:
a. How do you ask the operating system to

copy a file from one location to another?
b. How do you ask the operating system to

show you the directory on a disk?
c. How do you ask the operating system to

execute a program?

32. Answer each of the following in terms of an
operating system that you use:
a. How does the operating system restrict

access to only those who are approved users?
b. How do you ask the operating system to

show you what processes are currently in
the process table?

c. How do you tell the operating system that
you do not want other users of the machine
to have access to your files?

*33. Explain an important use for the test-and-set
instruction found in many machine languages.
Why is it important for the entire test-and-set
process to be implemented as a single instruction?

*34. A banker with only $100,000 loans $50,000 to
each of two customers. Later, both customers
return with the story that before they can repay
their loans they must each borrow another
$10,000 to complete the business deals in which
their previous loans are involved. The banker
resolves this deadlock by borrowing the addi-
tional funds from another source and passing
on this loan (with an increase in the interest rate)
to the two customers. Which of the three condi-
tions for deadlock has the banker removed?

*35. Students who want to enroll in Model Railroad-
ing II at the local university are required to
obtain permission from the instructor and pay
a laboratory fee. The two requirements are ful-
filled independently in either order and at
different locations on campus. Enrollment is
limited to twenty students; this limit is main-
tained by both the instructor, who will grant
permission to only twenty students, and the
financial office, which will allow only twenty
students to pay the laboratory fee. Suppose that
this registration system has resulted in nineteen
students having successfully registered for the
course, but with the final space being claimed
by two students—one who has only obtained
permission from the instructor and another
who has only paid the fee. Which requirement
for deadlock is removed by each of the follow-
ing solutions to the problem?
a. Both students are allowed in the course.
b. The class size is reduced to nineteen, so

neither of the two students is allowed to
register for the course.

c. The competing students are both denied
entry to the class and a third student is
given the twentieth space.

d. It is decided that the only requirement for
entry into the course is the payment of the
fee. Thus the student who has paid the fee
gets into the course, and entry is denied to
the other student.

135Chapter Review Problems

*36. Since each area on a computer’s display can
be used by only one process at a time (other-
wise the image on the screen would be
unreadable), these areas are nonshareable
resources that are allocated by the window
manager. Which of the three conditions neces-
sary for deadlock does the window manager
remove in order to avoid deadlock?

*37. Suppose each nonshareable resource in a com-
puter system is classified as a level 1, level 2,
or level 3 resource. Moreover, suppose each
process in the system is required to request
the resources it needs according to this classifi-
cation. That is, it must request all the required
level 1 resources at once before requesting any
level 2 resources. Once it receives the level 1
resources, it can request all the required level
2 resources, and so on. Can deadlock occur in
such a system? Why or why not?

*38. Each of two robot arms is programmed to lift
assemblies from a conveyor belt, test them for
tolerances, and place them in one of two bins
depending on the results of the test. The assem-
blies arrive one at a time with a sufficient inter-
val between them. To keep both arms from
trying to grab the same assembly, the comput-
ers controlling the arms share a common mem-
ory cell. If an arm is available as an assembly
approaches, its controlling computer reads the
value of the common cell. If the value is
nonzero, the arm lets the assembly pass. Other-
wise, the controlling computer places a nonzero
value in the memory cell, directs the arm to
pick up the assembly, and places the value 0
back into the memory cell after the action is
complete. What sequence of events could lead
to a tug-of-war between the two arms?

*39. Identify the use of a queue in the process of
spooling output to a printer.

*40. A process that is waiting for a time slice is said to
suffer starvation if it is never given a time slice.
a. The pavement in the middle of an intersec-

tion can be considered as a nonshareable
resource for which cars approaching the
intersection compete. A traffic light rather
than an operating system is used to control
the allocation of the resource. If the light is
able to sense the amount of traffic arriving

from each direction and is programmed to
give the green light to the heavier traffic,
the lighter traffic might suffer from starva-
tion. How is starvation avoided?

b. In what sense can a process starve if the dis-
patcher always assigns time slices according
to a priority system in which the priority of
each process remains fixed? (Hint: What is
the priority of the process that just com-
pleted its time slice in comparison to the
processes that are waiting, and conse-
quently which routine gets the next time
slice?) How, would you guess, do many
operating systems avoid this problem?

*41. What is the similarity between deadlock and
starvation? (Refer to Problem 40.) What is the
difference between deadlock and starvation?

*42. The following is the “dining philosophers” prob-
lem that was originally proposed by E. W. Dijkstra
and is now a part of computer science folklore.

Five philosophers are sitting at a round table.
In front of each is a plate of spaghetti. There
are five forks on the table, one between each
plate. Each philosopher wants to alternate
between thinking and eating. To eat, a philoso-
pher requires possession of both the forks that
are adjacent to the philosopher’s plate.

Identify the possibilities of deadlock and star-
vation (see Problem 40) that are present in the
dining philosophers problem.

*43. What problem arises as the lengths of the
time slices in a multiprogramming system are
made shorter and shorter? What about as
they become longer and longer?

*44. As computer science has developed, machine
languages have been extended to provide
specialized instructions. Three such machine
instructions were introduced in Section 3.4
that are used extensively by operating sys-
tems. What are these instructions?

45. Identity two activities that can be performed
by an operating system’s administrator but not
by a typical user.

46. How does an operating system keep a process
from accessing another process’s memory space?

47. Suppose a password consisted of a string of
nine characters from the English alphabet

136 Chapter 3 Operating Systems

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. Suppose you are using a multiuser operating system that allows you to view
the names of the files belonging to other users as well as to view the contents
of those files that are not otherwise protected. Would viewing such informa-
tion without permission be similar to wandering through someone’s un-
locked home without permission, or would it be more like reading materials
placed in a common lounge such as a physician’s waiting room?

2. When you have access to a multiuser computer system, what responsibilities
do you have when selecting your password?

3. If a flaw in an operating system’s security allows a malicious programmer to
gain unauthorized access to sensitive data, to what extent should the devel-
oper of the operating system be held responsible?

4. Is it your responsibility to lock your house in such a way that intruders can-
not get in, or is it the public’s responsibility to stay out of your house unless
invited? Is it the responsibility of an operating system to guard access to a
computer and its contents, or is it the responsibility of hackers to leave the
machine alone?

5. In Walden, Henry David Thoreau argues that we have become tools of our
tools; that is, instead of benefiting from the tools that we have, we spend our
time obtaining and maintaining our tools. To what extent is this true with
regard to computing? For example, if you own a personal computer, how much
time do you spend earning the money to pay for it, learning how to use its
operating system, learning how to use its utility and application software,
maintaining it, and downloading upgrades to its software in comparison to the
amount of time you spend benefiting from it? When you use it, is your time
well spent? Are you more socially active with or without a personal computer?

Social Issues

(twenty-six characters). If each possible pass-
word could be tested in a millisecond, how long
would it take to test all possible passwords?

48. Why are CPUs that are designed for multitask-
ing operating systems capable of operating at
different privilege levels?

49. Identify two activities that are typically
requested by privileged instructions.

50. Identify three ways in which a process could
challenge the security of a computer system if
not prevented from doing so by the operating
system.

51. What is a multi-core operating system?

52. What is the difference between a firmware
update and an operating system update?

53. How is the window manager related to the
operating system?

54. Is Internet Explorer a part of Microsoft’s
Windows operating system?

55. What special issues might an embedded
operating system address?

137Additional Reading

Bishop, M. Introduction to Computer Security. Boston, MA: Addison-Wesley, 2005.

Davis, W. S. and T. M. Rajkumar. Operating Systems: A Systematic View, 6th ed.
Boston, MA: Addison-Wesley, 2005.

Deitel, H. M., P. J. Deitel, and D. R. Choffnes. Operating Systems, 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2005.

Nutt, G. Operating Systems: A Modern Approach, 3rd ed. Boston, MA: Addison-
Wesley, 2004.

Rosenoer, J. CyberLaw, The Law of the Internet. New York: Springer, 1997.

Silberschatz, A., P. B. Galvin, and G. Gagne. Operating System Concepts, 8th ed.,
New York: Wiley, 2008.

Stallings, W. Operating Systems, 5th ed. Upper Saddle River, NJ: Prentice-Hall, 2006.

Tanenbaum, A. S. Modern Operating Systems, 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2008.

Additional Reading

This page intentionally left blank

Networking
and the Internet

In this chapter we discuss the area of computer science known as

networking, which encompasses the study of how computers can be

linked together to share information and resources. Our study will

include the construction and operation of networks, applications of

networks, and security issues. A prominent topic will be a particular

worldwide network of networks known as the Internet.

C H A P T E R

4

4.1 Network Fundamentals
Network Classifications
Protocols
Combining Networks
Methods of Process

Communication
Distributed Systems

4.2 The Internet
Internet Architecture
Internet Addressing
Internet Applications

4.3 The World Wide Web
Web Implementation
HTML
XML
Client-Side and Server-Side

Activities

*4.4 Internet Protocols
The Layered Approach to

Internet Software
The TCP/IP Protocol Suite

4.5 Security
Forms of Attack
Protection and Cures
Encryption
Legal Approaches to Network

Security

*Asterisks indicate suggestions for
optional sections.

The need to share information and resources among different computers has led to
linked computer systems, called networks, in which computers are connected so
that data can be transferred from machine to machine. In these networks, com-
puter users can exchange messages and share resources—such as printing capabili-
ties, software packages, and data storage facilities—that are scattered throughout the
system. The underlying software required to support such applications has grown
from simple utility packages into an expanding system of network software that
provides a sophisticated network-wide infrastructure. In a sense, network software
is evolving into a network-wide operating system. In this chapter we will explore
this expanding field of computer science.

4.1 Network Fundamentals
We begin our study of networks by introducing a variety of basic networking
concepts.

Network Classifications
A computer network is often classified as being either a local area network
(LAN), a metropolitan area network (MAN), or a wide area network
(WAN). A LAN normally consists of a collection of computers in a single build-
ing or building complex. For example, the computers on a university campus or
those in a manufacturing plant might be connected by a LAN. A MAN is a net-
work of intermediate size, such as one spanning a local community. A WAN links
machines over a greater distance—perhaps in neighboring cities or on opposite
sides of the world.

Another means of classifying networks is based on whether the network’s
internal operation is based on designs that are in the public domain or on inno-
vations owned and controlled by a particular entity such as an individual or a
corporation. A network of the former type is called an open network; a network
of the latter type is called a closed, or sometimes a proprietary, network. Open
network designs are freely circulated and often grow in popularity to the point
that they ultimately prevail over proprietary approaches whose applications are
restricted by license fees and contract conditions.

The Internet (a popular worldwide network of networks that we will study in
this chapter) is an open system. In particular, communication throughout the
Internet is governed by an open collection of standards known as the TCP/IP
protocol suite, which is the subject of Section 4.4. Anyone is free to use these
standards without paying fees or signing license agreements. In contrast, a com-
pany such as Novell Inc. might develop proprietary systems for which it chooses
to maintain ownership rights, allowing the company to draw income from selling
or leasing these products.

Still another way of classifying networks is based on the topology of the net-
work, which refers to the pattern in which the machines are connected. Two of
the more popular topologies are the bus, in which the machines are all con-
nected to a common communication line called a bus (Figure 4.1a), and the star,
in which one machine serves as a central focal point to which all the others are
connected (Figure 4.1b). The bus topology was popularized in the 1990s when it
was implemented under a set of standards known as Ethernet, and Ethernet
networks remain one of the most popular networking systems in use today.

140 Chapter 4 Networking and the Internet

The star topology has roots as far back as the 1970s. It evolved from the paradigm
of a large central computer serving many users. As the simple terminals
employed by these users grew into small computers themselves, a star network
emerged. Today, the star configuration is popular in wireless networks where
communication is conducted by means of radio broadcast and the central
machine, called the access point (AP), serves as a focal point around which all
communication is coordinated.

The difference between a bus network and a star network is not always
obvious by the physical arrangement of equipment. The distinction is whether
the machines in the network envision themselves as communicating directly
with each other over a common bus or indirectly through an intermediary
central machine. For instance, a bus network might not appear as a long bus
from which computers are connected over short links as depicted in
Figure 4.1. Instead, it may have a very short bus with long links to the individ-
ual machines, meaning that the network would look more like a star. Indeed,
sometimes a bus network is created by running links from each computer to a
central location where they are connected to a device called a hub. This hub is
little more than a very short bus. All it does is relay any signal it receives (with
perhaps some amplification) back out to all the machines connected to it. The
result is a network that looks like a star network although it operates like a bus
network.

Protocols
For a network to function reliably, it is important to establish rules by which activ-
ities are conducted. Such rules are called protocols. By developing and adopting
protocol standards, vendors are able to build products for network applications
that are compatible with products from other vendors. Thus, the development of
protocol standards is an indispensable process in the development of networking
technologies.

As an introduction to the protocol concept, let us consider the problem of
coordinating the transmission of messages among computers in a network. With-
out rules governing this communication, all the computers might insist on trans-
mitting messages at the same time or fail to assist other machines when that
assistance is required.

In a bus network based on the Ethernet standards, the right to transmit mes-
sages is controlled by the protocol known as Carrier Sense, Multiple Access

1414.1 Network Fundamentals

Figure 4.1 Two popular network topologies

a. Bus

Computer

Computer Computer

Computer Computer

b. Star

Computer

Computer

Computer

Computer Computer

Computer

with Collision Detection (CSMA/CD). This protocol dictates that each mes-
sage be broadcast to all the machines on the bus (Figure 4.2). Each machine mon-
itors all the messages but keeps only those addressed to itself. To transmit
a message, a machine waits until the bus is silent, and at this time it begins trans-
mitting while continuing to monitor the bus. If another machine also begins
transmitting, both machines detect the clash and pause for a brief, independently
random period of time before trying to transmit again. The result is a system sim-
ilar to that used by a small group of people in a conversation. If two people start
to talk at once, they both stop. The difference is that people might go through a
series such as, “I’m sorry, what were you going to say?”, “No, no. You go first,”
whereas under the CSMA/CD protocol each machine merely tries again later.

Note that CSMA/CD is not compatible with wireless star networks in which
all machines communicate through a central AP. This is because a machine may
be unable to detect that its transmissions are colliding with those of another. For
example, the machine may not hear the other because its own signal drowns out
that of the other machine. Another cause might be that the signals from the
different machines are blocked from each other by objects or distance even though
they can all communicate with the central AP (a condition known as the hidden
terminal problem, Figure 4.3). The result is that wireless networks adopt the
policy of trying to avoid collisions rather than trying to detect them. Such policies
are classified as Carrier Sense, Multiple Access with Collision Avoidance
(CSMA/CA), many of which are standardized by IEEE (see the sidebar “Institute
of Electrical and Electronics Engineers” in Chapter 7) within the protocols
defined in IEEE 802.11 and commonly referred to as WiFi. We emphasize that col-
lision avoidance protocols are designed to avoid collisions and may not eliminate
them completely. When collisions do occur, messages must be retransmitted.

The most common approach to collision avoidance is based on giving advan-
tage to machines that have already been waiting for an opportunity to transmit.
The protocol used is similar to Ethernet’s CSMA/CD. The basic difference is that
when a machine first needs to transmit a message and finds the communication
channel silent, it does not start transmitting immediately. Instead, it waits for a
short period of time and then starts transmitting only if the channel has
remained silent throughout that period. If a busy channel is experienced during
this process, the machine waits for a randomly determined period before trying
again. Once this period is exhausted, the machine is allowed to claim a silent
channel without hesitation. This means that collisions between “newcomers”
and those that have already been waiting are avoided because a “newcomer” is

142 Chapter 4 Networking and the Internet

Computer Computer

Computer Computer Computer

Figure 4.2 Communication over a bus network

not allowed to claim a silent channel until any machine that has been waiting is
given the opportunity to start.

This protocol, however, does not solve the hidden terminal problem. After
all, any protocol based on distinquishing between a silent or busy channel
requires that each individual station be able to hear all the others. To solve this
problem, some WiFi networks require that each machine send a short “request”
message to the AP and wait until the AP acknowledges that request before trans-
mitting an entire message. If the AP is busy because it is dealing with a “hidden
terminal,” it will ignore the request, and the requesting machine will know to
wait. Otherwise, the AP will acknowledge the request, and the machine will
know that it is safe to transmit. Note that all the machines in the network will
hear all acknowledgements sent from the AP and thus have a good idea of
whether the AP is busy at any given time, even though they may not be able to
hear the transmissions taking place.

Combining Networks
Sometimes it is necessary to connect existing networks to form an extended com-
munication system. This can be done by connecting the networks to form a larger
version of the same “type” of network. For example, in the case of bus networks
based on the Ethernet protocols, it is often possible to connect the buses to form a
single long bus. This is done by means of different devices known as repeaters,
bridges, and switches, the distinctions of which are subtle yet informative.

1434.1 Network Fundamentals

Figure 4.3 The hidden terminal problem

Access point

None of the end systems
can hear each other although
each can communicate
with the AP.

Range of B

B

Range of A

A

Range of C

C
Building

The simplest of these is the repeater, which is little more than a device that simply
passes signals back and forth between the two original buses (usually with some
form of amplification) without considering the meaning of the signals (Figure 4.4a).

A bridge is similar to, but more complex than, a repeater. Like a repeater, it
connects two buses, but it does not necessarily pass all messages across the con-
nection. Instead, it looks at the destination address that accompanies each mes-
sage and forwards a message across the connection only when that message is
destined for a computer on the other side. Thus, two machines residing on the
same side of a bridge can exchange messages without interfering with communi-
cation taking place on the other side. A bridge produces a more efficient system
than that produced by a repeater.

144 Chapter 4 Networking and the Internet

Figure 4.4 Building a large bus network from smaller ones

a. A repeater or bridge connecting
 two buses

Repeater
or

Bridge

b. A switch connecting multiple buses

Switch

Ethernet is a set of standards for implementing a LAN with a bus topology. Its name is
derived from the original Ethernet design in which machines were connected by a
coaxial cable called the ether. Originally developed in the 1970s and now standard-
ized by IEEE as a part of the IEEE 802 family of standards, Ethernet is one of the most
common methods of networking PCs. Indeed, Ethernet controllers have become a
standard component in the PCs available in the current retail market.

Today there are actually several versions of Ethernet, reflecting advances in
technology and higher transfer rates. All, however, share common traits that charac-
terize the Ethernet family. Among these are the format in which data are packaged for
transmission, the use of Manchester encoding (a method of representing 0s and 1s
in which a 0 is represented by a descending signal and a 1 is represented by an
ascending signal) for the actual transmission of bits, and the use of CSMA/CD for
controlling the right to transmit.

Ethernet

A switch is essentially a bridge with multiple connections, allowing it to
connect several buses rather than just two. Thus, a switch produces a net-
work consisting of several buses extending from the switch as spokes on a wheel
(Figure 4.4b). As in the case of a bridge, a switch considers the destination
addresses of all messages and forwards only those messages destined for other
spokes. Moreover, each message that is forwarded is relayed only into the appro-
priate spoke, thus minimizing the traffic in each spoke.

It is important to note that when networks are connected via repeaters,
bridges, and switches, the result is a single large network. The entire system
operates in the same manner (using the same protocols) as each of the original
smaller networks.

Sometimes, however, the networks to be connected have incompatible char-
acteristics. For instance, the characteristics of a WiFi network are not readily
compatible with an Ethernet network. In these cases the networks must be con-
nected in a manner that builds a network of networks, known as an internet,
in which the original networks maintain their individuality and continue to
function as autonomous networks. (Note that the generic term internet is dis-
tinct from the Internet. The Internet, written with an uppercase I, refers to a par-
ticular, worldwide internet that we will study in later sections of this chapter.
There are many other examples of internets. Indeed, traditional telephone com-
munication was handled by worldwide internet systems well before the Internet
was popularized.)

The connection between networks to form an internet is handled by
devices known as routers, which are special purpose computers used for
forwarding messages. Note that the task of a router is different from that of
repeaters, bridges, and switches in that routers provide links between networks
while allowing each network to maintain its unique internal characteristics. As
an example, Figure 4.5 depicts two WiFi star networks and an Ethernet bus

1454.1 Network Fundamentals

Figure 4.5 Routers connecting two WiFi networks and an Ethernet network to form
an internet

AP

Router

Router

WiFi network

WiFi network

Ethernet network

Router

AP

network connected by routers. When a machine in one of the WiFi networks
wants to send a message to a machine in the Ethernet network, it first sends the
message to the AP in its network. From there, the AP sends the message to its
associated router, and this router forwards the message to the router at the Eth-
ernet. There the message is given to a machine on the bus, and that machine
then forwards the message to its final destination in the Ethernet.

The reason that routers are so named is that their purpose is to forward mes-
sages in their proper directions. This forwarding process is based on an internet-
wide addressing system in which all the devices in an internet (including the
machines in the original networks and the routers) are assigned unique addresses.
(Thus, each machine in one of the original networks has two addresses: its original
“local” address within its own network and its internet address.) A machine wanting
to send a message to a machine in a distant network attaches the internet address of
the destination to the message and directs the message to its local router. From there
it is forwarded in the proper direction. For this forwarding purpose, each router
maintains a forwarding table that contains the router’s knowledge about the direc-
tion in which messages should be sent depending on their destination addresses.

The “point” at which one network is linked to an internet is often called a
gateway because it serves as a passageway between the network and the outside
world. Gateways can be found in a variety of forms, and thus the term is used
rather loosely. In many cases a network’s gateway is merely the router through
which it communicates with the rest of the internet. In other cases the term
gateway may be used to refer to more than just a router. For example, in most res-
idential WiFi networks that are connected to the Internet, the term gateway
refers collectively to both the network’s AP and the router connected to the AP
because these two devices are normally packaged in a single unit.

Methods of Process Communication
The various activities (or processes) executing on the different computers within
a network (or even executing on the same machine via time-sharing/multitasking)
must often communicate with each other to coordinate their actions and to per-
form their designated tasks. Such communication between processes is called
interprocess communication.

A popular convention used for interprocess communication is the client/
server model. This model defines the basic roles played by the processes as
either a client, which makes requests of other processes, or a server, which
satisfies the requests made by clients.

An early application of the client/server model appeared in networks con-
necting all the computers in a cluster of offices. In this situation, a single, high-
quality printer was attached to the network where it was available to all the
machines in the network. In this case the printer played the role of a server
(often called a print server), and the other machines were programmed to play
the role of clients that sent print requests to the print server.

Another early application of the client/server model was used to reduce the
cost of magnetic disk storage while also removing the need for duplicate copies of
records. Here one machine in a network was equipped with a high-capacity mass
storage system (usually a magnetic disk) that contained all of an organization’s
records. Other machines on the network then requested access to the records as
they needed them. Thus the machine that actually contained the records played

146 Chapter 4 Networking and the Internet

the role of a server (called a file server), and the other machines played the role
of clients that requested access to the files that were stored at the file server.

Today the client/server model is used extensively in network applications,
as we will see later in this chapter. However, the client/server model is not the
only means of interprocess communication. Another model is the peer-to-peer
(often abbreviated P2P) model. Whereas the client/server model involves
one process (the server) providing a service to numerous others (clients), the
peer-to-peer model involves processes that provide service to and receive service
from each other (Figure 4.6). Moreover, whereas a server must execute continu-
ously so that it is prepared to serve its clients at any time, the peer-to-peer model
usually involves processes that execute on a temporary basis. For example, appli-
cations of the peer-to-peer model include instant messaging in which people
carry on a written conversation over the Internet as well as situations in which
people play competitive interactive games.

The peer-to-peer model is also a popular means of distributing files such as
music recordings and motion pictures via the Internet. In this case, one peer
may receive a file from another and then provide that file to other peers. The
collection of peers participating in such a distribution is sometimes called a
swarm. The swarm approach to file distribution is in contrast to earlier
approaches that applied the client/server model by establishing a central distri-
bution center (the server) from which clients downloaded files (or at least
found sources for those files).

One reason that the P2P model is replacing the client/server model for file
sharing is that it distributes the service task over many peers rather than concen-
trating it at one server. This lack of a centralized base of operation leads to a more
efficient system. Unfortunately, another reason for the popularity of file

1474.1 Network Fundamentals

Client

Server

Client

Client Client

Peer Peer

a. Server must be prepared to serve multiple clients at any time.

b. Peers communicate as equals on a one-to-one basis.

Figure 4.6 The client/server model compared to the peer-to-peer model

distribution systems based on the P2P model is that, in cases of questionable legal-
ity, the lack of a central server makes legal efforts to enforce copyright laws more
difficult. There are numerous cases, however, in which individuals have discovered
that “difficult” does not mean “impossible” and have found themselves faced with
significant liabilities due to copyright infringement violations.

You might often read or hear the term peer-to-peer network, which is an exam-
ple of how misuse of terminology can evolve when technical terms are adopted
by the nontechnical community. The term peer-to-peer refers to a system by
which two processes communicate over a network (or internet). It is not a prop-
erty of the network (or internet). A process might use the peer-to-peer model to
communicate with another process and later use the client/server model to
communicate with another process over the same network. Thus, it would be
more accurate to speak of communicating by means of the peer-to-peer model
rather than communicating over a peer-to-peer network.

Distributed Systems
With the success of networking technology, interaction between computers
via networks has become common and multifaceted. Many modern software
systems, such as global information retrieval systems, company-wide account-
ing and inventory systems, computer games, and even the software that con-
trols a network’s infrastructure itself are designed as distributed systems,
meaning that they consist of software units that execute as processes on dif-
ferent computers.

Early distributed systems were developed independently from scratch. But
today, research is revealing a common infrastructure running throughout these
systems, including such things as communication and security systems. In turn,
efforts have been made to produce prefabricated systems that provide this basic
infrastructure and therefore allow distributed applications to be constructed by
merely developing the part of the system that is unique to the application.

Several types of distributed computing systems are now common. Cluster
computing describes a distributed system in which many independent comput-
ers work closely together to provide computation or services comparable to a
much larger machine. The cost of these individual machines, plus the high-speed
network to connect them, can be less than a higher-priced supercomputer, but
with higher reliability and lower maintenance costs. Such distributed systems are
used to provide high-availability—because it is more likely that at least one
member of the cluster will be able to answer a request, even if other cluster mem-
bers break down or are unavailable—and load-balancing—because the workload
can be shifted automatically from members of the cluster that have too much to do
to those that may have too little. Grid computing refers to distributed systems
that are more loosely coupled than clusters but that still work together to accom-
plish large tasks. Grid computing can involve specialized software to make it easier
to distribute data and algorithms to the machines participating in a grid. Examples
include University of Wisconsin’s Condor system, or Berkeley’s Open Infrastruc-
ture for Network Computing (BOINC). Both of these systems are often installed on
computers that are used for other purposes, such as PCs at work or at home, that
can then volunteer computing power to the grid when the machine is not other-
wise being used. Enabled by the growing connectivity of the Internet, this type of
voluntary, distributed grid computing has enabled millions of home PCs to work

148 Chapter 4 Networking and the Internet

on enormously complex mathematical and scientific problems. Cloud computing,
whereby huge pools of shared computers on the network can be allocated for use
by clients as needed, is the latest trend in distributed systems. Much as the spread
of metropolitan electrical grids in the early twentieth century eliminated the need
for individual factories and businesses to maintain their own generators, the Inter-
net is making it possible for entities to entrust their data and computations to “the
Cloud,” which in this case refers to the enormous computing resources already
available on the network. Services such as Amazon’s Elastic Compute Cloud allow
clients to rent virtual computers by the hour, without concern for where the com-
puter hardware is actually located. Google Docs and Google Apps allow users to col-
laborate on information or build Web services without needing to know how many
computers are working on the problem or where the relevant data are stored. Cloud
computing services provide reasonable guarantees of reliability and scalability, but
also raise concerns about privacy and security in a world where we may no longer
know who owns and operates the computers that we use.

1494.2 The Internet

4.2 The Internet
The most notable example of an internet is the Internet (note the uppercase I),
which originated from research projects going back to the early 1960s. The goal
was to develop the ability to link a variety of computer networks so that they
could function as a connected system that would not be disrupted by local disasters.
Much of this work was sponsored by the U.S. government through the Defense
Advanced Research Projects Agency (DARPA—pronounced “DAR–pa”). Over the
years, the development of the Internet shifted from a government-sponsored
project to an academic research project, and today it is largely a commercial
undertaking that links a worldwide combination of LANs, MANs, and WANs
involving millions of computers.

Internet Architecture
As we have already mentioned, the Internet is a collection of connected networks.
In general, these networks are constructed and maintained by organizations called
Internet Service Providers (ISPs). It is also customary to use the term ISP in ref-
erence to the networks themselves. Thus, we will speak of connecting to an ISP,
when what we really mean is connecting to the network provided by an ISP.

1. What is an open network?
2. Summarize the distinction between a bridge and a switch.
3. What is a router?
4. Identify some relationships in society that conform to the client/server

model.
5. Identify some protocols used in society.
6. Summarize the distinction between cluster computing and grid computing.

Questions & Exercises

The system of networks operated by the ISPs can be classified in a hierarchy
according to the role they play in the overall Internet structure (Figure 4.7). At
the top of this hierarchy are relatively few tier-1 ISPs that consist of very
high-speed, high-capacity, international WANs. These networks are thought of as
the backbone of the Internet. They are typically operated by large companies
that are in the communications business. An example would be a company that
originated as a traditional telephone company and has expanded its scope into
providing other communication services.

Connecting to the tier-1 ISPs are the tier-2 ISPs that tend to be more
regional in scope and less potent in their capabilities. (The distinction between
the tier-1 and tier-2 ISPs is often a matter of opinion.) Again, these networks tend
to be operated by companies in the communications business.

Tier-1 and tier-2 ISPs are essentially networks of routers that collectivly pro-
vide the Internet’s communication infrastructure. As such, they can be thought
of as the core of the Internet. Access to this core is usually provided by an inter-
mediary called an access ISP. An access ISP is essentially an independent inter-
net, sometimes called an intranet, operated by a single authority that is in the
business of supplying Internet access to individual users. Examples include com-
panies such as AOL, Microsoft, and local cable and telephone companies that
charge for their service as well as organizations such as universities or corpora-
tions that take it upon themselves to provide Internet access to individuals
within their organizations.

The devices that individual users connect to the access ISPs are known as
end systems or hosts. These end systems are not necessarily computers in the
traditional sense. They range over a multitude of devices including telephones,
video cameras, automobiles, and home appliances. After all, the Internet is
essentially a communications system, and thus any device that would benefit
from communicating with other devices is a potential end system.

150 Chapter 4 Networking and the Internet

Figure 4.7 Internet composition

Tier-1 ISPs

Tier-2 ISPs

Access ISPs

End systems

The technology by which end systems connect to access ISPs is also varied.
Perhaps the fastest growing are wireless connections based on WiFi technology.
The strategy is to connect the AP to an access ISP and thus provide Internet
access through that ISP to end systems within the AP’s broadcast range. The area
within the AP’s range is often called a hot spot. Hot spots and groupings of hot
spots are becoming quite prevalent, ranging from individual residences, hotel
and office buildings, small businesses, parks, and in some cases entire cities. A
similar technology is used by the cellular telephone industry where hot spots are
known as cells and the “routers” generating the cells are coordinated to provide
continuous service as an end system moves from one cell to another.

Other popular techniques for connecting to access ISP’s use telephone lines
or cable/satellite systems. These technologies may be used to provide direct con-
nection to an end system or to a customer’s router to which multiple end sys-
tems are connected. This latter tactic is becoming increasingly popular for
individual residences where a local hot spot is created by a router/AP connected
to an access ISP by means of existing cable or telephone lines.

Existing cable and satellite links are inherently more compatible with high-
speed data transfer than traditional telephone lines, which were originally
installed with voice communication in mind. However, several clever schemes
have been developed to extend these voice links to accommodate transmission of
digital data. These make use of devices called modems (short for modulator/
demodulator) that convert the digital data to be transferred into a form compatible
with the transmission medium being used. An example is DSL (digital sub-
scriber line) in which the frequency range below 4 KHz (4,000 kilocycles per sec-
ond) is reserved for traditional voice communication and the higher frequencies
are used for transferring digital data. Another, older approach is to convert the dig-
ital data into sound and transmit it in the same manner as voice. This latter prac-
tice is called dial-up access in reference to the fact that it is used for temporary
connections in which the user places a traditional telephone call to an access ISP’s
router and then connects his or her telephone to the end system to be used.
Although inexpensive and widely available, dial-up’s relatively slow data transfer
rate is increasingly unable to handle today’s Internet applications that tend to rely
on real-time video communication and the transmission of large blocks of data.
Thus, a growing number of homes and small businesses connect to their access
ISP through broadband technologies including cable television connections,
dedicated telephone data lines, satellite dishes, and even fiber-optic cables.

1514.2 The Internet

Now that the Internet has shifted from a research project to a household commodity,
the research community has moved on to a project called Internet2. Internet2 is
intended as an academic-only system and involves numerous universities working in
partnership with industry and government. The goal is to conduct research in inter-
net applications requiring high bandwidth communication, such as remote access
and control of costly state-of-the-art equipment such as telescopes and medical
diagnostic devices. An example of current research involves remote surgery per-
formed by robot hands that mimic the hands of a distant surgeon who views the
patient by video. You can learn more about Internet2 at http://www.internet2.org.

Internet2

http://www.internet2.org
http://www.internet2.org

Internet Addressing
As we learned in Section 4.1, an internet needs an internet-wide addressing
system that assigns a unique identifying address to each computer in the system.
In the Internet these addresses are known as IP addresses. (The term IP refers
to “Internet Protocol,” which is a term we will learn more about in Section 4.4.)
Originally, each IP address was a pattern of 32 bits, but to provide a larger set of
addresses, the process of converting to 128-bit addresses is currently underway
(see the discussion of IPv6 in Section 4.4). Blocks of consecutively numbered IP
addresses are awarded to ISPs by the Internet Corporation for Assigned
Names and Numbers (ICANN), which is a nonprofit corporation established to
coordinate the Internet’s operation. The ISPs are then allowed to allocate the
addresses within their awarded blocks to machines within their region of author-
ity. Thus, machines throughout the Internet are assigned unique IP addresses.

IP addresses are traditionally written in dotted decimal notation in which
the bytes of the address are separated by periods and each byte is expressed
as an integer represented in traditional base ten notation. For example, using
dotted decimal notation, the pattern 5.2 would represent the two-byte bit pattern
0000010100000010, which consists of the byte 00000101 (represented by 5) followed
by the byte 00000010 (represented by 2), and the pattern 17.12.25 would represent
the three-byte bit pattern consisting of the byte 00010001 (which is 17 written in
binary notation), followed by the byte 00001100 (12 written in binary), followed
by the byte 00011001 (25 written in binary). In summary, a 32-bit IP address might
appear as 192.207.177.133 when expressed in dotted decimal notation.

Addresses in bit-pattern form (even when compressed using dotted decimal
notation) are rarely conducive to human consumption. For this reason the Inter-
net has an alternative addressing system in which machines are identified by
mnemonic names. This addressing system is based on the concept of a domain,
which can be thought of as a “region” of the Internet operated by a single author-
ity such as a university, club, company, or government agency. (The word
region is in quotations here because, as we will soon see, such a region may not
correspond to a physical area of the Internet.) Each domain must be registered
with ICANN—a process handled by companies, called registrars, that have been
assigned this role by ICANN. As a part of this registration process, the domain is
assigned a mnemonic domain name, which is unique among all the domain
names throughout the Internet. Domain names are often descriptive of the
organization registering the domain, which enhances their utility for humans.

As an example, the domain name of the Addison-Wesley publishing company
is aw.com. Note the suffix following the period. It is used to reflect the domain’s
classification, which in this case is “commercial” as indicated by the com suffix.
These suffixes are called top-level domains (TLDs). Other TLDs include edu
for educational institutions, gov for U.S. government institutions, org for non-
profit organizations, museum for museums, info for unrestricted use, and net,
which was originally intended for ISPs but is now used on a much broader scale.
In addition to these general TLDs, there are also two-letter TLDs for specific
countries (called country-code TLDs) such as au for Australia and ca for Canada.

Once a domain’s mnemonic name is registered, the organization that regis-
tered the name is free to extend the name to obtain mnemonic identifiers for
individual items within the domain. For example, an individual machine within
Addison-Wesley may be identified as ssenterprise.aw.com. Note that domain
names are extended to the left and separated by a period. In some cases multiple

152 Chapter 4 Networking and the Internet

extensions, called subdomains, are used as a means of organizing the names
within a domain. These subdomains often represent different networks within
the domain’s jurisdiction. For example, if Nowhere University was assigned the
domain name nowhereu.edu, then an individual computer at Nowhere Univer-
sity might have a name such as r2d2.compsc.nowhereu.edu, meaning that
the computer r2d2 is in the subdomain compsc within the domain nowhereu
within the TLD edu. (We should emphasize that the dotted notation used in
mnemonic addresses is not related to the dotted decimal notation used to repre-
sent addresses in bit pattern form.)

Although mnemonic addresses are convenient for humans, messages are
always transferred over the Internet by means of IP addresses. Thus, if a human
wants to send a message to a distant machine and identifies the destination by
means of a mnemonic address, the software being used must be able to convert
that address into an IP address before transmitting the message. This conversion
is performed with the aid of numerous servers, called name servers, that are
essentially directories that provide address translation services to clients. Collec-
tively, these name servers are used as an Internet-wide directory system known
as the domain name system (DNS). The process of using the DNS to perform
a translation is called a DNS lookup.

Thus, for a machine to be accessible by means of a mnemonic domain name,
that name must be represented in a name server within the DNS. In those cases in
which the entity establishing the domain has the resources, it can establish and
maintain its own name server containing all the names within that domain.
Indeed, this is the model on which the domain system was originally based. Each
registered domain represented a physical region of the Internet that was operated
by a local authority such as a company, university, or government agency. This
authority was essentially an access ISP that provided Internet access to its mem-
bers by means of its own intranet that was linked to the Internet. As part of this
system, the organization maintained its own name server that provided translation
services for all the names used within its domain.

This model is still common today. However, many individuals or small organ-
izations want to establish a domain presence on the Internet without committing
the resources necessary to support it. For example, it might be beneficial for a
local chess club to have a presence on the Internet as KingsandQueens.org,
but the club would likely not have the resources to establish its own network,
maintain a link from this network to the Internet, and implement its own name
server. In this case, the club can contract with an access ISP to create the appear-
ance of a registered domain using the resources already established by the ISP.
Typically, the club, perhaps with the assistance of the ISP, registers the name
chosen by the club and contracts with the ISP to have that name included in the
ISP’s name server. This means that all DNS lookups regarding the new domain
name will be directed to the ISP’s name server, from which the proper transla-
tion will be obtained. In this way, many registered domains can reside within a
single ISP, each often occupying only a small portion of a single computer.

Internet Applications
In this subsection we discuss some applications of the Internet, beginning with
three traditional applications. However, these “conventional” applications fall
short of capturing the excitement of today’s Internet. Indeed, the distinction

1534.2 The Internet

between a computer and other electronic devices is becoming blurred. Tele-
phones, televisions, sound systems, burglar alarms, microwave ovens, and video
cameras are all potential “Internet devices.” In turn, the traditional applications
of the Internet are being dwarfed by an expanding flood of new uses including
instant messaging, video conferencing, Internet telephony, and Internet radio.
After all, the Internet is merely a communication system over which data can be
transferred. As technology continues to increase the transfer rates of that sys-
tem, the content of the data being transferred will be limited only by one’s imag-
ination. Thus, we will include two newer Internet applications, telephony and
radio broadcast, to demonstrate some of the issues associated with today’s
emerging Internet, including the need for additional protocol standards, the
need to link the Internet to other communication systems, and the need to
expand the functionality of the Internet’s routers.

Electronic Mail One of the most popular uses of the Internet is email (short for
electronic mail), a system by which messages are transferred among Internet
users. For the purpose of providing email service, a domain’s local authority may
designate a particular machine within its domain to play the role of a mail
server. Typically, mail servers are established within domains operated by
access ISPs for the purpose of providing mail service to users within its realm.
When a user sends email from his or her local machine, it is first transferred to
the user’s mail server. There it is forwarded to the destination mail server where
it is stored until the recipient contacts the mail server and asks to view the
accumulated mail.

The protocol used to transfer mail between mail servers as well as to send a
new message from its author’s local machine to the author’s mail server is SMTP
(Simple Mail Transfer Protocol). Because SMTP was initially designed for
transferring text messages encoded with ASCII, additional protocols such as
MIME (Multipurpose Internet Mail Extensions) have been developed to
convert non-ASCII data to SMTP compatible form.

There are two popular protocols that may be used for accessing email that has
arrived and accumulated at a user’s mail server. These are POP3 (Post Office
Protocol version 3) and IMAP (Internet Mail Access Protocol). POP3 (pro-
nounced “pop-THREE”) is the simpler of the two. Using POP3, a user transfers
(downloads) messages to his or her local computer where they can be read,
stored in various folders, edited, and otherwise manipulated as the user desires.
This is done on the user’s local machine using the local machine’s mass storage.
IMAP (pronounced “EYE-map”) allows a user to store and manipulate messages
and related materials on the same machine as the mail server. In this manner, a
user who must access his or her email from different computers can maintain
records at the mail server that are then accessible from any remote computer to
which the user may have access.

With the role of a mail server in mind, it is easy to understand the structure
of an individual’s email address. It consists of a symbol string (sometimes called
the account name) identifying the individual, followed by the symbol @ (read
“at”), followed by the mnemonic string that ultimately identifies the mail server
that should receive the mail. (In reality this string often merely identifies the
destination domain, and the domain’s mail server is ultimately identified by
means of a DNS lookup.) Thus the email address of an individual at Addison-
Wesley Inc. might appear as shakespeare@aw.com. In other words, a message

154 Chapter 4 Networking and the Internet

sent to this address is to go to the mail server in the domain aw.com where it
should be held for the person identified by the symbol string shakespeare.

The File Transfer Protocol One means of transferring files (such as documents, photo-
graphs, or other encoded information) is to attach them to email messages. How-
ever, a more efficient means is to take advantage of the File Transfer Protocol
(FTP), which is a client/server protocol for transferring files across the Internet. To
transfer a file using FTP, a user at one computer in the Internet uses a software
package that implements FTP to establish contact with another computer. (The
original computer plays the role of a client. The computer it contacts plays the role
of a server, which is usually called an FTP server.) Once this connection is estab-
lished, files can be transferred between the two computers in either direction.

FTP has become a popular way of providing limited access to data via the
Internet. Suppose, for example, that you want to allow certain people to retrieve
a file while prohibiting access by anyone else. You need merely place the file in
a machine with FTP server facilities and guard access to the file via a password.
Then, people who know the password will be able to gain access to the file via
FTP, while all others will be blocked. A machine in the Internet used in this
manner is sometimes called an FTP site because it constitutes a location in the
Internet at which files are available via FTP.

FTP sites are also used to provide unrestricted access to files. To accomplish
this, FTP servers use the term anonymous as a universal login name. Such sites
are often referred to as anonymous FTP sites and provide unrestricted access to
files under their auspices.

While FTP clients and servers remain widely available, most users now find
their file transfer needs met through Web browsers using HTTP (discussed in the
next section).

Telnet and Secure Shell One of the early uses of the Internet was to allow com-
puter users to access computers from great distances. Telnet is a protocol system
that was established for this purpose. Using telnet, a user (running telnet client
software) can contact the telnet server at a distant computer and then follow that
operating system’s login procedure to gain access to the distant machine. Thus,
by means of telnet, a distant user has the same access to the applications and
utilities on the computer that a local user has.

Having been designed early in the development of the Internet, telnet has
several shortcomings. One of the more critical ones is that communication via
telnet is not encrypted. This is significant even if the subject of the communica-
tion is not sensitive because the user’s password is part of the communication
during the login process. Thus the use of telnet opens the possibility that an
eavesdropper might intercept a password and later misuse this critical infor-
mation. Secure Shell (SSH) is an alternative to telnet that offers a solution to
this problem and is rapidly replacing telnet. Among the features of SSH is that
it provides for encryption of data being transferred as well as authentication
(Section 4.5), which is the process of making sure that the two parties communi-
cating are, in fact, who they claim to be.

VoIP As an example of a more recent Internet application, consider VoIP (Voice
over Internet Protocol) in which the Internet infrastructure is used to provide
voice communication similar to that of traditional telephone systems. In its

1554.2 The Internet

simplest form, VoIP consists of two processes on different machines transferring
audio data via the P2P model—a process that in itself presents no significant prob-
lems. However, tasks such as initiating and receiving calls, linking VoIP with tra-
ditional telephone systems, and providing services such as emergency 911
communication are issues that extend beyond traditional Internet applications.
Moreover, governments that own their country’s traditional telephone companies
view VoIP as a threat and have either taxed it heavily or outlawed it completely.

Existing VoIP systems come in four different forms that are competing for
popularity. VoIP soft phones consist of P2P software that allows two or more
PCs to share a call with no more special hardware than a speaker and a micro-
phone. An example of a VoIP soft phone system is Skype, which also provides its
clients with links to the traditional telephone communication system. One draw-
back to Skype is that it is a proprietary system, and thus much of its operational
structure is not publicly known. This means that Skype users must trust the
integrity of the Skype software without third-party verification. For instance, to
receive calls, a Skype user must leave his or her PC connected to the Internet
and available to the Skype system, which means that some of the PC’s resources
may be used to support other Skype communications without the PC owner’s
awareness—a feature that has generated some resistance.

A second form of VoIP consists of analog telephone adapters, which are
devices that allow a user to connect his or her traditional telephone to phone serv-
ice provided by an access ISP. This choice is frequently bundled with traditional
Internet service and/or digital television service.

The third type of VoIP comes in the form of embedded VoIP phones, which are
devices that replace a traditional telephone with an equivalent handset connected
directly to a TCP/IP network. Embedded VoIP phones are becoming increasingly
common for large organizations, many of whom are replacing their traditional
internal copper wire telephone systems with VoIP over Ethernet to reduce costs
and enhance features.

Finally, the next generation of smartphones are slated to use VoIP technology.
That is, earlier generations of wireless phones only communicated with the tele-
phone company’s network using that company’s protocols. Access to the Internet

156 Chapter 4 Networking and the Internet

In the past decade mobile phone technology has advanced from simple, single-
purpose, portable devices to complex, multifunction hand-held computers. The first
generation wireless telephone network transmitted analog voice signals through the
air, much like traditional telephones but without the copper wire running through the
wall. In retrospect, we call these early phone systems “1G,” or first generation, net-
works. The second generation used digital signals to encode voice, providing more
effective use of the airwaves and the transmission of other kinds of digital data such as
text messaging. Third generation (“3G”) phone network provides higher data transfer
rates, allowing for mobile video calls and other bandwidth-intensive activities. The 4G
network objectives include even higher data transfer rates, and a fully packet-switched
network using the IP protocol, which will provide the newest generation of smart-
phones with the capabilities currently available only to broadband-enabled PCs.

The Generations of Wireless Telephones

was obtained by gateways between the company’s network and the Internet, at
which point signals were converted to the TCP/IP system. However, the new 4G
phone network is designed to be an IP-based network throughout, which means a
4G telephone is essentially just another host computer on the global Internet.

Internet Radio Another recent Internet application is the transmission of radio
station programming—a process called webcasting as opposed to broadcasting
because the signals are transferred via the Internet rather than “over the air.”
More precisely, Internet radio is a specific example of streaming audio, which
refers to the transfer of sound data on a real-time basis.

On the surface, Internet radio may not seem to require special considera-
tion. One might guess that a station could merely establish a server that would
send program messages to each of the clients who requested them. This tech-
nique is known as N-unicast. (More precisely, unicast refers to one sender send-
ing messages to one receiver, whereas N-unicast refers to a single sender
involved with multiple unicasts.) The N-unicast approach has been applied but
has the drawback of placing a substantial burden on the station’s server as well as
on the server’s immediate Internet neighbors. Indeed, N-unicast forces the
server to send individual messages to each of its clients on a real-time basis, and
all these messages must be forwarded by the server’s neighbors.

Most alternatives to N-unicast represent attempts to alleviate this problem.
One applies the P2P model in a manner reminiscent of file sharing systems.
That is, once a peer has received data, it begins to distribute that data to those
peers that are still waiting, meaning that much of the distribution problem is
transferred from the data’s source to the peers.

Another alternative, called multicast, transfers the distribution problem to the
Internet routers. Using multicast, a server transmits a message to multiple clients
by means of a single address and relies on the routers in the Internet to recognize
the significance of that address and to produce and forward copies of the message to
the appropriate destinations. The single address used in multicast is called a group
address and is identified by a specific initial bit pattern. The remaining bits are used
to identify the broadcasting station, which in multicasting terminology is called the
group. When a client wants to receive the messages from a particular station (wants
to subscribe to a particular group), it notifies its nearest router of its desire. That
router essentially forwards that desire back through the Internet so that other
routers know to begin forwarding all future messages with that group address in the
direction of the client. In short, when using multicast, the server transmits only one
copy of the program regardless of how many clients are listening, and it is the
responsibility of the routers to make copies of these messages as needed and route
them to their appropriate destinations. Note then that applications relying on mul-
ticast require that the functionality of the Internet routers be expanded beyond
their original duties. This process is currently underway.

We see then that Internet radio, like VoIP, is growing in popularity while it is
searching for its foundations. Exactly what the future holds is not certain. How-
ever, as the capabilities of the Internet infrastructure continue to expand, appli-
cations of webcasting are certain to develop with it.

Embedded devices and home computers are now able to stream high defini-
tion video on demand via the Internet. A broad class of televisions, DVD/Blu-ray
players, and game consoles can now connect directly to the TCP/IP network to
select viewable content from a multitude of both free and subscription servers.

1574.2 The Internet

4.3 The World Wide Web
In this section we focus on an Internet application by which multimedia infor-
mation is disseminated over the Internet. It is based on the concept of hypertext,
a term that originally referred to text documents that contained links, called
hyperlinks, to other documents. Today, hypertext has been expanded to encom-
pass images, audio, and video, and because of this expanded scope it is sometimes
referred to as hypermedia.

When using a GUI, the reader of a hypertext document can follow the hyper-
links associated with it by pointing and clicking with the mouse. For example,
suppose the sentence “The orchestra’s performance of ‘Bolero’ by Maurice Ravel
was outstanding” appeared in a hypertext document and the name Maurice Ravel
was linked to another document—perhaps giving information about the
composer. A reader could choose to view that associated material by pointing to
the name Maurice Ravel with the mouse and clicking the mouse button. More-
over, if the proper hyperlinks are installed, the reader might listen to an audio
recording of the concert by clicking on the name Bolero.

In this manner, a reader of hypertext documents can explore related docu-
ments or follow a train of thought from document to document. As portions of
various documents are linked to other documents, an intertwined web of related
information is formed. When implemented on a computer network, the docu-
ments within such a web can reside on different machines, forming a network-
wide web. The web that has evolved on the Internet spans the entire globe and
is known as the World Wide Web (also referred to as WWW, W3, or the Web).
A hypertext document on the World Wide Web is often called a Web page.
A collection of closely related Web pages is called a Web site.

The World Wide Web had its origins in the work of Tim Berners-Lee who realized
the potential of combining the linked-document concept with internet technology
and produced the first software for implementing the WWW in December of 1990.

158 Chapter 4 Networking and the Internet

1. What is the purpose of tier-1 and tier-2 ISPs? What is the purpose of ac-
cess ISPs?

2. What is the DNS?
3. What bit pattern is represented by 3.6.9 in dotted decimal notation?

Express the bit pattern 0001010100011100 using dotted decimal notation.
4. In what way is the structure of a mnemonic address of a computer on

the Internet (such as r2d2.compsc.nowhereu.edu) similar to a tradi-
tional postal address? Does this same structure occur in IP addresses?

5. Name three types of servers found on the Internet and tell what
each does.

6. Why is SSH considered superior to telnet?
7. In what way do the P2P and multicast approaches to Internet radio

broadcast differ from N-unicast?
8. What criteria should one consider when choosing one of the four types

of VoIP?

Questions & Exercises

Web Implementation
Software packages that allow users to access hypertext on the Internet fall into
one of two categories: packages that play the role of clients, and packages that
play the role of servers. A client package resides on the user’s computer and is
charged with the tasks of obtaining materials requested by the user and pre-
senting these materials to the user in an organized manner. It is the client that
provides the user interface that allows a user to browse within the Web. Hence
the client is often referred to as a browser, or sometimes as a Web browser.
The server package (often called a Web server) resides on a computer
containing hypertext documents to be accessed. Its task is to provide access to
the documents under its control as requested by clients. In summary, a user
gains access to hypertext documents by means of a browser residing on the
user’s computer. This browser, playing the role of a client, obtains the docu-
ments by soliciting the services of the Web servers scattered throughout the
Internet. Hypertext documents are normally transferred between browsers
and Web servers using a protocol known as the Hypertext Transfer Protocol
(HTTP).

In order to locate and retrieve documents on the World Wide Web, each doc-
ument is given a unique address called a Uniform Resource Locator (URL).
Each URL contains the information needed by a browser to contact the proper
server and request the desired document. Thus to view a Web page, a person first
provides his or her browser with the URL of the desired document and then
instructs the browser to retrieve and display the document.

A typical URL is presented in Figure 4.8. It consists of four segments:
the protocol to use to communicate with the server controlling access to the
document, the mnemonic address of the machine containing the server,
the directory path needed for the server to find the directory containing the
document, and the name of the document itself. In short, the URL in Figure 4.8
tells a browser to contact the Web server on the computer known as
ssenterprise.aw.com using the protocol HTTP and to retrieve the document
named Julius_Caesar.html found within the subdirectory Shakespeare
within the directory called authors.

Sometimes a URL might not explicitly contain all the segments shown in
Figure 4.8. For example, if the server does not need to follow a directory path to
reach the document, no directory path will appear in the URL. Moreover,

1594.3 The World Wide Web

Figure 4.8 A typical URL

Document name

http://ssenterprise.aw.com/authors/Shakespeare/Julius_Caesar.html

Mnemonic name of
host holding the
document

Directory path
indicating the
location of the
document within
the host's
file system

Protocol required
to access the
document. In
this case it is
hypertext transfer
protocol (http).

http://ssenterprise.aw.com/authors/Shakespeare/Julius_Caesar.html
http://ssenterprise.aw.com/authors/Shakespeare/Julius_Caesar.html

sometimes a URL will consist of only a protocol and the mnemonic address of a
computer. In these cases, the Web server at that computer will return a
predetermined document, typically called a home page, that usually describes
the information available at that Web site. Such shortened URLs provide a simple
means of contacting organizations. For example, the URL http://www.
google.com will lead to the home page of Google, which contains hyperlinks to
the services, products, and documents relating to the company.

To further simplify locating Web sites, many browsers assume that the HTTP
protocol should be used if no protocol is identified. These browsers correctly
retrieve the Google home page when given the “URL” consisting merely of
www.google.com.

HTML
A traditional hypertext document is similar to a text file because its text is
encoded character by character using a system such as ASCII or Unicode. The
distinction is that a hypertext document also contains special symbols, called tags,
that describe how the document should appear on a display screen, what multi-
media resources (such as images) should accompany the document, and which
items within the document are linked to other documents. This system of tags is
known as Hypertext Markup Language (HTML).

Thus, it is in terms of HTML that an author of a Web page describes the
information that a browser needs in order to present the page on the user’s
screen and to find any related documents referenced by the current page. The
process is analogous to adding typesetting directions to a plain typed text (per-
haps using a red pen) so that a typesetter will know how the material should
appear in its final form. In the case of hypertext, the red markings are replaced
by HTML tags, and a browser ultimately plays the role of the typesetter, read-
ing the HTML tags to learn how the text is to be presented on the computer
screen.

The HTML encoded version (called the source version) of an extremely sim-
ple Web page is shown in Figure 4.9a. Note that the tags are delineated by the
symbols � and �. The HTML source document consists of two sections—a head
(surrounded by the �head� and �/head� tags) and a body (surrounded by the
�body� and �/body� tags). The distinction between the head and body of a
Web page is similar to that of the head and body of an interoffice memo. In both

160 Chapter 4 Networking and the Internet

The World Wide Web Consortium (W3C) was formed in 1994 to promote the World
Wide Web by developing protocol standards (known as W3C standards). W3C is
headquartered at CERN, the high-energy particle physics laboratory in Geneva,
Switzerland. CERN is where the original HTML markup language was developed as
well as the HTTP protocol for transferring HTML documents over the Internet. Today
W3C is the source of many standards (including standards for XML and numerous
multimedia applications) that lead to compatibility over a wide range of Internet
products. You can learn more about W3C via its Web site at http://www.w3c.org.

The World Wide Web Consortium

http://www.google.com
http://www.google.com
www.google.com
http://www.w3c.org
http://www.google.com
http://www.google.com
www.google.com.HTML
www.google.com.HTML
http://www.w3c.org

cases, the head contains preliminary information about the document (date, sub-
ject, etc. in the case of a memo). The body contains the meat of the document,
which in the case of a Web page is the material to be presented on the computer
screen when the page is displayed.

The head of the Web page displayed in Figure 4.9a contains only the title of the
document (surrounded by “title” tags). This title is only for documentation pur-
poses; it is not part of the page that is to be displayed on the computer screen. The
material that is displayed on the screen is contained in the body of the document.

The first entry in the body of the document in Figure 4.9a is a level-one
heading (surrounded by the �h1� and �/h1� tags) containing the text “My Web
Page.” Being a level-one heading means that the browser should display this text
prominently on the screen. The next entry in the body is a paragraph of text
(surrounded by the �p� and �/p� tags) containing the text “Click here for
another page.” Figure 4.9b shows the page as it would be presented on a
computer screen by a browser.

1614.3 The World Wide Web

Figure 4.9 A simple Web page

<html>

<head>

<title>demonstration page</title>

</head>

<body>

<h1>My Web Page</h1>

<p>Click here for another page.</p>

</body>

</html>

The part of the
document that
will be displayed
by a browser

Tag indicating
end of document

Preliminaries

Tag indicating
beginning of
document

My Web Page

Click here for another page.

a. The page encoded using HTML.

b. The page as it would appear on a computer screen.

In its present form, the page in Figure 4.9 is not fully functional in the
sense that nothing will happen when the viewer clicks on the word here, even
though the page implies that doing so will cause the browser to display another
page. To cause the appropriate action, we must link the word here to another
document.

Let us suppose that, when the word here is clicked, we want the browser to
retrieve and display the page at the URL http://crafty.com/demo.html. To
do so, we must first surround the word here in the source version of the page with
the tags �a� and �/a�, which are called anchor tags. Inside the opening anchor
tag we insert the parameter

href = http://crafty.com/demo.html

(as shown in Figure 4.10a) indicating that the hypertext reference (href) associ-
ated with the tag is the URL following the equal sign (http://crafty.com/
demo.html). Having added the anchor tags, the Web page will now appear
on a computer screen as shown in Figure 4.10b. Note that this is identical to
Figure 4.9b except that the word here is highlighted by color indicating that
it is a link to another Web document. Clicking on such highlighted terms will
cause the browser to retrieve and display the associated Web document. Thus, it
is by means of anchor tags that Web documents are linked to each other.

Finally, we should indicate how an image could be included in our simple
Web page. For this purpose, let us suppose that a JPEG encoding of the image
we want to include is stored as the file named OurPic.jpg in the directory
Images at Images.com and is available via the Web server at that location.
Under these conditions, we can tell a browser to display the image at
the top of the Web page by inserting the image tag �img src = “http://
Images.com/Images/OurPic.jpg”� immediately after the �body� tag in
the HTML source document. This tells the browser that the image named
OurPic.jpg should be displayed at the beginning of the document. (The term
src is short for “source,” meaning that the information following the equal sign
indicates the source of the image to be displayed.) When the browser finds this
tag, it will send a message to the HTTP server at Images.com requesting the
image called OurPic.jpg and then display the image appropriately.

If we moved the image tag to the end of the document just before the
�/body� tag, then the browser would display the image at the bottom of the
Web page. There are, of course, more sophisticated techniques for positioning an
image on a Web page, but these need not concern us now.

XML
HTML is essentially a notational system by which a text document along with
the document’s appearance can be encoded as a simple text file. In a similar
manner we can also encode nontextual material as text files—an example being
sheet music. At first glance the pattern of staffs, measure bars, and notes in
which music is traditionally represented does not conform to the character-by-
character format dictated by text files. However, we can overcome this problem
by developing an alternative notation system. More precisely, we could agree to
represent the start of a staff by �staff clef = “treble”�, the end of the

162 Chapter 4 Networking and the Internet

http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://Images.com/Images/OurPic.jpg
http://Images.com/Images/OurPic.jpg

staff by �/staff�, a time signature with the form �time� 2/4 �/time�, the
beginning and ending of a measure by �measure� and �/measure�, respec-
tively, a note such as an eighth note on C as �notes� egth C �/notes�, and
so on. Then the text

<staff clef = “treble”> <key>C minor</key>
<time> 2/4 </time>
<measure> <rest> egth </rest> <notes> egth G,
egth G, egth G </notes></measure>
<measure> <notes> hlf E </notes></measure>
</staff>

1634.3 The World Wide Web

<html>

<head>

<title>demonstration page</title>

</head>

<body>

<h1>My Web Page</h1>

<p>Click

 here

 for another page.</p>

</body>

</html>

Anchor tag
containing
parameter

Closing
anchor tag

a. The page encoded using HTML.

My Web Page

Click here for another page.

b. The page as it would appear on a computer screen.

Figure 4.10 An enhanced simple Web page

could be used to encode the music shown in Figure 4.11. Using such notation,
sheet music could be encoded, modified, stored, and transferred over the Inter-
net as text files. Moreover, software could be written to present the contents of
such files in the form of traditional sheet music or even to play the music on a
synthesizer.

Note that our sheet music encoding system encompasses the same style
used by HTML. We chose to delineate the tags that identify components by the
symbols � and �. We chose to indicate the beginning and end of structures
(such as a staff, string of notes, or measure) by tags of the same name—the
ending tag being designated by a slash (a �measure� was terminated with the
tag �/measure�). And we chose to indicate special attributes within tags by
expressions such as clef = “treble”. This same style could also be used to
develop systems for representing other formats such as mathematical expres-
sions and graphics.

The eXtensible Markup Language (XML) is a standardized style (similar
to that of our music example) for designing notational systems for representing
data as text files. (Actually, XML is a simplified derivative of an older set of stan-
dards called the Standard Generalized Markup Language, better known as
SGML.) Following the XML standard, notational systems called markup lan-
guages have been developed for representing mathematics, multimedia presen-
tations, and music. In fact, HTML is the markup language based on the XML
standard that was developed for representing Web pages. (Actually, the original
version of HTML was developed before the XML standard was solidified, and
therefore some features of HTML do not strictly conform to XML. That is why
you might see references to XHTML, which is the version of HTML that rigor-
ously adheres to XML.)

XML provides a good example of how standards are designed to have wide-
ranging applications. Rather than designing individual, unrelated markup lan-
guages for encoding various types of documents, the approach represented by
XML is to develop a standard for markup languages in general. With this stan-
dard, markup languages can be developed for various applications. Markup
languages developed in this manner possess a uniformity that allows them to
be combined to obtain markup languages for complex applications such as
text documents that contain segments of sheet music and mathematical
expressions.

Finally we should note that XML allows the development of new markup
languages that differ from HTML in that they emphasize semantics rather than
appearance. For example, with HTML the ingredients in a recipe can be
marked so that they appear as a list in which each ingredient is positioned on a

164 Chapter 4 Networking and the Internet

Figure 4.11 The first two bars of Beethoven’s Fifth Symphony

separate line. But if we used semantic-oriented tags, ingredients in a recipe
could be marked as ingredients (perhaps using the tags �ingredient� and
�/ingredient�) rather than merely items in a list. The difference is subtle
but important. The semantic approach would allow search engines (Web sites
that assist users in locating Web material pertaining to a subject of interest) to
identify recipes that contain or do not contain certain ingredients, which
would be a substantial improvement over the current state of the art in which
only recipes that do or do not contain certain words can be isolated. More pre-
cisely, if semantic tags are used, a search engine can identify recipes for
lasagna that do not contain spinach, whereas a similar search based merely on
word content would skip over a recipe that started with the statement “This
lasagna does not contain spinach.” In turn, by using an Internet-wide standard
for marking documents according to semantics rather than appearance, a
World Wide Semantic Web, rather than the World Wide Syntactic Web we have
today, would be created.

Client-Side and Server-Side Activities
Consider now the steps that would be required for a browser to retrieve the sim-
ple Web page shown in Figure 4.10 and display it on the browser’s computer
screen. First, playing the role of a client, the browser would use the information
in a URL (perhaps obtained from the person using the browser) to contact the
Web server controlling access to the page and ask that a copy of the page be
transferred to it. The server would respond by sending the text document dis-
played in Figure 4.10a to the browser. The browser would then interpret the
HTML tags in the document to determine how the page should be displayed and
present the document on its computer screen accordingly. The user of the
browser would see an image like that depicted in Figure 4.10b. If the user then
clicked the mouse over the word here, the browser would use the URL in the
associated anchor tag to contact the appropriate server to obtain and display
another Web page. In summary, the process consists of the browser merely fetch-
ing and displaying Web pages as directed by the user.

But what if we wanted a Web page involving animation or one that allows a
customer to fill out an order form and submit the order? These needs would
require additional activity by either the browser or the Web server. Such activi-
ties are called client-side activities if they are performed by a client (such as a
browser) or server-side activities if they are performed by a server (such as a
Web server).

As an example, suppose a travel agent wanted customers to be able to iden-
tify desired destinations and dates of travel, at which time the agent would pre-
sent the customer with a customized Web page containing only the information
pertinent to that customer’s needs. In this case the travel agent’s Web site would
first provide a Web page that presents a customer with the available destinations.
On the basis of this information, the customer would specify the destinations of
interest and desired dates of travel (a client-side activity). This information
would then be transferred back to the agent’s server where it would be used to
construct the appropriate customized Web page (a server-side activity) which
would then be sent to the customer’s browser.

1654.3 The World Wide Web

Another example occurs when using the services of a search engine. In
this case a user at the client specifies a topic of interest (a client-side activity)
which is then transferred to the search engine where a customized Web page
identifying documents of possible interest is constructed (a server-side activity)
and sent back to the client. Still another example occurs in the case of
Web mail—an increasingly popular means by which computer users are able
to access their email by means of Web browsers. In this case, the Web server
is an intermediary between the client and the client’s mail server. Essentially,
the Web server builds Web pages that contain information from the mail server
(a server-side activity) and sends those pages to the client where the
client’s browser displays them (a client-side activity). Conversely, the browser
allows the user to create messages (a client-side activity) and sends that infor-
mation to the Web server, which then forwards the messages to the mail server
(a server-side activity) for mailing.

There are numerous systems for performing client- and server-side activi-
ties, each competing with the others for prominence. An early and still popular
means of controlling client-side activities is to include programs written in the
language JavaScript (developed by Netscape Communications, Inc.) within
the HTML source document for the Web page. From there a browser can extract
the programs and follow them as needed. Another approach (developed by Sun
Microsystems) is to first transfer a Web page to a browser and then transfer addi-
tional program units called applets (written in the language Java) to the browser
as requested within the HTML source document. Still another approach is
the system Flash (developed by Macromedia) by which extensive multimedia
client-side presentations can be implemented.

An early means of controlling server-side activities was to use a set of stan-
dards called CGI (Common Gateway Interface) by which clients could request
the execution of programs stored at a server. A variation of this approach (devel-
oped by Sun Microsystems) is to allow clients to cause program units called
servlets to be executed at the server side. A simplified version of the servlet
approach is applicable when the requested server-side activity is the construc-
tion of a customized Web page, as in our travel agent example. In this case Web
page templates called JavaServer Pages (JSP) are stored at the Web server and
completed using information received from a client. A similar approach is used
by Microsoft, where the templates from which customized Web pages are con-
structed are called Active Server Pages (ASP). In contrast to these proprietary
systems, PHP (originally standing for Personal Home Page but now considered
to mean PHP Hypertext Processor) is an open source system for implementing
server-side functionality.

Finally, we would be remiss if we did not recognize the security and eth-
ical problems that arise from allowing clients and servers to execute pro-
grams on the other’s machine. The fact that Web servers routinely transfer
programs to clients where they are executed leads to ethical questions on the
server side and security questions on the client side. If the client blindly exe-
cutes any program sent to it by a Web server, it opens itself to malicious activ-
ities by the server. Likewise, the fact that clients can cause programs to be
executed at the server leads to ethical questions on the client side and secu-
rity questions on the server side. If the server blindly executes any program
sent to it by a client, security breaches and potential damage at the server
could result.

166 Chapter 4 Networking and the Internet

1674.4 Internet Protocols

1. What is a URL? What is a browser?
2. What is a markup language?
3. What is the difference between HTML and XML?
4. What is the purpose of each of the following HTML tags?

a. �html�

b. �head�

c. �/p�

d. �/a�

5. To what do the terms client side and server side refer?

Questions & Exercises

Figure 4.12 Package-shipping example

Prepares package
for shipping

Places package
in container
for airline

Places container
in airplane

Origin

Friend

Airline

Shipping
company

Receives and
opens package

Removes package
from container
and delivers it
to addressee

Sends container
to shipping
company

Final destination

Transfers container
to another airplane

Intermediate stops

AirlineAirline

You

Airline

Shipping
company

4.4 Internet Protocols
In this section we investigate how messages are transferred over the Internet.
This transfer process requires the cooperation of all the computers in the
system, and therefore software for controlling this process resides on every com-
puter in the Internet. We begin by studying the overall structure of this software.

The Layered Approach to Internet Software
A principal task of networking software is to provide the infrastructure required
for transferring messages from one machine to another. In the Internet, this
message-passing activity is accomplished by means of a hierarchy of software
units, which perform tasks analogous to those that would be performed if you
were to send a gift in a package from the West Coast of the United States to a
friend on the East Coast (Figure 4.12). You would first wrap the gift as a package

and write the appropriate address on the outside of the package. Then, you
would take the package to a shipping company such as the U.S. Postal Service.
The shipping company might place the package along with others in a large
container and deliver the container to an airline, whose services it has con-
tracted. The airline would place the container in an aircraft and transfer it to
the destination city, perhaps with intermediate stops along the way. At the final
destination, the airline would remove the container from the aircraft and give it
to the shipping company’s office at the destination. In turn, the shipping
company would take your package out of the container and deliver it to the
addressee.

In short, the transportation of the gift would be carried out by a three-level
hierarchy: (1) the user level (consisting of you and your friend), (2) the shipping
company, and (3) the airline. Each level uses the next lower level as an abstract
tool. (You are not concerned with the details of the shipping company, and the
shipping company is not concerned with the internal operations of the airline.)
Each level in the hierarchy has representatives at both the origin and the
destination, with the representatives at the destination tending to do the reverse
of their counterparts at the origin.

Such is the case with software for controlling communication over the Inter-
net, except that the Internet software has four layers rather than three, each
consisting of a collection of software routines rather than people and businesses.
The four layers are known as the application layer, the transport layer, the
network layer, and the link layer (Figure 4.13). A message typically originates
in the application layer. From there it is passed down through the transport and
network layers as it is prepared for transmission, and finally it is transmitted by
the link layer. The message is received by the link layer at the destination and
passed back up the hierarchy until it is delivered to the application layer at the
message’s destination.

Let us investigate this process more thoroughly by tracing a message as it
finds its way through the system (Figure 4.14). We begin our journey with the
application layer.

168 Chapter 4 Networking and the Internet

Application

Transport

Network

Link

Figure 4.13 The Internet software layers

The application layer consists of those software units such as clients and
servers that use Internet communication to carry out their tasks. Although the
names are similar, this layer is not restricted to software in the application
classification presented in Section 3.2, but also includes many utility packages.
For example, software for transferring files using FTP or for providing remote
login capabilities using SSH have become so common that they are normally
considered utility software.

The application layer uses the transport layer to send and receive messages
over the Internet in much the same way that you would use a shipping company
to send and receive packages. Just as it is your responsibility to provide an address
compatible with the specifications of the shipping company, it is the application
layer’s responsibility to provide an address that is compatible with the Internet
infrastructure. To fulfill this need, the application layer may use the services of
the name servers within the Internet to translate mnemonic addresses used by
humans into Internet-compatible IP addresses.

An important task of the transport layer is to accept messages from the
application layer and to ensure that the messages are properly formatted for

1694.4 Internet Protocols

Figure 4.14 Following a message through the Internet

Prepares
message
and provides
destination
address

Chops message
into packets

Assigns
intermediate
address to
each packet

Transfers
packet

Application

Transport

Network

Link

Receives
message

Collects packets
and reassembles
message

Detects that
packet has
reached its
final destination

Receives
packet

Application

Transport

Network

Link

Network

Link

Network

Link

At each intermediate stop
the network layer determines
the direction in which the
packet should be forwarded.

Origin Intermediate
stops

Final
destination

transmission over the Internet. Toward this latter goal, the transport layer
divides long messages into small segments, which are transmitted over the Inter-
net as individual units. This division is necessary because a single long message
can obstruct the flow of other messages at the Internet routers where numerous
messages cross paths. Indeed, small segments of messages can interweave at these
points, whereas a long message forces others to wait while it passes (much like
cars waiting for a long train to pass at a railroad crossing).

The transport layer adds sequence numbers to the small segments it pro-
duces so that the segments can be reassembled at the message’s destination.
Then it hands these segments, known as packets, to the network layer. From
this point, the packets are treated as individual, unrelated messages until they
reach the transport layer at their final destination. It is quite possible for the
packets related to a common message to follow different paths through the
Internet.

It is the network layer’s job to decide in which direction a packet should be
sent at each step along the packet’s path through the Internet. In fact, the com-
bination of the network layer and the link layer below it constitutes the soft-
ware residing on the Internet routers. The network layer is in charge of
maintaining the router’s forwarding table and using that table to determine the
direction in which to forward packets. The link layer at the router is in charge of
receiving and transmitting the packets.

Thus, when the network layer at a packet’s origin receives the packet from the
transport layer, it uses its forwarding table to determine where the packet should
be sent to get it started on its journey. Having determined the proper direction, the
network layer hands the packet to the link layer for actual transmission.

The link layer has the responsibility of transferring the packet. Thus the link
layer must deal with the communication details particular to the individual net-
work in which the computer resides. For instance, if that network is an Ethernet,
the link layer applies CSMA/CD. If the network is a WiFi network, the link layer
applies CSMA/CA.

When a packet is transmitted, it is received by the link layer at the other end
of the connection. There, the link layer hands the packet up to its network layer
where the packet’s final destination is compared to the network layer’s forward-
ing table to determine the direction of the packet’s next step. With this decision
made, the network layer returns the packet to the link layer to be forwarded
along its way. In this manner each packet hops from machine to machine on its
way to its final destination.

Note that only the link and network layers are involved at the intermediate
stops during this journey (see again Figure 4.14), and thus these are the only lay-
ers present on routers, as previously noted. Moreover, to minimize the delay at
each of these intermediate “stops,” the forwarding role of the network layer
within a router is closely integrated with the link layer. In turn, the time
required for a modern router to forward a packet is measured in millionths of a
second.

At a packet’s final destination, it is the network layer that recognizes that the
packet’s journey is complete. In that case the network layer hands the packet to
its transport layer rather than forwarding it. As the transport layer receives
packets from the network layer, it extracts the underlying message segments and
reconstructs the original message according to the sequence numbers that were
provided by the transport layer at the message’s origin. Once the message

170 Chapter 4 Networking and the Internet

is assembled, the transport layer hands it to the appropriate unit within the
application layer—thus completing the message transmission process.

Determining which unit within the application layer should receive an incom-
ing message is an important task of the transport layer. This is handled by assigning
unique port numbers (not related to the I/O ports discussed in Chapter 2) to the
various units and requiring that the appropriate port number be appended to a mes-
sage’s address before starting the message on its journey. Then, once the message is
received by the transport layer at the destination, the transport layer merely hands
the message to the application layer software at the designated port number.

Users of the Internet rarely need to be concerned with port numbers
because the common applications have universally accepted port numbers. For
example, if a Web browser is asked to retrieve the document whose URL is
http://www.zoo.org/animals/frog.html, the browser assumes that it
should contact the HTTP server at www.zoo.org via port number 80. Likewise,
when transferring a file, an FTP client assumes that it should communicate with
the FTP server through port numbers 20 and 21.

In summary, communication over the Internet involves the interaction of
four layers of software. The application layer deals with messages from the
application’s point of view. The transport layer converts these messages into
segments that are compatible with the Internet and reassembles messages that
are received before delivering them to the appropriate application. The net-
work layer deals with directing the segments through the Internet. The link
layer handles the actual transmission of segments from one machine to
another. With all this activity, it is somewhat amazing that the response time of
the Internet is measured in milliseconds, so that many transactions appear to
take place instantaneously.

The TCP/IP Protocol Suite
The demand for open networks has generated a need for published standards by
which manufacturers can supply equipment and software that function properly
with products from other vendors. One standard that has resulted is the Open
System Interconnection (OSI) reference model, produced by the Interna-
tional Organization for Standardization. This standard is based on a seven-level
hierarchy as opposed to the four-level hierarchy we have just described. It is an
often-quoted model because it carries the authority of an international organiza-
tion, but it has been slow to replace the four-level point of view, mainly because
it was established after the four-level hierarchy had already become the de facto
standard for the Internet.

The TCP/IP protocol suite is a collection of protocol standards used by the
Internet to implement the four-level communication hierarchy implemented in
the Internet. Actually, the Transmission Control Protocol (TCP) and the
Internet Protocol (IP) are the names of only two of the protocols in this vast
collection—so the fact that the entire collection is referred to as the TCP/IP pro-
tocol suite is rather misleading. More precisely, TCP defines a version of the
transport layer. We say a version because the TCP/IP protocol suite provides for
more than one way of implementing the transport layer; one of the other options
is defined by the User Datagram Protocol (UDP). This diversity is analogous
to the fact that when shipping a package, you have a choice of different shipping
companies, each of which offers the same basic service but with its own unique

1714.4 Internet Protocols

http://www.zoo.org/animals/frog.html
www.zoo.org
http://www.zoo.org/animals/frog.html
www.zoo.org

characteristics. Thus, depending on the particular quality of service required, a
unit within the application layer might choose to send data via a TCP or UDP
version of the transport layer (Figure 4.15).

There are several differences between TCP and UDP. One is that before send-
ing a message as requested by the application layer, a transport layer based on
TCP sends its own message to the transport layer at the destination telling it that
a message is about to be sent. It then waits for this message to be acknowledged
before starting to send the application layer’s message. In this manner, a TCP
transport layer is said to establish a connection before sending a message. A
transport layer based on UDP does not establish such a connection prior to sending
a message. It merely sends the message to the address it was given and forgets
about it. For all it knows, the destination computer might not even be opera-
tional. For this reason, UDP is called a connectionless protocol.

Another difference between TCP and UDP is that TCP transport layers at the
origin and destination work together by means of acknowledgments and packet
retransmissions to assure that all segments of a message are successfully
transferred to the destination. For this reason TCP is called a reliable protocol,
whereas UDP, which does not offer such retransmission services, is said to be an
unreliable protocol.

Still another distinction between TCP and UDP is that TCP provides for both
flow control, meaning that a TCP transport layer at a message’s origin can
reduce the rate at which it transmits segments to keep from overwhelming its
counterpart at the destination, as well as congestion control, meaning that a
TCP transport layer at a message’s origin can adjust its transmission rate to alle-
viate congestion between it and the message’s destination.

All this does not mean that UDP is a poor choice. After all, a transport layer
based on UDP is more streamlined than a layer based on TCP, and thus if an
application is prepared to handle the potential consequences of UDP, that option
might be the better choice. For example, the efficiency of UDP makes it the
protocol of choice for DNS lookups and VoIP. However, because email is less time
sensitive, mail servers use TCP to transfer email.

172 Chapter 4 Networking and the Internet

Figure 4.15 Choosing between TCP and UDP

Application layer

?

Transport
layer

More “reliable”
but less efficient

TCP

More efficient
but less “reliable”

UDP

IP is the Internet’s standard for implementing the tasks assigned to the net-
work layer. We have already observed that this task consists of forwarding, which
involves relaying packets through the Internet, and routing, which involves
updating the layer’s forwarding table to reflect changing conditions. For instance,
a router may malfunction, meaning that traffic should no longer be forwarded in
its direction, or a section of the Internet may become congested, meaning that
traffic should be routed around the blockage. Much of the IP standard associated
with routing deals with the protocols used for communication among neighboring
network layers as they interchange routing information.

An interesting feature associated with forwarding is that each time an IP net-
work layer at a message’s origin prepares a packet, it appends a value called a hop
count, or time to live, to that packet. This value is a limit to the number of times
the packet should be forwarded as it tries to find its way through the Internet. Each
time an IP network layer forwards a packet, it decrements that packet’s hop count
by one. With this information, the network layer can protect the Internet from
packets circling endlessly within the system. Although the Internet continues to
grow on a daily basis, an initial hop count of 64 remains more than sufficient to
allow a packet to find its way through the maze of routers within today’s ISPs.

For years a version of IP known as IPv4 (IP version four) has been used for
implementing the network layer within the Internet. However, the Internet is
rapidly outgrowing the 32-bit internet addressing system dictated by IPv4. To
solve this problem as well as to implement other improvements such as multicast,
a new version of IP known as IPv6, which uses internet addresses consisting of
128 bits, has been established. The process of converting from IPv4 to IPv6 is
currently underway—this is the conversion that was alluded to in our introduc-
tion of Internet addresses in Section 4.2—and it is expected that the use of 32-bit
addresses within the Internet will be extinct by 2025.

1734.5 Security

4.5 Security
When a computer is connected to a network, it becomes subject to unauthorized
access and vandalism. In this section we address topics associated with these
problems.

Questions & Exercises

1. What layers of the Internet software hierarchy are not needed at a
router?

2. What are some differences between a transport layer based on the TCP
protocol and another based on the UDP protocol?

3. How does the transport layer determine which unit with the application
layer should receive an incoming message?

4. What keeps a computer on the Internet from recording copies of all the
messages passing through it?

Forms of Attack
There are numerous ways that a computer system and its contents can be
attacked via network connections. Many of these incorporate the use of mali-
cious software (collectively called malware). Such software might be transferred
to, and executed on, the computer itself, or it might attack the computer from
a distance. Examples of software that is transferred to, and executed on, the com-
puter under attack include viruses, worms, Trojan horses, and spyware, whose
names reflect the primary characteristic of the software.

A virus is software that infects a computer by inserting itself into programs that
already reside in the machine. Then, when the “host” program is executed, the virus
is also executed. When executed, many viruses do little more than try to transfer
themselves to other programs within the computer. Some viruses, however, per-
form devastating actions such as degrading portions of the operating system, eras-
ing large blocks of mass storage, or otherwise corrupting data and other programs.

A worm is an autonomous program that transfers itself through a network,
taking up residence in computers and forwarding copies of itself to other comput-
ers. As in the case of a virus, a worm can be designed merely to replicate itself or
to perform more extreme vandalism. A characteristic consequence of a worm is
an explosion of the worm’s replicated copies that degrades the performance of
legitimate applications and can ultimately overload an entire network or internet.

A Trojan horse is a program that enters a computer system disguised as a
desirable program, such as a game or useful utility package, that is willingly
imported by the victim. Once in the computer, however, the Trojan horse per-
forms additional activities that might have harmful effects. Sometimes these
additional activities start immediately. In other instances, the Trojan horse
might lie dormant until triggered by a specific event such as the occurrence of a
preselected date. Trojan horses often arrive in the form of attachments to entic-
ing email messages. When the attachment is opened (that is, when the recipient
asks to view the attachment), the misdeeds of the Trojan horse are activated.
Thus, email attachments from unknown sources should never be opened.

Another form of malicious software is spyware (sometimes called sniffing
software), which is software that collects information about activities at the com-
puter on which it resides and reports that information back to the instigator of the
attack. Some companies use spyware as a means of building customer profiles,
and in this context, it has questionable ethical merit. In other cases, spyware is

174 Chapter 4 Networking and the Internet

In November 1988 a worm released into the Internet caused significant disruption
of service. Consequently, the U.S. Defense Advanced Research Projects Agency
(DARPA—pronounced “DAR–pa”) formed the Computer Emergency Response Team
(CERT—pronounced “SERT”), located at the CERT Coordination Center at Carnegie-
Mellon University. The CERT is the Internet’s security “watchdog.” Among its duties
are the investigation of security problems, the issuance of security alerts, and the
implementation of public awareness campaigns to improve Internet security. The
CERT Coordination Center maintains a Web site at http://www.cert.org where it posts
notices of its activities.

The Computer Emergency Response Team

http://www.cert.org
http://www.cert.org

used for blatantly malicious purposes such as recording the symbol sequences
typed at the computer’s keyboard in search of passwords or credit card numbers.

As opposed to obtaining information secretly by sniffing via spyware,
phishing is a technique of obtaining information explicitly by simply asking for it.
The term phishing is a play on the word fishing because the process involved is to
cast numerous “lines” in hopes that someone will “take the bait.” Phishing is often
carried out via email, and in this form, it is little more than an old telephone con.
The perpetrator sends email messages posing as a financial institution, a govern-
ment bureau, or perhaps a law enforcement agency. The email asks the potential
victim for information that is supposedly needed for legitimate purposes. How-
ever, the information obtained is used by the perpetrator for hostile purposes.

In contrast to suffering from such internal infections as viruses and spyware,
a computer in a network can also be attacked by software being executed on
other computers in the system. An example is a denial of service (DoS) attack,
which is the process of overloading a computer with messages. Denial of service
attacks have been launched against large commercial Web servers on the
Internet to disrupt the company’s business and in some cases have brought the
company’s commercial activity to a halt.

A denial of service attack requires the generation of a large number of mes-
sages over a brief period of time. To accomplish this, an attacker usually plants
software on numerous unsuspecting computers that will generate messages when
a signal is given. Then, when the signal is given, all of these computers swamp the
target with messages. Inherent, then, in denial of service attacks is the availability
of unsuspecting computers to use as accomplices. This is why all PC users are dis-
couraged from leaving their computers connected to the Internet when not in use.
It has been estimated that once a PC is connected to the Internet, at least one
intruder will attempt to exploit its existence within 20 minutes. In turn, an unpro-
tected PC represents a significant threat to the integrity of the Internet.

Another problem associated with an abundance of unwanted messages is the
proliferation of unwanted junk email, called spam. However, unlike a denial of
service attack, the volume of spam is rarely sufficient to overwhelm the com-
puter system. Instead, the effect of spam is to overwhelm the person receiving
the spam. This problem is compounded by the fact that, as we have already seen,
spam is a widely adopted medium for phishing and instigating Trojan horses that
might spread viruses and other detrimental software.

Protection and Cures
The old adage “an ounce of prevention is worth a pound of cure” is certainly true
in the context of controlling vandalism over network connections. A primary
prevention technique is to filter traffic passing through a point in the network,
usually with a program called a firewall. For instance, a firewall might be installed
at the gateway of an organization’s intranet to filter messages passing in and out
of the region. Such firewalls might be designed to block outgoing messages with
certain destination addresses or to block incoming messages from origins that
are known to be sources of trouble. This latter function is a tool for terminating a
denial of service attack because it provides a means of blocking traffic from the
attacking computers. Another common role of a firewall at a gateway is to block
all incoming messages that have origin addresses within the region accessed
through the gateway because such a message would indicate that an outsider is

1754.5 Security

pretending to be a member of the inside region. Masquerading as a party other
than one’s self is known as spoofing.

Firewalls are also used to protect individual computers rather than entire net-
works or domains. For example, if a computer is not being used as a Web server, a
name server, or an email server, then a firewall should be installed at that com-
puter to block all incoming traffic addressed to such applications. Indeed, one
way an intruder might gain entry to a computer is by establishing contact through
a “hole” left by a nonexistent server. In particular, one method for retrieving infor-
mation gathered by spyware is to establish a clandestine server on the infected
computer by which malicious clients can retrieve the spyware’s findings. A prop-
erly installed firewall could block the messages from these malicious clients.

Some variations of firewalls are designed for specific purposes—an example
being spam filters, which are firewalls designed to block unwanted email. Many
spam filters use rather sophisticated techniques to distinguish between desirable
email and spam. Some learn to make this distinction via a training process in
which the user identifies items of spam until the filter acquires enough examples
to make decisions on its own. These filters are examples of how a variety of
subject areas (probability theory, artificial intelligence, etc.) can jointly con-
tribute to developments in other fields.

Another preventative tool that has filtering connotations is the proxy server.
A proxy server is a software unit that acts as an intermediary between a client
and a server with the goal of shielding the client from adverse actions of the
server. Without a proxy server, a client communicates directly with a server,
meaning that the server has an opportunity to learn a certain amount about the
client. Over time, as many clients within an organization’s intranet deal with a
distant server, that server can collect a multitude of information about the
intranet’s internal structure—information that can later be used for malicious
activity. To counter this, an organization can establish a proxy server for a
particular kind of service (FTP, HTTP, telnet, etc.). Then, each time a client
within the intranet tries to contact a server of that type, the client is actually
placed in contact with the proxy server. In turn, the proxy server, playing the
role of a client, contacts the actual server. From then on the proxy server plays
the role of an intermediary between the actual client and the actual server by
relaying messages back and forth. The first advantage of this arrangement is that
the actual server has no way of knowing that the proxy server is not the true
client, and in fact, it is never aware of the actual client’s existence. In turn, the
actual server has no way of learning about the intranet’s internal features. The
second advantage is that the proxy server is in position to filter all the messages
sent from the server to the client. For example, an FTP proxy server could check
all incoming files for the presence of known viruses and block all infected files.

Still another tool for preventing problems in a network environment is audit-
ing software that is similar to the auditing software we learned about in our dis-
cussion on operating system security (Section 3.5). Using network auditing software,
a system administrator can detect a sudden increase in message traffic at various
locations within the administrator’s realm, monitor the activities of the system’s
firewalls, and analyze the pattern of requests being made by the individual com-
puters in order to detect irregularities. In effect, auditing software is an adminis-
trator’s primary tool for identifying problems before they grow out of control.

Another means of defense against invasions via network connections is soft-
ware called antivirus software, which is used to detect and remove the presence

176 Chapter 4 Networking and the Internet

of known viruses and other infections. (Actually, antivirus software represents a
broad class of software products, each designed to detect and remove a specific
type of infection. For example, whereas many products specialize in virus control,
others specialize in spyware protection.) It is important for users of these pack-
ages to understand that, just as in the case of biological systems, new computer
infections are constantly coming on the scene that require updated vaccines.
Thus, antivirus software must be routinely maintained by downloading updates
from the software’s vendor. Even this, however, does not guarantee the safety of a
computer. After all, a new virus must first infect some computers before it is dis-
covered and a vaccine is produced. Thus, a wise computer user never opens
email attachments from unfamiliar sources, does not download software without
first confirming its reliability, does not respond to pop-up adds, and does not leave
a PC connected to the Internet when such connection is not necessary.

Encryption
In some cases the purpose of network vandalism is to disrupt the system (as in
denial of service attacks), but in other cases the ultimate goal is to gain access to
information. The traditional means of protecting information is to control its
access through the use of passwords. However, passwords can be compromised
and are of little value when data are transferred over networks and internets
where messages are relayed by unknown entities. In these cases encryption can
be used so that even if the data fall into unscrupulous hands, the encoded infor-
mation will remain confidential. Today, many traditional Internet applications
have been altered to incorporate encryption techniques, producing what are called
“secure versions” of the applications. Examples include FTPS, which is a secure
version of FTP, and SSH, which we introduced in Section 4.2 as a secure replace-
ment for telnet.

Still another example is the secure version of HTTP, known as HTTPS, which
is used by most financial institutions to provide customers with secure Internet
access to their accounts. The backbone of HTTPS is the protocol system known as
Secure Sockets Layer (SSL), which was originally developed by Netscape to pro-
vide secure communication links between Web clients and servers. Most browsers
indicate the use of SSL by displaying a tiny padlock icon on the computer screen.
(Some use the presence or absence of the icon to indicate whether SSL is being
used; others display the padlock in either the locked or unlocked position.)

One of the more fascinating topics in the field of encryption is public-key
encryption, which involves techniques by which encryption systems are
designed so that having knowledge about how messages are encrypted does not
allow one to decrypt messages. This characteristic is somewhat counterintuitive.
After all, intuition would suggest that if a person knows how messages are
encrypted, then that person should be able to reverse the encryption process and
thus decrypt messages. But public-key encryption systems defy this intuitive logic.

A public-key encryption system involves the use of two values called keys.
One key, known as the public key, is used to encrypt messages; the other key,
known as the private key, is required to decrypt messages. To use the system,
the public key is first distributed to those who might need to send messages to a
particular destination. The private key is held in confidence at this destination.
Then, the originator of a message can encrypt the message using the public key
and send the message to its destination with assurance that its contents are safe,

1774.5 Security

even if it is handled by intermediaries who also know the public key. Indeed, the
only party that can decrypt the message is the party at the message’s destination
who holds the private key. Thus if Bob creates a public-key encryption system
and gives both Alice and Carol the public key, then both Alice and Carol can
encrypt messages to Bob, but they cannot spy on the other’s communication.
Indeed, if Carol intercepts a message from Alice, she cannot decrypt it even though
she knows how Alice encrypted it (Figure 4.16).

There are, of course, subtle problems lurking within public-key systems.
One is to ensure that the public key being used is, in fact, the proper key for the
destination party. For example, if you are communicating with your bank, you

178 Chapter 4 Networking and the Internet

Figure 4.16 Public key encryption

Alice holds
public key

Bob holds
private key

Bob holds
private key

Carol holds
public key

Encrypted messages

Encrypted messages

Both Alice and
Carol can send
encrypted messages
to Bob.

Alice holds
public key

Carol holds
public key

Encrypted message
Carol cannot decrypt
Alice’s message even
though she knows how
Alice encrypted it.

?

Perhaps the most popular public-key encryption systems used within the Internet
are based on the RSA algorithm, named after its inventors Ron Rivest, Adi Shamir,
and Len Adleman, which we will discuss in detail at the end of Chapter 12. RSA tech-
niques (among others) are used in a collection of software packages produced by
PGP Corporation. PGP stands for Pretty Good Privacy. These packages are compatible
with most email software used on PCs and available without charge for personal,
noncommercial use at http://www.pgp.com. Using PGP software, an individual can
generate public and private keys, encrypt messages with public keys, and decrypt
messages with private keys.

Pretty Good Privacy

http://www.pgp.com
http://www.pgp.com

want to be sure that the public key you are using for encryption is the one for the
bank and not an impostor. If an impostor presents itself as the bank (an example
of spoofing) and gives you its public key, the messages you encrypt and send to
the “bank” would be meaningful to the impostor and not your bank. Thus, the
task of associating public keys with correct parties is significant.

One approach to resolving this problem is to establish trusted Internet sites,
called certificate authorities, whose task is to maintain accurate lists of parties
and their public keys. These authorities, acting as servers, then provide reli-
able public-key information to their clients in packages known as certificates. A
certificate is a package containing a party’s name and that party’s public key.
Many commercial certificate authorities are now available on the Internet,
although it is also common for organizations to maintain their own certificate
authorities in order to maintain tighter control over the security of the organiza-
tion’s communication.

Finally, we should comment on the role public-key encryption systems play
in solving problems of authentication—making sure that the author of a mes-
sage is, in fact, the party it claims to be. The critical point here is that, in some
public-key encryption systems, the roles of the encryption and decryption keys
can be reversed. That is, text can be encrypted with the private key, and because
only one party has access to that key, any text that is so encrypted must have
originated from that party. In this manner, the holder of the private key can pro-
duce a bit pattern, called a digital signature, that only that party knows how to
produce. By attaching that signature to a message, the sender can mark the mes-
sage as being authentic. A digital signature can be as simple as the encrypted
version of the message itself. All the sender must do is encrypt the message
being transmitted using his or her private key (the key typically used for
decrypting). When the message is received, the receiver uses the sender’s public
key to decrypt the signature. The message that is revealed is guaranteed to be
authentic because only the holder of the private key could have produced the
encrypted version.

Legal Approaches to Network Security
Another way of enhancing the security of computer networking systems is to
apply legal remedies. There are, however, two obstacles to this approach. The
first is that making an action illegal does not preclude the action. All it does is
provide a legal recourse. The second is that the international nature of
networking means that obtaining recourse is often very difficult. What is illegal
in one country might be legal in another. Ultimately, enhancing network
security by legal means is an international project, and thus must be handled by
international legal bodies—a potential player would be the International Court of
Justice in The Hague.

Having made these disclaimers, we must admit that, although less than per-
fect, legal forces still have a tremendous influence, and thus it behooves us to
explore some of the legal steps that are being taken to resolve conflicts in the
networking arena. For this purpose, we use examples from the federal laws of
the United States. Similar examples could be drawn from other government
bodies such as the European Union.

We begin with the proliferation of malware. In the United States this problem
is addressed by the Computer Fraud and Abuse Act, which was first passed in

1794.5 Security

1984, although it has been amended several times. It is under this act that most
cases involving the introduction of worms and viruses have been prosecuted. In
short, the act requires proof that the defendant knowingly caused the transmis-
sion of a program or data that intentionally caused damage.

The Computer Fraud and Abuse Act also covers cases involving the theft of
information. In particular, the act outlaws obtaining anything of value via the
unauthorized access of a computer. Courts have tended to assign a broad interpre-
tation to the phrase “anything of value,” and thus the Computer Fraud and Abuse
Act has been applied to more than the theft of information. For instance, courts
have ruled that the mere use of a computer might constitute “anything of value.”

The right of privacy is another, and perhaps the most controversial, networking
issue facing the legal community. Questions involving an employer’s right to mon-
itor the communications of employees and the extent to which an Internet service
provider is authorized to access the information being communicated by its clients
have been given considerable thought. In the United States, many of these ques-
tions are addressed by the Electronic Communication Privacy Act (ECPA) of 1986,
which has its origins in legislation to control wiretapping. Although the act is
lengthy, its intent is captured in a few short excerpts. In particular, it states that

Except as otherwise specifically provided in this chapter any person who intentionally
intercepts, endeavors to intercept, or procures any other person to intercept or endeavor
to intercept, any wire, oral, or electronic communication . . . shall be punished as pro-
vided in subsection (4) or shall be subject to suit as provided in subsection (5).

and

. . . any person or entity providing an electronic communication service to the public
shall not intentionally divulge the contents of any communication . . . on that service
to any person or entity other than an addressee or intended recipient of such com-
munication or an agent of such addressee or intended recipient.

In brief, the ECPA confirms an individual’s right to private communication—it is
illegal for an Internet service provider to release information about the commu-
nication of its clients, and it is illegal for unauthorized personnel to eavesdrop on
another’s communication. But the ECPA leaves room for debate. For example,
the question regarding the rights of an employer to monitor the communication
of employees becomes a question of authorization, which courts have tended to
grant to employers when the communication is carried out using the employer’s
equipment.

Moreover, the act goes on to give some government agencies authority to
monitor electronic communications under certain restrictions. These provisions
have been the source of much debate. For example, in 2000 the FBI revealed the
existence of its system, called Carnivore, that reports on the communication of
all subscribers of an Internet service provider rather than just a court-designated
target, and in 2001 in response to the terrorist attack on the World Trade Center,
congress passed the controversial USA PATRIOT (Uniting and Strengthening
America by Providing Appropriate Tools Required to Intercept and Obstruct Ter-
rorism) Act that modified the restrictions under which government agencies
must operate.

In addition to the legal and ethical controversies raised by these develop-
ments, providing monitoring rights raises some technical problems that are

180 Chapter 4 Networking and the Internet

more pertinent to our study. One is that to provide these capabilities, a commu-
nication system must be constructed and programmed so that communications
can be monitored. To establish such capabilities was the goal of the Communica-
tions Assistance for Law Enforcement Act (CALEA). It requires telecommunica-
tion carriers to modify their equipment to accommodate law enforcement
taps—a requirement that has been complex and expensive to meet.

Another controversial issue involves the clash between the government’s
right to monitor communications and the public’s right to use encryption. If
the messages being monitored are well encrypted, then tapping the communi-
cation is of limited value to law enforcement agencies. Governments in the
United States, Canada, and Europe are considering systems that would require
the registration of ciphering keys, but such demands are being fought by cor-
porations. After all, due to corporate espionage it is understandable that requir-
ing the registration of ciphering keys would make many law-abiding
corporations, as well as citizens, uncomfortable. How secure can the registra-
tion system be?

Finally, as a means of recognizing the scope of legal issues surrounding the
Internet, we cite the Anticybersquatting Consumer Protection Act of 1999 that is
designed to protect organizations from impostors who might otherwise establish
look-a-like domain names (a practice known as cybersquatting). The act pro-
hibits the use of domain names that are identical or confusingly similar to
another’s trademark or “common law trademark.” One effect is that although the
act does not outlaw domain name speculation (the process of registering poten-
tially desirable domain names and later selling the rights to that name), it limits
the practice to generic domain names. Thus, a domain name speculator might
legally register a generic name such as GreatUsedCars.com but might not be
able to claim rights to the name BigAlUsedCars.com if Big Al is already in the
used car business. Such distinctions are often the subject of debate in lawsuits
based on the Anticybersquatting Consumer Protection Act.

1814.5 Security

1. What is phishing? How are computers secured against it?
2. What distinction is there between the types of firewalls that can be

placed at a domain’s gateway as opposed to an individual host within the
domain?

3. Technically, the term data refers to representations of information,
whereas information refers to the underlying meaning. Does the use of
passwords protect data or information? Does the use of encryption pro-
tect data or information?

4. What advantage does public-key encryption have over more traditional
encryption techniques?

5. What problems are associated with legal attempts to protect against net-
work security problems?

Questions & Exercises

182 Chapter 4 Networking and the Internet

1. What is a protocol? Identify three protocols
introduced in this chapter and describe the
purpose of each.

2. Describe the client/server model.

3. Describe the peer-to-peer model.

4. Describe the three kinds of distributed com-
puting systems.

5. What is the difference between an open net-
work and a closed network?

6. Why is the CSMA/CD protocol not applicable
in a wireless network?

7. Describe the steps followed by a machine that
wants to transmit a message in a network
using the CSMA/CD protocol.

8. What is the hidden terminal problem?
Describe a technique for solving it.

9. How does a hub differ from a repeater?

10. How does a router differ from such devices as
repeaters, bridges, and switches?

11. What is the distinction between a network and
an internet?

12. Identify two protocols for controlling the right
to transmit a message in a network.

13. Using 32-bit Internet addresses was originally
thought to provide ample room for expansion,
but that conjecture is not proving to be accu-
rate. IPv6 uses 128-bit addressing. Will that
prove to be adequate? Justify your answer.
(For example, you might compare the number
of possible addresses to the population of the
world.)

14. Encode each of the following bit patterns
using dotted decimal notation.
a. 000001010001001000100011
b. 1000000000100000
c. 0011000000011000

15. What bit pattern is represented by each of the
following dotted decimal patterns?
a. 0.0
b. 26.19.1
c. 8.12.20.13

16. Suppose the address of an end system on the
Internet is quoted as 134.48.4.122. What is the
32-bit address in hexadecimal notation?

17. What is a DNS lookup?

18. If a computer’s mnemonic Internet address is

batman.batcave.metropolis.gov

what might you conjecture about the structure
of the domain containing the machine?

19. Explain the components of the email address

kermit@animals.com

20. In the context of VoIP, what is the difference
between an analog telephone adapter and an
embedded phone?

21. What is the role of a mail server?

22. What is the distinction between N-unicast and
multicast?

23. Define each of the following:
a. Name server
b. Access ISP
c. Gateway
d. End system

24. Define each of the following:
a. Hypertext
b. HTML
c. Browser

25. Many “lay users” of the Internet interchange
the terms Internet and World Wide Web. To
what do each of the terms correctly refer?

26. When viewing a simple Web document, ask
your browser to display the source version of
the document. Then identify the basic structure
of the document. In particular, identify the
head and the body of the document and list
some of the statements you find in each.

27. List five HTML tags and describe their
meaning.

28. Modify the HTML document below so that
the word “Rover” is linked to the document
whose URL is http://animals.org/pets/
dogs.html.

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

http://animals.org/pets/dogs.html
http://animals.org/pets/dogs.html
http://animals.org/pets/dogs.html
http://animals.org/pets/dogs.html

183Chapter Review Problems

�html�

�head�

�title�Example�/title�

�/head�

�body�

�h1�My Pet Dog�/h1�

�p�My dog’s name is Rover.�/p�

�/body�

�/html�

29. Draw a sketch showing how the following
HTML document would appear when dis-
played on a computer screen.
�html�

�head�

�title�Example�/title�

�/head�

�body�

�h1�My Pet Dog�/h1�

�img src = “Rover.jpg”�

�/body�

�/html�

30. Using the informal XML style presented in the
text, design a markup language for representing
simple algebraic expressions as text files.

31. Using the informal XML style presented in the
text, design a set of tags that a word processor
might use for marking the underlying text.
For example, how would a word processor
indicate what text should be bold, italic,
underlined, and so on?

32. Using the informal XML style presented in
the text, design a set of tags that could be
used to mark motion picture reviews accord-
ing to the way the text items should appear
on a printed page. Then design a set of tags
that could be used to mark the reviews
according to the meaning of the items in
the text.

33. Using the informal XML style presented in
the text, design a set of tags that could be
used to mark articles about sporting events
according to the way the text items should
appear on a printed page. Then design a set
of tags that could be used to mark the
articles according to the meaning of the
items in the text.

34. Identify the components of the following URL
and describe the meaning of each.

http://lifeforms.com/animals/
moviestars/kermit.html

35. Identify the components of each of the follow-
ing abbreviated URLs.
a. http://www.farmtools.org/

windmills.html
b. http://castles.org/
c. www.coolstuff.com

36. How would the action of a browser differ if
you asked it to “find the document” at the URL
http://stargazer.universe.org
as opposed to
https://stargazer.universe.org?

37. Give two examples of client-side activities on
the Web. Give two examples of server-side
activities on the Web.

*38. What is the OSI reference model?

*39. In a network based on the bus topology, the
bus is a nonshareable resource for which the
machines must compete in order to transmit
messages. How is deadlock (see the optional
Section 3.4) controlled in this context?

*40. List the four layers in the Internet software
hierarchy and identify a task performed by
each layer.

*41. Why does the transport layer chop large mes-
sages into small packets?

*42. When an application asks the transport layer
to use TCP to transmit a message, what
additional messages will be sent by the trans-
port layer in order to fulfill the application
layer’s request?

*43. In what way could TCP be considered a better
protocol for implementing the transport layer
than UDP? In what way could UDP be consid-
ered better than TCP?

*44. What does it mean to say that UDP is a con-
nectionless protocol?

*45. At what layer in the TCP/IP protocol hierar-
chy could a firewall be placed to filter incom-
ing traffic by means of
a. Message content
b. Source address
c. Type of application

46. Suppose you wanted to establish a firewall
to filter out email messages containing

http://lifeforms.com/animals/moviestars/kermit.html
http://lifeforms.com/animals/moviestars/kermit.html
http://www.farmtools.org/windmills.html
http://www.farmtools.org/windmills.html
http://castles.org/
www.coolstuff.com
http://stargazer.universe.org
https://stargazer.universe.org?
http://lifeforms.com/animals/moviestars/kermit.html
http://lifeforms.com/animals/moviestars/kermit.html
http://www.farmtools.org/windmills.html
http://www.farmtools.org/windmills.html
http://castles.org/
www.coolstuff.com
http://stargazer.universe.org

184 Chapter 4 Networking and the Internet

certain terms and phrases. Would this
firewall be placed at your domain’s gateway
or at the domain’s mail server? Explain your
answer.

47. What is a proxy server and what are its
benefits?

48. Summarize the principles of public-key
encryption.

49. In what way is an unprotected idle PC a
danger to the Internet?

50. In what sense does the global nature of the
Internet limit legal solutions to Internet
problems?

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. The ability to connect computers via networks has popularized the concept
of working at home. What are some pros and cons of this movement? Will it
affect the consumption of natural resources? Will it strengthen families? Will
it reduce “office politics”? Will those who work at home have the same career
advancement opportunities as those who work on site? Will community ties
be weakened? Will reduced personal contact with peers have a positive or
negative effect?

2. Ordering merchandise over the Internet is becoming an alternative to “hands
on” shopping. What effect will such a shift in shopping habits have on commu-
nities? What about shopping malls? What about small shops, such as bookstores
and clothing stores, in which you like to browse without buying? To what extent
is buying at the lowest possible price good or bad? Is there any moral obligation
to pay more for an item in order to support a local business? Is it ethical to com-
pare products at a local store and then order your selection at a lower price via
the Internet? What are the long-term consequences of such behavior?

3. To what extent should a government control its citizens’ access to the
Internet (or any international network)? What about issues that involve
national security? What are some security issues that might occur?

4. Electronic bulletin boards allow users of networks to post messages (often
anonymously) and read messages posted by others. Should the manager of
such a bulletin board be held responsible for its contents? Should a tele-
phone company be held responsible for the contents of telephone conversa-
tions? Should the manager of a grocery store be held responsible for the
contents of a community bulletin board located in the store?

5. Should the use of the Internet be monitored? Should it be regulated? If so, by
whom and to what extent?

6. How much time do you spend using the Internet? Is that time well spent?
Has Internet access altered your social activities? Do you find it easier to talk
to people via the Internet than in person?

7. When you buy a software package for a personal computer, the developer
usually asks you to register with the developer so that you can be notified of

Social Issues

future upgrades. This registration process is increasingly being handled via
the Internet. You are usually asked to give such things as your name, address,
and perhaps how you learned of the product, and then the developer’s soft-
ware automatically transfers this data to the developer. What ethical issues
would be raised if the developer designed the registration software so that it
sent additional information to the developer during the registration process?
For example, the software might scan the contents of your system and report
the other software packages found.

8. When you visit a Web site, that site has the capability of recording data,
called cookies, on your computer indicating that you have visited that site.
These cookies can then be used to identify return visitors and to record their
previous activities so that future visits to the site can be handled more effi-
ciently. The cookies on your computer also provide a record of the sites you
have visited. Should a Web site have the capability to record cookies on your
computer? Should a Web site be allowed to record cookies on your computer
without your knowledge? What are possible benefits of cookies? What prob-
lems could arise from the use of cookies?

9. If corporations are required to register their encryption keys with a govern-
ment agency, will they be safe?

10. In general, etiquette tells us to avoid calling a friend at his or her place of work
for personal or social matters such as making arrangements for a weekend
outing. Likewise, most of us would hesitate to call a customer at his or her
home to describe a new product. In a similar manner, we mail wedding invita-
tions to the guests’ residences, whereas we mail announcements of business
conferences to the attendees’ work addresses. Is it proper to send personal
email to a friend via the mail server at the friend’s place of employment?

11. Suppose a PC owner leaves the PC connected to the Internet where it ulti-
mately is used by another party to implement a denial of service attack. To
what extent should the PC owner be liable? Does your answer depend on
whether the owner installed proper firewalls?

12. Is it ethical for companies that produce candy or toys to provide games on
their company Web sites that entertain children while promoting the com-
pany’s products? What if the game is designed to collect information from
the children? What are the boundaries between entertaining, advertising,
and exploitation?

Antoniou, G. and F. van Harmelem. A Semantic Web Primer. Cambridge, MA: MIT
Press, 2004.

Bishop, M. Introduction to Computer Security. Boston, MA: Addison-Wesley, 2005.

Comer, D. E. Computer Networks and Internets, 5th ed. Upper Saddle River, NJ:
Prentice-Hall, 2009.

Comer, D. E. Internetworking with TCP/IP, Vol. 1, 5th ed. Upper Saddle River, NJ:
Prentice-Hall, 2006.

Additional Reading

185Additional Reading

186 Chapter 4 Networking and the Internet

Goldfarb, C. F. and P. Prescod. The XML Handbook, 5th ed. Upper Saddle River,
NJ: Prentice-Hall, 2004.

Halsal, F. Computer Networking and the Internet. Boston, MA: Addison-Wesley, 2005.

Harrington, J. L. Network Security: A Practical Approach. San Francisco: Morgan
Kaufmann, 2005.

Kurose, J. F. and K. W. Ross. Computer Networking: A Top Down Approach Featuring
the Internet, 4th ed. Boston, MA: Addison-Wesley, 2008.

Peterson, L. L. and B. S. Davie. Computer Networks: A Systems Approach, 3rd ed.
San Francisco: Morgan Kaufmann, 2003.

Rosenoer, J. CyberLaw, The Law of the Internet. New York: Springer, 1997.

Spinello, R. A. and H. T. Tavani. Readings in CyberEthics. Sudbury, MA: Jones and
Bartlett, 2001.

Stallings, W. Cryptography and Network Security, 4th ed. Upper Saddle River, NJ:
Prentice-Hall, 2006.

Stevens, W. R. TCP/IP Illustrated, Vol. 1. Boston, MA: Addison-Wesley, 1994.

Algorithms

In the introductory chapter we learned that the central theme of

computer science is the study of algorithms. It is time now for us to

focus on this core topic. Our goal is to explore enough of this

foundational material so that we can truly understand and

appreciate the science of computing.

C H A P T E R

5

5.1 The Concept of an Algorithm
An Informal Review
The Formal Definition of an Algorithm
The Abstract Nature of Algorithms

5.2 Algorithm Representation
Primitives
Pseudocode

5.3 Algorithm Discovery
The Art of Problem Solving
Getting a Foot in the Door

5.4 Iterative Structures
The Sequential Search Algorithm
Loop Control
The Insertion Sort Algorithm

5.5 Recursive Structures
The Binary Search Algorithm
Recursive Control

5.6 Efficiency and Correctness
Algorithm Efficiency
Software Verification

We have seen that before a computer can perform a task, it must be given an
algorithm telling it precisely what to do; consequently, the study of algorithms is
the cornerstone of computer science. In this chapter we introduce many of the
fundamental concepts of this study, including the issues of algorithm discovery
and representation as well as the major control concepts of iteration and recur-
sion. In so doing we also present a few well-known algorithms for searching and
sorting. We begin by reviewing the concept of an algorithm.

5.1 The Concept of an Algorithm
In the introductory chapter we informally defined an algorithm as a set of steps
that define how a task is performed. In this section we look more closely at this
fundamental concept.

An Informal Review
We have encountered a multitude of algorithms in our study. We have found
algorithms for converting numeric representations from one form to another,
detecting and correcting errors in data, compressing and decompressing data
files, controlling multiprogramming in a multitasking environment, and many
more. Moreover, we have seen that the machine cycle that is followed by a CPU
is nothing more than the simple algorithm

As long as the halt instruction has not been executed

continue to execute the following steps:

a. Fetch an instruction.

b. Decode the instruction.

c. Execute the instruction.

As demonstrated by the algorithm describing a magic trick in Figure 0.1,
algorithms are not restricted to technical activities. Indeed, they underlie even
such mundane activities as shelling peas:

Obtain a basket of unshelled peas and an empty bowl.

As long as there are unshelled peas in the basket continue

to execute the following steps:

a. Take a pea from the basket.

b. Break open the pea pod.

c. Dump the peas from the pod into the bowl.

d. Discard the pod.

In fact, many researchers believe that every activity of the human mind,
including imagination, creativity, and decision making, is actually the result
of algorithm execution—a conjecture we will revisit in our study of artificial
intelligence (Chapter 11).

But before we proceed further, let us consider the formal definition of an
algorithm.

The Formal Definition of an Algorithm
Informal, loosely defined concepts are acceptable and common in everyday life,
but a science must be based on well-defined terminology. Consider, then, the
formal definition of an algorithm stated in Figure 5.1.

Note that the definition requires that the set of steps in an algorithm be
ordered. This means that the steps in an algorithm must have a well-established
structure in terms of the order of their execution. This does not mean, however,
that the steps must be executed in a sequence consisting of a first step, followed
by a second, and so on. Some algorithms, known as parallel algorithms, contain

188 Chapter 5 Algorithms

more than one sequence of steps, each designed to be executed by different
processors in a multiprocessor machine. In such cases the overall algorithm does
not possess a single thread of steps that conforms to the first-step, second-step
scenario. Instead, the algorithm’s structure is that of multiple threads that
branch and reconnect as different processors perform different parts of the over-
all task. (We will revisit this concept in Chapter 6.) Other examples include algo-
rithms executed by circuits such as the flip-flop in Chapter 1, in which each gate
performs a single step of the overall algorithm. Here the steps are ordered by
cause and effect, as the action of each gate propagates throughout the circuit.

Next, consider the requirement that an algorithm must consist of executable
steps. To appreciate this condition, consider the instruction

Make a list of all the positive integers

which would be impossible to perform because there are infinitely many posi-
tive integers. Thus any set of instructions involving this instruction would not be
an algorithm. Computer scientists use the term effective to capture the concept of
being executable. That is, to say that a step is effective means that it is doable.

Another requirement imposed by the definition in Figure 5.1 is that the
steps in an algorithm be unambiguous. This means that during execution of an
algorithm, the information in the state of the process must be sufficient to deter-
mine uniquely and completely the actions required by each step. In other words,
the execution of each step in an algorithm does not require creative skills.
Rather, it requires only the ability to follow directions. (In Chapter 12 we will
learn that “algorithms,” called nondeterministic algorithms, that do not conform
to this restriction are an important topic of research.)

The definition in Figure 5.1 also requires that an algorithm define a termi-
nating process, which means that the execution of an algorithm must lead to an
end. The origin of this requirement is in theoretical computer science, where the
goal is to answer such questions as “What are the ultimate limitations of algo-
rithms and machines?” Here computer science seeks to distinguish between
problems whose answers can be obtained algorithmically and problems whose
answers lie beyond the capabilities of algorithmic systems. In this context, a line
is drawn between processes that culminate with an answer and those that
merely proceed forever without producing a result.

There are, however, meaningful applications for nonterminating processes,
including monitoring the vital signs of a hospital patient and maintaining an air-
craft’s altitude in flight. Some would argue that these applications involve merely
the repetition of algorithms, each of which reaches an end and then automati-
cally repeats. Others would counter that such arguments are simply attempts to
cling to an overly restrictive formal definition. In any case, the result is that the
term algorithm is often used in applied, or informal settings in reference to sets
of steps that do not necessarily define terminating processes. An example is the
long-division “algorithm” that does not define a terminating process for dividing
1 by 3. Technically, such instances represent misuses of the term.

1895.1 The Concept of an Algorithm

An algorithm is an ordered set
of unambiguous, executable steps
that defines a terminating process.

Figure 5.1 The definition of an algorithm

The Abstract Nature of Algorithms
It is important to emphasize the distinction between an algorithm and its
representation—a distinction that is analogous to that between a story and a
book. A story is abstract, or conceptual, in nature; a book is a physical represen-
tation of a story. If a book is translated into another language or republished in a
different format, it is merely the representation of the story that changes—the
story itself remains the same.

In the same manner, an algorithm is abstract and distinct from its represen-
tation. A single algorithm can be represented in many ways. As an example, the
algorithm for converting temperature readings from Celsius to Fahrenheit is
traditionally represented as the algebraic formula

F � (9⁄5)C � 32

But it could be represented by the instruction

Multiply the temperature reading in Celsius by 9⁄5

and then add 32 to the product

or even in the form of an electronic circuit. In each case the underlying algo-
rithm is the same; only the representations differ.

The distinction between an algorithm and its representation presents a prob-
lem when we try to communicate algorithms. A common example involves the
level of detail at which an algorithm must be described. Among meteorologists,
the instruction “Convert the Celsius reading to its Fahrenheit equivalent” suffices,
but a layperson, requiring a more detailed description, might argue that the
instruction is ambiguous. The problem, however, is not with the underlying
algorithm but that the algorithm is not represented in enough detail for the layper-
son. In the next section we will see how the concept of primitives can be used to
eliminate such ambiguity problems in an algorithm’s representation.

Finally, while on the subject of algorithms and their representations, we
should clarify the distinction between two other related concepts—programs and
processes. A program is a representation of an algorithm. (Here we are using the
term algorithm in its less formal sense in that many programs are representations
of nonterminating “algorithms.”) In fact, within the computing community the
term program usually refers to a formal representation of an algorithm designed
for computer application. We defined a process in Chapter 3 to be the activity of
executing a program. Note, however, that to execute a program is to execute the
algorithm represented by the program, so a process could equivalently be defined
as the activity of executing an algorithm. We conclude that programs, algorithms,
and processes are distinct, yet related, entities. A program is the representation of
an algorithm, whereas a process is the activity of executing an algorithm.

190 Chapter 5 Algorithms

Questions & Exercises

1. Summarize the distinctions between a process, an algorithm, and a
program.

2. Give some examples of algorithms with which you are familiar. Are they
really algorithms in the precise sense?

3. Identify some points of vagueness in our informal definition of an algo-
rithm introduced in Section 0.1 of the introductory chapter.

1915.2 Algorithm Representation

4. In what sense do the steps described by the following list of instructions
fail to constitute an algorithm?
Step 1. Take a coin out of your pocket and put it on the table.
Step 2. Return to Step 1.

