

Early praise for Seven More Languages in Seven Weeks

I’m tired of learning new programming languages and thought seven additional
somewhat esoteric languages wouldn’t be very useful. I couldn’t have been more
wrong. I loved it. The languages were suitably interesting and compellingly pre-
sented, and I now want to experiment with them.

➤ Brian Sletten
President, Bosatsu Consulting, Inc.

Languages are not just new syntax, they are new ways of thinking about problems.
What is the best way to think about user interfaces or scientific computing or
distributed systems or safety guarantees? As you dive into each of the languages
in this book you will get a glimpse of new abstractions and principles that will
help you write better programs in any language. Do it!

➤ Evan Czaplicki
Creator of Elm, Prezi

If you think reading a book about programming languages won’t change your
thinking about programming, I dare you to read the chapter on Idris—unless the
idea of reasoning about your C++ (or C# or Java) code more clearly and reducing
hundreds or thousands of lines of code down to two is not appealing to you, of
course.

➤ Ted Neward
Author, speaker, mentor, Neward and Associates, LLC

Just as an artist’s choice of oil, acrylic, or watercolor paint constrains the range
of effects they can achieve, the languages we choose constrain the programs we
can write. Learning a new language enables you to both conceive new solutions
and express them in new ways. Read this book to add seven particularly interesting
languages to your repertoire.

➤ Paul Butcher
Author of Seven Concurrency Models in Seven Weeks

Seven More Languages in Seven Weeks is a well-paced introduction to a set of
fascinating languages that will be new to many. This one goes at just the right
tempo and provides enough detail to be useful—but not so much as to douse
natural curiosity. Definitely a book I would recommend to others wanting to expand
their programming horizons.

➤ Matthew Wild
Author, Prosody IM XMPP server

Seven More Languages in Seven Weeks not only introduces us to a wide spectrum
of languages, but also challenges us on how we think about language use and
design. Software development is a demanding career and learning new languages
will always be essential. That is why the Seven in Seven series is one of the most
invaluable reads for any serious programmer.

➤ Daniel Hinojosa
Developer, speaker, instructor, author of Testing in Scala

Seven More Languages in Seven Weeks
Languages That Are Shaping the Future

Bruce A. Tate
Fred Daoud

Ian Dees
Jack Moffitt

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-15-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—November 2015

https://pragprog.com
rights@pragprog.com

Contents

Foreword vii
Acknowledgments ix

Introduction xv

1. Lua 1
Day 1: The Call to Adventure 2
Day 2: Tables All the Way Down 14
Day 3: Lua and the World 32
Wrapping Up Lua 47

2. Factor 49
Day 1: Stack On, Stack Off 50
Day 2: Painting the Fence 61
Day 3: Balancing on a Boat 73
Wrapping Up Factor 86

3. Elm 89
Day 1: Handling the Basics 90
Day 2: Taming Callbacks 100
Day 3: It’s All a Game 111
Wrapping Up Elm 123

4. Elixir 125
Day 1: Laying a Great Foundation 126
Day 2: Controlling Mutations 142
Day 3: Spawning and Respawning 158
Wrapping Up Elixir 167

5. Julia 171
Day 1: Resistance Is Futile 172
Day 2: Getting Assimilated 183

Day 3: Become One with Julia 195
Wrapping Up Julia 206

6. miniKanren 209
Day 1: Unified Theories of Code 210
Day 2: Mixing the Logical and Functional 220
Day 3: Writing Stories with Logic 228
Wrapping Up miniKanren 240

7. Idris 243
Day 1: The Basics 244
Day 2: Getting Started With Dependent Types 253
Day 3: Dependent Types in Action 262
Wrapping Up Idris 274

8. Wrapping Up 277
The Origins 277
The Central Expressway 279
The Frontier 281
The Dirty Map 282
A Final Challenge 284

Bibliography 285
Index 287

Contents • vi

Foreword
Back in 2010, I was deeply troubled. The growing list of difficulties in writing
concurrent software was nagging at me. The tools I had at hand were clunky,
and none of them provided a mental model that helped me reason about the
problems I was facing.

I decided it was time for a change.

However, out of the hundreds of programming languages out there, how could
I possibly find one that fit my criteria? How could I even filter this huge set
into a smaller one that I could explore in more detail? Then I found that
someone had decided to tell the exact story I wanted to hear: Bruce Tate had
just written Seven Languages in Seven Weeks, which explored Ruby, Io, Prolog,
Erlang, Scala, Clojure, and Haskell.

I was familiar with many of the languages in Seven Languages in Seven Weeks
but the book did more than just introduce programming language constructs.
It introduced their philosophy, community, and thinking models. To me, the
book was telling a story about concurrency, and as I read the book, a very
clear picture about immutability, threads, futures, actors, software transac-
tional memory, and more was being painted.

Once I finished the book, I knew exactly which languages and paradigms I
wanted to explore next. I bought a heap of books about Erlang, Clojure, and
Haskell and I also started writing code right away.

Months later, though, I still hadn’t found one language that fit all my criteria.
I wanted the robustness and distribution of the Erlang VM, but I also wanted
the metaprogramming and polymorphism from Clojure alongside a syntax I
was comfortable with. That’s when I decided to create the Elixir programming
language that runs on the Erlang virtual machine.

Now, four years later, Elixir is one of the languages covered in Seven More
Languages in Seven Weeks.

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The interesting thing is that the first book was not a story about concurrency
but that’s how I read it. Seven Languages in Seven Weeks, as any other
excellent book, gives space for the reader to include her own experiences as
part of the story, allowing each reader to learn different lessons and, in this
particular case, choose other languages to explore next.

This is what makes Seven More Languages in Seven Weeks even more ambi-
tious. Many of the languages in the book are relatively new and in active
development, which brings a whole new range of ideas and lessons to be
learned. It also opens up the possibility for readers to pick their next languages
and not only master them but become part of the language development itself.

Seven Languages in Seven Weeks had a deep impact on my programming
career, and I am certain reading this book will do the same for yours.

And remember: Reading Seven More Languages in Seven Weeks is just the
start of a journey.

José Valim
Creator of Elixir

Foreword • viii

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Acknowledgments
We’d like to make a deal with you. If you haven’t already programmed your
virtual video recorder to skip this page, we’ll try to make it interesting and
entertaining. The names on this page deserve to be read. Many of them are
shaping the way we all think about programming, and still others put in the
tireless, thankless work to make this book worth reading.

If each chapter of a Seven Languages book is some kind of a metaphor, which
movie character should we curse with acknowledgments? Perhaps we’ll serve
up some form of Bill Murray. Is it Bill Murray in Groundhog Day, where each
book shows you the same chapter with only slight variations of words but a
same dreariness in sentiment and tone? Or maybe we’ll plod gracelessly
unaware into your thoughts uninvited, like Bill in What About Bob?

We’ve hidden several Bill Murray movie references in this chapter. See how
many you can find.

The Languages
The stars of this show are the seven programming languages. Each of them
has a role to play in exercising the poltergeists that haunt our current dusty
mental motels. We’d like to offer a warm thanks to the creators of those lan-
guages, and also to the angels who helped accelerate our transition from
novices to, well, slightly more knowledgeable novices.

Lua
We’d like to thank Roberto Ierusalimschy for recognizing the importance of
a single, unifying abstraction. Lua’s tables are versatile enough to build object
systems, custom data structures, and even video game levels. The clean
implementation underneath makes it a breeze to run Lua anywhere, to embed
it into your own projects, and to extend it in new ways.

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Special thanks to Matthew Wild for bringing the eyes of a seasoned Lua
developer to our prose. Your hard-won experience with the language in the
real world helped us stay on course.

Factor
We’d like to thank Slava Pestov for taking the concatenative programming
model and giving it a full-featured, practical environment in which to thrive.
Discovering this way of thinking about programs has been extremely
enlightening. Having a platform on which to build real applications makes
the language all that much more valuable.

A special thank-you also goes to John Benediktsson for reviewing the chapter
and being one of the most active and helpful people in the Factor community.
The combination of your knowledge, responsiveness, and willingness to aid
others is truly inspiring.

Elm
Thank you, Evan Czaplicki. You’ve created a fantasyland for your users. No
more square pegs in round holes. Building for browsers finally feels right.
Thanks also for helping us in the midst of your travel, even as you scurried
between your San Francisco apartment and Budapest hotel. We know permis-
sion forms are a pain and don’t always happen at the most convenient times.

Elixir
José Valim has had such a profound impact on this book. Your words in the
foreword inspired us; your language captivates us. We’ve all seen inventors
who strut around like mafia kingpins, but you’ve always entered each rela-
tionship with humility and respect.

We’d also like to yell a special shout-out to Eric Meadows-Jönsson. Your
review of our Elixir chapter went above and beyond. You’re the reason our
code is at Elixir 1.0 levels. Our readers appreciate it and we appreciate it. We
expect great things from you.

Julia
Bruce first heard about Julia at a conference in London. He was starting to
pull together the language lineup and the team for this book. Several people
mentioned Julia, but we were concerned that it wouldn’t have enough ideas
that would advance the story we were trying to tell. Boy, were we wrong.
Thanks to Jeff Bezanson, Stefan Karpinski, Viral Shah, and Alan Edelman.
Your community has grown from a group of disjointed strangers who barely

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

knew Julia to a family that cares about the language and about each other.
Such a quick change does not happen accidentally. You were tremendously
helpful and responsive throughout the whole process.

miniKanren
Chalk one more language up to CodeMesh and London. Bruce saw David
Nolen’s demo of Core.Logic a few years before this book came to fruition, and
saw more than another Clojure framework. It was a unique and interesting
programming model. You can’t get smart by writing the same object-oriented
programs over and over. Real growth requires exploring the unknown, and
sometimes radically different concepts. Thanks to David for your inspiration
and your support.

Thanks also to Stuart Halloway, our good friend and one of Clojure’s most
loyal and passionate stewards. Stuard for short.

Idris
We’d venture to guess that many of these languages will stretch our readers,
sometimes unpleasantly. Truth be told, sometimes the languages stretch even
this team of authors. As we were writing the early prose and code for the Idris
chapter, something was lost in translation and we had a hard time making
sense of it all. Thanks to Edwin Brady for walking the razor’s edge between
the practical and the academic. You’ve created a language that’s audacious
in its goals and stunning in its execution. It probably doesn’t register with
you that some would even question who would even attempt such a language.
Well, we know. Ed would.

The Authors
While some of those we wish to thank are collective, some of the thanks are
deeply personal.

From Bruce Tate
Every time I write another book, there inevitably comes a time when I’m doing
too much, and I morph into a hostile curmudgeon, a scrooge who snipes at
the first target that presents itself, even if that target is just announcing that
dinner is ready. Writing technical books is not as lucrative as it used to be,
even successful books. Those who write do it out of love, and often at a cost
to those around them. Maggie, Kayla, and Julia (the person, not the language),
you’ve been that target too often. But you also inspire me and lift me when
I’m low.

report erratum • discuss

The Authors • xi

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Terry Cole, you’re one of the bravest people I’ve ever met. Your work with
street youth impacts me deep beneath the surface. A part of each book goes
to your mission, and when I am dragging, I can just open a picture of one of
the kids and I’m ready to write again.

From Fred Daoud
After Seven Web Frameworks in Seven Weeks, I didn’t think I’d be writing for
a while. When Bruce invited me to participate in Seven More Languages, I
was so honored that I couldn’t refuse. I’m very grateful for the opportunity to
work with such a great team of authors, and to discover a fantastic lot of
languages that challenge the imagination and thrill the programming senses.

On a more personal note, my acknowledgments could not be complete without
thanking my wife Nadia for being the most beautiful person I know in the
universe (and beyond). The best times in my life are those spent with you,
and they provide a much-needed balance against the time I spend hacking
on a computer.

From Ian Dees
To my wife Lynn, and to my daughters, Avalon and Robin, thank you for being
amazing, creative people.

To my fellow authors Bruce, Fred, and Jack, it’s been an honor to be part of
this project. Thank you for inviting me to join it. Your work sets a high stan-
dard, and living up to it (or trying to!) has made me a far better programmer
and writer than I was before.

To my teammates at work, thank you for setting a similarly high bar, and for
putting up with the occasional bout of, “You have got to see this new feature
of Lua/Idris….”

From Jack Moffitt
I have been reliving the same nine months over again. Before Seven Web
Frameworks in Seven Weeks was even finished, Bruce approached me about
helping to write this book. My love for languages and the enjoyment I had
working with Bruce, Fred, and Pragmatic Programmers made working on
another book an easy decision.

I’d like to thank my wife Kim, my son Jasper, and my daughter Beatrix for
supporting me through another book. Kim is my sounding board for ideas
and helped with this project as she does with all my projects. My kids kept
me from working too hard.

Acknowledgments • xii

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The Book
All of the books in this series require a little more commitment than your
typical technical book. Those who write the books are learning many new
concepts just one step ahead of our readers. We also need excellent support,
often from reviewers who get nothing more than thanks here. Often, reading
our early prose must seem like a stroll through Zombieland, and several
reviewers went above and beyond by reading a chapter or two twice or more.
Our thanks go out to John Benediktsson, Jeff Bezanson, Edwin Brady, Erin
Chapman, Evan Czaplicki, Alan Edelman, John Heintz, Daniel Hinojosa,
Carsten Jørgensen, Stefan Karpinski, Eric Meadows-Jönsson, Ted Neward,
David Nolen, Viral Shah, Brian Sletten, José Valim, Matthew Wild, and Simon
Wood. Special thanks to Craig Stuntz who rewrote the LanguageHeads game
to support Elm 0.14. We literally could not have written this book without
you.

We know we’re going to miss someone, so if your name is not where it should
be, please accept our sincerest apology. We appreciate your effort.

Beta readers, you had this story when it was a tiny glowing ember, and nursed
it to a raging fire. We depend on you and your comments and enthusiasm
more than you can know.

We’d also like to thank the production team. We know you’re all mentioned
on the copyright page but we would like to mention you here as well: Jackie
Carter, the editor; Liz Welch, the copy editor; Seth Maislin, the indexer; and
Janet Furlow, the production manager. The whole industry knows that Prag
books are special, and you’re the team that helps us maintain such high-
quality standards over time. Thanks once again.

Finally, we’d like to thank Dave and Andy for believing in this concept, not
once but twice. You’ve built a special place to work and a great place for
authors to feel respected and appreciated. We write because we love it, and
we love it because you make this a special place to be.

To all of you, we send our love and respect.

Thank you.

report erratum • discuss

The Book • xiii

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Introduction
by Bruce Tate

In a warm room in 2012 London, I was nervous. I’d given this same talk to
crowded rooms around the world. Sure, I was confident that the crowd would
laugh at my usual jokes, and even applaud almost on demand, but this time,
there was a catch. Four creators of the seven languages in my book were in
the audience right in front of me. I was worried about having enough credibil-
ity to talk about these beautiful creations in this setting. In the end, I may
have stumbled a time or two, but the talk went fine. Joe Armstrong, the creator
of Erlang and a dear friend now, even complimented me on the talk, and he
invited me to come keynote the Erlang Users Community in Stockholm six
months later.

The most poignant moment for me, though, was a listener’s question. She
asked, “Can you really learn seven languages in seven weeks?” We both knew
the answer. As with spoken languages, it takes months or even years of
immersion to really learn a programming language. So why should we even
try?

Each new language exposes you to a vocabulary, but not one of words. This
new vocabulary is composed of the ideas that you use to shape your world.
Though the precise syntax will almost certainly not commute from your
sandbox into your production solutions, you’ll see that many of the idioms
do. When you work through Elixir macros, you’ll learn to express your code
in templates, and this metaprogramming can radically improve any program-
mer. When you work through Factor, you’ll learn to naturally compose func-
tions in powerful and interesting ways that might not have seemed natural
before. And after a few weeks with miniKanren, expressing programs as
individual steps may no longer seem as effective as expressing a few simple
rules.

Think of a painter who has learned to express depth after trying a hand at
sculpture, or a young business executive who learns new spreadsheet tech-

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

niques after taking a new math or programming class. Ideas are the currency
of our trade. Each idiom that you master increases your worth.

Each Seven in Seven book tries to tell a story, making informed choices that
will teach you the idioms we think you most need to know. Our job as authors
is to find the right set of languages that expose you to the most important
idioms you’re likely to see. To do that, we need to have a strong understanding
of where our industry is heading.

The Lay of the Land
From a hardware perspective, we believe that multicore programming, quality,
and complexity are driving a strong push toward functional languages. Mobile
devices are also exploding, though mobile technologies remain behind other
kinds of programming.

We also believe that software complexity is shaping functional programming
as we speak. Crosscutting concerns and code quality strongly favor languages
with metaprogramming features. Better typing models, like the one in Haskell,
are making a strong comeback so that the compiler can catch more bugs
before code reaches production.

Against that backdrop, it’s time to crack open seven more languages. You’ll
notice at least three big differences between this book and the first as you
read. First, I’ve gone from one author to four. Next, the author team allows
greater depth per language, so the overall book is longer and ramps up each
language more quickly. Finally, most of these languages are new, rather than
spreading out languages over four different decades as I did in the first book.

Meet the Team and Languages
We’d normally introduce the author team elsewhere, but since these language
experts are actually your guides, I’d like you to meet them and know the
languages they will show you.

Bruce Tate (Elixir, Elm)
I am Bruce Tate, a mountain biker, kayaker, and father of two from Austin,
Texas. Currently, as CTO of icanmakeitbetter.com, I run a small team of
programmers in Ruby, but will move into Elixir development soon. You
probably know me as the author of the first book in the Seven in Seven series,
Seven Languages in Seven Weeks [Tat10].

Introduction • xvi

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Elixir
I chose Elixir because it is a unique combination of a pure functional language
on the Erlang virtual machine with a rich Ruby-like syntax and Lisp-style
macros. Syntax matters to me, maybe more than anything else. Representing
ideas to English speakers requires a rich and powerful syntax.

Elm
I chose Elm because it represents a radical departure from the callback-centric
style of development in browsers today. Simplifying code in the browser is
actually one of the most active language frontiers. Elm is a language dedicated
to reactive programming, a style that uses data flows and functions to propa-
gate change. Representing user interactions as signals that map onto functions
simplifies the most complex of JavaScript applications significantly by
removing callbacks.

Fred Daoud (Factor)
Fred is a passionate software developer from Montreal, Canada. He loves
learning new languages, frameworks, and programming techniques, going
from OO to FP and intrigued by the reactive model. Fred is the coauthor of
Seven Web Frameworks in Seven Weeks [Dao14].

Factor
Fred chose Factor because this concatenative, stack-based programming
model radically changes the way programmers think. It’s not just a mental
exercise, either; Factor comes with a full-featured library, UI framework, and
web framework. Building one Factor application will change the way you use
your native language.

Ian Dees (Lua, Idris)
By day, Ian Dees slings code, tests, and puns at a Portland-area test equip-
ment manufacturer. By night, he converts espresso into programming books,
including Cucumber Recipes [Hel13]. Ian tweets as @undees.

Lua
Ian chose Lua because it is a fast, flexible language that is ideal for adding
scripting to an existing project. He fell in love with the embeddable prototype
language while building a production system with it.

report erratum • discuss

Fred Daoud (Factor) • xvii

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Idris
Ian was captivated by the potential of dependent types in languages like Agda
and Idris when he saw a presentation on applying the lessons of these lan-
guages to C++ or Java. Since then, he’s always wanted to explore these con-
cepts in greater detail.

Jack Moffit (Julia, miniKanren)
As a developer and manager at the Mozilla Foundation, Jack is regularly
exposed to new languages and technologies. He’s been writing for five years
on a variety of topics, including most recently coauthoring Seven Web
Frameworks in Seven Weeks [Dao14].

miniKanren
miniKanren is not really a language in its own right. Instead, it’s a domain-
specific language for logic programming. When combined with a functional
programming language with macros like Clojure, the result is a striking new
programming model. Often, logic programmers find it difficult to tie their
logic programs to the outside world. Embedding a logic DSL in a general
purpose language solves this problem. You’ll find that this combination opens
up a whole new programming paradigm, and that’s why Jack chose it.

Julia
Jack chose Julia because it’s an interesting and radical departure from the
work he’s been doing with Clojure and Erlang. Julia is focused on computing
statistics and multidimensional math. It’s designed from the inside out with
concurrency and distribution in mind. R is the dominant technical computing
language today, but performance is sometimes an Achilles heel. Early Julia
users have commented on substantial performance improvements in Julia
based on its language features.

Who Should Read This Book
Like the other books in this series, Seven More Languages in Seven Weeks is
a little different from your typical technology book. We’re going to try to cover
much more breadth, and we’re going to push you, and we think you’ll be
pleased with the result. Still, it’s not for everyone.

Introduction • xviii

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Don’t Buy This Book…
…until you’ve read this section and can live with the challenge. Mostly,
understand that our goal is to make you as self-sufficient as possible, and
ramp up much more quickly than typical one-technology technical books do.
There’s a cost. You will have to do more of the work.

We’re Not Your Install Guide or Support Channel
Those who have read a Seven in Seven book know that we will not focus our
attention on getting you started, and we won’t try to attempt to support seven
languages across seven platforms each. We can’t. We have chosen to avoid
languages with paid support. You can tap the programming community of
each of these languages for help. In most cases, they will be quite willing to
help.

You also will not get a rich installation guide for each language, and you might
find that the output for a particular exercise looks slightly different on your
system. If you are a reader who likes every character to match, and want your
hand held throughout the process, sorry. We just can’t help you. In fact, we
think that the process of building and supporting your own installation will
help you learn your chosen language much more quickly.

Instead, we’ll offer you a deal. If you will work a little harder to support your
own installation, we’ll take you deeper. Our goal is to get to the point that
you’ll solve a nontrivial problem in each language. It’s a demanding goal, but
we think we’ve accomplished it.

We Will Speak in Four Voices
I never expected to write another Seven Languages book because the first one
was so demanding and because the original list of languages was so com-
pelling. I never thought that I’d find seven languages to match the original
list, and if I did, I was sure I did not want to commit another year or two to
the effort. I told myself that changing voices across authors in a Seven Lan-
guages book would not work.

You see, even though it was made of different languages, the original book
told a story of where our industry was at the time. The languages moved from
object oriented toward more declarative and more functional languages,
ending in the purely functional Haskell. The collection works precisely because
it is not seven disjointed essays. Surely, a team of authors would distract
from the broader story and the unity of the whole.

report erratum • discuss

Who Should Read This Book • xix

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Then, Eric Redmond and Jim R. Wilson attacked Seven Databases in Seven
Weeks [RW12] and blew me away. They wrote a book that told a story of where
the database industry is going, and they told it well. Having two authors made
it easier to keep up with the rapidly changing versions.

Here’s the catch. They wrote primarily in first person plural. Learning lan-
guages is a little different from learning to use a database engine.

Each exploration is a deeply personal experience. I believe that if we can let
you into the head of the person who wrote each chapter, if you can more
deeply share their experience, your own learning experience will be that much
richer and more powerful. For that reason, each author will write about their
languages in the first person. When you see those “I” and “mine” statements
instead of “we” and “our,” you’ll know why. We’re trying to give you a more
personal experience. We think you’ll appreciate the difference.

We Won’t Be Dry
Some want terse. We’re not that.

You’ll notice that we compare each language to a movie character. We do this
because based on our experience, we need to help readers with the transition
from one language to the next. We find that these metaphors serve our pur-
poses better than a stodgy history lesson. We know that this style will put
some of you off. That’s OK. We believe that writing in this way keeps most of
our readers engaged and opens learning channels. For the rest, we believe
our story is compelling enough that most readers will slog through our
metaphors.

Buy This Book…
…if you can live with these ground rules. We think you’re in for a treat. This
mix of languages will captivate and delight you. The mix of authors will take
you into places that a single-author team can’t. When all is said and done,
our goal is for you to think this book makes you a better programmer and
improves your code in whatever language you might choose.

A Final Charge
Language study becomes much more relevant when you can use more than
one language. Things certainly seem to be heading that way. It’s becoming
cool to be a language geek again. This book will show you a mix of static and
dynamic typing and five different programming models.

Introduction • xx

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

One of the most gratifying things about the first Seven in Seven book was the
explosion of discussions on blogs and podcasts. As you explore this book, we
encourage you to ask your own questions, and talk about them where others
can see the discussions. Tap the wisdom of the crowd.

Online Resources
The apps and examples shown in this book can be found at the Pragmatic
Programmers website for this book.1 You’ll also find the community forum
and the errata-submission form, where you can report problems with the text
or make suggestions for future versions.

1. http://pragprog.com/book/7lang

report erratum • discuss

Online Resources • xxi

http://pragprog.com/book/7lang
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

CHAPTER 1

Lua
by Ian Dees

In 2004, we were hacking our way through a tangled jungle of hardware test
code. The proprietary scripting engine at its core had looked like a golden idol
when it was still on its pedestal: gleaming, powerful, and ready to make us
wealthy. But once we had it in our satchel, we saw that the whole setup was
a trap.

The plugin API was an unstoppable boulder that threatened to squash our
own code. Constrained schedules didn’t leave us enough room to duck out
of the way. Each system crash felt like a dart to the spleen.

Then, like Indiana Jones, Lua swashbuckled its way into our project, toting
a metaphorical bullwhip to solve our problems with cultured wit and fearless
performance. With Lua on our side, everything changed:

• Since Lua’s function inputs and outputs are flexible, our test modules no
longer needed to know anything about the scripting runtime.

• With rich syntax and proper semantics, our code became easier to read
and understand.

• Because of Lua’s famously clean code, we all but eliminated crashes in
the engine.

The project kept trucking along for several years, with Lua serving admirably
at its core. I’ll always remember how this quick, portable little language outdid
the competition, and did so with style.

Intrigued? Let’s get started.

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Day 1: The Call to Adventure
When we first built our system, we found writing configuration files burden-
some. The file formats we could use to describe test inputs and outputs just
weren’t that expressive.

Take comma-separated values (CSV), for instance. Say you wanted to describe
characters and vehicles for a video game. Your CSV configuration file might
start like this:

name, treasure1, treasure2, treasure3, treasure4, treasure5
knight, -1000, +200, --, --, --

Now, say you wanted to add a square vehicle to the in-game world, and make
it so you can’t accidentally change the width without also changing the height:

name, width, height
mine cart, $cube_size, $cube_size

Here’s the problem: CSV doesn’t support collections or constraints. You’d
have to work around these limitations by adding extra columns you seldom
use, or by rolling (and supporting!) your own dialect.

Now, let’s see what the same configuration might look like in Lua:

Monster{
name = "knight",
treasure = {-1000, 200}

}

local cube_size = 20

Vehicle{
name = "mine cart",
width = cube_size,
height = cube_size

}

Beautiful. In one sweeping move, we’ve solved both CSV’s awkward collection
syntax and its inability to handle constraints—by switching to a language
that was designed precisely to implement these features.

You can even bring your monsters to life right in your level design.

Monster{
name = "cobra",
speed = function() return 10 * damage_to_player() end

}

Chapter 1. Lua • 2

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

In this case, we’ve added some custom behavior to one particular adversary,
right alongside the rest of its attributes.

The Week Ahead
On Day 1, we’re going to install Lua and find our way around. You’ll learn
the basic data types and write a few simple Lua programs.

The second day, we’ll dive into the key idea that makes Lua so expressive:
tables. These are a sort of array-meets-dictionary object that you can use to
implement everything from smart configuration files to a homemade object
system. We’ll also look at Lua’s powerful concurrency features.

To cap off our adventure, on Day 3 we’ll use Lua for its intended purpose: an
expressive description language used together with fast, low-level C code.
Specifically, we’re going to write a music player that takes descriptions of
notes and chords, then plays them live on your computer.

First things first, though. Today, we’ll learn a little about Lua as a language.
Then, we’ll write some simple Lua programs with numbers, strings, Booleans,
functions, and conditionals. These constructs will likely feel familiar to you,
but Lua presents them in a particularly approachable way.

Lua at a Glance
Lua is a table-based programming language, built on a single powerful
abstraction that you can use to implement your own programming
style—procedural, object-oriented, event-driven, and so on.

Lua’s tables lend themselves really well to the prototype style of object-oriented
programming. In this style, classes and instances aren’t separate concepts.
You don’t create a set of blueprints (classes) and then spin up a bunch of
individual objects based on those blueprints.

Instead, in a prototype system, you create a single instance that looks like
the objects you need in your program. Then, you clone this one instance a
bunch of times and customize each clone. These systems are just as powerful
as traditional class-based systems but have a simpler feel.

Installing Lua
By design, Lua is extremely portable. Its authors stick to a strict subset of
ANSI C known to work across compilers and platforms. They were so success-
ful in their dedication that Lua was one of only two scripting languages I

report erratum • discuss

Day 1: The Call to Adventure • 3

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

could get to compile for a particularly limited embedded platform. (The other
language was REXX, if you’re curious.)1

One of the most fun ways to install Lua is simply to compile it yourself from
the source.2 If you’re in a hurry, you can download a prebuilt binary for one
of nearly a dozen platforms.3

Interactive Development
Like many of its fellow scripting languages, Lua supports an interactive
read–eval–print loop (REPL). To start it, just type lua at the command line:

$ lua
Lua 5.2.3 Copyright (C) 1994-2013 Lua.org, PUC-Rio
>

Notice we’re using Lua 5.2.3, the latest version as of this writing. Much of
this code will work fine in older versions, but we tested most extensively with
5.2.

We’ll stay in the REPL for much of this chapter. The bits after the leading >
or >> are for you to type in.

Go ahead and type a value into the REPL, such as the year one of my favorite
adventure movies was made:

> 1989
stdin:1: unexpected symbol near '1989'

Interesting. Lua doesn’t print the value by default. We can deal with that
easily enough. You could print() or return the value explicitly, or just add an =,
like this:

> print(1989)
1989
> return 1989
1989
> =1989
1989

If you wanted to get out of the REPL, you’d just type Ctrl-D . But stick around,
so we can kick the tires a bit first.

1. http://en.wikipedia.org/wiki/Rexx
2. http://lua-users.org/wiki/BuildingLua
3. http://lua-users.org/wiki/LuaBinaries

Chapter 1. Lua • 4

report erratum • discuss

http://en.wikipedia.org/wiki/Rexx
http://lua-users.org/wiki/BuildingLua
http://lua-users.org/wiki/LuaBinaries
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

First Glimpse
Lua has a friendly, approachable syntax. There’s no need to fuss over semi-
colons or where the whitespace goes. In fact, whitespace doesn’t matter much
in Lua at all. Both of the following statements have the same output:

> print "No time for love"
No time for love
> print
>> "No time for love"
No time for love

You don’t even need to place line breaks between statements:

> print "No time" print "for love"
No time
for love

Lua’s types are similarly easy to use.

Building Blocks
Like most scripting languages, Lua is dynamically typed, meaning that while
variables in a program don’t have types, runtime values do. Lua has the
usual basic types you’d expect: numbers, Booleans, and strings:

> =3.14
3.14
> =true
true
> ="The dog's name was 'Indiana!'"
The dog's name was 'Indiana!'

Wondering about integers? Nope, Lua doesn’t have them. In a typical Lua
installation, 64-bit floating-point numbers are the only choice, just like
JavaScript. (One minor exception: For embedded platforms with no floating-
point numbers, you can rebuild Lua from source to use integers instead.)

Strings can be enclosed either in single or double quotes. Backslashes allow
you to escape special or unprintable characters:

> ='Separated\tby\t\ttabs'
Separated by tabs

You concatenate strings with the .. operator:

> ='fortune' .. ' and ' .. 'glory'
fortune and glory

report erratum • discuss

Day 1: The Call to Adventure • 5

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

You take the length of a string with #:

> =#'professor'
9

nil is its own type in Lua, representing “not found” or “does not exist.” (It’s
also useful for deleting items from collections, as you’ll see on Day 2.)

> =some_variable_that_does_not_exist
nil

Now that you’ve seen the fundamental building blocks of Lua data, let’s put
them together into expressions.

Expressions
Arithmetic in Lua looks like math in just about any language. As you’d expect,
multiplication and division take precedence over addition and subtraction.
You can group operations with parentheses.

> =6 + 5 * 4 - 3 / 2
24.5
> =6 + (5 * 4) - (3 / 2)
24.5
> =(6 + 5) * (4 - 3) / 2
5.5

Lua has built-in operators for exponentiation (^) and modulo arithmetic (%):

> =1899 % 100
99
> = 2 ^ 3
8

Instead of Boolean operators, Lua uses the and, or, and not keywords. Conve-
niently, logical expressions short-circuit, meaning that Lua evaluates both
halves of an expression only if it needs to.

> =not ((true or false) and false)
true
> =true or spill_antidote()
true

(No antidotes were spilled in the running of this code.)

You can compare any values for equality and inequality with == and ~=,
respectively. The relative comparisons <, <=, >, and >= are usable only with
strings and numbers:

> ='cobras' < 'rats'
true

Chapter 1. Lua • 6

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

> =#'cobras' < #'rats'
false
> =42 < '43'
stdin:1: attempt to compare number with string
...
> =true < false
stdin:1: attempt to compare two boolean values

We have got a handle on data types and expressions. Let’s breathe some life
into them with a few functions.

Functions
Lua function definitions look like those in any common scripting language:

> function triple(num)
>> return 3 * num
>> end
>
> =triple(2)
6

Strictly speaking, the function name isn’t necessary; you could just as easily
type the following:

> =(function(num) return 3 * num end)(2)
6

In Lua, functions are first-class values; they can be treated just like any other
value in Lua. In particular, they can be assigned to variables, passed as
parameters into other functions, and stored in data structures.

For example, you could easily write a function call_twice() that takes a second
function f() and returns a third function ff that calls f twice:

>
> function call_twice(f)
>> ff = function(num)
>> return f(f(num))
>> end
>> return ff
>> end
>
> function triple(n)
>> return n * 3
>> end
>
> times_nine = call_twice(triple)
>
> =times_nine(5)
45

report erratum • discuss

Day 1: The Call to Adventure • 7

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The ability to treat code as data is crucial for Lua’s power and compactness.
We’ll see more examples of these techniques later on.

Flexible Arguments

What happens when you try to call a function with too few arguments? Some
languages shut you down with an error message. Others, like Haskell, return
a new function. Lua simply assigns a value of nil to all the unused parameters:

> function print_characters(friend, foe)
>> print('*Friend and foe*')
>> print(friend)
>> print(foe)
>> end
> print_characters('Marcus', 'Belloq')
Friend and foe
Marcus
Belloq
> print_characters('Marcus')
Friend and foe
Marcus
nil

Any extra parameters are just ignored:

> print_characters('Marcus', 'Belloq', 'unused')
Friend and foe
Marcus
Belloq

You can also explicitly create variadic functions, that is, functions with an
arbitrary number of inputs. You do so by making the last parameter in the
function declaration an ellipsis (...):

> function print_characters(friend, ...)
>> print('*Friend*')
>> print(friend)
>>
>> print('*Foes*')
>> foes = {...}
>> print(foes[1])
>> print(foes[2])
>> end
>
> print_characters('Marcus', 'Belloq')
Friend
Marcus
Foes
Belloq
nil

Chapter 1. Lua • 8

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Tail Calls

One other nice programmer convenience for functions in Lua is tail call optimization.
This comes into play when you have a recursive function whose recursive call is the
very last thing it does:

function reverse(s, t)
if #s < 1 then return t end
first = string.sub(s, 1, 1)
rest = string.sub(s, 2, -1)
return reverse(rest, first .. t)

end

large = string.rep('hello ', 5000)
print(reverse(large, ''))

Many scripting language implementations would choke on that call; for instance, a
JavaScript version fails with a stack error in the current release version of Google
Chrome. Lua, however, correctly optimizes the recursive call into a simple goto and
completes the calculation.

> print_characters('Marcus', 'Belloq', 'Donovan')
Friend
Marcus
Foes
Belloq
Donovan

We assign the entire list of arguments to the foes table, which we’re treating
like a simple array here. That’s one of the unique features of Lua’s tables that
we’ll see on Day 2.

Multiple Return Values

By the same token, you can also return multiple values from a function and
either use them or ignore them:

> function weapons()
>> return 'bullwhip', 'revolver'
>> end
>
> w1 = weapons()
> print(w1)
bullwhip
>
> w1, w2 = weapons()
> print(w1)
bullwhip
> print(w2)
revolver
>

report erratum • discuss

Day 1: The Call to Adventure • 9

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

> w1, w2, w3 = weapons()
> print(w1)
bullwhip
> print(w2)
revolver
> print(w3)
nil

The rules are the same as for parameters: unused values are ignored, and
unused variables are nil.

Keyword Arguments
Lua doesn’t have a special syntax for keyword arguments like those in Python
or Ruby.4 But you can get the same effect by passing a table as a function
argument:

> function popcorn_prices(table)
>> print('A medium popcorn costs ' .. table.medium)
>> end
>
> popcorn_prices{small=5.00,
>> medium=7.00,
>> jumbo=15.00}
A medium popcorn costs 7

In this example, the table is the set of size names and prices between the
curly braces (with no surrounding parentheses—Lua lets us leave them out
in this case). The function reads a specific value from the table with a dotted
notation: table.medium.

You can build quite a lot with just functions; a whole programming language,
even! But for convenience’s sake, let’s look at some control structures.

Control Flow
Lua’s built-in control flow constructs are the if statement, two flavors of for
loop, and while loops.

The if statement may have an else clause and zero or more elseifs. Unlike some
scripting languages, Lua’s if doesn’t return a value; you’ll need to store results
in a variable or print them:

> film = 'Skull'
>
> if film == 'Raiders' then
>> print('Good')

4. https://docs.python.org/release/1.5.1p1/tut/keywordArgs.html

Chapter 1. Lua • 10

report erratum • discuss

https://docs.python.org/release/1.5.1p1/tut/keywordArgs.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

>> elseif film == 'Temple' then
>> print('Meh')
>> elseif film == 'Crusade' then
>> print('Great')
>> else
>> print('Huh?')
>> end
Huh?

for loops work over a series of numbers (with an optional step argument):

> for i = 1, 5 do
>> print(i)
>> end
1
2
3
4
5
> for i = 1, 5, 2 do
>> print(i)
>> end
1
3
5

You can also use for to loop over items in a collection, but we won’t get to that
until we talk about tables later on.

The final built-in control construct in Lua is the while loop (and its cousin, the
repeat loop, which you’ll learn more about during the exercises):

> while math.random(100) < 50 do
>> print('Tails; flipping again')
>> end
Tails; flipping again
Tails; flipping again

Lua doesn’t limit you to just the “big three” control structures of if, for, and
while. If you combine them with the ability to pass functions around like data,
you can build whatever control structures your program needs. In the exer-
cises for Day 1, you’ll do just that.

Variables
We’ve seen variables already in some of the examples today, but until now
we’ve glossed over how they work. Let’s take a closer look.

report erratum • discuss

Day 1: The Call to Adventure • 11

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

One quirk of Lua is that variables are global by default:

> function hypotenuse(a, b)
>> a2 = a * a
>> b2 = b * b
>> return math.sqrt(a2 + b2)
>> end
>
> =hypotenuse(3, 4)
5
> =a2
9 -- WHOOPS!

You’d probably prefer that our temporary a2 variable not leak outside the
function. Fortunately, all we have to do is preface our local variable definitions
with the local keyword:

> function hypotenuse(a, b)
>> local a2 = a * a
>> local b2 = b * b
>> return math.sqrt(a2 + b2)
>> end

I was initially surprised that local isn’t the default in Lua. But it turns out that
there are good reasons for this.5 If we really want to forbid creating globals
accidentally, Lua’s tables offer a way; we’ll do something very close to this on
Day 2.

Leaving Behind the REPL
So far, we’ve been typing all these expressions into the REPL. This is the best
way to learn Lua, and it makes it easy to build up a program while you’re
typing it.

However, in a minute I’m going to invite you to do some exercises. You may
want to work on these in a text editor and then run them from the command
line. To do so, just save your program with a .lua extension and then run it
with the same lua command you used to launch the REPL, like so:

lua my_program.lua

While it’s not as interactive as the REPL, saving to a file makes it easier to
correct typos when you’re striking out on your own.

5. http://lua-users.org/wiki/LocalByDefault

Chapter 1. Lua • 12

report erratum • discuss

http://lua-users.org/wiki/LocalByDefault
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

What We Learned in Day 1
Today, you got to know the basics of Lua syntax. You saw how easy it is to
define functions, including fancy higher-order functions that take other
functions as input. You now know enough Lua to write a few simple programs,
and in a moment you will.

At this point, you’re probably thinking Lua is an easy-to-use scripting lan-
guage, but with nothing particular to make it stand out in a crowd. That was
certainly my first reaction when I encountered the language.

Then I ran into Lua’s killer feature that makes its expressiveness possible:
tables. On Day 2, you’ll see what’s so special about them.

Your Turn

Find…

• The Lua wiki, which supplements the built-in docs with community-
maintained explanations and examples

• The online version of Programming in Lua, First Edition (the newer paid
editions are good too, but this one is both helpful and free)

• The latest version of the Lua reference manual
• The difference between a while loop and a repeat loop

Do (Easy):

• Write a function called ends_in_3(num) that returns true if the final digit of
num is 3, and false otherwise.

• Now, write a similar function called is_prime(num) to test if a number is
prime (that is, it’s divisible only by itself and 1).

• Create a program to print the first n prime numbers that end in 3.

Do (Medium):

• What if Lua didn’t have a for loop? Using if and while, write a function
for_loop(a, b, f) that calls f() on each integer from a to b (inclusive).

Do (Hard):

• Write a function reduce(max, init, f) that calls a function f() over the integers
from 1 to max like so:

function add(previous, next)
return previous + next

end

report erratum • discuss

Day 1: The Call to Adventure • 13

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

reduce(5, 0, add) -- add the numbers from 1 to 5

-- We want reduce() to call add() 5 times with each intermediate
-- result, and return the final value of 15:
--
add(0, 1) --> returns 1; feed this into the next call
add(1, 2) --> returns 3
add(3, 3) --> returns 6
add(6, 4) --> returns 10
add(10, 5) --> returns 15

• Implement factorial() in terms of reduce().

Day 2: Tables All the Way Down
Today, we’re going to look at two concepts that define the Lua experience:
tables and coroutines. As with many prototype languages, tables define your
data. Coroutines define your control flow. Both are simple but tremendously
powerful, underpinning everything from Lua’s object system to your own
domain-specific languages.

Let’s begin with tables.

One of the first things new programming language tutorials do is inundate
you with a laundry list of data structures: arrays, tuples, vectors, lists, dictio-
naries, and so on. Each of these has its own API, syntax, quirks, and perfor-
mance characteristics.

These collections are all useful, but when I’m first trying out a language, I’m
usually wondering about much more basic things:

1. Where do I keep things when I need to access them by name?
2. Where do I store values in a particular order?

Lua answers both of these questions with one single data structure: the table.

Tables As Dictionaries
Like Python’s dictionaries or Ruby’s hashes, Lua’s tables are collections of
keys (names) with associated values. You create a table with curly braces, an
expression known in Lua as a table constructor:

> book = {
>> title = "Grail Diary",
>> author = "Henry Jones",
>> pages = 100
>> }

Chapter 1. Lua • 14

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

To get data back out of the table, you just write the table name, a dot, and
the key you want to read:

> =book.title
Grail Diary

Using the same dot notation, you can add or modify items:

> book.stars = 5 -- new item
> book.author = "Henry Jones Sr." -- modified item

What about keys with spaces or decimal points in them? Or keys you calculate
at runtime? For these cases, you put the key in square brackets:

> key = "title"
> =book[key]
Grail Diary

You can actually use any data type as a table key with this syntax: Booleans,
functions, and even other tables. Most of the time, though, you’ll encounter
string and number keys.

To remove an item from a table, just set its key to the special value nil:

> book.pages = nil

Lua doesn’t ship with a function to print the contents of a table. Fortunately,
we can define a simple one that will work for these first few examples. With
the REPL still running, switch to your editor and save the following code in
a file called util.lua:

lua/day2/util.lua
function print_table(t)

for k, v in pairs(t) do➤

print(k .. ": " .. v)
end

end

pairs() is a built-in Lua function. More specifically, it’s an iterator, which is a
function designed to plug seamlessly into a for loop. For the gory details on
how to build one, see the relevant chapter in the online Lua book.6 The gist
is that pairs() returns a new function, which the for loop calls over and over
until it returns nil.

Our print_tables function won’t correctly handle nested tables or indeed much
of anything beyond the basics. But it’ll do for now. You can bring it into the
REPL by using the dofile() function:

6. http://www.lua.org/pil/7.1.html

report erratum • discuss

Day 2: Tables All the Way Down • 15

http://media.pragprog.com/titles/7lang/code/lua/day2/util.lua
http://www.lua.org/pil/7.1.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

> dofile('util.lua')

As an alternative, you can launch Lua with your library preloaded by using
the -l option like so:

$ lua -l util

dofile() is a blunt instrument that just slurps up the file you give it. It doesn’t
check to see if the code is already loaded, and it doesn’t let you customize
where Lua looks for files. Later, we’ll use Lua’s module system, which does
both of these and more.

Here’s the output of print_tables() on the book table we defined earlier:

> print_table(book)
author: Henry Jones
title: Grail Diary
pages: 100

So far, the table seems like an ordinary dictionary type. But keys and values
aren’t the only trick up its sleeve.

A Dictionary in Array’s Clothing
Sometimes, you need to store data in a specific order. Other languages give
you lists or arrays for this purpose, with a separate syntax and API from
dictionaries.

In Lua, there’s no need for a second abstraction. Lua views arrays as just a
special case of key-value storage, where the keys are sequential numbers.
You use the same syntax to create an array as you did before; just leave out
the keys:

> medals = {
>> "gold",
>> "silver",
>> "bronze"
>> }

You read and write array contents using a familiar square-bracket notation:

> =medals[1]
gold
> medals[4] = "lead"

Notice that, like mathematicians and civilians, Lua counts array indices
starting at 1.

Chapter 1. Lua • 16

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

At this point, you’re probably wondering, “How can Lua arrays possibly be
efficient?” In most languages, dictionaries are slower than arrays; hashing a
string takes a lot longer than just incrementing a pointer.

Fortunately, the Lua runtime provides a special fast track for arrays.7 As long
as you’re adding values consecutively and using numeric keys, Lua will store
and access the data efficiently.

Arrays and dictionaries aren’t mutually exclusive in Lua. You can mix both
styles in the same table, and Lua will figure out how to store everything effi-
ciently. Some programmers adopt the convention of separating the array and
dictionary parts with a semicolon:

> ice_cream_scoops = {
>> "vanilla",
>> "chocolate";
>>
>> sprinkles = true
>> }
>
> =ice_cream_scoops[1]
vanilla
> =ice_cream_scoops.sprinkles
true

Storing items by name or number is a nice parlor trick, but what if you need
something like custom lookup logic? For that, we turn to Lua’s metatables.

Metatables
In all the tables we’ve seen so far, you pass in a key, and Lua retrieves a value
for you. This lookup logic is built into Lua.

Sometimes, this default behavior isn’t what your program needs. Say, for
example, you want to supply a default value other than nil for unrecognized
keys. Or perhaps you need to log all reads/writes to a particular table. You
can implement both of these behaviors using a data structure known as a
metatable.

The name metatable—the “table behind the table”—sounds a bit abstract,
but if you’ve used JavaScript’s prototypes or Python’s special double-under-
score method names, you’ll find Lua’s approach familiar.8,9 Just think of it
as “custom behavior” for now.

7. http://www.lua.org/pil/27.1.html
8. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
9. https://docs.python.org/2.5/ref/specialnames.html

report erratum • discuss

Day 2: Tables All the Way Down • 17

http://www.lua.org/pil/27.1.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
https://docs.python.org/2.5/ref/specialnames.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Every table in Lua has a corresponding metatable, containing functions for
reading/writing keys, iterating contents, and overloading operators. Most
tables have their metatable set to nil, which punts table operations to Lua:

> greek_numbers = {
>> ena = "one",
>> dyo = "two",
>> tria = "three"
>> }
>
> =getmetatable(greek_numbers)
nil

But you can easily override Lua’s default behavior. The way Lua prints tables
to strings is about as useful as a bullwhip against a loaded M1917.

For instance, the way Lua prints tables to standard output is a little terse:

> =greek_numbers
table: 0x7fec0ad002b0

It’d be nice if we could actually see the keys and values, without needing to
call a separate function. Fortunately, we can.

All we have to do is create a metatable, and store a function inside it under
the name of __tostring. Lua will call this function whenever someone tries to
display our table. We can use a slight variation on the print_table() function we
wrote earlier, where we return the contents as a string instead of printing
them to the console.

Add the following code to your util.lua:

lua/day2/util.lua
function table_to_string(t)

local result = {}

for k, v in pairs(t) do
result[#result + 1] = k .. ": " .. v

end

return table.concat(result, "\n")
end

This new function just stores each key-value pair in a list, then concatenates
them into a string at the end. With larger tables, this approach is faster than
building a single string item by item.

Now, reload util.lua in the REPL:

> dofile('util.lua')

Chapter 1. Lua • 18

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/lua/day2/util.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Finally, we can connect our custom output logic:

> mt = {
>> __tostring = table_to_string
>> }
>
> setmetatable(greek_numbers, mt)
>
> =greek_numbers
ena: one
tria: three
dyo: two

We’ve changed the default behavior for printing tables to strings. Now, when
we call print(), Lua will look for __tostring in the metatable and find this function.
The end result is a much more descriptive output.

Now that we’ve dipped our toes in with an easy function, let’s look at a more
complicated case.

Reading and Writing

By design, Lua’s tables are pretty forgiving. If you try to read a key that’s not
in the table, nothing bad happens; you just get nil back. Say you wanted to
create a stricter table, where reading a nonexistent key, or overwriting an
existing key, caused a runtime error.

This task takes just a few easy steps in Lua:

1. Write a pair of functions to implement the custom read/write behavior
you want to see.

2. Store these functions in a table under the names __index and __newindex.
3. Set this table as your data’s metatable.

Let’s look at step 3 first. Place the following code into strict.lua:

lua/day2/strict.lua
local mt = {

__index = strict_read,
__newindex = strict_write

}

treasure = {}
setmetatable(treasure, mt)

The strict_read() function will read the underlying data from a private table that
we’ll never access directly. Add the following code to the top of the file:

report erratum • discuss

Day 2: Tables All the Way Down • 19

http://media.pragprog.com/titles/7lang/code/lua/day2/strict.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

lua/day2/strict.lua
local _private = {}

function strict_read(table, key)
if _private[key] then

return _private[key]
else

error("Invalid key: " .. key)
end

end

Lua will pass the table and key we’re reading into our lookup function; all we
have to do is return the underlying data, if it exists.

The strict_write() function is similar; it needs to check the private table to see if
the key’s already there. This definition goes right after the one for strict_read():

lua/day2/strict.lua
function strict_write(table, key, value)

if _private[key] then
error("Duplicate key: " .. key)

else
_private[key] = value

end
end

Load your strict.lua file into the REPL using dofile() or the -l option. Then, try
stashing some treasure in your treasure chest:

> treasure.gold = 50
>
> =treasure.gold
50
>
> =treasure.silver
strict.lua:8: Invalid key: silver
...
>
> treasure.gold = 100
strict.lua:16: Duplicate key: gold
...

So far, we’ve used metatables for custom lookup logic, and custom output
formats. You can also use them to overload arithmetic, logical, and comparison
operators. The process is exactly the same: you store functions in a table with
special key names like __add or __sub, then call setmetatable() to bind the custom
behavior to your data.

In the next section, you’ll see just how powerful metatables can be: we’re
going to build our own object-oriented system on top of Lua’s primitives.

Chapter 1. Lua • 20

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/lua/day2/strict.lua
http://media.pragprog.com/titles/7lang/code/lua/day2/strict.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Roll Your Own OO
Lua comes with its own syntax for object-oriented programming. But I’m going
to show you how easy it is to roll your own OO scheme using the powerful
abstractions built into the language. Afterward, we’ll see what a short step it
is from our homegrown solution to a typical Lua one.

The kernel of an object-oriented program is the idea of autonomous objects
sending one another messages. You can implement this idea in Lua with what
you’ve already seen, using plain ol’ tables and functions.

Say you’re building a game and want your player to face a boss-level baddie
during the final stage. The game engine responds to an attack on the villain
by sending the take_hit() message.

Functions in Lua are just ordinary data values that can be stored and passed
around. So, you can make take_hit() into a function and store it inside the bad
guy’s table right alongside the state:

dietrich = {
name = "Dietrich",
health = 100,

take_hit = function(self)
self.health = self.health - 10

end
}

dietrich.take_hit(dietrich)
print(dietrich.health) --> 90

Presumably, the game has more than one villain. If many of them are going
to be sharing an implementation of take_hit(), we need to know whose health
we’re docking. That’s the purpose of the self parameter passed into the func-
tion. (We’ll see a way to hide that in a moment.)

Notice that there’s no distinct Villain class that we’re instantiating (yet)—just
a table with some data inside it. If we want to make another villain, we’re
going to have to initialize the fields ourselves, or copy them from another vil-
lain.

clone = {
name = dietrich.name,
health = dietrich.health,
take_hit = dietrich.take_hit

}

report erratum • discuss

Day 2: Tables All the Way Down • 21

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Assuming we made the clone of our opponent before damaging the original,
we can see that they are indeed two distinct objects:

print(clone.health) --> 100

All that manual copying of fields is going to get tiresome. Let’s fix that next.

Prototypes

To set up the fields automatically each time we create a new villain, we’ll write
a function. To keep things modular, we’ll store this and all villain-related
functions in a Villain table. Here’s a quick first pass, which we’ll soon see has
some problems:

Villain = {
health = 100,

new = function(self, name)
local obj = {

name = name,
health = self.health,

}

return obj
end,

take_hit = function(self)
self.health = self.health - 10

end
}

dietrich = Villain.new(Villain, "Dietrich")

We now have a function that will spin up villains reliably for us. We don’t
really need hundreds of copies of the same take_hit() function floating around,
so we’ve moved it into the common Villain table. But now, we can’t use dietrich
the way we used to:

Villain.take_hit(dietrich) --> ok
dietrich.take_hit(dietrich) --> error: attempt to call field

--> 'take_hit' (a nil value)

dietrich no longer has a field called take_hit(). This behavior lives in the Villain
object now. It’d be nice to use a prototype-based approach like JavaScript,
where the object system looks in our prototype Villain object if it can’t find what
it’s looking for in dietrich.

Chapter 1. Lua • 22

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

As we saw in Metatables, on page 17, we can implement any lookup behavior
we like using Lua’s powerful metatables. Here’s the revised body of the new
function:

new = function(self, name)
local obj = {

name = name,
health = self.health,

}

setmetatable(obj, self)➤

self.__index = self➤

return obj
end,

Those two extra lines delegate field lookup to the Villain prototype. You’ve
probably noticed one key difference from how we used metatables earlier.
Our previous metatables used special functions for custom behavior. Here,
we’re using a table instead. This is Lua-speak for “use this table’s fields as
backup.”

Now, take_hit() works the way we expect:

dietrich = Villain.new(Villain, "Dietrich")
dietrich.take_hit(dietrich) --> ok

So far, we’ve just made copies of a single Villain object. How do we create differ-
ent kinds of villains?

Inheritance

One nice thing about prototype-based object systems is that you don’t need
a special mechanism for inheritance. You just clone objects the way you’ve
been doing.

If, for instance, you want to start churning out supervillains who have more
effective armor, all you have to do is create a single SuperVillain prototype and
start cloning it:

SuperVillain = Villain.new(Villain)

function SuperVillain.take_hit(self)
-- Haha, armor!
self.health = self.health - 5

end

toht = SuperVillain.new(SuperVillain, "Toht")
toht.take_hit(toht)
print(toht.health) --> 95

report erratum • discuss

Day 2: Tables All the Way Down • 23

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

This is starting to look like a fully featured object system. Passing each object
around twice is getting tiresome, though.

Syntactic Sugar

The final step to take us from the ground up to Lua’s object model is a bit of
syntactic sugar. When you call table:method() instead of table.method(self), you can
leave out the self parameter—Lua passes it in implicitly for you.

Villain = { health = 100 }

function Villain:new(name)
-- ...same implementation as before...

end

function Villain:take_hit()
-- ...same implementation as before...

end

SuperVillain = Villain:new()

function SuperVillain:take_hit()
-- ...same implementation as before...

end

Now, our homegrown object system looks a lot like what we’d see in any other
language:

dietrich = Villain:new("Dietrich")
dietrich:take_hit()
print(dietrich.health) --> 90

toht = SuperVillain:new("Toht")
toht:take_hit()
print(toht.health) --> 95

So far today, we’ve started with a simple, flexible data structure and used it
to build sophisticated constructs in just a few lines of code. Next, we’re going
to do the same thing for control flow.

Coroutines
Everything we’ve asked Lua to do has fit in a sequence of one-at-a-time tasks.
You may be wondering about how Lua handles multithreading.

It doesn’t.

Yes, you read that right. Lua does not come with a threading API. Instead, it
ships with a simpler, easier-to-understand primitive for multitasking: the
coroutine.

Chapter 1. Lua • 24

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Coroutines have been around for a few decades. Like threads, they allow your
program to have multiple tasks in progress. Unlike threads, coroutines aren’t
preemptive. You have to add code to your program to point out explicitly when
the current task can safely be paused so that another task can run.