5.2 Algorithm Representation
In this section we consider issues relating to an algorithm’s representation. Our
goal is to introduce the basic concepts of primitives and pseudocode as well as to
establish a representation system for our own use.

Primitives
The representation of an algorithm requires some form of language. In the case
of humans this might be a traditional natural language (English, Spanish, Russian,
Japanese) or perhaps the language of pictures, as demonstrated in Figure 5.2,

Figure 5.2 Folding a bird from a square piece of paper

which describes an algorithm for folding a bird from a square piece of paper.
Often, however, such natural channels of communication lead to misunder-
standings, sometimes because the terminology used has more than one mean-
ing. (The sentence, “Visiting grandchildren can be nerve-racking,” could mean
either that the grandchildren cause problems when they come to visit or that
going to see them is problematic.) Problems also arise over misunderstandings
regarding the level of detail required. Few readers could successfully fold a bird
from the directions given in Figure 5.2, yet a student of origami would probably
have little difficulty. In short, communication problems arise when the language
used for an algorithm’s representation is not precisely defined or when informa-
tion is not given in adequate detail.

Computer science approaches these problems by establishing a well-defined set
of building blocks from which algorithm representations can be constructed. Such a
building block is called a primitive. Assigning precise definitions to these primi-
tives removes many problems of ambiguity, and requiring algorithms to be
described in terms of these primitives establishes a uniform level of detail. A
collection of primitives along with a collection of rules stating how the primitives
can be combined to represent more complex ideas constitutes a programming
language.

Each primitive has its own syntax and semantics. Syntax refers to the primi-
tive’s symbolic representation; semantics refers to the meaning of the primitive.
The syntax of air consists of three symbols, whereas the semantics is a gaseous
substance that surrounds the world. As an example, Figure 5.3 presents some of
the primitives used in origami.

To obtain a collection of primitives to use in representing algorithms for
computer execution, we could turn to the individual instructions that the
machine is designed to execute. If an algorithm is expressed at this level of detail,
we will certainly have a program suitable for machine execution. However,
expressing algorithms at this level is tedious, and so one normally uses a collec-
tion of “higher-level” primitives, each being an abstract tool constructed from the
lower-level primitives provided in the machine’s language. The result is a formal
programming language in which algorithms can be expressed at a conceptually
higher level than in machine language. We will discuss such programming
languages in the next chapter.

Pseudocode
For now, we forgo the introduction of a formal programming language in favor of
a less formal, more intuitive notational system known as pseudocode. In general,
a pseudocode is a notational system in which ideas can be expressed informally
during the algorithm development process.

One way to obtain a pseudocode is simply to loosen the rules of the formal
language in which the final version of the algorithm is to be expressed. This
approach is commonly used when the target programming language is known in
advance. There the pseudocode used during the early stages of program devel-
opment consists of syntax-semantic structures similar to, but less formal than,
those used in the target programming language.

Our goal, however, is to consider the issues of algorithm development and
representation without confining our discussion to a particular programming
language. Thus our approach to pseudocode is to develop a consistent, concise

192 Chapter 5 Algorithms

notation for representing recurring semantic structures. In turn, these structures
will become the primitives in which we attempt to express future ideas.

One such recurring semantic structure is the saving of a computed value.
For example, if we have computed the sum of our checking and savings account
balances, we may want to save the result so we can refer to it later. In such cases,
we will use the form

name ← expression

where name is the name by which we will refer to the result and expression
describes the computation whose result is to be saved. We will read these state-
ments as “assign name the value of expression,” and we will refer to such state-
ments as assignment statements. For example, the statement

RemainingFunds ← CheckingBalance � SavingsBalance

is an assignment statement that assigns the sum of CheckingBalance and Sav-

ingsBalance to the name RemainingFunds. Thus, the term RemainingFunds can
be used in future statements to refer to that sum.

1935.2 Algorithm Representation

Syntax Semantics

Turn paper over

as in

Shade one side
of paper

Distinguishes between different sides of paper

as in

Represents a valley fold

so that

Represents a mountain fold

so that

Fold over

so that produces

Push in

so that produces

represents

represents

Figure 5.3 Origami primitives

Another recurring semantic structure is the selection of one of two possible
activities depending on the truth or falseness of some condition. Examples
include:

If the gross domestic product has increased, buy common stock; otherwise, sell
common stock.
Buy common stock if the gross domestic product has increased and sell it
otherwise.
Buy or sell common stock depending on whether the gross domestic product has
increased or decreased, respectively.

Each of these statements could be rewritten to conform to the structure

if (condition) then (activity)
else (activity)

where we have used the key words if, then, and else to announce the different
substructures within the main structure and have used parentheses to delineate
the boundaries of these substructures. By adopting this syntactic structure for
our pseudocode, we acquire a uniform way in which to express this common
semantic structure. Thus, whereas the statement

Depending on whether or not the year is a leap year, divide the total by
366 or 365, respectively.

might possess a more creative literary style, we will consistently opt for the
straightforward

if (year is leap year)

then (daily total ← total divided by 366)

else (daily total ← total divided by 365)

194 Chapter 5 Algorithms

The task of designing a complex algorithm requires that the designer keep track of
numerous interrelated concepts—a requirement that can exceed the capabilities of
the human mind. Thus the designer of complex algorithms needs a way to record and
recall portions of an evolving algorithm as his or her concentration requires.

During the 1950s and 1960s, flowcharts (by which algorithms are represented
by geometric shapes connected by arrows) were the state-of-the-art design tool.
However, flowcharts often became tangled webs of crisscrossing arrows that made
understanding the structure of the underlying algorithm difficult. Thus the use of
flowcharts as design tools has given way to other representation techniques. An
example is the pseudocode used in this text, by which algorithms are represented
with well-defined textual structures. Flowcharts are still beneficial when the goal is
presentation rather than design. For example, Figures 5.8 and 5.9 apply flowchart
notation to demonstrate the algorithmic structure represented by popular control
statements.

The search for better design notations is a continuing process. In Chapter 7 we
will see that the trend is to use graphical techniques to assist in the global design of
large software systems, while pseudocode remains popular for designing the smaller
procedural components within a system.

Algorithm Representation During Algorithm Design

We also adopt the shorter syntax

if (condition) then (activity)

for those cases not involving an else activity. Using this notation, the statement

Should it be the case that sales have decreased, lower the price by 5%.

will be reduced to

if (sales have decreased) then (lower the price by 5%)

Still another common semantic structure is the repeated execution of a state-
ment or sequence of statements as long as some condition remains true. Infor-
mal examples include

As long as there are tickets to sell, continue selling tickets.

and

While there are tickets to sell, keep selling tickets.

For such cases, we adopt the uniform pattern

while (condition) do (activity)

for our pseudocode. In short, such a statement means to check the condition
and, if it is true, perform the activity and return to check the condition again.
If, however, the condition is found to be false, move on to the next instruction
following the while structure. Thus both of the preceding statements are
reduced to

while (tickets remain to be sold) do (sell a ticket)

Indentation often enhances the readability of a program. For example, the
statement

if (not raining)

then (if (temperature = hot)

then (go swimming)

else (play golf)

)

else (watch television)

is easier to comprehend than the otherwise equivalent

if (not raining) then (if (temperature = hot) then (go

swimming) else (play golf)) else (watch television)

Thus we will adopt the use of indentation in our pseudocode. (Note that we can
even use indentation to align a closing parenthesis directly below its partner to
simplify the process of identifying the scope of statements or phrases.)

We want to use our pseudocode to describe activities that can be used as
abstract tools in other applications. Computer science has a variety of terms for
such program units, including subprogram, subroutine, procedure, module, and
function, each with its own variation of meaning. We will adopt the term
procedure for our pseudocode and use this term to announce the title by which
the pseudocode unit will be known. More precisely, we will begin a pseudocode
unit with a statement of the form

procedure name

1955.2 Algorithm Representation

where name is the particular name of the unit. We will then follow this introduc-
tory statement with the statements that define the unit’s action. For example,
Figure 5.4 is a pseudocode representation of a procedure called Greetings that
prints the message “Hello” three times.

When the task performed by a procedure is required elsewhere in our
pseudocode, we will merely request it by name. For example, if two procedures
were named ProcessLoan and RejectApplication, then we could request their
services within an if-then-else structure by writing

if (. . .) then (Execute the procedure ProcessLoan)

else (Execute the procedure RejectApplication)

which would result in the execution of the procedure ProcessLoan if the tested
condition were true or in the execution of RejectApplication if the condition
were false.

If procedures are to be used in different situations, they should be designed to
be as generic as possible. A procedure for sorting lists of names should be
designed to sort any list—not a particular list—so it should be written in such a
way that the list to be sorted is not specified in the procedure itself. Instead, the
list should be referred to by a generic name within the procedure’s representation.

In our pseudocode, we will adopt the convention of listing these generic
names (which are called parameters) in parentheses on the same line on which
we identify the procedure’s name. In particular, a procedure named Sort, which
is designed to sort any list of names, would begin with the statement

procedure Sort (List)

Later in the representation where a reference to the list being sorted is required,
the generic name List would be used. In turn, when the services of Sort are
required, we will identify which list is to be substituted for List in the procedure
Sort. Thus we will write something such as

Apply the procedure Sort to the organization’s membership list

and

Apply the procedure Sort to the wedding guest list

depending on our needs.
Keep in mind that the purpose of our pseudocode is to provide a means

of representing algorithms in a readable, informal manner. We want a notational

196 Chapter 5 Algorithms

procedure Greetings
Count ← 3;
while (Count > 0) do

(print the message “Hello” and
 Count ← Count –1)

Figure 5.4 The procedure Greetings in pseudocode

system that will assist us in expressing our ideas—not enslave us to rigorous, for-
mal rules. Thus we will feel free to expand or modify our pseudocode when
needed. In particular, if the statements within a set of parentheses involve
parenthetical statements themselves, it can become difficult to pair opening and
closing parenthesis visually. In these cases, many people find it helpful to follow
a closing parenthesis with a short comment explaining which statement or
phrase is being terminated. In particular, one might follow the final parenthesis
in a while statement with the words end while, producing a statement such as

while (...) do
(.

.

.

)end while

or perhaps

while (...) do
(if (...)

then (.

.

.

)end if
)end while

where we have indicated the end of both the if and while statements.
The point is that we are trying to express an algorithm in a readable form,

and thus we introduce visual aids (indentation, comments, etc.) at times to
achieve this goal. Moreover, if we encounter a recurring theme that is not yet
incorporated in our pseudocode, we might choose to extend our pseudocode by
adopting a consistent syntax for representing the new concept.

1975.2 Algorithm Representation

In a natural language, items often have multiword names such as “cost of producing a
widget” or “estimated arrival time.” Experience has shown that use of such multiword
names in the representation of an algorithm can complicate the algorithm’s descrip-
tion. It is better to have each item identified by a single contiguous block of text. Over
the years many techniques have been used to compress multiple words into a single
lexical unit to obtain descriptive names for items in programs. One is to use under-
lines to connect words, producing names such as estimated_arrival_time.
Another is to use uppercase letters to help a reader comprehend a compressed multi-
word name. For example, one could start each word with an uppercase letter to obtain
names such as EstimatedArrivalTime. This technique is called Pascal casing,
because it was popularized by users of the Pascal programming language. A variation
of Pascal casing is called camel casing, which is identical to Pascal casing except that
the first letter remains in lowercase as in estimatedArrivalTime. In this text we
lean toward Pascal casing, but the choice is largely a matter of taste.

Naming Items in Programs

5.3 Algorithm Discovery
The development of a program consists of two activities—discovering the under-
lying algorithm and representing that algorithm as a program. Up to this point
we have been concerned with the issues of algorithm representation without
considering the question of how algorithms are discovered in the first place. Yet
algorithm discovery is usually the more challenging step in the software devel-
opment process. After all, discovering an algorithm to solve a problem requires
finding a method of solving that problem. Thus, to understand how algorithms
are discovered is to understand the problem-solving process.

The Art of Problem Solving
The techniques of problem solving and the need to learn more about them are
not unique to computer science but rather are topics pertinent to almost any
field. The close association between the process of algorithm discovery and that
of general problem solving has caused computer scientists to join with those of
other disciplines in the search for better problem-solving techniques. Ultimately,
one would like to reduce the process of problem solving to an algorithm in itself,
but this has been shown to be impossible. (This is a result of the material in
Chapter 12, where we will show that there are problems that do not have algo-
rithmic solutions.) Thus the ability to solve problems remains more of an artistic
skill to be developed than a precise science to be learned.

As evidence of the elusive, artistic nature of problem solving, the following
loosely defined problem-solving phases presented by the mathematician G. Polya
in 1945 remain the basic principles on which many attempts to teach problem-
solving skills are based today.

Phase 1. Understand the problem.
Phase 2. Devise a plan for solving the problem.

198 Chapter 5 Algorithms

Questions & Exercises

1. A primitive in one context might turn out to be a composite of primitives
in another. For instance, our while statement is a primitive in our
pseudocode, yet it is ultimately implemented as a composite of machine-
language instructions. Give two examples of this phenomenon in a non-
computer setting.

2. In what sense is the construction of procedures the construction of
primitives?

3. The Euclidean algorithm finds the greatest common divisor of two posi-
tive integers X and Y by the following process:

As long as the value of neither X nor Y is zero, continue dividing the larger of
the values by the smaller and assigning X and Y the values of the divisor and
remainder, respectively. (The final value of X is the greatest common divisor.)

Express this algorithm in our pseudocode.
4. Describe a collection of primitives that are used in a subject other than

computer programming.

1995.3 Algorithm Discovery

Phase 3. Carry out the plan.
Phase 4. Evaluate the solution for accuracy and for its potential as a tool for

solving other problems.

Translated into the context of program development, these phases become

Phase 1. Understand the problem.
Phase 2. Get an idea of how an algorithmic procedure might solve the problem.
Phase 3. Formulate the algorithm and represent it as a program.
Phase 4. Evaluate the program for accuracy and for its potential as a tool for

solving other problems.

Having presented Polya’s list, we should emphasize that these phases are not
steps to be followed when trying to solve a problem but rather phases that will be
completed sometime during the solution process. The key word here is followed.
You do not solve problems by following. Rather, to solve a problem, you must
take the initiative and lead. If you approach the task of solving a problem in the
frame of mind depicted by “Now I’ve finished Phase 1, it’s time to move on to
Phase 2,” you are not likely to be successful. However, if you become involved
with the problem and ultimately solve it, you most likely can look back at what
you did and realize that you performed Polya’s phases.

Another important observation is that Polya’s phases are not necessarily
completed in sequence. Successful problem solvers often start formulating
strategies for solving a problem (Phase 2) before the problem itself is entirely
understood (Phase 1). Then, if these strategies fail (during Phases 3 or 4), the
potential problem solver gains a deeper understanding of the intricacies of the
problem and, with this deeper understanding, can return to form other and
hopefully more successful strategies.

Keep in mind that we are discussing how problems are solved—not how we
would like them to be solved. Ideally, we would like to eliminate the waste inher-
ent in the trial-and-error process just described. In the case of developing large
software systems, discovering a misunderstanding as late as Phase 4 can repre-
sent a tremendous loss in resources. Avoiding such catastrophes is a major goal
of software engineers (Chapter 7), who have traditionally insisted on a thorough
understanding of a problem before proceeding with a solution. One could argue,
however, that a true understanding of a problem is not obtained until a solution
has been found. The mere fact that a problem is unsolved implies a lack of
understanding. To insist on a complete understanding of the problem before pro-
posing any solutions is therefore somewhat idealistic.

As an example, consider the following problem:

Person A is charged with the task of determining the ages of person B’s three
children. B tells A that the product of the children’s ages is 36. After considering
this clue, A replies that another clue is required, so B tells A the sum of the chil-
dren’s ages. Again, A replies that another clue is needed, so B tells A that the old-
est child plays the piano. After hearing this clue, A tells B the ages of the three
children.
How old are the three children?

At first glance the last clue seems to be totally unrelated to the problem, yet it is
apparently this clue that allows A to finally determine the ages of the children.
How can this be? Let us proceed by formulating a plan of attack and following
this plan, even though we still have many questions about the problem. Our plan

will be to trace the steps described by the problem statement while keeping track
of the information available to person A as the story progresses.

The first clue given A is that the product of the children’s ages is 36. This means
that the triple representing the three ages is one of those listed in Figure 5.5(a). The
next clue is the sum of the desired triple. We are not told what this sum is, but
we are told that this information is not enough for A to isolate the correct triple;
therefore the desired triple must be one whose sum appears at least twice in the
table of Figure 5.5(b). But the only triples appearing in Figure 5.5(b) with iden-
tical sums are (1,6,6) and (2,2,9), both of which produce the sum 13. This is the
information available to A at the time the last clue is given. It is at this point
that we finally understand the significance of the last clue. It has nothing to do
with playing the piano; rather it is the fact that there is an oldest child. This
rules out the triple (1,6,6) and thus allows us to conclude that the children’s
ages are 2, 2, and 9.

In this case, then, it is not until we attempt to implement our plan for solv-
ing the problem (Phase 3) that we gain a complete understanding of the problem
(Phase 1). Had we insisted on completing Phase 1 before proceeding, we would
probably never have found the children’s ages. Such irregularities in the problem-
solving process are fundamental to the difficulties in developing systematic
approaches to problem solving.

Another irregularity is the mysterious inspiration that might come to a
potential problem solver who, having worked on a problem without apparent
success, at a later time suddenly sees the solution while doing another task. This
phenomenon was identified by H. von Helmholtz as early as 1896 and was dis-
cussed by the mathematician Henri Poincaré in a lecture before the Psychologi-
cal Society in Paris. There, Poincaré described his experiences of realizing the
solution to a problem he had worked on after he had set it aside and begun other
projects. The phenomenon reflects a process in which a subconscious part of the
mind appears to continue working and, if successful, forces the solution into the
conscious mind. Today, the period between conscious work on a problem and
the sudden inspiration is known as an incubation period, and its understanding
remains a goal of current research.

Getting a Foot in the Door
We have been discussing problem solving from a somewhat philosophical
point of view while avoiding a direct confrontation with the question of
how we should go about trying to solve a problem. There are, of course, numer-
ous problem-solving approaches, each of which can be successful in certain

200 Chapter 5 Algorithms

(1,1,36)

(1,2,18)

(1,3,12)

(1,4,9)

(1,6,6)

(2,2,9)

(2,3,6)

(3,3,4)

1 + 1 + 36 = 38

1 + 2 + 18 = 21

1 + 3 + 12 = 16

1 + 4 + 9 = 14

1 + 6 + 6 = 13

2 + 2 + 9 = 13

2 + 3 + 6 = 11

3 + 3 + 4 = 10

a. Triples whose product is 36 b. Sums of triples from part (a)

Figure 5.5

settings. We will identify some of them shortly. For now, we note that there
seems to be a common thread running through these techniques, which simply
stated is “get your foot in the door.” As an example, let us consider the following
simple problem:

Before A, B, C, and D ran a race they made the following predictions:

A predicted that B would win.
B predicted that D would be last.
C predicted that A would be third.
D predicted that A’s prediction would be correct.

Only one of these predictions was true, and this was the prediction made by the
winner. In what order did A, B, C, and D finish the race?

After reading the problem and analyzing the data, it should not take long to real-
ize that since the predictions of A and D were equivalent and only one prediction
was true, the predictions of both A and D must be false. Thus neither A nor D
were winners. At this point we have our foot in the door, and obtaining the com-
plete solution to our problem is merely a matter of extending our knowledge
from here. If A’s prediction was false, then B did not win either. The only remain-
ing choice for the winner is C. Thus, C won the race, and C’s prediction was true.
Consequently, we know that A came in third. That means that the finishing
order was either CBAD or CDAB. But the former is ruled out because B’s predic-
tion must be false. Therefore the finishing order was CDAB.

Of course, being told to get our foot in the door is not the same as being told
how to do it. Obtaining this toehold, as well as realizing how to expand this initial
thrust into a complete solution to the problem, requires creative input from the
would-be problem solver. There are, however, several general approaches that
have been proposed by Polya and others for how one might go about getting a
foot in the door. One is to try working the problem backward. For instance, if the
problem is to find a way of producing a particular output from a given input, one
might start with that output and attempt to back up to the given input. This
approach is typical of people trying to discover the bird-folding algorithm in the
previous section. They tend to unfold a completed bird in an attempt to see how
it is constructed.

Another general problem-solving approach is to look for a related problem
that is either easier to solve or has been solved before and then try to apply its
solution to the current problem. This technique is of particular value in the con-
text of program development. Generally, program development is not the process
of solving a particular instance of a problem but rather of finding a general algo-
rithm that can be used to solve all instances of the problem. More precisely, if we
were faced with the task of developing a program for alphabetizing lists of names,
our task would not be to sort a particular list but to find a general algorithm that
could be used to sort any list of names. Thus, although the instructions

Interchange the names David and Alice.

Move the name Carol to the position between Alice and David.

Move the name Bob to the position between Alice and Carol.

correctly sort the list David, Alice, Carol, and Bob, they do not constitute the general-
purpose algorithm we desire. What we need is an algorithm that can sort this list

2015.3 Algorithm Discovery

as well as other lists we might encounter. This is not to say that our solution for
sorting a particular list is totally worthless in our search for a general-purpose
algorithm. We might, for instance, get our foot in the door by considering such
special cases in an attempt to find general principles that can in turn be used to
develop the desired general-purpose algorithm. In this case, then, our solution is
obtained by the technique of solving a collection of related problems.

Still another approach to getting a foot in the door is to apply stepwise
refinement, which is essentially the technique of not trying to conquer an
entire task (in all its detail) at once. Rather, stepwise refinement proposes that
one first view the problem at hand in terms of several subproblems. The idea is
that by breaking the original problem into subproblems, one is able to approach
the overall solution in terms of steps, each of which is easier to solve than the
entire original problem. In turn, stepwise refinement proposes that these steps
be decomposed into smaller steps and these smaller steps be broken into still
smaller ones until the entire problem has been reduced to a collection of easily
solved subproblems.

In this light, stepwise refinement is a top-down methodology in that it pro-
gresses from the general to the specific. In contrast, a bottom-up methodology
progresses from the specific to the general. Although contrasting in theory, the
two approaches often complement each other in creative problem solving. The
decomposition of a problem proposed by the top-down methodology of stepwise
refinement is often guided by the problem solver’s intuition, which might be
working in a bottom-up mode.

The top-down methodology of stepwise refinement is essentially an orga-
nizational tool whose problem-solving attributes are consequences of this
organization. It has long been an important design methodology in the data
processing community, where the development of large software systems
encompasses a significant organizational component. But, as we will learn in
Chapter 7, large software systems are increasingly being constructed by com-
bining prefabricated components—an approach that is inherently bottom-up.
Thus, both top-down and bottom-up methodologies remain important tools in
computer science.

The importance of maintaining such a broad perspective is exemplified by
the fact that bringing preconceived notions and preselected tools to the problem-
solving task can sometimes mask a problem’s simplicity. The ages-of-the-children
problem discussed earlier in this section is an excellent example of this phenom-
enon. Students of algebra invariably approach the problem as a system of simul-
taneous equations, an approach that leads to a dead end and often traps the
would-be problem solver into believing that the information given is not suffi-
cient to solve the problem.

Another example is the following:

As you step from a pier into a boat, your hat falls into the water, unbeknownst to you.
The river is flowing at 2.5 miles per hour so your hat begins to float downstream. In
the meantime, you begin traveling upstream in the boat at a speed of 4.75 miles per
hour relative to the water. After 10 minutes you realize that your hat is missing, turn
the boat around, and begin to chase your hat down the river. How long will it take to
catch up with your hat?

Most algebra students as well as calculator enthusiasts approach this problem by
first determining how far upstream the boat will have traveled in 10 minutes as

202 Chapter 5 Algorithms

well as how far downstream the hat will have traveled during that same time.
Then, they determine how long it will take for the boat to travel downstream to
this position. But, when the boat reaches this position, the hat will have floated
farther downstream. Thus, the problem solver either begins to apply techniques
of calculus or becomes trapped in a cycle of computing where the hat will be
each time the boat goes to where the hat was.

The problem is much simpler than this, however. The trick is to resist the
urge to begin writing formulas and making calculations. Instead, we need to put
these skills aside and adjust our perspective. The entire problem takes place in
the river. The fact that the water is moving in relation to the shore is irrelevant.
Think of the same problem posed on a large conveyer belt instead of a river. First,
solve the problem with the conveyer belt at rest. If you place your hat at your feet
while standing on the belt and then walk away from your hat for 10 minutes, it
will take 10 minutes to return to your hat. Now turn on the conveyer belt. This
means that the scenery will begin to move past the belt, but, because you are on
the belt, this does not change your relationship to the belt or your hat. It will still
take 10 minutes to return to your hat.

We conclude that algorithm discovery remains a challenging art that must be
developed over a period of time rather than taught as a subject consisting of well-
defined methodologies. Indeed, to train a potential problem solver to follow certain
methodologies is to quash those creative skills that should instead be nurtured.

2035.3 Algorithm Discovery

1. a. Find an algorithm for solving the following problem: Given a positive
integer n, find the list of positive integers whose product is the largest
among all the lists of positive integers whose sum is n. For example, if
n is 4, the desired list is 2, 2 because 2 × 2 is larger than 1 × 1 × 1 × 1,
2 × 1 × 1, and 3 × 1. If n is 5, the desired list is 2, 3.

b. What is the desired list if n � 2001?
c. Explain how you got your foot in the door.

2. a. Suppose we are given a checkerboard consisting of 2n rows and 2n

columns of squares, for some positive integer n, and a box of L-shaped
tiles, each of which can cover exactly three squares on the board. If any
single square is cut out of the board, can we cover the remaining board
with tiles such that tiles do not overlap or hang off the edge of the board?

b. Explain how your solution to (a) can be used to show that 22n� 1 is di-
visible by 3 for all positive integers n.

c. How are (a) and (b) related to Polya’s phases of problem solving?

3. Decode the following message, then explain how you got your foot in the
door. Pdeo eo pda yknnayp wjosan.

4. Would you be following a top-down methodology if you attempted to
solve a picture puzzle merely by pouring the pieces out on a table and
trying to piece them together? Would your answer change if you looked
at the puzzle box to see what the entire picture was supposed to look like?

Questions & Exercises

5.4 Iterative Structures
Our goal now is to study some of the repetitive structures used in describing
algorithmic processes. In this section we discuss iterative structures in which a
collection of instructions is repeated in a looping manner. In the next section we
will introduce the technique of recursion. As a side effect, we will introduce
some popular algorithms—the sequential search, the binary search, and the
insertion sort. We begin by introducing the sequential search algorithm.

The Sequential Search Algorithm
Consider the problem of searching within a list for the occurrence of a particular
target value. We want to develop an algorithm that determines whether that
value is in the list. If the value is in the list, we consider the search a success; oth-
erwise we consider it a failure. We assume that the list is sorted according to
some rule for ordering its entries. For example, if the list is a list of names, we
assume the names appear in alphabetical order, or if the list consists of numeric
values, we assume its entries appear in order of increasing magnitude.

To get our foot in the door, we imagine how we might search a guest list of
perhaps 20 entries for a particular name. In this setting we might scan the list
from its beginning, comparing each entry with the target name. If we find the tar-
get name, the search terminates as a success. However, if we reach the end of the
list without finding the target value, our search terminates as a failure. In fact, if
we reach a name greater than (alphabetically) the target name without finding
the target, our search terminates as a failure. (Remember, the list is arranged in
alphabetical order, so reaching a name greater than the target name indicates that
the target does not appear in the list.) In summary, our rough idea is to continue
searching down the list as long as there are more names to be investigated and
the target name is greater than the name currently being considered.

In our pseudocode, this process can be represented as

Select the first entry in the list as TestEntry.

while (TargetValue > TestEntry and

there remain entries to be considered)

do (Select the next entry in the list as TestEntry)

Upon terminating this while structure, one of two conditions will be true:
either the target value has been found or the target value is not in the list. In
either case we can detect a successful search by comparing the test entry to the
target value. If they are equal, the search has been successful. Thus we add the
statement

if (TargetValue = TestEntry)

then (Declare the search a success.)

else (Declare the search a failure.)

to the end of our pseudocode routine.
Finally, we observe that the first statement in our routine, which selects the

first entry in the list as the test entry, is based on the assumption that the list in
question contains at least one entry. We might reason that this is a safe guess, but
just to be sure, we can position our routine as the else option of the statement

204 Chapter 5 Algorithms

if (List empty)

then (Declare search a failure.)

else (. . .)

This produces the procedure shown in Figure 5.6. Note that this procedure can
be used from within other procedures by using statements such as

Apply the procedure Search to the passenger list

using Darrel Baker as the target value.

to find out if Darrel Baker is a passenger and

Apply the procedure Search to the list of ingredients

using nutmeg as the target value.

to find out if nutmeg appears in the list of ingredients.
In summary, the algorithm represented by Figure 5.6 considers the entries

in the sequential order in which they occur in the list. For this reason, the
algorithm is called the sequential search algorithm. Because of its simplicity,
it is often used for short lists or when other concerns dictate its use. However,
in the case of long lists, sequential searches are not as efficient as other tech-
niques (as we shall soon see).

Loop Control
The repetitive use of an instruction or sequence of instructions is an important
algorithmic concept. One method of implementing such repetition is the itera-
tive structure known as the loop, in which a collection of instructions, called the
body of the loop, is executed in a repetitive fashion under the direction of some
control process. A typical example is found in the sequential search algorithm
represented in Figure 5.6. Here we use a while statement to control the repeti-
tion of the single statement Select the next entry in List as the TestEntry.
Indeed, the while statement

while (condition) do (body)

2055.4 Iterative Structures

Figure 5.6 The sequential search algorithm in pseudocode

procedure Search (List, TargetValue)
if (List empty)

then
 (Declare search a failure)

else
 (Select the first entry in List to be TestEntry;

while (TargetValue > TestEntry and
 there remain entries to be considered)

do (Select the next entry in List as TestEntry.);
if (TargetValue = TestEntry)

then (Declare search a success.)
else (Declare search a failure.)

) end if

exemplifies the concept of a loop structure in that its execution traces the cyclic
pattern

check the condition.
execute the body.
check the condition.
execute the body.
.

.

.

check the condition.

until the condition fails.
As a general rule, the use of a loop structure produces a higher degree of flex-

ibility than would be obtained merely by explicitly writing the body several
times. For example, to execute the statement

Add a drop of sulfuric acid.

three times, we could write:

Add a drop of sulfuric acid.

Add a drop of sulfuric acid.

Add a drop of sulfuric acid.

But we cannot produce a similar sequence that is equivalent to the loop
structure

while (the pH level is greater than 4) do
(add a drop of sulfuric acid)

because we do not know in advance how many drops of acid will be required.
Let us now take a closer look at the composition of loop control. You might

be tempted to view this part of a loop structure as having minor importance.
After all, it is typically the body of the loop that actually performs the task at
hand (for example, adding drops of acid)—the control activities appear merely as
the overhead involved because we chose to execute the body in a repetitive fash-
ion. However, experience has shown that the control of a loop is the more error-
prone part of the structure and therefore deserves our attention.

The control of a loop consists of the three activities initialize, test, and mod-
ify (Figure 5.7), with the presence of each being required for successful loop con-
trol. The test activity has the obligation of causing the termination of the looping
process by watching for a condition that indicates termination should take place.
This condition is known as the termination condition. It is for the purpose of
this test activity that we provide a condition within each while statement of
our pseudocode. In the case of the while statement, however, the condition
stated is the condition under which the body of the loop should be executed—
the termination condition is the negation of the condition appearing in the
while structure. Thus, in the statement

while (the pH level is greater than 4) do
(add a drop of sulfuric acid)

206 Chapter 5 Algorithms

2075.4 Iterative Structures

the termination condition is “the pH level is not greater than 4,” and in the while
statement of Figure 5.6, the termination condition could be stated as

(TargetValue � TestEntry) or (there are no more entries to be considered)

The other two activities in the loop control ensure that the termination
condition will ultimately occur. The initialization step establishes a starting
condition, and the modification step moves this condition toward the termi-
nation condition. For instance, in Figure 5.6, initialization takes place in the
statement preceding the while statement, where the current test entry is
established as the first list entry. The modification step in this case is actually
accomplished within the loop body, where our position of interest (identified
by the test entry) is moved toward the end of the list. Thus, having executed
the initialization step, repeated application of the modification step results in
the termination condition being reached. (Either we will reach a test entry
that is greater than or equal to the target value or we ultimately reach the end
of the list.)

We should emphasize that the initialization and modification steps must
lead to the appropriate termination condition. This characteristic is critical
for proper loop control, and thus one should always double-check for its pres-
ence when designing a loop structure. Failure to make such an evaluation can
lead to errors even in the simplest cases. A typical example is found in the
statements

Number ← 1;

while (Number ≠ 6) do
(Number ← Number + 2)

Here the termination condition is “Number = 6.” But the value of Number is ini-
tialized at 1 and then incremented by 2 in the modification step. Thus, as the
loop cycles, the values assigned to Number will be 1, 3, 5, 7, 9, and so on, but
never the value 6. In turn, the loop will never terminate.

The order in which the components of loop control are executed can
have subtle consequences. In fact, there are two common loop structures that
differ merely in this regard. The first is exemplified by our pseudocode
statement

while (condition) do (activity)

Figure 5.7 Components of repetitive control

Initialize: Establish an initial state that will be modified toward the
 termination condition

Test: Compare the current state to the termination condition
 and terminate the repetition if equal

Modify: Change the state in such a way that it moves toward the
 termination condition

whose semantics are represented in Figure 5.8 in the form of a flowchart.
(Such charts use various shapes to represent individual steps and use arrows
to indicate the order of the steps. The distinction between the shapes
indicates the type of action involved in the associated step. A diamond indi-
cates a decision and a rectangle indicates an arbitrary statement or sequence
of statements.) Note that the test for termination in the while structure
occurs before the loop’s body is executed.

In contrast, the structure in Figure 5.9 requests that the body of the loop be
executed before the test for termination is performed. In this case, the loop’s
body is always performed at least once, whereas in the while structure, the body
is never executed if the termination condition is satisfied the first time it is
tested.

We will use the syntactic form

repeat (activity) until (condition)

in our pseudocode to represent the structure shown in Figure 5.9. Thus, the
statement

repeat (take a coin from your pocket)

until (there are no coins in your pocket)

assumes there is a coin in your pocket at the beginning, but

while (there is a coin in your pocket) do
(take a coin from your pocket)

does not.
Following the terminology of our pseudocode, we will usually refer to these

structures as the while loop structure or the repeat loop structure. In a more
generic context you might hear the while loop structure referred to as a pretest
loop (since the test for termination is performed before the body is executed)
and the repeat loop structure referred to as a posttest loop (since the test for
termination is performed after the body is executed).

208 Chapter 5 Algorithms

Figure 5.8 The while loop structure

Condition
false

Condition
true

Test
condition

Activity

The Insertion Sort Algorithm
As an additional example of using iterative structures, let us consider the prob-
lem of sorting a list of names into alphabetical order. But before proceeding, we
should identify the constraints under which we will work. Simply stated, our goal
is to sort the list “within itself.” In other words, we want to sort the list by shuf-
fling its entries as opposed to moving the list to another location. Our situation is
analogous to the problem of sorting a list whose entries are recorded on separate
index cards spread out on a crowded desktop. We have cleared off enough space
for the cards but are not allowed to push additional materials back to make more
room. This restriction is typical in computer applications, not because the work-
space within the machine is necessarily crowded like our desktop, but simply
because we want to use the storage space available in an efficient manner.

Let us get a foot in the door by considering how we might sort the names on
the desktop. Consider the list of names

Fred
Alex
Diana
Byron
Carol

One approach to sorting this list is to note that the sublist consisting of only the
top name, Fred, is sorted but the sublist consisting of the top two names, Fred
and Alex, is not. Thus we might pick up the card containing the name Alex,
slide the name Fred down into the space where Alex was, and then place the
name Alex in the hole at the top of the list, as represented by the first row in
Figure 5.10. At this point our list would be

Alex
Fred
Diana
Byron
Carol

2095.4 Iterative Structures

Figure 5.9 The repeat loop structure

Condition
false

Condition
true

Activity

Test
condition

Now the top two names form a sorted sublist, but the top three do not. Thus
we might pick up the third name, Diana, slide the name Fred down into the hole
where Diana was, and then insert Diana in the hole left by Fred, as summarized
in the second row of Figure 5.10. The top three entries in the list would now be
sorted. Continuing in this fashion, we could obtain a list in which the top four
entries are sorted by picking up the fourth name, Byron, sliding the names Fred
and Diana down, and then inserting Byron in the hole (see the third row of
Figure 5.10). Finally, we can complete the sorting process by picking up Carol,
sliding Fred and Diana down, and then inserting Carol in the remaining hole
(see the fourth row of Figure 5.10).

210 Chapter 5 Algorithms

Figure 5.10 Sorting the list Fred, Alex, Diana, Byron, and Carol alphabetically

Initial list: Fred
Alex

Diana
Byron
Carol

Alex AlexFred

Diana
Byron
Carol

Fred
Diana
Byron
Carol

Fred
Alex

Diana
Byron
Carol

Fred
Alex

Diana
Byron
Carol

Sorted

Diana DianaAlex
Fred
Alex

Byron
Carol

Fred
Byron
Carol

Fred

Alex
Diana

Byron
Carol

Fred
Alex

Diana
Byron
Carol

Sorted

Byron AlexAlex
Diana
Fred

Carol
Fred

Diana

Byron

Carol
Fred

Alex

Diana
Byron

Carol

Alex
Diana
Fred

Byron
Carol

Sorted

Carol Carol

Fred
Diana
Byron
Alex

Byron
Alex

Diana
Fred

Byron
Alex

Carol
Diana
Fred

Byron
Alex

Carol
Diana
Fred

Alex
Byron
Diana
Fred
Carol

Sorted

Sorted list:

Having analyzed the process of sorting a particular list, our task now is to
generalize this process to obtain an algorithm for sorting general lists. To this
end, we observe that each row of Figure 5.10 represents the same general
process: Pick up the first name in the unsorted portion of the list, slide the
names greater than the extracted name down, and insert the extracted name
back in the list where the hole appears. If we identify the extracted name as the
pivot entry, this process can be expressed in our pseudocode as

Move the pivot entry to a temporary location leaving a hole

in List;

while (there is a name above the hole and

that name is greater than the pivot) do
(move the name above the hole down into the hole

leaving a hole above the name)

Move the pivot entry into the hole in List.

Next, we observe that this process should be executed repeatedly. To begin
the sorting process, the pivot should be the second entry in the list and then,
before each additional execution, the pivot selection should be one more entry
down the list until the last entry has been positioned. That is, as the preceding
routine is repeated, the initial position of the pivot entry should advance from
the second entry to the third, then to the fourth, etc., until the routine has posi-
tioned the last entry in the list. Following this lead we can control the required
repetition with the statements

2115.4 Iterative Structures

Musicians were using and programming iterative structures centuries before com-
puter scientists. Indeed, the structure of a song (being composed of multiple verses,
each followed by the chorus) is exemplified by the while statement

while (there is a verse remaining) do
(sing the next verse;
sing the chorus)

Moreover, the notation

is merely a composer’s way of expressing the structure

N ← 1;
while (N < 3) do
(play the passage;

play the Nth ending;

N ← N + 1)

Iterative Structures in Music

•
•

•
•

1 2

Passage

212 Chapter 5 Algorithms

Figure 5.11 The insertion sort algorithm expressed in pseudocode

procedure Sort (List)
N ← 2;
while (the value of N does not exceed the length of List) do
 (Select the Nth entry in List as the pivot entry;
 Move the pivot entry to a temporary location leaving a hole in List;

while (there is a name above the hole and that name is greater than the pivot)
 do (move the name above the hole down into the hole
 leaving a hole above the name)
 Move the pivot entry into the hole in List;
 N ← N + 1
)

N ← 2;

while (the value of N does not exceed the length of List) do
(Select the Nth entry in List as the pivot entry;

.

.

.

N ← N + 1)

where N represents the position to use for the pivot entry, the length of List
refers to the number of entries in the list, and the dots indicate the location
where the previous routine should be placed.

Our complete pseudocode program is shown in Figure 5.11. In short, the pro-
gram sorts a list by repeatedly removing an entry and inserting it into its proper
place. It is because of this repeated insertion process that the underlying algo-
rithm is called the insertion sort.

Note that the structure of Figure 5.11 is that of a loop within a loop, the outer
loop being expressed by the first while statement and the inner loop represented
by the second while statement. Each execution of the body of the outer loop
results in the inner loop being initialized and executed until its termination con-
dition is obtained. Thus, a single execution of the outer loop’s body will result in
several executions of the inner loop’s body.

The initialization component of the outer loop’s control consists of establish-
ing the initial value of N with the statement

N ← 2;

The modification component is handled by incrementing the value of N at the
end of the loop’s body with the statement

N ← N + 1

The termination condition occurs when the value of N exceeds the length of the list.
The inner loop’s control is initialized by removing the pivot entry from the

list and thus creating a hole. The loop’s modification step is accomplished by
moving entries down into the hole, thus causing the hole to move up. The ter-
mination condition consists of the hole being immediately below a name that is
not greater than the pivot or of the hole reaching the top of the list.

2135.4 Iterative Structures

1. Modify the sequential search procedure in Figure 5.6 to allow for lists
that are not sorted.

2. Convert the pseudocode routine
Z ← 0;

X ← 1;

while (X < 6) do
(Z ← Z + X;

X ← X + 1)

to an equivalent routine using a repeat statement.
3. Some of the popular programming languages today use the syntax

while (. . .) do (. . .)

to represent a pretest loop and the syntax
do (. . .) while (. . .)

to represent a posttest loop. Although elegant in design, what problems
could result from such similarities?

4. Suppose the insertion sort as presented in Figure 5.11 was applied to the
list Gene, Cheryl, Alice, and Brenda. Describe the organization of the list
at the end of each execution of the body of the outer while structure.

5. Why would we not want to change the phrase “greater than” in the while
statement in Figure 5.11 to “greater than or equal to”?

6. A variation of the insertion sort algorithm is the selection sort. It begins
by selecting the smallest entry in the list and moving it to the front. It
then selects the smallest entry from the remaining entries in the list and
moves it to the second position in the list. By repeatedly selecting the
smallest entry from the remaining portion of the list and moving that
entry forward, the sorted version of the list grows from the front of the
list, while the back portion of the list consisting of the remaining unsorted
entries shrinks. Use our pseudocode to express a procedure similar to that
in Figure 5.11 for sorting a list using the selection sort algorithm.

7. Another well-known sorting algorithm is the bubble sort. It is based on
the process of repeatedly comparing two adjacent names and inter-
changing them if they are not in the correct order relative to each other.
Let us suppose that the list in question has n entries. The bubble sort
would begin by comparing (and possibly interchanging) the entries
in positions n and n – 1. Then, it would consider the entries in positions
n – 1 and n – 2, and continue moving forward in the list until the first
and second entries in the list had been compared (and possibly inter-
changed). Observe that this pass through the list will pull the smallest
entry to the front of the list. Likewise, another such pass will ensure that
the next to the smallest entry will be pulled to the second position in the
list. Thus, by making a total of n – 1 passes through the list, the entire list
will be sorted. (If one watches the algorithm at work, one sees the small
entries bubble to the top of the list—an observation from which the algo-
rithm gets its name.) Use our pseudocode to express a procedure similar
to that in Figure 5.11 for sorting a list using the bubble sort algorithm.

Questions & Exercises

5.5 Recursive Structures
Recursive structures provide an alternative to the loop paradigm for implement-
ing the repetition of activities. Whereas a loop involves repeating a set of instruc-
tions in a manner in which the set is completed and then repeated, recursion
involves repeating the set of instructions as a subtask of itself. As an analogy,
consider the process of conducting telephone conversations with the call waiting
feature. There, an incomplete telephone conversation is set aside while another
incoming call is processed. The result is that two conversations take place. How-
ever, they are not performed one-after-the-other as in a loop structure, but
instead one is performed within the other.

The Binary Search Algorithm
As a way of introducing recursion, let us again tackle the problem of searching to
see whether a particular entry is in a sorted list, but this time we get our foot in
the door by considering the procedure we follow when searching a dictionary. In
this case we do not perform a sequential entry-by-entry or even a page-by-page
procedure. Rather, we begin by opening the directory to a page in the area where
we believe the target entry is located. If we are lucky, we will find the target
value there; otherwise, we must continue searching. But at this point we will
have narrowed our search considerably.

Of course, in the case of searching a dictionary, we have prior knowledge
of where words are likely to be found. If we are looking for the word
somnambulism, we would start by opening to the latter portion of the diction-
ary. In the case of generic lists, however, we do not have this advantage, so let
us agree to always start our search with the “middle” entry in the list. Here we
write the word middle in quotation marks because the list might have an even
number of entries and thus no middle entry in the exact sense. In this case, let
us agree that the “middle” entry refers to the first entry in the second half of
the list.

If the middle entry in the list is the target value, we can declare the search a
success. Otherwise, we can at least restrict the search process to the first or last
half of the list depending on whether the target value is less than or greater than
the entry we have considered. (Remember that the list is sorted.)

To search the remaining portion of the list, we could apply the sequential
search, but instead let us apply the same approach to this portion of the list that
we used for the whole list. That is, we select the middle entry in the remaining
portion of the list as the next entry to consider. As before, if that entry is the tar-
get value, we are finished. Otherwise we can restrict our search to an even
smaller portion of the list.

This approach to the searching process is summarized in Figure 5.12, where
we consider the task of searching the list on the left of the figure for the entry
John. We first consider the middle entry Harry. Since our target belongs after
this entry, the search continues by considering the lower half of the original list.
The middle of this sublist is found to be Larry. Since our target should precede
Larry, we turn our attention to the first half of the current sublist. When we
interrogate the middle of that secondary sublist, we find our target John and
declare the search a success. In short, our strategy is to successively divide the
list in question into smaller segments until the target is found or the search is
narrowed to an empty segment.

214 Chapter 5 Algorithms

We need to emphasize this last point. If the target value is not in the original
list, our approach to searching the list will proceed by dividing the list into
smaller segments until the segment under consideration is empty. At this point
our algorithm should recognize that the search is a failure.

Figure 5.13 is a first draft of our thoughts using our pseudocode. It directs us
to begin a search by testing to see if the list is empty. If so, we are told to report
that the search is a failure. Otherwise, we are told to consider the middle entry in
the list. If this entry is not the target value, we are told to search either the front
half or the back half of the list. Both of these possibilities require a secondary
search. It would be nice to perform these searches by calling on the services of
an abstract tool. In particular, our approach is to apply a procedure named
Search to carry out these secondary searches. To complete our program, there-
fore, we must provide such a procedure.

2155.5 Recursive Structures

Figure 5.12 Applying our strategy to search a list for the entry John

Original list First sublist Second sublist

Alice
Bob
Carol
David
Elaine
Fred
George
Harry
Irene
John
Kelly
Larry
Mary
Nancy
Oliver

Irene
John
Kelly
Larry
Mary
Nancy
Oliver

Irene
John
Kelly

Figure 5.13 A first draft of the binary search technique

if (List empty)
then
 (Report that the search failed.)
 else
 [Select the “middle” entry in the List to be the TestEntry;
 Execute the block of instructions below that is
 associated with the appropriate case.
 case 1: TargetValue = TestEntry
 (Report that the search succeeded.)
 case 2: TargetValue < TestEntry
 (Search the portion of List preceding TestEntry for
 TargetValue, and report the result of that search.)
 case 3: TargetValue > TestEntry
 (Search the portion of List following TestEntry for
 TargetValue, and report the result of that search.)
] end if

216 Chapter 5 Algorithms

But this procedure should perform the same task that is expressed by the
pseudocode we have already written. It should first check to see if the list it is
given is empty, and if it is not, it should proceed by considering the middle entry
of that list. Thus we can supply the procedure we need merely by identifying the
current routine as being the procedure named Search and inserting references
to that procedure where the secondary searches are required. The result is
shown in Figure 5.14.

Note that this procedure contains a reference to itself. If we were following
this procedure and came to the instruction

Apply the procedure Search . . .

we would apply the same procedure to the smaller list that we were applying to the
original one. If that search succeeded, we would return to declare our original
search successful; if this secondary search failed, we would declare our original
search a failure.

Figure 5.14 The binary search algorithm in pseudocode

procedure Search (List, TargetValue)

if (List empty)
 then
 (Report that the search failed.)
 else

 [Select the “middle” entry in List to be the TestEntry;
 Execute the block of instructions below that is
 associated with the appropriate case.
 case 1: TargetValue = TestEntry
 (Report that the search succeeded.)
 case 2: TargetValue < TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of the List preceding TestEntry,
 and report the result of that search.)
 case 3: TargetValue > TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of List following TestEntry,
 and report the result of that search.)
] end if

The sequential and binary search algorithms are only two of many algorithms for
performing the search process. Likewise, the insertion sort is only one of many
sorting algorithms. Other classic algorithms for sorting include the merge sort
(discussed in Chapter 12), the selection sort (Question/Exercise 6 in Section 5.4),
the bubble sort (Question/Exercise 7 in Section 5.4), the quick sort (which applies
a divide-and-conquer approach to the sorting process), and the heap sort (which
uses a clever technique for finding the entries that should be moved forward in the
list). You will find discussions of these algorithms in the books listed under Addi-
tional Reading at the end of this chapter.

Searching and Sorting

To see how the procedure in Figure 5.14 performs its task, let us follow it
as it searches the list Alice, Bill, Carol, David, Evelyn, Fred, and George, for
the target value Bill. Our search begins by selecting David (the middle entry)
as the test entry under consideration. Since the target value (Bill) is less than
this test entry, we are instructed to apply the procedure Search to the list
of entries preceding David—that is, the list Alice, Bill, and Carol. In so doing,
we create a second copy of the search procedure and assign it to this second-
ary task.

We now have two copies of our search procedure being executed, as summa-
rized in Figure 5.15. Progress in the original copy is temporarily suspended at
the instruction

Apply the procedure Search to see if TargetValue is

in the portion of List preceding the TestEntry

while we apply the second copy to the task of searching the list Alice, Bill, and
Carol. When we complete this secondary search, we will discard the second copy
of the procedure, report its findings to the original copy, and continue progress
in the original. In this way, the second copy of the procedure executes as a
subordinate to the original, performing the task requested by the original mod-
ule and then disappearing.

The secondary search selects Bill as its test entry because that is the middle
entry in the list Alice, Bill, and Carol. Since this is the same as the target value, it
declares its search to be a success and terminates.

2175.5 Recursive Structures

Figure 5.15

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
 else
 [Select the "middle" entry in List to be the TestEntry;
 Execute the block of instructions below that is
 associated with the appropriate case.
 case 1: TargetValue = TestEntry
 (Report that the search succeeded.)
 case 2: TargetValue < TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of the List preceding TestEntry,
 and report the result of that search.)
 case 3: TargetValue > TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of List following TestEntry,
 and report the result of that search.)
] end if

(TestEntry)

List

David
Evelyn
Fred
George

David
Evelyn
Fred
George

David
Evelyn
Fred
George

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else

 [Select the "middle" entry in List to be the TestEntry;
 Execute the block of instructions below that is
 associated with the appropriate case.
 case 1: TargetValue = TestEntry
 (Report that the search succeeded.)
 case 2: TargetValue < TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of the List preceding TestEntry,
 and report the result of that search.)
 case 3: TargetValue > TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of List following TestEntry,
 and report the result of that search.)
] end if

List

Alice
Bill
Carol

We are here.

At this point, we have completed the secondary search as requested by the
original copy of the procedure, so we are able to continue the execution of that
original copy. Here we are told that the result of the secondary search should be
reported as the result of the original search. Thus we report that the original
search has succeeded. Our process has correctly determined that Bill is a mem-
ber of the list Alice, Bill, Carol, David, Evelyn, Fred, and George.

Let us now consider what happens if we ask the procedure in Figure 5.14 to
search the list Alice, Carol, Evelyn, Fred, and George for the entry David. This
time the original copy of the procedure selects Evelyn as its test entry and con-
cludes that the target value must reside in the preceding portion of the list. It
therefore requests another copy of the procedure to search the list of entries
appearing in front of Evelyn—that is, the two-entry list consisting of Alice and
Carol. At this stage our situation is as represented in Figure 5.16.

The second copy of the procedure selects Carol as its current entry and con-
cludes that the target value must lie in the latter portion of its list. It then
requests a third copy of the procedure to search the list of names following Carol
in the list Alice and Carol. This sublist is empty, so the third copy of the proce-
dure has the task of searching the empty list for the target value David. Our situ-
ation at this point is represented by Figure 5.17. The original copy of the
procedure is charged with the task of searching the list Alice, Carol, Evelyn,
Fred, and George, with the test entry being Evelyn; the second copy is charged

218 Chapter 5 Algorithms

Figure 5.16

procedure Search (List, TargetValue)

if (List empty)
 then (Report that the search failed.)
 else
 [Select the "middle" entry in List to be the TestEntry;
 Execute the block of instructions below that is
 associated with the appropriate case.
 case 1: TargetValue = TestEntry
 (Report that the search succeeded.)
 case 2: TargetValue < TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of the List preceding TestEntry,
 and report the result of that search.)
 case 3: TargetValue > TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of List following TestEntry,
 and report the result of that search.)
] end if

(TestEntry)

List

Evelyn
Fred
George David

Evelyn
Fred
George

David
Evelyn
Fred
George

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else
 [Select the "middle" entry in List to be the TestEntry;
 Execute the block of instructions below that is
 associated with the appropriate case.
 case 1: TargetValue = TestEntry
 (Report that the search succeeded.)
 case 2: TargetValue < TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of the List preceding TestEntry,
 and report the result of that search.)
 case 3: TargetValue > TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of List following TestEntry,
 and report the result of that search.)
] end if

List

Alice
Carol

We are here.

219

Figure 5.17

procedure Search (List, TargetValue)

if (List empty)
 then (Report that the search failed.)
else

 [Select the "middle" entry in List to be the TestEntry;
 Execute the block of instructions below that is
 associated with the appropriate case.
 case 1: TargetValue = TestEntry
 (Report that the search succeeded.)
 case 2: TargetValue < TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of the List preceding TestEntry,
 and report the result of that search.)
 case 3: TargetValue > TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of List following TestEntry,
 and report the result of that search.)
] end if

(TestEntry)

List

Evelyn
Fred
George

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else
 [Select the "middle" entry in List to be the TestEntry;
 Execute the block of instructions below that is
 associated with the appropriate case.
 case 1: TargetValue = TestEntry
 (Report that the search succeeded.)
 case 2: TargetValue < TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of the List preceding TestEntry,
 and report the result of that search.)
 case 3: TargetValue > TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of List following TestEntry,
 and report the result of that search.)
] end if

List

Alice
Carol

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else
 [Select the "middle" entry in List to be the TestEntry;
 Execute the block of instructions below that is
 associated with the appropriate case.
 case 1: TargetValue = TestEntry
 (Report that the search succeeded.)
 case 2: TargetValue < TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of the List preceding TestEntry,
 and report the result of that search.)
 case 3: TargetValue > TestEntry
 (Apply the procedure Search to see if TargetValue
 is in the portion of List following TestEntry,
 and report the result of that search.)
] end if

List

We are here.

(TestEntry)

The following recursive procedure can be applied to a rectangular canvas to produce
drawings of the style of the Dutch painter Piet Mondrian (1872–1944), who produced
paintings in which the rectangular canvas was divided into successively smaller rec-
tangles. Try following the procedure yourself to produce drawings similar to the one
shown. Begin by applying the procedure to a rectangle representing the canvas on
which you are working. (If you are wondering whether the algorithm represented by
this procedure is an algorithm according to the definition in Section 5.1, your suspi-
cions are well-founded. It is, in fact, an example of a nondeterministic algorithm
since there are places at which the person or machine following the procedure is
asked to make “creative” decisions. Perhaps this is why Mondrian’s results are con-
sidered art while ours are not.)

procedure Mondrian (Rectangle)
if (the size of Rectangle is too large for your artistic taste)

then (divide Rectangle into two smaller rectangles;
apply the procedure Mondrian to one of the smaller rectangles;
apply the procedure Mondrian to the other smaller rectangle)

Recursive Structures in Art

220 Chapter 5 Algorithms

with searching the list Alice and Carol, with its test entry being Carol; and the
third copy is about to begin searching the empty list.

Of course, the third copy of the procedure quickly declares its search to be a
failure and terminates. The completion of the third copy’s task allows the second
copy to continue its task. It notes that the search it requested was unsuccessful,
declares its own task to be a failure, and terminates. This report is what the orig-
inal copy of the procedure has been waiting for, so it can now proceed. Since the
search it requested failed, it declares its own search to have failed and termi-
nates. Our routine has correctly concluded that David is not contained in the list
Alice, Carol, Evelyn, Fred, and George.

In summary, if we were to look back at the previous examples, we could see
that the process employed by the algorithm represented in Figure 5.14 is to
repeatedly divide the list in question into two smaller pieces in such a way that
the remaining search can be restricted to only one of these pieces. This divide-
by-two approach is the reason why the algorithm is known as the binary
search.

Recursive Control
The binary search algorithm is similar to the sequential search in that each algo-
rithm requests the execution of a repetitive process. However, the implementa-
tion of this repetition is significantly different. Whereas the sequential search
involves a circular form of repetition, the binary search executes each stage of
the repetition as a subtask of the previous stage. This technique is known as
recursion.

As we have seen, the illusion created by the execution of a recursive proce-
dure is the existence of multiple copies of the procedure, each of which is called
an activation of the procedure. These activations are created dynamically in a
telescoping manner and ultimately disappear as the algorithm advances. Of
those activations existing at any given time, only one is actively progressing. The
others are effectively in limbo, each waiting for another activation to terminate
before it can continue.

Being a repetitive process, recursive systems are just as dependent on proper
control as are loop structures. Just as in loop control, recursive systems are
dependent on testing for a termination condition and on a design that ensures
this condition will be reached. In fact, proper recursive control involves the
same three ingredients—initialization, modification, and test for termination—
that are required in loop control.

In general, a recursive procedure is designed to test for the termination con-
dition (often called the base case or degenerative case) before requesting
further activations. If the termination condition is not met, the routine creates
another activation of the procedure and assigns it the task of solving a revised
problem that is closer to the termination condition than that assigned to the
current activation. However, if the termination condition is met, a path is taken
that causes the current activation to terminate without creating additional
activations.

Let us see how the initialization and modification phases of repetitive con-
trol are implemented in our binary search procedure of Figure 5.14. In this case,
the creation of additional activations is terminated once the target value is found
or the task is reduced to that of searching an empty list. The process is initialized
implicitly by being given an initial list and a target value. From this initial con-
figuration the procedure modifies its assigned task to that of searching a smaller
list. Since the original list is of finite length and each modification step reduces
the length of the list in question, we are assured that the target value ultimately
is found or the task is reduced to that of searching the empty list. We can there-
fore conclude that the repetitive process is guaranteed to cease.

Finally, since both loop and recursive control structures are ways to cause
the repetition of a set of instructions, we might ask whether they are equivalent
in power. That is, if an algorithm were designed using a loop structure, could
another algorithm using only recursive techniques be designed that would solve
the same problem and vice versa? Such questions are important in computer sci-
ence because their answers ultimately tell us what features should be provided
in a programming language in order to obtain the most powerful programming
system possible. We will return to these ideas in Chapter 12 where we consider
some of the more theoretical aspects of computer science and its mathematical
foundations. With this background, we will then be able to prove the equivalence
of iterative and recursive structures in Appendix E.

2215.5 Recursive Structures

222 Chapter 5 Algorithms

1. What names are interrogated by the binary search (Figure 5.14) when
searching for the name Joe in the list Alice, Brenda, Carol, Duane, Evelyn,
Fred, George, Henry, Irene, Joe, Karl, Larry, Mary, Nancy, and Oliver?

2. What is the maximum number of entries that must be interrogated when
applying the binary search to a list of 200 entries? What about a list of
100,000 entries?

3. What sequence of numbers would be printed by the following recursive
procedure if we started it with N assigned the value 1?

procedure Exercise (N)

print the value of N;

if (N < 3) then (apply the procedure Exercise to the

value N + 1);

print the value of N.

4. What is the termination condition in the recursive procedure of Question/
Exercise 3?

Questions & Exercises

5.6 Efficiency and Correctness
In this section we introduce two topics that constitute important research areas
within computer science. The first of these is algorithm efficiency, and the sec-
ond is algorithm correctness.

Algorithm Efficiency
Even though today’s machines are capable of executing millions of instructions
each second, efficiency remains a major concern in algorithm design. Often the
choice between efficient and inefficient algorithms can make the difference
between a practical solution to a problem and an impractical one.

Let us consider the problem of a university registrar faced with the task of
retrieving and updating student records. Although the university has an actual
enrollment of approximately 10,000 students during any one semester, its
“current student” file contains the records of more than 30,000 students who are
considered current in the sense that they have registered for at least one course
in the past few years but have not completed a degree. For now, let us assume
that these records are stored in the registrar’s computer as a list ordered by student
identification numbers. To find any student record, the registrar would therefore
search this list for a particular identification number.

We have presented two algorithms for searching such a list: the sequential
search and the binary search. Our question now is whether the choice between
these two algorithms makes any difference in the case of the registrar. We con-
sider the sequential search first.

Given a student identification number, the sequential search algorithm starts
at the beginning of the list and compares the entries found to the identification
number desired. Not knowing anything about the source of the target value, we

cannot conclude how far into the list this search must go. We can say, though,
that after many searches we expect the average depth of the searches to be
halfway through the list; some will be shorter, but others will be longer. Thus, we
estimate that over a period of time, the sequential search will investigate roughly
15,000 records per search. If retrieving and checking each record for its identifi-
cation number requires 10 milliseconds (10 one-thousandths of a second), such a
search would require an average of 150 seconds or 2.5 minutes—an unbearably
long time for the registrar to wait for a student’s record to appear on a computer
screen. Even if the time required to retrieve and check each record were reduced
to only 1 millisecond, the search would still require an average of 15 seconds,
which is still a long time to wait.

In contrast, the binary search proceeds by comparing the target value to the
middle entry in the list. If this is not the desired entry, then at least the remain-
ing search is restricted to only half of the original list. Thus, after interrogating
the middle entry in the list of 30,000 student records, the binary search has at
most 15,000 records still to consider. After the second inquiry, at most 7,500
remain, and after the third retrieval, the list in question has dropped to no more
than 3,750 entries. Continuing in this fashion, we see that the target record will
be found after retrieving at most 15 entries from the list of 30,000 records. Thus,
if each of these retrievals can be performed in 10 milliseconds, the process of
searching for a particular record requires only 0.15 of a second—meaning that
access to any particular student record will appear to be instantaneous from the
registrar’s point of view. We conclude that the choice between the sequential
search algorithm and the binary search algorithm would have a significant
impact in this application.

This example indicates the importance of the area of computer science
known as algorithm analysis that encompasses the study of the resources, such
as time or storage space, that algorithms require. A major application of such
studies is the evaluation of the relative merits of alternative algorithms.

Algorithm analysis often involves best-case, worst-case, and average-case
scenarios. In our example, we performed an average-case analysis of the sequen-
tial search algorithm and a worst-case analysis of the binary search algorithm in
order to estimate the time required to search through a list of 30,000 entries. In
general such analysis is performed in a more generic context. That is, when con-
sidering algorithms for searching lists, we do not focus on a list of a particular
length, but instead try to identify a formula that would indicate the algorithm’s
performance for lists of arbitrary lengths. It is not difficult to generalize our pre-
vious reasoning to lists of arbitrary lengths. In particular, when applied to a list
with n entries, the sequential search algorithm will interrogate an average of n⁄2

entries, whereas the binary search algorithm will interrogate at most lg n entries
in its worst-case scenario. (lg n represents the base two logarithm of n.)

Let us analyze the insertion sort algorithm (summarized in Figure 5.11) in a
similar manner. Recall that this algorithm involves selecting a list entry, called
the pivot entry, comparing this entry to those preceding it until the proper place
for the pivot is found, and then inserting the pivot entry in this place. Since the
activity of comparing two entries dominates the algorithm, our approach will be
to count the number of such comparisons that are performed when sorting a list
whose length is n.

The algorithm begins by selecting the second list entry to be the pivot. It
then progresses by picking successive entries as the pivot until it has reached the

2235.6 Efficiency and Correctness

end of the list. In the best possible case, each pivot is already in its proper place,
and thus it needs to be compared to only a single entry before this is discovered.
Thus, in the best case, applying the insertion sort to a list with n entries requires
n � 1 comparisons. (The second entry is compared to one entry, the third entry
to one entry, and so on.)

In contrast, the worst-case scenario is that each pivot must be compared to
all the preceding entries before its proper location can be found. This occurs
if the original list is in reverse order. In this case the first pivot (the second
list entry) is compared to one entry, the second pivot (the third list entry) is
compared to two entries, and so on (Figure 5.18). Thus the total number of
comparisons when sorting a list of n entries is 1 � 2 � 3 � . . . � (n � 1),
which is equivalent to (1⁄2)(n2 � n). In particular, if the list contained 10
entries, the worst-case scenario of the insertion sort algorithm would require
45 comparisons.

In the average case of the insertion sort, we would expect each pivot to be
compared to half of the entries preceding it. This results in half as many com-
parisons as were performed in the worst case, or a total of (1⁄4)(n2 � n) compar-
isons to sort a list of n entries. If, for example, we use the insertion sort to sort a
variety of lists of length 10, we expect the average number of comparisons per
sort to be 22.5.

The significance of these results is that the number of comparisons made
during the execution of the insertion sort algorithm gives an approximation of
the amount of time required to execute the algorithm. Using this approximation,
Figure 5.19 shows a graph indicating how the time required to execute the inser-
tion sort algorithm increases as the length of the list increases. This graph is
based on our worst-case analysis of the algorithm, where we concluded that sort-
ing a list of length n would require at most (1⁄2)(n2 � n) comparisons between list
entries. On the graph, we have marked several list lengths and indicated the
time required in each case. Notice that as the list lengths increase by uniform
increments, the time required to sort the list increases by increasingly greater
amounts. Thus the algorithm becomes less efficient as the size of the list
increases.

Let us apply a similar analysis to the binary search algorithm. Recall that we
concluded that searching a list with n entries using this algorithm would require
interrogating at most lg n entries, which again gives an approximation to the
amount of time required to execute the algorithm for various list sizes. Figure 5.20
shows a graph based on this analysis on which we have again marked several list

224 Chapter 5 Algorithms

Figure 5.18 Applying the insertion sort in a worst-case situation

Initial
list

Elaine
David
Carol
Barbara
Alfred

Elaine
David
Carol
Barbara
Alfred

1 David
Elaine
Carol
Barbara
Alfred

3
2

Carol
David
Elaine
Barbara
Alfred

6
5
4

Barbara
Carol
David
Elaine
Alfred

Alfred
Barbara
Carol
David
Elaine

10
9
8
7

Sorted
list1st pivot 2nd pivot 3rd pivot 4th pivot

Comparisons made for each pivot

2255.6 Efficiency and Correctness

lengths of uniformly increasing size and identified the time required by the algo-
rithm in each case. Note that the time required by the algorithm increases by
decreasing increments. That is, the binary search algorithm becomes more
efficient as the size of the list increases.

The distinguishing factor between Figures 5.19 and 5.20 is the general shape
of the graphs involved. This general shape reveals how well an algorithm should
be expected to perform for larger and larger inputs. Moreover, the general shape
of a graph is determined by the type of the expression being represented rather

Figure 5.19 Graph of the worst-case analysis of the insertion sort algorithm

Time required to execute
the algorithm

Length of list

Time increasing
by increasing
increments

Length increasing by
uniform increments

Figure 5.20 Graph of the worst-case analysis of the binary search algorithm

Time required to execute
the algorithm

Length of list

Time increasing
by decreasing
increments

Length increasing by
uniform increments

226 Chapter 5 Algorithms

than the specifics of the expression—all linear expressions produce a straight
line; all quadratic expressions produce a parabolic curve; all logarithmic expres-
sions produce the logarithmic shape shown in Figure 5.20. It is customary to
identify a shape with the simplest expression that produces that shape. In partic-
ular, we identify the parabolic shape with the expression n2 and the logarithmic
shape with the expression lg n.

Since the shape of the graph obtained by comparing the time required for
an algorithm to perform its task to the size of the input data reflects the effi-
ciency characteristics of the algorithm, it is common to classify algorithms
according to the shapes of these graphs—normally based on the algorithm’s worst-
case analysis. The notation used to identify these classes is sometimes called
big-theta notation. All algorithms whose graphs have the shape of a parabola,
such as the insertion sort, are put in the class represented by Θ(n2) (read “big
theta of n squared”); all algorithms whose graphs have the shape of a logarithmic
expression, such as the binary search, fall in the class represented by Θ(lg n)
(read “big theta of log n”). Knowing the class in which a particular algorithm falls
allows us to predict its performance and to compare it against other algorithms
that solve the same problem. Two algorithms in Θ(n2) will exhibit similar
changes in time requirements as the size of the inputs increases. Moreover, the
time requirements of an algorithm in Θ(lg n) will not expand as rapidly as that of
an algorithm in Θ(n2).

Software Verification
Recall that the fourth phase in Polya’s analysis of problem solving (Section 5.3) is
to evaluate the solution for accuracy and for its potential as a tool for solving
other problems. The significance of the first part of this phase is exemplified by
the following example:

A traveler with a gold chain of seven links must stay in an isolated hotel for seven
nights. The rent each night consists of one link from the chain. What is the fewest
number of links that must be cut so that the traveler can pay the hotel one link of the
chain each morning without paying for lodging in advance?

To solve this problem we first realize that not every link in the chain must be
cut. If we cut only the second link, we could free both the first and second links
from the other five. Following this insight, we are led to the solution of cutting
only the second, fourth, and sixth links in the chain, a process that releases each
link while cutting only three (Figure 5.21). Furthermore, any fewer cuts leaves

Figure 5.21 Separating the chain using only three cuts

Cut

two links connected, so we might conclude that the correct answer to our prob-
lem is three.

Upon reconsidering the problem, however, we might make the observation
that when only the third link in the chain is cut, we obtain three pieces of chain
of lengths one, two, and four (Figure 5.22). With these pieces we can proceed as
follows:

First morning: Give the hotel the single link.
Second morning: Retrieve the single link and give the hotel the two-link piece.
Third morning: Give the hotel the single link.
Fourth morning: Retrieve the three links held by the hotel and give the
hotel the four-link piece.
Fifth morning: Give the hotel the single link.
Sixth morning: Retrieve the single link and give the hotel the double-link piece.
Seventh morning: Give the hotel the single link.

Consequently, our first answer, which we thought was correct, is incorrect. How,
then, can we be sure that our new solution is correct? We might argue as follows:
Since a single link must be given to the hotel on the first morning, at least one
link of the chain must be cut, and since our new solution requires only one cut,
it must be optimal.

Translated into the programming environment, this example emphasizes
the distinction between a program that is believed to be correct and a program
that is correct. The two are not necessarily the same. The data processing com-
munity is rich in horror stories involving software that although “known” to be
correct still failed at a critical moment because of some unforeseen situation.
Verification of software is therefore an important undertaking, and the search
for efficient verification techniques constitutes an active field of research in
computer science.

A major line of research in this area attempts to apply the techniques of
formal logic to prove the correctness of a program. That is, the goal is to apply
formal logic to prove that the algorithm represented by a program does what it
is intended to do. The underlying thesis is that by reducing the verification
process to a formal procedure, one is protected from the inaccurate conclu-
sions that might be associated with intuitive arguments, as was the case in the
gold chain problem. Let us consider this approach to program verification in
more detail.

2275.6 Efficiency and Correctness

Figure 5.22 Solving the problem with only one cut

Cut

Just as a formal mathematical proof is based on axioms (geometric proofs
are often founded on the axioms of Euclidean geometry, whereas other proofs
are based on the axioms of set theory), a formal proof of a program’s correctness
is based on the specifications under which the program was designed. To prove
that a program correctly sorts lists of names, we are allowed to begin with the
assumption that the program’s input is a list of names, or if the program is designed
to compute the average of one or more positive numbers, we assume that the input
does, in fact, consist of one or more positive numbers. In short, a proof of correct-
ness begins with the assumption that certain conditions, called preconditions, are
satisfied at the beginning of the program’s execution.

The next step in a proof of correctness is to consider how the consequences of
these preconditions propagate through the program. For this purpose, researchers
have analyzed various program structures to determine how a statement, known
to be true before the structure is executed, is affected by executing the structure.
As a simple example, if a certain statement about the value of Y is known to hold
prior to executing the instruction

X ← Y

then that same statement can be made about X after the instruction has been
executed. More precisely, if the value of Y is not 0 before the instruction is exe-
cuted, then we can conclude that the value of X will not be 0 after the instruction
is executed.

A slightly more involved example occurs in the case of an if-then-else
structure such as

if (condition) then (instruction A)
else (instruction B)

Here, if some statement is known to hold before execution of the structure, then
immediately before executing instruction A, we know that both that statement
and the condition tested are true, whereas if instruction B is to be executed,
we know the statement and the negation of the condition tested must hold.

Following rules such as these, a proof of correctness proceeds by identifying
statements, called assertions, that can be established at various points in the
program. The result is a collection of assertions, each being a consequence of the

228 Chapter 5 Algorithms

Verification problems, as discussed in the text, are not unique to software. Equally
important is the problem of confirming that the hardware that executes a program is
free of flaws. This involves the verification of circuit designs as well as machine con-
struction. Again, the state of the art relies heavily on testing, which, as in the case of
software, means that subtle errors can find their way into finished products. Records
indicate that the Mark I, constructed at Harvard University in the 1940s, contained
wiring errors that were not detected for many years. A more recent example is a flaw
in the floating-point portion of the early Pentium microprocessors. In both of these
cases, the error was detected before serious consequences developed.

Beyond Verification of Software

program’s preconditions and the sequence of instructions that lead to the point
in the program at which the assertion is established. If the assertion so estab-
lished at the end of the program corresponds to the desired output specifications
(which are called postconditions), we conclude that the program is correct.

As an example, consider the typical while loop structure represented in
Figure 5.23. Suppose, as a consequence of the preconditions given at point A, we
can establish that a particular assertion is true each time the test for termination
is performed (point B) during the repetitive process. (An assertion at a point in a
loop that is true every time that point in the loop is reached is known as a loop
invariant.) Then, if the repetition ever terminates, execution moves to point C,
where we can conclude that both the loop invariant and the termination condi-
tion hold. (The loop invariant still holds because the test for termination does
not alter any values in the program, and the termination condition holds
because otherwise the loop does not terminate.) If these combined statements
imply the desired postconditions, our proof of correctness can be completed
merely by showing that the initialization and modification components of the
loop ultimately lead to the termination condition.

You should compare this analysis to our example of the insertion sort shown
in Figure 5.11. The outer loop in that program is based on the loop invariant

Each time the test for termination is performed, the entries in the list
from position 1 through position N � 1 are sorted

and the termination condition is

The value of N is greater than the length of the list.

2295.6 Efficiency and Correctness

Figure 5.23 The assertions associated with a typical while structure

True

False

Initialize

Test

Body

Modify

Precondition

Loop invariant

Loop invariant
and termination condition

A

B

C

230 Chapter 5 Algorithms

Thus, if the loop ever terminates, we know that both conditions must be satis-
fied, which implies that the entire list would be sorted.

Progress in the development of program verification techniques continues
to be challenging. However, advancements are being made. One of the more
significant is found in the programming language SPARK, which is closely
related to the more popular language Ada. (Ada is one of the languages from
which we will draw examples in the next chapter.) In addition to allowing
programs to be expressed in a high-level form such as our pseudocode, SPARK
gives programmers a means of including assertions such as preconditions,
postconditions, and loop invariants within the program. Thus, a program writ-
ten in SPARK contains not only the algorithm to be applied but also the
information required for the application of formal proof-of-correctness tech-
niques. To date, SPARK has been used successfully in numerous software
development projects involving critical software applications, including secure
software for the U.S. National Security Agency, internal control software used
in Lockheed Martin’s C130J Hercules aircraft, and critical rail transportation
control systems.

In spite of successes such as SPARK, formal program verification techniques
have not yet found widespread usage, and thus most of today’s software is “veri-
fied” by testing—a process that is shaky at best. After all, verification by testing
proves nothing more than that the program performs correctly for the cases
under which it was tested. Any additional conclusions are merely projections.
The errors contained in a program are often consequences of subtle oversights
that are easily overlooked during testing as well as development. Consequently
errors in a program, just as our error in the gold chain problem, can, and often
do, go undetected, even though significant effort may be exerted to avoid it.
A dramatic example occurred at AT&T: An error in the software controlling
114 switching stations went undetected from the software’s installation in
December 1989 until January 15, 1990, at which time a unique set of circum-
stances caused approximately five million calls to be unnecessarily blocked over
a nine-hour period.

Questions & Exercises

1. Suppose we find that a machine programmed with our insertion sort al-
gorithm requires an average of one second to sort a list of 100 names.
How long do you estimate it takes to sort a list of 1000 names? How
about 10,000 names?

2. Give an example of an algorithm in each of the following classes: Θ(lg n),
Θ(n), and Θ(n2).

3. List the classes Θ(n2), Θ(lg n), Θ(n), and Θ(n3) in decreasing order of
efficiency.

4. Consider the following problem and a proposed answer. Is the proposed
answer correct? Why or why not?

2315.6 Efficiency and Correctness

Problem: Suppose a box contains three cards. One of three cards is painted
black on both sides, one is painted red on both sides, and the third is
painted red on one side and black on the other. One of the cards is drawn
from the box, and you are allowed to see one side of it. What is the proba-
bility that the other side of the card is the same color as the side you see?
Proposed answer: One-half. Suppose the side of the card you can see is
red. (The argument would be symmetric with this one if the side were
black.) Only two cards among the three have a red side. Thus the card
you see must be one of these two. One of these two cards is red on the
other side, while the other is black. Thus the card you can see is just as
likely to be red on the other side as it is to be black.

5. The following program segment is an attempt to compute the quotient
(forgetting any remainder) of two positive integers (a dividend and a di-
visor) by counting the number of times the divisor can be subtracted
from the dividend before what is left becomes less than the divisor. For
instance, 7⁄3 should produce 2 because 3 can be subtracted from 7 twice.
Is the program correct? Justify your answer.

Count ← 0;

Remainder ← Dividend;

repeat (Remainder ← Remainder – Divisor;

Count ← Count + 1)

until (Remainder < Divisor)

Quotient ← Count.

6. The following program segment is designed to compute the product of
two nonnegative integers X and Y by accumulating the sum of X copies of
Y— that is, 3 times 4 is computed by accumulating the sum of three 4s. Is
the program correct? Justify your answer.

Product ← Y;

Count ← 1;

while (Count < X) do
(Product ← Product + Y;

Count ← Count + 1)

7. Assuming the precondition that the value associated with N is a posi-
tive integer, establish a loop invariant that leads to the conclusion
that if the following routine terminates, then Sum is assigned the
value 0 � 1 � . . . � N.

Sum ← 0;

K ← 0;

while (K < N) do
(K ← K + 1;

Sum ← Sum + K)

Provide an argument to the effect that the routine does in fact terminate.

8. Suppose that both a program and the hardware that executes it have
been formally verified to be accurate. Does this ensure accuracy?

232 Chapter 5 Algorithms

1. Give an example of a set of steps that con-
forms to the informal definition of an algo-
rithm given in the opening paragraph of
Section 5.1 but does not conform to the formal
definition given in Figure 5.1.

2. Explain the distinction between an ambiguity
in a proposed algorithm and an ambiguity in
the representation of an algorithm.

3. Describe how the use of primitives helps
remove ambiguities in an algorithm’s
representation.

4. Select a subject with which you are familiar
and design a pseudocode for giving directions
in that subject. In particular, describe the
primitives you would use and the syntax you
would use to represent them. (If you are
having trouble thinking of a subject, try
sports, arts, or crafts.)

5. Does the following program represent an algo-
rithm in the strict sense? Why or why not?

Count ← 0;

while (Count not 5) do
(Count ← Count + 2)

6. In what sense do the following three steps not
constitute an algorithm?

Step 1: Draw a straight line segment between
the points with rectangular coordinates (2,5)
and (6,11).

Step 2: Draw a straight line segment between
the points with rectangular coordinates (1,3)
and (3,6).

Step 3: Draw a circle whose center is at the
intersection of the previous line segments and
whose radius is two.

7. Rewrite the following program segment using
a repeat structure rather than a while struc-
ture. Be sure the new version prints the same
values as the original.

Count ← 2;

while (Count < 7) do

(print the value assigned to Count and

Count ← Count + 1)

8. Rewrite the following program segment using
a while structure rather than a repeat struc-
ture. Be sure the new version prints the same
values as the original.

Count ← 1;

repeat
(print the value assigned to Count and

Count ← Count + 1)

until (Count = 5)

9. What must be done to translate a posttest loop
expressed in the form

repeat (. . .) until (. . .)

into an equivalent posttest loop expressed in
the form
do (. . .) while (. . .)

10. Design an algorithm that, when given an
arrangement of the digits 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, rearranges the digits so that the new
arrangement represents the next larger
value that can be represented by these digits
(or reports that no such rearrangement
exists if no rearrangement produces a larger
value). Thus 5647382901 would produce
5647382910.

11. Design an algorithm for finding all the factors
of a positive integer. For example, in the case
of the integer 12, your algorithm should
report the values 1, 2, 3, 4, 6, and 12.

12. Design an algorithm for determining the day
of the week of any date since January 1, 1700.
For example, August 17, 2001 was a Friday.

13. What is the difference between a formal pro-
gramming language and a pseudocode?

14. What is the difference between syntax and
semantics?

15. The following is an addition problem in tradi-
tional base ten notation. Each letter represents

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

a different digit. What digit does each letter rep-
resent? How did you get your foot in the door?

XYZ

+ YWY

ZYZW

16. The following is a multiplication problem in
traditional base ten notation. Each letter rep-
resents a different digit. What digit does each
letter represent? How did you get your foot in
the door?

XY

× YX

XY

YZ

WVY

17. The following is an addition problem in binary
notation. Each letter represents a unique
binary digit. Which letter represents 1 and
which represents 0? Design an algorithm for
solving problems like this.

YXX

+ XYX

XYYY

18. Four prospectors with only one lantern must
walk through a mine shaft. At most, two
prospectors can travel together and any
prospector in the shaft must be with the
lantern. The prospectors, named Andrews,
Blake, Johnson, and Kelly, can walk through
the shaft in one minute, two minutes, four min-
utes, and eight minutes, respectively. When
two walk together they travel at the speed of
the slower prospector. How can all four
prospectors get through the mine shaft in only
15 minutes? After you have solved this prob-
lem, explain how you got your foot in the door.

19. Starting with a large wine glass and a small
wine glass, fill the small glass with wine and
then pour that wine into the large glass. Next,
fill the small glass with water and pour some
of that water into the large glass. Mix the con-
tents of the large glass, and then pour the mix-
ture back into the small glass until the small
glass is full. Will there be more water in the
large glass than there is wine in the small
glass? After you have solved this problem,
explain how you got your foot in the door.

20. Two bees, named Romeo and Juliet, live in dif-
ferent hives but have met and fallen in love.
On a windless spring morning, they simulta-
neously leave their respective hives to visit
each other. Their routes meet at a point 50
meters from the closest hive, but they fail to
see each other and continue on to their desti-
nations. At their destinations, they spend the
same amount of time to discover that the
other is not home and begin their return trips.
On their return trips, they meet at a point
that is 20 meters from the closest hive. This
time they see each other and have a picnic
lunch before returning home. How far apart
are the two hives? After you have solved this
problem, explain how you got your foot in
the door.

21. Design an algorithm that, given two strings
of characters, tests whether the first string
appears as a substring somewhere in the
second.

22. The following algorithm is designed to print
the beginning of what is known as the
Fibonacci sequence. Identify the body of the
loop. Where is the initialization step for the
loop control? The modification step? The test
step? What list of numbers is produced?

Last ← 0;

Current ← 1;

while (Current < 100) do
(print the value assigned to Current;

Temp ← Last;

Last ← Current; and

Current ← Last + Temp)

23. What sequence of numbers is printed by the
following algorithm if it is started with input
values 0 and 1?

procedure MysteryWrite (Last, Current)

if (Current < 100) then
(print the value assigned to Current;

Temp ← Current + Last;

apply MysteryWrite to the values Cur-

rent and Temp)

24. Modify the procedure MysteryWrite in the
preceding problem so that the values are
printed in reverse order.

233Chapter Review Problems

25. What letters are interrogated by the binary
search (Figure 5.14) if it is applied to the list
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O when
searching for the value J? What about search-
ing for the value Z?

26. After performing many sequential searches on
a list of 6,000 entries, what would you expect
to be the average number of times that the tar-
get value would have been compared to a list
entry? What if the search algorithm was the
binary search?

27. Identify the termination condition in each of
the following iterative statements.
a. while (Count < 5) do ()

b. repeat ()

until (Count = 1)

c. while ((Count < 5) and (Total < 56))

do ()

28. Identify the body of the following loop struc-
ture and count the number of times it will be
executed. What happens if the test is changed
to read “(Count not 6)”?
Count ← 1;

while (Count not 7) do
(print the value assigned to Count and

Count ← Count + 3)

29. What problems do you expect to arise if the
following program is implemented on a
computer? (Hint: Remember the problem of
round-off errors associated with floating-point
arithmetic.)
Count ← one-tenth;

repeat
(print the value assigned to Count and

Count ← Count + one-tenth)

until (Count equals 1)

30. Design a recursive version of the Euclidean
algorithm (Question 3 of Section 5.2).

31. Suppose we apply both Test1 and Test2

(defined below) to the input value 1. What is
the difference in the printed output of the two
routines?

procedure Test1 (Count)

if (Count not 5)

then (print the value assigned to Count;

apply Test1 to the value

Count + 1)

procedure Test2 (Count)

if (Count not 5)

then (apply Test2 to the value

Count + 1;

print the value assigned to

Count)

32. Identify the important constituents of the con-
trol mechanism in the routines of the previous
problem. In particular, what condition causes
the process to terminate? Where is the state of
the process modified toward this termination
condition? Where is the state of the control
process initialized?

33. Identify the termination condition in the fol-
lowing recursive procedure.

procedure XXX (N)

if (N = 5) then (apply the procedure XXX

to the value N + 1)

34. Apply the procedure MysteryPrint (defined
below) to the value 3 and record the values
that are printed.

procedure MysteryPrint (N)

if (N > 0) then (print the value of N and

apply the procedure

MysteryPrint to the

value N – 2)

Print the value of N + 1.

35. Apply the procedure MysteryPrint (defined
below) to the value 2 and record the values
that are printed.

procedure MysteryPrint (N)

if (N > 0)

then (print the value of N and

apply the procedure MysteryPrint

to the value N – 2)

else (print the value of N and

if (N > –1)

then (apply the procedure

MysteryPrint

to the value N + 1))

36. Design an algorithm to generate the sequence
of positive integers (in increasing order)
whose only prime divisors are 2 and 3; that is,
your program should produce the sequence 2,
3, 4, 6, 8, 9, 12, 16, 18, 24, 27, Does your
program represent an algorithm in the strict
sense?

234 Chapter 5 Algorithms

235Chapter Review Problems

37. Answer the following questions in terms of
the list: Alice, Byron, Carol, Duane, Elaine,
Floyd, Gene, Henry, Iris.

a. Which search algorithm (sequential or
binary) will find the name Gene more
quickly?

b. Which search algorithm (sequential or
binary) will find the name Alice more
quickly?

c. Which search algorithm (sequential or
binary) will detect the absence of the name
Bruce more quickly?

d. Which search algorithm (sequential or
binary) will detect the absence of the name
Sue more quickly?

e. How many entries will be interrogated
when searching for the name Elaine when
using the sequential search? How many
will be interrogated when using the binary
search?

38. The factorial of 0 is defined to be 1. The facto-
rial of a positive integer is defined to be the
product of that integer times the factorial of
the next smaller nonnegative integer. We use
the notation n! to express the factorial of the
integer n. Thus the factorial of 3 (written 3!) is
3 × (2!) � 3 × (2 × (1!)) � 3 × (2 × (1 × (0!))) �
3 × (2 × (1 × (1))) � 6. Design a recursive algo-
rithm that computes the factorial of a given
value.

39. a. Suppose you must sort a list of five names,
and you have already designed an algo-
rithm that sorts a list of four names. Design
an algorithm to sort the list of five names
by taking advantage of the previously
designed algorithm.

b. Design a recursive algorithm to sort arbi-
trary lists of names based on the technique
used in (a).

40. The puzzle called the Towers of Hanoi con-
sists of three pegs, one of which contains sev-
eral rings stacked in order of descending
diameter from bottom to top. The problem is
to move the stack of rings to another peg. You
are allowed to move only one ring at a time,
and at no time is a ring to be placed on top of
a smaller one. Observe that if the puzzle
involved only one ring, it would be extremely
easy. Moreover, when faced with the problem

of moving several rings, if you could move all
but the largest ring to another peg, the largest
ring could then be placed on the third peg,
and then the problem would be to move the
remaining rings on top of it. Using this obser-
vation, develop a recursive algorithm for solv-
ing the Towers of Hanoi puzzle for an
arbitrary number of rings.

41. Another approach to solving the Towers of
Hanoi puzzle (Problem 40) is to imagine the
pegs arranged on a circular stand with a peg
mounted at each of the positions of 4, 8, and
12 o’clock. The rings, which begin on one of
the pegs, are numbered 1, 2, 3, and so on,
starting with the smallest ring being 1. Odd-
numbered rings, when on top of a stack, are
allowed to move clockwise to the next peg;
likewise, even-numbered rings are allowed to
move counterclockwise (as long as that move
does not place a ring on a smaller one).
Under this restriction, always move the
largest-numbered ring that can be moved.
Based on this observation, develop a nonre-
cursive algorithm for solving the Towers of
Hanoi puzzle.

42. Develop two algorithms, one based on a loop
structure and the other on a recursive struc-
ture, to print the daily salary of a worker who
each day is paid twice the previous day’s
salary (starting with one penny for the first
day’s work) for a 30-day period. What prob-
lems relating to number storage are you likely
to encounter if you implement your solutions
on an actual machine?

1

2

3

43. Design an algorithm to find the square root of
a positive number by starting with the num-
ber itself as the first guess and repeatedly pro-
ducing a new guess from the previous one by
averaging the previous guess with the result of
dividing the original number by the previous
guess. Analyze the control of this repetitive
process. In particular, what condition should
terminate the repetition?

44. Design an algorithm that lists all possible
rearrangements of the symbols in a string of
five distinct characters.

45. Design an algorithm that, given a list of
names, finds the longest name in the list.
Determine what your solution does if there
are several “longest” names in the list. In par-
ticular, what would your algorithm do if all the
names had the same length?

46. Design an algorithm that, given a list of five or
more numbers, finds the five smallest and five
largest numbers in the list without sorting the
entire list.

47. Arrange the names Brenda, Doris, Raymond,
Steve, Timothy, and William in an order that
requires the least number of comparisons
when sorted by the insertion sort algorithm
(Figure 5.11).

48. What is the largest number of entries that are
interrogated if the binary search algorithm
(Figure 5.14) is applied to a list of 4000
names? How does this compare to the sequen-
tial search (Figure 5.6)?

49. Use big-theta notation to classify the tradi-
tional grade school algorithms for addition
and multiplication. That is, if asked to add
two numbers each having n digits, how
many individual additions must be per-
formed. If requested to multiply two n-digit
numbers, how many individual multiplica-
tions are required?

50. Sometimes a slight change in a problem can
significantly alter the form of its solution. For
example, find a simple algorithm for solving
the following problem and classify it using big-
theta notation:

Divide a group of people into two disjoint sub-
groups (of arbitrary size) such that the
difference in the total ages of the members of
the two subgroups is as large as possible.

Now change the problem so that the desired
difference is as small as possible and classify
your approach to the problem.

51. From the following list, extract a collection of
numbers whose sum is 3165. How efficient is
your approach to the problem?

26, 39, 104, 195, 403, 504, 793, 995, 1156, 1677

52. Does the loop in the following routine termi-
nate? Explain your answer. Explain what
might happen if this routine is actually exe-
cuted by a computer (refer to Section 1.7).

X ← 1;

Y ← 1/2;

while (X not equal 0) do
(X ← X – Y;

Y ← Y ÷ 2)

53. The following program segment is designed
to compute the product of two nonnegative
integers X and Y by accumulating the sum
of X copies of Y; that is, 3 times 4 is com-
puted by accumulating the sum of three 4s.
Is the program segment correct? Explain
your answer.

Product ← 0;

Count ← 0;

repeat (Product ← Product + Y,

Count ← Count + 1)

until (Count = X)

54. The following program segment is designed to
report which of the positive integers X and Y is
larger. Is the program segment correct? Explain
your answer.

Difference ← X – Y;

if (Difference is positive)

then (print “X is bigger than Y”)

else (print “Y is bigger than X”)

55. The following program segment is designed
to find the largest entry in a nonempty
list of integers. Is it correct? Explain your
answer.

TestValue ← first list entry;

CurrentEntry ← first list entry;

while (CurrentEntry is not the last

entry) do
(if (CurrentEntry > TestValue)

then (TestValue ← CurrentEntry)

CurrentEntry ← the next list entry)

236 Chapter 5 Algorithms

237Social Issues

56. a. Identify the preconditions for the sequen-
tial search as represented in Figure 5.6.
Establish a loop invariant for the while
structure in that program that, when com-
bined with the termination condition,
implies that upon termination of the loop,
the algorithm will report success or failure
correctly.

b. Give an argument showing that the while
loop in Figure 5.6 does in fact terminate.

57. Based on the preconditions that X and Y are
assigned nonnegative integers, identify a

loop invariant for the following while struc-
ture that, when combined with the termina-
tion condition, implies that the value
associated with Z upon loop termination
must be X – Y.

Z ← X;

J ← 0;

while (J < Y) do
(Z ← Z – 1;

J ← J + 1)

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. As it is currently impossible to verify completely the accuracy of complex
programs, under what circumstances, if any, should the creator of a program
be liable for errors?

2. Suppose you have an idea and develop it into a product that many people
can use. Moreover, it has required a year of work and an investment of
$50,000 to develop your idea into a form that is useful to the general public.
In its final form, however, the product can be used by most people without
buying anything from you. What right do you have for compensation? Is it
ethical to pirate computer software? What about music and motion pictures?

3. Suppose a software package is so expensive that it is totally out of your price
range. Is it ethical to copy it for your own use? (After all, you are not cheat-
ing the supplier out of a sale because you would not have bought the package
anyway.)

4. Ownership of rivers, forests, oceans, and so on has long been an issue of debate.
In what sense should someone or some institution be given ownership of an
algorithm?

5. Some people feel that new algorithms are discovered, whereas others feel
that new algorithms are created. To which philosophy do you subscribe?
Would the different points of view lead to different conclusions regarding
ownership of algorithms and ownership rights?

6. Is it ethical to design an algorithm for performing an illegal act? Does it mat-
ter whether the algorithm is ever executed? Should the person who creates
such an algorithm have ownership rights to that algorithm? If so, what
should those rights be? Should algorithm ownership rights be dependent on
the purpose of the algorithm? Is it ethical to advertise and circulate tech-
niques for breaking security? Does it matter what is being broken into?

Social Issues

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Boston, MA: Addison-Wesley, 1974.

Baase, S. Computer Algorithms: Introduction to Design and Analysis, 3rd ed. Boston,
MA: Addison-Wesley, 2000.

Barnes, J. High Integrity Software: The SPARK Approach to Safety and Security.
Boston, MA: Addison-Wesley, 2003.

Gries, D. The Science of Programming. New York: Springer-Verlag, 1998.

Harbin, R. Origami—the Art of Paper Folding. London: Hodder Paperbacks, 1973.

Johnsonbaugh, R. and M. Schaefer. Algorithms. Upper Saddle River, NJ: Prentice-
Hall, 2004.

Kleinberg, J. and E. Tardos. Algorithm Design. Boston, MA: Addision-Wesley,
2006.

Knuth, D. E. The Art of Computer Programming, Vol. 3, 3rd ed. Boston, MA:
Addison-Wesley, 1998.

Levitin, A. V. Introduction to the Design and Analysis of Algorithms, 2nd ed. Boston,
MA: Addison-Wesley, 2007.

Polya, G. How to Solve It. Princeton, NJ: Princeton University Press, 1973.

Roberts, E. S. Thinking Recursively. New York: Wiley, 1986.

Additional Reading

7. An author is paid for the motion picture rights to a novel even though the
story is often altered in the film version. How much of a story has to change
before it becomes a different story? What alterations must be made to an
algorithm for it to become a different algorithm?

8. Educational software is now being marketed for children in the 18 months or
younger age group. Proponents argue that such software provides sights and
sounds that would otherwise not be available to many children. Opponents
argue that it is a poor substitute for personal parent/child interaction. What
is your opinion? Should you take any action based on your opinion without
knowing more about the software? If so, what action?

238 Chapter 5 Algorithms

Programming
Languages

In this chapter we study programming languages. Our purpose is

not to learn a particular language. Rather it is to learn about

programming languages. We want to appreciate the commonality

as well as the diversity among programming languages and their

associated methodologies.

C H A P T E R

6

6.1 Historical Perspective
Early Generations
Machine Independence and

Beyond
Programming Paradigms

6.2 Traditional
Programming Concepts
Variables and Data Types
Data Structure
Constants and Literals
Assignment Statements
Control Statements
Comments

6.3 Procedural Units
Procedures
Parameters
Functions

6.4 Language
Implementation
The Translation Process
Software Development Packages

6.5 Object-Oriented
Programming
Classes and Objects
Constructors
Additional Features

*6.6 Programming
Concurrent Activities

*6.7 Declarative
Programming
Logical Deduction
Prolog

*Asterisks indicate suggestions for
optional sections.

The development of complex software systems such as operating systems, net-
work software, and the vast array of application software available today would
likely be impossible if humans were forced to write programs in machine lan-
guage. Dealing with the intricate detail associated with such languages while try-
ing to organize complex systems would be a taxing experience, to say the least.
Consequently, programming languages similar to our pseudocode have been
developed that allow algorithms to be expressed in a form that is both palatable
to humans and easily convertible into machine language instructions. Our goal
in this chapter is to explore the sphere of computer science that deals with the
design and implementation of these languages.

6.1 Historical Perspective
We begin our study by tracing the historical development of programming
languages.

Early Generations
As we learned in Chapter 2, programs for modern computers consist of sequences
of instructions that are encoded as numeric digits. Such an encoding system is
known as a machine language. Unfortunately, writing programs in a machine
language is a tedious task that often leads to errors that must be located and
corrected (a process known as debugging) before the job is finished.

In the 1940s, researchers simplified the programming process by developing
notational systems by which instructions could be represented in mnemonic
rather than numeric form. For example, the instruction

Move the contents of register 5 to register 6

would be expressed as

4056

using the machine language introduced in Chapter 2, whereas in a mnemonic
system it might appear as

MOV R5, R6

As a more extensive example, the machine language routine

156C
166D
5056
306E
C000

which adds the contents of memory cells 6C and 6D and stores the result at loca-
tion 6E (Figure 2.7 of Chapter 2) might be expressed as

LD R5,Price
LD R6,ShippingCharge
ADDI R0,R5 R6
ST R0,TotalCost
HLT

240 Chapter 6 Programming Languages

using mnemonics. (Here we have used LD, ADDI, ST, and HLT to represent
load, add, store, and halt. Moreover, we have used the descriptive names Price,
ShippingCharge, and TotalCost to refer to the memory cells at locations 6C,
6D, and 6E, respectively. Such descriptive names are often called identifiers.)
Note that the mnemonic form, although still lacking, does a better job of repre-
senting the meaning of the routine than does the numeric form.

Once such a mnemonic system was established, programs called assemblers
were developed to convert mnemonic expressions into machine language
instructions. Thus, rather than being forced to develop a program directly in
machine language, a human could develop a program in mnemonic form and
then have it converted into machine language by means of an assembler.

A mnemonic system for representing programs is collectively called an
assembly language. At the time assembly languages were first developed, they
represented a giant step forward in the search for better programming tech-
niques. In fact, assembly languages were so revolutionary that they became
known as second-generation languages, the first generation being the machine
languages themselves.

Although assembly languages have many advantages over their machine-
language counterparts, they still fall short of providing the ultimate program-
ming environment. After all, the primitives used in an assembly language are
essentially the same as those found in the corresponding machine language. The
difference is simply in the syntax used to represent them. Thus a program writ-
ten in an assembly language is inherently machine dependent—that is, the
instructions within the program are expressed in terms of a particular machine’s
attributes. In turn, a program written in assembly language cannot be easily
transported to another computer design because it must be rewritten to conform
to the new computer’s register configuration and instruction set.

Another disadvantage of an assembly language is that a programmer, although
not required to code instructions in numeric form, is still forced to think in terms
of the small, incremental steps of the machine’s language. The situation is analo-
gous to designing a house in terms of boards, nails, bricks, and so on. It is true that
the actual construction of the house ultimately requires a description based on
these elementary pieces, but the design process is easier if we think in terms of
larger units such as rooms, windows, doors, and so on.

In short, the elementary primitives in which a product must ultimately be
constructed are not necessarily the primitives that should be used during the
product’s design. The design process is better suited to the use of high-level
primitives, each representing a concept associated with a major feature of the
product. Once the design is complete, these primitives can be translated to
lower-level concepts relating to the details of implementation.

Following this philosophy, computer scientists began developing program-
ming languages that were more conducive to software development than were
the low-level assembly languages. The result was the emergence of a third gen-
eration of programming languages that differed from previous generations in
that their primitives were both higher level (in that they expressed instructions
in larger increments) and machine independent (in that they did not rely on
the characteristics of a particular machine). The best-known early examples are
FORTRAN (FORmula TRANslator), which was developed for scientific and engi-
neering applications, and COBOL (COmmon Business-Oriented Language),
which was developed by the U.S. Navy for business applications.

2416.1 Historical Perspective

In general, the approach to third-generation programming languages was to
identify a collection of high-level primitives (in essentially the same spirit with
which we developed our pseudocode in Chapter 5) in which software could be
developed. Each of these primitives was designed so that it could be imple-
mented as a sequence of the low-level primitives available in machine lan-
guages. For example, the statement

assign TotalCost the value Price + ShippingCharge

expresses a high-level activity without reference to how a particular machine
should perform the task, yet it can be implemented by the sequence of machine
instructions discussed earlier. Thus, our pseudocode structure

identifier ← expression

is a potential high-level primitive.
Once this collection of high-level primitives had been identified, a program,

called a translator, was written that translated programs expressed in these
high-level primitives into machine-language programs. Such a translator was
similar to the second-generation assemblers, except that it often had to compile
several machine instructions into short sequences to simulate the activity
requested by a single high-level primitive. Thus, these translation programs were
often called compilers.

An alternative to translators, called interpreters, emerged as another means
of implementing third-generation languages. These programs were similar to
translators except that they executed the instructions as they were translated
instead of recording the translated version for future use. That is, rather than
producing a machine-language copy of a program that would be executed later,
an interpreter actually executed a program from its high-level form.

As a side issue we should note that the task of promoting third-generation
programming languages was not as easy as might be imagined. The thought of
writing programs in a form similar to a natural language was so revolutionary
that many in managerial positions fought the notion at first. Grace Hopper, who
is recognized as the developer of the first compiler, often told the story of
demonstrating a translator for a third-generation language in which German
terms, rather than English, were used. The point was that the programming
language was constructed around a small set of primitives that could be
expressed in a variety of natural languages with only simple modifications to
the translator. But she was surprised to find that many in the audience were
shocked that, in the years surrounding World War II, she would be teaching a
computer to “understand” German. Today we know that understanding a natu-
ral language involves much, much more than responding to a few rigorously
defined primitives. Indeed, natural languages (such as English, German, and
Latin) are distinguished from formal languages (such as programming lan-
guages) in that the latter are precisely defined by grammars (Section 6.4)
whereas the former evolved over time without formal grammatical analysis.

Machine Independence and Beyond
With the development of third-generation languages, the goal of machine inde-
pendence was largely achieved. Since the statements in a third-generation lan-
guage did not refer to the attributes of any particular machine, they could be

242 Chapter 6 Programming Languages

compiled as easily for one machine as for another. A program written in a third-
generation language could theoretically be used on any machine simply by
applying the appropriate compiler.

Reality, however, has not proven to be this simple. When a compiler is
designed, particular characteristics of the underlying machine are sometimes
reflected as conditions on the language being translated. For example, the differ-
ent ways in which machines handle I/O operations have historically caused the
“same” language to have different characteristics, or dialects, on different
machines. Consequently, it is often necessary to make at least minor modifica-
tions to a program to move it from one machine to another.

Compounding this problem of portability is the lack of agreement in some
cases as to what constitutes the correct definition of a particular language. To aid
in this regard, the American National Standards Institute and the International
Organization for Standardization have adopted and published standards for many
of the popular languages. In other cases, informal standards have evolved because
of the popularity of a certain dialect of a language and the desire of other compiler
writers to produce compatible products. However, even in the case of highly stan-
dardized languages, compiler designers often provide features, sometimes called
language extensions, that are not part of the standard version of the language. If a
programmer takes advantage of these features, the program produced will not be
compatible with environments using a compiler from a different vendor.

In the overall history of programming languages, the fact that third-generation
languages fell short of true machine independence is actually of little signifi-
cance for two reasons. First, they were close enough to being machine inde-
pendent that software could be transported from one machine to another with
relative ease. Second, the goal of machine independence turned out to be only a
seed for more demanding goals. Indeed, the realization that machines could
respond to such high-level statements as

assign TotalCost the value Price + ShippingCharge

led computer scientists to dream of programming environments that would allow
humans to communicate with machines in terms of abstract concepts rather
than forcing them to translate these concepts into machine-compatible form.

2436.1 Historical Perspective

A typical application program must rely on the operating system to perform many of
its tasks. It may require the services of the window manager to communicate with the
computer user, or it may use the file manager to retrieve data from mass storage.
Unfortunately, different operating systems dictate that requests for these services be
made in different ways. Thus for programs to be transferred and executed across net-
works and internets involving different machine designs and different operating sys-
tems, the programs must be operating-system independent as well as machine
independent. The term cross-platform is used to reflect this additional level of inde-
pendence. That is, cross-platform software is software that is independent of an
operating system’s design as well as the machine’s hardware design and is therefore
executable throughout a network.

Cross-Platform Software

Moreover, computer scientists wanted machines that could perform much of the
algorithm discovery process rather than just algorithm execution. The result has
been an ever-expanding spectrum of programming languages that challenges a
clear-cut classification in terms of generations.

Programming Paradigms
The generation approach to classifying programming languages is based on a lin-
ear scale (Figure 6.1) on which a language’s position is determined by the degree
to which the user of the language is freed from the world of computer gibberish
and allowed to think in terms associated with the problem being solved. In reality,
the development of programming languages has not progressed in this manner
but has developed along different paths as alternative approaches to the pro-
gramming process (called programming paradigms) have surfaced and been
pursued. Consequently, the historical development of programming languages is
better represented by a multiple-track diagram as shown in Figure 6.2, in which
different paths resulting from different paradigms are shown to emerge and
progress independently. In particular, the figure presents four paths represent-
ing the functional, object-oriented, imperative, and declarative paradigms, with
various languages associated with each paradigm positioned in a manner that
indicates their births relative to other languages. (It does not imply that one lan-
guage necessarily evolved from a previous one.)

We should note that although the paradigms identified in Figure 6.2 are
called programming paradigms, these alternatives have ramifications beyond the
programming process. They represent fundamentally different approaches to
building solutions to problems and therefore affect the entire software develop-
ment process. In this sense, the term programming paradigm is a misnomer. A
more realistic term would be software development paradigm.

The imperative paradigm, also known as the procedural paradigm, rep-
resents the traditional approach to the programming process. It is the paradigm
on which our pseudocode of Chapter 5 is based as well as the machine language
discussed in Chapter 2. As the name suggests, the imperative paradigm defines
the programming process to be the development of a sequence of commands
that, when followed, manipulate data to produce the desired result. Thus the
imperative paradigm tells us to approach the programming process by finding an
algorithm to solve the problem at hand and then expressing that algorithm as a
sequence of commands.

244 Chapter 6 Programming Languages

1st 2nd 3rd 4th

Problems solved in an environment
in which the human must conform
to the machine‘s characteristics

Problems solved in an environment
in which the machine conforms
to the human’s characteristics

Generations

Figure 6.1 Generations of programming languages

In contrast to the imperative paradigm is the declarative paradigm, which
asks a programmer to describe the problem to be solved rather than an algorithm
to be followed. More precisely, a declarative programming system applies a
preestablished general-purpose problem-solving algorithm to solve problems
presented to it. In such an environment the task of a programmer becomes that
of developing a precise statement of the problem rather than of describing an
algorithm for solving the problem.

A major obstacle in developing programming systems based on the declara-
tive paradigm is the need for an underlying problem-solving algorithm. For this
reason early declarative programming languages tended to be special-purpose in
nature, designed for use in particular applications. For example, the declarative
approach has been used for many years to simulate a system (political, economic,
environmental, and so on) in order to test hypotheses or to obtain predictions.
In these settings, the underlying algorithm is essentially the process of simulat-
ing the passage of time by repeatedly recomputing values of parameters (gross
domestic product, trade deficit, and so on) based on the previously computed val-
ues. Thus, implementing a declarative language for such simulations requires
that one first implement an algorithm that performs this repetitive procedure.
Then the only task required of a programmer using the system is to describe the
situation to be simulated. In this manner, a weather forecaster does not need to
develop an algorithm for forecasting the weather but merely describes the cur-
rent weather status, allowing the underlying simulation algorithm to produce
weather predictions for the near future.

A tremendous boost was given to the declarative paradigm with the discovery
that the subject of formal logic within mathematics provides a simple problem-
solving algorithm suitable for use in a general-purpose declarative programming
system. The result has been increased attention to the declarative paradigm and
the emergence of logic programming, a subject discussed in Section 6.7.

Another programming paradigm is the functional paradigm. Under this
paradigm a program is viewed as an entity that accepts inputs and produces
outputs. Mathematicians refer to such entities as functions, which is the reason
this approach is called the functional paradigm. Under this paradigm a program
is constructed by connecting smaller predefined program units (predefined

2456.1 Historical Perspective

ML Scheme

Machine
Languages COBOL

FORTRAN

APL

BASIC C

Java
Object-oriented

Imperative

Declarative

Functional

1950 1960 1970 1980 1990 2000

LISP

Smalltalk

Pascal

Prolog

Ada

ALGOL

GPSS

C#Visual Basic

 C++

Figure 6.2 The evolution of programming paradigms

functions) so that each unit’s outputs are used as another unit’s inputs in such a
way that the desired overall input-to-output relationship is obtained. In short, the
programming process under the functional paradigm is that of building func-
tions as nested complexes of simpler functions.

As an example, Figure 6.3 shows how a function for balancing your checkbook
can be constructed from two simpler functions. One of these, called Find_sum,
accepts values as its input and produces the sum of those values as its output. The
other, called Find_diff, accepts two input values and computes their difference.
The structure displayed in Figure 6.3 can be represented in the LISP programming
language (a prominent functional programming language) by the expression

(Find_diff (Find_sum Old_balance Credits) (Find_sum Debits))

The nested structure of this expression (as indicated by parantheses) reflects the
fact that the inputs to the function Find_diff are produced by two applications
of Find_sum. The first application of Find_sum produces the result of adding
all the Credits to the Old_balance. The second application of Find_sum
computes the total of all Debits. Then, the function Find_diff uses these results
to obtain the new checkbook balance.

To more fully understand the distinction between the functional and impera-
tive paradigms, let us compare the functional program for balancing a checkbook to
the following pseudocode program obtained by following the imperative paradigm:

Total_credits ← sum of all Credits
Temp_balance ← Old_balance + Total_credits
Total_debits ← sum of all Debits
Balance ← Temp_balance - Total_debits

246 Chapter 6 Programming Languages

Old_balance Credits DebitsInputs:

Output: New_balance

Find_diff

Find_sum Find_sum

Figure 6.3 A function for checkbook balancing constructed from simpler functions

Note that this imperative program consists of multiple statements, each of which
requests that a computation be performed and that the result be stored for later
use. In contrast, the functional program consists of a single statement in which
the result of each computation is immediately channeled into the next. In a
sense, the imperative program is analogous to a collection of factories, each con-
verting its raw materials into products that are stored in warehouses. From these
warehouses, the products are later shipped to other factories as they are needed.
But the functional program is analogous to a collection of factories that are coor-
dinated so that each produces only those products that are ordered by other
factories and then immediately ships those products to their destinations with-
out intermediate storage. This efficiency is one of the benefits proclaimed by
proponents of the functional paradigm.

Still another programming paradigm (and the most prominent one in today’s
software development) is the object-oriented paradigm, which is associated
with the programming process called object-oriented programming (OOP).
Following this paradigm, a software system is viewed as a collection of units,
called objects, each of which is capable of performing the actions that are imme-
diately related to itself as well as requesting actions of other objects. Together,
these objects interact to solve the problem at hand.

As an example of the object-oriented approach at work, consider the task of
developing a graphical user interface. In an object-oriented environment, the
icons that appear on the screen would be implemented as objects. Each of these
objects would encompass a collection of procedures (called methods in the
object-oriented vernacular) describing how that object is to respond to the occur-
rence of various events, such as being selected by a click of the mouse button or
being dragged across the screen by the mouse. Thus the entire system would be
constructed as a collection of objects, each of which knows how to respond to the
events related to it.

To contrast the object-oriented paradigm with the imperative paradigm,
consider a program involving a list of names. In the traditional imperative
paradigm, this list would be merely a collection of data. Any program unit
accessing the list would have to contain the algorithms for performing the
required manipulations. In the object-oriented approach, however, the list
would be constructed as an object that consisted of the list together with a col-
lection of methods for manipulating the list. (This might include procedures
for inserting a new entry in the list, deleting an entry from the list, detecting
if the list is empty, and sorting the list.) In turn, another program unit that
needed to manipulate the list would not contain algorithms for performing the
pertinent tasks. Instead, it would make use of the procedures provided in the
object. In a sense, rather than sorting the list as in the imperative paradigm,
the program unit would ask the list to sort itself.

Although we will discuss the object-oriented paradigm in more detail in
Section 6.5, its significance in today’s software development arena dictates that
we include the concept of a class in this introduction. To this end, recall that an
object can consist of data (such as a list of names) together with a collection of
methods for performing activities (such as inserting new names in the list).
These features must be described by statements in the written program. This
description of the object’s properties is called a class. Once a class has been
constructed, it can be applied anytime an object with those characteristics is
needed. Thus, several objects can be based on (that is, built from) the same class.

2476.1 Historical Perspective

Just like identical twins, these objects would be distinct entities but would have
the same characteristics because they are constructed from the same template
(the same class). (An object that is based on a particular class is said to be an
instance of that class.)

It is because objects are well-defined units whose descriptions are isolated
in reusable classes that the object-oriented paradigm has gained popularity.
Indeed, proponents of object-oriented programming argue that the object-oriented
paradigm provides a natural environment for the “building block” approach to
software development. They envision software libraries of predefined classes
from which new software systems can be constructed in the same way that
many traditional products are constructed from off-the-shelf components.
Building and expanding such libraries is an ongoing process, as we will learn in
Chapter 7.

In closing, we should note that the methods within an object are essen-
tially small imperative program units. This means that most programming
languages based on the object-oriented paradigm contain many of the features
found in imperative languages. For instance, the popular object-oriented lan-
guage C++ was developed by adding object-oriented features to the impera-
tive language known as C. Moreover, since Java and C# are derivatives of C++,
they too have inherited this imperative core. In Sections 6.2 and 6.3 we will
explore many of these imperative features, and in so doing, we will be dis-
cussing concepts that permeate a vast majority of today’s object-oriented soft-
ware. Then, in Section 6.5, we will consider features that are unique to the
object-oriented paradigm.

248 Chapter 6 Programming Languages

Questions & Exercises

1. In what sense is a program in a third-generation language machine inde-
pendent? In what sense is it still machine dependent?

2. What is the difference between an assembler and a compiler?
3. We can summarize the imperative programming paradigm by saying that

it places emphasis on describing a process that leads to the solution of
the problem at hand. Give a similar summary of the declarative, func-
tional, and object-oriented paradigms.

4. In what sense are the third-generation programming languages at a
higher level than the earlier generations?

6.2 Traditional Programming Concepts
In this section we consider some of the concepts found in imperative as well as
object-oriented programming languages. For this purpose we will draw examples
from the languages Ada, C, C++, C#, FORTRAN, and Java. Our goal is not to
become entangled in the details of any particular language but merely to demon-
strate how common language features appear in actual languages. Our collection
of languages is therefore chosen to be representative of the landscape. C is a third-
generation imperative language. C++ is an object-oriented language that was

developed as an extension of the language C. Java and C# are object-oriented lan-
guages derived from C++. (Java was developed at Sun Microsystems, which was
later purchased by Oracle, whereas C# is a product of Microsoft.) FORTRAN and
Ada were originally designed as third-generation imperative languages although
their newer versions have expanded to encompass most of the object-oriented
paradigm. Appendix D contains a brief background of each of these languages.

Even though we are including object-oriented languages such as C++, Java,
and C# among our example languages, we will approach this section as though
we were writing a program in the imperative paradigm, because many units
within an object-oriented program (such as the procedures describing how an
object should react to an outside stimulus) are essentially short imperative
programs. Later, in Section 6.5, we will focus on features unique to the object-
oriented paradigm.

Generally, a program consists of a collection of statements that tend to fall into
three categories: declarative statements, imperative statements, and comments.
Declarative statements define customized terminology that is used later in the
program, such as the names used to reference data items; imperative statements
describe steps in the underlying algorithms; and comments enhance the readability
of a program by explaining its esoteric features in a more human-compatible
form. Normally, an imperative program (or an imperative program unit within an
object-oriented program) can be thought of as having the structure depicted in
Figure 6.4. It begins with a collection of declarative statements describing the data
to be manipulated by the program. This preliminary material is followed by imper-
ative statements that describe the algorithm to be executed. Many languages now
allow the declarative and imperative statements to be freely intermingled, but the
conceptual distinction remains. Comment statements are dispersed as needed to
clarify the program.

Following this lead, we approach our study of programming concepts by con-
sidering statement categories in the order in which we might encounter them in
a program, beginning with concepts associated with declaration statements.

Variables and Data Types
As suggested in Section 6.1, high-level programming languages allow locations in
main memory to be referenced by descriptive names rather than by numeric
addresses. Such a name is known as a variable, in recognition of the fact that by

2496.2 Traditional Programming Concepts

The first part consists of
declaration statements
describing the data that is
manipulated by the program.

Program

The second part consists
of imperative statements
describing the action to
be performed.

Figure 6.4 The composition of a typical imperative program or program unit

changing the value stored at the location, the value associated with the name
changes as the program executes. Our example languages require that variables
be identified via a declarative statement prior to being used elsewhere in the pro-
gram. These declarative statements also require that the programmer describe
the type of data that will be stored at the memory location associated with the
variable.

Such a type is known as a data type and encompasses both the manner in
which the data item is encoded and the operations that can be performed on that
data. For example, the type integer refers to numeric data consisting of whole
numbers, probably stored using two’s complement notation. Operations that can
be performed on integer data include the traditional arithmetic operations and
comparisons of relative size, such as determining whether one value is greater
than another. The type float (sometimes called real) refers to numeric data that
might contain values other than whole numbers, probably stored in floating-point
notation. Operations performed on data of type float are similar to those performed
on data of type integer. Recall, however, that the activity required for adding two
items of type float differs from that for adding two items of type integer.

Suppose, then, that we wanted to use the variable WeightLimit in a pro-
gram to refer to an area of main memory containing a numeric value encoded in
two’s complement notation. In the languages C, C++, Java, and C# we would
declare our intention by inserting the statement

int WeightLimit;

toward the beginning of the program. This statement means “The name
WeightLimit will be used later in the program to refer to a memory area con-
taining a value stored in two’s complement notation.” Multiple variables of the

250 Chapter 6 Programming Languages

A subset of the imperative programming languages is the collection of languages
known as scripting languages. These languages are typically used to perform admin-
istrative tasks rather than to develop complex programs. The expression of such a
task is known as a script, which explains the term “scripting language.” For example,
the administrator of a computer system might write a script to describe a sequence
of record-keeping activities that should be performed every evening, or the user of a
PC might write a script to direct the execution of a sequence of programs required to
read pictures from a digital camera, index the pictures by date, and store copies of
them in an archival storage system. The origin of scripting languages can be traced to
the job control languages of the 1960s that were used to direct an operating system
in the scheduling of batch processing jobs (see Section 3.1). Even today, many con-
sider scripting languages to be languages for directing the execution of other pro-
grams, which is a rather restrictive view of current scripting languages. Examples of
scripting languages include Perl and PHP, both of which are popular in controlling
server-side Web applications (see Section 4.3), as well as VBScript, which is a dialect
of Visual Basic that was developed by Microsoft and is used in Windows-specific
situations.

Scripting Languages

same type can normally be declared in the same declaration statement. For
example, the statement

int Height, Width;

would declare both Height and Width to be variables of type integer. Moreover,
most languages allow a variable to be assigned an initial value when it is
declared. Thus,

int WeightLimit = 100;

would not only declare WeightLimit to be a variable of type integer but also
assign it the starting value 100.

Other common data types include character and Boolean. The type
character refers to data consisting of symbols, probably stored using ASCII or
Unicode. Operations performed on such data include comparisons such as
determining whether one symbol occurs before another in alphabetical order,
testing to see whether one string of symbols appears inside another, and con-
catenating one string of symbols at the end of another to form one long string.
The statement

char Letter, Digit;

could be used in the languages C, C++, C#, and Java to declare the variables
Letter and Digit to be of type character.

The type Boolean refers to data items that can take on only the values true
or false. Operations on data of type Boolean include inquiries as to whether the
current value is true or false. For example, if the variable LimitExceeded was
declared to be of type Boolean, then a statement of the form

if (LimitExceeded) then (...) else (...)

would be reasonable.
The data types that are included as primitives in a programming language,

such as int for integer and char for character, are called primitive data types.
As we have learned, the types integer, float, character, and Boolean are common
primitives. Other data types that have not yet become widespread primitives
include images, audio, video, and hypertext. However, types such as GIF, JPEG,
and HTML might soon become as common as integer and float. Later (Sections
6.5 and 8.4) we will learn how the object-oriented paradigm enables a program-
mer to extend the repertoire of available data types beyond the primitive types
provided in a language. Indeed, this ability is a celebrated trait of the object-
oriented paradigm.

In summary, the following program segment, expressed in the language C
and its derivatives C++, C#, and Java, declares the variables Length and Width
to be of type float, the variables Price, Tax, and Total to be of type integer,
and the variable Symbol to be of type character.

float Length, Width;
int Price, Tax, Total;
char Symbol;

In Section 6.4 we will see how a translator uses the knowledge that it gathers from
such declaration statements to help it translate a program from a high-level lan-
guage into machine language. For now, we note that such information can be used

2516.2 Traditional Programming Concepts

to identify errors. For example, if a translator found a statement requesting the addi-
tion of two variables that had been declared earlier to be of type Boolean it should
probably consider the statement to be in error and report this finding to the user.

Data Structure
In addition to data type, variables in a program are often associated with data
structure, which is the conceptual shape or arrangement of data. For example,
text is normally viewed as a long string of characters whereas sales records might
be envisioned as a rectangular table of numeric values, where each row repre-
sents the sales made by a particular employee and each column represents the
sales made on a particular day.

One common data structure is the array, which is a block of elements of the
same type such as a one-dimensional list, a two-dimensional table with rows and
columns, or tables with higher dimensions. To establish such an array in a pro-
gram, many programming languages require that the declaration statement
declaring the name of the array also specify the length of each dimension of the
array. For example, Figure 6.5 displays the conceptual structure declared by the
statement

int Scores[2][9];

in the language C, which means “The variable Scores will be used in the
following program unit to refer to a two-dimensional array of integers having
two rows and nine columns.” The same statement in FORTRAN would be
written as

INTEGER Scores(2,9)

Once an array has been declared, it can be referenced elsewhere in the program
by its name, or an individual element can be identified by means of integer val-
ues called indices that specify the row, column, and so on, desired. However,
the range of these indices varies from language to language. For example, in C
(and its derivatives C++, Java, and C#) indices start at 0, meaning that the entry
in the second row and fourth column of the array called Scores (as declared
above) would be referenced by Scores[1][3], and the entry in the first row
and first column would be Scores[0] [0]. In contrast, indices start at 1 in a
FORTRAN program so the entry in the second row and fourth column would be
referenced by Scores(2,4) (see again Figure 6.5).

In contrast to an array in which all data items are the same type, an aggregate
type (also called a structure, a record, or sometimes a heterogeneous array)

252 Chapter 6 Programming Languages

Scores

Scores (2,4) in
FORTRAN where
indices start at one.

Scores [1][3] in C
and its derivatives
where indices start
at zero.

Figure 6.5 A two-dimensional array with two rows and nine columns

is a block of data in which different elements can have different types. For
instance, a block of data referring to an employee might consist of an entry called
Name of type character, an entry called Age of type integer, and an entry called
SkillRating of type float. Such an aggregate type would be declared in C by the
statement

struct {char Name[25];
int Age;
float SkillRating;}
Employee;

which says that the variable Employee is to refer to a structure (abbreviated
struct) consisting of three components called Name (a string of 25 characters),
Age, and SkillRating (Figure 6.6). Once such an aggregate has been declared, a
programmer can use the structure name (Employee) to refer to the entire aggre-
gate or can reference individual fields within the aggregate by means of the struc-
ture name followed by a period and the field name (such as Employee.Age).

In Chapter 8 we will see how conceptual constructs such as arrays are actu-
ally implemented inside a computer. In particular, we will learn that the data
contained in an array might be scattered over a wide area of main memory or
mass storage. This is why we refer to data structure as being the conceptual shape
or arrangement of data. Indeed, the actual arrangement within the computer’s
storage system might be quite different from its conceptual arrangement.

Constants and Literals
Sometimes a fixed, predetermined value is used in a program. For example, a
program for controlling air traffic in the vicinity of a particular airport might con-
tain numerous references to that airport’s altitude above sea level. When writing
such a program, one can include this value, say 645 feet, literally each time it is
required. Such an explicit appearance of a value is called a literal. The use of lit-
erals leads to program statements such as

EffectiveAlt ← Altimeter + 645

where EffectiveAlt and Altimeter are assumed to be variables and 645 is a
literal. Thus, this statement asks that the variable EffectiveAlt be assigned
the result of adding 645 to the value assigned to the variable Altimeter.

2536.2 Traditional Programming Concepts

Meredith W Linsmeyer

23

6.2

Employee
Employee.Age

Employee.Name

Employee.SkillRating

Figure 6.6 The conceptual layout of the structure Employee

In most programming languages, literals consisting of text are delineated
with quotation marks to distinguish them from other program components. For
instance, the statement

LastName ← “Smith”

might be used to assign the text “Smith” to the variable LastName, whereas the
statement

LastName ← Smith

would be used to assign the value of the variable Smith to the variable LastName.
Often, the use of literals is not good programming practice because literals

can mask the meaning of the statements in which they appear. How, for
instance, can a reader of the statement

EffectiveAlt ← Altimeter + 645

know what the value 645 represents? Moreover, literals can complicate the task of
modifying the program should it become necessary. If our air traffic program is
moved to another airport, all references to the airport’s altitude must be changed. If
the literal 645 is used in each reference to that altitude, each such reference through-
out the program must be located and changed. The problem is compounded if the
literal 645 also occurs in reference to a quantity other than the airport’s altitude.
How do we know which occurrences of 645 to change and which to leave alone?

To solve these problems, programming languages allow descriptive names to
be assigned to specific, nonchangeable values. Such a name is called a constant.
As an example, in C++ and C#, the declarative statement

const int AirportAlt = 645;

associates the identifier AirportAlt with the fixed value 645 (which is consid-
ered to be of type integer). The similar concept in Java is expressed by

final int AirportAlt = 645;

Following such declarations, the descriptive name AirportAlt can be used in
lieu of the literal 645. Using such a constant in our pseudocode, the statement

EffectiveAlt ← Altimeter + 645

could be rewritten as

EffectiveAlt ← Altimeter + AirportAlt

which better represents the meaning of the statement. Moreover, if such con-
stants are used in place of literals and the program is moved to another airport
whose altitude is 267 feet, then changing the single declarative statement in
which the constant is defined is all that is needed to convert all references to the
airport’s altitude to the new value.

Assignment Statements
Once the special terminology to be used in a program (such as the variables and
constants) has been declared, a programmer can begin to describe the algo-
rithms involved. This is done by means of imperative statements. The most basic
imperative statement is the assignment statement, which requests that a value

254 Chapter 6 Programming Languages

be assigned to a variable (or more precisely, stored in the memory area identi-
fied by the variable). Such a statement normally takes the syntactic form of a
variable, followed by a symbol representing the assignment operation, and then
by an expression indicating the value to be assigned. The semantics of such a
statement is that the expression is to be evaluated and the result stored as the
value of the variable. For example, the statement

Z = X + Y;

in C, C++, C#, and Java requests that the sum of X and Y be assigned to the variable
Z. In some other languages (such as Ada) the equivalent statement would appear as

Z := X + Y;

Note that these statements differ only in the syntax of the assignment operator,
which in C, C++, C#, and Java is merely an equal sign but in Ada is a colon fol-
lowed by an equal sign. Perhaps a better notation for the assignment operator is
found in APL, a language that was designed by Kenneth E. Iverson in 1962. (APL
stands for A Programming Language.) It uses an arrow to represent assignment.
Thus, the preceding assignment would be expressed as

Z ← X + Y

in APL (as well as in our pseudocode of Chapter 5).
Much of the power of assignment statements comes from the scope of expres-

sions that can appear on the right side of the statement. In general, any algebraic
expression can be used, with the arithmetic operations of addition, subtraction,
multiplication, and division typically represented by the symbols �, �, *, and /,
respectively. In some languages the combination ** is used to represent exponen-
tiation. For example, in Ada the expression

x ** 2

represents x2. Languages differ, however, in the manner in which algebraic
expressions are interpreted. For example, the expression 2 * 4 � 6 / 2 could
produce the value 14 if it is evaluated from right to left, or 7 if evaluated from
left to right. These ambiguities are normally resolved by rules of operator
precedence, meaning that certain operations are given precedence over others.
The traditional rules of algebra dictate that multiplication and division have
precedence over addition and subtraction. That is, multiplications and divisions
are performed before additions and subtractions. Following this convention, the
preceding expression would produce the value 11. In most languages, parentheses
can be used to override the language’s operator precedence. Thus 2 * (4 � 6) / 2
would produce the value 10.

Many programming languages allow the use of one symbol to represent
more than one operation. In these cases the meaning of the symbol is deter-
mined by the data type of the operands. For example, the symbol � traditionally
indicates addition when its operands are numeric, but in some languages, such
as Java, the symbol indicates concatenation when its operands are character
strings. That is, the result of the expression

“abra” + “cadabra”

is abracadabra. Such multiple use of an operation symbol is called overloading.
While many languages provide built-in overloading of a few common operators,

2556.2 Traditional Programming Concepts

others such as Ada, C++, and C# may allow programmers to define additional
overloaded meanings or even add additional operators.

Control Statements
A control statement alters the execution sequence of the program. Of all the
programming constructs, those from this group have probably received the most
attention and generated the most controversy. The major villain is the simplest
control statement of all, the goto statement. It provides a means of directing
the execution sequence to another location that has been labeled for this pur-
pose by a name or number. It is therefore nothing more than a direct application
of the machine-level JUMP instruction. The problem with such a feature in a
high-level programming language is that it allows programmers to write a rat’s
nest like

goto 40
20 Apply procedure Evade

goto 70
40 if (KryptoniteLevel < LethalDose) then goto 60

goto 20
60 Apply procedure RescueDamsel
70 ...

when a single statement such as

if (KryptoniteLevel < LethalDose)
then (apply procedure RescueDamsel)
else (apply procedure Evade)

does the job.
To avoid such complexities, modern languages are designed with control

statements that allow an entire branching pattern to be expressed within a single
lexical structure. The choice of which control statements to incorporate into a
language is a design decision. The goal is to provide a language that not only
allows algorithms to be expressed in a readable form but also assists the pro-
grammer in obtaining such readability. This is done by restricting the use of
those features that have historically led to sloppy programming while encourag-
ing the use of better-designed features. The result is the practice known as
structured programming, which encompasses an organized design methodol-
ogy combined with the appropriate use of the language’s control statements. The
idea is to produce a program that can be readily comprehended and shown to
meet its specifications.

We have already met two popular branching structures in our pseudocode of
Chapter 5, represented by the if-then-else and while statements. These are
present in almost all imperative, functional, or object-oriented languages. More
precisely, the pseudocode statements

if (condition)
then (statementA)
else (statementB)

and

while (condition) do
(loop body)

256 Chapter 6 Programming Languages

would be written as

if (condition) statementA
else statementB;

and

while (condition)
{loop body}

in C, C++, C#, and Java. Note that the fact that these statements are identical in
all four languages is a consequence of the fact that C++, C#, and Java are object-
oriented extensions of the imperative language C. In contrast, the corresponding
statements would be written as

IF condition THEN
statementA;

ELSE
statementB;

END IF

and

WHILE condition LOOP
loop body

END LOOP;

in the language Ada.
Another common branching structure is often represented by a switch or

case statement. It provides a means of selecting one statement sequence among
several options, depending on the value assigned to a designated variable. For
example, the statement

2576.2 Traditional Programming Concepts

Programming Language Cultures
As with natural languages, users of different programming languages tend to
develop cultural differences and often debate the merits of their perspectives. Some-
times these differences are significant as, for instance, when different programming
paradigms are involved. In other cases, the distinctions are subtle. For example,
whereas the text distinguishes between procedures and functions (Section 6.3),
C programmers refer to both as functions. This is because a procedure in a C program
is thought of as a function that does not return a value. A similar example is that C++
programmers refer to a procedure within an object as a member function, whereas
the generic term for this is method. This discrepancy can be traced to the fact that C++
was developed as an extension of C. Another cultural difference is that programs in
Ada are normally typeset with reserved words in either uppercase or bold—a tradition
that is not widely practiced by users of C, C++, C#, FORTRAN, or Java.

Although this book is language neutral and uses generic terminology, each spe-
cific example is presented in a form that is compatible with the style of the language
involved. As you encounter these examples, you should keep in mind that they are
presented as examples of how generic ideas appear in actual languages—not as a
means of teaching the details of a particular language. Try to look at the forest rather
than the trees.

switch (variable) {
case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default: statementD}

in C, C++, C#, and Java requests the execution of statementA, statementB,
or statementC depending on whether the current value of variable is A, B,
or C, respectively or the execution of statementD if the value of variable is
something else. The same structure would be expressed as

CASE variable IS
WHEN 'A'=> statementA;
WHEN 'B'=> statementB;
WHEN 'C'=> statementC;
WHEN OTHERS=> statementD;

END CASE

in Ada.
Still another common control structure, often called the for structure, is

shown in Figure 6.7 along with its representation in C++, C#, and Java. This is
a loop structure similar to that of the while statement in our pseudocode. The
difference is that all the initialization, modification, and termination of the loop
is incorporated in a single statement. Such a statement is convenient when the
body of the loop is to be performed once for each value within a specific range.
In particular, the statements in Figure 6.7 direct that the loop body be performed
repeatedly—first with the value of Count being 1, then with the value of Count
being 2, and again with the value of Count being 3.

258 Chapter 6 Programming Languages

Assign Count the value 1

Count < 4?

Body

True

False

Assign Count the
value Count + 1

for (int Count = 1; Count < 4; Count++)
body ;

Figure 6.7 The for loop structure and its representation in C++, C#, and Java

The point to be made from the examples we have cited is that common
branching structures appear, with slight variations, throughout the gamut of
imperative and object-oriented programming languages. A somewhat surprising
result from theoretical computer science is that only a few of these structures
are needed to ensure that a programming language provides a means of express-
ing a solution to any problem that has an algorithmic solution. We will investi-
gate this claim in Chapter 12. For now, we merely point out that learning a
programming language is not an endless task of learning different control state-
ments. Most of the control structures found in today’s programming languages
are essentially variations of those we have identified here.

Comments
No matter how well a programming language is designed and how well the lan-
guage’s features are applied in a program, additional information is usually
helpful or mandatory when a human tries to read and understand the program.
For this reason, programming languages provide ways of inserting explanatory
statements, called comments, within a program. These statements are ignored
by a translator, and therefore their presence or absence does not affect the pro-
gram from a machine’s point of view. The machine-language version of the pro-
gram produced by a translator will be the same with or without comments, but
the information provided by these statements constitutes an important part of
the program from a human’s perspective. Without such documentation, large, com-
plex programs can easily thwart the comprehension of a human programmer.

There are two common ways of inserting comments within a program. One
is to surround the entire comment by special markers, one at the beginning
of the comment and one at the end. The other is to mark only the beginning
of the comment and allow the comment to occupy the remainder of the line
to the right of the marker. We find examples of both these techniques in C++,
C#, and Java. They allow comments to be bracketed by /* and */, but they also
allow a comment to begin with // and extend through the remainder of the line.
Thus both

/* This is a comment. */

and

// This is a comment.

are valid comment statements.
A few words are in order about what constitutes a meaningful comment.

Beginning programmers, when told to use comments for internal documenta-
tion, tend to follow a program statement such as

ApproachAngle = SlipAngle + HyperSpaceIncline;

with a comment such as “Calculate ApproachAngle by adding HyperSpaceIn-
cline and SlipAngle.” Such redundancy adds length rather than clarity to a pro-
gram. The purpose of a comment is to explain the program, not to repeat it. A more
appropriate comment in this case might be to explain why ApproachAngle is
being calculated (if that is not obvious). For example, the comment,
“ApproachAngle is used later to compute ForceFieldJettisonVelocity and is not
needed after that,” is more helpful than the previous one.

2596.2 Traditional Programming Concepts

260 Chapter 6 Programming Languages

Additionally, comments that are scattered among a program’s statements
can sometimes hamper a human’s ability to follow the program’s flow and thus
make it harder to comprehend the program than if no comments had been
included. A good approach is to collect comments that relate to a single program
unit in one place, perhaps at the beginning of the unit. This provides a central
place where the reader of the program unit can look for explanations. It also pro-
vides a location in which the purpose and general characteristics of the program
unit can be described. If this format is adopted for all program units, the entire
program is given a degree of uniformity in which each unit consists of a block of
explanatory statements followed by the formal presentation of the program unit.
Such uniformity in a program enhances its readability.

1. Why is the use of a constant considered better programming style than
the use of a literal?

2. What is the difference between a declarative statement and an impera-
tive statement?

3. List some common data types.
4. Identify some common control structures found in imperative and object-

oriented programming languages.
5. What is the difference between an array and an aggregate type?

Questions & Exercises

6.3 Procedural Units
In previous chapters we have seen advantages to dividing large programs into
manageable units. In this section we focus on the concept of a procedure, which
is the major technique for obtaining a modular representation of a program in
an imperative language. Moreover, in object-oriented languages, it is by means of
procedures that programmers specify how objects should respond to various
stimuli.

Procedures
A procedure, in its generic sense, is a set of instructions for performing a task that
can be used as an abstract tool by other program units. Control is transferred to the
procedure at the time its services are required and then returned to the original pro-
gram unit after the procedure has finished (Figure 6.8). The process of transferring
control to a procedure is often referred to as calling or invoking the procedure. We will
refer to a program unit that requests the execution of a procedure as the calling unit.

As in our pseudocode of Chapter 5, procedures are usually written as individ-
ual program units. The unit begins with a statement, known as the procedure’s
header, that identifies, among other things, the name of the procedure. Follow-
ing this header are the statements that define the procedure’s details. These
statements tend to be arranged in the same manner as those in a traditional

imperative program, beginning with declaration statements that describe the
variables used in the procedure followed by imperative statements that describe
the steps to be performed when the procedure is executed.

As a general rule, a variable declared within a procedure is a local variable,
meaning that it can be referenced only within that procedure. This eliminates any
confusion that might occur if two procedures, written independently, happen to
use variables of the same name. (The portion of a program in which a variable can
be referenced is called the scope of the variable. Thus, the scope of a local variable
is the procedure in which it is declared. Variables whose scopes are not restricted to
a particular part of a program are called global variables. Most programming lan-
guages provide a means of specifying whether a variable is to be local or global.)

In contrast to our pseudocode of Chapter 5 in which we requested the
execution of a procedure by a statement such as “Apply the procedure
DeactivateKrypton,” as specified, most modern programming languages
allow procedures to be called by merely stating the procedure’s name. For
example, if GetNames, SortNames, and WriteNames were the names of pro-
cedures for acquiring, sorting, and printing a list of names, then a program to
get, sort, and print the list could be written as

GetNames;
SortNames;
WriteNames;

rather than

Apply the procedure GetNames.
Apply the procedure SortNames.
Apply the procedure WriteNames.

Note that by assigning each procedure a name that indicates the action per-
formed by the procedure, this condensed form appears as a sequence of com-
mands that reflect the meaning of the program.

2616.3 Procedural Units

Calling
program unit

ProcedureControl is
transferred
to procedure.

Procedure is
executed.

Control is returned to
calling environment when
procedure is completed.

Calling program
unit requests
procedure.

Calling program
unit continues.

Figure 6.8 The flow of control involving a procedure

Parameters
Procedures are often written using generic terms that are made specific when the
procedure is applied. For example, Figure 5.11 of the preceding chapter is expressed
in terms of a generic list rather than a specific list. In our pseudocode, we agreed to
identify such generic terms within parentheses in the procedure’s header. Thus the
procedure in Figure 5.11 begins with the header

procedure Sort (List)

and then proceeds to describe the sorting process using the term List to refer to
the list being sorted. If we want to apply the procedure to sort a wedding guest
list, we need merely follow the directions in the procedure, assuming that the
generic term List refers to the wedding guest list. If, however, we want to sort a
membership list, we need merely interpret the generic term List as referring to
the membership list.

Such generic terms within procedures are called parameters. More pre-
cisely, the terms used within the procedure are called formal parameters and
the precise meanings assigned to these formal parameters when the procedure is
applied are called actual parameters. In a sense, the formal parameters repre-
sent slots in the procedure into which actual parameters are plugged when the
procedure is requested.

As in the case of our pseudocode, most programming languages require that,
when defining a procedure, the formal parameters be listed in parentheses in the
procedure’s header. As an example, Figure 6.9 presents the definition of a proce-
dure named ProjectPopulation as it might be written in the programming

262 Chapter 6 Programming Languages

Starting the head with the term
“void” is the way that a C
programmer specifies that the
program unit is a procedure
rather than a function. We will
learn about functions shortly.

The formal parameter list. Note
that C, as with many programming
languages, requires that the data
type of each parameter be specified.

This declares a local variable
named Year.

void (float GrowthRate)ProjectPopulation

int Year;

Population[0] = 100.0;
for (Year = 0; Year =< 10; Year++)
Population[Year+1] = Population[Year] + (Population[Year] * GrowthRate);

These statements describe how the
populations are to be computed and
stored in the global array named
Population.

}

{

Figure 6.9 The procedure ProjectPopulation written in the programming language C

language C. The procedure expects to be given a specific yearly growth rate
when it is called. Based on this rate, the procedure computes the projected pop-
ulation of a species, assuming an initial population of 100, for the next 10 years,
and stores these values in a global array called Population.

Most programming languages also use parenthetical notation to identify the
actual parameters when a procedure is called. That is, the statement requesting
the execution of a procedure consists of the procedure name followed by a list of
the actual parameters enclosed in parentheses. Thus, rather than a statement
such as

Apply ProjectPopulation using a growth rate of 0.03

that we used in our pseudocode, the statement

ProjectPopulation(0.03);

would be used in a C program to call the procedure ProjectPopulation of Fig-
ure 6.9 using a growth rate of 0.03.

When more than one parameter is involved, the actual parameters are asso-
ciated, entry by entry, with the formal parameters listed in the procedure’s
header—the first actual parameter is associated with the first formal parameter,
and so on. Then, the values of the actual parameters are effectively transferred
to their corresponding formal parameters, and the procedure is executed.

To emphasize this point, suppose the procedure PrintCheck was defined
with a header such as

procedure PrintCheck(Payee, Amount)

where Payee and Amount are formal parameters used within the procedure to
refer to the person to whom the check is to be payable and the amount of the
check, respectively. Then, calling the procedure with the statement

PrintCheck("John Doe", 150)

would cause the procedure to be executed with the formal parameter Payee
being associated with the actual parameter John Doe and the formal parameter
Amount being associated with the value 150. However, calling the procedure
with the statement

PrintCheck(150, "John Doe")

would cause the value 150 to be assigned to the formal parameter Payee and the
name John Doe to be assigned to the formal parameter Amount, which would
lead to erroneous results.

The task of transferring data between actual and formal parameters is han-
dled in a variety of ways by different programming languages. In some lan-
guages a duplicate of the data represented by the actual parameters is produced
and given to the procedure. Using this approach, any alterations to the data made
by the procedure are reflected only in the duplicate—the data in the calling pro-
gram unit are never changed. We often say that such parameters are passed by
value. Note that passing parameters by value protects the data in the calling unit
from being mistakenly altered by a poorly designed procedure. For example, if
the calling unit passed an employee’s name to a procedure, it might not want the
procedure to change that name.

Unfortunately, passing parameters by value is inefficient when the parame-
ters represent large blocks of data. A more efficient technique is to give the

2636.3 Procedural Units

procedure direct access to the actual parameters by telling it the addresses of the
actual parameters in the calling program unit. In this case we say that the
parameters are passed by reference. Note that passing parameters by reference
allows the procedure to modify the data residing in the calling environment.
Such an approach would be desirable in the case of a procedure for sorting a list
since the point of calling such a procedure would be to cause changes in the list.

As an example, let us suppose that the procedure Demo was defined as

procedure Demo (Formal)
Formal ← Formal + 1;

Moreover, suppose that the variable Actual was assigned the value 5 and we
called Demo with the statement

Demo(Actual)

Then, if parameters were passed by value, the change to Formal in the procedure
would not be reflected in the variable Actual (Figure 6.10). But, if parameters
were passed by reference, the value of Actual would be incremented by
one (Figure 6.11).

264 Chapter 6 Programming Languages

a. When the procedure is called, a copy of the data is given to
 the procedure

Actual

Calling environment Procedure‘s environment

Formal

5 5

b. and the procedure manipulates its copy.

Actual

Calling environment Procedure‘s environment

Formal

5 6

Calling environment

c. Thus, when the procedure has terminated, the calling
 environment has not been changed.

Actual

5

Figure 6.10 Executing the procedure Demo and passing parameters by value

2656.3 Procedural Units

Figure 6.11 Executing the procedure Demo and passing parameters by reference

a. When the procedure is called, the formal parameter becomes
 a reference to the actual parameter.

b. Thus, changes directed by the procedure are made to the
 actual parameter

c. and are, therefore, preserved after the procedure has
 terminated.

Calling environment

Actual

6

Actual

Actual

Calling environment Procedure’s environment

Formal

5

Actual Formal

Actual

Calling environment Procedure’s environment

Formal

6

FormalActual

Visual Basic
Visual Basic is an object-oriented programming language that was developed by
Microsoft as a tool by which users of Microsoft’s Windows operating system could
develop their own GUI applications. Actually, Visual Basic is more than a language—
it is an entire software development package that allows a programmer to construct
applications from predefined components (such as buttons, check boxes, text boxes,
scroll bars, etc.) and to customize these components by describing how they should
react to various events. In the case of a button, for example, the programmer would
describe what should happen when that button is clicked. In Chapter 7 we will learn
that this strategy of constructing software from predefined components represents
the current trend in software development techniques.

The popularity of the Windows operating system combined with the conven-
ience of the Visual Basic development package has promoted Visual Basic to a widely
used programming language. Whether this prominence will continue now that
Microsoft has introduced C# remains to be seen.

Different programming languages provide different parameter-passing tech-
niques, but in all cases the use of parameters allows a procedure to be written in
a generic sense and applied to specific data at the appropriate time.

Functions
Let us pause to consider a slight variation of the procedure concept that is
found in many programming languages. At times the purpose of a procedure is
to produce a value rather than perform an action. (Consider the subtle distinc-
tion between a procedure whose purpose is to estimate the number of widgets
that will be sold as opposed to a procedure for playing a simple game—the
emphasis in the former is to produce a value, the emphasis in the latter is to
perform an action.) If the purpose is to produce a value, the “procedure” might
be implemented as a function. Here the term function refers to a program unit
similar to a procedure except that a value is transferred back to the calling pro-
gram unit as “the value of the function.” That is, as a consequence of executing
the function, a value will be computed and sent back to the calling program
unit. This value can then be stored in a variable for later reference or used
immediately in a computation. For example, a C, C++, Java, or C# programmer
might write

ProjectedJanSales = EstimatedSales(January);

to request that the variable ProjectedJanSales be assigned the result of apply-
ing the function EstimatedSales to determine how many widgets are expected
to be sold in January. Or, the programmer might write

if (LastJanSales < EstimatedSales(January)) ...
else ...

to cause different actions to be performed depending on whether this January’s
sales are expected to be better than those of last January. Note that in the second
case, the value computed by the function is used to determine which branch
should be taken, but it is never stored.

266 Chapter 6 Programming Languages

Event-Driven Software Systems

In the text, we have considered cases in which procedures are activated as the result
of statements elsewhere in the program that explicitly call the procedure. There are
cases, however, in which procedures are activated implicitly by the occurrence of an
event. Examples are found in GUIs where the procedure that describes what should
happen when a button is clicked is not activated by a call from another program unit,
but instead is activated as the result of the button being clicked. Software systems in
which procedures are activated by events rather than explicit requests are called
event-driven systems. In short, an event-driven software system consists of proce-
dures that describe what should happen as the result of various events. When the
system is executed, these procedures lie dormant until their respective event occurs—
then they become active, perform their task, and return to dormancy.

Functions are defined within a program in much the same way as proce-
dures. The difference is that a function header usually begins by specifying the
data type of the value that is to be returned, and the function definition usually
ends with a return statement in which the value to be returned is specified.
Figure 6.12 presents a definition of a function named CylinderVolume as it
might be written in the language C. (Actually, a C programmer would use a more
succinct form, but we will use this somewhat verbose version for pedagogical
reasons.) When called, the function receives specific values for the formal
parameters Radius and Height and returns the result of computing the volume
of a cylinder with those dimensions. Thus the function could be used elsewhere
in the program in a statement such as

Cost = CostPerVolUnit * CylinderVolume(3.45, 12.7);

to determine the cost of the contents of a cylinder with radius 3.45 and height 12.7.

2676.3 Procedural Units

Questions & Exercises

1. What is meant by the “scope” of a variable?
2. What is the difference between a procedure and a function?
3. Why do many programming languages implement I/O operations as if

they were calls to procedures?
4. What is the difference between a formal parameter and an actual parameter?
5. When writing in modern programming languages, programmers tend to

use verbs for names of procedures and nouns for names of functions. Why?

The function header begins with
the type of the data that will
be returned.

Compute the volume of
the cylinder.

float CylinderVolume (float Radius, float Height)

Declare a
local variable
named Volume.

float Volume;

return Volume;

Volume = 3.14 * Radius * Radius * Height;

Terminate the function and
return the value of the
variable Volume.

{

}

Figure 6.12 The function CylinderVolume written in the programming language C

6.4 Language Implementation
In this section we investigate the process of converting a program written in a
high-level language into a machine-executable form.

The Translation Process
The process of converting a program from one language to another is called
translation. The program in its original form is the source program; the trans-
lated version is the object program. The translation process consists of three
activities—lexical analysis, parsing, and code generation—that are performed by
units in the translator known as the lexical analyzer, parser, and code generator
(Figure 6.13).

Lexical analysis is the process of recognizing which strings of symbols from
the source program represent a single entity, or token. For example, the three
symbols 153 should not be interpreted as a 1, a 5, and a 3 but should be
recognized as representing a single numeric value. Likewise, a word appearing
in the program, although composed of individual symbols, should be interpreted
as a single unit. Most humans perform lexical analysis with little conscious
effort. When asked to read aloud, we pronounce words rather than individual
characters.

Thus the lexical analyzer reads the source program symbol by symbol, iden-
tifying which groups of symbols represent tokens, and classifying those tokens
according to whether they are numeric values, words, arithmetic operators, and
so on. The lexical analyzer encodes each token with its classification and hands
them to the parser. During this process, the lexical analyzer skips over all com-
ment statements.

Thus the parser views the program in terms of lexical units (tokens) rather
than individual symbols. It is the parser’s job to group these units into state-
ments. Indeed, parsing is the process of identifying the grammatical structure of
the program and recognizing the role of each component. It is the technicalities
of parsing that cause one to hesitate when reading the sentence

The man the horse that won the race threw was not hurt.

(Try this one: “That that is is. That that is not is not. That that is not is not
that that is.”!)

To simplify the parsing process, early programming languages insisted that
each program statement be positioned in a particular manner on the printed page.
Such languages were known as fixed-format languages. Today, most program-
ming languages are free-format languages, meaning that the positioning of

268 Chapter 6 Programming Languages

Figure 6.13 The translation process

Source
program

Lexical
analyzer

Code
generatorParser

tokens parse
trees

Object
program

statements is not critical. The advantage of free-format languages lies in a program-
mer’s ability to organize the written program in a way that enhances readability
from a human’s point of view. In these cases it is common to use indentation to help
a reader grasp the structure of a statement. Rather than writing

if Cost < CashOnHand then pay with cash else use
credit card

a programmer might write

if Cost < CashOnHand
then pay with cash
else use credit card

For a machine to parse a program written in a free-format language, the syntax
of the language must be designed so that the structure of a program can be identi-
fied regardless of the spacing used in the source program. To this end, most free-
format languages use punctuation marks such as semicolons to mark the ends of
statements, as well as key words such as if, then, and else to mark the beginning
of individual phrases. These key words are often reserved words, meaning that
they cannot be used by the programmer for other purposes within the program.

The parsing process is based on a set of rules that define the syntax of
the programming language. Collectively, these rules are called a grammar. One
way of expressing these rules is by means of syntax diagrams, which are picto-
rial representations of a language’s grammatical structure. Figure 6.14 shows a
syntax diagram of the if-then-else statement from our pseudocode in Chapter 5.
This diagram indicates that an if-then-else structure begins with the word
if, followed by a Boolean expression, followed by the word then, followed by
a Statement. This combination might or might not be followed by the word else
and a Statement. Notice that terms that actually appear in an if-then-else

2696.4 Language Implementation

Figure 6.14 A syntax diagram of our if-then-else pseudocode statement

if Boolean
expression then elseStatement Statement

Python

Python is a programming language that was created by Guido van Rossum in the late
1980s. Today it is popular in developing Web applications, in scientific computation,
and as an introductory language for students. Python emphasizes readability, and
includes elements of the imperative, object-oriented, and functional programming
paradigms. Python is also an example of a modern language that uses a form of fixed
formatting. It uses indentation to denote program blocks, rather than punctuation
marks or reserved words.

270 Chapter 6 Programming Languages

statement are enclosed in ovals, whereas terms that require further description,
such as Boolean expression and Statement, are enclosed in rectangles. Terms that
require further description (those in rectangles) are called nonterminals; terms
that appear in ovals are called terminals. In a complete description of a lan-
guage’s syntax the nonterminals are described by additional diagrams.

As a more complete example, Figure 6.15 presents a set of syntax diagrams
that describes the syntax of a structure called Expression, which is intended to be
the structure of simple arithmetic expressions. The first diagram describes an
Expression as consisting of a Term that might or might not be followed by either a
� or � symbol followed by another Expression. The second diagram describes a
Term as consisting of either a single Factor or a Factor followed by a � or 	 sym-
bol, followed by another Term. Finally, the last diagram describes a Factor as one
of the symbols x, y, or z.

The manner in which a particular string conforms to a set of syntax dia-
grams can be represented in a pictorial form by a parse tree, as demonstrated in
Figure 6.16, which presents a parse tree for the string

x � y � z

based on the set of diagrams in Figure 6.15. Note that the tree starts at the top
with the nonterminal Expression and at each level shows how the nonterminals
at that level are decomposed until the symbols in the string itself are obtained. In
particular, the figure shows that (according to the first diagram in Figure 6.15) an
Expression can be decomposed as a Term, followed by the � symbol, followed by

Figure 6.15 Syntax diagrams describing the structure of a simple algebraic expression

Expression

Expression

Term

Term

Term

Factor

Factor

x

y

z

�

	

�

�

an Expression. In turn, the Term can be decomposed (using the second diagram
in Figure 6.15) as a Factor (which turns out to be the symbol x), and the final
Expression can be decomposed (using the third diagram in Figure 6.15) as a Term
(which turns out to be y � z).

2716.4 Language Implementation

Figure 6.16 The parse tree for the string x � y � z based on the syntax diagrams in Figure 6.15

Term

Factor Term

Term

Term

Factor

Factor

Expression

Expression

Expression

x

+

y

�

z

Implementation of Java AND C#

In some cases, such as in the control of an animated Web page, software must be
transferred over the Internet and executed on distant machines. If this software is
supplied in source program form, additional delays will result at the destination
because the software will have to be translated into the proper machine language
before it is executed. However, supplying the software in machine-language form
would mean that a different version of the software would have to be provided
depending on the machine language used by the distant computer.

Sun Microsystems and Microsoft have resolved this problem by designing
“universal machine languages” (called bytecode in the case of Java and .NET Common
Intermediate Language in the case of C#) into which source programs can be trans-
lated. Although these languages are not really machine languages, they are designed
to be quickly translatable. Thus if software written in Java or C# is translated into the
appropriate “universal machine language,” then it can be transferred to other
machines in the Internet where it can be executed efficiently. In some cases this exe-
cution is performed by an interpreter. In other cases, it is quickly translated prior to
execution, a process known as just-in-time compilation.

The process of parsing a program is essentially that of constructing a parse tree
for the source program. Indeed, a parse tree represents the parser’s interpretation of
the program’s grammatical composition. For this reason the syntax rules describing
a program’s grammatical structure must not allow two distinct parse trees for one
string, since this would lead to ambiguities within the parser. A grammar that does
allow two distinct parse trees for one string is said to be an ambiguous grammar.

Ambiguities in grammars can be quite subtle. In fact, the rule in Figure 6.14 con-
tains such a flaw. It allows both the parse trees in Figure 6.17 for the single statement

if B1 then if B2 then S1 else S2

272 Chapter 6 Programming Languages

Figure 6.17 Two distinct parse trees for the statement if B1 then if B2 then S1 else S2

if then

then

else

if

Statement

B1

B2 S1

Boolean
expression Statement

S2

Boolean
expression Statement Statement

thenif

then elseif

Statement

B1

B2 S1 S2

Boolean
expression Statement Statement

Boolean
expression Statement

Note that these interpretations are significantly different. The first implies that
statement S2 is to execute if B1 is false; the second implies that S2 is to execute
only if B1 is true and B2 is false.

The syntax definitions of formal programming languages are designed to
avoid such ambiguities. In our pseudocode we avoid such problems by using
parentheses. In particular, we might write

if B1
then (if B2 then S1)
else S2

and

if B1
then (if B2 then S1

else S2)

to distinguish between the two possible interpretations.
As a parser analyzes the grammatical structure of a program, it is able to

identify individual statements and to distinguish between the declarative state-
ments and imperative statements. As it recognizes the declarative statements, it
records the information being declared in a table called the symbol table. Thus
the symbol table contains such information as the names of the variables appear-
ing in the program as well as what data types and data structures are associated
with those variables. The parser then relies on this information when analyzing
imperative statements such as

z ← x + y;

In particular, to determine the meaning of the symbol �, the parser must know
the data type associated with x and y. If x is of type float and y is of type charac-
ter, then adding x and y makes little sense and should be reported as an error. If
x and y are both of type integer, then the parser will request that the code gen-
erator build a machine-language instruction using the machine’s integer addition
op-code; if both are of type float, the parser will request that floating-point addi-
tion op-code be used; or if both are of type character, the parser might request
that the code generator build the sequence of machine-language instructions
needed to perform the concatenation operation.

A somewhat special case arises if x is of type integer and y is of type float.
Then the concept of addition is applicable but the values are not encoded in com-
patible forms. In this case the parser might choose to have the code generator
build the instructions to convert one value to the other type and then perform the
addition. Such implicit conversion between types is called coercion.

Coercion is frowned upon by many language designers, because implicit
type conversion can alter the value of a data item, resulting in subtle program
bugs. They argue that the need for coercion usually indicates a flaw in the pro-
gram’s design and therefore should not be accommodated by the parser. The
result is that most modern languages are strongly typed, which means that all
activities requested by a program must involve data of agreeable types. Some
languages, such as Java, will allow coercion as long as it is a type promotion,
meaning that it involves converting a low precision value to a higher precision
value. Implicit coercions that might alter a value are reported as errors. In most
cases a programmer can still request these type conversions by making an
explicit type cast, which notifies the compiler that the programmer is aware
that a type conversion will be applied.

2736.4 Language Implementation

The final activity in the translation process is code generation, which is the
process of constructing the machine-language instructions to implement the state-
ments recognized by the parser. This process involves numerous issues, one
being that of producing efficient machine-language versions of programs. For
example, consider the task of translating the two-statement sequence

x ← y + z;
w ← x + z;

If these statements are translated as individual statements, each would require
that data be transferred from main memory into the CPU before the indicated
addition takes place. However, efficiency can be gained by recognizing that
once the first statement has been executed, the values of x and z will already
be in the CPU’s general-purpose registers and therefore need not be loaded
from memory before performing the second addition. Implementing insights
such as this is called code optimization and is an important task of the code
generator.

Finally, we should note that the steps of lexical analysis, parsing, and code
generation are not carried out in a strict sequential order. Instead, these activi-
ties are intertwined. The lexical analyzer begins by reading characters from the
source program and identifying the first token. It hands this token to the
parser. Each time the parser receives a token from the lexical analyzer, it ana-
lyzes the grammatical structure being read. At this point it might request
another token from the lexical analyzer or, if the parser recognizes that a com-
plete phrase or statement has been read, it calls on the code generator to pro-
duce the proper machine instructions. Each such request causes the code
generator to build machine instructions that are added to the object program.
In turn, the task of translating a program from one language to another con-
forms naturally to the object-oriented paradigm. The source program, lexical
analyzer, parser, code generator, and object program are objects that interact by
sending messages back and forth as each object goes about performing its task
(Figure 6.18).

274 Chapter 6 Programming Languages

Figure 6.18 An object-oriented approach to the translation process

Source
program

Parser

Code
generator

Object
program

Lexical
analyzer

Software Development Packages
The software tools, such as editors and translators, used in the software develop-
ment process are often grouped into a package that functions as one integrated
software development system. Such a system would be classified as application
software in the classification scheme of Section 3.2. By using this application
package, a programmer gains ready access to an editor for writing programs, a
translator for converting the programs into machine language, and a variety of
debugging tools that allow the programmer to trace the execution of a malfunc-
tioning program to discover where it goes astray.

The advantages of using such an integrated system are numerous. Perhaps
the most obvious is that a programmer can move back and forth between the
editor and debugging tools with ease, as changes to the program are made and
tested. Moreover, many software development packages allow related program
units that are under development to be linked in such a way that access to
related units is simplified. Some packages maintain records regarding which pro-
gram units within a group of related units have been altered since the last bench-
mark was made. Such capabilities are quite advantageous in the development of
large software systems in which many interrelated units are developed by differ-
ent programmers.

On a smaller scale, the editors in software development packages are often
customized to the programming language being used. Such an editor will usually
provide automatic line indentation that is the de facto standard for the target lan-
guage and in some cases might recognize and automatically complete key words
after the programmer has typed only the first few characters. Moreover, the
editor might highlight keywords within source programs (perhaps with color) so
that they stand out, making the programs easier to read.

In the next chapter we will learn that software developers are increasingly
searching for ways by which new software systems can be constructed from pre-
fabricated blocks called components—leading to a new software development
model called component architecture. Software development packages based on
the component architecture model often use graphical interfaces in which compo-
nents can be represented as icons on the display. In this setting a programmer (or
component assembler) selects desired components with a mouse. A selected com-
ponent can then be customized by means of the package’s editor and then attached
to other components by pointing and clicking with the mouse. Such packages rep-
resent a major step forward in the search for better software development tools.

2756.4 Language Implementation

Questions & Exercises

1. Describe the three major steps in the translation process.
2. What is a symbol table?
3. What is the difference between a terminal and a nonterminal?
4. Draw the parse tree for the expression

x � y � x � z

based on the syntax diagrams in Figure 6.15.

6.5 Object-Oriented Programming
In Section 6.1 we learned that the object-oriented paradigm entails the develop-
ment of active program units called objects, each of which contains procedures
describing how that object should respond to various stimuli. The object-oriented
approach to a problem is to identify the objects involved and describe them as self-
contained units. In turn, object-oriented programming languages provide state-
ments for describing objects and their behavior. In this section we will introduce
some of these statements as they appear in the languages C++, Java, and C#,
which are three of the more prominent object-oriented languages used today.

Classes and Objects
Consider the task of developing a simple computer game in which the player
must protect the Earth from falling meteors by shooting them with high-power
lasers. Each laser contains a finite internal power source that is partially con-
sumed each time the laser is fired. Once this source is depleted, the laser
becomes useless. Each laser should be able to respond to the commands to aim
farther to the right, aim farther to the left, and to fire its laser beam.

In the object-oriented paradigm, each laser in the computer game would be
implemented as an object that contains a record of its remaining power as well as
procedures for modifying its aim and firing its laser beam. Since all the laser objects
have the same properties, they can be described by means of a common template. In
the object-oriented paradigm a template for a collection of objects is called a class.

In Chapter 8, we will explore the similarities between classes and data types. For
now we simply note that a class describes the common characteristics of a collection
of objects in much the same way as the concept of the primitive data type integer
encompasses the common characteristics of such numbers as 1, 5, and 82. Once a
programmer has included the description of a class in a program, that template can
be used to construct and to manipulate objects of that “type” in much the same way
that the primitive type integer allows the manipulation of “objects” of type integer.

276 Chapter 6 Programming Languages

5. Describe the strings that conform to the structure Chacha according to
the following syntax diagrams.

ChachaStep

Turn

forward

backward

backward

forward

cha cha cha

right

left

swing

Chacha:

Step:

Turn:

cha cha cha

In the languages C++, Java, and C# a class is described by a statement of the form

class Name
{

.

.

.
}

where Name is the name by which the class can be referenced elsewhere in
the program. It is within the braces that the properties of the class are described.
In particular, a class named LaserClass describing the structure of a laser in
our computer game is outlined in Figure 6.19. The class consists of the declara-
tion of a variable named RemainingPower (of type integer) and three proce-
dures named turnRight, turnLeft, and fire. These procedures describe the
routines to be performed to accomplish the corresponding action. Thus any
object that is constructed from this template will have these features: a variable
called RemainingPower and three procedures named turnRight, turnLeft,
and fire.

A variable that resides within an object, such as RemainingPower, is called
an instance variable and the procedures within an object are called methods
(or member functions in the C++ vernacular). Note that in Figure 6.19 the
instance variable RemainingPower is described using a declaration statement
similar to those discussed in Section 6.2 and the methods are described in a form
reminiscent of procedures and functions as discussed in Section 6.3. After all,
declarations of instance variables and descriptions of methods are basically
imperative programming concepts.

Once we have described the class LaserClass in our game program, we
can declare three variables Laser1, Laser2, and Laser3 to be of “type”
LaserClass by a statement of the form

LaserClass Laser1, Laser2, Laser3;

2776.5 Object-Oriented Programming

Figure 6.19 The structure of a class describing a laser weapon in a computer game

Description of the data
that will reside inside of
each object of this “type”

Methods describing how an
object of this “type” should
respond to various messages

int RemainingPower = 100;

void turnRight ()

{ . . . }

void turnLeft ()

{ . . . }

void fire ()

{ . . . }

class LaserClass

{

}

Note that this is the same format as the statement

int x, y, z;

that would be used to declare three variables named x, y, and z of type integer,
as we learned early in Section 6.2. Both consist of the name of a “type” followed
by a list of the variables being declared. The difference is that the latter
statement says that the variables x, y, and z will be used in the program to refer
to items of type integer (which is a primitive type), whereas the former state-
ment says the variables Laser1, Laser2, and Laser3 will be used in the pro-
gram to refer to items of “type” LaserClass (which is a “type” defined within
the program).

Once we have declared the variables Laser1, Laser2, and Laser3 to be of
“type” LaserClass, we can assign them values. In this case the values must be
objects that conform to the “type” LaserClass. These assignments can be made
by assignment statements, but it is often convenient to assign starting values to
the variables within the same declaration statements used to declare the vari-
ables. Such initial assignments are made automatically in the case of declara-
tions in the language C++. That is, the statement

LaserClass Laser1, Laser2, Laser3;

not only establishes the variables Laser1, Laser2, and Laser3, but also cre-
ates three objects of “type” LaserClass, one as the value of each variable. In
the languages Java and C#, such initial assignments are instigated in much the
same way that initial assignments are made to variables of primitive types. In
particular, whereas the statement

int x = 3;

not only declares x to be a variable of type integer but also assigns the variable
the value 3, the statement

LaserClass Laser1 = new LaserClass();

declares the variable Laser1 to be of “type” LaserClass and also creates a new
object using the LaserClass template and assigns that object as the starting
value of Laser1.

At this point we should pause to emphasize the distinction between a class and
an object. A class is a template from which objects are constructed. One class can be
used to create numerous objects. We often refer to an object as an instance of the
class from which it was constructed. Thus, in our computer game Laser1, Laser2,
and Laser3 are variables whose values are instances of the class LaserClass.

After using declarative statements to create the variables Laser1, Laser2,
and Laser3 and assign objects to them, we can continue our game program by
writing imperative statements that activate the appropriate methods within
these objects (in object-oriented vernacular, this is called sending messages to
the objects). In particular, we could cause the object assigned to the variable
Laser1 to execute its fire method using the statement

Laser1.fire();

Or we could cause the object assigned to Laser2 to execute its turnLeft
method via the statement

Laser2.turnLeft();

278 Chapter 6 Programming Languages

These are actually little more than procedure calls. Indeed, the former statement
is a call to the procedure (the method) fire inside the object assigned to the
variable Laser1, and the latter statement is a call to the procedure turnLeft
inside the object assigned to the variable Laser2.

At this stage our meteor game example has given us the background to grasp
the overall structure of a typical object-oriented program (Figure 6.20). It will
contain a variety of class descriptions similar to Figure 6.19, each describing the
structure of one or more objects used in the program. In addition, the program
will contain an imperative program segment (usually associated with the name
“main”) containing the sequence of steps to be performed initially when the
program is executed. This segment will contain declaration statements similar
to our laser declarations to establish the objects used in the program as well
as imperative statements that call for the execution of methods within those
objects.

Constructors
When an object is constructed, often some customizing activities need to be per-
formed. For example, in our meteor computer game we might want the differ-
ent lasers to have different initial power settings, which would mean that the
instance variables named RemainingPower within the various objects should
be given different starting values. Such initialization needs are handled by

2796.5 Object-Oriented Programming

Figure 6.20 The structure of a typical object-oriented program

Program

Procedural unit (often
called main) that directs
the construction of the
objects and makes appropriate
calls to their methods

main ...
 {...

 }

Class descriptions

class ...
 {...

 }

class ...
 {...

 }

class ...
 {...

 }

defining special methods, called constructors, within the appropriate class.
Constructors are executed automatically when an object is constructed from the
class. A constructor is identified within a class definition by the fact that it is a
method with the same name as the class.

Figure 6.21 presents an extension of the LaserClass definition originally
shown in Figure 6.19. Note that it contains a constructor in the form of a method
named LaserClass. This method assigns the instance variable Remaining-
Power the value it receives as its parameter. Thus, when an object is constructed
from this class, this method will be executed, causing RemainingPower to be
initialized at the appropriate setting.

The actual parameters to be used by a constructor are identified in a param-
eter list in the statement causing the creation of the object. Thus, based on the
class definition in Figure 6.21, a C++ programmer would write

LaserClass Laser1(50), Laser2(100);

to create two objects of type LaserClass—one known as Laser1 with an initial
power reserve of 50, and the other known as Laser2 with an initial power
reserve of 100. Java and C# programmers would accomplish the same task with
the statements

LaserClass Laser1 = new LaserClass(50);
LaserClass Laser2 = new LaserClass(100);

280 Chapter 6 Programming Languages

Figure 6.21 A class with a constructor

Constructor assigns a
value to Remaining Power
when an object is created.

LaserClass (InitialPower)
{ RemainingPower = InitialPower;
}

void turnRight ()

{ . . . }

void turnLeft ()

{ . . . }

void fire ()

{ . . . }

class LaserClass

{

{ int RemainingPower;

}

Additional Features
Let us now suppose we want to enhance our meteor computer game so that a
player who reaches a certain score will be rewarded by recharging some of the
lasers to their original power setting. These lasers will have the same properties
as the other lasers except that they will be rechargeable.

To simplify the description of objects with similar yet different characteris-
tics, object-oriented languages allow one class to encompass the properties of
another through a technique known as inheritance. As an example, suppose we
were using Java to develop our game program. We could first use the class state-
ment described previously to define a class called LaserClass that described
those properties that are common to all lasers in the program. Then we could
use the statement

class RechargeableLaser extends LaserClass
{

.

.

.
}

to describe another class called RechargeableLaser. (C++ and C# program-
mers would merely replace the word extends with a colon.) Here the extends
clause indicates that this class is to inherit the features of the class Laser-
Class as well as contain those features appearing within the braces. In our
case, these braces would contain a new method (perhaps named recharge)
that would describe the steps required to reset the instance variable Remain-
ing Power to its original value. Once these classes were defined, we could use
the statement

LaserClass Laser1, Laser2;

to declare Laser1 and Laser2 to be variables referring to traditional lasers, and
use the statement

RechargeableLaser Laser3, Laser4;

to declare Laser3 and Laser4 to be variables referring to lasers having the
additional properties described in the RechargeableLaser class.

The use of inheritance leads to the existence of a variety of objects with sim-
ilar yet different characteristics, which in turn leads to a phenomenon
reminiscent of overloading, which we met in Section 6.2. (Recall that overload-
ing refers to the use of a single symbol, such as +, for representing different
operations depending on the type of its operands.) Suppose that an object-
oriented graphics package consists of a variety of objects, each representing a
shape (circle, rectangle, triangle, and so on). A particular image might consist of
a collection of these objects. Each object “knows” its size, location, and color as
well as how to respond to messages telling it, for example, to move to a new

2816.5 Object-Oriented Programming

location or to draw itself on the display. To draw an image, we merely send a
“draw yourself” message to each object in the image. However, the routine used
to draw an object varies according to the shape of the object—drawing a square is
not the same process as drawing a circle. This customized interpretation of a
message is known as polymorphism; the message is said to be polymorphic.

Another characteristic associated with object-oriented programming is
encapsulation, which refers to restricting access to an object’s internal proper-
ties. To say that certain features of an object are encapsulated means that only
the object itself is able to access them. Features that are encapsulated are said to
be private. Features that are accessible from outside the object are said to be
public.

As an example, let us return to our LaserClass originally outlined in
Figure 6.19. Recall that it described an instance variable RemainingPower and
three methods turnRight, turnLeft, and fire. These methods are to be
accessed by other program units to cause an instance of LaserClass to perform
the appropriate action. But the value of RemainingPower should only be
altered by the instance’s internal methods. No other program unit should be able
to access this value directly. To enforce these rules we need merely designate
RemainingPower as private and turnRight, turnLeft, and fire as public as
shown in Figure 6.22. With these designations inserted, any attempt to access
the value of RemainingPower from outside the object in which it resides will be
identified as an error when the program is translated—forcing the programmer
to correct the problem before proceeding.

282 Chapter 6 Programming Languages

Figure 6.22 Our LaserClass definition using encapsulation as it would appear in a Java or C#
program

Components in the class
are designated public or
private depending on
whether they should be
accessible from other
program units.

 public LaserClass (InitialPower)

 public void turnRight ()

 { . . . }

 public void turnLeft ()

 { . . . }

 public void fire ()

 { . . . }

class LaserClass

{private int RemainingPower;

}

 {RemainingPower = InitialPower;
 }

6.6 Programming Concurrent Activities
Suppose we were asked to design a program to produce animation for an action
computer game involving multiple attacking enemy spaceships. One approach
would be to design a single program that would control the entire animation
screen. Such a program would be charged with drawing each of the spaceships,
which (if the animation is to appear realistic) would mean that the program would
have to keep up with the individual characteristics of numerous spacecraft. An
alternate approach would be to design a program to control the animation of a sin-
gle spaceship whose characteristics are determined by parameters assigned at the
beginning of the program’s execution. Then the animation could be constructed
by creating multiple activations of this program, each with its own set of parame-
ters. By executing these activations simultaneously, we could obtain the illusion
of many individual spaceships streaking across the screen at the same time.

Such simultaneous execution of multiple activations is called parallel
processing or concurrent processing. True parallel processing requires multi-
ple CPUs, one to execute each activation. When only one CPU is available, the
illusion of parallel processing is obtained by allowing the activations to share the
time of the single processor in a manner similar to that implemented by multi-
programming systems (Chapter 3).

Many modern computer applications are more easily solved in the context of
parallel processing than in the more traditional context involving a single
sequence of instructions. In turn, newer programming languages provide syntax
for expressing the semantic structures involved in parallel computations. The
design of such a language requires the identification of these semantic structures
and the development of a syntax for representing them.

Each programming language tends to approach the parallel processing para-
digm from its own point of view, resulting in different terminology. For example,
what we have informally referred to as an activation is called a task in the Ada ver-
nacular and a thread in Java. That is, in an Ada program, simultaneous actions are
performed by creating multiple tasks, whereas in Java one creates multiple threads.
In either case, the result is that multiple activities are generated and executed in
much the same way as processes under the control of a multitasking operating sys-
tem. We will adopt the Java terminology and refer to such “processes” as threads.

283

Questions & Exercises

1. What is the difference between an object and a class?
2. What classes of objects other than LaserClass might be found in the

computer game example used in this section? What instance variables in
addition to RemainingPower might be found in the class LaserClass?

3. Suppose the classes PartTimeEmployee and FullTimeEmployee
inherited the properties of the class Employee. What are some features
that you might expect to find in each class?

4. What is a constructor?
5. Why are some items within a class designated as private?

6.6 Programming Concurrent Activities

Perhaps the most basic action that must be expressed in a program involv-
ing parallel processing is that of creating new threads. If we want multiple
activations of the spaceship program to be executed at the same time, we need
a syntax for saying so. Such spawning of new threads is similar to that of
requesting the execution of a traditional procedure. The difference is that, in
the traditional setting, the program unit that requests the activation of a pro-
cedure does not progress any further until the requested procedure termi-
nates (recall Figure 6.8), whereas in the parallel context the requesting
program unit continues execution while the requested procedure performs its
task (Figure 6.23). Thus to create multiple spaceships streaking across the
screen, we would write a main program that simply generates multiple activa-
tions of the spaceship program, each provided with the parameters describing
the distinguishing characteristics of that spaceship.

A more complex issue associated with parallel processing involves handling
communication between threads. For instance, in our spaceship example, the
threads representing the different spaceships might need to communicate their
locations among themselves in order to coordinate their activities. In other cases
one thread might need to wait until another reaches a certain point in its com-
putation, or one thread might need to stop another one until the first has accom-
plished a particular task.

Such communication needs have long been a topic of study among computer
scientists, and many newer programming languages reflect various approaches to
thread interaction problems. As an example, let us consider the communication
problems encountered when two threads manipulate the same data. (This example
is presented in more detail in the optional Section 3.4.) If each of two threads that
are executing concurrently need to add the value three to a common item of data,
a method is needed to ensure that one thread is allowed to complete its transaction
before the other is allowed to perform its task. Otherwise they could both start their
individual computations with the same initial value, which would mean that the

284 Chapter 6 Programming Languages

Figure 6.23 Spawning threads

Calling
program unit

Procedure

Procedure is
activated.

Both units
execute
simultaneously.

Calling program
unit requests
procedure.

final result would be incremented by only three rather than six. Data that can be
accessed by only one thread at a time is said to have mutually exclusive access.

One way to implement mutually exclusive access is to write the program
units that describe the threads involved so that when a thread is using shared
data, it blocks other threads from accessing that data until such access is safe.
(This is the approach described in the optional Section 3.4, where we identified
the portion of a process that accesses shared data as a critical region.) Experience
has shown that this approach has the drawback of distributing the task of ensur-
ing mutual exclusion throughout various parts of the program—each program
unit accessing the data must be properly designed to enforce mutual exclusion,
and thus a mistake in a single segment can corrupt the entire system. For this rea-
son many argue that a better solution is to embody the data item with the ability
to control access to itself. In short, instead of relying on the threads that access
the data to guard against multiple access, the data item itself is assigned this
responsibility. The result is that control of access is concentrated at a single point
in the program rather than dispersed among many program units. A data item
augmented with the ability to control access to itself is often called a monitor.

We conclude that the design of programming languages for parallel process-
ing involves developing ways to express such things as the creation of threads,
the pausing and restarting of threads, the identification of critical regions, and
the composition of monitors.

In closing, we should note that although animation provides an interesting set-
ting in which to explore the issues of parallel computing, it is only one of many
fields that benefit from parallel processing techniques. Other areas include weather
forecasting, air traffic control, simulation of complex systems (from nuclear reac-
tions to pedestrian traffic), computer networking, and database maintenance.

2856.6 Programming Concurrent Activities

Questions & Exercises

1. What are some properties that would be found in a programming
language for concurrent processing that would not be found in a more
traditional language?

2. Describe two methods for ensuring mutually exclusive access to data.
3. Identify some settings other than animation in which parallel computing

is beneficial.

Programming Smartphones

Software for hand-held, mobile, and embedded devices is often developed using the
same general-purpose programming languages that are used in other contexts. With
a larger keyboard and extra patience, some smartphone applications can be written
using the smartphone itself. However, in most cases smartphone software is devel-
oped on desktop computers using special software systems that provide tools for
editing, translating, and testing smartphone software. Simple apps are often written
in Java, C++, and C#. However, writing more complex apps or core system software
may require additional support for concurrent and event-driven programming.

286 Chapter 6 Programming Languages

6.7 Declarative Programming
In Section 6.1 we claimed that formal logic provides a general problem-solving
algorithm around which a declarative programming system can be constructed.
In this section we investigate this claim by first introducing the rudiments of the
algorithm and then taking a brief look at a declarative programming language
based on it.

Logical Deduction
Suppose we know that either Kermit is on stage or Kermit is sick, and we are told
that Kermit is not on stage. We could then conclude that Kermit must be sick.
This is an example of a deductive-reasoning principle called resolution. Resolu-
tion is one of many techniques, called inference rules, for deriving a conse-
quence from a collection of statements.

To better understand resolution, let us first agree to represent simple state-
ments by single letters and to indicate the negation of a statement by the sym-
bol ¬. For instance, we might represent the statement “Kermit is a prince” by A
and “Miss Piggy is an actress” by B. Then, the expression

A OR B

would mean “Kermit is a prince or Miss Piggy is an actress” and

B AND ¬A

would mean “Miss Piggy is an actress and Kermit is not a prince.” We will use an
arrow to indicate “implies.” For example, the expression

A → B

means “Kermit is a prince implies that Miss Piggy is an actress.”
In its general form, the resolution principle states that from two statements

of the form

P OR Q

and

R OR ¬Q

we can conclude the statement

P OR R

In this case we say that the two original statements resolve to form the third
statement, which we call the resolvent. It is important to observe that the resol-
vent is a logical consequence of the original statements. That is, if the original
statements are true, the resolvent must also be true. (If Q is true, then R must be
true; but if Q is false, then P must be true. Thus regardless of the truth or false-
ness of Q, either P or R must be true.)

We will represent the resolution of two statements pictorially as shown in
Figure 6.24, where we write the original statements with lines projecting down
to their resolvent. Note that resolution can be applied only to pairs of statements
that appear in clause form—that is, statements whose elementary components
are connected by the Boolean operation OR. Thus

P OR Q

is in clause form, whereas

P → Q

is not. The fact that this potential problem poses no serious concern is a conse-
quence of a theorem in mathematical logic that states that any statement expressed
in the first-order predicate logic (a system for representing statements with exten-
sive expressive powers) can be expressed in clause form. We will not pursue this
important theorem here, but for future reference we observe that the statement

P → Q

is equivalent to the clause form statement

Q OR ¬P

A collection of statements is said to be inconsistent if it is impossible for all
the statements to be true at the same time. In other words, an inconsistent col-
lection of statements is a collection of statements that are self-contradictory. A
simple example would be a collection containing the statement P as well as the
statement ¬P. Logicians have shown that repeated resolution provides a system-
atic method of confirming the inconsistency of a set of inconsistent clauses. The
rule is that if repeated application of resolution produces the empty clause
(the result of resolving a clause of the form P with a clause of the form ¬P), then
the original collection of statements must be inconsistent. As an example, Figure
6.25 demonstrates that the collection of statements

P OR Q R OR ¬Q ¬R ¬P

is inconsistent.

2876.7 Declarative Programming

Figure 6.24 Resolving the statements (P OR ¬Q) and (R OR Q) to produce (P OR R)

P OR R

P OR Q R OR ¬Q

Figure 6.25 Resolving the statements (P OR Q), (R OR ¬Q), ¬R, and ¬P

P OR Q

P OR R

P

R OR ¬Q ¬R ¬P

empty clause

Suppose now that we want to confirm that a collection of statements implies
the statement P. To imply the statement P is the same as contradicting the
statement ¬P. Thus, to demonstrate that the original collection of statements
implies P, all we need to do is apply resolution to the original statements
together with the statement ¬P until an empty clause occurs. Upon obtaining an
empty clause, we can conclude that statement ¬P is inconsistent with the origi-
nal statements, and thus the original statements must imply P.

One final point remains before we are ready to apply resolution in an actual
programming environment. Suppose we have the two statements

(Mary is at X) → (Mary’s lamb is at X)

(where X represents any location) and

Mary is at home

In clause form the two statements become

(Mary’s lamb is at X) OR ¬(Mary is at X)

and

(Mary is at home)

which at first glance do not have components that can be resolved. On the
other hand, the components (Mary is at home) and ¬(Mary is at X)
are quite close to being opposites of each other. The problem is to recognize
that Mary is at X, being a statement about locations in general, is a state-
ment about home in particular. Thus a special case of the first statement from
above is

(Mary’s lamb is at home) OR ¬(Mary is at home)

which can be resolved with the statement

(Mary is at home)

to produce the statement

(Mary’s lamb is at home)

The process of assigning values to variables (such as assigning the value home
to X) so that resolution can be performed is called unification. It is this
process that allows general statements to be applied to specific applications in
a deduction system.

Prolog
The programming language Prolog (short for PROgramming in LOGic) is a
declarative programming language whose underlying problem-solving algorithm
is based on repeated resolution. Such languages are called logic programming
languages. A program in Prolog consists of a collection of initial statements to
which the underlying algorithm applies its deductive reasoning. The compo-
nents from which these statements are constructed are called predicates.
A predicate consists of a predicate identifier followed by a parenthetical state-
ment listing the predicate’s arguments. A single predicate represents a fact about
its arguments, and its identifier is usually chosen to reflect this underlying

288 Chapter 6 Programming Languages

semantics. Thus if we want to express the fact that Bill is Mary’s parent, we can
use the predicate form

parent(bill, mary)

Note that the arguments in this predicate start with lowercase letters, even
though they represent proper nouns. This is because Prolog distinguishes argu-
ments that are constants from arguments that are variables by insisting that con-
stants begin with lowercase letters and variables begin with uppercase letters.
(Here we have used the terminology of the prolog culture where the term
constant is used in place of the more generic term literal. More precisely, the
term bill [note the lowercase] is used in prolog to represent the literal that
might be represented as “Bill” in a more generic notation. The term Bill [note
the uppercase] is used in prolog to refer to a variable.)

Statements in a Prolog program are either facts or rules, each of which is
terminated by a period. A fact consists of a single predicate. For example, the
fact that a turtle is faster than a snail could be represented by the Prolog
statement

faster(turtle, snail).

and the fact that a rabbit is faster than a turtle could be represented by

faster(rabbit, turtle).

A Prolog rule is an “implies” statement. However, instead of writing such a
statement in the form X → Y, a Prolog programmer writes “Y if X,” except that the
symbol :- (a colon followed by a dash) is used in place of the word if. Thus the
rule “X is old implies X is wise” might be expressed by a logician as

old(X) → wise(X)

but would be expressed in Prolog as

wise(X) :- old(X).

As another example, the rule

(faster(X, Y) AND faster(Y, Z)) → faster(X, Z)

would be expressed in Prolog as

faster(X, Z) :- faster(X, Y), faster(Y, Z).

(The comma separating faster(X, Y) and faster(Y, Z) represents the
conjunction AND.) Although rules such as these are not in clause form, they are
allowed in Prolog because they can be easily converted into clause form.

Keep in mind that the Prolog system does not know the meaning of the predi-
cates in a program; it simply manipulates the statements in a totally symbolic man-
ner according to the resolution inference rule. Thus it is up to the programmer to
describe all the pertinent features of a predicate in terms of facts and rules. In this
light, Prolog facts tend to be used to identify specific instances of a predicate,
whereas rules are used to describe general principles. This is the approach followed
by the preceding statements regarding the predicate faster. The two facts
describe particular instances of “fasterness” while the rule describes a general prop-
erty. Note that the fact that a rabbit is faster than a snail, though not explicitly
stated, is a consequence of the two facts combined with the rule.

2896.7 Declarative Programming

When developing software using Prolog, the task of a programmer is to
develop the collection of facts and rules that describe the information that is
known. These facts and rules constitute the set of initial statements to be used in
the deductive system. Once this collection of statements is established, conjec-
tures (called goals in Prolog terminology) can be proposed to the system—usually
by typing them at a computer’s keyboard. When such a goal is presented to a Pro-
log system, the system applies resolution to try to confirm that the goal is a con-
sequence of the initial statements. Based on our collection of statements
describing the relationship faster, each of the goals

faster(turtle, snail).
faster(rabbit, turtle).
faster(rabbit, snail).

could be so confirmed because each is a logical consequence of the initial state-
ments. The first two are identical to facts appearing in the initial statements,
whereas the third requires a certain degree of deduction by the system.

More interesting examples are obtained if we provide goals whose arguments
are variables rather than constants. In these cases Prolog tries to derive the goal
from the initial statements while keeping track of the unifications required to do
so. Then, if the goal is obtained, Prolog reports these unifications. For example,
consider the goal

faster(W, snail).

In response to this, Prolog reports

faster(turtle, snail).

Indeed, this is a consequence of the initial statements and agrees with the goal
via unification. Furthermore, if we asked Prolog to tell us more, it finds and
reports the consequence

faster(rabbit, snail).

In contrast, we can ask Prolog to find instances of animals that are slower than a
rabbit by proposing the goal

faster(rabbit, W).

In fact, if we started with the goal

faster(V, W).

Prolog would ultimately seek all the faster relationships that can be derived from
the initial statements. This implies that a single Prolog program could be used to
confirm that a particular animal is faster than another, to find those animals that
are faster than a given animal, to find those animals that are slower than a given
animal, or to find all faster relationships.

This potential versatility is one of the features that has captured the imagina-
tion of computer scientists. Unfortunately, when implemented in a Prolog system,
the resolution procedure inherits limitations that are not present in its theoretical
form, and thus Prolog programs can fail to live up to their anticipated flexibility.
To understand what we mean, first note that the diagram in Figure 6.25 displays
only those resolutions that are pertinent to the task at hand. There are other direc-
tions that the resolution process could pursue. For example, the leftmost and right-
most clauses could be resolved to produce the resolvent Q. Thus, in addition to the
statements describing the basic facts and rules involved in an application, a Prolog

290 Chapter 6 Programming Languages

program often must contain additional statements whose purpose is to guide the
resolution process in the correct direction. For this reason actual Prolog programs
may not capture the multiplicity of purpose suggested by our previous example.

291Chapter Review Problems

1. Which of the statements R, S, T, U, and V are logical consequences of the
collection of statements (¬R OR T OR S), (¬S OR V), (¬V OR R),
(U OR ¬S), (T OR U), and (S OR V)?

2. Is the following collection of statements consistent? Explain your
answer.

P OR Q OR R ¬R OR Q R OR ¬P ¬Q

3. Complete the two rules at the end of the Prolog program below so that
the predicate mother(X, Y) means “X is the mother of Y” and the pred-
icate father(X, Y) means “X is the father of Y.”

female(carol).
female(sue).
male(bill).
male(john).
parent(john, carol).
parent(sue, carol).
mother(X,Y) :-
father(X,Y) :-

4. In the context of the Prolog program in Question 3, the following rule is
intended to mean that X is Y’s sibling if X and Y have a common parent.

sibling(X, Y) :- parent(Z, X), parent(Z, Y).

What unexpected conclusion would this definition of the sibling rela-
tionship allow Prolog to make?

Questions & Exercises

1. What does it mean to say that a programming
language is machine independent?

2. Translate the following pseudocode program
into the machine language described in
Appendix C.

x ← 0;
while (x < 3) do
(x ← x + 1)

3. Translate the statement

Halfway ← Length + Width

into the machine language of Appendix C,
assuming that Length, Width, and Halfway
are all represented in floating-point
notation.

4. Translate the high-level statement

if (X equals 0)
then Z ← Y + W
else Z ← Y + X

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

292 Chapter 6 Programming Languages

into the machine language of Appendix C,
assuming that W, X, Y, and Z are all values
represented in two’s complement notation,
each using one byte of memory.

5. Why was it necessary to identify the type of
data associated with the variables in Prob-
lem 4 in order to translate the statements?
Why do many high-level programming lan-
guages require the programmer to identify
the type of each variable at the beginning of
a program?

6. Name and describe four different program-
ming paradigms.

7. Suppose the function f expects two numeric
values as its inputs and returns the smaller of
the two values as its output value. If w, x, y,
and z represent numeric values, what is the
result returned by f(f(w,x), f(y,z))?

8. Suppose f is a function that returns the result of
reversing the string of symbols given as its input,
and g is a function that returns the concatenation
of the two strings given as its input. If x is the
string abcd, what is returned by g(f(x),x)?

9. Suppose you are going to write an object-
oriented program for maintaining your finan-
cial records. What data should be stored inside
the object representing your checking
account? To what messages should that object
be able to respond? What are other objects
that might be used in the program?

10. Summarize the distinction between a machine
language and an assembly language.

11. Design an assembly language for the machine
described in Appendix C.

12. John Programmer argues that the ability to
declare constants within a program is not nec-
essary because variables can be used instead.
For example, our example of AirportAlt in
Section 6.2 could be handled by declaring
AirportAlt to be a variable and then assign-
ing it the required value at the beginning of
the program. Why is this not as good as using
a constant?

13. Summarize the distinction between declara-
tive statements and imperative statements.

14. Explain the differences between a literal, a
constant, and a variable.

15. a. What is operator precedence?
b. Depending on operator precedence, what

values could be associated with the expres-
sion 6 + 2 × 3?

16. What is structured programming?

17. What is the difference between the
meaning of the “equals” symbol in the
statement
if (X = 5) then (. . .)

as opposed to the assignment statement

X = 2 + Y

18. Draw a flowchart representing the
structure expressed by the following for
statement.

for (int x = 2; x < 8; ++x)
{ . . . }

19. Translate the following for statement into an
equivalent program segment using the
while statement in our pseudocode of
Chapter 5.

for (int x = 2; x < 8; ++x)
{ . . . }

20. If you are familiar with written music, analyze
musical notation as a programming language.
What are the control structures? What is the
syntax for inserting program comments? What
music notation has semantics similar to the
for statement in Figure 6.7?

21. Draw a flowchart representing the structure
expressed by the following statement.

switch (suit)
{case “clubs”: bid(1);
case “diamonds”: bid(2);
case “hearts”: bid(3);
case “spades”: bid(4);
}

22. Rewrite the following program segment using
a single case statement instead of nested
if-then-else statements.

if (W = 5)
then (Z ← 7)
else (if (W = 6)

then (Y ← 7)
else (if (W = 7)

then (X ← 7)
)

)

293Chapter Review Problems

23. Summarize the following rat’s-nest routine
with a single if-then-else statement:

if X > 5 then goto 80
X = X + 1
goto 90

80 X = X + 2
90 stop

24. Summarize the basic control structures found
in imperative and object-oriented programming
languages for performing each of the following
activities:
a. Determining which command should be

executed next
b. Repeating a collection of commands
c. Changing a variable’s value

25. Summarize the distinction between a transla-
tor and an interpreter.

26. Suppose the variable X in a program was
declared to be of type integer. What error
would occur when executing the program
statement

X ← 2.5

27. What does it mean to say that a programming
language is strongly typed?

28. Why would a large array probably not be
passed to a procedure by value?

29. Suppose the procedure Modify is defined in
our pseudocode of Chapter 5 by

procedure Modify (Y)

Y ← 7;

print the value of Y.

If parameters are passed by value, what will
be printed when the following program seg-
ment is executed? What if parameters are
passed by reference?

X ← 5;

apply the procedure Modify to X;

print the value of X;

30. Suppose the procedure Modify is defined in
our pseudocode of Chapter 5 by

procedure Modify (Y)

Y ← 9;

print the value of X;

print the value of Y.

Also suppose that X is a global variable. If
parameters are passed by value, what will be

printed when the following program segment
is executed? What if parameters are passed by
reference?
X ← 5;

apply the procedure Modify to X;

print the value of X;

31. Sometimes an actual parameter is passed to a
procedure by producing a duplicate to be used
by the procedure (as when the parameter is
passed by value), but when the procedure is
completed the value in the procedure’s copy is
transferred to the actual parameter before the
calling procedure continues. In such cases the
parameter is said to be passed by value-result.
What would be printed by the program
segment in Problem 30 if parameters were
passed by value-result?

32. a. What is an advantage of passing parameters
by value as opposed to passing them by
reference?

b. What is an advantage of passing parameters
by reference as opposed to passing them by
value?

33. What ambiguity exists in the statement
X ← 3 + 2 × 5

34. Suppose a small company has five employees
and is planning to increase the number to six.
Moreover, suppose one of the company’s pro-
grams contained the following assignment
statements.
DailySalary = TotalSal/5;
AvgSalary = TotalSal/5;
DailySales = TotalSales/5;
AvgSales = TotalSales/5;

How would the task of updating the program
be simplified if the program had originally
been written using constants named Num-
berOfEmp and WorkWeek (both set to the
value 5) so that the assignment statements
could be expressed as
DailySalary = TotalSal/DaysWk;
AvgSalary = TotalSal/NumEmpl;
DailySales = TotalSales/DaysWk;
AvgSales = TotalSales/NumEmpl;

35. a. What is the distinction between a
formal language and a natural
language?

b. Give an example of each.

294 Chapter 6 Programming Languages

36. Draw a syntax diagram representing the struc-
ture of the while statement in the pseudocode
of Chapter 5.

37. Design a set of syntax diagrams to describe
the syntax of telephone numbers in your
locality. For instance, in the United States tele-
phone numbers consist of an area code, fol-
lowed by a regional code, followed by a
four-digit number such as (444) 555–1234.

38. Design a set of syntax diagrams to describe
simple sentences in your native language.

39. Design a set of syntax diagrams to describe
different ways of representing dates such as
month/day/year or month day, year.

40. Design a set of syntax diagrams that describes
the grammatical structure of “sentences” that
consist of occurrences of the word yes fol-
lowed by the same number of the word no.
For example, “yes yes no no” would be such a
sentence, whereas “no yes,” “yes no no,” and
“yes no yes” would not.

41. Give an argument to the effect that a set of
syntax diagrams cannot be designed that
describes the grammatical structure of “sen-
tences” that consist of occurrences of the
word yes, followed by the same number of
occurrences of the word no, followed by the
same number of occurrences of the word
maybe. For example, “yes no maybe” and
“yes yes no no maybe maybe” would be
such sentences, whereas “yes maybe,” “yes
no no maybe maybe,” and “maybe no”
would not.

42. Write a sentence describing the structure of
a string as defined by the following syntax
diagram. Then, draw the parse tree for the
string xxyxx.

43. Add syntax diagrams to those in Question 5 of
Section 6.4 to obtain a set of diagrams that
defines the structure Dance to be either a
Chacha or a Waltz, where a Waltz consists of
one or more copies of the pattern

forward diagonal close
or

backward diagonal close

44. Draw the parse tree for the expression
x × y + y 	 x
based on the syntax diagrams in Figure 6.15.

45. What code optimization could be performed
by a code generator when building the
machine code representing the statement

if (X = 5) then (Z ← X + 2)
else (Z ← X + 4)

46. Simplify the following program segment

Y ← 5;
if (Y = 7)
then (Z ← 8)
else (Z ← 9)

47. Simplify the following program segment

while (X not equal to 5) do
(X ← 5)

48. In an object-oriented programming environ-
ment, how are types and classes similar? How
are they different?

49. Describe how inheritance might be used to
develop classes describing various types of
buildings.

50. What is the difference between the public and
private parts of a class?

51. a. Give an example of a situation in
which an instance variable should be
private.

b. Give an example of a situation in
which an instance variable should be
public.

c. Give an example of a situation in which a
method should be private.

d. Give an example of a situation in which a
method should be public.

52. Describe some objects that might be found in
a program for simulating the pedestrian traffic
in a hotel lobby. Include explanations of the
actions some of the objects should be able to
perform.

*53. What does the term “monitor” mean in the
context of a programming language?

x

y

String
String

x

295Social Issues

*54. What properties of concurrent processing
make it desirable to use a programming lan-
guage with concurrency support?

*55. Draw a diagram (similar to Figure 6.25) repre-
senting the resolutions needed to show that
the collection of statements (Q OR ¬R),
(T OR R), ¬P, (P OR ¬T), and (P OR ¬Q) are
inconsistent.

*56. Is the collection of statements ¬R, (T OR R),
(P OR ¬Q), (Q OR ¬T), and (R OR ¬P) con-
sistent? Explain your answer.

*57. Extend the Prolog program outlined in Ques-
tions 3 and 4 of Section 6.7 to include the
additional family relationships of uncle, aunt,
grandparent, and cousin. Also add a rule that
defines parents (X, Y, Z) to mean that X and
Y are Z’s parents.

*58. Assuming that the first statement in the
following Prolog program is intended to mean

“Alice likes sports,” translate the last two
statements of the program. Then, list all the
things that, based on this program, Prolog
would be able conclude that Alice likes.
Explain your list.

likes(alice, sports).
likes(alice, music).
likes(carol, music).
likes(david, X) :- likes(X, sports).
likes(alice, X) :- likes(david, X).

*59. What problem would be encountered if the
following program segment was executed on a
computer in which values are represented in
the eight-bit floating-point format described in
Section 1.7?
X ← 0.01;

while (X not equal to 1.00) do
(print the value of X;
X ← X + 0.01)

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. In general, copyright laws support ownership rights associated with the
expression of an idea but not for the idea itself. As a result, a paragraph in a
book is copyrightable but the ideas expressed in the paragraph are not. How
should this right extend to source programs and the algorithms they express?
To what extent should a person who knows the algorithms used in a com-
mercial software package be allowed to write his or her own program
expressing those same algorithms and market this version of the software?

2. By using a high-level programming language a programmer is able to ex-
press algorithms using words such as if, then, and while. To what extent
does the computer understand the meaning of those words? Does the
ability to respond correctly to the use of words imply an understanding of
the words? How do you know when another person has understood what
you said?

3. Should a person who develops a new and useful programming language have
a right to profit from the use of that language? If so, how can that right be
protected? To what extent can a language be owned? To what extent should a
company have the right to own the creative, intellectual accomplishments of
its employees?

296 Chapter 6 Programming Languages

Aho, A. V., M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools, 2nd ed. Boston, MA: Addison-Wesley, 2007.

Barnes, J. Programming in Ada 2005. Boston, MA: Addison-Wesley, 2006.

Clocksin, W. F. and C. S. Mellish. Programming in Prolog, 5th ed. New York:
Springer-Verlag, 2003.

Friedman, D. P., and M. Felleisen. The Little Schemer, 4th ed. Cambridge, MA:
MIT Press, 1995.

Hamburger, H. and D. Richards. Logic and Language Models for Computer Science.
Upper Saddle River, NJ: Prentice-Hall, 2002.

Kernighan, B.W., and D.M. Ritchie. The C Programming Language, 2nd ed. Engle-
wood Cliffs, NJ: Prentice Hall, 1988.

Metcalf, M., and J. Reid. Fortran 90/95 Explained, 2nd ed. Oxford, England:
Oxford University Press, 1999.

Pratt, T. W. and M. V. Zelkowitz. Programming Languages, Design and Implementa-
tion, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2001.

Additional Reading

4. With a deadline approaching, is it acceptable for a programmer to forgo
documentation via comment statements to get a program running on time?
(Beginning students are often surprised to learn how important documenta-
tion is considered among professional software developers.)

5. Much of the research in programming languages has been to develop lan-
guages that allow programmers to write programs that can be easily read and
understood by humans. To what extent should a programmer be required to
use such capabilities? That is, to what extent is it good enough for the pro-
gram to perform correctly even though it is not well written from a human
perspective?

6. Suppose an amateur programmer writes a program for his or her own use
and in doing so is sloppy in the program’s construction. The program does
not use the programming language features that would make it more read-
able, it is not efficient, and it contains shortcuts that take advantage of the
particular situation in which the programmer intends to use the program.
Over time the programmer gives copies of the program to friends who want
to use it themselves, and these friends give it to their friends. To what extent
is the programmer liable for problems that might occur?

7. To what extent should a computer professional be knowledgeable in the var-
ious programming paradigms? Some companies insist that all software
developed in that company be written in the same, predetermined program-
ming language. Does your answer to the original question change if the pro-
fessional works for such a company?

297Additional Reading

Savitch, W. Absolute C++, 3rd ed. Boston, MA: Addison-Wesley, 2008.

Savitch, W. Absolute Java, 3rd ed. Boston, MA: Addison-Wesley, 2008.

Savitch, W. Problem Solving with C++, 6th ed. Boston, MA: Addison-Wesley, 2008.

Scott, M. L. Programming Language Pragmatics, 3rd ed. New York: Morgan
Kaufmann, 2009.

Sebesta, R. W. Concepts of Programming Languages, 9th ed. Boston, MA: Addison-
Wesley, 2009.

Wu, C. T. An Introduction to Object-Oriented Programming with Java, 3rd ed. Burr
Ridge, IL: McGraw-Hill, 2008.

This page intentionally left blank

Software
Engineering

In this chapter we explore the problems that are encountered during

the development of large, complex software systems. The subject is

called software engineering because software development is an

engineering process. The goal of researchers in software

engineering is to find principles that guide the software develop-

ment process and lead to efficient, reliable software products.

C H A P T E R

7

7.1 The Software
Engineering Discipline

7.2 The Software Life
Cycle
The Cycle as a Whole
The Traditional Development

Phase

7.3 Software Engineering
Methodologies

7.4 Modularity
Modular Implementation
Coupling
Cohesion
Information Hiding
Components

7.5 Tools of the Trade
Some Old Friends
Unified Modeling Language
Design Patterns

7.6 Quality Assurance
The Scope of Quality Assurance
Software Testing

7.7 Documentation

7.8 The Human-Machine
Interface

7.9 Software Ownership
and Liability

300 Chapter 7 Software Engineering

Software engineering is the branch of computer science that seeks principles to
guide the development of large, complex software systems. The problems faced
when developing such systems are more than enlarged versions of those prob-
lems faced when writing small programs. For instance, the development of such
systems requires the efforts of more than one person over an extended period of
time during which the requirements of the proposed system may be altered and
the personnel assigned to the project may change. Consequently, software engi-
neering includes topics such as personnel and project management that are
more readily associated with business management than computer science. We,
however, will focus on topics readily related to computer science.

7.1 The Software Engineering Discipline
To appreciate the problems involved in software engineering, it is helpful to select a
large complex device (an automobile, a multistory office building, or perhaps a
cathedral) and imagine being asked to design it and then to supervise its construc-
tion. How can you estimate the cost in time, money, and other resources to com-
plete the project? How can you divide the project into manageable pieces? How can
you ensure that the pieces produced are compatible? How can those working on
the various pieces communicate? How can you measure progress? How can you
cope with the wide range of detail (the selection of the doorknobs, the design of the
gargoyles, the availability of blue glass for the stained glass windows, the strength of
the pillars, the design of the duct work for the heating system)? Questions of the
same scope must be answered during the development of a large software system.

Because engineering is a well-established field, you might think that there is
a wealth of previously developed engineering techniques that can be useful in
answering such questions. This reasoning is partially true, but it overlooks fun-
damental differences between the properties of software and those of other
fields of engineering. These distinctions have challenged software engineering
projects, leading to cost overruns, late delivery of products, and dissatisfied cus-
tomers. In turn, identifying these distinctions has proven to be the first step in
advancing the software engineering discipline.

One such distinction involves the ability to construct systems from generic
prefabricated components. Traditional fields of engineering have long benefited
from the ability to use “off-the-shelf” components as building blocks when con-
structing complex devices. The designer of a new automobile does not have to
design a new engine or transmission but instead uses previously designed ver-
sions of these components. Software engineering, however, lags in this regard. In
the past, previously designed software components were domain specific—that is,
their internal design was based on a specific application—and thus their use as
generic components was limited. The result is that complex software systems
have historically been built from scratch. As we will see in this chapter, significant
progress is being made in this regard, although more work remains to be done.

Another distinction between software engineering and other engineering
disciplines is the lack of quantitative techniques, called metrics, for measuring
the properties of software. For example, to project the cost of developing a soft-
ware system, one would like to estimate the complexity of the proposed product,
but methods for measuring the “complexity” of software are evasive. Similarly,
evaluating the quality of a software product is challenging. In the case of
mechanical devices, an important measure of quality is the mean time between
failures, which is essentially a measurement of how well a device endures wear.

3017.1 The Software Engineering Discipline

Software, in contrast, does not wear out, so this method of measuring quality is
not as applicable in software engineering.

The difficulties involved in measuring software properties in a quantitative
manner is one of the reasons that software engineering has struggled to find a
rigorous footing in the same sense as mechanical and electrical engineering.
Whereas these latter subjects are founded on the established science of physics,
software engineering continues to search for its roots.

Thus research in software engineering is currently progressing on two levels:
Some researchers, sometimes called practitioners, work toward developing tech-
niques for immediate application, whereas others, called theoreticians, search for
underlying principles and theories on which more stable techniques can someday be
constructed. Being based on a subjective foundation, many methodologies developed
and promoted by practitioners in the past have been replaced by other approaches
that may themselves become obsolete with time. Meanwhile, progress by theoreti-
cians continues to be slow.

The need for progress by both practitioners and theoreticians is enormous.
Our society has become addicted to computer systems and their associated soft-
ware. Our economy, health care, government, law enforcement, transportation,
and defense depend on large software systems. Yet there continue to be major
problems with the reliability of these systems. Software errors have caused such
disasters and near disasters as the rising moon being interpreted as a nuclear
attack, a one day loss of $5 million by the Bank of New York, the loss of space
probes, radiation overdoses that have killed and paralyzed, and the simultaneous
disruption of telephone communications over large regions.

This is not to say that the situation is all bleak. Much progress is being made in
overcoming such problems as the lack of prefabricated components and metrics.
Moreover, the application of computer technology to the software development
process, resulting in what is called computer-aided software engineering
(CASE), is continuing to streamline and otherwise simplify the software develop-
ment process. CASE has lead to the development of a variety of computerized sys-
tems, known as CASE tools, which include project planning systems (to assist in
cost estimation, project scheduling, and personnel allocation), project manage-
ment systems (to assist in monitoring the progress of the development project),
documentation tools (to assist in writing and organizing documentation), prototyp-
ing and simulation systems (to assist in the development of prototypes), interface
design systems (to assist in the development of GUIs), and programming systems
(to assist in writing and debugging programs). Some of these tools are little more

Association for Computing Machinery
The Association for Computing Machinery (ACM) was founded in 1947 as an interna-
tional scientific and educational organization dedicated to advancing the arts, sci-
ences, and applications of information technology. It is headquartered in New York and
includes numerous special interest groups (SIGs) focusing on such topics as computer
architecture, artificial intelligence, biomedical computing, computers and society, com-
puter science education, computer graphics, hypertext/hypermedia, operating sys-
tems, programming languages, simulation and modeling, and software engineering.
The ACM’s Web site is at http://www.acm.org. Its Code of Ethics and Professional
Conduct can be found at http://www.acm.org/constitution/code.html.

http://www.acm.org
http://www.acm.org/constitution/code.html
http://www.acm.org
http://www.acm.org/constitution/code.html

302 Chapter 7 Software Engineering

than the word processors, spreadsheet software, and email communication sys-
tems that were originally developed for generic use and adopted by software engi-
neers. Others are quite sophisticated packages designed primarily for the software
engineering environment. Indeed, systems known as integrated development
environments (IDEs) combine tools for developing software (editors, compilers,
debugging tools, and so on) into a single, integrated package. A prime example of
such systems are those for developing applications for smartphones. These not
only provide the programming tools necessary to write and debug the software but
also provide simulators that, by means of graphical displays, allow a programmer
to see how the software being developed would actually perform on a phone.

In addition to the efforts of researchers, professional and standardization
organizations, including the ISO, the Association for Computing Machinery
(ACM), and the Institute of Electrical and Electronics Engineers (IEEE), have
joined the battle for improving the state of software engineering. These efforts
range from adopting codes of professional conduct and ethics that enhance the
professionalism of software developers and counter nonchalant attitudes toward
each individual’s responsibilities to establishing standards for measuring the
quality of software development organizations and providing guidelines to help
these organizations improve their standings.

In the remainder of this chapter we discuss some of the fundamental princi-
ples of software engineering (such as the software life cycle and modularity),
look at some of the directions in which software engineering is moving (such as
the identification and application of design patterns and the emergence of
reusable software components), and witness the effects that the object-oriented
paradigm has had on the field.

Questions & Exercises

1. Why would the number of lines in a program not be a good measure of
the complexity of the program?

2. Suggest a metric for measuring software quality. What weaknesses does
your metric have?

3. What technique can be used to determine how many errors are in a unit
of software?

4. Identify two contexts in which the field of software engineering has been
or currently is progressing toward improvements.

7.2 The Software Life Cycle
The most fundamental concept in software engineering is the software life cycle.

The Cycle as a Whole
The software life cycle is shown in Figure 7.1. This figure represents the fact that
once software is developed, it enters a cycle of being used and maintained—a
cycle that continues for the rest of the software’s life. Such a pattern is common
for many manufactured products as well. The difference is that, in the case of
other products, the maintenance phase tends to be a repair process, whereas in

3037.2 The Software Life Cycle

the case of software, the maintenance phase tends to consist of correcting or
updating. Indeed, software moves into the maintenance phase because errors
are discovered, changes in the software’s application occur that require corre-
sponding changes in the software, or changes made during a previous modifica-
tion are found to induce problems elsewhere in the software.

Regardless of why software enters the maintenance phase, the process
requires that a person (often not the original author) study the underlying pro-
gram and its documentation until the program, or at least the pertinent part of
the program, is understood. Otherwise, any modification could introduce more
problems than it solves. Acquiring this understanding can be a difficult task,
even when the software is well-designed and documented. In fact, it is often
within this phase that a piece of software is discarded under the pretense (too
often true) that it is easier to develop a new system from scratch than to modify
the existing package successfully.

Experience has shown that a little effort during the development of software
can make a tremendous difference when modifications are required. For exam-
ple, in our discussion of data description statements in Chapter 6 we saw how
the use of constants rather than literals can greatly simplify future adjustments.
In turn, most of the research in software engineering focuses on the develop-
ment stage of the software life cycle, with the goal being to take advantage of this
effort-versus-benefit leverage.

The Traditional Development Phase
The major steps in the traditional software development life cycle are require-
ments analysis, design, implementation, and testing (Figure 7.2).

Development Use

Maintenance

Figure 7.1 The software life cycle

Requirements
Analysis

Design

Implementation

Testing

Figure 7.2 The traditional development phase of the software life cycle

304 Chapter 7 Software Engineering

Requirements Analysis The software life cycle begins with requirements analysis—
the goal of which is to specify what services the proposed system will provide, to
identify any conditions (time constraints, security, and so on) on those services,
and to define how the outside world will interact with the system.

Requirements analysis involves significant input from the stakeholders
(future users as well as those with other ties, such as legal or financial interests)
of the proposed system. In fact, in cases where the ultimate user is an entity,
such as a company or government agency, that intends to hire a software devel-
oper for the actual execution of the software project, requirements analysis may
start by a feasibility study conducted solely by the user. In other cases, the soft-
ware developer may be in the business of producing commercial off-the-shelf
(COTS) software for the mass market, perhaps to be sold in retail stores or down-
loaded via the Internet. In this setting the user is a less precisely defined entity,
and requirements analysis may begin with a market study by the software
developer.

In any case, the requirements analysis process consists of compiling and
analyzing the needs of the software user; negotiating with the project’s stake-
holders over trade-offs between wants, needs, costs, and feasibility; and finally
developing a set of requirements that identify the features and services that the
finished software system must have. These requirements are recorded in a docu-
ment called a software requirements specification. In a sense, this document
is a written agreement between all parties concerned, which is intended to guide
the software’s development and provide a means of resolving disputes that may
arise later in the development process. The significance of the software require-
ments specification is demonstrated by the fact that professional organizations
such as IEEE and large software clients such as the U.S. Department of Defense
have adopted standards for its composition.

From the software developer’s perspective, the software requirements specifi-
cation should define a firm objective toward which the software’s development
can proceed. Too often, however, the document fails to provide this stability.
Indeed, most practitioners in the software engineering field argue that poor com-
munication and changing requirements are the major causes of cost overruns and
late product delivery in the software engineering industry. Few customers would
insist on major changes to a building’s floor plan once the foundation has been
constructed, but instances abound of organizations that have expanded, or other-
wise altered, the desired capabilities of a software system well after the software’s
construction was underway. This may have been because a company decided
that the system that was originally being developed for only a subsidiary should
instead apply to the entire corporation or that advances in technology supplanted
the capabilities available during the initial requirements analysis. In any case,
software engineers have found that straightforward and frequent communication
with the project’s stakeholders is mandatory.

Design Whereas requirements analysis provides a description of the proposed
software product, design involves creating a plan for the construction of the
proposed system. In a sense, requirements analysis is about identifying the prob-
lem to be solved, while design is about developing a solution to the problem.
From a layperson’s perspective, requirements analysis is often equated with
deciding what a software system is to do, whereas design is equated with decid-
ing how the system will do it. Although this description is enlightening, many
software engineers argue that it is flawed because, in actuality, there is a lot of

3057.2 The Software Life Cycle

how considered during requirements analysis and a lot of what considered
during design.

It is in the design stage that the internal structure of the software system is
established. The result of the design phase is a detailed description of the soft-
ware system’s structure that can be converted into programs.

If the project were to construct an office building rather than a software sys-
tem, the design stage would consist of developing detailed structural plans for a
building that meets the specified requirements. For example, such plans would
include a collection of blueprints describing the proposed building at various lev-
els of detail. It is from these documents that the actual building would be con-
structed. Techniques for developing these plans have evolved over many years
and include standardized notational systems and numerous modeling and dia-
gramming methodologies.

Likewise, diagramming and modeling play important roles in the design of
software. However, the methodologies and notational systems used by software
engineers are not as stable as they are in the architectural field. When compared
to the well-established discipline of architecture, the practice of software engi-
neering appears very dynamic as researchers struggle to find better approaches
to the software development process. We will explore this shifting terrain in
Section 7.3 and investigate some of the current notational systems and their
associated diagramming/modeling methodologies in Section 7.5.

Implementation Implementation involves the actual writing of programs, creation
of data files, and development of databases. It is at the implementation stage that
we see the distinction between the tasks of a software analyst (sometimes
referred to as a system analyst) and a programmer. The former is a person
involved with the entire development process, perhaps with an emphasis on the
requirements analysis and design steps. The latter is a person involved primarily
with the implementation step. In its narrowest interpretation, a programmer is
charged with writing programs that implement the design produced by a soft-
ware analyst. Having made this distinction, we should note again that there is no

Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers (IEEE, pronounced “i-triple-e”) is
an organization of electrical, electronics, and manufacturing engineers that was
formed in 1963 as the result of merging the American Institute of Electrical Engineers
(founded in 1884 by twenty-five electrical engineers, including Thomas Edison) and
the Institute of Radio Engineers (founded in 1912). Today, IEEE’s operation center is
located in Piscataway, New Jersey. The Institute includes numerous technical societies
such as the Aerospace and Electronic Systems Society, the Lasers and Electro-Optics
Society, the Robotics and Automation Society, the Vehicular Technology Society, and
the Computer Society. Among its activities, the IEEE is involved in the development of
standards. As an example, IEEE’s efforts led to the single-precision-floating point and
double-precision floating-point standards (introduced in Chapter 1), which are used in
most of today’s computers.

You will find the IEEE’s Web page at http://www.ieee.org, the IEEE
Computer Society’s Web page at http://www.computer.org, and the IEEE’s
Code of Ethics at http://www.ieee.org/about/whatis/code.html.

http://www.ieee.org
http://www.computer.org
http://www.ieee.org/about/whatis/code.html
http://www.ieee.org
http://www.computer.org
http://www.ieee.org/about/whatis/code.html

306 Chapter 7 Software Engineering

central authority controlling the use of terminology throughout the computing
community. Many who carry the title of software analyst are essentially pro-
grammers, and many with the title programmer (or perhaps senior programmer)
are actually software analysts in the full sense of the term. This blurring of ter-
minology is founded in the fact that today the steps in the software development
process are often intermingled, as we will soon see.

Testing In the traditional development phase of the past, testing was essentially
equated with the process of debugging programs and confirming that the final
software product was compatible with the software requirements specification.
Today, however, this vision of testing is considered far too narrow. Programs are
not the only artifacts that are tested during the software development process.
Indeed, the result of each intermediate step in the entire development process
should be “tested” for accuracy. Moreover, as we will see in Section 7.6, testing is
now recognized as only one segment in the overall struggle for quality assur-
ance, which is an objective that permeates the entire software life cycle. Thus,
many software engineers argue that testing should no longer be viewed as a sep-
arate step in software development, but instead it, and its many manifestations,
should be incorporated into the other steps, producing a three-step development
process whose components might have names such as “requirements analysis
and confirmation,” “design and validation,” and “implementation and testing.”

Unfortunately, even with modern quality assurance techniques, large soft-
ware systems continue to contain errors, even after significant testing. Many of
these errors may go undetected for the life of the system, but others may cause
major malfunctions. The elimination of such errors is one of the goals of soft-
ware engineering. The fact that they are still prevalent indicates that a lot of
research remains to be done.

Questions & Exercises

1. How does the development stage of the software life cycle affect the
maintenance stage?

2. Summarize each of the four stages (requirements analysis, design,
implementation, and testing) within the development phase of the soft-
ware life cycle.

3. What is the role of a software requirements specification?

7.3 Software Engineering Methodologies
Early approaches to software engineering insisted on performing requirements
analysis, design, implementation, and testing in a strictly sequential manner.
The belief was that too much was at risk during the development of a large
software system to allow for variations. As a result, software engineers insisted
that the entire requirements specification of the system be completed before
beginning the design and, likewise, that the design be completed before begin-
ning implementation. The result was a development process now referred to as
the waterfall model, an analogy to the fact that the development process was
allowed to flow in only one direction.

3077.3 Software Engineering Methodologies

In recent years, software engineering techniques have changed to reflect the
contradiction between the highly structured environment dictated by the waterfall
model and the “free-wheeling,” trial-and-error process that is often vital to creative
problem solving. This is illustrated by the emergence of the incremental model
for software development. Following this model, the desired software system is
constructed in increments—the first being a simplified version of the final product
with limited functionality. Once this version has been tested and perhaps evalu-
ated by the future user, more features are added and tested in an incremental man-
ner until the system is complete. For example, if the system being developed is a
patient records system for a hospital, the first increment may incorporate only the
ability to view patient records from a small sample of the entire record system.
Once that version is operational, additional features, such as the ability to add and
update records, would be added in a stepwise manner.

Another model that represents the shift away from strict adherence to the
waterfall model is the iterative model, which is similar to, and in fact sometimes
equated with, the incremental model, although the two are distinct. Whereas the
incremental model carries the notion of extending each preliminary version of a
product into a larger version, the iterative model encompasses the concept of
refining each version. In reality, the incremental model involves an underlying
iterative process, and the iterative model may incrementally add features.

A significant example of iterative techniques is the rational unified
process (RUP, rhymes with “cup”) that was created by the Rational Software
Corporation, which is now a division of IBM. RUP is essentially a software devel-
opment paradigm that redefines the steps in the development phase of the soft-
ware life cycle and provides guidelines for performing those steps. These
guidelines, along with CASE tools to support them, are marketed by IBM. Today,
RUP is widely applied throughout the software industry. In fact, its popularity
has led to the development of a nonproprietary version, called the unified
process, that is available on a noncommercial basis.

Incremental and iterative models sometimes make use of the trend in soft-
ware development toward prototyping in which incomplete versions of the pro-
posed system, called prototypes, are built and evaluated. In the case of the
incremental model these prototypes evolve into the complete, final system—a
process known as evolutionary prototyping. In a more iterative situation, the
prototypes may be discarded in favor of a fresh implementation of the final
design. This approach is known as throwaway prototyping. An example that
normally falls within this throwaway category is rapid prototyping in which a
simple example of the proposed system is quickly constructed in the early stages
of development. Such a prototype may consist of only a few screen images that
give an indication of how the system will interact with its users and what capabil-
ities it will have. The goal is not to produce a working version of the product but
to obtain a demonstration tool that can be used to clarify communication between
the parties involved in the software development process. For example, rapid pro-
totypes have proved advantageous in clarifying system requirements during
requirements analysis or as aids during sales presentations to potential clients.

A less formal incarnation of incremental and iterative ideas that has been used
for years by computer enthusiasts/hobbyists is known as open-source
development. This is the means by which much of today’s free software is produced.
Perhaps the most prominent example is the Linux operating system whose
open-source development was originally led by Linus Torvalds. The open-source

308 Chapter 7 Software Engineering

development of a software package proceeds as follows: A single author writes an ini-
tial version of the software (usually to fulfill his or her own needs) and posts the
source code and its documentation on the Internet. From there it can be downloaded
and used by others without charge. Because these other users have the source code
and documentation, they are able to modify or enhance the software to fit their own
needs or to correct errors that they find. They report these changes to the original
author, who incorporates them into the posted version of the software, making this
extended version available for further modifications. In practice, it is possible for a
software package to evolve through several extensions in a single week.

Perhaps the most pronounced shift from the waterfall model is represented
by the collection of methodologies known as agile methods, each of which pro-
poses early and quick implementation on an incremental basis, responsiveness to
changing requirements, and a reduced emphasis on rigorous requirements analy-
sis and design. One example of an agile method is extreme programming (XP).
Following the XP model, software is developed by a team of less than a dozen
individuals working in a communal work space where they freely share ideas and
assist each other in the development project. The software is developed incre-
mentally by means of repeated daily cycles of informal requirements analysis,
designing, implementing, and testing. Thus, new expanded versions of the soft-
ware package appear on a regular basis, each of which can be evaluated by the
project’s stakeholders and used to point toward further increments. In summary,
agile methods are characterized by flexibility, which is in stark contrast to the
waterfall model that conjures the image of managers and programmers working
in individual offices while rigidly performing well-defined portions of the overall
software development task.

The contrasts depicted by comparing the waterfall model and XP reveal the
breadth of methodologies that are being applied to the software development
process in the hopes of finding better ways to construct reliable software in an
efficient manner. Research in the field is an ongoing process. Progress is being
made, but much work remains to be done.

Questions & Exercises

1. Summarize the distinction between the traditional waterfall model of soft-
ware development and the newer incremental and iterative paradigms.

2. Identify three development paradigms that represent the move away
from strict adherence to the waterfall model.

3. What is the distinction between traditional evolutionary prototyping and
open-source development?

4. What potential problems do you suspect could arise in terms of owner-
ship rights of software developed via the open-source methodology?

7.4 Modularity
A key point in Section 7.2 is that to modify software one must understand the
program or at least the pertinent parts of the program. Gaining such an under-
standing is often difficult enough in the case of small programs and would be

3097.4 Modularity

close to impossible when dealing with large software systems if it were not for
modularity—that is, the division of software into manageable units, generically
called modules, each of which deals with only a part of the software’s overall
responsibility.

Modular Implementation
Modules come in a variety of forms. We have already seen (Chapters 5 and 6),
that in the context of the imperative paradigm, modules appear as procedures. In
contrast, the object-oriented paradigm uses objects as the basic modular con-
stituents. These distinctions are important because they determine the underly-
ing goal during the initial software design process. Is the goal to represent the
overall task as individual, manageable processes or to identify the objects in the
system and understand how they interact?

To illustrate, let us consider how the process of developing a simple modular
program to simulate a tennis game might progress in the imperative and the
object-oriented paradigms. In the imperative paradigm we begin by considering
the actions that must take place. Because each volley begins with a player serv-
ing the ball, we might start by considering a procedure named Serve that (based
on the player’s characteristics and perhaps a bit of probability) would compute
the initial speed and direction of the ball. Next we would need to determine the
path of the ball. (Will it hit the net? Where will it bounce?) We might plan on
placing these computations in another procedure named ComputePath. The
next step might be to determine if the other player is able to return the ball, and
if so we must compute the ball’s new speed and direction. We might plan on plac-
ing these computations in a procedure named Return.

Continuing in this fashion, we might arrive at the modular structure
depicted by the structure chart shown in Figure 7.3, in which procedures are
represented by rectangles and procedure dependencies (implemented by proce-
dure calls) are represented by arrows. In particular, the chart indicates that the
entire game is overseen by a procedure named ControlGame, and to perform
its task, ControlGame calls on the services of the procedures Serve, Return,
ComputePath, and UpdateScore.

Note that the structure chart does not indicate how each procedure is to per-
form its task. Rather, it merely identifies the procedures and indicates the
dependencies among the procedures. In reality, the procedure ControlGame
might perform its task by first calling the Serve procedure, then repeatedly call-
ing on the procedures ComputePath and Return until one reports a miss, and
finally calling on the services of UpdateScore before repeating the whole
process by again calling on Serve.

ControlGame

Serve Return ComputePath UpdateScore

Figure 7.3 A simple structure chart

310 Chapter 7 Software Engineering

At this stage we have obtained only a very simplistic outline of the desired
program, but our point has already been made. In accordance with the imperative
paradigm, we have been designing the program by considering the activities that
must be performed and are therefore obtaining a design in which the modules are
procedures.

Let us now reconsider the program’s design—this time in the context of the
object-oriented paradigm. Our first thought might be that there are two players
that we should represent by two objects: PlayerA and PlayerB. These objects
will have the same functionality but different characteristics. (Both should be able
to serve and return volleys but may do so with different skill and strength.) Thus,
these objects will be instances of the same class. (Recall that in Chapter 6 we
introduced the concept of a class: a template that defines the procedures (called
methods) and attributes (called instance variables) that are to be associated with
each object.) This class, which we will call PlayerClass, will contain the meth-
ods, serve and return, that simulate the corresponding actions of the player. It
will also contain attributes (such as skill and endurance) whose values reflect
the player’s characteristics. Our design so far is represented by the diagram in
Figure 7.4. There we see that PlayerA and PlayerB are instances of the class
PlayerClass and that this class contains the attributes skill and endurance
as well as the methods serve and returnVolley. (Note that in Figure 7.4 we
have underlined the names of objects to distinguish them from names of classes.)

Next we need an object to play the role of the official who determines
whether the actions performed by the players are legal. For example, did
the serve clear the net and land in the appropriate area of the court? For this pur-
pose we might establish an object called Judge that contains the methods
evaluateServe and evaluateReturn. If the Judge object determines a
serve or return to be acceptable, play continues. Otherwise, the Judge sends a
message to another object named Score to record the results accordingly.

At this point the design for our tennis program consists of four objects:
PlayerA, PlayerB, Judge, and Score. To clarify our design, consider the
sequences of events that may occur during a volley as depicted in Figure 7.5
where we have represented the objects involved as rectangles. The figure is
intended to present the communication between these objects as the result of call-
ing the serve method within the object PlayerA. Events appear chronologically
as we move down the figure. As depicted by the first horizontal arrow, PlayerA
reports its serve to the object Judge by calling the method evaluateServe. The

PlayerClass

skill

endurance

serve

returnVolley

Attributes

Class name

Methods

PlayerA

PlayerB

instance of

instance of

Class Objects

Figure 7.4 The structure of PlayerClass and its instances

3117.4 Modularity

Judge then determines that the serve is good and asks PlayerB to return it
by calling PlayerB’s returnVolley method. The volley terminates when the
Judge determines that PlayerA erred and asks the object Score to record the
results.

As in the case of our imperative example, our object-oriented program is
very simplistic at this stage. However, we have progressed enough to see how the
object-oriented paradigm leads to a modular design in which fundamental com-
ponents are objects.

Coupling
We have introduced modularity as a way of producing manageable software. The
idea is that any future modification will likely apply to only a few of the mod-
ules, allowing the person making the modification to concentrate on that portion
of the system rather than struggling with the entire package. This, of course,
depends on the assumption that changes in one module will not unknowingly
affect other modules in the system. Consequently, a goal when designing a mod-
ular system should be to maximize independence among modules or, in other
words, to minimize the linkage between modules (known as intermodule
coupling). Indeed, one metric that has been used to measure the complexity of
a software system (and thus obtain a means of estimating the expense of main-
taining the software) is to measure its intermodule coupling.

Intermodule coupling occurs in several forms. One is control coupling, which
occurs when a module passes control of execution to another, as in a procedure call.
The structure chart in Figure 7.3 represents the control coupling that exists
between procedures. In particular, the arrow from the module ControlGame to
Serve indicates that the former passes control to the latter. It is also control cou-
pling that is represented in Figure 7.5, where the arrows trace the path of control as
it is passed from object to object.

Another form of intermodule coupling is data coupling, which refers to the
sharing of data between modules. If two modules interact with the same item of
data, then modifications made to one module may affect the other, and modifi-
cations to the format of the data itself could have repercussions in both modules.

returnVolley

returnVolley

evaluateReturn

evaluateReturn

updateScore

PlayerA PlayerB Score

evaluateServe

PlayerA calls the
method evaluateServe
in Judge.

JudgeJudge

Figure 7.5 The interaction between objects resulting from PlayerA’s serve

312 Chapter 7 Software Engineering

Data coupling between procedures can occur in two forms. One is by explic-
itly passing data from one procedure to another in the form of parameters. Such
coupling is represented in a structure chart by an arrow between the procedures
that is labeled to indicate the data being passed. The direction of the arrow indi-
cates the direction in which the item is transferred. For example, Figure 7.6 is an
extended version of Figure 7.3 in which we have indicated that the procedure
ControlGame will tell the procedure Serve which player’s characteristics are
to be simulated when it calls Serve and that the procedure Serve will report
the ball trajectory to ControlGame when Serve has completed its task.

Similar data coupling occurs between objects in an object-oriented design.
For example, when PlayerA asks the object Judge to evaluate its serve (see
Figure 7.5), it must pass the trajectory information to Judge. On the other hand,
one of the benefits of the object-oriented paradigm is that it inherently tends to
reduce data coupling between objects to a minimum. This is because the meth-
ods within an object tend to include all those procedures that manipulate the
object’s internal data. For example, the object PlayerA will contain information
regarding that player’s characteristics as well as all the methods that require that
information. In turn, there is no need to pass that information to other objects
and thus interobject data coupling is minimized.

In contrast to passing data explicitly as parameters, data can be shared
among modules implicitly in the form of global data, which are data items that
are automatically available to all modules throughout the system, as opposed to
local data items that are accessible only within a particular module unless explic-
itly passed to another. Most high-level languages provide ways of implementing
both global and local data, but the use of global data should be employed with
caution. The problem is that a person trying to modify a module that is depend-
ent on global data may find it difficult to identify how the module in question
interacts with other modules. In short, the use of global data can degrade the
module’s usefulness as an abstract tool.

Cohesion
Just as important as minimizing the coupling between modules is maximizing
the internal binding within each module. The term cohesion refers to this inter-
nal binding or, in other words, the degree of relatedness of a module’s internal
parts. To appreciate the importance of cohesion, we must look beyond the initial
development of a system and consider the entire software life cycle. If it
becomes necessary to make changes in a module, the existence of a variety of

ControlGame

Serve Return ComputePath UpdateScore
Trajectory

Player Id

Figure 7.6 A structure chart including data coupling

3137.4 Modularity

activities within it can confuse what would otherwise be a simple process. Thus,
in addition to seeking low intermodule coupling, software designers strive for
high intramodule cohesion.

A weak form of cohesion is known as logical cohesion. This is the cohesion
within a module induced by the fact that its internal elements perform activities
logically similar in nature. For example, consider a module that performs all of a
system’s communication with the outside world. The “glue” that holds such a
module together is that all the activities within the module deal with communi-
cation. However, the topics of the communication can vary greatly. Some may
deal with obtaining data, whereas others deal with reporting results.

A stronger form of cohesion is known as functional cohesion, which means
that all the parts of the module are focused on the performance of a single activ-
ity. In an imperative design, functional cohesion can often be increased by iso-
lating subtasks in other modules and then using these modules as abstract tools.
This is demonstrated in our tennis simulation example (see again Figure 7.3)
where the module ControlGame uses the other modules as abstract tools so that
it can concentrate on overseeing the game rather than being distracted by the
details of serving, returning, and maintaining the score.

In object-oriented designs, entire objects are usually only logically cohesive
because the methods within an object often perform loosely related activities—
the only common bond being that they are activities performed by the same
object. For example, in our tennis simulation example, each player object con-
tains methods for serving as well as returning the ball, which are significantly
different activities. Such an object would therefore be only a logically cohesive
module. However, software designers should strive to make each individual
method within an object functionally cohesive. That is, even though the object in
its entirety is only logically cohesive, each method within an object should
perform only one functionally cohesive task (Figure 7.7).

Perform
action A

Perform
action B

Perform
action C

Each object is only logically cohesive

Each method
within the object is
functionally cohesive

Object

Figure 7.7 Logical and functional cohesion within an object

314 Chapter 7 Software Engineering

Information Hiding
One of the cornerstones of good modular design is captured in the concept of
information hiding, which refers to the restriction of information to a specific
portion of a software system. Here the term information should be interpreted in
a broad sense, including any knowledge about the structure and contents of a
program unit. As such, it includes data, the type of data structures used, encod-
ing systems, the internal compositional structure of a module, the logical struc-
ture of a procedural unit, and any other factors regarding the internal properties
of a module.

The point of information hiding is to keep the actions of modules from hav-
ing unnecessary dependencies or effects on other modules. Otherwise, the valid-
ity of a module may be compromised, perhaps by errors in the development of
other modules or by misguided efforts during software maintenance. If, for
example, a module does not restrict the use of its internal data from other mod-
ules, then that data may become corrupted by other modules. Or, if one module
is designed to take advantage of another’s internal structure, it could malfunc-
tion later if that internal structure is altered.

It is important to note that information hiding has two incarnations—one as
a design goal, the other as an implementation goal. A module should be designed
so that other modules do not need access to its internal information, and a mod-
ule should be implemented in a manner that reinforces its boundaries. Examples
of the former are maximizing cohesion and minimizing coupling. Examples of
the latter involve the use of local variables, applying encapsulation, and using
well-defined control structures.

Finally we should note that information hiding is central to the theme of
abstraction and the use of abstract tools. Indeed, the concept of an abstract tool is
that of a “black box” whose interior features can be ignored by its user, allowing
the user to concentrate on the larger application at hand. In this sense then, infor-
mation hiding corresponds to the concept of sealing the abstract tool in much the
same way as a tamper-proof enclosure can be used to safeguard complex and
potentially dangerous electronic equipment. Both protect their users from the
dangers inside as well as protect their interiors from intrusion from their users.

Components
We have already mentioned that one obstacle in the field of software engineering
is the lack of prefabricated “off-the-shelf” building blocks from which large
software systems can be constructed. The modular approach to software devel-
opment promises hope in this regard. In particular, the object-oriented program-
ming paradigm is proving especially useful because objects form complete,
self-contained units that have clearly defined interfaces with their environments.
Once an object, or more correctly a class, has been designed to fulfill a certain
role, it can be used to fulfill that role in any program requiring that service.
Moreover, inheritance provides a means of refining prefabricated object defini-
tions in those cases in which the definitions must be customized to conform to
the needs of a specific application.

It is not surprising, then, that the object-oriented programming languages
C++, Java, and C# are accompanied by collections of prefabricated “templates”
from which programmers can easily implement objects for performing certain
roles. In particular, C++is associated with the C++Standard Template Library,

3157.4 Modularity

the Java programming environment is accompanied by the Java Application
Programmer Interface (API), and C# programmers have access to the .NET
Framework Class Library.

The fact that objects and classes have the potential of providing prefabri-
cated building blocks for software design does not mean that they are ideal. One
problem is that they provide relatively small blocks from which to build. Thus,
an object is actually a special case of the more general concept of a component,
which is, by definition, a reusable unit of software. In practice, most components
are based on the object-oriented paradigm and take the form of a collection of
one or more objects that function as a self-contained unit.