Why should we use them, then, if they require juggling by the programmer?
Because they’re conceptually simpler, and they eliminate a whole class of
concurrency problems. When you look at a piece of code, you know exactly
when it can or can’t be interrupted.

Coroutines vs. Threads

If coroutines are so great, why doesn’t every language use them? Like every program-
ming language feature, coroutines involve trade-offs. What we gain in simplicity and
correctness, we lose in multicore processing.

A single Lua process with many coroutines can only use one of your system’s cores
at a time. However, it’s easy to spin up multiple Lua interpreters within a single
process, and run these across multiple cores.a

Another thing to watch out for with coroutines is that they do not play well with
blocking I/O calls. If your coroutine-based program uses the network, you’ll want to
use the nonblocking select() function and friends.b

a. http://www.inf.puc-rio.br/~roberto/docs/ry08-05.pdf
b. http://www.lua.org/pil/9.4.html

Single Tasks: Generators

Let’s start with a simple example. We’re going to create a coroutine and assign
a task to it. The coroutine starts in the paused state, so right away we’ll
resume() it to get it to start working. Inside the coroutine, we’ll add code to
yield() after each piece of work is done.

First, let’s define a function that has a long task to perform—an infinitely
long one, in fact.

> function fibonacci()
>> local m = 1
>> local n = 1
>>
>> while true do
>> coroutine.yield(m)
>> m, n = n, m + n
>> end
>> end

report erratum • discuss

Day 2: Tables All the Way Down • 25

http://www.inf.puc-rio.br/~roberto/docs/ry08-05.pdf
http://www.lua.org/pil/9.4.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

This function never returns; instead, each time it computes a new Fibonacci
number, it yields to the caller. What’s the difference between yielding and
returning? When we yield, we can come back to the same spot in our program
later.

To start this coroutine, we create it with the coroutine.create() function, then call
it using coroutine.resume():

> generator = coroutine.create(fibonacci)
> succeeded, value = coroutine.resume(generator)
> =value
1

At that moment, the program jumps inside fibonacci() and runs until it hits the
yield(). Then, execution jumps back to the caller, right after the call to resume().
resume() returns a status flag, plus anything that was passed into yield().

Each time we call resume(), we pick up right where we left off the last time we
yield()ed:

> succeeded, value = coroutine.resume(generator)
> =value
1
> succeeded, value = coroutine.resume(generator)
> =value
2

This approach is handy for any task that you want to break into chunks to
keep your program responsive during a long computation or network operation.

Multitasking

Coroutines are simple, but they’re powerful enough to implement thread-like
behavior. Operating system schedulers are tens of thousands of lines long,
but you’re going to write one in a couple dozen!10

What we want is to be able to define a couple of top-level functions that are
going to appear to run concurrently:

function punch()
for i = 1, 5 do

print('punch ' .. i)
scheduler.wait(1.0)➤

end
end

10. http://code.openhub.net/project?pid=bQ7OKaOjyIw&prevcid=1&did=kernel%2Fsched

Chapter 1. Lua • 26

report erratum • discuss

http://code.openhub.net/project?pid=bQ7OKaOjyIw&prevcid=1&did=kernel%2Fsched
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

function block()
for i = 1, 3 do

print('block ' .. i)
scheduler.wait(2.0)➤

end
end

…and then schedule them to run like so:

scheduler.schedule(0.0, coroutine.create(punch))
scheduler.schedule(0.0, coroutine.create(block))

scheduler.run()

None of this thread-like API exists; we’re going to have to build it. The basic
idea is to keep a list of everything we need to do in the future, sorted by when
we need to do it.

Check out the syntax we’re using to call our scheduling functions. This is
Lua’s module system, which (like everything else) is built on top of tables.
We’ll use this system to define our API.

Place the following code in scheduler.lua:

lua/day2/scheduler.lua
local pending = {}

local function schedule(time, action)
pending[#pending + 1] = {➤

time = time,
action = action

}
end

Each time we want an action to happen in the future, we throw it into the
pending array, which we’ll keep ordered by timestamp (number of seconds since
the program started).

The hash symbol in #pending, by the way, is the length operator. You used it
on Day 1 to get the length of a string. Here, you can see that it works on
arrays as well. The highlighted line is a common Lua idiom for appending to
an array.

One other thing to note here: to avoid name collisions, we’re making schedule
and all other functions in this file local. Later on, we’ll specifically expose just
the ones we want callers to see.

report erratum • discuss

Day 2: Tables All the Way Down • 27

http://media.pragprog.com/titles/7lang/code/lua/day2/scheduler.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Remember that our coroutines are supposed to be lightweight. They need to
get in, do their work, and either return or yield quickly. So our wait() function
shouldn’t actually wait. Instead, it should yield back to the scheduler:

local function wait(seconds)
coroutine.yield(seconds)

end

The main run() loop busy-waits until it’s time to run the next task, then resume
that task. If the task calls wait(), the number of seconds will get yielded back
to us, which we use to schedule a future resumption of that task:

local function run()
while #pending > 0 do

sort_by_time(pending)
while os.clock() < pending[1].time do end -- busy-wait

local item = remove_first(pending)
local _, seconds = coroutine.resume(item.action)

if seconds then
later = os.clock() + seconds
schedule(later, item.action)

end
end

end

When the work is complete, the coroutine won’t yield anything to us. The call
to resume() will return nil, and we won’t schedule that task anymore.

The sort_by_time() routine just leans on Lua’s built-in table.sort() function, which
takes an optional comparison function to compare the two entries in the
array. Put this code at the top of scheduler.lua:

lua/day2/scheduler.lua
local function sort_by_time(array)

table.sort(array, function(e1, e2)
return e1.time < e2.time

end)
end

The only function left to implement is remove_first(), which will delete and return
the first item from the array. This is all stock Lua table manipulation:

local function remove_first(array)
result = array[1]
array[1] = array[#array]
array[#array] = nil
return result

end

Chapter 1. Lua • 28

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/lua/day2/scheduler.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Let’s wrap this API up in a nice Lua module. This is just a plain ol’ table with
the functions and names we want to make available to callers. The following
code goes at the end of scheduler.lua:

return {
schedule = schedule,
run = run,
wait = wait

}

And now to run our program! Create a new file called punch.lua with the following
line at the top of it:

lua/day2/punch.lua
scheduler = require 'scheduler'

We use require() instead of dofile() to load our module. These are similar func-
tions, but require() does more for you:

• Checks to see if you’ve already loaded the module
• Searches multiple (configurable) library paths
• Safely namespaces the code in a local variable

Next, add the punch() and block() functions we saw at the beginning of this sec-
tion, plus the setup calls to schedule() and run(). When you run lua punch.lua, you
should see five punches flying by, with blocks happening about half as fre-
quently. Looks like we’re better at offense than defense.

An Interview with Roberto Ierusalimschy, creator of Lua
Us: Why did you write Lua?

Roberto: Back in 1993, I was working as a consultant for Tecgraf, a partnership
between my university (PUC-Rio) and Petrobras (the Brazilian Oil Company). There
were two programs with somewhat similar problems for end-user configuration.
People there had developed some little languages for their specific needs, but soon
they realized that they needed more power from their languages, such as full
arithmetic expressions, variables, conditionals, and even some abstractions (func-
tions). However, they did not want to entangle their entire program with this config-
uration language. At that time, the only language with that profile was Tcl, but its
syntax was too confusing for our users, who were mainly non-professional program-
mers (such as geologists and mechanical engineers). So, we started Lua for the very
specific goal of providing a good language for programs that needed a good config-
uration language.

Us: What do you like the most about Lua?

Roberto: Lua is a language with a very clear and small set of goals. It does not
try to be everything for everybody. I am the first to recommend other languages

report erratum • discuss

Day 2: Tables All the Way Down • 29

http://media.pragprog.com/titles/7lang/code/lua/day2/punch.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

when that is the case. Language design involves many trade-offs, and different
languages solve those trade-offs in different ways, which are good or bad for differ-
ent uses and users. A good programmer should know how to choose the best tool
for each problem.

Us: What kinds of problems does it solve the best?

Roberto: I think Lua is best suited for what it was created, real scripting. Nowa-
days, most people use "scripting language" as almost a synonym for dynamic lan-
guage. But scripting has a more specific meaning, of a language to "orchestrate,"
or to "glue," software that is frequently written in a different language. (Thinking
about the script of a game like the script of a movie gives a good idea of what I
mean by "scripting.") Lua has always been developed with this kind of use in mind.

Us: What is a feature that you would like to change, if you could start over?

Roberto: That is a tricky question to answer ;) The new vararg mechanism, which
was implemented only in version 5.1 of the language (in 2006), is something that
I do not like much. Frequently I think the old mechanism was better, but I do not
think we can roll back to it. The pattern matching functions are another area where
I would like to use something based on PEGs, but I cannot see a roadmap from the
current system for a new one.

Us: What’s the most surprising place you’ve ever seen Lua used in production?

Roberto: Maybe games. Now games are the main niche of the language, but it
was not like that in the beginning. We hardly thought about games in the first years
of the language. When Grim Fandango came out, that was a big surprise for us. It
is also a little surprising to see Lua embedded in so many devices, such as key-
boards, printers, routers, cameras, and the like.

What We Learned in Day 2
What a day! Take a second to pat yourself on the back. You’ve implemented
an object-oriented programming system and a thread-like concurrency API.
And you’ve done so with compact, modular, easy-to-read code.

What made this day possible was Lua’s composable primitives: tables and
coroutines. We saw how tables do dual duty as arrays and dictionaries, and
how Lua provides hooks for us to extend their behavior.

Next, we looked at coroutines, Lua’s approach to concurrency. Even though
coroutines expose a tiny API, we can use them to build sophisticated and
powerful multitasking programs.

Tomorrow, we’re going to teach Lua to interact with C++ code and generate
some music. Remember that scheduler we wrote today? We’re going to need
it to manage all the different voices that are contributing to our song.

Chapter 1. Lua • 30

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Your Turn

Find…

• The LuaRocks system for installing Lua modules onto your system
• The open source LOOP library that implements a more sophisticated

scheduler than the one we’ve written here
• The list of all metatable functions that Lua recognizes (in addition to the
__tostring, __index, and __newindex functions we used)

• The name of the table where Lua keeps its global variables

Do (Easy):

• Write a function called concatenate(a1, a2) that takes two arrays and returns
a new array with all the elements of a1 followed by all the elements of a2.

• Our strict table implementation in Reading and Writing, on page 19 doesn’t
provide a way to delete items from the table. If we try the usual approach,
treasure.gold = nil, we get a duplicate key error. Modify strict_write() to allow
deleting keys (by setting their values to nil).

Do (Medium):

• Change the global metatable you discovered in the Find section earlier
so that any time you try to add two arrays using the plus sign (e.g., a1 +
a2), Lua concatenates them together using your concatenate() function.

• Using Lua’s built-in OO syntax, write a class called Queue that implements
a first-in, first-out (FIFO) queue as follows:

– q = Queue.new() returns a new object.
– q:add(item) adds item past the last one currently in the queue.
– q:remove() removes and returns the first item in the queue, or nil if the

queue is empty.

Do (Hard):

• Using coroutines, write a fault-tolerant function retry(count, body) that works
as follows:

– Call the body() function.
– If body() yields a string with coroutine.yield(), consider this an error mes-

sage and restart body() from its beginning.
– Don’t retry more than count times; if you exceed count, print an error

message and return.
– If body() returns without yielding a string, consider this a success.

report erratum • discuss

Day 2: Tables All the Way Down • 31

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Example usage:

retry(
5,

function()
if math.random() > 0.2 then

coroutine.yield('Something bad happened')
end

print('Succeeded')
end

)

Most of the time, the inner function will fail; retry() should keep trying until
it’s achieved success or tried five times.
Hint: You may need to create more than one coroutine.

Day 3: Lua and the World
You’ve started down the path to adventure, treading lightly at first through
Lua’s gates. You’ve found the simplicity and power in its data structures and
concurrency routines. Now, it’s time to apply that knowledge and use Lua to
build a real project.

Today, we’re going to make music with Lua. Lua doesn’t come with a sound
library, but there are plenty around that are written in other languages. We’ll
use one of Lua’s strongest features, its C interface, to control an open source
music library.

A few stalwart adventurers have blazed this trail before us. They’ve used Lua’s
expressiveness for their program’s logic, C for the performance-critical code,
and the techniques in this chapter to glue the two together. For instance,
Adobe Lightroom,11 World of Warcraft,12 and Angry Birds13 all use Lua either
internally or as a customer-facing extensibility language.

Making Music
There are lots of ways to make music with a computer. Today, we’ll generate
Musical Instrument Digital Interface (MIDI) notes using a C++ library.14 This
means we’ll start the day with just enough C++ to show off Lua’s awesome C

11. http://www.adobe.com/devnet/photoshoplightroom.html
12. http://www.wowwiki.com/Lua
13. http://stackoverflow.com/a/4430719
14. http://www.midi.org

Chapter 1. Lua • 32

report erratum • discuss

http://www.adobe.com/devnet/photoshoplightroom.html
http://www.wowwiki.com/Lua
http://stackoverflow.com/a/4430719
http://www.midi.org
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

integration. We’ll quickly step back into the world of Lua, where we can wrap
everything in an expressive API.

In Good Company

We’ll be in good company in choosing MIDI for making music with software. Topher
Cyll used a similar technique to generate drum beats in Practical Ruby Projects [Cyl07].
Giles Bowkett has built on Topher’s work and written algorithms in Ruby and Coffee-
Script that write new songs.a

Here, we’re going to focus on the more modest goal of playing songs that already exist,
and providing the easiest Lua API we can.

a. http://singrobots.com

Outfitting for Adventure
Before you set out on today’s adventure, you’ll need some supplies. Specifi-
cally, you’ll need to have the following programs installed and ready to go:

• A C++ compiler for your platform
• The CMake tool for building C++ projects15

• The Lua C headers and libraries (these should have come with your Lua
distribution)

• The RtMidi sound library16

• A MIDI synthesizer app, so you can hear your music

The installation instructions vary greatly from platform to platform. Here’s a
quick summary of the steps you need for Windows, Mac, and Linux. If you
get stuck, drop us a line in the forums.17

Windows

1. Install Visual Studio Express 2013 for Windows Desktop.18

2. Download the source code to RtMidi, open the .sln file in Visual Studio,
and build the library.

3. Download and install the Windows version of CMake.
4. Install the VirtualMIDISynth MIDI player.19

15. http://www.cmake.org
16. http://www.music.mcgill.ca/~gary/rtmidi
17. http://forums.pragprog.com
18. http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
19. http://coolsoft.altervista.org/virtualmidisynth

report erratum • discuss

Day 3: Lua and the World • 33

http://singrobots.com
http://www.cmake.org
http://www.music.mcgill.ca/~gary/rtmidi
http://forums.pragprog.com
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://coolsoft.altervista.org/virtualmidisynth
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Mac

1. Make sure you have a C++ compiler on your system, such as the Xcode
command-line tools.20

2. Install the Homebrew package manager.21

3. Add the C sound project package sources:

brew tap kunstmusik/csound

4. Install Lua, CMake, and RtMidi:

brew install lua cmake rtmidi

5. Download and install the SimpleSynth MIDI player.22

Linux

Here’s how to get rolling on Ubuntu Linux; you’ll need to tweak these
instructions for your distribution.

1. Using the Synaptic package manager, add the universe repository to make
more packages available.23

2. Install the compilers, Lua, CMake, and RtMidi:

sudo apt-get install build-essential lua5.2 lua5.2-dev cmake rtmidi

3. Install and configure a MIDI synthesizer for Linux.24 MIDI on Linux is a
bit more of a Wild West situation, but one approach is to use a synthesizer
called ZynAddSubFX together with a helper program called padsp:25,26

sudo apt-get install zynaddsubfx pulseaudio-utils

Creating the Project
Our goal is to produce a command-line program, play, that will play whichever
song we give to it. Songs will be in a Lua-based music notation we’re going
to invent. The system will consist of three parts:

1. A short C++ routine to create a new Lua interpreter and run a script
supplied by the musician (that’s you!)

20. https://developer.apple.com/downloads/index.action
21. http://brew.sh
22. http://notahat.com/simplesynth
23. https://help.ubuntu.com/community/Repositories/Ubuntu
24. http://tedfelix.com/linux/linux-midi.html
25. http://zynaddsubfx.sourceforge.net
26. https://wiki.ubuntu.com/PulseAudio

Chapter 1. Lua • 34

report erratum • discuss

https://developer.apple.com/downloads/index.action
http://brew.sh
http://notahat.com/simplesynth
https://help.ubuntu.com/community/Repositories/Ubuntu
http://tedfelix.com/linux/linux-midi.html
http://zynaddsubfx.sourceforge.net
https://wiki.ubuntu.com/PulseAudio
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

2. A Lua function that sends messages to MIDI devices; written in C++, but
playable from Lua

3. A library of Lua helper routines to provide an easy syntax for writing
music

A Tiny Interpreter

Let’s start with the Lua interpreter. Create a file in your project directory
called play.cpp with the following contents:

lua/day3/a/play.cpp
extern "C"
{
#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"
}

This will make the main Lua runtime and its auxiliary libraries available to
your C++ program. The extern "C" wrapper tells the compiler and linker that
the external Lua code is C, rather than C++.

Now, add a main() function, the place where command-line C programs begin
their lives:

lua/day3/a/play.cpp
int main(int argc, const char* argv[])
{

lua_State* L = luaL_newstate();
luaL_openlibs(L);

luaL_dostring(L, "print('Hello world!')");

lua_close(L);
return 0;

}

Here, we use luaL_newstate() to create a new Lua interpreter. The default inter-
preter is designed to be lightweight, so bringing in Lua’s standard libraries
requires a call to a second function, luaL_openlibs().

Once our interpreter is loaded and ready, we send it some Lua code with the
luaL_dostring() function. Eventually, this Lua code will contain a song. For now,
we’ll just print some text to the console.

At the end of the program, we tear down our interpreter with lua_close().

report erratum • discuss

Day 3: Lua and the World • 35

http://media.pragprog.com/titles/7lang/code/lua/day3/a/play.cpp
http://media.pragprog.com/titles/7lang/code/lua/day3/a/play.cpp
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Building the Project

Now we’re ready to build. This takes two steps:

1. Create a project file using CMake
2. Compile the C program with make or Visual Studio

CMake just needs a quick description of your project to get started. Place the
following text in a file called CMakeLists.txt:

lua/day3/a/CMakeLists.txt
cmake_minimum_required (VERSION 2.8)
project (play)
add_executable (play play.cpp)
target_link_libraries (play lua)

If your Lua headers are somewhere other than the system-wide default loca-
tion, you may need to add an include_directories() line; for example:

lua/day3/a/CMakeLists.txt
include_directories(/usr/local/include)

Now, tell CMake to create your project file by typing the following command
into the terminal from your project directory:

$ cmake .

On Mac and Linux, this will generate a Makefile, which you can use to build
the project by typing the make command. On Windows, CMake will create a
.sln file you can load into Visual Studio and build. Go ahead and do that step
now.

Once you’ve built the project, you should have a program called play.exe or
play in your project directory. If you’re on Windows, run your program like so:

C:\day3> play.exe
Hello world!

On Mac and Linux, type the following command:

$./play
Hello world!

Did you get the console message? Excellent! Now, let’s create some sound.

Adding Audio
First, we need to bring in the RtMidi library. Add the following code to the
top of your C++ program, just after the closing brace of the extern "C" block:

Chapter 1. Lua • 36

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/lua/day3/a/CMakeLists.txt
http://media.pragprog.com/titles/7lang/code/lua/day3/a/CMakeLists.txt
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

lua/day3/b/play.cpp
#include "RtMidi.h"
static RtMidiOut midi;

The RtMidiOut object is our interface to the MIDI generator. Here, we’re just
stashing it in a global variable. Normally we’d use Lua’s sophisticated registry
to store this kind of data, but that’d be overkill for our purposes.27

Now, update your main() function to connect to your MIDI synthesizer:

lua/day3/b/play.cpp
int main(int argc, const char* argv[])
{

if (argc < 1) { return -1; }➤

➤

unsigned int ports = midi.getPortCount();➤

if (ports < 1) { return -1; }➤

midi.openPort(0);➤

lua_State* L = luaL_newstate();
luaL_openlibs(L);

lua_pushcfunction(L, midi_send);➤

lua_setglobal(L, "midi_send");➤

➤

luaL_dofile(L, argv[1]);➤

lua_close(L);
return 0;

}

The highlighted lines show the new additions. First, we use the RtMidi API
to look for a running synthesizer (and exit the program if we fail to find one).
Next, we open the Lua interpreter like we did before. Then, we register a C++
function that will do the grunt work of playing the notes. Finally, we run our
Lua code and close the interpreter.

How do we connect C or C++ code to Lua? Lua uses a simple stack model to
interoperate with C. We push our function’s memory address onto the stack,
then call the built-in lua_setglobal() function to store our function in a Lua
variable.

You’ll notice that we’ve also changed luaL_dostring() to luaL_doFile(). This loads the
Lua code from an external file (we get the filename from the user via the
command line; for example, play song.lua). This way, we don’t have to keep
recompiling our C++ program every time we make a tweak to our Lua code.

27. http://www.lua.org/pil/27.3.1.html

report erratum • discuss

Day 3: Lua and the World • 37

http://media.pragprog.com/titles/7lang/code/lua/day3/b/play.cpp
http://media.pragprog.com/titles/7lang/code/lua/day3/b/play.cpp
http://www.lua.org/pil/27.3.1.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Let There Be Sound

And now for the music! To play a note, we need to send two MIDI messages
to the synthesizer: a Note On message and a Note Off message. The standard
assigns a number to each of these messages, and specifies that they each
take two parameters: a note and a velocity.28

That means our midi_send() Lua function will take three arguments: the message
number, plus the two numeric parameters. When Lua encounters a call like
the following one:

midi_send(144, 60, 96)

…it will push the values 144, 60, and 96 onto the stack, then jump into our
C++ function. We’ll need to retrieve these parameters by their position on the
stack. The top of the stack is at index -1 in Lua; this would be the last value
pushed, or 96.

Because Lua is dynamically typed, these values could be anything: numbers,
strings, tables, functions, and so on. We’re in complete control of what goes
in the .lua script, though. We’re not going to pass in anything other than
numbers, and so that’s the only case we’ll handle here. Add the following
code to your C++ program, just above your main() function:

lua/day3/b/play.cpp
int midi_send(lua_State* L)
{

double status = lua_tonumber(L, -3);
double data1 = lua_tonumber(L, -2);
double data2 = lua_tonumber(L, -1);

// ...rest of C++ function here...

return 0;
}

If our function needed to hand any data back to Lua, we’d push one or more
items back onto the stack and return a positive number. Here, we return zero
to indicate no data.

Updating the Project File

All that’s left is to convert these three numbers into the format RtMidi needs,
and send them to the synthesizer. Add the following code to your midi_send()
function, just before the return:

28. http://www.midi.org/techspecs/midimessages.php

Chapter 1. Lua • 38

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/lua/day3/b/play.cpp
http://www.midi.org/techspecs/midimessages.php
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

lua/day3/b/play.cpp
std::vector<unsigned char> message(3);
message[0] = static_cast<unsigned char>(status);
message[1] = static_cast<unsigned char>(data1);
message[2] = static_cast<unsigned char>(data2);

midi.sendMessage(&message);

We now need to link our project to both Lua and RtMidi. Change the tar-
get_link_libraries() line of your CMakeLists.txt file to the following:

lua/day3/b/CMakeLists.txt
target_link_libraries (play lua RtMidi)

Go ahead and rebuild your project. While that’s cooking, let’s write a short
Lua test program to play a single note, middle C, for one second. The following
code goes into one_note_song.lua:

lua/day3/b/one_note_song.lua
NOTE_DOWN = 0x90
NOTE_UP = 0x80
VELOCITY = 0x7f

function play(note)
midi_send(NOTE_DOWN, note, VELOCITY)
while os.clock() < 1 do end
midi_send(NOTE_UP, note, VELOCITY)

end

play(60)

Give it a try! Start your MIDI synth, then run your play program:

./play one_note_song.lua

You should hear a piano note play middle C for one second.

From Notes to Songs
A one-note song is fine if you’re Tenacious D.29 But let’s shoot for something
a little more ambitious.

First, it’d be nice to write songs in something easier to remember than MIDI
note numbers—something closer to musical notation. Let’s grab the sheet
music to an easily recognizable song, such as Happy Birthday to You!, or
perhaps the public-domain soundalike Good Morning to All (which predates
any copyright claims on the former by over 40 years).30

29. http://en.wikipedia.org/wiki/Tenacious_D
30. http://imslp.org/wiki/File:PMLP98386-Hill-GoodMorningtoAll1893.pdf

report erratum • discuss

Day 3: Lua and the World • 39

http://media.pragprog.com/titles/7lang/code/lua/day3/b/play.cpp
http://media.pragprog.com/titles/7lang/code/lua/day3/b/CMakeLists.txt
http://media.pragprog.com/titles/7lang/code/lua/day3/b/one_note_song.lua
http://en.wikipedia.org/wiki/Tenacious_D
http://imslp.org/wiki/File:PMLP98386-Hill-GoodMorningtoAll1893.pdf
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Since this book isn’t called Seven Musical Notations in Seven Weeks, I’ll gloss
over translating the sheet music, and get straight to the names of the notes
in this song. If you’d like to learn more about musical notation, the ReadSheet-
Music project has a good tutorial.31

The first few notes of the song are D, E, D, G, F#, and they’re all the same
duration (quarter notes), except F# (which is a half note, lasting twice as long).
The song is played in the Middle C octave, which is octave number 4 in scien-
tific pitch notation.32

We could represent these notes in Lua in a number of different ways. For
now, let’s choose a simple string notation: note letter (e.g., Fs for “F sharp”),
followed by octave number (e.g., 4), followed by value (e.g., h for “half note”).

Place the following song in good_morning_to_all.lua:

lua/day3/b/good_morning_to_all.lua
notes = {

'D4q',
'E4q',
'D4q',
'G4q',
'Fs4h'

}

We need to be able to parse these strings into MIDI note numbers and dura-
tions. Since we’ll want to reuse this parsing routine from song to song, let’s
put it in a new file, notation.lua:

lua/day3/b/notation.lua
local function parse_note(s)

local letter, octave, value =
string.match(s, "([A-Gs]+)(%d+)(%a+)")

if not (letter and octave and value) then
return nil

end

return {
note = note(letter, octave),
duration = duration(value)

}
end

First, we use Lua’s string.match() function to make sure the input follows the
pattern we expect. If it does, we then call out to a couple of helper functions

31. http://readsheetmusic.info/readingmusic.shtml
32. http://en.wikipedia.org/wiki/Scientific_pitch_notation

Chapter 1. Lua • 40

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/lua/day3/b/good_morning_to_all.lua
http://media.pragprog.com/titles/7lang/code/lua/day3/b/notation.lua
http://readsheetmusic.info/readingmusic.shtml
http://en.wikipedia.org/wiki/Scientific_pitch_notation
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

to calculate the MIDI note number and the duration in seconds. Finally, we
return a table with the keys note and duration.

The first helper function, note(), is straightforward multiplication and addition.
The following definition goes at the top of notation.lua:

lua/day3/b/notation.lua
local function note(letter, octave)

local notes = {
C = 0, Cs = 1, D = 2, Ds = 3, E = 4,
F = 5, Fs = 6, G = 7, Gs = 8, A = 9,
As = 10, B = 11

}

local notes_per_octave = 12

return (octave + 1) * notes_per_octave + notes[letter]
end

To translate from a note value (for example, q for “quarter note”) to a number
of seconds, we need to know the tempo of the song. We’ll pick a default tempo
of 100 beats per minute, and let individual songs override that if they need
to. Put this definition just after note():

lua/day3/b/notation.lua
local tempo = 100

local function duration(value)
local quarter = 60 / tempo
local durations = {

h = 2.0,
q = 1.0,
ed = 0.75,
e = 0.5,
s = 0.25,

}

return durations[value] * quarter
end

The ed entry in the table, incidentally, is a dotted eighth note, lasting one and
a half times as long as a regular eighth note. We’ll need that for another song
later on.

Looping through this table to play these notes is easy enough. Back in
good_morning_to_all.lua, add the following function:

lua/day3/b/good_morning_to_all.lua
scheduler = require 'scheduler'
notation = require 'notation'

report erratum • discuss

Day 3: Lua and the World • 41

http://media.pragprog.com/titles/7lang/code/lua/day3/b/notation.lua
http://media.pragprog.com/titles/7lang/code/lua/day3/b/notation.lua
http://media.pragprog.com/titles/7lang/code/lua/day3/b/good_morning_to_all.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

function play_song()
for i = 1, #notes do

local symbol = notation.parse_note(notes[i])
notation.play(symbol.note, symbol.duration)➤

end
end

Since we’re specifying both a note number and a duration now, we’ll need a
new definition of play(). We need to send the Note On message, wait for the
right duration, and then send Note Off.

How can we wait without blocking the entire program? Wait, didn’t we
encounter a situation like this before on Day 2? Go grab that awesome
scheduler you wrote in Multitasking, on page 26, and drop a copy into this
project. Then, add the following code to notation.lua:

lua/day3/b/notation.lua
local scheduler = require 'scheduler'

local NOTE_DOWN = 0x90
local NOTE_UP = 0x80
local VELOCITY = 0x7f

local function play(note, duration)
midi_send(NOTE_DOWN, note, VELOCITY)
scheduler.wait(duration)
midi_send(NOTE_UP, note, VELOCITY)

end

Since we’re making a Lua module, we’ll need to export our public functions
at the end of the file:

lua/day3/b/notation.lua
return {

parse_note = parse_note,
play = play

}

Just to recap, notation.lua now contains the following items in order:

1. Our private helper functions, note() and duration()
2. The public parse_note() function
3. The public play() function with a few local variables
4. The return statement describing our Lua module

Using the scheduler does add one extra step to the song. We’ll have to kick
off the event loop at the end of good_morning_to_all.lua:

Chapter 1. Lua • 42

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/lua/day3/b/notation.lua
http://media.pragprog.com/titles/7lang/code/lua/day3/b/notation.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

lua/day3/b/good_morning_to_all.lua
scheduler.schedule(0.0, coroutine.create(play_song))
scheduler.run()

Ready to give your song a listen?

./play good_morning_to_all.lua

Now that we’ve programmed an easy song, let’s sink our teeth into something
a little more substantial.

Voices
Our little homegrown Lua musical notation is coming along nicely. There are
just a couple of things that are going to get tiresome as we encode longer
songs:

• The lack of an API for multiple voices
• The need to enclose all the notes in quote marks

What we’d really like to do is write something like the following:

song.part{
D3q, A2q, B2q, Fs2q

}

song.part{
D5q, Cs5q, B4q, A4q

}

song.go()

…and have both of these parts play at the same time. Thanks to our scheduler,
we can handle the simultaneous playing. Add the following code to notation.lua,
before the final return:

lua/day3/b/notation.lua
local function part(t)

local function play_part()
for i = 1, #t do

play(t[i].note, t[i].duration)
end

end

scheduler.schedule(0.0, coroutine.create(play_part))
end

This function takes an array of notes, t, creates a new function play_part() that
plays these particular notes in order, and then schedules this part to be
played as soon as the top-level song calls run().

report erratum • discuss

Day 3: Lua and the World • 43

http://media.pragprog.com/titles/7lang/code/lua/day3/b/good_morning_to_all.lua
http://media.pragprog.com/titles/7lang/code/lua/day3/b/notation.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

That just leaves the question of how to get rid of the quote marks. Without
quotes, the names of our notes become global variable lookups. Lua stores
its global variables in a table called _G. All we have to do is use the metatable
techniques from Day 2 to do the note lookup on the fly:

lua/day3/b/notation.lua
local mt = {

__index = function(t, s)
local result = parse_note(s)
return result or rawget(t, s)➤

end
}

setmetatable(_G, mt)

This function will be called for any global variable lookup, not just the ones
in our songs. So if there’s a typo in our program somewhere, it will hit this
same lookup function. That’s why we fall back on looking up the value in _G.
The rawget() call, incidentally, bypasses our custom lookup function—so we
won’t get in an infinite loop if we’re looking for an undefined name.

All that’s left are a couple of utility functions. We need to let the musician set
the song tempo, and we should provide a wrapper around scheduler.run(), so
that the final song doesn’t need to load the scheduler module explicitly:

lua/day3/b/notation.lua
local function set_tempo(bpm)

tempo = bpm
end

local function go()
scheduler.run()

end

Don’t forget to update your module’s return statement to add the new public
functions:

lua/day3/b/notation.lua
return {

parse_note = parse_note,
play = play,
part = part,
set_tempo = set_tempo,
go = go

}

Now, we have all we need to take on a more complex song.

Chapter 1. Lua • 44

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/lua/day3/b/notation.lua
http://media.pragprog.com/titles/7lang/code/lua/day3/b/notation.lua
http://media.pragprog.com/titles/7lang/code/lua/day3/b/notation.lua
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Canon in D
You can find lots of public-domain musical scores at the Petrucci Project.33

I’ve chosen Pachelbel’s Canon in D.34

Here’s a small part of the canon:

lua/day3/b/canon.lua
song = require 'notation'

song.set_tempo(50)

song.part{
D3s, Fs3s, A3s, D4s,
A2s, Cs3s, E3s, A3s,
B2s, D3s, Fs3s, B3s,
Fs2s, A2s, Cs3s, Fs3s,

G2s, B2s, D3s, G3s,
D2s, Fs2s, A2s, D3s,
G2s, B2s, D3s, G3s,
A2s, Cs3s, E3s, A3s,

}

song.part{
Fs4ed, Fs5s,
Fs5s, G5s, Fs5s, E5s,
D5ed, D5s,
D5s, E5s, D5s, Cs5s,

B4q,
D5q,
D5s, C5s, B4s, C5s,
A4q

}

song.go()

If you type this all in and run ./play canon.lua, you’ll be treated to one of my
favorite pieces of music—with multiple parts playing at the same time, no
less!

33. http://imslp.org/wiki/Main_Page
34. http://imslp.org/wiki/File:WIMA.7c2a-PachelbelCanon.pdf

report erratum • discuss

Day 3: Lua and the World • 45

http://media.pragprog.com/titles/7lang/code/lua/day3/b/canon.lua
http://imslp.org/wiki/Main_Page
http://imslp.org/wiki/File:WIMA.7c2a-PachelbelCanon.pdf
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

What We Learned in Day 3
On the final step of our journey through Lua, we learned Lua’s clean C API.
By pushing and popping arguments and return values off Lua’s stack, we
can easily exchange data between the Lua and C worlds.

We put this newfound knowledge together with the metatable and coroutine
skills we learned on Day 2, as we wrote a simple MIDI player in C++ and Lua.
This is exactly the sort of thing people use Lua for: wrapping low-level libraries
into an easy-to-use interface. And this is how I got out of that jungle of code
I mentioned at the beginning of Day 1.

Your Turn

Find…

• How the luaL_dofile() function signals an error in the script
• How to retrieve Lua error information from the stack in C
• The busted unit test framework

Do (Easy):

• Find the music for your favorite adventure movie’s theme song, and
translate it to Lua. Play it with the music player you wrote.

• The way it stands, we have to put require 'notation' at the beginning of every
song and song.go() at the end. Modify play.cpp to do this for you so that songs
can just contain the tempo and parts.

Do (Medium):

• We’ve always played notes at one constant volume. Design a notation for
louder or quieter notes, and modify your music player to support it.

• If there’s an error in the Lua script, the whole C++ program just exits
without a word. Modify play.cpp to report any error information returned
from the Lua interpreter.

Do (Hard):

• The current implementation of play.cpp opens one global MIDI output port.
Change it to allow the user to pass a port into midi_send() so that you can
control more than one device from the same script.

Chapter 1. Lua • 46

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Wrapping Up Lua
A lot of programmers see the surface of Lua’s clean syntax and assume it’s
just another everyday scripting language. I certainly had that feeling at first
glance. But I hope that as you’ve taken a deeper look at its tables and
coroutines, you’ve enjoyed their beauty and simplicity.

Strengths
Recall Lua’s original goal: to be an approachable, portable language for
stitching together software components. These are all properties of a good
configuration language—small wonder, then, that this sweet spot is where
Lua shines.

Lua’s source code is easy to read, runs quickly, and works on a huge variety
of platforms. A newer implementation of the language, LuaJIT, takes these
advantages even further with faster performance and a friendlier C interface.35

Finally, Lua is easy to drop into your project. With just a couple of header
files and libraries, you can spin up a Lua interpreter and make your program
scriptable. You can even sandbox the embedded interpreter, limiting its access
to (for instance) the network and filesystem—a vital safeguard if you’re running
scripts written by end users.36

Weaknesses
The great thing about Lua is that you can build everything yourself. The
downside is that you often have to build everything yourself. Lua stays
agnostic on object frameworks, control flow, and so on—which means that
there’s rarely one official, batteries-included implementation of these things.

While Lua is faster than its contemporaries, it does fall behind in a few per-
formance categories. It requires a bit of creativity to do string handling effi-
ciently.37 Developers also need to do a little heavy lifting in Lua to take
advantage of multicore systems.

Finally, Lua has a few Pascal-like quirks that rub some people the wrong way.
In particular, the 1-based array indexing and do/end notation are surprising
for people new to the language.

35. http://luajit.org/luajit.html
36. http://www.luafaq.org/#T1.32
37. http://lua-users.org/lists/lua-l/2005-10/msg00137.html

report erratum • discuss

Wrapping Up Lua • 47

http://luajit.org/luajit.html
http://www.luafaq.org/#T1.32
http://lua-users.org/lists/lua-l/2005-10/msg00137.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Final Thoughts
Lua’s prototype-based object approach proves that you don’t need classes to
build a great object system. If you’re interested in other prototype systems,
check out Self, Io, and of course JavaScript.38,39,40

I’ll never forget how Lua taught me the key lesson that code is just data. Just
like any other kind of data, you can spin up new functions on the fly, store
them, and pass them around your program. This mindset made me a better
programmer, no matter which language I’m writing in.

Congratulations on making it through this adventure. I hope you had a good
time, and wish you well as you head off to Factor.

38. http://selflanguage.org
39. http://iolanguage.org
40. https://developer.mozilla.org/en-US/docs/Web/JavaScript

Chapter 1. Lua • 48

report erratum • discuss

http://selflanguage.org
http://iolanguage.org
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

CHAPTER 2

Factor
by Fred Daoud

One of my favorite programming techniques is function composition. Start
with the input, pass it through a series of functions, with the output of one
function being the input to the next function, and use the output of the last
function as the final result. Each function is small and focused. You solve
problems by creating and connecting blocks of code.

Function composition is the essence of Factor. Be aware that Factor is unlike
any other language you’ve tried, and its paradigm might alter your mind. It
will seem unorthodox, like Mr. Miyagi’s famous training regime for the Karate
Kid. Just paint the fence, Reader-san, and give your mind a little time to
acclimate. I promise it’s worth it.

Here’s a quick glimpse of Factor. Whereas in JavaScript you might have:

var x = f(42);
var y = g(x);
return h(y);

or even:

return h(g(f(42)));

in Factor, you write:

42 f g h

No variable names, and no parentheses, dots, or any other punctuation to
indicate function composition. It’s implied that the result of calling one
function (called a word in Factor) is made available to the next word. This is
handled automatically by Factor using the stack, which is simply a container
that holds values. Words take their input from the stack and push their result
onto the stack, which is then operated on by the next word.

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Also notice that the words f g h are called in the same order as we read them,
left to right.

In the JavaScript version, f is a function, and the parentheses in f(42) indicate
to apply f to the value 42. This makes JavaScript an applicative language.
Most other languages, such as Java, Ruby, Python, Clojure, Scala, Haskell,
and Erlang, are applicative.

Factor is a concatenative language because instead of applying functions (or
words), you concatenate them, simply writing them one after the other.
Function composition is the default way of dealing with an expression such
as f g h. Other concatenative languages include Forth, Joy, PostScript, Cat,
Om, Retro, and Kitten. If you are familiar with Forth or Joy, you’ll notice some
similarities in Factor.

Instead of writing

wrapWordsAsList(capitalize(strip(text)))

you can write

text strip capitalize wrapWordsAsList

It’s a beautiful expression of programmer intent. Let’s discover more about
Factor.

Day 1: Stack On, Stack Off
Over the next three days, we’ll learn more about Factor and explore what
makes its programming model unique. Day 1 will be spent experimenting
with code in Factor’s interactive environment. We’ll get a feel for how Factor
code works and we’ll get used to using the stack to communicate input and
output values.

On Day 2, we’ll learn how to expand beyond the confines of the interactive
sandbox and organize Factor code into source files. We’ll run standalone
programs and write unit tests. Day 3 will conclude our Factor adventure with
a deeper exploration of the concatenative programming style. We’ll solve two
sample problems using pipelines of functions, which is one area where Factor
really shines. We’ll end the journey by looking at where to go for more docu-
mentation and examples.

Let’s get started by getting Factor up and running.

Chapter 2. Factor • 50

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Installing Factor
The easiest way to install Factor is to download a binary page from Factor’s
home page.1 Then, follow the instructions to launch the Factor UI for your
operating system.2

Using the Listener
Most recent programming languages come with an interactive console where
you can type snippets of code and see the results on the command line. Factor
has that, but it also has a much richer graphical version. The Factor UI, called
the Listener, is an interactive graphical environment where you can not only
experiment with Factor code, but also trigger autocomplete as you type, browse
documentation, jump to source code within your favorite code editor, and
more.3

Figure 1, The Factor Listener, on page 52 shows an example of the Listener
window. In the screenshot, you can see how the Listener shows the state of
the stack and how clear empties the stack. You can trigger autocomplete by
typing the first few letters of a word and pressing Tab , which pops up a list
of possible completions.

While in the Listener, you can type in Factor code and see the results. After
every line of code that you write, the Listener shows you the values that are
currently on the stack. You can navigate among your previous and next lines
of code with Ctrl+P and Ctrl+N .

Getting Stacked
Now, breathe in, breathe out, Reader-san. It’s time to say hello to Factor.
Type the following code in the Listener. The IN: scratchpad prompt indicates that
you are currently in the scratchpad vocabulary. Don’t worry about vocabularies
right now; we’ll discuss them later.

IN: scratchpad "Hello, world" print
Hello, world

This prints Hello, world as you would expect. What might not be so obvious,
however, is that print is not a message passed to the "Hello, world" string. Rather,
"Hello, world" is pushed onto the stack and the print word takes a value from the
stack and prints it. You can see how this happens step by step in the Listener.

1. http://factorcode.org/
2. http://concatenative.org/wiki/view/Factor/Running%20Factor
3. http://docs.factorcode.org/content/article-ui-tools.html

report erratum • discuss

Day 1: Stack On, Stack Off • 51

http://factorcode.org/
http://concatenative.org/wiki/view/Factor/Running%20Factor
http://docs.factorcode.org/content/article-ui-tools.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Figure 1—The Factor Listener

Enter the clear command to clear the stack, then just type "Hello, world" and
press Enter :

IN: scratchpad clear
IN: scratchpad "Hello, world"

--- Data stack:
"Hello, world"

You now have "Hello, world" on the stack. You can even push another string
onto the stack:

Chapter 2. Factor • 52

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

IN: scratchpad "Hello, Factor"

--- Data stack:
"Hello, world"
"Hello, Factor"

Now you have two values on the stack. Try entering the print word:

IN: scratchpad print
Hello, Factor

--- Data stack:
"Hello, world"

As you can see, print took the last value from the stack, "Hello, Factor", and
printed it out. That leaves the previous value, "Hello, world", on the stack. Next,
try typing length:

IN: scratchpad length

--- Data stack:
12

The length word took "Hello, world" from the stack and pushed the length of the
string back onto the stack. Every word in Factor takes zero or more values
from the stack and pushes zero or more values onto the stack. The next word
then works with the resulting stack, and so on. When running a Factor pro-
gram, the net effect of all the words assembled together should be consistent,
with each word having at least as many values on the stack as they expect
to pull out, and pushing out as many values as they claim to. When the stack
contains more values than a word needs to use, the extra values simply remain
on the stack.

One more tidbit of information before we move on: a comment in Factor code
starts with ! followed by a space, and discards all input until the end of the
line:

! This is a comment
"Hello, world" print ! this prints "Hello, world"

Let’s continue with some simple math.

Factor Math
The words +, -, *, and / take two values from the stack and push the result
back. The . word takes a value from the stack and pretty-prints it. Ending a
line of code with . in the Listener is a convenient way of seeing results without
accumulating values on the stack. Give it a try:

report erratum • discuss

Day 1: Stack On, Stack Off • 53

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

IN: scratchpad 40 2 + .
42
IN: scratchpad 40 2 - .
38
IN: scratchpad 20 9 * 5.0 / 32 + .
68.0

You can see that math in Factor uses the postfix notation. Here, you see the
difference between calculating 20 + (5 * 4) and (20 + 5) * 4:

IN: scratchpad 5 4 * 20 + .
40
IN: scratchpad 20 5 + 4 * .
100

Words are called in the order that they appear, so it’s just a matter of
arranging the expression in the right order. You don’t have to worry about
operator precedence ambiguity.

Data Types
Factor uses standard data types such as strings, numbers, Booleans, and
sequences. Let’s have a closer look.

Booleans

Factor represents Boolean values with t and f. Let’s see them in the Listener
by trying out some Boolean tests with = and >:

IN: scratchpad 4 2 = .
f
IN: scratchpad 4 2 > .
t
IN: scratchpad "same" "same" = .
t
IN: scratchpad "same" length "diff" length = .
t

In Boolean contexts, any value other than f is considered as true, including
zero, empty strings, and empty sequences.

Sequences

So far, we’ve been working with single values. Factor supports sequences of
values as well, such as lists and maps.

You can create a list of values by delimiting them with { and }, with a space
between each value, such as { 4 3 2 1 }. Don’t forget the space after the { and
before the }. As in Lisp, there are no comma separators, and no more errors
due to a forgotten trailing comma.

Chapter 2. Factor • 54

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Maps are key-value pairs, so you define them as such: a list of lists where
each nested list contains two values, the key and the value. For example:

{ { "one" 1 } { "two" 2 } { "three" 3 } { "four" 4 } }

To look up a value from a map, provide the map and the key to the word of,
or the key and the map to the at word:

IN: scratchpad { { "one" 1 } { "two" 2 } { "three" 3 } } "one" of .
1
IN: scratchpad "two" { { "one" 1 } { "two" 2 } { "three" 3 } } at .
2

Things are getting interesting. Let’s look at quotations next.

Quotations

Words can be placed on the stack to be used by other words. Often known
as anonymous functions in other languages, words that are used as values
are called quotations. Quotation literals are delimited by square brackets:

[42 +]

This defines a quotation that, when executed, adds 42 to the value that resides
on top of the stack. You can then use call to execute the quotation. Try it out:

IN: scratchpad 20

--- Data stack:
20

IN: scratchpad [42 +]

--- Data stack:
20
[42 +]

IN: scratchpad call

--- Data stack:
62

Quotations are more interesting when used with conditionals.

Conditionals
Reminiscent of Io from the original Seven Languages in Seven Weeks [Tat10],
conditionals in Factor take quotations as arguments. The if word takes a
value and two quotations and calls the first quotation if the value is anything
but f (false). In the latter case, the second quotation is called:

report erratum • discuss

Day 1: Stack On, Stack Off • 55

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Don’t Forget the Spaces!

Factor uses less punctuation than most programming languages, but whitespace is
significant. Each token in a line of Factor code is separated by one or more spaces—
that can take some getting used to because you need spaces in places where they
are not required in other languages.

For example, { and } indicate the beginning and end of a sequence. Don’t forget the
surrounding spaces! If you write {1 2 3 4}, without a space after { and before }, Factor
sees {1 and 4} as invalid tokens. Similarly, you need a space after the [and before
the] when writing a quotation.

In other cases, it’s important not to use spaces. The math.ranges vocabulary has a [1,b]
word that creates a range sequence from 1 to the value that’s on the stack. [1,b] is
just the name of the word; the []’s are not special syntax, the 1 is not a value, and
the b is not a variable. You can’t write 10 [5,b] and expect a range from 5 to 10. Instead,
you’d write 5 10 [a,b], because [a,b] is the word to get a range using two values from
the stack.

IN: scratchpad 10 0 > ["pos"] ["neg"] if .
"pos"
IN: scratchpad -5 0 > ["pos"] ["neg"] if .
"neg"
IN: scratchpad "cool" ["yes"] ["no"] if .
"yes"

As we have seen thus far, the arguments to a word belong before the word,
since they get placed on the stack for the word to consume. Looking at the
previous code, we can see how that can take some getting used to for the
venerable if. After seeing so much code in the form of

if <condition> <true branch> <false branch>

it can take a bit of brain rewiring to decipher

<condition> <true branch> <false branch> if

If all you need is to pick one of two values depending on a condition, it’s more
concise to use ?, which accepts values instead of quotations:

IN: scratchpad 10 0 > "pos" "neg" ? .
"pos"

IN: scratchpad -5 0 > "pos" "neg" ? .
"neg"

Two siblings of if are when and unless. These are conditionals with no else clause:

IN: scratchpad 10 0 > ["pos" .] when
"pos"

Chapter 2. Factor • 56

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

IN: scratchpad -5 0 > ["neg" .] unless
"neg"

Let’s press on to rearranging the values that are on the stack.

Stack Shuffling
Sometimes the values on the stack are not quite as you need them. They
might be in reverse order, or you might want a value to remain on the stack
after you have used it. Shuffle words reorder, duplicate, or eliminate values
on the stack. Shuffle words include dup, drop, nip, swap, over, rot, and pick, and
are best illustrated with examples. Observe what happens to the values on
the stack after calling the stack shuffling word. Also note that the Listener
prints the data stack in reverse order. The value that you see at the bottom
of the output is actually the top of the stack. This might seem surprising, but
it is meant to conveniently keep the objects that are going to be operated on
closer to the input fields in the Listener.

IN: scratchpad 1 dup ! duplicates a value
--- Data stack:
1
1
IN: scratchpad clear

IN: scratchpad 1 2 drop ! drops the top value
--- Data stack:
1
IN: scratchpad clear

IN: scratchpad 1 2 nip ! drops the second value
--- Data stack:
2
IN: scratchpad clear

IN: scratchpad 1 2 swap ! swaps two values
--- Data stack:
2
1
IN: scratchpad clear

IN: scratchpad 1 2 over ! duplicates the second value over to the top
--- Data stack:
1
2
1
IN: scratchpad clear

IN: scratchpad 1 2 3 rot ! rotates three values

report erratum • discuss

Day 1: Stack On, Stack Off • 57

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

--- Data stack:
2
3
1

Wax on, wax off. Sometimes Mr. Miyagi’s car needed wax, and sometimes
Daniel-san needed to wax the car just to learn how to do it. So it is with the
Factor stack. You sometimes need to shuffle the stack. Most of the time,
however, you’ll be using higher-order words—combinators—for an elegant
solution to the problem of excessive stack shuffling.

Higher-Order Words with Combinators
Earlier, we used quotations to push snippets of code on to the stack. Combi-
nators are related—they use quotations to operate on values from the stack.

In Quebec, Canada, we have a Goods and Services Tax (GST) of 5%, and a
Provincial Sales Tax (PST) of 9.975%. (Don’t ask.) Let’s say we wanted to cal-
culate the GST and PST for a base price. First, we want to multiply the base
price by 0.05, but we need to dup the base price so that we keep it on the
stack. Otherwise, we won’t have the base price available for multiplying by
0.09975 to calculate the PST.

IN: scratchpad 44.50 dup 0.05 *

--- Data stack:
44.5
2.225

We now have the base price and the GST on the stack. We need to swap the
values so that we can multiply the base price by 0.09975 to calculate the
PST:

IN: scratchpad swap 0.09975 *

--- Data stack:
2.225
4.438875

We have calculated the GST and PST, but we needed to do a bit of stack
shuffling to get the desired result. Our line of code to calculate the taxes on
a base price of 44.50 is:

IN: scratchpad 44.50 dup 0.05 * swap 0.09975 *

--- Data stack:
2.225
4.438875

Chapter 2. Factor • 58

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

You can imagine how stack shuffling can quickly get out of hand and hurt
your head as you try to keep track of what’s on the stack.

Fortunately, Factor has several combinators that reduce or eliminate stack
shuffling and make your code clearer. In the previous example, all we really
wanted to do was to apply two operations on a value and get the two results.
The word bi does exactly that. It takes a value and two quotations and applies
each quotation to the value. Our tax calculation code becomes:

IN: scratchpad 44.50 [0.05 *] [0.09975 *] bi

--- Data stack:
2.225
4.438875

Much better. Factor has several words for applying quotations to values.
Whereas bi applies two quotations to one value, bi@ applies one quotation to
two values. We could use it to calculate the GST to two base prices:

IN: scratchpad 44.50 22.50 [0.05 *] bi@

--- Data stack:
2.225
1.125

The other variant of bi is bi*, which takes two values and two quotations,
applying the first quotation to the first value and the second quotation to the
second value:

IN: scratchpad 44.50 22.50 [0.05 *] [0.09975 *] bi*

--- Data stack:
2.225
2.244375

Factor has several combinators for applying quotations to values:

• dip applies a quotation to the second value on the stack, keeping the first
value intact.

• keep applies a quotation to a value and puts the value back on top of the
stack.

• tri, tri@, and tri* correspond to their bi equivalents, with three values and
three quotations.

report erratum • discuss

Day 1: Stack On, Stack Off • 59

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Combinators are fundamental in Factor. It’s worth looking them over in the
Factor documentation.4

Well, that was a good first day spent taming the Factor stack. Let’s recap and
do a few exercises.

What We Learned in Day 1
We spent our first day discovering Factor’s intriguing programming style. We
discussed how Factor uses a stack to hold values from one word to the next.
We learned about data types, math operators, sequences, and quotations.
Finally, we concluded the day by talking about conditionals, stack-shuffling
words, and the all-important combinators, which give Factor many crafty
ways of manipulating the stack.

Your Turn
Use the Listener for today’s exercises. After finding some key Factor reference
points, fire up the Listener and use the exercises to get the hang of putting
parameters before function calls, using the stack, and composing words by
chaining them together. Time for some code karate training, Reader-san.

Find…

• The Factor GitHub repository, from which you can explore the source
code.

• Factor’s mailing list.

• The Factor Handbook, from which you can browse documentation for
everything that comes with Factor.

• How to open the documentation for a specific word directly from the Lis-
tener. Use this to find the documentation for sq.

• How to run the command-line version of the Listener.

Do (Easy):

• Using only * and +, how would you calculate 32 + 42 with Factor?

• Enter USE: math.functions in the Listener. Now, with sq and sqrt, calculate the
square root of 32 + 42.

• If you had the numbers 1 2 on the stack, what code could you use to end
up with 1 1 2 on the stack?

4. http://docs.factorcode.org/content/article-combinators.html

Chapter 2. Factor • 60

report erratum • discuss

http://docs.factorcode.org/content/article-combinators.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

• Enter USE: ascii in the Listener. Put your name on the stack, and write a
line of code that puts "Hello, " in front of your name and converts the whole
string to uppercase. Use the append word to concatenate two strings and
>upper to convert to uppercase. Did you have to do any stack shuffling to
get the desired result?

Do (Medium):

• The reduce word takes a sequence, an initial value, and a quotation and
returns the result of applying the quotation to the initial value and the
first element of the sequence, then the result of applying the quotation
to the result and the next element of the sequence, and so on. Using reduce,
write a line of code that returns the sum of the numbers 1, 4, 17, 9, 11.
Try it out on your own first, but if you are truly stuck, look back carefully
over the pages you’ve just read. There is a hint hiding somewhere.

• Now calculate the sum of the numbers 1 to 100 in a similar fashion. Do
not manually write the sequence of numbers. Instead, enter USE: math.ranges
in the Listener, and use the [1,b] word to produce the sequence.

• The map word takes a sequence and a quotation, and returns a sequence
of results of applying the quotation to each value. Using map and the words
that you have learned so far, write a line of code that returns the squares
of the numbers 1 to 10.

Do (Hard):

• Write a line of code that, given a number between 1 and 99, returns the
two digits in the number. That is, given 42 <your code>, you should get 4
and 2 on the stack. Use the words /i, mod, and bi to accomplish the task.

• Repeat the previous exercise for any number of digits. Use a different
strategy, though: first convert the number to a string, then iterate over
each character, converting each character back to a string and then to a
number. Enter USE: math.parser in the Listener and use number>string,
string>number, 1string, and each.

Day 2: Painting the Fence
Today, we will move our exploration of Factor from the Listener to source
files. We’ll learn how to define words, organize them into modules called
vocabularies, run them as standalone programs, and test them with unit
tests.

report erratum • discuss

Day 2: Painting the Fence • 61

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Defining Words
We’ve been using Factor words that are defined in the library. Let’s see how
we can define our own words. A word definition starts with a colon, a space,
and the name of the word. Then comes the stack effect, the code for the word,
and finally a space and a semicolon. For example:

: add-42 (x -- y) 42 + ;

That defines a word which adds 42 to the number that’s on the stack. The (
x -- y) part is the stack effect: the number of values that the word takes from
the stack and pushes back onto the stack, on the left and right side of the --,
respectively. You can see examples of stack effects by typing a word in the
Listener and looking at the declaration appear at the bottom of the window.
Try typing +, you should see the following show up:

IN: math MATH: + (x y -- z)

The stack effect of + shows that it takes two values from the stack and
pushes one value back. Words are allowed to take no value from the stack or
push no value back. For example, try looking at the stack effect for print and
read1.