Research in the development and use of components has led to the emerging
field known as component architecture (also known as component-based
software engineering) in which the traditional role of a programmer is replaced
by a component assembler who constructs software systems from prefabri-
cated components that, in many development environments, are displayed as
icons in a graphical interface. Rather than be involved with the internal pro-
gramming of the components, the methodology of a component assembler is to
select pertinent components from collections of predefined components and
then connect them, with minimal customization, to obtain the desired function-
ality. Indeed, a property of a well-designed component is that it can be extended
to encompass features of a particular application without internal modifications.

An area where component architectures have found futile ground is in smart-
phone systems. Due to the resource constraints of these devices, applications are
actually a set of collaborating components, each of which provides some discreet
function for the application. For example, each display screen within an applica-
tion is usually a separate component. Behind the scenes, there may exists other
service components to store and access information on a memory card, perform
some continuous function (such as playing music), or access information over

Software Engineering in the Real World
The following scenario is typical of the problems encountered by real-world software
engineers. Company XYZ hires a software-engineering firm to develop and install a
company-wide integrated software system to handle the company’s data processing
needs. As a part of the system produced by Company XYZ, a network of PCs is used to
provide employees access to the company-wide system. Thus each employee finds a
PC on his or her desk. Soon these PCs are used not only to access the new data man-
agement system but also as customizable tools with which each employee increases
his or her productivity. For example, one employee may develop a spreadsheet pro-
gram that streamlines that employee’s tasks. Unfortunately, such customized appli-
cations may not be well designed or thoroughly tested and may involve features that
are not completely understood by the employee. As the years go by, the use of these
ad hoc applications becomes integrated into the company’s internal business proce-
dures. Moreover, the employees who developed these applications may be pro-
moted, transferred, or quit the company, leaving others behind using a program they
do not understand. The result is that what started out as a well-designed, coherent
system can become dependent on a patchwork of poorly designed, undocumented,
and error-prone applications.

316 Chapter 7 Software Engineering

7.5 Tools of the Trade
In this section we investigate some of the modeling techniques and notational
systems used during the analysis and design stages of software development.
Several of these were developed during the years that the imperative paradigm
dominated the software engineering discipline. Of these, some have found use-
ful roles in the context of the object-oriented paradigm whereas others, such as
the structure chart (see again Figure 7.3), are specific to the imperative para-
digm. We begin by considering some of the techniques that have survived from

Questions & Exercises

1. How does a novel differ from an encyclopedia in terms of the degree of
coupling between its units such as chapters, sections, or entries? What
about cohesion?

2. A sporting event is often divided into units. For example, a baseball game
is divided into innings and a tennis match is divided into sets. Analyze the
coupling between such “modules.” In what sense are such units cohesive?

3. Is the goal of maximizing cohesion compatible with minimizing cou-
pling? That is, as cohesion increases, does coupling naturally tend to
decrease?

4. Define coupling, cohesion, and information hiding.
5. Extend the structure chart in Figure 7.3 to include the data coupling

between the modules ControlGame and UpdateScore.
6. Draw a diagram similar to that of Figure 7.5 to represent the sequence

that would occur if PlayerA’s serve is ruled invalid.
7. What is the difference between a traditional programmer and a compo-

nent assembler?
8. Assuming most smartphones have a number of personal organization

applications (calendars, contacts, clocks, social networking, email sys-
tems, maps, etc.), what combinations of component functions would you
find useful and interesting?

the Internet. Each of these components is individually started and stopped as
needed to service the user efficiently; however, the application appears as a
seamless series of displays and actions.

Aside from the motivation to limit the use of system resources, the compo-
nent architecture of smartphones pays dividends in integration between applica-
tions. For example, Facebook (a well-known social networking system) when
executed on a smartphone may use the components of the contacts application
to add all Facebook friends as contacts. Furthermore, the telephony application
(the one that handles the functions of the phone), may also access the contacts’
components to lookup the caller of an incoming call. Thus, upon receiving a call
from a Facebook friend, the friend’s picture can be displayed on the phone’s
screen (along with his or her last Facebook post).

3177.5 Tools of the Trade

their imperative roots and then move on to explore newer object-oriented tools
as well as the expanding role of design patterns.

Some Old Friends
Although the imperative paradigm seeks to build software in terms of procedures,
a way of identifying those procedures is to consider the data to be manipulated
rather than the procedures themselves. The theory is that by studying how data
moves through a system, one identifies the points at which either data formats
are altered or data paths merge and split. In turn, these are the locations at which
processing occurs, and thus dataflow analysis leads to the identification of proce-
dures. A dataflow diagram is a means of representing the information gained
from such dataflow studies. In a dataflow diagram, arrows represent data paths,
ovals represent points at which data manipulation occurs, and rectangles repre-
sent data sources and stores. As an example, Figure 7.8 displays an elementary
dataflow diagram representing a hospital’s patient billing system. Note that the
diagram shows that Payments (flowing from patients) and PatientRecords
(flowing from the hospital’s files) merge at the oval ProcessPayments from
which UpdatedRecords flow back to the hospital’s files.

Dataflow diagrams not only assist in identifying procedures during the
design stage of software development, but they are also useful when trying to
gain an understanding of the proposed system during the analysis stage. Indeed,
constructing dataflow diagrams can serve as a means of improving communica-
tion between clients and software engineers (as the software engineer struggles
to understand what the client wants and the client struggles to describe his or
her expectations), and thus these diagrams continue to find applications even
though the imperative paradigm has faded in popularity.

Another tool that has been used for years by software engineers is the data
dictionary, which is a central repository of information about the data items
appearing throughout a software system. This information includes the identifier
used to reference each item, what constitutes valid entries in each item (Will the
item always be numeric or perhaps always alphabetic? What will be the range of
values that might be assigned to this item?), where the item is stored (Will the
item be stored in a file or a database and, if so, which one?), and where the item is
referenced in the software (Which modules will require the item’s information?).

Process
Payments

payments

bills
Process

Bills

Patient

patient record
s

patient records

u pdated records

Hospital
Files

Figure 7.8 A simple dataflow diagram

318 Chapter 7 Software Engineering

One goal of constructing a data dictionary is to improve communication
between the stakeholders of a software system and the software engineer
charged with the task of converting all of the stakeholder needs into a require-
ments specification. In this context the construction of a data dictionary helps
ensure that the fact that part numbers are not really numeric will be revealed
during the analysis stage rather than being discovered late in the design or
implementation stages. Another goal associated with the data dictionary is to
establish uniformity throughout the system. It is usually by means of construct-
ing the dictionary that redundancies and contradictions surface. For example,
the item referred to as PartNumber in the inventory records may be the same
as the PartId in the sales records. Moreover, the personnel department may
use the item Name to refer to an employee while inventory records may contain
the term Name in reference to a part.

Unified Modeling Language
Dataflow diagrams and data dictionaries were tools in the software engineering
arsenal well before the emergence of the object-oriented paradigm and have con-
tinued to find useful roles even though the imperative paradigm, for which they
were originally developed, has faded in popularity. We turn now to the more
modern collection of tools known as Unified Modeling Language (UML) that
has been developed with the object-oriented paradigm in mind. The first tool
that we consider within this collection, however, is useful regardless of the
underlying paradigm because it attempts merely to capture the image of the pro-
posed system from the user’s point of view. This tool is the use case diagram—
an example of which appears in Figure 7.9.

A use case diagram depicts the proposed system as a large rectangle in which
interactions (called use cases) between the system and its users are represented
as ovals and users of the system (called actors) are represented as stick figures
(even though an actor may not be a person). Thus, the diagram in Figure 7.9
indicates that the proposed Hospital Records System will be used by both
Physicians and Nurses to Retrieve Medical Records.

Whereas use case diagrams view a proposed software system from the outside,
UML offers a variety of tools for representing the internal object-oriented design of
a system. One of these is the class diagram, which is a notational system for rep-
resenting the structure of classes and relationships between classes (called
associations in UML vernacular). As an example, consider the relationships
between physicians, patients, and hospital rooms. We assume that objects repre-
senting these entities are constructed from the classes Physician, Patient, and
Room, respectively.

Figure 7.10 shows how the relationships among these classes could be repre-
sented in a UML class diagram. Classes are represented by rectangles and associa-
tions are represented by lines. Association lines may or may not be labeled. If they
are labeled, a bold arrowhead can be used to indicate the direction in which the
label should be read. For example, in Figure 7.10 the arrowhead following the label
cares for indicates that a physician cares for a patient rather than a patient
cares for a physician. Sometimes association lines are given two labels to pro-
vide terminology for reading the association in either direction. This is exemplified
in Figure 7.10 in the association between the classes Patient and Room.

3197.5 Tools of the Trade

In addition to indicating associations between classes, a class diagram can also
convey the multiplicities of those associations. That is, it can indicate how many
instances of one class may be associated with instances of another. This informa-
tion is recorded at the ends of the association lines. In particular, Figure 7.10 indi-
cates that each patient can occupy one room and each room can host zero or one
patient. (We are assuming that each room is a private room.) An asterisk is used to
indicate an arbitrary nonnegative number. Thus, the asterisk in Figure 7.10 indi-
cates that each physician may care for many patients, whereas the 1 at the physi-
cian end of the association means that each patient is cared for by only one
physician. (Our design considers only the role of primary physicians.)

For the sake of completeness, we should note that association multiplicities
occur in three basic forms: one-to-one relationships, one-to-many relationships,

Retrieve Medical
Record

Retrieve Laboratory
Results

Retrieve Financial
Records

Update Financial
Records

Update Medical
Record

Update Laboratory
Results

Physician

Administrator

Nurse

Laboratory
Technician

Hospital Records System

Figure 7.9 A simple use case diagram

Patient
cares for

occupies

hosts
Physician Room

1 * 0 or 1 1

Figure 7.10 A simple class diagram

320 Chapter 7 Software Engineering

and many-to-many relationships as summarized in Figure 7.11. A one-to-one
relationship is exemplified by the association between patients and occupied
private rooms in that each patient is associated with only one room and each
room is associated with only one patient. A one-to-many relationship is exem-
plified by the association between physicians and patients in that one physician
is associated with many patients and each patient is associated with one (pri-
mary) physician. A many-to-many relationship would occur if we included
consulting physicians in the physician–patient relationship. Then each physi-
cian could be associated with many patients and each patient could be associated
with many physicians.

In an object-oriented design it is often the case that one class represents a
more specific version of another. In those situations we say that the latter class is a
generalization of the former. UML provides a special notation for representing gen-
eralizations. An example is given in Figure 7.12, which depicts the generalizations
among the classes MedicalRecord, SurgicalRecord, and OfficeVisit-
Record. There the associations between the classes are represented by arrows
with hollow arrowheads, which is the UML notation for associations that are gen-
eralizations. Note that each class is represented by a rectangle containing the
name, attributes, and methods of the class in the format introduced in Figure 7.4.
This is UML’s way of representing the internal characteristics of a class in a
class diagram. The information portrayed in Figure 7.12 is that the class
MedicalRecord is a generalization of the class SurgicalRecord as well as a
generalization of OfficeVisitRecord. That is, the classes SurgicalRecord
and OfficeVisitRecord contain all the features of the class MedicalRecord
plus those features explicitly listed inside their appropriate rectangles. Thus, both
the SurgicalRecord and the OfficeVisitRecord classes contain patient,
doctor and date of record, but the SurgicalRecord class also contains surgical
procedure, hospital, discharge date, and the ability to discharge a patient, whereas
the OfficeVisitRecord class contains symptoms and diagnosis. All three
classes have the ability to print the medical record. The printRecord method in

Entities of
type x

Entities of
type y

One-to-one

Entities of
type x

Entities of
type y

Many-to-many

Entities of
type x

Entities of
type y

One-to-many

Figure 7.11 One-to-one, one-to-many, and many-to-many relationships between entities of
types X and Y

3217.5 Tools of the Trade

SurgicalRecord and OfficeVisitRecord are specializations of the print-
Record method in MedicalRecord, each of which will print the information
specific to its class.

Recall from Chapter 6 (Section 6.5) that a natural way of implementing gener-
alizations in an object-oriented programming environment is to use inheritance.
However, many software engineers caution that inheritance is not appropriate for
all cases of generalization. The reason is that inheritance introduces a strong
degree of coupling between the classes—a coupling that may not be desirable later
in the software’s life cycle. For example, because changes within a class are
reflected automatically in all the classes that inherit from it, what may appear to
be minor modifications during software maintenance can lead to unforeseen con-
sequences. As an example, suppose a company opened a recreation facility for its
employees, meaning that all people with membership in the recreation facility are
employees. To develop a membership list for this facility, a programmer could use
inheritance to construct a RecreationMember class from a previously defined
Employee class. But, if the company later prospers and decides to open the recre-
ation facility to dependents of employees or perhaps company retirees, then the
embedded coupling between the Employee class and the RecreationMember
class would have to be severed. Thus, inheritance should not be used merely
for convenience. Instead, it should be restricted to those cases in which the
generalization being implemented is immutable.

Class diagrams represent static features of a program’s design. They do not
represent sequences of events that occur during execution. To express such
dynamic features, UML provides a variety of diagram types that are collectively
known as interaction diagrams. One type of interaction diagram is the
sequence diagram that depicts the communication between the individuals
(such as actors, complete software components, or individual objects) that are

Figure 7.12 A class diagram depicting generalizations

OfficeVisitRecord

MedicalRecord

dateOfRecord
patient
doctor

printRecord

printRecord

symptoms
diagnosis

SurgicalRecord

dischargePatient
printRecord

surgicalProcedure
hospital
dateOfDischarge

322 Chapter 7 Software Engineering

involved in performing a task. These diagrams are similar to Figure 7.5 in that
they represent the individuals by rectangles with dashed lines extending down-
ward. Each rectangle together with its dashed line is called a life line.
Communication between the individuals is represented by labeled arrows con-
necting the appropriate life line, where the label indicates the action being
requested. These arrows appear chronologically as the diagram is read from top
to bottom. The communication that occurs when an individual completes a
requested task and returns control back to the requesting individual, as in the
traditional return from a procedure, is represented by an unlabeled arrow
pointing back to the original life line.

Thus, Figure 7.5 is essentially a sequence diagram. However, the syntax of
Figure 7.5 alone has several shortcomings. One is that it does not allow us to cap-
ture the symmetry between the two players. We must draw a separate diagram to
represent a volley starting with a serve from PlayerB, even though the interac-
tion sequence is very similar to that when PlayerA serves. Moreover, whereas
Figure 7.5 depicts only a specific volley, a general volley may extend indefinitely.
Formal sequence diagrams have techniques for capturing these variations in a
single diagram, and although we do not need to study these in detail, we should
still take a brief look at the formal sequence diagram shown in Figure 7.13, which
depicts a general volley based on our tennis game design.

Note also that Figure 7.13 demonstrates that an entire sequence diagram is
enclosed in a rectangle (called a frame). In the upper left-hand corner of the frame
is a pentagon containing the characters sd (meaning “sequence diagram”) followed

returnVolley

loop

sd serve

alt

returnVolley

evaluateReturn

evaluateReturn

updateScore

[validPlay == true]

[fromServer == true]

[fromServer == false]

evaluateServe

self : PlayerClass : PlayerClass ScoreJudgeJudge

Designates the
interaction fragment
type

Designates the
condition
controlling the
interaction
fragment

Figure 7.13 A sequence diagram depicting a generic volley

3237.5 Tools of the Trade

by an identifier. This identifier may be a name identifying the overall sequence or,
as in Figure 7.13, the name of the method that is called to initiate the sequence.
Note that in contrast to Figure 7.5, the rectangles representing the players in
Figure 7.13 do not refer to specific players but merely indicate that they represent
objects of the “type” PlayerClass. One of these is designated self, meaning that it
is the one whose serve method is activated to initiate the sequence.

The other point to make regarding Figure 7.13 deals with the two inner rec-
tangles. These are interaction fragments, which are used to represent alterna-
tive sequences within one diagram. Figure 7.13 contains two interaction
fragments. One is labeled “loop,” the other is labeled “alt.” These are essentially
the while and if-then-else structures that we first encountered in our pseudocode
of Section 5.2. The “loop” interaction fragment indicates that the events within
its boundaries are to be repeated as long as the Judge object determines that
the value of validPlay is true. The “alt” interaction fragment indicates that
one of its alternatives is to be performed depending on whether the value of
fromServer is true or false.

Finally, although they are not a part of UML, it is appropriate at this point to
introduce the role of CRC (class-responsibility-collaboration) cards because
they play an important role in validating object-oriented designs. A CRC card is
simply a card, such as an index card, on which the description of an object is
written. The methodology of CRC cards is for the software designer to produce a
card for each object in a proposed system and then to use the cards to represent
the objects in a simulation of the system—perhaps on a desktop or via a “theatri-
cal” experiment in which each member of the design team holds a card and plays
the role of the object as described by that card. Such simulations (often called
structured walkthroughs) have been found useful in identifying flaws in a
design prior to the design’s implementation.

Design Patterns
An increasingly powerful tool for software engineers is the growing collection of
design patterns. A design pattern is a predeveloped model for solving a recur-
ring problem in software design. For example, the Adapter pattern provides a
solution to a problem that often occurs when constructing software from prefab-
ricated modules. In particular, a prefabricated module may have the functional-
ity needed to solve the problem at hand but may not have an interface that is
compatible with the current application. In such cases the Adapter pattern pro-
vides a standard approach to “wrapping” that module inside another module that
translates between the original module’s interface and the outside world, thus
allowing the original, prefabricated module to be used in the application.

Another well-established design pattern is the Decorator pattern. It provides
a means of designing a system that performs different combinations of the same
activities depending on the situation at the time. Such systems can lead to an
explosion of options that, without careful design, can result in enormously com-
plex software. However, the Decorator pattern provides a standardized way of
implementing such systems that leads to a manageable solution.

The identification of recurring problems as well as the creation and cataloging
of design patterns for solving them is an ongoing process in software engineering.
The goal, however, is not merely to find solutions to design problems but to find
high-quality solutions that provide flexibility later in the software life cycle. Thus,

324 Chapter 7 Software Engineering

considerations of good design principles such as minimizing coupling and maxi-
mizing cohesion play an important role in the development of design patterns.

The results of progress in design pattern development are reflected in the
library of tools provided in today’s software development packages such as the
Java programming environments provided by Oracle and the .NET Framework
provided by Microsoft. Indeed, many of the “templates” found in these “tool kits”
are essentially design pattern skeletons that lead to ready-made, high-quality
solutions to design problems.

In closing, we should mention that the emergence of design patterns in soft-
ware engineering is an example of how diverse fields can contribute to each
other. The origins of design patterns lie in the research of Christopher Alexander
in traditional architecture. His goal was to identify features that contribute to
high-quality architectural designs for buildings or building complexes and then
to develop design patterns that incorporated those features. Today, many of his
ideas have been incorporated into software design and his work continues to be
an inspiration for many software engineers.

Questions & Exercises

1. Draw a dataflow diagram representing the flow of data that occurs when
a patron checks a book out of a library.

2. Draw a use case diagram of a library records system.
3. Draw a class diagram representing the relationship between travelers

and the hotels in which they stay.
4. Draw a class diagram representing the fact that a person is a generaliza-

tion of an employee. Include some attributes that might belong to each.
5. Convert Figure 7.5 into a complete sequence diagram.
6. What role in the software engineering process do design patterns play?

7.6 Quality Assurance
The proliferation of software malfunctions, cost overruns, and missed deadlines
demands that methods of software quality control be improved. In this section
we consider some of the directions being pursued in this endeavor.

The Scope of Quality Assurance
In the early years of computing, the problem of producing quality software
focused on removing programming errors that occurred during implementation.
Later in this section we will discuss the progress that has been made in this
direction. However, today, the scope of software quality control extends far
beyond the debugging process, with branches including the improvement of soft-
ware engineering procedures, the development of training programs that in
many cases lead to certification, and the establishment of standards on which
sound software engineering can be based. In this regard, we have already noted

3257.6 Quality Assurance

the role of organizations such as ISO, IEEE, and ACM in improving professional-
ism and establishing standards for assessing quality control within software
development companies. A specific example is the ISO 9000-series of standards,
which address numerous industrial activities such as design, production, instal-
lation, and servicing. Another example is ISO/IEC 15504, which is a set of stan-
dards developed jointly by the ISO and the International Electrotechnical
Commission (IEC).

Many major software contractors now require that the organizations they
hire to develop software meet such standards. As a result, software development
companies are establishing software quality assurance (SQA) groups, which
are charged with overseeing and enforcing the quality control systems adopted
by the organization. Thus, in the case of the traditional waterfall model, the SQA
group would be charged with the task of approving the software requirements
specification before the design stage began or approving the design and its
related documents before implementation was initiated.

Several themes underlie today’s quality control efforts. One is record keeping.
It is paramount that each step in the development process be accurately docu-
mented for future reference. However, this goal conflicts with human nature. At
issue is the temptation to make decisions or change decisions without updating
the related documents. The result is the chance that records will be incorrect and
hence their use at future stages will be misleading. Herein lies an important ben-
efit of CASE tools. They make such tasks as redrawing diagrams and updating
data dictionaries much easier than with manual methods. Consequently, updates
are more likely to be made and the final documentation is more likely to be accu-
rate. (This example is only one of many instances in which software engineering
must cope with the faults of human nature. Others include the inevitable person-
ality conflicts, jealousies, and ego clashes that arise when people work together.)

Another quality-oriented theme is the use of reviews in which various par-
ties involved in a software development project meet to consider a specific topic.
Reviews occur throughout the software development process, taking the form of
requirements reviews, design reviews, and implementation reviews. They may
appear as a prototype demonstration in the early stages of requirements analysis,

System Design Tragedies
The need for good design disciplines is exemplified by the problems encountered in
the Therac-25, which was a computer-based electron-accelerator radiation-therapy
system used by the medical community in the middle 1980s. Flaws in the machine’s
design contributed to six cases of radiation overdose—three of which resulted in
death. The flaws included (1) a poor design for the machine’s interface that allowed
the operator to begin radiation before the machine had adjusted for the proper
dosage, and (2) poor coordination between the design of the hardware and software
that resulted in the absence of certain safety features.

In more recent cases, poor design has led to widespread power outages, sever-
ance of telephone service, major errors in financial transactions, loss of space
probes, and disruption of the Internet. You can learn more about such problems
through the Risks Forum at http://catless.ncl.ac.uk/Risks.

http://catless.ncl.ac.uk/Risks
http://catless.ncl.ac.uk/Risks

326 Chapter 7 Software Engineering

as a structured walkthrough among members of the software design team, or as
coordination among programmers who are implementing related portions of the
design. Such reviews, on a recurring basis, provide communication channels
through which misunderstandings can be avoided and errors can be corrected
before they grow into disasters. The significance of reviews is exemplified by the
fact that they are specifically addressed in the IEEE Standard for Software
Reviews, known as IEEE 1028.

Some reviews are pivotal in nature. An example is the review between rep-
resentatives of a project’s stakeholders and the software development team at
which the final software requirements specification is approved. Indeed, this
approval marks the end of the formal requirements analysis phase and is the
basis on which the remaining development will progress. However, all reviews
are significant, and for the sake of quality control, they should be documented as
part of the ongoing record maintenance process.

Software Testing
Whereas software quality assurance is now recognized as a subject that perme-
ates the entire development process, testing and verification of the programs
themselves continues to be a topic of research. In Section 5.6 we discussed tech-
niques for verifying the correctness of algorithms in a mathematically rigorous
manner but concluded that most software today is “verified” by means of testing.
Unfortunately, such testing is inexact at best. We cannot guarantee that a piece
of software is correct via testing unless we run enough tests to exhaust all possi-
ble scenarios. But, even in simple programs, there may be billions of different
paths that could potentially be traversed. Thus, testing all possible paths within a
complex program is an impossible task.

On the other hand, software engineers have developed testing methodolo-
gies that improve the odds of revealing errors in software with a limited number
of tests. One of these is based on the observation that errors in software tend to
be clumped. That is, experience has shown that a small number of modules
within a large software system tend to be more problematic than the rest. Thus,
by identifying these modules and testing them more thoroughly, more of the sys-
tem’s errors can be discovered than if all modules were tested in a uniform, less-
thorough manner. This is an instance of the proposition known as the Pareto
principle, in reference to the economist and sociologist Vilfredo Pareto
(1848–1923) who observed that a small part of Italy’s population controlled most
of Italy’s wealth. In the field of software engineering, the Pareto principle states
that results can often be increased most rapidly by applying efforts in a concen-
trated area.

Another software testing methodology, called basis path testing, is to
develop a set of test data that insures that each instruction in the software is exe-
cuted at least once. Techniques using an area of mathematics known as graph
theory have been developed for identifying such sets of test data. Thus, although
it may be impossible to insure that every path through a software system is
tested, it is possible to insure that every statement within the system is executed
at least once during the testing process.

Techniques based on the Pareto principle and basis path testing rely on
knowledge of the internal composition of the software being tested. They there-
fore fall within the category called glass-box testing—meaning that the software
tester is aware of the interior structure of the software and uses this knowledge

3277.6 Quality Assurance

when designing the test. In contrast is the category called black-box testing,
which refers to tests that do not rely on knowledge of the software’s interior com-
position. In short, black-box testing is performed from the user’s point of view. In
black-box testing, one is not concerned with how the software goes about its task
but merely with whether the software performs correctly in terms of accuracy
and timeliness.

An example of black-box testing is the technique, called boundary value
analysis, that consists of identifying ranges of data, called equivalence classes,
over which the software should perform in a similar manner and then testing the
software on data close to the edge of those ranges. For example, if the software is
supposed to accept input values within a specified range, then the software
would be tested at the lowest and highest values in that range, or if the software
is supposed to coordinate multiple activities, then the software would be tested
on the largest possible collection of activities. The underlying theory is that by
identifying equivalence classes, the number of test cases can be minimized
because correct operation for a few examples within an equivalence class tends
to validate the software for the entire class. Moreover, the best chance of identi-
fying an error within a class is to use data at the class edges.

Another methodology that falls within the black-box category is beta testing
in which a preliminary version of the software is given to a segment of the
intended audience with the goal of learning how the software performs in real-
life situations before the final version of the product is solidified and released to
the market. (Similar testing performed at the developer’s site is called alpha
testing.) The advantages of beta testing extend far beyond the traditional dis-
covery of errors. General customer feedback (both positive and negative) is
obtained that may assist in refining market strategies. Moreover, early distribu-
tion of beta software assists other software developers in designing compatible
products. For example, in the case of a new operating system for the PC market,
the distribution of a beta version encourages the development of compatible util-
ity software so that the final operating system ultimately appears on store
shelves surrounded by companion products. Moreover, the existence of beta test-
ing can generate a feeling of anticipation within the marketplace—an atmos-
phere that increases publicity and sales.

Questions & Exercises

1. What is the role of the SQA group within a software development
organization?

2. In what ways does human nature work against quality assurance?
3. Identify two themes that are applied throughout the development

process to enhance quality.
4. When testing software, is a successful test one that does or does not find

errors?
5. What techniques would you propose using to identify the modules

within a system that should receive more thorough testing than others?
6. What would be a good test to perform on a software package that was

designed to sort a list of no more than 100 entries?

328 Chapter 7 Software Engineering

7.7 Documentation
A software system is of little use unless people can learn to use and maintain it.
Hence, documentation is an important part of a final software package, and its
development is, therefore, an important topic in software engineering.

Software documentation serves three purposes, leading to three categories of
documentation: user documentation, system documentation, and technical doc-
umentation. The purpose of user documentation is to explain the features of
the software and describe how to use them. It is intended to be read by the user
of the software and is therefore expressed in the terminology of the application.

Today, user documentation is recognized as an important marketing tool.
Good user documentation combined with a well-designed user interface makes a
software package accessible and thus increases its sales. Recognizing this, many
software developers hire technical writers to produce this part of their product,
or they provide preliminary versions of their products to independent authors so
that how-to books are available in book stores when the software is released to
the public.

User documentation traditionally takes the form of a physical book or book-
let, but in many cases the same information is included as part of the software
itself. This allows a user to refer to the documentation while using the software.
In this case the information may be broken into small units, sometimes called
help packages, that may appear on the display screen automatically if the user
dallies too long between commands.

The purpose of system documentation is to describe the software’s inter-
nal composition so that the software can be maintained later in its life cycle.
A major component of system documentation is the source version of all the
programs in the system. It is important that these programs be presented in a
readable format, which is why software engineers support the use of well-
designed, high-level programming languages, the use of comment statements for
annotating a program, and a modular design that allows each module to be pre-
sented as a coherent unit. In fact, most companies that produce software prod-
ucts have adopted conventions for their employees to follow when writing
programs. These include indentation conventions for organizing a program on
the written page; naming conventions that establish a distinction between
names of different program constructs such as variables, constants, objects, and
classes; and documentation conventions to ensure that all programs are suffi-
ciently documented. Such conventions establish uniformity throughout a com-
pany’s software, which ultimately simplifies the software maintenance process.

Another component of system documentation is a record of the design docu-
ments including the software requirements specification and records showing
how these specifications were obtained during design. This information is useful
during software maintenance because it indicates why the software was imple-
mented as it was—information that reduces the chance that changes made dur-
ing maintenance will disrupt the integrity of the system.

The purpose of technical documentation is to describe how a software sys-
tem should be installed and serviced (such as adjusting operating parameters,
installing updates, and reporting problems back to the software’s developer).
Technical documentation of software is analogous to the documentation provided
to mechanics in the automobile industry. This documentation does not discuss
how the car was designed and constructed (analogous to system documentation),
nor does it explain how to drive the car and operate its heating/cooling system

3297.8 The Human-Machine Interface

(analogous to user documentation). Instead, it describes how to service the car’s
components—for example, how to replace the transmission or how to track down
an intermittent electrical problem.

The distinction between technical documentation and user documentation
is blurred in the PC arena because the user is often the person who also installs
and services the software. However, in multiuser environments, the distinction
is sharper. Therefore, technical documentation is intended for the system
administrator who is responsible for servicing all the software under his or her
jurisdiction, allowing the users to access the software packages as abstract tools.

Questions & Exercises

1. In what forms can software be documented?
2. At what phase (or phases) in the software life cycle is system documen-

tation prepared?
3. Which is more important, a program or its documentation?

7.8 The Human-Machine Interface
Recall from Section 7.2 that one of the tasks during requirements analysis is to
define how the proposed software system will interact with its environment. In
this section we consider topics associated with this interaction when it involves
communicating with humans—a subject with profound significances. After all,
humans should be allowed to use a software system as an abstract tool. This tool
should be easy to apply and designed to minimize (ideally eliminate) communi-
cation errors between the system and its human users. This means that the sys-
tem’s interface should be designed for the convenience of humans rather than
merely the expediency of the software system.

The importance of good interface design is further emphasized by the fact
that a system’s interface is likely to make a stronger impression on a user than
any other system characteristic. After all, a human tends to view a system in
terms of its usability, not in terms of how cleverly it performs its internal tasks.
From a human’s perspective, the choice between two competing systems is
likely to be based on the systems’ interfaces. Thus, the design of a system’s inter-
face can ultimately be the determining factor in the success or failure of a soft-
ware engineering project.

For these reasons, the human-machine interface has become an important
concern in the requirements stage of software development projects and is a
growing subfield of software engineering. In fact, some would argue that the
study of human-machine interfaces is an entire field in its own right.

A beneficiary of research in this field is the smartphone interface. In order to
attain the goal of a convenient pocket-sized device, elements of the traditional
human-machine interface (full-sized keyboard, mouse, scroll bars, menus) are
being replaced with new approaches; such as gestures performed on a touch
screen, voice commands, and virtual keyboards with advanced autocompletion
of words and phrases. While these represent significant progress, most smart-
phone users would argue that there is plenty of room for further innovation.

330 Chapter 7 Software Engineering

Research in human-machine interface design draws heavily from the areas
of engineering called ergonomics, which deals with designing systems that har-
monize with the physical abilities of humans, and cognetics, which deals with
designing systems that harmonize with the mental abilities of humans. Of the
two, ergonomics is the better understood, largely because humans have been
interacting physically with machines for centuries. Examples are found in
ancient tools, weaponry, and transportation systems. Much of this history is self-
evident, however at times the application of ergonomics has been counter-
intuitive. An often cited example is the design of the typewriter keyboard (now
reincarnated as the computer keyboard) in which the keys were intentionally
arranged to reduce a typist’s speed so that the mechanical system of levers used
in the early machines would not jam.

Mental interaction with machines, in contrast, is a relatively new phenome-
non, and thus, it is cognetics that offers the higher potential for fruitful research
and enlightening insights. Often the findings are interesting in their subtlety. For
example, humans form habits—a trait that, on the surface, is good because it can
increase efficiency. But, habits can also lead to errors, even when the design of
an interface intentionally addresses the problem. Consider the process of a
human asking a typical operating system to delete a file. To avoid unintentional
deletions, most interfaces respond to such a request by asking the user to con-
firm the request—perhaps via a message such as, “Do you really want to delete
this file?” At first glance, this confirmation requirement would seem to resolve
any problem of unintentional deletions. However, after using the system for an
extended period, a human develops the habit of automatically answering the
question with “yes.” Thus, the task of deleting a file ceases to be a two-step
process consisting of a delete command followed by a thoughtful response to a
question. Instead, it becomes a one-step “delete-yes” process, meaning that by
the time the human realizes that an incorrect delete request has been submitted,
the request has already been confirmed and the deletion has occurred.

The formation of habits may also cause problems when a human is required
to use several application software packages. The interfaces of such packages
may be similar yet different. Similar user actions may result in different system
responses or similar system responses may require different user actions. In
these cases habits developed in one application may lead to errors in the other
applications.

Another human characteristic that concerns researchers in human-machine
interface design is the narrowness of a human’s attention, which tends to become
more focused as the level of concentration increases. As a human becomes more
engrossed in the task at hand, breaking that focus becomes more difficult. In
1972 a commercial aircraft crashed because the pilots became so absorbed with a
landing gear problem (actually, with the process of changing the landing gear
indicator light bulb) that they allowed the plane to fly into the ground, even
though warnings were sounding in the cockpit.

Less critical examples appear routinely in PC interfaces. For example, a
“Caps Lock” light is provided on most keyboards to indicate that the keyboard is
in “Caps Lock” mode (i.e., the “Caps Lock” key has been pressed). However, if the
key is accidentally pressed, a human rarely notices the status of the light until
strange characters begin to appear on the display screen. Even then, the user
often puzzles over the predicament for a while until realizing the cause of the
problem. In a sense, this is not surprising—the light on the keyboard is not in the
user’s field of view. However, users often fail to notice indicators placed directly

3317.8 The Human-Machine Interface

in their line of sight. For example, users can become so engaged in a task that
they fail to observe changes in the appearance of the cursor on the display
screen, even though their task involves watching the cursor.

Still another human characteristic that must be anticipated during interface
design is the mind’s limited capacity to deal with multiple facts simultaneously.
In an article in Psychological Review in 1956, George A. Miller reported research
indicating that the human mind is capable of dealing with only about seven
details at once. Thus, it is important that an interface be designed to present all
the relevant information when a decision is required rather than to rely on the
human user’s memory. In particular, it would be poor design to require that a
human remember precise details from previous screen images. Moreover, if an
interface requires extensive navigation among screen images, a human can get
lost in the maze. Thus, the content and arrangement of screen images becomes
an important design issue.

Although applications of ergonomics and cognetics give the field of human-
machine interface design a unique flavor, the field also encompasses many of
the more traditional topics of software engineering. In particular, the search for
metrics is just as important in the field of interface design as it is in the more tra-
ditional areas of software engineering. Interface characteristics that have been
subjected to measurement include the time required to learn an interface, the
time required to perform tasks via the interface, the rate of user-interface errors,
the degree to which a user retains proficiency with the interface after periods of
nonuse, and even such subjective traits as the degree to which users like the
interface.

The GOMS (rhymes with “Toms”) model, originally introduced in 1954, is
representative of the search for metrics in the field of human-machine interface
design. The model’s underlying methodology is to analyze tasks in terms of user
goals (such as delete a word from a text), operators (such as click the mouse but-
ton), methods (such as double-click the mouse button and press the delete key),
and selection rules (such as choose between two methods of accomplishing the
same goal). This, in fact, is the origin of the acronym GOMS—goals, operators,
methods, and selection rules. In short, GOMS is a methodology that allows the
actions of a human using an interface to be analyzed as sequences of elementary
steps (press a key, move the mouse, make a decision). The performance of each
elementary step is assigned a precise time period, and thus, by adding the times
assigned to the steps in a task, GOMS provides a means of comparing different
proposed interfaces in terms of the time each would require when performing
similar tasks.

Understanding the technical details of systems such as GOMS is not the pur-
pose of our current study. The point in our case is that GOMS is founded on fea-
tures of human behavior (moving hands, making decisions, and so on). In fact,
the development of GOMS was originally considered a topic in psychology.
Thus, GOMS reemphasizes the role that human characteristics play in the field
of human-machine interface design, even in the topics that are carryovers from
traditional software engineering.

The design of human-machine interfaces promises to be an active field of
research in the foreseeable future. Many issues dealing with today’s GUIs are yet
unresolved, and a multitude of additional problems lurk in the use of three-
dimensional interfaces that are now on the horizon. Indeed, because these inter-
faces promise to combine audio and tactile communication with three-dimensional
vision, the scope of potential problems is enormous.

332 Chapter 7 Software Engineering

Questions & Exercises

1. a. Identify an application of ergonomics in the field of human-computer
interface design.

b. Identify an application of cognetics in the field of human-computer
interface design.

2. A notable difference in the human-computer interface of a smartphone
from that of a desktop computer are the techniques used to scroll a por-
tion of the display. On a desktop, scroll is typically achieved by dragging
the mouse on scrollbars displayed on the right and bottom sides of the
scrolling region. On the other hand, scroll bars are often not used on a
smartphone. (If used they appear as thin lines to indicate what portion of
the underlying display is currently visible.) Scrolling is thus achieved by
the gesture of a sliding touch across the display screen.
a. Based on ergonomics, what arguments can be made in support of this

difference?
b. Based on cognetics, what arguments can be made in support of this

difference?
3. What distinguishes the field of human-machine interface design from

the more traditional field of software engineering?
4. Identify three human characteristics that should be considered when

designing a human-machine interface.

7.9 Software Ownership and Liability
Most would agree that a company or individual should be allowed to recoup, and
profit from, the investment needed to develop quality software. Otherwise, it is
unlikely that many would be willing to undertake the task of producing the soft-
ware our society desires. In short, software developers need a level of ownership
over the software they produce.

Legal efforts to provide such ownership fall under the category of intellectual
property law, much of which is based on the well-established principles of copy-
right and patent law. Indeed, the purpose of a copyright or patent is to allow the
developer of a “product” to release that product (or portions thereof) to intended
parties while protecting his or her ownership rights. As such, the developer of a
product (whether an individual or a corporation) will assert his or her ownership
by including a copyright statement in all produced works; including requirement
specifications, design documents, source code, test plans, and in some visible
place within the final product. A copyright notice clearly identifies ownership, the
personnel authorized to use the work, and other restrictions. Furthermore, the
rights of the developer are formally expressed in legal terms in a software
license.

A software license is a legal agreement between the owner and user of a soft-
ware product that grants the user certain permissions to use the product without
transferring ownership rights to the intellectual property. These agreements
spell out, to a fine level of detail, the rights and obligations of both parties. Thus,

3337.9 Software Ownership and Liability

it is important to carefully read and understand the terms of the software license
before installing and using a software product.

While copyrights and software license agreements provide legal avenues to
inhibit outright copying and unauthorized use of software, they are generally
insufficient to prevent another party from independently developing a product
with a nearly identical function. It is sad that over the years there have been
many occasions where the developer of a truly revolutionary software product
was unable to capitalize fully on his or her invention (two notable examples are
spreadsheets and web browsers). In most of these cases, another company was
successful in developing a competitive product that secured a dominant share of
the market. A legal path to prevent this intrusion by a competitor is found in
patent law.

Patent laws were established to allow an inventor to benefit commercially
from an invention. To obtain a patent, the inventor must disclose the details of
the invention and demonstrate that it is new, useful, and not obvious to others
with similar backgrounds (a requirement that can be quite challenging for soft-
ware). If a patent is granted, the inventor is given the right to prevent others from
making, using, selling, or importing the invention for a limited period of time,
which is typically twenty years from the date the patent application was filed.

One drawback to the use of patents is that the process to obtain a patent is
expensive and time-consuming, often involving several years. During this time a
software product could become obsolete, and until the patent is granted the
applicant has only questionable authority to exclude others from appropriating
the product.

The importance of recognizing copyrights, software licenses, and patents is
paramount in the software engineering process. When developing a software
product, software engineers often choose to incorporate software from other
products; whether it be an entire product, subset of components, or even portions
of source code downloaded over the Internet. However, failure to honor intellec-
tual property rights during this process may lead to huge liabilities and conse-
quences. For example, in 2004, a little known company NPT Inc. successfully
won a lawsuit against Research In Motion (RIM—the makers of the BlackBerry
smartphones) for patent infringement of a few key technologies embedded in
RIM’s email systems. The judgment included an injunction to suspend email
services to all BlackBerry users in the United States! RIM eventually reached an
agreement to pay NPT a total of $612.5 million, thereby averting a shutdown.

Finally, we should address the issue of liability. To protect themselves
against liability, software developers often include disclaimers in the software
licenses that state the limitations of their liability. Such statements as “In no
event will Company X be liable for any damages arising out of the use of this
software” are common. Courts, however, rarely recognize a disclaimer if the
plaintiff can show negligence on the part of the defendant. Thus liability cases
tend to focus on whether the defendant used a level of care compatible with the
product being produced. A level of care that might be deemed acceptable in
the case of developing a word processing system may be considered negligent
when developing software to control a nuclear reactor. Consequently, one of the
best defenses against software liability claims is to apply sound software engi-
neering principles during the software’s development, to use a level of care com-
patible with the software’s application, and to produce and maintain records that
validate these endeavors.

334 Chapter 7 Software Engineering

Questions & Exercises

1. What is the significance of a copyright notice in requirement specifica-
tions, design documents, source code, and the final product?

2. In what ways are copyright and patent laws designed to benefit society?
3. To what extent are disclaimers not recognized by the courts?

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

1. Give an example of how efforts in the develop-
ment of software can pay dividends later in
software maintenance.

2. What is evolutionary prototyping?

3. Explain how the lack of metrics for measuring
certain software properties affects the soft-
ware engineering discipline.

4. Would you expect that a metric for measuring
the complexity of a software system would be
cumulative in the sense that the complexity of
a complete system would be the sum of the
complexities of its parts? Explain your answer.

5. Would you expect that a metric for measuring
the complexity of a software system would
be commutative in the sense that the
complexity of a complete system would be the
same if it were originally developed with
feature X and had feature Y added later or if it
were originally developed with feature Y and
had feature X added later? Explain your
answer.

6. How does software engineering differ from
other, more traditional fields of engineering
such as electrical and mechanical engineering?

7. a. Identify a disadvantage of the traditional
waterfall model for software development.

b. Identify an advantage of the traditional
waterfall model for software development.

8. Is open-source development a top-down or
bottom-up methodology? Explain your answer.

9. Describe how the use of constants rather than
literals can simplify software maintenance.

10. What is the difference between coupling and
cohesion? Which should be minimized and
which should be maximized? Why?

11. Select an object from everyday life and ana-
lyze its components in terms of functional or
logical cohesion.

12. Contrast the coupling between two program
units obtained by a simple goto statement
with the coupling obtained by a procedure call.

13. In Chapter 6 we learned that parameters can
be passed to procedures by value or by refer-
ence. Which provides the more complex
form of data coupling? Explain your answer.

14. What problems could arise during mainte-
nance if a large software system were
designed in such a way that all of its data
elements were global?

15. In an object-oriented program, what does
declaring an instance variable to be public or
private indicate about data coupling? What
would be the rationale behind a preference
toward declaring instance variables as private?

*16. Identify a problem involving data coupling
that can occur in the context of parallel
processing.

17. Answer the following questions in relation to
the accompanying structure chart:
a. To which module does module Y return

control?
b. To which module does module Z return

control?
c. Are modules W and X linked via control

coupling?

335Chapter Review Problems

d. Are modules W and X linked via data
coupling?

e. What data is shared by both module W and
module Y?

f. In what way are modules W and Z related?

18. Using a structure chart, represent the proce-
dural structure of a simple inventory/account-
ing system for a small store (perhaps a
privately owned curio shop in a resort com-
munity). What modules in your system must
be modified because of changes in sales tax
laws? What modules would need to be
changed if the decision is made to maintain a
record of past customers so that advertising
can be mailed to them?

19. Using a class diagram, design an object-
oriented solution for the previous problem.

20. Draw a simple class diagram representing the
relationships between magazine publishers,
magazines, and subscribers. It is sufficient to
depict only the class name within each box
representing a class.

21. What is UML and what is it used for?
Elaborate on the word corresponding to
the “M.”

22. Draw a simple use case diagram depicting
the ways in which a library patron uses a
library.

23. Draw a sequence diagram representing the
interaction sequence that would ensue when a
utility company sends a bill to a customer.

24. Draw a simple dataflow diagram depicting the
flow of data that occurs in an automated
inventory system when a sale is made.

25. Contrast the information represented in a
class diagram with that represented in a
sequence diagram.

26. What is the difference between a one-to-many
relationship and a many-to-many relationship?

27. Give an example of a one-to-many relationship
that is not mentioned in this chapter. Give an
example of a many-to-many relationship that
is not mentioned in this chapter.

28. Based on the information in Figure 7.10,
imagine an interaction sequence that might
occur between a physician and a patient
during a visit with the patient. Draw a
sequence diagram representing that sequence.

29. Draw a class diagram representing the rela-
tionships between the servers and customers
in a restaurant.

30. Draw a class diagram representing the rela-
tionships between magazines, publishers of
magazines, and subscribers to magazines.
Include a set of instance variables and
methods for each class.

31. Extend the “sequence diagram” in Figure 7.5
to show the interaction sequence that would
occur if PlayerA successfully returns
PlayerB’s volley, but PlayerB fails to return
that volley.

32. Answer the following questions based on the
accompanying class diagram that represents
the associations between tools, their users,
and their manufacturers.

a. Which classes (X, Y, and Z) represent tools,
users, and manufacturers? Justify your
answer.

b. Can a tool be used by more than one user?
c. Can a tool be manufactured by more than

one manufacturer?
d. Does each user use tools manufactured by

many manufacturers?

33. In each of the following cases, identify
whether the activity relates to a sequence dia-
gram, a use case diagram, or a class diagram.
a. Represents the way in which users will

interact with the system
b. Represents the relationship between

classes in the system
c. Represents the manner in which objects

will interact to accomplish a task

uses *

**

* 1

1
X

Y

used by
Z

V

W

Y

X

Z

a

a

a

336 Chapter 7 Software Engineering

34. Answer the following questions based on the
accompanying sequence diagram.

a. What class contains a method named ww?
b. What class contains a method named xx?
c. During the sequence, does the object of

“type” Z ever communicate directly with
the object of “type” Y?

35. Draw a sequence diagram indicating that
object A calls the method bb in object B,
B performs the requested action and returns
control to A, and then A calls the method cc
in object B.

36. Extend your solution to the previous problem
to indicate that A calls the method bb only if
the variable “continue” is true and continues
calling bb as long as “continue” remains true
after B returns control.

37. Draw a class diagram depicting the fact that
the classes Truck and Automobile are general-
izations of the class Vehicle.

38. Based on Figure 7.12, what additional instance
variables would be contained in an object of
“type” SurgicalRecord? Of “type”
OfficeVisitRecord?

39. Explain why inheritance is not always the best
way to implement class generalizations.

40. Identify some design patterns in fields other
than software engineering.

41. Summarize the role of design patterns in soft-
ware engineering.

42. To what extent are the control structures in
a typical high-level programming language
(if-then-else, while, and so on) small-
scale design patterns?

43. Which of the following involve the Pareto
principle? Explain your answers.
a. One obnoxious person can spoil the party

for everyone.

b. Each radio station concentrates on a
particular format such as hard rock music,
classical music, or talk.

c. In an election, candidates are wise to focus
their campaigns on the segment of the elec-
torate that has voted in the past.

44. Do software engineers expect large software
systems to be homogeneous or heterogeneous
in error content? Explain your answer.

45. What is the difference between black-box test-
ing and glass-box testing?

46. Give some analogies of black-box and glass-
box testing that occur in fields other than soft-
ware engineering.

47. How does open-source development differ
from beta testing? (Consider glass-box testing
versus black-box testing.)

48. Suppose that 100 errors were intentionally
placed in a large software system before the
system was subjected to final testing.
Moreover, suppose that 200 errors were dis-
covered and corrected during this final test-
ing, of which 50 errors were from the group
intentionally placed in the system. If the
remaining 50 known errors are then cor-
rected, how many unknown errors would you
estimate are still in the system? Explain why.

49. What is GOMS?

50. What is ergonomics? What is cognetics?

51. One difference between the human-computer
interface of a smartphone and that of a desk-
top computer involves the technique used to
alter the scale of an image on the display
screen to obtain more or less detail (a process
called “zooming”). On a desktop, zooming is
typically achieved by dragging a slider that is
separate from the area being displayed, or by
using a menu or toolbar item. On a smart-
phone, zooming is performed by simultane-
ously touching the display screen with the
thumb and index finger and then modifying
the space between both touch points (a process
called “double touch—spread” to “zoom in” or
“double touch—pinch” to “zoom out”).
a. Based on ergonomics, what arguments can

be made in support of this difference?
b. Based on cognetics, what arguments can be

made in support of this difference?

xx

sd ww

self : X : Y : Z

yy

zz

337Social Issues

52. In what way do traditional copyright laws fail
to safeguard the investments of software
developers?

53. In what ways can a software developer be
unsuccessful in obtaining a patent?

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. a. Mary Analyst has been assigned the task of implementing a system with
which medical records will be stored on a computer that is connected to a
large network. In her opinion the design for the system’s security is
flawed but her concerns have been overruled for financial reasons. She
has been told to proceed with the project using the security system that
she feels is inadequate. What should she do? Why?

b. Suppose that Mary Analyst implemented the system as she was told, and
now she is aware that the medical records are being observed by unau-
thorized personnel. What should she do? To what extent is she liable for
the breach of security?

c. Suppose that instead of obeying her employer, Mary Analyst refuses to
proceed with the system and blows the whistle by making the flawed
design public, resulting in a financial hardship for the company and the
loss of many innocent employees’ jobs. Were Mary Analyst’s actions cor-
rect? What if it turns out that, being only a part of the overall team, Mary
Analyst was unaware that sincere efforts were being made elsewhere
within the company to develop a valid security system that would be
applied to the system on which Mary was working. How does this change
your judgment of Mary’s actions? (Remember, Mary’s view of the situa-
tion is the same as before.)

2. When large software systems are developed by many people, how should lia-
bilities be assigned? Is there a hierarchy of responsibility? Are there degrees
of liability?

3. We have seen that large, complex software systems are often developed by
many individuals, few of which may have a complete picture of the entire
project. Is it ethically proper for an employee to contribute to a project with-
out full knowledge of its function?

4. To what extent is someone responsible for how his or her accomplishments
are ultimately applied by others?

5. In the relationship between a computer professional and a client, is it the
professional’s responsibility to implement the client’s desires or to direct the
client’s desires? What if the professional foresees that a client’s desires could
lead to unethical consequences? For example, the client may wish to cut cor-
ners for the sake of efficiency, but the professional may foresee a potential
source of erroneous data or misuse of the system if those shortcuts are taken.
If the client insists, is the professional free of responsibility?

Social Issues

6. What happens if technology begins to advance so rapidly that new inven-
tions are superseded before the inventor has time to profit from the inven-
tion? Is profit necessary to motivate inventors? How does the success of
open-source development relate to your answer? Is free quality software a
sustainable reality?

7. Is the computer revolution contributing to, or helping to solve, the world’s
energy problems? What about other large-scale problems such as hunger and
poverty?

8. Will advances in technology continue indefinitely? What, if anything, would
reverse society’s dependency on technology? What would be the result of a
society that continues to advance technology indefinitely?

9. If you had a time machine, in which period of history would you like to live?
Are there current technologies that you would like to take with you? Can one
technology be separated from another? Is it realistic to protest against global
warming yet accept modern medical treatment?

10. Many applications on a smartphone automatically integrate with services
provided by other applications. This integration may share information
entered to one application with another. What are the benefits of this inte-
gration? Are there any concerns with “too much” integration?

338 Chapter 7 Software Engineering

Alexander, C., S. Ishikawa, and M. Silverstein. A Pattern Language. New York:
Oxford University Press, 1977.

Beck, K. Extreme Programming Explained: Embrace Change, 2nd ed. Boston, MA:
Addison-Wesley, 2004.

Bowman, D. A., E. Kruijff, J. J. LaViola, Jr., and I. Poupyrev. 3D User Interfaces
Theory and Practice. Boston, MA: Addison-Wesley, 2005.

Braude, E. Software Design: From Programming to Architecture. New York: Wiley,
2004.

Bruegge, B. and A. Dutoit. Object-Oriented Software Engineering Using UML,
Patterns, and Java, 3rd ed. Boston, MA: Addison-Wesley, 2010.

Cockburn, A. Agile Software Development: The Cooperative Game, 2nd ed. Boston,
MA: Addison-Wesley, 2006.

Fox, C. Introduction to Software Engineering Design: Processes, Principles and
Patterns with UML2. Boston, MA: Addison-Wesley, 2007.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston, MA: Addison-Wesley, 1995.

Maurer, P. M. Component-Level Programming. Upper Saddle River, NJ: Prentice-
Hall, 2003.

Pfleeger, S. L. and J. M. Atlee. Software Engineering: Theory and Practice, 4th ed.
Upper Saddle River, NJ: Prentice-Hall, 2010.

Pilone, D. UML 2.0 in a Nutshell. Cambridge, MA: O’Reilly Media, 2005.

Additional Reading

339Additional Reading

Pressman, R. S. Software Engineering: A Practitioner’s Approach, 7th ed. New York:
McGraw-Hill, 2009.

Schach, S. R. Classical and Object-Oriented Software Engineering, 8th ed. New York:
McGraw-Hill, 2010.

Shalloway, A. and J. R. Trott. Design Patterns Explained, 2nd ed. Boston, MA:
Addison-Wesley, 2005.

Shneiderman, B., C. Plaisant, Cohen, M, and Jacobs S. Designing the User
Interface: Strategies for Effective Human-Computer Interaction, 5th ed. Boston, MA:
Addison-Wesley, 2009.

Sommerville, I. Software Engineering, 8th ed. Boston, MA: Addison-Wesley, 2006.

This page intentionally left blank

Data Abstractions

In this chapter we investigate how data arrangements other than

the cell-by-cell organization provided by a computer’s main mem-

ory can be simulated—a subject known as data structures. The goal

is to allow the data’s user to access collections of data as abstract

tools rather than force the user to think in terms of the computer’s

main memory organization. Our study will show how the desire to

construct such abstract tools leads to the concept of objects and

object-oriented programming.

C H A P T E R

8

8.1 Basic Data Structures
Arrays
Lists, Stacks, and Queues
Trees

8.2 Related Concepts
Abstraction Again
Static Versus Dynamic

Structures
Pointers

8.3 Implementing Data
Structures
Storing Arrays
Storing Lists
Storing Stacks and Queues
Storing Binary Trees
Manipulating Data Structures

8.4 A Short Case Study

8.5 Customized Data Types
User-Defined Data Types
Abstract Data Types

*8.6 Classes and Objects

*8.7 Pointers in Machine
Language

*Asterisks indicate suggestions for
optional sections.

We introduced the concept of data structure in Chapter 6, where we learned that
high-level programming languages provide techniques by which programmers
can express algorithms as though the data being manipulated were stored in
ways other than the cell-by-cell arrangement provided by a computer’s main
memory. We also learned that the data structures supported by a programming
language are known as primitive structures. In this chapter we will explore tech-
niques by which data structures other than a language’s primitive structures can
be constructed and manipulated—a study that will lead us from traditional data
structures to the object-oriented paradigm. An underlying theme throughout this
progression is the construction of abstract tools.

8.1 Basic Data Structures
We begin our study by introducing some basic data structures that will serve as
examples in future sections.

Arrays
In Section 6.2, we learned about the data structures known as homogeneous
and heterogeneous arrays. Recall that a homogeneous array is a “rectangu-
lar” block of data whose entries are of the same type. In particular, a two-
dimensional homogeneous array consists of rows and columns in which
positions are identified by pairs of indices—the first index identifies the row
associated with the position, the second index identifies the column. An exam-
ple would be a rectangular array of numbers representing the monthly sales
made by members of a sales force—the entries across each row representing the
monthly sales made by a particular member and the entries down each column
representing the sales by each member for a particular month. Thus, the entry
in the third row and first column would represent the sales made by the third
salesperson in January.

In contrast to a homogeneous array, recall that a heterogeneous array is a
block of data items that might be of different types. The items within the block
are usually called components. An example of a heterogeneous array would be
the block of data relating to a single employee, the components of which might
be the employee’s name (of type character), age (of type integer), and skill rating
(of type real).

Lists, Stacks, and Queues
Another basic data structure is a list, which is a collection whose entries are
arranged sequentially (Figure 8.1a). The beginning of a list is called the head of
the list. The other end of a list is called the tail.

Almost any collection of data can be envisioned as a list. For example, text can
be envisioned as a list of symbols, a two-dimensional array can be envisioned as a
list of rows, and music recorded on a CD can be envisioned as a list of sounds. More
traditional examples include guest lists, shopping lists, class enrollment lists, and
inventory lists. Activities associated with a list vary depending on the situation. In
some cases we may need to remove entries from a list, add new entries to a list,
“process” the entries in a list one at a time, change the arrangement of the entries in

342 Chapter 8 Data Abstractions

a list, or perhaps search to see if a particular item is in a list. We will investigate such
operations later in this chapter.

By restricting the manner in which the entries of a list are accessed, we obtain
two special types of lists known as stacks and queues. A stack is a list in which
entries are inserted and removed only at the head. An example is a stack of books
where physical restrictions dictate that all additions and deletions occur at the top
(Figure 8.1b). Following colloquial terminology, the head of a stack is called the
top of the stack. The tail of a stack is called its bottom or base. Inserting a new
entry at the top of a stack is called pushing an entry. Removing an entry from the
top of a stack is called popping an entry. Note that the last entry placed on a stack
will always be the first entry removed—an observation that leads to a stack being
known as a last-in, first-out, or LIFO (pronounced “LIE-foe”) structure.

This LIFO characteristic means that a stack is ideal for storing items that must
be retrieved in the reverse order from which they were stored, and thus a stack is
often used as the underpinning of backtracking activities. (The term backtracking
refers to the process of backing out of a system in the opposite order from which the
system was entered. A classic example is the process of retracing one’s steps in
order to find one’s way out of a forest.) For instance, consider the underlying struc-
ture required to support a recursive process. As each new activation is started, the
previous activation must be set aside. Moreover, as each activation is completed,
the last activation that was set aside must be retrieved. Thus, if the activations are
pushed on a stack as they are set aside, then the proper activation will be on the top
of the stack each time an activation needs to be retrieved.

A queue is a list in which the entries are removed only at the head and new
entries are inserted only at the tail. An example is a line, or queue, of people
waiting to buy tickets at a theater (Figure 8.1c)—the person at the head of
the queue is served while new arrivals step to the rear (or tail) of the queue. We
have already met the queue structure in Chapter 3 where we saw that a batch
processing operating system stores the jobs waiting to be executed in a queue
called the job queue. There we also learned that a queue is a first-in, first-out,
or FIFO (pronounced “FIE-foe”) structure, meaning that the entries are removed
from a queue in the order in which they were stored.

Queues are often used as the underlying structure of a buffer, which as intro-
duced in Chapter 1, is a storage area for the temporary placement of data being

3438.1 Basic Data Structures

List

Head

Tail

a. A list of names

Jill

Bob

Devon

Maurice

Stack

Top

Bottom

b. A stack of books

Queue

Tail Head

c. A queue of people

TICKETS

Figure 8.1 Lists, stacks, and queues

transferred from one location to another. As the items of data arrive at the buffer,
they are placed at the tail of the queue. Then, when it comes time to forward
items to their final destination, they are forwarded in the order in which they
appear at the head of the queue. Thus, items are forwarded in the same order in
which they arrived.

Trees
A tree is a collection whose entries have a hierarchical organization similar to
that of an organization chart of a typical company (Figure 8.2). The president is
represented at the top, with lines branching down to the vice presidents, who are
followed by regional managers, and so on. To this intuitive definition of a tree
structure we impose one additional constraint, which (in terms of an organiza-
tion chart) is that no individual in the company reports to two different superi-
ors. That is, different branches of the organization do not merge at a lower level.
(We have already seen examples of trees in Chapter 6 where they appeared in
the form of parse trees.)

Each position in a tree is called a node (Figure 8.3). The node at the top is
called the root node (if we turned the drawing upside down, this node would
represent the base or root of the tree). The nodes at the other extreme are called
terminal nodes (or sometimes leaf nodes). We often refer to the number of
nodes in the longest path from the root to a leaf as the depth of the tree. In other
words, the depth of a tree is the number of horizontal layers within it.

At times we refer to tree structures as though each node gives birth to those
nodes immediately below it. In this sense, we often speak of a node’s ancestors
or descendants. We refer to its immediate descendants as its children and its
immediate ancestor as its parent. Moreover, we speak of nodes with the same
parent as being siblings. A tree in which each parent has no more than two chil-
dren is called a binary tree.

If we select any node in a tree, we find that that node together with the
nodes below it also have the structure of a tree. We call these smaller structures
subtrees. Thus, each child node is the root of a subtree below the child’s par-
ent. Each such subtree is called a branch from the parent. In a binary tree, we
often speak of a node’s left branch or right branch in reference to the way the
tree is displayed.

344 Chapter 8 Data Abstractions

Regional
Sales

Manager

Regional
Sales

Manager

Regional
Sales

Manager

Regional
Service

Manager

Regional
Service

Manager

Vice-President
of Sales

Vice-President
of Finance

Vice-President
of Services

President

Figure 8.2 An example of an organization chart

3458.2 Related Concepts

Root node

Siblings

Subtree

Terminal (or leaf) nodes

Figure 8.3 Tree terminology

1. Give examples (outside of computer science) of each of the following
structures: list, stack, queue, and tree.

2. Summarize the distinction between lists, stacks, and queues.
3. Suppose the letter A is pushed onto an empty stack, followed by the let-

ters B and C, in that order. Then suppose that a letter is popped off the
stack and the letters D and E are pushed on. List the letters that would be
on the stack in the order they would appear from top to bottom. If a let-
ter is popped off the stack, which letter will be retrieved?

4. Suppose the letter A is placed in an empty queue, followed by the letters
B and C, in that order. Then suppose that a letter is removed from the
queue and the letters D and E are inserted. List the letters that would be
in the queue in the order they would appear from head to tail. If a letter
is now removed from the queue, which letter will it be?

5. Suppose a tree has four nodes A, B, C, and D. If A and C are siblings and
D’s parent is A, which nodes are leaf nodes? Which node is the root?

Questions & Exercises

8.2 Related Concepts
In this section we isolate three topics that are closely associated with the subject
of data structures: abstraction, the distinction between static and dynamic struc-
tures, and the concept of a pointer.

Abstraction Again
The structures presented in the previous section are often associated with
data. However, a computer’s main memory is not organized as arrays, lists,
stacks, queues, and trees but is instead organized as a sequence of addressable
memory cells. Thus, all other structures must be simulated. How this simula-
tion is accomplished is the subject of this chapter. For now we merely point
out that organizations such as arrays, lists, stacks, queues, and trees are
abstract tools that are created so that users of the data can be shielded from
the details of actual data storage and can be allowed to access information as
though it were stored in a more convenient form.

The term user in this context does not necessarily refer to a human. Instead,
the meaning of the word depends on our perspective at the time. If we are thinking
in terms of a person using a PC to maintain bowling league records, then the user
is a human. In this case, the application software (perhaps a spreadsheet software
package) would be responsible for presenting the data in an abstract form conven-
ient to the human—most likely as a homogeneous array. If we are thinking in
terms of a server on the Internet, then the user might be a client. In this case, the
server would be responsible for presenting data in an abstract form convenient to
the client. If we are thinking in terms of the modular structure of a program, then
the user would be any module requiring access to the data. In this case, the module
containing the data would be responsible for presenting the data in an abstract
form convenient to the other modules. In each of these scenarios, the common
thread is that the user has the privilege of accessing data as an abstract tool.

Static Versus Dynamic Structures
An important distinction in constructing abstract data structures is whether the
structure being simulated is static or dynamic, that is, whether the shape or size
of the structure changes over time. For example, if the abstract tool is a list of
names, it is important to consider whether the list will remain a fixed size
throughout its existence or expand and shrink as names are added and deleted.

As a general rule, static structures are more easily managed than dynamic
ones. If a structure is static, we need merely to provide a means of accessing the
various data items in the structure and perhaps a means of changing the values
at designated locations. But, if the structure is dynamic, we must also deal with
the problems of adding and deleting entries as well as finding the memory space
required by a growing data structure. In the case of a poorly designed structure,
adding a single new entry could result in a massive rearrangement of the struc-
ture, and excessive growth could dictate that the entire structure be transferred
to another memory area where more space is available.

Pointers
Recall that the various cells in a machine’s main memory are identified by
numeric addresses. Being numeric values, these addresses themselves can be
encoded and stored in memory cells. A pointer is a storage area that contains
such an encoded address. In the case of data structures, pointers are used to
record the location where data items are stored. For example, if we must repeat-
edly move an item of data from one location to another, we might designate a
fixed location to serve as a pointer. Then, each time we move the item, we can

346 Chapter 8 Data Abstractions

update the pointer to reflect the new address of the data. Later, when we need to
access the item of data, we can find it by means of the pointer. Indeed, the
pointer will always “point” to the data.

We have already encountered the concept of a pointer in our study of CPUs
in Chapter 2. There we found that a register called a program counter is used to
hold the address of the next instruction to be executed. Thus, the program
counter plays the role of a pointer. In fact, another name for a program counter
is instruction pointer.

As an example of the application of pointers, suppose we have a list of nov-
els stored in a computer’s memory alphabetically by title. Although convenient
in many applications, this arrangement makes it difficult to find all the novels by
a particular author—they are scattered throughout the list. To solve this problem,
we can reserve an additional memory cell within each block of cells representing
a novel and use this cell as a pointer to another block representing a book by the
same author. In this manner the novels with common authorship can be linked
in a loop (Figure 8.4). Once we find one novel by a given author, we can find all
the others by following the pointers from one book to another.

Many modern programming languages include pointers as a primitive data
type. That is, they allow the declaration, allocation, and manipulation of pointers
in ways reminiscent of integers and character strings. Using such a language, a
programmer can design elaborate networks of data within a machine’s memory
where pointers are used to link related items to each other.

3478.2 Related Concepts

A Farewell to Arms
by Ernest Hemingway

For Whom the Bell Tolls
by Ernest Hemingway

The Sun Also Rises
by Ernest Hemingway

Pointer Pointer Pointer

Figure 8.4 Novels arranged by title but linked according to authorship

Questions & Exercises

1. In what sense are data structures such as arrays, lists, stacks, queues,
and trees abstractions?

2. Describe an application that you would expect to involve a static data
structure. Then describe an application that you would expect to involve
a dynamic data structure.

3. Describe contexts outside of computer science in which the pointer con-
cept occurs.

8.3 Implementing Data Structures
Let us now consider ways in which the data structures discussed in the previous
section can be stored in a computer’s main memory.

Storing Arrays
We begin with techniques for storing arrays. As we saw in Chapter 6, these
structures are often provided as primitive structures in high-level programming
languages. Our goal here is to understand how programs that deal with such
structures are translated into machine-language programs that manipulate data
stored in main memory.

Homogeneous Arrays Suppose we want to store a sequence of 24 hourly tempera-
ture readings, each of which requires one memory cell of storage space.
Moreover, suppose we want to identify these readings by their positions in the
sequence. That is, we want to be able to access the first reading or the fifth read-
ing. In short, we want to manipulate the sequence as though it were a one-
dimensional homogeneous array.

We can obtain this goal merely by storing the readings in a sequence of 24
memory cells with consecutive addresses. Then, if the address of the first cell in
the sequence is x, the location of any particular temperature reading can be com-
puted by subtracting one from the index of the desired reading and then adding
the result to x. In particular, the fourth reading would be located at address x �
(4 � 1), as shown in Figure 8.5.

This technique is used by most translators of high-level programming lan-
guages to implement one-dimensional homogeneous arrays. When the translator
encounters a declaration statement such as

int Readings[24];

declaring that the term Readings is to refer to a one-dimensional array of 24
integer values, the translator arranges for 24 consecutive memory cells to be set
aside. Later in the program, if it encounters the assignment statement

Readings[4] d 67;

348 Chapter 8 Data Abstractions

Addresses

Memory
cells

Readings[1]

x x + 1 x + 2 x + 3 x + 4 x + 5 x + 6

Readings[2]

Readings[3]

Readings[4]

Figure 8.5 The array of temperature readings stored in memory starting at address x

requesting that the value 67 be placed in the fourth entry of the array Readings,
the translator builds the sequence of machine instructions required to place the
value 67 in the memory cell at address x � (4 � 1), where x is the address of the first
cell in the block associated with the array Readings. In this manner, the program-
mer is allowed to write the program as though the temperature readings were
actually stored in a one-dimensional array. (Caution: In the languages C, C��, C#,
and Java, array indices start at 0 rather than 1, so the fourth reading would be ref-
erenced by Readings[3]. See Question/Exercise 3 at the end of this section.)

Now suppose we want to record the sales made by a company’s sales force
during a one-week period. In this case, we might envision the data arranged in a
two-dimensional homogeneous array, where the values across each row indicate
the sales made by a particular employee, and the values down a column repre-
sent all the sales made during a particular day.

To accommodate this need, we first recognize that the array is static in the
sense that its size does not vary as updates are made. We can therefore calculate
the amount of storage area needed for the entire array and reserve a block of
contiguous memory cells of that size. Next, we store the data in the array row by
row. Starting at the first cell of the reserved block, we store the values from the
first row of the array into consecutive memory locations; following this, we store
the next row, then the next, and so on (Figure 8.6). Such a storage system is said
to use row major order in contrast to column major order in which the array
is stored column by column.

With the data stored in this manner, let us consider how we could find the
value in the third row and fourth column of the array. Envision that we are at the
first location in the reserved block of the machine’s memory. Starting at this
location, we find the data in the first row of the array followed by the second,
then the third, and so on. To get to the third row, we must move beyond both the
first and second rows. Since each row contains five entries (one for each day of
the week from Monday through Friday), we must move beyond a total of 10
entries to reach the first entry of the third row. From there, we must move beyond
another three entries to reach the entry in the fourth column of the row.
Altogether, to reach the entry in the third row and fourth column, we must move
beyond 13 entries from the beginning of the block.

3498.3 Implementing Data Structures

Conceptual array

Row 1 Row 2 Row 3 Row 4

Machine’s memory

Entry from 4th column in Row 3

Row 1

Row 2

Row 3

Row 4

Figure 8.6 A two-dimensional array with four rows and five columns stored in row major order

The preceding calculation can be generalized to obtain a formula for con-
verting references in terms of row and column positions into actual memory
addresses. In particular, if we let c represent the number of columns in an array
(which is the number of entries in each row), then the address of the entry in the
ith row and jth column will be

x � (c � (i � 1)) � (j � 1)

where x is the address of the cell containing the entry in the first row and first
column. That is, we must move beyond i � 1 rows, each of which contains c
entries, to reach the ith row and then j � 1 more entries to reach the jth entry in
this row. In our prior example c � 5, i � 3, and j � 4, so if the array were stored
starting at address x, then the entry in the third row, fourth column would be at
address x � (5 � (3 � 1)) � (4 � 1) = x � 13. The expression (c � (i � 1)) � (j � 1)
is sometimes called the address polynomial.

Once again, this is the technique used by most translators of high-level pro-
gramming languages. When faced with the declaration statement

int Sales[8, 5];

declaring that the term Sales is to refer to a two-dimensional array of integer
values with 8 rows and 5 columns, the translator arranges for 40 consecutive
memory cells to be set aside. Later, if it encounters the assignment statement

Sales[3, 4] d 5;

requesting that the value 5 be placed in the entry at the third row and fourth col-
umn of the array Sales, it builds the sequence of machine instructions required
to place the value 5 in the memory cell whose address is x � 5 � (3 � 1) � (4 � 1),
where x is the address of the first cell in the block associated with the array
Sales. In this manner, the programmer is allowed to write the program as
though the sales were actually stored in a two-dimensional array.

350 Chapter 8 Data Abstractions

Implementing Contiguous Lists
The primitives for constructing and manipulating arrays that are provided in most
high-level programming languages are convenient tools for constructing and manip-
ulating contiguous lists. If the entries of the list are all the same primitive data type,
then the list is nothing more than a one-dimensional homogeneous array. A slightly
more involved example is a list of ten names, each of which is no longer than eight
characters, as discussed in the text. In this case, a programmer could construct the
contiguous list as a two-dimensional array of characters with ten rows and eight
columns, which would produce the structure represented in Figure 8.6 (assuming
that the array is stored in row major order).

Many high-level languages incorporate features that encourage such implemen-
tations of lists. For example, suppose the two-dimensional array of characters pro-
posed above was called MemberList. Then in addition to the traditional notation
in which the expression MemberList[3,5] refers to the single character in the
third row and fifth column, some languages adopt the expression MemberList[3]
to refer to the entire third row, which would be the third entry in the list.

Heterogeneous Arrays Now suppose we want to store a heterogeneous array
called Employee consisting of the three components: Name of type character,
Age of type integer, and SkillRating of type real. If the number of memory
cells required by each component is fixed, then we can store the array in a
block of contiguous cells. For example, suppose the component Name required
at most 25 cells, Age required only one cell, and SkillRating required only
one cell. Then, we could set aside a block of 27 contiguous cells, store the
name in the first 25 cells, store the age in the 26th cell, and store the skill
rating in the last cell (Figure 8.7a).

With this arrangement, it would be easy to access the different compo-
nents within the array. If the address of the first cell were x, then any refer-
ence to Employee.Name (meaning the Name component within the array
Employee) would translate to the 25 cells starting at address x and a reference
to Employee.Age (the Age component within Employee) would translate to
the cell at address x � 25. In particular, if a translator found a statement
such as

Employee.Age d 22;

in a high-level program, then it would merely build the machine language instruc-
tions required to place the value 22 in the memory cell whose address is x � 25.

3518.3 Implementing Data Structures

Pointers

b. Array components stored in separate locations

Employee

Employee.Name Employee.Age Employee.SkillRating

Employee.Name

Employee.Age

Employee.SkillRating

xAddresses: x + 25 x + 26

a. Array stored in a contiguous block

Figure 8.7 Storing the heterogeneous array Employee

Or, if EmployeeOfMonth were defined to be a similar array stored at address y,
then the statement

EmployeeOfMonth d Employee;

would translate to a sequence of instructions that copies the contents of the 27
cells beginning at address x to the 27 cells beginning at the address y.

An alternative to storing a heterogeneous array in a block of contiguous
memory cells is to store each component in a separate location and then link
them together by means of pointers. More precisely, if the array contains three
components, then we find a place in memory to store three pointers, each of
which points to one of the components (Figure 8.7b). If these pointers are stored
in a block starting at address x, then the first component can be found by follow-
ing the pointer stored at location x, the second component can be found by
following the pointer at location x � 1, and so forth.

This arrangement is especially useful in those cases in which the size of the
array’s components is dynamic. For instance, by using the pointer system the
size of the first component can be increased merely by finding an area in mem-
ory to hold the larger component and then adjusting the appropriate pointer to
point to the new location. But if the array were stored in a contiguous block, the
entire array would have to be altered.

Storing Lists
Let us now consider techniques for storing a list of names in a computer’s main
memory. One strategy is to store the entire list in a single block of memory cells
with consecutive addresses. Assuming that each name is no longer than eight
letters, we can divide the large block of cells into a collection of subblocks, each
containing eight cells. Into each subblock we can store a name by recording its
ASCII code using one cell per letter. If the name alone does not fill all the cells in
the subblock allocated to it, we can merely fill the remaining cells with the ASCII
code for a space. Using this system requires a block of 80 consecutive memory
cells to store a list of 10 names.

The storage system just described is summarized in Figure 8.8. The signifi-
cant point is that the entire list is stored in one large block of memory, with suc-
cessive entries following each other in contiguous memory cells. Such an
organization is referred to as a contiguous list.

A contiguous list is a convenient storage structure for implementing static
lists, but it has disadvantages in the case of dynamic lists where the deletion and

352 Chapter 8 Data Abstractions

Contiguous block of memory cells

First name
stored here

Second name
stored here

Last name
stored here

. . .

Figure 8.8 Names stored in memory as a contiguous list

insertion of names can lead to a time-consuming shuffling of entries. In a worst
case scenario, the addition of entries could create the need to move the entire
list to a new location to obtain an available block of cells large enough for the
expanded list.

These problems can be simplified if we allow the individual entries in a list
to be stored in different areas of memory rather than together in one large, con-
tiguous block. To explain, let us reconsider our example of storing a list of names
(where each name is no more than eight characters long). This time we store
each name in a block of nine contiguous memory cells. The first eight of these
cells are used to hold the name itself, and the last cell is used as a pointer to the
next name in the list. Following this lead, the list can be scattered among several
small nine-cell blocks linked together by pointers. Because of this linkage sys-
tem, such an organization is called a linked list.

To keep track of the beginning of a linked list, we set aside another pointer in
which we save the address of the first entry. Since this pointer points to the
beginning, or head, of the list, it is called the head pointer.

To mark the end of a linked list, we use a NIL pointer (also known as a
NULL pointer), which is merely a special bit pattern placed in the pointer
cell of the last entry to indicate that no further entries are in the list. For
example, if we agree never to store a list entry at address 0, the value zero will
never appear as a legitimate pointer value and can therefore be used as the
NIL pointer.

The final linked list structure is represented by the diagram in Figure 8.9,
in which we depict the scattered blocks of memory used for the list by individ-
ual rectangles. Each rectangle is labeled to indicate its composition. Each
pointer is represented by an arrow that leads from the pointer itself to the
pointer’s addressee. Traversing the list involves following the head pointer to
find the first entry. From there, we follow the pointers stored with the entries
to hop from one entry to the next until the NIL pointer is reached.

To appreciate the advantages of a linked list over a contiguous one, consider
the task of deleting an entry. In a contiguous list this would create a hole, mean-
ing that those entries following the deleted one would have to be moved forward
to keep the list contiguous. However, in the case of a linked list, an entry can be
deleted by changing a single pointer. This is done by changing the pointer that
formerly pointed to the deleted entry so that it points to the entry following the

3538.3 Implementing Data Structures

Head pointer

Name Pointer

Name Pointer

Name Pointer

NIL

Figure 8.9 The structure of a linked list

deleted entry (Figure 8.10). From then on, when the list is traversed, the deleted
entry is passed by because it no longer is part of the chain.

Inserting a new entry in a linked list is only a little more involved. We first find
an unused block of memory cells large enough to hold the new entry and a
pointer. Here we store the new entry and fill in the pointer with the address of the
entry in the list that should follow the new entry. Finally, we change the pointer
associated with the entry that should precede the new entry so that it points to the
new entry (Figure 8.11). After we make this change, the new entry will be found in
the proper place each time the list is traversed.

354 Chapter 8 Data Abstractions

Head pointer

Deleted entry

Name Pointer

Name Pointer

Name Pointer

NIL

Old pointer

New pointer

Figure 8.10 Deleting an entry from a linked list

A Problem with Pointers
Just as the use of flowcharts led to tangled algorithm designs (Chapter 5), and the
haphazard use of goto statements led to poorly designed programs (Chapter 6),
undisciplined use of pointers has been found to produce needlessly complex and
error-prone data structures. To bring order to this chaos, many programming lan-
guages restrict the flexibility of pointers. For example, Java does not allow pointers in
their general form. Instead, it allows only a restricted form of pointers called refer-
ences. One distinction is that a reference cannot be modified by an arithmetic opera-
tion. For example, if a Java programmer wanted to advance the reference Next to the
next entry in a contiguous list, he or she would use a statement equivalent to

redirect Next to the next list entry

whereas a C programmer would use a statement equivalent to

assign Next the value Next � 1

Note that the Java statement better reflects the underlying goal. Moreover, to execute
the Java statement, there must be another list entry, but if Next already pointed to
the last entry in the list, the C statement would result in Next pointing to something
outside the list—a common error for beginning, and even seasoned, C programmers.

Storing Stacks and Queues
For storing stacks and queues, an organization similar to a contiguous list is often
used. In the case of a stack, a block of memory, large enough to accommodate
the stack at its maximum size, is reserved. (Determining the size of this block
can often be a critical design decision. If too little room is reserved, the stack will
ultimately exceed the allotted storage space; however, if too much room is
reserved, memory space will be wasted.) One end of this block is designated as
the stack’s base. It is here that the first entry to be pushed onto the stack is
stored. Then each additional entry is placed next to its predecessor as the stack
grows toward the other end of the reserved block.

Observe that as entries are pushed and popped, the location of the top of the
stack will move back and forth within the reserved block of memory cells. To keep
track of this location, its address is stored in an additional memory cell known as
the stack pointer. That is, the stack pointer is a pointer to the top of the stack.

The complete system, as illustrated in Figure 8.12, works as follows: To push
a new entry on the stack, we first adjust the stack pointer to point to the vacancy

3558.3 Implementing Data Structures

Head pointer

Name Pointer

Name Pointer

New entry

Name Pointer

Name Pointer

NIL

New pointer

Old pointer

New pointer

Figure 8.11 Inserting an entry into a linked list

Stack’s
base

Stack pointer

Reserved block of memory cells

Stack entries

Space for growth

Figure 8.12 A stack in memory

just beyond the top of the stack and then place the new entry at this location. To
pop an entry from the stack, we read the data pointed to by the stack pointer and
then adjust the stack pointer to point to the next entry down on the stack.

The traditional implementation of a queue is similar to that of a stack. Again
we reserve a block of contiguous cells in main memory large enough to hold the
queue at its projected maximum size. However, in the case of a queue we need to
perform operations at both ends of the structure, so we set aside two memory
cells to use as pointers instead of only one as we did for a stack. One of these
pointers, called the head pointer, keeps track of the head of the queue; the
other, called the tail pointer, keeps track of the tail. When the queue is empty,
both of these pointers point to the same location (Figure 8.13). Each time an
entry is inserted into the queue, it is placed in the location pointed to by the tail
pointer, and then the tail pointer is adjusted to point to the next unused location.
In this manner, the tail pointer is always pointing to the first vacancy at the tail
of the queue. Removing an entry from the queue involves extracting the entry
pointed to by the head pointer and then adjusting the head pointer to point to the
next entry in the queue.

356 Chapter 8 Data Abstractions

Figure 8.13 A queue implementation with head and tail pointers. Note how the queue
crawls through memory as entries are inserted and removed.

a. Empty queue

Head
pointer

Tail
pointer

c. After removing A and
 inserting D

B

D

C

A

B

C

Head
pointer

Tail
pointer

b. After inserting entries A, B, and C

C

D

E

Head
pointer

Tail
pointer

d. After removing B and
 inserting E

Head
pointer

Tail
pointer

A problem with the storage system as described thus far is that, as
entries are inserted and removed, the queue crawls through memory like a
glacier (see again Figure 8.13). Thus we need a mechanism for confining the
queue to its reserved block of memory. The solution is simple. We let the
queue migrate through the block. Then, when the tail of the queue reaches
the end of the block, we start inserting additional entries back at the original
end of the block, which by this time is vacant. Likewise, when the last entry
in the block finally becomes the head of the queue and this entry is
removed, the head pointer is adjusted back to the beginning of the block
where other entries are, by this time, waiting. In this manner, the queue
chases itself around within the block as though the ends of the block were
connected to form a loop (Figure 8.14). The result is an implementation
called a circular queue.

Storing Binary Trees
For the purpose of discussing tree storage techniques, we restrict our attention
to binary trees, which we recall are trees in which each node has at most two
children. Such trees normally are stored in memory using a linked structure
similar to that of linked lists. However, rather than each entry consisting of two
components (the data followed by a next-entry pointer), each entry (or node) of
the binary tree contains three components: (1) the data, (2) a pointer to the
node’s first child, and (3) a pointer to the node’s second child. Although there is

3578.3 Implementing Data Structures

Figure 8.14 A circular queue containing the letters P through V

a. Queue as actually stored

T

U

P

Q

R

S

V

Head
pointer

Tail
pointer

Last cell
in block

First cell
in block

b. Conceptual storage with last cell “adjacent” to first cell

S

R

Q
P

V U

T

Last cell
in block

First cell
in block

Head
pointer

Tail
pointer

no left or right inside a machine, it is helpful to refer to the first pointer as the
left child pointer and the other pointer as the right child pointer in refer-
ence to the way we would draw the tree on paper. Thus each node of the tree is
represented by a short, contiguous block of memory cells with the format
shown in Figure 8.15.

Storing the tree in memory involves finding available blocks of memory cells
to hold the nodes and linking these nodes according to the desired tree structure.
Each pointer must be set to point to the left or right child of the pertinent node
or assigned the NIL value if there are no more nodes in that direction of the tree.
(This means that a terminal node is characterized by having both of its pointers
assigned NIL.) Finally, we set aside a special memory location, called a root
pointer, where we store the address of the root node. It is this root pointer that
provides initial access to the tree.

An example of this linked storage system is presented in Figure 8.16, where
a conceptual binary tree structure is exhibited along with a representation of
how that tree might actually appear in a computer’s memory. Note that the
actual arrangement of the nodes within main memory might be quite different
from the conceptual arrangement. However, by following the root pointer, one
can find the root node and then trace any path down the tree by following the
appropriate pointers from node to node.

An alternative to storing a binary tree as a linked structure is to use a single,
contiguous block of memory cells for the entire tree. Using this approach, we
store the tree’s root node in the first cell of the block. (For simplicity, we assume
that each node of the tree requires only one memory cell.) Then we store the left
child of the root in the second cell, store the right child of the root in the third
cell, and in general, continue to store the left and right children of the node
found in cell n in the cells 2n and 2n � 1, respectively. Cells within the block that
represent locations not used by the tree are marked with a unique bit pattern
that indicates the absence of data. Using this technique, the same tree shown in
Figure 8.16 would be stored as shown in Figure 8.17. Note that the system is
essentially that of storing the nodes across successively lower levels of the tree
as segments, one after the other. That is, the first entry in the block is the root
node, followed by the root’s children, followed by the root’s grandchildren, and
so on.

In contrast to the linked structure described earlier, this alternative storage
system provides an efficient method for finding the parent or sibling of any
node. The location of a node’s parent can be found by dividing the node’s posi-
tion in the block by 2 while discarding any remainder (the parent of the node in
position 7 would be the node in position 3). The location of a node’s sibling can
be found by adding 1 to the location of a node in an even-numbered position
or subtracting 1 from the location of a node in an odd-numbered position. For
example, the sibling of the node in position 4 is the node in position 5, while the

358 Chapter 8 Data Abstractions

Cells containing
the data

Left child
pointer

Right child
pointer

Figure 8.15 The structure of a node in a binary tree

3598.3 Implementing Data Structures

Figure 8.16 The conceptual and actual organization of a binary tree using a linked storage system

Root pointer

Actual storage organization

A

B D FNIL NIL NIL NIL

E NIL NIL

C NIL

Conceptual tree

A

B

D E F

C

A

1

B

2

C

3

D

4

E

5 6

F

7

A

B

D E F

C

Actual storage organization

Conceptual tree

Root node
Nodes in 2nd
level of tree

Nodes in 3rd
level of tree

Figure 8.17 A tree stored without pointers

sibling of the node in position 3 is the node in position 2. Moreover, this storage
system makes efficient use of space when the binary tree is approximately bal-
anced (in the sense that both subtrees below the root node have the same depth)
and full (in the sense that it does not have long, thin branches). For trees without

these characteristics, though, the system can become quite inefficient, as shown
in Figure 8.18.

Manipulating Data Structures
We have seen that the way data structures are actually stored in a computer’s
memory is not the same as the conceptual structure envisioned by the user.
A two-dimensional homogeneous array is not actually stored as a two-dimensional
rectangular block, and a list or a tree might actually consist of small pieces scat-
tered over a large area of memory.

Hence, to allow the user to access the structure as an abstract tool, we must
shield the user from the complexities of the actual storage system. This means
that instructions given by the user (and stated in terms of the abstract tool) must
be converted into steps that are appropriate for the actual storage system. In the
case of homogeneous arrays, we have seen how this can be done by using an
address polynomial to convert row and column indices into memory cell
addresses. In particular, we have seen how the statement

Sales[3, 4] d 5;

written by a programmer who is thinking in terms of an abstract homogeneous
array can be converted into steps that perform the correct modifications to main
memory. Likewise, we have seen how statements such as

Employee.Age d 22;

referring to an abstract heterogeneous array can be translated into appropriate
actions depending on how the array is actually stored.

In the case of lists, stacks, queues, and trees, instructions stated in terms
of the abstract structure are usually converted into the appropriate actions by
means of procedures that perform the required task while shielding the user

360 Chapter 8 Data Abstractions

A

B

D

C

Actual storage organization

Conceptual tree

E

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B C D E

root 2nd level 3rd level 4th level

Figure 8.18 A sparse, unbalanced tree shown in its conceptual form and as it would be stored without pointers

3618.3 Implementing Data Structures

from the details of the underlying storage system. For example, if the proce-
dure insert were provided for inserting new entries into a linked list, then
J. W. Brown could be inserted in the list of students enrolled in Physics 208
merely by executing a procedure call such as

insert(“Brown, J.W.”, Physics208)

Note that the procedure call is stated entirely in terms of the abstract structure—
the manner in which the list is actually implemented is hidden.

As a more detailed example, Figure 8.19 presents a procedure named
printList for printing a linked list of names. This procedure assumes that the
first entry of the list is pointed to by a pointer called the head pointer and that
each entry in the list consists of two pieces: a name and a pointer to the next
entry. Once this procedure has been developed, it can be used to print a linked
list as an abstract tool without being concerned for the steps actually required to
print the list. For example, to obtain a printed class list for Economics 301, a user
need only perform the procedure call

printList(Economics301ClassList)

to obtain the desired results. Moreover, if we should later decide to change the
manner in which the list is actually stored, then only the internal actions of the
procedure printList must be changed—the user would continue to request
the printing of the list with the same procedure call as before.

Questions & Exercises

1. Show how the array below would be arranged in main memory when
stored in row major order.

Figure 8.19 A procedure for printing a linked list

procedure PrintList (List)
CurrentPointer head pointer of List.
while (CurrentPointer is not NIL) do
 (Print the name in the entry pointed to by CurrentPointer;
 Observe the value in the pointer cell of the List entry
 pointed to by CurrentPointer, and reassign CurrentPointer
 to be that value.)

5 3 7

4 2 8

1 9 6

2. Give a formula for finding the entry in the ith row and jth column of a
two-dimensional array if it is stored in column major order rather than
row major order.

3. In the C, C��, Java, and C# programming languages, indices of arrays
start at 0 rather than at 1. Thus the entry in the first row, fourth column

of an array named Array is referenced by Array[0][3]. In this case,
what address polynomial is used by the translator to convert references of
the form Array[i][j] into memory addresses?

4. What condition indicates that a linked list is empty?
5. Modify the procedure in Figure 8.19 so that it stops printing once a partic-

ular name has been printed.
6. Based on the technique of this section for implementing a stack in a con-

tiguous block of cells, what condition indicates that the stack is empty?
7. Describe how a stack can be implemented in a high-level language in

terms of a one-dimensional array.
8. When a queue is implemented in a circular fashion as described in this

section, what is the relationship between the head and tail pointers when
the queue is empty? What about when the queue is full? How can one
detect whether a queue is full or empty?

9. Draw a diagram representing how the tree below appears in memory
when stored using the left and right child pointers, as described in this
section. Then, draw another diagram showing how the tree would appear
in contiguous storage using the alternative storage system described in
this section.

362 Chapter 8 Data Abstractions

8.4 A Short Case Study
Let us consider the task of storing a list of names in alphabetical order. We
assume that the operations to be performed on this list are the following:

search for the presence of an entry,
print the list in alphabetical order, and
insert a new entry

Our goal is to develop a storage system along with a collection of procedures to
perform these operations—thus producing a complete abstract tool.

We begin by considering options for storing the list. If the list were stored
according to the linked list model, we would need to search the list in a sequential
fashion, a process that, as we discussed in Chapter 5, could be very inefficient if
the list becomes long. We will therefore seek an implementation that allows us to
use the binary search algorithm (Section 5.5) for our search procedure. To apply
this algorithm, our storage system must allow us to find the middle entry of suc-
cessively smaller portions of the list. Our solution is to store the list as a binary
tree. We make the middle list entry the root node. Then we make the middle of the
remaining first half of the list the root’s left child, and we make the middle of the
remaining second half the root’s right child. The middle entries of each remaining
fourth of the list become the children of the root’s children and so forth. For
example, the tree in Figure 8.20 represents the list of letters A, B, C, D, E, F, G, H,

Y

X Z

W

I, J, K, L, and M. (We consider the larger of the middle two entries as the middle
when the part of the list in question contains an even number of entries.)

To search the list stored in this manner, we compare the target value to the
root node. If the two are equal, our search has succeeded. If they are not equal,
we move to the left or right child of the root, depending on whether the target is
less than or greater than the root, respectively. There we find the middle of the
portion of the list that is necessary to continue the search. This process of
comparing and moving to a child continues until we find the target value (mean-
ing that our search was successful) or we reach a NIL pointer without finding the
target value (meaning that our search was a failure).

Figure 8.21 shows how this search process can be expressed in the case of a
linked tree structure. Note that this procedure is merely a refinement of the pro-
cedure in Figure 5.14, which is our original statement of the binary search. The
distinction is largely cosmetic. Instead of stating the algorithm in terms of

3638.4 A Short Case Study

A

B

D

G

K

F I M

C E H J L

Figure 8.20 The letters A through M arranged in an ordered tree

procedure Search(Tree, TargetValue)

if (root pointer of Tree = NIL)
then

 (declare the search a failure)
 else
 (execute the block of instructions below that is
 associated with the appropriate case)
 case 1: TargetValue = value of root node
 (Report that the search succeeded)
 case 2: TargetValue < value of root node
 (Apply the procedure Search to see if
 TargetValue is in the subtree identified
 by the root’s left child pointer and
 report the result of that search)
 case 3: TargetValue > value of root node
 (Apply the procedure Search to see if
 TargetValue is in the subtree identified
 by the root’s right child pointer and
 report the result of that search)
) end if

Figure 8.21 The binary search as it would appear if the list were implemented as a linked
binary tree

364 Chapter 8 Data Abstractions

searching successively smaller segments of the list, we now state the algorithm
in terms of searching successively smaller subtrees (Figure 8.22).

Having stored our “list” as a binary tree, you might think that the process
of printing the list in alphabetical order would now be difficult. However, to
print the list in alphabetical order, we merely need to print the left subtree in
alphabetical order, print the root node, and then print the right subtree in
alphabetical order (Figure 8.23). After all, the left subtree contains all the

G

D

B E M

K

A C L

I

H J

Figure 8.22 The successively smaller trees considered by the procedure in Figure 8.21
when searching for the letter J

Garbage Collection

As dynamic data structures grow and shrink, storage space is used and released. The
process of reclaiming unused storage space for future use is known as garbage col-
lection. Garbage collection is required in numerous settings. The memory manager
within an operating system must perform garbage collection as it allocates and
retrieves memory space. The file manager performs garbage collection as files are
stored in and deleted from the machine’s mass storage. Moreover, any process run-
ning under the control of the dispatcher might need to perform garbage collection
within its own allotted memory space.

Garbage collection involves some subtle problems. In the case of linked structures,
each time a pointer to a data item is changed, the garbage collector must decide whether
to reclaim the storage space to which the pointer originally pointed. The problem
becomes especially complex in intertwined data structures involving multiple paths of
pointers. Inaccurate garbage collection routines can lead to loss of data or to inefficient
use of storage space. For example, if garbage collection fails to reclaim storage space,
the available space will slowly dwindle away, a phenomenon known as a memory leak.

elements that are less than the root node, while the right subtree contains all
the elements that are greater than the root. A sketch of our logic so far looks
like this:

if (tree not empty)

then (print the left subtree in alphabetical order;

print the root node;

print the right subtree in alphabetical order)

This outline involves the tasks of printing the left subtree and the right sub-
tree in alphabetical order, both of which are essentially smaller versions of our
original task. That is, solving the problem of printing a tree involves the smaller
task of printing subtrees, which suggests a recursive approach to our tree print-
ing problem.

Following this lead, we can expand our initial idea into a complete pseudocode
procedure for printing our tree as shown in Figure 8.24. We have assigned the rou-
tine the name PrintTree and then requested the services of PrintTree for print-
ing the left and right subtrees. Note that the termination condition of the recursive
process (reaching an empty subtree) is guaranteed to be reached, because each

3658.4 A Short Case Study

Figure 8.23 Printing a search tree in alphabetical order

A

B E

D

C

G

I

J

H

F

1. Print the left
 branch in
 alphabetical
 order

3. Print the
 right branch in
 alphabetical order

2. Print
 the root
 node

A, B, C, D, E, F, G, H, I, J

procedure PrintTree (Tree)

if (Tree is not empty)
then (Apply the procedure PrintTree to the tree that

 appears as the left branch in Tree;
 Print the root node of Tree;
 Apply the procedure PrintTree to the tree that
 appears as the right branch in Tree)

Figure 8.24 A procedure for printing the data in a binary tree

366 Chapter 8 Data Abstractions

successive activation of the routine operates on a smaller tree than the one causing
the activation.

The task of inserting a new entry in the tree is also easier than it might
appear at first. Your intuition might lead you to believe that insertions might
require cutting the tree open to allow room for new entries, but actually
the node being added can always be attached as a new leaf, regardless
of the value involved. To find the proper place for a new entry, we move down
the tree along the path that we would follow if we were searching for that
entry. Since the entry is not in the tree, our search will lead to a NIL pointer.
At this point we will have found the proper location for the new node
(Figure 8.25). Indeed, this is the location to which a search for the new entry
would lead.

A procedure expressing this process in the case of a linked tree structure is
shown in Figure 8.26. It searches the tree for the value being inserted (called
NewValue) and then places a new leaf node containing NewValue at the proper
location. Note that if the entry being inserted is actually found in the tree during
the search, no insertion is made.

We conclude that a software package consisting of a linked binary tree
structure together with our procedures for searching, printing, and inserting
provides a complete package that could be used as an abstract tool by our
hypothetical application. Indeed, when properly implemented, this package
could be used without concern for the actual underlying storage structure. By
using the procedures in the package, the user could envision a list of names

H

E

B G P

N

K

J

H

E

B G P

N

K

J M

a. Search for the new entry until its absence is detected

b. This is the position in which the new entry should be attached

?

Figure 8.25 Inserting the entry M into the list B, E, G, H, J, K, N, P stored as a tree

3678.5 Customized Data Types

procedure Insert(Tree, NewValue)

if (root pointer of Tree = NIL)
 (set the root pointer to point to a new leaf

 containing NewValue)
 else (execute the block of instructions below that is
 associated with the appropriate case)
 case 1: NewValue = value of root node
 (Do nothing)
 case 2: NewValue < value of root node
 (if (left child pointer of root node = NIL)

 then (set that pointer to point to a new
 leaf node containing NewValue)

else (apply the procedure Insert to insert
 NewValue into the subtree identified
 by the left child pointer)
 case 3: NewValue > value of root node
 (if (right child pointer of root node = NIL)

then (set that pointer to point to a new
 leaf node containing NewValue)

else (apply the procedure Insert to insert
 NewValue into the subtree identified
 by the right child pointer)
) end if

Figure 8.26 A procedure for inserting a new entry in a list stored as a binary tree

Questions & Exercises

1. Draw a binary tree that you could use to store the list R, S, T, U, V, W, X,
Y, and Z for future searching.

2. Indicate the path traversed by the binary search algorithm in Figure 8.21
when applied to the tree in Figure 8.20 in searching for the entry J. What
about the entry P?

3. Draw a diagram representing the status of activations of the recursive
tree-printing algorithm in Figure 8.24 at the time node K is printed
within the ordered tree in Figure 8.20.

4. Describe how a tree structure in which each node has as many as 26 children
could be used to encode the correct spelling of words in the English language.

stored in alphabetical order, whereas the reality would be that the “list” entries
are actually scattered among blocks of memory cells that are linked as a
binary tree.

8.5 Customized Data Types
In Chapter 6 we introduced the concept of a data type and discussed such ele-
mentary types as integer, real, character, and Boolean. These data types are pro-
vided in most programming languages as primitive data types. In this section we
consider ways in which a programmer can define his or her own data types to fit
more closely the needs of a particular application.

368 Chapter 8 Data Abstractions

User-Defined Data Types
Expressing an algorithm is often easier if data types other than those provided as
primitives in the programming language are available. For this reason, many mod-
ern programming languages allow programmers to define additional data types,
using the primitive types as building blocks. The most elementary examples of
such “home-made” data types are known as user-defined data types, which are
essentially conglomerates of primitive types collected under a single name.

To explain, suppose we wanted to develop a program involving numerous
variables, each with the same heterogeneous array structure consisting of a
name, age, and skill rating. One approach would be to define each variable sepa-
rately as a heterogeneous array (Section 6.2). A better approach, however, would
be to define the heterogeneous structure to be a new (user-defined) data type and
then to use that new type as though it were a primitive.

To implement this idea, we could adopt the pseudocode statement of the form

define type EmployeeType to be
{char Name[25];

int Age;

real SkillRating;

}

to define a new type, called EmployeeType, that consists of the heterogeneous
structure containing components called Name (of type character), Age (of type
integer), and SkillRating (of type real). This new data type could then be used
to declare variables in the same way as a primitive data type. That is, in the same
way that most programming languages allow the variable x to be declared as an
integer using the statement

int x;

the variable Employee1 could be declared to be of the type EmployeeType with
the statement

EmployeeType Employee1;

Then, later in the program, the variable Employee1 would refer to an entire
block of memory cells containing the name, age, and skill rating of an employee.
Individual items within the block could be referenced by expressions such as
Employee1.Name and Employee1.Age. Thus, a statement such as

Employee1.Age d 26;

might be used to assign the value 26 to the Age component within the block
known as Employee1. Moreover, the statement

EmployeeType DistManager, SalesRep1, SalesRep2;

could be used to declare the three variables DistManager, SalesRep1, and
SalesRep2 to be of type EmployeeType just as a statement of the form

real Sleeve, Waist, Neck;

is normally used to declare the variables Sleeve, Waist, and Neck to be of the
primitive type real.

It is important to distinguish between a user-defined data type and an actual
item of that type. The latter is referred to as an instance of the type. A user-defined
data type is essentially a template that is used in constructing instances of the type.
It describes the properties that all instances of that type have but does not itself

3698.5 Customized Data Types

constitute an occurrence of that type (just as a cookie-cutter is a template from
which cookies are made but is not itself a cookie). In the preceding example, the
user-defined data type EmployeeType was used to construct three instances of that
type, known as DistManager, SalesRep1, and SalesRep2.

Abstract Data Types
Although the concept of a user-defined data type is advantageous, it falls short of
allowing the creation of new data types in the full sense. A complete data type
consists of two parts: (1) a predetermined storage system (such as a two’s com-
plement system in the case of the type integer and a floating-point system in the
case of type real) and (2) a collection of predefined operations (such as addition
and subtraction). In particular, the primitive data types in a programming lan-
guage are associated with primitive operations. If a programmer declares a vari-
able to be of a primitive type, the programmer can begin applying primitive
operations to that variable without further definitions.

Traditional user-defined data types, however, merely allow programmers to
define new storage systems. They do not also provide operations to be per-
formed on data with these structures. To clarify, suppose we wanted to create
and use several stacks of integer values within a program. Our approach might
be to implement each stack as a homogeneous array of 20 integer values. The
bottom entry in the stack would be placed (pushed) into the first array position,
and additional stack entries would be placed (pushed) into successively higher
entries in the array (see Question/Exercise 7 in Section 8.3). An additional inte-
ger variable would be used as the stack pointer. It would hold the index of the
array entry into which the next stack entry should be pushed. Thus each stack
would consist of a homogeneous array containing the stack itself and an integer
playing the role of the stack pointer.

To implement this plan, we could first establish a user-defined type called
StackType with a statement of the form

define type StackType to be
{int StackEntries[20];

int StackPointer = 0;

}

(Note that, following the lead of languages such as C, C��, C#, and Java, we are
assuming that the indices for the array StackEntries range from 0 to 19, so we
have initialized StackPointer to the value 0.) Having made this declaration,
we could then declare stacks called StackOne, StackTwo, and StackThree via
the statement

StackType StackOne, StackTwo, StackThree;

At this point, each of the variables StackOne, StackTwo, and StackThree would
reference a unique block of memory cells used to implement an individual stack.

But what if we now want to push the value 25 onto StackOne? We would like to
avoid the details of the array structure underlying the stack’s implementation and
merely use the stack as an abstract tool—perhaps by using a procedure call similar to

push(25, StackOne)

But such a statement would not be available unless we also defined an appropri-
ate procedure named push. Other operations we would like to perform on

370 Chapter 8 Data Abstractions

1. What is the difference between a data type and an instance of that type?
2. What is the difference between a user-defined data type and an abstract

data type?
3. Describe an abstract data type for implementing a list.
4. Describe an abstract data type for implementing checking accounts.

Questions & Exercises

variables of type StackType would include popping entries off the stack, check-
ing to see if the stack is empty, and checking to see if the stack is full—all of
which would require definitions of additional procedures. In short, our definition
of the data type StackType has not included all the properties we would like to
have associated with the type.

We could solve this problem by expanding our define type statement to
include procedures as well as data descriptions. For example, we could write

define type StackType to be
{int StackEntries[20];

int StackPointer = 0;

procedure push(value)

{StackEntries[StackPointer] d value;

StackPointer d StackPointer � 1;

}

procedure pop . . .

}

which is intended to mean that the type StackType is associated with variables
called StackEntries and StackPointer and procedures called push, and pop. (For
the sake of simplicity we have included a very naive version of the procedure
push. In reality the procedure should ensure that the stack is not full before trying
to insert an additional entry.)

With this extended definition of the type StackType, we could declare
StackOne, StackTwo, and StackThree to be stacks with the statement

StackType StackOne, StackTwo, StackThree;

Then we could push entries onto these stacks with statements such as

StackOne.push(25);

which means to execute the push procedure associated with StackOne using the
value 25 as the actual parameter.

User-defined data types that include definitions of operations are called
abstract data types. Thus, as opposed to the more elementary user-defined
data types, abstract data types are complete data types, and their appearance
in such languages as Ada in the 1980s represented a significant step forward in
programming language design. Today, object-oriented languages provide for
extended versions of abstract data types called classes, as we will see in the
next section.

8.6 Classes and Objects
As we learned in Chapter 6, the object-oriented paradigm leads to systems com-
posed of units called objects that interact with each other to accomplish tasks.
Each object is an entity that responds to messages received from other objects.
Objects are described by templates known as classes.

In many respects, these classes are actually descriptions of abstract data
types (whose instances are called objects). In fact, the statements used to define
classes in popular object-oriented programming languages are strikingly similar
to the define type statement introduced in the previous section. For example,
Figure 8.27 shows how a class known as StackOfIntegers can be defined in
the languages Java and C#. (The equivalent class definition in C�� has the
same structure but slightly different syntax.) Note the similarity between this
class and the define type statement used in the previous section to describe the
abstract data type StackType. It describes the class/type as containing an array
of integers called StackEntries, an integer used to identify the top of the stack
within the array called StackPointer, and procedures for manipulating
the stack.

Using this class as a template, an object named StackOne can be created in
a Java or C# program by the statement

StackOfIntegers StackOne = new StackOfIntegers();

or in a C�� program by the statement

StackOfIntegers StackOne();

Later in the programs, the value 106 can be pushed onto StackOne using the
statement

StackOne.push(106);

or the top entry from StackOne can be retrieved and placed in the variable
OldValue using the statement

OldValue = StackOne.pop();

3718.6 Classes and Objects

 class StackOfIntegers
 {private int[] StackEntries = new int[20];
 private int StackPointer = 0;

 public void push(int NewEntry)
 {if (StackPointer < 20)
 StackEntries[StackPointer++] = NewEntry;
 }

 public int pop()
 {if (StackPointer > 0) return StackEntries[--StackPointer];
 else return 0;
 }
 }

Figure 8.27 A stack of integers implemented in Java and C#

These features are essentially the same as those associated with abstract data
types. There are, however, distinctions between classes and abstract data types.
The former is an extension of the latter. For instance, as we learned in Section 6.5,
object-oriented languages allow classes to inherit properties from other classes
and to contain special methods called constructors that customize individual
objects when they are created. Moreover, classes are normally associated with
varying degrees of encapsulation (Section 6.5), allowing the internal properties
of their instances to be protected from misguided shortcuts. And, finally, a class
might be used as a means of grouping related procedures, and therefore
a class might consist only of procedure definitions. In this sense, we could call a
class an abstract type rather than an abstract data type.

We conclude that the concepts of classes and objects represent another step
in the evolution of techniques for representing data abstractions in programs. It
is, in fact, the ability to define and use abstractions in a convenient manner that
has led to the popularity of the object-oriented programming paradigm.

372 Chapter 8 Data Abstractions

The Standard Template Library
The data structures discussed in this chapter have become standard programming
structures—so standard, in fact, that many programming environments treat them
very much like primitives. One example is found in the C++ programming environ-
ment, which is enhanced by the Standard Template Library (STL). The STL contains a
collection of predefined classes that describe popular data structures. Consequently,
by incorporating the STL into a C++ program, the programmer is relieved from the
task of describing these structures in detail. Instead, he or she needs merely to
declare identifiers to be of these types in the same manner that we declared
StackOne to be of type StackOfIntegers in Section 8.6.

Questions & Exercises

1. In what ways are abstract data types and classes similar? In what ways
are they different?

2. What is the difference between a class and an object?
3. Describe a class that would be used as a template for constructing objects

of type queue-of-integers.

8.7 Pointers in Machine Language
In this chapter we have introduced pointers and have shown how they are used
in constructing data structures. In this section we consider how pointers are han-
dled in machine language.

Suppose that we want to write a program in the machine language described
in Appendix C to pop an entry off the stack as described in Figure 8.12
and place that entry in a general-purpose register. In other words, we want to
load a register with the contents of the memory cell that contains the entry on
top of the stack. Our machine language provides two instructions for loading
registers: one with op-code 2, the other with op-code 1. Recall that in the case of
op-code 2, the operand field contains the data to be loaded, and in
the case of op-code 1, the operand field contains the address of the data to
be loaded.

We do not know what the contents will be, so we cannot use op-code 2 to
obtain our goal. Moreover, we cannot use op-code 1, because we do not know
what the address will be. After all, the address of the top of the stack will vary as
the program is executed. However, we do know the address of the stack pointer.
That is, we know the location of the address of the data we want to load. What we
need, then, is a third op-code for loading a register, in which the operand con-
tains the address of a pointer to the data to be loaded.

To accomplish this goal we could extend the language in Appendix C to
include an op-code D. An instruction with this op-code could have the form
DRXY, which would mean to load register R with the contents of the memory
cell whose address is found at address XY (Figure 8.28). Thus if the stack pointer
is in the memory cell at address AA, then the instruction D5AA would cause the
data at the top of the stack to be loaded into register 5.

This instruction, however, does not complete the pop operation. We must
also subtract one from the stack pointer so that it points to the new top of the
stack. This means that, following the load instruction, our machine language
program would have to load the stack pointer into a register, subtract one from it,
and store the result back in memory.

3738.7 Pointers in Machine Language

Instruction in
instruction
register

CPU Main memory

Bus

Data

D5 AA

Data transferred
to register during
execute phase of
machine cycle

Address in
instruction
tells where
pointer is
stored in
memory

Pointer stored
at address AA

AA
Register 5

Pointer indicates
location of Data

Data

Figure 8.28 Our first attempt at expanding the machine language in Appendix C to take
advantage of pointers

By using one of the registers as the stack pointer instead of a memory cell,
we could reduce this movement of the stack pointer back and forth between
registers and memory. But this would mean that we must redesign the load
instruction so that it expects the pointer to be in a register rather than in main
memory. Thus, instead of the earlier approach, we might define an instruction
with op-code D to have the form DR0S, which would mean to load register R
with the contents of the memory cell pointed to by register S (Figure 8.29).
Then, a complete pop operation could be performed by following this instruc-
tion with an instruction (or instructions) to subtract one from the value stored
in register S.

Note that a similar instruction is needed to implement a push operation. We
might therefore extend the language described in Appendix C further by intro-
ducing the op-code E so that an instruction of the form ER0S would mean to store
the contents of register R in the memory cell pointed to by register S. Again, to
complete the push operation, this instruction would be followed by an instruc-
tion (or instructions) to add one to the value in register S.

These new op-codes D and E that we have proposed not only demonstrate
how machine languages are designed to manipulate pointers, they also
demonstrate an addressing technique that was not present in the original
machine language. As presented in Appendix C, the machine language uses
two means of identifying the data involved in an instruction. The first of these
is demonstrated by an instruction whose op-code is 2. Here, the operand field
contains the data involved explicitly. This is called immediate addressing.
The second means of identifying data is demonstrated by instructions with
op-codes 1 and 3. Here the operand fields contain the address of the data
involved. This is called direct addressing. However, our proposed new
op-codes D and E demonstrate yet another form of identifying data. The
operand fields of these instructions contain the address of the address of the
data. This is called indirect addressing. All three are common in today’s
machine languages.

374 Chapter 8 Data Abstractions

Instruction in
instruction
register

CPU Main memory

Bus

Data

D5 04

Data transferred
to register during
execute phase of
machine cycle

Register 5

Register 4

Pointer indicates
location of Data

Data

Instruction
indicates
which
register
contains
pointer

Figure 8.29 Loading a register from a memory cell that is located by means of a pointer
stored in a register

375Chapter Review Problems

Questions & Exercises

1. Suppose the machine language described in Appendix C has been extended
as suggested at the end of this section. Moreover, suppose register 8 contains
the pattern DB, the memory cell at address DB contains the pattern CA, and
the cell at address CA contains the pattern A5. What bit pattern will be in
register 5 immediately after executing each of the following instructions?

a. 25A5
b. 15CA
c. D508

2. Using the extensions described at the end of this section, write a com-
plete machine language routine to perform a pop operation. Assume
that the stack is implemented as shown in Figure 8.12, the stack pointer
is in register F, and the top of the stack is to be popped into register 5.

3. Using the extensions described at the end of this section, write a pro-
gram to copy the contents of five contiguous memory cells starting at
address A0 to the five cells starting at address B0. Assume your program
starts at address 00.

4. In the chapter, we introduced a machine instruction of the form DR0S.
Suppose we extended this form to DRXS, meaning “Load register R with the
data pointed to by the value in register S plus the value X.” Thus the pointer
to the data is obtained by retrieving the value in register S and then incre-
menting that value by X. The value in register S is not altered. (If register F
contained 04, then the instruction DE2F would load register E with the con-
tents of the memory cell at address 06. The value of register F would
remain 04.) What advantages would this instruction have? What about an
instruction of the form DRTS—meaning “Load register R with the data
pointed to by the value in register S incremented by the value in register T”?

1. Draw pictures showing how the array below
appears in a machine’s memory when stored in
row major order and in column major order:

2. Suppose a homogeneous array with six rows
and eight columns is stored in row major

order starting at address 20 (base ten). If each
entry in the array requires only one memory
cell, what is the address of the entry in the
third row and fourth column? What if each
entry requires two memory cells?

3. Rework Problem 2 assuming column major
order rather than row major order.

4. What complications are imposed if one tries to
implement a dynamic list using a traditional
one-dimensional homogeneous array?

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

A B C D

E F G H

I J K L

Address Contents
11 C
12
13 G
14
15 E
16
17 B
18
19 U
20
21 F
22

376 Chapter 8 Data Abstractions

5. Describe a method for storing three-dimen-
sional homogeneous arrays. What address
polynomial would be used to locate the
entry in the ith plane, jth row, and the kth
column?

6. Suppose the list of letters A, B, C, E, F, and G
is stored in a contiguous block of memory
cells. What activities are required to insert the
letter D in the list, assuming that the list’s
alphabetical order is to be maintained?

7. The following table represents the contents of
some cells in a computer’s main memory along
with the address of each cell represented. Note
that some of the cells contain letters of the
alphabet, and each such cell is followed by an
empty cell. Place addresses in these empty
cells so that each cell containing a letter
together with the following cell form an entry
in a linked list in which the letters appear in
alphabetical order. (Use zero for the NIL
pointer.) What address should the head pointer
contain?

8. The following table represents a portion
of a linked list in a computer’s main
memory. Each entry in the list consists of
two cells: The first contains a letter of the
alphabet; the second contains a pointer to
the next list entry. Alter the pointers so that
the letter N is no longer in the list. Then
replace the letter N with the letter G and
alter the pointers so that the new letter
appears in the list in its proper place in
alphabetical order.

9. The table below represents a linked list using
the same format as in the preceding problems.
If the head pointer contains the value 44,
what name is represented by the list? Change
the pointers so that the list contains the
name Jean.

10. Which of the following routines correctly
inserts NewEntry immediately after
the entry called PreviousEntry in a
linked list? What is wrong with the other
routine?

Routine 1:

1. Copy the value in the pointer
field of PreviousEntry into
the pointer field of NewEntry.

2. Change the value in the
pointer field of PreviousEntry
to the address of NewEntry.

Address Contents
30 J
31 38
32 B
33 30
34 X
35 46
36 N
37 40
38 K
39 36
40 P
41 34

Address Contents
40 N
41 46
42 I
43 40
44 J
45 50
46 E
47 00
48 M
49 42
50 A
51 40

Routine 2:

1. Change the value in the
pointer field of PreviousEntry
to the address of NewEntry.

2. Copy the value in the pointer
field of PreviousEntry into
the pointer field of NewEntry.

11. Design a procedure for concatenating two
linked lists (that is, placing one before the
other to form a single list).

12. Design a procedure for combining two sorted
contiguous lists into a single sorted contiguous
list. What if the lists are linked?

13. Design a procedure for reversing the order of
a linked list.

14. a. Design an algorithm for printing a linked
list in reverse order using a stack as an
auxiliary storage structure.

b. Design a recursive procedure to perform
this same task without making explicit use
of a stack. In what form is a stack still
involved in your recursive solution?

15. Sometimes a single linked list is given two
different orders by attaching two pointers to
each entry rather than one. Fill in the table
below so that by following the first pointer
after each letter one finds the name Carol, but
by following the second pointer after each let-
ter one finds the letters in alphabetical order.
What values belong in the head pointer of
each of the two lists represented?

16. The table below represents a stack stored in a
contiguous block of memory cells, as dis-
cussed in the text. If the base of the stack is at
address 10 and the stack pointer contains the
value 12, what value is retrieved by a pop
instruction? What value is in the stack pointer
after the pop operation?

17. Draw a table showing the final contents of the
memory cells if the instruction in Problem 16
had been to push the letter D on the stack
rather than to pop a letter. What would the
value in the stack pointer be after the push
instruction?

18. Design a procedure to remove the bottom entry
from a stack so that the rest of the stack is
retained. You should access the stack using only
push and pop operations. What auxiliary storage
structure should be used to solve this problem?

19. Design a procedure to compare the contents
of two stacks.

20. Suppose you were given two stacks. If you
were only allowed to move entries one at a
time from one stack to another, what
rearrangements of the original data would be
possible? What arrangements would be possi-
ble if you were given three stacks?

21. Suppose you were given three stacks and you
were only allowed to move entries one at a
time from one stack to another. Design an
algorithm for reversing two adjacent entries
on one of the stacks.

22. Suppose we want to create a stack of names
that vary in length. Why is it advantageous to
store the names in separate areas of memory
and then build the stack out of pointers to
these names rather than allowing the stack to
contain the names themselves?

23. Does a queue crawl through memory in the
direction of its head or its tail?

377Chapter Review Problems

Address Contents
60 O
61
62
63 C
64
65
66 A
67
68
69 L
70
71
72 R
73
74

Address Contents
10 F
11 C
12 A
13 B
14 E

Address Contents
40 G
41 0
42 0

378 Chapter 8 Data Abstractions

Head Pointer Tail Pointer

U F K L A

Address Contents
43 X
44 0
45 0
46 J
47 49
48 0
49 M
50 0
51 0
52 F
53 43
54 40
55 W
56 46
57 52

24. Suppose you wanted to implement a “queue”
in which new entries had priorities associated
with them. Thus a new entry should be
placed in front of those entries with lower
priorities. Describe a storage system for imple-
menting such a “queue” and justify your
decisions.

25. Suppose the entries in a queue require one
memory cell each, the head pointer contains the
value 11, and the tail pointer contains the value
17. What are the values of these pointers after
one entry is inserted and two are removed?

26. a. Suppose a queue implemented in a circu-
lar fashion is in the state shown in the
diagram below. Draw a diagram showing
the structure after the letters G and R are
inserted, three letters are removed, and
the letters D and P are inserted.

b. What error occurs in part (a) if the letters
G, R, D, and P are inserted before any let-
ters are removed?

27. Describe how an array could be used to imple-
ment a queue in a program written in a high-
level language.

28. Suppose you were given two queues and you
were only allowed to move one entry at a
time from the head of a queue to the tail of
either. Design an algorithm for reversing two
adjacent entries in one of the queues.

29. The table below represents a tree stored in a
machine’s memory. Each node of the tree
consists of three cells. The first cell contains
the data (a letter), the second contains a
pointer to the node’s left child, and the third
contains a pointer to the node’s right child. A
value of 0 represents a NIL pointer. If the
value of the root pointer is 55, draw a picture
of the tree.

30. The table below represents the contents of a
block of cells in a computer’s main memory.
Note that some of the cells contain letters of the
alphabet, and each of those cells is followed by
two blank cells. Fill in the blank cells so that the
memory block represents the tree that follows.
Use the first cell following a letter as the pointer
to that node’s left child and the next cell as the
pointer to the right child. Use 0 for NIL point-
ers. What value should be in the root pointer?

G

C K

E H P

Address Contents
30 C
31
32
33 H
34
35
36 K
37
38
39 E
40
41
42 G
43
44
45 P
46
47

379Chapter Review Problems

31. Design a nonrecursive algorithm to
replace the recursive one represented in
Figure 8.21.

32. Design a nonrecursive algorithm to replace
the recursive one represented in Figure 8.24.
Use a stack to control any backtracking that
might be necessary.

33. Apply the recursive tree-printing algorithm of
Figure 8.24. Draw a diagram representing the
nested activations of the algorithm (and the
current position in each) at the time node X is
printed.

34. While keeping the root node the same and
without changing the physical location of
the data elements, change the pointers in
the tree of Problem 29 so the tree-printing
algorithm of Figure 8.24 prints the nodes
alphabetically.

35. Draw a diagram showing how the binary tree
below appears in memory when stored with-
out pointers using a block of contiguous mem-
ory cells as described in Section 8.3.

36. Suppose the contiguous cells representing a
binary tree as described in Section 8.3 con-
tained the values A, B, C, D, E, F, and F,
respectively. Draw a picture of the tree.

37. Give an example in which you might want
to implement a list (the conceptual struc-
ture) as a tree (the actual underlying struc-
ture). Give an example in which you might
want to implement a tree (the conceptual
structure) as a list (the actual underlying
structure).

38. The linked tree structures discussed in the
text contained pointers that allowed one to
move down the tree from parents to chil-
dren. Describe a pointer system that would
allow movement up the tree from children
to parents. What about movement among
siblings?

39. Describe a data structure suitable for repre-
senting a board configuration during a chess
game.

40. Identify the trees below whose nodes would
be printed in alphabetical order by the algo-
rithm in Figure 8.24.

41. Modify the procedure in Figure 8.24 to print
the “list” in reverse order.

42. Describe a tree structure that can be used to
store the genealogical history of a family.
What operations are performed on the tree? If
the tree is implemented as a linked structure,
what pointers should be associated with each
node? Design procedures to perform the oper-
ations you identified above, assuming that the
tree is implemented as a linked structure with
the pointers you just described. Using your
storage system, explain how one could find all
the siblings of a person.

43. Design a procedure for finding and deleting a
given value from a tree stored in the fashion
of Figure 8.20.

44. In the traditional implementation of a tree,
each node is constructed with a separate
pointer for each possible child. The number
of such pointers is a design decision and
represents the maximum number of children
any node can have. If a node has fewer children
than pointers, some of its pointers are simply
set to NIL. But such a node can never have
more children than pointers. Describe how a
tree could be implemented without limiting the
number of children a node could have.

45. Using the define type pseudocode state-
ment introduced in Section 8.5, define a user-
defined data type representing data regarding
an employee of a company (such as name,
address, job assignment, pay scale, and so on).

46. Using the define type pseudocode state-
ment introduced in Section 8.5, sketch a defini-
tion of an abstract data type representing a list
of names. In particular, what structure would
contain the list and what procedures would be
provided to manipulate the list? (You do not

P R

T W

Z

H J

Y

X Z

W

Y

X Z

WY

W Z

X

380 Chapter 8 Data Abstractions

The following questions are intended as a guide to the ethical/social/legal
issues associated with the field of computing. The goal is not merely to answer
these questions. You should also consider why you answered as you did and
whether your justifications are consistent from one question to the next.

1. Suppose a software analyst designs a data organization that allows for efficient
manipulation of data in a particular application. How can the rights to that
data structure be protected? Is a data structure the expression of an idea (like a
poem) and therefore protected by copyright or do data structures fall through
the same legal loopholes as algorithms? What about patent law?

2. To what extent is incorrect data worse than no data?
3. In many application programs, the size to which a stack can grow is determined

by the amount of memory available. If the available space is consumed, then
the software is designed to produce a message such as “stack overflow” and ter-
minate. In most cases this error never occurs, and the user is never aware of it.
Who is liable if such an error occurs and sensitive information is lost? How
could the software developer minimize his or her liability?

4. In a data structure based on a pointer system, the deletion of an item usually
consists of changing a pointer rather than erasing memory cells. Thus when
an entry in a linked list is deleted, the deleted entry actually remains in
memory until its memory space is required by other data. What ethical and
security issues result from this persistence of deleted data?

Social Issues

need to include detailed descriptions of the
procedures.)

47. Using the define type pseudocode state-
ment introduced in Section 8.5, sketch a defi-
nition of an abstract data type representing a
queue. Then give pseudocode statements
showing how instances of that type could be
created and how entries could be inserted in
and deleted from those instances.

48. a. What is the difference between a user-
defined data type and a primitive data type?

b. What is the difference between an abstract
data type and a user-defined data type?

*49. Identify the data structures and procedures
that might appear in an abstract data type
representing an address book.

*50. Identify the data structures and procedures
that might appear in an abstract data type rep-
resenting a simple spacecraft in a video game.

*51. Modify Figure 8.27 so that the class defines a
queue rather than a stack.

*52. In what way is a class more general than a
traditional abstract data type?

*53. Using instructions of the form DR0S and
ER0S as described at the end of Section 8.7,
write a complete machine language routine
to push an entry onto a stack implemented
as shown in Figure 8.12. Assume that the
stack pointer is in register F and that the
entry to be pushed is in register 5.

*54. Suppose each entry in a linked list consists of
one memory cell of data followed by a
pointer to the next list entry. Moreover,
suppose that a new entry located at
memory address A0 is to be inserted
between the entries at locations B5 and C4.
Using the language described in Appendix C
and the additional op-codes D and E as
described at the end of Section 8.7, write a
machine-language routine to perform the
insertion.

*55. What advantages does an instruction of the
form DR0S as described in Section 8.7 have
over an instruction of the form DRXY? What
advantage does the form DRXS as described
in Question/Exercise 4 of Section 8.7 have
over the form DR0S?

381Additional Reading

5. It is easy to transfer data and programs from one computer to another. Thus it
is easy to transfer the knowledge held by one machine to many machines. In
contrast, it sometimes takes a long time for a human to transfer knowledge to
another human. For example, it takes time for a human to teach another
human a new language. What implications could this contrast in knowledge
transfer rate have if the capabilities of machines begin to challenge the capa-
bilities of humans?

6. The use of pointers allows related data to be linked in a computer’s memory
in a manner reminiscent of the way many believe information is associated
in the human mind. How are such links in a computer’s memory similar to
links in a brain? How are they different? Is it ethical to attempt to build com-
puters that more closely mimic the human mind?

7. Has the popularization of computer technology produced new ethical issues
or simply provided a new context in which previous ethical theories are
applicable?

8. Suppose the author of an introductory computer science textbook wants to
include program examples to demonstrate concepts in the text. However, to
obtain clarity many of the examples must be simplified versions of what
would actually be used in professional quality software. The author knows
that the examples could be used by unsuspecting readers and ultimately
could find their way into significant software applications in which more
robust techniques would be more appropriate. Should the author use the
simplified examples, insist that all examples be robust even if doing so
decreases their demonstrative value, or refuse to use such examples unless
clarity and robustness can both be obtained?

Carrano, F. M. Data Abstraction and Problem Solving with C��: Walls and Mirrors,
5th ed. Boston, MA: Addison-Wesley, 2007.

Carrano, F. M. and J. Prichard. Data Abstraction and Problem Solving with Java:
Walls and Mirrors, 2nd ed. Boston, MA: Addison-Wesley, 2006.

Gray, S. Data Structures in Java: From Abstract Data Types to the Java Collections
Framework. Boston, MA: Addison-Wesley, 2007.

Main, M. Data Structures and Other Objects Using Java, 3rd ed. Boston, MA: Addison-
Wesley, 2006.

Main, M. and W. Savitch. Data Structures and Other Objects Using C��, 4th ed.
Boston, MA: Addison-Wesley, 2010.

Shaffer, C. A. Practical Introduction to Data Structures and Algorithm Analysis, 2nd
ed. Upper Saddle River, NJ: Prentice Hall, 2001.

Weiss, M. A. Data Structures and Problem Solving Using Java, 3rd ed. Boston, MA:
Addison-Wesley, 2006.

Weiss, M. A. Data Structures and Algorithm Analysis in C��, 3rd ed. Boston, MA:
Addison-Wesley, 2007.

Weiss, M. A. Data Structures and Algorithm Analysis in Java, 2nd ed. Boston, MA:
Addison-Wesley, 2007.

Additional Reading

This page intentionally left blank

Database Systems

A database is a system that converts a large collection of data into

an abstract tool, allowing users to search for and extract pertinent

items of information in a manner that is convenient to the user.

In this chapter we explore this subject as well as take side excur-

sions into the related fields of data mining, which seeks tech-

niques for uncovering hidden patterns in large data collections,

and traditional file structures, which provide many of the tools

underlying today’s database and data mining systems.

C H A P T E R

9

9.1 Database
Fundamentals
The Significance of Database

Systems
The Role of Schemas
Database Management Systems
Database Models

9.2 The Relational Model
Issues of Relational Design
Relational Operations
SQL

*9.3 Object-Oriented
Databases

*9.4 Maintaining Database
Integrity
The Commit/Rollback Protocol
Locking

*9.5 Traditional File
Structures
Sequential Files

Indexed Files
Hash Files

9.6 Data Mining

9.7 Social Impact
of Database Technology

*Asterisks indicate suggestions for
optional sections.

Today’s technology is capable of storing extremely large amounts of data, but such
data collections are useless unless we are able to extract those particular items of
information that are pertinent to the task at hand. In this chapter we will study data-
base systems and learn how these systems apply abstraction to convert large data
conglomerates into useful information sources. As a related topic, we will investi-
gate the rapidly expanding field of data mining, whose goal is to develop techniques
for identifying and exploring patterns within data collections. We will also examine
the principles of traditional file structures, which provide the underpinnings for
today’s database and data mining systems.

9.1 Database Fundamentals
The term database refers to a collection of data that is multidimensional in the
sense that internal links between its entries make the information accessible
from a variety of perspectives. This is in contrast to a traditional file system
(Section 9.5), sometimes called a flat file, which is a one-dimensional storage
system, meaning that it presents its information from a single point of view.
Whereas a flat file containing information about composers and their composi-
tions might provide a list of compositions arranged by composer, a database
might present all the works by a single composer, all the composers who wrote a
particular type of music, and perhaps the composers who wrote variations of
another composer’s work.

The Significance of Database Systems
Historically, as computing machinery found broader uses in information man-
agement, each application tended to be implemented as a separate system with
its own collection of data. Payroll was processed using the payroll file, the per-
sonnel department maintained its own employee records, and inventory was
managed via an inventory file. This meant that much of the information
required by an organization was duplicated throughout the company, while
many different but related items were stored in separate systems. In this setting,
database systems emerged as a means of integrating the information stored and
maintained by a particular organization (Figure 9.1). With such a system, the
same sales data could be used to produce restocking orders, create reports on
market trends, direct advertisements and product announcements to customers
who are most likely to respond favorably to such information, and generate
bonus checks for members of the sales force.

Such integrated pools of information provided a valuable resource with
which management decisions could be made, assuming the information could be
accessed in a meaningful way. In turn, database research focused on developing
techniques by which the information in a database could be brought to the
decision-making process. Much progress has been made in this regard. Today,
database technology, combined with data mining techniques, is an important
management tool, allowing the management of an organization to extract perti-
nent information from enormous amounts of data covering all aspects of the
organization and its environment.

Moreover, database systems have become the underlying technology that
supports many of the more popular sites on the World Wide Web. The underlying
theme of sites such as Google, eBay, and Amazon is to provide an interface

384 Chapter 9 Database Systems

between clients and databases. To respond to a client’s request, the server
interrogates a database, organizes the results in the form of a Web page, and
sends that page to the client. Such Web interfaces have popularized a new role
for database technology in which a database is no longer a means of storing a
company’s records but, instead, is the company’s product. Indeed, by combining
database technology with Web interfaces, the Internet has become a major
worldwide information source.

The Role of Schemas
Among the disadvantages of the proliferation of database technology is the
potential of sensitive data being accessed by unauthorized personnel. Someone
placing an order at a company’s website should not have access to the company’s

3859.1 Database Fundamentals

Customer
records

Customer
service
department

Payroll
records

Payroll
department

Employee
records

Personnel
department

Inventory
records

Purchasing
department

Sales
records

Marketing
department

Customer
service
department

Payroll
department

Personnel
department

Management

Purchasing
department

Marketing
department

Integrated
database

a. File-oriented information system

b. Database-oriented information system

Figure 9.1 A file versus a database organization

financial data; similarly, an employee in a company’s benefits department may
need access to the company’s employee records but should not have access to
the corporation’s inventory or sales records. Thus the ability to control access to
the information in the database is as important as the ability to share it.

To provide different users access to different information within a database,
database systems often rely on schemas and subschemas. A schema is a descrip-
tion of the entire database structure that is used by the database software to
maintain the database. A subschema is a description of only that portion of the
database pertinent to a particular user’s needs. For example, a schema for a uni-
versity database would indicate that each student record contains such items as
the current address and phone number of that student in addition to the stu-
dent’s academic record. Moreover, it would indicate that each student record is
linked to the record of the student’s faculty adviser. In turn, the record for
each faculty member would contain the person’s address, employment history,
and so on. Based on this schema, a linkage system would be maintained that
ultimately connected the information about a student to the employment history
of a faculty member.

To keep the university’s registrar from using this linkage to obtain privi-
leged information about the faculty, the registrar’s access to the database must
be restricted to a subschema whose description of the faculty records does not
include employment history. Under this subschema, the registrar could find
out which faculty member is a particular student’s adviser but could not
obtain access to additional information about that faculty member. In con-
trast, the subschema for the payroll department would provide the employ-
ment history of each faculty member but would not include the linkage
between students and advisers. Thus the payroll department could modify a
faculty member’s salary but could not obtain the names of the students
advised by that person.

Database Management Systems
A typical database application involves multiple software layers, which we will
group into two major layers—an application layer and a database management
layer (Figure 9.2). The application software handles the communication with the
user of the database and may be quite complex, as exemplified by applications in

386 Chapter 9 Database Systems

Database seen in
terms of the
application

Database seen in
terms of a
database model

Database seen in
its actual
organization

User Application
software

Database
management
system

Actual
database

Figure 9.2 The conceptual layers of a database implementation

which users access a database by means of a website. In that case the entire
application layer consists of clients throughout the Internet and a server that
uses the database to fill the requests from the clients.

Note that the application software does not directly manipulate the database.
The actual manipulation of the database is accomplished by the database
management system (DBMS). Once the application software has determined
what action the user is requesting, it uses the DBMS as an abstract tool to obtain
the results. If the request is to add or delete data, it is the DBMS that actually
alters the database. If the request is to retrieve information, it is the DBMS that
performs the required searches.

This dichotomy between the application software and the DBMS has sev-
eral benefits. One is that it allows for the construction and use of abstract
tools, which we have repeatedly found to be a major simplifying concept in
software design. If the details of how the database is actually stored are iso-
lated within the DBMS, the design of the application software can be greatly
simplified. For instance, with a well-designed DBMS, the application software
does not have to be concerned with whether the database is stored on a
single machine or scattered among many machines within a network as a
distributed database. Instead, the DBMS would deal with these issues, allow-
ing the application software to access the database without concern for where
the data is actually stored.

A second advantage of separating the application software from the DBMS is
that such an organization provides a means for controlling access to the data-
base. By dictating that the DBMS performs all access to the database, the DBMS
can enforce the restrictions imposed by the various subschemas. In particular,
the DBMS can use the entire database schema for its internal needs but can
require that the application software employed by each user remain within the
bounds described by that user’s subschema.

3879.1 Database Fundamentals

With the advancement of networking capabilities, database systems have grown to
encompass databases, known as distributed databases, that consist of data residing
on different machines. For instance, an international corporation might store and
maintain local employee records at local sites yet link those records via a network to
create a single distributed database.

A distributed database might contain fragmented and/or replicated data. The first
case is exemplified by the previous employee-records example in which different frag-
ments of the database are stored in different locations. In the second case, duplicates
of the same database component are stored at different locations. Such replication
might occur as a means of reducing information retrieval time. Both cases pose prob-
lems not present in more traditional centralized databases—how to disguise the dis-
tributed nature of the database so that it functions as a coherent system or how to
ensure that replicated portions of a database remain duplicates of each other as
updates occur. In turn, the study of distributed databases is a current area of research.

Distributed Databases

Still another reason for separating the user interface and actual data manip-
ulation into two different software layers is to achieve data independence—the
ability to change the organization of the database itself without changing the
application software. For example, the personnel department might need to add
an additional field to each employee’s record to indicate whether the correspon-
ding employee chose to participate in the company’s new health insurance pro-
gram. If the application software dealt directly with the database, such a change
in the data’s format could require modifications to all application programs deal-
ing with the database. As a result, the change instigated by the personnel depart-
ment might cause changes to the payroll program as well as to the program for
printing mailing labels for the company’s newsletter.

The separation between application software and a DBMS removes the need
for such reprogramming. To implement a change in the database required by a
single user, one needs to change only the overall schema and the subschemas of
those users involved in the change. The subschemas of all the other users
remain the same, so their application software, which is based on the unaltered
subschemas, does not need to be modified.

Database Models
We have repeatedly seen how abstraction can be used to hide internal complexi-
ties. Database management systems provide yet another example. They hide the
complexities of a database’s internal structure, allowing the user of the database
to imagine that the information stored in the database is arranged in a more use-
ful format. In particular, a DBMS contains routines that translate commands
stated in terms of a conceptual view of the database into the actions required by
the actual data storage system. This conceptual view of the database is called a
database model.

In the following sections we will consider both the relational database model
and the object-oriented database model. In the case of the relational database
model, the conceptual view of the database is that of a collection of tables con-
sisting of rows and columns. For example, information about a company’s
employees might be viewed as a table containing a row for each employee and
columns labeled name, address, employee identification number, and so on. In
turn, the DBMS would contain routines that would allow the application software
to select certain entries from a particular row of the table or perhaps to report
the range of values found in the salary column—even though the information is
not actually stored in rows and columns.

These routines form the abstract tools used by the application software to
access the database. More precisely, application software is often written in one
of the general-purpose programming languages, such as those discussed in
Chapter 6. These languages provide the basic ingredients for algorithmic expres-
sions but lack instructions for manipulating a database. However, a program
written in one of these languages can use the routines provided by the DBMS as
prewritten subroutines—in effect extending the capabilities of the language in a
manner that supports the conceptual image of the database model.

The search for better database models is an ongoing process. The goal is to
find models that allow complex data systems to be conceptualized easily, lead to
concise ways of expressing requests for information, and produce efficient data-
base management systems.

388 Chapter 9 Database Systems

3899.2 The Relational Model

1. Identify two departments in a manufacturing plant that would have
different uses for the same or similar inventory information. Then,
describe how the subschema for the two departments might differ.

2. What is the purpose of a database model?
3. Summarize the roles of the application software and a DBMS.

Questions & Exercises

9.2 The Relational Model
In this section we look more closely at the relational database model. It portrays
data as being stored in rectangular tables, called relations, which are similar to
the format in which information is displayed by spreadsheet programs. For
example, the relational model allows information regarding the employees of a
firm to be represented by a relation such as that shown in Figure 9.3.

A row in a relation is called a tuple (some say “TOO-pul,” others say “TU-pul”).
In the relation of Figure 9.3, tuples consist of the information about a particular
employee. Columns in a relation are referred to as attributes because each entry
in a column describes some characteristic, or attribute, of the entity represented
by the corresponding tuple.

Issues of Relational Design
A pivotal step in designing a relational database is to design the relations making
up the database. Although this might appear to be a simple task, many subtleties
are waiting to trap the unwary designer.

Suppose that in addition to the information contained in the relation of
Figure 9.3, we want to include information about the jobs held by the employ-
ees. We might want to include a job history associated with each employee that
consists of such attributes as job title (secretary, office manager, floor supervi-
sor), a job identification code (unique to each job), the skill code associated with
each job, the department in which the job exists, and the period during which
the employee held the job in terms of a starting date and termination date. (We
use an asterisk as the termination date if the job represents the employee’s
current position.)

Figure 9.3 A relation containing employee information

Empl ld Name Address SSN

25X15
34Y70
23Y34

111223333
999009999
111005555

Joe E. Baker
Cheryl H. Clark
G. Jerry Smith

33 Nowhere St.
563 Downtown Ave.

1555 Circle Dr.
•
•
•

•
•
•

•
•
•

•
•
•

One approach to this problem is to extend the relation in Figure 9.3 to include
these attributes as additional columns in the table, as shown in Figure 9.4.
However, close examination of the result reveals several problems. One is a lack
of efficiency due to redundancy. The relation no longer contains one tuple for
each employee but rather one tuple for each assignment of an employee to a job.
If an employee has advanced in the company through a sequence of several jobs,
several tuples in the new relation must contain the same information about the
employee (name, address, identification number, and Social Security number).
For example, the personal information about Baker and Smith is repeated because
they have held more than one job. Moreover, when a particular position has been
held by numerous employees, the department associated with that job along with
the appropriate skill code must be repeated in each tuple representing an assign-
ment of the job. For example, the description of the floor manager job is dupli-
cated because more than one employee has held this position.

Another, perhaps more serious, problem with our extended relation surfaces
when we consider deleting information from the database. Suppose for example
that Joe E. Baker is the only employee to hold the job identified as D7. If he were
to leave the company and be deleted from the database represented in Figure 9.4,
we would lose the information about job D7. After all, the only tuple containing
the fact that job D7 requires a skill level of K2 is the tuple relating to Joe Baker.

You might argue that the ability to erase only a portion of a tuple could solve
the problem, but this would in turn introduce other complications. For instance,
should the information relating to job F5 also be retained in a partial tuple, or
does this information reside elsewhere in the relation? Moreover, the temptation
to use partial tuples is a strong indication that the design of the database can be
improved.

The cause of all these problems is that we have combined more than one
concept in a single relation. As proposed, the extended relation in Figure 9.4 con-
tains information dealing directly with employees (name, identification number,
address, Social Security number), information about the jobs available in the
company (job identification, job title, department, skill code), and information

390 Chapter 9 Database Systems

Figure 9.4 A relation containing redundancy

Empl ld Name Address SSN Job ld Job Title Skill Code Dept Start Date Term Date

F5 Floor
manager

FM3 Sales 9-1-2009 9-30-2010

D7 Dept.
head

K2 Sales 10-1-2010 *

34Y70 Cheryl H.
Clark

563 Downtown
Ave.

999009999 F5 Floor
manager

FM3 Sales 10-1-2009 *

S25X Secretary T5 Personnel 3-1-1999 4-30-2010

25X15 Joe E.
Baker

33 Nowhere
St.

111223333

25X15 Joe E.
Baker

33 Nowhere
St.

111223333

23Y34 G. Jerry
Smith

1555 Circle
Dr.

111005555

23Y34 G. Jerry
Smith

1555 Circle
Dr.

111005555 S26Z Secretary T6 Accounting 5-1-2010 *

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

regarding the relationship between employees and jobs (start date, termination
date). On the basis of this observation, we can solve our problems by redesigning
the system using three relations—one for each of the preceding categories. We
can keep the original relation in Figure 9.3 (which we now call the EMPLOYEE
relation) and insert the additional information in the form of the two new rela-
tions called JOB and ASSIGNMENT, which produces the database in Figure 9.5.

3919.2 The Relational Model

Personal computers are used in a variety of applications, ranging from elementary to
sophisticated. In elementary “database” applications, such as storing Christmas card
lists or maintaining bowling league records, spreadsheet systems are often used in
lieu of database software since the application calls for little more than the ability to
store, print, and sort data. There are, however, true database systems available for the
PC market, one of which is Microsoft’s Access. This is a complete relational database
system as described in Section 9.2, as well as chart- and report-generation software.
Access provides an excellent example of how the principles presented in this text form
the backbone of popular products on the market today.

Database Systems for PCs

Figure 9.5 An employee database consisting of three relations

Empl ld Name Address SSN

•
•
•

•
•
•

•
•
•

•
•
•

EMPLOYEE relation

25X15
34Y70
23Y34

Joe E. Baker
Cheryl H. Clark
G. Jerry Smith

33 Nowhere St.
563 Downtown Ave.

1555 Circle Dr.

111223333
999009999
111005555

JOB relation

•
•
•

•
•
•

•
•
•

•
•
•

S25X
S26Z

F5

Secretary
Secretary

Floor manager

T5
T6

FM3

Personnel
Accounting

Sales

Job ld Job Title Skill Code Dept

ASSIGNMENT relation

•
•
•

•
•
•

•
•
•

•
•
•

23Y34
34Y70
23Y34

S25X
F5

S26Z

3-1-1999
10-1-2009
5-1-2010

4-30-2010
*
*

Empl ld Job ld Start Date Term Date

A database consisting of these three relations contains the pertinent infor-
mation about employees in the EMPLOYEE relation, about available jobs in the
JOB relation, and about job history in the ASSIGNMENT relation. Additional infor-
mation is implicitly available by combining the information from different rela-
tions. For instance, if we know an employee’s identification number, we can find
the departments in which that employee has worked by first finding all the jobs
that employee has held using the ASSIGNMENT relation and then finding the
departments associated with those jobs by means of the JOB relation (Figure
9.6). Through processes such as these, any information that could be obtained
from the single large relation can be obtained from the three smaller relations
without the problems previously cited.

Unfortunately, dividing information into various relations is not always as
trouble-free as in the preceding example. For instance, compare the original
relation in Figure 9.7, with attributes EmplId, JobTitle, and Dept, to the pro-
posed decomposition into two relations. At first glance, the two-relation system
might appear to contain the same information as the single-relation system, but,
in fact, it does not. Consider for example the problem of finding the department
in which a given employee works. This is easily done in the single-relation sys-
tem by interrogating the tuple containing the employee identification number
of the target employee and extracting the corresponding department. However,

392 Chapter 9 Database Systems

Empl ld Name Address SSN

•
•
•

•
•
•

•
•
•

•
•
•

EMPLOYEE relation

25X15
34Y70
23Y34

Joe E. Baker
Cheryl H. Clark
G. Jerry Smith

33 Nowhere St.
563 Downtown Ave.

1555 Circle Dr.

111223333
999009999
111005555

JOB relation

•
•
•

•
•
•

•
•
•

•
•
•

S25X
S26Z

F5

Secretary
Secretary

Floor manager

T5
T6

FM3

Personnel
Accounting

Sales

Job ld Job Title Skill Code Dept

ASSIGNMENT relation

•
•
•

•
•
•

•
•
•

•
•
•

23Y34
34Y70
23Y34

S25X
F5

S26Z

3-1-1999
10-1-2009
5-1-2010

4-30-2010
*
*

Empl ld Job ld Start Date Term Date

The jobs held
by employee
23Y34

are contained
in the personnel
and accounting
departments.

Figure 9.6 Finding the departments in which employee 23Y34 has worked

in the two-relation system, the desired information is not necessarily available.
We can find the job title of the target employee and a department having such a
job but this does not necessarily mean that the target employee works in that
particular department, because several departments might have jobs with the
same title.

We see, then, that sometimes dividing a relation into smaller relations causes
the loss of information, and sometimes it does not. (The latter is called a lossless
decomposition—or sometimes a nonloss decomposition.) Such relational
characteristics are important design considerations. The goal is to identify the
relational characteristics that can lead to problems in database design and find
ways to reorganize those relations to remove these problematic characteristics.

Relational Operations
Now that you have a basic understanding of how data can be organized in terms
of the relational model, it is time to see how information can be extracted from a
database consisting of relations. We begin with a look at some operations that we
might want to perform on relations.

At times we need to select certain tuples from a relation. To retrieve the
information about an employee, we must select the tuple with the appropriate
identification attribute value from the EMPLOYEE relation, or to obtain a list of
the job titles in a certain department, we must select the tuples from the JOB
relation having that department as their department attribute. The result of such
a process is another relation consisting of the tuples selected from the parent
relation. The outcome of selecting information about a particular employee
results in a relation containing only one tuple from the EMPLOYEE relation. The
outcome of selecting the tuples associated with a certain department results in a
relation that probably contains several tuples from the JOB relation.

In short, one operation we might want to perform on a relation is to select
tuples possessing certain characteristics and to place these selected tuples in a
new relation. To express this operation, we adopt the syntax

NEW d SELECT from EMPLOYEE where EmplId = “34Y70”

3939.2 The Relational Model

Figure 9.7 A relation and a proposed decomposition

Empl ld Job Title Dept

Empl ld Job Title Job Title Dept

Original relation
containing employees,
jobs, and departments.

Proposed
decomposition

The semantics of this statement is to create a new relation called NEW containing
those tuples (there should be only one in this case) from the relation EMPLOYEE
whose EmplId attribute equals 34Y70 (Figure 9.8).

In contrast to the SELECT operation, which extracts rows from a relation, the
PROJECT operation extracts columns. Suppose, for example, that in searching
for the job titles in a certain department, we had already SELECTed the tuples
from the JOB relation that pertained to the target department and placed these
tuples in a new relation called NEW1. The list we are seeking is the JobTitle
column within this new relation. The PROJECT operation allows us to extract
this column (or columns if required) and place the result in a new relation. We
express such an operation as

NEW2 d PROJECT JobTitle from NEW1

The result is the creation of another new relation (called NEW2) that contains the
single column of values from the JobTitle column of relation NEW1.

As another example of the PROJECT operation, the statement

MAIL d PROJECT Name, Address from EMPLOYEE

can be used to obtain a listing of the names and addresses of all employees. This
list is in the newly created (two-column) relation called MAIL (Figure 9.9).

Another operation used in conjunction with relational databases is the
JOIN operation. It is used to combine different relations into one relation.
The JOIN of two relations produces a new relation whose attributes consist
of the attributes from the original relations (Figure 9.10). The names of these
attributes are the same as those in the original relations except that each
is prefixed by the relation of its origin. (If relation A containing attributes V
and W is JOINed with relation B containing attributes X, Y, and Z, then the
result has five attributes named A.V, A.W, B.X, B.Y, and B.Z.) This
naming convention ensures that the attributes in the new relation have

394 Chapter 9 Database Systems

Figure 9.8 The SELECT operation

Empl ld Name Address SSN

•
•
•

•
•
•

•
•
•

•
•
•

EMPLOYEE relation

NEW relation

Empl ld Name Address SSN

25X15
34Y70
23Y34

Joe E. Baker
Cheryl H. Clark
G. Jerry Smith

33 Nowhere St.
563 Downtown Ave.

1555 Circle Dr.

111223333
999009999
111005555

34Y70 Cheryl H. Clark 563 Downtown Ave. 999009999

NEW SELECT from EMPLOYEE where Emplld = “34Y70”

unique names, even though the original relations might have attribute names
in common.

The tuples (rows) of the new relation are produced by concatenating tuples
from the two original relations (see again Figure 9.10). Which tuples are actually

3959.2 The Relational Model

Empl ld SSN

•
•
•

•
•
•

•
•
•

•
•
•

EMPLOYEE relation

MAIL relation

MAIL PROJECT Name, Address from EMPLOYEE

Name Address

Name Address

25X15
24Y70
23Y34

Joe E. Baker
Cheryl H. Clark
G. Jerry Smith

33 Nowhere St.
563 Downtown Ave.

1555 Circle Dr.

•
•
•

•
•
•

Joe E. Baker
Cheryl H. Clark
G. Jerry Smith

33 Nowhere St.
563 Downtown Ave.

1555 Circle Dr.

111223333
999009999
111005555

Figure 9.9 The PROJECT operation

Figure 9.10 The JOIN operation

Relation B

Relation C

X Y Z

5

4

2

4

g

d

m

t

p

e

q

f

Relation A

V W

r

t

p

2

4

6

A.V A.W B.X B.Y B.Z

r

t

t

2

4

4

2

4

4

m

d

t

q

e

f

C JOIN A and B where A.W = B.X

joined to form tuples in the new relation is determined by the condition under
which the JOIN is constructed. One such condition is that designated attributes
have the same value. This, in fact, is the case represented in Figure 9.10, where
we demonstrate the result of executing the statement

C d JOIN A and B where A.W = B.X

In this example, a tuple from relation A should be concatenated with a tuple
from relation B in exactly those cases where the attributes W and X in the two
tuples are equal. Thus the concatenation of the tuple (r, 2) from relation A with
the tuple (2, m, q) from relation B appears in the result because the value of
attribute W in the first equals the value of attribute X in the second. On the other
hand, the result of concatenating the tuple (r, 2) from relation A with the tuple
(5, g, p) from relation B does not appear in the final relation because these tuples
do not share common values in attributes W and X.

As another example, Figure 9.11 represents the result of executing the statement

C d JOIN A and B where A.W < B.X

Note that the tuples in the result are exactly those in which attribute W in relation
A is less than attribute X in relation B.

Let us now see how the JOIN operation can be used with the database of
Figure 9.5 to obtain a listing of all employee identification numbers along with
the department in which each employee works. Our first observation is that the
information required is distributed over more than one relation, and thus the
process of retrieving the information must entail more than SELECTions and
PROJECTions. In fact, the tool we need is the statement

NEW1 d JOIN ASSIGNMENT and JOB
where ASSIGNMENT.JobId = JOB.JobId

396 Chapter 9 Database Systems

Relation B

Relation C

X Y Z

1

4

2

5

g

d

m

t

p

e

q

f

Relation A

V W

r

t

p

2

4

6

A.V A.W B.X B.Y B.Z

r

r

t

2

2

4

4

5

5

d

t

t

e

f

f

C JOIN A and B where A.W < B.X

Figure 9.11 Another example of the JOIN operation

that produces the relation NEW1, as shown in Figure 9.12. From this relation, our
problem can be solved by first SELECTing those tuples in which ASSIGNMENT.
TermDate equals “*” (which indicates “still employed”) and then PROJECTing the
attributes ASSIGNMENT.EmplId and JOB.Dept. In short, the information we need
can be obtained from the database in Figure 9.5 by executing the sequence

NEW1 d JOIN ASSIGNMENT and JOB
where ASSIGNMENT.JobId = JOB.JobId

NEW2 d SELECT from NEW1 where ASSIGNMENT.TermDate = “*”
LIST d PROJECT ASSIGNMENT.EmplId, JOB.Dept from NEW2

SQL
Now that we have introduced the basic relational operations, let us reconsider
the overall structure of a database system. Remember that a database is actually
stored in a mass storage system. To relieve the application programmer from the
details of such systems, a database management system is provided that allows
the application software to be written in terms of a database model, such as the
relational model. The DBMS accepts commands in terms of the model and con-
verts them into actions relative to the actual storage structure. This conversion is
handled by a collection of routines within the DBMS that are used by the appli-
cation software as abstract tools. Thus a DBMS based on the relational model
would include routines to perform the SELECT, PROJECT, and JOIN operations,
which could then be called from the application software. In this manner the

3979.2 The Relational Model

Empl ld Job Id Start Date Term Date

ASSIGNMENT relation

23Y34
34Y70
25X15

•
•
•

S25X
F5

S26Z
•
•
•

3-1-1999
10-1-2009
5-1-2010

•
•
•

4-30-2010
*
*
•
•
•

ASSIGNMENT
Empl ld

ASSIGNMENT
Job Id

ASSIGNMENT
StartDate

ASSIGNMENT
TermDate

JOB
Job ld

JOB
JobTitle

JOB
SkillCode

JOB
Dept

NEW1 relation

23Y34
34Y70
25X15

•
•
•

S25X
F5

S26Z
•
•
•

3-1-1999
10-1-2009
5-1-2010

•
•
•

4-30-2010
*
*
•
•
•

Job ld Job Title Skill Code Dept

JOB relation

S25X
S26Z

F5
•
•
•

Secretary
Secretary

Floor manager
•
•
•

T5
T6

FM3
•
•
•

Personnel
Accounting

Sales
•
•
•

S25X
F5

S26Z
•
•
•

Secretary
Floor manager

Secretary
•
•
•

T5
FM3
T6
•
•
•

Personnel
Sales

Accounting
•
•
•

NEW1 JOIN ASSIGNMENT and JOB where ASSIGNMENT. JobId = JOB.Jobld

Figure 9.12 An application of the JOIN operation

application software can be written as though the database were actually stored
in the simple tabular form of the relational model.

Today’s relational database management systems do not necessarily provide
routines to perform the SELECT, PROJECT, and JOIN operations in their raw
form. Instead, they provide routines that might be combinations of these basic
steps. An example is the language SQL (Structured Query Language), which
forms the backbone of most relational database query systems. For example, SQL
is the underlying language in the relational database system MySQL (pro-
nounced “My–S–Q–L”) used by many database servers in the Internet.

One reason for SQL’s popularity is that the American National Standards
Institute has standardized it. Another reason is that it was originally developed
and marketed by IBM and has thus benefited from a high level of exposure. In
this section we explain how relational database queries are expressed in SQL.

Although we are about to find that a query stated in SQL is expressed in an
imperative-sounding form, the reality is that it is essentially a declarative state-
ment. You should read an SQL statement as a description of the information
desired rather than a sequence of activities to be performed. The significance
of this is that SQL relieves application programmers from the burden of devel-
oping algorithms for manipulating relations—they need merely to describe the
information desired.

For our first example of an SQL statement, let us reconsider our last query in
which we developed a three-step process for obtaining all employee identifica-
tion numbers along with their corresponding departments. In SQL this entire
query could be represented by the single statement

select EmplId, Dept
from ASSIGNMENT, JOB
where ASSIGNMENT.JobId = JOB.JobId
and ASSIGNMENT.TermDate = ‘*’

As indicated by this example, each SQL query statement can contain three
clauses: a select clause, a from clause, and a where clause. Roughly speaking,
such a statement is a request for the result of forming the JOIN of all the rela-
tions listed in the from clause, SELECTing those tuples that satisfy the condi-
tions in the where clause, and then PROJECTing those tuples listed in the select
clause. (Note that the terminology is somewhat reversed since the select clause
in an SQL statement identifies the attributes used in the PROJECT operation.)
Let us consider some simple examples.

The statement

select Name, Address
from EMPLOYEE

produces a listing of all employee names and addresses contained in the relation
EMPLOYEE. Note that this is merely a PROJECT operation.

The statement

select EmplId, Name, Address, SSNum
from EMPLOYEE
where Name = ‘Cheryl H. Clark’

produces all the information from the tuple associated with Cheryl H. Clark in
the EMPLOYEE relation. This is essentially a SELECT operation.

398 Chapter 9 Database Systems

The statement

select Name, Address
from EMPLOYEE
where Name = ‘Cheryl H. Clark’

produces the name and address of Cheryl H. Clark as contained in the
EMPLOYEE relation. This is a combination of SELECT and PROJECT operations.

The statement

select EMPLOYEE.Name, ASSIGNMENT.StartDate
from EMPLOYEE, ASSIGNMENT
where EMPLOYEE.EmplId = ASSIGNMENT.EmplId

produces a listing of all employee names and their dates of initial employment.
Note that this is the result of JOINing the relations EMPLOYEE and ASSIGNMENT
and then SELECTing and PROJECTing the appropriate tuples and attributes as
identified in the where and select clauses.

We close by noting that SQL encompasses statements for defining the struc-
ture of relations, creating relations, and modifying the contents of relations as
well as performing queries. For example, the following are examples of the
insert into, delete from, and update statements.

The statement

insert into EMPLOYEE
values (‘42Z12’, ‘Sue A. Burt’, ‘33 Fair St.’,

‘444661111’)

adds a tuple to the EMPLOYEE relation containing the values given;

delete from EMPLOYEE
where Name = ‘G. Jerry Smith’

removes the tuple relating to G. Jerry Smith from the EMPLOYEE relation; and

update EMPLOYEE
set Address = ‘1812 Napoleon Ave.’
where Name = ‘Joe E. Baker’

changes the address in the tuple associated with Joe E. Baker in the EMPLOYEE
relation.

3999.2 The Relational Model

1. Answer the following questions based on the partial information given
in the EMPLOYEE, JOB, and ASSIGNMENT relations in Figure 9.5:
a. Who is the secretary in the accounting department with experience

in the personnel department?
b. Who is the floor manager in the sales department?
c. What job does G. Jerry Smith currently hold?

2. Based on the EMPLOYEE, JOB, and ASSIGNMENT relations presented in
Figure 9.5, write a sequence of relational operations to obtain a list of all
job titles within the personnel department.

Questions & Exercises

9.3 Object-Oriented Databases
Another database model is based on the object-oriented paradigm. This approach
leads to an object-oriented database consisting of objects that are linked to
each other to reflect their relationships. For example, an object-oriented imple-
mentation of the employee database from the previous section could consist of
three classes (types of objects): EMPLOYEE, JOB, and ASSIGNMENT. An object
from the EMPLOYEE class could contain such entries as EmplId, Name, Address,
and SSNum; an object from the class JOB could contain such entries as JobId,
JobTitle, SkillCode, and Dept; and each object from the class ASSIGNMENT
could contain entries such as StartDate and TermDate.

A conceptual representation of such a database is shown in Figure 9.13
where the links between the various objects are represented by lines connecting
the related objects. If we focus on an object of type EMPLOYEE, we find it linked
to a collection of objects of type ASSIGNMENT representing the various assign-
ments that that particular employee has held. In turn, each of these objects of
type ASSIGNMENT is linked to an object of type JOB representing the job associ-
ated with that assignment. Thus all the assignments of an employee can be

400 Chapter 9 Database Systems

3. Based on the EMPLOYEE, JOB, and ASSIGNMENT relations presented in
Figure 9.5, write a sequence of relational operations to obtain a list of
employee names along with the employees’ departments.

4. Convert your answers to Questions 2 and 3 into SQL.
5. How does the relational model provide for data independence?
6. How are the different relations in a relational database tied together?

Assignment

Employee

Assignment

Job

Assignment

Job

Job

Figure 9.13 The associations between objects in an object-oriented database

found by following the links from the object representing that employee.
Similarly, all the employees who have held a particular job can be found by fol-
lowing the links from the object representing that job.

The links between objects in an object-oriented database are normally main-
tained by the DBMS, so the details of how these links are implemented are not a
concern of the programmer writing application software. Instead, when a new
object is added to the database, the application software merely specifies the
other objects to which it should be linked. The DBMS then creates any linkage
system that might be required to record these associations. In particular, a DBMS
might link the objects representing the assignments of a given employee in a
manner similar to a linked list.

Another task of an object-oriented DBMS is to provide permanent storage for
the objects entrusted to it—a requirement that might seem obvious but is inher-
ently distinct from the manner in which objects are normally treated. Normally,
when an object-oriented program is executed, the objects created during the pro-
gram’s execution are discarded when the program terminates. In this sense the
objects are considered transient. But objects that are created and added to a data-
base must be saved after the program that created them terminates. Such objects
are said to be persistent. Thus creating persistent objects is a significant depar-
ture from the norm.

Proponents of object-oriented databases offer numerous arguments to show
why the object-oriented approach to database design is better than the relational
approach. One is that the object-oriented approach allows the entire software sys-
tem (application software, DBMS, and the database itself) to be designed in the
same paradigm. This is in contrast to the historically common practice of using an
imperative programming language to develop application software for interrogat-
ing a relational database. Inherent in such a task is the clash between imperative
and relational paradigms. This distinction is subtle at our level of study but the
difference has been the source of many software errors over the years. Even at
our level, we can appreciate that an object-oriented database combined with an
objected-oriented application program produces a homogeneous image of objects
communicating with each other throughout the system. On the other hand, a rela-
tional database combined with an imperative application program conjures an
image of two inherently different organizations trying to find a common interface.

To appreciate another advantage that object-oriented databases have over
their relational counterparts, consider the problem of storing employee names in
a relational database. If an entire name is stored as a single attribute in a relation,
then inquiries regarding only surnames are awkward. However, if the name is
stored as individual attributes, such as first name, middle name, and surname,
then the number of attributes becomes problematic because not all names con-
form to a specific structure—even when the population is restricted to a single cul-
ture. In an object-oriented database, these issues can be hidden within the object
that holds the employee’s name. An employee’s name can be stored as an intelli-
gent object that is capable of reporting the related employee’s name in a variety of
formats. Thus, from outside these objects, it would be just as easy to deal with only
surnames as with entire names, maiden names, or nicknames. The details
involved with each perspective would be encapsulated within the objects.

This ability to encapsulate the technicalities of different data formats is
advantageous in other cases as well. In a relational database, the attributes in a
relation are part of the overall design of the database, and thus the types

4019.3 Object-Oriented Databases

associated with these attributes permeate the entire DBMS. (Variables for tem-
porary storage must be declared to be the appropriate type, and procedures for
manipulating data of the various types must be designed.) Thus, extending a
relational database to include attributes of new types (audio and video) can
be problematic. In particular, a variety of procedures throughout the database
design might need to be expanded to incorporate these new data types. In an
object-oriented design, however, the same procedures used to retrieve an object
representing an employee’s name can be used to retrieve an object represent-
ing a motion picture because the distinctions in type can be hidden within the
objects involved. Thus the object-oriented approach appears to be more compat-
ible with the construction of multimedia databases—a feature that is already
proving to be a great advantage.

Still another advantage the object-oriented paradigm offers to database design
is the potential for storing intelligent objects rather than merely data. That is, an
object can contain methods describing how it should respond to messages regard-
ing its contents and relationships. For example, each object of the class EMPLOYEE
in Figure 9.13 could contain methods for reporting and updating the information
in the object as well as a method for reporting that employee’s job history and
perhaps a method for changing that employee’s job assignment. Likewise, each
object from the JOB class could have a method for reporting the specifics of the
job and perhaps a method for reporting those employees who have held that par-
ticular job. Thus to retrieve an employee’s job history, we would not need to con-
struct an elaborate procedure. Instead, we could merely ask the appropriate
employee object to report its job history. This ability to construct databases whose
components respond intelligently to inquiries offers an exciting array of possibil-
ities beyond those of more traditional relational databases.

402 Chapter 9 Database Systems

Questions & Exercises

1. What methods would be contained in an instance of an object from
the ASSIGNMENT class in the employee database discussed in this
section?

2. What is a persistent object?
3. Identify some classes, as well as some of their internal characteristics,

that can be used in an object-oriented database dealing with a warehouse
inventory.

4. Identify an advantage that an object-oriented database can have over a
relational database.

9.4 Maintaining Database Integrity
Inexpensive database management systems for personal use are relatively sim-
ple systems. They tend to have a single objective—to shield the user from the
technical details of the database implementation. The databases maintained by
these systems are relatively small and generally contain information whose loss

or corruption would be inconvenient rather than disastrous. When a problem
does arise, the user can usually correct the erroneous items directly or reload the
database from a backup copy and manually make the modifications required to
bring that copy up to date. This process might be inconvenient, but the cost of
avoiding the inconvenience tends to be greater than the inconvenience itself. In
any case, the inconvenience is restricted to only a few people, and any financial
loss is generally limited.

In the case of large, multiuser, commercial database systems, however, the
stakes are much higher. The cost of incorrect or lost data can be enormous and
can have devastating consequences. In these environments, a major role of the
DBMS is to maintain the database’s integrity by guarding against problems such
as operations that for some reason are only partially completed or different oper-
ations that might interact inadvertently to cause inaccurate information in the
database. It is this role of a DBMS that we address in this section.

The Commit/Rollback Protocol
A single transaction, such as the transfer of funds from one bank account to
another, the cancellation of an airline reservation, or the registration of a student
in a university course, might involve multiple steps at the database level. For
example, a transfer of funds between bank accounts requires that the balance in
one account be decremented and the balance in the other be incremented.
Between such steps the information in the database might be inconsistent.
Indeed, funds are missing during the brief period after the first account has been
decremented but before the other has been incremented. Likewise, when reas-
signing a passenger’s seat on a flight, there might be an instant when the pas-
senger has no seat or an instant when the passenger list appears to be one
passenger greater than it actually is.

In the case of large databases that are subject to heavy transaction loads, it is
highly likely that a random snapshot will find the database in the middle of some
transaction. A request for the execution of a transaction or an equipment mal-
function will therefore likely occur at a time when the database is in an incon-
sistent state.

Let us first consider the problem of a malfunction. The goal of the DBMS is
to ensure that such a problem will not freeze the database in an inconsistent
state. This is often accomplished by maintaining a log containing a record of
each transaction’s activities in a nonvolatile storage system, such as a magnetic
disk. Before a transaction is allowed to alter the database, the alteration to be per-
formed is first recorded in the log. Thus the log contains a permanent record of
each transaction’s actions.

The point at which all the steps in a transaction have been recorded in the
log is called the commit point. It is at this point that the DBMS has the infor-
mation it needs to reconstruct the transaction on its own if that should become
necessary. At this point the DBMS becomes committed to the transaction in the
sense that it accepts the responsibility of guaranteeing that the transaction’s
activities will be reflected in the database. In the case of an equipment malfunc-
tion, the DBMS can use the information in its log to reconstruct the transactions
that have been completed (committed) since the last backup was made.

If problems should arise before a transaction has reached its commit point,
the DBMS might find itself with a partially executed transaction that cannot be

4039.4 Maintaining Database Integrity

completed. In this case the log can be used to roll back (undo) the activities
actually performed by the transaction. In the case of a malfunction, for instance,
the DBMS could recover by rolling back those transactions that were incomplete
(noncommitted) at the time of the malfunction.

Rollbacks of transactions are not restricted, however, to the process of recov-
ering from equipment malfunctions. They are often a part of a DBMS’s normal
operation. For example, a transaction might be terminated before it has com-
pleted all its steps because of an attempt to access privileged information, or it
might be involved in a deadlock in which competing transactions find them-
selves waiting for data being used by each other. In these cases, the DBMS can
use the log to roll back a transaction and thus avoid an erroneous database due to
incomplete transactions.

To emphasize the delicate nature of DBMS design, we should note that there
are subtle problems lurking within the rollback process. The rolling back of one
transaction might affect database entries that have been used by other transac-
tions. For example, the transaction being rolled back might have updated an
account balance, and another transaction might have already based its activities
on this updated value. This might mean that these additional transactions must
also be rolled back, which might adversely affect still other transactions. The result
is the problem known as cascading rollback.

Locking
We now consider the problem of a transaction being executed while the database
is in a state of flux from another transaction, a situation that can lead to inadver-
tent interaction between the transactions and produce erroneous results. For
instance, the problem known as the incorrect summary problem can arise if
one transaction is in the middle of transferring funds from one account to
another when another transaction tries to compute the total deposits in the
bank. This could result in a total that is either too large or too small depending
on the order in which the transfer steps are performed. Another possibility is
known as the lost update problem, which is exemplified by two transactions,
each of which makes a deduction from the same account. If one transaction
reads the account’s current balance at the point when the other has just read the
balance but has not yet calculated the new balance, then both transactions will
base their deductions on the same initial balance. In turn, the effect of one of the
deductions will not be reflected in the database.

To solve such problems, a DBMS could force transactions to execute in
their entirety on a one-at-a-time basis by holding each new transaction in a
queue until those preceding it have completed. But a transaction often spends
a lot of time waiting for mass storage operations to be performed. By inter-
weaving the execution of transactions, the time during which one transaction
is waiting can be used by another transaction to process data it has already
retrieved. Most large database management systems therefore contain a
scheduler to coordinate time-sharing among transactions in much the same
way that a multiprogramming operating system coordinates interweaving of
processes (Section 3.3).

To guard against such anomalies as the incorrect summary problem and the
lost update problem, these schedulers incorporate a locking protocol in which
the items within a database that are currently being used by some transaction

404 Chapter 9 Database Systems

are marked as such. These marks are called locks; marked items are said to be
locked. Two types of locks are common—shared locks and exclusive locks.
They correspond to the two types of access to data that a transaction might
require—shared access and exclusive access. If a transaction is not going to alter
a data item, then it requires shared access, meaning that other transactions are
also allowed to view the data. However, if the transaction is going to alter the
item, it must have exclusive access, meaning that it must be the only transaction
with access to that data.

In a locking protocol, each time a transaction requests access to a data
item, it must also tell the DBMS the type of access it requires. If a transaction
requests shared access to an item that is either unlocked or locked with a
shared lock, that access is granted and the item is marked with a shared lock.
If, however, the requested item is already marked with an exclusive lock, the
additional access is denied. If a transaction requests exclusive access to an
item, that request is granted only if the item has no lock associated with it. In
this manner, a transaction that is going to alter data protects that data from
other transactions by obtaining exclusive access, whereas several transactions
can share access to an item if none of them are going to change it. Of course,
once a transaction is finished with an item, it notifies the DBMS, and the asso-
ciated lock is removed.

Various algorithms are used to handle the case in which a transaction’s
access request is rejected. One algorithm is that the transaction is merely
forced to wait until the requested item becomes available. This approach, how-
ever, can lead to deadlock, since two transactions that require exclusive access
to the same two data items could block each other’s progress if each obtains
exclusive access to one of the items and then insists on waiting for the other. To
avoid such deadlocks, some database management systems give priority to
older transactions. That is, if an older transaction requires access to an item
that is locked by a younger transaction, the younger transaction is forced to
release all of its data items, and its activities are rolled back (based on the log).
Then, the older transaction is given access to the item it required, and the
younger transaction is forced to start again. If a younger transaction is repeat-
edly preempted, it will grow older in the process and ultimately become one
of the older transactions with high priority. This protocol, known as the
wound-wait protocol (old transactions wound young transactions, young
transactions wait for old ones), ensures that every transaction will ultimately
be allowed to complete its task.

4059.4 Maintaining Database Integrity

Questions & Exercises

1. What is the difference between a transaction that has reached its commit
point and one that has not?

2. How could a DBMS guard against extensive cascading rollback?
3. Show how the uncontrolled interweaving of two transactions, one deduct-

ing $100 from an account and the other deducting $200 from the same
account, could produce final balances of $100, $200, and $300, assuming
that the initial balance is $400.

9.5 Traditional File Structures
In this section we digress from our study of mutidimensional database systems
to consider traditional file structures. These structures represent the historical
beginning of data storage and retrieval systems from which current database
technology has evolved. Many of the techniques developed for these structures
(such as indexing and hashing) are important tools in the construction of today’s
massive, complex databases.

Sequential Files
A sequential file is a file that is accessed in a serial manner from its begin-
ning to its end as though the information in the file were arranged in one
long row. Examples include audio files, video files, files containing programs,
and files containing textual documents. In fact, most of the files created by a
typical personal computer user are sequential files. For instance, when a
spreadsheet is saved, its information is encoded and stored as a sequential
file from which the spreadsheet application software can reconstruct the
spreadsheet.

Text files, which are sequential files in which each logical record is a single
symbol encoded using ASCII or Unicode, often serve as a basic tool for con-
structing more elaborate sequential files such as an employee records file. One
only needs to establish a uniform format for representing the information
about each employee as a string of text, encode the information according to
that format, and then record the resulting employee records one after another
as one single string of text. For example, one could construct a simple
employee file by agreeing to enter each employee record as a string of 31 char-
acters, consisting of a field of 25 characters containing the employee’s name
(filled with enough blanks to complete the 25-character field), followed by
a field of 6 characters representing the employee’s identification number.
The final file would be a long string of encoded characters in which each
31-character block represents the information about a single employee
(Figure 9.14). Information would be retrieved from the file in terms of logical
records consisting of 31-character blocks. Within each of these blocks, individ-
ual fields would be identified according to the uniform format with which the
blocks were constructed.

406 Chapter 9 Database Systems

4. a. Summarize the possible results of a transaction requesting shared
access to an item in a database.

b. Summarize the possible results of a transaction requesting exclusive
access to an item in a database.

5. Describe a sequence of events that would lead to deadlock among trans-
actions performing operations on a database system.

6. Describe how the deadlock in your answer to Question 5 could be bro-
ken. Would your solution require use of the database management sys-
tem’s log? Explain your answer.

The data in a sequential file must be recorded in mass storage in such a way
that the sequential nature of the file is preserved. If the mass storage system is
itself sequential (as in the case of a magnetic tape or CD), this is a straightfor-
ward undertaking. We need merely record the file on the storage medium
according to the sequential properties of the medium. Then processing the file is
the task of merely reading and processing the file’s contents in the order in
which they are found. This is exactly the process followed in playing audio CDs,
where the music is stored as a sequential file sector by sector along one continu-
ous spiraling track.

In the case of magnetic disk storage, however, the file would be scattered over
different sectors that could be retrieved in a variety of orders. To preserve the
proper order, most operating systems (more precisely, the file manager) maintain
a list of the sectors on which the file is stored. This list is recorded as part of the
disk’s directory system on the same disk as the file. By means of this list, the oper-
ating system can retrieve the sectors in the proper sequence as though the file
were stored sequentially, even though the file is actually distributed over various
portions of the disk.

Inherent in processing a sequential file is the need to detect when the end of
the file is reached. Generically, we refer to the end of a sequential file as the
end-of-file (EOF). There are a variety of ways of identifying the EOF. One is to
place a special record, called a sentinel, at the end of the file. Another is to use
the information in the operating system’s directory system to identify a file’s
EOF. That is, since the operating system knows which sectors contain the file, it
also knows where the file terminates.

A classic example involving sequential files is payroll processing in a small
company. Here we imagine a sequential file consisting of a series of logical
records, each of which contains the information about an employee’s pay (name,
employee identification number, pay scale, and so on) from which checks must be
printed on a routine basis. As each employee record is retrieved, that employee’s

4079.5 Traditional File Structures

K I M B E R L A N N D A W S O N 83 5 1 7 2Y

Each block consists of a 25 character
field containing an employee’s name followed by
a six character field containing the employee’s
identification number.

File consists of a sequence of blocks each
containing 31 characters.

Logical
record

Employee’s
identification
number

Employee’s name

File

Figure 9.14 The structure of a simple employee file implemented as a text file

408 Chapter 9 Database Systems

pay is calculated, and the appropriate check produced. The activity of processing
such a sequential file is exemplified by the statement

while (the EOF has not been reached) do
(retrieve the next record from the file and process it)

When the logical records within a sequential file are identified by key field
values, the file is usually arranged so that the records appear in the order deter-
mined by the keys (perhaps alphabetical or numerical). Such an arrangement
simplifies the task of processing the information in the file. For example, sup-
pose that processing payroll requires that each employee record be updated to
reflect the information on that employee’s time sheet. If both the file containing
the time sheet records and the file containing the employee records are in the
same order according to the same keys, then this updating process can be han-
dled by accessing both files sequentially—using the time sheet retrieved from
one file to update the corresponding record from the other file. This is a signifi-
cant improvement over the repeated searching process that would be required if
the files were not in corresponding order. Thus updating classic sequential files
is typically handled in multiple steps. First, the new information (such as the
collection of time sheets) is recorded in a sequential file known as a transaction
file, and this transaction file is sorted to match the order of the file to be updated,
which is called the master file. Then, the records in the master file are updated
by retrieving the records from both files sequentially.

A slight variation of this updating process is the process of merging two
sequential files to form a new file containing the records from the two originals.
The records in the input files are assumed to be arranged in ascending order
according to a common key field, and it is also assumed that the files are to be
merged in a manner that produces an output file whose keys are also in ascend-
ing order. The classic merge algorithm is summarized in Figure 9.15. The under-
lying theme is to build the output file as the two input files are scanned
sequentially (Figure 9.16).

Indexed Files
Sequential files are ideal for storing data that will be processed in the order in which
the file’s entries are stored. However, such files are inefficient when records
within the file must be retrieved in an unpredictable order. In such situations

Figure 9.15 A procedure for merging two sequential files

procedure MergeFiles (InputFileA, InputFileB, OutputFile)

if (both input files at EOF) then (Stop, with OutputFile empty)
if (InputFileA not at EOF) then (Declare its first record to be its current record)
if (InputFileB not at EOF) then (Declare its first record to be its current record)
while (neither input file at EOF) do
 (Put the current record with the “smaller” key field value in OutputFile;

 if (that current record is the last record in its corresponding input file)
 then (Declare that input file to be at EOF)
else (Declare the next record in that input file to be the file’s current record)

)
Starting with the current record in the input file that is not at EOF,
 copy the remaining records to OutputFile.

what is needed is a way to identify the location of the desired logical record
quickly. A popular solution is to use an index for the file in much the same way
that an index in a book is used to locate topics within the book. Such a file system
is called an indexed file.

An index for a file contains a list of the keys stored in the file along with
entries indicating where the record containing each key is stored. Thus to
find a particular record, one finds the identifying key in the index and then
retrieves the block of information stored at the location associated with
that key.

A file’s index is normally stored as a separate file on the same mass storage
device as the indexed file. The index is usually transferred to main memory

4099.5 Traditional File Structures

Figure 9.16 Applying the merge algorithm (Letters are used to represent entire records. The
particular letter indicates the value of the record’s key field.)

Output file Input files

A
B D

A C E F

F

BA
B D

C E FA

D

C E F
CBA

A

B

E
A B C D E F

FA C

B D

A B C D
D

E F

B

A C

A B C D E
B D

A C E

before file processing begins so that it is easily accessible when access to records
in the file is required (Figure 9.17).

A classic example of an indexed file occurs in the context of maintaining
employee records. Here an index can be used to avoid lengthy searches when
you are retrieving an individual record. In particular, if the file of employee
records is indexed by employee identification numbers, then an employee’s
record can be retrieved quickly when the employee’s identification number is
known. Another example is found on audio CDs where an index is used to allow
relatively quick access to individual recordings.

Over the years numerous variations of the basic index concept have been used.
One variation constructs an index in a hierarchical manner so that the index takes on
a layered or tree structure. A prominent example is the hierarchical directory
system used by most operating systems for organizing file storage. In such a case, the
directories, or folders, play the role of indexes, each containing links to its subin-
dexes. From this perspective, the entire file system is merely one large indexed file.

Hash Files
Although indexing provides relatively quick access to entries within a data storage
structure, it does so at the expense of index maintenance. Hashing is a technique
that provides similar access without such overhead. As in the case of an indexed
system, hashing allows a record to be located by means of a key value. But,
rather than looking up the key in an index, hashing identifies the location of the
record directly from the key.

A hash system can be summarized as follows: The data storage space is divided
into several sections, called buckets, each of which is capable of holding several
records. The records are dispersed among the buckets according to an algorithm
that converts key values into bucket numbers. (This conversion from key values to
bucket numbers is called a hash function.) Each record is stored in the bucket
identified by this process. Therefore, a record that has been placed in the storage
structure can be retrieved by first applying the hash function to the record’s identi-
fying key to determine the appropriate bucket, then retrieving the contents of that
bucket, and finally searching through the data retrieved for the desired record.

Hashing is not only used as a means of retrieving data from mass storage
but also as a means of retrieving items from large blocks of data stored in main
memory. When hashing is applied to a storage structure in mass storage, the
result is called a hash file. When applied to a storage structure within main
memory, the result is usually called a hash table.

410 Chapter 9 Database Systems

Main memory Mass storage

Index is transferred
to main memory
when the indexed
file is opened

Index is stored in
mass storage as
a separate file

Indexed
file

Index

Figure 9.17 Opening an indexed file

4119.5 Traditional File Structures

Let us apply the hashing technique to the classic employee file in which each
record contains information about a single employee in a company. First, we estab-
lish several available areas of mass storage that will play the role of buckets. The
number of buckets and the size of each bucket are design decisions that we will
consider later. For now, let us assume that we have created 41 buckets, which we
refer to as bucket number 0, bucket number 1, through bucket number 40. (The
reason we selected 41 buckets rather than an even 40 will be explained shortly.)

Let us assume that an employee’s identification number will be used as the
key for identifying the employee’s record. Our next task, then, is to develop a
hash function for converting these keys into bucket numbers. Although the
employee identification “numbers” might have the form 25X3Z or J2X35 and are
therefore not numeric, they are stored as bit patterns, and we can interpret the
bit patterns as numbers. Using this numeric interpretation, we can divide any
key by the number of buckets available and record the remainder, which in our
case will be an integer in the range from 0 to 40. Thus we can use the remainder
of this division process to identify one of the 41 buckets (Figure 9.18).

Key field value: 25X3Z

ASCII representation: 0011001000110101010110000011001101011010

Equivalent base ten value: 215,643,337,562

Remainder after division by 41: 3

Bucket number: 3

Figure 9.18 Hashing the key field value 25X3Z to one of 41 buckets

Hashing is much more than a means of constructing efficient data storage systems.
For example, hashing can be used as a means of authenticating messages trans-
ferred over the Internet. The underlying theme is to hash the message in a secret
way. This value is then transferred with the message. To authenticate the message,
the receiver hashes the message received (in the same secret way) and confirms that
the value produced agrees with the original value. (The odds of an altered message
hashing to the same value are assumed to be very small.) If the value obtained does
not agree with the original value, the message is exposed as being corrupted. Those
who are interested might wish to search the Internet for information about MD5,
which is a hash function used extensively in authentication applications.

It is enlightening to consider error detection techniques as an application of
hashing for authentication. For example, the use of parity bits is essentially a hash-
ing system in which a bit pattern is hashed to produce either a 0 or a 1. This value is
then transferred along with the original pattern. If the pattern ultimately received
does not hash to that same value, the pattern is considered corrupted.

Authentication via Hashing

Using this as our hash function, we proceed to construct the file by consider-
ing each record individually, applying our divide-by-41 hash function to its key to
obtain a bucket number, and then storing the record in that bucket (Figure 9.19).
Later, if we need to retrieve a record, we need merely apply our hash function to
the record’s key to identify the appropriate bucket and then search that bucket
for the record in question.

At this point let us reconsider our decision to divide the storage area into 41
buckets. First, note that to obtain an efficient hash system, the records being
stored should be distributed evenly among the buckets. If a disproportionate
number of keys happen to hash to the same bucket (a phenomenon called
clustering), then a disproportionate number of records will be stored in a single
bucket. In turn, retrieving a record from that bucket could require a time-consuming
search, causing the loss of any benefits gained by hashing.

Now observe that if we had chosen to divide the storage area into 40 buck-
ets rather than 41, our hash function would have involved dividing the keys by
the value 40 rather than 41. But, if a dividend and a divisor both have a com-
mon factor, that factor will be present in the remainder as well. In particular, if
the keys to the entries stored in our hash file happened to be multiples of 5
(which is also a divisor of 40), then the factor of 5 would appear in the remain-
ders when divided by 40, and the entries would cluster in those buckets asso-
ciated with the remainders 0, 5, 10, 15, 20, 25, 30, and 35. Similar situations
would occur in the case of keys that are multiples of 2, 4, 8, 10, and 20,
because they are all also factors of 40. Consequently, we choose to divide the
storage area into 41 buckets because the choice of 41, being a prime number,
eliminated the possibility of common factors and therefore reduced the
chance of clustering.

Unfortunately, the possibility of clustering can never be completely elimi-
nated. Even with a well-designed hash function, it is highly likely that two keys
will hash to the same value, a phenomenon called a collision, early in the file
construction process. To understand why, consider the following scenario.

412 Chapter 9 Database Systems

95 136

#13

96 14 55

#14

343

#15 #16

Buckets in
mass storage

When divided by 41, the key field values of 14, 55, and 96
each produce a remainder of 14. Thus these records are stored
in bucket 14.

41 55
1

41
14

41 96
2

82
14

41 14
0

0
14

Remainders

Figure 9.19 The rudiments of a hashing system

Suppose that we have found a hash function that arbitrarily distributes records
among 41 buckets, that our storage system is empty, and that we are going to insert
new records one at a time. When we insert the first record, it will be placed in an
empty bucket. However, when we insert the next record, only 40 of the 41 buckets
are still empty, so the probability that the second record will be placed in an empty
bucket is only 40/41. Assuming that the second record is placed in an empty
bucket, the third record finds only 39 empty buckets, and thus the probability of it
being placed in one of them is 39/41. Continuing this process, we find that if the
first seven records are placed in empty buckets, the eighth record has only a 34/41
probability of being placed in one of the remaining empty buckets.

This analysis allows us to compute the probability that all the first eight
records will be placed in empty buckets—it is the product of the probabilities of
each record being placed in an empty bucket, assuming that the preceding
entries were so placed. This probability is

(41/41)(40/41)(39/41)(38/41) . . . (34/41) = .482

The point is that the result is less than one-half. That is, it is more likely than not
that in distributing records among 41 buckets a collision will have occurred by
the time the eighth record is stored.

The high probability of collisions indicates that, regardless of how well-chosen
a hash function might be, any hash system must be designed with clustering in
mind. In particular, it is possible that a bucket might fill up and overflow. One
approach to this problem would be to allow the buckets to expand in size. Another
approach is to allow buckets to spill into an overflow area that has been reserved
for that purpose. In any case the occurrence of clustering and overflowing buckets
can significantly degrade the performance of a hash file.

Research has shown that, as a general rule, hash files perform well as long as the
ratio of the number of records to the total record capacity of the file (a ratio known
as the load factor) remains below 50 percent. However, if the load factor begins to
creep above 75 percent, the system’s performance generally degrades (clustering
raises its ugly head, causing some buckets to fill and possibly overflow). For this rea-
son, a hash storage system is usually reconstructed with a larger capacity if its load
factor approaches the 75 percent value. We conclude that the efficiency of record
retrieval obtained by implementing a hash system is not gained without cost.

4139.5 Traditional File Structures

Questions & Exercises

1. Follow the merge algorithm presented in Figure 9.15, assuming that one
input file contains records with key field values equal to B and E while
the other contains A, C, D, and F.

2. The merge algorithm is the heart of a popular sort algorithm called the
merge sort. Can you discover this algorithm? (Hint: Any nonempty file
can be considered to be a collection of one-entry files.)

3. Is being sequential a physical or conceptual property of a file?
4. What are the steps required when retrieving a record from an indexed file?
5. Explain how a poorly chosen hash function can result in a hash storage

system becoming little more than a sequential file.

9.6 Data Mining
A rapidly expanding subject that is closely associated with database technology is
data mining, which consists of techniques for discovering patterns in collections of
data. Data mining has become an important tool in numerous areas including mar-
keting, inventory management, quality control, loan risk management, fraud detec-
tion, and investment analysis. Data mining techniques even have applications
in what might seem unlikely settings as exemplified by their use in identifying
the functions of particular genes encoded in DNA molecules and characterizing
properties of organisms.

Data mining activities differ from traditional database interrogation in that
data mining seeks to identify previously unknown patterns as opposed to tradi-
tional database inquiries that merely ask for the retrieval of stored facts. Moreover,
data mining is practiced on static data collections, called data warehouses, rather
than “online” operational databases that are subject to frequent updates. These
warehouses are often “snapshots” of databases or collections of databases. They are
used in lieu of the actual operational databases because finding patterns in a static
system is easier than in a dynamic one.

We should also note that the subject of data mining is not restricted to the
domain of computing but has tentacles that extend far into statistics. In fact,
many would argue that since data mining had its origins in attempts to perform
statistical analysis on large, diverse data collections, it is an application of statis-
tics rather than a field of computer science.

Two common forms of data mining are class description and class
discrimination. Class description deals with identifying properties that charac-
terize a given group of data items, whereas class discrimination deals with iden-
tifying properties that divide two groups. For example, class description
techniques would be used to identify characteristics of people who buy small
economical vehicles, whereas class discrimination techniques would be used to
find properties that distinguish customers who shop for used cars from those
who shop for new ones.

Another form of data mining is cluster analysis, which seeks to discover
classes. Note that this differs from class description, which seeks to discover
properties of members within classes that are already identified. More precisely,
cluster analysis tries to find properties of data items that lead to the discovery of
groupings. For example, in analyzing information about people’s ages who have
viewed a particular motion picture, cluster analysis might find that the customer

414 Chapter 9 Database Systems

6. Suppose a hash storage system is constructed using the division hash
function as presented in the text but with six storage buckets. For each of
the following key values, identify the bucket in which the record with
that key is placed. What goes wrong and why?

a. 24 b. 30 c. 3 d. 18 e. 15
f. 21 g. 9 h. 39 i. 27 j. 0

7. How many people must be gathered together before the odds are that
two members of the group will have birthdays on the same day of the
year? How does this problem relate to the material in this section?

base breaks down into two age groups—a 4 to10 age group and a 25 to 40 age
group. (Perhaps the motion picture attracted children and their parents?)

Still another form of data mining is association analysis, which involves
looking for links between data groups. It is association analysis that might
reveal that customers who buy potato chips also buy beer and soda or that
people who shop during the traditional weekday work hours also draw retire-
ment benefits.

Outlier analysis is another form of data mining. It tries to identify data
entries that do not comply with the norm. Outlier analysis can be used to iden-
tify errors in data collections, to identify credit card theft by detecting sudden
deviations from a customer’s normal purchase patterns, and perhaps to identify
potential terrorists by recognizing unusual behavior.

Finally, the form of data mining called sequential pattern analysis tries to
identify patterns of behavior over time. For example, sequential pattern analysis
might reveal trends in economic systems such as equity markets or in environ-
mental systems such as climate conditions.

As indicated by our last example, results from data mining can be used to
predict future behavior. If an entity possesses the properties that characterize a
class, then the entity will probably behave like members of that class. However,
many data mining projects are aimed at merely gaining a better understanding
of the data, as witnessed by the use of data mining in unraveling the mysteries of
DNA. In any case, the scope of data mining applications is potentially enormous,
and thus data mining promises to be an active area of research for years to come.

Note that database technology and data mining are close cousins, and thus
research in one will have repercussions in the other. Database techniques are
used extensively to give data warehouses the capability of presenting data in
the form of data cubes (data viewed from multiple perspectives—the term
cube is used to conjecture the image of multiple dimensions) that make data
mining possible. In turn, as researchers in data mining improve techniques for
implementing data cubes, these results will pay dividends in the field of data-
base design.

In closing, we should recognize that successful data mining encompasses
much more than the identification of patterns within a collection of data.
Intelligent judgment must be applied to determine whether those patterns are
significant or merely coincidences. The fact that a particular convenience store
has sold a high number of winning lottery tickets should probably not be
considered significant to someone planning to buy a lottery ticket, but the

4159.6 Data Mining

Advances in database technology and data mining techniques are expanding the
repertoire of tools available to biologists in research areas involving the identifica-
tion of patterns and the classification of organic compounds. The result is a new field
within biology called bioinformatics. Having originated in endeavors to decode DNA,
bioinformatics now encompasses such tasks as cataloguing proteins and under-
standing sequences of protein interactions (called biochemical pathways). Although
normally considered to be a part of biology, bioinformatics is an example of how
computer science is influencing and even becoming ingrained in other fields.

Bioinformatics

discovery that customers who buy snack food also tend to buy frozen dinners
might constitute meaningful information to a grocery store manager. Likewise,
data mining encompasses a vast number of ethical issues involving the rights of
individuals represented in the data warehouse, the accuracy and use of the con-
clusions drawn, and even the appropriateness of data mining in the first place.

416 Chapter 9 Database Systems

Questions & Exercises

1. Why is data mining not conducted on “online” databases?
2. Give an additional example of a pattern that might be found by each of

the types of data mining identified in the text.
3. Identify some different perspectives that a data cube might allow when

mining sales data.
4. How does data mining differ from traditional database inquiries?

9.7 Social Impact of Database Technology
With the development of database technology, information that was once buried in
arcane records has become accessible. In many cases, automated library systems
place a patron’s reading habits within easy reach, retailers maintain records of their
customer’s purchases, and Internet search engines keep records of their clients’
requests. In turn this information is potentially available to marketing firms, law
enforcement agencies, political parties, employers, and private individuals.

This is representative of the potential problems that permeate the entire
spectrum of database applications. Technology has made it easy to collect enor-
mous amounts of data and to merge or compare different data collections to
obtain relationships that would otherwise remain buried in the heap. The ramifi-
cations, both positive and negative, are enormous. These ramifications are not
merely subjects for academic debate—they are realities.

In some cases the data collection process is readily apparent; in others it is
subtle. Examples of the first case occur when one is explicitly asked to provide
information. This may be done in a voluntary manner, as in surveys or contest
registration forms, or it may be done in an involuntary manner, such as when
imposed by government regulations. Sometimes whether it is voluntary or not
depends on one’s point of view. Is providing personal information when apply-
ing for a loan voluntary or involuntary? The distinction depends on whether
receiving the loan is a convenience or a necessity. To use a credit card at some
retailers now requires that you allow your signature to be recorded in a digitized
format. Again, providing the information is either voluntary or involuntary
depending on your situation.

More subtle cases of data collection avoid direct communication with the
subject. Examples include a credit company that records the purchasing prac-
tices of the holders of its credit cards, websites that record the identities of those
who visit the site, and social activists who record the license plate numbers on
the cars parked in a targeted institution’s parking lot. In these cases the subject

of the data collection might not be aware that information is being collected and
less likely to be aware of the existence of the databases being constructed.

Sometimes the underlying data-collection activities are self-evident if one
merely stops to think. For example, a grocery store might offer discounts to its
regular customers who register in advance with the store. The registration
process might involve the issuance of identification cards that must be presented
at the time of purchase to obtain the discount. The result is that the store is able
to compile a record of the customers’ purchases—a record whose value far
exceeds the value of the discounts awarded.

Of course, the force driving this boom in data collection is the value of the
data, which is amplified by advances in database technology that allow data to be
linked in ways that reveal information that would otherwise remain obscure. For
example, the purchasing patterns of credit card holders can be classified and
cross-listed to obtain customer profiles of immense marketing value. Subscription
forms for body-building magazines can be mailed to those who have recently pur-
chased exercise equipment, whereas subscription forms for dog obedience maga-
zines can be targeted toward those who have recently purchased dog food.
Alternative ways of combining information are sometimes very imaginative.
Welfare records have been compared to criminal records to find and apprehend
parole violators, and in 1984 the Selective Service in the United States used old
birthday registration lists from a popular ice cream retailer to identify citizens
who had failed to register for the military draft.

There are several approaches to protecting society from abusive use of data-
bases. One is to apply legal remedies. Unfortunately, passing a law against an
action does not stop the action from occurring but merely makes the action ille-
gal. A prime example in the United States is the Privacy Act of 1974 whose pur-
pose was to protect citizens from abusive use of government databases. One
provision of this act required government agencies to publish notice of their
databases in the Federal Register to allow citizens to access and correct their per-
sonal information. However, government agencies were slow to comply with this
provision. This does not necessarily imply malicious intent. In many cases the
problem was one of bureaucracy. But, the fact that a bureaucracy might be con-
structing personnel databases that it is unable to identify is not reassuring.

Another, and perhaps more powerful, approach to controlling database abuse
is public opinion. Databases will not be abused if the penalties outweigh the bene-
fits; and the penalty businesses fear the most is adverse public opinion—this goes
right to the bottom line. In the early 1990s it was public opinion that ultimately
stopped major credit bureaus from selling mailing lists for marketing purposes.
More recently, America Online (a major Internet service provider) buckled under
public pressure against its policy of selling customer-related information to tele-
marketers. Even government agencies have bowed to public opinion. In 1997 the
Social Security Administration in the United States modified its plan to make social
security records available via the Internet when public opinion questioned the
security of the information. In these cases results were obtained in days—a stark
contrast to the extended time periods associated with legal processes.

Of course, in many cases database applications are beneficial to both the holder
and the subject of the data, but in all cases there is a loss of privacy that should not
be taken lightly. Such privacy issues are serious when the information is accurate,
but they become gigantic when the information is erroneous. Imagine the feeling
of hopelessness if you realized that your credit rating was adversely affected by

4179.7 Social Impact of Database Technology

erroneous information. Imagine how your problems would be amplified in an envi-
ronment in which this misinformation was readily shared with other institutions.

Privacy problems are, and will be, a major side effect of advancing technol-
ogy in general and database techniques in particular. The solutions to these prob-
lems will require an educated, alert, and active citizenry.

418 Chapter 9 Database Systems

1. Should law enforcement agencies be given access to databases for the
purpose of identifying individuals with criminal tendencies, even
though the individuals might not have committed a crime?

2. Should insurance companies be given access to databases for the pur-
pose of identifying individuals with potential medical problems, even
though the individuals have not shown any symptoms?

3. Suppose you were financially comfortable. What benefits could you
derive if this information were shared among a variety of institutions?
What penalties could you suffer from the distribution of this same infor-
mation? What if you were financially uncomfortable?

4. What role does a free press have in controlling database abuse? (For exam-
ple, to what extent does the press affect public opinion or expose abuse?)

Questions & Exercises

1. Summarize the distinction between a flat file
and a database.

2. What is meant by data independence?

3. What is the role of a DBMS in the layered
approach to a database implementation?

4. What is the difference between a schema and
a subschema?

5. Identify two benefits of separating application
software from the DBMS.

6. Describe the similarities between an abstract
data type (Chapter 8) and a database model.

7. Identify the level within a database system
(user, programmer of application software,
designer of the DBMS software) at which
each of the following concerns or activities
occur:
a. How should data be stored on a disk to

maximize efficiency?

b. Is there a vacancy on flight 243?
c. How should a relation be organized in mass

storage?
d. How many times should a user be allowed

to mistype a password before the conversa-
tion is terminated?

e. How can the PROJECT operation be imple-
mented?

8. Which of the following tasks are handled by a
DBMS?
a. Ensure that a user’s access to the

database is restricted to the appropriate
subschema.

b. Translate commands stated in terms of the
database model into actions compatible
with the actual data storage system.

c. Disguise the fact that the data in the data-
base is actually scattered among many
computers in a network.

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

9. Describe how the following information about
airlines, flights (for a particular day), and pas-
sengers would be represented in a relational
database:

Airlines: Clear Sky, Long Hop, and Tree Top

Flights for Clear Sky: CS205, CS37, and CS102

Flights for Long Hop: LH67 and LH89

Flights for Tree Top: TT331 and TT809

Smith has reservations on CS205 (seat 12B),
CS37 (seat 18C), and LH 89 (seat 14A).

Baker has reservations on CS37 (seat 18B) and
LH89 (seat 14B).

Clark has reservations on LH67 (seat 5A) and
TT331 (seat 4B).

10. To what extent is the order in which
SELECT and PROJECT operations are
applied to a relation significant? That is,
under what conditions will SELECTing
and then PROJECTing produce the same
results as first PROJECTing and then
SELECTing?

11. Give an argument showing that the “where”
clause in the JOIN operation as described in
Section 9.2 is not necessary. (That is, show
that any query that uses a “where” clause
could be restated using a JOIN operation that
concatenated every tuple in one relation with
every tuple in the other.)

12. In terms of the relations shown below, what is
the appearance of the relation RESULT after
executing each of these instructions:

a. RESULT d PROJECT W from X
b. RESULT d SELECT from X where W = 5
c. RESULT d PROJECT S from Y
d. RESULT d JOIN X and Y where X.W
 Y.R

13. Using the commands SELECT, PROJECT, and
JOIN, write a sequence of instructions to
answer each of the following questions about

parts and their manufacturers in terms of the
following database:

a. Which companies make Bolt 2Z?
b. Obtain a list of the parts made by Company

X along with each part’s cost.
c. Which companies make a part with

weight 1?

14. Answer Problem 13 using SQL.

15. Using the commands SELECT, PROJECT, and
JOIN, write sequences to answer the follow-
ing questions about the information in the
EMPLOYEE, JOB, and ASSIGNMENT relations
in Figure 9.5:
a. Obtain a list of the names and addresses of

the company’s employees.
b. Obtain a list of the names and addresses of

those who have worked or are working in
the personnel department.

c. Obtain a list of the names and addresses of
those who are working in the personnel
department.

16. Answer the previous problem using SQL.

17. Design a relational database containing infor-
mation about music composers, their lives,
and their compositions. (Avoid redundancies
similar to those in Figure 9.4.)

18. Design a relational database containing infor-
mation about music performers, their record-
ings, and the composers of the music they
recorded. (Avoid redundancies similar to
those in Figure 9.4.)

PART relation

MANUFACTURER relation

PartName

CompanyName PartName Cost

Weight

Bolt 2X
Bolt 2Z
Nut V5

Company X
Company X
Company Y
Company Y
Company Y
Company Z

Bolt 2Z
Nut V5
Bolt 2X
Nut V5
Bolt 2Z
Nut V5

.03

.01

.02

.01

.04

.01

1
1.5
0.5

X relation Y relation

U V W R S

A

B

C

Z

D

Q

5

3

5

3

4

J

K

419Chapter Review Problems

19. Design a relational database containing infor-
mation about manufacturers of computing
equipment and their products. (Avoid redun-
dancies similar to those in Figure 9.4.)

20. Design a relational database containing infor-
mation about publishers, magazines, and sub-
scribers. (Avoid redundancies similar to those
in Figure 9.4.)

21. Design a relational database containing infor-
mation about parts, suppliers, and customers.
Each part might be supplied by several suppli-
ers and ordered by many customers. Each
supplier might supply many parts and have
many customers. Each customer might order
many parts from many suppliers; in fact, the
same part might be ordered from more than
one supplier. (Avoid redundancies similar to
those in Figure 9.4.)

22. Write a sequence of instructions (using the
operations SELECT, PROJECT and JOIN) to
retrieve the JobId, StartDate, and TermDate
for each job in the accounting department
from the relational database described in
Figure 9.5.

23. Answer the previous problem using SQL.

24. Write a sequence of instructions (using the
operations SELECT, PROJECT and JOIN) to
retrieve the Name, Address, JobTitle,
and Dept of every current employee
from the relational database described in
Figure 9.5.

25. Answer the previous problem using SQL.

26. Write a sequence of instructions (using the
operations SELECT, PROJECT and JOIN) to
retrieve the Name and JobTitle of each cur-
rent employee from the relational database
described in Figure 9.5.

27. Answer the previous problem using SQL.

28. What is the difference in the information sup-
plied by the single relation

and the two relations

29. Design a relational database containing infor-
mation about automobile parts and their sub-
parts. Be sure to allow for the fact that one
part might contain smaller parts and at the
same time be contained in still larger parts.

30. Pick a popular website such as www.google.com,
www.amazon.com, or www.ebay.com and
design a relational database that you would pro-
pose to serve as the site’s supporting database.

31. On the basis of the database represented in
Figure 9.5, state the question that is answered
by the following program segment:

TEMP d SELECT from ASSIGNMENT
where TermDate = “*”

RESULT d PROJECT JobId, StartDate
from TEMP

32. Translate the query in the previous problem
into SQL.

33. On the basis of the database represented in
Figure 9.5, state the question that is answered
by the following program segment:

TEMP1 d JOIN EMPLOYEE and ASSIGNMENT
where EMPLOYEE.EmplId =
ASSIGNMENT.EmplId

TEMP2 d SELECT from TEMP1 where
TermDate = “*”

RESULT d PROJECT name, StartDate
from TEMP2

34. Translate the query in the previous problem
into SQL.

35. On the basis of the database represented in
Figure 9.5, state the question that is answered
by the following program segment:

TEMP1 d JOIN EMPLOYEE and JOB
where EMPLOYEE.EmplId = JOB.EmplId

Name Department

Jones
Smith
Baker

Sales
Sales
Personnel

Department TelephoneNumber

Sales
Sales
Personnel

555-2222
555-3333
555-4444

Name Department TelephoneNumber

Jones
Smith
Baker

Sales
Sales
Personnel

555-2222
555-3333
555-4444

420 Chapter 9 Database Systems

www.google.com
www.amazon.com
www.ebay.com
www.google.com
www.amazon.com
www.ebay.com

TEMP2 d SELECT from TEMP1 where
Dept = “SALES”

RESULT d PROJECT Name from TEMP2

36. Translate the query in the previous problem
into SQL.

37. Translate the SQL statement

select JOB.JobTitle
from ASSIGNMENT, JOB
where ASSIGNMENT.JoblId = JOB.JobId
and ASSIGNMENT.EmplId = “34Y70”

into a sequence of SELECT, PROJECT, and
JOIN operations.

38. Translate the SQL statement

select ASSIGNMENT.StartDate
from ASSIGNMENT, EMPLOYEE
where ASSIGNMENT.EmplId =

EMPLOYEE.EmplId
and EMPLOYEE.Name = “Joe E.
Baker”

into a sequence of SELECT, PROJECT, and
JOIN operations.

39. Describe the effect that the following SQL
statement would have on the database in
Problem 13.

insert into MANUFACTURER
values (‘Company Z’, ‘Bolt 2X’, .03)

40. Describe the effect that the following SQL
statement would have on the database in
Problem 13.

update MANUFACTURER
set Cost = .03
where CompanyName = ‘Company Y’
and PartName = ‘Bolt 2X’

*41. Identify some of the objects that you would
expect to find in an object-oriented database
used to maintain a grocery store’s inventory.
What methods would you expect to find
within each of these objects?

*42. Identify some of the objects that you would
expect to find in an object-oriented database
used to maintain records of a library’s hold-
ings. What methods would you expect to find
within each of these objects?

*43. What incorrect information is generated by
the following schedule of transactions T1
and T2?

T1 is designed to compute the sum of
accounts A and B; T2 is designed to transfer
$100 from account A to account B. T1 begins
by retrieving the balance of account A; then,
T2 performs its transfer; and finally, T1
retrieves the balance of account B and reports
the sum of the values it has retrieved.

*44. Explain how the locking protocol described in
the text would resolve the error produced in
Problem 43.

*45. What effect would the wound-wait protocol
have on the sequence of events in Problem 43
if T1 was the younger transaction? If T2 was
the younger transaction?

*46. Suppose one transaction tries to add $100 to
an account whose balance is $200 while
another tries to withdraw $100 from the same
account. Describe an interweaving of these
transactions that would lead to a final balance
of $100. Describe an interweaving of these
transactions that would lead to a final balance
of $300.

*47. What is the difference between a transaction
having exclusive access or shared access to an
item in a database and why is the distinction
important?

*48. The problems discussed in Section 9.4 involv-
ing concurrent transactions are not limited to
database environments. What similar prob-
lems would arise when accessing a document
with word processors? (If you have a PC with
a word processor, try to access the same docu-
ment with two activations of the word proces-
sor and see what happens.)

*49. Suppose a sequential file contains 50,000
records and 5 milliseconds is required to inter-
rogate an entry. How long should we expect to
wait when retrieving a record from the middle
of the file?

*50. List the steps that are executed in the merge
algorithm in Figure 9.15 if one of the input
files is empty at the start.

*51. Modify the algorithm in Figure 9.15 to handle
the case in which both input files contain a
record with the same key field value. Assume
that these records are identical and that only
one should appear in the output file.

421Chapter Review Problems

*52. Design a system by which a file stored on a
disk can be processed as a sequential file with
either of two different orderings.

*53. Describe how a sequential file containing
information about a magazine’s subscribers
could be constructed using a text file as the
underlying structure.

*54. Design a technique by which a sequential file
whose logical records are not a consistent size
could be implemented as a text file. For exam-
ple, suppose you wanted to construct a
sequential file in which each logical record
contained information about a novelist as well
as a list of that author’s works.

*55. What advantages does an indexed file have
over a hash file? What advantages does a hash
file have over an indexed file?

*56. The chapter drew parallels between a tradi-
tional file index and the file directory system
maintained by an operating system. In what
ways does an operating system’s file directory
differ from a traditional index?

*57. If a hash file is partitioned into 10 buckets,
what is the probability of at least two of three
arbitrary records hashing to the same bucket?

(Assume the hash function gives no bucket
priority over the others.) How many records
must be stored in the file until it is more
likely for collisions to occur than not?

*58. Solve the previous problem, assuming that the
file is partitioned into 100 buckets instead of 10.

*59. If we are using the division technique dis-
cussed in this chapter as a hash function and
the file storage area is divided into 23 buckets,
which section should we search to find the
record whose key, when interpreted as a
binary value, is the integer 124?

*60. Compare the implementation of a hash file to
that of a homogeneous two-dimensional array.
How are the roles of the hash function and
the address polynomial similar?

*61. Give one advantage that
a. a sequential file has over an indexed file.
b. a sequential file has over a hash file.
c. an indexed file has over a sequential file.
d. an indexed file has over a hash file.
e. a hash file has over a sequential file.
f. a hash file has over an indexed file.

*62. In what way is a sequential file similar to a
linked list?

422 Chapter 9 Database Systems

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. In the United States, DNA records of all federal prisoners are now stored in a
database for use in criminal investigations. Would it be ethical to release this
information for other purposes—for example, for medical research? If so, for
what purposes? If not, why not? What are the pros and cons in each case?

2. To what extent should a university be allowed to release information about
its students? What about their names and addresses? What about grade dis-
tributions without identifying the students? Is your answer consistent with
your answer to Question 1?

3. What restrictions are appropriate regarding the construction of databases
about individuals? What information does a government have a right to hold
regarding its citizens? What information does an insurance company have a
right to hold regarding its clients? What information does a company have a

Social Issues

423Additional Reading

right to hold regarding its employees? Should controls in these settings be
implemented and, if so, how?

4. Is it proper for a credit card company to sell the purchasing patterns of its
clients to marketing firms? Is it acceptable for a sports car mail order business
to sell its mailing list to a sports car magazine? Is it acceptable for the Internal
Revenue Service in the United States to sell the names and addresses of those
taxpayers with significant capital gains to stockbrokers? If you cannot answer
with an unqualified yes or no, what would you propose as an acceptable policy?

5. To what extent is the designer of a database responsible for how the infor-
mation in that database is used?

6. Suppose a database mistakenly allows unapproved access to information in
the database. If that information is obtained and used adversely, to what
degree do the database designers share responsibility for the misuse of the
information? Does your answer depend on the amount of effort required by
the perpetrator to discover the flaw in the database design and obtain the
unauthorized information?

7. The prevalence of data mining raises numerous issues of ethics and privacy.
Is your privacy infringed if data mining reveals certain characteristics about
the overall population of your community? Does the use of data mining pro-
mote good business practice or bigotry? To what extent is it proper to force
citizens to participate in a census, knowing that more information will be
extracted from the data than is explicitly requested by the individual ques-
tionnaires? Does data mining give marketing firms an unfair advantage over
unsuspecting audiences? To what extent is profiling good or bad?

8. To what extent should a person or corporation be allowed to collect and hold
information about individuals? What if the information collected is already
publicly available although scattered among several sources? To what extent
should a person or company be expected to protect such information?

9. Many libraries offer a reference service so that patrons can enlist the assistance
of a librarian when searching for information. Will the existence of the Internet
and database technology render this service obsolete? If so, would that be a step
forward or backward? If not, why not? How will the existence of the Internet
and database technology affect the existence of libraries themselves?

10. To what extent are you exposed to the possibility of identity theft? What steps
can you take to minimize that exposure? How could you be damaged if you were
the victim of identity theft? Should you be liable when identity theft occurs?

Beg, C. E. and T. Connolly. Database Systems: A Practical Approach to Design,
Implementation and Management, 4th ed. Boston, MA: Addison-Wesley, 2005.

Berstein, A., M. Kifer and P. M. Lewis. Database Systems, 2nd ed. Boston, MA:
Addision-Wesley, 2006.

Date, C. J. An Introduction to Database Systems, 8th ed. Boston, MA: Addison-
Wesley, 2004.

Additional Reading

424 Chapter 9 Database Systems

Date, C. J. Databases, Types and the Relational Model, 3rd ed. Boston, MA:
Addison-Wesley, 2007.

Elmasri, R. and S. Navathe. Fundamentals of Database Systems, 6th ed. Boston,
MA: Addison-Wesley, 2011.

Patrick, J. J. SQL Fundamentals, 3rd ed. Upper Saddle River, NJ: Prentice-Hall,
2009.

Silberschatz, A., H. Korth, and S. Sudarshan. Database Systems Concepts, 8th ed.
New York: McGraw-Hill, 2009.

Ullman, J. D. and J. D. Widom. A First Course in Database Systems, 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2008.

Computer
Graphics

In this chapter we explore the field of computer graphics—a field

that is having a major impact in the production of motion pictures

and interactive video games. Indeed, advances in computer graphics

are freeing the visual media from restrictions of reality, and many

argue that computer-generated animation may soon replace the

need for traditional actors, sets, and photography throughout the

motion picture and television industries.

C H A P T E R

10

10.1 The Scope of
Computer Graphics

10.2 Overview of 3D
Graphics

10.3 Modeling
Modeling Individual Objects
Modeling Entire Scenes

10.4 Rendering
Light-Surface Interaction
Clipping, Scan Conversion, and

Hidden-Surface Removal
Shading
Rendering-Pipeline Hardware

*10.5 Dealing with Global
Lighting

Ray Tracing
Radiosity

10.6 Animation
Animation Basics
Kinematics and Dynamics
The Animation Process

*Asterisks indicate suggestions for
optional sections.

426 Chapter 10 Computer Graphics

Computer graphics is the branch of computer science that applies computer
technology to the production and manipulation of visual representations. It is
associated with a wide assortment of topics including the presentation of text,
the construction of graphs and charts, the development of graphical user inter-
faces, the manipulation of photographs, the production of video games, and the
creation of animated motion pictures. However, the term computer graphics is
increasingly being used in reference to the specific field called 3D graphics and
most of this chapter concentrates on this topic. We begin by defining 3D graphics
and clarifying its role within the broader interpretation of computer graphics.

10.1 The Scope of Computer Graphics
With the emergence of digital cameras, the popularity of software for manipulat-
ing digitally encoded images has rapidly expanded. This software allows one to
“touch-up” photographs by removing blemishes and the dreaded “red eye,” as
well as cutting and pasting portions from different photographs to create images
that do not necessarily reflect reality.

Similar techniques are often applied to create special effects in the motion
picture and television industries. In fact, such applications were major motivat-
ing factors for these industries shifting from analog systems such as film to digi-
tally encoded images. Applications include removing the appearance of support
wires, overlaying multiple images, or producing short sequences of new images
that are used to alter the action that was originally captured by a camera.

In addition to software for manipulating digital photographs and motion pic-
ture frames, there is now a wide variety of utility/application software packages
that assist in producing two-dimensional images ranging from simple line draw-
ings to sophisticated art. (A well-known elementary example is Microsoft’s appli-
cation called Paint.) At a minimum, these programs allow the user to draw dots
and lines, insert simple geometric shapes such as ovals and rectangles, fill
regions with color, and cut and paste designated portions of a drawing.

Note that all the preceding applications deal with the manipulation of flat
two-dimensional shapes and images. They are therefore examples of two related
fields of research: One is 2D graphics, the other is image processing. The dis-
tinction is that 2D graphics focuses on the task of converting two-dimensional
shapes (circles, rectangles, letters, etc.) into patterns of pixels to produce an
image, whereas image processing, which we will meet later in our study of arti-
ficial intelligence, focuses on analyzing the pixels in an image in order to iden-
tify patterns that can be used to enhance or perhaps “understand” the image. In
short, 2D graphics deals with producing images while image processing deals
with analyzing images.

In contrast to converting two-dimensional shapes into images as in 2D graph-
ics, the field of 3D graphics deals with converting three-dimensional shapes into
images. The process is to construct digitally encoded versions of three-dimensional
scenes and then to simulate the photographic process to produce images of those
scenes. The theme is analogous to that of traditional photography, except that
the scene that is “photographed” using 3D graphics techniques does not exist as a
physical reality but instead “exists” merely as a collection of data and algorithms.
Thus, 3D graphics involves “photographing” virtual worlds (Figure 10.1), whereas
traditional photography involves photographing the real world.

42710.1 The Scope of Computer Graphics

Figure 10.1 A “photograph” of a virtual world produced using 3D graphics (from Toy Story
by Walt Disney Pictures/Pixar Animation Studios) © Disney/Pixar

It is important to note that the creation of an image using 3D graphics
encompasses two distinct steps. One is the creation, encoding, storage, and
manipulation of the scene to be photographed. The other is the process of pro-
ducing the image. The former is a creative, artistic process; the latter is a com-
putationally intense process. These are topics that we will explore in the next
four sections.

The fact that 3D graphics produces “photographs” of virtual scenes makes it
ideal for use in interactive video games and animated motion picture produc-
tions where the shackles of reality would otherwise limit the action. An interac-
tive video game consists of an encoded three-dimensional virtual environment
with which the game player interacts. The images that the player sees are pro-
duced by means of 3D graphics technology. Animated motion pictures are
created in a similar manner, except that it is the human animator who interacts
with the virtual environment rather than the ultimate viewer. The product ulti-
mately distributed to the public is a sequence of two-dimensional images as
determined by the production’s director/producer.

We will investigate the use of 3D graphics in animation more thoroughly in
Section 10.6. For now, let us close this section by imagining where these applica-
tions may lead as 3D graphics technology advances. Today, motion pictures are
distributed as sequences of two-dimensional images. Although the projectors
that display this information have progressed from analog devices with reels of
film to digital technology using DVD players and flat panel displays, they still
deal only with two-dimensional representations.

Imagine, however, how this may change as our ability to create and manipu-
late realistic three-dimensional virtual worlds improves. Rather than “photo-
graphing” these virtual worlds and distributing a motion picture in the form of

428 Chapter 10 Computer Graphics

two-dimensional images, we could distribute the virtual worlds. A potential
viewer would receive access to the motion picture set rather than just the motion
picture. This three-dimensional set would then be viewed by means of a “3D
graphics projector” in much the same way that video games are viewed by special-
purpose “game boxes.” One might first watch a “suggested plot” that would result
in viewing the motion picture as the director/producer envisioned. But, the
viewer could also interact with the virtual set in a manner reminiscent of a video
game to produce other scenarios. The possibilities are extensive, especially when
we also consider the potentials of the three-dimensional human-machine inter-
faces that are being developed.

Questions & Exercises

1. Summarize the distinction between image processing, 2D graphics, and
3D graphics.

2. How does 3D graphics differ from traditional photography?
3. What are the two major steps in producing a “photograph” using 3D

graphics?

10.2 Overview of 3D Graphics
Let us begin our study of 3D graphics by considering the entire process of creat-
ing and displaying images—a process that consists of three steps: modeling, ren-
dering, and displaying. The modeling step (which we will explore in detail in
Section 10.3) is analogous to designing and constructing a set in the traditional
motion picture industry, except that the 3D graphics scene is “constructed” from
digitally encoded data and algorithms. Thus, the scene produced in the context
of computer graphics may never exist in reality.

The next step is to produce a two-dimensional image of the scene by comput-
ing how the objects in the scene would appear in a photograph made by a camera
at a specified position. This step is called rendering—the subject of Sections 10.4
and 10.5. Rendering involves applying the mathematics of analytic geometry to
compute the projection of the objects in the scene onto a flat surface known as
the projection plane in a manner analogous to a camera projecting a scene onto
film (Figure 10.2). The type of projection applied is a perspective projection,
which means that all objects are projected along straight lines, called projectors,
that extend from a common point called the center of projection, or the view
point. (This is in contrast to a parallel projection in which the projectors are
parallel. A perspective projection produces a projection similar to that seen by the
human eye, whereas a parallel projection produces a “true” profile of an object,
which is often useful in the context of engineering drawings.)

The restricted portion of the projection plane that defines the boundaries of
the final image is known as the image window. It corresponds to the rectangle
that is displayed in the viewfinder of most cameras to indicate the boundaries of
the potential picture. Indeed, the viewfinder of most cameras allows you to view
more of the camera’s projection plane than merely its image window. (You may

42910.2 Overview of 3D Graphics

Projection
plane

Image window

Projectors

Center of
projection

Object in
scene

Image of object
on projection plane

Figure 10.2 The 3D graphics paradigm

see the top of “Aunt Martha’s” head in the viewfinder, but unless the top of her
head is within the image window, it will not appear in the final picture.)

Once the portion of the scene that projects into the image window is identi-
fied, the appearance of each pixel in the final image is computed. This pixel-
by-pixel process can be computationally complex because it requires determining
how the objects in the scene interact with light—a hard, shiny surface in bright
light should be rendered differently than a soft, transparent surface in indirect
light. In turn, the rendering process borrows heavily from numerous fields
including material science and physics. Moreover, determining the appearance of
one object often requires knowledge about other objects in the scene. The object
may be in the shadow of another object, or the object may be a mirror whose
appearance is essentially that of another object.

As the appearance of each pixel is determined, the results are stored collec-
tively as a bit map representation of the image in a storage area called the frame
buffer. This buffer may be an area of main memory or, in the case of hardware
designed specifically for graphics applications, it may be a block of special pur-
pose memory circuitry.

Finally, the image stored in the frame buffer is either displayed for viewing
or transferred to more permanent storage for later display. If the image is being
produced for use in a motion picture, it may be stored and perhaps even modi-
fied before final presentation. However, in an interactive video game or flight
simulator, images must be displayed as they are produced on a real-time basis, a
requirement that often limits the quality of the images created. This is why the
graphics quality of full-feature animated productions distributed by the motion
picture industry exceeds that of today’s interactive video games.

We close our introduction to 3D graphics by analyzing a typical video game
system. The game itself is essentially an encoded virtual world together with
software that allows that world to be manipulated by the game player. As the
player manipulates that world, the game system repeatedly renders the scene
and stores the image in the image buffer. To overcome real-world time con-
straints, much of this rendering process is handled by special-purpose hardware.

430 Chapter 10 Computer Graphics

Indeed, the presence of this hardware is a distinguishing feature between a game
system and a generic personal computer. Finally, the display device in the game
system displays the contents of the frame buffer, giving the player the illusion of
a changing scene.

Questions & Exercises

1. Summarize the three steps involved in producing an image using 3D
graphics.

2. What is the difference between the projection plane and the image
window?

3. What is a frame buffer?

10.3 Modeling
A 3D computer graphics project begins in much the same way as a theatrical
stage production—a set must be designed and the required props must be col-
lected or constructed. In computer graphics terminology, the set is called a
scene and the props are called objects. Keep in mind that a 3D graphics scene is
virtual because it consists of objects that are “constructed” as digitally encoded
models rather than tangible, physical structures.

In this section we will explore topics related to “constructing” objects and
scenes. We begin with issues of modeling individual objects and conclude by
considering the task of collecting those objects to form a scene.

Modeling Individual Objects
In a stage production, the extent to which a prop conforms to reality depends on
how it will be used in the scene. We may not need an entire automobile, the tele-
phone does not have to be functional, and the background scenery may be
painted on a flat backdrop. Likewise, in the case of computer graphics, the
degree to which the software model of an object accurately reflects the true prop-
erties of the object depends on the requirements of the situation. More detail is
necessary to model objects in the foreground than objects in the background.
Moreover, more detail can be produced in those cases that are not under strin-
gent, real-time constraints.

Thus, some object models may be relatively simple whereas others may
be extremely complex. As a general rule, more precise models lead to higher-
quality images but longer rendering times. In turn, much of the ongoing
research in computer graphics seeks the development of techniques for con-
structing highly detailed, yet efficient, object models. Some of this research deals
with developing models that can provide different levels of detail depending on
the object’s ultimate role in the scene, the result being a single object model that
can be used in a changing environment.

The information required to describe an object includes the object’s shape as
well as additional properties, such as surface characteristics that determine how

43110.3 Modeling

the object interacts with light. For now, let us consider the task of modeling
shape.

Shape The shape of an object in 3D graphics is usually described as a collection
of small flat surfaces called planar patches, each of which is the shape of a poly-
gon. Collectively, these polygons form a polygonal mesh that approximates the
shape of the object being described (Figure 10.3). By using small planar patches,
the approximation can be made as precise as needed.

The planar patches in a polygonal mesh are often chosen to be triangles
because each triangle can be represented by its three vertices, which is the min-
imum number of points required to identify a flat surface in three-dimensional
space. In any case a polygonal mesh is represented as the collection of the ver-
tices of its planar patches.

A polygonal mesh representation of an object can be obtained in a variety of
ways. One is to begin with a precise geometric description of the desired shape,
and then use that description to construct a polygonal mesh. For example, ana-
lytic geometry tells us that a sphere (centered at the origin) with radius r is
described by the equation

r2 � x2 � y2 � z2

Based on this formula, we can establish equations for lines of latitude and longitude
on the sphere, identify the points where these lines intersect, and then use these
points as the vertices of a polygonal mesh. Similar techniques can be applied to
other traditional geometric shapes, and this is why characters in less-expensive
computer-generated animations often appear to be pieced together from such struc-
tures as spheres, cylinders, and cones.

More general shapes can be described by more sophisticated analytical
means. One is based on the use of Bezier curves (named after Pierre Bezier who
developed the concept in the early 1970s as an engineer for the Renault car com-
pany), which allow a curved line segment in three-dimensional space to be

Figure 10.3 A polygonal mesh for a sphere

432 Chapter 10 Computer Graphics

defined by only a few points called control points—two of which represent the
ends of the curve segment while the others indicate how the curve is distorted.
As an example, Figure 10.4 displays a curve defined by four control points. Note
how the curve appears to be pulled toward the two control points that do not
identify the segment ends. By moving these points, the curve can be twisted into
different shapes. (You may have experienced such techniques when construct-
ing curved lines using drawing software packages such as Microsoft’s Paint.)
Although we will not pursue the topic here, Bezier’s techniques for describing
curves can be extended to describe three-dimensional surfaces, known as Bezier
surfaces. In turn, Bezier surfaces have proven to be an efficient first step in the
process of obtaining polygonal meshes for complex surfaces.

You may ask why it is necessary to convert a precise description of a shape,
such as the concise formula of a sphere or the formulas describing a Bezier surface,
into an approximation of the shape using a polygonal mesh. The answer is that
representing the shape of all objects by polygonal meshes establishes a uniform
approach to the rendering process—a trait that allows entire scenes to be rendered
more efficiently. Thus, although geometric formulas provide precise descriptions
of shapes, they serve merely as tools for constructing polygonal meshes.

Another way of obtaining a polygonal mesh is to construct the mesh in a
brute force manner. This approach is popular in cases where a shape defies rep-
resentation by elegant mathematical techniques. The procedure is to build a
physical model of the object and then to record the location of points on the sur-
face of the model by touching the surface with a pen device that records its posi-
tion in three-dimensional space—a process known as digitizing. The collection
of points obtained can then be used as vertices to obtain a polygonal mesh
describing the shape.

Unfortunately, some shapes are so complex that obtaining realistic models
by geometric modeling or manual digitizing is unfeasible. Examples include
intricate plant structures such as trees, complex terrain such as mountain
ranges, and gaseous substances such as clouds, smoke, or the flames of a fire. In
these cases, polygonal meshes can be obtained by writing programs that con-
struct the desired shape automatically. Such programs are collectively known as

Curve

Control points
marking the ends
of the curve

Control points
used to distort
the curve

Figure 10.4 A Bezier curve

43310.3 Modeling

procedural models. In other words, a procedural model is a program unit that
applies an algorithm to generate a desired structure.

As an example, procedural models have been used to generate mountain
ranges by executing the following steps: Starting with a single triangle, identify the
midpoints of the triangle’s edges (Figure 10.5a). Then, connect these midpoints to
form a total of four smaller triangles (Figure 10.5b). Now, while holding the original
triangle’s vertices fixed, move the midpoints in three-dimensional space (allowing
the triangle’s edge lines to stretch or contract), thus distorting the triangular shapes
(Figure 10.5c). Repeat this process with each of the smaller triangles (Figure 10.5d),
and continue repeating the process until the desired detail is obtained.

Procedural models provide an efficient means of producing multiple com-
plex objects that are similar yet unique. For instance, a procedural model can be
used to construct a variety of realistic tree objects—each with its own, yet simi-
lar, branching structure. One approach to such tree models is to apply branching
rules to “grow” tree objects in much the same way that a parser (Section 6.4) con-
structs a parse tree from grammar rules. In fact, the collection of branching rules
used in these cases is often called a grammar. One grammar may be designed for
“growing” pine trees whereas another may be designed for “growing” oaks.

Midpoint

a. Identify the midpoints

b. Connect the midpoints

c. Move the midpoints

d. Repeat the process on the smaller triangles

Midpoint

Midpoint

Midpoint

Midpoint

Midpoint

Midpoint

Midpoint

Midpoint

Figure 10.5 Growing a polygonal mesh for a mountain range

434 Chapter 10 Computer Graphics

Another method of constructing procedural models is to simulate the under-
lying structure of an object as a large collection of particles. Such models are
called particle systems. Usually particle systems apply certain predefined rules
to move the particles in the system, perhaps in a manner reminiscent of molecu-
lar interactions, to produce the desired shape. As an example, particle systems
have been used to produce an animation of sloshing water as we will see later in
our discussion of animation. (Imagine a bucket of water modeled as a bucket of
marbles. As the bucket rocks, the marbles tumble around, simulating the move-
ment of water.) Other examples of particle system applications include flickering
fire flames, clouds, and crowd scenes.

The output of a procedural model is usually a polygonal mesh that approxi-
mates the shape of the desired object. In some cases, such as generating a moun-
tain range from triangles, the mesh is a natural consequence of the generating
process. In other cases, such as growing a tree from branching rules, the mesh
may be constructed as an additional, final step. For example, in the case of parti-
cle systems, the particles on the outer edge of the system are natural candidates
for the vertices of the final polygonal mesh.

Fractals
The construction of a mountain range by means of a procedural model as described
in the text (see Figure 10.5) is an example of the role that fractals play in 3D graphics.
Technically speaking a fractal is a geometric object whose “Hausdorff dimension is
greater than its topological dimension.” What this means intuitively is that the object
is formed by “packing together” copies of an object of a lower dimension. (Think of
the illusion of width created by “packing together” multiple parallel line segments.)
A fractal is usually formed by means of a recursive process, where each activation in
the recursion “packs together” additional (yet smaller) copies of the pattern being
used to build the fractal. The fractal that results is self-similar in that each portion,
when magnified, appears as a copy of itself.

A traditional example of a fractal is the von Koch snowflake that is formed by
repeatedly replacing the straight-line segments in the structure

with smaller versions of the same structure. This leads to a sequence of refinements
that proceeds as follows:

Fractals are often the backbone of procedural models in the field of 3D graphics.
Indeed, they have been used to produce realistic images of mountain ranges, vegeta-
tion, clouds, and smoke.

43510.3 Modeling

How precise the mesh generated by a procedural model may be depends on
the situation. A procedural model for a tree in a scene’s background may produce
a course mesh that reflects only the basic shape of the tree, whereas a procedural
model for a tree in the foreground may produce a mesh that distinguishes indi-
vidual branches and leaves.

Surface Characteristics A model consisting merely of a polygonal mesh captures
only the shape of an object. Most rendering systems are capable of enriching such
models during the rendering process to simulate various surface characteristics as
requested by the user. For example, by applying different shading techniques
(which we will introduce in Section 10.4) a user may specify that a polygonal
mesh for a ball be rendered as a red smooth ball or a green rough ball. In some
cases, such flexibility is desirable. But in situations requiring faithful rendering of
an original object, more specific information about the object must be included in
the model so that the rendering system will know what it should do.

There are a variety of techniques for encoding information about an object
in addition to its shape. For instance, along with each vertex in a polygonal mesh,
one might encode the color of the original object at that point on the object. This
information could then be used during rendering to recreate the appearance of
the original object.

In other instances color patterns can be associated with an object’s surface
by means of a process known as texture mapping. Texture mapping is similar
to the process of applying wallpaper in that it associates a predefined image with
the surface of an object. This image might be a digital photograph, an artist’s
rendering, or perhaps a computer-generated image. Traditional texture images
include brick walls, wood grained surfaces, and marble facades.

Suppose, for example, that we wanted to model a stone wall. We could repre-
sent the shape of the wall with a simple polygonal mesh depicting a long rectan-
gular solid. Then, with this mesh we could supply a two-dimensional image of
stone masonry. Later, during the rendering process, this image could be applied
to the rectangular solid to produce the appearance of a stone wall. More pre-
cisely, each time the rendering process needed to determine the appearance of a
point on the wall it would simply use the appearance of the corresponding point
in the masonry image.

Texture mapping works best when applied to relatively flat surfaces. The
result can look artificial if the texture image must be distorted significantly to
cover a curved surface (imagine the problems of trying to wallpaper a beach ball)
or if the texture image wraps completely around an object causing a seam where
the texture pattern may not blend with itself. Nonetheless, texture mapping has
proven to be an efficient means of simulating texture and is widely used in situa-
tions that are real-time sensitive—a prime example being interactive video games.

The Search for Realism Building object models that lead to realistic images is a topic
of ongoing research. Of special interest are materials associated with living char-
acters such as skin, hair, fur, and feathers. Much of this research is specific to a
particular substance and encompasses both modeling and rendering techniques.
For instance, to obtain realistic models of human skin, some researchers have
incorporated the degree to which light penetrates the epidermal and dermal skin
layers and how the contents of those layers affect the skin’s appearance.

436 Chapter 10 Computer Graphics

Another example involves the modeling of human hair. If hair is to be seen
from a distance, then more traditional modeling techniques may suffice. But, for
close-up views, realistic-appearing hair can be challenging. Problems include
translucent properties, textural depth, draping characteristics, and the manner
in which hair responds to external forces such as wind. To overcome these hur-
tles, some applications have resorted to modeling individual strands of hair—a
daunting task because the number of hairs on a human head can be on the order
of 100,000. More astounding, however, is that some researchers have constructed
hair models that address the scaled texture, color variation, and mechanical
dynamics of each individual strand.

Still another example in which considerable detail has been pursued is in
modeling cloth. In this case the intricacies of weaving patterns have been used to
produce proper textural distinctions between fabric types such as twill versus
satin, and detailed properties of yarn have been combined with knitting pattern
data to create models of knit fabric that lead to extremely realistic close-up images.
Note, for example, the details in Shrek’s sleeve that appear in Figure 10.6 (as well
as the realism of the feather in the hat worn by Puss in Boots, the cat being held by
Shrek). In addition, knowledge of physics and mechanical engineering has been
applied to individual threads to compute images of draped material that account
for such aspects as stretching of threads and shearing of the weave.

The production of realistic images is an active area of research that, as we
have said, incorporates techniques in both the modeling and rendering processes.

Figure 10.6 A scene from Shrek 2 by Dreamworks SKG (© Dreamworks/Picture Desk Inc./
Kobal Collection)

43710.3 Modeling

Typically, as progress is made, the new techniques are first incorporated in
applications that are not subject to real-time constraints, such as the graphics soft-
ware of motion picture production studios where there is a significant delay
between the modeling/rendering process and the ultimate presentation of
images. (Such advances can be observed by close comparison of the characters in
Disney’s Toy Story 2 (1999) as compared to those in the original Toy Story (1995).
For one thing, newly developed techniques were applied to improve the seams
between the polygonal meshes representing facial features, such as the boundary
between the nose and the rest of the face.) As these new techniques are refined
and streamlined, they find their way into real-time applications, and the quality
of the graphics in these environments improves as well. Truly realistic real-time
interaction with virtual worlds may not be too far in the future.

Modeling Entire Scenes
Once the objects in a scene have been adequately described and digitally encoded,
they are each assigned a location, size, and an orientation within the scene. This
collection of information is then linked to form a data structure called a scene
graph. In addition, the scene graph contains links to special objects representing
light sources as well as a particular object representing the camera. It is here that
the location, orientation, and focal properties of the camera are recorded.

Thus, a scene graph is analogous to a studio set-up in traditional photography.
It contains the camera, lights, props, and background scenery—everything that
will contribute to the appearance of the photograph when the shutter is snapped—
all in their proper places. The difference is that a traditional photography set-up
contains physical objects whereas a scene graph contains digitally encoded repre-
sentations of objects. In short, the scene graph describes a virtual world.

To emphasize the scope of a scene graph, consider again the image in Figure 10.1
and imagine the scene graph that was used to produce it. The characters, wall,
bedspread, bedpost, packaging behind Buzz Lightyear (the space ranger), window
molding, trees outside the window, and light sources were all modeled along with
their appropriate details and represented in the scene graph. In fact, objects that
you may initially consider as a single structure, such as Woody (the cowboy doll),
were actually represented in the scene graph as conglomerations of numerous
individual objects.