When you look at the stack effect for a word, notice that the symbols such
as x and y are not variable names; they are not used in the code for the word.
Instead, they are just symbols, indicating the number of values. Although
the names are arbitrary, there are some naming conventions for the stack
effect, such as str, obj, seq, elt, and so on, to make the definition more
descriptive.

Here is a word that takes a sequence of numbers and returns their sum:

: sum (seq -- n) 0 [+] reduce ;

I’ll say it again: don’t forget the spaces! You need spaces after the colon,
around the parentheses, around the double-dash, and before the semicolon.
Forgetting those spaces is an easy mistake to make when coming to Factor
from another programming language.

Returning Multiple Values
We’ve seen words that use multiple values from the stack, but what about
returning more than one value? In most languages, this cannot be done
without artificially returning multiple values by stuffing them into a single
collection. The caller must then unpack the collection to get the multiple
values back.

Chapter 2. Factor • 62

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Not so in Factor:

IN: scratchpad : first-two (seq -- a b) [first] [second] bi ;
IN: scratchpad { 34 32 64 19 } first-two

--- Data stack:
34
32

Simply by declaring multiple names on the right-hand side of -- in the word’s
stack effect, we can write words that return multiple, individual values.

Getting Help
Before moving on to vocabularies, I’ll mention another useful bit of information
about Factor words. Within the Listener, you can quickly get to the documen-
tation for a word. Type a backslash, a space, followed by the word and finally
help:

IN: scratchpad \ at help

This opens the help browser for the at word, as shown in Figure 2, The Factor
help browser, on page 64.

Other commands you can use in the Listener to get help are about and apropos.
For example:

• "sequences" about : documentation for the sequences vocabulary
• "json" apropos : show vocabularies, words, and articles that contain json

The online help is a tremendous resource for discovering the words within
the Factor libraries. Now that we can also define our own words, let’s see how
we organize them into vocabularies.

Working with Vocabularies
Words are organized into vocabularies. Think packages, modules, or names-
paces. When you typed a word such as print in the Listener, the following
appeared at the bottom of the window:

IN: io : print (str --)

The vocabulary in which the word is defined appears after IN:. So print belongs
to the io vocabulary.

For convenience, the Listener automatically loads a number of vocabularies.
You can get a list of the 50 or so vocabularies that are initially loaded in the
Listener by typing interactive-vocabs get [print] each.

report erratum • discuss

Day 2: Painting the Fence • 63

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Figure 2—The Factor help browser

If you type a word that belongs to a vocabulary that the Listener does not
load by default, you’ll get an error message. For example:

IN: scratchpad 4.2 present
No word named "present" found in current vocabulary search path

You can load a vocabulary with USE: as follows:

IN: scratchpad USE: present
IN: scratchpad 4.2 present

--- Data stack:
"4.2"

After loading the present vocabulary, we were able to use the present word. To
load multiple vocabularies, either repeat USE: for each vocabulary, or write
USING: followed by the list of vocabularies to load and ending with a semicolon:

Chapter 2. Factor • 64

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

USE: io
USE: math.functions

USING: io math.functions ;

Those two ways of loading vocabularies are equivalent.

Within a vocabulary, you can define a symbol with SYMBOL: and use it to stash
a value with set. You can later retrieve the value with get. For example:

IN: scratchpad SYMBOL: tax-rate
IN: scratchpad 0.05 tax-rate set
IN: scratchpad tax-rate get

--- Data stack:
0.05

You can also use on, off, and toggle for a symbol that holds a Boolean value:

IN: scratchpad SYMBOL: flag
IN: scratchpad flag on
IN: scratchpad flag get .
t
IN: scratchpad flag off
IN: scratchpad flag get .
f
IN: scratchpad flag toggle
IN: scratchpad flag get .
t

For an integer value, use inc and dec:

IN: scratchpad SYMBOL: counter
IN: scratchpad counter inc
IN: scratchpad counter get .
1
IN: scratchpad counter dec
IN: scratchpad counter get .
0

Symbols are a convenient way to store values and communicate them between
vocabularies.

Let’s march on to creating vocabularies in source files and using them in
standalone programs.

Running Standalone Programs
We’ll now create a simple vocabulary and use it in a standalone program.
Start from an empty factor directory and create an examples subdirectory.
Within examples, create two more subdirectories: greeter and hello. Finally, create

report erratum • discuss

Day 2: Painting the Fence • 65

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

a greeter.factor and a hello.factor file within those subdirectories so that you end
up with the following structure:

factor
`-- examples

|-- greeter
| `-- greeter.factor
`-- hello

`-- hello.factor

We’ll start by creating the greeter vocabulary. Add the following to greeter.factor.

factor/examples/greeter/greeter.factor
IN: examples.greeter

: greeting (name -- greeting) "Hello, " swap append ;

IN: declares this as the examples.greeter vocabulary. Note the file path under
factor, which is examples/greeter. That needs to match the vocabulary name.

Next, we’ve defined a greeting word that takes a name and returns a greeting.
Let’s use this in another vocabulary, examples.hello, which we will then run as
a standalone program. Create the hello.factor file as follows:

factor/examples/hello/hello.factor
USE: examples.greeter
IN: examples.hello

: hello-world (--) "world" greeting print ;

MAIN: hello-world

We’ve declared that we want to use our examples.greeter vocabulary and that
we are defining the examples.hello vocabulary. Then, we created a word that
uses the greeting word to print out a greeting. Finally, we used MAIN: to indicate
what word to call when running this file as a standalone program. Note that
the stack effect of the word called by MAIN: must be (--).

Now try running the program from the command line by typing factor factor/exam-
ples/hello/hello.factor:

$ factor factor/examples/hello/hello.factor
factor/examples/hello/hello.factor

7: USE: examples.greeter
^

Vocabulary does not exist
name "examples.greeter"
(U) Quotation: [c-to-factor ->]
...(rest of output omitted for brevity)...

Chapter 2. Factor • 66

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/factor/examples/greeter/greeter.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/hello/hello.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Beware of the Conflicting factor Utility

If you are using a Linux/Unix-based system and factor does not work as expected, it
may be because of a conflict with the built-in utility for printing prime factors.a To
resolve the conflict, set your PATH environment variable so that the path to the factor
executable for the Factor language is ahead of the path to the built-in factor utility.

a. http://linux.die.net/man/1/factor

Factor did not find our examples.greeter vocabulary. We need to indicate the
root paths from which Factor will search for vocabularies. You can do this
by creating a .factor-roots file in your home directory and indicating the full
paths to the root directories where you have your Factor source files, one
path per line. For example, here is my .factor-roots file:

/home/freddy/svn/prag/7lang/Book/code/factor

You also have another option. You can use an environment variable named
FACTOR_ROOTS and set to the list of paths, separated by : if you’re on Linux or
Mac, or separated by ; if you’re on Windows.

After setting up your Factor roots configuration, try running factor factor/exam-
ples/hello/hello.factor again:

factor/examples/hello/hello.factor

7: USE: examples.greeter
^

/home/freddy/svn/prag/7lang/Book/code/factor/examples/greeter/greeter.factor

6: : greeting (name -- greeting) "Hello, " swap append ;
^

No word named "swap" found in current vocabulary search path
(U) Quotation: [c-to-factor ->]
...(rest of output omitted for brevity)...

What? Using swap worked fine in the Listener, but here it crashes and burns.
That’s because standalone code does not automatically include vocabularies
the way that the Listener does. We need to load the kernel vocabulary to use
swap, and we also need sequences to use append. Here is the full greeter.factor file:

factor/examples/greeter/greeter.factor
USING: kernel sequences ;➤

IN: examples.greeter

: greeting (name -- greeting) "Hello, " swap append ;

report erratum • discuss

Day 2: Painting the Fence • 67

http://linux.die.net/man/1/factor
http://media.pragprog.com/titles/7lang/code/factor/examples/greeter/greeter.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Similarly, we need to load the io vocabulary to use print in hello.factor:

factor/examples/hello/hello.factor
USE: io➤

USE: examples.greeter
IN: examples.hello

: hello-world (--) "world" greeting print ;

MAIN: hello-world

Paint the fence. Up, down. In standalone programs, we need to be explicit in
loading all the vocabularies that we wish to use. Now, running factor hello.factor
gives us the expected result of printing “Hello, world”.

Writing Unit Tests
Exploring code in the Listener is nice. However, when you close the Listener,
your code is gone. So we saw how to write and run Factor code in source files.
Verifying that the code gives the correct results, though, is a manual process.
Let’s learn how to automate the process with unit tests.

Unit tests not only confirm that your code is working, but they are also a
great way to experiment with a language. You run your tests to verify that
the results match what you expect while you are learning the language. You
also get to keep all of your code in source files, and run all your tests again
at any time to make sure everything still works. Now that we know how to
run code standalone, let’s write some unit tests.

The Factor library includes a tools.test vocabulary with a unit-test word. To run
a test, you call unit-test with two values on the stack: a sequence of values that
represents the stack that you expect, and a quotation that contains the code
that you want to test. If running the code produces values on the stack that
match up with the expected sequence, the test passes. For example, here is
a simple unit test for our greeting word:

factor/examples/greeter/greeter-tests.factor
USING: examples.greeter tools.test ;
IN: examples.greeter.tests

{ "Hello, Test" } ["Test" greeting] unit-test

Try running the code from the command line just like a standalone program:

$ factor factor/examples/greeter/greeter-tests.factor
Unit Test: { { "Hello, Test" } ["Test" greeting] }

Chapter 2. Factor • 68

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/factor/examples/hello/hello.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/greeter/greeter-tests.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

When running unit tests, errors are shown when the actual result does not
match the expected output. When running this test:

factor/examples/test/failing-unit-test.factor
USING: examples.greeter tools.test ;
IN: examples.failing-unit-test

{ "Hello World" } ["world" greeting] unit-test

we get:

$ factor factor/examples/test/failing-unit-test.factor
Unit Test: { { "Hello World" } ["world" greeting] }
=== Expected:
"Hello World"
=== Got:
"Hello, world"
(U) Quotation: [c-to-factor ->]
...(rest of output omitted for brevity)...

The output shows the expected and actual outputs for the unit test that failed.

Remember that each test consists of a sequence containing the values that
we expect to be on the stack, followed by a quotation of the code we are trying
out, and ending with the unit-test word.

Next, let’s see how we can write unit tests that match up with the vocabularies
that we create, and how to run a whole suite of tests with a single command.

Running a Test Suite
Remember how we defined an examples.greeter vocabulary in the exam-
ples/greeter/greeter.factor file. To write corresponding tests for our vocabulary, we
used the examples/greeter/greeter-tests.factor file. Following this convention makes
it easy to run all unit tests defined in examples.* vocabularies with a test suite,
as follows:

factor/examples/test-suite/test-suite.factor
USING: tools.test io io.streams.null kernel namespaces sequences ;

USE: examples.greeter❶

IN: examples.test-suite

: test-all-examples (--)
["examples" test] with-null-writer❷
test-failures get empty?❸
["All tests passed." print] [:test-failures] if ;❹

MAIN: test-all-examples

report erratum • discuss

Day 2: Painting the Fence • 69

http://media.pragprog.com/titles/7lang/code/factor/examples/test/failing-unit-test.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/test-suite/test-suite.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Let’s break that down.

❶ After importing the vocabularies that we need with USING:, we import the
vocabulary that we are testing, examples.greeter with USE:. We could have
included examples.greeter on the USING: line, but importing it separately
makes our intent clearer and makes it cleaner to add more examples.*
vocabularies to test, one per line.

❷ Simply calling "examples" test runs all tests for all loaded vocabularies that
start with examples. However, the output shows the code for all the unit
tests, whether passing or failing, making it somewhat difficult to see the
tests results at a glance. By using with-null-writer, we are suppressing that
output.

❸ After running the tests, the test-failures symbol contains a list of failures.
We retrieve the list with get, and verify whether it contains any values
with empty?.

❹ Depending on whether the list of failures is empty, we either print the "All
tests passed" message to the output, or call the :test-failures word, which prints
out the test failures.

Now, we can run our unit tests:

$ factor factor/examples/test-suite/test-suite.factor
All tests passed.

When we create another vocabulary, we can simply add a USE: line to test-
suite.factor to include its unit tests in the test suite.

Excellent. This is a good stopping point for today. Now, let’s hear from Slava
Pestov, creator of Factor. He has some interesting thoughts on his journey.

An Interview with Slava Pestov, Creator of Factor
Us: Why did you write Factor?

Slava: Factor was originally a scripting language for a 2D game I built with a
friend in college, back in 2003. We never got very far with the game itself, but it
was enough to flesh out the basics of the language and have something to apply
them to.

The scripts I wanted to write here would consist of lists of strings, and not code. I
didn’t realize it at the time, but I wanted something with homoiconic syntax. There
were a few other scripting languages for Java at the time, such as Groovy, and
even a Common Lisp implementation (ABCL), which had fancier syntax for these
things. I decided to write my own language, though, because I wanted something
really simple, and also just because it would be fun.

Chapter 2. Factor • 70

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

I picked postfix syntax on a whim. At the time, I had heard of Forth but didn’t know
much about it. Then I came across Joy, a language by Manfred von Thun which
incorporated elements of Forth and Lisp by replacing Forth’s control structures with
higher order functions that took code blocks as parameters. A code block in Joy is
just a list literal. It was very elegant, and I managed to implement something similar
in a few hundred lines of Java code.

Factor was more like Joy than Forth in the early days. In particular, the lexical
syntax was fixed, with no “parsing words.” It wasn’t until I started working on the
native implementation of Factor that I took the time to properly learn Forth. At this
point I had another epiphany and realized that most of the actual parser can be
scrapped, and syntax elements such as “[” and “]” can become ordinary words
(functions) in the language.

Eventually I cleaned the code up and split it off from the game engine and released
Factor to the concatenative mailing list.

Us: Why did you decide to move Factor away from the JVM?

Slava: I wanted to experiment with an image-based runtime and a self-hosting
parser written in Factor, which was not really possible on the JVM. Also, once again
with the learning experience aspect, I wanted to learn enough to implement the
minimal possible VM instead of relying on something else.

While working on the Java implementation I had already figured out that over time,
I can replace primitives with Factor definitions making use of lower-level primitives,
and simplify the design that way. Before starting work on the C implementation, I
tried to really limit the scope of what would be written in C. I wrote a simple C
interpreter that read an image file containing a heap dump. At the same time, I
wrote a Factor parser in Factor which would read source code and output it in the
form of this image file. I ran this parser in the Java implementation, and used it to
generate image files for testing the C implementation. It was a while before the C
implementation could itself run the parser. I was learning C at the same time, and
even a simple copying garbage collector is quite tricky the first time you do it!

Once the C implementation was good enough to bootstrap itself, I stopped working
on the Java port. The initial version of the C VM was only something like 7,000 lines
of C, with the rest in Factor. There was something very satisfying about being able
to do so much with so little “real” code. Compilation to native x86 code came very
soon after. Writing a JIT in C is actually really simple. You allocate some memory
with the right protection bits, write some machine code there, and cast it to a function
pointer. Optimizations are the hard part...

Us: What do you like the most about Factor?

Slava: I enjoyed working in an interactive development environment. From the
start the goal of Factor was to enable quick experimentation with fast turnaround
for testing changes, so I took care to structure the system so that almost any type
of change to the source code could be reflected in the running program without

report erratum • discuss

Day 2: Painting the Fence • 71

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

having to restart. Smalltalk and Lisp environments were a big inspiration for me in
this regard.

There is something very hypnotizing about concatenative syntax. Once you learn
to think in it without mentally translating back and forth, certain refactorings that
can be hard to envision in an applicative language become simple sequences of
copy/paste operations. I beseech every programmer to read the Joy papers, even
if you have no interest in using a concatenative language, just to learn about the
combinators that abstract over many common recursion and iteration patterns in a
novel way.

With Factor, often when you first write some code it looks very haphazard and
messy. Then you think about it really hard, whip it into shape, come up with some
new abstractions, and maybe even also apply them to a previously written library
or two. It can feel like a lot of work but in the end what you’re producing feels more
like a general set of tools, rather than a single piece of code. To a large extent,
concatenative languages were uncharted territory. By encouraging contributors to
submit code to the main repository, Factor really pushed the bar in terms of what
could be done with concatenative languages, by facilitating the development of new
idioms and abstractions.

Finally, the best parts of working on Factor were the simple joy of learning about
language design, compilers, and operating systems, and collaborating with all of
the extremely talented contributors.

What We Learned in Day 2
Today was about taking our Factor code to the next level, from the experimen-
tal ground of the Listener to a more durable form, source files. We saw how
to run the code as a standalone program. We spent the rest of the day learning
how to write unit tests and running a complete test suite from the command
line.

Your Turn
You can always use the Listener for feeling your way around with Factor code,
but ultimately the goal in today’s exercises is to write code in source files.

Find…

• A third way of adding directories to the list of vocabulary roots. Remember
that the two ways we discussed were the .factor-roots file and the FACTOR_ROOTS
environment variable.

• The tool that Factor provides to deploy a program as a truly standalone
application, meaning that the executable can be run without Factor being
installed on the target machine.

Chapter 2. Factor • 72

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Do (Easy):

• Create an examples.strings vocabulary and write a word named palindrome?
that takes a string from the stack and returns t or f according to whether
or not the word is a palindrome (a word that is spelled the same frontward
and backward, such as racecar).

• In the appropriate vocabulary for associating tests with the examples.strings
vocabulary, write two unit tests for palindrome?, one that expects t and one
that expects f.

• Add the examples.strings to the test suite so that its tests are included when
running test-suite.factor.

Do (Medium):

• Create an examples.sequences vocabulary and write a find-first word that takes
a sequence of elements and a predicate, and returns the first element for
which the predicate returns true. Write a corresponding unit test that
confirms its behavior. What happens if none of the elements satisfy the
predicate?

• In an examples.numberguess vocabulary, write a standalone program that
picks a random number from 1 to 100 and asks the user to guess, printing
out “Higher”, “Lower”, or “Winner” accordingly.

Do (Hard):

• Enhance the test-suite.factor program so that it prints out how many tests
have run, and in case of failures, how many tests failed.

• Make test-suite.factor interactive by turning it into a command-line program
that asks the user which vocabularies to test via the console, then runs
the tests and outputs the results.

Day 3: Balancing on a Boat
On our third and final day of Factor, we will focus on data structures called
tuples, and use them to create a flexible cart checkout application. We’ll see
more of Factor’s sweet spot—function composition in the concatenative
style—both in the checkout example and in a revisitation of the classic
“FizzBuzz” programming quiz. We’ll wrap up the chapter with a few places to
look to continue your exploration of Factor.

report erratum • discuss

Day 3: Balancing on a Boat • 73

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Tuples
Factor has an object system, and tuples are classes of objects for storing
values into named slots. To define a class, use TUPLE: followed by the class
name and the names of the slots:

factor/examples/tuples/tuples.factor
USE: kernel

IN: examples.tuples

TUPLE: cart-item name price quantity ;➤

This defines a cart-item class with a name, a price, and a quantity. The cart-item word
represents the class, and an instance of the class can be created by passing
the class word to new:

factor/examples/tuples/tuples-tests.factor
cart-item new

That creates a cart-item instance with empty slots. We can read and write values
to slots using words that Factor automatically generates for us when we create
a tuple with the TUPLE: declaration. These words are named slotname>>, >>slot-
name, and change-slotname for every slot name in the tuple. For example, we can
read and write the price slot as follows:

• price>> reads the value from the price slot.
• >>price sets a value to the price slot.
• change-price changes the value of the price slot using a quotation.

All three words operate on an instance of the cart-item class. Here are the first
two in action:

factor/examples/tuples/tuples-tests.factor
cart-item new 4.95 >>price
cart-item new 4.95 >>price price>>

The first line creates an instance of cart-item and sets its price to 4.95, leaving
the populated cart-item instance on the stack. On the second line, we have the
same code but we then call price>> on the instance. That would put 4.95 onto
the stack.

The change-price word is useful for setting a new value based on the previous
value. Without change-price, discounting the price of a cart-item by 50% is tedious:

factor/examples/tuples/tuples-tests.factor
cart-item new 25.00 >>price
dup price>> 0.5 * >>price➤

Chapter 2. Factor • 74

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples-tests.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples-tests.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples-tests.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We have to make a copy of the cart-item, get the price out, multiply by 0.5, and
set the result back into the cart-item instance.

Using the change-price word makes this easier. A quotation contains the code
that changes the price:

factor/examples/tuples/tuples-tests.factor
cart-item new 25.00 >>price
[0.5 *] change-price➤

Nice! That is much simpler and clearly expresses our intent.

The convenience doesn’t end there. Factor also has a few helpers for construct-
ing instances of tuples.

Tuple Constructors
To create an instance of a class by specifying values for slots in the same
order as they appear in the TUPLE: declaration, we use the, um, suffocatingly
named boa constructor. The word boa stands for By Order of Arguments and
is used like this:

factor/examples/tuples/tuples-tests.factor
"Seven Languages Book" 25.00 1 cart-item boa

That creates a fully populated cart-item instance.

While boa requires values for all slots to be on the stack, you can still define
a word that passes some values to boa and lets the caller specify the remaining
values. This is a convenient way of defining a constructor with default values
for some of the slots:

factor/examples/tuples/tuples.factor
: <dollar-cart-item> (name -- cart-item) 1.00 1 cart-item boa ;

We defined a <dollar-cart-item> word that takes a name and creates a cart-item
instance with a price of 1.00 and a quantity of 1. Creating a cart-item with those
defaults becomes:

factor/examples/tuples/tuples-tests.factor
"Paint brush" <dollar-cart-item>

Note that the <>’s in the word name are not special syntax. They are just a
convention for constructor words.

Another syntax for creating tuples is T{ }. You indicate the tuple class, followed
by key-value pairs for the slots. For example:

factor/examples/tuples/tuples.factor
: <one-cart-item> (-- cart-item) T{ cart-item { quantity 1 } } ;

report erratum • discuss

Day 3: Balancing on a Boat • 75

http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples-tests.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples-tests.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples-tests.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Calling <one-cart-item> returns a cart-item with its quantity set to 1 and its other
slots left empty. The other way to use T{ } is to specify f (false) after the tuple
class, to indicate that we are not using key-value pairs, and instead specify
slot values in order:

factor/examples/tuples/tuples-tests.factor
T{ cart-item f "orange" 0.59 }

That gives us a cart-item with name set to "orange" and a price of 0.59, with the
quantity left empty. Unlike boa, using the T{ } syntax this way does not require
specifying values for all slots.

Now that we can define and instantiate tuples, let’s use them to create words
that process a cart for checkout.

Processing a Cart for Checkout
We’ll begin with a tuple to represent a checkout:

factor/examples/checkout/checkout.factor
TUPLE: checkout item-count base-price taxes shipping total-price ;

We’ve included the item count, base price, taxes, cost of shipping, and total
price for the checkout.

Our first task is to define a word that takes a cart—a sequence of cart-
items—and returns a checkout containing the item count and base price. We’ll
start with some words for processing a cart to calculate the item count and
base price:

factor/examples/checkout/checkout.factor
: sum (seq -- n) 0 [+] reduce ;❶
: cart-item-count (cart -- count) [quantity>>] map sum ;❷
: cart-item-price (cart-item -- price) [price>>] [quantity>>] bi * ;❸
: cart-base-price (cart -- price) [cart-item-price] map sum ;❹

❶ The sum word returns the sum of a sequence of values. You may remember
0 [+] reduce from one of the Day 1 exercises.

❷ To calculate the item count for a cart, we can simply map quantity>> over
each cart-item to extract a sequence of quantities, and then call sum on that
to get the item count.

❸ The price of a single item in the cart is its price multiplied by its quantity.
We are using bi, which applies two quotations to a single value, to extract
both the price and the quantity from the cart item before multiplying them
together.

Chapter 2. Factor • 76

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/factor/examples/tuples/tuples-tests.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/checkout/checkout.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/checkout/checkout.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

❹ Mapping cart-item-price over the sequence of cart items, we extract the
sequence of prices and sum them up to calculate the base price for the
cart.

Next, we’ll create a checkout instance from a cart:

factor/examples/checkout/checkout.factor
: <base-checkout> (item-count base-price -- checkout)❶

f f f checkout boa ;

: <checkout> (cart -- checkout)❷
[cart-item-count] [cart-base-price] bi <base-checkout> ;

❶ We’ve defined a word to create a base checkout instance with the item-count
and base-price. We’re using boa, so we need to specify values for the other
slots: taxes, shipping, and total-price. We’re filling those slots with f to indicate
an empty value.

❷ Using the words that we’ve defined so far, we can elegantly define a word
to accept a cart and return a checkout with the item count and base price.
We use bi to call both cart-item-count and cart-base-price, and pass both values
on to <base-checkout>.

We now have a basis for calculating the taxes, shipping, and total price.

Assembling Words into Pipelines
Function composition really shines in Factor. Let’s assemble a pipeline of
words to calculate the additional costs and total price on our base checkout
instance.

We’ll use the Quebec, Canada tax rates that we used in an earlier example:
the GST is 5% and the PST is 9.9975%.

factor/examples/checkout/checkout.factor
CONSTANT: gst-rate 0.05
CONSTANT: pst-rate 0.09975

: gst-pst (price -- taxes) [gst-rate *] [pst-rate *] bi + ;

: taxes (checkout taxes-calc -- taxes)
[dup base-price>>] dip
call >>taxes ; inline

We’ve written a gst-pst word that calculates the total taxes on a base price by
adding the GST and PST, using the constants defined for their respective
rates. Then, we have a taxes word to calculate the taxes on a checkout instance.
The kicker for the taxes word is that it accepts a tax calculation as a parameter.

report erratum • discuss

Day 3: Balancing on a Boat • 77

http://media.pragprog.com/titles/7lang/code/factor/examples/checkout/checkout.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/checkout/checkout.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Whatever you want to call it—a higher-order word, an example of the strategy
pattern—either way, it is very cool.

Another nice benefit of the stack is that when you’re chaining words together,
a word can use a value returned by another word further up the chain, even
if there are other words in between. The words in between do not need to
carry along the value to make it available to the next word.

First, the taxes word extracts the base-price from the checkout instance, taking
care of making a copy with dup so that we still have the checkout on the stack
after getting the value out. The code is in a quotation and called with dip so
that it operates on the checkout even though we have taxes-calc at the top of the
stack.

Once that’s done, we’re left with checkout, base-price, and taxes-calc. With call, we
invoke taxes-calc, which uses base-price to calculate the taxes. We then call
>>taxes to store the result back into the checkout.

Finally, notice that the word definition has inline after the semicolon. The
Factor optimizing compiler copies definitions of inline words when compiling
calls to them, but what we really need to know is that words such as taxes
that use quotations as parameters—that is, combinators—must have inline
after the semicolon.

All right. Now that we have defined how to calculate the taxes, let’s do the
same for shipping. The code will look familiar by now:

factor/examples/checkout/checkout.factor
CONSTANT: base-shipping 1.49
CONSTANT: per-item-shipping 1.00

: per-item (checkout -- shipping) per-item-shipping * base-shipping + ;

: shipping (checkout shipping-calc -- shipping)
[dup item-count>>] dip
call >>shipping ; inline

Similarly to how we calculated the taxes, we determine the shipping costs
using a base charge and a charge per item.

We now have everything we need to calculate the total price of a checkout
instance:

factor/examples/checkout/checkout.factor
: total (checkout -- total-price) dup

[base-price>>] [taxes>>] [shipping>>] tri + + >>total-price ;

Chapter 2. Factor • 78

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/factor/examples/checkout/checkout.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/checkout/checkout.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We simply call the three words for getting the base price, taxes, and shipping;
add them up; and store the result into the checkout instance’s total-price slot.

Notice how easy it is to assemble words into pipelines. The implied function
composition and automatic use of the stack means that our code reads
beautifully. There is very little noise because we don’t need any punctuation
to assemble words or variable names to transport values from one word to
the next.

We’ve also made taxes and shipping flexible enough that they accept the calcu-
lations as parameters, making it a cinch to use different pricing schemes.
Here’s an example using gst-pst for the taxes and per-item for shipping:

factor/examples/checkout/checkout.factor
: sample-checkout (checkout -- checkout)

[gst-pst] taxes [per-item] shipping total ;

Very nice. We’ve assembled the words into a pipeline and the code clearly
expresses our intent: use the GST-PST for the taxes, the per-item pricing for
shipping, and finally calculate the total.

Let’s write a unit test to make sure that it works:

factor/examples/checkout/checkout-tests.factor
: <sample-cart> (-- cart)

"7lang2" 24.99 2 <cart-item> "noderw" 10.99 1 <cart-item> 2array ;

{ T{ checkout f 3 60.97 9.13 4.49 74.59 } }
[<sample-cart> <checkout> sample-checkout]
unit-test

When we run the test, we get:

$ factor factor/examples/checkout/checkout-tests.factor

=== Expected:
T{ checkout f 3 60.97 9.130000000000001 4.49 74.59 }
=== Got:
T{ checkout f 3 60.97 9.130257500000001 4.49 74.59025750000001...
[Traceback]

Hmm. The test didn’t pass because of floating-point rounding issues. We can
see that the values are close, but we would need to adjust the rounding in
order for the values to match and for the test to pass. That will be one of your
challenges at the end of the day.

report erratum • discuss

Day 3: Balancing on a Boat • 79

http://media.pragprog.com/titles/7lang/code/factor/examples/checkout/checkout.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/checkout/checkout-tests.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Revisiting Fizz Buzz
Mr. Miyagi asked Daniel-san to wax his car, sand his floors, and paint his
house. Daniel wondered what any of that had to do with learning karate.

By the time he was done, Daniel-san had learned a lot more than he realized.

When I first came across the Fizz Buzz quiz, it was not during a job interview.5

It was used to demonstrate different ways of solving a problem. The goal with
Fizz Buzz is simply to loop through the numbers 1 to 100, printing out the
number except when:

• the number is a multiple of 3, print “Fizz”
• the number is a multiple of 5, print “Buzz”
• the number is a multiple of 15, print “FizzBuzz”

My initial reaction was that the proposed alternatives were overkill compared
to a simple if else. It may have been the case just for solving Fizz Buzz, but
that wasn’t the point. The idea was to learn powerful solutions for breaking
down large, complex problems into smaller, more manageable pieces. Fizz
Buzz was used for demonstration purposes.

A Traditional, JavaScript Solution

factor/examples/fizzbuzz/fizzbuzz.js
var fizzbuzz = function(t) {

var results = [];

for (var i = 1; i <= t; i++) {
if (i % 15 == 0) {
results.push("FizzBuzz");

}
else if (i % 3 == 0) {
results.push("Fizz");

}
else if (i % 5 == 0) {
results.push("Buzz");

}
else {
results.push(String(i));

}
}
return results;

};

console.log(fizzbuzz(100)); // prints ["1", "2", "Fizz", "4", "Buzz", ...]

5. http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/

Chapter 2. Factor • 80

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/factor/examples/fizzbuzz/fizzbuzz.js
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The only detail to watch for is checking for multiples of 15 first. If we check
for multiples of 3, 5, and 15 in order, the branch for multiples of 15 would
never be reached since those numbers are also multiples of 3 and 5.

In Factor, we can write code that does the same as the pseudocode earlier.
Nothing is conventional about Mr. Miyagi, though, so the code looks different:

factor/examples/fizzbuzz/fizzbuzz.factor
dup 15 mod 0 =
[drop "FizzBuzz"]
[

! ...
]
if

That is the outer if branch checking for a multiple of 15. We need to dup the
value beforehand so that it is still available for other branches, because the
value gets consumed when we call 15 mod. If the value is a multiple of 15, we
drop it and return “FizzBuzz”. Otherwise, nested similar if branches for mul-
tiples of 3 and multiples of 5 will be called, with a final else calling present to
return the value itself as a string.

Putting it all together, we have the following:

factor/examples/fizzbuzz/fizzbuzz.factor
USING: kernel io combinators.short-circuit math math.functions math.ranges

present sequences ;

IN: examples.fizzbuzz

: fizzbuzz-traditional (n -- seq)
[1,b] [❶
dup 15 mod 0 =
[drop "FizzBuzz"]
[

dup 3 mod 0 =❷
[drop "Fizz"]
[

dup 5 mod 0 =❸
[drop "Buzz"]
[present]❹
if

]
if

]
if

] map ;❺

report erratum • discuss

Day 3: Balancing on a Boat • 81

http://media.pragprog.com/titles/7lang/code/factor/examples/fizzbuzz/fizzbuzz.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/fizzbuzz/fizzbuzz.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

❶ ❺ [1,b] produces a range of values and map executes the code for each
value.

❷ ❸ Just like we checked for multiples of 15, these branches check for
multiples of 3 or 5, returning "Fizz" or "Buzz".

❹ If the value is not a multiple, we use present to return the value itself as a
string.

Let’s write a unit test to verify that it works:

factor/examples/fizzbuzz/fizzbuzz-tests.factor
USING: examples.fizzbuzz tools.test ;

IN: examples.fizzbuzz.tests

CONSTANT: fizzbuzz-30 {
{ "1" "2" "Fizz" "4" "Buzz" "Fizz" "7" "8" "Fizz" "Buzz" "11" "Fizz" "13" "14"
"FizzBuzz" "16" "17" "Fizz" "19" "Buzz" "Fizz" "22" "23" "Fizz" "Buzz" "26"
"Fizz" "28" "29" "FizzBuzz" }

}

fizzbuzz-30 [30 fizzbuzz-traditional] unit-test

Try adding examples.fizzbuzz to the test-suite.factor program and running it to con-
firm that the code works as expected.

That’s simple enough, but the code is trapped in a tangled mess of if/else
clauses. We can do better by breaking up the problem into individual words
and composing a solution by assembling the words into a pipeline.

A Functional Pipeline Solution

Let’s look at the code first and then break it down:

factor/examples/fizzbuzz/fizzbuzz.factor
: mult? (x/str n -- ?) over number? [mod 0 =] [2drop f] if ;❶

: when-mult (x/str n str -- x/str) pick [mult?] 2dip ? ;❷

: fizz (x/str -- x/str) 3 "Fizz" when-mult ;❸
: buzz (x/str -- x/str) 5 "Buzz" when-mult ;
: fizzbuzz (x/str -- x/str) 15 "FizzBuzz" when-mult ;

: fizzbuzz-pipeline (x -- str) fizzbuzz fizz buzz present ;❹

: fizzbuzz-with-pipeline (n -- seq) [1,b] [fizzbuzz-pipeline] map ;❺

❶ The mult? word determines if x is a multiple of n, first checking whether x
is a number. This is because x might be a string when we chain together

Chapter 2. Factor • 82

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/factor/examples/fizzbuzz/fizzbuzz-tests.factor
http://media.pragprog.com/titles/7lang/code/factor/examples/fizzbuzz/fizzbuzz.factor
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

the FizzBuzz components and one of them decided to return a string.
We’re using x/str to indicate that x could be a string. If x is not a number,
we just drop both values and return false.

❷ when-mult returns str if x/str is a multiple of n, returning x/str otherwise. After
calling pick, we have x/str n str x/str on the stack. Using 2dip, we call [mult?]
on x/str n. From that, we get t/f str x/str with t/f representing whether the
number is a multiple. Finally, we use ? to return str or x/str according to
the value of t/f.

❸ That was somewhat bumpy, but from here on out it’s a smooth ride. We
can neatly express the intent of fizz, buzz, and fizzbuzz in terms of the multiple
to look for and the string to return when the value is a multiple.

❹ The pipeline is even more elegant. It’s just a combination of what we are
looking for, in order of priority: fizzbuzz, fizz, buzz, and lastly present to return
the value as a string when none of the multiples match.

❺ The top-level word takes a value n and returns the FizzBuzz sequence
from 1 to n, using [1,b] to create the range and map to map fizzbuzz-pipeline
over the range and return the results.

We solved the FizzBuzz quiz with a pipeline of words, neatly lined up and
divinely devoid of extraneous syntax. That is the beauty of Factor.

Let’s finish the day with a bit of where to go from here if you’d like to dive even
deeper into Factor.

Comes With Everything You See Here
Factor comes with batteries included. Factor is to stack-based, concatenative
programming what Clojure is to Lisp: a practical, modern, full-featured
implementation of a classic and powerful programming model.

You can quickly get a list of the Factor vocabularies that are loaded within
the Listener. But hold on to your hat—there are over 900 of them.

IN: scratchpad vocabs [.] each
"accessors"
"alien"
"alien.accessors"
...
"alien.remote-control"
"alien.strings"
"alien.syntax"
"arrays"
"ascii"
...(rest of output omitted for brevity)...

report erratum • discuss

Day 3: Balancing on a Boat • 83

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The Factor repository contains many more vocabularies:

IN: scratchpad all-vocab-names length .
2501

Still in the Listener, you can click the Help button to open the documentation
browser. From there, you can access a wealth of information on the Factor
language, development tools, libraries, and more. If you click on Factor
handbook, you’ll get more interesting links to discover. From the Vocabulary
index, you can see that Factor has vocabularies for many practical purposes.
To name just a few:

• db—Relational database abstraction layer
• furnace—Web framework
• game—Game vocabulary
• html—HTML utilities
• json—JSON reader and writer
• smtp—Sending mail via SMTP
• ui—Graphical user interface framework
• zeromq—Bindings to 0MQ

There are plenty more, so when you set out to write an application, make
sure to check out the libraries for utilities that you can use.

Editor Integration
The Listener supports integration with several code editors. You can quickly
jump to the source code of a word in your favorite editor by loading the corre-
sponding vocabulary and then calling edit to open the editor at the definition
of the word:

IN: scratchpad USE: editors.gvim
IN: scratchpad \ at edit

That opens the gvim editor to the source code for the at word. Other editors
are supported, including:

• Emacs
• Gedit
• jEdit
• MacVim
• Notepad++
• Sublime
• TextMate
• Xcode

Chapter 2. Factor • 84

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Type "editors" about in the Listener and scroll down to the Children section to
see a full list of supported editors.

Demos
Factor also comes with a rich set of sample applications. You can run them
from the Listener with:

IN: scratchpad "demos" run

This displays a menu of sample applications that you can run. Here are just
a few examples:

• 24-game
• balloon-bomber
• hello-ui
• maze
• numbers-game
• space-invaders
• sudoku
• tetris

You’ll find the source code for all the demos in the extra directory where you
installed Factor.

With so much documentation and a rich set of examples, there is plenty to
go on to develop practical applications in Factor.

What We Learned in Day 3
Day 3 was about experiencing the Zen of Factor. We saw two examples of
solving problems by processing data with a concatenation of words. Factor
is very good at this programming style because function composition is the
default behavior and the implicit use of the stack eliminates the need for
variables. To finish off, we looked at a few more areas to explore within the
Factor environment.

Your Turn

Find…

• One more word, aside from the three that we have seen today, that Factor
automatically generates for each slot name of a tuple

• How to create a subclass of a tuple
• Whether or not a tuple can extend more than one parent tuple

report erratum • discuss

Day 3: Balancing on a Boat • 85

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Do (Easy):

• Define a constructor for cart-item that accepts a price and returns a cart-item
with a default name and quantity.

• Write a word that discounts the price of a cart-item by a percentage that is
given as a parameter.

Do (Medium):

• Write words that define different tax rates and a new shipping scheme.
• Assemble the tax rates and shipping scheme into a new checkout-process-

ing pipeline.
• Write a unit test to verify that your new tax rates and shipping scheme

work correctly.

Do (Hard):

• Make changes to the code so that prices are adjusted in a way that elimi-
nates rounding errors and makes the unit tests pass.

• Enhance the number guessing game that you wrote on Day 2 so that it
uses a graphical user interface instead of the command-line console.

Wrapping Up Factor
A concatenative language such as Factor may seem backward at first, but
the left-to-right flow of actions reads in the same sequence as we read words
on a page. When you edit a line of code with a series of functions and want
to process the result with one more function call, you add the word at the
end of the line instead of wrapping everything in parentheses and adding the
function call at the beginning, as you would do in many other languages.

Strengths
Factor is beautifully devoid of extra syntax and punctuation. Function com-
position is natural. Instead of naming variables to pass from one function to
the next, the stack is used implicitly. Defining a function that returns more
than one result is possible—and we really do mean multiple, separate values,
not a sequence of values wrapped in a single list.

Beyond the interesting programming model, Factor is also very practical in
that in comes with a full-featured library to build real-world applications.
Whether building command-line utilities, graphical user interfaces, or web
applications, Factor provides support through its many vocabularies.

Chapter 2. Factor • 86

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Finally, Factor has a rich set of documentation as well as many examples to
explore in order to get a better feel for how to get things done in Factor and
learn more about its idioms and best practices.

Weaknesses
Factor does take some getting used to. Although concatenated words read
naturally, some programming structures such as if/else branches can be
harder to read until you get used to their postfix notation form.

Like many non-mainstream languages, Factor has a relatively small commu-
nity of users and limited resources (books, articles, and so on). It’s also worth
noting that the name Factor does not make it any easier to search the Web
for answers.

Final Thoughts
Other concatenative languages to explore include Joy6 and Forth,7 to better
understand the origins of Factor, and Retro,8 another concatenative, stack-
based language that is smaller in scope and complexity than Factor. Gershwin
is a fork of the Clojure language to support Factor’s concatenative style of
programming. If you like what you’ve learned about Factor and are an
enthusiastic Clojure user, Gershwin is definitely worth a closer look.9

6. http://www.latrobe.edu.au/humanities/research/research-projects/past-projects/joy-programming-language
7. http://www.forth.com/forth/index.html
8. http://retroforth.org/
9. http://gershwinlang.org

report erratum • discuss

Wrapping Up Factor • 87

http://www.latrobe.edu.au/humanities/research/research-projects/past-projects/joy-programming-language
http://www.forth.com/forth/index.html
http://retroforth.org/
http://gershwinlang.org
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

CHAPTER 3

Elm
by Bruce Tate

Every day, we programmers make easy things hard. Many of us have coded
business applications in C++ and Java, barely pausing to believe that there
might be a better language for the job. I’m reminded of the sheep dogs in
Babe—my daughter’s favorite movie—that frightened sheep into their pens
with amazing acrobatics until Babe came along and just talked them in.

JavaScript has been an enigma in the browser. In some ways, it has given
us more than we expected. The embattled language provides behavior far
beyond HTML markup, and it is just about universally deployable. But in the
end, JavaScript is still just JavaScript. There’s no module system; it suffers
from weak typing; it is conflicted and inconsistent. You probably know the
other arguments by heart. In the short term, we’re stuck with it. The result
is a front end that reflects all of the limitations of the language. You have to
work harder with more complex applications, but without the added support
that a better type system might provide, it’s just like lambs to the slaughter.

On the browser side of things, we’re starting to break through. You don’t have
to be stuck with muscling the sheep into their pens the hard way. Reactive
programming, a relatively new model that focuses more on the flow of data
than events, is simplifying the way we approach problems. Several languages
with better consistency and better type systems now compile to JavaScript,
so you can think of it as more of an assembly language on the browser with
many available programming options.

In the Haskell-inspired Elm, we’re seeing the potential of a language, and
programming paradigm, built from the ground up that compiles into Java-
Script and is fully reactive, with an excellent type system. You get better
typing and a much more powerful programming model, leading to much better

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

experiences for both the programmer and the end user. Rather than doing
all of those callbacks and keeping those types straight in your head, you can
just let the language do the talking.

That’ll do, Elm. That’ll do.

Day 1: Handling the Basics
Today, you’re going to learn the basic building blocks of the language. We’ll
get through literals, lists, and basic types. Then, we’ll move toward functions
and collections. Finally, we’ll close out Day 1 with higher order functions and
functional composition, hallmarks of any functional language. In Day 2, you’ll
learn to handle user input responsively, without resorting to callbacks. You’ll
also learn to work with text and images. In Day 3, we’ll combine all of these
concepts in a game.

Evan says that Elm is most strongly influenced by the ML language family.
ML is an influential general-purpose functional language.1 The syntax is
heavily inspired by Haskell, and the semantics are strongly influenced by
OCaml. Although some of those languages can feel academic and terse at
times, you’ll find Elm practical right down to the core. Let’s dive in.

Installing Elm
Before we get started, you’re going to have to install a few tools. Go to the
Elm home page.2 There, you can find what you need to install the Elm lan-
guage. We’re going to use version 0.15. You’ll also want the Elm REPL.3, which
now comes with the Elm platform. We’ll spend most of Day 1 in the Elm REPL
and most of Days 2 and 3 in the Elm server.

Go ahead and fire up the REPL to see if things are working.

Simple Expressions
Let’s look at some simple expressions:

> 4
4 : number
> "String"
"String" : String
> 5 < 4
False : Bool

1. http://c2.com/cgi/wiki?MlLanguage
2. http://www.elm-lang.org.
3. https://github.com/evancz/elm-repl

Chapter 3. Elm • 90

report erratum • discuss

http://c2.com/cgi/wiki?MlLanguage
http://www.elm-lang.org.
https://github.com/evancz/elm-repl
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Everything returns a value with its type. Elm is strongly typed, and both the
syntax and tools reflect this value. Let’s poke around the edges of the type
system:

> [1, "2"]
[1 of 1] Compiling Repl (repl-temp-000.elm)

The 2nd element of this list is an unexpected type of value.

3| [1, "2"]
^^^

...

> 4 + "4"
[1 of 1] Compiling Repl (repl-temp-000.elm)
...

As I infer the type of values flowing through your program, I see a conflict
between these two types: number String

> "4" ++ "4"
"44" : String

> 4 ++ 4
[1 of 1] Compiling Repl (repl-temp-000.elm)
...

Expected Type: appendable
...
> [1, 2] ++ [3, 4]
[1,2,3,4] : [number]

So Elm is strongly typed and enforces those constraints within lists and across
operators. Like the type systems in Haskell and ML, Elm’s type system is
strong enough to represent complex data types but flexible enough to infer
and coerce those types.

Contrast these type errors to JavaScript’s behavior, where {} + [] = 0 and {} +
{} = NaN. More than just an oddity, bugs like this lead to unpredictable and
unstable code. At compile time, we’ll need to think a little harder about our
types, but our programs will be much more reliable at runtime.

Elm types have a hierarchy, called type classes. Presently, you can’t build
your own instances, but the language does include its own hierarchy of types.
For example, both lists and strings are appendable data types so we can use
them with the ++ operator.

> a = [1, 2, 3]
[1,2,3] : [number]

report erratum • discuss

Day 1: Handling the Basics • 91

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

This type system is type inferred, meaning you don’t have to declare the type
of every argument and every variable. The type system is also polymorphic,
meaning you can treat types that inherit from the same type class the same.
You will see that Elm takes full advantage of its ML and Haskell heritage to
build on some of the best type systems in the world.

> a[1] = 2
[1 of 1] Compiling Repl (repl-temp-000.elm)
> a[1] = 2
<function> : List number -> number'

Elm is a single-assignment language, and very strictly so, though in the REPL,
you can redefine whole primitive values for convenience. Elm is like Elixir in
this regard.

Conditionals
Elm provides some control structures, though you won’t rely on as many of
them quite as often as you would in other languages. Here are a few simple
control structures, starting with a simple if.

> x = 0
0 : number

> if x < 0 then "too small" else "ok"
"ok" : String

That statement will give you the basic one-line if. The multiline if works like
a case in Ruby or a switch in Java:

> x = 5
5 : number
> if | x < 0 -> "too small" \
| | x > 0 -> "too big" \
| | otherwise -> "just right"
"too big" : String

The character \ helps when you’re running in the REPL. It means continue
the statement on the next line. When you’re using pattern matching, use case.
Pattern matching allows us to match the structure of some type. Here, we’re
matching on the structure of a list:

> list = [1, 2, 3]
[1,2,3] : [number]
> case list of \
| head::tail -> tail \
| [] -> []
[2,3] : [number]

Chapter 3. Elm • 92

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

This statement returns the tail of a list, if it exists. Lists with at least one
element match the head::tail clause, returning the tail. Empty lists match [].
Now that you’ve seen some basic types, let’s build some types of our own.

Building Algebraic Data Types
The beauty and power of a type system becomes much stronger as you build
your own complex data types. Take, for example, a chess piece. We need to
worry about both color and piece. Use type to define a data type, like this:

> type Color = Black | White
> type Piece = Pawn | Knight | Bishop | Rook | Queen | King
> type ChessPiece = CP Color Piece
> piece = CP Black Queen
CP Black Queen : ChessPiece

Nice. A type constructor allows us to build new instances of a type. Our
ChessPiece type consists of the characters CP, our type constructor, followed by
a Color and a Piece. Now, we can use case and pattern matching to take the
piece apart, like this:

> color = case piece of \
| CP White _ -> White \
| CP Black _ -> Black
Black : Color

That felt like a little too much work, but we’ll deal with an alternative shortly.
Building a type that works like List is a little trickier. You need to know that
Cons constructs a list, given an element and another list, like this:

type List = Nil | Cons Int List

This definition is recursive! Cons, which is used at compile time to define types,
means construct, with head and tail arguments. We define a type of List as
either:

• The type Nil, or
• A list constructed with a head of type Int and a tail of type List

That data type is interesting, but we can do better. We can define an abstract
list, one that can hold any data type, like this:

type List a = Empty | Cons a (List a)

In this case, a is some as yet undefined abstract data type. If you’re familiar
with Java or JavaScript, think of a as a parametric type parameter, such as
T in List<T>, with more flexibility and power. This definition defines a List of a
as either:

report erratum • discuss

Day 1: Handling the Basics • 93

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

• Empty, or
• A list constructed with a head of something of type a, and a tail of lists

having items of that same a

If you want to know how a list is evaluated in Elm, look at the data type. You
can represent the type for list [1, 2] as Cons 1 (Cons 2 Empty).

Now when I tell you that you can combine the head of a list with the tail, it
makes sense. Cons works on types at compile time. The runtime counterpart
of the Cons operator that works on data is ::, and it works just as you’d expect:

> 1 :: 2 :: 3 :: []
[1,2,3] : [number]

Elm builds the list, right on cue, and then tells us that we’re working with a
list of numbers. Brilliant. We’ll dive a little more into types as we move forward.
For now, let’s press on. Our chess piece was a little awkward, even if it is
reminiscent of Haskell. We can do better. Let’s express a chess piece with
another data type, the record.

Using Records
We built types for color and piece, and that felt pretty natural. Now, if you
have a beard longer than two inches, have a personalized license plate with
any form of the word “monad,” or think that I/O is for wimps, you probably
like using abstract data types for everything. Carry on. For the rest of us,
there’s an easier way.

Recall that our chess example got a little more complicated when we wanted
to extract the color. What we really need is a way to access named fields. That
thing is a record, and it’s a natural companion to JavaScript’s objects. Let’s
say we want to represent a chess piece with Color and Piece fields:

> blackQueen = {color=Black, piece=Queen}
{ color = Black, piece = Queen } : { color : Repl.Color, piece : Repl.Piece }
> blackQueen.color
Black : Repl.Color
> blackQueen.piece
Queen : Repl.Piece

The Repl. is just a scope for the types, and the . notation is just sugar. .color is
actually a function:

> .color blackQueen
Black : Repl.Color

Chapter 3. Elm • 94

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Now, we can freely access the components of our structured type. As with
many functional languages, records are immutable, but we can create a new
one with updated fields, or even changed fields, like this:

> whiteQueen = { blackQueen | color <- White }
{ color = White, piece = Queen } : { piece : Repl.Piece, color : Repl.Color }
> position = { column = "d", row = 1 }
{ column = "d", row = 1 } : {column : String, row : number}
> homeWhiteQueen = { whiteQueen | position = position }
{ color = White, piece = Queen, position = { column = "d", row = 1 } }

: { piece : Repl.Piece
, color : Repl.Color
, position : { column : String, row : number }
}

> colorAndPosition = { homeWhiteQueen - piece }
{ color = White, position = { column = "d", row = 1 } }

: { color : Repl.Color, position : { column : String, row : number }
}

> colorAndPosition.color
White : Repl.Color

Nice. We created three new records, all of different types, by transforming our
original record. We’ll come back to records after you’ve learned the greatest
building block in Elm, the function.

Working with Functions
As with any functional language, the foundation of Elm is the function.
Defining one is trivial. Let’s see some primitive functions:

> add x y = x + y
<function> : number -> number -> number
> double x = x * 2
<function> : number -> number
> anonymousInc = \x -> x + 1
<function> : number -> number
> double (add 1 2)
6 : number
> List.map anonymousInc [1, 2, 3]
[2,3,4] : [number]

The syntax for creating functions is dead simple and intuitive. add is a named
function with two arguments, x and y. Anonymous functions express param-
eters as \x, and the function body follows the characters ->.

As you’ll see with Elixir, Elm lets you compose functions with the pipe opera-
tor, like this:

> 5 |> anonymousInc |> double
12 : number

report erratum • discuss

Day 1: Handling the Basics • 95

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We take 5, and pass it as the first argument to anonymousInc, to get 6. Then, we
pass that as the first argument to double. We can also make that expression
run right to left:

> double <| anonymousInc <| 5
12 : number

Evan Czaplicki, creator of Elm, says he got this feature from F#, which in
turn got the idea from Unix pipes, so this idea has been around a while, but
it’s a good one!

As with any functional language, there are plenty of functions that will let
you work with functions in all kinds of ways:

> List.map double [1..3]
[2,4,6] : List number
> List.filter (\x -> x < 3) [1..20]
[1,2] : List comparable

[1..3] is a range. You can explore more of the List functions with the list library.4

When you’re composing a solution with Elm, you might be tempted to code
each case as a separate function body as you would in Haskell, Erlang, or
Elixir, but no luck:

> factorial 1 = 1
<function> : number -> number'
> factorial x = x * factorial (x - 1)
<function> : number -> number
>
RangeError: Maximum call stack size exceeded

It looks like the second call replaced the first. Instead, you need to use the
same function body and break the problem up using case or if, like this:

> factorial x = \
| if | x == 0 -> 1 \
| | otherwise -> x * factorial (x - 1)
<function> : number -> number
> factorial 5
120 : number

Simple enough. factorial 0 is 1; otherwise, factorial x is x * factorial (x-1). You would
handle list recursion the same way:

> count list = \
| case list of \
| [] -> 0 \

4. http://library.elm-lang.org/catalog/evancz-Elm/0.10.1/List

Chapter 3. Elm • 96

report erratum • discuss

http://library.elm-lang.org/catalog/evancz-Elm/0.10.1/List
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

| head::tail -> 1 + count tail
<function> : [a] -> number
> count [4, 5, 6]
3 : number

The count of an empty list is zero. The count of any other list is 1 plus the
count of the tail. Let’s see how to attack similar problems with pattern
matching.

Pattern Matching
You can use pattern matching to simplify some function definitions:

> first (head::tail) = head
<function> : List a -> a
> first [1, 2, 3]
1 : number

Be careful, though. You will need to cover every case in your functions, or
you could have some error conditions like this:

> first []
Error: Runtime error in module Repl (on line 23, column 22 to 26):
Non-exhaustive pattern match in case-expression.
Make sure your patterns cover every case!

Since head::tail doesn’t match [], Elm doesn’t know what to do with this
expression. Using a nonexhaustive pattern match is one of the few ways you
can crash an ML-family language and it’s totally avoidable.

Functions and Types
We quickly glossed over the types of functions. It turns out that Elm is a
curried language:

> add x y = x + y
<function> : number -> number -> number

Notice the data type of the function. You might have expected a function that
takes two arguments of type number and returns a type of number. Here’s how
currying works. Elm can partially apply add, meaning it can fill in one of the
two numbers, like this:

> inc = (add 1)
<function> : number -> number

We just created a new partially applied function called inc. That new function
applies one of the arguments for add. We filled out x, but not y, so Elm is
basically doing this:

report erratum • discuss

Day 1: Handling the Basics • 97

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

addX y = 1 + y

Currying means changing multi-argument functions to a chain of functions
that each take a single argument. Now, we can handle the currying ourselves.
Remember, curried functions can take no more than one argument at a time:

> add x y = x + y
<function> : number -> number -> number
> add 2 1
3 : number
> (add 2) 1
3 : number

That’s slick. We defined add again, for reference. Then we added 2 and 1,
without currying. Then we curried the function ourselves, creating a function
that adds two to the first argument, and passed that function a 1.

Whew.

Fortunately, you won’t usually need to do the currying because Elm will do
it for you, but you can use partially applied functions to create some cool
algorithms. Let’s go back to add.