The positioning of the camera within a scene has many repercussions. As we
mentioned earlier, the detail with which objects are modeled depends on the
object’s location in the scene. Foreground objects require more detail than back-
ground objects, and the distinction between foreground and background depends on
the camera position. If the scene is to be used in a context analogous to a theatrical
stage setting, then the roles of foreground and background are well established and
the object models can be constructed accordingly. If, however, the context requires
that the camera’s position be altered for different images, the detail provided by the
object models might need to be adjusted between “photographs.” This is an area of
current research. One envisions a scene consisting of “intelligent” models that refine
their polygonal meshes and other features as the camera moves within the scene.

An interesting example of a moving camera scenario occurs in virtual reality
systems with which a human user is allowed to experience the sensation of
moving around within an imaginary three-dimensional world. The imaginary
world is represented by a scene graph, and the human views this environment

438 Chapter 10 Computer Graphics

by means of a camera that moves within the scene as dictated by the movements
of the human. Actually, to provide the depth perception of three dimensions,
two cameras are used: one representing the human’s right eye, the other repre-
senting the human’s left eye. By displaying the image obtained by each camera
in front of the appropriate eye, the human gets the illusion of residing inside the
three-dimensional scene, and when audio and tactile sensations are added to the
experience, the illusion can become quite realistic.

In closing, we should note that the construction of a scene graph resides at a
pivotal position in the 3D graphics process. Because it contains all the informa-
tion required to produce the final image, its completion marks the end of the
artistic modeling process and the beginning of the computationally intensive
process of rendering the image. Indeed, once the scene graph is constructed, the
graphics task becomes that of computing projections, determining surface
details at specific points, and simulating the effects of light—a collection of tasks
that is largely independent of the particular application.

3D Television
Several technologies exist to produce 3D imagery in the context of television, but all
rely on the same stereoscopic visual effect—two slightly different images arriving at the
left and right eyes are interpreted by the brain as depth. The most inexpensive mecha-
nisms for this require special glasses with filter lenses. Older colored lenses (used in
cinema in the 1950s) or the more modern polarized lenses filter out different aspects of
a single image from the screen, resulting in different images reaching different eyes.
More costly technology involves “active” glasses that alternately shutter left and right
lenses in synchronization with a 3D television that switches quickly between the left
and right images. Finally, 3D televisions are being developed that do not require special
glasses or head gear. They use elaborate arrays of filters or magnifying lens on the sur-
face of the screen to project the left and right images toward a viewer’s head at slightly
different angles, meaning that the left and right eyes of the viewer see different images.

Questions & Exercises

1. The following are four points (encoded using the traditional rectangular
coordinate system) that represent the vertices of a planar patch. Describe
the shape of the patch. (For those without a background in analytic geom-
etry, each triple tells you how to reach the point in question beginning at
the corner of a room. The first number tells you how far to walk along the
seam between the floor and the wall on your right. The second number
tells you how far to walk out into the room in a direction parallel to the
wall on your left. The third number tells you how far to climb up from
the floor. If a number is negative, you will have to pretend that you are a
ghost and can walk backward through walls and floors.)

(0, 0, 0) (0, 1, 1) (0, 2, 1) (0, 1, 0)

43910.4 Rendering

10.4 Rendering
It is time now to consider the process of rendering, which involves determining
how the objects in a scene graph would appear when projected onto the projec-
tion plane. There are several ways to accomplish the rendering task. This section
focuses on the traditional approach that is used by most of the more popular
graphics systems (video games, home computers, etc.) on the “consumer mar-
ket” today. The following section investigates two alternatives to this approach.

We begin with some background information on the interaction between
light and objects. After all, the appearance of an object is determined by the light
emitted from that object, and thus determining an object’s appearance ulti-
mately becomes the task of simulating the behavior of light.

Light-Surface Interaction
Depending on the material properties of an object, light striking its surface may
be absorbed, bounce off the surface as reflected light, or pass through the surface
(and be bent) as refracted light.

Reflection Let us consider a ray of light that is reflected off a flat opaque surface.
The ray arrives traveling in a straight line and strikes the surface at an angle
called the incidence angle. The angle at which the ray is reflected is identical to
the incidence angle. As shown in Figure 10.7, these angles are measured relative
to a line perpendicular (or normal) to the surface. (A line normal to a surface is
often referred to as simply “the normal” as in “The incidence angle is measured
relative to the normal.”) The incoming ray, the reflected ray, and the normal all
lie in the same plane.

2. What is a procedural model?
3. List some of the objects that might be present in a scene graph used to

produce an image in a park.
4. Why are shapes represented by polygonal meshes even though they

could be represented more precisely by geometric equations?
5. What is texture mapping?

Incidence angle

Incoming ray

Light
source Normal

Reflected ray

Angle of reflection

Figure 10.7 Reflected light

440 Chapter 10 Computer Graphics

If a surface is smooth, parallel light rays (such as those arriving from the
same light source) that strike the surface in the same area will be reflected in
essentially the same direction and travel away from the object as parallel
rays. Such reflected light is called specular light. Note that specular light
can be observed only when the orientation of the surface and the light source
causes the light to be reflected in the viewer’s direction. Thus, it normally
appears as bright highlights on a surface. Moreover, because specular light
has minimal contact with the surface, it tends to portray the color of the orig-
inal light source.

Surfaces, however, are rarely perfectly smooth, and therefore many light
rays may strike the surface at points whose orientations differ from that of the
prevailing surface. Moreover, light rays often penetrate the immediate boundary
of a surface and ricochet among the surface particles before finally departing as
reflected light. The result is that many rays will be scattered in different direc-
tions. This scattered light is called diffuse light. Unlike specular light, diffuse
light is visible within a wide range of directions. And, because it tends to have
prolonged contact with the surface, diffuse light is more susceptible to the
absorption properties of the material and therefore tends to portray the color of
the object.

Figure 10.8 presents a ball that is illuminated by a single light source. The
bright highlight on the ball is produced by specular light. The rest of the hemi-
sphere facing the light source is seen by means of diffuse light. Note that the
hemisphere facing away from the primary light source is not visible by means of
light being reflected directly from that source. The ability to see this portion of
the ball is due to ambient light, which is “stray” or scattered light that is not
associated with any particular source or direction. Portions of surfaces illumi-
nated by ambient light often appear as a uniform dark color.

Figure 10.8 Specular versus diffuse light

Specular light

Diffuse light

44110.4 Rendering

Most surfaces reflect both specular and diffuse light. The characteristics of
the surface determine the proportion of each. Smooth surfaces appear shiny
because they reflect more specular light than diffuse light. Rough surfaces appear
dull because they reflect more diffuse light than specular light. Moreover, due to
minute properties of some surfaces, the ratio of specular to diffuse light varies
depending on the direction of the incoming light. Light striking such a surface
from one direction may be reflected primarily as specular light, whereas light
striking the surface from another direction may be reflected primarily as diffuse
light. Thus, the appearance of the surface will shift from shiny to dull as it is
rotated. Such surfaces are called anisotropic surfaces, as opposed to isotropic
surfaces whose reflection patterns are symmetric. Examples of anisotropic sur-
faces are found in fabric such as satin, where the nap of the cloth alters the mate-
rial’s appearance depending on its orientation. Another example is the grassy
surface of an athletic field, where the lie of the grass (usually determined by the
manner in which the grass is cut) produces anisotropic visual effects such as light
and dark striped patterns.

Refraction Now consider light striking an object that is transparent rather than
opaque. In this case light rays pass through the object rather than bounce off its
surface. As the rays penetrate the surface, their direction is altered—a phenome-
non called refraction (Figure 10.9). The degree of refraction is determined by
the refractive index of the materials involved. The refractive index is related to
the density of the material. Dense materials tend to have a higher refractive
index than less dense materials. As a light ray passes into a material with a
higher reflective index (such as passing from air into water), it bends toward the
normal at the point of entry. If it passes into a material with a lower refractive
index, it bends away from the normal.

To render transparent objects properly, rendering software must know the
refractive indexes of the materials involved. But this is not the whole story. The
rendering software must also know which side of an object’s surface represents

Normal
Light

source

Incoming ray

Incidence angle

Angle of
refraction

Boundary
between
materials

Refracted ray

Material with
higher fractive
index

Figure 10.9 Refracted light

442 Chapter 10 Computer Graphics

the inside of an object as opposed to the outside. Is the light entering the object
or exiting the object? Techniques for obtaining this information are sometimes
quite subtle. For example, if we agree to always list the vertices of each polygon
in a polygonal mesh in a counter-clockwise order as seen from outside the
object, then the list cleverly encodes which side of the patch represents the
outside of the object.

Clipping, Scan Conversion, and Hidden-Surface Removal
Let us now focus on the process of producing an image from a scene graph. Our
approach for now is to follow the techniques used in most interactive video game
systems. Collectively, these techniques form a well-established paradigm known
as the rendering pipeline. We will consider some of the pros and cons of this
approach at the end of this section and explore two alternatives in the following
section. For now it is helpful to note that the rendering pipeline deals with
opaque objects and thus refraction is not an issue. Moreover, it ignores interac-
tions between objects so that, for now, we will not be concerned with mirrors
and shadows.

The rendering pipeline begins by identifying the region in a three-dimensional
scene that contains the objects (or parts of objects) that can be “seen” by the cam-
era. This region, called the view volume, is the space within the pyramid defined
by straight lines extending from the center of projection through the corners of the
image window (Figure 10.10).

Only the portion of an object inside
the view volume will appear inside

the image window

View volume

Center of
projection

Image window

Figure 10.10 Identifying the region of the scene that lies inside the view volume

44310.4 Rendering

Once the view volume is identified, the task is to discard from considera-
tion those objects or parts of objects that do not intersect the view volume.
After all, the projection of that portion of the scene will fall outside the image
window and therefore not appear in the final image. The first step is to discard
all those objects that are totally outside the view volume. To streamline this
process, a scene graph may be organized in a tree structure in which objects in
different regions of the scene are stored in different branches. In turn, large
sections of the scene graph can be discarded merely by ignoring entire
branches in the tree.

After identifying and discarding the objects that do not intersect the view
volume, the remaining objects are trimmed by a process known as clipping,
which essentially slices off the portion of each object that lies outside the view
volume. More precisely, clipping is the process of comparing each individual
planar patch to the boundaries of the view volume and trimming off those por-
tions of the patch that fall outside. The results are polygonal meshes (of possibly
trimmed planar patches) that lie entirely within the view volume.

The next step in the rendering pipeline is to identify the points on the
remaining planar patches that are to be associated with pixel positions in the final
image. It is important to realize that only these points will contribute to the final
picture. If a detail on an object falls between the pixel positions, it will not be
represented by a pixel and therefore not be visible in the final image. This is why
pixel counts are heavily advertised in the digital camera market. The more pixels
there are, the more likely that small details will be captured in a photograph.

The process of associating pixel positions with points in the scene is called
scan conversion (because it involves converting the patches into horizontal
rows of pixels called scan lines) or rasterization (because an array of pixels is
known as a raster). Scan conversion is accomplished by extending straight lines
(projectors) from the center of projection through each pixel position in the
image window and then identifying the points at which these projectors inter-
sect the planar patches. These, then, are the points on the patches at which we
must determine an object’s appearance. Indeed, these are the points that will be
represented by the pixels in the final image.

Aliasing
Have you ever noticed the weird “glittery” appearance that striped shirts and ties
have on television screens? This is the result of the phenomenon called aliasing,
which occurs when a pattern in the desired image meshes inappropriately with the
density of the pixels comprising the image. As an example, suppose a portion of the
desired image consists of alternating black and white stripes but the center of all
the pixels happens to fall only on the black stripes. The object would then be ren-
dered as being completely black. But, if the object moves slightly, the center of all the
pixels may fall on the white stripes, meaning that the object would suddenly change
to white. There are a variety of ways to compensate for this annoying effect. One is to
render each pixel as the average of a small area in the image rather than as the
appearance of a precise single point.

444 Chapter 10 Computer Graphics

Figure 10.11 depicts the scan conversion of a single triangular patch. Part a of
the figure shows how a projector is used to associate a pixel position with a point
on the patch. Part b shows the pixel image of the patch as determined by the scan
conversion. The entire array of pixels (the raster) is represented by a grid, and the
pixels associated with the triangle have been shaded. Note that the figure also
demonstrates the distortion that can occur when scan converting a shape whose
features are small relative to the size of the pixels. Such jagged edges are familiar
to users of most personal computer display screens.

Unfortunately, scan conversion of an entire scene (or even a single object)
is not as straightforward as scan converting a single patch. This is because
when multiple patches are involved, one patch may block the view of another.
Thus, even though a projector intersects a planar patch, that point on the patch
may not be visible in the final image. Identifying and discarding points in

Pixels associated
with triangular patch

Raster

a. The scan conversion process

b. Raster showing the “projected shape” of the triangular patch

Pixel position

Triangular
patch

Projector

Image window
divided into
pixel positions

Center of projection

Figure 10.11 The scan conversion of a triangular patch

44510.4 Rendering

a scene that are blocked from view is the process called hidden-surface
removal.

A specific version of hidden-surface removal is back face elimination,
which involves discarding from consideration those patches in a polygonal mesh
that represent the “back side” of an object. Note that back face elimination is
relatively straightforward because the patches on the back side of an object can
be identified as those whose orientation faces away from the camera.

Solving the complete hidden-surface removal problem, however, requires much
more than back face elimination. Imagine, for example, a scene of an automobile in
front of a building. Planar patches from both the automobile and the building will
project into the same area of the image window. Where overlaps occur, the pixel
data ultimately stored in the frame buffer should indicate the appearance of the
object in the foreground (the automobile) rather than the object in the background
(the building). In short, if a projector intersects more than one planar patch, it is the
point on the patch nearest the image window that should be rendered.

A simplistic approach to solving this “foreground/background” problem,
known as the painter’s algorithm, is to arrange the objects in the scene accord-
ing to their distances from the camera and then to scan convert the more distant
objects first, allowing the results of scan converting closer objects to override any
previous results. Unfortunately, the painter’s algorithm fails to handle cases in
which objects are intertwined. Part of a tree may be behind another object while
another part of the tree may be in front of that object.

More encompassing solutions to the “foreground/background” problem are
obtained by focusing on individual pixels rather than entire objects. A popular
technique uses an extra storage area, called a z-buffer (also a depth buffer),
which contains an entry for each pixel in the image (or, equivalently, each pixel
entry in the frame buffer). Each position in the z-buffer is used to store the dis-
tance along the appropriate projector from the camera to the object currently
represented by the corresponding entry in the frame buffer. Thus, with the aid of
a z-buffer, the “foreground/background” problem can be resolved by computing
and storing the appearance of a pixel only if data for that pixel has not yet been
placed in the frame buffer or if the point on the object currently being consid-
ered is closer than that of the previously rendered object as determined by the
distance information recorded in the z-buffer.

More precisely, when using a z-buffer, the rendering process can proceed as
follows: Set all entries in the z-buffer to a value representing the maximum dis-
tance from the camera that an object will be considered for rendering. Then, each
time a new point on a planar patch is considered for rendering, first compare its
distance from the camera to the value in the z-buffer associated with the current
pixel position. If that distance is less than the value found in the z-buffer, compute
the appearance of the point, record the results in the frame buffer, and replace the
old entry in the z-buffer with the distance to the point just rendered. (Note that if
the distance to the point is greater than the value found in the z-buffer, no action
needs to be taken because the point on the patch is too far away to be considered
or it is blocked from view by a closer point that has already been rendered.)

Shading
Once scan conversion has identified a point on a planar patch that is to appear in
the final image, the rendering task becomes that of determining the appearance of
the patch at that point. This process is called shading. Note that shading involves

446 Chapter 10 Computer Graphics

computing the characteristics of the light projected toward the camera from the
point in question, which, in turn, depends on the orientation of the surface at that
point. After all, it is the orientation of the surface at the point that determines the
degree of specular, diffuse, and ambient light witnessed by the camera.

A straightforward solution to the shading problem, called flat shading, is to
use the orientation of a planar patch as the orientation of each point on the
patch—that is, to assume the surface over each patch is flat. The result, how-
ever, is that the final image will appear faceted as depicted in Figure 10.12
rather than rounded as shown in Figure 10.8. In a sense, flat shading produces
an image of the polygonal mesh itself rather than the object being modeled by
the mesh.

To produce a more realistic image, the rendering process must blend the
appearance of individual planar patches into a smoothly curved appearing sur-
face. This is accomplished by estimating the true orientation of the original sur-
face at each individual point being rendered.

Such estimation schemes normally begin with data indicating the surface
orientation at the vertices of the polygonal mesh. There are several ways to
obtain this data. One is to encode the orientation of the original surface at each
vertex and attach this data to the polygonal mesh as part of the modeling
process. This produces a polygonal mesh with arrows, called normal vectors,
attached to each vertex. Each normal vector points outward in the direction per-
pendicular to the original surface. The result is a polygonal mesh that can be
envisioned as shown in Figure 10.13. (Another approach is to compute the ori-
entation of each patch adjacent to a vertex and then use an “average” of those ori-
entations as an estimate of the surface’s orientation at the vertex.)

Regardless of how the orientation of the original surface at a polygonal
mesh’s vertices is obtained, several strategies are available for shading a planar
patch based on this data. These include Gouraud shading and Phong shading,
the distinction between which is subtle. Both begin by using the information
about the surface orientation at a patch’s vertices to approximate the surface

Figure 10.12 A sphere as it might appear when rendered by flat shading

44710.4 Rendering

orientation along the boundaries of the patch. Gouraud shading then applies that
information to determine the appearance of the surface along the patch bound-
aries and, finally, interpolates that boundary appearance to estimate the appear-
ance of the surface at points in the interior of the patch. In contrast, Phong
shading interpolates the orientation of the surface along the patch’s boundaries
to estimate the surface orientation at points within the patch’s interior and only
then considers questions of appearance. (In short, Gouraud shading converts ori-
entation information into color information and then interpolates the color
information. Phong shading interpolates orientation information until the orien-
tation of the point in question is estimated, and then converts that orientation
information into color information.) The result is that Phong shading is more
likely to detect specular light within a patch’s interior because it is more respon-
sive to changes in surface orientation. (See Question 3 at the end of this section.)

Finally, we should note that basic shading techniques can be augmented to
add the appearance of texture to a surface. An example, called bump mapping,
is essentially a way of generating small variations in the apparent orientation of
a surface so that the surface appears to be rough. More precisely, bump mapping
adds a degree of randomness to the interpolation process applied by traditional
shading algorithms so that the overall surface appears to have texture, as demon-
strated in Figure 10.14.

Vectors indicate the
orientation of the
original surface.

Figure 10.13 A conceptual view of a polygonal mesh with normal vectors at its vertices

Figure 10.14 A sphere as it might appear when rendered using bump mapping

448 Chapter 10 Computer Graphics

Rendering-Pipeline Hardware
As we have already said, the processes of clipping, scan conversion, hidden-
surface removal, and shading are viewed collectively as a sequence known as the
rendering pipeline. Moreover, efficient algorithms for performing these tasks are
well-known and have been implemented directly in electronic circuitry, which
has been miniaturized by VLSI technology to produce chips that perform the
entire rendering pipeline automatically. Today, even inexpensive examples are
capable of rendering millions of planar patches per second.

Most computer systems that are designed for graphics applications, includ-
ing video game machines, incorporate these devices in their design. In the case
of more general-purpose computer systems, this technology can be added in the
form of a graphics card, or graphics adapter, which is attached to the com-
puter’s bus as a specialized controller (see Chapter 2). Such hardware substan-
tially reduces the time required to perform the rendering process.

Rendering-pipeline hardware also reduces the complexity of graphics appli-
cation software. Essentially, all the software needs to do is provide the graphics
hardware with the scene graph. The hardware then performs the pipeline steps
and places the results in the frame buffer. Thus, from the software’s perspective,
the entire rendering pipeline is reduced to a single step using the hardware as an
abstract tool.

As an example, let us again consider an interactive video game. To initial-
ize the game, the game software transfers the scene graph to the graphics hard-
ware. The hardware then renders the scene and places the image in the frame
buffer from where it is automatically displayed on the monitor screen. As the
game progresses, the game software merely updates the scene graph in the
graphics hardware to reflect the changing game situation, and the hardware
repeatedly renders the scene, each time placing the updated image in the
frame buffer.

We should note, however, that the capabilities and communication proper-
ties of different graphics hardware vary substantially. Thus, if an application
such as a video game were developed for a specific graphics platform, it would
have to be modified if transferred to another environment. To reduce this
dependence on the specifics of graphics systems, standard software interfaces
have been developed to play an intermediary role between graphics hardware
and application software. These interfaces consist of software routines that con-
vert standardized commands into the specific instructions required by a particu-
lar graphics hardware system. Examples include OpenGL (short for Open
Graphics Library), which is a nonproprietary system developed by Silicon
Graphics and widely used in the video game industry, and Direct3D, which was
developed by Microsoft for use in Microsoft Windows environments.

In closing we should note that, with all the advantages associated with the
rendering pipeline, there are disadvantages as well—the most significant of
which is the fact that the pipeline implements only a local lighting model,
meaning that the pipeline renders each object independently of other objects.
That is, under a local lighting model, each object is rendered in relation to the
light sources as though it were the only object in the scene. The result is that
light interactions between objects, such as shadows and reflections, are not cap-
tured. This is in contrast to a global lighting model in which interactions
among objects are considered. We will discuss two techniques for implementing

44910.5 Dealing with Global Lighting

a global lighting model in the next section. For now we merely note that these
techniques lie outside the real-time capabilities of current technology.

This does not mean, however, that systems using rendering-pipeline hard-
ware are not able to produce some global lighting effects. Indeed, clever tech-
niques have been developed to overcome some of the restrictions imposed by a
local lighting model. In particular, the appearance of drop shadows, which are
shadows cast on the ground, can be simulated within the context of a local light-
ing model by making a copy of the polygonal mesh of the object casting the
shadow, squashing the duplicate mesh flat, placing it on the ground, and coloring
it dark. In other words, the shadow is modeled as though it were another object,
which can then be rendered by traditional rendering-pipeline hardware to pro-
duce the illusion of a shadow. Such techniques are popular in both “consumer
level” applications such as interactive video games and “professional level” appli-
cations such as flight simulators.

Questions & Exercises

1. Summarize the distinction between specular light, diffuse light, and
ambient light.

2. Define the terms clipping and scan conversion.
3. Gouraud shading and Phong shading can be summarized as follows:

Gouraud shading uses the orientation of an object’s surface along the
boundaries of a patch to determine the appearance of the surface along
the boundaries and then interpolates these appearances over the inte-
rior of the patch to determine the appearance of the particular points in
question. Phong shading interpolates the boundary orientations to com-
pute the orientations of points interior to the patch and then uses those
orientations to determine the appearance of the particular points in
question. How would the appearance of an object possibly differ?

4. What is the significance of the rendering pipeline?
5. Describe how reflections in a mirror might be simulated using a local

lighting model.

10.5 Dealing with Global Lighting
Researchers are currently investigating two alternatives to the rendering pipeline,
both of which implement a global lighting model and thus provide the potential of
overcoming the local lighting model restrictions inherent in the traditional
pipeline. One of these alternatives is ray tracing, the other is radiosity. Both are
meticulous, time-consuming processes, as we are about to see.

Ray Tracing
Ray tracing is essentially the process of following a ray of light backward to find
its source. The process starts by selecting a pixel to be rendered, identifying the
straight line passing through that pixel and the center of projection, and then

450 Chapter 10 Computer Graphics

tracing the light ray that strikes the image window along that line. This tracing
process involves following the line into the scene until it contacts an object. If
that object is a light source, the ray tracing process terminates and the pixel is
rendered as a point on the light source. Otherwise, the properties of the object’s
surface are evaluated to determine the direction of the incoming ray of light that
was reflected to produce the ray the process is backtracking. The process then
follows that incoming ray backward to find its source, at which point yet another
ray may be identified and traced.

An example of ray tracing is depicted in Figure 10.15 where we see a ray
traced backward through the image window to the surface of a mirror. From
there the ray is traced to a shiny ball, from there back to the mirror, and from the
mirror to the light source. Based on the information gained from this tracing
process, the pixel in the image should appear as a point on the ball illuminated
by the light source reflected in the mirror.

One drawback to ray tracing is that it traces only specular reflections. Thus,
all the objects rendered by this method tend to have a shiny appearance. To
counter this effect, a variation of ray tracing, called distributed ray tracing, can
be applied. The difference is that rather than tracing a single ray backward from
a point of reflection, distributed ray tracing traces multiple rays from that point,
each extending in a slightly different direction.

Another variation to basic ray tracing is applicable when transparent objects
are involved. In this case, two effects must be considered each time a ray is traced
back to a surface. One is reflection, the other is refraction. Note, for example, the
transparent appearance of Buzz’s (the space ranger) helmet in Figure 10.1 as well
as the specular highlights close to the helmet’s upper surface. In this case, the task

Light source

Ball

Light ray

This point on the mirror
should be rendered as
the back of the ball
illuminated by light
reflected from
the mirror

Mirror

Image window

Pixel location

Center of
projection

Figure 10.15 Ray tracing

45110.5 Dealing with Global Lighting

of tracing the original ray splits into two tasks: tracing the reflection backwards
and tracing the refraction backwards.

Ray tracing is normally implemented recursively, with each activation being
asked to trace a ray to its source. The first activation may trace its ray to a shiny
opaque surface. At that point it would recognize that its ray is the reflection of an
incoming ray, compute the direction of that incoming ray, and call another acti-
vation to trace that incoming ray. This second activation would perform a simi-
lar task to find the source of its ray—a process that may result in calling still
other activations.

A variety of conditions can be used to terminate recursive ray tracing. The
ray being traced may reach a light source, the ray being traced may exit the
scene without striking an object, or the number of activations may reach a pre-
determined limit. Still another termination condition can be based on the
absorption properties of the surfaces encountered. If a surface is highly absorp-
tive, such as a dark matte surface, then any incoming ray will have little effect on
the surface’s appearance and ray tracing can cease. Accumulative absorption can
have a similar effect. That is, ray tracing can terminate after visiting several
moderately absorptive surfaces.

Being based on a global lighting model, ray tracing avoids many of the restric-
tions inherent in the traditional rendering pipeline. For example, the problems of
hidden-surface removal and detecting shadows are naturally solved in the ray
tracing process. Unfortunately, ray tracing has the major drawback of being time
consuming. As each reflection is traced back to its source, the number of compu-
tations required grows immensely—a problem that is compounded when allow-
ing for refractions or applying distributed ray tracing. Hence, ray tracing is not
implemented in “consumer-level” real-time systems such as interactive video
games but instead may be found in “professional-level” applications that are not
real-time sensitive such as the graphics software used by motion picture studios.

Radiosity
Another alternative to the traditional rendering pipeline is radiosity. Whereas
ray tracing takes a point-by-point approach by tracing individual rays of light,
radiosity takes a more regional approach by considering the total light energy
radiated between pairs of planar patches. This radiated light energy is essentially
diffuse light. The light energy that is radiated from an object is either generated
by the object (as in the case of a light source) or reflected off the object. The
appearance of each object is then determined by considering the light energy it
receives from other objects.

The degree to which light radiated from one object affects the appearance of
another is determined by parameters called form factors. A unique form factor
is associated with each pair of patches in the scene to be rendered. These form
factors take into account the geometric relationships between the patches
involved such as separation distance and relative orientations. To determine the
appearance of a patch in the scene, the amount of light energy received from all
the other patches in the scene is computed using the appropriate form factor for
each computation. The results are combined to produce a single color and inten-
sity for each patch. These values are then interpolated among adjacent patches
using techniques similar to Gouraud shading to obtain a smoothly contoured
appearing surface rather than a faceted one.

452 Chapter 10 Computer Graphics

Because there are numerous patches to be considered, radiosity is very com-
putationally intense. In turn, like ray tracing, its application falls outside the
capabilities of real-time graphics systems currently available in the consumer
market. Another problem with radiosity is that because it deals with units con-
sisting of entire patches rather than individual points, it fails to capture the
details of specular light, meaning that all the surfaces rendered by radiosity tend
to have a dull appearance.

Radiosity does, however, have its merits. One is that determining the appear-
ance of objects using radiosity is independent of the camera. Thus, once the radios-
ity computations for a scene have been performed, the rendering of the scene can
be completed quickly for various camera positions. Another is that radiosity cap-
tures many of the subtle characteristics of light such as color bleeding where the
color of one object affects the hue of other objects around it. In turn, radiosity has
its niches. One is in graphics software used in architectural design settings. Indeed,
the light within a proposed building consists mainly of diffuse and ambient light so
that specular effects are not significant, and the fact that new camera positions can
be handled efficiently means that an architect can quickly view different rooms
from different perspectives.

Questions & Exercises

1. Why does ray tracing follow rays backward from the image window to
the light source rather than forward from the light source to the image
window?

2. What is the difference between straightforward ray tracing and distributed
ray tracing?

3. What are two disadvantages of radiosity?
4. In what ways are ray tracing and radiosity similar? In what ways are they

different?

10.6 Animation
We turn now to the subject of computer animation, which is the use of computer
technology to produce and display images that exhibit motion.

Animation Basics
We begin by introducing some basic animation concepts.

Frames Animation is achieved by displaying a sequence of images, called frames,
in rapid succession. These frames capture the appearance of a changing scene
at regular time intervals, and thus their sequential presentation creates the illu-
sion of observing the scene continuously over time. The standard rate of display
in the motion picture industry is twenty-four frames per second. The standard
in broadcast video is sixty frames per second (although because every other
video frame is designed to be interwoven with the preceding frame to produce

45310.6 Animation

a complete detailed image, video can also be classified as a thirty-frames-per-
second system).

Frames can be produced by traditional photography or generated artificially
by means of computer graphics. Moreover, the two techniques can be combined.
For example, 2D graphics software is often used to modify images obtained via
photography to remove the appearance of support wires, to superimpose images,
and to create the illusion of morphing, which is the process of one object
appearing to change into another.

A closer look at morphing provides interesting insights into the animation
process. Constructing a morphing effect begins by identifying a pair of key
frames that bracket the morphing sequence. One is the last image before the
morph is to occur; the other is the first image after the morph has occurred. (In
traditional motion picture production, this requires “filming” two sequences of
action: one leading up to the occurrence of the morph, the other proceeding
after the morph.) Features such as points and lines, called control points, in the
frame preceding the morph are then associated with similar features in the post-
morph frame, and the morph is constructed by applying mathematical tech-
niques that incrementally distort one image into the other while using the
control points as guides. By recording the images produced during this distortion
process, a short sequence of artificially generated images is obtained that fills the
gap between the original key frames and creates the morphing illusion.

The Storyboard A typical animation project begins with the creation of a
storyboard, which is a sequence of two-dimensional images that tell the com-
plete story in the form of sketches of scenes at key points in the presentation.
The ultimate role of the storyboard depends on whether the animation project
is implemented using 2D or 3D techniques. In a project using 2D graphics, the
storyboard typically evolves into the final set of frames in much the same way
that it did back in the Disney studios of the 1920s. In those days, artists, called
master animators, would refine the storyboard into detailed frames, called key
frames, that established the appearance of the characters and scenery at regu-
lar intervals of the animation. Assistant animators would then draw additional
frames that would fill the gaps between the key frames so that the animation

Kineographs
A kineograph is a book of animation frames that simulate motion when the pages are
flipped rapidly. You can make your own kineograph out of this text (assuming that
you have not already filled the margins with doodles). Simply place a dot in the mar-
gin of the first page and then, based on the position of the impression made on the
third page, place another dot on the third page in a slightly different position than
the dot on the first. Repeat this process on each consecutive odd page until you
reach the end of the book. Now flip through the pages and watch the dot dance
around. Presto! You have made your own kineograph and perhaps taken the first step
toward a career in animation! As an experiment in kinematics, try drawing a stick
figure instead of a simple dot and make the stick figure appear to walk. Now, experi-
ment with dynamics by producing the image of a drop of water hitting the ground.

454 Chapter 10 Computer Graphics

would appear continuous and smooth. This fill-in-the-gap process was called
in-betweening.

The major distinction between this process and that used today is that ani-
mators now use image processing and 2D graphics software to draw key frames
and much of the in-betweening process has been automated so that the role of
assistant animators has essentially disappeared.

3D Animation Most video game animation and full-feature animated productions
are now created using 3D graphics. In these cases the project still begins with the
creation of a storyboard consisting of two-dimensional images. However, rather
than evolving into the final product as with 2D graphics projects, the storyboard
is used as a guide in the construction of a three-dimensional virtual world. This
virtual world is then repeatedly “photographed” as the objects within it are
moved according to the script or the progression of the video game.

Perhaps we should pause here and clarify what it means for an object to move
within a computer-generated scene. Keep in mind that the “object” is actually a
collection of data stored in the scene graph. Among the data in this collection are
values that indicate the location and orientation of the object. Thus, “moving” an
object is accomplished merely by changing these values. Once these changes have
been made, the new values will be used in the rendering process. Consequently,
the object will appear to have moved in the final two-dimensional image.

Kinematics and Dynamics
The degree to which motion within a 3D graphics scene is automated or con-
trolled by a human animator varies among applications. The goal, of course, is
to automate the entire process. To this end, much research has been directed
toward finding ways to identify and simulate the motion of naturally occur-
ring phenomena. Two areas of mechanics have proven particularly useful in
this regard.

One is dynamics, which deals with describing the motion of an object by
applying the laws of physics to determine the effects of the forces acting on the
object. For example, in addition to a location, an object in a scene might be
assigned a direction of motion, speed, and mass. These items could then be used
to determine the effects that gravity or collisions with other objects would have

Blurring
In the field of traditional photography, much effort has been expended toward the goal
of producing sharp images of fast-moving objects. In the field of animation, the oppo-
site problem arises. If each frame in a sequence depicting a moving object portrays the
object as a sharp image, then the motion may appear jerky. However, sharp images are
a natural byproduct of creating frames as individual images of stationary objects in a
scene graph. Thus, animators often artificially distort the image of a moving object in a
computer-generated frame. One technique, called supersampling, is to produce multi-
ple images in which the moving object is only slightly displaced and then to overlay
these images to produce a single frame. Another technique is to alter the shape of the
moving object so that it appears elongated along the direction of motion.

45510.6 Animation

on the object, which would allow software to calculate the proper location of the
object for the next frame.

As an example, consider the task of constructing an animated sequence depict-
ing water sloshing in a container. We could use a particle system in the scene
graph to represent the water, where each particle represents a small unit of water.
(Think of the water consisting of large “molecules” the size of marbles.) Then, we
could apply the laws of physics to compute the effects of gravity on the particles as
well as the interaction among the particles themselves as the container rocks side
to side. This would allow us to compute the location of each particle at regular time
intervals, and by using the location of the outer particles as vertices of a polygonal
mesh, we could obtain a mesh depicting the surface of the water. Our animation
could then be obtained by repeatedly “photographing” this mesh as the simulation
progresses.

The other branch of mechanics used to simulate motion is kinematics, which
deals with describing an object’s motion in terms of how parts of an object move
with respect to each other. Applications of kinematics are prominent when animat-
ing articulated figures, where it is necessary to move appendages such as arms and
legs. These motions are more easily modeled by simulating joint movement pat-
terns than by computing the effects of the individual forces exerted by muscles and
gravity. Thus, whereas dynamics might be the technique of choice when determin-
ing the path of a bouncing ball, the motion of an animated character’s arm would be
determined by applying kinematics to compute the proper shoulder, elbow, and
wrist rotations. In turn, much research in animating living characters focuses on
issues of anatomy and how joint and appendage structure influence motion.

A typical method of applying kinematics is to begin by representing a char-
acter by a stick figure that simulates the skeletal structure of the character being
portrayed. Each section of the figure is then covered with a polygonal mesh
representing the character’s surface surrounding that section, and rules are
established to determine how adjacent meshes should connect with each other.
The figure can then be manipulated (either by software or a human animator)
by repositioning the joints in the skeletal structure in the same manner that
one manipulates a string puppet. The points at which the “strings” attach to
the model are called avars, short for “articulation variables” (or more recently
“animation variables”).

In practice, avars are used to control more than merely skeletal joint posi-
tions. For example, the cowboy doll named Woody in Toy Story (Figure 10.1) had
approximately 100 avars associated with his face alone, which allowed animators
to adjust the face to express emotions and to move the mouth to correspond to
spoken words.

Much research in the application of kinematics has been directed toward
developing algorithms for automatically computing sequences of appendage
positions that mimic natural occurring motion. Along these lines, algorithms are
now available that generate realistic walking sequences.

However, much of the animation based on kinematics is still produced by
directing a character through a preset sequence of joint-appendage positions.
These positions may be established by the creativity of an animator or obtained
by motion capture, which involves recording the positions of a living model as
the model performs the desired action. More precisely, after applying reflective
tape to strategic points on a human’s body, the human can be photographed from
multiple angles while throwing a baseball. Then, by observing the locations of

456 Chapter 10 Computer Graphics

the tape in the various photographs, the precise orientations of the human’s
arms and legs can be identified as the throwing action progresses, and these ori-
entations can then be transferred to a character in an animation.

The Animation Process
The ultimate goal of research in animation is to automate the entire animation
process. One imagines software that, given the proper parameters, would automat-
ically produce the desired animated sequence. Progress in this direction is demon-
strated by the fact that the motion picture industry now produces images of crowds,
battle scenes, and stampeding animals by means of individual virtual “robots” that
automatically move within a scene graph, each performing its allotted task.

An interesting case in point occurred when filming the fantasy armies of
Orcs and humans for the Lord of the Rings trilogy. Each onscreen warrior was
modeled as a distinct “intelligent” object with its own physical characteristics
and a randomly assigned personality that gave it tendencies to attack or flee. In
test simulations for the battle of Helms Deep in the second film, the Orcs had
their tendency to flee set too high, and they simply ran away when confronted
with the human warriors. (This was perhaps the first case of virtual extras con-
sidering a job too dangerous.)

Of course, much animation today is still created by human animators. However,
rather than drawing two-dimensional frames by hand as in the 1920s, these anima-
tors use software to manipulate three-dimensional virtual objects in a scene graph
in a manner reminiscent of controlling string puppets, as explained in our earlier
discussion of kinematics. In this way, an animator is able to create a series of virtual
scenes that are “photographed” to produce the animation. In some cases this tech-
nique is used to produce only the scenes for key frames, and then software is used
to produce the in-between frames by automatically rendering the scene as the soft-
ware applies dynamics and kinematics to move the objects in the scene graph from
one key-frame scene position to the next.

As research in computer graphics progresses and technology continues to
improve, more of the animation process will certainly become automated. Whether
the role of human animators as well as human actors and physical sets will some-
day become obsolete remains to be seen, but many believe that day is not too far in
the future. Indeed, 3D graphics has the potential of affecting the motion picture
industry far more than the transition from silent movies to “talkies.”

Questions & Exercises

1. Images seen by a human tend to linger in the human’s perception for
approximately 200 milliseconds. Based on this approximation, how
many images per second must be presented to the human to create ani-
mation? How does this approximation compare to the number of frames
per second used in the motion picture industry?

2. What is a storyboard?
3. What is in-betweening?
4. Define the terms kinematics and dynamics.

457Chapter Review Problems

Chapter Review Problems

1. Which of the following are applications of 2D
graphics and which are applications of 3D
graphics?
a. Designing the layout of magazine pages
b. Drawing an image using Microsoft Paint
c. Producing images from a virtual world for a

video game

2. In the context of 3D graphics, what
corresponds to each of the following items
from traditional photography? Explain your
answers.
a. Film
b. Rectangle in viewfinder
c. Scene being photographed

3. When using a perspective projection, under
what conditions will a sphere in the scene not
produce a circle on the projection plane?

4. When using a perspective projection, can the
image of a straight line segment ever be a
curved line segment on the projection plane?
Justify your answer.

5. Suppose one end of an eight-foot straight pole
is four feet from the center of projection.
Moreover, suppose that a straight line from
the center of projection to one end of the pole
intersects the projection plane at a point that
is one foot from the center of projection. If the
pole is parallel to the projection plane, how
long is the image of the pole in the projection
plane?

6. Explain the distinction between a parallel
projection and a perspective projection.

7. Explain the relationship between the image
window and the frame buffer.

8. What is a significant difference between
applying 3D graphics to produce a motion
picture and applying 3D graphics to produce
the animation for an interactive video game?
Explain your answer.

9. Identify some properties of an object that might
be incorporated in a model of that object for use
in a 3D graphics scene. Identify some properties
that would probably not be represented in the
model. Explain your answer.

10. Identify some physical properties of an object
that are not captured by a model containing
only a polygonal mesh. (Thus, a polygonal
mesh alone does not constitute a complete
model of the object.) Explain how one of those
properties could be added to the object’s
model.

11. Could any four points in three-dimensional
space be the vertices of a patch in a polygonal
mesh? Explain your answer.

12. Each collection that follows represents the
vertices (using the traditional rectangular
coordinate system) of a patch in a polygonal
mesh. Describe the shape of the mesh.

13. Each collection that follows represents the
vertices (using the traditional rectangular
coordinate system) of a patch in a polygonal
mesh. Describe the shape of the mesh.

14. Design a polygonal mesh representing a
rectangular solid. Use the traditional
rectangular coordinate system to encode
the vertices and draw a sketch representing
your solution.

Patch 1: (0, 0, 0) (0, 4, 0)
(2, 4, 0) (2, 0, 0)

Patch 2: (0, 0, 0) (0, 4, 0)
(1, 4, 1) (1, 0, 1)

Patch 3: (2, 0, 0) (1, 0, 1)
(1, 4, 1) (2, 4, 0)

Patch 4: (0, 0, 0) (1, 0, 1)
(2, 0, 0)

Patch 5: (2, 4, 0) (1, 4, 1)
(0, 4, 0)

Patch 1: (0, 0, 0) (0, 2, 0)
(2, 2, 0) (2, 0, 0)

Patch 2: (0, 0, 0) (1, 1, 1)
(2, 0, 0)

Patch 3: (2, 0, 0) (1, 1, 1)
(2, 2, 0)

Patch 4: (2, 2, 0) (1, 1, 1)
(0, 2, 0)

Patch 5: (0, 2, 0) (1, 1, 1)
(0, 0, 0)

458 Chapter 10 Computer Graphics

15. Using no more than eight triangular patches,
design a polygonal mesh to approximate the
shape of a sphere with radius one. (With only
eight patches, your mesh will be a very rough
approximation of a sphere, but the goal is for
you to display an understanding of what a
polygonal mesh is rather than to produce a
precise representation of a sphere.) Represent
the vertices of your patches using the tradi-
tional rectangular coordinate system and draw
a sketch of your mesh.

16. Why would the following four points not be
the vertices of a planar patch?

(0, 0, 0) (1, 0, 0)

(0, 1, 0) (0, 0, 1)

17. Suppose the points (1, 0, 0), (1, 1, 1), and (1, 0, 2)
are the vertices of a planar patch. Which of the
following line segments is/are normal to the
surface of the patch?
a. The line segment from (1, 0, 0) to (1, 1, 0)
b. The line segment from (1, 1, 1) to (2, 1, 1)
c. The line segment from (1, 0, 2) to (0, 0, 2)
d. The line segment from (1, 0, 0) to (1, 1, 1)

18. Identify two “types” of procedure models.

19. Between the processes of modeling and
rendering, which is the more
a. standardized task?
b. computationally intense task?
c. creative task?

Justify your answers.

20. Which of the following might be represented
in a scene graph?
a. Light sources
b. Inanimate props
c. Characters/actors
d. Camera

21. In what sense is the creation of a scene
graph a pivotal step in the 3D graphics
process?

22. What complications are introduced by the fact
that the camera in a scene graph may change
locations and orientations?

23. Suppose the surface of the planar patch with
vertices (0, 0, 0), (0, 2, 0), (2, 2, 0), and (2, 0, 0)
is smooth and shiny. If a light ray originates
at the point (0, 0, 1) and strikes the surface at

(1, 1, 0), through which of the following points
will the reflected ray pass?
a. (0, 0, 1)
b. (1, 1, 1)
c. (2, 2, 1)
d. (3, 3, 1)

24. Suppose a buoy supports a light ten feet above
the surface of still water. At what point on
the water’s surface will an observer see the
reflection of the light if the observer is fifteen
feet from the buoy and five feet above the
water’s surface?

25. If a fish is swimming below the surface of still
water and an observer is viewing the fish from
above the water, where will the fish appear to
be from the observer’s position?
a. Above and toward the background of its

true position
b. At the true position
c. Below and toward the foreground of its true

position

26. Suppose the points (1, 0, 0), (1, 1, 1), and (1, 0, 2)
are the vertices of a planar patch and the
vertices are listed in a counter-clockwise order
as seen from outside the object. In each case
that follows, indicate whether a ray of light
originating at the given point would strike the
surface of the patch from outside or inside the
object.
a. (0, 0, 0)
b. (2, 0, 0)
c. (2, 1, 1)
d. (3, 2, 1)

27. Give an example in which an object outside
the view volume could still appear in the final
image. Explain your answer.

28. Describe the contents and purpose of a
z-buffer.

29. In our discussion of hidden-surface removal,
we described the procedure for solving the
“foreground/background” problem with the
aid of a z-buffer. Express that procedure using
the pseudocode introduced in Chapter 5.

30. Suppose the surface of an object is covered by
alternating orange and blue vertical stripes,
each of which is one centimeter wide. If the
object is positioned in a scene so that the pixel
positions are associated with points on the

459Social Issues

object spaced at two-centimeter intervals, what
would be the possible appearances of the
object in the final image? Explain your answer.

31. Although texture mapping and bump mapping
are means of associating “texture” with a surface,
they are considerably different techniques.
Write a short paragraph comparing the two.

32. List four steps in the rendering pipeline and
give a brief definition of each.

33. What are some advantages to using a hard-
ware/firmware implementation of the render-
ing pipeline?

34. In what way does the hardware in a computer
designed for interactive video games differ
from that of a general-purpose PC?

35. What is a significant limitation of the tradi-
tional rendering pipeline?

36. What is the distinction between a local light-
ing model and a global lighting model?

37. What advantage does ray tracing have over the
traditional rendering pipeline? What disadvan-
tage does it have?

38. What advantage does distributed ray tracing
have over traditional ray tracing? What disad-
vantage does it have?

39. What advantage does radiosity have over the
traditional rendering pipeline? What disadvan-
tage does it have?

40. If an image of a scene produced by traditional
ray tracing were compared to a similar image
of the same scene produced by radiosity, how
would the two images compare?

41. How many frames would be required to pro-
duce a ninety-minute animated production to
be shown in a motion picture theater?

42. Describe how a particle system might be used to
produce an animation of flickering fire flames.

43. Explain how the use of a z-buffer could
assist when creating an animation sequence
depicting a single object moving within a
scene.

44. What are some distinctions between the tasks
of human animators today and human anima-
tors in the past?

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. Suppose computer animation reaches the point that real actors are no longer
needed in the motion picture and television industries. What would the conse-
quences be? What would be the ripple effect of no longer having “movie stars”?

2. With the development of digital cameras and related software, the ability to
alter or fabricate photographs has been placed within the capabilities of the
general public. What changes will this bring to society? What ethical and
legal issues could arise?

3. To what extent should photographs be owned? Suppose a person places his or
her photograph on a Web site and someone else downloads that photograph,
alters it so that the subject is in a compromising situation, and circulates the
altered version. What recourse should the subject of the photograph have?

4. To what extent is a programmer who helps develop a violent video game
responsible for any consequences of that game? Should children’s access to
video games be restricted? If so, how and by whom? What about other
groups in society, such as convicted criminals?

Social Issues

460 Chapter 10 Computer Graphics

Angel, E. Interactive Computer Graphics, A Top-Down Approach Using OpenGL, 5th ed.
Boston, MA: Addison-Wesley, 2009.

Bowman, D. A., E. Kruijff, J. J. LaViola, Jr., and I. Poupyrev. 3D User Interfaces
Theory and Practice. Boston, MA: Addison-Wesley, 2005.

Hill, Jr., F. L. and S. Kelley. Computer Graphics Using OpenGL. 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2007.

McConnell, J. J. Computer Graphics, Theory into Practice. Sudbury, MA: Jones and
Bartlett, 2006.

Parent, R. Computer Animation, Algorithms and Techniques, 2nd ed. San Francisco,
CA: Morgan Kaufmann, 2008.

Additional Reading

In this chapter we explore the branch of computer science known

as artificial intelligence. Although this field is relatively young, it

has produced some astonishing results such as expert chess play-

ers, computers that appear to learn and reason, and machines that

coordinate their activities to achieve a common goal such as win-

ning a soccer game. In artificial intelligence, today’s science fiction

might well be tomorrow’s reality.

C H A P T E R

11

11.1 Intelligence and
Machines
Intelligent Agents
Research Methodologies
The Turing Test

11.2 Perception
Understanding Images
Language Processing

11.3 Reasoning
Production Systems
Search Trees
Heuristics

11.4 Additional Areas of
Research
Representing and Manipulating

Knowledge
Learning
Genetic Algorithms

11.5 Artificial Neural
Networks
Basic Properties
Training Artificial Neural

Networks
Associative Memory

11.6 Robotics

11.7 Considering the
Consequences

Artificial
Intelligence

462 Chapter 11 Artificial Intelligence

Artificial Intelligence is the field of computer science that seeks to build
autonomous machines—machines that can carry out complex tasks without
human intervention. This goal requires that machines be able to perceive and
reason. Such capabilities fall within the category of commonsense activities that,
although natural for the human mind, are proving difficult for machines. The
result is that work in the field continues to be challenging. In this chapter we
explore some of the topics in this vast area of research.

11.1 Intelligence and Machines
The field of artificial intelligence is quite large and merges with other subjects
such as psychology, neurology, mathematics, linguistics, and electrical and
mechanical engineering. To focus our thoughts, then, we begin by considering
the concept of an agent and the types of intelligent behavior that an agent might
exhibit. Indeed, much of the research in artificial intelligence can be categorized
in terms of an agent’s behavior.

Intelligent Agents
An agent is a “device” that responds to stimuli from its environment. It is natu-
ral to envision an agent as an individual machine such as a robot, although an
agent may take other forms such as an autonomous airplane, a character in an
interactive video game, or a process communicating with other processes over
the Internet (perhaps as a client, a server, or a peer). Most agents have sensors
by which they receive data from their environments and actuators by which they
can affect their environments. Examples of sensors include microphones, cam-
eras, range sensors, and air or soil sampling devices. Examples of actuators
include wheels, legs, wings, grippers, and speech synthesizers.

Much of the research in artificial intelligence can be characterized in the
context of building agents that behave intelligently, meaning that the actions of
the agent’s actuators must be rational responses to the data received though its
sensors. In turn, we can classify this research by considering different levels of
these responses.

The simplest response is a reflex action, which is merely a predetermined
response to the input data. Higher levels of response are required to obtain more
“intelligent” behavior. For example, we might empower an agent with knowledge
of its environment and require that the agent adjust its actions accordingly. The
process of throwing a baseball is largely a reflex action but determining how and
where to throw the ball requires knowledge of the current environment. (There
is one out with runners on first and third.) How such real-world knowledge can
be stored, updated, accessed, and ultimately applied in the decision-making
process continues to be a challenging problem in artificial intelligence.

Another level of response is required if we want the agent to seek a goal such
as winning a game of chess or maneuvering through a crowded passageway.
Such goal-directed behavior requires that the agent’s response, or sequence of
responses, be the result of deliberately forming a plan of action or selecting the
best action among the current options.

In some cases an agent’s responses improve over time as the agent learns.
This could take the form of developing procedural knowledge (learning “how”)
or storing declarative knowledge (learning “what”). Learning procedural

46311.1 Intelligence and Machines

knowledge usually involves a trial and error process by which an agent learns
appropriate actions by being punished for poor actions and rewarded for good
ones. Following this approach, agents have been developed that, over time,
improve their abilities in competitive games such as checkers and chess.
Learning declarative knowledge usually takes the form of expanding or altering
the “facts” in an agent’s store of knowledge. For example, a baseball player must
repeatedly adjust his or her database of knowledge (there is still just one out, but
now runners are on first and second) from which rational responses to future
events are determined.

To produce rational responses to stimuli, an agent must “understand” the
stimuli received by its sensors. That is, an agent must be able to extract informa-
tion from the data produced by its sensors, or in other words, an agent must be
able to perceive. In some cases this is a straightforward process. Signals
obtained from a gyroscope are easily encoded in forms compatible with calcula-
tions for determining responses. But in other cases extracting information from
input data is difficult. Examples include understanding speech and images.
Likewise, agents must be able to formulate their responses in terms compatible
with their actuators. This might be a straightforward process or it might require
an agent to formulate responses as complete spoken sentences—meaning that
the agent must generate speech. In turn, such topics as image processing and
analysis, natural language understanding, and speech generation are important
areas of research.

The agent attributes that we have identified here represent past as well as
current areas of research. Of course, they are not totally independent of each
other. We would like to develop agents that possess all of them, producing agents
that understand the data received from their environments and develop new
response patterns through a learning process whose goal is to maximize the
agent’s abilities. However, by isolating various types of rational behavior and
pursuing them independently, researchers gain a toehold that can later be com-
bined with progress in other areas to produce more intelligent agents.

We close this subsection by introducing an agent that will provide a context
for our discussion in Sections 11.2 and 11.3. The agent is designed to solve the
eight-puzzle, which consists of eight square tiles labeled 1 through 8 mounted in
a frame capable of holding a total of nine such tiles in three rows and three
columns (Figure 11.1). Among the tiles in the frame is a vacancy into which any
of the adjacent tiles can be pushed, allowing the tiles in the frame to be scram-
bled. The problem posed is to move the tiles in a scrambled puzzle back to their
initial positions (Figure 11.1).

Our agent takes the form of a box equipped with a gripper, a video camera,
and a finger with a rubber end so that it does not slip when pushing something

1

4 5

7 8

6

2 3

Figure 11.1 The eight-puzzle in its solved configuration

464 Chapter 11 Artificial Intelligence

(Figure 11.2). When the agent is first turned on, its gripper begins to open and
close as if asking for the puzzle. When we place a scrambled eight-puzzle in the
gripper, the gripper closes on the puzzle. After a short time the machine’s finger
lowers and begins pushing the tiles around in the frame until they are back in
their original positions. At this point the machine releases the puzzle and turns
itself off.

This puzzle-solving machine exhibits two of the agent attributes that we
have identified. First, it must be able to perceive in the sense that it must extract
the current puzzle state from the image it receives from its camera. We will
address issues of understanding images in Section 11.2. Second, it must develop
and implement a plan for obtaining a goal. We will address these issues in
Section 11.3.

Research Methodologies
To appreciate the field of artificial intelligence, it is helpful to understand that it is
being pursued along two paths. One is the engineering track in which researchers
are trying to develop systems that exhibit intelligent behavior. The other is a the-
oretical track in which researchers are trying to develop a computational under-
standing of animal—especially human—intelligence. This dichotomy is clarified
by considering the manner in which the two tracks are pursued. The engineering
approach leads to a performance-oriented methodology because the underlying
goal is to produce a product that meets certain performance goals. The theoretical
approach leads to a simulation-oriented methodology because the underlying
goal is to expand our understanding of intelligence and thus the emphasis is on
the underlying process rather than the exterior performance.

As an example, consider the fields of natural language processing and lin-
guistics. These fields are closely related and benefit from research in each
other, yet the underlying goals are different. Linguists are interested in learn-
ing how humans process language and thus tend toward more theoretical

Figure 11.2 Our puzzle-solving machine

46511.1 Intelligence and Machines

pursuits. Researchers in the field of natural language processing are interested
in developing machines that can manipulate natural language and therefore
lean in the engineering direction. Thus, linguists operate in simulation-
oriented mode—building systems whose goals are to test theories. In contrast,
researchers in natural language processing operate in performance-oriented
mode—building systems to perform tasks. Systems produced in this latter
mode (such as document translators and systems by which machines
respond to verbal commands) rely heavily on knowledge gained by linguists
but often apply “shortcuts” that happen to work in the restricted environment
of the particular system.

As an elementary example, consider the task of developing a shell for an
operating system that receives instructions from the outside world through ver-
bal English commands. In this case, the shell (an agent) does not need to worry
about the entire English language. More precisely, the shell does not need to
distinguish between the various meanings of the word copy. (Is it a noun or a
verb? Should it carry the connotation of plagiarism?) Instead, the shell needs
merely to distinguish the word copy from other commands such as rename and
delete. Thus the shell could perform its task just by matching its inputs to prede-
termined audio patterns. The performance of such a system may be satisfactory
to an engineer but the way it is obtained would not be aesthetically pleasing to
a theoretician.

The Turing Test
In the past the Turing test (proposed by Alan Turing in 1950) has served as a
benchmark in measuring progress in the field of artificial intelligence. Today
the significance of the Turing test has faded although it remains an important
part of the artificial intelligence folklore. Turing’s proposal was to allow a
human, whom we call the interrogator, to communicate with a test subject by
means of a typewriter system without being told whether the test subject was a
human or a machine. In this environment, a machine would be declared to
behave intelligently if the interrogator was not able to distinguish it from a
human. Turing predicted that by the year 2000 machines would have a 30 per-
cent chance of passing a five-minute Turing test—a conjecture that turned out
to be surprisingly accurate.

The Origins of Artificial Intelligence
The quest to build machines that mimic human behavior has a long history, but many
would agree that the modern field of artificial intelligence had its origins in 1950.
This was the year that Alan Turing published the article “Computing Machinery and
Intelligence” in which he proposed that machines could be programmed to exhibit
intelligent behavior. The name of the field—artificial intelligence—was coined a few
years later in the now legendary proposal written by John McCarthy who suggested
that a “study of artificial intelligence be carried out during the summer of 1956 at
Dartmouth College” to explore “the conjecture that every aspect of learning or any
other feature of intelligence can in principle be so precisely described that a machine
can be made to simulate it.”

466 Chapter 11 Artificial Intelligence

One reason that the Turing test is no longer considered to be a meaningful
measure of intelligence is that an eerie appearance of intelligence can be
produced with relative ease. A well-known example arose as a result of the pro-
gram DOCTOR (a version of the more general system called ELIZA) developed
by Joseph Weizenbaum in the mid-1960s. This interactive program was designed
to project the image of a Rogerian analyst conducting a psychological interview;
the computer played the role of the analyst while the user played the patient.
Internally, all that DOCTOR did was restructure the statements made by the
patient according to some well-defined rules and direct them back to the patient.
For example, in response to the statement “I am tired today,” DOCTOR might
have replied with “Why do you think you’re tired today?” If DOCTOR was unable
to recognize the sentence structure, it merely responded with something like
“Go on” or “That’s very interesting.”

Weizenbaum’s purpose in developing DOCTOR dealt with the study of natural
language communication. The subject of psychotherapy merely provided an envi-
ronment in which the program could “communicate.” To Weizenbaum’s dismay,
however, several psychologists proposed using the program for actual psychother-
apy. (The Rogerian thesis is that the patient, not the analyst, should lead the dis-
cussion during the therapeutic session, and thus, they argued, a computer could
possibly conduct a discussion as well as a therapist could.) Moreover, DOCTOR
projected the image of comprehension so strongly that many who “communi-
cated” with it became subservient to the machine’s question-and-answer dia-
logue. In a sense, DOCTOR passed the Turing test. The result was that ethical, as
well as technical, issues were raised, and Weizenbaum became an advocate for
maintaining human dignity in a world of advancing technology.

More recent examples of Turing test “successes” include Internet viruses that
carry on “intelligent” dialogs with a human victim in order to trick the human
into dropping his or her malware guard. Moreover, phenomena similar to Turing
tests occur in the context of computer games such as chess-playing programs.
Although these programs select moves merely by applying brute-force tech-
niques (similar to those we will discuss in Section 11.3), humans competing
against the computer often experience the sensation that the machine possesses
creativity and even a personality. Similar sensations occur in robotics where
machines have been built with physical attributes that project intelligent charac-
teristics. Examples include toy robot dogs that project adorable personalities
merely by tilting their heads or lifting their ears in response to a sound.

1. Identify several types of “intelligent” actions that might be made by
an agent.

2. A plant placed in a dark room with a single light source grows toward the
light. Is this an intelligent response? Does the plant possess intelligence?
What, then, is your definition of intelligence?

3. Suppose a vending machine is designed to dispense various products
depending on which button is pressed. Would you say that such a
machine is “aware” of which button is pressed? What, then, is your defi-
nition of awareness?

Questions & Exercises

46711.2 Perception

11.2 Perception
To respond intelligently to the input from its sensors, an agent must be able to
understand that input. That is, the agent must be able to perceive. In this section
we explore two areas of research in perception that have proven to be especially
challenging—understanding images and language.

Understanding Images
Let us consider the problems posed by the puzzle-solving machine introduced in
the previous section. The opening and closing of the gripper on the machine pres-
ents no serious obstacle, and the ability to detect the presence of the puzzle in the
gripper during this process is straightforward because our application requires
very little precision. Even the problem of focusing the camera on the puzzle can be
handled simply by designing the gripper to position the puzzle at a particular pre-
determined position for viewing. Consequently, the first intelligent behavior
required by the machine is the extraction of information through a visual medium.

It is important to realize that the problem faced by our machine when look-
ing at the puzzle is not that of merely producing and storing an image.
Technology has been able to do this for years as in the case of traditional photog-
raphy and television systems. Instead, the problem is to understand the image in
order to extract the current status of the puzzle (and perhaps later to monitor the
movement of the tiles).

In the case of our puzzle-solving machine, the possible interpretations of the
puzzle image are relatively limited. We can assume that what appears is always
an image containing the digits 1 through 8 in a well-organized pattern. The prob-
lem is merely to extract the arrangement of these digits. For this, we imagine
that the picture of the puzzle has been encoded in terms of bits in the computer’s
memory, with each bit representing the brightness level of a particular pixel.
Assuming a uniform size of the image (the machine holds the puzzle at a prede-
termined location in front of the camera), our machine can detect which tile is in
which position by comparing the different sections of the picture to prerecorded
templates consisting of the bit patterns produced by the individual digits used in
the puzzle. As matches are found, the condition of the puzzle is revealed.

This technique of recognizing images is one method used in optical charac-
ter readers. It has the drawback, however, of requiring a certain degree of unifor-
mity for the style, size, and orientation of the symbols being read. In particular,
the bit pattern produced by a physically large character does not match the tem-
plate for a smaller version of the same symbol, even though the shapes are the
same. Moreover, you can imagine how the problems increase in difficulty when
trying to process handwritten material.

4. If a machine passes the Turing test, would you agree that it is intelligent?
If not, would you agree that it appears to be intelligent?

5. Suppose you used a chat room to chat with someone over the Internet
(or used Instant Messenger) and carried on a meaningful coherent con-
versation for ten minutes. If later you found out that you had conversed
with a machine, would you conclude that the machine was intelligent?
Why or why not?

468 Chapter 11 Artificial Intelligence

Another approach to the problem of character recognition is based on matching
the geometric characteristics rather than the exact appearance of the symbols. In
such cases the digit 1 might be characterized as a single vertical line, 2 might be an
opened curved line joined with a horizontal straight line across the bottom, and so
on. This method of recognizing symbols involves two steps: the first is to extract the
features from the image being processed, and the second is to compare the features
to those of known symbols. As with the template-matching approach, this tech-
nique for recognizing characters is not foolproof. For instance, minor errors in the
image can produce a set of entirely different geometric features, as in the case of
distinguishing between an O and a C or, in the case of the eight-puzzle, a 3 and an 8.

We are fortunate in our puzzle application because we do not need to under-
stand images of general three-dimensional scenes. Consider, for example, the
advantage we have by being assured that the shapes to be recognized (the digits 1
through 8) are isolated in different parts of the picture rather than appearing as
overlapping images, as is common in more general settings. In a general photo-
graph, for instance, one is faced not only with the problem of recognizing an
object from different angles but also with the fact that some portions of the
object might be hidden from view.

The task of understanding general images is usually approached as a two-
step process: (1) image processing, which refers to identifying characteristics of
the image, and (2) image analysis, which refers to the process of understanding
what these characteristics mean. We have already observed this dichotomy in
the context of recognizing symbols by means of their geometric features. In that
situation, we found image processing represented by the process of identifying
the geometric features found in the image and image analysis represented by the
process of identifying the meaning of those features.

Image processing entails numerous topics. One is edge enhancement, which is
the process of applying mathematical techniques to clarify the boundaries between
regions in an image. In a sense, edge enhancement is an attempt to convert a
photograph into a line drawing. Another activity in image analysis is known as

Strong AI Versus Weak AI
The conjecture that machines can be programmed to exhibit intelligent behavior is
known as weak AI and is accepted, to varying degrees, by a wide audience today.
However, the conjecture that machines can be programmed to possess intelligence
and, in fact, consciousness, which is known as strong AI, is widely debated.
Opponents of strong AI argue that a machine is inherently different from a human
and thus can never feel love, tell right from wrong, and think about itself in the same
way that a human does. However, proponents of strong AI argue that the human mind
is constructed from small components that individually are not human and are not
conscious but, when combined, are. Why, they argue, would the same phenomenon
not be possible with machines?

The problem in resolving the strong AI debate is that such attributes as intelli-
gence and consciousness are internal characteristics that cannot be identified
directly. As Alan Turing pointed out, we credit other humans with intelligence
because they behave intelligently—even though we cannot observe their internal
mental states. Are we, then, prepared to grant the same latitude to a machine if it
exhibits the external characteristics of consciousness? Why or why not?

46911.2 Perception

region finding. This is the process of identifying those areas in an image that have
common properties such as brightness, color, or texture. Such a region probably
represents a section of the image that belongs to a single object. (It is the ability to
recognize regions that allows computers to add color to old-fashioned black and
white motion pictures.) Still another activity within the scope of image processing
is smoothing, which is the process of removing flaws in the image. Smoothing keeps
errors in the image from confusing the other image-processing steps, but too much
smoothing can cause the loss of important information as well.

Smoothing, edge enhancement, and region finding are all steps toward iden-
tifying the various components in an image. Image analysis is the process of
determining what these components represent and ultimately what the image
means. Here one faces such problems as recognizing partially obstructed objects
from different perspectives. One approach to image analysis is to start with an
assumption about what the image might be and then try to associate the compo-
nents in the image with the objects whose presence is conjectured. This appears
to be an approach applied by humans. For instance, we sometimes find it hard to
recognize an unexpected object in a setting in which our vision is blurred, but
once we have a clue to what the object might be, we can easily identify it.

The problems associated with general image analysis are enormous, and
much research in the area remains to be done. Indeed, image analysis is one of
the fields that demonstrates how tasks that are performed quickly and apparently
easily by the human mind continue to challenge the capabilities of machines.

Language Processing
Another perception problem that has proven challenging is that of understand-
ing language. The success obtained in translating formal high-level programming
languages into machine language (Section 6.4) led early researchers to believe
that the ability to program computers to understand natural language was only a
few years away. Indeed, the ability to translate programs gives the illusion that
the machine actually understands the language being translated. (Recall from
Section 6.1 the story told by Grace Hopper about managers who thought she was
teaching computers to understand German.)

What these researchers failed to understand was the depth to which formal
programming languages differ from natural languages such as English, German,
and Latin. Programming languages are constructed from well-designed primitives
so that each statement has only one grammatical structure and only one mean-
ing. In contrast, a statement in a natural language can have multiple meanings
depending on its context or even the manner in which it is communicated. Thus,
to understand natural language, humans rely heavily on additional knowledge.

For example, the sentences

Norman Rockwell painted people.

and

Cinderella had a ball.

have multiple meanings that cannot be distinguished by parsing or translating each
word independently. Instead, to understand these sentences requires the ability to
comprehend the context in which the statement is made. In other instances the
true meaning of a sentence is not the same as its literal translation. For example,

Do you know what time it is?

470 Chapter 11 Artificial Intelligence

often means “Please tell me what time it is,” or if the speaker has been waiting
for a long time, it might mean “You are very late.”

To unravel the meaning of a statement in a natural language therefore
requires several levels of analysis. The first of these is syntactic analysis,
whose major component is parsing. It is here that the subject of the sentence

Mary gave John a birthday card.

is recognized as Mary while the subject of

John got a birthday card from Mary.

is found to be John.
Another level of analysis is called semantic analysis. In contrast to the

parsing process, which merely identifies the grammatical role of each word,
semantic analysis is charged with the task of identifying the semantic role of
each word in the statement. Semantic analysis seeks to identify such things as
the action described, the agent of that action (which might or might not be the
subject of the sentence), and the object of the action. It is through semantic
analysis that the sentences “Mary gave John a birthday card” and “John got a
birthday card from Mary” would be recognized as saying the same thing.

A third level of analysis is contextual analysis. It is at this level that the
context of the sentence is brought into the understanding process. For example,
it is easy to identify the grammatical role of each word in the sentence

The bat fell to the ground.

We can even perform semantic analysis by identifying the action involved as
falling, the agent as bat, and so on. But it is not until we consider the context of the
statement that the meaning of the statement becomes clear. In particular, it has a
different meaning in the context of a baseball game than it does in the context of
cave exploration. Moreover, it is at the contextual level that the true meaning of
the question “Do you know what time it is?” would finally be revealed.

We should note that the various levels of analysis—syntactic, semantic, and
contextual—are not necessarily independent. The subject of the sentence

Stampeding cattle can be dangerous.

is the noun cattle (modified by the adjective stampeding) if we envision the cattle
stampeding on their own. But the subject is the gerund stampeding (with object
cattle) in the context of a troublemaker whose entertainment consists of starting
stampedes. Thus the sentence has more than one grammatical structure—which
one is correct depends on the context.

Another area of research in natural language processing concerns an entire
document rather than individual sentences. Here the problems of concern fall
into two categories: information retrieval and information extraction.
Information retrieval refers to the task of identifying documents that relate to
the topic at hand. An example is the problem faced by users of the World Wide
Web as they try to find the sites that relate to a particular topic. The current state
of the art is to search sites for key words, but this often produces an avalanche of
false leads and can overlook an important site because it deals with “automo-
biles” instead of “cars.” What is needed is a search mechanism that understands
the contents of the sites being considered. The difficulty of obtaining such
understanding is the reason many are turning to techniques such as XML to pro-
duce a semantic Web, as introduced in Section 4.3.

47111.2 Perception

Information extraction refers to the task of extracting information from doc-
uments so that it takes a form that is useful in other applications. This might
mean identifying the answer to a specific question or recording the information
in a form from which questions can be answered at a later date. One such form
is known as a frame, which is essentially a template in which specifics are
recorded. For example, consider a system for reading a newspaper. The system
might make use of a variety of frames, one for each type of article that might
appear in a newspaper. If the system identifies an article as reporting on a bur-
glary, it would proceed by trying to fill in the slots in the burglary frame. This
frame would probably request such items as the address of the burglary, the time
and date of the burglary, the items taken, and so on. In contrast, if the system
identifies an article as reporting on a natural disaster, it would fill in the natural
disaster frame, which would lead the system toward identifying the type of disas-
ter, amount of damage, and so on.

Another form in which information extractors record information is known as
a semantic net. This is essentially a large linked data structure in which pointers
are used to indicate associations among the data items. Figure 11.3 shows part of
a semantic net in which the information obtained from the sentence

Mary hit John.

has been highlighted.

Alice

Person

Person

Action

JohnMary

June 12, 2009
May 8, 2008

Person

Hit

Person

David

NameName

Pa
re

nt

Parent Parent

Parent

N
am

e

D
ate-of-birth

D
at

e-
of

-b
irt

h

Agent Object

Type

Information from the
sentence “Mary hit John.”

N
am

e

Figure 11.3 A semantic net

472 Chapter 11 Artificial Intelligence

Artificial Intelligence in the Palm of Your Hand
Artificial intelligence techniques are increasingly showing up in smartphone applica-
tions. For example, Google has developed Google Goggles, a smartphone application
providing a visual search engine. Just take a picture of a book, landmark, or sign using
a smartphone’s camera and Goggles will perform image processing, image analysis,
and text recognition, and then initiate a Web search to identify the object. If you are an
English speaker visiting in France, you can take a picture of a sign, menu, or other text
and have it translated to English. Beyond Goggles, Google is actively working on voice-
to-voice language translation. Soon you will be able to speak English into your phone
and have your words spoken in Spanish, Chinese, or another language. Smartphones
will undoubtedly get smarter as AI continues to be utilized in innovative ways.

1. How do the requirements of a video system on a robot differ if the robot
itself uses them to control its activities rather than relaying them to a
human who controls the robot remotely?

2. What tells you that the following drawing is nonsense? How can this
insight be programmed into a machine?

3. How many blocks are in the stack represented next? How could a
machine be programmed to answer such questions accurately?

4. How do you know that the two statements “Nothing is better than com-
plete happiness” and “A bowl of cold soup is better than nothing” do not
imply that “A bowl of cold soup is better than complete happiness”? How
can your ability to make this differentiation be transferred to a machine?

5. Identify the ambiguities involved in translating the sentence “They are
racing horses.”

6. Compare the results of parsing the following two sentences. Then,
explain how the sentences differ semantically.

The farmer built the fence in the field.

The farmer built the fence in the winter.

Questions & Exercises

47311.3 Reasoning

11.3 Reasoning
Let us now use the puzzle-solving machine introduced in Section 11.1 to explore
techniques for developing agents with elementary reasoning abilities.

Production Systems
Once our puzzle-solving machine has deciphered the positions of the tiles from
the visual image, its task becomes that of figuring out what moves are required to
solve the puzzle. An approach to this problem that might come to mind is to pre-
program the machine with solutions to all possible arrangements of the tiles.
Then the machine’s task would merely be to select and execute the proper pro-
gram. However, the eight-puzzle has over 100,000 configurations, so the idea of
providing an explicit solution for each is not inviting. Thus, our goal is to program
the machine so that it can construct solutions to the eight-puzzle on its own. That
is, the machine must be programmed to perform elementary reasoning activities.

The development of reasoning abilities within a machine has been a topic of
research for many years. One of the results of this research is the recognition
that there is a large class of reasoning problems with common characteristics.
These common characteristics are isolated in an abstract entity known as a
production system, which consists of three main components:

1. A collection of states. Each state is a situation that might occur in the appli-
cation environment. The beginning state is called the start (or initial)
state; the desired state (or states) is called the goal state. (In our case, a
state is a configuration of the eight-puzzle; the start state is the configura-
tion of the puzzle when it is handed to the machine; the goal state is the
configuration of the solved puzzle as shown in Figure 11.1.)

2. A collection of productions (rules or moves). A production is an operation
that can be performed in the application environment to move from one
state to another. Each production might be associated with preconditions;
that is, conditions might exist that must be present in the environment
before a production can be applied. (Productions in our case are the move-
ments of tiles. Each movement of a tile has the precondition that the
vacancy must be next to the tile in question.)

3. A control system. The control system consists of the logic that solves the
problem of moving from the start state to the goal state. At each step in the
process the control system must decide which of those productions whose
preconditions are satisfied should be applied next. (Given a particular
state in our eight-puzzle example, there would be several tiles next to the
vacancy and therefore several applicable productions. The control system
must decide which tile to move.)

Note that the task assigned to our puzzle-solving machine can be formulated in
the context of a production system. In this setting the control system takes the form

7. Based on the semantic net in Figure 11.3, what is the family relationship
between Mary and John?

474 Chapter 11 Artificial Intelligence

of a program. This program inspects the current state of the eight-puzzle, identifies
a sequence of productions that leads to the goal state, and executes this sequence. It
is therefore our task to design a control system for solving the eight-puzzle.

An important concept in the development of a control system is that of a
problem space, which is the collection of all the states, productions, and precon-
ditions in a production system. A problem space is often conceptualized in the
form of a state graph. Here the term graph refers to a structure that mathemati-
cians would call a directed graph, meaning a collection of locations called nodes
connected by arrows. A state graph consists of a collection of nodes representing
the states in the system connected by arrows representing the productions that
shift the system from one state to another. Two nodes are connected by an arrow
in the state graph if and only if there is a production that transforms the system
from the state at the origin of the arrow to the state at the destination of the arrow.

We should emphasize that just as the number of possible states prevented us
from explicitly providing preprogrammed solutions to the eight-puzzle, the prob-
lem of magnitude prevents us from explicitly representing the entire state graph.
A state graph is therefore a way of conceptualizing the problem at hand but not
something that we would consider drawing in its entirety. Nonetheless, you
might find it helpful to consider (and possibly extend) the portion of the state
graph for the eight-puzzle displayed in Figure 11.4.

When viewed in terms of the state graph, the problem faced by the control
system becomes that of finding a sequence of arrows that leads from the start
state to the goal state. After all, this sequence of arrows represents a sequence of
productions that solves the original problem. Thus, regardless of the application,
the task of the control system can be viewed as that of finding a path through a
state graph. This universal view of control systems is the prize that we obtain by
analyzing problems requiring reasoning in terms of production systems. If a
problem can be characterized in terms of a production system, then its solution
can be formulated in terms of searching for a path.

1 2 3

4 6

7 5 8

1 2 3

4

67

5

8

1 2 3

4 6

7

5

8

1 2 3

4 6

7

5

8

1 2 3

4 6

7

5

8

1 2 3

4

67

5

8

1 2

34

67

5

8

Goal

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 11.4 A small portion of the eight-puzzle’s state graph

47511.3 Reasoning

To emphasize this point, let us consider how other tasks can be framed in
terms of production systems and thus performed in the context of control sys-
tems finding paths through state graphs. One of the classic problems in artificial
intelligence is playing games such as chess. These games involve moderate com-
plexity in a well-defined context and hence provide an ideal environment for
testing theories. In chess the states of the underlying production system are the
possible board configurations, the productions are the moves of the pieces, and
the control system is embodied in the players (human or otherwise). The start
node of the state graph represents the board with the pieces in their initial posi-
tions. Branching from this node are arrows leading to those board configurations
that can be reached after the first move in a game; branching from each of those
configurations are arrows to those configurations that are reachable by the next
move; and so on. With this formulation, we can imagine a game of chess as con-
sisting of two players, each trying to find a path through a large state graph to a
goal node of his or her own choosing.

Perhaps a less obvious example of a production system is the problem of
drawing logical conclusions from given facts. The productions in this context are
the rules of logic, called inference rules, that allow new statements to be formed
from old ones. For example, the statements “All super heroes are noble” and
“Superman is a super hero” can be combined to produce “Superman is noble.”
States in such a system consist of collections of statements known to be true at
particular points in the deduction process: The start state is the collection of basic
statements (often called axioms) from which conclusions are to be drawn, and a
goal state is any collection of statements that contain the proposed conclusion.

As an example, Figure 11.5 shows the portion of a state graph that might be tra-
versed when the conclusion “Socrates is mortal” is drawn from the collection of

Socrates is a man.
All men are humans.
All humans are mortal.

Socrates is a man.
All men are humans.
All humans are mortal.
Socrates is a human.

Socrates is a man.
All men are humans.
All humans are mortal.
Socrates is a human.
Socrates is mortal.

Goal state

Start state

Intermediate state

Socrates is a man.
All men are humans. => Socrates is a human.

All humans are mortal.
Socrates is a human.

=> Socrates is mortal.

Figure 11.5 Deductive reasoning in the context of a production system

476 Chapter 11 Artificial Intelligence

statements “Socrates is a man,” “All men are humans,” and “All humans are mortal.”
There we see the body of knowledge shifting from one state to another as the rea-
soning process applies appropriate productions to generate additional statements.

Today, such reasoning systems, often implemented in logic programming lan-
guages (Section 6.7), are the backbone of most expert systems, which are software
packages designed to simulate the cause-and-effect reasoning that human experts
would follow if confronted with the same situations. Medical expert systems, for
example, are used to assist in diagnosing ailments or developing treatments.

Search Trees
We have seen that, in the context of a production system, a control system’s job
involves searching the state graph to find a path from the start node to a goal. A
simple method of performing this search is to traverse each of the arrows leading
from the start state and in each case record the destination state, then traverse
the arrows leaving these new states and again record the results, and so on. The
search for a goal spreads out from the start state like a drop of dye in water. This
process continues until one of the new states is a goal, at which point a solution
has been found, and the control system needs merely to apply the productions
along the discovered path from the start state to the goal.

The effect of this strategy is to build a tree, called a search tree, that consists
of the part of the state graph that has been investigated by the control system.
The root node of the search tree is the start state, and the children of each node
are those states reachable from the parent by applying one production. Each arc
between nodes in a search tree represents the application of a single production,
and each path from the root to a leaf represents a path between the correspon-
ding states in the state graph.

The search tree that would be produced in solving the eight-puzzle from the
configuration shown in Figure 11.6 is illustrated in Figure 11.7. The leftmost
branch of this tree represents an attempt to solve the problem by first moving
the 6 tile up, the center branch represents the approach of moving the 2 tile to
the right, and the rightmost branch represents moving the 5 tile down.
Furthermore, the search tree shows that if we do begin by moving the 6 tile up,
then the only production allowable next is to move the 8 tile to the right.
(Actually, at that point we could also move the 6 tile down but that would merely
reverse the previous production and thus be an extraneous move.)

The goal state occurs in the last level of the search tree of Figure 11.7. Since
this indicates that a solution has been found, the control system can terminate
its search procedure and begin constructing the instruction sequence that will be
used to solve the puzzle in the external environment. This turns out to be the
simple process of walking up the search tree from the location of the goal node

1 3 5

4

67

2

8

Figure 11.6 An unsolved eight-puzzle

47711.3 Reasoning

while pushing the productions represented by the tree arcs on a stack as they are
encountered. Applying this technique to the search tree in Figure 11.7 produces
the stack of productions in Figure 11.8. The control system can now solve the
puzzle in the outside world by executing the instructions as they are popped
from this stack.

There is one more observation that we should make. Recall that the trees we
discussed in Chapter 8 use a pointer system that points down the tree, thereby
allowing us to move from a parent node to its children. In the case of a search

135
426
78

135
426
78

135
742
86

35
142
786

3 5
142
786

135
482

76

135
82

476

135
482
76

135
48
762

123
45

786

413
25

786

13
425
786

13
425
786

123
4 5
786

123
485
7 6

123
45
786

135
4 6
728

135
426
7 8

35
126
478

135
2 6
478

35
146
728

135
746
28

135
468
72

415
3 2
786

415
732
86

152
4 3
786

152
436
78

135
7 2
846

135
742
86

345
1 2
786

35
142
786

135
8 2
476

135
4 8
762

123
745
86

23
145
786

12
453
786

123
485
76

123
456
78

123
485

76

413
725
86

413
2 5
786

13
485
762

35
182
476

15
436
728

15
436
728

13
465
728

135
26

478

135
46

728

135
46
728

135
742
8 6

152
43
786

1 5
436
728

415
32

786

15
432
786

15
432
786

1 5
432
786

135
42

786

135
42
786

135
4 2
786

135
482
7 6

1 3
425
786

Goal

Figure 11.7 A sample search tree

Top of stack Move the 5 tile down.

Move the 3 tile right.

Move the 2 tile up.

Move the 5 tile left.

Move the 6 tile up.

Figure 11.8 Productions stacked for later execution

478 Chapter 11 Artificial Intelligence

tree, however, the control system must be able to move from a child to its parent
as it moves up the tree from the goal state to the start state. Such trees are con-
structed with their pointer systems pointing up rather than down. That is, each
child node contains a pointer to its parent rather than the parent nodes contain-
ing pointers to their children. (In some applications, both sets of pointers are
used to allow movement within the tree in both directions).

Heuristics
For our example in Figure 11.7, we chose a starting configuration that produces a
manageable search tree. In contrast, the search tree generated in an attempt to
solve a more complex problem could grow much larger. In a game of chess, there
are twenty possible first moves so the root node of the search tree in such a case
would have twenty children rather than the three in the case of our example.
Moreover, a game of chess can easily consist of thirty to thirty-five pairs of
moves. Even in the case of the eight-puzzle, the search tree can become quite
large if the goal is not quickly reached. As a result, developing a full search tree
can become as impractical as representing the entire state graph.

One strategy for countering this problem is to change the order in which the
search tree is constructed. Rather than building it in a breadth-first manner
(meaning that the tree is constructed layer by layer), we can pursue the more
promising paths to greater depths and consider the other options only if these
original choices turn out to be false leads. This results in a depth-first construc-
tion of the search tree, meaning that the tree is constructed by building vertical
paths rather than horizontal layers. More precisely, this approach is often called
a best-first construction in recognition of the fact that the vertical path chosen
for pursuit is the one that appears to offer the best potential.

The best-first approach is similar to the strategy that we as humans would
apply when faced with the eight-puzzle. We would rarely pursue several options
at the same time, as modeled by the breadth-first approach. Instead, we probably
would select the option that appeared most promising and follow it first. Note
that we said appeared most promising. We rarely know for sure which option is
best at a particular point. We merely follow our intuition, which may, of course,
lead us astray. Nonetheless, the use of such intuitive information seems to give
humans an advantage over the brute-force methods in which each option was
given equal attention, and it would therefore seem prudent to apply intuitive
methods in automated control systems.

To this end, we need a way of identifying which of several states appears to
be the most promising. Our approach is to use a heuristic, which in our case is
a quantitative value associated with each state that attempts to measure the “dis-
tance” from that state to the nearest goal. In a sense, our heuristic is a measure of
projected cost. Given a choice between two states, the one with the smaller
heuristic value is the one from which a goal can apparently be reached with the
least cost. This state, therefore, would represent the direction we should pursue.

A heuristic should have two characteristics. First, it should constitute a rea-
sonable estimate of the amount of work remaining in the solution if the associ-
ated state were reached. This means that it can provide meaningful information
when selecting among options—the better the estimate provided by the heuris-
tic, the better will be the decisions that are based on the information. Second, the
heuristic should be easy to compute. This means that its use has a chance of ben-
efiting the search process rather than of becoming a burden. If computing the

47911.3 Reasoning

1 5 2
These tiles are at least one
move from their original positions.

These tiles are at least two
moves from their original positions.

4

37

8

6

Figure 11.9 An unsolved eight-puzzle

heuristic is extremely complicated, then we might as well spend our time con-
ducting a breadth-first search.

A simple heuristic in the case of the eight-puzzle would be to estimate the
“distance” to the goal by counting the number of tiles that are out of place—the
conjecture being that a state in which four tiles are out of place is farther from
the goal (and therefore less appealing) than a state in which only two tiles are
out of place. However, this heuristic does not take into account how far out of
position the tiles are. If the two tiles are far from their proper positions, many
productions could be required to move them across the puzzle.

A slightly better heuristic, then, is to measure the distance each tile is from
its destination and add these values to obtain a single quantity. A tile immedi-
ately adjacent to its final destination would be associated with a distance of one,
whereas a tile whose corner touches the square of its final destination would be
associated with a distance of two (because it must move at least one position ver-
tically and another position horizontally). This heuristic is easy to compute and
produces a rough estimate of the number of moves required to transform the
puzzle from its current state to the goal. For instance, the heuristic value associ-
ated with the configuration in Figure 11.9 is seven (because tiles 2, 5, and 8 are

Behavior-Based Intelligence
Early work in artificial intelligence approached the subject in the context of explicitly
writing programs to simulate intelligence. However, many argue today that human
intelligence is not based on the execution of complex programs but instead by simple
stimulus-response functions that have evolved over generations. This theory of
“intelligence” is known as behavior-based intelligence because “intelligent” stimulus-
response functions appear to be the result of behaviors that caused certain individu-
als to survive and reproduce while others did not.

Behavior-based intelligence seems to answer several questions in the artificial
intelligence community such as why machines based on the von Neumann architec-
ture easily outperform humans in computational skills but struggle to exhibit com-
mon sense. Thus behavior-based intelligence promises to be a major influence in
artificial intelligence research. As described in the text, behavior-based techniques
have been applied in the field of artificial neural networks to teach neurons to behave
in desired ways, in the field of genetic algorithms to provide an alternative to the
more traditional programming process, and in robotics to improve the performance of
machines through reactive strategies.

480 Chapter 11 Artificial Intelligence

each a distance of one from their final destinations while tiles 3 and 6 are each a
distance of two from home). In fact, it actually takes seven moves to return this
puzzle configuration to the solved configuration.

Now that we have a heuristic for the eight-puzzle, the next step is to incorpo-
rate it into our decision-making process. Recall that a human faced with a deci-
sion tends to select the option that appears closest to the goal. Thus our search
procedure should consider the heuristic of each leaf node in the search tree and
pursue the search from a leaf node associated with the smallest value. This is the
strategy adopted in Figure 11.10, which presents an algorithm for developing a
search tree and executing the solution obtained.

Let us apply this algorithm to the eight-puzzle, starting from the initial con-
figuration in Figure 11.6. First, we establish this initial state as the root node and
record its heuristic value, which is five. Then, the first pass through the body of
the while statement instructs us to add the three nodes that can be reached from
the initial state, as shown in Figure 11.11. Note that we have recorded the heuris-
tic value of each leaf node in parentheses beneath the node.

The goal node has not been reached, so we again pass through the body of
the while statement, this time extending our search from the leftmost node (“the

Establish the start node of the state graph as the root of the
 search tree and record its heuristic value.
while (the goal node has not been reached) do
 [Select the leftmost leaf node with the smallest heuristic
 value of all leaf nodes.
 To this selected node attach as children those nodes that
 can be reached by a single production.
 Record the heuristic of each of these new nodes next
 to the node in the search tree
]
Traverse the search tree from the goal node up to the root,
 pushing the production associated with each arc traversed
 onto a stack.
Solve the original problem by executing the productions as they
 are popped off the stack.

Figure 11.10 An algorithm for a control system using heuristics

1 3 5

4

67

2

8

1 3 5

4

67

2

8

1 3 5

4 6

7

2

8

1 3

54

67

2

8

(6)

Heuristic values

(4) (4)

Figure 11.11 The beginnings of our heuristic search

48111.3 Reasoning

1 3 5

4

67

2

8

1 3 5

4

67

2

8

1 3 5

4 6

7

2

8

1 3

54

67

2

8

(6)

Heuristic values

1 3 5

4 6

7

2

8

(5)

(4)

Figure 11.12 The search tree after two passes

leftmost leaf node with the smallest heuristic value”). After this, the search tree
has the form displayed in Figure 11.12.

The heuristic value of the leftmost leaf node is now five, indicating that this
branch is perhaps not a good choice to pursue after all. The algorithm picks up
on this and in the next pass through the while statement instructs us to expand
the tree from the rightmost node (which now is the “leftmost leaf node with the
smallest heuristic value”). Having been expanded in this fashion, the search tree
appears as in Figure 11.13.

At this point the algorithm seems to be on the right track. Because the heuris-
tic value of this last node is only three, the while statement instructs us to continue

1 3 5

4

67

2

8

1 3 5

4

67

2

8

1 3 5

4 6

7

2

8

1 3

54

67

2

8

(6)

Heuristic values

1 3 5

4 6

7

2

8

(5)

1 3

54

67

2

8

(3)

Figure 11.13 The search tree after three passes

482 Chapter 11 Artificial Intelligence

pursuing this path, and the search focuses toward the goal, producing the search
tree appearing in Figure 11.14. Comparing this with the tree in Figure 11.7 shows
that, even with the temporary wrong turn taken early on by the new algorithm,
the use of heuristic information has greatly decreased the size of the search tree
and produced a much more efficient process.

After reaching the goal state, the while statement terminates, and we move
on to traverse the tree from the goal node up to the root, pushing the productions
encountered onto a stack as we go. The resultant stack appears as depicted ear-
lier, in Figure 11.8.

Finally, we are instructed to execute these productions as they are popped
from the stack. At this point, we would observe the puzzle-solving machine
lower its finger and begin to move the tiles.

One final comment regarding heuristic searching is in order. The algorithm
we have proposed in this section, which is often called the best-fit algorithm, is
not gauranteed to find be the best solution in all applications. For example, when
searching for a path to a city using a Global Positioning System (GPS) in an auto-
mobile, one would like to find the shortest path rather than just any path. The A*
algorithm (pronounced “A star algorithm”) is a modified version of our best-fit

135
42
786

(5)

135
426
78

(4)
13
425
786

(4)

1 3
425
786

(3)

123
4 5
786

(2)
13

425
786

(4)

123
45

786
(3)

123
485
7 6

(3)
123
45
786

(1)

123
456
78

(0)
12
453
786

(2)

135
426
7 8

(5)

135
4 2
786

(6)

Goal

Figure 11.14 The complete search tree formed by our heuristic system

48311.3 Reasoning

algorithm that finds an optimal solution. The major difference between the two
algorithms is that, in addition to a hueristic value, the A* algorithm takes into
account the “accumulated cost” incurred to reach each leaf node when selecting
the next node to expand. (In the case of an automobile’s GPS, this cost is the dis-
tance traveled that the GPS obtains from its internal database.) Thus, the A*
algorithm bases its decisions on estimates of the cost of complete potential paths
rather than merely on projections of remaining costs.

1. What is the significance of production systems in artificial intelligence?
2. Draw a portion of the state graph for the eight-puzzle surrounding the

node representing the following state:

Questions & Exercises

3. Using a breadth-first approach, draw the search tree that is constructed
by a control system when solving the eight-puzzle from the following
start state:

4. Use pencil, paper, and the breadth-first approach to try to construct the
search tree that is produced in solving the eight-puzzle from the following
start state. (You do not have to finish.) What problems do you encounter?

5. What analogy can be drawn between our heuristic system for solving the
eight-puzzle and a mountain climber who attempts to reach the peak by
considering only the local terrain and always proceeding in the direction
of steepest ascent?

6. Using the heuristic presented in this section, apply the best-fit algorithm
of Figure 11.10 to the problem of solving the following eight-puzzle:

14 3

87

2

5

6

21 3

4

7

8

6

5

34

5

2

7

1

6

8

21

5

4

7

3

6

8

484 Chapter 11 Artificial Intelligence

11.4 Additional Areas of Research
In this section we explore issues of handling knowledge, learning, and dealing
with very complex problems, which continue to challenge researchers in the
field of artificial intelligence. These activities involve capabilities that appear to
be easy for human minds but apparently tax the capabilities of machines. For
now, much of the progress in developing “intelligent” agents has been achieved
essentially by avoiding direct confrontation with these issues—perhaps by apply-
ing clever shortcuts or limiting the scope in which a problem arises.

Representing and Manipulating Knowledge
In our discussion of perception we saw that understanding images requires a sig-
nificant amount of knowledge about the items in the image and that the meaning
of a sentence might depend on its context. These are examples of the role played
by the warehouse of knowledge, often called real-world knowledge, maintained

7. Refine our method of computing the heuristic value for a state of the
eight-puzzle so that the search algorithm of Figure 11.10 does not
make the wrong choice, as it did in the example in this section. Can
you find an example in which your heuristic still causes the search to
go astray?

8. Draw to the search tree produced by the best-fit algorithm (Figure 11.10)
in finding the route from Leesburg to Bedford. Each node in the search
tree will be a city on the map. Begin with a node for Leesburg. When
expanding a node, add only the cities that are directly connected to the
city being expanded. Record in each node the straight-line distance to
Bedford and use this as the heuristic value. What is the solution found by
the best-fit algorithm? Is the found solution the shortest route?

9. The A* algorithm modifies the best-fist algorithm in two significant ways.
First, it records the actual cost to reach a state. In the case of a route on a
map, the actual cost is the distance traveled. Second, when selecting a node
to expand, it chooses the node whose sum of the actual cost plus heuristic
value is the smallest. Draw the search tree of Question 8 that would result
from these two modifications. Record in each node the distance traveled to
the city, the heuristic value to reach the goal, and their sum. What is the
found solution? Is the found solution the shortest route?

Leesburg

Straight-line distance to Bedford from

Dayton 16
Leesburg 34
Stone 19

37
16

19 28

16
Bedford

Stone

Dayton

48511.4 Additional Areas of Research

by human minds. Somehow, humans store massive amounts of information and
draw from that information with remarkable efficiency. Giving machines this
capability is a major challenge in artificial intelligence.

The underlying goal is to find ways to represent and store knowledge. This is
complicated by the fact that, as we have already seen, knowledge occurs in both
declarative and procedural forms. Thus, representing knowledge is not merely
the representation of facts, but instead encompasses a much broader spectrum.
Whether a single scheme for representing all forms of knowledge will ultimately
be found is therefore questionable.

The problem, however, is not just to represent and store knowledge. The
knowledge must also be readily accessible, and achieving this accessibility is a
challenge. Semantic nets, as introduced in Section 11.2, are often used as a means
of knowledge representation and storage, but extracting information from them
can be problematic. For example, the significance of the statement “Mary hit
John” depends on the relative ages of Mary and John. (Are the ages 2 and 30 or
vice versa?) This information would be stored in the complete semantic net sug-
gested by Figure 11.3, but extracting such information during contextual analysis
could require a significant amount of searching through the net.

Yet another problem dealing with accessing knowledge is identifying knowl-
edge that is implicitly, instead of explicitly, related to the task at hand. Rather
than answering the question “Did Arthur win the race?” with a blunt “No,” we
want a system that might answer with “No, he came down with the flu and was
not able to compete.” In the next section we will explore the concept of associa-
tive memory, which is one area of research that is attempting to solve this
related information problem. However, the task is not merely to retrieve related
information. We need systems that can distinguish between related information
and relevant information. For example, an answer such as “No, he was born in
January and his sister’s name is Lisa” would not be considered a worthy
response to the previous question, even though the information reported is in
some way related.

Another approach to developing better knowledge extraction systems has
been to insert various forms of reasoning into the extraction process, resulting in
what is called meta-reasoning—meaning reasoning about reasoning. An example,
originally used in the context of database searches, is to apply the closed-world
assumption, which is the assumption that a statement is false unless it can be
explicitly derived from the information available. For example, it is the closed-
world assumption that allows a database to conclude that Nicole Smith does not
subscribe to a particular magazine even though the database does not contain any
information at all about Nicole. The process is to observe that Nicole Smith is not
on the subscription list and then apply the closed-world assumption to conclude
that Nicole Smith does not subscribe.

On the surface the closed-world assumption appears trivial, but it has conse-
quences that demonstrate how apparently innocent meta-reasoning techniques
can have subtle, undesirable effects. Suppose, for example, that the only knowl-
edge we have is the single statement

Mickey is a mouse OR Donald is a duck.

From this statement alone we cannot conclude that Mickey is in fact a mouse.
Thus the closed-world assumption forces us to conclude that the statement

Mickey is a mouse.

486 Chapter 11 Artificial Intelligence

is false. In a similar manner, the closed-world assumption forces us to conclude
that the statement

Donald is a duck.

is false. Thus, the closed-world assumption has led us to the contradictory con-
clusion that although at least one of the statements must be true, both are false.
Understanding the consequences of such innocent-looking meta-reasoning tech-
niques is a goal of research in the fields of both artificial intelligence and data-
base, and it also underlines the complexities involved in the development of
intelligent systems.

Finally, there is the problem, known as the frame problem, of keeping stored
knowledge up to date in a changing environment. If an intelligent agent is going to
use its knowledge to determine its behavior, then that knowledge must be current.
But the amount of knowledge required to support intelligent behavior can be enor-
mous, and maintaining that knowledge in a changing environment can be a mas-
sive undertaking. A complicating factor is that changes in an environment often
alter other items of information indirectly and accounting for such indirect conse-
quences is difficult. For example, if a flower vase is knocked over and broken, your
knowledge of the situation no longer contains the fact that water is in the vase,
even though spilling the water was only indirectly involved with breaking the vase.
Thus, to solve the frame problem not only requires the ability to store and retrieve
massive amounts of information in an efficient manner, but it also demands that
the storage system properly react to indirect consequences.

Learning
In addition to representing and manipulating knowledge, we would like to give
intelligent agents the ability to acquire new knowledge. We can always “teach” a
computer-based agent by writing and installing a new program or explicitly
adding to its stored data, but we would like intelligent agents to be able to learn
on their own. We want agents to adapt to changing environments and to perform
tasks for which we cannot easily write programs in advance. A robot designed for
household chores will be faced with new furniture, new appliances, new pets,
and even new owners. An autonomous, self-driving car must adapt to variations
in the boundary lines on roads. Game playing agents should be able to develop
and apply new strategies.

One way of classifying approaches to computer learning is by the level of
human intervention required. At the first level is learning by imitation, in
which a person directly demonstrates the steps in a task (perhaps by carrying
out a sequence of computer operations or by physically moving a robot through
a sequence of motions) and the computer simply records the steps. This form of
learning has been used for years in application programs such as spreadsheets
and word processors, where frequently occurring sequences of commands are
recorded and later replayed by a single request. Note that learning by imitation
places little responsibility on the agent.

At the next level is learning by supervised training. In supervised training
a person identifies the correct response for a series of examples and then the
agent generalizes from those examples to develop an algorithm that applies to
new cases. The series of examples is called the training set. Typical applications
of supervised training include learning to recognize a person’s handwriting or
voice, learning to distinguish between junk and welcome email, and learning
how to identify a disease from a set of symptoms.

48711.4 Additional Areas of Research

A third level is learning by reinforcement. In learning by reinforcement,
the agent is given a general rule to judge for itself when it has succeeded or failed
at a task during trial and error. Learning by reinforcement is good for learning
how to play a game like chess or checkers, as success or failure is easy to define.
In contrast to supervised training, learning by reinforcement allows the agent to
act autonomously as it learns to improve its behavior over time.

Learning remains a challenging field of research since no general, universal
principle has been found that covers all possible learning activities. However,
there are numerous examples of progress. One is ALVINN (Autonomous Land
Vehicle in a Neural Net), a system developed at Carnegie Mellon University to
learn to steer a van with an on-board computer using a video camera for input.
The approach used was supervised training. ALVINN collected data from a
human driver and used that data to adjust its own steering decisions. As it
learned, it would predict where to steer, check its prediction against the human
driver’s data, and then modify its parameters to come closer to the human’s
steering choice. ALVINN succeeded well enough that it could steer the van at
seventy miles an hour, leading to additional research that has produced control
systems that have successfully driven at highway speeds in traffic.

Finally, we should recognize a phenomenon that is closely related to learning:
discovery. The distinction is that learning is “target based” whereas discovery is
not. The term discovery has a connotation of the unexpected that is not present in
learning. We might set out to learn a foreign language or how to drive a car, but we
might discover that those tasks are more difficult than we expected. An explorer
might discover a large lake, whereas the goal was merely to learn what was there.

Developing agents with the ability to discover efficiently requires that the
agent be able to identify potentially fruitful “trains of thought.” Here, discovery
relies heavily on the ability to reason and the use of heuristics. Moreover, many
potential applications of discovery require that an agent be able to distinguish
meaningful results from insignificant ones. A data mining agent, for example,
should not report every trivial relationship it finds.

Knowledge in Logic Programming
An important concern in representing and storing knowledge is that it be done in a
way that is compatible with the system that must access the knowledge. It is in this
context that logic programming (see Section 6.7) often proves beneficial. In such sys-
tems knowledge is represented by “logic” statements such as

Dumbo is an elephant.

and

X is an elephant implies X is gray.

Such statements can be represented using notational systems that are readily
accessible to the application of inference rules. In turn, sequences of deductive rea-
soning, such as we saw in Figure 11.5, can be implemented in a straightforward man-
ner. Thus, in logic programming the representation and storage of knowledge are
well integrated with the knowledge extraction and application process. One might
say that logic programming systems provide a “seamless” boundary between stored
knowledge and its application.

488 Chapter 11 Artificial Intelligence

Examples of success in computer discovery systems include Bacon, named
after the philosopher Sir Francis Bacon, that has discovered (or maybe we should
say “rediscovered”) Ohm’s law of electricity, Kepler’s third law of planetary
motion, and the conservation of momentum. Perhaps more persuasive is the sys-
tem AUTOCLASS that, using infrared spectral data, has discovered new classes of
stars that were previously unknown in astronomy—a true scientific discovery by
a computer.

Genetic Algorithms
The A* algorithm (introduced in the previous section) will find the optimal solu-
tion to many search problems; however there are some problems that are too
complex to be solved (execution exceeds available memory or cannot be com-
pleted within a reasonable amount of time) by such seach techniques. For these
problems, a solution can sometimes be discovered through an evolutionary
process involving many generations of trial solutions. This strategy is the foun-
dation for what is called genetic algorithms. In essence, genetic algorithms will
discover a solution by random behavior combined with a simulation of reproduc-
tive theory and the evolutionary process of natural selection.

A genetic algorithm begins by generating a random pool of trial solutions.
Each solution is just a guess. (In the case of the eight-puzzle, a trial solution can
be a random sequence of tile movements.) Each trial solution is called a
chromosome and each component of the chromosome is a called a gene (a sin-
gle tile movement in the case of the eight-puzzle).

Since each initial chromosome is a random guess, it is very unlikely that it will
represent a solution to the problem at hand. Thus, the genetic algorithm proceeds
to generate a new pool of chromosomes whereby each chromosome is an offspring
(child) of two chromosomes (parents) of the previous pool. The parents are ran-
domly selected from the pool giving a probabilistic preference to those chromo-
somes that appear to provide the best chance of leading to a solution, thereby
emulating the evolutionary principle of survival of the fittest. (Determining which
chromosomes are the best candidates for parenthood is perhaps the most problem-
atic step in the generic algrithm process.) Each offspring is a random combination
of genes from the parents. In addition, a resulting offspring may occasionally be
mutated in some random way (switch two moves). Hopefully, by repeating this
process over and over, better and better trial solutions will evolve until a very good
one, if not the best, is discovered. Unfortunately, there is no assurance that the
genetic algorithm will ultimately find a solution, yet research has demonstrated
that genetic algorithms can be effective in solving a surprisingly wide range of
complex problems.

When applied to the task of program development, the genetic algorithm
approach is known as evolutionary programming. Here the goal is to develop
programs by allowing them to evolve rather than by explicitly writing them.
Researchers have applied evolutionary programming techniques to the program-
development process using functional programming languages. The approach
has been to start with a collection of programs that contain a rich variety of func-
tions. The functions in this starting collection form the “gene pool” from which
future generations of programs will be constructed. One then allows the evolu-
tionary process to run for many generations, hoping that by producing each gen-
eration from the best performers in the previous generation, a solution to the
target problem will evolve.

48911.5 Artificial Neural Networks

11.5 Artificial Neural Networks
With all the progress that has been made in artificial intelligence, many prob-
lems in the field continue to tax the abilities of computers using traditional algo-
rithmic approaches. Sequences of instructions do not seem capable of perceiving
and reasoning at levels comparable to those of the human mind. For this reason,
many researchers are turning to approaches that leverage phenomena observed
in nature. One such approach is genetic algorithms presented in the previous
section. Another approach is the artificial neural network.

Basic Properties
Artificial neural networks provide a computer processing model that mimics
networks of neurons in living biological systems. A biological neuron is a single
cell with input tentacles called dendrites and an output tentacle called the axon
(Figure 11.15). The signals transmitted via a cell’s axon reflect whether the cell is
in an inhibited or excited state. This state is determined by the combination of
signals received by the cell’s dendrites. These dendrites pick up signals from the
axons of other cells across small gaps known as synapses. Research suggests that

1. What is meant by the term real-world knowledge, and what is its signifi-
cance in artificial intelligence?

2. A database about magazine subscribers typically contains a list of sub-
scribers to each magazine but does not contain a list of those who do not
subscribe. How, then, does such a database determine that a person does
not subscribe to a particular magazine?

3. Summarize the frame problem.
4. Identify three ways of training a computer. Which one does not involve

direct human intervention?
5. How do evolutionary techniques differ from more traditional problem-

solving techniques?

Questions & Exercises

Axons from
other neurons

Dendrites

Synapses

Cell body

Axon

Figure 11.15 A neuron in a living biological system

Compare effective
input to threshold
value

Produce output
of 0 or 1

Compute
effective input:
v1w1 + v2w2 + v3w3

Neuron

v2 w2

v1

w1

w3

v3

490 Chapter 11 Artificial Intelligence

the conductivity across a single synapse is controlled by the chemical composi-
tion of the synapse. That is, whether the particular input signal will have an
exciting or inhibiting effect on the neuron is determined by the chemical compo-
sition of the synapse. Thus it is believed that a biological neural network learns
by adjusting these chemical connections between neurons.

A neuron in an artificial neural network is a software unit that mimics this
basic understanding of a biological neuron. It produces an output of 1 or 0,
depending on whether its effective input exceeds a given value, which is called
the neuron’s threshold value. This effective input is a weighted sum of the
actual inputs, as represented in Figure 11.16. In this figure, a neuron is repre-
sented with an oval and connections between neurons are represented with
arrows. The values obtained from the axons of other neurons (denoted by v1, v2,
and v3) are used as inputs to the depicted neuron. In addition to these values,
each connection is associated with a weight (denoted by w1, w2, and w3). The
neuron receiving these input values multiplies each by the associated weight for
the connection and then adds these products to form the effective input (v1w1 �
v2w2 � v3w3). If this sum exceeds the neuron’s threshold value, the neuron pro-
duces an output of 1 (simulating an excited state); otherwise the neuron pro-
duces a 0 as its output (simulating an inhibited state).

Following the lead of Figure 11.16, we adopt the convention of representing
neurons as circles. Where each input connects to a neuron, we record the weight
associated with that input. Finally, we write the neuron’s threshold value in the
middle of the circle. As an example, Figure 11.17 represents a neuron with a
threshold value of 1.5 and weights of �2, 3, and �1 associated with each of its
input connections. Therefore if the neuron receives the inputs 1, 1, and 0, its
effective input is (1)(�2) � (1)(3) � (0)(�1) � 1, and thus its output is 0. But, if
the neuron receives 0, 1, and 1, its effective input is (0)(�2) � (1)(3) � (1)(�1) � 2,
which exceeds the threshold value. The neuron’s output will thus be 1.

The fact that a weight can be positive or negative means that the corresponding
input can have either an inhibiting or exciting effect on the receiving neuron. (If the
weight is negative, then a 1 at that input position reduces the weighted sum and
thus tends to hold the effective input below the threshold value. In contrast, a posi-
tive weight causes the associated input to have an increasing effect on the weighted
sum and thus increase the chances of that sum exceeding the threshold value.)
Moreover, the actual size of the weight controls the degree to which the correspon-
ding input is allowed to inhibit or excite the receiving neuron. Consequently, by
adjusting the values of the weights throughout an artificial neural network, we can
program the network to respond to different inputs in a predetermined manner.

Figure 11.16 The activities within a neuron

49111.5 Artificial Neural Networks

Artificial neural networks are typically arranged in a topology of several lay-
ers. The input neurons are in the first layer and the output neurons are in the
last. Additional layers of neurons (called hidden layers) may be included
between the input and output layers. Each neuron of one layer is interconnected
with every neuron in the subsequent layer. As an example, the simple network
presented in Figure 11.18a is programmed to produce an output of 1 if its two
inputs differ and an output of 0 otherwise. If, however, we change the weights to
those shown in Figure 11.18b, we obtain a network that responds with a 1 if both
of its inputs are 1s and with a 0 otherwise.

We should note that the network configuration in Figure 11.18 is far more
simplistic than an actual biological network. A human brain contains approxi-
mately 1011 neurons with about 104 synapses per neuron. Indeed, the dendrites of
a biological neuron are so numerous that they appear more like a fibrous mesh
than the individual tentacles represented in Figure 11.15.

Training Artificial Neural Networks
An important feature of artificial neural networks is that they are not pro-
grammed in the traditional sense but instead are trained. That is, a programmer
does not determine the values of the weights needed to solve a particular prob-
lem and then “plug” those values into the network. Instead, an artificial neural

1.5
3

–2

–1

Figure 11.17 Representation of a neuron

.5
–2

1

1
1.5

1

1

1

OutputHiddenInput

1

1

1

1
0

1

0

a.

.5
0

.35

.35
1.5

1

1

1

OutputHiddenInput

1

0

1

1
0

0

0

b.

Figure 11.18 A neural network with two different programs

492 Chapter 11 Artificial Intelligence

network learns the proper weight values via supervised training (Section 11.4)
involving a repetitive process in which inputs from the training set are applied to
the network and then the weights are adjusted by small increments so that the
network’s performance approaches the desired behavior.

It is interesting to note how genetic algorithm techniques have been
applied to the task of training artificial neural networks. In particular, to train a
neural network, a number of sets of weights for the network can be randomly
generated—each set of which will serve as a chromosome for the genetic algo-
rithm. Then, in a step-by-step process, the network can be assigned the
weights represented by each chromosone and tested over a variety of inputs.
The chromosones producing fewest errors during this testing process can then
be given a greater probabilty of being selected as parents for the next genera-
tion. In numerous experiments this appoarch has ultimately led to a successful
set of weights.

Let us consider an example in which training an artificial neural network to
solve a problem has been successful and perhaps more productive than trying to
provide a solution by means of traditional programming techniques. The prob-
lem is one that might be faced by a robot when trying to understand its environ-
ment via the information it receives from its video camera. Suppose, for
example, that the robot must distinguish between the walls of a room, which are
white, and the floor, which is black. At first glance, this would appear to be an
easy task: Simply classify the white pixels as part of a wall and the black pixels at
part of the floor. However, as the robot looks in different directions or moves
around in the room, various lighting conditions can cause the wall to appear gray
in some cases whereas in other cases the floor may appear gray. Thus, the robot
needs to learn to distinguish between walls and floor under a wide variety of
lighting conditions.

To accomplish this, we could build an artificial neural network whose
inputs consist of values indicating the color characteristics of an individual
pixel in the image as well as a value indicating the overall brightness of the
entire image. We could then train the network by providing it with numerous
examples of pixels representing parts of walls and floors under various light-
ing conditions.

The results of training an artificial neural network using these techniques
are represented in Figure 11.19. The first column represents the original images;
the next depicts the robot’s interpretation. Note that although the walls in the top
original are rather dark, the robot has correctly identified most of the associated
pixels as white wall pixels, yet the floor in the lower image has still been cor-
rectly identifed. (The ball in the images was part of a more extensive experi-
ment.) You will also notice that the robot’s image processing system is not
perfect. The neural network has mistakenly identified some of the wall pixels as
floor pixels (and some of the floor pixels as wall pixels). These are examples of
realities that often must be accommodated in the application of a theory. In this
case, the errors can be corrected by programming the robot to ignore individual
floor pixels that appear among a multitude of wall pixels (and vice versa).

Beyond simple learning problems (such as the classification of pixels), arti-
ficial neural networks have been used to learn sophisticated intelligent behav-
ior, as testified by the ALVINN project cited in the previous section. Indeed,
ALVINN was an artificial neural network whose composition was surprisingly
simple (Figure 11.20). Its input was obtained from a 30 by 32 array of sensors,

49311.5 Artificial Neural Networks

a. Actual Image b. Robot’s Interpretation of Image

Figure 11.19 Results of using a neural network to classify pixels in an image (Inspired by www.actapress.com)

• • • • • •

Sharp turn
to the left Straight

Sharp turn
to the right

30 by 32
image of

road

• • •

Figure 11.20 The structure of ALVINN (Autonomous Land Vehicle in a Neural Net)

www.actapress.com
www.actapress.com

494 Chapter 11 Artificial Intelligence

each of which observed a unique portion of the video image of the road ahead
and reported its findings to each of four neurons on a hidden layer. (Thus, each
of these four neurons had 960 inputs.) The output of each of these four neurons
was connected to each of thirty output neurons, whose outputs indicated the
direction to steer. Excited neurons at one end of the thirty neuron row indicated
a sharp turn to the left, while excited neurons at the other end indicated a sharp
turn to the right.

ALVINN was trained by “watching” a human drive while it made its own
steering decisions, comparing its decisions to those of the human, and making
slight modifications to its weights to bring its decisions closer to those of the
human. There was, however, an interesting side issue. Although ALVINN
learned to steer following this simple technique, ALVINN did not learn how to
recover from mistakes. Thus, the data collected from the human was artificially
enriched to include recovery situations as well. (One approach to this recovery
training that was initially considered was to have the human swerve the vehicle
so that ALVINN could watch the human recover and thus learn how to recover
on its own. But unless ALVINN was disabled while the human performed the ini-
tial swerve procedure, ALVINN learned to swerve as well as to recover—an obvi-
ously undesirable trait.)

Associative Memory
The human mind has the amazing ability to retrieve information that is associ-
ated with a current topic of consideration. When we experience certain smells,
we might readily recall memories of our childhood. The sound of a friend’s voice
might conjure an image of the person or perhaps memories of good times.
Certain music might generate thoughts of particular holiday seasons. These are
examples of associative memory—the retrieval of information that is associated
with, or related to, the information at hand.

To construct machines with associative memory has been a goal of research
for many years. One approach is to apply techniques of artificial neural net-
works. For instance, consider a network consisting of many neurons that are
interconnected to form a web with no inputs or outputs. (In some designs,
called Hopfield networks, the output of each neuron is connected as inputs to
each of the other neurons; in other cases the output of a neuron may be con-
nected only to its immediate neighbors.) In such a system, the excited neurons
will tend to excite other neurons, whereas the inhibited neurons will tend to
inhibit others. In turn, the entire system may be in a constant state of change,
or it may be that the system will find its way to a stable configuration where
the excited neurons remain excited and the inhibited neurons remain inhib-
ited. If we start the network in a nonstable configuration that is close to a sta-
ble one, we would expect it to wander to that stable configuration. In a sense,
when given a part of a stable configuration, the network might be able to com-
plete the configuration.

Now suppose that we represent an excited state by 1 and an inhibited state
by 0 so that the condition of the entire network at any time can be envisioned as
a configuration of 0s and 1s. Then, if we set the network to a bit pattern that is
close to a stable pattern, we could expect the network to shift to the stable pat-
tern. In other words, the network might find the stable bit pattern that is close to

49511.5 Artificial Neural Networks

the pattern it was given. Thus if some of the bits are used to encode smells and
others are used to encode childhood memories, then initializing the smell bits
according to a certain stable configuration could cause the remaining bits to find
their way to the associated childhood memory.

Now consider the artificial neural network shown in Figure 11.21.
Following the conventions used to depict artificial neural networks, each circle
in the figure represents a neuron whose threshold value is recorded inside the
circle. Instead of arrows, the lines connecting the circles represent two-way
connections between the corresponding neurons. That is, a line connecting
two neurons indicates that the output of each neuron is connected as an input
to the other. Thus the output of the center neuron is connected as an input to
each of the neurons around the perimeter, and the output of each of the neu-
rons around the perimeter is connected as an input to the center neuron as
well as an input to each of its immediate neighbors on the perimeter. Two con-
nected neurons associate the same weight with each other’s output. This com-
mon weight is recorded next to the line connecting the neurons. Thus the
neuron at the top of the diagram associates a weight of �1 with the input it
receives from the center neuron and a weight of 1 with the inputs it receives
from its two neighbors on the perimeter. Likewise, the center neuron associ-
ates a weight of �1 with each of the values it receives from the neurons around
the perimeter.

The network operates in discrete steps in which all neurons respond to their
inputs in a synchronized manner. To determine the next configuration of the net-
work from its current configuration, we determine the effective inputs of each
neuron throughout the network and then allow all the neurons to respond to
their inputs at the same time. The effect is that the entire network follows a coor-
dinated sequence of compute effective inputs, respond to inputs, compute effec-
tive inputs, respond to inputs, etc.

Consider the sequence of events that would occur if we initialized the net-
work with its two rightmost neurons inhibited and the other neurons excited

–1.5

.5

.5

.5

.5 .5

.5

–1

–1

–1
1

1 1

1

11

–1

–1

–1

Figure 11.21 An artificial neural network implementing an associative memory

496 Chapter 11 Artificial Intelligence

(Figure 11.22a). The two leftmost neurons would have effective inputs of 1, so
they would remain excited. But, their neighbors on the perimeter would have
effective inputs of 0, so they would become inhibited. Likewise, the center neu-
ron would have an effective input of �4, so it would become inhibited. Thus the
entire network would shift to the configuration shown in Figure 11.22b in which
only the two leftmost neurons are excited. Since the center neuron would now
be inhibited, the excited conditions of the leftmost neurons would cause the top
and bottom neurons to become excited again. Meanwhile, the center neuron
would remain inhibited since it would have an effective input of �2. Thus the
network would shift to the configuration in Figure 11.22c, which would then lead
to the configuration in Figure 11.22d. (You might wish to confirm that a blinking
phenomenon would occur if the network were initialized with only the upper
four neurons excited. The top neuron would remain excited while its two neigh-
bors on the perimeter and the center neuron would alternate between being
excited and inhibited.)

Finally, observe that the network has two stable configurations: one in which
the center neuron is excited and the others are inhibited, and another configura-
tion in which the center neuron is inhibited and the others are excited. If we ini-
tialize the network with the center neuron excited and no more than two of the
other neurons excited, the network will wander to the former stable configuration.
If we initialize the network with at least four adjacent neurons on the perimeter in
their excited states, the network will wander to the latter configuration. Thus we

a. b.

c. d.

All but the rightmost
units are excited

Start: Only the leftmost
units remain excited

Step1:

The top and bottom
units become excited

Step 2: All the units on the
perimeter are excited

Final:

Figure 11.22 The steps leading to a stable configuration

1. What is the output of the following neuron when both its inputs are 1s?
What about the input patterns 0, 0; 0, 1; and 1, 0?