Elm infers that you’re going to be doing arithmetic with numbers. Elm uses
the type class number because that’s the type class the + operator supports.
You aren’t limited to integers, though:

> add 1 2
3 : number
> add 1.0 2
3 : Float
> add 1.0 2.3
3.3 : Float

So Elm is polymorphic. It figures out the most general type that will work,
based on your use of operators. In fact, you can see the same behavior with
the ++ operator:

> concat x y = x ++ y
<function> : appendable -> appendable -> appendable

Elm assumes the function uses two appendable elements, like this:

> concat ["a", "b"] ["c", "d"]
["a","b","c","d"] : [String]
> concat "ab" "cd"
"abcd" : String

Chapter 3. Elm • 98

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

That’s polymorphism. As you might expect, you can use polymorphism with
points, too. Let’s say I have a point and want to compute the distance to the
x-axis. That’s easy to do:

> somePoint = {x=5, y=4}
{ x = 5, y = 4 } : {x : number, y : number'}
> xDist point = abs point.x
<function> : {a | x : number} -> number
> xDist somePoint
5 : number

Elm’s type inference infers that x and y are numbers within a record. Now, I
can pass it any point:

> twoD = {x=5, y=4}
{ x = 5, y = 4 } : {x : number, y : number'}
> threeD = {x=5, y=4, z=3}
{ x = 5, y = 4, z = 3 } : {x : number, y : number', z : number''}
> xDist twoD
5 : number
> xDist threeD
5 : number

Alternatively, I could use pattern matching, like this:

> xDist {x} = abs x
<function> : { a | x : number } -> number
> xDist threeD
5 : number

We’re using matching to pick off the x field, and the rest of the example works
the same way. The point is that records are fully polymorphic too. Elm doesn’t
care that the records we use are the same type. It only needs the record to
have an x field. You’re seeing the power of a type system that will do its best
to catch real problems but that will get out of the way when there isn’t one.

That’s probably enough for Day 1. Let’s wrap up what we’ve done so far.

What We Learned in Day 1
We’ve taken a quick pass through Elm. We found a functional language that
has many of the attributes of functional languages in the ML family, tweaked
to work on the web. We spent extra time exploring basic pattern matching
and working with various aspects of functions. We looked at several ways of
composing functions and even looked at how function currying and partial
application works.

report erratum • discuss

Day 1: Handling the Basics • 99

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Your Turn
Elm is a younger language than most of the others in this book. Most of the
documentation you’ll find is pretty consolidated on the Elm language page,
or links off that page. I expect that to change quickly.

Find…

• How do you compile an Elm program?
• Where would you go for Elm support?

Do (Easy):

• Write a function to find the product of a list of numbers.
• Write a function to return all of the x fields from a list of point records.
• Use records to describe a person containing name, age, and address. You

should also express the address as a record.
• Is it easier to use abstract data types or records to solve the previous

problem? Why?

Do (Medium):

• Write a function called multiply.
• Use currying to express 6 * 8.
• Make a list of person records. Write a function to find all of the people in

your list older than 16.

Do (Hard):

• Write the same function, but allow records where the age field might be
nothing. How does Elm support nil values?

That’s it for Day 1. Tomorrow, we’re going to leave the REPL and dive into
web applications. We’ll explore the basic concept of functional reactive pro-
gramming. Most of the ideas we’ll see involve using signals, which express
changing values over time as functions. You’ll also see how to combine signals
with functions. Then, we’ll learn to display text and images.

Day 2: Taming Callbacks
In Day 2, we’re going to build the skills necessary to attack the most sophis-
ticated of user interface problems: building a game. We’re going to learn to
handle user input and output, the most difficult concepts for functional lan-
guages. We’ll also learn to display images. You’ll find that Elm is a natural
language for doing so.

Chapter 3. Elm • 100

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

As a wanna-be browser language, Elm has a big disadvantage. It’s not Java-
Script. You’ll need to rely on another layer in the browser to compile Elm to
JavaScript. But Elm also has a huge advantage.

It’s not JavaScript.

If you want to herd sheep like a sheep dog, you don’t necessarily have to be
a dog. You just have to herd sheep.

Before we get rolling, let’s spend some time with Evan Czaplicki, creator of
Elm. He’ll help us understand the motivations behind the language.

Us: Why did you create Elm?

Czaplicki: I was extremely frustrated by HTML and CSS. Basic things like center-
ing, or even worse vertical centering, were shockingly difficult. I kept finding five
ways to do the same thing, each with its own set of weaknesses and corner cases.
I wanted reusable styles and components. I was going to use the same sidebar on
every page and there just was not a way. It makes sense why these things were
hard in a language originally designed for text markup, but I felt that there had to
be a more declarative and more pleasant way. So my goal was to create a better
way to do GUI programming. I wanted to write front-end code that I was proud of.

Us: So why choose a functional language?

Czaplicki: I wanted to show that functional programming can be great for real
problems. Many functional folks have a way of saying extremely interesting and
useful things in a totally inaccessible and impractical way, and I wanted to fix this.
I wanted to prove that functional programming actually helps you write nicer code.
Elm’s focus on examples, quick visual feedback, and shockingly short code are all
meant to prove that purely functional GUIs are a good idea.

Us: What were your main influences?

Czaplicki: Haskell has been a big influence, but so have OCaml, SML, and F#.
Syntax is very much like Haskell, though semantics are often closer to OCaml. I
tend to say “Elm is an ML-family language” to get at the shared heritage of all these
languages.

Stephen Chong and Greg Morrisett are my major influences in how I think about
programming languages. With that foundation, I try to do a literature review for any
new feature and end up looking at all sorts of languages. For example, Java and
Python were extremely helpful for Elm’s docs format, and Clojure and Scala are
great resources on how to present a compile-to-VM language to people new to
functional programming. The full list is quite long by now!

Us: What is the philosophy of the language?

Czaplicki: Balance simplicity and expressiveness. Introduce only the minimal set
of features to make GUI programming a great experience. Static types, functional

report erratum • discuss

Day 2: Taming Callbacks • 101

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

programming, and reactive programming are extremely important tools for writing
short and reliable code, but it is a lot to learn all at once.

Not only does Elm need to make these things simple and accessible, it needs to
make their value immediately obvious. Elm is not about being theoretically better,
it is about being demonstrably better.

Us: What is your favorite language feature?

Czaplicki: I really love Elm’s extensible records. This feature is based on Daan
Leijen’s ideas from Extensible Records with Scoped Labels, and because I was not
involved in the theory work, it is something that delights me by balancing expres-
siveness and simplicity so beautifully. This is the kind of balance I hope to achieve
when I design features.

Elm was built from the ground up to handle the most difficult aspects of user
interface development. As you work through Day 2, look for ways that this
new language helps you herd all of the elements of a great design into a
coherent application.

Grappling with Callback Hell
Whether you’re building a business application with user interface controls
or a game, you need to be able to react to events. In fact, everything you do
is a reaction to some event. The typical JavaScript program relies on sending
events through callback functions, making programs much more responsive
but at a cost. They’re much too hard to read. Here’s a typical example using
the JQuery library with JavaScript that lets you grab the mouse position:

$(document).ready(function () {
var position = {'x': 0, 'y': 0};
$(document).bind('mousemove', function(event) {

position = {'x': event.pageX, 'y': event.pageY};
});

setInterval(function () {
// custom position code

}, seconds * 1000);
});

Understanding that code takes a little experience. When the page loads, we
get a ready callback. At that time, we bind the mousemove event to a function
that sets a position variable. Then, at specific intervals, we have another callback
function that uses position. Notice that our code binds anonymous functions
to events. Said another way, we’re putting JavaScript in charge of the code’s
organization. We call this inside-out programming strategy inversion of control.

Chapter 3. Elm • 102

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

For a feature so trivial, that code is much too complex, but it’s a trade-off.
We get better responsiveness since this program will change the mouse
position every time the user moves the mouse. We trade away simplicity. The
problem is that we really need both.

Avoiding Callbacks with Maps and Signals
In Elm, we don’t give up simplicity to get responsiveness. Instead of inversion
of control, we’ll use signals. A signal represents I/O as a value that varies
over time. Let’s try it out.

These programs will allow us to see how Elm handles user interaction without
callbacks. For this part of the chapter, we’ll use the Elm online editor5 to try
interactive programs without having to fire up your own server. You’ll type
code on the left, and see the results on the right. Let’s start with a simple
function to pick up the user’s mouse position:

import Graphics.Element exposing (..)
import Mouse

main = Signal.map show Mouse.position

The exposing directive lets us show without specifying the module. Next, click
the compile button. You’ll see output that looks like this:

(29, 162)

That’s much simpler. We import the Graphics.Element and Mouse modules, and
then declare the main function.

Conceptually, the Mouse.position signal represents the values of x and y that
vary over time. Signal.map applies a signal to a single function.

In the previous code, the Mouse.position signal represents a tuple containing the
mouse position over time. Our function is show, which converts to text.
Mouse.position will “fire” whenever the mouse moves, and Signal.map will reevaluate
show with the new mouse position. Interestingly, the result is a new signal!
Rather than a callback, you have straight composition of functions. The result
is revolutionary.

Looking at the bottom of the window, you can see that main is actually a sig-
nal—one that we display on the screen. That means Elm will update the
window whenever the mouse position moves.

5. http://elm-lang.org/try

report erratum • discuss

Day 2: Taming Callbacks • 103

http://elm-lang.org/try
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

There are no callbacks, and no inversion of control. We just use a signal,
convert to text, and map the present value when the signal changes. Let’s try
another one.

Maintaining State
Let’s use these same principles to produce an interactive experience. We’ll
add a couple of functions to count the number of mouse interactions. In
functional languages like Elm, you have to learn tricks to handle state. We’ve
seen how signals can help access things like the mouse position that changes
over time, and how we use recursion to process lists. We manage state by the
way we structure our functions. The fold functions, which you might know
from Lisp or Haskell, are a good example. They take a two-argument function,
an initial value, and a list. Here’s an example of foldl in Elm:

> foldl (+) 0 [1, 2, 3]
6 : number

Here’s what happens at each step:

• fold (+) 0 [1, 2, 3]. fold takes the initial value of the list, 1, and the accumulator,
0, and adds them together, returning 1, and uses that number, with the
remainder of the list, calling fold again.

• fold (+) 1 [2, 3]. Elm takes the leftmost value of the list, 2, and the accumu-
lator, 1, and passes those to the (+) function, returning 3.

• fold (+) 3 [3]. We call (+) with the accumulator 3 and the leftmost list element
of 3, returning 6, and we’re done.

Now, we create one signal with foldp. That signal adds the accumulator, called
presses, to the x value from the signal of Keyboard.arrows. We can then map that
value onto the show function. Now, when you run the application, you’ll get a
running total of presses. The left decrements the count, and the right incre-
ments the count.

Let’s use the same general principle to count mouse movements. Signal.map
applies a signal to a function. Signal.foldp folds over a signal, from the past:

import Mouse
import Graphics.Element exposing (show)

count signal = Signal.foldp (_ n -> n + 1) 0 signal
main = Signal.map show (count Mouse.position)

Navigate to the window on the right, move the mouse, and you’ll see a number
that quickly counts mouse moves:

246

Chapter 3. Elm • 104

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The count function takes a signal and adds one each time that signal changes.
foldp works just like foldl did, but instead of folding across a list from the left,
foldp folds through time, from the past. Our foldp function takes an anonymous
function that adds one to a value, starts with an initial value of 0, and provides
a signal. Our new signal will have values starting with 0 that increase each
time the signal updates.

We can easily change the program to count mouse clicks:

import Mouse
import Graphics.Element exposing (show)

main = Signal.map show (count Mouse.clicks)
count signal = Signal.foldp (_ n -> n + 1) 0 signal

In this case, the count function counts the number of signal updates, which
are mouse clicks. You can start to see how we can write code that respects
the rules of functional programming, but is still reactive and easy to under-
stand.

Believe it or not, foldp is the foundation of our game, as you’ll see on Day 3.

Let’s see how keyboard signals would work:

import Graphics.Element exposing (show)
import Keyboard

main = Signal.map show Keyboard.arrows

Compile it, click on the right-hand window, and press the up and right arrows.
You’ll see:

{ x = 1, y = -1 }

You can intuitively see exactly what’s going on. map updates the text when
the signal changes, so we get a clean program that tells us the state of the
arrow keys, in a form that we can easily use. Since we can compose with
functions, we can get more sophisticated.

Combining Signals
Most user interfaces use more than one signal at once. For example:

• Find out where a user clicked
• Scroll based on window size and mouse position
• Find the value of input fields when the user clicks a mouse
• Drag and drop items

report erratum • discuss

Day 2: Taming Callbacks • 105

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

These problems are all combinations of signals. For more advanced applica-
tions, a simple map is not enough. Several other functions help us combine
signals in more sophisticated ways. One of the most common user interface
problems is to find where a user clicks.

Let’s use the function sampleOn. That function allows us to sample one signal
when another updates, like this:

import Graphics.Element exposing (show)
import Mouse

clickPosition = Signal.sampleOn Mouse.clicks Mouse.position
main = Signal.map show clickPosition

We build two signals, clickPosition and main. First, we create a signal with sampleOn.
When the Mouse.Clicks signal updates, we’ll sample the most recent Mouse.position.
The result is a new signal that returns a mouse position and changes when-
ever the user clicks a mouse. Next, we simply build our main signal. We map
show onto our clickPosition signal. Simple. We can sample input controls in the
same way.

Or, let’s say you’re implementing scrolling with a scroll bar. You need to find
out how far down a page the mouse is, like this:

import Graphics.Element exposing (show)
import Mouse
import Window

div x y = show ((toFloat x) / (toFloat y))
main = Signal.map2 (div) Mouse.y Window.height

Run it and scroll on the right-hand side to get something like this:

0.42973977695167286

This example uses map2. Like map, this function maps functions onto signals,
but uses two signals and two-argument functions.

First, to simplify type conversions, we create a version of division that takes
integers and returns text. Next, we use map2 to map div onto two signals, Mouse.y
and Window.height. Think about what a similar JavaScript program would look
like. It doesn’t take too many examples to see Evan’s vision. Monitoring user
inputs is a functional job.

Chapter 3. Elm • 106

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Working with Text Input
Functional languages are great at transforming text. Elm is excellent for
capturing text too. Here’s an example that takes some input, manipulates it,
and puts it on the screen, using an HTML flow:

import String❶
import Html exposing (Html, Attribute, text, toElement, div, input)
import Html.Attributes exposing (..)
import Html.Events exposing (on, targetValue)
import Signal exposing (Address)
import StartApp.Simple as StartApp

main = StartApp.start { model = "", view = view, update = update }❷

update newStr oldStr = newStr❸

shout text = String.toUpper text❹
whisper text = String.toLower text
echo text = (shout text) ++ " " ++ (whisper text)

view address string =❺
div []

[input
[placeholder "Speak"
, value string
, on "input" targetValue (Signal.message address)
, myStyle
]
[]

, div [myStyle] [text (echo string)]
]

myStyle = style [("width", "100%")]

❶ We import the libraries we’ll need. String allows us to do string manipula-
tion, and Html gives us access to various aspects of HTML including events,
divs, and input fields.

❷ Our one-line main function starts our application, initializing with an
empty string, presenting a view, and handling updates with our update
function, which will be called each time our entry field changes.

❸ Next, our trivial update function simply returns the new value of the entry
field each time the entry field updates.

❹ Next, we define a couple of simple functions for working with text, the
shout and whisper functions. We use those to build an echo function to

report erratum • discuss

Day 2: Taming Callbacks • 107

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

transform the text. These functions know nothing about user interfaces.
They just work on raw String data.

❺ The next task is to build our HTML page. We add an input control and a
div that will contain our changed text. The input control simply has the
HTML elements Elm needs to render the control. The on function estab-
lishes a signal that will contain updates of the entry field. myStyle returns
the style sheet for our HTML elements. The div function creates an HTML
div with the specified contents and style.

Whew. That’s a lot of code packed into a short example. It may seem a little
alien at first, but Elm’s worldview is the perfect complement to web front-end
programming. Each user interface is just a stream of transformed user inputs.
Now that we’ve seen how text works, let’s look at one more concept we’re
going to need for our game. Instead of working with text, we will draw shapes
based on user input.

Drawing Shapes
In Elm, we can draw on the canvas with a full graphics
library. We start with a collage with set dimensions, and then
build shapes. We can transform the shapes by moving,
scaling, or rotating them.

The figure shows a simple car. We’ll describe it in terms of functions. As you’d
expect, we’ll use a combination of data structures and functions to do what
we want.

elm/car.elm
import Color exposing (..)
import Graphics.Collage exposing (..)
import Graphics.Element exposing (..)

carBottom = filled black (rect 160 50)
carTop = filled black (rect 100 60)
tire = filled red (circle 24)

main = collage 300 300
[carBottom

, carTop |> moveY 30
, tire |> move (-40, -28)
, tire |> move (40, -28)]

First, we define a few basic shapes. We’ll define the basic dimensions of the
shapes, and by default they’ll show up in the middle of the canvas. main is
just a collage, which takes a width, a height, and a list of shapes, called forms

Chapter 3. Elm • 108

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elm/car.elm
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

in Elm. Each element of the list is just a shape. For example, carTop |> moveY
30 is just a rectangle moved 30 pixels vertically.

In this particular example, the figure is static. With Elm, animating that figure
is nearly trivial. Say we have a rectangle with a form that looks like this:

filled black (rect 80 10)

When we build our game on Day 3, we’ll need a paddle. We can animate the
paddle by mapping Mouse.x onto the function that draws this paddle, like this:

elm/paddle.elm
import Color exposing (..)
import Graphics.Collage exposing (..)
import Graphics.Element exposing (..)
import Mouse
import Window
import Signal

drawPaddle w h x =
filled black (rect 80 10)

|> moveX (toFloat x - toFloat w / 2)
|> moveY (toFloat h * -0.45)

display (w, h) x = collage w h
[drawPaddle w h x]

main = Signal.map2 display Window.dimensions Mouse.x

Boom! Just like that, we have animation. We don’t have to worry about
drawing the paddle over time, or remember the previous location of the paddle.
Instead, we just worry about drawing the paddle right now, and letting the
user input determine where to move it. Now, you have all of the foundation
you’ll need to complete a game in Day 3. Let’s recap.

What We Learned in Day 2
In Day 2, you learned about Elm’s primary purpose. Previous languages
focused on callbacks or simply single-threaded code to create programs that
respond to users. The cost was complexity or unresponsive interfaces. Func-
tional programming languages have traditionally struggled with user interfaces
because processing user input often involved changing state.

Elm solves both problems with signals, which are functions that represent
values that change over time. By viewing user input as functions rather than
data, the same beautiful functional programming techniques that express
complex computations can be brought to bear on complex user interfaces.

report erratum • discuss

Day 2: Taming Callbacks • 109

http://media.pragprog.com/titles/7lang/code/elm/paddle.elm
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We learned to transform signals by mapping functions onto them with map
and map2. Each time, the result is a new signal. We also used other functions
to combine signals and functions such as foldp, which maintains a running
accumulator, and sampleOn, which determines exactly when we sample.

Finally, we displayed some text and graphics. We also mapped a display function
onto a paddle, which will come in handy when we work on our game.

Your Turn
Use the online editor6 to solve these problems interactively.

Find…

• Examples of different signals available in Elm
• The relationship between map and signals
• A signal that fires every second

Do (Easy):

• Write a signal to display the current mouse position, including whether
a mouse button is pressed.

• Write a signal to display the y value of the mouse when the button is
pressed.

Do (Medium):

• Use map and signals to draw your own picture at the current mouse
position. Change the picture when a mouse button is pressed.

• Write a program that counts up, from zero, with one count per second.

Do (Hard):

• Use foldp to make the car move from left to right, and then right to left,
across the bottom of the screen.

• Make the car move faster when the mouse is farther to the right, and
slower when the mouse is farther to the left.

That’s it for Day 2. Tomorrow, you’re going to combine everything we’ve learned
so far to write a game. We’re going to go far beyond pong in this one, so fasten
your seatbelt.

6. http://elm-lang.org/try

Chapter 3. Elm • 110

report erratum • discuss

http://elm-lang.org/try
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Day 3: It’s All a Game
When I was in high school, I made extra spending money by writing games.
We basically painted one screen after another in a loop, and the game went
as fast as your hardware. The more complex the game, the slower it ran.
These days, writing a game using conventional technologies is much tougher.
The processors are much faster, so you need to spend more time dealing with
timing and state. I quit writing games when I was in college. It just got too
hard to crank out a game in an afternoon.

Until now. The game I wrote for this chapter is the first I’ve written in 20
years. The experience has been incredibly rewarding. The flow of this section
is going to be a little different than most of the others in this book. I’m going
to show you what a game skeleton looks like, we’ll invent a game concept,
and then we’ll work through one giant example, under 200 lines long, piece
by piece. When we’re done, you will have a working game that you can cus-
tomize. Hopefully, Elm will spark a new wave of game designers.

First things first, though. We need to start with a basic shell.

Describing a Skeleton
You’ve already seen how animation, user input, and graphics display work
in Elm, so you probably know at least a little about what a game will look
like. The basic strategy will be to build one time slice of the game. Then, we’ll
work on moving the game from one time slice to the next, based on user input.
Using that strategy, all basic games will have the same basic components:

• A model—We’ll build a data model of the game, including the user inputs
and all data elements, player or computer controlled.

• A signal—The signal will combine the game state with user input signals
and time.

• Step logic—We’ll build a step function that will move the game to the next
state based on the previous game state and the user inputs.

• Display logic—We won’t worry about animation. We’ll worry only about
showing our game state, at a point frozen in time.

Keep in mind that all games have to do this work. It’s just harder to express
games in many other languages because the abstractions are not as clean.
Let’s take a look at a basic skeleton of our game, without any specifics
attached.

report erratum • discuss

Day 3: It’s All a Game • 111

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Defining the Model

Here’s the skeleton in code. As with most games in Elm, I’ve based the initial
design on Evan’s excellent game skeleton.7 It’s a free, open source project
that you can use to get started. Alternatively, you can check out the many
game examples at the Elm language site.8 Let’s check out my revised skeleton,
piece by piece.

elm/skeleton.elm
module SomeGame where...

type alias Input = { ... }
type alias Player = { ... }
type alias Game = { player:Player, ... }

First, we model the game. Elm games are modules. Inside these you build a
model of your game with simple data types. You can combine those simple
types into higher level types. Generally, your model will represent the player,
other computer-controlled elements, game state, and user inputs at one point
in time. You’re looking to collect everything you will need when it comes time
to display the game, or to transition from one slice of time to the next.

Looping with Signals and foldp
Next, define a couple of signals. One will grab the user inputs we need, and
the other will build each time slice based on the last one. As you can imagine,
we’ll use map for the input and foldp to move from one slice to the next.

elm/skeleton.elm
delta = inSeconds <~ fps n
input = sampleOn delta (...)
main = map display gameState
gameState = foldp stepGame initialGameState input

delta is a signal (using the operator equivalent of map, <~) that represents one
slice of time. fps is a signal that means “frames per second.” We’re left with a
signal that regularly updates every n seconds. Just like that, Elm has taken
over the sensitive game timing so our math can focus on one point in time.

We then build another signal based on that one called input, which will capture
all of the user input we need. gameState is a signal that builds the next state
of the game based on user inputs and the previous game state. foldp is the
perfect choice to do this work because it allows us to use the previous state
in our definition of the next game.

7. https://github.com/evancz/elm-lang.org/blob/master/public/examples/Intermediate/GameSkeleton.elm
8. http://elm-lang.org/Examples.elm

Chapter 3. Elm • 112

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elm/skeleton.elm
http://media.pragprog.com/titles/7lang/code/elm/skeleton.elm
https://github.com/evancz/elm-lang.org/blob/master/public/examples/Intermediate/GameSkeleton.elm
http://elm-lang.org/Examples.elm
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

main, then, needs only animate the game. That’s easy since we can map the
gameState signal onto display. This code has a lot going on. Feel free to spend a
little time with it to make sure you understand what’s going on.

Stepping and Displaying the Game

Of course, stepping from one state to the next and displaying our game are
the essence of our game and should command most of our attention. In Elm,
they do. Further, both stepGame and display are simple functions that operate
on one flat slice of time. We don’t have to worry about input and output
beyond its state at any instance of time. The framework lets us represent
what is often the most difficult part of the game with a trivial four lines of
code. Fantastic!

Describing Language Head
Before we start to code, we need
to know one more thing. What are
the rules of the game?

A strange language deserves an
equally twisted game. We’re going
to build a game called Language
Head. The object of the game is to
bounce some balls across the
screen, without letting each hit the
ground. When a ball hits the
ground, the game ends. The player
scores by staying alive and successfully getting a ball across the screen with
a paddle they’ll move with their mouse. There’s a black line for a paddle on
the bottom, a score on the upper right, and a primitive background, including
a red rectangle representing a building on the left, and a gray area that will
be our road on the bottom.

There’s a twist. We’re going to put the pictures of people on each ball, and
call them heads. We’ll drop more and more of them as the game goes on.

I’m going to break protocol for this chapter. Rather than work on this project
iteratively, I’m going to tell you about each part of the completed game. Then,
we’ll talk about how to run the program, and you can take a well-earned
break to play the game. Some of the parts will be a little long, but that’s OK.
We’ll carve those long examples into shorter sections so you’ll be able to see
what’s going on.

report erratum • discuss

Day 3: It’s All a Game • 113

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Modeling Language Head
Let’s look at the first code section: the module definition and imports.

elm/game/languageHeads.elm
module LanguageHead where

import Color exposing (..)
import Graphics.Collage exposing (..)
import Graphics.Element exposing (Element, image, leftAligned)
import Keyboard
import List exposing ((::), all, filter, length)
import Mouse
import Random exposing (Seed, generate, initialSeed, int)
import Signal exposing (Signal, (<~), (~), foldp, map, sampleOn)
import Text exposing (color, fromString, height, monospace)
import Time exposing (Time, every, fps, inSeconds)

Longer Elm programs are broken down into modules. This module is called
LanguageHead. We need mouse input for the paddle and keyboard input to
capture the spacebar to start the game. We will also need a random signal to
choose which head to present and some graphics modules to display our
game. All of the code for this whole game is in a single module.

Let’s take a look at the data models.

elm/game/languageHeads.elm
type State = Play | Pause | GameOver❶

type alias Input = { space:Bool, x:Int, delta:Time }
type alias Head = { x:Float, y:Float, vx:Float, vy:Float, img:String }
type alias Player = { x:Float, score:Int }
type alias Game = { state:State, heads: List Head, player:Player, seed: Seed }

defaultHead n = {x=100.0, y=75, vx=60, vy=0.0, img=headImage n }❷

defaultGame = { state = Pause,
heads = [],
player = {x=0.0, score=0},
seed = initialSeed 1234 }

headImage n =
if | n == 0 -> "/img/brucetate.png"

| n == 1 -> "/img/davethomas.png"
| n == 2 -> "/img/evanczaplicki.png"
| n == 3 -> "/img/joearmstrong.png"
| n == 4 -> "/img/josevalim.png"
| otherwise -> ""

bottom = 550

Chapter 3. Elm • 114

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elm/game/languageHeads.elm
http://media.pragprog.com/titles/7lang/code/elm/game/languageHeads.elm
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

This listing defines data types that describe our world. We first define data
types, and then we declare some data that will come in handy when we
introduce new data to the game. Let’s look at it piece by piece.

❶ In short, we have an overarching Game model that contains the game State,
user Input, all of the Heads, and the Player. The State is a primitive data type
alias with the states we’ll need: Play, Pause, and GameOver. The game will
behave differently in each of these states. We use type aliases because
we’ll need to reuse these definitions throughout our game.

The Player and Game types are pretty simple, but the Head type needs a little
more explanation. We need to save not just the x and y coordinates (these
are on a 800×600 grid, with the origin anchored on the top left), but also
the velocity that the heads are moving across both dimensions. The y
velocity will change over time to simulate gravity, flipping when any head
bounces. We’ll need this velocity as we step the game. We will also assign
a random head image in img.

❷ In this section, we’re done with type aliases. We are building functions
to return actual type for the initial state. defaultGame is simple as expected,
but the heads have to have more logic built in because we are going to
move them around. We define a default head. We include its starting
coordinates, and set the vx to a constant. Ignoring the laws of physics,
our heads will keep a constant x velocity (vx) because I am not smart
enough to calculate wind resistance across the wide variety of hairstyles
our heads could have. I’m looking at you, Evan. Our vy values start with
a velocity of zero, but that will pick up once our artificial gravity kicks in.

Now that we’ve defined the model, it’s time to define the signals that will drive
our game.

Building the Game Signals
In this section, we handle all of the timing, the different user input states,
the speed of the game, and the details that hold the application together from
frame to frame. It’s also the shortest section of our entire example. You can
probably see where this is, um, headed. Elm is going to handle these details
through signals. We’ll just need to provide a little glue.

elm/game/languageHeads.elm
secsPerFrame = 1.0 / 50.0
delta = inSeconds <~ fps 50
input = sampleOn delta (Input <~ Keyboard.space

~ Mouse.x
~ delta)

report erratum • discuss

Day 3: It’s All a Game • 115

http://media.pragprog.com/titles/7lang/code/elm/game/languageHeads.elm
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

main = map display (gameState)
gameState = foldp stepGame defaultGame input

We first set the speed of the game. We define a function called secsPerFrame to
return the size of each time slice. Next, we build a delta signal that updates
50 times per second. The <~ operator is shorthand for map, so you could write
inSeconds <~ fps 50 as map inSeconds (fps 50). That means we’re just going to get a
float representing the number of seconds that have actually passed.

Next, we build our input signal. You’ll see a new operator, the ~. (f <~ a ~ b)
is equivalent to (map2 f a b). Think of the squiggly arrow as signals flowing into
the function. Using that operator, we pick off the various elements of the Input
type, whether the spacebar is pressed, the x position of the mouse, and the
total amount of time that’s passed in this slice. We’ll sample 50 times a second,
based on the delta signal.

Finally, all that remains is to build our foldp loop. This recursive loop will build
each successive Game based on the previous Game slice and user inputs. You
can see that we’re following the skeleton quite closely. The bulk of the code
manages the creative side of the game, stepping and displaying each element.
Herd on, Babe!

Stepping the Game
The trickiest part of this game is to manage all of the moving parts. We’ll
break this process into three major parts:

• Stepping the game when we’re in Play mode—In this mode, we’ll have to
move the player’s score and paddle. We’ll also have to check to see if the
game is over, and we’ll need to move the heads around a bit.

• Stepping the game when we’re in Pause mode—In this mode, the player
has not yet started the game. We’ll allow them to move the paddle and
also to press the spacebar. Otherwise, there’s not much work to do.

• Stepping the game in GameOver mode—We’ll want to preserve the score,
and we’ll want to reset the player right before we restart the game. Other-
wise, this mode is identical to the Pause mode.

There’s a lot going on here, but the code is remarkably concise because we
don’t have to worry about timing, animation, or managing user input.

elm/game/languageHeads.elm
stepGame input game =❶

case game.state of
Play -> stepGamePlay input game
Pause -> stepGamePaused input game
GameOver -> stepGameFinished input game

Chapter 3. Elm • 116

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elm/game/languageHeads.elm
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

stepGamePlay {space, x, delta} ({state, heads, player, seed} as game) =❷
let (rand, seed') =

generate (int 0 4) seed
in

{ game | state <- stepGameOver x heads
, heads <- stepHeads heads delta x player.score rand
, player <- stepPlayer player x heads
, seed <- seed' }

stepGameOver x heads =
if allHeadsSafe (toFloat x) heads then Play else GameOver

allHeadsSafe x heads =
all (headSafe x) heads

headSafe x head =
head.y < bottom || abs (head.x - x) < 50

❶ Though we break it down into several different functions, stepGame is just
a function. We take the input and game type aliases. We use case to branch
on game.state, calling a function to step each possible game state.

❷ The first such function is stepGamePlay, which steps the game in Play mode.
We update the game structure, calling a function to build each element of
the game structure. stepGameOver will tell us if a head has crashed, stepHeads
will manage any changes in the heads, and stepPlayer will handle changes
in the paddle position and score.

The game is over when we experience a cranial catastrophe, meaning one
head reached the bottom without a paddle. stepGameOver, then, is easy to
write. We call a function called allHeadsSafe to see if any heads have reached
the bottom without a paddle. That function will be true if headSafe head is
true for every head in heads. headSafe needs only check to see if a single head
has reached the bottom without the paddle close by (abs (head.x - x) < 50).

Now, we know enough to tell whether the heads are safe, so we can success-
fully transition to GameOver at the right time. Note that we don’t care about
any animation—we just check to see if all heads are safe at this point in time.

The next step is to move the heads according to the rules of the game. There
are several steps to that process:

stepHeads heads delta x score rand =❶
spawnHead score heads rand
|> bounceHeads
|> removeComplete
|> moveHeads delta

report erratum • discuss

Day 3: It’s All a Game • 117

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

spawnHead score heads rand =❷
let addHead = length heads < (score // 5000 + 1)

&& all (\head -> head.x > 107.0) heads in
if addHead then defaultHead rand :: heads else heads

bounceHeads heads = List.map bounce heads❸

bounce head =
{ head | vy <- if head.y > bottom && head.vy > 0

then -head.vy * 0.95
else head.vy }

removeComplete heads = filter (\x -> not (complete x)) heads❹

complete {x} = x > 750

moveHeads delta heads = List.map moveHead heads❺

moveHead ({x, y, vx, vy} as head) =
{ head | x <- x + vx * secsPerFrame

, y <- y + vy * secsPerFrame
, vy <- vy + secsPerFrame * 400 }

❶ The stepHeads function needs several arguments to do the entire job. The
whole function is a function pipe, rolling the result of each function into
the next. The result is a clear, concise representation of the data. We need
to add heads when it’s time with spawnHeads, bounce the heads when they
reach the bottom with bounceHeads, remove heads that reach the right side
of the window with removeComplete, and move the heads according to the
rules of the game with moveHeads.

❷ We’ll need to make sure the game has enough heads. addHead is a formula
based on the score that determines how many heads are on the display.
We add a head if there are not enough heads yet.

❸ Heads bounce when they get to the bottom, if they haven’t already
bounced. To bounce a head, we just make vy, the y velocity, negative if
it’s on the bottom. We also multiply by 0.95 when we bounce, so each
bounce doesn’t go quite as high as the last. It’s a nice touch that looks a
little more realistic.

❹ We remove all heads that are complete. A head is complete once it’s
reached the right-hand side, or head.x > 750.

❺ Each head has to move. We move the head in each direction based on
the velocity per second, times the length of one time slice. We also adjust
the y velocity to build in our gravity.

Chapter 3. Elm • 118

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

That’s all there is to the head movement. We just adjust the next head list
based on the previous list and the rules of the game. Next, we’ll step the
player data. We’ll need to update the score and the paddle position.

elm/game/languageHeads.elm
stepPlayer player mouseX heads =❶

{ player | score <- stepScore player heads
, x <- toFloat mouseX }

stepScore player heads =❷
player.score +
1 +
1000 * (length (filter complete heads))

❶ Stepping the Player is comically simple. We just return a new player with
the stepped score, and we capture the mouse position as a float. The float
conversion will make it easier to display the paddle later.

❷ Our scoring system is simple. We give the player a point for each time
slice and 1000 points for getting a head across the screen.

That’s all for stepping the player. That was almost too easy. Let’s finish up
stepGame next. We can write the functions that step the game when it’s in the
Pause and GameOver states.

elm/game/languageHeads.elm
stepGamePaused {space, x, delta} ({state, heads, player, seed} as game) =❶

{ game | state <- stepState space state
, player <- { player | x <- toFloat x } }

stepGameFinished {space, x, delta} ({state, heads, player, seed} as game) =❷
if space then defaultGame
else { game | state <- GameOver

, player <- { player | x <- toFloat x } }

stepState space state = if space then Play else state❸

❶ A game in the Pause state will need to step the state based on the space
bar so players can start the game, and also update the paddle position
so the player can move the paddle even if the game is paused.

❷ A game in the Finished state needs to reset to a defaultGame when the user
presses the spacebar, or just replace the player’s mouse position.

❸ Stepping the state involves simply transitions to Play when space is true.

Let’s review what happened here. We used signals to allow us to grab the
current user inputs we needed: the size of our time slice, the mouse x position,
and whether the spacebar was pressed. We packaged those up in an Input

report erratum • discuss

Day 3: It’s All a Game • 119

http://media.pragprog.com/titles/7lang/code/elm/game/languageHeads.elm
http://media.pragprog.com/titles/7lang/code/elm/game/languageHeads.elm
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

data type. Then, we passed that input and the Game record we produced in
the previous time slice into stepGame. Based on that data and the rules of the
game, we built a new Game record.

Next, we can display the Game record and then we can let the heads fly.

Displaying the Game
We’re going to use many of the same techniques you learned in Day 2 to dis-
play the Game record we produced in Day 1. The code looks a lot like you’d
see in any graphics library:

elm/game/languageHeads.elm
display ({state, heads, player, seed} as game) =❶

let (w, h) = (800, 600)
in collage w h

([drawRoad w h
, drawBuilding w h
, drawPaddle w h player.x
, drawScore w h player
, drawMessage w h state] ++
(drawHeads w h heads))

drawRoad w h =❷
filled gray (rect (toFloat w) 100)
|> moveY (-(half h) + 50)

drawBuilding w h =
filled red (rect 100 (toFloat h))
|> moveX (-(half w) + 50)

drawHeads w h heads = List.map (drawHead w h) heads❸

drawHead w h head =
let x = half w - head.x

y = half h - head.y
src = head.img

in toForm (image 75 75 src)
|> move (-x, y)
|> rotate (degrees (x * 2 - 100))

drawPaddle w h x =❹
filled black (rect 80 10)
|> moveX (x + 10 - half w)
|> moveY (-(half h - 30))

half x = toFloat x / 2

drawScore w h player =❺
toForm (fullScore player)

Chapter 3. Elm • 120

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elm/game/languageHeads.elm
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

|> move (half w - 150, half h - 40)

fullScore player = txt (height 50) (toString player.score)

txt f = leftAligned << f << monospace << color blue << fromString

drawMessage w h state =❻
toForm (txt (height 50) (stateMessage state))
|> move (50, 50)

stateMessage state =
if state == GameOver then "Game Over" else "Language Head"

❶ First, we write the main display function. This function draws a collage
with parts we build in other functions. We’ll draw the building on the left,
the road on the bottom, the paddle, the score, a message, and all of the
heads. To keep this code short, we are hard-coding the display size to
800 by 600, but it’s possible to use map2 to use both the Window.dimensions
signal and the gameState signal at the same time.

The collage takes forms that originate in the center of the canvas. You’ll
move each element to where you want it after you create it.

❷ The background elements are simple. The building is just a vertical rect-
angle that we move to the left, and the road is a horizontal rectangle that
we move down.

❸ The drawHeads function just maps the drawHead function onto the heads list.
Remember, collages take shapes called forms. Since heads are images,
we need to reference the head’s source image (you’ll have to copy them
from the book’s source code), and convert that image to a form. Then, we
do a little math to make sure the heads move to the right form on the
page. A collage anchors the origin at the bottom left, so we do need to
reverse the y position. Also, since the heads are initially drawn in the
center of the canvas, we need to adjust for that with our move function.
For good measure, we rotate the head based on the x coordinate. I hope
Joe doesn’t get too dizzy.

❹ Paddles are just rectangles, moved to the bottom of the canvas, and
adjusted for the Mouse.x position and the central location on the page.

❺ Working with text in Elm is a little tricky. We have a couple of conversions
to do. We need to make sure we’re working with text elements, and we
need to convert those to forms. I’m not going to go into too much detail
here, because it deals with many data types we’ve not yet introduced. At
a high level, these functions convert strings to text objects with the font,

report erratum • discuss

Day 3: It’s All a Game • 121

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

color, and size that we want. The txt function lets us apply uniform,
common transformations to the text. Then, they translate that text into
forms that will work in our collage.

❻ The last element to display is a message for the game. We’ll show either
the string "Language Head" or the string "Game Over", based on the game state.

And that’s all there is to it! To start the game, put your source code in a game
directory. Also in that directory, put an img directory with all of the head
images you referenced in the source. If you’d like to use our heads, you can
copy them from the book’s source code (see the Online Resources section of
the Preface). Finally, navigate to your game directory and start your local Elm
server, like this:

> elm-reactor
Elm Reactor 0.3.2 (Elm Platform 0.15.1)
Listening on http://0.0.0.0:8000/

Then press the spacebar to start the
game! You’ll see something like this
image.

There you have it. We wrote a full
game in fewer than 150 lines of code.
The design also allows us to add many
different bells and whistles without
customary callbacks and the hallmark
complexities of JavaScript approaches.

What We Learned in Day 3
Day 3 showed a single extended example of using Elm to build a game. We
chose this problem because it wraps up many of the most demanding problems
in user interface design. This example includes interacting with the mouse
and keyboard; working with text and images; using animation, including
simulated gravity; image presentation and manipulation; and more. By
shaping the game with signals and functions, Elm allowed us to live in the
realm of functions.

Elm’s structure let us simplify the most sophisticated problems, like the
interplay between objects on the screen, scoring, and our simulated physics.
If Elm can handle games with such grace and dexterity, other user interface
problems should be a breeze.

Chapter 3. Elm • 122

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Your Turn

Find…

• Evan’s excellent blog post on the implementation of Pong in Elm
• Game contributions from the Elm community
• More about dealing with Text on HTML pages in Elm

Do (Easy):

• Provide another message that asks the user to press the spacebar to start.
• Make the heads bounce more times as they cross the screen.
• Make the road look more like a road and the building look more like a

building.

Do (Medium):

• Add some random elements to when heads get added so that all of the
games are no longer the same.

• Make the game choose a random head from a list of graphics.
• Don’t allow another head to be added too closely to an existing head.
• Show a different kind of head when one reaches the bottom.

Do (Hard):

• As written, the game allows heads to be added so that they reach the
bottom at potentially the same time. Prevent this from happening.

• Add other features that show up at different score increments. For
example, bounce the heads up in the air, wherever they are, when the
user presses a key. This will let the user survive when two heads reach
the bottom at the same time.

• Give the user three lives. Add additional lives when the user hits a certain
score.

• Provide a better formula for when to add additional heads.
• Add heads at predetermined spacings.
• Add another paddle users could move with the A and D keys, or arrow

keys. Two paddles and more heads!

Wrapping Up Elm
You’ve now used Elm to solve a demanding user interface problem. You’ve
also seen the concept of reactive programming, expressed in terms of signals.

report erratum • discuss

Wrapping Up Elm • 123

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Reactive programming with functional languages will revolutionize the way
we build user interfaces in the browser. The revolution is already started.

Strengths
Elm’s primary strengths are the type system and reactive concepts for dealing
with events. The result eliminates two of the biggest JavaScript problems:
the weak typing model and “callback hell.” The callback model is especially
significant.

Also, Elm brings many of the advanced Haskell features to the browser. The
type model—partially applied functions and currying—allows much more
sophisticated programming, and allows the compiler to capture more errors.
Several different Haskell alternatives have shown up here and there, but only
Elm seems to be getting much traction.

Weaknesses
Elm may be hard for novices to learn. As with most Haskell-like implementa-
tions, it’s easy to get lost with the type conversions. You’re not just worrying
about data types. Signals bring functional types into the mix, and the concepts
are conceptually difficult.

Elm is also quite young. It will be some time before we know whether Elm
will gather enough critical mass to break out beyond the emerging languages
camp.

Final Thoughts
With Elm alone, you can tell a great deal about language evolution. We’re
seeing a movement toward reactive concepts in the user interface, and we
are seeing the Haskell type system have an increasingly profound impact on
emerging languages.

When something is right, you can feel it. To me, a whole lot of Elm feels right.
It may not be the final winner, but these concepts are helping the industry
head in the right direction.

Chapter 3. Elm • 124

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

CHAPTER 4

Elixir
by Bruce Tate

Languages that provoke the strongest reactions in me are all strongly opin-
ionated. Ruby provided plenty of sugar, insulating me from tedium and letting
me focus on a task. Others find the language structure haphazard and frus-
trating. Scala’s strong typing structures work well for some, but for me
managing types across two major programming paradigms built an intellec-
tual wall that proved too steep for me to climb.

Elixir was love at first sight. I was looking for a functional language that
handled distribution, had plenty of sugar to eliminate tedious repetition, and
allowed me to grow the language through metaprogramming. After a couple
of sips of Elixir, I found all of these features and more. Each new language
is a love-hate relationship.

Think Wolverine, the surly vigilante. You love him or hate him. With a souped-
up skeleton he didn’t actually grow, this brooding antihero has the remarkable
ability to regenerate when things go wrong. Let him crash. He’ll respawn.

As you might expect, you’ll notice plenty of strong opinions as we dive in:

• Elixir embraces and extends Erlang’s message passing actor model.
• You get Lisp-like, real macros without all the parentheses and prefix

notation, for better and for worse.
• Gone are Erlang’s constricting single assignment variables and alien

syntax.

From that list alone, you’re probably already forming some of your own
opinions. Let’s accelerate that process and dive right in.

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Day 1: Laying a Great Foundation
Our speed tour will focus on the three biggest influences on Elixir: Ruby,
Lisp, and Erlang. Day 1 will show you where Ruby’s influence begins and
ends. I’ll walk you through the basic building blocks of the language, while
taking an informal look at operators, simple types, and expressions. Then,
we’ll look at functions and modules. Finally, we will work with collections of
things and craft together some simple programs with recursion. That’s a lot
to handle, but to get to know this rich language, we’ll have to move fast.

Day 2 will bring forth the strong Lisp influences on the abstract syntax tree
(AST), the foundation for Elixir’s macro system. We’ll focus most of our
attention on building a macro to represent a state machine in code.

We’ll finish our tour by looking into Erlang influences in Day 3. The third day
will be a little shorter, because in Days 1 and 2 we have to lay a lot of language
foundation to handle the rich macro material. We’ll use our state machine in
a concurrent, distributed application.

Rarely will you get the opportunity to explore so closely the influences of one
language on another. It’s going to be a long first day, so let’s get started.

Installing Elixir
Elixir is a language based on Erlang (Programming Erlang [Arm07]), which we
covered in the first Seven Languages book (Seven Languages in Seven Weeks
[Tat10]). You’ll need to install Erlang.1 I’m using 17.1, and you’ll need version
17.0 or later.

Next, you’ll install the language and environment. Find them on the language’s
Getting Started page.2 I used Homebrew, version 0.14, but everything should
work on Elixir version 1.0. Syntax is changing quickly, so if you decide to use
a later version, you’ll need to pay attention to changes in syntax.

Once you’ve installed it all, fire up Interactive Elixir (iex) like this:

> iex
Erlang/OTP 17 [erts-6.1] [source] [64-bit] [smp:8:8]
[async-threads:10] [hipe] [kernel-poll:false]

Interactive Elixir (1.0) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

1. http://www.erlang.org/download.html
2. http://elixir-lang.org/getting_started/1.html

Chapter 4. Elixir • 126

report erratum • discuss

http://www.erlang.org/download.html
http://elixir-lang.org/getting_started/1.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

So…It’s Ruby++, Right?
Since José Valim, creator of Elixir, was a member of the Ruby on Rails core
team, many people viewed his new language with Ruby-colored glasses.
Syntactically, you can see more than a coincidental similarity. Try to see what
reminds you of Ruby:

iex> IO.puts "It's B-29s, bub."
It's B-29s, bub.
iex> 4
4
iex> 4 != 5
true
iex> 4 > 5 and 6 > 7
false
iex(2)> Enum.at [], 0
nil
iex> :atom
:atom

Like Ruby and many modern languages, Elixir programs are made up of
simple data types, operators, and functions that roll up into expressions. The
special values nil, true, and false all mean what you think, and are named just
as they are on the Ruby side. Elixir also copies Ruby’s syntax for symbols
instead of Erlang’s atoms.

iex> if 5 > 4, do: IO.puts "You wanted the truth!"
You wanted the truth!
:ok
iex> if nil, do: IO.puts "You wanted the truth!"
nil
:ok

:ok is a typical Elixir return code. Like Ruby, Elixir has do/end syntax for simple
control structures. Like Ruby, Elixir also has one-line syntax for if expressions.
Like Ruby, Elixir has so-called “truthy” expressions. nil and false are false;
everything else is true. Strings have some familiar sugar, too:

iex> "Two plus two is #{2 + 2}"
"Two plus two is 4"

Elixir’s string interpolation drops a string representation of an expression
into the string you specify. There are other similarities to Ruby on the string
side. They can contain escape sequences for unprintable characters such as
newlines and tabs; Elixir allows for multiline representations called heredocs,
and you’ll find Ruby-style sigils, a syntax for formatting literals.

report erratum • discuss

Day 1: Laying a Great Foundation • 127

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

No, Not Ruby
Although the syntax might be familiar to Ruby developers, under the hood,
things are remarkably different. Elixir is a functional language. The base
types are not objects, and the base types are immutable. You can’t change a
list or a tuple after you’ve defined it the first time.

It’s best to think of Elixir as a language whose syntax is influenced by Ruby.
The similarities end there. Take the = operator, for example:

iex> i = 5
5
iex> 10 = i
** (MatchError) no match of right hand side value: 5

It may look like an assignment here, but it’s not. If you learned Erlang in
Seven Languages, you recognize the = operator as a pattern match. Said
another way, the interpreter asked the question “Do the values on the left
side match the values on the right?” If necessary, the interpreter assigns
unbound variables on the left to match values on the right. Let’s push pattern
matching a little further.

Tuples are collections of fixed size. You can have a two-tuple representing a
city and state, like this:

iex> austin = {:austin, :tx}
{:austin, :tx}
iex> is_tuple {:a}
true

austin is a variable, and we assign a tuple with two atoms, :austin and :tx. Elixir
makes the left side match the right by assigning {:austin, :tx} to the variable
austin. In this case, we matched the whole tuple. We can also use matching to
access both elements of the tuple individually, or using wildcards, we can
access either element in isolation. This concept, called destructuring, is critical.

iex> austin = {:austin, :tx}
{:austin, :tx}
iex> {city, :tx} = austin
{:austin, :tx}
iex> city
:austin
iex> {city, :ok} = austin
** (MatchError) no match of right hand side value: {:austin, :tx}
iex> {_, big_state} = austin
{:austin, :tx}
iex> big_state
:tx

Chapter 4. Elixir • 128

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Nice. In this way, you’ll use Elixir to trivially pack and unpack complex data
structures just as you did this one.

So what was all of that noise about surly and opinionated?

In functional languages like Erlang, multiple assignment just won’t work.
You can assign a given variable a value exactly once. That practice means
that these languages are immune from many of the problems related to
mutable state or multiple assignment. To handle this language limitation,
you’ll see developers use different variable values on the left-hand side for
each assignment, and keeping track of those changing values can be tedious
and error prone as code evolves, like this:

...
Price = Catalog.lookup(Item)
Price2 = Price * Quantity
Price3 = Price2 + Price2 * Tax
...

Elixir’s approach looks a little more like the imperative style of Ruby or Java:

...
price = Catalog.lookup(item)
price = price * quantity
price = price + price * tax
...

Some card-carrying Erlang developer now knows exactly what I mean by
opinionated. In fact, his thoughts could be sliding into black rage because
functional programming should not allow reassignment. We can only hope that
he doesn’t have adamantium blades for fingernails and the ability to respawn.

That code looks suspiciously like mutable state, but really, it’s not. The
compiler is playing a game here. The compiler marks each new price as price'
internally, and for each subsequent access. In fact, the compiler is doing
implicitly exactly what the original Erlang program does by hand. The result
is that internally, there’s no mutable state at all.

This language feature expresses an opinion. Does this trick actually make
code more expressive, or does it take you down the slippery slope toward
mutable state and obscure what’s actually happening? Decide for yourself.

The primary Ruby influence, though, isn’t mutability, or trues and nils. It’s
intelligent sugar. You express powerful idioms in a way that communicates
to both you and the compiler. The debate is how far syntactic sugar should
go.

report erratum • discuss

Day 1: Laying a Great Foundation • 129

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Elixir is about as much like Ruby as Java is like JavaScript. From here on,
put Ruby out of your head completely, and enjoy the new path Elixir is cutting.

Writing Functions
So far, we’ve seen how some basic types and expressions work, and that the
language relies heavily on pattern matching to accomplish basic tasks. It’s
time to add the basic building block of all functional languages, the function.
Elixir has plenty of different options for declaring and consuming functions.
We’re going to start simple, with unnamed or anonymous functions and then
ramp up to named functions in modules. We can assign a function to a vari-
able like this:

iex> inc = fn(x) -> x + 1 end
#Function<6.80484245 in :erl_eval.expr/5>
iex> inc.(1)
2

When you invoke an anonymous function, you need a . character before your
arguments. This double_call is a higher order function:

iex> double_call = fn(x, f) -> f.(f.(x)) end
#Function<12.80484245 in :erl_eval.expr/5>
iex> double_call.(2, inc)
4

As expected, we called inc.(inc.(2)) and got 4. As you might imagine, you’ll be
working with functions more than any other language construct. Here’s a
shorthand way for declaring a function to add two numbers:

iex> add = &(&1 + &2)
&Kernel.+/2
iex> add.(1, 2)
3

Beautiful. We just used &1 and &2 as placeholders for our arguments. Now
that we have an add, we can use it to declare other functions that build on it.

iex> inc = &(add.(&1, 1))
#Function<6.80484245 in :erl_eval.expr/5>

iex> inc.(1)
2
iex> dec = &(add.(&1, -1))
#Function<6.80484245 in :erl_eval.expr/5>

iex> dec.(1)
0

inc and dec are examples of partially applied functions. As you learned in Elm,
these functions take existing functions and apply only a subset of arguments

Chapter 4. Elixir • 130

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

to them. For example, inc is a partially applied function, applying the second
argument and leaving the first unapplied.

Composing with Pipes
Functional programming is about building functions that work together. One
of the most important compositions is running functions in sequence,
matching up inputs and outputs. Let’s express two steps forward and one
step back with inc and dec:

iex> x = 10
10
iex> dec.(inc.(inc.(x)))
11

We started with x = 10. A step forward is an inc and a step back is dec. If you
start from the inside and work your way out, you can see that we are actually
doing inc, inc, and dec. But the intention is not clear. Let’s remedy that.

iex> 10 |> inc.() |> inc.() |> dec.()
11

That’s much clearer. These pipes work just like they do in Factor or Elm.
Elixir evaluates the pipe from left to right, passing the expression on the left-
hand side of the pipe as the first argument of the function on the right. If you
had two named functions, inc and dec, you could strip away even more syntax
with 10 |> inc |> inc |> dec. The pipe operator translates the obtuse inside-out
representation to a simple and direct statement of what our program accom-
plishes. Clojure developers, think ->.

You’ll find that the pipe operator is perhaps the most important operator in
the language in the same way that Unix shell languages rely on the | operator.
It allows you to express ideas in the same way that you’re used to consuming
information: from left to right, with inputs on the left contributing to the
process on the right. You can make complex problems simpler by expressing
them as a pipe of simpler functions.

As we continue to work with bigger and bigger building blocks in the language,
we go from the function to the module. In the next section, we’ll organize
named functions into modules.

Using Modules
Elixir programmers group functions, macros, and other constructs into
modules. Learning Elixir is easier if you think of a module definition as plain,
old executable code rather than a series of function definitions. Take a look:

report erratum • discuss

Day 1: Laying a Great Foundation • 131

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

iex> defmodule Silly do
...> IO.puts "Pointless existence"
...> end
Pointless existence
{:module, Silly, ..., :ok}

Notice that the compiler ran the module, and printed the expression Pointless
existence. You can see that as Elixir is loading the module, it will just execute
each line, in sequence. Most of the time, those lines will define other functions
or modules.

For now, think of modules as specialized functions that generate code at
compile time. defmodule is a macro that defines a module, and def is a macro
that defines functions. Keep this knowledge in the back of your mind as we
walk through these basic examples.

Named Functions

Let’s create some modules to do elementary geometry. We’ll start with some
simple functions to compute the area and perimeter of a rectangle. You might
start with a couple of functions that each take parameters h and w, like this:

defmodule Rectangle do
def area(w, h), do: h * w
def perimeter(w, h), do: 2 * (w + h)

end

We call the defmodule function, which defines a module. We provide a block
that calls the def function twice, creating two functions within the module.

area and perimeter are functions you’d expect to apply to a rectangle, so we can
improve on the API. Instead of passing in individual dimensions, let’s pass
in a tuple with two dimensions that represents our rectangle, like this:

elixir/geometry.exs
defmodule Rectangle do

def area({h, w}), do: h * w

def perimeter({h, w}) do
2 * (h + w)

end
end

That’s much better. Now, the API is Rectangle.area(shape), where shape is a two-
tuple that represents a rectangle with width and height. The API clearly
expresses our intentions. We use pattern matching to pick off each dimension,
and then use those dimensions in a calculation.

Chapter 4. Elixir • 132

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elixir/geometry.exs
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Do Blocks

Do blocks group lines of executable code together. They act like a single
function. Notice we’re using two forms of do/end, one expressed on multiple
lines, like this:

def f do
IO.puts "Block form"

end

Alternatively, you could use a one-line version of the function, like this:

def f(x), do: IO.puts("Key/value form")

Wrap them in a module to execute them in the console. Internally, both of
these forms are represented in the same way.

Let’s push on. We can add a few similar methods to calculate metrics for a
square. Just for fun, we’ll allow two representations for a square {w}, where
w is the width of one side, and {w, h}. Take a look:

elixir/geometry.exs
defmodule Square do

def area({w}), do: Rectangle.area({w, w})

def area({w, h}) when w == h do
Rectangle.area({w, w})

end

def perimeter({w}) do
Rectangle.perimeter({w, w})

end

def perimeter({w, h}) when w == h do
Rectangle.perimeter({w, w})

end
end

You can see a couple of new features here. First, we have the same function
name for area and perimeter used twice. The area function is a single function
called Square.area/1, and our clauses describe the behavior the function will
have based on what you pass in. Elixir will execute the first function that
matches the argument list, so our code uses pattern matching to differentiate
the square and rectangle forms.