Questions & Exercises

2. Adjust the weights and threshold value of the following neuron so that its
output is 1 if and only if at least two of its inputs are 1s.

49711.6 Robotics

could say that the network associates the former stable configuration with initial
patterns in which its center neuron and fewer than three of its perimeter neurons
are excited, and associates the latter stable configuration with initial patterns in
which four or more of its perimeter neurons are excited. In short, the network rep-
resents an elementary associative memory.

.5

1

–1

11.6 Robotics
Robotics is the study of physical, autonomous agents that behave intelligently.
As with all agents, robots must be able to perceive, reason, and act in their envi-
ronment. Research in robotics thereby encompasses all areas of artificial intelli-
gence as well as drawing heavily from mechanical and electrical engineering.

To interact with the world, robots need mechanisms to manipulate objects and
to move about. In the early days of robotics, the field was closely allied with the
development of manipulators, most often mechanical arms with elbows, wrists, and
hands or tools. Research dealt not only with how such devices could be maneu-
vered but also with how knowledge of their location and orientation could be main-
tained and applied. (You are able to close your eyes and still touch your nose with
your finger because your brain maintains a record of where your nose and finger
are.) Over time robots’ arms have become more dexterous to where, with a sense of
touch based on force feedback, they can handle eggs and paper cups successfully.

Recently, the development of faster, lighter weight computers has lead to
greater research in mobile robots that can move about. Achieving this mobility

3. Identify a problem that might occur in training an artificial neural network.
4. To which stable configuration will the network in Figure 11.22 wander if

it is initialized with all its neurons inhibited?

498 Chapter 11 Artificial Intelligence

has led to an abundance of creative designs. Researchers in robot locomotion
have developed robots that swim like fish, fly like dragonflies, hop like grasshop-
pers, and crawl like snakes.

Wheeled robots are very popular since they are relatively easy to design and
build, but they are limited in the type of terrain they can traverse. Overcoming
this restriction, using combinations of wheels or tracks to climb stairs or roll over
rocks, is the goal of current research. As an example, the NASA Mars rovers used
specially designed wheels to move on rocky soil.

Legged robots offer greater mobility but are significantly more complex. For
instance, two-legged robots, designed to walk as humans, must constantly moni-
tor and adjust their stance or they will fall. However, such difficulties can be
overcome, as exemplified by the two-legged humanoid robot named Asimo,
developed by Honda, that can walk up stairs and even run.

Despite great advances in manipulators and locomotion, most robots are
still not very autonomous. Industrial robot arms are typically rigidly pro-
grammed for each task and work without sensors, assuming parts will be given
to them in exact positions. Other mobile robots such as the NASA Mars rovers
and military unmanned aerial vehicles (UAVs) rely on human operators for
their intelligence.

Overcoming this dependency on humans is a major goal of current research.
One question deals with what an autonomous robot needs to know about its
environment and to what degree it needs to plan its actions in advance. One

c.

b.

a.

Robots Making History
a. A soccer robot kicks a ball during the RoboCup German Open 2010 on April 15,
2010 in Magdeburg, eastern Germany (© Jens Schlueter/SFP/gettyimages/
Newscom). b. Tartan Racing’s “Boss”—winner of the Urban Challenge, a contest
sponsored by DARPA to have vehicles drive themselves through an urban environ-
ment (© DARPA). c. One of NASA’s Rovers—a robot geologist exploring the surface of
Mars (Courtesy NASA/JPL-Caltech).

49911.6 Robotics

approach is to build robots that maintain detailed records of their environments,
containing an inventory of objects and their locations with which they develop
precise plans of action. Research in this direction depends heavily on progress in
knowledge representation and storage as well as improved reasoning and plan-
development techniques.

An alternative approach is to develop reactive robots that, rather than main-
taining complex records and expending great efforts in constructing detailed
plans of action, merely apply simple rules for interacting with the world to guide
their behavior moment by moment. Proponents of reactive robotics argue that
when planning a long trip by car, humans do not make all-encompassing,
detailed plans in advance. Instead, they merely select the major roads, leaving
such details as where to eat, what exits to take, and how to handle detours for
later consideration. Likewise, a reactive robot that needs to navigate a crowded
hallway or to go from one building to another does not develop a highly detailed
plan in advance, but instead applies simple rules to avoid each obstacle as it is
encountered. This is the approach taken by the best-selling robot in history, the
iRobot Roomba vacuum cleaner, which moves about a floor in a reactive mode
without bothering to remember the details of furniture and other obstacles. After
all, the family pet will probably not be in the same place next time.

Of course, no single approach will likely prove the best for all situations. Truly
autonomous robots will most likely use multiple levels of reasoning and planning,
applying high-level techniques to set and achieve major goals and lower-level
reactive systems to achieve minor sub-goals. An example of such multilevel rea-
soning is found in the Robocup competition—an international competition of
robot soccer teams—that serves as a forum for research toward developing a team
of robots that can beat world-class human soccer teams by the year 2050. Here
the emphasis is not just to build mobile robots that can “kick” a ball but to design
a team of robots that cooperate with each other to obtain a common goal. These
robots not only have to move and to reason about their actions, but they have to
reason about the actions of their teammates and their opponents.

Another example of research in robotics is the field known as evolutionary
robotics in which theories of evolution are applied to develop schemes for both
low-level reactive rules and high-level reasoning. Here we find the survival-of-
the-fittest theory being used to develop devices that over multiple generations
acquire their own means of balance or mobility. Much of the research in this
area distinguishes between a robot’s internal control system (largely software)
and the physical structure of its body. For example, the control system for a
swimming tadpole robot was transferred to a similar robot with legs. Then evolu-
tionary techniques were applied within the control system to obtain a robot that
crawled. In other instances, evolutionary techniques have been applied to a
robot’s physical body to discover positions for sensors that are optimal for per-
forming a particular task. More challenging research seeks ways to evolve soft-
ware control systems simultaneously with physical body structures.

To list all the impressive results from research in robotics would be an over-
whelming task. Our current robots are far from the powerful robots in fictional
movies and novels, but they have achieved impressive successes on specific
tasks. We have robots that can drive in traffic, behave like pet dogs, and guide
weapons to their targets. However, while relishing in these successes, we should
note that the affection we feel for an artificial pet dog and the awesome power of
smart weapons raise social and ethical questions that challenge society. Our
future is what we make it.

500 Chapter 11 Artificial Intelligence

11.7 Considering the Consequences
Without a doubt, advances being made in artificial intelligence have the poten-
tial of benefiting humankind, and it is easy to become caught up in the enthusi-
asm generated by the potential benefits. However, there are also potential perils
lurking in the future whose ramifications could be as devastating as their coun-
terparts are beneficial. The distinction is often merely one’s point of view or per-
haps one’s position in society—one person’s gain might be another’s loss. It is
fitting then that we take a moment to look at advancing technology from alterna-
tive perspectives.

Some view the advancement of technology as a gift to humanity—a means of
freeing humans from boring, mundane tasks and opening the door to more
enjoyable lifestyles. But others see this same phenomenon as a curse that robs
citizens of employment and channels wealth toward those with power. This, in
fact, was a message of the devoted humanitarian Mahatma Gandhi of India. He
repeatedly argued that India would be better served by replacing large textile
mills with spinning wheels placed in the homes of the peasants. In this way, he
claimed, centralized mass production that employed only a few would be
replaced by a distributed mass production system that would benefit multitudes.

History is full of revolutions with roots in the disproportionate distribution of
wealth and privilege. If today’s advancing technology is allowed to entrench such
discrepancies, catastrophic consequences could result.

But the consequences of building increasingly intelligent machines is more
subtle—more fundamental—than those dealing with power struggles between
different segments of society. The issues strike at the very heart of humanity’s
self-image. In the nineteenth century, society was appalled by Charles Darwin’s
theory of evolution and the thought that humans might have evolved from lesser
life forms. How then will society react if faced with the onslaught of machines
whose mental capabilities challenge those of humans?

In the past, technology has developed slowly, allowing time for our self-
image to be preserved by readjusting our concept of intelligence. Our ancient
ancestors would have interpreted the mechanical devices of the nineteenth cen-
tury as having supernatural intelligence, but today we do not credit these
machines with any intelligence at all. But how will humanity react if machines
truly challenge the intelligence of humans, or, more likely, if the capabilities of
machines begin to advance faster than our ability to adapt?

We might get a clue to humanity’s potential reaction to machines that chal-
lenge our intellect by considering society’s response to IQ tests in the middle of
the twentieth century. These tests were considered to identify a child’s level of

1. In what way does the reactive approach to robot behavior differ from the
more traditional “plan-based” behavior?

2. What are some current topics of research in the field of robotics?
3. What are two levels at which evolutionary theories are being applied to

robot development?

Questions & Exercises

50111.7 Considering the Consequences

intelligence. Children in the United States were often classified by their perform-
ances on these tests and channeled into educational programs accordingly. In
turn, educational opportunities were opened to those children who performed
well on these tests, whereas children who performed poorly were directed
toward remedial programs of study. In short, when given a scale on which to
measure an individual’s intelligence, society tended to disregard the capabilities
of those who found themselves on the lower end of the scale. How then would
society handle the situation if the “intellectual” capabilities of machines became
comparable, or even appeared to be comparable, with those of humans? Would
society discard those whose abilities were seen as “inferior” to those of
machines? If so, what would be the consequences for those members of society?
Should a person’s dignity be subject to how he or she compares to a machine?

We have already begun to see the intellectual powers of humans challenged
by machines in specific fields. Machines are now capable of beating experts in
chess; computerized expert systems are capable of giving medical advice; and
simple programs managing investment portfolios often outperform investment
professionals. How do such systems affect the self-image of the individuals
involved? How will an individual’s self-esteem be affected as that individual is
outperformed by machines in more and more areas?

Many argue that the intelligence possessed by machines will always be inher-
ently different from that of humans since humans are biological and machines
are not. Thus, they argue, machines will never reproduce a human’s decision-
making process. Machines might reach the same decisions as humans but those
decisions would not be made on the same basis as those made by humans. To
what extent, then, are there different kinds of intelligence, and would it be ethical
for society to follow paths proposed by nonhuman intelligence?

In his book, Computer Power and Human Reason, Joseph Weizenbaum argues
against the unchecked application of artificial intelligence as follows:

Computers can make judicial decisions, computers can make psychi-
atric judgments. They can flip coins in much more sophisticated ways
than can the most patient human being. The point is that they ought
not be given such tasks. They might even be able to arrive at “correct”
decisions in some cases—but always and necessarily on bases no
human being should be willing to accept.

There have been many debates on “Computers and Mind.” What I con-
clude here is that the relevant issues are neither technological nor even
mathematical; they are ethical. They cannot be settled by asking ques-
tions beginning with “can.” The limits of the applicability of computers
are ultimately statable only in terms of oughts. What emerges as the
most elementary insight is that, since we do not now have any ways of
making computers wise, we ought not now to give computers tasks that
demand wisdom.

You might argue that much of this section borders on science fiction rather
than computer science. It was not too long ago, however, that many dismissed
the question “What will happen if computers take over society?” with the same
it-will-never-happen attitude. But in many respects, that day has now arrived.
If a computerized database erroneously reports that you have a bad credit rat-
ing, a criminal record, or an overdrawn checking account, is it the computer’s
statement or your claim of innocence that will prevail? If a malfunctioning

navigational system indicates that a fog-covered runway is in the wrong place,
where will the aircraft land? If a machine is used to predict the public’s reac-
tion to various political decisions, which decision does a politician make? How
many times has a clerk been unable to help you because “the computer is
down”? Who (or what), then, is in charge? Have we not already surrendered
society to machines?

502 Chapter 11 Artificial Intelligence

1. How much of today’s population would survive if the machines developed
over the last one hundred years were removed? What about the last fifty
years? What about twenty years? Where would the survivors be located?

2. To what extent is your life controlled by machines? Who controls the
machines that affect your life?

3. Where do you get the information on which you base your daily deci-
sions? What about your major decisions? What confidence do you have
in the accuracy of that information? Why?

Questions & Exercises

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

1. As demonstrated in Section 11.2, humans
might use a question for a purpose other than
asking. Another example is “Do you know that
your tire is flat?” which is used to inform
rather than to ask. Give examples of questions
used to reassure, to warn, and to criticize.

2. Analyze a soda dispensing machine as an
agent. What are its sensors? What are its actu-
ators? What level of response (reflex, knowl-
edge based, goal based) does it exhibit?

3. Identify each of the following responses as
being reflex, knowledge based, or goal based.
Justify your answers.
a. A computer program translating text from

German to English
b. A thermostat turning on the furnace when

the temperature in a house drops below the
current setting

c. A pilot landing a plane safely on a runway

4. If a researcher uses computer models for
studying the memorization capabilities of the
human mind, do the programs developed for

the machine necessarily memorize to the best
of the machine’s abilities? Explain.

5. Give some examples of declarative knowledge.
Give some examples of procedural knowledge.

*6. In the context of object-oriented program-
ming, what parts of an object are used to store
declarative knowledge? What parts are used to
store procedural knowledge?

7. Which of the following activities do you expect
to be performance oriented and which are
simulation oriented?
a. The design of an automated shuttle system

(often used at airports between terminals)
b. The design of a model predicting the path

of a hurricane
c. The design of a Web search database used

to derive and maintain indices for docu-
ments stored on the World Wide Web

d. The design of a model of a nation’s econ-
omy for testing theories

e. The design of a program for monitoring a
patient’s vital signs

503Chapter Review Problems

8. Today, some telephone calls to businesses
are handled by automated answering sys-
tems that use speech and voice recognition
to converse with the caller. Do these systems
pass the Turing test? Explain your answer.

9. Identify a small set of geometric properties
that can be used to distinguish between the
symbols F, E, L, and T.

*10. Describe the similarities between the tech-
nique of identifying characteristics by compar-
ing them to templates and the error-correcting
codes discussed in Chapter 1.

11. Describe two interpretations of the following
line drawing based on whether the “corner”
marked A is convex or concave:

12. Compare the roles of the prepositional phrases
in the following two sentences (which differ by
only one word). How could a machine be pro-
grammed to make such distinctions?

The pigpen was built by the barn.
The pigpen was built by the farmer.

13. How do the results of parsing the following
two sentences differ? How do the results of
semantic analysis differ?

An awesome sunset was seen by Andrea.
Andrea saw an awesome sunset.

14. How do the results of parsing the following
two sentences differ? How do the results of
semantic analysis differ?

If X < 10 then subtract 1 from X else add 1
from X.
If X > 10 then add 1 to X else subtract 1
from X.

15. In the text we briefly discussed the problems of
understanding natural languages as opposed to
formal programming languages. As an example
of the complexities involved in the case of nat-
ural languages, identify situations in which the
question “Do you know what time it is?” has
different meanings.

16. Changes in the context of a sentence can
change the significance of the sentence as well
as its meaning. In the context of Figure 11.3,
how would the significance of the sentence
“Mary hit John” change if the birth dates were
in the late 2000s? What if one were in the
1980s and the other in the late 2000s?

17. Draw a semantic net representing the infor-
mation in the following paragraph.

Donna threw the ball to Jack, who hit it into
center field. The center fielder tried to catch
it, but it bounced off the wall instead.

18. Sometimes the ability to answer a question
depends as much on knowing the limits of
knowledge as it does on the facts themselves.
For example, suppose databases A and B both
contain a complete list of employees who
belong to the company’s health insurance pro-
gram, but only database A is aware that the
list is complete. What could database A con-
clude about a member who was not on its list
that database B could not?

19. Give an example in which the closed-world
assumption leads to a contradiction.

20. Give two examples where the closed-world
assumption is commonly used.

21. In the context of a production system, what is
the difference between a state graph and a
search tree?

22. Analyze the task of solving the Rubik’s cube in
terms of a production system. (What are the
states, the productions, and so on?)

23. a. Suppose a search tree is a binary tree and
reaching the goal requires eight produc-
tions. What is the largest number of nodes
that could be in the tree when the goal
state is reached if the tree is constructed
with a breadth-first manner?

b. Explain how the total number of nodes con-
sidered during the search could be reduced
by conducting two searches at the same
time—one beginning at the initial state while
the other searches backward from the goal—
until the two meet. (Assume that the search
tree recording the states found in the back-
ward search is also a binary tree and that
both searches progress at the same rate.)

A

504 Chapter 11 Artificial Intelligence

24. In the text we mentioned that a production
system is often used as a technique for draw-
ing conclusions from known facts. The states
of the system are the facts known to be true at
each stage of the reasoning process, and the
productions are the rules of logic for manipu-
lating the known facts. Identify some rules of
logic that allow the conclusion “John is tall” to
be obtained from the facts that “John is a bas-
ketball player,” “Basketball players are not
short,” and “John is either short or tall.”

25. The following tree represents possible moves
in a competitive game, showing that player X
currently has a choice between move A and
move B. Following the move of player X,
player Y is allowed to select a move, and then
player X is allowed to select the last move of
the game. The leaf nodes of the tree are
labeled W, L, or T, depending on whether that
ending represents a win, loss, or tie for player X.
Should player X select move A or move B?
Why? How does selecting a “production” in a
competitive atmosphere differ from a one-
person game such as the eight-puzzle?

26. Analyze the game of checkers as a production
system and describe a heuristic that could be
used to determine which of two states is closer
to the goal. How would the control system in
this setting differ from that of a one-person
game such as the eight-puzzle?

27. By considering the manipulation rules of alge-
bra as productions, problems involving the sim-
plification of algebraic expressions can be
solved in the context of a production system.
Identify a set of algebraic productions that allow
the equation 3/(2x � 1) � 6/(3x � 1) to be
reduced to the form x � 3. What are some rules
of thumb (that is, heuristic rules) used when
performing such algebraic simplifications?

28. Draw the search tree that is generated by a
breadth-first search in an attempt to solve
the eight-puzzle from the following start

state without using the assistance of any
heuristic information.

29. Draw the search tree that is generated by the
best-fit algorithm of Figure 11.10 in an attempt
to solve the eight-puzzle from the start state in
Problem 28 if the number of tiles out of place
is used as a heuristic.

30. Draw the search tree that is generated by the
best-fit algorithm of Figure 11.10 in an attempt
to solve the eight-puzzle from the following
start state, assuming the heuristic used is the
same as that developed in Section 11.3.

31. When solving the eight-puzzle, why would the
number of tiles out of place not be as good a
heuristic as the one used in Section 11.3?

32. What is the distinction between the technique
of deciding which half of the list to consider
when performing a binary search (Section 5.5)
and deciding which branch to pursue when
performing a heuristic search?

33. Note that if a state in the state graph of a pro-
duction system has an extremely low heuristic
value in comparison to the other states and if
there is a production from that state to itself,
the algorithm in Figure 11.10 can get caught in
the loop of considering that state over and over
again. Show that if the cost of executing any
production in the system is at least one, then
by computing the projected cost to be the sum
of the heuristic value plus the cost of reaching
the state along the path being traversed, this
endless looping process will be avoided.

34. What heuristic do you use when searching for a
route between two cities on a large road map?

35. Draw to four levels the search tree produced by
the best-fit algorithm of Figure 11.10 in finding
the route from Trent to Wildwood. Each node
in the search tree will be a city on the map.
Begin with a node for Trent. When expanding a

21 3

5

84

7 6

1 3

4

67

2 5

8

Player Y’s
choices

Player X’s
choices

W W WLL LT T LW

A B

505Chapter Review Problems

node, add only the cities that are directly con-
nected to the city being expanded. Record in
each node the straight-line distance to
Wildwood and use this as the heuristic value.
Does the best-fit algorithm have a defect in its
processing? If so, what correction is needed?

36. The A* algorithm modifies the best-fist algo-
rithm in two significant ways. First, it records
the actual cost to reach a state. In the case of
a route on a map, the actual cost is the dis-
tance traveled. Second, when selecting a node
to expand, it chooses the node whose sum of
the actual cost plus heuristic value is the
smallest. Draw the search tree of Problem 35
that would result from these two modifica-
tions. Record in each node the distance trav-
eled to the city, the heuristic value to reach
the goal, and their sum. What is the found
path from Dearborn to Wildwood?

37. List two properties that a heuristic should have
if it is to be useful in a production system.

38. Suppose you have two buckets. One has a
capacity of exactly three liters; the other has a
capacity of five liters. You can pour water
from one bucket to another, empty a bucket,
or fill a bucket at any time. Your problem is to
place exactly four liters of water in the five-
liter bucket. Describe how this problem could
be framed as a production system.

39. Suppose your job is to supervise the loading of
two trucks, each of which can carry at most
fourteen tons. The cargo is a variety of crates
whose total weight is twenty-eight tons but
whose individual weights vary from crate to
crate. The weight of each crate is marked on
its side. What heuristic would you use for
dividing the crates between the two trucks?

40. Which of the following are examples
of meta-reasoning?
a. He has been gone long so he must have

gone far.

b. Since I usually make the wrong decision
and the last two decisions I made were cor-
rect, I will reverse my next decision.

c. I am getting tired so I am probably not
thinking clearly.

d. I am getting tired so I think I will take a nap.

41. Describe how a human’s ability to solve
the frame problem helps the human find
lost articles.

42. a. In what sense is learning by imitation simi-
lar to learning by supervised training?

b. In what sense is learning by imitation dif-
ferent from learning by supervised training?

43. The following diagram represents an artificial
neural network for an associative memory as
discussed in Section 11.5. What pattern does it
associate with any pattern in which only two
neurons that are separated by a single neuron
are excited? What will happen if the network
is initialized with all its neurons inhibited?

44. The following diagram represents an artificial
neural network for an associative memory as
discussed in Section 11.5. What stable configu-
ration does it associate with any initial pattern
in which at least three of the neurons on the
perimeter are excited and the center neuron is
inhibited? What would happen if it were given
an initial pattern in which only two neurons
that are opposite each other on the perimeter
were excited?

45. Design an artificial neural network for an asso-
ciative memory (as discussed in Section 11.5)

1 1

1 1

–1

–1

–2.5

–1

–1

.5

.5

.5 .5

–.5

–.5

–.5 –.5

–.5–.5

–1 –1

–1 –1

–1–1

Straight line distance
to Wildwood from

Avon 10
Bath 8
Trent 15
Seaport 1314

9
7

8

6 Avon

Trent

Wildwood

Seaport

Bath

506 Chapter 11 Artificial Intelligence

consisting of a rectangular array of neurons that
tries to move toward stable patterns in which a
single vertical column of neurons is excited.

46. Adjust the weights and threshold values in the
artificial neural network in Figure 11.18 so
that its output is 1 when both inputs are the
same (both 0 or both 1) and 0 when the inputs
are different (one being 0 while the other is 1).

47. Draw a diagram similar to Figure 11.5 repre-
senting the process of simplifying the alge-
braic expression 7x � 3 � 3x � 5 to the
expression x � �2.

48. Expand your answer to the previous problem to
show other paths that a control system might
pursue when attempting to solve the problem.

49. Draw a diagram similar to Figure 11.5 repre-
senting the reasoning process involved when
concluding that “Polly can fly” from the initial
facts “Polly is a parrot,” “A parrot is a bird,” and
“All birds can fly.”

50. In contrast to the statement in the preceding
problem, some birds, such as an ostrich or a
robin with a broken wing, cannot fly.
However, it would not seem reasonable to
construct a deductive reasoning system in
which all the exceptions to the statement “All
birds can fly” are explicitly listed. How then
do we as humans decide whether a particular
bird can or cannot fly?

51. Explain how the meaning of the sentence “I
read the new tax law” depends on the context.

52. Describe how the problem of traveling from
one city to another could be framed as a pro-
duction system. What are the states? What are
the productions?

53. Suppose you must perform three tasks, A, B,
and C, that can be performed in any order

(but not simultaneously). Describe how this
problem can be framed as a production sys-
tem and draw its state graph.

54. How does the state graph in the previous
problem change if task C must be performed
before task B?

55. a. If the notation (i, j), where i and j are posi-
tive integers, is used to mean “if the entry
in the ith position in the list is greater than
the entry in the jth position, interchange
the two entries,” which of the following two
sequences does a better job of sorting a list
of length three?
(1, 3) (3, 2)
(1, 2) (2, 3) (1, 2)

b. Note that by representing sequences of
interchanges in this manner, sequences can
be broken into sub-sequences that can then
be reconnected to form new sequences.
Use this approach to describe a genetic
algorithm for developing a program that
sorts lists of length ten.

56. Suppose each member in a group of robots is
to be equipped with a pair of sensors. Each
sensor can detect an object directly in front of
it within a range of two meters. Each robot is
shaped like a round trash can and can move in
any direction. Design a sequence of experi-
ments to determine where the sensors should
be placed to produce a robot that successfully
pushes a basketball in a straight line. How
does your sequence of experiments compare
to an evolutionary system?

57. Do you tend to make decisions in a reactive
or plan-based mode? Does your answer
depend on whether you are deciding on
what to have for lunch or making a
career decision?

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. To what extent should researchers in nuclear power, genetic engineering, and
artificial intelligence be held responsible for the way the results of their work

Social Issues

507Social Issues

are used? Is a scientist responsible for the knowledge revealed by his or her
research? What if the resulting knowledge was an unexpected consequence?

2. How would you distinguish between intelligence and simulated intelli-
gence? Do you believe there is a difference?

3. Suppose a computerized medical expert system gains a reputation within the
medical community for giving sound advice. To what extent should a physi-
cian allow that system to alter his or her decisions regarding the treatment of
patients? If the physician applies a treatment contrary to that proposed by
the expert system and the system turns out to be right, is the physician
guilty of malpractice? In general, if an expert system becomes well-known
within a field, to what degree could it hamper, rather than enhance, the abil-
ity of human experts when making their own judgments?

4. Many would argue that a computer’s actions are merely consequences of
how it was programmed, and thus a computer cannot possess free will. In
turn, a computer should not be held responsible for its actions. Is a human’s
mind a computer? Are humans preprogrammed at birth? Are humans pro-
grammed by their environments? Are humans responsible for their actions?

5. Are there avenues that science should not pursue even though it might be
capable of doing so? For instance, if it becomes possible to construct a
machine with perception and reasoning skills comparable to those of
humans, would the construction of such a machine be appropriate? What
issues could the existence of such a machine raise? What are some of the
issues being raised today by advancements in other scientific fields?

6. History abounds with instances in which the work of scientists and artists
was affected by the political, religious, or other social influences of their
times. In what ways are such issues affecting current scientific efforts? What
about computer science in particular?

7. Many cultures today take at least some responsibility toward helping to
retrain those whose jobs have been made redundant by advancing technol-
ogy. What should/can society do as technology makes more and more of our
capabilities redundant?

8. Suppose you receive a computer-generated bill for $0.00. What should you
do? Suppose you do nothing and 30 days later you receive a second notice of
$0.00 due in your account. What should you do? Suppose you do nothing and
30 days later you receive another notice of $0.00 due in your account along
with a note stating that, unless the bill is paid promptly, legal action will be
taken. Who is in charge?

9. Are there times when you associate personalities with your personal com-
puter? Are there times when it seems vindictive or stubborn? Do you ever
get mad at your computer? What is the difference between being mad at
your computer and being mad as a result of your computer? Does your com-
puter ever get mad at you? Do you have similar relationships with other
objects such as cars, televisions, and ball-point pens?

10. On the basis of your answers to Question 9, to what extent are humans will-
ing to associate an entity’s behavior with the presence of intelligence and
awareness? To what extent should humans make such associations? Is it pos-
sible for an intelligent entity to reveal its intelligence in some way other
than its behavior?

508 Chapter 11 Artificial Intelligence

11. Many feel that the ability to pass the Turing test does not imply that a machine
is intelligent. One argument is that intelligent behavior does not, in itself, imply
intelligence. Yet the theory of evolution is based on the survival of the fittest,
which is a behavior-based test. Does the theory of evolution imply that intelli-
gent behavior is a predecessor to intelligence? Would the ability to pass the
Turing test imply that machines were on their way to becoming intelligent?

12. Medical treatment has advanced to the point that numerous parts of the
human body can now be replaced with artificial parts or parts from human
donors. It is conceivable that this might someday include parts of the brain.
What ethical problems would such capabilities raise? If a patient’s neurons
were replaced one at a time with artificial neurons, would the patient remain
the same person? Would the patient ever notice a difference? Would the
patient remain human?

13. A GPS in an automobile provides a friendly voice notifying the driver of
upcoming turns and other actions. In the event the driver makes a mistake,
it will automatically make adjustments and provide directions to get back on
route without undue emotion. Do you feel that a GPS reduces a driver’s
stress when driving to a new destination? In what ways does a GPS con-
tribute to stress?

14. Suppose your smartphone provided voice-to-voice language translation,
would you feel comfortable using this feature? Would you trust it to convey
the correct meaning? Would you have any concerns?

Banzhaf, W., P. Nordin, R. E. Deller, and F. D. Francone. Genetic Programming: An
Introduction. San Francisco, CA: Morgan Kaufmann, 1998.

Lu, J. and J. Wu. Multi-Agent Robotic Systems. Boca Raton, FL: CRC Press, 2001.

Luger, G. F. Artificial Intelligence: Structures and Strategies for Complex Problem
Solving, 5th ed. Boston, MA: Addison-Wesley, 2005.

Mitchell, M. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press, 1998.

Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems, 2nd ed.
Boston, MA: Addison-Wesley, 2005.

Nilsson, N. Artificial Intelligence: A New Synthesis. San Francisco, CA: Morgan
Kaufmann, 1998.

Nolfi, S. and D. Floreano. Evolutionary Robotics. Cambridge, MA: MIT Press, 2000.

Rumelhart, D. E. and J. L. McClelland. Parallel Distributed Processing. Cambridge,
MA: MIT Press, 1986.

Russell, S. and P. Norvig. Artificial Intelligence: A Modern Approach, 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2009.

Shapiro, L. G. and G. C. Stockman. Computer Vision. Englewood Cliffs, NJ:
Prentice-Hall, 2001.

Shieber, S. The Turing Test. Cambridge, MA: MIT Press, 2004.

Weizenbaum, J. Computer Power and Human Reason. New York: W. H.
Freeman, 1979.

Additional Reading

In this chapter we will consider the theoretical foundations of

computer science. In a sense, it is the material in this chapter that

gives computer science the status of a true science. Although

somewhat abstract in nature, this body of knowledge has many

very practical applications. In particular, we will explore its impli-

cations regarding the power of programming languages and see how

it leads to a public-key encryption system that is widely used in

communication over the Internet.

C H A P T E R

12

12.1 Functions and Their
Computation

12.2 Turing Machines
Turing Machine Fundamentals
The Church–Turing Thesis

12.3 Universal
Programming Languages
The Bare Bones Language
Programming in Bare Bones
The Universality of Bare Bones

12.4 A Noncomputable
Function
The Halting Problem
The Unsolvability of the

Halting Problem

12.5 Complexity of
Problems
Measuring a Problem’s

Complexity
Polynomial Versus

Nonpolynomial Problems
NP Problems

*12.6 Public-Key
Cryptography
Modular Notation
RSA Public-Key Cryptography

*Asterisks indicate suggestions for
optional sections.

Theory of
Computation

In this chapter we consider questions regarding what computers can and cannot
do. We will see how simple machines, known as Turing machines, are used to
identify the boundary between problems that are solvable by machines and
problems that are not. We will identify a particular problem, known as the halt-
ing problem, whose solution falls beyond the powers of algorithmic systems and
therefore beyond the capabilities of today’s as well as tomorrow’s computers.
Moreover, we will find that even among the machine-solvable problems, there
are problems whose solutions are so complex that they are unsolvable from any
practical point of view. We close by considering how knowledge in the field of
complexity can be used to construct a public-key encryption system.

12.1 Functions and Their Computation
Our goal in this chapter is to investigate the capabilities of computers. We want
to understand what machines can and cannot do and what features are required
for machines to reach their full potential. We begin with the concept of comput-
ing functions.

A function in its mathematical sense is a correspondence between a collec-
tion of possible input values and a collection of output values so that each possi-
ble input is assigned a single output. An example is the function that converts
measurements in yards into meters. With each measurement in yards, it assigns
the value that would result if the same distance were measured in meters.
Another example, which we could call the sort function, assigns each input list of
numeric values to an output list whose entries are the same as those in the input
list but are arranged in the order of increasing value. Still another example is the
addition function whose inputs are pairs of values and whose outputs are values
representing the sum of each input pair.

The process of determining the particular output value that a function assigns
to a given input is called computing the function. The ability to compute functions is
important because it is by means of computing functions that we are able to solve
problems. To solve an addition problem we must compute the addition function; to
sort a list we must compute the sort function. In turn, a fundamental task of com-
puter science is to find techniques for computing the functions that lie beneath the
problems we want to solve.

Consider, for example, a system in which a function’s inputs and outputs can be
predetermined and recorded in a table. Each time the output of the function is

510 Chapter 12 Theory of Computation

Nothing tantalizes human nature more than to be told something cannot be done.
Once researchers began to identify problems that are unsolvable in the sense that
they have no algorithmic solutions, others began to study these problems to try to
understand their complexity. Today, this field of research is a major part of the sub-
ject known as recursive function theory, and much has been learned about these
super-difficult problems. Indeed, just as mathematicians have developed number
systems that reveal “quantitative” levels beyond infinity, recursive function theorists
have uncovered multiple levels of complexity within problems that exist well beyond
the capabilities of algorithms.

Recursive Function Theory

required, we merely look for the given input in the table where we find the required
output. Thus the computation of the function is reduced to the process of searching
the table. Such systems are convenient but limited in power because many func-
tions cannot be represented completely in tabular form. An example is shown in
Figure 12.1, which is an attempt to display the function that converts measure-
ments in yards into equivalent measurements in meters. Because there is no limit
to the list of possible input/output pairs, the table is destined to be incomplete.

A more powerful approach to computing functions is to follow directions pro-
vided by an algebraic formula rather than trying to display all possible input/out-
put combinations in a table. We could, for example, use the algebraic formula

V � P(1 � r)n

to describe how to compute the value of an investment of P after earning an
annually compounded interest rate of r for n years.

But the expressive power of algebraic formulas has its limitations as well. There
are functions whose input/output relationships are too complex to be described by
algebraic manipulations. Examples include the trigonometric functions such as sine
and cosine. If pressed to calculate the sine of 38 degrees, you might draw the appro-
priate triangle, measure its sides, and calculate the desired ratio—a process that can-
not be expressed in terms of algebraic manipulations of the value 38. Your pocket
calculator also struggles with the task of computing the sine of 38 degrees. In reality,
it is forced to apply rather sophisticated mathematical techniques to obtain a very
good approximation to the sine of 38 degrees, which it reports to you as the answer.

We see, then, that as we consider functions with increasing complexity, we are
forced to apply more powerful techniques for computing them. Our question is
whether we can always find a system for computing functions, regardless of their
complexity. The answer is no. A striking result from mathematics is that there are
functions that are so complex that there is no well-defined, step-by-step process for
determining their outputs based on their input values. In turn, the computation of
these functions lies beyond the abilities of any algorithmic system. These functions
are said to be noncomputable, whereas the functions whose output values can be
determined algorithmically from their input values are said to be computable.

The distinction between computable and noncomputable functions is impor-
tant in computer science. Because machines can only perform tasks described

51112.1 Functions and Their Computation

Figure 12.1 An attempt to display the function that converts measurements in yards into
meters

Yards
(input)

Meters
(output)

1
2
3
4
5
.
.
.

0.9144
1.8288
2.7432
3.6576
4.5720

.

.

.

by algorithms, the study of computable functions is the study of the ultimate
capabilities of machines. If we can identify capabilities that allow a machine to
compute the entire set of computable functions and then build machines with
these capabilities, we will be assured that the machines we build are as powerful
as we can make them. Likewise, if we discover that the solution to a problem
requires the computation of a noncomputable function, we can conclude that
the solution to that problem lies beyond the capabilities of machines.

512 Chapter 12 Theory of Computation

1. Identify some functions that can be represented completely in tabular
form.

2. Identify some functions whose outputs can be described as an algebraic
expression involving their inputs.

3. Identify a function that cannot be described in terms of an algebraic for-
mula. Is your function nonetheless computable?

4. Ancient Greek mathematicians used a straight-edge and compass to
draw shapes. They developed techniques for finding the midpoint on a
straight line, constructing a right angle, and drawing an equilateral trian-
gle. However, what were some “computations” that their “computational
system” could not perform?

Questions & Exercises

12.2 Turing Machines
In an effort to understand capabilities and limitations of machines, many
researchers have proposed and studied various computational devices. One of
these is the Turing machine, which was proposed by Alan M. Turing in 1936 and
is still used today as a tool for studying the power of algorithmic processes.

Turing Machine Fundamentals
A Turing machine consists of a control unit that can read and write symbols on
a tape by means of a read/write head (Figure 12.2). The tape extends indefinitely
at both ends and is divided into cells, each of which can contain any one of a
finite set of symbols. This set is called the machine’s alphabet.

Figure 12.2 The components of a Turing machine

Control
unit

Read/write headTape

At any time during a Turing machine’s computation, the machine must be in
one of a finite number of conditions, called states. A Turing machine’s computa-
tion begins in a special state called the start state and ceases when the machine
reaches another special state known as the halt state.

A Turing machine’s computation consists of a sequence of steps that are exe-
cuted by the machine’s control unit. Each step consists of observing the symbol
in the current tape cell (the one viewed by the read-write head), writing a sym-
bol in that cell, possibly moving the read-write head one cell to the left or right,
and then changing states. The exact action to be performed is determined by a
program that tells the control unit what to do based on the machine’s state and
the contents of the current tape cell.

Let us consider an example of a specific Turing machine. For this purpose,
we represent the machine’s tape as a horizontal strip divided into cells in which
we can record symbols from the machine’s alphabet. We indicate the current
position of the machine’s read/write head by placing a label under the current
tape cell. The alphabet for our example consists of the symbols 0, 1, and *. The
tape of our machine might appear as follows:

51312.2 Turing Machines

Current
position

* *1 0 1

By interpreting a string of symbols on the tape as representing binary num-
bers separated by asterisks, we recognize that this particular tape contains the
value 5. Our Turing machine is designed to increment such a value on the tape
by 1. More precisely, it assumes that the starting position is at an asterisk
marking the right end of a string of 0s and 1s, and it proceeds to alter the bit pat-
tern to the left so that it represents the next larger integer.

Alan Turing developed the concept of a Turing machine in the 1930s, well before
technology was capable of providing the machines we know today. In fact, Turing’s
vision was that of a human performing computations with pencil and paper.
Turing’s goal was to provide a model by which the limits of “computational
processes” could be studied. This was shortly after the publication in 1931 of
Gödel’s famous paper exposing the limitations of computational systems, and a
major research effort was being directed toward understanding these limitations.
In the same year that Turing presented his model (1936), Emil Post presented
another model (now known as Post production systems) that has been shown
to have the same capabilities as Turing’s. As a testimony to the insights of these
early researchers, their models of computational systems (such as Turing
machines and Post production systems) still serve as valuable tools in computer
science research.

The Origins of Turing Machines

The states for our machine are START, ADD, CARRY, OVERFLOW, RETURN,
and HALT. The actions corresponding to each of these states and the content of
the current cell are described in the table in Figure 12.3. We assume that the
machine always begins in the START state.

Let us apply this machine to the tape pictured earlier, which contains the
value 5. Observe that when in the START state with the current cell containing *
(as is our case), we are instructed by the table to rewrite the *, move the read/
write head one cell to the left, and enter the ADD state. Having done this, the
machine can be described as follows:

514 Chapter 12 Theory of Computation

Current
position

Machine State = ADD

* *1 0 1

Current
position

Machine State = CARRY

* *1 0 0

To proceed, we look at the table to see what to do when in the ADD state with
the current cell containing 1. The table tells us to replace the 1 in the current cell
with 0, move the read/write head one cell to the left, and enter the CARRY state.
Thus the configuration of the machine becomes:

We again refer to the table to see what to do next and find that when in the
CARRY state with the current cell containing 0, we should replace the 0 with 1,

Figure 12.3 A Turing machine for incrementing a value

Current state Direction to moveCurrent cell
content

Value
to write

New state
to enter

START
ADD
ADD
ADD

CARRY
CARRY
CARRY

OVERFLOW
RETURN
RETURN
RETURN

ADD
RETURN
CARRY
HALT

RETURN
CARRY

OVERFLOW
RETURN
RETURN
RETURN

HALT

Left
Right
Left

Right
Right
Left
Left

Right
Right
Right

No move

*
0
1
*
0
1
*

(Ignored)
0
1
*

*
1
0
*
1
0
1
*
0
1
*

From this situation, the table instructs us to proceed by replacing the 0 in the cur-
rent cell with another 0, move the read/write head one cell to the right, and remain
in the RETURN state. Consequently, we find our machine in the following condition:

move the read/write head one cell to the right, and enter the RETURN state. After
we do this, the machine’s configuration is as follows:

51512.2 Turing Machines

Current
position

Machine State = RETURN

* *1 1 0

At this point, we see that the table instructs us to rewrite the asterisk in the
current cell and HALT. The machine thus stops in the following configuration
(the symbols on the tape now represent the value 6 as desired):

Current
position

Machine State = RETURN

* *1 1 0

Current
position

Machine State = HALT

* *1 1 0

The Church-Turing Thesis
The Turing machine in the preceding example can be used to compute the func-
tion known as the successor function, which assigns each nonnegative integer
input value n to the output value n � 1. We need merely place the input value in
its binary form on the machine’s tape, run the machine until it halts, and then
read the output value from the tape. A function that can be computed in this
manner by a Turing machine is said to be Turing computable.

Turing’s conjecture was that the Turing-computable functions were the same as
the computable functions. In other words, he conjectured that the computational
power of Turing machines encompasses that of any algorithmic system or, equiva-
lently, that (in contrast to such approaches as tables and algebraic formulas) the
Turing machine concept provides a context in which solutions to all the computable
functions can be expressed. Today, this conjecture is often referred to as the
Church–Turing thesis, in reference to the contributions made by both Alan Turing
and Alonzo Church. Since Turing’s initial work, much evidence has been collected to
support this thesis, and today the Church–Turing thesis is widely accepted. That is, the
computable functions and the Turing-computable functions are considered the same.

The significance of this conjecture is that it gives insight to the capabilities
and limitations of computing machinery. More precisely, it establishes the capa-
bilities of Turing machines as a standard to which the powers of other computa-
tional systems can be compared. If a computational system is capable of
computing all the Turing-computable functions, it is considered to be as powerful
as any computational system can be.

516 Chapter 12 Theory of Computation

1. Apply the Turing machine described in this section (Figure 12.3), start-
ing with the following initial status:

2. Describe a Turing machine that replaces a string of 0s and 1s with a single 0.
3. Describe a Turing machine that decrements the value on the tape if it is

greater than zero or leaves the value unaltered if it is zero.
4. Identify an everyday situation in which calculating takes place. How is

that situation analogous to a Turing machine?
5. Describe a Turing machine that ultimately halts for some inputs but

never halts for others.

Questions & Exercises

Current
position

Machine State = START

* *1 1 0

12.3 Universal Programming Languages
In Chapter 6 we studied a variety of features found in high-level programming
languages. In this section we apply our knowledge of computability to determine
which of these features are actually necessary. We will find that most features in
today’s high-level languages merely enhance convenience rather than contribute
to the fundamental power of the language.

Our approach is to describe a simple imperative programming language that
is rich enough to allow us to express programs for computing all the Turing-
computable functions (and thus all the computable functions). Hence, if a future
programmer finds that a problem cannot be solved using this language, the rea-
son will not be a fault of the language. Instead, it will be that there is no algo-
rithm for solving the problem. A programming language with this property is
called a universal programming language.

You might find it surprising that a universal language need not be complex.
Indeed, the language we are about to present is quite simple. We will call it Bare
Bones because it isolates the minimal set of requirements of a universal pro-
gramming language.

The Bare Bones Language
Let us begin our presentation of Bare Bones by considering the declarative state-
ments found in other programming languages. These statements allow program-
mers the luxury of thinking in terms of data structures and data types (such as
arrays of numeric values and strings of alphabetic characters) even though the
machine itself merely manipulates bit patterns without any knowledge of what
the patterns represent. Before being presented to a machine for execution, a
high-level instruction dealing with elaborate data types and structures must be

translated into machine-level instructions that manipulate bit patterns to simu-
late the actions requested.

For convenience, we can interpret these patterns as numeric values repre-
sented in binary notation. Thus, all computations performed by a computer
could be expressed as numeric computations involving nonnegative integers—it
is all in the eye of the beholder. Moreover, programming languages could be sim-
plified by requiring programmers to express algorithms in these terms (although
this would place a larger burden on the programmer).

Because our goal in developing Bare Bones is to develop the simplest lan-
guage possible, we will follow this lead. All variables in Bare Bones will be
considered to represent bit patterns that, for convenience, we interpret as non-
negative integers in binary notation. Thus a variable currently assigned the pat-
tern 10 will be said to contain the value two, whereas a variable assigned the
pattern 101 will be said to contain five.

Using this convention, all variables in a Bare Bones program are of the same
type so the language does not need declarative statements by which variable names
and their associated properties are described. When using Bare Bones, a program-
mer can simply begin using a new variable name when it is needed, with the under-
standing that it refers to a bit pattern interpreted as a nonnegative integer.

Of course, a translator for our Bare Bones language must be able to distin-
guish variable names from the other terms. This is done by designing the syntax
of Bare Bones so that the role of any term can be identified by syntax alone. For
this purpose, we specify that variable names must begin with a letter from the
English alphabet, which can be followed by any combination of letters and digits
(0 through 9). Thus the strings XYZ, B747, abcdefghi, and X5Y can be used as
variable names, whereas 2G5, %o, and x.y cannot.

Let us now consider the procedural statements in Bare Bones. There are
three assignment statements and one control structure representing a loop. The
language is a free-format language, so each statement terminates with a semi-
colon, making it easy for a translator to separate statements that appear on the
same line. We, however, will adopt the policy of writing only one statement per
line to enhance readability.

Each of the three assignment statements requests that the contents of the
variable identified in the statement be modified. The first allows us to associate
the value zero with a variable. Its syntax is

clear name;

where name can be any variable name.
The other assignment statements are essentially opposites of each other:

incr name;

and

decr name;

Again, name represents any variable name. The first of these statements causes
the value associated with the identified variable to be incremented by one. Thus,
if the variable Y were assigned the value five before the statement

incr Y;

is executed, then the value assigned to Y afterward would be six.

51712.3 Universal Programming Languages

In contrast, the decr statement is used to decrement the value associated
with the identified variable by one. An exception is when the variable is already
associated with zero, in which case this statement leaves the value unaltered.
Therefore, if the value associated with Y is five before the statement

decr Y;

is executed, the value four would be associated with Y afterward. However, if the
value of Y had been zero before executing the statement, the value would remain
zero after execution.

Bare Bones provides only one control structure represented by a while-end
statement pair. The statement sequence

while name not 0 do;
.
.
.
end;

(where name represents any variable name) causes any statement or statement
sequence positioned between the while and end statements to be repeated as long
as the value of the variable name is not zero. To be more precise, when a while-end
structure is encountered during program execution, the value of the identified vari-
able is first compared to zero. If it is zero, the structure is skipped, and execution con-
tinues with the statement following the end statement. If, however, the variable’s
value is not zero, the statement sequence within the while-end structure is exe-
cuted and control is returned to the while statement, whereupon the comparison is
conducted again. Note that the burden of loop control is partially placed on the pro-
grammer, who must explicitly request that the variable’s value be altered within the
loop body to avoid an infinite loop. For instance, the sequence

incr X;
while X not 0 do;
incr Z;

end;

results in an infinite process because once the while statement is reached, the
value associated with X can never be zero, whereas the sequence

clear Z;
while X not 0 do;
incr Z;
decr X;

end;

ultimately terminates with the effect of transferring the value initially associated
with X to the variable Z.

Observe that while and end statements must appear in pairs with the
while statement appearing first. However, a while-end statement pair might
appear within the instructions being repeated by another while-end pair. In
such a case the pairing of while and end statements is accomplished by scan-
ning the program in its written form from beginning to end while associating
each end statement with the nearest preceding while statement not yet paired.
Although not syntactically necessary, we often use indentation to enhance the
readability of such structures.

518 Chapter 12 Theory of Computation

As a closing example, the instruction sequence in Figure 12.4 results in the
product of the values associated with X and Y being assigned to Z, although it has
the side effect of destroying any nonzero value that might have been associated
with X. (The while-end structure controlled by the variable W has the effect of
restoring the original value of Y.)

Programming in Bare Bones
Keep in mind that our goal in presenting the language Bare Bones is to investi-
gate what is possible, not what is practical. Bare Bones would prove to be awk-
ward if used in an applied setting. On the other hand, we will soon see that this
simple language fulfills our goal of providing a no-frills universal programming
language. For now, we will merely demonstrate how Bare Bones can be used to
express some elementary operations.

We first note that with a combination of the assignment statements, any
value (any nonnegative integer) can be associated with a given variable. For
example, the following sequence assigns the value three to the variable X by first
assigning it the value zero and then incrementing its value three times:

clear X;
incr X;
incr X;
incr X;

Another common activity in programs is to copy data from one location to
another. In terms of Bare Bones, this means that we need to be able to assign the
value of one variable to another variable. This can be accomplished by first clear-
ing the destination and then incrementing it an appropriate number of times. In
fact, we have already observed that the sequence

clear Z;
while X not 0 do;
incr Z;
decr X;

end;

transfers the value associated with X to Z. However, this sequence has the side
effect of destroying the original value of X. To correct for this, we can introduce an
auxiliary variable to which we first transfer the subject value from its initial

51912.3 Universal Programming Languages

Figure 12.4 A Bare Bones program for computing X� Y

clear Z;
while X not 0 do;
 clear W;
 while Y not 0 do;
 incr Z;
 incr W;
 decr Y;
 end;
 while W not 0 do;
 incr Y;
 decr W;
 end;
 decr X;
end;

location. We then use this auxiliary variable as the data source from which we
restore the original variable while placing the subject value in the desired desti-
nation. In this manner, the movement of Today to Yesterday can be accom-
plished by the sequence shown in Figure 12.5.

We adopt the syntax

copy name1 to name2;

(where name1 and name2 represent variable names) as a shorthand notation for
a statement structure of the form in Figure 12.5. Thus, although Bare Bones
itself does not have an explicit copy instruction, we often write programs as
though it did, with the understanding that to convert such informal programs
into real Bare Bones programs, we must replace the copy statements with their
equivalent while-end structures using an auxiliary variable whose name does
not clash with a name already used elsewhere in the program.

The Universality of Bare Bones
Let us now apply the Church-Turing thesis to confirm our claim that Bare Bones is a
universal programming language. First, we observe that any program written in Bare
Bones can be thought of as directing the computation of a function. The function’s
input consists of values assigned to variables prior to executing the program, and the
function’s output consists of the values of variables when the program terminates.
To compute the function, we merely execute the program, starting with proper variable
assignments, and then observe the variables’ values when the program terminates.

Under these conditions the program

incr X;

directs the computation of the same function (the successor function) that is
computed by the Turing machine example of Section 12.2. Indeed, it increases
the value associated with X by one. Likewise, if we interpret the variables X and
Y as inputs and the variable Z as the output, the program

copy Y to Z;
while X not 0 do;
incr Z;
decr X;
end;

directs the computation of the addition function.

520 Chapter 12 Theory of Computation

Figure 12.5 A Bare Bones implementation of the instruction “copy Today to Tomorrow”

clear Aux;
clear Tomorrow;
while Today not 0 do;
 incr Aux;
 decr Today;
end;
while Aux not 0 do;
 incr Today;
 incr Tomorrow;
 decr Aux;
end;

Researchers have shown that the Bare Bones programming language can be
used to express algorithms for computing all the Turing-computable functions.
Combining this with the Church-Turing thesis implies that any computable func-
tion can be computed by a program written in Bare Bones. Thus Bare Bones is a
universal programming language in the sense that, if an algorithm exists for solv-
ing a problem, then that problem can be solved by some Bare Bones program. In
turn, Bare Bones could theoretically serve as a general-purpose programming
language.

We say theoretically because such a language is certainly not as convenient as
the high-level languages introduced in Chapter 6. However, each of those lan-
guages essentially contains the features of Bare Bones as its core. It is, in fact,
this core that ensures the universality of each of those languages; all the other
features in the various languages are included for convenience.

Although not practical in an application programming environment,
languages such as Bare Bones find use within theoretical computer science.
For example, in Appendix E we use Bare Bones as a tool to settle the question
regarding the equivalence of iterative and recursive structures raised in
Chapter 5. There we find that our suspicion of equivalence was, in fact,
justified.

52112.3 Universal Programming Languages

Questions & Exercises

1. Show that the statement invert X; (whose action is to convert the
value of X to zero if its initial value is nonzero and to 1 if its initial value
is zero) can be simulated by a Bare Bones program segment.

2. Show that even our simple Bare Bones language contains more state-
ments than necessary by showing that the clear statement can be re-
placed with combinations of other statements in the language.

3. Show that the if-then-else structure can be simulated using Bare
Bones. That is, write a program sequence in Bare Bones that simulates
the action of the statement

if X not 0 then S1 else S2;

where S1 and S2 represent arbitrary statement sequences.

4. Show that each of the Bare Bones statements can be expressed in terms
of the machine language of Appendix C. (Thus Bare Bones can be used
as a programming language for such a machine.)

5. How can negative numbers be dealt with in Bare Bones?
6. Describe the function computed by the following Bare Bones program,

assuming the function’s input is represented by X and its output by Z:

clear Z;
while X not 0 do;

incr Z;
incr Z;
decr X;

end;

12.4 A Noncomputable Function
We now identify a function that is not Turing computable and so, by the Church-
Turing thesis, is widely believed to be noncomputable in the general sense. Thus
it is a function whose computation lies beyond the capabilities of computers.

The Halting Problem
The noncomputable function we are about to reveal is associated with a problem
known as the halting problem, which (in an informal sense) is the problem of
trying to predict in advance whether a program will terminate (or halt) if started
under certain conditions. For example, consider the simple Bare Bones program

while X not 0 do;
incr X;

end;

If we execute this program with the initial value of X being zero, the loop will not
be executed and the program’s execution will quickly terminate. However, if we
execute the program with any other initial value of X, the loop will be executed
forever, leading to a nonterminating process.

In this case, then, it is easy to conclude that the program’s execution will halt
only when it is started with X assigned the value zero. However, as we move to
more complex examples, the task of predicting a program’s behavior becomes
more complicated. In fact, in some cases the task is impossible, as we shall see. But
first we need to formalize our terminology and focus our thoughts more precisely.

Our example has shown that whether a program ultimately halts can
depend on the initial values of its variables. Thus if we hope to predict whether
a program’s execution will halt, we must be precise in regard to these initial val-
ues. The choice we are about to make for these values might seem strange to
you at first, but do not despair. Our goal is to take advantage of a technique
called self-reference—the idea of an object referring to itself. This ploy has
repeatedly led to amazing results in mathematics from such informal curiosities
as the sentence “This statement is false” to the more serious paradox repre-
sented by the question “Does the set of all sets contain itself?” What we are
about to do, then, is set the stage for a line of reasoning similar to “If it does,
then it doesn’t; but, if it doesn’t, then it does.”

In our case self-reference will be achieved by assigning the variables in a
program an initial value that represents the program itself. To this end, observe
that each Bare Bones program can be encoded as a single long bit pattern in a
one-character-per-byte format using ASCII, which can then be interpreted as the
binary representation for a (rather large) nonnegative integer. It is this integer
value that we assign as the initial value for the variables in the program.

Let us consider what would happen if we did this in the case of the simple
program

while X not 0 do;
incr X;

end;

We want to know what would happen if we started this program with X assigned
the integer value representing the program itself (Figure 12.6). In this case the
answer is readily apparent. Because X would have a nonzero value, the program

522 Chapter 12 Theory of Computation

would become caught in the loop and never terminate. On the other hand, if we
performed a similar experiment with the program

clear X;
while X not 0 do;
incr X;

end;

the program would terminate because the variable X would have the value zero
by the time the while-end structure is reached regardless of its initial value.

Let us, then, make the following definition: A Bare Bones program is
self-terminating if executing the program with all its variables initialized to the
program’s own encoded representation leads to a terminating process. Informally,
a program is self-terminating if its execution terminates when started with itself as
its input. Here, then, is the self-reference that we promised.

Note that whether a program is self-terminating probably has nothing to do
with the purpose for which the program was written. It is merely a property that
each Bare Bones program either possesses or does not possess. That is, each Bare
Bones program is either self-terminating or not.

We can now describe the halting problem in a precise manner. It is the prob-
lem of determining whether Bare Bones programs are or are not self-terminating.
We are about to see that there is no algorithm for answering this question in
general. That is, there is no single algorithm that, when given any Bare Bones
program, is capable of determining whether that program is or is not self-
terminating. Thus the solution to the halting problem lies beyond the capabilities
of computers.

The fact that we have apparently solved the halting problem in our previ-
ous examples and now claim that the halting problem is unsolvable might
sound contradictory, so let us pause for clarification. The observations we used
in our examples were unique to those particular cases and would not be appli-
cable in all situations. What the halting problem requests is a single, generic
algorithm that can be applied to any Bare Bones program to determine whether
it is self-terminating. Our ability to apply certain isolated insights to determine
whether a particular program is self-terminating in no way implies the exis-
tence of a single, generic approach that can be applied in all cases. In short, we

52312.4 A Noncomputable Function

Figure 12.6 Testing a program for self-termination

0111011101101000...0110010000111011

Encode the
program as
one long bit
pattern using
ASCII.

Assign this pattern to X
and execute the program.

While X not 0 do;
 incr X;
end;

W h d ;

might be able to build a machine that can solve a particular halting problem,
but we cannot build a single machine that we could use to solve any halting
problem that arises.

The Unsolvability of the Halting Problem
We now want to show that solving the halting problem lies beyond the capabilities
of machines. Our approach is to show that to solve the problem would require an
algorithm for computing a noncomputable function. The inputs of the function in
question are encoded versions of Bare Bones programs; its outputs are limited to
the values 0 and 1. More precisely, we define the function so that an input repre-
senting a self-terminating program produces the output value 1 while an input
representing a program that is not self-terminating produces the output value 0.
For the sake of conciseness, we will refer to this function as the halting function.

Our task is to show that the halting function is not computable. Our
approach is the technique known as “proof by contradiction.” In short, we prove
that a statement is false by showing that it cannot be true. Let us, then, show that
the statement “the halting function is computable” cannot be true. Our entire
argument is summarized in Figure 12.7.

If the halting function is computable, then (because Bare Bones is a univer-
sal programming language) there must be a Bare Bones program that computes it.
In other words, there is a Bare Bones program that terminates with its output
equal to 1 if its input is the encoded version of a self-terminating program and
terminates with its output equal to 0 otherwise.

To apply this program we do not need to identify which variable is the input
variable but instead merely to initialize all the program’s variables to the
encoded representation of the program to be tested. This is because a variable
that is not an input variable is inherently a variable whose initial value does not
affect the ultimate output value. We conclude that if the halting function is com-
putable, then there is a Bare Bones program that terminates with its output equal
to 1 if all its variables are initialized to the encoded version of a self-terminating
program and terminates with its output equal to 0 otherwise.

Assuming that the program’s output variable is named X (if it is not we could
simply rename the variables), we could modify the program by attaching the
statements

while X not 0 do;
end;

at its end, producing a new program. This new program must be either self-
terminating or not. However, we are about to see that it can be neither.

In particular, if this new program were self-terminating and we ran it with
its variables initialized to the program’s own encoded representation, then
when its execution reached the while statement that we added, the variable X
would contain a 1. (To this point the new program is identical to the original
program that produced a 1 if its input was the representation of a self-
terminating program.) At this point, the program’s execution would be caught
forever in the while-end structure because we made no provisions for X to be
decremented within the loop. But this contradicts our assumption that the new
program is self-terminating. Therefore we must conclude that the new program
is not self-terminating.

524 Chapter 12 Theory of Computation

If, however, the new program were not self-terminating and we executed it
with its variables initialized to the program’s own encoded representation, it would
reach the added while statement with X being assigned the value 0. (This occurs
because the statements preceding the while statement constitute the original pro-
gram that produces an output of 0 when its input represents a program that is not
self-terminating.) In this case, the loop in the while-end structure would be
avoided and the program would halt. But this is the property of a self-terminating
program, so we are forced to conclude that the new program is self-terminating,
just as we were forced to conclude earlier that it is not self-terminating.

52512.4 A Noncomputable Function

Figure 12.7 Proving the unsolvability of the halting program

while X
 not 0 do;
end;

First: Propose the existence
 of a program that,

given any encoded
version of a program

will halt with variable
X equal to 1 if the
input represents a
self-terminating
program, or with X
equal to 0 otherwise.

Proposed
program

Proposed
program

we started it with
its own encoding
as its input,

However: If this new program were
 not self-terminating and

execution would
reach this point
with X equal to 0,

so this loop
would be skipped

and execution
would halt;

i.e., if the new program
is not self-terminating,
then it is self-terminating.

while X
 not 0 do;
end;

Proposed
program

Then: If such a program exists,
 we could modify it by

adding a
while-end
structure

to produce
a new
program.

we started it with
its own encoding
as its input

Now: If this new program were
 self-terminating and

execution would
reach this point
with X equal to 1,

so execution
would become
trapped in this
loop forever;

i.e., if the new program is
self-terminating, then it
is not self-terminating.

The existence of
the proposed
program

Consequently:

would
lead to

the existence of
a new program

so the existence of the proposed
program is impossible.

that is neither
self-terminating
nor not self-
terminating

Proposed
program

while X
 not 0 do;
end;

Proposed
program

while X
 not 0 do;
end;

Proposed
program

In summary, we see that we have the impossible situation of a program
that on the one hand must be either self-terminating or not and on the other
hand can be neither. Consequently, the assumption that led to this dilemma
must be false.

We conclude that the halting function is not computable, and because the
solution to the halting problem relies on the computation of that function we
must conclude that solving the halting problem lies beyond the capabilities of
any algorithmic system. Such problems are called unsolvable problems.

In closing, we should relate what we have just discussed to the ideas in
Chapter 10. There, a major underlying question was whether the powers of
computing machines include those required for intelligence itself. Recall that
machines can solve only problems with algorithmic solutions, and we have
now found that there are problems without algorithmic solutions. The ques-
tion, then, is whether the human mind embodies more than the execution of
algorithmic processes. If it does not, then the limits we have identified here are
also limits of human thought. Needless to say, this is a highly debatable and
sometimes emotional issue. If, for example, human minds are no more than
programmed machines, then one would conclude that humans do not possess
free will.

526 Chapter 12 Theory of Computation

Questions & Exercises

1. Is the following Bare Bones program self-terminating? Explain your answer.

incr X;
decr Y;

2. Is the following Bare Bones program self-terminating? Explain your answer.

copy X to Y;
incr Y;
incr Y;
while X not 0 do;
decr X;
decr X;
decr Y;
decr Y;

end;
decr Y;
while Y not 0 do;
end;

3. What is wrong with the following scenario?
In a certain community, everyone owns his or her own house. The
house painter of the community claims to paint all those and only
those houses that are not painted by their owners.

(Hint: Who paints the house painter’s house?)

12.5 Complexity of Problems
In Section 12.4 we investigated the solvability of problems. In this section we are
interested in the question of whether a solvable problem has a practical solution.
We will find that some problems that are theoretically solvable are so complex
that they are unsolvable from a practical point of view.

Measuring a Problem’s Complexity
We begin by returning to our study of algorithm efficiency that we started in
Section 5.6. There we used big-theta notation to classify algorithms according
to the time required to execute them. We found that the insertion sort algo-
rithm is in the class �(N2), The sequential search algorithm is in �(n), and the
binary search algorithm is in �(lg n). We now use this classification system to
help us identify the complexity of problems. Our goal is to develop a classifi-
cation system that tells us which problems are more complex than others and
ultimately which problems are so complex that their solutions lie beyond
practicality.

The reason that our present study is based on our knowledge of algorithm
efficiency is that we wish to measure the complexity of a problem in terms of
the complexity of its solutions. We consider a simple problem to be one that
has a simple solution; a complex problem is one that does not have a simple
solution. Note that the fact that a problem has a difficult solution does not
necessarily mean that the problem itself is complex. After all, a problem has
many solutions, one of which is bound to be complex. Thus to conclude that
a problem itself is complex requires that we show that none of its solutions
are simple.

In computer science, the problems of interest are those that are solvable
by machines. The solutions to these problems are formulated as algorithms.
Thus the complexity of a problem is determined by the properties of the algo-
rithms that solve that problem. More precisely, the complexity of the simplest
algorithm for solving a problem is considered to be the complexity of the prob-
lem itself.

But how do we measure the complexity of an algorithm? Unfortunately,
the term complexity has different interpretations. One deals with the amount of
decision making and branching involved in the algorithm. In this light, a com-
plex algorithm would be one that involves a twisted, entwined set of directions.
This interpretation might be compatible with the point of view of a software
engineer who is interested in issues relating to algorithm discovery and repre-
sentation, but it does not capture the concept of complexity from a machine’s
point of view. A machine does not really make decisions when selecting the
next instruction for execution but merely follows its machine cycle over and
over, each time executing the instruction that is indicated by the program
counter. Consequently, a machine can execute a set of tangled instructions as
easily as it can execute a list of instructions in a simple sequential order. This
interpretation of complexity, therefore, tends to measure the difficulty encoun-
tered in an algorithm’s representation rather than the complexity of the algo-
rithm itself.

An interpretation that more accurately reflects the complexity of an algo-
rithm from a machine’s point of view is to measure the number of steps that
must be performed when executing the algorithm. Note that this is not the

52712.5 Complexity of Problems

same as the number of instructions appearing in the written program. A loop
whose body consists of a single statement but whose control requests the body’s
execution 100 times is equivalent to 100 statements when executed. Such a routine
is therefore considered more complex than a list of 50 individually written
statements, even though the latter appears longer in written form. The point is
that this meaning of complexity is ultimately concerned with the time it takes a
machine to execute a solution and not with the size of the program representing
the solution.

We therefore consider a problem to be complex if all its solutions require a
lot of time. This definition of complexity is referred to as time complexity. We
have already met the concept of time complexity indirectly through our study of
algorithm efficiency in Section 5.6. After all, the study of an algorithm’s effi-
ciency is the study of the algorithm’s time complexity—the two are merely
inverses of each other. That is, “more efficient” equals “less complex.” Thus, in
terms of time complexity, the sequential search algorithm (which we found to be
in �(n)) is a more complex solution to the problem of searching a list than is the
binary search algorithm (which we found to be in �(lg n)).

Let us now apply our knowledge of the complexity of algorithms to obtain a
means of identifying the complexity of problems. We define the (time) complex-
ity of a problem to be �(f(n)), where f(n) is some mathematical expression in n,
if there is an algorithm for solving the problem whose time complexity is in
�(f(n)) and no other algorithm for solving the problem has a lower time com-
plexity. That is, the (time) complexity of a problem is defined to be the (time)
complexity of its best solution. Unfortunately, finding the best solution to a prob-
lem and knowing that it is the best is often a difficult problem in itself. In such
situations, a variation of big-theta notation called big O notation (pronounced
“big oh notation”) is used to represent what is known about a problem’s com-
plexity. More precisely, if f(n) is a mathematical expression in n and if a problem
can be solved by an algorithm in �(f(n)) then we say that the problem is in
O(f(n)) (pronounced “big oh of f(n)”). Thus, to say that a problem belongs to
O(f(n)) means that it has a solution whose complexity is in �(f(n)) but it could
possibly have a better solution.

Our investigation of searching and sorting algorithms tells us that the prob-
lem of searching within a list of length n (when all we know is that the list
has previously been sorted) is in O(lg n) because the binary search algorithm
solves the problem. Moreover, researchers have shown that the searching prob-
lem is actually in �(lg n) so the binary search represents an optimal solution
for that problem. In contrast, we know that the problem of sorting a list of
length n (when we know nothing about the original distribution of the values
in it) is in O(n2) because the insertion sort algorithm solves the problem. The
problem of sorting, however, is known to be in �(n lg n), which tells us that
the insertion sort algorithm is not an optimal solution (in the context of time
complexity).

An example of a better solution to the sorting problem is the merge sort
algorithm. Its approach is to merge small, sorted portions of the list to obtain
larger sorted portions that can then be merged to obtain still larger sorted por-
tions. Each merging process applies the merge algorithm that we encountered
when discussing sequential files (Figure 9.15). For convenience, we present it
again in Figure 12.8, this time in the context of merging two lists. The complete
(recursive) merge sort algorithm is presented as the procedure called MergeSort

528 Chapter 12 Theory of Computation

in Figure 12.9. When asked to sort a list, this procedure first checks to see if
the list is shorter than two entries. If so, the procedure’s task is complete. If not,
the procedure divides the list into two pieces, asks other copies of the procedure
MergeSort to sort these pieces, and then merges these sorted pieces together to
obtain the final sorted version of the list.

To analyze the complexity of this algorithm, we first consider the number of
comparisons between list entries that must be made in merging a list of length r
with a list of length s. The merge process proceeds by repeatedly comparing an
entry from one list with an entry from the other and placing the “smaller” of the
two entries in the output list. Thus each time a comparison is made, the number
of entries still to be considered is reduced by one. Because there are only r + s
entries to begin with, we conclude that the process of merging the two lists will
involve no more than r + s comparisons.

We now consider the entire merge sort algorithm. It attacks the task of
sorting a list of length n in such a way that the initial sorting problem is
reduced to two smaller problems, each of which is asked to sort a list of length
approximately n/2. These two problems are in turn reduced to a total of four
problems of sorting lists of length approximately n/4. This division process

52912.5 Complexity of Problems

Figure 12.8 A procedure MergeLists for merging two lists

procedure MergeLists (InputListA, InputListB, OutputList)

if (both input lists are empty) then (Stop, with OutputList empty)
if (InputListA is empty)

then (Declare it to be exhausted)
else (Declare its first entry to be its current entry)

if (InputListB is empty)
then (Declare it to be exhausted)
else (Declare its first entry to be its current entry)

while (neither input list is exhausted) do
 (Put the “smaller” current entry in OutputList;

if (that current entry is the last entry in its corresponding input list)
then (Declare that input list to be exhausted)
else (Declare the next entry in that input list to be the list’s current entry)

)

Starting with the current entry in the input list that is not exhausted,
 copy the remaining entries to OutputList.

Figure 12.9 The merge sort algorithm implemented as a procedure MergeSort

procedure MergeSort (List)

if (List has more than one entry)
then (Apply the procedure MergeSort to sort the first half of List;

 Apply the procedure MergeSort to sort the second half of List;
 Apply the procedure MergeLists to merge the first and second
 halves of List to produce a sorted version of List
)

can be summarized by the tree structure in Figure 12.10, where each node of
the tree represents a single problem in the recursive process and the branches
below a node represent the smaller problems derived from the parent. Hence,
we can find the total number of comparisons that occur in the entire sorting
process by adding together the number of comparisons that occur at the nodes
in the tree.

Let us first determine the number of comparisons made across each level of
the tree. Observe that each node appearing across any level of the tree has the
task of sorting a unique segment of the original list. This is accomplished by
the merge process and therefore requires no more comparisons than there are
entries in the list segment, as we have already argued. Hence, each level of the
tree requires no more comparisons than the total number of entries in the list
segments, and because the segments across a given level of the tree represent
disjoint portions of the original list, this total is no greater than the length of the
original list. Consequently, each level of the tree involves no more than n com-
parisons. (Of course the lowest level involves sorting lists of length less than two,
which involves no comparisons at all.)

Now we determine the number of levels in the tree. For this, observe that
the process of dividing problems into smaller problems continues until lists
of length less than two are obtained. Thus the number of levels in the tree is
determined by the number of times that, starting with the value n, we can
repeatedly divide by two until the result is no larger than one, which is lg n.
More precisely, there are no more than lg n levels of the tree that involve
comparisons, where the notation lg n represents the value of lg n rounded
up to the next integer.

Finally, the total number of comparisons made by the merge sort algorithm
when sorting a list of length n is obtained by multiplying the number of com-
parisons made at each level of the tree by the number of levels in which com-
parisons are made. We conclude that this is no larger than n lg n Because
the graph of n lg n has the same general shape as the graph of n lg n, we
conclude that the merge sort algorithm belongs to O(n lg n). Combining this
with the fact that researchers tell us that the sorting problem has complexity
�(n lg n) implies that the merge sort algorithm represents an optimal solution
to the sorting problem.

530 Chapter 12 Theory of Computation

Figure 12.10 The hierarchy of problems generated by the merge sort algorithm

Sort list of
n names

Sort first half
of list

Sort first
quarter
of list

Sort second
quarter
of list

Sort third
quarter
of list

Sort last
quarter
of list

Sort second half
of list

� �

� �

� �

� �

Polynomial Versus Nonpolynomial Problems
Suppose f(n) and g(n) are mathematical expressions. To say that g(n) is bounded by
f(n) means that as we apply these expressions to larger and larger values of n, the
value of f(n) will ultimately become greater than that of g(n) and remain greater
than g(n) for all larger values of n. In other words, that g(n) is bounded by f(n) means
that the graph of f(n) will be above the graph of g(n) for “large” values of n. For
instance, the expression lg n is bounded by the expression n (Figure 12.11a), and n lg
n is bounded by n2 (Figure 12.11b).

We say that a problem is a polynomial problem if the problem is in
O(f(n)), where the expression f(n) is either a polynomial itself or bounded by a

53112.5 Complexity of Problems

An alternative to measuring complexity in terms of time is to measure storage space
requirements instead—resulting in a measure known as space complexity. That is,
the space complexity of a problem is determined by the amount of storage space
required to solve the problem. In the text we have seen that the time complexity of
sorting a list with n entries is O(n lg n). The space complexity of the same problem is
no more than O(n + 1) = O(n). After all, sorting a list with n entries using the insertion
sort requires space for the list itself plus space to store a single entry on a temporary
basis. Thus, if we were asked to sort longer and longer lists, we would find that the
time required for each task would increase more rapidly than the space required.
This is in fact a common phenomenon. Because it takes time to use space, a prob-
lem’s space complexity never grows more rapidly than its time complexity.

There are often tradeoffs made between time and space complexity. In some
applications it might be advantageous to perform certain computations in advance
and store the results in a table from which they can be retrieved quickly when needed.
Such a “table lookup” technique decreases the time required to obtain a result once it
is actually needed, at the expense of the additional space required by the table. On
the other hand, data compression is often used to reduce storage requirements at the
expense of the additional time required to compress and decompress the data.

Space Complexity

Figure 12.11 Graphs of the mathematical expressions n, lg n, n lg n, and n2

y y
y = n

y = n2

y = lg n y = n lg n

n

a. n versus lg n

n

b. n2 versus n lg n

polynomial. The collection of all polynomial problems is represented by P. Note
that our previous investigations tell us that the problems of searching a list and
of sorting a list belong to P.

To say that a problem is a polynomial problem is a statement about the time
required to solve the problem. We often say that a problem in P can be solved in
polynomial time or that the problem has a polynomial time solution.

Identifying the problems that belong to P is of major importance in com-
puter science because it is closely related to questions regarding whether prob-
lems have practical solutions. Indeed, problems that are outside the class P are
characterized as having extremely long execution times, even for inputs of
moderate size. Consider, for example, a problem whose solution requires 2n

steps. The exponential expression 2n is not bounded by any polynomial—if
f(n) is a polynomial, then as we increase the value of n, we will find that the
values of 2n will ultimately be larger than those of f(n). This means that an
algorithm with complexity �(2n) will generally be less efficient, and thus
require more time, than an algorithm with complexity �(f(n)). An algorithm
whose complexity is identified by an exponential expression is said to require
exponential time.

As a particular example, consider the problem of listing all possible sub-
committees that can be formed from a group of n people. Because there are
2n � 1 such subcommittees (we allow a subcommittee to consist of the entire
group but do not consider the empty set to be a subcommittee), any algorithm
that solves this problem must have at least 2n � 1 steps and thus a complexity
at least that large. But, the expression 2n � 1, being an exponential expression,
is not bounded by any polynomial. Hence any solution to this problem
becomes enormously time-consuming as the size of the group from which the
committees are selected increases.

In contrast to our subcommittee problem, whose complexity is large merely
because of the size of its output, problems exist whose complexities are large
even though their ultimate output is merely a simple yes or no answer. An exam-
ple involves the ability to answer questions about the truth of statements involv-
ing the addition of real numbers. For instance, we can easily recognize that the
answer to the question “Is it true that there is a real number that when added to
itself produces the value 6?” is yes, whereas the answer to “Is it true that there is
a nonzero real number which when added to itself is 0?” is no. However, as such
questions become more involved, our ability to answer them begins to fade. If we
found ourselves faced with many such questions, we might be tempted to turn to
a computer program for assistance. Unfortunately, the ability to answer these
questions has been shown to require exponential time, so even a computer ulti-
mately fails to produce answers in a timely manner as the questions become
more involved.

The fact that the problems that are theoretically solvable but are not in P
have such enormous time complexities leads us to conclude that these problems
are essentially unsolvable from a practical point of view. Computer scientists call
these problems intractable. In turn, the class P has come to represent an impor-
tant boundary that distinguishes intractable problems from those that might
have practical solutions. Thus an understanding of the class P has become an
important pursuit within computer science.

532 Chapter 12 Theory of Computation

53312.5 Complexity of Problems

NP Problems
Let us now consider the traveling salesman problem, which involves a travel-
ing salesman who must visit each of his clients in different cities without exceed-
ing his travel budget. His problem, then, is to find a path (starting from his home,
connecting the cities involved, and returning to his home) whose total length
does not exceed his allowed mileage.

The traditional solution to this problem is to consider the potential paths in a
systematic manner, comparing the length of each path to the mileage limit until
either an acceptable path is found or all possibilities have been considered. This
approach, however, does not produce a polynomial time solution. As the number
of cities increases, the number of paths to be tested grows more rapidly than any
polynomial. Thus, solving the traveling salesman problem in this manner is
impractical for cases involving large numbers of cities.

We conclude that to solve the traveling salesman problem in a reasonable
amount of time, we must find a faster algorithm. Our appetite is whetted by
the observation that if a satisfactory path exists and we happen to select it
first, our present algorithm terminates quickly. In particular, the following list
of instructions can be executed quickly and has the potential of solving the
problem:

Pick one of the possible paths, and compute its total

distance.

If (this distance is not greater than the allowable mileage)

then (declare a success)

else (declare nothing)

However, this set of instructions is not an algorithm in the technical sense. Its
first instruction is ambiguous in that it does not specify which path is to be
selected nor does it specify how the decision is to be made. Instead it relies on
the creativity of the mechanism executing the program to make the decision on
its own. We say that such instructions are nondeterministic, and we call an “algo-
rithm” containing such statements a nondeterministic algorithm.

Note that as the number of cities increases, the time required to execute the
preceding nondeterministic algorithm grows relatively slowly. The process of
selecting a path is merely that of producing a list of the cities, which can be done
in a time proportional to the number of cities involved. Moreover, the time
required to compute the total distance along the chosen path is also proportional
to the number of cities to be visited, and the time required to compare this total
to the mileage limit is independent of the number of cities. In turn, the time
required to execute the nondeterministic algorithm is bounded by a polynomial.
Thus it is possible to solve the traveling salesman problem by a nondeterministic
algorithm in polynomial time.

Of course, our nondeterministic solution is not totally satisfactory. It relies
on a lucky guess. But its existence is enough to suggest that perhaps there is a
deterministic solution to the traveling salesman problem that runs in polynomial
time. Whether or not this is true remains an open question. In fact, the traveling
salesman problem is one of many problems that are known to have nondeter-
ministic solutions that execute in polynomial time but for which no deterministic

polynomial time solution has yet been found. The tantalizing efficiency of the
nondeterministic solutions to these problems causes some to hope that efficient
deterministic solutions will be found someday, yet most believe that these prob-
lems are just complex enough to escape the capabilities of efficient deterministic
algorithms.

A problem that can be solved in polynomial time by a nondeterministic
algorithm is called a nondeterministic polynomial problem, or an NP problem
for short. It is customary to denote the class of NP problems by NP. Note that all the
problems in P are also in NP, because any (deterministic) algorithm can have a
nondeterministic instruction added to it without affecting its performance.

Whether all of the NP problems are also in P, however, is an open question,
as demonstrated by the traveling salesman problem. This is perhaps the most
widely known unsolved problem in computer science today. Its solution could
have significant consequences. For example, in the next section we will learn
that encryption systems have been designed whose integrity relies on the enor-
mous time required to solve problems similar to the traveling salesman problem.
If it turns out that efficient solutions to such problems exist, these encryption
systems will be compromised.

Efforts to resolve the question of whether the class NP is, in fact, the same as
the class P have led to the discovery of a class of problems within the class NP
known as the NP-complete problems. These problems have the property that a
polynomial time solution for any one of them would provide a polynomial time
solution for all the other problems in NP as well. That is, if a (deterministic) algo-
rithm can be found that solves one of the NP-complete problems in polynomial
time, then that algorithm can be extended to solve any other problem in NP in
polynomial time. In turn, the class NP would be the same as the class P. The trav-
eling salesman problem is an example of an NP-complete problem.

In summary, we have found that problems can be classified as either solv-
able (having an algorithmic solution) or unsolvable (not having an algorithmic
solution), as depicted in Figure 12.12. Moreover, within the class of solvable
problems are two subclasses. One is the collection of polynomial problems that
contains those problems with practical solutions. The second is the collection of
nonpolynomial problems whose solutions are practical for only relatively small
or carefully selected inputs. Finally, there are the mysterious NP problems that
thus far have evaded precise classification.

534 Chapter 12 Theory of Computation

Figure 12.12 A graphic summation of the problem classification

Solvable problems Unsolvable problems

NP problems

?

Polynomial
problems

Nonpolynomial
problems

53512.5 Complexity of Problems

In many cases, there is a fine line between a deterministic and a nondeterministic
“algorithm.” However, the distinction is quite clear and significant. A deterministic
algorithm does not rely on the creative capabilities of the mechanism executing the
algorithm, whereas a nondeterministic “algorithm” might. For instance, compare the
instruction

Go to the next intersection and turn either right or left.

and the instruction

Go to the next intersection and turn right or left depending

on what the person standing on the corner tells you to do.

In either case the action taken by the person following the directions is not deter-
mined prior to actually executing the instruction. However, the first instruction
requires the person following the directions to make a decision based on his or
her own judgment and is therefore nondeterministic. The second instruction
makes no such requirements of the person following the directions—the person is
told what to do at each stage. If several different people follow the first instruc-
tion, some might turn right, while others might turn left. If several people follow
the second instruction and receive the same information, they will all turn in the
same direction. Herein lies an important distinction between deterministic and
nondeterministic “algorithms.” If a deterministic algorithm is executed repeat-
edly with the same input data, the same actions will be performed each time.
However, a nondeterministic “algorithm” might produce different actions when
repeated under identical conditions.

Deterministic Versus Nondeterministic

Questions & Exercises

1. Suppose a problem can be solved by an algorithm in �(2n). What can we
conclude about the complexity of the problem?

2. Suppose a problem can be solved by an algorithm in �(n2) as well as
another algorithm in �(2n). Will one algorithm always outperform the
other?

3. List all of the subcommittees that can be formed from a committee con-
sisting of the two members Alice and Bill. List all the subcommittees that
can be formed from the committee consisting of Alice, Bill, and Carol.
What about the subcommittees from Alice, Bill, Carol, and David?

4. Give an example of a polynomial problem. Give an example of a non-
polynomial problem. Give an example of an NP problem that as yet has
not been shown to be a polynomial problem.

5. If the complexity of algorithm X is greater than that of algorithm Y, is
algorithm X necessarily harder to understand than algorithm Y? Explain
your answer.

12.6 Public-Key Cryptography
In some cases the fact that a problem is difficult to solve has been turned into an
asset rather than a liability. Of particular interest is the problem of finding the fac-
tors of a given integer—a problem for which an efficient solution has yet to be
found, if one even exists. For example, armed with only paper and pencil, you
might find the task of finding the factors of relatively small values such as 2,173 to
be time consuming, and if the number involved was so large that its representa-
tion required several hundred digits, the task would be intractable even if modern
technology were applied using the best factoring techniques currently known.

The failure to find an efficient way of determining the factors of large integers
has long been a thorn in the side of many mathematicians, but in the field of
cryptography it has been applied to produce a popular method of encrypting and
decrypting messages. This method is known as the RSA algorithm—a name
chosen to honor its inventors Ron Rivest, Adi Shamir, and Len Adleman. It is a
means of encrypting messages using one set of values known as the encrypting
keys and decrypting those messages using another set of values known as the
decrypting keys. People who know the encrypting keys can encrypt messages,
but they cannot decrypt messages. The only person who can decrypt messages is
the one holding the decrypting keys. Thus the encrypting keys can be widely dis-
tributed without violating the security of the system.

Such cryptography systems are called public-key encryption systems, a
term that reflects the fact that the keys used to encrypt messages can be public
knowledge without degrading the system’s security. Indeed, the encrypting keys
are often called the public keys, whereas the decrypting keys are called the
private keys (Figure 12.13).

Modular Notation
To describe the RSA public-key encryption system, it is convenient to use the nota-
tion x (mod m), which is read “x modulo m” or usually just “x mod m,” to represent
the remainder obtained when the value x is divided by m. Thus 9 (mod 7) is 2

536 Chapter 12 Theory of Computation

Figure 12.13 Public key cryptography

Public domain Private domain

Messages in the form of
bit patterns are encrypted
using public keys.

Messages cannot be
decrypted because the
private keys are not known.

Messages are decrypted
using the private keys.

because 9 ÷ 7 produces a remainder of 2. Similarly, 24 (mod 7) is 3 because
24 ÷ 7 produces a remainder of 3, and 14 (mod 7) is 0 because 14 ÷ 7 produces a
remainder of 0. Note that x (mod m) is x itself if x is an integer in the range 0 to
m � 1. For example, 4 (mod 9) is 4.

Mathematics tells us that if p and q are prime numbers and m is an integer
between 0 and pq (the product of p and q) then

1 � mk(p�1)(q�1) (mod pq)

for any positive integer k. Although we will not justify this claim here, it is advan-
tageous to consider an example to clarify the statement. Suppose, then, that p
and q are the prime numbers 3 and 5, respectively, and m is the integer 4. Then
the statement claims that for any positive integer k, the value mk(p�1)(q�1) divided
by 15 (the product of 3 and 5) will produce the remainder 1. In particular, if k � 1,
then

mk(p�1)(q�1) � 41(3�1)(5�1) � 48 � 65,536

which when divided by 15 produces the remainder 1 as claimed. Moreover, if k � 2,
then

mk(p�1)(q�1) � 42(3�1)(5�1) � 416 � 4,294,967,296

which when divided by 15 again produces the remainder 1. Indeed, we would
obtain the remainder 1 regardless of the positive integer chosen for k.

RSA Public-Key Cryptography
We are now prepared to construct and analyze a public-key encryption system
based on the RSA algorithm. First we pick two distinct prime numbers p and q,
whose product we will represent by n. Then we pick two other positive integers
e and d such that e × d � k(p � 1)(q � 1) � 1, for some positive integer k. We are
calling these values e and d because they will be part of the encryption and
decryption process, respectively. (The fact that values e and d can be chosen to
satisfy the preceding equation is another fact from mathematics that we will not
pursue here.)

Thus we have selected five values: p, q, n, e, and d. The values e and n are the
encrypting keys. The values d and n are decrypting keys. The values p and q are
only used for constructing the encryption system.

Let us consider a specific example for clarification. Suppose we choose
7 and 13 as the values for p and q. Then n � 7 × 13 � 91. Moreover, the
values 5 and 29 could be used for e and d because 5 × 29 � 145 � 144 �
1 � 2(7 � 1)(13 � 1) � 1 � 2(p � 1)(q � 1) � 1 as required. Thus, the
encrypting keys are n � 91 and e � 5, and the decrypting keys are n �
91 and d � 29. We distribute the encrypting keys to anyone who might
want to send us messages, but we keep the decrypting keys (as well as
the values of p and q) to ourselves.

We now consider how messages are encrypted. To this end, suppose a mes-
sage is currently encoded as a bit pattern (perhaps using ASCII or Unicode) and
the value of the pattern, when interpreted as a binary representation, is less
than n. (If it is not less than n, we would chop the message into smaller segments
and encrypt each segment individually.)

53712.6 Public-Key Cryptography

538 Chapter 12 Theory of Computation

Let us assume that our message, when interpreted as a binary representa-
tion, represents the value m. Then, the encrypted version of the message is the
binary representation of the value c � me (mod n). That is, the encrypted mes-
sage is the binary representation of the remainder obtained by dividing me by n.

In particular, if someone wanted to encrypt the message 10111 using
the encrypting keys n � 91 and e � 5 as developed in the previous
example, he or she would first recognize that 10111 is the binary
representation for 23, then compute 23e � 235 � 6,436,343, and finally
divide this value by n � 91 to obtain the remainder 4. The encrypted
version of the message would therefore be 100, which is the binary
representation of 4.

To decrypt a message that represents the value c in binary notation, we com-
pute the value cd (mod n). That is, we compute the value cd, divide the result
by n, and retain the remainder. Indeed, this remainder will be the value m of
the original message because

cd (mod n) � me�d (mod n)
� mk(p�1)(q�1) �1 (mod n)
� m � mk(p�1)(q�1)(mod n)
� m (mod n)
� m

Here we have used the facts that mk(p�1)(q�1) (mod n) � mk(p�1)(q�1) (mod pq) � 1
and that m (mod n) � m (because m < n), as previously claimed.

Continuing with the preceding example, if we received the message
100, we would recognize this as the value 4, compute the value 4d � 429 �
288,230,376,151,711,744, and divide this value by n � 91 to obtain the
remainder 23, which produces the original message 10111 when
expressed in binary notation.

In summary, an RSA public-key encryption system is generated by select-
ing two prime integers, p and q, from which the values n, e, and d are gener-
ated. The values n and e are used to encrypt messages and are therefore the
public keys. The values n and d are used to decrypt messages and are the private
keys (Figure 12.14). The beauty of the system is that knowing how to encrypt
messages does not allow one to decrypt messages. Thus the encrypting keys n
and e can be widely distributed. If your adversaries were to obtain these keys,
they would still not be able to decrypt the messages they intercept. Only a
person who knows the decrypting keys can decrypt messages.

The security of this system is based on the assumption that knowing the
encrypting keys n and e does not allow one to compute the decrypting keys n and
d. However, there are algorithms for doing exactly that! One approach would be to
factor the value n to discover the values p and q, and then to determine d by find-
ing a value k such that k(p � 1)(q � 1) � 1 is evenly divided by e (the quotient
would then be d). On the other hand, the first step in this process can be time-
consuming—especially if the values of p and q were chosen to be large. In fact, if
p and q are so large that their binary representations require hundreds of digits,
then the best known factoring algorithms would require years before the identi-
ties of p and q could be revealed from n. In turn, the content of an encrypted mes-
sage would remain secure long after its significance had deteriorated.

To this date, no one has found an efficient way of decrypting messages based
on RSA cryptography without knowing the decrypting keys, and thus public-key
encryption based on the RSA algorithm is widely used to obtain privacy when
communicating over the Internet.

539Chapter Review Problems

Figure 12.14 Establishing an RSA public key encryption system

Public domain Private domain

The keys n and e are
provided to anyone who
may want to encrypt
a message.

Based on the choice of
two large prime numbers
p and q, determine the
keys n, e, and d.

The values of p, q, and d
are kept private.

1. Find the factors of 66,043. (Don’t waste too much time on this one. The
point is that it can be time-consuming.)

2. Using the public keys n � 91 and e � 5, encrypt the message 101.
3. Using the private keys n � 91 and d � 29, decrypt the message 10.
4. Find the appropriate value for the decrypting keys n and d in an RSA

public-key cryptography system based on the primes p � 7 and q � 19
and the encryption key e � 5.

Questions & Exercises

1. Show how a structure of the form

while X equals 0 do;
.
.
.
end;

can be simulated with Bare Bones.

2. Write a Bare Bones program that
places a 1 in the variable Z if the
variable X is less than or equal to the
variable Y, and places a 0 in the variable Z
otherwise.

3. Write a Bare Bones program that places the
Xth power of 2 in the variable Z.

Chapter Review Problems

4. In each of the following cases write a program
sequence in Bare Bones that performs the
indicated activity:
a. Assign 0 to Z if the value of X is even;

otherwise assign 1 to Z.
b. Calculate the sum of the integers from 0 to X.

5. Write a Bare Bones routine that divides the
value of X by the value of Y. Disregard any
remainder; that is, 1 divided by 2 produces 0,
and 5 divided by 3 produces 1.

6. Describe the function computed by the
following Bare Bones program, assuming the
function’s inputs are represented by X and Y
and its output by Z:

copy X to Z;
copy Y to Aux;
while Aux not 0 do;
decr Z;
decr Aux;

end;

7. Describe the function computed by the
following Bare Bones program, assuming the
function’s inputs are represented by X and Y
and its output by Z:

clear Z;
copy X to Aux1;
copy Y to Aux2;
while Aux1 not 0 do;
while Aux2 not 0 do;
decr Z;
decr Aux2;

end;
decr Aux1;

end;

8. Write a Bare Bones program that computes the
exclusive of the variables X and Y, leaving the
result in the variable Z. You might assume that
X and Y start only with integer values of 0 and 1.

9. Show that if we allow instructions in a Bare
Bones program to be labeled with integer values
and replace the while loop structure with the
conditional branch represented by the form

if name not 0 goto label;

where name is any variable and label is an
integer value used elsewhere to label an
instruction, then the new language will still be
a universal programming language.

10. In this chapter we saw how the statement
copy name1 to name2;

could be simulated in Bare Bones. Show how that
statement could still be simulated if the while
loop structure in Bare Bones were replaced with
a posttest loop expressed in the form
repeat ... until (name equals 0)

11. Show that the Bare Bones language would
remain a universal language if the while
statement were replaced with a posttest loop
expressed in the form
repeat ... until (name equals 0)

12. Design a Turing machine that once started
will use no more than a single cell on its tape
but will never reach its halt state.

13. Design a Turing machine that places 0s in all
the cells to the left of the current cell until it
reaches a cell containing an asterisk.

14. Suppose a pattern of 0s and 1s on the tape of a
Turing machine is delimited by asterisks at
either end. Design a Turing machine that rotates
this pattern one cell to the left, assuming that
the machine starts with the current cell being
the asterisk at the right end of the pattern.

15. Design a Turing machine that reverses the
pattern of 0s and 1s that it finds between the
current cell (which contains an asterisk) and
the first asterisk to the left.

16. Summarize the Church–Turing thesis.

17. Is the following Bare Bones program
self-terminating? Explain your answer.

copy X to Y;
incr Y;
incr Y;
while X not 0 do;
decr X;
decr X;
decr Y;
decr Y;

end;
decr Y;
while Y not 0 do;
incr X;
decr Y;

end;
while X not 0 do;
end;

540 Chapter 12 Theory of Computation

541Chapter Review Problems

18. Is the following Bare Bones program
self-terminating? Explain your answer.

while X not 0 do;
end;

19. Is the following Bare Bones program
self-terminating? Explain your answer.

while X not 0 do;
decr X;

end;

20. Analyze the validity of the following pair of
statements:

The next statement is true.
The previous statement is false.

21. Analyze the validity of the statement “The
cook on a ship cooks for all those and only
those who do not cook for themselves.” (Who
cooks for the cook?)

22. Suppose you were in a country where each
person was either a truth teller or a liar.
(A truth teller always tells the truth, a liar
always lies.) What single question could
you ask a person that would allow you to
detect whether that person was a truth teller
or a liar?

23. Summarize the significance of Turing machines
in the field of theoretical computer science.

24. Summarize the significance of the halting
problem in the field of theoretical computer
science.

25. Suppose you needed to find out if anyone in
a group of people had a birthday on a partic-
ular date. One approach would be to ask the
members one at a time. If you took this
approach, the occurrence of what event
would tell you that there was such a person?
What event would tell you that there was no
such person? Now suppose that you wanted
to find out if at least one of the positive inte-
gers has a particular property and you
applied the same approach of systematically
testing the integers one at a time. If, in fact,
some integer has the property, how would
you find out? If, however, no integer has the
property, how would you find out? Is the task
of testing to see if a conjecture is true neces-
sarily symmetric with the task of testing to
see if it is false?

26. Is the problem of searching through a list for a
particular value a polynomial problem?
Justify your answer.

27. Design an algorithm for deciding whether a
given positive integer is prime. Is your solu-
tion efficient? Is your solution a polynomial
or nonpolynomial one?

28. Is a polynomial solution to a problem always
better than an exponential solution? Explain
your answer.

29. Does the fact that a problem has a polynomial
solution mean that it can always be solved in a
practical amount of time? Explain your answer.

30. Charlie Programmer is given the problem of
dividing a group (of an even number of peo-
ple) into two disjoint subgroups of equal size
so that the difference between the total ages
of each subgroup is as large as possible. He
proposes the solution of forming all possible
subgroup pairs, computing the difference
between the age totals of each pair, and
selecting the pair with the largest difference.
Mary Programmer, on the other hand, pro-
poses that the original group first be sorted
by age and then divided into two subgroups
by forming one subgroup from the younger
half of the sorted group and the other from
the older half. What is the complexity of
each of these solutions? Is the problem
itself of polynomial, NP, or nonpolynomial
complexity?

31. Why is the approach of generating all possible
arrangements of a list and then picking the
one with the desired arrangement not a satis-
factory way to sort a list?

32. Suppose a lottery is based on correctly
picking four integer values, each in the
range from 1 to 50. Moreover, suppose that
the jackpot grows so large that it becomes
profitable to buy a separate lottery ticket
for each possible combination. If it takes
one second to buy a single ticket, how long
would it take to buy one ticket for each combi-
nation? How would the time requirement
change if the lottery required picking five
numbers instead of four? What does this prob-
lem have to do with the material from this
chapter?

542 Chapter 12 Theory of Computation

33. Is the following algorithm deterministic?
Explain your answer.

procedure mystery (Number)

if (Number > 5)

then (answer “yes”)

else (pick a value less than 5 and

give this number as the answer)

34. Is the following algorithm deterministic?
Explain your answer.

Drive straight ahead.

At the third intersection, ask the

person standing on the corner

if you should turn right or left.

Turn according to that person’s

directions.

Drive two more blocks and stop there.

35. Identify the points of nondeterminism in the
following algorithm:

Select three numbers between 1 and

100.

if (the sum of the selected numbers is

greater than 150)

then (answer “yes”)

else (select one of the chosen

numbers and give that number

as the answer)

36. Does the following algorithm have a polyno-
mial or nonpolynomial time complexity?
Explain your answer.

procedure mystery (ListOfNumbers)

Pick a collection of numbers from

ListOfNumbers.

if (the numbers in that collection

add to 125)

then (answer “yes”)

else (do not give an answer)

37. Which of the following problems are in the
class P?
a. A problem with complexity n2

b. A problem with complexity 3n
c. A problem with complexity n2 � 2n
d. A problem with complexity n!

38. Summarize the distinction between stating that
a problem is a polynomial problem and stating
that it is a nondeterministic polynomial problem.

39. Give an example of a problem that is in both
the class P and the class NP.

40. Suppose you are given two algorithms for
solving the same problem. One algorithm has
time complexity n4 and the other has time
complexity 4n. For what size inputs is the
former more efficient than the latter?

41. Suppose we were faced with solving the
traveling salesman problem in a context
involving 15 cities in which any two cities
were connected by a unique road. How
many different paths through the cities
would there be? How long would it take to
compute the length of all of these paths
assuming that the length of a path can be
computed in one microsecond?

42. How many comparisons between names are
made if the merge sort algorithm (Figures 12.9
and 12.8) is applied to the list Alice, Bob, Carol,
and David? How many are required if the list
is Alice, Bob, Carol, David, and Elaine?

43. Give an example of a problem in each of the
categories represented in Figure 12.12.

44. Design an algorithm for finding integer solutions
for equations of the form x2 + y2 = n, where n is
some given positive integer. Determine the time
complexity of your algorithm.

45. Another problem that falls in the NP-complete
category is the knapsack problem, which is
the problem of finding which numbers from a
list are the ones whose sum is a particular
value. For example, the numbers 257, 388, and
782 are the entries in the list

642 257 771 388 391 782 304

whose sum is 1427. Find the entries whose
sum is 1723. What algorithm did you apply?
What is the complexity of that algorithm?

46. Identify similarities between the traveling
salesman problem and the knapsack problem
(see Problem 45).

47. The following algorithm for sorting a list is
called the bubble sort. How many compar-
isons between list entries does the bubble sort
require when applied to a list of n entries?

procedure BubbleSort (List)

Counter ← 1;

while (Counter < number of entries in

List) do

[N ← the number of entries in List;

while (N > 1) do

543Social Issues

(if (the Nth List entry is less

than the entry preceding it)

then (interchange the Nth entry

with the preceding entry);

N ← N � 1

)

]

48. Use RSA public-key encryption to encrypt the
message 110 using the public keys n = 91 and
e = 5.

49. Use RSA public-key encryption to decrypt the
message 111 using the private keys n = 133
and d = 5.

50. Suppose you know that the public keys to a
public-key encryption system based on the
RSA algorithm are n = 77 and e = 7. What
are the private keys? What allows you to
solve this problem in a reasonable amount
of time?

51. Find the factors of 107,531. How does this
problem relate to this chapter?

52. What can be concluded if the positive integer
n has no integer factors in the range from 2
to the square root of n? What does this tell
you about the task of finding the factors of a
positive integer?

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. Suppose the best algorithm for solving a problem would require 100 years to
execute. Would you consider the problem to be tractable? Why?

2. Should citizens have the right to encrypt messages in such a manner that
precludes monitoring from government agencies? Does your answer provide
for “proper” law enforcement? Who should decide what “proper” law enforce-
ment is?

3. If the human mind is an algorithmic device, what consequences does
Turing’s thesis have in regard to humanity? To what extent do you believe
that Turing machines encompass the computational abilities of the human
mind?

4. We have seen that there are different computational models (finite tables, alge-
braic formulae, Turing machines, and so on) having different computational
abilities. Are there differences in the computational capabilities of different
organisms? Are there differences in the computational capabilities of differ-
ent humans? If so, should humans with higher abilities be able to use those
abilities to obtain higher lifestyles?

5. Today there are websites that provide road maps of most cities. These sites
assist in finding particular addresses and provide zooming capabilities for view-
ing the layout of small neighborhoods. Starting with this reality, consider the
following fictitious sequence. Suppose these map sites were enhanced with
satellite photographs with similar zooming capabilities. Suppose these zooming
capabilities were increased to give a more detailed image of individual build-
ings and the surrounding landscape. Suppose these images were enhanced to
include real-time video. Suppose these video images were enhanced with
infrared technology. At this point others could watch you inside your own
home 24 hours a day. At what point in this progression were your privacy
rights first violated? At what point in this progression do you think we moved

Social Issues

544 Chapter 12 Theory of Computation

beyond the capabilities of current spy-satellite technology? To what degree is
this scenario fictitious?

6. Suppose a company develops and patents an encryption system. Should the
national government of the company have the right to use the system as it
sees fit in the name of national security? Should the national government of
the company have the right to restrict the company’s commercial use of the
system in the name of national security? What if the company is a multina-
tional organization?

7. Suppose you buy a product whose internal structure is encrypted. Do you
have the right to decrypt the underlying structure? If so, do you have the right
to use that information in a commercial manner? What about a noncommer-
cial manner? What if the encryption was done using a secret encryption sys-
tem, and you discover the secret. Do you have the right to share that secret?

8. Some years ago the philosopher John Dewey (1859–1952) introduced the
term “responsible technology.” Give some examples of what you would con-
sider to be “responsible technology.” Based on your examples, formulate
your own definition of “responsible technology.” Has society practiced
“responsible technology” over the last 100 years? Should actions be taken to
ensure that it does? If so, what actions? If not, why?

Garey, M. R. and D. S. Johnson. Computers and Intractability. New York: W. H.
Freeman, 1979.

Hamburger, H. and D. Richards. Logic and Language Models for Computer Science.
Englewood Cliffs, NJ: Prentice-Hall, 2002.

Hofstadter, D. R. Gödel, Escher, Bach: An Eternal Golden Braid. St. Paul, MN:
Vintage, 1980.

Hopcroft, J. E., R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation, 3rd ed. Boston, MA: Addison-Wesley, 2007.

Lewis, H. R. and C. H. Papadimitriou. Elements of the Theory of Computation, 2nd
ed. Englewood Cliffs, NJ: Prentice-Hall, 1998.

Rich E. Automata. Computability, and Complexity: Theory and Application. Upper
Saddle River, NJ: Prentice-Hall, 2008.

Sipser, M. Introduction to the Theory of Computation. Boston: PWS, 1996.

Smith, C. and E. Kinber. Theory of Computing: A Gentle Introduction. Englewood
Cliffs, NJ: Prentice-Hall, 2001.

Sudkamp, T. A. Languages and Machines: An Introduction to the Theory of
Computer Science, 3rd ed. Boston, MA: Addison-Wesley, 2006.

Additional Reading

Appendixes

A ASCII

B Circuits to Manipulate Two’s
Complement Representations

C A Simple Machine Language

D High-Level Programming
Languages

E The Equivalence of Iterative
and Recursive Structures

F Answers to Questions &
Exercises

This page intentionally left blank

ASCII
The following is a partial listing of ASCII code, in which each bit pattern has
been extended with a 0 on its left to produce the 8-bit pattern commonly used
today. The hexadecimal value of each 8-bit pattern is given in the third column.

547

a p p e n d i x

A
Symbol ASCII Hex Symbol ASCII Hex Symbol ASCII Hex

line feed 00001010 0A > 00111110 3E ^ 01011110 5E
carriage return 00001011 0B ? 00111111 3F _ 01011111 5F

space 00100000 20 @ 01000000 40 ` 01100000 60
! 00100001 21 A 01000001 41 a 01100001 61
” 00100010 22 B 01000010 42 b 01100010 62
00100011 23 C 01000011 43 c 01100011 63
$ 00100100 24 D 01000100 44 d 01100100 64
% 00100101 25 E 01000101 45 e 01100101 65
& 00100110 26 F 01000110 46 f 01100110 66
’ 00100111 27 G 01000111 47 g 01100111 67
(00101000 28 H 01001000 48 h 01101000 68
) 00101001 29 I 01001001 49 i 01101001 69
* 00101010 2A J 01001010 4A j 01101010 6A
+ 00101011 2B K 01001011 4B k 01101011 6B
’ 00101100 2C L 01001100 4C l 01101100 6C
- 00101101 2D M 01001101 4D m 01101101 6D
. 00101110 2E N 01001110 4E n 01101110 6E
/ 00111111 2F O 01001111 4F o 01101111 6F
0 00110000 30 P 01010000 50 p 01110000 70
1 00110001 31 Q 01010001 51 q 01110001 71
2 00110010 32 R 01010010 52 r 01110010 72
3 00110011 33 S 01010011 53 s 01110011 73
4 00110100 34 T 01010100 54 t 01110100 74
5 00110101 35 U 01010101 55 u 01110101 75
6 00110110 36 V 01010110 56 v 01110110 76
7 00110111 37 W 01010111 57 w 01110111 77
8 00111000 38 X 01011000 58 x 01111000 78
9 00111001 39 Y 01011001 59 y 01111001 79
: 00111010 3A Z 01011010 5A z 01111010 7A
; 00111011 3B [01011011 5B { 01111011 7B
< 00111100 3C \ 01011100 5C | 01111100 7C
= 00111101 3D] 01011101 5D } 01111101 7D

Circuits to Manipulate Two’s
Complement Representations
This appendix presents circuits for negating and adding values represented in
two’s complement notation. We begin with the circuit in Figure B.1 that converts
a four-bit two’s complement representation to the representation for the negative
of that value. For example, given the two’s complement representation of 3, the
circuit produces the representation for �3. It does this by following the same
algorithm as presented in the text. That is, it copies the pattern from right to left
until a 1 has been copied and then complements each remaining bit as it is
moved from the input to the output. Because one input of the rightmost XOR
gate is fixed at 0, this gate will merely pass its other input to the output. How-
ever, this output is also passed to the left as one of the inputs to the next XOR
gate. If this output is 1, the next XOR gate will complement its input bit as it
passes to the output. Moreover, this 1 will also be passed to the left through the
OR gate to affect the next gate as well. In this manner, the first 1 that is copied to
the output will also be passed to the left, where it will cause all the remaining
bits to be complemented as they are moved to the output.

a p p e n d i x

B

Input

Output

0

548

Figure B.1 A circuit that negates a two’s complement pattern

549Appendix B

Next, let us consider the process of adding two values represented in two’s
complement notation. In particular, when solving the problem

+ 0110
+ 1011

we proceed from right to left in a column-by-column manner, executing the
same algorithm for each column. Thus once we obtain a circuit for adding one
column of such a problem, we can construct a circuit for adding many columns
merely by repeating the single-column circuit.

The algorithm for adding a single column in a multiple-column addition
problem is to add the two values in the current column, add that sum to any
carry from the previous column, write the least significant bit of this sum in
the answer, and transfer any carry to the next column. The circuit in
Figure B.2 follows this same algorithm. The upper XOR gate determines the
sum of the two input bits. The lower XOR gate adds this sum to the value car-
ried from the previous column. The two AND gates together with the OR gate
pass any carry to the left. In particular, a carry of 1 will be produced if the
original two input bits in this column were 1 or if the sum of these bits and the
carry were both 1.

Figure B.2 A circuit to add a single column in a multiple-column addition problem

Sum

Carry to
next column Carry from

previous column

Upper bit
from column

Lower bit
from column

550 Appendixes

Figure B.3 shows how copies of this single-column circuit can be used to pro-
duce a circuit that computes the sum of two values represented in a four-bit two’s
complement system. Each rectangle represents a copy of the single-column
addition circuit. Note that the carry value given to the rightmost rectangle is
always 0 because there is no carry from a previous column. In a similar manner,
the carry produced from the leftmost rectangle is ignored.

The circuit in Figure B.3 is known as a ripple adder because the carry
information must propagate, or ripple, from the rightmost to the leftmost col-
umn. Although simple in composition, such circuits are slower to perform
their functions than more clever versions, such as the lookahead carry adder,
which minimize this column-to-column propagation. Thus the circuit in
Figure B.3, although sufficient for our purposes, is not the circuit that is used in
today’s machines.

Figure B.3 A circuit for adding two values in a two’s complement notation using four copies
of the circuit in Figure B.2

Upper input Lower input

Carry
out

Carry
in

Carry
out

Carry
in

Carry
out

Carry
in

Carry
out

Carry
in

0

Sum

551

A Simple Machine Language
In this appendix we present a simple but representative machine language. We
begin by explaining the architecture of the machine itself.

The Machine’s Architecture
The machine has 16 general-purpose registers numbered 0 through F (in hexa-
decimal). Each register is one byte (eight bits) long. For identifying registers
within instructions, each register is assigned the unique four-bit pattern that rep-
resents its register number. Thus register 0 is identified by 0000 (hexadecimal 0),
and register 4 is identified by 0100 (hexadecimal 4).

There are 256 cells in the machine’s main memory. Each cell is assigned a
unique address consisting of an integer in the range of 0 to 255. An address can
therefore be represented by a pattern of eight bits ranging from 00000000 to
11111111 (or a hexadecimal value in the range of 00 to FF).

Floating-point values are assumed to be stored in the eight-bit format dis-
cussed in Section 1.7 and summarized in Figure 1.26.

The Machine’s Language
Each machine instruction is two bytes long. The first 4 bits provide the op-code;
the last 12 bits make up the operand field. The table that follows lists the instruc-
tions in hexadecimal notation together with a short description of each. The let-
ters R, S, and T are used in place of hexadecimal digits in those fields
representing a register identifier that varies depending on the particular applica-
tion of the instruction. The letters X and Y are used in lieu of hexadecimal digits
in variable fields not representing a register.

a p p e n d i x

C

Op-code Operand Description

1 RXY LOAD the register R with the bit pattern found in the memory cell
whose address is XY.
Example: 14A3 would cause the contents of the memory cell
located at address A3 to be placed in register 4.

2 RXY LOAD the register R with the bit pattern XY.
Example: 20A3 would cause the value A3 to be placed in register 0.

3 RXY STORE the bit pattern found in register R in the memory cell whose
address is XY.
Example: 35B1 would cause the contents of register 5 to be placed
in the memory cell whose address is B1.

4 0RS MOVE the bit pattern found in register R to register S.
Example: 40A4 would cause the contents of register A to be copied
into register 4.

5 RST ADD the bit patterns in registers S and T as though they were two’s
complement representations and leave the result in register R.
Example: 5726 would cause the binary values in registers 2 and 6
to be added and the sum placed in register 7.

6 RST ADD the bit patterns in registers S and T as though they repre-
sented values in floating-point notation and leave the floating-
point result in register R.
Example: 634E would cause the values in registers 4 and E to be
added as floating-point values and the result to be placed in
register 3.

7 RST OR the bit patterns in registers S and T and place the result in
register R.
Example: 7CB4 would cause the result of ORing the contents of
registers B and 4 to be placed in register C.

8 RST AND the bit patterns in registers S and T and place the result in
register R.
Example: 8045 would cause the result of ANDing the contents of
registers 4 and 5 to be placed in register 0.

9 RST EXCLUSIVE OR the bit patterns in registers S and T and place the
result in register R.
Example: 95F3 would cause the result of EXCLUSIVE ORing the
contents of registers F and 3 to be placed in register 5.

A R0X ROTATE the bit pattern in register R one bit to the right X times.
Each time place the bit that started at the low-order end at the
high-order end.
Example: A403 would cause the contents of register 4 to be
rotated 3 bits to the right in a circular fashion.

B RXY JUMP to the instruction located in the memory cell at address XY if
the bit pattern in register R is equal to the bit pattern in register
number 0. Otherwise, continue with the normal sequence of exe-
cution. (The jump is implemented by copying XY into the program
counter during the execute phase.)
Example: B43C would first compare the contents of register 4 with
the contents of register 0. If the two were equal, the pattern 3C
would be placed in the program counter so that the next instruc-
tion executed would be the one located at that memory address.
Otherwise, nothing would be done and program execution would
continue in its normal sequence.

C 000 HALT execution.
Example: C000 would cause program execution to stop.

552 Appendixes

High-Level Programming Languages
This appendix contains a brief background of each of the languages used as
examples in Chapter 6.

Ada
The language Ada, named after Augusta Ada Byron (1815–1851), who was an
advocate of Charles Babbage and the daughter of poet Lord Byron, was devel-
oped at the initiative of the U.S. Department of Defense in an attempt to obtain
a single, general-purpose language for all its software development needs. A
major emphasis during Ada’s design was to incorporate features for program-
ming real-time computer systems used as a part of larger machines such as
missile guidance systems, environmental control systems within buildings,
and control systems in automobiles and small home appliances. Ada thus con-
tains features for expressing activities in parallel processing environments as
well as convenient techniques for handling special cases (called exceptions)
that might arise in the application environment. Although originally designed
as an imperative language, newer versions of Ada have embraced the object-
oriented paradigm.

The design of the Ada language has consistently emphasized features that
lead to the efficient development of reliable software, a characteristic exempli-
fied by the fact that all of the internal control software in the Boeing 777 aircraft
was written in Ada. This is also a major reason that Ada was used as a starting
point in the development of the language SPARK, as indicated in Chapter 5.

C
The language C was developed by Dennis Ritchie at Bell Laboratories in the
early 1970s. Although originally designed as a language for developing system
software, C has achieved popularity throughout the programming community
and has been standardized by the American National Standards Institute.

C was originally envisioned as merely a step up from machine language.
Consequently, its syntax is terse compared with other high-level languages that
use complete English words to express some primitives that are represented by
special symbols in C. This terseness allows for efficient representations of com-
plex algorithms, which is a major reason for C’s popularity. (Often a concise rep-
resentation is more readable than a lengthy one.)

a p p e n d i x

D

553

554 Appendixes

C++
The language C++ was developed by Bjarne Stroustrup at Bell Laboratories as an
enhanced version of the language C. The goal was to produce a language com-
patible with the object-oriented paradigm. Today, C++ is not only a prominent
object-oriented language in its own right but it has served as a starting point for
the development of two other leading object-oriented languages: Java and C#.

C#
The language C# was developed by Microsoft to be a tool in the .NET Frame-
work, which is a comprehensive system for developing application software
for machines running Microsoft system software. The C# language is very
similar to C++ and Java. Indeed, the reason Microsoft introduced C# as a dif-
ferent language was not that it is truly new in the language sense, but that, as
a different language, Microsoft could customize specific features of the lan-
guage without concern for standards that were already associated with other
languages or for proprietary rights of other corporations. Thus the novelty of
C# is in its role as a prominent language for developing software utilizing the
.NET Framework. With Microsoft’s backing, C# and the .NET Framework
promise to be prominent players in the world of software development for
years to come.

Fortran
FORTRAN is an acronym for FORmula TRANslator. This language was one of the
first high-level languages developed (it was announced in 1957) and one of the
first to gain wide acceptance within the computing community. Over the years
its official description has undergone numerous extensions, meaning that
today’s FORTRAN language is much different from the original. Indeed, by
studying the evolution of FORTRAN, one would witness the effects of research in
programming language design. Although originally designed as an imperative
language, newer versions of FORTRAN now encompass many object-oriented
features. FORTRAN continues to be a popular language within the scientific
community. In particular, many numerical analysis and statistical packages are,
and will probably continue to be, written in FORTRAN.

Java
Java is an object-oriented language developed by Sun Microsystems in the early
1990s. Its designers borrowed heavily from C and C++. The excitement over Java
is due, not to the language itself, but to the language’s universal implementation
and the vast number of predesigned templates that are available in the Java pro-
gramming environment. The universal implementation means that a program
written in Java can be executed efficiently over a wide range of machines; and
the availability of templates means that complex software can be developed with
relative ease. For example, templates such as applet and servlet streamline the
development of software for the World Wide Web.

555

a p p e n d i x

E
The Equivalence of Iterative and Recursive Structures
In this appendix, we use our Bare Bones language of Chapter 11 as a tool to
answer the question posed in Chapter 4 regarding the relative power of iterative
and recursive structures. Recall that Bare Bones contains only three assignment
statements (clear, incr, and decr) and one control structure (constructed from a
while-end statement pair). This simple language has the same computing power
as a Turing machine; thus, if we accept the Church-Turing thesis, we might con-
clude that any problem with an algorithmic solution has a solution expressible in
Bare Bones.

The first step in the comparison of iterative and recursive structures is to
replace the iterative structure of Bare Bones with a recursive structure. We do
this by removing the while and end statements from the language and in their
place providing the ability to divide a Bare Bones program into units along with
the ability to call one of these units from another location in the program. More
precisely, we propose that each program in the modified language consist of a
number of syntactically disjoint program units. We suppose that each program
must contain exactly one unit called MAIN having the syntactic structure of

MAIN: begin;

.

.

.

end;

(where the dots represent other Bare Bones statements) and perhaps other units
(semantically subordinate to MAIN) that have the structure

unit: begin;

.

.

.

return;

(where unit represents the unit’s name that has the same syntax as variable
names). The semantics of this partitioned structure is that the program always
begins execution at the beginning of the unit MAIN and halts when that unit’s

556 Appendixes

end statement is reached. Program units other than MAIN can be called as pro-
cedures by means of the conditional statement

if name not 0 perform unit;

(where name represents any variable name and unit represents any of the pro-
gram unit names other than MAIN). Moreover, we allow the units other than
MAIN to call themselves recursively.

With these added features, we can simulate the while-end structure found in
the original Bare Bones. For example, a Bare Bones program of the form

while X not 0 do;

S;
end;

(where S represents any sequence of Bare Bones statements) can be replaced by
the unit structure

MAIN: begin;

if X not 0 perform unitA;

end;

unitA: begin;

S;
if X not 0 perform unitA;

return;

Consequently, we conclude that the modified language has all the capabilities of
the original Bare Bones.

It can also be shown that any problem that can be solved using the modified
language can be solved using Bare Bones. One method of doing this is to show
how any algorithm expressed in the modified language could be written in the
original Bare Bones. However, this involves an explicit description of how recur-
sive structures can be simulated with the while-end structure of Bare Bones.

For our purpose, it is simpler to rely on the Church-Turing thesis as pre-
sented in Chapter 11. In particular, the Church-Turing thesis, combined with the
fact that Bare Bones has the same power as Turing machines, dictates that no lan-
guage can be more powerful than our original Bare Bones. Therefore, any prob-
lem solvable in our modified language can also be solved using Bare Bones.

We conclude that the power of the modified language is the same as that of
the original Bare Bones. The only distinction between the two languages is that
one provides an iterative control structure and the other provides recursion.
Thus the two control structures are in fact equivalent in terms of computing
power.