Notice also the when clauses, called guards. If an inbound argument does not
satisfy the condition specified in the guard, it falls through to the next defini-
tion. In this case, if the argument doesn’t match the first or second definition,
Elixir will throw an error.

report erratum • discuss

Day 1: Laying a Great Foundation • 133

http://media.pragprog.com/titles/7lang/code/elixir/geometry.exs
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Tack on some print expressions to the bottom of geometry.exs, like this:

elixir/geometry.exs
r = {3, 4}
IO.puts "The area of rectangle #{inspect r} is #{Rectangle.area r}"

s = {4}
IO.puts "The area of square #{inspect s} is #{Square.area s}"

IO.puts "The area of rectangle #{inspect r} is #{Square.area r}"

EXS files are scripts; they’re compiled on the fly. You’ll use them for things
like test cases. You can run geometry.exs like this:

> iex geometry.exs
Erlang 17.0 (erts-6.1) [source] [64-bit] [smp:8:8]
[async-threads:10] [hipe] [kernel-poll:false]

The area of rectangle {3, 4} is 12
The area of square {4} is 16
** (FunctionClauseError) no function clause matching in Square.area/1

geometry.exs:13: Square.area({3, 4})
geometry.exs:38: (file)
src/elixir_lexical.erl:18: :elixir_lexical.run/2
/private/tmp/elixir-nEKc/elixir-0.11.0/lib/elixir/lib/code.ex:307:
Code.require_file/2

Elixir executed Rectangle.area/1, and then Square.area/1. Next, the script asked for
the area of {3, 4}. Elixir faithfully tells us that there’s no matching clause for
our square of {3, 4}. We called function Square.area/1. That function had two
clauses. The first clause doesn’t match because our tuple is a two-tuple, and
the clause matches a one-tuple. The second matches but does not satisfy the
guard clause because 3 != 4.

So far, so good. Now that you have modules, named functions, and pipes,
you can break bigger ideas into smaller functions, roll those functions up
into a module, and compose them again with pipes. This is the primary
strategy you’ll use to attack larger problems.

The next step is working with some richer data structures. You’ve seen tuples,
which we will typically use for fixed-length heterogeneous data. You also
learned how to match individual elements in a tuple. Let’s move on to using
maps and lists.

Chapter 4. Elixir • 134

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elixir/geometry.exs
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Using Maps
Maps associate keys with values. To avoid confusion with tuples, include an
extra % before the initial curly brace, like this:

iex> language = %{ :name => "Elixir", :inventor => "Jose"}
%{inventor: "José", name: "Elixir"}
iex> language[:name]
"Elixir"
iex> language.inventor
"José"

Key-value pairs are expressed with key => value. We accessed the fields two
different ways. The second is sugar for the first. Notice the shortcut syntax
returned by iex. If your keys are atoms, you can use a shortcut syntax that
moves the atom’s colon to the end of the atom.

Sometimes, you might have a map with nested values. Because Elixir is a
functional language, we don’t edit values in place, so replacing some value
buried in a nested structure might be tedious:

iex> book = %{title: "Programming Elixir",
...> author: %{first: "David", last: "Thomas"}}
%{author: %{first: "David", last: "Thomas"}, title: "Programming Elixir"}
iex> %{title: book.title, author: %{ first: "Dave", last: book.author.last}}
%{author: %{first: "Dave", last: "Thomas"}, title: "Programming Elixir"}

Elixir offers a shortcut syntax to return a new map with just one part
updated, like this:

iex> put_in book.author.first, "Dave"
%{author: %{first: "Dave", last: "Thomas"}, title: "Programming Elixir"}

Now, we can trivially make a new copy of any map with only a single item
updated. This feature takes some of the sting out of the lack of edit-in-place
semantics.

Of course, maps would not be complete without pattern matching:

iex> %{ author: %{ last: "Thomas"}, book: title} = book
%{author: %{first: "David", last: "Thomas"}, book: "Programming Elixir"}
iex> title
"Programming Elixir"

Perfect. This kind of destructuring can save you a tremendous amount of
time. With our quick tour of maps out of the way, let’s move on to lists.

report erratum • discuss

Day 1: Laying a Great Foundation • 135

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Representing Lists
Lists are the primary variable-length structure in Elixir and are implemented
as linked lists internally. Lists are enclosed in brackets and separated by
commas, like this:

iex> list = [1, 2, 3]
[1, 2, 3]

This list is not an array, though:

iex> list[1]
** (FunctionClauseError) no function clause matching

in Access.List.access/2

That last line of code doesn’t do what you think it does! Elixir lists are actu-
ally linked lists. You’ll build and access them from the front, or head, because
the internal representation makes it more efficient that way.

Internally, some data structures are lists, and others aren’t:

iex> is_list list
true
iex> is_tuple list
false
iex> is_list "string"
false
iex(27)> is_list 'char'
true
iex> is_list %{one: 1, two: 2}
false

Lists and char lists are lists; tuples and strings are not. We delimit char lists
with single quotes, and they are not the same as strings. (We’ll use strings
in this book because they are more efficient and better support international
encodings.) As with all Elixir types, both are immutable.

You can’t add to a list once it’s been defined, but you can return a new copy
of the list with a prepended item. | is the construction operator—use it to add
a single item, more than one item, or another list.

iex> [0 | list]
[0, 1, 2, 3]
iex> [0 | []]
[0]
iex> [[4, 5, 6] | list]
[[4, 5, 6], 1, 2, 3]
iex> [4, 5, 6 | list]
[4, 5, 6, 1, 2, 3]

Chapter 4. Elixir • 136

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Let’s do some basic pattern matching with lists:

iex> list = [:wolverine, :magneto, :cyclops]
[:wolverine, :magneto, :cyclops]
iex> [x, y, z] = list
[:wolverine, :magneto, :cyclops]
iex> {x, y, z}
{:wolverine, :magneto, :cyclops}
iex> [x, y] = list
** (MatchError) no match of right hand side value: [:wolverine, :magneto, :cyclops]

If you don’t use the | operator, matching works just as it does with tuples. If
the list count doesn’t match on both sides, the expressions won’t match. Lists
get more interesting when you throw in the | operator. With functional lan-
guages, pattern matching usually means matching the head and tail. As in
Prolog and Erlang, list matching is just construction in reverse:

iex> [head|tail] = list
[:wolverine, :magneto, :cyclops]
iex> {head, tail}
{:wolverine, [:magneto, :cyclops]}
iex> [first, second | tail] = list
[:wolverine, :magneto, :cyclops]
iex> {first, second, tail}
{:wolverine, :magneto, [:cyclops]}

Now we can match lists of arbitrary length. Remember, internally lists are
implemented as linked lists and accessed strictly head first. This method of
matching means we’ll naturally build algorithms that attack lists head first.
Now, let’s look at some more advanced matches:

iex> [first] = []
** (MatchError) no match of right hand side value: []
iex> [first, second] = list
** (MatchError) no match of right hand side value: list
iex> [first, second | _] = list
[:wolverine, :magneto, :cyclops]
iex> {first, second}
{:wolverine, :magneto}
iex> [_, second|_] = list
[:wolverine, :magneto, :cyclops]
iex> second
:magneto

The _ operator allows us to match an arbitrary item, or any trailing list of
items on the right-hand side of the |. Also, notice that [] matches only an
empty list. You can use wildcards in combination to match an arbitrary group
of elements at the head of a list.

report erratum • discuss

Day 1: Laying a Great Foundation • 137

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Recursion over a list will normally involve two forms of a function. The first
form will match the head and tail. The second will match an empty list. Put
the following into a file called print.exs.

elixir/print.exs
defmodule ListExample do

def print([]), do: :ok
def print([head|tail]) do

IO.puts head
print tail

end
end

ListExample.print([:storm, :sabretooth, :mystique])

That’s classic list traversal. For the most part, you won’t be writing your own
recursive functions. You’ll use libraries to do that for you. Several libraries
will help you work with lists, but the primary one is Enum. You could easily
implement this program with Enum.each/2, which passes each element of a list
to a function, like this:

iex> Enum.each list, &(IO.puts &1)
wolverine
magneto
cyclops
:ok

A function to print an arbitrary list, then, would look like this:

def print(x), do: Enum.each(x, &(IO.puts &1))

Enum has the libraries you’ve come to expect for dealing with functions. I won’t
bore you with a full list, but we’ll walk through a few of them to see how it
all works:

iex> Enum.filter [1, 2, 3], &(&1 > 1)
[2, 3]
iex> Enum.reduce [1, 2, 3], &(&1 + &2)
6
iex> Enum.any? [1, 2, 3], &(&1 > 2)
true
iex> Enum.all? [1, 2, 3], &(&1 > 2)
false
iex> Enum.zip [1, 2, 3], [4, 5, 6]
[{1, 4}, {2, 5}, {3, 6}]

For a more complete list, check out the Elixir Enum documentation.3

3. http://elixir-lang.org/docs/stable/elixir/Enum.html

Chapter 4. Elixir • 138

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elixir/print.exs
http://elixir-lang.org/docs/stable/elixir/Enum.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Functions are fundamentally transformations. It’s not surprising that you’ll
often want to do multiple transformations at once, such as a filter and a map.
Elixir has a tool to do just that: the for comprehension.

For Comprehensions
Each for comprehension has a generator step, a filter step, and a map step.
You can omit the filter step. The comprehension generators can work on
anything implementing Enumerable—enums, maps, and so on. The simplest
form of a generator takes an element from a list:

iex> for x <- [1, 2, 3], do: x
[1, 2, 3]

If you specify more than one generator, the comprehension will find all possible
combinations of both:

iex> for x <- [1, 2], y <- [3, 4], z <- [5], do: {x, y, z}
[{1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}]

You can also filter your generators:

iex> for x <- [1, 2], y <- [3, 4], z <- [5], x + y < 5, do: {x, y, z}
[{1, 3, 5}]

The comprehension is an extremely powerful tool for expressing transforma-
tions of any kind. Here’s an example of an ironically named “Quicksort”:

elixir/quicksort.exs
defmodule QuickSort do

def sort([]), do: []
def sort([head|tail]) do

sort(for(x <- tail, x <= head, do: x)) ++
[head] ++
sort(for(x <- tail, x > head, do: x))

end
end

IO.inspect QuickSort.sort([5, 6, 3, 2, 7, 8])

One Quicksort step will take the head of a list and the remainder. Simply
put, each step will return a sorted list of all numbers in the list less than the
head, plus a list containing only the head, plus a sorted list of all the numbers
in a list greater than the head. The for comprehension does most of the work.
It has a generator, x inlist tail, a filter, x < head, and a transformation step, do: x.

We’ve taken a quick pass through representing lists. Now, we’ll learn to handle
key-value pairs in Elixir.

report erratum • discuss

Day 1: Laying a Great Foundation • 139

http://media.pragprog.com/titles/7lang/code/elixir/quicksort.exs
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Keyword Lists

Before Erlang added maps in late 2013, the language used lists of key-value
pairs to express associations. Elixir also supports keyword lists, like this:

iex> powers = [{:wolverine, [:regeneration, :claws]}, {:sway, [:time_control]},
{:iceman, [:freeze]}]

[wolverine: [:regeneration, :claws], sway: [:time_control], iceman: [:freeze]]
iex> Keyword.get powers, :wolverine
[:regeneration, :claws]

The same shortcut syntax that works with maps also works with keyword
lists, for example, [key: :value]. For the most part, you’ll prefer maps to keyword
lists.

Function Sugar

Before we finish Day 1, let’s take a look at some of the variations of functional
definitions that you’ll see. Elixir allows you to specify default values for
arguments. This is what the syntax would look like:

iex> defmodule Secret do
...> def hanger(x \\ 18), do: x
...> end

Simple enough. That module declares two functions: hanger/0 and hanger/1.

You can combine keyword lists with optional arguments to declare functions
with options on the end, like this:

def draw(square, options \\ [])

When the last argument of a function is a list, you can omit the enclosing
brackets, like this:

draw my_square, color: "FFFFFF", width: "10px"

def some_function(), do: this_is_an_option

Now you know where the one-line version of the do/end block comes from! It’s
just a keyword list as the trailing argument, allowing omitted brackets. You’ll
see us take advantage of this syntax often when we do metaprogramming in
Day 2.

What We Learned in Day 1
Day 1 was a busy one. We spent most of the day working with the features
that make Elixir a great general-purpose language. We learned about some
of the foundational concepts that Elixir shares with Ruby:

Chapter 4. Elixir • 140

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

• The basic syntax is heavily influenced by Ruby.
• Expressions track more closely to Ruby than Erlang.
• The expression of code blocks as do/end and def/do/end is familiar.

While many of the concepts may seem familiar, Ruby developers will notice
some striking differences:

• Elixir is a pattern matching language, from the inside out.
• In Elixir, you work with data structures such as lists and structs directly

instead of objects.
• The Erlang influence in functional declarations is pronounced, permitting

multiple function bodies with the same name.

To wrap up the day, you’re going to finish up Day 1 writing some functions
and working with maps and lists. Tomorrow, we’re going to dive into the
Erlang side of this split personality.

Your Turn
It’s your first day in Elixir. You know the drill. These questions will help you
learn your way around and present you with a few problems at different skill
levels.

Find…

Elixir is a name that is picking up traction quickly, but if you’re interested
in finding the language quickly, you should search for “elixir language” rather
than just “elixir”.

• The Elixir language home page, which is connected to some Wiki articles
• An article about using Elixir’s build tool, Mix
• The Elixir project on GitHub, where you can report an issue
• The functions supported by Enum, List, and String
• Elixir mailing lists, where you can ask questions
• A way to call Erlang libraries from Elixir

Do (Easy):

• Express some geometry objects using tuples: a two-dimensional point, a
line, a circle, a polygon, and a triangle.

• Write a function to compute the hypotenuse of a right triangle given the
length of two sides.

• Convert a string to an atom.
• Test to see if an expression is an atom.

report erratum • discuss

Day 1: Laying a Great Foundation • 141

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Do (Medium):

• Given a list of numbers, use recursion to find (1) the size of the list, (2)
the maximum value, and (3) the minimum value.

• Given a list of atoms, build a function called word_count that returns a
keyword list, where the keys are atoms from the list and the values are
the number of occurrences of that word in the list. For example,
word_count([:one, :two, :two]) returns [one: 1, two: 2].

Do (Hard):

• Represent a tree of sentences as tuples. Traverse the tree, presenting an
indented list. For example, traverse({"See Spot.", {"See Spot sit.", "See Spot run."}})
would return:

See Spot.
See Spot sit.
See Spot run.

• Given an incomplete tic-tac-toe board, compute the next player’s best
move.

Day 2: Controlling Mutations
In Day 1, you learned about the hardened skeleton—the language features
that make such an excellent general purpose language—and that the syntax,
filled with sugar to simplify recurring idioms, is opinionated and rich. Even
if Elixir were just a general-purpose language with no bells and whistles, it
would be attractive.

Today, you’re going to learn to grow your own mutations, without radiation
exposure. We’ll roll our own mini-language, building a state machine with
Lisp-style macros. Before we do that, we’re going to have to lay a little more
foundation. We’ll work with Mix to manage our application build process, and
we’ll learn to use structs. Then, we’ll dive head first into macros.

Mix
The first examples in this chapter were all run in the console. As our ideas
got too big to express on a line or two, we used scripts. For the next few
examples, we’re going to want to compile our code, which may be based on
dependencies. We’ll use Mix for that task. If you’ve got Elixir, you’ve got Mix.
If you’re ever lost, you can see what’s available by running mix help.

Chapter 4. Elixir • 142

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Mix is Elixir’s build tool, like make for C, rake for Ruby, or ant for Java. You’ll
use mix to create a project with a uniform structure and to maintain your
dependencies. Let’s create a new project. Navigate to a directory where you
want your new project to be and type mix new states --sup (we pass --sup to generate
a supervisor tree that we will need in Day 3):

> mix new states --sup
* creating lib
* creating test
...

Your mix project was created with success.
...

Mix created a project called states in its own directory and a number of files
underneath. Your tests will go in test, your source files will go in lib, and the
file describing your application and dependencies will go in mix.exs. To make
sure things are working, change into the states directory, compile the default
application, and run tests, like this:

> cd states
> mix test
Compiled lib/states.ex
Generated states.app
.

Finished in 0.02 seconds (0.02s on load, 0.00s on tests)
1 tests, 0 failures

Mix compiled the file because it tracks dependencies between tasks. It also
provides good support for your custom tasks.

Our tests are clean and green. Each . represents a test. Let’s put this new
structure to use. We’re going to build a state machine.

From Concrete to Meta
Metaprogramming uses programs to write more sophisticated programs. In
this section, we’re going to build a concrete state machine that will work fine
but that might be difficult to reuse. Then, we’ll take that concrete implemen-
tation and use metaprogramming to morph it into something more abstract
and flexible.

Sometimes, the best way to do metaprogramming is to build a simple tool
that implements the code you want your metaprogramming platform to build.
Said another way, if we want to build a generic state machine builder, we start
by building a single state machine.

report erratum • discuss

Day 2: Controlling Mutations • 143

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

First, let’s review. Abstractly, a state machine is a graph where the nodes are
states and the connections are events. Triggering an event moves the state
machine from one state to the next. Concretely, think of a state machine as
a set of rules that move from one state to another. We have to work with four
pieces, then:

• Our state machine data. This will be some kind of data structure
describing our state machine.

• Our state machine behavior. This will be a module with functions attached.
• Our application data. This will be some data structure with a state.
• Our application behavior.

For example, let’s write a state machine for an old-school brick-and-mortar
video store. A state machine works well for us because:

• Videos in a store have concrete states to represent.
• The rules for transitioning between states are well defined.
• We might want to execute complex application logic when the video

transitions from one state to another.

A state machine will help us organize code and manage change. Here’s the
basic state machine for our simplistic old-school video store. It has three
states: available, rented, and lost.

Available Rented
rent

Lost
lose

return

When a new video arrives on the shelves, it will go into the available state. When
a customer rents a video, it goes to the rented state. When the customer returns
a video, it will go back to available. Lose a video, and it goes to lost. At that point,
let’s assume that our customer must buy the video, so there’s no return to
any other state.

Let’s start with the data structure for a video first. We could use maps, but
since videos will each have a fixed structure, we’ll use a data structure with
a fixed number of named fields called structs.

Naming Fields with Structs
A struct is like a map with a fixed set of fields, with the ability to attach
behavior in the form of functions. We’re going to use a struct to represent
each video. To keep things simple, assume there’s one video per title. We’ll
represent each video with a state and a title. Place the following in
states/lib/video.ex:

Chapter 4. Elixir • 144

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

elixir/day2/states/lib/video.ex
defmodule Video do

defstruct title: "", state: :available, times_rented: 0, log: []
end

And take it for a spin:

> iex -S mix

I started the console via iex -S mix. Mix compiled the file and then loaded the
application modules. Now, I can use the console in the context of my project.

iex> vid = %Video{title: "The Wolverine"}
%Video{title: "The Wolverine", state: :available}
iex> vid.state
:available

I created a new struct with the constructor %Video{}. Struct syntax works like
maps with the name of the struct between the % and {. Notice that I specified
a title but picked up the default value for state.

Structs are just maps—create, update, and pattern match using the map
syntax. Define them in modules, and include the functions that work on them.

Like everything else in Elixir, structs are immutable. You can create a new
copy of a struct with one or more fields changed like this:

iex> checked_out = %Video{vid | state: :rented}
%Video{title: "The Wolverine", state: :rented}

Structs are sometimes safer than maps because they will allow only keys you
specify in the formal definition:

iex(6)> checked_out = %Video{vid | staet: :rented}
** (CompileError) iex:6: unknown key :staet for struct Video

(elixir) src/elixir_map.erl:169:
...

Now that we have a strategy for representing our application data, let’s move
on to application behavior.

Creating Concrete Behavior
As we flesh out our video store, we’ll need three basic modules:

• VideoStore will have the implementation of business logic.
• VideoStore.Concrete will have the video store’s state machine, and state-

machine behavior specific to that video store.
• StateMachine.Behavior will have generic state-machine behavior that we’ll

reuse.

report erratum • discuss

Day 2: Controlling Mutations • 145

http://media.pragprog.com/titles/7lang/code/elixir/day2/states/lib/video.ex
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Our concrete video store will have application-specific behavior, lists that
represent our state machine, and generic state-machine behaviors. First, a
real video store will likely have some business logic that occurs whenever the
video enters a new state. We’ll capture each of these in a function.

We’ll build something concrete, extract common ideas, and then generalize
a state machine API. We’ll reuse the functions in VideoStore and StateMachine.Behav-
ior. Eventually, we’ll look for patterns in VideoStore.Concrete that we can exploit
with our state machine macros.

First, let’s build that business logic. Initially, we’ll build the code that will
execute whenever a customer decides to rent, return, or lose one of our videos.
Put the following in states/lib/video_store.ex:

elixir/day2/states/lib/video_store.ex
defmodule VideoStore do

def renting(video) do
vid = log video, "Renting #{video.title}"
%{vid | times_rented: (video.times_rented + 1)}

end

def returning(video), do: log(video, "Returning #{video.title}")

def losing(video), do: log(video, "Losing #{video.title}")

def log(video, message) do
%{video | log: [message|video.log]}

end
end

For now, we’ll record interactions on a video much like a librarian would on
a book’s library card. We’ll count the number of times a video is rented. You
see just four functions: one to do the logging, and one for each of the events
on our state machine.

Modeling the State Machine

So far, we have only created a video struct to preserve our state. Now, we’ll
need to work out how the state machine works. Here’s how we’ll build it:

• The state machine will be a keyword list of the form [state_name: state].
• Each state will have a keyword list of events, keyed by event name, with

each event having a name, the transition, and a possible list of callbacks.

The state machine is a straight-up keyword list of states, and the events are
keyword lists as well. We don’t need to write any code, but we’re armed with
what we’d like our API to look like.

Chapter 4. Elixir • 146

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elixir/day2/states/lib/video_store.ex
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We’ll be able to define a state machine like this:

[available: [
rent: [to: :rented, calls: [&VideoStore.renting/1]]],

rented: [
return: [to: :available, calls: [&VideoStore.returning/1]],
lose: [to: :lost, calls: [&VideoStore.losing/1]]],

lost: []]

We have three states: available, rented, and lost. Each has an associated list of
events. Let’s write the functions that will do the bulk of the work.

Adding State-Machine Behavior

Our state machine will allow an application to fire an event on some struct
with a state. Firing that event will transition the state machine to a new state,
and perhaps fire some callbacks as well.

Put the following in states/lib/state_machine_behavior.ex. We’ll start with a function
called fire that will fire an event, and another called activate that will invoke all
of the user-defined functions associated with an event. Our goal is to add
code that we’ll be able to use directly when we create our state machine
macros. The functions are short and simple:

elixir/day2/states/lib/state_machine_behavior.ex
defmodule StateMachine.Behavior do

def fire(context, event) do
%{context | state: event[:to]}
|> activate(event)

end

def fire(states, context, event_name) do
event = states[context.state][event_name]
fire(context, event)

end

def activate(context, event) do
Enum.reduce(event[:calls] || [], context, &(&1.(&2)))

end
end

Since functional languages are immutable, a recurring pattern is to pass
around some data structure using transforming functions that return new
copies that evolve over the life of the program. We’ll call this evolving state
the context. All of our state machine APIs will take a context struct, transform
it, and pass the transformed version to the next function in the chain. One
of the fields in our context will be state. This is what the functions do:

report erratum • discuss

Day 2: Controlling Mutations • 147

http://media.pragprog.com/titles/7lang/code/elixir/day2/states/lib/state_machine_behavior.ex
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

1. Our first job is to fire an event. It is easier to define that function in terms
of an event and the context. The job of fire is straightforward: update the
context with the new state, and then apply all of the functions provided
in event.calls.

2. We provide an alternative API for convenience, one that does not require
an event lookup. We just look up the event and call the other fire API.

3. The activate function chains together each function in activate as if it were
a pipe. Each function takes the previous context, transforms it, and
passes it to the next function. Enum.reduce provides this service. For the
anonymous function &(&1.(&2)), &1 is a function from event.calls, and &2 is
the result returned from the last function call (or simply context for the
first call).

We could write a test of the functions so far, but the video store we’ll define
in the next step will provide a far better testing opportunity. Let’s push on.

Looking for Patterns

The next step is to provide the pieces of the video store that implement one
specific state machine. We’ve come to the point where we need to think a little
bit about what we’ll use to represent our state machine itself. As I build a
language, I prefer to rely on basic data structures, especially keyword lists,
wherever possible. We’ll tweak that language a little later when we are ready
to code individual macros. With that in mind, let’s look at the state machine
features.

elixir/day2/states/lib/video_store_concrete.ex
defmodule VideoStore.Concrete do import StateMachine.Behavior

def rent(video), do: fire(state_machine, video, :rent)❶
def return(video), do: fire(state_machine, video, :return)
def lose(video), do: fire(state_machine, video, :lose)
def state_machine do❷

[available: [
rent: [to: :rented, calls: [&VideoStore.renting/1]]],

rented: [
return: [to: :available, calls: [&VideoStore.returning/1]],
lose: [to: :lost, calls: [&VideoStore.losing/1]]],

lost: []]
end

end

❶ You can trigger an event on a state by simply calling a function. The
context has the state name, and the function bodies have the state
machine and the event names. This function is simply a convenience so
that users of the class can access basic business functionality.

Chapter 4. Elixir • 148

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elixir/day2/states/lib/video_store_concrete.ex
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

❷ This function actually specifies the state machine as keyword lists. The
outermost keyword list has pairs that represent {state_name, event_keyword_list}.
The next level is a keyword list of events that looks like {event_name,
event_metadata}. The innermost list has the event metadata that expresses
the new state (to: new_state) and a list of functions that allow customized
behavior as the states change (calls: [callback_functions]).

Let’s pause to make a few observations. First, the specification of states is a
little awkward because the data structure must do too much of the work. It
would help us to have a macro expressing each individual state.

Second, you can see the duplication in the callback functions. We should try
to create those from our macros. Keep those thoughts in the back of your
mind as we build out the concrete version of the state machine. Right now,
it’s time for some tests.

Writing Tests
I get nervous if I’m building something substantial and I get too far before
writing a test. There’s not too much to test yet, but that will change quickly.
Put the following code in states/test/concrete_test.exs:

defmodule ConcreteTest do
use ExUnit.Case
test "should update count" do

rented_video = VideoStore.renting(video)
assert rented_video.times_rented == 1

end

def video, do: %Video{title: "XMen"}

end

This file looks a little different than traditional modules. First, you see the use
macro that includes our macros. Also, the test looks different. You’d expect
to see def of some kind at that level. test is actually a macro. A macro takes
valid Elixir code and transforms it. In this case, the test macro is actually
declaring a function with an API that we would find repetitive and awkward.

Macros actually get defined at an explicit point in compilation called macro
expansion time. Their domain is the AST. To see what the syntax tree looks
like, use quote in the console:

iex> quote do: 1 == 2
{:==, [context: Elixir, import: Kernel], [1, 2]}

report erratum • discuss

Day 2: Controlling Mutations • 149

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The quote command shows you the internal representation of Elixir code. Here,
we’re using quote to look at the syntax tree. In fact, that’s exactly what the
assert macro does. It looks at the quoted expression you pass in, so it can tell
what comparison you’re using. For a failed comparison, assert will give you a
rich message, like this:

1) test should update count (ConcreteTest)
** (ExUnit.ExpectationError)

expected: 1
to be equal to (==): 2

at test/concrete_test.exs:5

In fact, every row in the AST is a three-tuple. It has an operator, some meta-
data, and an argument list. The second element has contextual metadata,
and we’re not going to worry about it here. Focus on the first and last ele-
ments. This simple format is exactly what makes Elixir such a strong
metaprogramming language.

Implementing should with Macros
Now, we’ll use quote to actually inject our own code. Since we’re just dealing
with lists and tuples, it’s easy. I’m a fan of using “should” to describe test
expectations. That means that every test will start with test "should...", but that
syntax is repetitive. Let’s fix that. Let’s tell the Elixir compiler to look for the
word should and replace it with our own macro.

The existing test macro takes a name and a do block. As a do block is just a
keyword list, we’ll express it with options, and make our own macro that calls
the test macro. Add the following to the top of states/test/test_helper.exs:

defmodule Should do
defmacro should(name, options) do

quote do
test("should #{unquote name}", unquote(options))

end
end

end

This code tells the compiler the following:

“As you are building the AST for this program, whenever you see the word
should, replace it with everything inside the quote do block.”

Think of quote as diving one level deeper into the program.

Our program is an onion that has layers: programs are writing programs.
When we’re inside this quote, we’re actually writing the code that will replace
should.... This replacement happens in a pre-compile step called macro expansion

Chapter 4. Elixir • 150

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

time. We’re one level deeper into the onion. The problem is that by the time
the code executes, the keyword name and the keyword options will both be
undefined. Our test macro doesn’t understand name or options at all. It’s one
level up. We have to go up and get it.

Think of unquote as climbing one level out of the onion that is your program.

When we use unquote, we climb up one level outside of the quote. We can now
see everything that the should macro defines, including name and options. When
we unquote those, we say to the compiler, “Add the value of name and the
value of options as you find them, one level up.”

Now, we can change our tests to use the new structure, like this:

import Should
use ExUnit.Case

should "update count" do
...

And run your tests. You’ll find them clean and green. A few lines of code, and
we’ve streamlined the testing API. That’s the power of macros.

Writing More Tests

Make concrete_test.exs look like this:

elixir/day2/states/test/concrete_test.exs
defmodule ConcreteTest do

use ExUnit.Case
import Should

should "update count" do
rented_video = VideoStore.renting(video)
assert rented_video.times_rented == 1

end
should "rent video" do

rented_video = VideoStore.Concrete.rent video
assert :rented == rented_video.state
assert 1 == Enum.count(rented_video.log)

end
should "handle multiple transitions" do

import VideoStore.Concrete
vid = video |> rent |> return |> rent |> return |> rent
assert 5 == Enum.count(vid.log)
assert 3 == vid.times_rented

end

def video, do: %Video{title: "XMen"}
end

report erratum • discuss

Day 2: Controlling Mutations • 151

http://media.pragprog.com/titles/7lang/code/elixir/day2/states/test/concrete_test.exs
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Now, you can finally see why we’ve been working on a state machine. The
should macro makes our tests easy to understand, and the state machine is a
great abstraction for handling transitions of state in a functional system.
Elixir’s pipe operator shows any users of this code exactly what’s happening.

We have successfully built out an application with a state machine. That’s
not the point of this day, though. We’d like to allow anyone to plug in his or
her own state machine, without duplicating effort.

We can’t put it off any longer. It’s time to tame the macro beast.

Writing a Complex Macro
If we were to attack a state machine without macros, we’d need to write many
similar functions that looked almost alike. Macros will let us build function
templates that declare those similar functions for us. There’s a cost, though.
You need to be able to handle another level of complexity.

We’ll manage our macro just as we’d manage any other complex task. We’ll
start with the entire problem and break it down into smaller function calls.
First, let’s decide exactly how our macro should look. Here’s our target API:

use StateMachine

state :rented,
[return: [to: :available, calls: [&returning/1]],
lose: [to: :lost]]

state :lost, []

You can already see how the macros will help us. Our users can break down
the definition of a machine into clearly defined parts. Instead of using functions
at runtime to do the work, we’ll use macros at compile time. Using this strategy,
we can build templates that generate similar functions across many different
applications. Using a little metadata, we’ll be able to generate all of the code
that will let us manage a state machine for our application.

We have one main macro to build: the state macro. It will take a state name
and a keyword list of events. We’ll need a few new tools as we build, but that
will be no problem.

Understanding Compile-Time Flow
If thinking this way is a little troubling, understand this first. Elixir evaluates
functions at execution time, whereas macros execute at compile time:

Chapter 4. Elixir • 152

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

iex> defmodule TestMacro do
...> defmacro print, do: IO.puts("Executing...")
...> end
{:module, TestMacro, ..., {:print, 0}}

Simple enough. We’ve defined a one-line macro that will print “Executing…”.
Now, let’s use it.

iex> defmodule TestModule do
...> require TestMacro
...> TestMacro.print
...> end
Executing...
{:module, TestModule, ..., :ok}

That “Executing…” message confirms that macros run at compile time.
Specifically, one of the compile steps is macro-expansion. Then, the compiler
continues, with any expanded macro code injected into the compilation. When
you see quote and unquote, don’t get confused. Those functions make it easy to
reason about the code Elixir is injecting at compile time, no more and no less.

Building a Skeleton

Like Wolverine, we’ll start with a strong skeleton based on the simplest tasks.

You might have noticed that we had to fully qualify the macro print with Test-
Macro.print. That API would get tedious. Sure, we could solve this problem with
an import directive, but we don’t want the consumers of our API to have to
manually require dependencies for our macros. We can handle the imports.
The magic directive for this purpose is use.

import makes a module available for consumption. require lets you use functions
in a module as if they were scoped locally. Both are compile-time behaviors.

The use directive is different. The use macro will let us specify behavior that
we want to happen when a user includes our module, before compile time. use
will call the macro __using__. We’ll also stub out the other functions we’ll need.
Here’s our initial skeleton, in states/lib/state_machine.ex:

defmodule StateMachine do
defmacro __using__(_) do❶

quote do
import StateMachine
initialize temporary data

end
end
defmacro state(name, events), do: IO.puts "Declaring state #{name}"❷
defmacro __before_compile__(env), do: nil

end

report erratum • discuss

Day 2: Controlling Mutations • 153

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

So far, we’re just working with the mechanical devices of building a macro.
We’re not actually doing much work yet. Still, let’s take a brief look at what’s
going on. We’ll add detail and depth as we go.

❶ A call to use StateMachine will trigger this __using__ macro. So far, we’re just
importing the StateMachine API, so our consumers won’t have to type out
StateMachine.state to invoke our macro.

❷ This function will eventually specify the state machine as keyword lists.
The outermost keyword list has pairs that represent {state_name, event_key-
word_list}. The next level is a keyword list of events that looks like {event_name,
event_metadata}. The innermost list has the event metadata that expresses
the new state (to: new_state) and a list of functions that allow customized
behavior as the states change (calls: [callback_functions]). For now, we simply
stub it out.

It’s too early to write any tests, but we can at least put our skeleton through
its paces. Open the console with iex -S mix or compile the file from the console,
and try it out.

iex> c "state_machine.ex", "states/lib"
states/lib/state_machine.ex:9: warning: variable events is unused
states/lib/state_machine.ex:10: warning: variable env is unused
iex> defmodule StateMachineText do
...> use StateMachine
...> state :available, []
...> state :rented, []
...> state :lost, []
...> end
Declaring state available
Declaring state rented
Declaring state lost
{:module, StateMachineText, ... :ok}

You can see that we’re on the right track because we get a diagnostic message
for each state as Elixir compiles the module. Let’s work on the temporary
variables that will hold the state. To do this, we’ll use module attributes.

Understanding Compile-time Flow, Part 2
As we put a little more flesh on the skeleton, we’ll also beef up your under-
standing of compile-time flow. In this section, we’re going to need module
attributes, or compile-time variables expressed as @variable. At macro expansion
time, Elixir does all of the following:

• An application’s module includes the macro’s module with use.
• The compiler executes the __using__ function, injecting some setup code.

Chapter 4. Elixir • 154

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

• The compiler then processes the file, making any macro substitutions
that it encounters.

• Individual macros may interact with module attributes to work together.
• The compiler then looks for the function identified by the @before_compile

module attribute and executes it, potentially injecting more code.

Now, it’s time to see our full macro at work. Hide the annotations as you read
through the code. See if you can identify each of these steps. This is the full
macro:

elixir/day2/states/lib/state_machine.ex
defmodule StateMachine do

defmacro __using__(_) do❶
quote do
import StateMachine
@states []
@before_compile StateMachine

end
end

defmacro state(name, events) do❷
quote do
@states [{unquote(name), unquote(events)} | @states]

end
end

defmacro __before_compile__(env) do❸
states = Module.get_attribute(env.module, :states)
events = states

|> Keyword.values
|> List.flatten
|> Keyword.keys
|> Enum.uniq

quote do
def state_machine do❹

unquote(states)
end

unquote event_callbacks(events)❺
end

end

def event_callback(name) do❻
callback = name
quote do
def unquote(name)(context) do

StateMachine.Behavior.fire(state_machine, context, unquote(callback))
end

report erratum • discuss

Day 2: Controlling Mutations • 155

http://media.pragprog.com/titles/7lang/code/elixir/day2/states/lib/state_machine.ex
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

end
end

def event_callbacks(names) do
Enum.map names, &event_callback/1

end

end

❶ Our __using__ function is finally complete. We’re initializing module
attributes for a list of states so that the compose operator will work cor-
rectly. We also instruct the compiler to call __before_compile__ after macro
substitution but before compilation.

❷ We use simple list construction to add each state to the head of our list.
Notice there’s no = sign. Module attribute assignment is not a match
expression, as the runtime = would be.

❸ Our __before_compile__ function is now doing the lion’s share of the work.
We read the value of our module attributes into states. Next, we start with
all states. We pipe to Keyword.values to get all of the events, pipe those to
List.flatten so we have a uniform list of events, and pipe that flattened list
to Keyword.keys to get a list of all names.

❹ Finally, we inject some code. Since states was defined up one level, we
must unquote it. This function is simple since we’re just returning the
state machine structure.

❺ Building the callbacks is a slightly bigger job, so we call a function to do
that work. Since that function is defined one level up (as is events), we
unquote them.

❻ event_callback defines a single callback. Each callback defines a function
that invokes fire. Using these, a consumer can easily fire state machine
events through simple function calls.

Using Our State Machine
We finally get to see this skeleton dance. We can now tweak VideoStore to use
our new version of the API. Let’s make a copy of it so you can study the old
version and the new. Copy video_store.ex to vid_store.ex. The new file will be our
dynamic state machine. We can just add this code to the top of VidStore, and
the macro will do all of the work for us, creating everything that was in Con-
creteVideoStore dynamically. Copy video_store.ex to vid_store.ex, and then change
the top of vid_store.ex to look like this:

Chapter 4. Elixir • 156

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

defmodule VidStore do
use StateMachine

state :available,
rent: [to: :rented, calls: [&VidStore.renting/1]]

state :rented,
return: [to: :available, calls: [&VidStore.returning/1]],
lose: [to: :lost, calls: [&VidStore.losing/1]]

state :lost, []

...

Ah. That’s much better. The state machine reads as cleanly as a book. Now,
any application can make use of our state machine’s beautiful syntax. Take
your tests for a spin to make sure they still pass.

While you’re at it, create a test called vid_store_test.exs that uses the VidStore API.
Make sure all tests are green! Remember, you won’t need anything in the
Concrete module because our state machine now creates all of that code
dynamically.

We’re not done with this video store yet. We’ll build onto vid_store in Day 3 to
make the file both distributed and concurrent using Elixir’s macros for Erlang’s
OTP library.

What We Learned in Day 2
We packed a lot into Day 2. First, we learned to create projects with Mix.
Then, we learned to create maps with named fields, called structs. We then
built two versions of a state machine, a concrete one and a dynamic one. The
second version used a generic state machine language that we created with
Lisp-style macros.

We saw that Elixir expressions all reduce to the same structure: a three-tuple
with a function name, metadata, and the function arguments. Our state
machine macros used a wide range of tools:

• Our users consume our macros with the use command.
• Within our macro module, we imported our macro file and set up some

variables within the __using__ macro.
• We introduced a state macro so our users could create a state.
• We used module attributes to compute a running list of states.
• We added __before_compile__ behavior to our macro to round out our macro.

report erratum • discuss

Day 2: Controlling Mutations • 157

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

When we were done, we had a unified strategy for conveniently and concisely
representing a state machine. The Lisp-like syntax tree, quote and unquote,
made it all possible, but the end result was syntax that was anything but
Lisp-like.

Your Turn
In this set of exercises, you’re going to look at some existing Elixir modules
and how they work. You’ll also try your hand at extending our macros.

Find…

• The elixir-pipes GitHub project. Look at how the macros improve the
usage of pipes. Look at how pipe_with is implemented.

• The supported Elixir module attributes.
• A tutorial on Elixir-style metaprogramming.
• Elixir protocols. What do they do?
• function_exported? What does that function do? (You will need it for one of

the next problems.)

Do (Easy):

• Add a find state to the state machine that transitions from lost to found. Add
this code in both the concrete and abstract versions of your state machine.
Which is easier, and why?

Do (Medium):

• Write tests for VidStore. What was different, and what was the same?

Do (Hard):

• Add before_(event_name) and after_(event_name) hooks. If those functions exist,
make sure fire executes them.

• Add a protocol to our state machine that forces a state machine struct to
implement the state field.

Day 3: Spawning and Respawning
In Day 2, you effectively redefined the Elixir language, adding your own syntax
for expressing state machines. That’s heady stuff. Today, you’re going to use
macros and Erlang’s OTP to build an application that you can fully distribute.
Before we get started, let’s hear from José Valim, the creator of Elixir, and
learn what he was thinking when he created the language.

Chapter 4. Elixir • 158

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Us: What language did you use before Elixir?

Valim: My main language before Elixir was Ruby. However, I have always been
curious and interested in other languages and paradigms, so I am always reading
and building prototypes in different languages. Although they rarely make it to
production, it is always a very fun learning exercise!

Us: Why did you move on?

Valim: Lack of better tools for concurrency was the main reason why I moved on.
Boxes with 16 and more cores have become commodity hardware, and traditional
languages do not provide the proper abstractions to use this hardware efficiently
in large scale.

I’ve found the opposite scenario in the Erlang VM, where concurrency is the norm
and developers are used to writing distributed, fault-tolerant applications. And that
was the trigger for Elixir.

Us: What were Elixir’s main influences?

Valim: Erlang is definitely the main influence in the language. Most of Elixir’s
semantics are shared with the Erlang language since both run in the same virtual
machine. However, the parts that do differ are highly inspired by languages like
Lisp, Ruby, and Clojure.

For example, one of the first language decisions was to provide metaprogramming
functionality via macros, as seen in Lisp. However, back then, we already had two
Lisps running in the Erlang VM (Joxa and LFE) and I really wanted to explore the
feasibility of a macro system on top of non-Lisp syntax. So we came up with a quite
uniform syntax representation and borrowed from Ruby and Erlang to make common
idioms more elegant.

Developers should also see minor influences from other languages, like a focus
toward documentation and doc tests functionality coming from Python. Some great
language developers came before me. I try to learn from them all.

Us: What’s your favorite feature?

Valim: That’s a very hard question. We have inherited excellent functionalities by
simply running in the Erlang VM, like pattern matching and message passing, which
would definitely be at the top of the list. But if we are considering only what Elixir
brings to the game, I would definitely pick protocols, which add dynamic polymor-
phism to the language. Protocols allow library developers to specify interfaces which
can be implemented and extended by any user to their own data types. They seem
the perfect balance in between dynamic OO languages (where no interface is
specified) and static interfaces (which are a design-time choice).

Us: What would you do differently if you had the opportunity to start over?

Valim: I would have tackled fine-grained constructs for concurrency earlier on.
The Erlang VM provides a simple and great foundation for concurrency based on
very few constructs: processes, message passing, monitoring, and so on. However,

report erratum • discuss

Day 3: Spawning and Respawning • 159

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

those constructs are building blocks, so sometimes it is hard to communicate intent
because we don’t have names for common patterns. How do you call the action of
spawning a process to compute some work and reading its value later on? Some
languages call it promises, others call it tasks. But we call it “spawning a process
to compute some work and reading its value later on.”

I believe the language and the ecosystem would greatly benefit if the language
provided a few common patterns. The upside is that, due to the foundation provided
by the VM, those constructs are quite easy to implement. So it is more of a commu-
nity effort in identifying the common needs and patterns than a technological one.

Clearly, Erlang was a strong influence on the language. Actors and concur-
rency are among the most important and influential features in the language.
We’ll get to use them to take our state machine to the next level. Let’s roll!

Spawning Processes
Just like Erlang, Elixir makes it easy, even trivial, to spawn processes and
communicate between them. You can use processes in the console. For now,
we’ll use a simple anonymous function in the console. Look for the send
function in the following code:

iex> ball_glove = fn -> receive do
...> {:pitch, pitcher} ->
...> send pitcher, {:catch, self()}
...> end
...> end
#Function<20.80484245 in :erl_eval.expr/5>

iex> catcher = spawn ball_glove
#PID<0.51.0>

First, we declare an anonymous function. Every process has an inbox. All
communication between processes uses this inbox as a queue. The receive
function receives messages from the inbox. In this case, we match messages
of the form {:pitch, _}. We grab the second part of the two-tuple, and it matches
to pitcher. That’s the identifier of the process that sent this message. We use
it to send a message back to pitcher.

Then, we spawn a process that executes ball_glove. We grab the process id (or
pid, for short) and match it to catcher. Now, we’re ready for the other side of
this game of catch.

iex> send catcher, {:pitch, self()}
{:pitch, #PID<0.40.0>}
iex> receive do
...> {:catch, pid} ->
...> IO.puts "Caught it!"
...> end

Chapter 4. Elixir • 160

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Caught it!
:ok

Simple and clean. We send a :pitch message to catcher, and the catcher replies
with :catch. That’s a classic actor model for concurrent programming. You can
see just how convenient Elixir processes can be.

Understand that Elixir processes, like Erlang processes, are also cheap. They
cost next to nothing to create. Erlang and Elixir programmers often use pro-
cesses like OOP programmers use objects.

Elixir uses processes as the basic primitive for building useful abstractions.
For example, Elixir provides tasks, which start another process and waits
until a result from that task is available. You can start a task in another
process, continue to work in your current thread, and await the result, like
this:

iex> claim_slip = Task.async(fn -> IO.puts("park the car") end)
park the car
%Task{pid: #PID<0.98.0>, ref: #Reference<0.0.0.370>}
iex> IO.puts "run around town"
run around town
:ok
iex> Task.await claim_slip
:ok

You can actually run around town while the valet parks the car because the
task runs in another process. You can pick up your car immediately, or wait
until you’re ready. Elixir also provides Agents and Event managers, but we
will focus on two abstractions for now, GenServer and Supervisors, which
are rooted in Erlang OTP and are the foundation for building distributed and
fault-tolerant applications.

Building an OTP Application
We’ve seen how to build trivial concurrent applications, but the devil is in the
details. To finish that application, we’d have to handle crashes and errors,
cleaning up resources and handling respawning or reporting. Elixir provides
a better way through Erlang’s OTP.

Erlang’s roots are deep in the telecom field. Back when OTP was created, the
acronym stood for Open Telecom Platform. Now, it’s just called OTP. Elixir
macros on top of the Erlang OTP libraries make it easy to distribute your
applications to the web. Let’s create a simple in-memory database for our
video store, using Elixir’s convenient wrappers around Erlang’s OTP.

report erratum • discuss

Day 3: Spawning and Respawning • 161

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

As you’ve seen, it’s common practice to separate behavior and state in Elixir.
As you might imagine, the same is true of Erlang too. We’re going to use a
behavior called GenServer. In this case, Gen stands for Generic, and it separates
the “same-for-every-application” features from your specific application fea-
tures, like our state machine. This is what we will need to get started.

• GenServer is a behavior with some macros to keep things simple. We’ll need
to import them.

• We will need to initialize the state of our video store.
• We will need a callback to add videos to the store. We’ll use an asyn-

chronous cast OTP function.
• We will need a callback to fire our state machine events on a video. We’ll

use a synchronous call OTP function.
• We’ll add a function called start_link that will make it easier to restart,

should it ever crash.

Now that you’ve seen the overview, let’s take a look at the code. Put the fol-
lowing in lib/states/states_server.ex:

elixir/day3/states/lib/states_server.ex
defmodule States.Server do

use GenServer❶
require VidStore

def start_link(videos) do❷
GenServer.start_link(__MODULE__, videos, name: :video_store)

end

def init(videos) do❸
{ :ok, videos }

end

def handle_call({action, item}, _from, videos) do❹
video = videos[item]
new_video = apply VidStore, action, [video]
{ :reply, new_video, Keyword.put(videos, item, new_video) }

end

def handle_cast({ :add, video }, videos) do❺
{ :noreply, [video|videos] }

end
end

This code is remarkably compact. Let’s take a look at what is happening.

❶ GenServer has macros, so we announce our intent to use them with use. We
will also use the state machine, so we require that behavior as well. The
GenServer works by specifying a generic OTP behavior where the user fills

Chapter 4. Elixir • 162

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elixir/day3/states/lib/states_server.ex
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

in a few callbacks, GenServer will also provide default implementations for
the callbacks so you only need to implement the callbacks you need. We’re
using two: handle_call and handle_cast. We use Call to return a specific video,
and use Cast when we don’t care about the result.

❷ This callback does application-specific initialization. In this case, you can
pass in a video dictionary or an empty list. We won’t use this function
right away, but when we decide to add a supervisor, it will come in handy.

❸ This callback initializes our server to the value of videos.

❹ We get a video from the keyword dictionary, invoke a state machine event
using apply, and then replace the existing video in the keyword list with
our new one. apply is new, but don’t get confused. It just calls a function
on a module with the given argument list. In this case, action is one of our
state machine callbacks.

The arguments are simple. The first inbound argument is provided by the
user. The second is information about the calling process. The third is
the revised state of the server. OTP takes care of managing state for us!
Note that this call is synchronous. We’ll get the value of the transformed
video back. OTP will take care of managing state for us.

❺ The final callback, handle_cast, is almost as simple as init. Look at the
returned tuple—this callback sends no reply to the client. The structure
of handle_cast is nearly identical to handle_call, except that there is no return
value to set. We add our new video to the list with simple list construction.

Using OTP from the Console
Mix is going to take care of most of the dirty work for us. The console work
will be near trivial. Let’s check it out. First, start the console with iex -S mix.
Then, start the server with States.Server.start_link. You’ll want to match on {:ok,
pid} to capture the inbound pid, like this:

iex> {:ok, pid} = States.Server.start_link([])
{:ok, #PID<0.157.0>}

The arguments are the module implementing our store initial video store and
options. Now we can interact with the server by sending call and cast messages.
We’ll create a couple of videos for our store.

iex> wolverine = %Video{title: "Wolverine"}
%Video{title: "Wolverine", state: :available, times_rented: 0, log: []}
iex> xmen = %Video{title: "X Men"}
%Video{title: "X Men", state: :available, times_rented: 0, log: []}

report erratum • discuss

Day 3: Spawning and Respawning • 163

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

A call to cast with our tuple adds the two videos to our distributed server:

iex> GenServer.cast(pid, { :add, {:wolverine, wolverine} })
:ok
iex> GenServer.cast(pid, { :add, {:xmen, xmen} })
:ok

It can’t be that easy, can it? Let’s interact with our state machine:

iex> GenServer.call(pid, {:rent, :xmen})
%Video{title: "X Men", state: :rented, times_rented: 1, log: ["Renting X Men"]}
iex> GenServer.call(pid, {:return, :xmen})
%Video{title: "X Men", state: :available, times_rented: 1,
log: ["Returning X Men", "Renting X Men"]}

iex> GenServer.call(pid, {:rent, :xmen})
%Video{title: "X Men", state: :rented, times_rented: 2,
log: ["Renting X Men", "Returning X Men", "Renting X Men"]}

That’s amazingly simple. We’ve built a fully distributed server with very little
effort. Erlang let us wrap up a generic OTP behavior, and Elixir macros
insulated us from the boilerplate.

Further, our advantages will extend beyond our video store. If we want to use
this pattern in other applications, we can use the GenServer macros that were
provided by Elixir and the StateMachine macros that we wrote ourselves.

Supervising for Reliability
If you’re a Ruby or Java coder, you might have used tools that restart dead
servers when they start. Deploying those applications is black magic. With
Elixir, this kind of supervision is baked into the language. When you used
mix new --sup to create States, it created two files for you: a supervisor and an
application. They will do most of the work, but we’ll have to tweak them a
little. Change states/lib/states.ex to look like this:

elixir/day3/states/lib/states.ex
defmodule States do

use Application

See http://elixir-lang.org/docs/stable/elixir/Application.html
for more information on OTP Applications
def start(_type, videos) do

import Supervisor.Spec, warn: false

children = [
Define workers and child supervisors to be supervised
worker(States.Server, [videos])

]

Chapter 4. Elixir • 164

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/elixir/day3/states/lib/states.ex
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

See http://elixir-lang.org/docs/stable/elixir/Supervisor.html
for other strategies and supported options
opts = [strategy: :one_for_one, name: States.Supervisor]
Supervisor.start_link(children, opts)

end
end

The worker function insulates us from boilerplate that we don’t see. We access
the supervision behavior through the import Supervisor.Spec expression. The children
list defines the processes we want to supervise. start_link spawns and links the
supervisor process to our States server. init fires any child processes, passing
through the initial video library, which is initially an empty keyword list.

The application monitors the supervisor. When a supervisor goes down, the
application will act accordingly. We need to do one more thing. We need to
tell Mix how to initialize our application. Now, when you start iex -S mix or
Application.start, it will actually start your full OTP application. You’ll be able to
put :video_store through its paces simply by using GenServer commands, like
this:

iex> GenServer.cast :video_store, {:add, {:xmen, %Video{title: "X men"}}}
:ok
iex> GenServer.call :video_store, {:rent, :xmen}
%Video{title: "X men", state: :rented, times_rented: 1, log: ["Renting X men"]}

You can crash the server by passing a command that doesn’t exist:

iex> GenServer.call :video_store, {:crash, :xmen}

=ERROR REPORT==== 9-Aug-2014::23:57:43 ===
** Generic server video_store terminating
** Last message in was {crash,xmen}
...

The supervisor will create a new one:

iex> GenServer.cast :video_store, {:add, {:et, %Video{title: "ET"}}}
:ok

We’re up and running again. If we wanted to, we could capture the existing
state at the time of the last crash.

And there you have it. We’ve got three basic parts:

• A generic server, wrapped by Elixir libraries to eliminate boilerplate code
• Application-specific code, consisting of an Elixir macro to build state

machines, and a video store that uses it
• A dozen or so lines of configuration that we use to glue everything

together

report erratum • discuss

Day 3: Spawning and Respawning • 165

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We’re left with an extremely robust server-side implementation, based on
decades of evolution and research. We focus our development efforts on the
application-specific code. That’s the promise of Erlang with Elixir.

What We Learned in Day 3
In Day 3, we heard from José and his vision for Elixir. We learned about the
major influences on the language, and also how Elixir’s protocols add some
structure and extensibility to Erlang’s type system.

Next, we dove into concurrent and distributed code. We learned to spawn
concurrent processes, and then we built an amazing amount of functionality
with surprisingly little code, extending our macro-driven video store to run
under OTP. Then, we used the OTP framework, and saw a beautiful marriage
between Elixir and Erlang. The OTP framework is a fantastic abstraction for
dealing with concurrent distributed applications, one that has aced every test
from an industry famous for chewing up and spitting out distributed program-
ming paradigms and even programming languages.

Both Elixir and Erlang were important to our program. Erlang’s libraries
handled the tough issues related to monitoring and linking processes, and
Elixir simplified the process with excellent tooling and macros that eliminated
the need for much of the boilerplate code.

Your Turn

Find…

• The Erlang gen_server behaviors
• The way to code a timeout with an Elixir receive
• Information on Erlang’s OTP

Do (Easy):

• How can you crash your server? What happens if you crash it with and
without a supervisor?

• Add a timeout to the pitcher or catcher. What happens when you time
out?

Do (Medium):

• Write tests for the OTP database. Hint: There are two types of setup in
TestUnit.

Chapter 4. Elixir • 166

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Do (Hard):

• Build some redundancy into the video store by adding a second process.
Writes go to both processes. When one process crashes, make it get the
video database from the other OTP server when it starts back up.

• Wrap the state machine in an agent rather than a full OTP application.
• How would you persist the videos into Erlang’s DETS database?

Wrapping Up Elixir
We’ve now put Elixir through its paces. You’ve seen what José has to say,
and used a couple of the more sophisticated language features. In a few short
days, you’ve built a few macros and even ramped up a simple monitored
distributed application. Let’s look at where Elixir fits in the language spectrum.

Strengths
The hardware landscape, with increased emphasis on better networking,
multicore architectures, and modern mobile computing, is increasingly driving
modern programming. Our insatiable desire for more mobile applications and
more power on the cloud will eventually require programmers to be concur-
rency experts. Elixir is extraordinarily well positioned to meet the hardware
challenges.

In the Elm chapter, we mentioned the rise of reactive programming on the
browser. To take best advantage, server-side languages must support streams
and web programming models that support them. Though we did not have
enough time to robustly cover the whole Stream API, they are there, and they’re
as rich and powerful as any streaming libraries out there.

The problem with many functional languages is that the syntax is often
demanding and even alien. It may be too much to expect programmers to
embrace monads (like Haskell), Lisp’s notation (like Clojure), or sophisticated
type theory (like Scala). Elixir is attempting to provide the right sugar for a
whole class of developers making the transition from objects to functions.

At one point, I thought the key to Lisp’s macros was a language that was
represented in list form, enabling macros. It’s not. The key is the uniform
syntax tree. With a consistent representation and Lisp-style quote, Elixir pairs
rich syntax with beautiful macros. That’s hugely important. To achieve a
critical mass, a popular general-purpose functional language will need to be
able to insulate its users from tedious boilerplate.

report erratum • discuss

Wrapping Up Elixir • 167

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The ability to seamlessly access Erlang’s rich OTP library is also a game
changer. The political challenge is much less severe since Erlang’s virtual
machine already runs a significant percentage of the world’s mobile traffic.
That’s proven scalability, performance, and reliability.

Finally, the timing for Elixir is very good. Some Ruby developers have had a
hard time embracing Clojure or Scala, but they need to go somewhere as the
pressure of deploying high-performance distributed applications on multicore
hardware increases. They are giving Elixir a serious look. Though the Ruby
development community provides an ideal early customer base for Elixir,
those developers face a steep learning curve, including learning concurrent
programming and functional programming all at once. That’s a daunting list,
but the most successful languages in the past few decades have tapped
existing communities—C++ for Java and JavaScript, and Java for Clojure
and Scala. Having this Ruby community helps to quickly establish a critical
mass.

Weaknesses
Elixir’s weaknesses are the same as most emerging languages. The libraries
are changing relatively quickly. If it doesn’t settle down soon, an increasing
user base will have a tough time keeping up.

Maturity of approach is also uncertain. Some of the concepts are novel. We
will need to see how those concepts age over time, though many of the con-
cepts are already aging quite well with the Erlang language. The list of sup-
porters is quite small but growing. It’s critical that José and Joe Armstrong,
creator of Erlang, continue to work well together.

Finally, many of the features that Elixir developers will need are missing, or
not yet well documented. If you want to use a web server, for example, you’ll
need to pick a very young one, or go with a native Erlang system, of which
there are several excellent choices. It will be important for the young commu-
nity to continue to offer not just growth, but quality growth.

Final Thoughts
Of all the emerging functional languages, Elixir is my favorite. Though it’s
not as mature as some of the other alternatives, I think the complete package
is well conceived.

People are starting to notice Erlang and its superior distribution model. Elixir,
though, can probably go in places that Erlang can’t. The rich syntax will make
it attractive to Ruby developers who are starting to recognize the true limita-

Chapter 4. Elixir • 168

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

tions of the language in the face of multicore architectures. Macros will allow
it to play a more efficient role as an applications language.

Even within the Erlang programming community, this new language has
potential. Erlang developers have gone without some tools that are becoming
increasingly important, namely tooling for builds, integration, and scripting.
Mix, the rich scripting capabilities, and the DSL tooling will help Elixir
establish a role as a scripting language within Erlang’s ecosystem.

Will Elixir succeed on a bigger stage? We’ll have to wait and see.

report erratum • discuss

Wrapping Up Elixir • 169

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

CHAPTER 5

Julia
by Jack Moffitt and Bruce Tate

Writing a language is sometimes compared to writing a book. Each language
has a voice. Sometimes, if too many people collaborate or if the language is
written over too long a period of time, that voice becomes chaotic and disjoint-
ed. You can imagine our trepidation when we started working with Julia,
which had four primary authors.

So far, the authors of this book have collectively interviewed 14 language
creators. Sometimes, as with Haskell, we interviewed more than one, and
once, with Prolog, we didn’t interview the creator. Each time, the process is
different. There’s usually a dominant voice on the team. With Clojure, it’s
unquestionably Rich Hickey, even after his company merged with Relevance,
LLC. With Erlang, it’s Joe Armstrong. When we approached a Julia mail list
with a request to interview the creators, you can imagine our surprise when
not one but four of them responded, at once, with a single voice. “We will
answer you,” the voices said in unison, “within two weeks.” And two weeks
later, the answer came back, from four voices in unison, with an incredibly
thoughtful and well-reasoned interview.

As we dove into the language, we felt ourselves drawn into the community—at
once eager and polite. Think “Borg,” the Star Trek character of aliens where
individuals were drawn into the collective. Julia works in that spirit, like a
giant hive-mind, a collective consciousness that subsumes the whole. Working
with integers, or rationals made up of integers, or reals or even imaginary
numbers? No problem. Julia gets you. Plus is plus. She knows what to do.

What about a multidimensional array? No problem. Plus is still plus, and will
add to each element. You can even distribute the plus across the whole.

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

If you feel yourself drawn toward something bigger, don’t fight it. Think of the
whole. Let’s get to work. Maybe in the end, you too will be assimilated.

Day 1: Resistance Is Futile
Julia is a relatively new language, but the team has been incredibly productive.
Even with three days, we won’t be able to cover it all.

Day 1 will cover the built-in types and operators. We’ll also look at Julia’s
dictionaries and arrays. The arrays are particularly powerful, with the ability
to slice and manipulate them in pieces or in multiple dimensions.

On the second day we’ll look at all the major control flow patterns like if, while,
and for. We’ll look at user-defined types and functions, and discover Julia’s
multiple dispatch. Concurrency will round out the day, allowing us to do
computation in a distributed way.

Our final day, we’ll play with Julia’s macro system and then build an image
codec using everything we’ve learned.

Before we get to all this code, we’ll need to install Julia.

Installing Julia
Prebuilt packages for Julia for Windows, OS X, and Linux can be downloaded
from the Julia download site.1 We’ll be using version 0.3.0 in this chapter,
which is the current pre-release version.

If you can’t find a package for your system, you can install directly from
source. The README.md file in the Julia repository contains detailed building
instructions. Be warned that because it requires you to build LLVM as well,
the build will take quite a while.

Once you have Julia installed, fire up the REPL by running julia, and you
should see something like the following:

$ julia
_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org
_ _ _| |_ __ _ | Type "help()" to list help topics

| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 0.3.0-prerelease+3551 (2014-06-07 20:57 UTC)

_/ |__'_|_|_|__'_| | Commit 547facf* (12 days old master)
|__/ | x86_64-apple-darwin12.5.0

julia>

1. http://julialang.org/downloads/

Chapter 5. Julia • 172

report erratum • discuss

http://julialang.org/downloads/
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The language is now at your fingertips. Let’s give it a whirl:

julia> println("Hello, world!")
Hello, world!

julia>

With the world properly greeted, let’s explore Julia’s syntax a bit.

Built-in Types
Every language has its atoms—its component parts. Most of Julia’s atoms
should be familiar to you from other languages, but unlike most dynamic
languages, Julia has more precise types.

We can explore the atoms and their types at the REPL using the typeof function:

julia> typeof(5)
Int64

There are floating-point numbers in several sizes: 16, 32, and 64 bits. Integers
are even more diverse with both unsigned (Uint8, Uint16, etc.) and signed
(Int8, Int16, etc.) variants. Numeric literals are interpreted in the most general
way: Int64 and Float64.

julia> typeof(5.5)
Float64

// is used to make rational number literals.

julia> typeof(11//5)
Rational{Int64} (constructor with 1 method)

Symbols are convenient when you would otherwise use a string, but they are
more efficient and easier to type and read. Julia has borrowed these from
Lisp, Erlang, and Ruby.

julia> typeof(:foo)
Symbol
julia> typeof(true)
Bool
julia> typeof('a')
Char
julia> typeof("abc")
ASCIIString (constructor with 2 methods)
julia> typeof(typeof)
Function

report erratum • discuss

Day 1: Resistance Is Futile • 173

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Tuples are fixed-size groups of other types. Their type is a tuple of the types
of their components.

julia> typeof((5, 5.5, "abc"))
(Int64,Float64,ASCIIString)

Arrays look as you’d expect. The extra 1 in the type signature is the array’s
dimensionality, which we will learn more about later.

julia> typeof([1, 2, 3])
Array{Int64,1}

Dictionary literals use curly braces and =>, just like older versions of Ruby.
The first parameter in the type signature is the type of the key, and the second
is the type of the value. Any is Julia’s universal type.

julia> typeof({:foo => 5})
Dict{Any,Any} (constructor with 3 methods)

Now that we’ve seen what we have available, let’s do something with them.

Common Operators
Most of Julia’s numeric operators are exactly what you’d expect:

julia> 1 + 2
3

Numeric operations between different types of numbers auto-promote. Adding
two integers gives an integer, but adding a float and an integer gives a float.

julia> 1 + 2.2
3.2

Division always returns a floating-point number, even when both arguments
are integers.

julia> 5 / 1
5.0

The \ operator is the same as / but with the arguments reversed. Inverse
division is primarily useful for linear algebra.

julia> 1 \ 5
5.0

Truncating integer division can be done with div.

julia> div(7, 3)
2
julia> mod(7, 3)
1

Chapter 5. Julia • 174

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Julia has bitwise operators, and you can use the bits function to see the
binary representation of a value.

julia> bits(5)
"000101"
julia> bits(6)
"000110"
julia> 6 & 5
4
julia> 5 | 6
7

Bitwise negation is done with ~, and exclusive or is $.

julia> ~0
-1
julia> 5 $ 6
3

Boolean operators are the same as in C and Java, as are the operators for
comparison.

julia> true || false
true
julia> true && false
false
julia> !true
false
julia> !!true
true
julia> mn < x < mx
true

You can assign to multiple variables at once using commas—a syntax bor-
rowed from Python. The left and right sides must have the same structure.

julia> mn, x, mx = 1, 3, 5
(1,3,5)

All of these operators work on the simplest types in the language. Let’s look
at some of Julia’s more complex types.

Dictionaries and Sets
Julia’s dictionaries are the same as those in other dynamic languages you
might be familiar with, but they can be more explicitly typed. Keys and values
in the dictionary must all be of the same type, but that type may be Any.

report erratum • discuss

Day 1: Resistance Is Futile • 175

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

These two kinds of dictionaries—one dynamic and free and one restricted to
specific types—both have their own literal syntax. When you want the typical
dynamic behavior, use {...}, but if you want more explicit types, use [...]:

julia> implicit = {:a => 1, :b => 2, :c => 3}
Dict{Any,Any} with 3 entries:

:b => 2
:c => 3
:a => 1

julia> explicit = [:a => 1, :b => 2, :c => 3]
Dict{Symbol,Int64} with 3 entries:

:b => 2, :c => 3, :a => 1

(By default Julia lists entries one per line, but we’ll take the liberty of condensing
its output throughout the chapter.)

Fetching keys and values from the dictionary is easy, as is testing for existence
of an entry:

julia> explicit[:a]
1

get fetches a value by its key, returning the default value if the key isn’t found.

julia> get(explicit, :d, 4)
4

keys returns an iterator of all the keys.

julia> the_keys = keys(explicit)
KeyIterator for a Dict{Symbol,Int64} with 3 entries. Keys:
:b, :c, :a

collect constructs an array from the items in an iterator.

julia> collect(the_keys)
3-element Array{Symbol,1}:
:b, :c, :a

The in operator can be used to test if an item exists in an array or an iterator.

julia> :a in the_keys
true

The in function is exactly the same as the operator. It has special syntax
support so you can use it either way. Note that for dictionaries, items are
represented as a two-tuple of the key and value.

julia> in((:a, 1), explicit)
true

Chapter 5. Julia • 176

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Julia also has a Set type, which is an unordered set, and functions to
manipulate it.

No matter how many times a particular element is given in the constructor,
it will appear only once in the set.

julia> a_set = Set(1, 2, 3, 1, 2, 3)
Set{Int64}({2, 3, 1})
julia> union(Set(1, 2), Set(2, 3))
Set{Int64}({2, 3, 1})
julia> intersect(Set(1, 2), Set(2, 3))
Set{Int64}({2})

Set difference subtracts all the elements of the second set from the first.

julia> setdiff(Set(1, 2), Set(2, 3))
Set{Int64}({1})
julia> issubset(Set(1, 2), Set(3, 4, 0, 1, 2))
true

These collection types are useful but unsurprising. Arrays in Julia, however,
are straight out of the future.

Twenty-Fourth-Century Arrays
Julia’s arrays are powerhouses of functionality. You can create arrays of
varying dimensions, slice out arbitrary regions (also in multiple dimensions),
reshape them, or do complex operations on them. Like dictionaries and sets,
they are typed and hold items all of the same type.

First, let’s look at how to create arrays.

Arrays constructed with [...] have their type inferred. Note that if a common
type cannot be inferred, the root type Any is used. These Any arrays work much
like arrays in other dynamic languages.

julia> animals = [:lions, :tigers, :bears]
3-element Array{Symbol,1}:
:lions, :tigers, :bears

julia> [1, 2, :c]
3-element Array{Any,1}:
1, 2, :c

If you want a particular type, you can use Type[...] to construct them. It causes
an error if the types aren’t convertible to the target type.

julia> Float64[1, 2, 3]
3-element Array{Float64,1}
1.0, 2.0, 3.0

report erratum • discuss

Day 1: Resistance Is Futile • 177

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

There are lots of functions in Julia’s standard library for creating arrays. Here
are the most common ones:

julia> zeros(Int32, 5)
5-element Array{Int32,1}:
0, 0, 0, 0, 0

julia> ones(Float64, 3)
3-element Array{Float64,1}:
1.0, 1.0, 1.0

julia> fill(:empty, 5)
5-element Array{Symbol,1}:
:empty, :empty, :empty, :empty, :empty

These functions all take the type of the array (or the value in the case of fill)
and the size as arguments.

Indexing and Slicing

Accessing elements of an array can be done with indexing or slicing, both of
which use the familiar square bracket notation:

julia> animals = [:lions, :tigers, :bears]
3-element Array{Symbol,1}:
:lions, :tigers, :bears

Arrays in Julia are indexed from 1, not 0. This follows the mathematical
convention.

julia> animals[1]
:lions

The end keyword is an alias for the last element of an array. This is similar to
Python’s -1, but a bit more readable.

julia> animals[end]
:bears

Using : inside the brackets allows you to return slices of the array. This is a
two-element slice, and it can be used just like any other array in Julia. A slice
of a single element still returns an array.

julia> animals[2:end]
2-element Array{Symbol,1}:
:tigers, :bears

julia> animals[1:1]
1-element Array{Symbol,1}:
:lions

You can write to slices and indices as well. Indices can be assigned to, which
mutates the array.

Chapter 5. Julia • 178

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

julia> animals[1] = :zebras
:zebras
julia> animals
3-element Array{Symbol,1}:
:zebras, :tigers, :bears

Even slices can be assigned to. If given a single element, it assigns that element
to every position of the slice.

julia> animals[2:end] = :hippos
:hippos
julia> animals
3-element Array{Symbol,1}:
:zebras
:hippos
:hippos

You can also assign arrays to slices.

julia> animals[2:end] = [:sharks, :whales]
2-element Array{Symbol,1}:
:sharks, :whales

julia> animals
3-element Array{Symbol,1}:
:zebras, :sharks, :whales

Slices are really powerful and make it trivial to manipulate arrays in complex
ways. Since you can use them just like regular arrays, you can pass them to
functions so that those functions operate only on a subset of the data.

Now we’ll take arrays into another dimension.

Multidimensional Arrays

Julia is designed as a language for scientific and numerical programming.
Those types of tasks typically involve a lot of linear algebra using vectors and
matrices. Fortunately, Julia excels with amazing multidimensional arrays.

Let’s start by adding just one dimension. We’ll create, manipulate, and inspect
a small matrix

To write literal arrays with two dimensions, use semicolons between the rows
and leave out the commas between elements. Using commas and semicolons
both is an error, and using no commas always creates a two-dimensional
array, even when there are no semicolons.

julia> A = [1 2 3; 4 5 6; 7 8 9]
3x3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9

report erratum • discuss

Day 1: Resistance Is Futile • 179

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

You can retrieve the size and shape of the array using size. It returns a tuple
of the length of the array in each dimension. Here our array is 3 by 3.

julia> size(A)
(3,3)

Use a comma to give multiple indices to an array. Each index is along the
respective dimension. Here we ask for the third element of the second row.

julia> A[2,3]
6

Slicing works in arbitrary dimensions as well. This fetches the second column.

julia> A[1:end,2]
3-element Array{Int64,1}:
2
5
8

Using a slice with no bounds fetches all elements in that dimension.

julia> A[2,:]
1x3 Array{Int64,2}:
4 5 6

Setting a two-dimensional slice also works. This sets everything to zero except
the top and left edges.

julia> A[2:end,2:end] = 0
0
julia> A
3x3 Array{Int64,2}:
1 2 3
4 0 0
7 0 0

All the array constructor functions take the size of the array as the second
argument. Before we used an integer, but you can also pass a tuple for mul-
tidimensional arrays. rand generates an array with random elements, each
between 0 and 1.

julia> rand(Float64, (3,3))
3x3 Array{Float64,2}:
0.12651 0.679185 0.052333
0.429212 0.0113811 0.886528
0.639923 0.0794754 0.917688

Common operators on matrices and vectors work out of the box. You can
add, subtract, and multiply arrays element-wise or with matrix multiplication.

Chapter 5. Julia • 180

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

eye constructs the identity matrix. eye(N) makes an N×N matrix, and eye(M, N)
creates an M×N matrix.

julia> I = eye(3, 3)
3x3 Array{Float64,2}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

Multiplying an array by a scalar value is done element-wise.

julia> I * 5
3x3 Array{Float64,2}:
5.0 0.0 0.0
0.0 5.0 0.0
0.0 0.0 5.0

julia> v = [1; 2; 3]

Using the dotted version of the * operator does explicit element-wise multipli-
cation. Using * here would have been an error as two 3×1 vectors cannot be
matrix multiplied.

julia> v .* [0.5; 1.2; 0.1]
3-element Array{Float64,1}:
0.5
2.4
0.3

Adding a quote after an array will transpose it; this is shorthand for the
transpose function. A 1×3 vector times a 3×1 vector gives the dot product,
resulting in a scalar result.

julia> v' * v
1-element Array{Int64,1}:
14

A 3×3 matrix multiplied with a 3×1 vector outputs a new 3×1 vector.

julia> [1 2 3; 2 3 1; 3 1 2] * v
3-element Array{Int64,1}:
14
11
11

Don’t worry too much if you aren’t familiar with linear algebra. The point is
that Julia’s arrays and operators are custom made for doing linear algebra.
Of course, they are capable of all the normal things arrays are useful for too.

report erratum • discuss

Day 1: Resistance Is Futile • 181

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

What We Learned in Day 1
This has been a whirlwind tour of Julia’s types and operators, and we didn’t
even cover much of its built-in library functions. Even with this humble
beginning, you can imagine just how good of a number cruncher Julia is. It’s
also built out of familiar pieces from dynamic languages; hopefully you feel
right at home.

Julia has a lot of types that you’ve no doubt seen in other languages: symbols,
integers, floats, dictionaries, sets, and arrays. Its operators hold few surprises.

Collection types are multifaceted, since Julia is strongly typed even though
it is dynamic. Class dynamic language behavior is achieved through the Any
type, but Java-like strongly typed behavior can be used too. Most of the arrays
we dealt with were uniform Int64 or Float64. Arrays of only concrete types like
this make for very efficient representation and computation.

Julia’s arrays are where the language really starts to shine. Not only does it
have all the normal things you’d want from an array in Python or Java, but
it also has powerful indexing and slices that work even in multiple dimensions.
Arrays also support the common linear algebra operations in addition to ele-
ment-wise operations.

Your Turn
It’s your turn to experiment with Julia’s types and common operations.

Find…

• The Julia manual
• Information about IJulia
• The Julia language Reddit, which has blog posts and articles related to

Julia

Do (Easy):

• Use typeof to find the types of types. Try Symbol or Int64. Can you find the
types of operators?

• Create a typed dictionary with keys that are symbols and values that are
floats. What happens when you add :thisis => :notanumber to the dictionary?

• Create a 5×5×5 array where each 5×5 block in the first two dimensions
is a single number but that number increases for each block. For example,
magic[:,:,1] would have all elements equal to 1, and magic[:,:,2] would have
all elements equal to 2.

Chapter 5. Julia • 182

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

• Run some arrays of various types through functions like sin and round.
What happens?

Do (Medium):

• Create a matrix and multiply it by its inverse. Hint: inv computes the
inverse of a matrix, but not all matrices are invertable.

• Create two dictionaries and merge them. Hint: Look up merge in the
manual.

• sort and sort! both operate on arrays. What is the difference between them?

Do (Hard):

• Brush off your linear algebra knowledge and construct a 90-degree rotation
matrix. Try rotating the unit vector [1; 0; 0] by multiplying it by your matrix.

Day 2: Getting Assimilated
Yesterday we looked at Julia’s basic types and operators, and we spent quite
a lot of time with its arrays. Julia’s basic data structures are versatile, but it
has even more to offer.

First we’ll quickly review control flow, which should feel quite familiar. We’ll
also hit abstract and user-defined types and learn all about functions and
multiple dispatch.

Finally, we’ll wrap up the day by playing with Julia’s concurrency features,
which Julia has assimilated from languages like Erlang.

Control Flow
Julia’s if, while, and for are pretty standard. Their syntax feels like a pleasant
mix of Ruby and Python. Julia’s for loops are able to iterate over a variety of
things, which is quite handy.

Let’s look at branching with if first:

julia> x = 10
10
julia> if x < 10

println("My chair is too small")
elseif x > 10

println("My chair is too big")
else

println("My chair is just right")
end

My chair is just right

report erratum • discuss

Day 2: Getting Assimilated • 183

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

One notable difference between Julia and languages like C, Python, and
JavaScript is that the test expression must evaluate to a Boolean; 0, 1, and
empty collections are not coercible to Boolean values. This is Julia’s underlying
strong typing asserting itself.

while loops are also what you’d expect:

julia> x = 8
8
julia> while x < 11

x = x + 1
println("More!")

end
More!
More!
More!

Here are some for loops showing several different kinds of iteration.

This example iterates over an array. You can also use in instead of = if you
prefer. Also, note that Julia’s strings interpolate from the current scope using
$. You can reference variable names or entire expressions like $(a + 10).

julia> for a = [1, 2, 3]
println("$a")

end
1
2
3

Here we iterate over a range. 1:10 is all the integers from 1 to 10 inclusive.

julia> sum = 0
0
julia> for a = 1:10

sum += a
end

julia> sum
55

Iterating over other collections like dictionaries is easy too. Here we decon-
struct each element, which for a dictionary is a tuple of the key and value.

julia> numbers = [:one => 1, :two => 2]
Dict{Symbol,Int64} with 2 entries:

:two => 2, :one => 1
julia> for (key, value) in numbers

println("The name of $value is $key")
end

The name of 2 is two
The name of 1 is one

Chapter 5. Julia • 184

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Compared to multidimensional arrays, the control flow of Julia is unambitious.
Sometimes simplicity is best, but you’ll see control flow shine in more complex
examples later.

User-Defined Types and Functions
Julia has some great types, but no language is complete without the ability
to make your own. You can define your own types in Julia, and it has a lim-
ited form of abstract types and subtyping as well.

After types, we’ll talk about user-defined functions, including Julia’s powerful
multiple dispatch, which is a functional incarnation of polymorphism.

Let’s build a simple type to hold movie characters. Types in Julia are like
structs in C or classes without methods if you are familiar with Java or Ruby.

Fields in a type definition can be constrained to be of a particular type with
the :: operator. If no type constraint is given, the field is of type Any. It has the
same kind of behavior as fields in Ruby, Python, or JavaScript.

Constructing a value of type is done with its constructor function, which has
the same name as the type and takes an argument for each field.

julia> type MovieCharacter
heart :: Bool
name

end

julia> cowardly_lion = MovieCharacter(false, "Lion")
MovieCharacter(false,"Lion")

Accessing fields on a value of a type is done with the . operator, just as in
many other languages.

julia> cowardly_lion.name
"Lion"

Abstract types have no fields, but serve as a way to group multiple types
together. Concrete types are then defined as subtypes of the abstract type.
This allows for extension and default behavior.

Abstract types cannot be constructed, but they can be used as field type
specifiers or in typed array literals.

julia> abstract Story

julia> Story()
ERROR: type cannot be constructed

report erratum • discuss

Day 2: Getting Assimilated • 185

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Defining a subtype is done with the <: operator, but looks exactly like a normal
type definition otherwise. Multiple subtypes can coexist next to each other.

julia> type Book <: Story
title
author

end
julia> type Movie <: Story

title
director

end

Like any dynamic language, Julia can use introspection to walk the type
hierarchy. You can easily find the supertype as well as all the subtypes.

julia> super(Book)
Story
julia> super(Story)
Any
julia> subtypes(Story)
2-element Array{Any,1}:
Book
Movie

You can’t subtype more than one level. This is perhaps unexpected, but avoids
many pitfalls of traditional object-oriented languages.

julia> type Short <: Movie
plot

end
ERROR: invalid subtyping in definition of Short

We can now abstract over data, but we still need to abstract over code. Let’s
see how user-defined functions look in Julia. You’ll find they have quite a
Python flavor.

Functions return the last expression in their bodies. You can also use return
to exit early.

julia> function hello(name)
"Hello, $(name)!"

end
hello (generic function with 1 method)
julia> hello("world")
"Hello, world!"

Default arguments can be provided. If not specified when the function is
invoked, the default values will be used.

Chapter 5. Julia • 186

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

julia> function with_defaults(a, b=10, c=11)
println("a is $a, b is $b, and c is $c")

end
with_defaults (generic function with 3 methods)
julia> with_defaults(1, 2)
a is 1, b is 2, and c is 11
julia> with_defaults(1)
a is 1, b is 10, and c is 11

Using ... on the final argument will make it a collection of all the remaining
arguments if any exist.

julia> function it_depends(args...)
for arg in args
println(arg)

end
end

it_depends (generic function with 1 method)
julia> it_depends(:one, :two)
one
two

All of Julia’s operators are also functions and can be used in prefix notation
too.

julia> +(1, 2)
3
julia> numbers = 1:10
1:10

When ... appears in a function definition’s argument list, it gathers arguments
into a collection. When ... appears in a function invocation it expands the
collection into arguments. It’s a very tidy feature that saves you from what
other languages call apply.

julia> +(numbers...)
55

Functions in Julia really start to shine when you couple them with multiple
dispatch. The same function can be defined multiple times for different types.

You might be familiar with overloading from other languages, but multiple
dispatch is even more powerful. Instead of picking a function to call based
on its first argument (or the object on which it’s invoked in object-oriented
languages), multiple dispatch actually picks the function based on the types
of all the arguments.

In Julia, each version of a function is called a method, but unlike object-ori-
ented programming, the methods don’t belong to one particular type. This

report erratum • discuss

Day 2: Getting Assimilated • 187

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

makes a lot of sense given Julia’s focus on scientific code; after all, if the
dividend and the divisor have different types, which type should the division
operator / belong to? In object-oriented languages, it ends up being whichever
type is written on the left, which doesn’t make a lot of sense, but people have
gotten used to it.

Let’s see multiple dispatch in action in a simple set of methods to concatenate
two values together.

What makes the following a method instead of a function is that the types of
the arguments are specified. This method is defined only when both arguments
are Int64. This version of concat does a little math to append the numbers
together.

julia> function concat(a :: Int64, b :: Int64)
zeros = int(ceil(log10(b+1)))
a * 10^zeros + b

end
concat (generic function with 1 method)
julia> concat(117, 5)
1175

If we try to call our function on different kinds of arguments, Julia complains
that no method was found.

julia> concat(117, "5")
ERROR: no method concat(Int64, ASCIIString)

Now we’ll define a concat method that takes a string as the second argument
and returns a string. Now when we call the function, the correct method is
selected. Notice that to pick the method, Julia had to look at the types of all
the arguments. This is multiple dispatch at work.

julia> function concat(a :: Int64, b :: ASCIIString)
"ab"

end
concat (generic function with 2 methods)
julia> concat(117, "5")
"1175"

Multiple dispatch is a rarely seen language feature assimilated directly from
Lisps. Clojure is probably the most mainstream language that includes it.
Although little known, it is quite powerful and makes for some beautiful code.

It allows for open extension where normal object-oriented methods do not.
There’s no need to subclass Int64 to add a new type of concat, nor do you need
to modify the Int64 object with monkey patching. If your library provides

Chapter 5. Julia • 188

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

methods for common types, users of the library can extend those methods to
their own types without modifying your library at all.

Julia’s whole standard library relies heavily on multiple dispatch. The
behavior of all the numeric types and operators are built with it. If you’re
curious, try running methods(+) at the REPL, which will show you all the defi-
nitions for addition.

Concurrency
You’ve now seen all the basics—some familiar, some new. Taken together, it
makes for quite a nice dynamic language with strong typing and abstraction.
Julia is a language with a prime directive—to make writing numerical code
better.

One of the biggest issues with numerical code is that it takes a long time to
run, even on supercomputers. To eke out the maximum performance, concur-
rency and distributed computing are a necessity, and so Julia has it built
right in.

Julia concurrency works a lot like Erlang. You communicate with other pro-
cesses via message passing. Whether those processes are on the same machine
or on remote machines makes no difference.

Before we can start using these processes, we must create some. There are
two ways to do this. The first is to use addprocs to add local processes. The
second is to start Julia with -p N, where N is the number of processes to create.

julia> addprocs(2)
2-element Array{Any,1}:
2, 3

julia> workers()
2-element Array{Int64,1}:
2, 3

addprocs creates new processes and returns their IDs. You might have noticed
it starts at 2. Process 1 is the process for the REPL. workers returns the list of
processes.

Now that we have some processes, we can send and receive messages from
them with remotecall and fetch. Note that these are the low-level primitives the
rest of the system is built on, not necessarily things you’d use all the time.

julia> r1 = remotecall(2, rand, 10000000)
RemoteRef(2,1,7)
julia> r2 = remotecall(3, rand, 10000000)
RemoteRef(3,1,9)

report erratum • discuss

Day 2: Getting Assimilated • 189

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

julia> println("Not blocking")
Not blocking
julia> rand_list = fetch(r1)
10000000-element Array{Float64,1}:
0.902002, 0.495766, ...

remotecall executes a function on a particular worker. The first argument is
the worker’s ID. Then comes the name of the function, and the rest of the
arguments are passed to the given function. It returns a RemoteRef, which can
be used to retrieve the result later.

remotecall returns immediately, as long as the worker ID is not 1—it does not
block the shell process. We can still run code even if the processes are busy
crunching numbers.

fetch takes a RemoteRef and returns the result of the function the worker was
evaluating. If the worker isn’t done yet, this will block and wait until the result
is available.

Adding processes interactively is a little tedious. It’s a bit easier to start a
REPL with a bunch of processes already available. Julia takes the -p argument
to set the number of processes to start.

$ julia -p 8
2014-06-22 10:14:01.021 julia[93233:707] App did finish launching

Now we have a REPL with nine processes: one for the shell itself and eight
spares to do parallel tasks with. Let’s put them to work on something more
substantial than generating random arrays.

We’re going to write a coin flipping simulator using Julia’s higher-level parallel
programming features instead of dealing with remotecall and fetch directly. First,
we’ll start with a nonparallel version.

First, the function flip_coins returns the number of heads after doing all the
flips. It uses a simple for loop.

julia> function flip_coins(times)
count = 0
for i = 1:times
count += int(randbool())

end
count

end
flip_coins (generic function with 1 method)
julia> flip_coins(20)
9
julia> flip_coins(20)
10

Chapter 5. Julia • 190

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The @time macro will evaluate the given expression and print out how much
time it took. As the number of flips increases, flip_coins becomes quite slow.

julia> @time flip_coins(100000000)
elapsed time: 0.391368303 seconds (96 bytes allocated)
49994306
julia> @time flip_coins(1000000000)
elapsed time: 4.219781844 seconds (96 bytes allocated)
500005355

We can speed this code up by flipping coins in parallel with Julia’s parallel
for loops. Using the @parallel macro we can change a normal for loop into a
parallel reducing version. The first argument is the combining operator. Note
that the loop’s operation must be commutative since the order it runs is
arbitrary, as it gets scheduled over the processes.

julia> function pflip_coins(times)
@parallel (+) for i = 1:times
int(randbool())

end
end

flip_coins (generic function with 1 method)
julia> @time pflip_coins(100000000)
elapsed time: 0.293102855 seconds (113932 bytes allocated)
50001665
julia> @time pflip_coins(1000000000)
elapsed time: 2.19619143 seconds (55248 bytes allocated)
499995729

The parallel version is even a bit easier to read as the explicit summation is
now gone.

If you compare these numbers to the previous nonparallel ones, you’ll see
the parallel one is 30–50% faster. That’s a pretty good result for such a minor
syntactic change.

Not all code will be this easy to parallelize, but you’d be surprised at how
many things can be expressed as a parallel reduction. Lispers have been
expressing things this way for decades, resulting in concise and powerful
code, and Clojure has recently added parallel reducers as well.

Before we wrap up the day, let’s create a histogram to see the distribution of
coin flips across multiple runs. Along the way we’ll point out a few more of
Julia’s many charms.

report erratum • discuss

Day 2: Getting Assimilated • 191

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

julia> function flip_coins_histogram(trials, times)
bars = zeros(times + 1)
for i = 1:trials
bars[pflip_coins(times) + 1] += 1

end
hist = pmap((len -> repeat("*", int(len))), bars)
for line in hist
println("|$(line)")

end
end

flip_coins_histogram (generic function with 1 method)

bars[0] tracks the number of simulations that resulted in 0 flips, and so on.
There is one more bar than times since the result could range from 0 heads
to 10.

In addition to a normal map, Julia provides pmap, which runs the mapping
function in parallel across all the processes but preserves the order of the
result.

The -> notation is Julia’s lightweight anonymous function syntax.

Let’s run it:

julia> flip_coins_histogram(100, 10)
|*
|
|*****
|*****
|*********************
|*****************************
|***********************
|**********
|******
|
|

Julia makes short work of data analysis tasks both in terms of the amount
of time it takes you to code them and in how fast they run. It’s nice to be able
to use the whole machine for work without having to juggle processes or
mutexes yourself.

Interview with Julia’s Founders: Jeff Bezanson, Stefan Karpinski, Viral
Shah, Alan Edelman
Now that you’ve seen some of Julia’s main features and put the language
through its paces, you have a better appreciation for some of the trade-offs
that came into play. Let’s check in with all of Julia’s founders: Jeff Bezanson,
Stefan Karpinski, Viral Shah, and Alan Edelman.

Chapter 5. Julia • 192

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Us: Why did you create Julia?

Julia founders: Our motivation for creating a new language is captured pretty
well (if a bit lyrically) in our first blog post about Julia.2 We wanted a language that
combined the best of computer science and scientific computing. Historically, there
has been a divide between the practical tools that scientists use to get work done
and the systems carefully designed by computer scientists which don’t seem to
work out in practice for the scientific crowd. There has also been a longstanding
tension between productivity and performance. For speed and control, you have to
write C or Fortran, but for productivity, people use high-level, dynamic languages
like MATLAB, R, or Python. We wanted to have our cake and eat it too: get the per-
formance of C in a language as easy to use as Python; to have all that great pro-
gramming languages can offer in a form that is usable for hard scientific problems.
To a large extent, we feel that Julia has shown that this is possible.

Julia is a bit different from other high-performance dynamic language projects in
that the language is designed for performance from the beginning. This means there
is more control over memory usage and layout and it’s easy to interact with C and
Fortran. It also means we didn’t need lots of difficult implementation tricks to get
speed. Julia’s execution model is pretty straightforward and transparent once you
get the hang of it.

Us: What do you like most about it?

Julia founders: Once you get used to multiple dispatch it is very hard to go back
to single dispatch. It just feels so natural to provide multiple methods of a function
that do slightly different things based on what types of values you pass. We’re also
happy with how clean and uncluttered the language is. The core language is quite
minimal, channeling the spirit of Scheme in many ways. Of course, Scheme doesn’t
have the burden of syntax, which Julia has to deal with. On the other hand, in Julia
basic numeric types like Int and Float64 are defined in the standard library instead
of being baked into the language spec. Multiple dispatch is absolutely crucial here
because mathematical operators like addition and array indexing are by far the
most polymorphic things in most languages—in Julia they’re just syntax for calling
generic functions.

We are most proud of the Julia community. Not only are the people who frequent the Julia
mailing lists and GitHub repositories brilliant and knowledgeable, but the standards of polite-
ness, civility, and helpfulness are remarkable. Every time someone new is confused or rude
the community response is unfailingly civil and kind.

Us: What kinds of problems does it solve best?

Julia founders: Julia is ideal for really hard technical problems that require a
flexible, productive language to explore the problem space efficiently, but also need
great performance to get answers in reasonable time. Traditionally, technical com-
puting languages have been quite limited once you stray beyond number crunching.
Julia is not like this—it is also a general-purpose language. You can solve hard

2. http://julialang.org/blog/2012/02/why-we-created-julia/

report erratum • discuss

Day 2: Getting Assimilated • 193

http://julialang.org/blog/2012/02/why-we-created-julia/
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

computational problems, but also build a web service in front of that computation,
all in the same language.

Us: What’s the most surprising place you’ve seen Julia in production?

Julia founders: We have seen interesting and sometimes quite unexpected
applications in aerospace, finance, and real-time audio. We are also starting to see
startups deploy Julia in web applications to solve computational problems on
demand. There is a surprising amount of interest in using Julia for embedded sys-
tems. Our in-progress port to ARM should help accelerate this trend. The ability to
compile Julia scripts to executables will also help—you can already do this but it’s
not as convenient as it should be.

Us: If you were to start from scratch, is there anything you’d do differently?

Julia founders: When we started, there was a trade-off between making new
users feel comfortable in Julia vs. clean language design. In hindsight, we were
probably more concerned than we should have been with maintaining superficial
similarity to other technical computing languages. For example, for our array con-
catenation syntax, it would have been better to do something more general as long
as it was reasonably easy to use. Of course, it’s not too late to change some of these
choices.

What We Learned in Day 2
We started off today looking into Julia’s control flow constructs. Control flow
looks similar to many other languages, especially Python and Ruby.

Next we dived into user defined types and functions. There are only two levels
of types, abstract types and concrete subtypes, but Julia lets you mix types
via the Any type. Functions are built on multiple dispatch, which is a more
powerful version of overloading and dynamic dispatch that you might be
familiar with from object-oriented languages.

Finally we dove into Julia’s concurrency, starting from the primitives and
then working up to the high level with parallel for loops and pmap. With just
a few tweaks we made a coin flipping function twice as fast.

Your Turn
Now that you have nearly the whole language in your grasp, you can work
on some more interesting problems.

Find…

• The parallel computing part of the Julia manual. Specifically, read up on
@spawn and @everywhere.

• The Wikipedia page on multiple dispatch.

Chapter 5. Julia • 194

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Do (Easy):

• Write a for loop that counts backward using Julia’s range notation.
• Write an iteration over a multidimensional array like [1 2 3; 4 5 6; 7 8 9]. In

what order does it get printed out?
• Use pmap to take an array of trial counts and produce the number of heads

found for each element.

Do (Medium):

• Write a factorial function as a parallel for loop.
• Add a method for concat that can concatenate an integer with a matrix.
concat(5, [1 2; 3 4]) should produce [5 5 1 2; 5 5 3 4].

• You can extend built-in functions with new methods too. Add a new
method for + to make "jul" + "ia" work.

Do (Hard):

• Parallel for loops dispatch loop bodies to other processes. Depending on
the size of the loop body, this can have noticeable overhead. See if you
can beat Julia’s parallel for loop version of pflip_coins by writing something
using the lower-level primitives like @spawn or remotecall.

Day 3: Become One with Julia
On our final day with Julia, it’s time to look at a larger example of what the
language can do. After a brief tour of Julia’s macro system, we’ll explore image
processing algorithms and see how easy it is to manipulate data using all the
tools you’ve seen on previous days.

Macros are familiar to most people from their incarnation in C as simple string
substitution systems, but Julia’s macros come from Lisp. Julia’s macros take
code as input and output a transformed version. They don’t operate on strings
but on the parsed tree structure of the language.

Julia, though young, has a rich set of functions for doing scientific computing.
Statistics, linear algebra, and finite element methods all have ample tooling
due to Julia’s inclusion and integration with well known mathematical
libraries. We’ll use some of these to build a toy version of an image encoder
and decoder that works similarly to JPEG and takes advantage of many of
Julia’s features.

That’s a lot to do in one day, so let’s get started.

report erratum • discuss

Day 3: Become One with Julia • 195

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Transforming Code Instead of Data
Programs transform and manipulate data structures like lists and trees. In
Julia, your code is just another data structure, and it can be manipulated
by your program. This property of the code and its internal data structure
being the same is called homoiconicity. It’s a powerful feature familiar to any
Lisp hacker.

Normally when you enter code into the REPL, or when Julia sees code in a
source file, the code is evaluated. However, you can prevent evaluation of
code by quoting it with the : operator. You’ve actually already seen this in a
limited form with symbols.

julia> x = 1
1
julia> x # Julia evaluates a variable by default, and returns its value
1

By quoting the variable with :, Julia returns a Symbol, which is the representa-
tion of a variable in the code’s tree structure.

julia> :x
:x
julia> println("Hello!")
Hello!

Similarly, if you quote a function invocation, you get the data structure for
the code instead of Julia printing out the greeting. The extra parentheses are
sometimes needed to help out the parser.

julia> :(println("Hello!"))
:(println("Hello!"))

The printed representation of the code looks exactly like the original syntax.
You can see its component parts by inspecting the data:

julia> e = :(println("Hello!"))
:(println("Hello!"))
julia> typeof(e)
Expr
julia> names(e)
3-element Array{Symbol,1}:
:head
:args
:typ

julia> (e.head, e.args)
(:call,{:println,"Hello!"})
julia> e = :(x = 5)
julia> (e.head, e.args)
(:(=),{:x,5})

Chapter 5. Julia • 196

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The type of a Julia expression is Expr.

The names function tells us the properties of a data type. Each Expr has a head,
args, and typ field. The first two contain everything we need. The last is used
by Julia for type inference.

For println("Hello!") the head of the expression is :call, which represents a function
call. The first argument is the function’s name, and the rest are the arguments
for the called function.

An assignment has a head of :(=). Notice that the variable got turned into a
symbol.

Exprs can be constructed just like other types. You can also explicitly evaluate
them:

julia> e = Expr(:call, +, 1, 2, 3)
:(+(1,2,3))
julia> eval(e)
6

The interpolation you saw with $ in strings also works here, except that it
evaluates the thing and replaces itself with the result. This works like the
unquote operator in Lisp or Clojure.

julia> s = "A string"
"A string"
julia> :(println($s))
:(println("A string"))

This ability to quote and unquote at will makes it very easy to write macros,
although it can be tough to get your head around them at first. You have to
keep track of the two types of evaluation. Quoted things will be evaluated
when the expression is evaluated at runtime. Interpolated things will be
evaluated immediately when the expression is constructed.

Building Exprs by hand is a little tedious, so Julia includes a little code tem-
plating feature with quote:

julia> quote
println($s)

end
:(begin # none, line 2:

println("A string")
end)

This allows you to write large blocks of expressions easily and still supports
the interpolation with $.

report erratum • discuss

Day 3: Become One with Julia • 197

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We now have all the pieces to write our own macros. Macros in Julia are
defined like functions but take expressions as input. The macro returns a
modified expression, which is then evaluated.

This will probably make more sense once you see an example:

julia> macro unless(t, b)
quote
if !$t
$b

end
end

end

This macro defines a new control structure for Julia that works like Ruby’s
unless. It takes a test expression and a branch expression and builds the
equivalent negated if expression.

The neat thing about this is that a normal function cannot do this, as normal
function arguments get evaluated immediately before the function is invoked.
We certainly don’t want the branch expression executed unless the test is
false, and macros allow us to control when code is executed.

julia> a = [1, 2, 3]
3-element Array{Int64,1}:
1, 2, 3

julia> @unless isempty(a) println("a has elements")
a has elements
julia> @unless in(a, 4) begin

println("a does not have 4")
end

a does not have 4

Invoking macros is done with @ followed by as many expressions as the macro
takes as arguments.

You can use begin and end to create a block expression making multiline unless
clauses. There are some restrictions on the syntax you can use, but it’s a
small price to pay for being able to easily extend the language.

Hopefully now you can start to see how things like @parallel and @time work
behind the scenes. Macros excel at removing boilerplate code, and Julia’s
quoting and interpolation makes them pretty easy to create.

Slicing and Dicing Images
We’ve seen Julia’s multidimensional arrays, its support for parallel program-
ming, and its laser focus on scientific computing. For the rest of the day we’ll

Chapter 5. Julia • 198

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

combine these tools to build a toy image codec. The code we’ll write is not
going to rival JPEG any time soon, but the example should demonstrate how
easy it is to get practical work done in this new language.

Image Coding

Before we get started, it’s useful to review how image codecs work so that the
techniques will make sense. Don’t worry, though; we don’t need any complex
mathematics—Julia will do all the mathematical lifting.

Compression techniques work by finding a more compact representation for
data. For example, run length encoding replaces sequences of characters with
a single character and a count. Long runs of the same value are dramatically
shortened with no loss of information.

Just as audio samples can be transformed into their constituent frequencies,
images can also be transformed into frequencies in two dimensions. In this
frequency representation, the energy of an image is very compact.

To be more concrete, take a picture and try to pick pixels that are important.
It’s pretty difficult. Change any one pixel, even by a large amount, and the
image is hardly different. However, after transforming an image to frequencies,
the important values tend to be at the lowest frequencies. This means that
in the frequency domain, it’s easy to identify the important values.

Compression is then just a matter of getting rid of the unimportant information
or finding easier-to-represent approximations of it. Decompression is the
reverse process. We take the approximated and important frequencies and
transform them back to pixels. We won’t get exactly the same image—some
information has been lost—but by being very clever we can get back something
that a human won’t perceive as different.

This will be obvious with an example, but first, we need to get some images
into Julia to play with.

Working with Images

Out of the box, Julia does not contain a library for loading images from arbi-
trary formats. What it does have is an amazing package manager that we can
use to download and install an image library.

The Pkg module contains functions to query and manipulate the package
database. You can see the list of available packages at Julia’s package site.3

For our image work, we’ll need the Images, TestImages, and ImageView packages:

3. http://pkg.julialang.org/

report erratum • discuss

Day 3: Become One with Julia • 199

http://pkg.julialang.org/
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

julia> Pkg.add("Images")
INFO: Initializing package repository /home/jack/.julia/v0.3
INFO: Cloning METADATA from git://github.com/JuliaLang/METADATA.jl
...
INFO: Cloning cache of Images from git://github.com/timholy/Images.jl.git
...
INFO: Installing Images v0.2.45
...
INFO: Building Images
INFO: Package database updated

julia> Pkg.add("TestImages")
...
julia> Pkg.add("ImageView")
...

The Images package contains libraries for loading and saving images in various
formats. TestImages contains sample images we can play with. ImageView is a
simple tool to draw images on the screen. You might also need to install Gtk
and make sure the GTK libraries are available on your system. See the Gtk
package page4 for details.

When you’re using Pkg.add for the first time, it will initialize the package
database in ~/.julia and then download and build the package you requested
along with any dependencies it needs. As soon as it’s finished, the package
is ready to use; you don’t even have to restart the REPL.

julia> using TestImages, ImageView
julia> img = testimage("cameraman")
Gray Image with:

data: 512x512 Array{Uint8,2}
properties:

colorspace: Gray
spatialorder: x y
limits: (0x00,0xff)

julia> view(img)
(ImageCanvas,ImageSlice2d:

zoom = BoundingBox(0.0,512.0,0.0,512.0))

If everything is working, you should now see
an image of a cameraman on your screen.

Now that we can load and view images, let’s take a closer look at their data.

4. https://github.com/JuliaLang/Gtk.jl

Chapter 5. Julia • 200

report erratum • discuss

https://github.com/JuliaLang/Gtk.jl
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

From Pixels to Frequencies

The data field of an image contains the pixel values. Here you can see the top
8×8 corner of pixels for the cameraman image. (We must convert the pixel values
to a floating-point type since the library functions we need aren’t implemented
for integral types.)

julia> pixels = img.data[1:8,1:8]
julia> pixels = convert(Array{Float32}, pixels)
8x8 Array{Float32,2}:
0.611765 0.611765 0.619608 0.627451 0.619608 0.611765 0.619608 0.627451
0.615686 0.615686 0.615686 0.615686 0.615686 0.615686 0.615686 0.615686
0.627451 0.623529 0.611765 0.603922 0.611765 0.623529 0.611765 0.603922
0.623529 0.619608 0.611765 0.603922 0.611765 0.623529 0.611765 0.603922
0.619608 0.619608 0.615686 0.611765 0.615686 0.623529 0.615686 0.611765
0.611765 0.611765 0.615686 0.615686 0.611765 0.611765 0.611765 0.615686
0.607843 0.607843 0.615686 0.619608 0.607843 0.603922 0.607843 0.619608
0.611765 0.611765 0.615686 0.615686 0.607843 0.607843 0.607843 0.615686

Other than the values being similar, are you able to tell which pixels are
important?

Let’s use Julia’s library routine dct to transform these pixels to frequencies.
The dct function uses the discrete cosine transform to change pixels into fre-
quencies. This transform is related to the Fourier transform,5 which you may
have heard of before.

julia> freqs = dct(pixels)
julia> round(freqs)
8x8 Array{Float32,2}:

5.0 0.0 0.0 0.0 -0.0 -0.0 0.0 -0.0
0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0 0.0

-0.0 -0.0 -0.0 -0.0 0.0 0.0 -0.0 0.0
0.0 -0.0 -0.0 -0.0 0.0 0.0 -0.0 0.0
0.0 -0.0 -0.0 0.0 -0.0 -0.0 0.0 -0.0

-0.0 0.0 0.0 -0.0 0.0 0.0 0.0 -0.0
0.0 0.0 0.0 0.0 -0.0 -0.0 0.0 -0.0
0.0 0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.0

After the DCT we can see clearly which values are important. In order to make
the point more obvious, the values are rounded. The very first frequency is
much bigger than all the others, which all round to zero. The first coefficient
represents the average color of the pixels. The original pixels were basically
all the same except for a little bit of noise.

Hopefully now you have some intuition about how the transformation results
in a more compact representation.

5. http://en.wikipedia.org/wiki/Fourier_transform

report erratum • discuss

Day 3: Become One with Julia • 201

http://en.wikipedia.org/wiki/Fourier_transform
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We can also go from frequencies to pixels with idct, which runs the inverse
transform:

julia> pixels2 = idct(freqs)
8x8 Array{Float32,2}:
0.611765 0.611765 0.619608 0.627451 0.619608 0.611765 0.619608 0.627451
0.615686 0.615686 0.615686 0.615686 0.615686 0.615686 0.615686 0.615686
0.627451 0.623529 0.611765 0.603922 0.611765 0.623529 0.611765 0.603922
0.623529 0.619608 0.611765 0.603922 0.611765 0.623529 0.611765 0.603922
0.619608 0.619608 0.615686 0.611765 0.615686 0.623529 0.615686 0.611765
0.611765 0.611765 0.615686 0.615686 0.611765 0.611765 0.611765 0.615686
0.607843 0.607843 0.615686 0.619608 0.607843 0.603922 0.607843 0.619608
0.611765 0.611765 0.615686 0.615686 0.607843 0.607843 0.607843 0.615686

julia> pixels == pixels2
true

Because we didn’t change any frequency information, we got back the same
pixels we started with. Both the pixels and the frequencies are just two differ-
ent views of the same underlying data.

Lossy Compression

Thanks to the frequency representation of the data, we can now easily deter-
mine the most important pieces of the data. If you start looking at lots of
image frequencies, you’ll notice a common pattern. Most of the large values
are in the low frequencies—the frequencies toward the top left. If we throw
out the unimportant frequencies, we can shrink the data while preserving its
basic characteristics.

We’re going to start by throwing away almost 90% of the data.

The last thing you need to know before we look at the code to do this is that
we’ll be working on 8×8 tiles of pixels and frequencies at a time. This is how
JPEG works as well. The main reason to work on small tiles has to do with
limiting unwanted artifacts. In the pixel domain, changing a single value
changes only one pixel, but in the frequency domain, changing a single fre-
quency affects many pixels. By using small groups of pixels, we ensure that
the extent of unwanted pixel changes is minimized.

We’re going to use a module to organize the code since this example is a little
longer:

julia/Codec.jl
module Codec

using Images

Chapter 5. Julia • 202

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/julia/Codec.jl
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

function blockdct6(img)❶
pixels = convert(Array{Float32}, img.data)

y, x = size(pixels)

outx = ifloor(x/8)❷
outy = ifloor(y/8)

bx = 1:8:outx*8❸
by = 1:8:outy*8

mask = zeros(8,8)❹
mask[1:3,1:3] = [1 1 1; 1 1 0; 1 0 0]

freqs = Array(Float32, (outy*8,outx*8))❺

for i = bx, j = by❻
freqs[j:j+7,i:i+7] = dct(pixels[j:j+7,i:i+7])
freqs[j:j+7,i:i+7] .*= mask

end

freqs
end

function blockidct(freqs)
y, x = size(freqs)
bx = 1:8:x
by = 1:8:y

pixels = Array(Float32, size(freqs))
for i = bx, j = by❼

pixels[j:j+7,i:i+7] = idct(freqs[j:j+7,i:i+7])
end
grayim(pixels)❽

end

end

❶ blockdct6 transforms an image to frequencies by 8×8 blocks. In addition,
it deletes all frequencies except the most important six.

❷ To keep the example simple, we crop the image to a multiple of 8 in each
dimension.

❸ bx and by are block indices in the image.

❹ The mask is 1 for the coefficients we want to keep and 0 everywhere else.

❺ We create an empty freqs array of the right size to hold the result.

report erratum • discuss

Day 3: Become One with Julia • 203

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

❻ Iterating over each 8×8 block, we run the DCT and store it in the corre-
sponding 8×8 block in freqs. Then, we multiply it element-wise by the mask
to delete the unimportant data. Since the mask keeps only 6 out of the
64 coefficients, this is almost 90% less data.

❼ Transforming from frequencies back to pixels is even easier and follows
the same pattern.

❽ grayim makes an Image out of a 2D array.

We can test this by running the REPL in the same directory as Codec.jl:

julia> using Codec
julia> freqs = Codec.blockdct6(img)
512x512 Array{Float32,2}:
...
julia> img2 = Codec.blockidct(freqs)
Gray Image with:

data: 512x512 Array{Float32,2}
properties:

colorspace: Gray
spatialorder: x y

julia> view(img2)
(ImageCanvas,ImageSlice2d: zoom = BoundingBox(0.0,512.0,0.0,512.0))

The output should look similar to the following:

You can see there is a small loss of fine detail, but overall the version missing
90% of the data looks pretty good. Not bad for a few dozen lines of code.

What We Learned in Day 3
Today you saw how to manipulate code like data with Julia’s macro system.
We used it to write @unless, which added a new control flow structure to the
language. Between quoting and interpolation, Julia makes writing code that
writes code so easy you’ll actually do it.

Chapter 5. Julia • 204

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We wrapped up the day with a bigger example: a toy image codec. We used
lots of new tools to accomplish the task—packages, modules, and math
functions from Julia’s standard library. Our codec won’t replace JPEG any
time soon, but it is amazing how easy slicing and dicing data is with Julia.

Your Turn
The problems are a bit tougher today, but you should find Julia more than
capable of helping you make quick work of them.

Find…

• Julia’s documentation on modules and packages.
• A description of how JPEG works. What parts were left out of our example?

Do (Easy):

• Write a macro that runs a block of code backward.
• Experiment with modifying frequencies and observing the effect on an

image. What happens when you set some high frequencies to large values,
or add lots of noise? (Hint: Try adding scale * rand(size(freqs)).)

Do (Medium):

• Modify the code to allow masking arbitrarily many coefficients, but always
the N most important ones. Instead of calling blockdct6(img) you would call
blockdct(img, 6).

• Our codec outputs a frequency array as big as its input, even though
most frequencies are zero. Instead, output only the six nonzero frequencies
for each block so that the output is smaller than the input. Modify the
decoder to use this smaller input as well.

• Experiment with different block sizes to see how block size affects the
appearance of coding artifacts. Try a large block size on an image contain-
ing lots of text and see what happens.

Do (Hard):

• The code currently only works on grayscale images, but the same tech-
nique works on color too. Modify the code to work on color images like
testimage("mandrill").

• JPEG does prediction of the first coefficient, called the DC offset. The
previous block’s DC value is subtracted from the current block’s DC value.
This encodes an offset instead of a number with full range, saving valuable
bits. Try implementing this in the codec.

report erratum • discuss

Day 3: Become One with Julia • 205

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Wrapping Up Julia
We had a lot of fun working in Julia. It is young, but its unique assimilation
of the best features of its competitors is not an amalgamation of parts but a
coherent and designed assembly. It is fast and dynamic, yet it has strong
types and macros.

To us, it feels like the focus on a particular domain—scientific comput-
ing—while taking inspiration from many sources has produced a tool that is
well thought out and executed. Julia has pushed the frontier of what is pos-
sible to achieve when trading off dynamic language ease of use and static
language performance, and it may get previously esoteric features like multiple
dispatch and real macros in front of everyday programmers.

Julia is, above all else, extremely practical, but unlike other more practical
languages, it doesn’t feel that anything we would have wanted was sacrificed
to get the job done. If you’ve ever worked with MATLAB or R, using Julia is
like moving from Perl to Python or Ruby.