Answers to Questions & Exercises

Chapter 1

Section 1.1

1. One and only one of the upper two inputs must be 1, and the lowest input
must be 1.

2. The 1 on the lower input is negated to 0 by the NOT gate, causing the out-
put of the AND gate to become 0. Thus both inputs to the OR gate are 0
(remember that the upper input to the flip-flop is held at 0) so the output of
the OR gate becomes 0. This means that the output of the AND gate will
remain 0 after the lower input to the flip-flop returns to 0.

3. The output of the upper OR gate will become 1, causing the upper NOT
gate to produce an output of 0. This will cause the lower OR gate to pro-
duce a 0, causing the lower NOT gate to produce a 1. This 1 is seen as the
output of the flip-flop as well as being fed back to the upper OR gate, where
it holds the output of that gate at 1, even after the flip-flop’s input has
returned to 0.

4. a. The entire circuit is equivalent to a single OR gate.
b. This entire circuit is also equivalent to a single XOR gate.

5. a. 6AF2 b. E85517 c. 48

6. a. 01011111110110010111
b. 0110000100001010
c. 1010101111001101
d. 0000000100000000

Section 1.2

1. In the first case, memory cell number 6 ends up containing the value 5. In
the second case, it ends up with the value 8.

2. Step 1 erases the original value in cell number 3 when the new value is
written there. Consequently, Step 2 does not place the original value from
cell number 3 in cell number 2. The result is that both cells end up with

a p p e n d i x

F

557

the value that was originally in cell number 2. A correct procedure is the
following:

Step 1. Move the contents of cell number 2 to cell number 1.

Step 2. Move the contents of cell number 3 to cell number 2.

Step 3. Move the contents of cell number 1 to cell number 3.

3. 32768 bits

Section 1.3

1. Faster retrieval of data and higher transfer rates

2. The point to remember here is that the slowness of mechanical motion
compared with the speed of the internal functioning of the computer dic-
tates that we minimize the number of times we must move the read/write
heads. If we fill a complete surface before starting the next, we must move
the read/write head each time we finish with a track. The number of moves
therefore is approximately the same as the total number of tracks on the
two surfaces. If, however, we alternate between surfaces by electronically
switching between the read/write heads, we must move the read/write heads
only after each cylinder has been filled.

3. In this application, information must be retrieved from mass storage in
a random manner, which would be time consuming in the context of
the spiral system used on CDs and DVDs. (Moreover, current technology
does not allow individual portions of data to be updated on a CD or DVD.)

4. Storage space is allocated in units of physical sectors (actually in units of
groups of sectors in most cases). If the last physical sector is not full,
additional text can be added without increasing the storage space allocated
to the file. If the last physical sector is full, any addition to the document
will require additional physical sectors to be allocated.

5. Flash drives do not require physical motion so they have shorter response
times and do not suffer from physical wear.

6. A buffer is a data storage area used to hold data on a temporary basis, usu-
ally as a means of absorbing inconsistencies between the data’s source and
ultimate destination.

Section 1.4

1. Computer Science

2. The two patterns are the same, except that the sixth bit from the low-order
end is always 0 for uppercase and 1 for lowercase.

3. a. 00100010 01010011 01110100 01101111
01110000 00100001 00100010 00100000
01000011 01101000 01100101 01110010
01111001 01101100 00100000 01110011
01101000 01101111 01110101 01110100
01100101 01110100 00101110

558 Appendixes

b. 01000100 01101111 01100101 01110011
00100000 00110010 00100000 00101011
00100000 00110011 00100000 00111101
00100000 00110101 00111111

559Appendix F

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

4.

5. a. 5 b. 9 c. 11 d. 6 e. 16 f. 18

6. a. 110 b. 1101 c. 1011 d. 10010 e. 11011 f. 100

7. In 24 bits, we can store three symbols using ASCII. Thus we can store values
as large as 999. However, if we use the bits as binary digits, we can store
values up to 16,777,215.

8. a. 15.15 b. 51.0.128 c. 10.160

9. Geometric representations are more conducive to changes in scale than
images encoded as bit maps. However, geometric representations do not
typically provide the same photographic quality that bit maps produce.
Indeed, as discussed in Section 1.8, JPEG representations of bit maps are
very popular in photography.

10. With a sample rate of 44,100 samples per second, one hour of stereo music
would require 635,040,000 bytes of storage. Thus, it would just about fill a
CD whose capacity is slightly more than 600MB.

Section 1.5

1. a. 42 b. 33 c. 23 d. 6 e. 31

2. a. 100000 b. 1000000 c. 1100000 d. 1111 e. 11011

3. a. 31⁄4 b. 57⁄8 c. 21⁄2 d. 63⁄8 e. 5⁄8

4. a. 100.1 b. 10.11 c. 1.001 d. 0.0101 e. 101.101

5. a. 100111 b. 1011.110 c. 100000 d. 1000.00

Section 1.6

1. a. 3 b. 15 c. �4 d. �6 e. 0 f. �16

2. a. 00000110 b. 11111010 c. 11101111
d. 00001101 e. 11111111 f. 00000000

3. a. 11111111 b. 10101011 c. 00000100
d. 00000010 e. 00000000 f. 10000001

4. a. With 4 bits the largest value is 7 and the smallest is �8.
b. With 6 bits the largest value is 31 and the smallest is �32.
c. With 8 bits the largest value is 127 and the smallest is �128.

5. a. 0111 (5 � 2 � 7) b. 0100 (3 � 1 � 4) c. 1111 (5 � (�6) � �1)
d. 0001 (�2 � 3 � 1) e. 1000 (�6 � (�2) � �8)

6. a. 0111 b. 1011 (overflow) c. 0100 (overflow)
d. 0001 e. 1000 (overflow)

7. a. 0110 b. 0011 c. 0100 d. 0010 e. 0001
� 0001 �1110 � 1010 � 0100 �1011

0111 0001 1110 0110 1100

8. No. Overflow occurs when an attempt is made to store a number that is too
large for the system being used. When adding a positive value to a negative
value, the result must be between the values being added. Therefore the
result will be small enough to be stored without error.

9. a. 6 because 1110 → 14 � 8
b. �1 because 0111 → 7 � 8
c. 0 because 1000 → 8 � 8
d. �6 because 0010 → 2 � 8
e. �8 because 0000 → 0 � 8
f. 1 because 1001 → 9 � 8

10. a. 1101 because 5 � 8 � 13 → 1101
b. 0011 because �5 � 8 � 3 → 0011
c. 1011 because 3 � 8 � 11 → 1011
d. 1000 because 0 � 8 � 8 → 1000
e. 1111 because 7 � 8 � 15 → 1111
f. 0000 because �8 � 8 � 0 → 0000

11. No. The largest value that can be stored in excess eight notation is 7, repre-
sented by 1111. To represent a larger value, at least excess 16 (which uses pat-
terns of 5 bits) must be used. Similarly, 6 cannot be represented in excess four
notation. (The largest value that can be represented in excess four notation is 3.)

Section 1.7

1. a. 5⁄8 b. 31⁄4 c. 9⁄32 d. �11⁄2 e. �(11⁄64)

2. a. 01101011 b. 01111010 (truncation error)
c. 01001100 d. 11101110 e. 11111000 (truncation error)

3. 01001001 (9⁄16) is larger than 00111101 (13⁄32). The following is a simple way of
determining which of two patterns represents the larger value:

Case 1. If the sign bits are different, the larger is the one with 0 sign bit.

Case 2. If the sign bits are both 0, scan the remaining portions of the patterns
from left to right until a bit position is found where the two patterns
differ. The pattern containing the 1 in this position represents the
larger value.

Case 3. If the sign bits are both 1, scan the remaining portions of the pat-
terns from left to right until a bit position is found where the two
patterns differ. The pattern containing the 0 in this position repre-
sents the larger value.

The simplicity of this comparison process is one of the reasons for repre-
senting the exponent in floating-point systems with an excess notation rather
than with two’s complement.

4. The largest value would be 71⁄2, which is represented by the pattern
01111111. As for the smallest positive value, you could argue that there are

560 Appendixes

two “correct” answers. First, if you stick to the coding process described in
the text, which requires the most significant bit of the mantissa to be 1
(called normalized form), the answer is 1⁄32, which is represented by the pat-
tern 00001000. However, most machines do not impose this restriction for
values close to 0. For such a machine, the correct answer is 1⁄256 represented
by 00000001.

Section 1.8

1. Run-length encoding, frequency-dependent encoding, relative encoding,
and dictionary encoding

2. 121321112343535

3. Color cartoons consist of blocks of solid color with sharp edges. Moreover,
the number of colors involved is limited.

4. No. Both GIF and JPEG are lossy compression systems, meaning that
details in the image will be lost.

5. JPEG’s baseline standard takes advantage of the fact that the human eye is
not as sensitive to changes in color as it is to changes in brightness. Thus it
reduces the number of bits used to represent color information without
noticeable loss in image quality.

6. Temporal masking and frequency masking

7. When encoding information, approximations are made. In the case of
numeric data, these approximations are compounded when computations
are performed, which can lead to erroneous results. Approximations are not
as critical in the cases of images and sound because the encoded data are
normally only stored, transferred, and reproduced. If, however, images or
sound were repeatedly reproduced, rerecorded, and then reencoded, these
approximations could compound and ultimately lead to worthless data.

Section 1.9

1. b, c, and e

2. Yes. If an even number of errors occurs in one byte, the parity technique
does not detect them.

3. In this case, errors occur in bytes a and d of Question 1. The answer to
Question 2 remains the same.

4. a. 001010111 001101000 101100101
101110010 101100101 000100000
001100001 101110010 101100101
000100000 001111001 101101111
001110101 100111111

b. 100100010 101001000 101101111
101110111 100111111 100100010
000100000 001000011 001101000
101100101 101110010 001111001
101101100 000100000 001100001
001110011 001101011 101100101
001100100 100101110

c. 000110010 100101011 100110011
000111101 100110101 100101110

561Appendix F

5. a. BED b. CAB c. HEAD

6. One solution is the following:
A 0 0 0 0 0
B 1 1 1 0 0
C 0 1 1 1 1
D 1 0 0 1 1

Chapter 2

Section 2.1

1. On some machines this is a two-step process consisting of first reading the
contents from the first cell into a register and then writing it from the register
into the destination cell. On most machines, this is accomplished as one
activity without using an intermediate register.

2. The value to be written, the address of the cell in which to write, and the
command to write

3. General-purpose registers are used to hold the data immediately applicable
to the operation at hand; main memory is used to hold data that will be
needed in the near future; and mass storage is used to hold data that will
likely not be needed in the near future.

Section 2.2

1. The term move often carries the connotation of removing from one location
and placing in another, thus leaving a hole behind. In most cases within a
machine, this removal does not take place. Rather, the object being moved
is most often copied (or cloned) into the new location.

2. A common technique, called relative addressing, is to state how far rather
than where to jump. For example, an instruction might be to jump for-
ward three instructions or jump backward two instructions. You should
note, however, that such statements must be altered if additional instruc-
tions are later inserted between the origin and the destination of the
jump.

3. This could be argued either way. The instruction is stated in the form of a
conditional jump. However, because the condition that 0 be equal to 0 is
always satisfied, the jump will always be made as if there were no condition
stated at all. You will often find machines with such instructions in their
repertoires because they provide an efficient design. For example, if a
machine is designed to execute an instruction with a structure such as
“If ... jump to...” this instruction form can be used to express both conditional
and unconditional jumps.

4. 156C � 0001010101101100
166D �0001011001101101
5056 � 0101000001010110
306E � 0011000001101110
C000 �1100000000000000

562 Appendixes

5. a. STORE the contents of register 6 in memory cell number 8A.
b. JUMP to location DE if the contents of register A equals that of

register 0.
c. AND the contents of registers 3 and C, leaving the result in register 0.
d. MOVE the contents of register F to register 4.

6. The instruction 15AB requires that the CPU query the memory circuitry
for the contents of the memory cell at address AB. This value, when
obtained from memory, is then placed in register 5. The instruction 25AB
does not require such a request of memory. Rather, the value AB is placed
in register 5.

7. a. 2356 b. A503 c. 80A5

Section 2.3

1. Hexadecimal 34

2. a. 0F b. C3

3. a. 00 b. 01 c. four times

4. It halts. This is an example of what is often called self-modifying code. That
is, the program modifies itself. Note that the first two instructions place
hexadecimal C0 at memory location F8, and the next two instructions place
00 at location F9. Thus, by the time the machine reaches the instruction at
F8, the halt instruction (C000) has been placed there.

Section 2.4

1. a. 00001011 b. 10000000 c. 00101101
d. 11101011 e. 11101111 f. 11111111
g. 11100000 h. 01101111 i. 11010010

2. 00111100 with the AND operation

3. 00111100 with the XOR operation

4. a. The final result is 0 if the string contained an even number of 1s. Other-
wise it is 1.

b. The result is the value of the parity bit for even parity.

5. The logical XOR operation mirrors addition except for the case where both
operands are 1, in which case the XOR produces a 0, whereas the sum is 10.
(Thus the XOR operation can be considered an addition operation with no
carry.)

6. Use AND with the mask 11011111 to change lowercase to uppercase. Use OR
with 00100000 to change uppercase to lowercase.

7. a. 01001101 b. 11100001 c. 11101111

8. a. 57 b. B8 c. 6F d. 6A

9. 5

10. 00110110 in two’s complement; 01011110 in floating-point. The point here is
that the procedure used to add the values is different depending on the
interpretation given the bit patterns.

563Appendix F

11. One solution is as follows:

12A7 (LOAD register 2 with the contents of memory cell A7.)
2380 (LOAD register 3 with the value 80.)
7023 (OR registers 2 and 3 leaving the result in register 0.)
30A7 (STORE contents of register 0 in memory cell A7.)
C000 (HALT.)

12. One solution is as follows:

15E0 (LOAD register 5 with the contents of memory cell E0.)
A502 (ROTATE the contents of register 5 to the left by 2 bits.)
260F (LOAD register 6 with the value 0F.)
8056 (AND registers 5 and 6, leaving the result in register 0.)
30E1 (STORE the contents of register 0 in memory cell E1.)
C000 (HALT.)

Section 2.5

1. a. 37B5
b. One million times
c. No. A typical page of text contains less than 4000 characters. Thus the

ability to print five pages in a minute indicates a printing rate of no more
than 20,000 characters per minute, which is much less than one million
characters per second. (The point is that a computer can send characters
to a printer much faster than the printer can print them; thus the printer
needs a way of telling the computer to wait.)

2. The disk will make 50 revolutions in one second, meaning that 800 sectors
will pass under the read/write head in a second. Because each sector con-
tains 1024 bytes, bits will pass under the read/write head at approximately
6.5 Mbps. Thus communication between the controller and the disk drive
will have to be at least this fast if the controller is going to keep up with the
data being read from the disk.

3. A 300-page novel represented in Unicode consists of about 2MB or
16,000,000 bits. Thus approximately 0.3 seconds would be required to trans-
fer the entire novel at 54 Mbps.

Section 2.6

1. The pipe would contain the instructions B1B0 (being executed), 5002, and
perhaps even B0AA. If the value in register 1 is equal to the value in register
0, the jump to location B0 is executed, and the effort already expended on
the instructions in the pipe is wasted. On the other hand, no time is wasted
because the effort expended on these instructions did not require extra time.

2. If no precautions are taken, the information at memory locations F8 and F9
is fetched as an instruction before the previous part of the program has had
a chance to modify these cells.

3. a. The CPU that is trying to add 1 to the cell can first read the value in the
cell. Following this the other CPU reads the cell’s value. (Note that at this
point both CPUs have retrieved the same value.) If the first CPU now fin-
ishes its addition and writes its result back in the cell before the second
finishes its subtraction and writes its result, the final value in the cell
reflects only the activity of the second CPU.

564 Appendixes

b. The CPUs might read the data from the cell as before, but this time the
second CPU might write its result before the first. Thus only the activity
of the first CPU is reflected in the cell’s final value.

Chapter 3

Section 3.1

1. A traditional example is the line of people waiting to buy tickets to an
event. In this case there might be someone who tries to “break in line,”
which would violate the FIFO structure.

2. Options (b), (c), and (e)

3. Embedded systems often focus on dedicated tasks, whereas PCs are
general-purpose computers. Embedded systems frequently have more
limited resources than PCs of comparable age, but may face strict deadlines
with minimal human intervention.

4. Time-sharing refers to more than one user accessing a machine at the same
time. Multitasking refers to a user performing more than one task at the
same time.

Section 3.2

1. Shell: Communicates with the machine’s environment.

File manager: Coordinates the use of the machine’s mass storage.

Device drivers: Handle communication with the machine’s peripheral devices.

Memory manager: Coordinates the use of the machine’s main memory.

Scheduler: Coordinates the processes in the system.

Dispatcher: Controls the assignment of processes to CPU time.

2. The line is vague, and the distinction is often in the eye of the beholder.
Roughly speaking, utility software performs basic, universal tasks, whereas
application software performs tasks unique to the machine’s application.

3. Virtual memory is the imaginary memory space whose apparent presence
is created by the process of swapping data and programs back and forth
between main memory and mass storage.

4. When the machine is turned on, the CPU begins executing the bootstrap,
which resides in ROM. This bootstrap directs the CPU through the process
of transferring the operating system from mass storage into the volatile area
of main memory. When this transfer is complete, the bootstrap directs the
CPU to jump to the operating system.

Section 3.3

1. A program is a set of directions. A process is the action of following those
directions.

2. The CPU completes its current machine cycle, saves the state of the current
process, and sets its program counter to a predetermined value (which is
the location of the interrupt handler). Thus the next instruction executed
will be the first instruction within the interrupt handler.

565Appendix F

3. They could be given higher priorities so that they would be given prefer-
ence by the dispatcher. Another option would be to give the higher-priority
processes longer time slices.

4. If each process consumed its entire time slice, the machine could provide a
complete slice to almost 20 processes in one second. If processes did not
consume their entire time slices, this value could be much higher, but then
the time required to perform a context switch might become more signifi-
cant (see Question 5).

5. A total of 5000⁄5001 of the machine’s time would be spent actually performing
processes. However, when a process requests an I/O activity, its time slice is
terminated while the controller performs the request. Thus if each process
made such a request after only one microsecond of its time slice, the effi-
ciency of the machine would drop to 1⁄2. That is, the machine would spend as
much time performing context switches as it would executing processes.

Section 3.4

1. This system guarantees that the resource is not used by more than one
process at a time; however, it dictates that the resource be allocated in a
strictly alternating fashion. Once a process has used and relinquished the
resource, it must wait for the other process to use the resource before the
original process can access it again. This is true even if the first process
needs the resource right away and the other process will not need it for
some time.

2. If two cars enter opposite ends of the tunnel at the same time, they will not
be aware of the other’s presence. The process of entering and turning on
the lights is another example of a critical region, or in this case we might
call it a critical process. In this terminology, we could summarize the flaw
by saying that cars at opposite ends of the tunnel could execute the critical
process at the same time.

3. a. This guarantees that the nonshareable resource is not required and allo-
cated on a partial basis; that is, a car is given the whole bridge or nothing
at all.

b. This means that the nonshareable resource can be forcibly retrieved.
c. This makes the nonshareable resource shareable, which removes the

competition.

4. A sequence of arrows that forms a closed loop in the directed graph. It is on
this observation that techniques have been developed that allow some oper-
ating systems to recognize the existence of deadlock and consequently to
take appropriate corrective action.

Section 3.5

1. Names and dates are considered poor candidates because they are common
choices and therefore represent easy targets for password guessers. The use
of complete words is also considered poor because password guessers can
easily write a program to try the words found in a dictionary. Moreover,
passwords containing only characters are discouraged because they are
formed from a limited character set.

566 Appendixes

2. Four is the number of different bit patterns that can be formed using 2 bits.
If more privilege levels were required, the designers would need at least
3 bits to represent the different levels and would therefore probably choose
to use a total of 8 levels. In the same manner, the natural choice for fewer
than 4 privilege levels would be 2, which is the number of patterns that can
be represented with 1 bit.

3. The process could alter the operating system program so that the dispatcher
gave every time slice to that process.

Chapter 4

Section 4.1

1. An open network is one whose specifications and protocols are public,
allowing different vendors to produce compatible products.

2. Both connect two buses to form a larger bus network. However, a bridge
forwards only those messages destined for the other side of the bridge,
whereas a switch has multiple connections that each may act as a bridge.

3. A router is a device that directs messages between networks in an internet.

4. How about a mail-order business and its clients, a bank teller and the
bank’s customers, or a pharmacist and his or her customers?

5. There are numerous protocols involved in traffic flow, verbal telephone
communication, and etiquette.

6. Cluster computing typically involves multiple, dedicated computers to pro-
vide high-availability or load-balanced distributed computing. Grid computing
is more loosely coupled than cluster computing, and could involve machines
that join the distributed computation when they are otherwise idle.

Section 4.2

1. Tier-1 and tier-2 ISPs provide the Internet’s communication “core,” whereas
access ISPs provide access to that core to their customers.

2. The DNS (Domain Name System) is the Internet-wide collection of name
servers that allow translation from mnemonic addresses to IP addresses
(and in the other direction as well).

3. The expression 3.6.9 represents the three-byte pattern
000000110000011000001001. The bit pattern 0001010100011100 would be
represented as 21.28 in dotted decimal notation.

4. There could be several answers to this. One is that both progress from the
specific to the general. Internet addresses in mnemonic form begin with the
name of a particular machine and progress to the name of the TLD. Postal
addresses begin with the name of an individual and progress to increasingly
larger regions such as city, state, and country. This order is reversed in
IP addresses, which start with the bit pattern identifying the domain.

5. Name servers help translate mnemonic addresses into IP addresses. Mail
servers send, receive, and store email messages. FTP servers provide file
transfer service.

567Appendix F

6. SSH provides encryption and authentication.

7. They relieve the initial server from the burden of sending individual messages
to each client. The P2P approach shifts this burden to the clients (peers) them-
selves, whereas multicast shifts this burden to the Internet routers.

8. Criteria to consider may include cost, portability, the practicality of using your
computer as your phone, the need to preserve any existing analog phones,
emergency 911 service, and the reliability and service areas of the various
providers involved.

Section 4.3

1. A URL is essentially the address of a document in the World Wide Web.
A browser is a program that assists a user in accessing hypertext.

2. A markup language is a system for inserting explanatory information in
a document.

3. HTML is a particular markup language. XML is a standard for producing
markup languages.

4. a. �html� marks the beginning of an HTML document.
b. �head� marks the beginning of a document’s head.
c. �/p� marks the end of a paragraph.
d. �/a� marks the end of an item that is linked to another document.

5. Client side and server side are terms used to identify whether an activity is
performed at the client’s computer or the server’s computer.

Section 4.4

1. The link layer receives the message and hands it to the network layer.
The network layer determines the direction in which the message should
be forwarded and gives the message back to the link layer to be for-
warded. The higher layers are not required for routing, although advanced
routers may use the transport or application layers to provide additional
services such as selective filtering or tiered quality of service.

2. Unlike TCP, UDP is a connectionless protocol that does not confirm that the
message was received at the destination.

3. The transport layer uses transport protocol port numbers to determine which
unit within the application layer should receive an incoming message.

4. Nothing really. A programmer at any host could modify the software at that
host to keep such records. This is why sensitive data should be encrypted.

Section 4.5

1. Phishing is a technique for obtaining sensitive information by asking users for
their passwords, credit card numbers, etc., through email while masquerading
as a legitimate entity such as the user’s bank or the campus IT department.
Computers are not secured against phishing; users must rely on sound judg-
ment when revealing sensitive data to others without proper verification.

2. A region’s gateway is a router that merely forwards packets (parts of mes-
sages) as they pass through. Thus a firewall at the gateway cannot filter
traffic by its content but merely by its address information.

568 Appendixes

3. The use of passwords protects data (and therefore information as well). The
use of encryption protects information.

4. In the case of a public-key encryption system, knowing how messages are
encrypted does not allow messages to be decrypted.

5. The problems are international in nature and therefore not subject to the
laws of a single government. Moreover, legal remedies merely provide
recourse to injured parties rather than preventing the injuries.

Chapter 5

Section 5.1

1. A process is the activity of executing an algorithm. A program is a represen-
tation of an algorithm.

2. In the introductory chapter we cited algorithms for playing music, operat-
ing washing machines, constructing models, and performing magic tricks,
as well as the Euclidean algorithm. Many of the “algorithms” you meet in
everyday life fail to be algorithms according to our formal definition. The
example of the long-division algorithm was cited in the text. Another is the
algorithm executed by a clock that continues to advance its hands and ring
its chimes day after day.

3. The informal definition fails to require that the steps be ordered and unam-
biguous. It merely hints at the requirements that the steps be executable
and lead to an end.

4. There are two points here. The first is that the instructions define a nonter-
minating process. In reality, however, the process will ultimately reach the
state in which there are no coins in your pocket. In fact, this might be the
starting state. At this point the problem is that of ambiguity. The algorithm,
as represented, does not tell us what to do in this situation.

Section 5.2

1. One example is found in the composition of matter. At one level, the primi-
tives are considered molecules, yet these particles are actually composites
made up of atoms, which in turn are composed of electrons, protons, and
neutrons. Today, we know that even these “primitives” are composites.

2. Once a procedure is correctly constructed, it can be used as a building block
for larger program structures without reconsidering the procedure’s internal
composition.

3. X ← the larger input;

Y ← the smaller input;

while (Y not zero) do

(Remainder ← remainder after dividing X by Y;

X ← Y;

Y ← Remainder);

GCD ← X

4. All other colors of light can be produced by combining red, blue, and
green. Thus a television picture tube is designed to produce these three
basic colors.

569Appendix F

Section 5.3

1. a. if (n � 1 or n � 2)

then (the answer is the list containing the single value n)

else (Divide n by 3, obtaining a quotient q and a remainder r.

if (r � 0)

then (the answer is the list containing q 3s)

if (r � 1)

then (the answer is the list containing (q � 1) 3s

and two 2s;)

if (r � 2)

then (the answer is the list containing q 3s and one 2)

)

b. The result would be the list containing 667 threes.
c. You probably experimented with small input values until you began to

see a pattern.

2. a. Yes. Hint: Place the first tile in the center so that it avoids the quadrant
containing the hole while covering one square from each of the other
quadrants. Each quadrant then represents a smaller version of the origi-
nal problem.

b. The board with a single hole contains 22n � 1 squares, and each tile cov-
ers exactly three squares.

c. Parts (a) and (b) of this question provide an excellent example of how
knowing a solution to one problem helps solve another. See Polya’s
fourth phase.

3. It says, “This is the correct answer.”

4. Simply trying to assemble the pieces would be a bottom-up approach. How-
ever, by looking at the puzzle box to see what the picture is supposed to
look like adds a top-down component to your approach.

Section 5.4

1. Change the test in the while statement to read “target value not equal to
current entry and there remain entries to be considered.”

2. Z ← 0;

X ← 1;

repeat (Z ← Z � X;

X ← X � 1)

until (X � 6)

3. This has proven to be a problem with the C language. When the do and
while key words are separated by several lines, readers of a program often
stumble over the proper interpretation of a while clause. In particular, the
while at the end of a do statement is often interpreted as the beginning of a
while statement. Thus experience would say that it is better to use different
key words to represent pretest and posttest loop stuctures.

4. Cheryl Alice Alice
Gene Cheryl Brenda
Alice Gene Cheryl
Brenda Brenda Gene

570 Appendixes

5. It is a waste of time to insist on placing the pivot above an identical entry in
the list. For instance, make the proposed change and then try the new pro-
gram on a list in which all entries are the same.

6. procedure sort (List)

N ← 1;

while (N is less than the length of List) do

(J ← N � 1;

while (J is not greater than length of List) do

(if (the entry in position J is less than the entry in

position N)

then (interchange the two entries);

J ← J � 1)

N ← N � 1)

7. The following is an inefficient solution. Can you make it more efficient?

procedure sort (List)

N ← the length of List;

while (N is greater than 1) do

(J ← the length of List;

while (J is greater than 1) do

(if (the entry in position J is less than the entry in

position J � 1)

then (interchange the two entries);

J ← J � 1)

N ← N � 1)

571Appendix F

Section 5.5

1. The first name considered would be Henry, the next would be Larry, and
the last would be Joe.

2. 8, 17

3. 1, 2, 3, 3, 2, 1

4. The termination condition is “N is bigger than or equal to 3” (or “N is not
less than 3”). This is the condition under which no additional activations
are created.

Section 5.6

1. If the machine can sort 100 names in one second, it can perform 1⁄4 (10,000 �
100) comparisons in one second. This means that each comparison takes
approximately 0.0004 second. Consequently, sorting 1000 names [which
requires an average of 1⁄4 (1,000,000 � 1000) comparisons] requires roughly
100 seconds or 12⁄3 minutes.

2. The binary search belongs to Θ(lg n), the sequential search belongs to Θ(n),
and the insertion sort belongs to Θ(n2).

3. The class Θ(lg n) is most efficient, followed by Θ(n), Θ(n2), and Θ(n3).

4. No. The answer is not correct, although it might sound right. The truth is
that two of the three cards are the same on both sides. Thus the probability
of picking such a card is two-thirds.

5. No. If the dividend is less than the divisor, such as in 3⁄7, the answer given
is 1, although it should be 0.

6. No. If the value of X is zero and the value of Y is nonzero, the answer given
will not be correct.

7. Each time the test for termination is conducted, the statement “Sum � 1 �
2 � ... � K and K less than or equal to N” is true. Combining this with the
termination condition “K greater than or equal to N” produces the desired
conclusion “Sum � 1 � 2 � ... � N.” Because K is initialized at zero and
incremented by one each time through the loop, its value must ultimately
reach that of N.

8. Unfortunately, no. Problems beyond the control of hardware and software
design, such as mechanical malfunctions and electrical problems, can affect
computations.

Chapter 6

Section 6.1

1. A program in a third-generation language is machine independent in the sense
that its steps are not stated in terms of the machine’s attributes such as regis-
ters and memory cell addresses. On the other hand, it is machine dependent in
the sense that arithmetic overflow and truncation errors will still occur.

2. The major distinction is that an assembler translates each instruction in the
source program into a single machine instruction, whereas a compiler often
produces many machine-language instructions to obtain the equivalent of a
single source program instruction.

3. The declarative paradigm is based on developing a description of the prob-
lem to be solved. The functional paradigm forces the programmer to
describe the problem’s solution in terms of solutions to smaller problems.
The object-oriented paradigm places emphasis on describing the compo-
nents in the problem’s environment.

4. The third-generation languages allow the program to be expressed more in
terms of the problem’s environment and less in terms of computer gibber-
ish than do the earlier-generation languages.

Section 6.2

1. Using a descriptive constant can improve the accessibility of the program.

2. A declarative statement describes terminology; an imperative statement
describes steps in an algorithm.

3. Integer, real, character, and Boolean

4. The if-then-else and while loop structures are very common.

5. All components of an array have the same type.

Section 6.3

1. The scope of a variable is the range of the program in which that variable is
accessible.

572 Appendixes

2. A function is a procedure that returns a value associated with the function’s
name.

3. Because that is what they are. I/O operations are actually calls to routines
within the machine’s operating system.

4. A formal parameter is an identifier within a procedure. It serves as a place-
holder for the value, the actual parameter, that is passed to the procedure
when the procedure is called.

5. A procedure is designed to perform an action, whereas a function is
designed to produce a value. Thus the program is more readable if the
name of a procedure reflects the action it performs and the name of a func-
tion reflects the value it returns.

Section 6.4

1. Lexical analysis: the process of identifying tokens.
Parsing: the process of recognizing the grammatical structure of the program.
Code generation: the process of producing the instructions in the object program.

2. A symbol table is the record of information the parser has obtained from
the program’s declarative statements.

3. In the syntax diagrams, terms that appear in ovals are terminals. Terms that
require further description are in rectangles, and are called “nonterminals.”

4.

573Appendix F

Expression

+

+

Expression

Expression

Term

TermFactor

Factor Factor

Term

Term

Factor

x

x

y x

z

5. The strings that conform to the structure Chacha consist of one or more of
the following substrings:
forward backward cha cha cha
backward forward cha cha cha
swing right cha cha cha
swing left cha cha cha

Section 6.5

1. A class is the description of an object.

2. One would probably be MeteorClass from which the various meteors
would be constructed. Within the class LaserClass one might find an
instance variable named AimDirection indicating the direction in which
the laser is aimed. This variable would probably be used by the fire,
turnRight, and turnLeft methods.

3. The Employee class might contain features relating to an employee’s
name, address, years in service, etc. The FullTimeEmployee class might
contain features relating to retirement benefits. The PartTimeEmployee
class might contain features relating to hours worked per week, hourly
wage, etc.

4. A constructor is a special method in a class that is executed when an
instance of the class is created.

5. Some items in a class are designated as private to keep other program units
from gaining direct access to those items. If an item is private, then the
repercussions of modifying that item should be restricted to the interior of
the class.

Section 6.6

1. The list would include techniques for initiating the execution of
concurrent processes and techniques for implementing interprocess
communication.

2. One is to place the burden on the processes, another is to place the burden
on the data. The latter has the advantage of concentrating the task at a
single point in the program.

3. These include weather forecasting, air traffic control, simulation of complex
systems (from nuclear reactions to pedestrian traffic), computer network-
ing, and database maintenance.

Section 6.7

1. R, T, and V. For instance, we can show that R is a consequence by adding its
negation to the collection and showing that resolution can lead to the
empty statement, as shown here:

574 Appendixes

¬R

¬V

empty

¬S OR V

S

¬V OR R

S OR V

¬S

3. mother(X, Y) :- parent(X, Y), female(X).
father(X, Y) :- parent(X, Y), male(X).

4. Prolog will conclude that carol is her own sibling. To solve this problem,
the rule needs to include the fact that X cannot be equal to Y, which in
Prolog is written X \� Y. Thus an improved version of the rule would be

sibling (X, Y) :� X \� Y, parent(Z, X), parent(Z, Y).

which says that X is Y’s sibling if X and Y are not equal and have a common
parent. The following version would insist that X and Y are siblings only if
they have both parents in common:

sibling (X, Y) :� X \� Y, Z \� W
parent (Z, X), parent (Z, Y),
parent (W, X), parent (W, Y).

Chapter 7

Section 7.1

1. A long sequence of assignment statements is not as complex in the context
of program design as a few nested if statements.

2. How about the number of errors found after a fixed period of use? One
problem here is that this value cannot be measured in advance.

3. The point here is to think about how software properties can be measured.
One approach for estimating the number of errors in a piece of software is
to intentionally place some errors in the software when it is designed.
Then, after the software has supposedly been debugged, check to see how
many of the original errors are still present. For example, if you intentionally
place seven errors in the software and find that five have been removed
after debugging, then you might conjecture that only 5⁄7 of the total errors in
the software have been removed.

4. Possible answers include the discovery of metrics, the development of
prefabricated components, the development of CASE tools, the move
toward standards. Another, which is covered later in Section 7.5, is the
development of modeling and notational systems such as UML.

575Appendix F

¬R OR Q

¬R

empty

P OR R

¬P

¬Q

R OR ¬P

P OR Q OR R

P

2. No. The collection is inconsistent, because resolution can lead to the empty
statement, as shown here:

Section 7.2

1. Small efforts made during development can pay enormous dividends dur-
ing maintenance.

2. The requirements analysis phase concentrates on what the proposed sys-
tem must accomplish. The design phase concentrates on how the system
accomplishes its goals. The implementation phase concentrates on the
actual construction of the system. The testing phase concentrates on mak-
ing sure that the system does what it is intended to do.

3. A software requirements specification is a written agreement between a
client and a software engineering firm stating the requirements and specifi-
cations of the software to be developed.

Section 7.3

1. The traditional waterfall approach dictates that the requirements
analysis, design, implementation, and testing phases be performed in a
linear manner. The newer models allow for a more relaxed trial-and-error
approach.

2. How about the incremental model, the iterative model, and XP?

3. Traditional evolutionary prototyping is performed within the organization
developing the software, whereas open-source development is not restricted
to an organization. In the case of open-source development the person over-
seeing the development does not necessarily determine what enhance-
ments will be reported, whereas in the case of traditional evolutionary
prototyping the person managing the software development assigns person-
nel to specific enhancement tasks.

4. This is one for you to think about. If you were an administrator in a soft-
ware development company, would you be able to adopt the open-source
methodology for the development of software to be sold by your company?

Section 7.4

1. The chapters of a novel build on one another, whereas the sections in an
encyclopedia are largely independent. Hence a novel has more coupling
between its chapters than an encyclopedia has between its sections. How-
ever, the sections within an encyclopedia probably have a higher level of
cohesion than the chapters in a novel.

2. The accumulated score would be an example of data coupling. Other “cou-
plings” that might exist would include fatigue, momentum, knowledge gained
about an opponent’s strategy, and perhaps self-confidence. In many sports the
cohesion of the units is increased by terminating the action and restarting the
next unit from a fresh beginning. For example, in baseball each inning starts
without any base runners, even though the team might have finished the previ-
ous inning with the bases loaded. In other cases the units are scored separately
as in tennis where each set is won or lost without regard for the other sets.

576 Appendixes

577Appendix F

3. This is a tough one. From one point of view, we could start by placing
everything in a single module. This would result in little cohesion and no
coupling at all. If we then begin to divide this single module into smaller
ones, the result would be an increase in coupling. We might therefore con-
clude that increasing cohesion tends to increase coupling.

On the other hand, suppose the problem at hand naturally divides into
three very cohesive modules, which we will call A, B, and C. If our
original design did not observe this natural division (for example,
half of task A might be placed with half of task B, and so on), we would
expect the cohesion to be low and the coupling high. In this case,
redesigning the system by isolating tasks A, B, and C into separate
modules would most likely decrease intermodule coupling as intra-
module cohesion increases.

4. Coupling is linking between modules. Cohesion is the connectedness within
a module. Information hiding is the restriction of information sharing.

5. You should probably add an arrow indicating that ControlGame must tell
UpdateScore who won the volley and another arrow in the other direction
indicating that UpdateScore will report the current status (such as “set
over” or “match over”) when it returns control to ControlGame.

6. Delete all the horizontal arrows in Figure 7.5 except for the first and last.
That is, the judge should evaluate PlayerA’s serve and directly send the
updateScore message to Score. (This, of course, ignores the chance for
a second serve. How could you modify the program design to allow for dou-
ble faults?)

7. A traditional programmer writes programs in terms of statements such as
those introduced in Chapter 6. A component assembler builds programs by
linking prefabricated blocks called components.

8. There are many answers to this question. One combination is to have the
calendar automatically set an alarm in a clock to notifying the user of an
upcoming appointment. Furthermore, the calendar application could use
the components of a map application to provide the directions to the
address of the appointment.

Section 7.5

1. Make sure that your diagram deals with the flow of data (not the movement
of books). The following diagram indicates that book identifications (from
patrons) and patron records (from the library files) are combined to form
loan records that are stored in the library files.

Process
Loan

patron record

loan record

Library
Files

book id.
Patron

4.

5. Simply draw a rectangle around the figure and add a “sd” label in the upper
left-hand corner as in Figure 7.13.

6. Design patterns provide standardized, well-developed approaches for imple-
menting recurring software themes.

Section 7.6

1. The SQA (software quality assurance) group oversees and enforces the qual-
ity control systems adopted by the organization.

2. Humans have a tendency not to record the steps (decisions, actions, etc.)
that they take during a project. (There are also issues of personality con-
flicts, jealousies, and ego clashes.)

3. Record keeping and reviewing.

4. The purpose of testing software is to find errors. In a sense, then, a test that
does not reveal an error is a failure.

5. One would be to consider the amount of branching in the modules. For
instance, a procedural module containing numerous loops and if-then-
else statements would probably be more prone to errors than a module
with a simple logical structure.

6. Boundary value analysis would suggest that you test the software on a list
with 100 entries as well as a list with no entries. You might also perform a
test with a list that is already in the correct order.

578 Appendixes

Borrow
book

Return
book

Update library
holdings

Patron

Librarian

Library System

Hotel
stays in

hosts

Guest **
3.

2.

PersonClass

name

address

EmployeeClass

employee ID

seniorityLevel

579Appendix F

Section 7.7

1. Documentation takes the form of user documentation, system documenta-
tion, and technical documentation. It might appear in accompanying manu-
als, within the source program in the form of comments and well-written
code, through interactive messages that the program itself writes at a termi-
nal, through data dictionaries, and in the form of design documents such as
structure charts, class diagrams, dataflow diagrams, and entity-relationship
diagrams.

2. In both the development and modification phases. The point is that modifi-
cations must be documented as thoroughly as the original program. (It is
also true that software is documented while in its use phase. For example,
a user of the system might discover problems, which, rather than being
fixed, are merely reported in future editions of the system user’s manual.
Moreover, “how to” books are often produced after the software has been in
use for an extended period.)

3. Different people will have different opinions on this one. Some will argue
that the program is the point of the whole project and thus is naturally the
more important. Others will argue that a program is worth nothing if it is
not documented, because if you cannot understand a program, you cannot
use it or modify it. Moreover, with good documentation, the task of creating
the program can be “easily” re-created.

Section 7.8

1. a. How about the ability to adjust the tilt of a display or the shape of a
mouse? On smartphones, how about the use of touch screens instead of
a mouse, or tilting the phone to provide input?

b. How about the layout of a window on the display including the design of
toolbars, scroll elevators, and pull-down menus? On a smartphone, isn’t
titling the camera to point at the items of interest in line with the way
humans think?

2. a. It would be impractical and inconvenient to use a mouse (or even a
stylus) on a smartphone. Furthermore, the reduced size of the display
screen requires that nonessential elements of the display be constrained
to limited space. For this reason, scrollbars are often omitted. If pres-
ent, scrollbars are shown as thin lines.

b. A sliding touch on the display screen is a natural gesture to the way we
think. We may move papers or other items by sliding them around on a
desk. An augment can be made that this is more natural than the use of
scrollbars on a desktop computer. While indeed the scrollbar moves as
expected, the area being scrolled moves in the opposite direction. For a user
who has never used a computer, this behavior may seem counterintuitive.

3. You could answer “the role of human characteristics.” Another good answer
would be that interface design focuses on the external, rather than the
internal, characteristics of a software system.

4. The three that are discussed in the text are the formation of habits, the nar-
rowness of attention, and limited multiprocessing capabilities. Can you
imagine others? How about the tendency to make assumptions?

Section 7.9

1. The copyright notice asserts ownership of the work and identifies person-
nel authorized to use the work. All works including requirements specifica-
tions, design documents, source code, and the final product usually involve
a considerable investment to produce. An individual or corporation should
take the steps to insure that their ownership rights are reserved and that all
intellectual property is not used by undesired parties.

2. Copyright and patent laws benefit society because they encourage creators
of new products to make them available to the public. Without such protec-
tion, companies would hesitate to make major investments in new products.

3. A disclaimer does not protect a company against negligence.

Chapter 8

Section 8.1

1. List: A listing of the members of a sports team.
Stack: The stack of trays in a cafeteria.
Queue: The line at a cafeteria.
Tree: The organization chart of many governments.

2. Stacks and queues can be thought of as special types of lists. In the case of
a general list, entries can be inserted and removed at any location. In the
case of a stack, entries can be inserted and removed only at the head. In
the case of a queue, entries can be inserted only at the tail, and entries can
be removed only at the head.

3. The letters on the stack from top to bottom would be E, D, B, and A. If a letter
were popped off the stack, it would be the letter E.

4. The letters in the queue from head to tail would be B, C, D, and E. If a letter
were removed from the queue, it would be the letter B.

5. The leaf (or terminal) nodes are D and C. B must be the root node because
all the other nodes have parents.

Section 8.2

1. Data within a computer’s main memory is actually stored in individually
addressable memory cells. Structures such as arrays, lists, and trees are
simulated to make the data more accessible to the data’s users.

2. If you were to write a program for playing a game of checkers, the data
structure representing the checkerboard would probably be a static struc-
ture because the size of the board does not change during the game. How-
ever, if you were to write a program for playing a game of dominoes, the
data structure representing the pattern of dominoes constructed on the
table would probably be a dynamic structure because this pattern varies in
size and cannot be predetermined.

3. A telephone directory is essentially a collection of pointers (telephone
numbers) to people. The clues left at the scene of a crime are (perhaps
encrypted) pointers to the perpetrator.

580 Appendixes

Section 8.3

1. 5 3 7 4 2 8 1 9 6

2. If R is the number of rows in the matrix, the formula is R(J � 1) �
(I � 1).

3. (c � i) � j

4. The head pointer contains the NIL value.

5. Last ← the last name to be printed

Finished ← false

Current Pointer ← the head pointer;

while (Current Pointer not NIL and Finished � false) do

(print the entry pointed to by Current Pointer,

if (the name just printed � Last)

then (Finished ← true)

Current Pointer ← the value in the pointer

cell in the entry pointed to by Current Pointer)

6. The stack pointer points to the cell immediately below the base of the
stack.

7. Represent the stack as a one-dimensional array and the stack pointer as a
variable of integer type. Then use this stack pointer to maintain a record of
the position of the stack’s top within the array rather than of the exact
memory address.

8. Both empty and full conditions are indicated by the equal head and tail
pointers. Thus additional information is required to distinguish between the
two conditions.

9.

581Appendix F

Y

Root pointer

Z NIL NIL

X NIL

Y X Z W

W NIL NIL

Section 8.4
1.

T

V

Y

S U X Z

WR

procedure PrintTree(Tree)

if (root pointer of Tree is not NIL)
 then (Apply the procedure PrintTree to the
 tree that appears as the left branch
 in Tree;
 Print root node of Tree;
 Apply the procedure PrintTree to the tree
 that appears as the right branch in Tree.)

procedure PrintTree(Tree)

if (root pointer of Tree is not NIL)
 then (Apply the procedure PrintTree to the
 tree that appears as the left branch
 in Tree;
 Print root node of Tree;
 Apply the procedure PrintTree to the tree
 that appears as the right branch in Tree.)

Here, when K
is printed

582 Appendixes

2. When searching for J:

When searching for P:

3.

D

G

K

B F I M

HA C LE J

D

G

K

B F I M

HA C LE J

4. At each node, each child pointer could be used to represent a unique letter
in the alphabet. A word could be represented by a path down the tree along
the sequence of pointers representing the spelling of the word. A node
could be marked in a special way if it represented the end of a correctly
spelled word.

Section 8.5

1. A type is a template; an instance of that type is an actual entity built from
that template. As an analogy, dog is a type of animal, whereas Lassie and
Rex are instances of that type.

2. A user-defined data type is a description of data organization, whereas an
abstract data type includes operations for manipulating the data.

3. A point to be made here is that you have a choice between implementing
the list as a contiguous list or a linked list. The choice you make will affect

583Appendix F

the structure of the procedures for inserting new entries, deleting old ones,
and finding entries of interest. However, this choice should not be visible to
a user of an instance of the abstract data type.

4. The abstract data type would at least contain a description of a data struc-
ture for storing the account balance and procedures for making a deposit
and making a withdrawal via a check.

Section 8.6

1. Both abstract data types and classes are templates for constructing
instances of a type. Classes, however, are more general in that they are
associated with inheritance and might describe a collection of only
procedures.

2. A class is a template from which objects are constructed.

3. The class might contain a circular queue along with procedures for adding
entries, removing entries, testing to see if the queue is full, and testing to
see if the queue is empty.

Section 8.7

1. a. A5 b. A5 c. CA

2. D50F, 2EFF, 5FFE

3. 2EA0, 2FB0, 2101, 20B5, D50E, E50F, 5EE1, 5FF1, BF14, B008, C000

4. When traversing a linked list in which each entry consists of two memory
cells (a data cell followed by a pointer to the next entry), an instruction of
the form DR0S could be used to retrieve the data and DR1S could be used to
retrieve the pointer to the next entry. If the form DRTS were used, then the
exact memory cell being referenced could be adjusted by modifying the
value in register T.

Chapter 9

Section 9.1

1. The purchasing department would be interested in inventory records to
place orders for more raw goods, whereas the accounting department would
need the information to balance the books.

2. A database model provides an organizational perspective of a database that
is more compatible with applications than the actual organization. Thus
defining a database model is the first step toward allowing the database to
be used as an abstract tool.

3. The application software translates the user’s requests from the terminol-
ogy of the application into terminology compatible with the database model
that is supported by the database management system. The database man-
agement system in turn converts these requests into actions on the actual
database.

Section 9.2

1. a. G. Jerry Smith b. Cheryl H. Clark c. S26Z

2. One solution is

TEMP ← SELECT from JOB

where Dept � “PERSONNEL”

LIST ← PROJECT JobTitle from TEMP

In some systems this results in a list with a job title repeated, depending on
how many times it occurred in the personnel department. That is, our list
might contain numerous occurrences of the title secretary. It is more com-
mon, however, to design the PROJECT operation so that it removes dupli-
cate tuples from the resulting relation.

3. One solution is

TEMP1 ← JOIN JOB and ASSIGNMENT

where JOB.JobId � ASSIGNMENT.JobId

TEMP2 ← SELECT from TEMP1

where TermDate � “*”

TEMP3 ← JOIN EMPLOYEE and TEMP2

where EMPLOYEE.EmplId � TEMP2.EmplId

RESULT ← PROJECT Name, Dept from TEMP3

4. select JobTitle

from JOB

where Dept � “PERSONNEL”

select EMPLOYEE.Name, JOB.Dept

from JOB, ASSIGNMENT, and EMPLOYEE

where (Job.Job � ASSIGNMENT.JobId) and

(ASSIGNMENT.EmplId � EMPLOYEE.EmplID)

and (ASSIGNMENT.TermDate � “*”)

5. The model itself does not provide data independence. This is a property of
the data management system. Data independence is achieved by providing
the data management system the ability to present a consistent relational
organization to the application software even though the actual organization
might change.

6. Through common attributes. For instance, the EMPLOYEE relation in this
section is tied to the ASSIGNMENT relation via the attribute EmplId, and
the ASSIGNMENT relation is tied to the JOB relation by the attribute
JobId. Attributes used to connect relations like this are sometimes called
connection attributes.

Section 9.3

1. There might be methods for assigning and retrieving the StartDate as
well as the TermDate. Another method might be provided for reporting the
total time in service.

2. A persistent object is an object that is stored indefinitely.

3. One approach is to establish an object for each type of product in inventory.
Each of these objects could maintain the total inventory of its product, the
cost of the product, and links to the outstanding orders for the product.

584 Appendixes

4. As indicated at the beginning of this section, object-oriented databases
appear to handle composite data types more easily than relational databases.
Moreover, the fact that objects can contain methods that take an active role
in answering questions promises to give object-oriented databases an
advantage over relational databases whose relations merely hold the data.

Section 9.4

1. Once a transaction has reached its commit point, the database management
system accepts the responsibility of seeing that the complete transaction is
performed on the database. A transaction that has not reached its commit
point does not have such assurance. If problems arise, it might have to be
resubmitted.

2. One approach would be to stop interweaving transactions for an instant so
that all current transactions can be completed in full. This would establish a
point at which a future cascading rollback would terminate.

3. A balance of $100 would result if the transactions were executed one at a
time. A balance of $200 would result if the first transaction were executed
after the second transaction retrieved the original balance and before that
second transaction stored its new balance. A balance of $300 would result if
the second transaction were executed after the first retrieved the original
balance and before the first transaction stored its new balance.

4. a. If no other transaction has exclusive access, the shared access will be granted.
b. If another transaction already has some form of access, the database man-

agement system will normally make the new transaction wait, or it could
roll back the other transactions and give access to the new transaction.

5. Deadlock would occur if each of two transactions acquired exclusive access
to different items and then required access to the other.

6. The preceding deadlock could be removed by rolling back one of the trans-
actions (using the log) and giving the other transaction access to the data
item previously held by the first.

Section 9.5

1. You should be led through these initial stages:

585Appendix F

Input filesOutput file

A C

B E

D FA

C

B E

D FA B

C

E

D FA B C

2. The idea is to first divide the file to be stored into many separate files con-
taining one record each. Next, group the one-record files into pairs, and
apply the merge algorithm to each pair. This results in half as many files,
each with two records. Furthermore, each of these two-record files is sorted.
We can group them into pairs and again apply the merge algorithm to the
pairs. Again we find ourselves with fewer but larger files, each of which is
sorted. Continuing in this fashion, we are ultimately left with only one file
that consists of all the original records but in sorted order. (If an odd num-
ber of files occurs at any stage of this process, we need merely to set the
odd one aside and pair it with one of the larger files in the next stage.)

3. If the file is stored on tape or CD, its physical organization is most likely
sequential. However, if the file is stored on magnetic disk, then it is most
likely scattered over various sectors on the disk and the sequential nature of
the file is a conceptual property that is supported by a pointer system or some
form of a list in which the sectors on which the file is stored are recorded.

4. First find the target key in the file’s index. From there, obtain the location
of the target record. Then retrieve the record at that location.

5. A poorly chosen hash algorithm results in more clustering than normal and
thus in more overflow. Because the overflow from each section of mass
storage is organized as a linked list, searching through the overflow records
is essentially searching a sequential file.

6. The section assignments are as follows:
a. 0 b. 0 c. 3 d. 0 e. 3
f. 3 g. 3 h. 3 i. 3 j. 0

Thus all the records hash into buckets 0 and 3, leaving buckets 1, 2, 4, and 5
empty. The problem here is that the number of buckets being used (6) and
the key values have the common factor of 3. (You might try rehashing these
key values using 7 buckets and see what improvement you find.)

7. The point here is that we are essentially applying a hash algorithm to
place the people in the group into one of 365 categories. The hash algo-
rithm, of course, is the calculation of one’s birthday. The amazing thing is
that only twenty-three people are required before the probability is in
favor of at least two of the birthdays being the same. In terms of a hashed
file, this indicates that when hashing records into 365 available buckets of
mass storage, clustering is likely to be present after only twenty-three
records have been entered.

Section 9.6

1. Searching for patterns in dynamic data is problematic.

2. Class description—Identify characteristics of subscribers to a certain magazine.
Class discrimination—Identify features that distinguish between subscribers

of two magazines.
Cluster analysis—Identify magazines that tend to attract similar subscribers.
Association analysis—Identify links between subscribers to various maga-

zines and different purchasing habits.
Outlier analysis—Identify subscribers to a magazine who do not conform to

the profile of normal subscribers.
Sequential pattern analysis—Identify trends in magazine subscription.

586 Appendixes

3. The data cube might allow sales data to be viewed as sales by month, sales
by geographic region, sales by product class, etc.

4. Traditional database inquiries retrieve facts stored in the database. Data
mining looks for patterns among the facts.

Section 9.7
1. The point here is to compare your answer to this question with that of the

next. The two raise essentially the same question but in different contexts.

2. See previous problem.

3. You might receive announcements or advertisements for opportunities that
you would not have otherwise received, but you might also become the sub-
ject of solicitation or the target of crime.

4. The point here is that a free press can alert the public to abuses or
potential abuses and thus bring public opinion into play. In most of the
cases cited in the text, it was a free press that initiated corrective action by
alerting the public.

Chapter 10

Section 10.1
1. Image processing deals with analyzing two-dimensional images, 2D graphics

deals with converting two-dimensional shapes into images, and 3D graphics
deals with converting three-dimensional scenes into images.

2. Traditional photography produces images of actual scenes, whereas 3D
graphics produces images of virtual scenes.

3. The first is “building” the virtual scene. The second is capturing the image.

Section 10.2
1. The steps are modeling (building the scene), rendering (producing a picture),

and displaying (displaying the picture).

2. The image window is the portion of the projection plane that constitutes
the image.

3. A frame buffer is a memory area that contains an encoded version of an image.

Section 10.3
1. It is a rhombus (a squashed square).

2. A procedural model is a program segment that directs the construction of
an object.

3. The list could include the grass-covered ground, a stone walkway, a gazebo,
trees, shrubbery, clouds, sun, and actors. The point here is to emphasize
the scope of a scene graph—it can contain a lot of detail.

4. Representing all objects by polygonal meshes provides a uniform approach
to the rendering process. (In most cases, rendering is approached as the
task of rendering planar patches rather than rendering objects.)

5. Texture mapping is a means of associating a two-dimensional image with
the surface of an object.

587Appendix F

Section 10.4

1. Specular light is light that is “directly” reflected off a surface. Diffuse light is
light that is “scattered” off a surface. Ambient light is light that does not
have a precise source.

2. Clipping is the process of discarding those objects (and parts of objects) that
do not lie within the view volume.

3. Suppose a highlight should appear in the middle of a patch. That highlight
is caused by a specific surface orientation at that point of the patch.
Because Gouraud shading considers only the surface orientations along the
boundaries of the patch, it will miss the highlight. But, because Phong shad-
ing attempts to determine the surface orientations within the patch interior,
it may detect the highlight.

4. The rendering pipeline provides a standardized approach to rendering,
which ultimately leads to more efficient rendering systems. In particular,
the rendering pipeline can be implemented in firmware, meaning that the
rendering process can be performed more quickly than if the task were
implemented via traditional software.

5. The purpose of this question is to get you to think about the distinctions
between local and global lighting models rather than to produce a specific
predetermined answer. Potential solutions that you might propose include
placing appropriately modified copies of the objects to be reflected behind
the mirror while considering the mirror transparent or trying to handle
images in the mirror as a form of drop shadows.

Section 10.5

1. We are interested only in the rays that ultimately reach the image window.
If we started at the light source, we would not know which rays to follow.

2. Distributed ray tracing tries to avoid the inherent shiny appearance pro-
duced by traditional ray tracing by tracing multiple rays.

3. Radiosity is time consuming and fails to capture specular affects.

4. Both ray tracing and radiosity implement a global lighting model, and both
are computationally intense. However, ray tracing tends to produce shiny-
appearing surfaces, whereas radiosity leads to dull-appearing surfaces.

Section 10.6

1. There is not an exact answer. If an image lingers for 200 milliseconds and
we projected five frames per second, each frame would have just faded
away by the time the next frame was projected. This would probably result
in a pulsating image that would be uncomfortable to watch for an extended
time but still produce an animated effect. (In fact, slower rates can produce
rough animation.) Note that the rate of five frames per second is well below
the motion picture standard of twenty-four frames per second.

2. A storyboard is a “pictorial outline” of the desired animation sequence.

3. In-betweening is the process of creating frames that fill in the gaps between
key frames.

588 Appendixes

4. Dynamics is the branch of mechanics that analyzes motion as the conse-
quence of forces. Kinematics is the branch of mechanics that analyzes
motion without regard for the forces that cause the motion.

Chapter 11

Section 11.1

1. Those introduced in the chapter include reflex actions, actions based on
real-world knowledge, goal seeking actions, learning, and perception.

2. Our purpose here is not to give a decisive answer to this issue but to use it to
show how delicate the argument over the existence of intelligence really is.

3. Although most of us would probably say no, we would probably claim that if a
human dispensed the same products in a similar atmosphere, awareness
would be present even though we might not be able to explain the distinction.

4. There is not a right or wrong answer. Most would agree that the machine at
least appears to be intelligent.

5. There is not a right or wrong answer. It should be noted that chat bots,
programs designed to emulate a person chatting, have difficulty carrying on
a meaningful conversation for even a short period of time. Chat bots are
easily be identified as machines.

Section 11.2

1. In the remote control case, the system needs only to relay the picture,
whereas to use the picture for maneuvering, the robot must be able to
“understand” the meaning of the picture.

2. The possible interpretations for one section of the drawing do not match
any of those of another section. To embed this insight into a program, you
might isolate the interpretations allowable for various line junctions and
then write a program that tries to find a set of compatible interpretations
(one for each junction). In fact, if you stop and think about it, this is proba-
bly what your own senses did in trying to evaluate the drawing. Did you
detect your eyes scanning back and forth between the two ends of the
drawing as your senses tried to piece possible interpretations together? (If
this subject interests you, you will want to read about the work of people
such as D. A. Huffman, M. B. Clowes, and D. Waltz.)

3. There are four blocks in the stack but only three are visible. The point is
that understanding this apparently simple concept requires a significant
amount of “intelligence.”

4. Interesting, isn’t it? Such subtle distinctions in meaning present significant
problems in the field of natural language understanding.

5. Is the sentence describing what kind of horses they are, or is it telling what
some people are doing?

6. The parsing process produces identical structures, but the semantic analy-
sis recognizes that the prepositional phrase in the first sentence tells where
the fence was built, whereas the phrase in the second sentence tells when
the fence was built.

7. They are brother and sister.

589Appendix F

Section 11.3

1. Production systems provide a uniform approach to a variety of problems.
That is, although apparently different in their original form, all problems
reformulated into terms of production systems become the problem of find-
ing a path through a state graph.

2.

590 Appendixes

 13
426
758

413
 26
758

413
726
 58

• • •

• • •

413
2 6
758

• • •

• • •

•
•

•

3. The tree is four moves deep. The upper portion appears as follows:

123
485
76

123
48
765

12
483
765

123
4 8
765

123
485
7 6

123
485
 76

123
4 5
786

4. The task requires too much paper as well as too much time.

5. Our heuristic system for solving the eight-puzzle is based on an analysis of
the immediate situation, just as that of the mountain climber. This short-
sightedness is what allowed our algorithm to proceed initially along the
wrong path in the example of this section just as a mountain climber can be
led into trouble by always plotting a course based only on the local terrain.
(This analogy often causes heuristic systems based on local or immediate
information to be called hill-climbing systems.)

6. The system rotates the 5, 6, and 8 tiles either clockwise or counterclockwise
until the goal state is reached.

7. The problem here is that our heuristic scheme ignores the value of keeping
the hole adjacent to the tiles that are out of place. If the hole is surrounded
by tiles in their correct position, some of these tiles must be moved before
those tiles still seeking their correct place can be moved. Thus it is incorrect
to consider all those tiles surrounding the hole as actually being correct. To
fix this flaw, we might first observe that a tile in its correct position but
blocking the hole from incorrectly positioned tiles must be moved away
from its correct position and later moved back. Thus each correctly

positioned tile on a path between the hole and the nearest incorrectly posi-
tioned tile accounts for at least two moves in the remaining solution. We can
therefore modify our projected cost calculation as follows:

First, calculate the projected cost as before. However, if the hole is totally
isolated from the incorrectly positioned tiles, find a shortest path between
the hole and an incorrectly positioned tile, multiply the number of tiles on
this path by two, and add the resulting value to the previous projected cost.

With this system, the leaf nodes in Figure 11.10 have projected costs of 6, 6,
and 4 (from left to right), and thus the correct branch is pursued initially.

Our new system is not foolproof. For example, consider the following con-
figuration. The solution is to slide the 5 tile down, rotate the top two rows
clockwise until those tiles are correct, move the 5 tile back up, and finally
move the 8 tile to its correct position. However, our new heuristic system
wants us to start by moving the 8 tile, because the state obtained by this ini-
tial move has a projected cost of only 6 compared with the other options
that have costs of 8.

591Appendix F

236
154
7 8

(6) (8) (8)

236
154
78

236
1 4
758

236
154
 78

8. The solution found by the best fit algorithm is the path from Leesburg to
Dayton and then to Bedford. This path is not the shortest route.

Leesburg
34

Stone
19

Dayton
16

Stone
19

Bedford
0

9. The solution found is the path from Leesburg to Stone, and then to Bedford.
This path is the shortest route.

Leesburg
0 + 34 = 34

Stone
16 + 19 = 35

Dayton
37 +16 = 53

Bedford
35 + 0 = 35

Dayton
44 + 16 = 60

Section 11.4

1. Real-world knowledge is the information about the environment that a
human uses to understand and reason. Developing methods for representing,

592 Appendixes

storing, and recalling this information is a major goal of research in artificial
intelligence.

2. It uses the closed-world assumption.

3. The frame problem is the problem of correctly updating a machine’s store
of knowledge as events occur. The task is complicated by the fact that many
events have indirect consequences.

4. Imitation, supervised training, and reinforcement. Reinforcement does not
involve direct human intervention.

5. Traditional techniques derive a single computer system. Evolutionary tech-
niques involve multiple generations of trial systems from which a “good”
system may be discovered.

Section 11.5
1. All patterns produce an output of 0 except for the pattern 1, 0, which pro-

duces an output of 1.

2. Assign a weight of 1 to each input, and assign the unit a threshold value of 1.5.

3. A major problem identified in the text is that the training process might
oscillate, repeating the same adjustments over and over.

4. The network will wander to the configuration in which the center neuron is
excited and all others are inhibited.

Section 11.6
1. Rather than developing a complete plan of action, the reactive approach is

to wait and make decisions as options arise.

2. The point here is for you to think about how broad the field of robotics is. It
encompasses the entire scope of artificial intelligence as well as numerous
topics in other fields. The goal is to develop truly auto-nomous machines
that can move about and react intelligently with their environments.

3. Internal control and physical structure.

Section 11.7
1. There is no right or wrong answer.

2. There is no right or wrong answer.

3. There is no right or wrong answer.

Chapter 12

Section 12.1
1. How about the boolean operations AND, OR, and XOR. In fact, we used

tables in Chapter 1 when introducing these functions.

2. The computation of a loan payment, the area of a circle, or a car’s
mileage.

3. Mathematicians call such functions transcendental functions. Examples
include the logarithmic and trigonometric functions. These particular
examples can still be computed but not by algebraic means. For example,

the trigonometric functions can be calculated by actually drawing the trian-
gle involved, measuring its sides, and only then turning to the algebraic
operation of dividing.

4. One example is the problem of trisecting an angle. That is, they were
unable to construct an angle that was one-third the size of a given angle.
The point is that the Greeks’ straight-edge and compass computational sys-
tem is another example of a system with limitations.

Section 12.2

1. The result is the following diagram:

593Appendix F

Current
position

Machine State = HALT

* *1 1 1

2. Current Value Direction
Current cell to to New state

state content write move to enter

START * * left STATE 1
STATE 1 0 0 left STATE 2
STATE 1 1 0 left STATE 2
STATE 1 * 0 left STATE 2
STATE 2 0 * right STATE 3
STATE 2 1 * right STATE 3
STATE 2 * * right STATE 3
STATE 3 0 0 right HALT
STATE 3 1 0 right HALT

Current Value Direction
Current cell to to New state
state content write move to enter

START * * left SUBTRACT
SUBTRACT 0 1 left BORROW
SUBTRACT 1 0 left NO BORROW
BORROW 0 1 left BORROW
BORROW 1 0 left NO BORROW
BORROW * * right ZERO
NO BORROW 0 0 left NO BORROW
NO BORROW 1 1 left NO BORROW
NO BORROW * * right RETURN
ZERO 0 0 right ZERO
ZERO 1 0 right ZERO
ZERO * * no move HALT
RETURN 0 0 right RETURN
RETURN 1 1 right RETURN
RETURN * * no move HALT

3.

594 Appendixes

4. The point here is that the concept of a Turing machine is supposed to
capture the meaning of “to compute.” That is, any time a situation occurs
in which computing is taking place, the components and activities of a
Turing machine should be present. For example, a person figuring income
tax is doing a certain degree of computing. The computing machine is the
person and the tape is represented by the paper on which values are
recorded.

5. The machine described by the following table halts if started with an even
input but never halts if started with an odd input:

Value Direction
Current Cell to to New state
state content write move to enter

START * * left STATE 1
STATE 1 0 0 right HALT
STATE 1 1 1 no move STATE 1
STATE 1 * * no move STATE 1

Section 12.3

1. clear AUX;

incr AUX;

while X not 0 do;

clear X;

clear AUX;

end;

while AUX not 0 do;

incr X;

clear AUX;

end;

2. while X not 0 do;

decr X;

end;

3. copy X to AUX;

while AUX not 0 do;

S1

clear AUX;

end;

copy X to AUX;

invert AUX; (See Question #1)
while AUX not 0 do;

S2

clear AUX;

end;

while X not 0 do;

clear AUX;

clear X;

end;

Address Contents
clear X; 00 20

01 00
02 30
03 40

Address Contents
incr X; 00 11

01 40
02 20
03 01
04 50
05 01
06 30
07 40

Address Contents
decr X; 00 20

01 00
02 23
03 00
04 11
05 40
06 22
07 01
08 B1
09 10
0A 40
0B 03
0C 50
0D 02
0E B1
0F 06
10 33
11 40

Address Contents
while X not 00 20

0 do; 01 00
. 02 11
. 03 40
. 04 B1

end; 05 WZ
. .
. .
. .

WX B0
WY 00

4. If we assume that X refers to the memory cell at address 40 and that each pro-
gram segment starts at location 00, we have the following conversion table:

595Appendix F

5. Just as in a real machine, negative numbers could be dealt with via a
coding system. For example, the rightmost bit in each string can be used
as a sign but with the remaining bits used to represent the magnitude of
the value.

6. The function is multiplication by 2.

596 Appendixes

Section 12.4

1. Yes. In fact, this program halts regardless of the initial values of its vari-
ables, and therefore it must halt if its variables are initialized to the pro-
gram’s encoded representation.

2. The program halts only if the initial value of X ends in a 1. Because the
ASCII representation of a semicolon is 00111011, the encoded version of the
program must end in a 1. Therefore the program is self-terminating.

3. The point here is that the logic is the same as in our argument that the halt-
ing problem does not have an algorithmic solution. If the house painter
paints his or her own house, then he or she does not and vice versa.

Section 12.5

1. We could conclude only that the problem has complexity Θ(2n). If we could
show that the “best algorithm” for solving the problem belongs to Θ(2n), we
could conclude that the problem belongs to Θ(2n).

2. No. As a general rule, the algorithm in Θ(n2) will outperform the one in
Θ(2n), but for small input values an exponential algorithm often outper-
forms a polynomial algorithm. In fact, it is true that exponential algorithms
are sometimes preferred to polynomial ones when the application involves
only small inputs.

3. The point is that the number of subcommittees is growing exponentially,
and from this point on, the job of listing all the possibilities becomes a labo-
rious task.

4. Within the class of polynomial problems is the sorting problem, which can
be solved by polynomial algorithms such as the insertion sort.

Within the class of nonpolynomial problems is the task of listing all the
subcommittees that could be formed from a given parent committee.

Any polynomial problem is an NP problem. The Traveling Salesman
problem is an example of an NP problem that has not been shown to be a
polynomial problem.

5. No. Our use of the term complexity refers to the time required to execute an
algorithm—not to how hard the algorithm might be to understand.

Section 12.6

1. 211 � 313 � 66043

2. The message 101 is the binary representation for 5. 5e � 55 � 15625. 15625
(mod 91) � 64, which is 1000000 in binary notation. Thus, 1000000 is the
encrypted version of the message.

3. The message 10 is the binary representation for 2. 2d � 229 � 536870912.
536870912 (mod 91) � 32, which is 100000 in binary notation. Thus, 100000
is the decrypted version of the message.

4. n � p � q � 7 � 19 � 133. To find d we need a positive integer value k such
that k(p � 1)(q � 1) � 1 � k(6 � 18) � 1 � 108k � 1 is evenly divisible by
e � 5. The values k � 1 and k � 2 are not satisfactory, but k � 3 produces
108k � 1 � 325, which is divisible by 5. The quotient 65 is the value of d.

:� (Prolog if symbol), 289
* (asterisk), 255
/* (comment), 259
** (exponentiation), 255
// (comment), 259
� (concatenation), 255
:� (assignment operator), 255
/ (forward slash), 255
� (subtraction), 255
2D graphics, 426
3D animation, 454
3D graphics, 426–428

animation, 452–456
modeling, 430–438
overview, 428–430
paradigm, 429
rendering, 439–449

3D television, 438
3G phone network, 156
4G phone network, 156

A* algorithm, 482–483
Abacus, 4
Abstract data types, 369–370
Abstract tool, 11, 24, 314
Abstraction, 11–12, 24, 314, 346
Access, Microsoft database

system, 391
Access ISP, 150
Access point (AP), 141
Access time, 30
ACM. See Association for

Computing Machinery
Active Server Pages (ASP), 166
Actors, 318
Actual parameter, 262, 263

Ada language, 230, 256, 283
Adapter pattern, 323
Adaptive dictionary

encoding, 59
ADD instructions, 82
Addition

binary, 44–45
in two’s complement

notation, 49–50
Address, of memory cell, 27
Address polynomial, 350
Adleman, Leonard, 178
Administrator, 130
Advanced Risk Machines

(ARM), 78
Agents, 462–464
Aggregate type, 252–253
Agile methods, 308
Aiken, Howard, 6
Alexander, Christopher, 324
Algorithm analysis, 223–226
Algorithms, 5

A*, 482–483
abstract nature of, 190
binary search, 214–220,

225–226
complexity of, 527–535
concept of, 188–191
designing, 194
deterministic, 535
discovery process, 198–203
efficiency, 222–226, 527
formal definition of, 188–189
genetic, 488, 490
insertion sort, 209–212, 223–225
iterative structures, 204–213

merge sort, 528–530
nondeterministic, 533, 535
representation, 191–198
role of, 2–4
RSA, 536
science of, 10–11
sequential search, 204–205
verification of, 226–230

Aliasing, 443
Alpha testing, 327
ALVINN (Autonomous Land

Vehicle in a Neural Net),
487, 492–494

Amazon, 384
Ambient light, 440
Ambiguous grammar, 272–273
American Institute of Electrical

Engineers, 305
American National Standards

Institute (ANSI), 35, 37, 243
American Online, 417
American Standard Code for

Information Interchange
(ASCII), 35–36

Analog telephone adapter, 156
Analog vs. Digital, 46
Analytical Engine, 4–5, 8
AND, 20, 21, 22, 90–92
Animation, 452–456
Anisotropic surface, 441
Anonymous FTP, 155
ANSI. See American National

Standards Institute (ANSI)
Anticybersquatting Consumer

Protection Act, 181
Antivirus software, 176–177

index

597

Apple Computer, 7
Application layer, 168, 169, 171
Application software, 115, 116,

387–388
Architecture

alternative, 100–101
component, 315–316
computer, 74–76
Internet, 149–151
operating system, 114–121
von Neumann, 97

Aristotle, 15
Arithmetic operations,

92–93, 255
Arithmetic shifts, 92
Arithmetic/logic instructions,

90–94
Arithmetic/logic unit, 74, 79, 87
ARM. See Advanced Risk

Machines (ARM)
ARM holdings, 78, 108
ARM-based processor, 78,

85, 108
Arrays, 252, 253, 342

heterogeneous, 252–253, 342,
351–352

homogeneous, 342, 348–350
storing, 348–352

Artificial intelligence, 461–508
behavior-based, 479
consequences of, 500–502
intelligent agents, 462–464
language processing, 469–471
neural networks, 489–497
origins of, 465
perception, 467–473
reasoning, 473–484
research methodologies,

464–465
research on, 484–489
robotics, 497–500
in smartphones, 472
strong versus weak, 468
Turing test, 465–466

Artificial neural networks,
489–497

Assemblers, 241
Assembly language, 241
Assertions, 228–229

Assignment statements, 193,
254–256, 278

Association analysis, 415
Association for Computing

Machinery (ACM), 301,
302, 325

Associations, 318, 319–320
Associative memory,

494–497
AT&T, 230
Atanasoff, John, 6
Atanasoff-Berry machine, 6
Attributes, 389
Audio compression, 62
Audio encoding, 40
Auditing software, 130
Authentication, 179, 411
Avars, 455
Average-case analysis, 223
Axiom, 228

Babbage, Charles, 4–5, 6, 8
Back face elimination, 445
Backtracking, 343
Bandwidth, 99
Bardeen, John, 7
Base, of stack, 343
Base case, 221
Base ten system, 42
Base two system, 42
Basis path testing, 326
Batch processing, 111
BDs (Blu-ray disks), 33
Behavior-based

intelligence, 479
Benchmarking, 85
Berkeley’s Open Infrastructure

for Network Computing
(BOINC), 148

Berners-Lee, Tim, 8, 158
Berry, Clifford, 6
Best-first search, 478
Beta testing, 327
Bezier curves, 431–432
Bezier surfaces, 432
Big O notation, 528
Big-theta notation, 226
Binary addition, 44–45
Binary notation, 37–38, 42–43

Binary search algorithm,
214–220, 225–226

Binary system, 42–47
Binary tree, 344, 357–360,

365–367
Bioinformatics, 415
BIOS (Basic Input/Output

System), 119
Bit map, 38–39, 91
Bits, 20, 24

representing information as,
35–42

Bits per second (bps), 62, 98
Black box, 314
Black-box testing, 327
Blu-ray disks, 33
Blurring, 454
Body, of a loop, 205
Boole, George, 20
Boolean data type, 251
Boolean expression, 269
Boolean operations, 20–21
Boot loader, 120
Boot strapping, 120–121
Booting, 120–121
Bottom, of stack, 343
Bottom-up methodology, 202
Boundary value analysis, 327
Bourne shell, 117
Branch, 344
Brattain, Walter, 7
Breadth-first search, 478
Bridge, 144
Brightness component, 39
Broadband, 99
Browser, 159
Bucket, hashing, 410
Buffer, 34–35, 343–344
Bump mapping, 447
Bus, 75
Bus topology, 140, 141, 142, 144
Byron, Augusta Ada (Ada

Lovelace), 5, 8, 553
Byte, 26–27
Bytecode, 271

C language, 248, 255, 257, 258,
262–263, 267

C shell, 117

598 Index

599Index

C# language, 248, 249, 255, 256,
257, 258, 271

C�� language, 248–249, 255,
256, 257, 258, 314–315

C�� Standard Template
Library, 314–315

Cache memory, 76
CAD. See Computer-aided

design (CAD)
Call, procedure, 260
Camel casing, 197
Carnivore, 180
Carrier Sense, Multiple Access

with Collision Avoidance
(CSMA/CA), 142–143

Carrier Sense, Multiple Access
with Collision Detection
(CSMA/CD), 141–142

Cascading rollback, 404
Case statement, 257–258
CASE. See Computer-aided

software engineering (CASE)
CASE tools, 301–302
CD-DA (compact disk-digital

audio), 32, 66
Cell, memory, 26–27
Center of projection, 428
Central processing unit (CPU),

74–75, 84, 85, 120
dual-core, 100
multi-core, 100

CERN, 160
CERT. See Computer

Emergency Response
Team (CERT)

Certificate, 179
Certificate authorities (CAs), 179
CFE (Common Firmware

Environment), 119
CGI (Common Gateway

Interface), 166
Character data type, 251
Character recognition, 467–468
Character-based ethics, 15
Checkbyte, 64–65
Checksums, 65
Children, in a tree, 344
Chips, 7, 24
Chrominance, 39

Chromosome, 488
Church, Alonzo, 515
Church-Turing thesis, 515,

520–521
Circuits

flip-flop, 22–24
refresh, 28

Circular queue, 357
Circular shift, 92
CISC. See Complex instruction

set computer (CISC)
Class, 247–248, 276–279,

371–372
associations between, 318
with constructor, 280

Class description, 414
Class diagram, 318, 319, 321
Class discrimination, 414
Clause form, 286–287
Client, 146
Client/server model, 146–147
Client-side activities, 165–166
Clipping, 443
Clock, 85
Clock speeds, 85
Closed network, 140
Closed-world assumption,

485–486
Cloud computing, 149
Cluster analysis, 414–415
Cluster computing, 148
Clustering, 411
COBOL, 241
Code generation, 274
Code generator, 268
Code optimization, 274
Coercion, 273
Cognetics, 330, 331
Cohesion, 312–313
Collision, 411
Collision avoidance protocols,

142–143
Color bleeding, 452
Colossus, 6–7
Column major order, 349
Command shell, 117
Comments, 249, 259–260
Commercial off-the-shelf

(COTS) software, 304

Commit point, 403
Commit/rollback protocol,

403–404
Commodore, 7
Communication

between devices, 94–99
interprocess, 146–148
parallel, 98
serial, 98

Communication errors, 63–67
Communication media, 98
Communication rates, 98–99
Communications Assistance for

Law Enforcement Act
(CALEA), 181

Compact disk (CD), 31–32, 66
Compilation, just-in-time, 271
Compilers, 242
Complement, 48
Complex instruction set

computer (CISC), 77–78
Complexity, problem, 527–535
Component architecture,

315–316
Component assembler, 315
Components, 314–316, 342
Computable functions, 511–512
Computation, of functions,

510–512
Computer architecture, 74–76
Computer Emergency

Response Team (CERT), 174
Computer Fraud and Abuse

Act, 179–180
Computer graphics, 425–460

3D graphics, 426–430
animation, 452–456
global lighting and, 449–452
modeling, 430–438
rendering, 439–449
scope of, 426–428

Computer networks, 113–114
Computer power, 85
Computer science, 2, 10–11

social repercussions of, 13–15
Computer-aided design

(CAD), 39
Computer-aided software

engineering (CASE), 301

Computing, history of, 4–10
Concurrent processing,

283–285
Conditional jumps, 79–80
Congestion control, 172
Consequence-based ethics,

14–15
Constants, 253–254
Constructors, 279–280
Context switch, 123
Contextual analysis, 470
Contiguous lists, 350, 352–353
Contract-based ethics, 15
Control coupling, 311
Control points, 432, 453
Control statements, 256–259
Control system, 473
Control unit, 74, 79–80
Controller, 95–96
Copyright, 333
Country-code TLDs, 152
Coupling, intermodule, 311–312
CPU. See Central processing

unit (CPU)
CRC (class-responsibility-

collaboration) cards, 323
Critical region, 127
Cross-platform software, 243
Cryptography, 536–539
CSMA/CA. See Carrier Sense,

Multiple Access with
Collision Avoidance
(CSMA/CA)

CSMA/CD. See Carrier Sense,
Multiple Access with
Collision Detection
(CSMA/CD)

Cybersquatting, 181
Cyclic redundancy checks

(CRC), 65
Cylinder, 30

Darwin, Charles, 500
Data

global, 312
versus programs, 88

Data collection, 416–417
Data compression, 58–63
Data coupling, 311–312

Data cubes, 415
Data dictionary, 317–318
Data independence, 388
Data mining, 414–416
Data structures, 252–253

arrays, 342
implementing, 348–361
lists, stacks, and queues,

342–344
manipulation of, 360–361
static versus dynamic, 346
trees, 344–345

Data transfer, 78–79
Data transfer rates, 98–99
Data types, 249–252

abstract, 369–370
customized, 367–370
user-defined, 368–369

Data warehouse, 414
Database

conceptual layers, 386
definition of, 384
distributed, 387
versus file, 385
fundamentals, 384–389
integrity, maintaining,

402–406
object-oriented, 400–402
relational design, 389–393
schemas, 385–386
social impact of database

technology, 416–418
Database management system

(DBMS), 386–388, 397, 402
Database models, 388

relational, 389–399
Database systems, 384–385, 391
Dataflow diagram, 317
DBMS. See Database

management system (DBMS)
Deadlock, 127–129
Debugging, 240
Declarative knowledge, 462
Declarative paradigm, 245
Declarative programming,

286–291
Declarative statements, 249,

273, 278
Decorator pattern, 323

Decrypting keys, 536
Define type statement, 369, 371
Degenerative case, 221
Denial of service (DoS)

attacks, 175
Depth, of a tree, 344
Depth-first search, 478
Design patterns, 323–324
Design stage, of software life

cycle, 304–305
Desktop computers, 7–8
Deterministic algorithm, 535
Device driver, 118
Dial-up, 151
Dictionary, 59
Dictionary encoding, 59–60
Difference Engine, 4, 6
Differential encoding, 58–59
Diffuse light, 440
Digital cameras, 426
Digital signatures, 179
Digital technology, 46
Digitizing, 432
Dijkstra, E. W., 135
Direct addressing, 374
Direct memory access (DMA),

96–97
Direct3D, 448
Directed graph, 474
Directory, 118
Directory path, 118
Disclaimer, 333
Disk, formatting, 30
Disk storage system, 29–31
Dispatcher, 119, 122–123
Distributed databases, 387
Distributed ray tracing, 450
Distributed systems, 148–149
DMA. See Direct memory

access (DMA)
DNS. See Domain name

system (DNS)
DNS lookup, 153
DOCTOR, 466
Documentation, 328–329
Domain, 152
Domain name, 152–153
Domain name system

(DNS), 153

600 Index

601Index

Dotted decimal notation, 152
Double precision floating

point, 56
DRAM, 28
Drawing software, 39, 432
Drop shadows, 449
DSL (Digital Subscriber Line),

98, 151
Dual-core CPUs, 100
Duty-based ethics, 15
DVDs (Digital Versatile Disks),

32–33
Dynamic data structures, 346
Dynamic dictionary

encoding, 59
Dynamic memory, 28
Dynamics, 454–456

eBay, 384
Eckert, J. Presper, 7, 77
Edge enhancement, 469
Edison, Thomas, 77, 305
Effective input, of a

neuron, 490
Efficiency, algorithm, 222–226
EFI (Extensible Firmware

Interface), 119
Eight-puzzle, 463–464, 467–468,

473–474, 476–480
Electromechanical machine, 5
Electronic circuits, 31
Electronic Communication

Privacy Act (ECPA), 180
ELIZA, 466
Email (electronic mail),

154–155
Embedded systems, 114
Encapsulation, 282
Encrypting keys, 536
Encryption, 177–179, 536–539
End systems, 150
End-of-file (EOF), 407
ENIAC, 7
Equivalence class, 327
Ergonomics, 330, 331
Erroneous information, 417–418
Error-correcting codes, 65–66
Ethernet, 140, 142, 144
Ethics, 14–15

Euclid, 2
Euclidean algorithm, 2, 3
Even parity, 64
Event-driven software

systems, 266
Evolutionary programming, 488
Evolutionary prototyping, 307
Evolutionary robotics, 499
Excess 16 notation, 51–52
Excess eight notation, 51
Excess notation, 51–52
Exclusive lock, 405
Expert systems, 476
Exponent field, 54
eXtensible Markup Language

(XML), 162–165
Extreme programming (XP), 308

Federal Register, 417
Fields, 34, 253
FIFO. See First-in,

first-out (FIFO)
File manager, 117–118, 129
File server, 147
File structures, 406–414
File transfer protocol

(FTP), 155
Files, 33

versus databases, 385
hash, 410–413
indexed, 408–410
sequential, 406–408
storage and retrieval, 33–35

Firewall, 175–176
FireWire, 95, 97, 98–99
Firmware, 119
Firmware update, 121
First-in, first-out (FIFO),

111, 343
Fixed-format languages, 268
Flash drives, 33
Flash memory, 33
FlashROM, 119
Flat file, 384
Flat shading, 446
Flip-flop, 22–24
Float, 250
Floating-point notation, 38,

53–55

Flow control, 172
Flowcharts, 194, 208
Flowers, Tommy, 6–7
Folder, 118
For loop structure, 258
Forking, 127
Form factors, 451
Formal Language, 242
Formal Logic, 245
Formal parameters, 262, 263
Formatting, 30
FORTRAN, 241, 249
Forwarding, 173
Forwarding table, 146
Fractals, 434
Fractions

in binary, 45–46
storing, 53–58

Frame, 322
Frame buffer, 429
Frame problem, 486
Frames, 452–453, 471
Free-format languages,

268–269
Frequency masking, 62
Frequency-dependent

encoding, 58
FTP. See File Transfer

Protocol (FTP)
FTPS, 177
Functional cohesion, 313
Functional paradigm, 245–247
Functions, 266–267, 510–512

computable, 511–512
noncomputable, 522–526

Gandhi, Mahatma, 500
Garbage collection, 364
Gates, 21–24
Gateway, 146
GB (gigabyte), 28
Gbps, 62, 98
Gene, 488
Generalization, 320–321
General-purpose registers,

74–75
Generations, of programming

languages, 240–242
Genetic algorithms, 488, 492

GIF (Graphic Interchange
Format), 60

Glass-box testing, 326–327
Global data, 312
Global lighting model, 448–452
Global Positioning System

(GPS), 9
Global variables, 261
Goal state, 473
Gödel, Kurt, 4, 10
GOMS model, 331
Google, 8, 9, 384
Google Goggles, 472
Goto statements, 256, 354
Gouraud shading, 446–447
Grammar, 269
Graphical user interface (GUI),

116–117, 331
Graphics. See Computer

graphics
Graphics adapter, 448
Graphics card, 448
Grid computing, 148
GUI. See Graphical user

interface (GUI)

Halting problem, 522–526
Hamming distance, 65–66
Handshaking, 97
Hardware, 2
Hash files, 410–413
Hash function, 410
Hash table, 410
Hashing, 410, 411
Head, of list, 342
Head pointer, 353, 356
Header, procedure’s,

260–261
Heathkit, 7
Heterogeneous arrays, 252–253,

342, 351–352
Heuristics, 478–483
Hexadecimal notation, 24–26
Hidden terminal problem,

142, 143
Hidden-surface removal, 445
High-availability systems, 148
High-order end, 27
Hollerith, Herman, 5

Homogeneous arrays, 342,
348–350

Hop count, 173
Hopper, Grace, 242, 469
Hosts, 150
Hot spots, 151
HTML. See Hypertext Markup

Language (HTML)
HTTP. See Hypertext Transfer

Protocol (HTTP)
HTTPS, 177
Hub, 141
Huffman codes, 58
Huffman, David A., 58
Human-machine interface,

329–332
Hyperlinks, 158
Hypermedia, 158
Hypertext, 158
Hypertext Markup Language

(HTML), 160–162
Hypertext Transfer Protocol

(HTTP), 159

IBM, 5, 8
Identifiers, 241
IDEs. See Integrated

development
environments (IDEs)

IEEE. See Institute of
Electrical and Electronics
Engineers (IEEE)

IEEE 802, 144
IEEE Standard for Software

Reviews (IEEE 1028), 326
If-then-else statement, 256–257,

269–270
Image analysis, 468
Image processing, 426, 468–469
Image window, 428–429
Images

compression of, 60–62
recognition of, 467–469
representation of, 38–39
in Web pages, 162

IMAP (Internet Mail Access
Protocol), 154

Imitation, 486
Immediate addressing, 374

Imperative paradigm, 244,
246–247, 317

Imperative statements, 249, 273
Implementation stage, of

software life cycle, 305–306
In-betweening, 454
Incidence angle, 439
Incompleteness theorem, 4, 10
Inconsistent statements,

287–288
Incorrect summary

problem, 404
Incremental model, 307
Indentation, 269
Indexed files, 408–410
Indices, 252
Indirect addressing, 374
Inference rules, 286, 475–476
Information extraction, 470–471
Information hiding, 314
Information representation,

35–42
Information retrieval, 470
Inheritance, 281–282, 321
Input/Output (I/O), 79
Input/output instructions,

79, 96
Insertion sort algorithm,

209–212, 223–225
Instance, of a class, 248, 278
Instance, of a data type, 368
Instance variable, 277
Institute of Electrical and

Electronics Engineers
(IEEE), 302, 305, 325

Institute of Radio
Engineers, 305

Instruction pointer, 347
Instruction register, 83
Integers, 250

storage of, 47–53
Integrated circuit, 7
Integrated development

environments (IDEs), 302
Intel, 78, 97
Intel processors, 78, 85
Intellectual property,

13–14, 332
Intelligent agents, 462–464

602 Index

603Index

Interaction diagrams, 321–323
Interaction fragments, 323
Interactive processing, 112
Interface design, 329–332
Intermodule coupling, 311–312
International Court of

Justice, 179
International Electrotechnical

Commission (IEC), 325
International Organization for

Standardization (ISO), 36,
38, 243, 302, 325

Internet, generic term, 145
Internet, the, 8, 140, 145,

149–158
addressing, 152–153
applications, 153–158
architecture, 149–151

Internet Corporation for
Assigned Names and
Numbers (ICANN), 152

Internet Mail Access Protocol
(IMAP), 154

Internet Protocol (IP), 171, 173
Internet protocols, 167–173
Internet radio, 157
Internet Service Provider (ISP),

149–150
Internet software, 167–171
Internet2, 151
Interpreter, 242
Interprocess communication,

146–148
Interrupt handler, 123
Interrupts, 123, 124
Intractable problems, 532
Intranet, 150
I/O instructions, 79
I/O requests, 124
IP address, 152
IPv4, 173
IPv6, 173
IQ tests, 500–501
ISO. See International

Organization for
Standardization (ISO)

ISO 9000-series, 325
ISO/OEC 15504, 325
Isotropic surface, 441

ISP. See Internet Service
Provider (ISP)

Iterative model, 307
Iterative structures, 204–213

Jacquard, Joseph, 5
Jacquard loom, 5
Java, 248, 249, 255, 257, 258,

283, 315
implementation of, 271
pointers in, 354

Java Application Programmer
Interface (API), 315

JavaServer Pages (JSP), 166
JCL. See Job Control

Language (JCL)
Job, 110
Job control language (JCL), 111
Job queue, 111
Jobs, Steve, 7
JOIN operation, 394–399
Joint Photographic Experts

Group, 61
JPEG, 61
JSP. See JavaServer Pages (JSP)
JUMP instructions, 79–80,

84–85
Just-in-time compilation, 271

KB (kilobyte), 28
Kbps, 62, 98, 99
Kernel, 117
Key, 34
Key field, 34
Key frame, 453–454
Key word, 269
Kilby, Jack, 7
Kill, a process, 128
Kilobyte, 28
Kinematics, 454–456
Kineograph, 453
Knapsack problem, 542
Knowledge

declarative, 462
procedural, 462–463
real-world, 484–485
representing and

manipulating, 484–486
Korn shell, 117

Language implementation,
268–275

Language processing, 469–471
Last-in, first-out (LIFO), 343
Latency time, 30
Leaf node, 344
Learning, 486–488
Least significant bit, 27
Left child pointer, 358
Legal remedies

for data collection, 417
for network security, 179–181

Leibniz, Gottfried Wilhelm, 4
Lempel, Abraham, 59
Lempel-Ziv-Welsh (LZW)

encoding, 59–60
Leonardo da Vinci, 77
Lexical analyzer, 268, 274
Liability, 333
License agreements, 332–333
Life line, 322
LIFO. See Last-in,

first-out (LIFO)
Light

ambient, 440
diffuse, 440
reflected, 439–441
refracted, 441–442
specular, 440

Lighting models, 448–452
Light-surface interaction,

439–442
Line normal, 439
Linguistics, 464–465
Link layer, 168, 169, 170
Linked list, 353–355, 361
Linux, 110, 116, 307
List, 342–343

contiguous, 350, 352–353
linked, 353–355, 361
searching, 214–220
sorting, 209–212
storing, 352–355, 362–367

Literal, 253–254
Load balancing, 113, 148
Load factor, 413
LOAD instruction, 78–79,

82, 96
Local area network (LAN), 140

Local lighting model, 448
Local variable, 261
Locking, 404–405
Logic operations, 90–92
Logic programming, 245,

288–291, 487
Logical cohesion, 313
Logical deduction, 286–288
Logical record, 34
Logical shift, 92
Login procedure, 130
Long division algorithm, 2
Loop, 205–209
Loop invariant, 229
Lossless compression, 58
Lossless decomposition, 393
Lossy compression, 58
Lost update problem, 404
Low-order end, 27
Luminance, 39

Mac OS, 110
Machine cycle, 83–88
Machine independence,

242–244
Machine independent, 241
Machine instruction, 77–80
Machine language, 77–83,

240–241
pointers in, 372–374
universal, 271

Magnetic disk, 29, 407
Magnetic tape, 31
Mail server, 154
Main memory, 26–29
Malware, 174
MAN. See Metropolitan Area

Network
Mantissa field, 54
Many-to-many relationship, 320
Mark I, 5–6, 7, 228
Markup language, 164
Mars Exploration Rovers, 114
Mask, 91
Masking, 91
Mass storage, 29–35
Mauchly, John, 7
MB (megabyte), 28
Mbps, 62, 98, 99

Memory, 75
associative, 494–497
cache, 76
capacity, 28
dividing values stored in, 79
DRAM, 28
dynamic, 28
flash, 33
main, 26–29
organization, 26–27
RAM, 28
ROM, 120
SDRAM, 28
virtual, 119

Memory cells, 26–28
Memory leak, 364
Memory manager, 118–119
Memory-mapped I/O, 96
Merge sort algorithm,

528–530
Meta-reasoning, 485
Methods, 247, 277
Metrics, 300
Metropolitan area network

(MAN), 140
Microprocessors, 74
Microsoft, 8, 110, 114, 116,

265, 271
Microsoft Access, 391
Microsoft Windows, 110,

114–115, 117, 125, 265
MIDI. See Musical Instrument

Digital Interface (MIDI)
Miller, George A., 331
MIMD architecture, 101
MIME (Multipurpose Internet

Mail Extensions), 154
Miniaturization, 9
Mobile Internet Devices

(MID), 74
Modeling, 430–438
Modem, 98, 151
Modular notation, 536–537
Modular programming, 309–311
Modularity, 308–316

cohesion, 312–313
components, 314–316
coupling, 311–312
information hiding, 314

Module, 309
Mondrian, Piet, 220
Monitor, 285
Morphing, 453
Most significant bit, 27
Motherboard, 74
Motion, in 3D graphics,

454–456
Motion capture, 455–456
Motion Pictures Experts Group

(MPEG), 62
MP3, 62
MPEG. See Motion Pictures

Expert Group (MPEG)
MS-DOS, 117
Multicast, 157
Multi-core CPU, 100
Multi-core operating

systems, 128
Multiplexing, 99
Multiprocessor machines, 101
Multiprogramming, 112,

123, 124
Multipurpose Internet Mail

Extensions (MIME), 154
Multitasking, 112
Musical Instrument Digital

Interface (MIDI), 40
Mutual exclusion, 127

Name servers, 153
NASA Mars rovers, 498
Natural language processing,

464–465
Natural languages, 242
.NET Common Intermediate

Language, 271
.NET Framework, 324
.Net Framework Class

Library, 315
Network layer, 168, 169, 170
Networking software, 167–171
Networks/networking,

113–114, 139
classifications, 140–141
combining, 143–146
communication, 146–148
fundamentals, 140–149
protocols, 141–143

604 Index

605Index

security, 173–181
topology, 140–141

Neural networks, 489–497
Neuron, 479, 489–491, 494–497
NIL pointer, 353
Node, 344, 474
Noncomputable function,

522–526
Nondeterministic algorithm,

533, 535
Nondeterministic polynomial

(NP) problem, 533–534
Nonloss decomposition, 393
Nonpolynomial problems,

531–532
Nonterminal, 270
Nonterminating expansions, 56
Normal vector, 446
Normalized form, 55
NOT, 21, 22
Novell Inc., 140
NP problems, 533–534
NP-complete problems, 534
NPT Inc., 333
NULL pointer, 353
Numeric values, 36–38
N-unicast, 157

Object, 247–248, 276–279,
371–372

modeling, 430–437
persistent, 401
rendering, 439–449

Object program, 268
Object-oriented database,

400–402
Object-oriented languages, 260
Object-oriented paradigm,

247, 310
Object-oriented programming

(OOP), 247–248, 276–283
classes, 276–279
constructors, 279–280
encapsulation, 282
inheritance, 281–282, 321
objects, 276–279
polymorphism, 282
program structure, 279

Odd parity, 64

Off-line, 29
One-to-many relationships,

319–320
One-to-one relationships,

319–320
On-line, 29
OOP. See Object-oriented

programming (OOP)
Op-code, 80, 82, 96, 373
Open Firmware, 119
Open network, 140
Open System Interconnection

(OSI), 171
OpenGL (Open Graphics

Library), 448
Open-source development,

307–308
Operand field, 80–82
Operating system, 109–137

architecture, 114–121
components of, 116–119
coordination by, 122–124
definition of, 110
history of, 110–114
multi-core, 128
resource allocation by,

125–129
security, 130–132
starting, 119–121

Operator precedence, 255
Optical character reader, 467
Optical systems, 31–33
OR, 20–22, 23, 90–92
Oracle, 249, 324
OSI. See Open System

Interconnection (OSI)
Outlier analysis, 415
Overflow, 50
Overloading, 255–256

Packets, 170
Page, memory, 119
Paging, 119
Paint, Microsoft, 426
Painter’s algorithm, 445
Palm OS, 114
Parallel communication, 98
Parallel processing, 101, 283–285
Parallel projection, 428

Parameters, 196, 262–266
actual, 262, 263
formal, 262, 263
passed by reference, 264, 265
passed by value, 263, 264

Parentheses, 255
Parenthetical notation, 263
Pareto, Vilfredo, 326
Pareto principle, 326
Parity bits, 63–65
Parse tree, 270–271, 272
Parser, 268, 273
Particle system, 434
Pascal, Blaise, 4
Pascal casing, 197
Passed by reference, 264, 265
Passed by value, 263, 264
Password, 131
Patents, 333
Peer-to-peer (P2P) model,

147–148
Pentium microprocessor, 228
Perception, 467–473
Perl, 250
Persistent object, 401
Personal computer (PC), 8, 391
Perspective projection, 428
Phishing, 175
Phong shading, 446–447
PHP, 166, 250
Physical record, 34
Pipelining, 100
Pixel, 38
Planar patch, 431
Plato, 15
Pocket PC, 114
Pointer, 346–347, 354, 359,

372–374
Polya, G., 198
Polygonal mesh, 431, 432, 433,

434–435
Polymorphism, 282
Polynomial problem, 531–532
Pop, stack operation, 343
POP3 (Post Office Protocol

version 3), 154
Port, 95
Port numbers, 171
Post, Emil, 513

Post production system, 513
Postconditions, 229
PostScript, 39
Posttest loop, 208
Precedence, of operators, 255
Preconditions, in proof of

correctness, 228
Predicates, 288–289
Pretest loop, 208
Pretty Good Privacy, 178
Primitive data types, 251
Primitives, 191–192, 193
Print server, 146
Privacy Act, 417
Privacy rights, 180
Private keys, 177, 536
Privilege levels, 132
Privileged instruction, 132
Problem complexity, 527–535
Problem solving, 198–203
Problem space, 474
Procedural knowledge, 462–463
Procedural model, 432–433,

434–435
Procedural paradigm, 244
Procedural units, 260–267
Procedures, 260–261, 317
Procedure’s header, 260–261
Process, 122
Process state, 122
Process switch, 123
Process table, 122
Processes, 122

handling competition
among, 125–129

killing, 128
starting/stopping, 123–124

Production, 473
Production system, 473–476
Program, 2
Program counter, 83
Program execution, 83–90
Programmer, 305
Programming, 2
Programming concepts,

248–260
assignment statements,

254–256
comments, 259–260

constants, 253–254
control statements, 256–259
data structure, 252–253
data types, 249–252
literals, 253–254
variables, 249–252

Programming languages, 192
concurrent processing and,

283–285
cultures, 257
declarative programming

and, 286–291
early generations of, 240–242
history of, 240–248
implementation, 268–275
scripting languages, 250
syntax, 269–270
universal, 516–521

Programming paradigms,
244–248

Programs, 190
versus data, 88
verification of, 226–230

PROJECT operation, 394, 395,
398–399

Projection plane, 428
Projectors, 428
Prolog, 288–291
Proprietary network, 140
Protocols, 141–143

Internet, 167–173
Prototyping, 307
Proxy server, 176
Pseudocode, 192–197
Public keys, 177, 536
Public-key encryption,

177–179, 536–539
Punched cards, 5
Push, stack operation, 343
Python, 269

Quality assurance, 324–327
Queue, 111, 343–344, 355–357

Radio Shack, 7
Radiosity, 451–452
Radix point, 45
RAM. See Random access

memory (RAM)

Random access memory
(RAM), 28

Rapid prototyping, 307
Rasterization, 443
Rational unified process

(RUP), 307
Ray tracing, 449–452
Read-only memory

(ROM), 120
Read/write heads, 29–30
Ready, process, 122
Real data type, 250
Realism, 435–437
Real-time processing, 112
Real-world knowledge,

484–485
Reasoning, 473–484
Record, 252–253
Recursion, 221
Recursive function theory, 510
Recursive ray tracing, 451
Recursive structures, 214–222
Reduced instruction set

computer (RISC), 77–78
Reflection, 439–441
Refraction, 441–442
Refresh circuit, 28
Region finding, 469
Register unit, 74
Registers, 74–75
Registrars, 152
Reinforcement, 487
Relation, in a database, 289
Relational database model,

389–399
Relational design, 389–393
Relational operations,

393–397
Relations, 389
Relative encoding, 58–59
Rendering, 428, 439–449
Rendering pipeline, 442–444,

448–449
Repeat loop, 208, 209
Repeater, 144
Requirements analysis, 304
Research in Motion

(RIM), 333
Reserved words, 269

606 Index

607Index

Resolution, 286–288
Resolvent, 286
Resource allocation, 125–129
Reviews, in software

development, 325–326
RGB encoding, 38
Right child pointer, 358
RISC. See Reduced instruction

set computer (RISC)
Risks Forum, 325
Ritchie, Dennis, 553
Rivest, Ron, 178, 536
Robocup, 498
Robotics, 497–500
Roll back, 404
ROM (read-only memory), 120
Root node, 344
Root pointer, 358
Rossum, Guido von, 269
Rotation, 92
Rotation delay, 30
Round-off error, 55–57
Router, 145–146
Routing, 173
Row major order, 349
RSA algorithm, 536, 537–539
Run-length encoding, 58
RUP. See Rational Unified

Process (RUP)

Scaling, 113
Scan conversion, 443–445
Scene, 430
Scene graph, 437–438,

442, 448
Scheduler, 119
Schema, 385–386
Scope, of a variable, 261
Script, 250
Scripting languages, 250
SD (Secure Digital) memory

cards, 33
SDHC (High Capacity) memory

cards, 33
SDRAM, 28
SDXC (Extended Capacity)

memory cards, 33
Search engine, 8, 165
Search process, 214–220

Search trees, 476–478
Sector, 30
Secure Shell (SSH), 155
Secure Sockets Layer

(SSL), 177
Security

network, 173–181
operating system, 130–132

Seek time, 30
SELECT operation, 393–394,

398–399
Self-reference, 522
Self-terminating, 523, 525
Semantic analysis, 470
Semantic net, 471
Semantic Web, 165
Semantics, 192
Semaphore, 125–127
Sentinel, 407
Sequence diagram, 321–323
Sequential files, 406–408
Sequential pattern analysis, 415
Sequential search algorithm,

204–205
Serial communication, 98
Server, 146
Server-side activities, 165–166
Shading, 445–447
Shamir, Adi, 178, 536
Shape, modeling, 431–435
Shared lock, 405
Shells, 116, 117
Shift operations, 92
Shockley, William, 7
Siblings, 344
Sign bit, 48
SIMD architecture, 101
Single Precision Floating

Point, 56
SISD architecture, 101
Smartphone, 9, 113, 156–157,

285, 302, 329, 472
Smoothing, 469
SMTP (Simple Mail Transfer

Protocol), 154
Sniffing software, 130–131,

174–175
Social Security records, 417
Soft phones, 156

Software, 2
application, 115, 116
classification of, 114–115
cross-platform, 243
event-driven, 266
smartphone, 285
system, 115
testing, 326–327
utility, 115–116
verification, 226–230

Software analyst, 305–306
Software development

packages, 275
Software engineering, 299–302

computer-aided, 301
documentation, 328–329
methodologies, 306–308
modularity and, 308–316
quality assurance, 324–327
real world, 315
standards, 302
tools, 316–324

Software license, 332–333
Software life cycle, 302–306

design, 304–305
implementation, 305–306
requirements analysis, 304
testing, 306

Software quality assurance
(SQA) groups, 325

Software requirements
specification, 304

Software verification, 226–230
Sound, representation of, 40
Source program, 268
Source version of web page, 160
Space complexity, 531
Spam, 175
Spam filters, 176
SPARK, 230
Special-purpose registers, 74–75
Specular light, 440
Spoofing, 176
Spooling, 128–129
Spyware, 174–175
SQL, 397–399
SSH. See Secure Shell (SSH)
SSL. See Secure Sockets

Layer (SSL)

Stack, 343, 355–357
Stack pointer, 355–356
Stakeholders, 304
Standard Template Library

(STL), 372
Star topology, 141
Start state, 473
State, 473
State graph, 474
Static data structures, 346
Status word, 97
Stepwise refinement, 202
Stibitz, George, 5
Storage

of binary trees, 357–360
of bit, 24
of fractions, 53–58
of integers, 47–53
of lists, 352–355, 362–367
of stack and queues,

355–357
STORE op-code, 96
Stored-program concept,

75–76, 77
Storyboard, 453–454
Stream, 24
Streaming audio, 157
Strong AI, 468
Strongly typed languages, 273
Structure, 252–253
Structure chart, 309
Structured programming, 256
Structured Query Language

(SQL), 397–399
Structured walkthroughs, 323
Subdomain, 153
Subprogram, 195
Subroutine, 195
Subschema, 386
Subtrees, 344
Sun Microsystems, 249, 271
Super user, 130
Supervised training, 486
Surface modeling, 435
Switch, 144, 145
Switch statement, 257–258
Symbol table, 273
Syntactic analysis, 470
Syntax, 192, 269–270

Syntax diagrams, 269
System administrator, 113
System analyst, 305
System documentation, 328
System software, 115
System-on-a-chip approach, 100

Tag, in a markup language, 160
Tail, of list, 342
Tail pointer, 356
Task Manager, 125
TB (terabyte), 28
TCP. See Transmission Control

Protocol (TCP)
TCP/IP protocol, 140, 171–173
Technical documentation,

328–329
Technological

advancement, 500
Telnet, 155
Template, 314–315, 324
Temporal masking, 62
Terminal, in a syntax

diagram, 270
Terminal node, 344
Termination condition,

206–207, 212
Test-and-set instruction, 126
Testing, software, 326–327
Testing stage, of software life

cycle, 306
Text, representation of, 35–36
Text editor, 36
Text file, 36, 406–407
Texture mapping, 435
Therac-25, 325
Third-generation programming

languages, 241–244
Thread, 283–284
Three-bit excess system, 52
Threshold value, 490
Throughput, 100
Throwaway prototyping, 307
Tier-1 ISPs, 150
Tier-2 ISPs, 150
TIFF (Tagged Image File

Format), 61–62
Time complexity, 528
Time-sharing, 112

Time slice, 123
Token, 268
Top, of stack, 343
Top-down methodology, 202
Top-level domains (TLDs), 152
Torvalds, Linus, 116, 307
Track, 29
Traditional development phase,

of software life cycle,
303–306

Training set, 486
Transfer rate, 30
Transistor, 7
Translation process, 268–274
Translator, 242
Transmission Control Protocol

(TCP), 171–172
Transparent object, 450–451
Transport layer, 168–171
Traveling salesman problem,

533–534
Tree, 344–345

binary, 357–360, 365–367
search, 476–478

Trojan horse, 174
TrueType, 39
Truncation error, 55–57
Tuple, in a relation, 389
Turing, Alan, 465, 513, 515
Turing computable, 515
Turing machines, 512–516
Turing test, 465–466
Two’s complement notation,

38, 47–50
Type cast, 273
Type promotion, 273

UDP. See User Datagram
Protocol (UDP)

UML. See Unified Modeling
Language (UML)

Unconditional jumps, 79–80
Unicode, 36
Unification, 288
Unified Modeling Language

(UML), 318–323
Unified process, 307
Uniform Resource Locator

(URL), 159–160

608 Index

609Index

Universal machine
languages, 271

Universal programming
language, 516–521

Universal serial bus (USB), 95,
97, 98–99

UNIX, 110, 117
Unmanned aerial vehicles

(UAVs), 498
Unsolvable problems, 526
Urban Challenge, 498
URL. See Universal Resource

Locator (URL)
USA PATRIOT Act, 180
USB. See Universal serial

bus (USB)
Use case diagram, 318, 319
Use cases, 318
User Datagram Protocol (UDP),

171–172
User documentation, 328, 329
User interface, 116–117, 329–332
User-defined data type, 368–369
Utilitarianism, 14–15
Utility software, 115–116

Vacuum tube, 6
Variable-length instructions, 78
Variable

assigning, 278
global, 261
instance, 277
local, 261
scope of, 261

VBScript, 250

Vectors, normal, 446
Very large-scale integration

(VLSI), 24
Video compression, 62
Video games, 429–430, 448, 454
View point, 428
View volume, 442
Virtual memory, 119
Virtue ethics, 15
Virus, 174
Visual Basic, 250, 265
VoIP (Voice over Internet

Protocol), 155–157
Von Koch snowflake, 434
Von Neumann architecture, 97
Von Neumann bottleneck, 97
Von Neumann, John, 77
VxWORKS, 114

W3. See World Wide Web
W3C. See World Wide Web

Consortium (W3C)
Waiting, process, 122
WAN. See Wide area

network (WAN)
Waterfall model, 306
Weak AI, 468
Weaving loom, 5
Web. See World Wide Web
Web mail, 166
Web pages, 158, 160–162, 163
Web server, 159, 166
Web sites, 158
Weight, in an artificial

neuron, 490

Weizenbaum, Joseph, 501
Welsh, Terry, 59
While loop, 208, 229
While statement, 206, 207, 212,

256–257
Wide area network (WAN), 140
WiFi, 142, 143
Window manager, 117
Windows, 110, 114–115, 117,

125, 265
Windows CE, 114
Wireless telephone, 156
Word processor, 36
World Wide Web, 8, 158–167
World Wide Web Consortium

(W3C), 160
Worm, 174
Worst-case analysis, 223–226
Wound-wait protocol, 405
Wozniak, Stephen, 7
WWW. See World Wide Web

X11, 117
XML. See eXtensible Markup

Language (XML)
XOR (exclusive or), 20, 21, 22,

90–92
XP. See Extreme

programming (XP)

Yahoo, 8

Z-buffer, 445
Ziv, Jacob, 59
Zoned-bit recording, 30

	Cover
	Title Page
	Copyright Page
	Preface
	Acknowledgments
	Contents
	Chapter 0 Introduction
	0.1 The Role of Algorithms
	0.2 The History of Computing
	0.3 The Science of Algorithms
	0.4 Abstraction
	0.5 An Outline of Our Study
	0.6 Social Repercussions

	Chapter 1 Data Storage
	1.1 Bits and Their Storage
	Boolean Operations
	Gates and Flip-Flops
	Hexadecimal Notation

	1.2 Main Memory
	Memory Organization
	Measuring Memory Capacity

	1.3 Mass Storage
	Magnetic Systems
	Optical Systems
	Flash Drives
	File Storage and Retrieval

	1.4 Representing Information as Bit Patterns
	Representing Text
	Representing Numeric Values
	Representing Images
	Representing Sound

	1.5 The Binary System
	Binary Notation
	Binary Addition
	Fractions in Binary

	1.6 Storing Integers
	Two’s Complement Notation
	Excess Notation

	1.7 Storing Fractions
	Floating-Point Notation
	Truncation Errors

	1.8 Data Compression
	Generic Data Compression Techniques
	Compressing Images
	Compressing Audio and Video

	1.9 Communication Errors
	Parity Bits
	Error-Correcting Codes

	Chapter 2 Data Manipulation
	2.1 Computer Architecture
	CPU Basics
	The Stored-Program Concept

	2.2 Machine Language
	The Instruction Repertoire
	An Illustrative Machine Language

	2.3 Program Execution
	An Example of Program Execution
	Programs Versus Data

	2.4 Arithmetic/Logic Instructions
	Logic Operations
	Rotation and Shift Operations
	Arithmetic Operations

	2.5 Communicating with Other Devices
	The Role of Controllers
	Direct Memory Access
	Handshaking
	Popular Communication Media
	Communication Rates

	2.6 Other Architectures
	Pipelining
	Multiprocessor Machines

	Chapter 3 Operating Systems
	3.1 The History of Operating Systems
	3.2 Operating System Architecture
	A Software Survey
	Components of an Operating System
	Getting It Started

	3.3 Coordinating the Machine’s Activities
	The Concept of a Process
	Process Administration

	3.4 Handling Competition Among Processes
	Semaphores
	Deadlock

	3.5 Security
	Attacks from the Outside
	Attacks from Within

	Chapter 4 Networking and the Internet
	4.1 Network Fundamentals
	Network Classifications
	Protocols
	Combining Networks
	Methods of Process Communication
	Distributed Systems

	4.2 The Internet
	Internet Architecture
	Internet Addressing
	Internet Applications

	4.3 The World Wide Web
	Web Implementation
	HTML
	XML
	Client-Side and Server-Side Activities

	4.4 Internet Protocols
	The Layered Approach to Internet Software
	The TCP/IP Protocol Suite

	4.5 Security
	Forms of Attack
	Protection and Cures
	Encryption
	Legal Approaches to Network Security

	Chapter 5 Algorithms
	5.1 The Concept of an Algorithm
	An Informal Review
	The Formal Definition of an Algorithm
	The Abstract Nature of Algorithms

	5.2 Algorithm Representation
	Primitives
	Pseudocode

	5.3 Algorithm Discovery
	The Art of Problem Solving
	Getting a Foot in the Door

	5.4 Iterative Structures
	The Sequential Search Algorithm
	Loop Control
	The Insertion Sort Algorithm

	5.5 Recursive Structures
	The Binary Search Algorithm
	Recursive Control

	5.6 Efficiency and Correctness
	Algorithm Efficiency
	Software Verification

	Chapter 6 Programming Languages
	6.1 Historical Perspective
	Early Generations
	Machine Independence and Beyond
	Programming Paradigms

	6.2 Traditional Programming Concepts
	Variables and Data Types
	Data Structure
	Constants and Literals
	Assignment Statements
	Control Statements
	Comments

	6.3 Procedural Units
	Procedures
	Parameters
	Functions

	6.4 Language Implementation
	The Translation Process
	Software Development Packages

	6.5 Object-Oriented Programming
	Classes and Objects
	Constructors
	Additional Features

	6.6 Programming Concurrent Activities
	6.7 Declarative Programming
	Logical Deduction
	Prolog

	Chapter 7 Software Engineering
	7.1 The Software Engineering Discipline
	7.2 The Software Life Cycle
	The Cycle as a Whole
	The Traditional Development Phase

	7.3 Software Engineering Methodologies
	7.4 Modularity
	Modular Implementation
	Coupling
	Cohesion
	Information Hiding
	Components

	7.5 Tools of the Trade
	Some Old Friends
	Unified Modeling Language
	Design Patterns

	7.6 Quality Assurance
	The Scope of Quality Assurance
	Software Testing

	7.7 Documentation
	7.8 The Human-Machine Interface
	7.9 Software Ownership and Liability

	Chapter 8 Data Abstractions
	8.1 Basic Data Structures
	Arrays
	Lists, Stacks, and Queues
	Trees

	8.2 Related Concepts
	Abstraction Again
	Static Versus Dynamic Structures
	Pointers

	8.3 Implementing Data Structures
	Storing Arrays
	Storing Lists
	Storing Stacks and Queues
	Storing Binary Trees
	Manipulating Data Structures

	8.4 A Short Case Study
	8.5 Customized Data Types
	User-Defined Data Types
	Abstract Data Types

	8.6 Classes and Objects
	8.7 Pointers in Machine Language

	Chapter 9 Database Systems
	9.1 Database Fundamentals
	The Significance of Database Systems
	The Role of Schemas
	Database Management Systems
	Database Models

	9.2 The Relational Model
	Issues of Relational Design
	Relational Operations
	SQL

	9.3 Object-Oriented Databases
	9.4 Maintaining Database Integrity
	The Commit/Rollback Protocol
	Locking

	9.5 Traditional File Structures
	Sequential Files
	Indexed Files
	Hash Files

	9.6 Data Mining
	9.7 Social Impact of Database Technology

	Chapter 10 Computer Graphics
	10.1 The Scope of Computer Graphics
	10.2 Overview of 3D Graphics
	10.3 Modeling
	Modeling Individual Objects
	Modeling Entire Scenes

	10.4 Rendering
	Light-Surface Interaction
	Clipping, Scan Conversion, and Hidden-Surface Removal
	Shading
	Rendering-Pipeline Hardware

	10.5 Dealing with Global Lighting
	Ray Tracing
	Radiosity

	10.6 Animation
	Animation Basics
	Kinematics and Dynamics
	The Animation Process

	Chapter 11 Artificial Intelligence
	11.1 Intelligence and Machines
	Intelligent Agents
	Research Methodologies
	The Turing Test

	11.2 Perception
	Understanding Images
	Language Processing

	11.3 Reasoning
	Production Systems
	Search Trees
	Heuristics

	11.4 Additional Areas of Research
	Representing and Manipulating Knowledge
	Learning
	Genetic Algorithms

	11.5 Artificial Neural Networks
	Basic Properties
	Training Artificial Neural Networks
	Associative Memory

	11.6 Robotics
	11.7 Considering the Consequences

	Chapter 12 Theory of Computation
	12.1 Functions and Their Computation
	12.2 Turing Machines
	Turing Machine Fundamentals
	The Church-Turing Thesis

	12.3 Universal Programming Languages
	The Bare Bones Language
	Programming in Bare Bones
	The Universality of Bare Bones

	12.4 A Noncomputable Function
	The Halting Problem
	The Unsolvability of the Halting Problem

	12.5 Complexity of Problems
	Measuring a Problem’s Complexity
	Polynomial Versus Nonpolynomial Problems
	NP Problems

	12.6 Public-Key Cryptography
	Modular Notation
	RSA Public-Key Cryptography

	Appendixes
	A: ASCII
	B: Circuits to Manipulate Two’s Complement Representations
	C: A Simple Machine Language
	D: High-Level Programming Languages
	E: The Equivalence of Iterative and Recursive Structures
	F: Answers to Questions & Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