Strengths
Julia excels at number crunching as we’ve seen, but features that scientists
need are useful in many domains. Having a solid concurrency story is going
to give Julia staying power in the current crop of languages and a leg up
against older languages.

Julia’s home page doesn’t have one mention of the word “functional,” yet Julia
has clearly been put together by people with a deep respect for functional
programming. The line will continuously shift as languages like Julia push
functional programming concepts into the mainstream.

Julia’s package system is built right in, and there are already a number of
packages for doing many tasks. Previously this level of interactivity—being
able to install packages and then continue working—was reserved for people
who use Emacs for everything.

Weaknesses
Julia has two downsides, both of which will correct themselves over time. The
first is its youth, and the second is the lack of available packages.

Julia is new and still growing, possibly not even out of the awkward teenage
years. The syntax may still change. Some things don’t quite work yet. This
affects Julia more than the other languages in this book because Julia’s

Chapter 5. Julia • 206

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

competitors include Fortran, and the libraries people depend on are decades
old and rock solid.

R and MATLAB have enormous libraries of packages that have been built up
over their lifetimes. Because Julia is new, its package library is pretty small.
Julia’s ecosystem is surely going to grow like wildfire due to having packaging
built in from the start. The lack of packages is a feature that Julia shares
with all new languages.

Final Thoughts
We love and use a lot of languages, but the list of languages we look to first
to solve problems is fairly short. Previously we have used Fortran, Python
(with NumPy), and MATLAB for scientific computing, but we are now believers
in Julia.

If you are more comfortable with functional languages than object-oriented
ones, you’ll feel right at home in Julia. If you’ve wanted access to powerful
features from Lisp but lacked a language capable of being grokked by the rest
of your team, give Julia a try.

As Graydon Hoare, creator of the Rust language, puts it, Julia is a “Goldilocks
language.”6 It’s just right.

6. http://graydon2.dreamwidth.org/189377.html

report erratum • discuss

Wrapping Up Julia • 207

http://graydon2.dreamwidth.org/189377.html
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

CHAPTER 6

miniKanren
by Jack Moffitt

I’ve spent decades telling the computer how to do things. Logic programming
offers a reprieve from this drudgery. While programming with logic, you
describe the relations and constraints of your problem, and the computer
figures out the solutions required.

I remember the first time I realized just how different logic programming is.
At a conference, Dan Friedman and William Byrd were demoing a small lan-
guage interpreter written in miniKanren. They first showed how it could
evaluate simple numerical programs and get the correct answer. Then in an
act of wizardry, they ran the same interpreter backward to produce programs
that generated the answer 6.

Logic programming is the closest we may ever come to real magic. I feel a bit
like Harry Potter when programming with logic. I don’t need to worry about
every little detail of implementation; I just say “Lumos!” and there is light.

There are many implementations of miniKanren.1 In this chapter we will
explore core.logic, an embedded miniKanren for programming in Clojure.
Similar ideas extend all the way back to Prolog. The focus on rules and con-
straints can feel liberating for some problems, but for others it can be frus-
trating. Core.logic helps bridge the gap between the realms of mystical logic
and our day-to-day work. The result is a paradigm that will delight yet remain
practical.

1. http://minikanren.org/

report erratum • discuss

http://minikanren.org/
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Day 1: Unified Theories of Code
Three days is all we have to get you using logic productively, but because
core.logic is embedded in Clojure, the more familiar functional programming
is always nearby to help.

On the first day we’ll learn about unification and the basic logic operations.
We’ll build a database of facts and see how core.logic can reason about them.
Finally we’ll take a peek at conditionals in logic.

Day 2 will add some pattern matching and other macro sugar to the previous
day’s topics. We’ll see how to unify and work with maps as well.

Finally, on the last day we’ll wrap up by learning about finite domains. By
then you’ll be ready for some more complex examples too.

We’ll move fast, but by the end you should be able to explore on your own
and start using logic in your own work.

Installing core.logic
To install core.logic you’ll need a Java Virtual Machine (JVM) and the
Leiningen build tool. Leiningen will do all the hard work of fetching libraries
for your project and managing Java’s library paths.

You can find a JVM for your platform in your system’s package manager or
at Oracle’s Java download page.2 Leiningen and instructions to install it on
most platforms can be found on its home page.3

Once these are working, you can create a project with lein new:

$ lein new logical
Generating a project called logical based on the 'default' template.
To see other templates (app, lein plugin, etc), try `lein help new`.

This will create a project skeleton in the logical directory. In order to use
core.logic in this project, you’ll need to add a few dependencies to the project’s
project.clj file. Edit logical/project.clj to look like this:

minikanren/logical/project.clj
(defproject logical "0.1.0-SNAPSHOT"

:dependencies [[org.clojure/clojure "1.5.1"]
[org.clojure/core.logic "0.8.5"]])

2. http://www.oracle.com/technetwork/java/javase/downloads/index.html
3. http://leiningen.org/

Chapter 6. miniKanren • 210

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/minikanren/logical/project.clj
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://leiningen.org/
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Now inside the project’s directory, you should be able to fire up the Clojure
REPL and load core.logic:

$ lein repl
nREPL server started on port 48235 on host 127.0.0.1
REPL-y 0.3.0
Clojure 1.5.1

Docs: (doc function-name-here)
(find-doc "part-of-name-here")

Source: (source function-name-here)
Javadoc: (javadoc java-object-or-class-here)

Exit: Control+D or (exit) or (quit)
Results: Stored in vars *1, *2, *3, an exception in *e

user=> (use 'clojure.core.logic)
WARNING: == already refers to: #'clojure.core/== in namespace: user, being

replaced by: #'clojure.core.logic/==
nil
user=>

Logic is now at your fingertips. Note that the warning is benign and just lets
you know that one of core.logic’s symbols has replaced one of the default
ones.

Your Goal Is to Succeed
Logic programs are like puzzles where only some information is given and the
solution to the puzzle is to find the rest of the information. Imagine a Sudoku
square where at the start of the puzzle only the rules and a few numbers are
known. Or think of a jigsaw puzzle, where only pieces of the picture and
shapes are visible.

Programming with logic means providing some starting data and the rules of
the puzzle. Core.logic does the actual work of solving the puzzle and provides
the resulting solutions.

Let’s jump right in and look at some simple logic programs. We’ll be working
at the REPL, which makes exploration easy. Try the following:

user=> (run* [q] (== q 1))
(1)

This may look like a simple program, but a lot is going on.

run* runs a logic program and returns the set of solutions. q is a logic variable.
When logic variables are created, they are unbound or free. They have no
value and could represent anything at all. The set of solutions will be the

report erratum • discuss

Day 1: Unified Theories of Code • 211

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

values of q that solve our puzzle. q seems to be the name most often used for
the main logic variable, perhaps standing for “query.”

Every square in Sudoku would be a logic variable. Some of the squares are
empty (free, unbound), and some are filled in (bound).

This logic program contains a single expression, (== q 1), which is not the
equality test you are used to. == in core.logic is the unification function, and
this expression attempts to unify the logic variable q with the number 1.

Unification is similar to pattern matching. You’re asking the language to try
to make the left and right sides the same, assuming that’s possible. The left
and right sides are compared as in normal equality tests, and any unbound
logic variables are bound to values that would make the two sides match. In
this example, q is bound to 1, which is a solution because there are no other
rules. It may seem a bit strange, but we’ll see some more examples shortly
that should give you an intuitive feel for what’s going on.

The expressions in a logic program are goals. They don’t return true or false
but succeed or fail. It’s possible that success is achieved multiple times in dif-
ferent ways or not at all. This brings us to the last bit of our example: the
result.

Our example returned (1). run* returns the values of q that result in success.
In our example, unifying q with 1 binds q to the number 1 and succeeds. Our
result is the list containing the single binding for q.

Let’s look at a failed goal:

user=> (run* [q] (== q 1) (== q 2))
()

This program has two expressions, each a goal. A program with multiple goals
will succeed only if all of the goals succeed, similar to && or and operators in
other languages. Here, the first unification will bind q to the number 1 just
as before and succeed. The second unification will fail, since q is bound to 1
and 1 does not unify with 2. Because no binding of q can cause both goals to
succeed, the resulting list is empty.

Getting Relational
It’s time for a look at logical functions:

user=> (run* [q] (membero q [1 2 3]))
(1 2 3)

Chapter 6. miniKanren • 212

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

membero is a relation. membero says that its first argument is a member of the
collection given in the second argument. It is a goal, so it will either succeed
or fail, and in doing so will bind q to values for which the goal succeeds. The
result of our example shows that values of 1, 2, or 3 result in success. Note
that we’ve not told core.logic how to solve a puzzle, only the rules.

run* will return all the possible bindings for q that result in success, so this
is a complete list. It’s easy to look at this small program and convince yourself
that the answer is correct. This is kind of an amazing trick.

You can use run to get a set number (or fewer) answers:

user=> (run 2 [q] (membero q [1 2 3]))
(1 2)

This is handy to know about because there might be an infinite number of
ways to satisfy a goal.

Logic programming has even more magic up its sleeve. Let’s see what happens
when we reverse the order of the arguments to membero:

user=> (run 5 [q] (membero [1 2 3] q))
(([1 2 3] . _0) (_0 [1 2 3] . _1) (_0 _1 [1 2 3] . _2) (_0 _1 _2 [1 2 3] . _3)
(_0 _1 _2 _3 [1 2 3] . _4))

You may find this result surprising, so let’s dig into it. Our original goal for-
mulation, (membero q [1 2 3]), asked what the possible members of the collection
are. The new formulation, (membero [1 2 3] q) asks what collections contain [1 2
3] as a member. There are an infinite number of possible collections that could
contain [1 2 3]; thankfully we only asked for five answers.

The first answer is ([1 2 3] . _0). The . is the list construction operator. To the
left of the . is the first element of the list (the head), and to the right of the .
is the rest of the list (the tail). The weird _0 is the notation for an unbound
logic variable. In this case it means the tail of the list could be anything. In
other words, the first answer is that any list where [1 2 3] is the first element
would satisfy the goal.

Now you can probably understand the other answers, too. The next answer
is that any list with [1 2 3] as the second element would satisfy the goal, no
matter what the first element and the rest of the list are.

This is like taking a fully solved Sudoku and asking for the possible starting
states. I think it’s pretty cool, and I’ve never seen other languages able to run
programs backward.

report erratum • discuss

Day 1: Unified Theories of Code • 213

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

What’s with the “o” suffix?

In The Reasoned Schemer [FBK05], a superscript “o” is used to denote relations, and
this tradition has been followed by the miniKanren and core.logic communities.

It’s just a small visual hint that something is different about a particular function,
which comes in handy when you start mixing regular Clojure code into your logic
programs. It may seem weird at first, but you’ll get used to it, and as a side benefit,
it makes explaining your programs to others much more amusing.

Programming with Facts
We’ve played a little with the basics of core.logic and seen that it finds bindings
for q that satisfy the program’s goals. We also examined membero, a built-in
relation that relates a member with a collection. Now we’ll try to write some
relations of our own.

Core.logic includes a database, pldb, that allows us to construct simple rela-
tions built up with lists of facts. This is similar to a table in traditional
database systems. For example, we can build two relations called mano and
womano. We do this using db-rel. The first argument is the name of the relation,
and the remaining arguments are placeholders.

user=> (use 'clojure.core.logic.pldb)
nil
user=> (db-rel mano x)
#'user/mano
user=> (db-rel womano x)
#'user/womano

Here we’ve created the two relations, which both take a single argument and
will succeed if that argument is a man or a woman respectively.

We populate the relation by giving a list of facts to the db function and binding
it to the variable facts. Each fact is a vector containing the relation and its
arguments.

user=> (def facts
#_=> (db
#_=> [mano :alan-turing]
#_=> [womano :grace-hopper]
#_=> [mano :leslie-lamport]
#_=> [mano :alonzo-church]
#_=> [womano :ada-lovelace]
#_=> [womano :barbara-liskov]
#_=> [womano :frances-allen]
#_=> [mano :john-mccarthy]))

#'user/facts

Chapter 6. miniKanren • 214

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Querying our database is easy. Let’s find all the women:

user=> (with-db facts
#_=> (run* [q] (womano q)))

(:grace-hopper :ada-lovelace :barbara-liskov :frances-allen)

The with-db function sets the data source for the database relations. It allows
multiple databases to be used together or separately. Our logic program
succeeds when q is one of the women, and so the answer is the list of women.

Let’s add some more relations, vitalo and turingo, which will relate men and
women to their vital status and whether they’ve received the Turing Award:

user=> (db-rel vitalo p s)
#'user/vitalo

user=> (db-rel turingo p y)
#'user/turingo

user=> (def facts
#_=> (-> facts
#_=> (db-fact vitalo :alan-turing :dead)
#_=> (db-fact vitalo :grace-hopper :dead)
#_=> (db-fact vitalo :leslie-lamport :alive)
#_=> (db-fact vitalo :alonzo-church :dead)
#_=> (db-fact vitalo :ada-lovelace :dead)
#_=> (db-fact vitalo :barbara-liskov :alive)
#_=> (db-fact vitalo :frances-allen :alive)
#_=> (db-fact vitalo :john-mccarthy :dead)
#_=> (db-fact turingo :leslie-lamport :2013)
#_=> (db-fact turingo :barbara-liskov :2008)
#_=> (db-fact turingo :frances-allen :2006)
#_=> (db-fact turingo :john-mccarthy :1971)))

#'user/facts

We have enough facts to ask some interesting questions:

user=> (with-db facts
#_=> (run* [q]
#_=> (womano q)
#_=> (vitalo q :alive)))

(:barbara-liskov :frances-allen)

The goal succeeds for living women. Note that when a successful goal causes
the logic variable q to be bound, that binding must hold in further relations.

To express more complicated programs, we often need more logic variables.
The fresh function can create new, unbound logic variables:

report erratum • discuss

Day 1: Unified Theories of Code • 215

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

user=> (with-db facts
#_=> (run* [q]
#_=> (fresh [p y]❶
#_=> (vitalo p :dead)❷
#_=> (turingo p y)❸
#_=> (== q [p y]))))❹

([:john-mccarthy :1971])

❶ We use fresh to create two new logic variables that are unbound.

❷ Passing p to vitalo will cause it to be bound to a deceased person.

❸ With p bound to something, we can now use turingo to bind to the year the
person won the Turing Award. Note that only people who’ve won the
Turing Award will satisfy the relation.

❹ Finally, we bind q to a vector containing the person and the year.

The previous example can be summarized as “Which deceased people won
the Turing Award?” One interesting property of logic programs is that the
order of the goals is not important. In the previous example, it may appear
that first we bind p, then y, and finally q, but these are declarative goals, not
procedural steps—they can be satisfied regardless of their ordering:

user=> (with-db facts
#_=> (run* [q]
#_=> (fresh [p y]
#_=> (turingo p y)
#_=> (== q [p y])
#_=> (vitalo p :dead))))

([:john-mccarthy :1971])

Now we’ve shuffled the order of the goals. Specifically, q is unified before the
goal that binds p. Core.logic will fill in the unbound placeholders when those
variables are eventually bound. Or, as we saw previously, they may never get
bound and will show up as _0, _1, and so on.

Parallel Universes
One macro remains for us to have all the logical ingredients for our programs:
conde. You’ve seen that run, run*, and fresh all succeed only when all their goals
succeed. This is similar to and and && in other languages. conde is a bit like or
and ||.

Like or, conde succeeds if any of its goals succeed. However, unlike or, conde
succeeds for every goal that succeeds independently. It’s a bit like running
your program in parallel universes, where each branch of a conde runs in a
new universe and you can detect all the possible successes.

Chapter 6. miniKanren • 216

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Let’s see it in action:

user=> (run* [q]
#_=> (conde
#_=> [(== q 1)]
#_=> [(== q 2) (== q 3)]
#_=> [(== q :abc)]))

(1 :abc)

Each branch of the conde is a list of goals. The branch succeeds if all its goals
succeed, but the conde succeeds once for every branch that succeeds. The
first branch succeeds and binds q to 1. In another universe, the second branch
fails. In yet another universe, the third branch succeeds, binding q to :abc.
The result is the list of successful bindings for q across all universes.

Dissecting a Spell
Earlier today you saw membero, which relates members to their collections.
You’re almost ready to construct such a relation yourself, but first you need
to learn about conso.

cons is the list construction function in Lisp, and unsurprisingly, conso is its
relational cousin. conso relates the head and tail of a list to the whole list.
Because it is a relation, it takes three arguments instead of two— Passing a
logic variable as the last argument results in list construction very similar to
cons.

user=> (run* [q] (conso :a [:b :c] q))
((:a :b :c))

We can pull out just the tail of the list as well.

user=> (run* [q] (conso :a q [:a :b :c]))
((:b :c))

Running conso backward destructures the list into its head and its tail. Here
we create two new logic variables to hold these, and then we bind q to a vector
of the results.

user=> (run* [q] (fresh [h t] (conso h t [:a :b :c]) (== q [h t])))
([:a (:b :c)])

Now that you know how to pull apart and put together lists relationally and
how to manipulate space-time with conde, we can build powerful recursive
relations.

report erratum • discuss

Day 1: Unified Theories of Code • 217

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Let’s build insideo, which is equivalent to the built-in membero:

user=> (defn insideo [e l]
#_=> (conde
#_=> [(fresh [h t]
#_=> (conso h t l)
#_=> (== h e))]❶
#_=> [(fresh [h t]
#_=> (conso h t l)
#_=> (insideo e t))]))❷

#'user/insideo

❶ The first branch deconstructs the collection with conso and succeeds if the
head is the same as the element that was passed in.

❷ The second branch recursively calls insideo, looking for the element in the
tail.

We can check that insideo works as we expect:

user=> (run* [q] (insideo q [:a :b :c]))
(:a :b :c)
user=> (run 3 [q] (insideo :a q))
((:a . _0) (_0 :a . _1) (_0 _1 :a . _2))
user=> (run* [q] (insideo :d [:a :b :c q]))
(:d)

insideo works forward and backward, and in the last example, it can even figure
out what element is required for it to succeed.

What We Learned in Day 1
If you’ve made it this far, you’re well on your way to mastering logic as well
as space and time. You must formulate problems and constraints, but you
needn’t worry about step-by-step solutions.

Today we covered a lot of logical ground. We learned how to write logic pro-
grams using run* and run. We also learned how logic variables and unification
work. It’s a bit like having the computer solve a puzzle for you given some
data and the rules. Using these, we were able to see the first bits of logic
programming’s unique style by running the membero relation both forward and
backward. If only functions in every language were so flexible!

Databases of facts can help build up bases of knowledge for your logic pro-
grams to reason over. You can use them to make inferences and queries.
Databases can be combined and extended with new relations.

conde gives you power over multiple universes where all possibilities are calcu-
lated and observed. It’s the logical equivalent of branching like if and cond in

Chapter 6. miniKanren • 218

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

other languages. Unlike traditional branching, all the branches get taken,
but only the successful paths contribute to the answer.

Finally we learned how to create our own relations, even recursive ones. It
may not seem like a lot of parts, but with just these pieces you can build a
great many things.

Your Turn
Now’s your chance to practice solo with core.logic. Don’t worry, though, it
starts off easy.

Find…

• The core.logic home page
• One of the many wonderful talks on core.logic or miniKanren by David

Nolen or Dan Friedman and William Byrd
• A core.logic tutorial
• What other projects are doing with core.logic

Do (Easy):

• Try running a logic program that has two membero goals, both with q as
the first argument. What happens when the same element exists in both
collections?

• appendo is a core.logic built-in that will append two lists. Write some logic
programs similar to the membero examples to get a feel for how it works.
Be sure to use q in each of the three argument positions to see what
happens.

• Create languageo and systemo database relations and add the relevant facts
based on which category best classifies the person’s work.

Do (Medium):

• Use conde to create scientisto, which succeeds for any of the men or women.
• Construct a logic program that finds all scientists who’ve won Turing

Awards.

Do (Hard):

• Create a genealogy system using a family tree database and relations like
childo and spouseo. Then write relations that can traverse the tree like
ancestoro, descendanto, and cousino.

• Write a relation called extendo, which works like the built-in appendo, men-
tioned in the easy problems.

report erratum • discuss

Day 1: Unified Theories of Code • 219

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Day 2: Mixing the Logical and Functional
The implementation of miniKanren appears in an amazing book called The
Reasoned Schemer [FBK05] and is only two printed pages. That’s impressively
concise considering what it is capable of. Core.logic’s implementation is
larger due to its focus on high performance and additional features that help
leverage its host language, Clojure.

Those extra pages of core.logic’s code are not wasted. Today we’ll dig into the
ways in which mixing Clojure and logic programming are mutually beneficial.
You may feel like a muggle instead of a wizard still, but stick with it and soon
you’ll be mixing your own amazing potions.

Patterns, Patterns Everywhere
A common feature of functional programming languages is pattern matching,
and while Clojure has a limited form of this feature in its destructuring syntax,
there are libraries that provide powerful pattern matching macros. David
Nolen, who wrote core.logic, also wrote core.match, one of the best of these
pattern matching macros, and it should come as no surprise that core.logic
has pattern matching built in.

Let’s look again at the insideo example from yesterday, which used conde to test
different cases:

(defn insideo [e l]
(conde

[(fresh [h t]
(conso h t l)
(== h e))]

[(fresh [h t]
(conso h t l)
(insideo e t))]))

The first thing each branch of conde does is to deconstruct the head and the
tail of the list. You can imagine that many other functions will need to do this
same operation.

Matching with matche
matche is a pattern matching version of conde that makes this kind of code
much more clear and concise. Here’s the same function rewritten with matche:

(defn insideo [e l]
(matche [l]

([[e . _]])
([[_ . t]] (insideo e t))))

Chapter 6. miniKanren • 220

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The first argument to matche is a list of variables that we’ll be matching. Each
clause is its own list, the first item of which is the pattern it will try to match.
Note that this pattern contains brackets just like the argument list.

The first pattern it tries to match for l is [e . _]. The dot is the list construction
symbol; the left side of the dot will match the first element, and the right side
will match all the rest of the elements. The _ is treated as a dummy value. It
unifies with anything, just like a fresh variable, but its value is ignored and
never used. The pattern match will succeed when the target element e is the
first element of l.

The second pattern contains a variable that hasn’t been introduced. matche
will automatically create fresh logic variables for any unknown symbols it
sees in a pattern. This keeps the code concise. When the pattern matches, t
will be unified with the tail of the list, and we can invoke the recursive rule
to keep searching.

These patterns are very simple, but patterns can be arbitrarily complex,
unifying fresh variables to deeply nested items. This proves extremely useful
in practice; instead of massaging inputs to get at the data you want, you can
use patterns to deconstruct the input directly into the form you need.

Function Patterns

When you begin using patterns, you may notice that most of your functions
end up containing a big matche block. This is such a common occurrence that
core.logic has another pattern macro, defne, built in to further reduce this
boilerplate.

defne defines a function that uses patterns on its input arguments. This will
be clearer if we look at an example macro expansion:

(defne exampleo [a b c]
([:a _ _])
([_ :b x] (membero x [:x :y :z])))

;; expands to:

(defn exampleo [a b c]
(matche [a b c]

([:a _ _])
([_ :b x] (membero x [:x :y :z]))))

Notice that the argument list is repeated verbatim in the matche form. This
syntax starts to feel a bit like Erlang or Haskell, which both have pattern
matching built into regular function definitions.

report erratum • discuss

Day 2: Mixing the Logical and Functional • 221

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Let’s rewrite insideo one last time with defne. I think you’ll have a hard time
writing a shorter version!

(defne insideo [e l]
([_ [e . _]])
([_ [_ . t]] (insideo e t)))

Since we don’t care about the first argument in the different clauses, we use
_ to ignore it. The one downside of defne is that you must always match on all
the function’s arguments, not just the ones you care about. In most cases,
this a great trade-off.

Go back and look at where we started with insideo and compare that to this
defne version. Pattern matching has reduced the function to its essence.

Working with Maps
Maps, hash tables, dictionaries—no matter what your favorite language calls
them, they are among the most often used and important data structures.
One of the ways Clojure innovates on its Lisp heritage is first-class support
for maps. By this point it should be no surprise that core.logic supports maps
too.

Maps in core.logic work mostly as they do in Clojure. You can even use maps
with pattern matching:

user=> (run* [q]
#_=> (fresh [m]
#_=> (== m {:a 1 :b 2})
#_=> (matche [m]
#_=> ([{:a 1}] (== q :found-a))
#_=> ([{:b 2}] (== q :found-b))
#_=> ([{:a 1 :b 2}] (== q :found-a-and-b)))))

(:found-a-and-b)

This code shows both how easy it is to work with maps and that all is not
quite as you’d expect. First it unifies m with a simple map. Then matche is used
to test various patterns. If you’re familiar with Clojure, you’d probably expect
all three patterns’ goals to succeed. Why does only the last goal succeed?

The answer is that unlike Clojure, which doesn’t require you to destructure
every key, core.logic map patterns must match exactly. It’s still useful to
match on many kinds of maps where you know how many key-value pairs
there will be, but if you’re just looking for specific pieces, you’ll have to try
something else.

Chapter 6. miniKanren • 222

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

What we need is a function that will constrain a logical variable to a map
containing at least some specific fields. In core.logic this is called featurec. Let’s
see it in action:

user=> (run* [q]
#_=> (featurec q {:a 1}))

((_0 :- (clojure.core.logic/featurec _0 {:a 1})))

We have constrained q to be a map that has a key :a with a value 1 and then
asked for all possible values of q. The answer takes a little practice reading.
The :- symbol can be read as “such that.” Basically any map such that it has
the feature {:a 1} is a solution. This is how core.logic expresses constraints
on solutions.

Let’s reimplement the previous map pattern using conde and featurec:

user=> (run* [q]
#_=> (fresh [m a b]
#_=> (== m {:a 1 :b 2})
#_=> (conde
#_=> [(featurec m {:a a}) (== q [:found-a a])]❶
#_=> [(featurec m {:b b}) (== q [:found-b b])]❷
#_=> [(featurec m {:a a :b b}) (== q [:found-a-and-b a b])])))

([:found-a 1] [:found-b 2] [:found-a-and-b 1 2])❸

❶ This branch succeeds if the map contains the :a key, but any value will
do. This will also unify the fresh a variable to the key’s value.

❷ The same thing applies here, but for maps with a :b key.

❸ The set of solutions contains all three branches, unlike our previous
example. Notice that we’ve also extracted the values of the keys.

featurec is a very useful tool, as we’ll see. Bringing maps and partial maps into
logic programming makes expressing many kinds of problems much clearer.

You might ask why featurec is not featureo. The simple answer is that it’s not a
relation. The second argument must be a map, even if some of its values are
logic variables. This means you can’t run it backward, asking for all possible
feature constraints for a given map:

user=> (run* [q]
#_=> (featurec {:a 1 :b 2 :c 3} q))

ClassCastException clojure.core.logic.LVar cannot be cast to
clojure.lang.IPersistentMap
clojure.core.logic/eval3753/map->PMap--3764 (logic.clj:2443)

This small limitation won’t prevent us doing great things with partial maps.

report erratum • discuss

Day 2: Mixing the Logical and Functional • 223

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Other Kinds of Cond
The languages you are probably familiar with have a single kind of conditional.
Tests are run in order and whichever test passes, the code for the correspond-
ing branch is run. It may surprise you to learn that core.logic has multiple
types of conditionals. You saw the first of these, conde, yesterday, but now
we’ll learn about two more, conda and condu.

If you think about core.logic evaluating your branches in parallel universes,
the different kinds of cond control which universes and how many solutions
contribute to the final solution.

A Single Universe

The easiest way to understand conda is with an example. Let’s create a relation,
whicho, that will tell us which of two lists an element appears in. It takes an
element, two lists, and a result. The result can be either :one, :two, or :both
depending on whether the element is in the first, second, or both sets. Let’s
try using regular old conde first:

user=> (defn whicho [x s1 s2 r]
#_=> (conde
#_=> [(membero x s1)
#_=> (== r :one)]
#_=> [(membero x s2)
#_=> (== r :two)]
#_=> [(membero x s1)
#_=> (membero x s2)
#_=> (== r :both)]))

#'user/whicho
user=> (run* [q] (whicho :a [:a :b :c] [:d :e :c] q))
(:one)
user=> (run* [q] (whicho :d [:a :b :c] [:d :e :c] q))
(:two)
user=> (run* [q] (whicho :c [:a :b :c] [:d :e :c] q))
(:one :two :both)

This all seems very straightforward until we get to the last solution, which
has too many answers.

Consider why this happens. Core.logic evaluates every branch in its own
universe, then collects all the successful goals and presents them. In the case
of :c, all three branches are successful, so we have three answers in our
solution set.

Sometimes this is just what you want, but in this case, you probably expected
to see only :both. Let’s try again but using conda.

Chapter 6. miniKanren • 224

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

user=> (defn whicho [x s1 s2 r]
#_=> (conda
#_=> [(all
#_=> (membero x s1)
#_=> (membero x s2)
#_=> (== r :both))]
#_=> [(all
#_=> (membero x s1)
#_=> (== r :one))]
#_=> [(all
#_=> (membero x s2)
#_=> (== r :two))]))

#'user/whicho
user=> (run* [q] (whicho :a [:a :b :c] [:d :e :c] q))
(:one)
user=> (run* [q] (whicho :d [:a :b :c] [:d :e :c] q))
(:two)
user=> (run* [q] (whicho :c [:a :b :c] [:d :e :c] q))
(:both)

Now we’ve got the results we wanted. What is conda doing?

conda only looks for solutions in the first branch that has a successful first
goal. In our many universes metaphor, conda throws away all the other uni-
verses and their solutions except for one.

In this version of whicho, conda first tries the first goal of the first branch. If that
succeeds, it’s as if none of the other goals ever existed. If it fails, it will try
the next one. Once it has found a successful goal, all the other branches,
regardless of whether or not they would be successful, are eliminated.

You may note that we’ve both reordered the branches in this version and
enclosed all the goals in all. The reordering is necessary because conda is order
dependent, unlike conde. If the :both branch is not first, then it will always get
eliminated when one of the other branches succeeds. all is needed since
whether to choose an exclusive branch depends on the success of the branch’s
first goal, not the success of the whole branch. If we didn’t use all, then
(membero x s1) succeeding in the first branch would eliminate the others, even
if the (membero x s2) would fail. This would cause (whicho :b [:a :b c:] [:d :e :c] q) to
have no solutions, instead of :one.

conda is much more like conditionals you are used to, although it is not as
common in logic programming as conde.

A Single Solution

condu works similarly to conda, except that instead of limiting solutions to a
single branch, it stops completely after a single solution is found.

report erratum • discuss

Day 2: Mixing the Logical and Functional • 225

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Before we see condu in action, let’s run insideo backward again:

user=> (run* [q] (insideo q [:a :b :c :d]))
(:a :b :c :d)

insideo, which is a reimplementation of membero if you recall, returns all the
elements inside its second argument. Let’s replace conde in its implementation
with condu:

user=> (defn insideo [e l]
#_=> (condu
#_=> [(fresh [h t]
#_=> (conso h t l)
#_=> (== h e))]
#_=> [(fresh [h t]
#_=> (conso h t l)
#_=> (insideo e t))]))

#'user/insideo
user=> (run* [q] (insideo q [:a :b :c :d]))
(:a)

This time, insideo stops at the first solution, even though with run* we asked
for all solutions. condu is also called the committed choice macro, since once
it has made any successful choice, that is the only choice it will make.

The Three Conds

Which kind of conditional you choose depends on what you’re trying to do.
If you’re not sure which to use, start with conde. If the solutions you get aren’t
quite right, you can try conda if you have too many branches succeeding or
condu if you need only a single solution. Tomorrow we’ll see an example where
conde won’t cut it and we’ll have to use conda.

Each version of cond has a corresponding match and defn form. For conde, we
already saw matche and defne, which do pattern matching and pattern function
definition, respectively. Core.logic provides conda versions of these, matcha and
defna, and condu versions, matchu and defnu.

Multiple kinds of conditionals is a lot to absorb. While it soaks in, let’s take
a break and talk to core.logic’s creator.

An Interview with David Nolen
The implementation of miniKanren we’ve been using is core.logic, written by
David Nolen. David is the author of many great Clojure and JavaScript libraries
and shares our fascination for logic programming.

Chapter 6. miniKanren • 226

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Us: How did you get interested in logic programming, and what motivated you to
create core.logic?

David: I encountered logic programming for the first time in 2009. I had recently
read a blog post by Jim Duey about logic programming—he had created a simple
Clojure port of miniKanren and demonstrated that he could solve a classic logic
puzzle (the Zebra/Einstein puzzle) in a declarative manner. I found this both sur-
prising and intriguing and so I emailed him asking how it worked. He pointed to
me to The Reasoned Schemer and I picked up a copy for travel reading on the way
to the very first Clojure conference. For fun I decided to do a simple implementation
myself. The Reasoned Schemer was short on implementation details and I went
hunting for more information. Eventually I found William Byrd’s dissertation, which
clarified quite a few points and guided my first working miniKanren implementation.
Shortly thereafter Clojure introduced deftype, defrecord, and protocols and I sus-
pected that a reasonably efficient implementation of miniKanren could be written.
After four or five months of development I had an implementation of miniKanren
that could solve the Zebra/Einstein puzzle nearly as quickly as SWI-Prolog. This
was encouraging, and I immersed myself in logic and constraint logic programming
literature and ported interesting ideas as I encountered them into what eventually
became core.logic.

Us: What kind of problems do you find logic programming best for solving?

David: Any problem that benefits from a declarative solution where performance
is not the utmost concern.

Us: What can you do in core.logic that you can’t do in a language like Prolog?

David: Modern Prologs are extremely powerful, flexible, and customizable. I think
the main advantage of miniKanren over Prolog is the shallow embedding in a
functional programming language. That is, miniKanren allows you to easily leverage
the best paradigm for the problem at hand.

Us: What other features would you like to have in core.logic?

David: I would like integration with Clojure data structures to be greatly improved.
I would also like to port all the finite domain functionality to ClojureScript, but this
awaits a better official cross compilation story. There’s also a huge pile of perfor-
mance enhancement ideas that I need to find time to assess and implement.

What We Learned in Day 2
Declarative programming is powerful and concise, but by mixing the relations
of miniKanren with the functional workhorse Clojure, we can make new
syntax with macros and work with data structures like maps.

We learned how to do pattern matching with matche, which turned conde
expressions into beautiful deconstructions. Between matche and its friend
defne, Clojure macros have made the logic programmer’s job that much easier.

report erratum • discuss

Day 2: Mixing the Logical and Functional • 227

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Next, we tried matching maps and found that core.logic supports partial maps
with constraints. We used featurec to constrain maps and to pick out values
for keys in a map.

Finally, we explored the three conditionals: conde, conda, and condu.

Your Turn
Tomorrow, we’ll put all these things together to build something practical, so
practice the new skills you learned today to get ready.

Find…

• Examples of code using featurec
• The source code for core.logic’s membero

Do (Easy):

• Rewrite extendo from Day 1’s problems using matche or defne.
• Create a goal not-rooto which takes a map with a :username key and succeeds

only if the value is not “root”.
• Run whicho in reverse, asking for elements in one or both of the sets.
• Add a :none branch to whicho. What happens when you use the :none branch

in the whicho version built on conde?

Do (Medium):

• Using the database from yesterday, create unsungo, which takes a list of
computer scientists and succeeds if none of them have won Turing Awards.
conda may prove useful.

Do (Hard):

• Play with (insideo :a [:a :b :a]). How many times does it succeed? Make it
succeed only once but have (insideo q [:a :b :a]) return all distinct elements.
Hint: Try using the != constraint.

Day 3: Writing Stories with Logic
Over the last two days, you’ve seen a lot of what core.logic has to offer. Now
it’s time to put that knowledge to use in a larger and more practical example.

There are many problems that involve route planning. For example, how do
you fly to a distant city? Sometimes there are direct flights, but sometimes
the path involves multiple connections, different planes, and even several

Chapter 6. miniKanren • 228

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

airlines. Alternatively, think of a truck making deliveries. After enumerating
possible paths, you must then optimize for the shortest or the quickest.

If you think about it, generating a story is similar but more fun. Instead of
connection cities, you have plot points. Routes through the plot make up the
entire story, and as an author, you’ll want to optimize to achieve the desired
effect. Should the story be short? Should everyone die at the end?

We’re going to build a story generator using the logic tools you’ve acquired
so far. Although the end result may seem frivolous on the surface, the tech-
niques we use are the same for the more mundane problems.

Before we get to the story generator, there’s one last feature of core.logic that
merits attention: finite domains.

Programming with Finite Domains
Logic programming is implemented behind the scenes with directed search
algorithms. You specify constraints and the language searches for solutions
that satisfy the criteria.

So far, we’ve been working with elements, lists, and maps in our logic pro-
grams. These structures may be infinite in size, but they are composed of a
finite set of concrete elements. To search for solutions to (membero q [1 2 3]),
core.logic only needs to look through all the elements.

What happens when we want to work with numbers? Imagine searching for
integer solutions to (<= q 1). There is an infinite number of answers. Even
worse, there is an infinite number of possibilities to try, and depending on
where you start and how you search, you may never find a solution.

The problem is tractable if we constrain q to the positive integers or any finite
set of numbers. In core.logic we can make such constraints with finite
domains. Finite domains add knowledge about the set of valid states in the
search problem. Let’s use our example (<= q 1), but within a finite domain:

user=> (require '[clojure.core.logic.fd :as fd])
nil
user=> (run* [q]

#_=> (fd/in q (fd/interval 0 10))❶
#_=> (fd/<= q 1))

(0 1)❷

❶ This constraint establishes that q is in a given interval of numbers.

❷ The solution set is finite and found quickly because of the constrained
domain.

report erratum • discuss

Day 3: Writing Stories with Logic • 229

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Finite domains over numeric intervals also allow you to start doing mathematic
operations on logic variables. We can ask core.logic to solve for every triple
of distinct numbers whose sum is 100:

user=> (run* [q]
#_=> (fresh [x y z a]❶
#_=> (== q [x y z])
#_=> (fd/in x y z a (fd/interval 1 100))❷
#_=> (fd/distinct [x y z])❸
#_=> (fd/< x y)❹
#_=> (fd/< y z)
#_=> (fd/+ x y a)
#_=> (fd/+ a z 100)))

([1 2 97] [2 3 95] [1 3 96] [1 4 95] [3 4 93] [2 4 94] ...)❺

❶ x, y, and z are the three numbers we’re solving for. a is just a temporary
helper.

❷ All the logic variables are constrained to the finite range of 1 to 100.

❸ fd/distinct sets the constraint that none of the variables can be equal to
another. This prevents solutions such as [1 1 98].

❹ We constrain x to be less than y, and y less than z. If we failed to order
the variables, then we’d have duplicate solutions such as [6 28 66] and [66
28 6].

❺ There are 784 solutions. My machine found the entire set of solutions in
5 milliseconds. Core.logic is no slouch.

The code as written works quite well, although having to do arithmetic oper-
ations two numbers at a time with a temporary logic variable feels rather
clumsy. Fortunately, core.logic provides some macro sugar to sprinkle on its
math. fd/eq allows us to write normal expressions for our equations and
transforms those expressions into code that creates the appropriate temporary
logic vars and calls the appropriate finite domain functions.

user=> (run* [q]
#_=> (fresh [x y z]
#_=> (== q [x y z])
#_=> (fd/in x y z (fd/interval 1 100))
#_=> (fd/distinct [x y z])
#_=> (fd/< x y)
#_=> (fd/< y z)
#_=> (fd/eq
#_=> (= (+ x y z) 100))))

([1 2 97] [2 3 95] ...)

The last line is much simpler, and the resulting program is easier to read.

Chapter 6. miniKanren • 230

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Take a minute to think about what’s going on here. Macros are turning logic
into normal syntax, finite domains are constraining the search problem to a
small space, and the program isn’t just finding a single solution but all pos-
sible solutions. Best of all, it’s declarative and reads like a problem statement
instead of a solution method.

Magical Stories
So far, the examples have been tailored to help you understand individual
concepts in core.logic, and now we’ll put what you’ve learned into practice
with a more realistic and comprehensive example. In the end, even Harry
Potter uses his spells for opening locks and other common tasks.

Our task will be one of path finding, subject to some constraints. Whether
finding transit routes or scheduling deliveries, path planning problems abound,
and logic programming excels at solving them.

Instead of finding a route for a delivery truck or solving for how to reach one
city from another via available transit options, we’ll be generating stories.
From a database of plot elements, we can search for a story that reaches a
certain end state. Following the path through the plot elements becomes a
little narrative, controlled by logic and the destination you provide.

Getting Inspired

This example was inspired by a wonderful talk I saw at Strange Loop 2013. It’s called
“Linear Logic Programming” by Chris Martens.a She also co-wrote a paper on the
same topic: “Linear Logic Programming for Narrative Generation.”b Chris explains
linear logic programming and then uses it to generate and explore narrative using
Madame Bovary as a reference. I highly recommend investigating her work.

a. http://www.infoq.com/presentations/linear-logic-programming
b. https://www.cs.cmu.edu/~cmartens/lpnmr13.pdf

Core.logic will generate many possible stories for us, but it is up to us to pick
out the ones that might be interesting. We’ll use Clojure to postprocess pos-
sible stories to select ones that fit our criteria. For example, we may filter
small stories out to get at more interesting, longer narratives.

Problem Details

Before we begin, we should define the problem a little better.

First, we need a collection of story elements and a method for moving from
one element to another. We can easily store facts in a database about various

report erratum • discuss

Day 3: Writing Stories with Logic • 231

http://www.infoq.com/presentations/linear-logic-programming
https://www.cs.cmu.edu/~cmartens/lpnmr13.pdf
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

plot points, but we’ll need to create them. I’ll let Hollywood do the hard work
here and use the plot of the cult comedy movie Clue, a murder mystery
loosely based on the board game where six guests, a butler, a maid, a cook,
and the master of the house are in for a potentially deadly ride.

Here’s a snippet of the story from the movie:

(1) Wadsworth opens the door to find a stranded motorist whose car broke
down nearby. The motorist asks to use the phone, and Wadsworth escorts him
to the lounge. The group locks the motorist in the lounge while they search for
the killer in the rest of the house. (2) After some time, a policeman notices the
abandoned car and starts to investigate. (3) Meanwhile, someone kills the
motorist with the wrench.

We can simulate and manage moving from one plot point, (1), to another, (2),
by the use of linear logic. Linear logic is an extension of the logic you’re
probably familiar with, which allows for the use and manipulation of resources.
For example, a logical proposition may require and consume a particular
resource. Instead of “A implies B,” we say that “A consumes Z and produces
B,” where Z is some particular resource. In the previous snippet, (3) takes
the motorist as input and produces a dead motorist. Similarly, (2) takes the
motorist as input and produces a policeman.

We can craft a simple linear logic in core.logic. Each plot element will have
some resource that it needs and some resource that it produces. We’ll repre-
sent this as a two-element vector of the needed and produced resource. For
example, [:motorist :policeman] means that for this story element to happen, we
must have a :motorist available and it will create a :policeman. In the movie, a
stranded motorist rings the doorbell for help, and later a policeman who dis-
covers his car comes looking for him. Without the motorist, the policeman
will never show up.

We’ll have a starting state, which is a set of initial, available resources. A
relation will govern selecting a legal story element given the state and moving
to a new state. We’ll control where the story goes by putting requirements on
the final state. For example, the story will finish when a particular character
is caught or dies.

The final touch will be to print out the resulting stories in a readable form.

Story Elements

Our story elements need to contain the resource being consumed and the
resource being produced. Additionally, we’ll put in a string describing the
element in prose that we’ll make use of when printing out the narrative.

Chapter 6. miniKanren • 232

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We’ll need a large list of elements to make interesting stories, but the plot of
Clue gives us plenty to work with. You might notice that several people can
be murdered in multiple ways; Clue had three different endings, which are
all represented.

Here are the first few elements of story-elements in story.clj:

minikanren/logical/src/logical/story.clj
(def story-elements

[[:maybe-telegram-girl :telegram-girl
"A singing telegram girl arrives."]

[:maybe-motorist :motorist
"A stranded motorist comes asking for help."]

[:motorist :policeman
"Investigating an abandoned car, a policeman appears."]

[:motorist :dead-motorist
"The motorist is found dead in the lounge, killed by a wrench."]

[:telegram-girl :dead-telegram-girl
"The telegram girl is murdered in the hall with a revolver."]

[:policeman :dead-policeman
"The policeman is killed in the library with a lead pipe."]

[:dead-motorist :guilty-mustard
"Colonel Mustard killed the motorist, his old driver during the war."]

[:dead-motorist :guilty-scarlet
"Miss Scarlet killed the motorist to keep her secrets safe."]

;; ...])

The structure is a vector of vectors. The inner vectors have three elements:
the two resources and the string description. There are 27 elements in full
story-elements, which is enough to get some interesting results.

We’ll need to postprocess this to turn it into our story database in core.logic.

Building the Database and Initial State

Our goal is to turn the story-elements vector into a database of facts that
core.logic can use. We’ll use a simple relation, ploto, which will relate the input
resource to the output. The end result we want would be equivalent to this:

(db-rel ploto a b)

(def story-db
(db
[ploto :maybe-telegram-girl :telegram-girl]
[ploto :wadsworth :dead-wadsworth]
;; ...))

We’ll use Clojure’s reduce function to effect the transformation:

report erratum • discuss

Day 3: Writing Stories with Logic • 233

http://media.pragprog.com/titles/7lang/code/minikanren/logical/src/logical/story.clj
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

minikanren/logical/src/logical/story.clj
(db-rel ploto a b)

(def story-db
(reduce (fn [dbase elems]❶

(apply db-fact dbase ploto (take 2 elems)))
(db)❷
story-elements))❸

❶ Reducing functions take two arguments. The first is the accumulator that
holds the initial, intermediate, or final result of the reduction. The second
is the current element to reduce. Here we extend the database passed as
the first argument with a new fact using the ploto relation and the first
two elements of the story element vector.

❷ Our initial state is just a blank database.

❸ Running the reduction over all the story elements will turn our vector of
vectors into a core.logic database of facts.

Now that we have our story elements, we need an initial state. This contains
all the people who may appear and all the people who are already in the house
who might later be killed. Note that only resources that are used in the story
elements need to be listed.

minikanren/logical/src/logical/story.clj
(def start-state

[:maybe-telegram-girl :maybe-motorist
:wadsworth :mr-boddy :cook :yvette])

The story elements database and the initial state define all the data for our
story. As you’ll see shortly, the data used is much larger than the code we
need to generate stories.

Plotting Along

The next task is to create a transition relation to move the story from one
state to the next by selecting an appropriate story element. This is the
workhorse of our generator:

minikanren/logical/src/logical/story.clj
(defn actiono [state new-state action]

(fresh [in out temp]
(membero in state)❶
(ploto in out)❷
(rembero in state temp)❸
(conso out temp new-state)❹
(== action [in out])))

Chapter 6. miniKanren • 234

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/minikanren/logical/src/logical/story.clj
http://media.pragprog.com/titles/7lang/code/minikanren/logical/src/logical/story.clj
http://media.pragprog.com/titles/7lang/code/minikanren/logical/src/logical/story.clj
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

❶ The in resource must be something from the current state. We can’t use
any of the story resources unless they are available.

❷ Once we have an in resource, ploto picks a corresponding resource to create
in out.

❸ The resource is consumed as part of the story action, so we remove it
from the state.

❹ The newly created resource is added to the state to produce the new state.

We can load logical.story in a REPL and experiment with actiono:

user=> (require '[logical.story :as story])
user=> (with-db story/story-db

#_=> (run* [q]
#_=> (fresh [action state]
#_=> (== q [action state])
#_=> (story/actiono [:motorist] state action))))

([[:motorist :policeman] (:policeman)]
[[:motorist :dead-motorist] (:dead-motorist)])

This query uses a starting state of [:motorist] and asks for all the actions and
their corresponding new states that are possible. Either a policeman can come
looking for the stranded motorist, or the motorist can be murdered.

For generating our stories, we want to run the transitions backward. Starting
from some goal conditions—resources we want to exist in the final state—we
want to find a sequence of actions that will achieve the goals from the starting
state.

minikanren/logical/src/logical/story.clj
(declare story*)

(defn storyo [end-elems actions]
(storyo* (shuffle start-state) end-elems actions))❶

(defn storyo* [start-state end-elems actions]
(fresh [action new-state new-actions]

(actiono start-state new-state action)❷
(conso action new-actions actions)❸
(conda
[(everyg #(membero % new-state) end-elems)❹
(== new-actions [])]

[(storyo* new-state end-elems new-actions)])))❺

❶ storyo simply calls storyo* so that the user doesn’t have to pass in the initial
state themselves. Shuffling the initial state will produce a randomized
solution sequence.

report erratum • discuss

Day 3: Writing Stories with Logic • 235

http://media.pragprog.com/titles/7lang/code/minikanren/logical/src/logical/story.clj
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

❷ We transition to a new state by taking some action.

❸ We prepend the action we took onto the list of actions.

❹ everyg succeeds if the goal function provided as the first argument succeeds
for every element of the collection in the second argument. If all our goal
resources in end-elems are in new-state, our story is done. We set new-actions
to the empty vector at the end since there won’t be any more taken.

❺ If not all our goals have succeeded, we recursively call storyo* to keep going.

Let’s play with storyo at the REPL to generate some simple stories:

user=> (with-db story/story-db
#_=> (run 5 [q]
#_=> (story/storyo [:dead-wadsworth] q)))

(([:wadsworth :dead-wadsworth])
([:maybe-motorist :motorist] [:wadsworth :dead-wadsworth])
([:maybe-telegram-girl :telegram-girl] [:wadsworth :dead-wadsworth])
([:maybe-motorist :motorist] [:motorist :policeman]
[:wadsworth :dead-wadsworth])

([:maybe-motorist :motorist] [:motorist :dead-motorist]
[:dead-motorist :guilty-mustard] [:wadsworth :dead-wadsworth]))

Core.logic has used our story database to generate five stories where
Wadsworth ends up dead. Each solution is a list of actions, and if you squint
at it and remember the story elements, you can figure out what is happening.
For example, the last story in the list has a stranded motorist appearing, who
is then murdered by Colonel Mustard, and then Wadsworth is killed in the
hallway with the revolver.

We still have some work to do. The stories need to be human readable instead
of the simple list of actions, and we’ll need to filter stories to get more inter-
esting results.

Readable Stories

Creating more readable stories is just a matter of reusing our description
strings from story-elements in the output. We’ll transform story-elements into a
map from actions to the strings, and then generate a human-readable plot
summary from the result.

minikanren/logical/src/logical/story.clj
(def story-map

(reduce (fn [m elems]❶
(assoc m (vec (take 2 elems)) (nth elems 2)))

{}
story-elements))

Chapter 6. miniKanren • 236

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/minikanren/logical/src/logical/story.clj
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

(defn print-story [actions]
(println "PLOT SUMMARY:")
(doseq [a actions]❷

(println (story-map a))))

❶ For each element, our reduction associates a new key and value to the
map. The key is a two-element vector of the input and output resources,
which is the same format as our actions. The value is the last item in the
story element, the description.

❷ print-story just looks up the description in the map and prints the result
for each action in the sequence.

Let’s test it out on a story:

user=> (def stories
#_=> (with-db story/story-db
#_=> (run* [q]❶
#_=> (story/storyo [:guilty-scarlet] q))))

#'user/stories
user=> (story/print-story (first (drop 10 stories)))❷
PLOT SUMMARY:
A stranded motorist comes asking for help.
The motorist is found dead in the lounge, killed by a wrench.
Colonel Mustard killed the motorist, his old driver during the war.
The cook is found stabbed in the kitchen.
Miss Scarlet killed the cook to silence her.
nil

❶ run* will produce a stream of all the solutions. This is lazily computed, so
it will return immediately and then do the work to give us solutions when
we ask for them. Lazy streams are one of the more powerful features of
Clojure.

❷ We can drop a few of the initial stories to get some more interesting and
longer ones. Here we’ve dropped the first 10 and picked the first one in
the remaining stream.

Now we’re getting somewhere. The stories are fun to read now, but a little too
short. We can postprocess the story stream with Clojure’s powerful stream
manipulation tools.

Mining Stories

Clojure has an enormous number of tools for dissecting, filtering, and
manipulating data of all kinds. You saw in the previous example how
core.logic solutions are a lazy stream and just how easy it is to pick that
stream apart.

report erratum • discuss

Day 3: Writing Stories with Logic • 237

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

We can put these tools to work for us and try to find more interesting stories
from the random story stream that run* and storyo generate. Using the goal
states in combination with postprocessing, we direct the generation and select
the most interesting results:

user=> (defn story-stream [& goals]
#_=> (with-db story/story-db
#_=> (run* [q]
#_=> (story/storyo (vec goals) q))))

#'user/story-stream

user=> (story/print-story
#_=> (first
#_=> (filter #(> (count %) 10)
#_=> (story-stream :guilty-peacock :dead-yvette))))

PLOT SUMMARY:
A stranded motorist comes asking for help.
Investigating an abandoned car, a policeman appears.
The policeman is killed in the library with a lead pipe.
Mrs. Peacock killed the policeman.
Mr. Boddy's body is found in the hall beaten to death with a candlestick.
Wadsworth is found shot dead in the hall.
Mr. Green, an undercover FBI agent, shot Wadsworth.
A singing telegram girl arrives.
The telegram girl is murdered in the hall with a revolver.
Miss Scarlet killed the telegram girl so she wouldn't talk.
Yvette, the maid, is found strangled with the rope in the billiard room.
nil

Asking for stories with more than 10 elements in which Yvette dies and Mrs.
Peacock is a murderer produces something particularly grim.

Keep playing with it and see what interesting narratives you can create. You’ll
be extending the system in today’s exercises.

What We Learned in Day 3
Today you saw a more practical view of core.logic. Logic programming isn’t
just about puzzles. Many real-world problems benefit from a logical approach.

We started by looking at finite domains, which are extremely useful in con-
straint-solving problems. For example, Mac OS X’s layout engine is a con-
straint solver. Not only does core.logic make these types of problems easy to
express, but the solutions are obtained extremely quickly.

We used logic to generate paths, but instead of finding routes connecting
cities, we discovered narratives through various plot elements. Combining

Chapter 6. miniKanren • 238

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

simple linear logic, recursive functions, and Clojure’s data manipulation tools,
we were able to craft a story generator in just a few lines of code.

Your Turn
If you’ve yet to play with any code in this chapter, now is your chance to get
your hands dirty with the new tools introduced today.

Find…

• Examples of other people using core.logic’s finite domains.
• Commercial products that are powered by logic engines. Hint: Include

Prolog in your search.

Do (Easy):

• Code some other mathematical equations and have core.logic fill in the
answers.

• Generate stories where the motorist never appears and there are at least
two murderers.

Do (Medium):

• It’s more suspenseful if we learn who the killers are at the end of the
story. Use Clojure’s data manipulation tools to push those story events
to the end.

• If the policeman arrives, the motorist can no longer be killed. This is a
limitation of our linear logic because inputs are always consumed. Extend
the generator such that story elements can have multiple outputs and
use this to enable stories where the policeman and the motorist are both
murdered.

Do (Hard):

• Try to write a Sudoku solver using finite domains. Hint: You’ll need to
create unnamed logic variables with (lvar) at empty places in the grid.
Build multiple views on the same grid by row, column, and square.

• Create a new set of story elements and initial state using your own
imagination or inspiration from a favorite book. Use the narrative generator
to find the most interesting version.

report erratum • discuss

Day 3: Writing Stories with Logic • 239

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Wrapping Up miniKanren
Logic programming is a strange thing. Where else can you run programs
backward or create programs that achieve your goals without having any
concrete steps? It takes some time getting used to, but for some kinds of
problems, you’ll have a tough time writing a better or shorter program with
any other tool.

Embedding a powerful logic system inside a practical programming language
like Clojure provides an environment where logic can be used seamlessly
alongside your regular code, making it easy to use the right tool for the job.

Strengths
The primary strength of miniKanren is the use of declarative programming
to achieve almost magical ends. Goals can be reordered and programs run
backward. This makes it easy to express problems such as constraint solving,
scheduling, and path finding.

Core.logic adds to this mix the integration with a practical, everyday program-
ming language, Clojure, along with the entire Java ecosystem. Your logic
programs can make use of existing SQL databases and the myriad of other
existing libraries.

To give you an idea of the leverage core.logic is giving you, imagine implement-
ing the narrative generator in Java or Ruby. Would it still be as concise and
easy to extend?

Weaknesses
Logic programming is mind-bending. When it goes wrong, it is hard to tell
why as the search going on behind the scenes can derail in subtle ways. For
example, while writing this chapter I spent many hours debugging an example
that in the end I was unable to get fully working.

Although this is true of every new language you attempt to learn, logic pro-
gramming makes it even more difficult since there are no familiar landmarks
to help you out.

Final Thoughts
More than a library, miniKanren is a new language with a new programming
paradigm. It’s also one of the most fun programming languages I’ve ever played
with. Running programs backward will always put a smile on my face.

Chapter 6. miniKanren • 240

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Problems that fit its domain are so easily and concisely expressed that it’s a
wonder to me that every language doesn’t have an embedded logic system
like miniKanren. Core.logic does a particularly fine job of integrating with
Clojure and using the strengths of Clojure to make logic programming practi-
cal. It will be amazing to watch as core.logic and miniKanren keep getting
better and are used in more places.

report erratum • discuss

Wrapping Up miniKanren • 241

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

CHAPTER 7

Idris
by Ian Dees and Bruce Tate

No one likes a debate like a passionate programmer. Developers argue end-
lessly but sometimes productively about tools, techniques, and approaches
to programming. Type models in particular have been a source of constant
tension throughout the history of programming languages.

When type zealots collide, the fireworks can be fascinating. Want to be safe
and secure? Tired of being burned by things like SQL injection errors? You’re
probably a static-typing kind of character. You’ve likely seen compile-time
checks pay for the extra weight in code, or for the extra time it takes to pacify
the compiler.

If on the other hand you’re in the dynamic camp, you probably like working
with sharp tools without safety features—even if there’s a little more risk of
being cut. You’ve seen static type systems with way too much ceremony
(remember public static void main?). You’re willing to do the extra testing and put
up with the possibility of some instability to keep your code simple and clean.
You like being able to change your program’s fundamental design while it’s
still running, like changing tires on a car in mid-drive.

As this theoretical battle marches on, we’ve seen the pendulum swing between
static and dynamic type systems. In language research, tremendous advances
are happening. One interesting development in type theory is the family of
dependently typed languages that are expanding the limits of what static
types can do for us. Think of dependent types as types that depend on values,
such as a list that’s always in the correct order—guaranteed by the compiler.
Enter Idris.

With richer information in dependent types, Idris can do things other lan-
guages can’t:

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

• Find more errors at compile time
• Prove, or disprove, that certain elements of your program are cor-

rect—including input parameter checking
• Provide powerful editing, with much more sophisticated completion than

you can get in traditional languages

Think Sherlock Holmes. With his nearly supernatural observation skills, he
has information to put together insights that most people don’t. He demands
excruciating detail when he questions witnesses or colleagues. But these
extra demands pay off when he solves the case.

Even if you’re from the Church of the Dynamic Type, Idris will at least show
you what the fuss is all about. You’ll have to do more up-front thinking about
your types, and express them in more detail than you’re used to. But when
you’ve done so, those same types will boost your productivity in ways you’ve
never experienced before.

For this story’s mystery, we’ll seek the answer to one simple question. Is all
of the effort of expressing these rich types worth the effort? There’s no time
to lose. Let’s jump on this case.

Day 1: The Basics
Like Elm, Idris has roots firmly planted in Haskell. You already know that it
can be challenging to learn much about a language in one short week. For
languages in the Haskell family, the task is doubly daunting. We’re not going
to try to give you a full review of Idris. Instead, we’ll focus on what dependent
types bring to the table.

Here’s what’s in store. In Day 1, we’ll introduce the basic building blocks of
the language and build a foundation for dependent types. For Day 2, we’ll
actually write some dependent types and see Idris dazzle us with its under-
standing of our programs. In Day 3, we’ll use dependent types to accomplish
great feats: advanced editor completion, proofs, and improving real-world
programs.

Grab your deerstalker cap and magnifying glass. The game’s afoot!

Installing Idris
Idris has roots firmly planted in the Haskell ecosystem. Install it from the
excellent installation directions on the Idris site.1 When you are done, you
should be able to crack open the shell, like this:

1. http://www.idris-lang.org/download/

Chapter 7. Idris • 244

report erratum • discuss

http://www.idris-lang.org/download/
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

➔ idris
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.12

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris>

You can exit the REPL by typing :q; go ahead and do that now.

To make sure things are working, let’s build a quick program. Add the following
to a text file called hello.idr:

module Main
main : IO ()
main = putStrLn "Elementary, dear Idris."

Then, you can compile and run the program like this:

> idris hello.idr -o hello
> ./hello
Elementary, dear Idris.

If things are working as they should, you’re ready to code!

Understanding the Basics
If you have some Haskell experience, the first part of Day 1 is going to be
quite familiar to you. Though we can’t as easily declare functions in the con-
sole, we can still do quite a bit of work here. Let’s start to put it through its
paces.

Primitive Types and Expressions
We’ll start with a few primitive data types:

Idris> True
True : Bool
Idris> 4
4 : Integer
Idris> 4.567
4.567 : Float
Idris> 'c'
'c' : Char
Idris> "Watson"
"Watson" : String

Fair enough. Boolean, Integer, Float, String, and Char are primitive types that do
about what you’d expect them to.

report erratum • discuss

Day 1: The Basics • 245

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

You can also type it to get the value of the last expression:

Idris> it
"Watson" : String

Let’s do some simple expressions next:

Idris> 4 + 5
9 : Integer
Idris> True || False
True : Bool
Idris> True && False
False : Bool
Idris> not True
False : Bool
Idris> "a" ++ " clue"
"a clue" : String
Idris> it ++ ", " ++ it
"a clue, a clue" : String

There are no real surprises here. Let’s try to combine types:

Idris> 5 + 6 / 2
8.0 : Float
Idris> 4.567 > 4
True : Bool
Idris> 8 == 8.0
True : Bool

Still no surprises. When types are compatible, Idris will coerce them. Let’s
try a little harder to break type safety:

Idris> 1 + "one"
Can't resolve type class Num String
Idris> 'a' + "bc"
Can't resolve type class Num Char

Integer and String are incompatible for this operator, as are Char and String. The
second is mildly surprising, because Char seems to be derived from Num. Jot
this fact down in your detective’s notebook for later consideration, before we
move on to functions.

Functions
The syntax for declaring functions in the REPL is cumbersome. Instead, let’s
put a few simple ones into a file, then dissect them in the console. We’ll start
with functions that return primitive types. Type the following into a file called
functions.idr:

Chapter 7. Idris • 246

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

idris/day1/functions.idr
module Functions

intFunction : Int
intFunction = 1887

stringFunction : String
stringFunction = "A Study in Scarlet"

Load it into the console with :l like this:

> :l functions

Now, try calling the functions you wrote:

*functions> stringFunction
"A Study in Scarlet" : String
*functions> intFunction
1887 : Int

They seem to work fine. Now, let’s ask Idris about the type of each function.
You do this with the :t command:

*function> :t stringFunction
Functions.stringFunction : String
*function> :t intFunction
Functions.intFunction : Int

The REPL parrots back our type definitions, qualified by our module name.

We can also build anonymous functions, and pass them into other functions.
Let’s try this with the map function. You’ve probably seen this in other lan-
guages; it calls a function on every item in a collection and returns a collection
containing the results.

In pseudocode, map takes the following types:

map: function_from_a_to_b -> list_of_a -> list_of_b

Idris comes with a map implementation; let’s see what it’s made of.

*functions> :t map
Prelude.Functor.map : Functor f => (a -> b) -> (f a) -> f b

As we expect, map takes a function from one type a to another type b. Prelude
is the library that Idris, and many versions of Haskell, include by default,
and a Functor is something you can map over. We don’t see the words List a or
Vector a anywhere, because this concept is more general than any specific
collection type.

report erratum • discuss

Day 1: The Basics • 247

http://media.pragprog.com/titles/7lang/code/idris/day1/functions.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Now, let’s look at the type of an anonymous function. Here’s one that multiplies
its input x by 0.5:

*functions> :t (\x => x * 0.5)
\ x => x * 0.5 : Float -> Float

Idris has inferred the type of x to be a function taking a Float and returning
another Float.

Now, let’s try to map our anonymous function onto the series of numbers [3.14,
2.72]:

*functions> map (\x => x * 0.5) [3.14, 2.72]
Can't disambiguate name: Prelude.List.::, Prelude.Stream.::, Prelude.Vect.::

The Prelude includes a few similar functions named map in different names-
paces: one for lists, one for vectors, and so on. In a full program, we’d write
the types explicitly—there’d be no ambiguity.

The REPL, however, does not have enough information to infer the type of
[3.14, 2.78]. It could be a list, a stream, or a vector. Let’s give Idris more specific
information:

*functions> map (\x => x * 0.5) (the (List Float) [3.14, 2.78])
[1.57,1.3900000000000001] : List Float

That’s better. For those cases where Idris can’t infer the type, we can supply
it ourselves.

In another language, you’d need a special notation to add type information.
In Idris, you can use an ordinary function, because functions can take types
as parameters. The standard library supplies the un-Google-able the for this
purpose.2

Let’s take a look at this function’s type:

*functions> :t the
Prelude.Basics.the : (a : Type) -> a -> a

The the function takes two parameters:

1. A type; in our example, the pair (List Float)
2. A value, the list [3.14, 2.72]

map now happily applies our anonymous function to each element in the list.

We could get lost in the basic Idris language features without ever touching
the type system. If you know a little Haskell, you’ll find Idris pretty similar.

2. https://github.com/idris-lang/Idris-dev/blob/master/libs/prelude/Prelude/Basics.idr#L13

Chapter 7. Idris • 248

report erratum • discuss

https://github.com/idris-lang/Idris-dev/blob/master/libs/prelude/Prelude/Basics.idr#L13
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

If not, pick up a resource, like perhaps the original Seven Languages in Seven
Weeks [Tat10]. When you’re ready, let’s pick up by defining some data types.

Defining Data Types
Let’s create some data types to get a handle on how the base Idris type system
works.

Getting to Know Numbers Again

We’ll start with a naïve number system. Type the following into a file called
data_types.idr:

idris/day1/data_types.idr
data DumbNumber = Naught | One | Two | Three

Now, fire up your console, or load the file, and try it out:

*data_types> :l data_types.idr
Type checking ./data_types.idr
*data_types> Naught
Naught : DumbNumber
*data_types> Two
Two : DumbNumber

We can use the new number type we created, but we can’t do too much with
it. The numbers have no relationship with one another. Let’s take a shot at
a slightly more sophisticated number system: natural numbers.

Natural Numbers

Way back in elementary arithmetic, we learned that natural numbers are the
integers from zero upward. Every natural number is either zero, or the number
after some other natural number. This recursive definition is easy to express
in Idris. Tack this type onto the end of your data_types.idr file:

idris/day1/data_types.idr
data Natural = Zero | After Natural

Now, load your code up into the console and take a look:

*data_types> :l data_types.idr
Type checking ./data_types.idr
*data_types> Zero
Zero : Natural
*data_types> After Zero
After Zero : Natural
*data_types> After (After Zero)
After (After Zero) : Natural

report erratum • discuss

Day 1: The Basics • 249

http://media.pragprog.com/titles/7lang/code/idris/day1/data_types.idr
http://media.pragprog.com/titles/7lang/code/idris/day1/data_types.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

In fact, Idris has its own natural numbers defined like these, but with Nat, Z,
and S that stand for Natural, Zero, and Successor, respectively. Take a look:

*data_types> :t Z
Prelude.Nat.Z : Nat
*data_types> S Z
1 : Nat
*data_types> :t S Z
1 : Nat
*data_types> S (S Z)
2 : Nat

Idris shortens the integers for display, showing us 2, for example, instead of
S (S Z).

This type definition maintains the relationship between one number and the
next. That’s important because later, we’re going to use these natural numbers
in the definition of other types.

Now, let’s take a look at a slightly more sophisticated type.

Parameterized Types

idris/day1/data_types.idr
data MyList a = Blank | (::) a (MyList a)

This type is the definition of a list of, well, something. a is a parameterized
type. That means you can use any type in place of a. This system allows many
similar types to be treated in the same way—that is, types are polymorphic.

The list, called MyList, can hold anything of type a. Breaking it down, our type
has two cases: an empty list, called Blank, and a list with one more item. The
(::) operator adds an item to a list, and a represents a type. So, (::) a (MyList a)
represents something of type a added to MyList a—that is, a list of items of type
a.

The parentheses around (::), by the way, mean that :: can also be used as an
infix operator without the parens. The following two function calls are the
same:

*data_types> (::) "Watson" Blank
"Watson" :: Blank : MyList String
*data_types> "Watson" :: Blank
"Watson" :: Blank : MyList String

Let’s look at one more parameterized type before we close the door on Day 1.

Chapter 7. Idris • 250

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/idris/day1/data_types.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

The Billion-Dollar Mistake

If you’ve spent most of your time in dynamically typed languages or even
languages like Java and C with very limited type systems, you might have
noticed that nil or null values represent a significant percentage of all bugs.
These bugs are so prevalent that Tony Hoare referred to null references as a
billion-dollar mistake.3

In Idris, as in Haskell, you can save yourself a billion dollars by defining a
type that might or might not have a value. The following definition ships with
Idris:4

data Maybe a = Nothing | Just a

A value of type Maybe a can neatly represent either Nothing or a value of type a.
For example, let’s say you’re writing a function that returns the first element
of a list. Your function might have a type like this:

idris/day1/data_types.idr
first : MyList a -> Maybe a
first Blank = Nothing
first (x :: xs) = Just x

In this definition, first takes a list of type a and returns a Maybe of type a. If the
list is empty, first returns Nothing. Otherwise, the list returns Just x, meaning
the value of x.

Go ahead and take first out for a spin:

*data_types> first ("Elementary" :: Blank)
Just "Elementary" : Maybe String
*data_types> first (the (MyList String) Blank)
Nothing : Maybe String

As you can see, it’s impossible for a null value to sneak out of this function.
Idris forces callers to handle the case where the list was empty.

A Little Deeper
So far, this type system is expressive and powerful. The types have other
features that we’re not going to talk about in depth, but you should know a
little bit about them.

Type classes allow the representation of increasingly specialized types. Think
of the universe of numbers, called Num. You’ve already seen Nat, Integer, and
Float, which are all instances of Num. By organizing types in this way, we allow

3. http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
4. https://github.com/idris-lang/Idris-dev/blob/master/libs/prelude/Prelude/Maybe.idr

report erratum • discuss

Day 1: The Basics • 251

http://media.pragprog.com/titles/7lang/code/idris/day1/data_types.idr
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://github.com/idris-lang/Idris-dev/blob/master/libs/prelude/Prelude/Maybe.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

any function to use all compatible types. This feature is called type polymor-
phism. That’s why you’ll see Idris functions use a generic type, like a, instead
of a more specific one.

What About Lazy Evaluation?

If you’re coming from a Haskell background, where values aren’t computed until
they’re needed, you may be wondering: what’s Idris’s stance on lazy evaluation?

Though Idris is not a lazy-by-default language like Haskell, it does support primitive
lazy type definitions.a For example, if/then statements use lazy types to execute logic
conditionally, only when it’s needed. Since it’s sometimes difficult to reason about
the performance of lazy programs, and since Idris exists to make reasoning about
programs easier, we’ll steer away from lazy semantics.

a. http://www.idris-lang.org/documentation/faq

Idris contains many other sleuthing techniques we can apply to our code.
Alas, in the short time we have together, we won’t be able to cover them all.
We hope to instead give you a flavor of dependent types and how they might
help you. We’ll focus Day 2 exclusively on dependent types.

What We Learned in Day 1
In Day 1, we covered Idris as a cousin of Haskell and learned that it is a pure
functional language based on Haskell. We walked you through some primitive
values and operators. We looked at primitive types and coded some basic
functions, all while staying primarily in Prelude, the library in Idris that is
included by default.

We also started to explore the type system. We focused mainly on types that
you could define in other languages like Haskell. We built a simple natural
number and saw the type definition of a list. We also saw the way static type
systems might protect us from errors like possible null values. These are the
highlights:

• The language is strongly typed.
• Type classes allow parameterized polymorphism.
• We laid the foundation for exploring dependent types in Day 2.

Next, you’ll put many of these features to use.

Chapter 7. Idris • 252

report erratum • discuss

http://www.idris-lang.org/documentation/faq
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Your Turn
These exercises will focus on using Idris as a general-purpose programming
language. If you don’t find ones you like here, search for some Haskell prob-
lems that look appealing. You’ll see a few problems to get you used to writing
general programs in Idris, and a few more that will focus on building basic
types.

Find…

The Idris language is new, and though the name is unique, a Google search
on the name will find more people than lambdas. For better detective work,
mix the word “lang” or “language” into your search.

• The official Idris language home page
• Editor plugins or syntax highlighting for your editor of choice
• Talks about Idris from the creator, Edwin Brady
• Idris mailing lists, where you can ask questions
• The definition of List that ships with Idris

Do (Easy):

• Find the numbers in a list that are greater than a given number.
• Find every other member of a list, starting with the first member.
• Build a data type representing a playing card from a standard poker deck.
• Build a data type representing a deck of cards.

Do (Medium):

• Create data types representing even and odd numbers such that:
– The successor to an even number is an odd number, and
– The successor to an odd number is an even number.

• Build a parameterized data type representing a binary tree.

Do (Hard):

• Reverse the elements of a list. (Hint: You may need some helper functions.)

Day 2: Getting Started With Dependent Types
Day 1 was about the basics, laying the foundation for today. Today, we’re
going to take some of the mystery out of whether or not a program works.
We’ll start with our type model.

report erratum • discuss

Day 2: Getting Started With Dependent Types • 253

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Understanding Dependent Types
In most languages, types and values are independent. List, String, and Integer
are types that describe the values [], "Hello", and 6. Said another way, types
describe values.

In dependently typed languages like Idris, types still describe values, but
types may also depend on values. This allows us to use more of the language
to define our types.

For example, Idris has a vector family of types: Vect n a represents lists of length
n and element type a. With most traditional type systems, you could define a
function that takes a list, but you couldn’t specifically say it takes, for
instance, a list of exactly five items.

In Idris, though, you can express these sorts of constraints. Imagine the
possibilities for your API:

• chessRow can return a list of length 8.
• sort can take a list and return a list of the same length.
• zip x, y, z can take n lists of the same length, and return a list of that length.
• transpose x can enforce the relationship between matrix x and the result.

Today, we’ll learn to write exactly these sorts of types. Keep in mind that all
of this expressiveness comes at a cost: type declarations that can be signifi-
cantly more complicated and difficult to understand. The benefits, though,
are substantial. Each time you give the compiler more information, bugs must
creep further away to avoid detection. All compilers do basic syntax checking.
Haskell has rich type compatibility information. Idris begins to invite the
meaning of your programs into that bug-free zone.

Dependent typing is for more than safety, though. Editors designed for the
language can do more sophisticated code completion. We can even use a
built-in proof engine to prove or disprove assertions, based on the type model.

Excited? Great! Let’s build some dependent types.

Creating Vector Types
A spouse’s traditional first anniversary gift is paper, and a programmer’s
traditional first program is Hello, world. If you’re going to fit in among the coffee
shop geeks who use dependent typing, your first dependent type should be
a vector. Don’t ask why; just roll with it.

Our type declaration will require a natural number and a type. Here’s the
definition for Vect that you would find in Prelude:

Chapter 7. Idris • 254

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

That’s a data type definition with just three lines, but they are pretty dense.
Let’s start at the top. We are building a type family called Vect that takes a Nat
and a Type and returns a Type.

Using more precise terminology, we’d say Vect is indexed by Nat and parame-
terized by Type. Indexed by means that the numeric parameter changes across
a data structure. Parameterized by means that the element type stays the
same over the entire data structure.

The where clause further qualifies the definition. For elements of this type, one
of the two definitions must be true. In this clause, we’re going to define certain
types of Vect elements, and an operator.

Whitespace is significant. Each line of the where clause must be indented more
than the where line. In each line of the clause, a is a Type, and k is a Nat.

Let’s think about what we need to do in order to represent the whole universe
of vectors. We need to:

• Define vectors of length zero
• Define the types of all other vectors that are one element larger than the

previous vector

Let’s look at the lines of the where clause now.

The second line defines Nil as a vector of size zero, or Z.

The last line defines the (::) operator for adding elements. The first argument
is an element of type a, and the next is a vector of type Vect k a. The resulting
type is a vector that’s one larger than k, or S k. Thus the type is Vect (S k) a.

So… we’re saying that Vect k a is a type where one of the following is true:

• Either k is Z (an element we will call Nil), or
• The vector of size k + 1 is a concatenation of an element of type a onto a

vector of size k.

Whew. If you’re not used to reasoning about types in this way, that code might
seem intense. That dense code opens up a whole universe. We shouldn’t gloss
too quickly over what we’ve done here, so once more: In our definition, a is a
type and k is a value.

On Day 1, we used arithmetic operators in plain old expressions—for example,
4 + 5. In the next section, we’re going to use them in our function declarations.

report erratum • discuss

Day 2: Getting Started With Dependent Types • 255

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Deriving Dependent Types
Let’s think about functions that might operate on our vectors. Concatenating
two vectors of known size is not too difficult. We can declare such a function
like this:

(++) : Vect 3 Integer -> Vect 2 Integer -> Vect 5 Integer

That’s cute, but not too interesting. When we have two vectors of arbitrary
size, some magic happens. We can use the same functions and operators that
manipulate natural numbers within our function declaration. Here’s the
actual definition of the concatenate operator in Prelude:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

That + operator in the first line is a big deal. It presents the promise of
dependent types. Instead of limiting type declarations and programs to differ-
ent universes, we can use much more of the expressive power of the Idris
language within our type definitions. This type definition actually maintains
the relationship of two vectors of fixed size.

The recursive code is straightforward. Adding a vector to a Nil vector gives you
the original vector, and adding a list to vector ys concatenates the head of
that vector to the concatenation of the tail with ys.

Sure, the types make it more complex, but you get something for the exchange.
Try to find the bug in this program, a logic error, not a syntax error:

idris/day2/bad_vector.idr
add : Vect n a -> Vect m a -> Vect (n + m) a
add Nil ys = ys
add (x :: xs) ys = x :: add xs xs

Did you spot it? We’ve added xs to xs instead of ys. Idris can catch the error.
Compile the file, and you’ll get this:

bad_vector.idr:3:5:When elaborating right hand side of add:
Can't unify

Vect n a
with

Vect m a

Specifically:
Can't unify

n
with

m

Chapter 7. Idris • 256

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/idris/day2/bad_vector.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Now, you can start to imagine the possibilities. Idris spots the problem that
dynamically typed languages could not because the type system has more
information and reports the bug. Fix the problem, and the code compiles and
works just fine.

From Vectors to Matrices

Let’s use similar function type declarations to look at some other functions.
Rather than focus on implementation, let’s focus strictly on the type defini-
tions.

Say we have a matrix with dimensions x and y, of type a. We’d express a 4×5
matrix of integers with Matrix 4 5 Integer. It’s easy to express matrix arithmetic
between arbitrary matrices, like this:

(+) : Matrix x y a -> Matrix x y a -> Matrix x y a
...

We’re not limited to operators that have identical data types. Let’s say we
want to implement transpose. For example, we might want to transpose the
matrix to a 5×4 matrix of integers. The type definition is strikingly simple:

transpose : Matrix x y a -> Matrix y x a

Since we are using parameterized natural numbers and referring to them by
name, we can use those definitions elsewhere in the type definition.

Restricting Values in a Leap Year
Let’s get a bit more complex. We can also build invariants to ensure that a
dynamic check has occurred. Put another way, we can use the compiler to
prevent the programmer from forgetting to deal with bad data.

Look at this data type, from Prelude:

data so : Bool -> Type where
oh : so True

Doesn’t look like much, does it? But let’s go over what we know about this
type:

• so is a dependent data type taking a Bool (we say it’s indexed over Bool).
• There is one inhabitant called oh, so that the Bool must be True

If we combine this type with a data structure, callers will only be able to get
at the contents that go with so True. That property is exactly what we want
when we’re trying to restrict the dates to something valid.

report erratum • discuss

Day 2: Getting Started With Dependent Types • 257

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Using Our Dependent Type

Date math is particularly troubling because it has so many exceptions. Leap
years are especially tedious because of the rules governing them. Leap years
happen every four years, unless the year is divisible by 100 but not 400. Let’s
build a couple of functions to see whether the components of a leap year are
correct.

We can start by creating a few functions. These functions will help us deter-
mine whether a year is a leap year and whether the values of year, month, and
day are all valid:

idris/day2/leap_year.idr
isLeap : Integer -> Bool
isLeap year = (mod year 400 == 0) ||

((mod year 4 == 0) && not (mod year 100 == 0))

numberOfDays : Integer -> Integer -> Integer
numberOfDays year 2 = if isLeap year then 29 else 28
numberOfDays _ 9 = 30
numberOfDays _ 4 = 30
numberOfDays _ 6 = 30
numberOfDays _ 11 = 30
numberOfDays _ _ = 31

validDate : Integer -> Integer -> Integer -> Bool
validDate year month day = (day >= 1) &&

(day <= numberOfDays year month) &&
(month >= 1) &&
(month <= 12)

The helper functions are pretty straightforward. isLeap determines whether or
not a given year is a leap year, numberOfDays tells us how many days are in a
month for a given year, and validDate tells us whether the year, month, and
day combination is valid.

How might we implement a Date type in a language without dependent types?
We’d probably throw together a data structure containing three arbitrary
integers: year, month, and day. Maybe we’d get fancy and create separate
types for each of those.

In Idris, we can go one step further and say that not just any integers will do.
The year, month, and day have to satisfy an invariant that’s part of the data
type:

idris/day2/leap_year.idr
data Date : Integer -> Integer -> Integer -> Type where

makeDate : (y:Integer) -> (m:Integer) -> (d:Integer) -> so (validDate y m d)
-> Date y m d

Chapter 7. Idris • 258

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/idris/day2/leap_year.idr
http://media.pragprog.com/titles/7lang/code/idris/day2/leap_year.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

A Date has Integer components for days, months, and years, as we expected.
The magic happens in the constructor we build for the type. makeDate enforces
an invariant using so. That means when we create a date, we’ll get the following
result:

*leap_year> makeDate 1964 2 29
makeDate 1964 2 29 : (so True) -> Date 1964 2 29
*leap_year> makeDate 1965 2 29
makeDate 1965 2 29 : (so False) -> Date 1965 2 29

Invalid dates have a completely different type than valid dates! This means
we can write programs where it’s impossible for our fellow programmers (or
us) to forget to check a date. The compiler won’t let them forget.

What would such a check look like? One approach would be to use the choose
function:

Idris> :t choose
Prelude.Either.choose : (b : Bool) -> Either (so b) (so (not b))

Either can represent one of two outcomes, dubbed Left and Right. So, choose
(validDate y m d) will return either Left (so True) or Right (so False), depending on the
numbers.

So, someone calling our makeDate function might use it as follows with poten-
tially unsafe data:

idris/day2/leap_year.idr
dateFromUnsafeInput : (y:Integer) -> (m:Integer) -> (d:Integer)

-> Maybe (Date y m d)
dateFromUnsafeInput y m d = case choose (validDate y m d) of

Left valid => Just (makeDate y m d valid)
Right _ => Nothing

The case construct pattern-matches the result of choose with either the Left
(valid date) or Right (invalid date) path. Only if we have valid input can we
extract the Date out of makeDate.

Before we wrap up for the day, let’s hear from Edwin Brady, creator of Idris.

Us: Why did you write Idris?

Brady: The first implementation of Idris arose around 2000 from some experiments
I had been doing with a couple of Haskell libraries. One was a theorem proving
library called Ivor, and the other a simple functional language intended as a com-
piler target called Epic. After a little bit of glue and some surface syntax, it became
Idris. So, to some extent, it was an accident!

I studied type theory and dependent types as a graduate student at the University
of Durham, in the north of England, under James McKinna and Conor McBride. I

report erratum • discuss

Day 2: Getting Started With Dependent Types • 259

http://media.pragprog.com/titles/7lang/code/idris/day2/leap_year.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

decided it would be nice to have my own system in which I could experiment with
syntax, runtime systems, optimizations, high-level language features, and so on,
without having to be constrained by any design choices made by existing systems.
For example, Idris is more liberal about termination checking than Coq or Agda.

By mid-2011 Idris had become a very useful tool to support my own research, but
it wasn’t really usable by anyone else except a few brave early adopters. So I
decided to throw it all away and start again from scratch, now that I had a better
understanding of the kind of language I wanted. Furthermore, I had an idea about
how to implement it in a modular way such that it would be much easier to experi-
ment with new features.

Us: What is your favorite language feature?

Brady: Generally my favorite features of any language are the ones which allow
me to translate my ideas into a running programming with as little typing as possible!
So my favorite Idris feature is not so much a language feature, but the support in
the REPL for interactive editing. This has allowed us to build interactive editor modes
for Emacs and Vim fairly quickly, supporting case splitting, proof search, and other
useful features for program generation.

Us: If you could go back and start over, what’s the one feature you’d most love to
change?

Brady: Strictly speaking, I did go back and start over! That would be a lot harder
now, however. Idris is built on a small core language with very few features, and
as a result we have found that we can make fairly large changes or extensions to
the surface language without breaking existing code. A recent example of such a
change is the change to explicitly typed laziness, which required no changes to the
core and only minor changes to code generation.

Having said that, there are other choices we could have made for the core language
itself. I now think it would have been a good idea to build on OTT (Observational
Type Theory). OTT is, essentially, a type system which is friendly for programmers
but has better support for mathematical reasoning. I think we could still do this
without changing the high-level language, but that is a project for the future!

Us: What’s the most interesting problem you’ve seen solved with Idris?

Brady: Researchers at the Potsdam Institute for Climate Impact Research have
been using Idris to model and verify solutions to dynamic programming problems.
This is an interesting project in its own right, but has been particularly useful to the
Idris project as a whole because, as one of the largest pieces of Idris code around,
it has really helped uncover a lot of tricky bugs in the language implementation!
The code is not (yet) publicly available, but a part of the work is documented in a
paper published at PLMMS 2013, available from http://eb.host.cs.st-
andrews.ac.uk/writings/plmms13.pdf.

Really, though, the most interesting problems for me are the ones which haven’t
been solved yet! In particular, there are currently quite a few efforts to implement
and verify aspects of secure communicating systems, the protocols, and cryptograph-

Chapter 7. Idris • 260

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

ic primitives. The effects library is a big part of this, in particular because it tracks
resource state (for example, whether a file is open or what the next action in a pro-
tocol must be) in the type. Since actions must be executed in the right order (for
example, open a file for reading, read the file, close) and the protocol must be run
to completion, errors such as the notorious “goto fail” can be caught by the type
checker! There is some way to go before this is a reality, but I think it is an exciting
prospect, and an important problem.

What We Learned in Day 2
In Day 2, we left behind our Haskell roots and eased our way into dependent
types. We built a couple of simple vector and matrix types, and then jumped
into leap year calculations. Here are the highlights:

• Types can depend on values, such as a list having a fixed integer size.
• We can do arithmetic (or other operations) on types at compile time.
• We can embed sophisticated invariants into the type system.

Now, it’s your turn to try out dependent types.

Your Turn
These problems will focus on dependent types. In your solution, try to use
the most restrictive type you can, such as Vect instead of List.

Find…

• Other languages that use dependent types

Do (Easy):

• Write a type for an m×n matrix.
• Write a function to mirror a matrix horizontally.

Do (Medium):

• Write a data type to hold the pixels in a display, taking into account color
and size.

• Write a function to transpose the matrix so that element m, n in the
argument is element n, m in the result.

Do (Hard):

• Write a function using so that does not allow colors or dimensions that
are out of bounds.

report erratum • discuss

Day 2: Getting Started With Dependent Types • 261

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Day 3: Dependent Types in Action
In Day 2, you built some dependent data types, including vectors and a leap
year. You may have noticed that these types took more up-front work than
before. What features could possibly make all that extra effort worthwhile?
Settle in. We’re on the case.

First, we’ll look at the spectacular ways the type system can help you write
programs. With more information, Idris can take code completion places
you’ve likely never been before. Then, we’ll look at using the type system to
reason about the way our programs behave by constructing a proof. Finally,
we’ll see how reasoning in Idris can help us improve our programs in other
languages. It’s a busy day, so let’s get started.

Smarter Completion
In this section, we’re going to use the Vim editor with an Idris plugin called
idris-vim to get a powerful development environment with autocompletion. This
tool doesn’t come with the main Idris package, but you can install it easily
using the instructions on the project page.5

The plugin works by communicating with a running Idris shell. Launch Idris
with a nonexistent file, proof.idr, and then edit the file in Vim by typing :e from
within Idris:

> idris proof.idr
*proof> :e

Now, add the following code to the file in Vim:

idris/day3/proof.idr
module Proof

data Natural = Zero | Suc Natural

plus : Natural -> Natural -> Natural

At this point, you’ve done the heavy lifting: you’ve defined a data type to rep-
resent natural numbers. Now, you’re going to write a function to add two
natural numbers—but with the help of Idris.

Since Idris knows what your type looks like, it can help with the structure of
the program. With the cursor at the end of the last line, type \d , the default
key to ask idris-vim for a template definition. The skeleton of your function will
appear:

5. https://github.com/idris-hackers/idris-vim

Chapter 7. Idris • 262

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/idris/day3/proof.idr
https://github.com/idris-hackers/idris-vim
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

plus : Natural -> Natural -> Natural
plus x x1 = ?plus_rhs

Idris has generated a function body from our signature and left a hole, ?plus_rhs,
for us to fill (we’ll see how later). This is something any IDE could do. But
now, we’re going to go a step further.

Take a peek at the type definition again. We have two cases to cover: Zero and
Suc. Idris can use that information to provide a better function definition. Put
the cursor over x and hit \c . The body of the function will expand to two cases:

plus : Natural -> Natural -> Natural
plus Zero x1 = ?plus_rhs_1
plus (Suc x) x1 = ?plus_rhs_2

Look at that. Idris read your type definition and correctly produced the pattern
match on the second argument. Let’s see how far the tool can take us. Place
your cursor over the first hole, ?plus_rhs_1, and type \o (for obvious):

plus Zero x1 = x1
plus (Suc x) x1 = ?plus_rhs_2

This is indeed the correct behavior for adding Zero to any value x. And we
didn’t even have to write the code! The only part we have to provide on our
own is the body of the second hole:

plus : Natural -> Natural -> Natural
plus Zero x1 = x1
plus (Suc x) x1 = Suc (plus x x1)

You could switch over to a console to run the program, but there’s a faster
way to run a quick test. In idris-vim, you can type \e followed by an expression
you want to evaluate:

Expression: plus (Suc Zero) (Suc Zero)

Idris will run the code and show you the result:

= Suc (Suc Zero) : Natural

Press ENTER or type command to continue

1 + 1 never looked so sweet.

As your type definitions get more sophisticated, the tool will be able to write
more of your program for you. In the exercises, you’ll get the chance to practice
this technique. If you’d like to try it now, have a look at the first medium-
difficulty assignment in Your Turn, on page 273 before we move on.

report erratum • discuss

Day 3: Dependent Types in Action • 263

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

QED, Dear Watson
Idris can do more than just check types and write parts of programs. It can
also prove theorems. There is a deep and beautiful relationship between
checking types and proving theorems.6 In the limited time we have today,
we’ll just be cracking the door into this world.

Idris has an arsenal of different proof strategies. Today, we’re going to combine
a few of the simpler tactics to write a proof by induction, a staple of mathemat-
ics and computer science.7

What are we going to prove? Let’s show that the plus function we just wrote
is commutative—in other words, that plus x y is equal to plus y x for all natural
numbers x and y.

A proof by induction has two parts:

• The base case, where we show the property (commutativity) is true for
zero

• The inductive step, where we show that, if the property is true for y, then
it’s also true for y + 1

For our plus function, that means we need to prove the following two state-
ments:

• plus Zero y = plus y Zero
• If plus x y = plus y x, then plus (Suc x) y = plus y (Suc x)

Where will these proofs go? With Idris, you can embed proofs in your source
code files, or you can build them interactively in the REPL. We’re going to
hop back and forth between these techniques today.

Anatomy of a Proof

Let’s start by putting the outline of our proof in the source code, and then
we’ll fill in the gaps at the console. Add the following line to the end of your
proof.idr file:

idris/day3/proof.idr
plusCommutes : (x : Natural) -> (y : Natural) -> plus x y = plus y x

Our proof has a signature, just like any other function. Now, it needs a body.
Let’s put in the base case first, leaving a hole that we’ll fill in later:

6. https://en.wikipedia.org/wiki/Curry-Howard
7. https://en.wikipedia.org/wiki/Mathematical_induction

Chapter 7. Idris • 264

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/idris/day3/proof.idr
https://en.wikipedia.org/wiki/Curry-Howard
https://en.wikipedia.org/wiki/Mathematical_induction
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

idris/day3/proof.idr
plusCommutes Zero y = ?plusCommutes_0_y

The final piece of the outline is the inductive step.

idris/day3/proof.idr
plusCommutes (Suc x) y = let hypothesis = plusCommutes x y in

?plusCommutes_Sx_y

On the right side, you can see how we’ve assumed that plusCommutes x y. It’s
up to us to get from there to plusCommutes (Suc x) y, using tiny steps that nudge
the proof forward one expression at a time.

The outline of our proof is ready for us to fill in. But we’re going to need some
axioms, which are a bit like helper functions. They’re properties of addition
that we’re going to use in our proof. Add the following two axioms just before
your proof outline:

idris/day3/proof.idr
plusZero : (x : Natural) -> plus x Zero = x
plusSuc : (x : Natural) -> (y : Natural) -> Suc (plus x y) = plus x (Suc y)

plusZero says that any number plus zero is itself. plusSuc deals with adding
numbers and then taking the successor. Both of these will come in handy for
our proof.

Isn’t it cheating just to assume these two properties are true? Shouldn’t we
prove them first, before we’re allowed to use them in another proof? Don’t
worry; you’re going to get the chance to do exactly that in the exercises.

Interactive Proof

For now, though, let’s press on. Launch the REPL and load your proof.idr file:

Idris> :l proof.idr
Type checking ./proof.idr

Now, ask Idris which parts of our proof are missing, using the :m command:

*proof> :m
Global metavariables:

[Proof.plusCommutes_Sx_y,Proof.plusCommutes_0_y]

We see the two holes we left in our outline. Let’s prove the base case first.
The :p command starts a proof:

*proof> :p plusCommutes_0_y
---------- Goal: ----------
{ hole 0 }:
(y : Natural) -> y = Proof.plus y Zero

report erratum • discuss

Day 3: Dependent Types in Action • 265

http://media.pragprog.com/titles/7lang/code/idris/day3/proof.idr
http://media.pragprog.com/titles/7lang/code/idris/day3/proof.idr
http://media.pragprog.com/titles/7lang/code/idris/day3/proof.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Idris is telling us what we have to do to satisfy the conditions of the proof.
We have to show that, given y is a natural number, y = plus y Zero.

The first simplfication we can make is to assume that y is indeed a natural
number. We do so with the intros proof tactic, which essentially means, “Yes,
assume we have the arguments to our function.”

-Proof.plusCommutes_0_y> intros
---------- Other goals: ----------
{ hole 0 }
---------- Assumptions: ----------
y : Natural

---------- Goal: ----------
{ hole 1 }:
y = Proof.plus y Zero

Idris has filled in our assumption (that y is a natural number), and has given
us a new and simpler goal. There’s a bunch of bookkeeping in the middle:
holes we haven’t filled yet and assumptions we’ve made so far. From now on,
we’ll skip over that stuff in the output.

Look at the bottom line: y = plus y Zero. That’s our new goal. We need to trans-
form the left side of the equals sign until it matches the right.

Do we have any axioms that say we’re allowed to transform y into plus y Zero?
Indeed, the plusZero axiom spells out exactly this property. We’ll use Idris’s
rewrite proof tactic to rewrite y using plusZero:

-Proof.plusCommutes_0_y> rewrite (plusZero y)
...
---------- Goal: ----------
{ hole 2 }:
Proof.plus y Zero = Proof.plus y Zero

Now, all we have left to prove is that plus y Zero matches plus y Zero. But these
already match! The trivial proof tactic exists for this situation:

-Proof.plusCommutes_0_y> trivial
plusCommutes_0_y: No more goals.

No more goals; that means we’re done with the base case. Use the qed com-
mand to finish the proof:

-Proof.plusCommutes_0_y> qed
Proof completed!
Proof.plusCommutes_0_y = proof

intros
rewrite (plusZero y)
trivial

Chapter 7. Idris • 266

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Idris has helpfully summarized our proof steps for us. You can now paste
those three lines into proof.idr like so:

idris/day3/proof.idr
plusCommutes_0_y = proof {

intros
rewrite (plusZero y)
trivial

}

And that’s it for the base case.

The Next Step

Back in the REPL, we can ask Idris which holes still need filling:

*proof> :m
Global metavariables:

[Proof.plusCommutes_Sx_y]

Ah, yes, the inductive step. Let’s start the proof for it:

*proof> :p plusCommutes_Sx_y
---------- Goal: ----------
{ hole 0 }:
(x : Natural) ->
(y : Natural) ->
(Proof.plus x y = Proof.plus y x) -> Suc (Proof.plus x y) = Proof.plus y (Suc x)

As before, we use the intros tactic to assume we have natural numbers for
arguments:

-Proof.plusCommutes_Sx_y> intros
...
---------- Goal: ----------
{ hole 3 }:
Suc (Proof.plus x y) = Proof.plus y (Suc x)

Now, we need to transform the left side of the equals sign to match the right
side. We need to change Suc (plus x y) into plus y (Suc x). Our plusSuc axiom will
make this transformation for us. Let’s apply it, using the rewrite tactic again:

-Proof.plusCommutes_Sx_y> rewrite (plusSuc y x)
...
---------- Goal: ----------
{ hole 4 }:
Suc (Proof.plus x y) = Suc (Proof.plus y x)

So close! The only change left to make is to transform plus x y into plus y x. Do
we have anything in our toolbox to fit this situation? Indeed, we do.

report erratum • discuss

Day 3: Dependent Types in Action • 267

http://media.pragprog.com/titles/7lang/code/idris/day3/proof.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Recall that we’re in the inductive step of our proof. We’re showing that, if
commutativity holds for x, then it also holds for x + 1. In other words, we’re
allowed to assume that plus x y = plus y x. In our proof skeleton, we defined this
as the hypothesis variable:

idris/day3/proof.idr
plusCommutes (Suc x) y = let hypothesis = plusCommutes x y in

?plusCommutes_Sx_y

Once again, we use the rewrite tactic to change the expression on the left:

-Proof.plusCommutes_Sx_y> rewrite hypothesis
---------- Goal: ----------
{ hole 5 }:
Suc (Proof.plus x y) = Suc (Proof.plus x y)

We’re left with a matching left and right side that we can dispatch trivially:

-Proof.plusCommutes_Sx_y> trivial
plusCommutes_Sx_y: No more goals.
-Proof.plusCommutes_Sx_y> qed
Proof completed!
Proof.plusCommutes_Sx_y = proof

intros
rewrite (plusSuc y x)
rewrite hypothesis
trivial

Go ahead and paste the proof steps into your source file:

plusCommutes_Sx_y = proof {
intros
rewrite (plusSuc y x)
rewrite hypothesis
trivial

}

Whew! Let’s take a step back and look at what we’ve accomplished.

What Proofs Do for Us

Imagine how you might make sure plus is commutative in another programming
language. You’d probably write a few test cases: zero, equal numbers, large
numbers, and so on. Every time you changed your function, you’d rerun your
tests.

With Idris, you don’t have to worry about thinking up enough test cases to
gain confidence. Your proof shows that plus is commutative for all natural
numbers, not just a few arbitrary test values. And it runs every time you
compile your source code!

Chapter 7. Idris • 268

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/idris/day3/proof.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Now, let’s look at a slightly different definition of plus. Can you spot the error?

idris/day3/badProof.idr
plus : Natural -> Natural -> Natural
plus Zero x1 = x1
plus (Suc x) x1 = Suc (Suc (plus x x1))➤

When we try to load the program in Idris, we can see the result:

Idris> :l proof.idr
Type checking ./proof.idr
proof.idr:72:19:When elaborating right hand side of Proof.plusCommutes_Sx_y:
Can't unify

Suc (Proof.plus x y) = Suc (Proof.plus x y)
with

Suc (Suc (Proof.plus x y)) = Suc (Proof.plus x y)

Specifically:
Can't unify

Proof.plus x y
with

Suc (Proof.plus x y)

Indeed, x + y does not equal x + y + 1.

Commutativity is a pretty simple property. But Idris allows you to construct
longer and more useful proofs about your functions and their types. On a
typical day, you might try a few different strategies in interactive mode, and
then combine them into a programmatic proof.

You can’t prove that every line of your program is correct, of course. But you
can check a lot more than you might think. You can show that a function’s
behavior is defined for all inputs, or that you’re encrypting your critical data
correctly. Once you’ve been down this road, you might be shocked at how
little we protect our important programs today.

Does all this talk of theorems and proofs sound a bit lofty? Do dependent
types seem like an academic idea that’s difficult to apply in the real world?
If so, read on. In the next section, we’re going to see how to use Idris to
understand and improve programs written in more mainstream languages.

The Real World
Ideas move faster than codebases can. Most of us will find ourselves working
on an older programming language sometimes, or even most of the time. Old
programming languages usually fall out of favor because they can no longer
express ideas as concisely or powerfully as new ones.

report erratum • discuss

Day 3: Dependent Types in Action • 269

http://media.pragprog.com/titles/7lang/code/idris/day3/badProof.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Surely we have to leave the beauty of Idris behind when we go back to our
day-to-day programming tasks. Or do we?

Old languages will shape the way you think as surely as newer ones will. As
we’ll see, the lessons Idris teaches us apply perfectly well in the real world.
In this section, we’re going to use the clean mathematical notation of Idris to
design the types for a C++ program.

Part of the joy of defining types in this way is that the implementations are
obvious. Accordingly, we’re just going to focus on the types today. If you’d
like to implement and compile them, you can do so with the tools we used in
Outfitting for Adventure, on page 33.

A C++ Mess

Let’s say we’re building a GPS application for a bike computer. We will need
to track our bike as it moves from location to location. If you’ve read or written
much C++ code, you’ve probably seen some classes that look like this:

idris/day3/gps.h
#include <string>
#include <vector>

class Trip
{
public:

class Point
{
public:

Point(double lat, double lon, double time);

double lat() const;
double lon() const;
double time() const;

// ...
};

void addPoint(double lat, double lon, double time);

void setName(const std::string& name);
std::string name() const;

size_t count() const;
const Point& getPoint(size_t index) const;

// ...
};

Chapter 7. Idris • 270

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/idris/day3/gps.h
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

A Ride is a list of Points, each of which consists of a latitude, longitude, and
time. Each time we get an updated location from the GPS unit, we add a new
item to the list.

Our API also allows us to find out how many locations we’ve collected and to
get the properties for any particular location.

This design may not get us on the pages of The Daily WTF, but it is definitely
a little chaotic. The API doesn’t really capture the intent of what we’re doing,
and it’s going to be difficult to answer critical questions:

• Where was the vehicle at a given point in time?
• When was a vehicle closest to a given location?

We can get this information out of the API indirectly, by grabbing the individ-
ual points and then doing a bunch of math. As we write more and more code,
you’re going to see more and more duplication of effort, and you’ll have to
work harder and harder to express the intention behind the design. We need
to take a step back.

Denotational Design

We’ll use Idris as a virtual whiteboard for exploring the shape of our program.
This technique is called denotational design. Despite the intimidating name,
the concept is quite simple. Conal Elliott describes it eloquently in his 2009
term paper Denotational design with type class morphisms.8

Elliott says that programmers should follow two steps to design their types:

1. Describe in mathematical notation what each type should do, without
worrying about implementation details.

2. Implement the type using whatever languages, performance hacks, and
trade-offs you need.

Idris gives us a nice mathematical notation to describe each type, including
the operations we want to perform with it. We’re not just talking about basic
function signatures here; we can specify what these operations do. For
instance, we could describe a collection’s clear method, and then assert that
the collection is empty after clear is called.

Back to the Roots

Let’s boil our GPS example down to its essentials. What is a bike trip? More
generally, what is a trip?

8. http://conal.net/papers/type-class-morphisms/

report erratum • discuss

Day 3: Dependent Types in Action • 271

http://conal.net/papers/type-class-morphisms/
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Switching to Idris for a second, we want to say that a trip is a sequence of
locations over time. We can already hear you jumping ahead to implementa-
tion: internal arrays of data points, sampling frequency, and so on. Hold those
thoughts and just think about what we need from this type.

What is a location? It doesn’t matter. Maybe it’s a pair of degree coordinates.
Maybe it’s a three-dimensional point. Maybe it’s a named waypoint. Any of
these concepts would work, and it’s too early to nail down this implementation
detail.

At its most basic level, a trip just gives us a location at a point in time. With
Idris, we don’t actually have to say what the location type is yet. Thanks to
parameterized types, we can write a function that’s valid no matter what the
details are.

Here’s how we might express this idea in Idris:

idris/day3/gps.idr
Trip : (Location : Type ** (Float -> Location))

That is, a Trip is a pair of two items: a Location type (whatever that might even-
tually be) and a function that gives us the location at a particular time (rep-
resented by a Float).

Dependent Pairs

You may have noticed a new syntax here for defining pairs: (first ** second) instead of
(first, second). The ** notation means that the type of the second item may depend on
the type of the first. For instance, here’s a pair containing a length and a vector of
that length:

idris/day3/evens.idr
firstThreeEvens : (n ** Vect n Int)
firstThreeEvens = (3 ** [2, 4, 6])

The number and the length of the vector have to match; otherwise, you’ll see a type
error.

An Improvement

Now that we’ve spilled some hard-earned ink on our virtual whiteboard, let’s
shift back to C++. How do we express a pair, where one element is a data type
and the other is a function?

In C++, we can’t pass data types into ordinary functions. We can, however,
pass them into templates, C++’s closest equivalent to dependent types:

Chapter 7. Idris • 272

report erratum • discuss

http://media.pragprog.com/titles/7lang/code/idris/day3/gps.idr
http://media.pragprog.com/titles/7lang/code/idris/day3/evens.idr
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

idris/day3/gps.h
template <typename Location>
class Trip
{
public:

Location operator()(double);

// ...
};

This template takes as input a Location type and generates—what, exactly? Not
quite a function, like we did in Idris. Instead, we generate the next best thing:
a class that we can call like a function; that’s what the operator() method does.

As we did with Idris, we’re using floating-point numbers to represent time.

So, what is a Location? It depends on the application. For this GPS device, it
may be something simple like a latitude/longitude pair:

idris/day3/gps.h
typedef std::pair<double, double> BikeLocation;
typedef Trip<BikeLocation> BikeTrip;

For the aerospace simulator we’re writing tomorrow, it’ll be three-dimensional
Cartesian coordinates.

Because we started by sketching in Idris, we have a much better conceptual
start for our GPS tool. We’ve captured the core idea of our type: providing the
location at any given time.

In the first version of the C++ code, we were thinly wrapping a collection type
from the standard library. Callers had to worry about individual data points,
indices, and counts. But now, we’re exposing only what the user needs. And
we’re doing a better job of answering the questions the user cares about.

Even though this is a toy example, you can see the benefit of building a con-
ceptual type in a stronger language and then moving it to C++. As your
problem domains get more complex, this benefit grows even stronger.

With a powerful and rich language like Idris, we can only just begin scratch
the surface in one short chapter of a book.

It’s time to wrap things up so that you can go make your own discoveries.

Your Turn

Find…

• The mathematical definitions of total function and partial function

report erratum • discuss

Day 3: Dependent Types in Action • 273

http://media.pragprog.com/titles/7lang/code/idris/day3/gps.h
http://media.pragprog.com/titles/7lang/code/idris/day3/gps.h
http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

• Video and slides for David Sankel’s C++Now 2013 talk, “The Intellectual
Ascent to Agda”

• The source code to the Prelude library’s Nat module, which contains several
example proofs

• A list of proof tactics available in Idris

Do (Easy):

• Write the signature of a function, typeNamed, that will take the name of a
type and return that type. For example, typeNamed "Int" would return the
type Int.

• Implement your typeNamed function for a few different types.

Do (Medium):

• Use the techniques in Smarter Completion, on page 262 to write a Vector
data type and a vectorAdd function to add two vectors together.

• Add the keyword total to the beginning of your typeNamed function signature
from the Easy section—that is, total typeNamed : Reload your file, and see
that your function is not total (defined for all inputs). Make your function
total by giving it behavior for bad inputs such as "ThisIsNotAType".

Do (Hard):

• Prove the plusZero and plusSuc axioms from Anatomy of a Proof, on page 264.

• The bike GPS example currently uses plain floating-point numbers to
represent time. Change the type definition to allow a custom Time type to
be passed in.

Wrapping Up Idris
If you’re used to dynamically typed languages, Idris represents a tremendously
steep technical challenge. If, on the other hand, you’re already comfortable
with dependent types and category theory, you’ll likely appreciate the many
advances that Edwin Brady has made to bring this language closer to the
mainstream. Let’s break down the strengths and weaknesses.

Strengths
With Idris, types know more, so they can do more. In this chapter, we looked
at four practical improvements due to dependent types:

Chapter 7. Idris • 274

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

1. With more type information, compilers can catch more complex bugs,
including logic errors, at compile time.

2. When types can express structure, automatic code completion can go far
beyond basic syntax—to a degree that’s potentially revolutionary.

3. The same information about types allows better proofs about your code.
In certain fields, like protocols and cryptography, mistakes are much
harder to find and more expensive when they slip through. In Idris, you
can prove certain properties about your code (rather than just spot-
checking with unit tests).

4. Idris allows a good virtual whiteboard to reason about program structure
and types. This capability is useful to students and working programmers
alike.

Building more information into types leads to smarter tools and compilers.
It can lead to better programs, even ones we know are correct.

Weaknesses
There’s a downside to that extra information in dependent types: you have
to take the time to express them. The learning curve is steep, even more so
than for Haskell, and the code can be quite dense. Idris is not for everyone.

One other drawback to Idris, and one we’re hoping to remedy in part by
introducing it here, is that there aren’t many examples of its use floating
around. The tutorials will get you to Hello, world!, but then the trail ends
abruptly at an edifice of types.

Final Thoughts
Very few languages change the way that you fundamentally approach pro-
gramming. Idris certainly had that effect on us. It improved our habits and
gave us a clear way to think through our types—and yet, it did so without
imposing a lot of overhead and ceremony. This mental revolution will serve
us well on all our projects, no matter what the type system looks like.

The tooling, particularly theorem proving and code completion, is much more
powerful and advanced than we’ve seen in other languages—and we didn’t
even need an expensive IDE to get the benefit.

Idris may not be a commercially popular language, but that will not lessen
its contribution. Idris will increasingly make its mark in places where
behavior is complex and mistakes are expensive. It may also be the language
that finally brings programming rigor to the masses.

report erratum • discuss

Wrapping Up Idris • 275

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

CHAPTER 8

Wrapping Up
by Bruce Tate

Hopefully, you’ve made it through another seven languages in seven weeks.
In the foreword, José Valim compared walking through these seven languages
to the beginning of your own journey. This particular trip has taken you
through diverse programming models, including Factor’s concatenative style,
Elm’s reactive programming, Lua’s prototypes, miniKanren’s combination of
logic and functional techniques, and various takes on functional programming.

Some will try to tell you that this journey is worthless, that you can’t truly
learn a language in seven days any more than you can learn Italian by eating
at the Olive Garden once a week. If you’ve worked through these exercises,
you know different. Traveling for the sake of traveling is not worthless. True,
on your brief trip you’ve not yet accumulated the fluency of a permanent
resident, but you have been there. The books in this series are designed to
give you quick immersions in the community that will leave more than a
passing, shallow impression. You’ve done things, from building a game to
telling a story with code. As José says, the lessons will be different for each
reader.

As a programmer, you’ll never be more than the sum of your experiences.
Any journey will leave lingering impressions of the steps along the path. Let’s
take a few moments to reinforce those images so they become a more perma-
nent part of our mental toolbox. For now, I’d like to think about that journey
as a passage through time.

The Origins
True, none of the languages in this book go all of the way back to the origins
of computing. Still, we can look at where we want to go and consider the
languages that will help us form a better mental image of how to get there.

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Of the languages in this book, Lua and Factor have the oldest foundations.
The other five are much newer. Lua has been around in some form for over
20 years and was formally released some 15 years ago. Factor was created
in 2003. After working through those chapters, you can probably appreciate
why they’re in this book.

The Power of Prototypes
Though JavaScript programming has exploded, few people understand what
prototype programming is all about. JavaScript, in some ways, muddies the
waters around programming models. If you’re not a JavaScript expert, it helps
to step back and take in another prototype language, one that’s more pure.

Lua is putting its mark on everyday programming as a language for embedded
systems and scripting because the language is compact, pure, adaptable, and
clean. The prototype model, at its simplest, is a marvelously malleable
paradigm for organization.

I’ll go one step further. The prototype programming model does a fantastic
job as an embedded foundation for programming languages on the browser.
You even used Lua to build an object model. Understanding tricks like these,
you can see why so many are enthusiastically embracing JavaScript as a
compilation target for a wide variety of browser technologies like Elm, and
that’s why the language is in the book. It’s not just Lua that’s interesting.

Reinforcing Functional Composition
As our industry creeps closer to a broad adoption of functional languages,
all developers will need to learn the widest possible variety of techniques for
composing with functions. After you’ve worked through both Factor and Elixir,
you can appreciate the similarities between composing with pipes and stacks.

One of the best things about working with Factor as an object-oriented pro-
grammer for me was that I could start to deprogram the way that I’ve been
structuring the world without giving up rich libraries. I also thought the
development environment reflected the strengths of the language very well.

Initial Stepping-Stones
We chose the functional programming model for the preponderance of the
languages in this book and the original Seven Languages in Seven Weeks
[Tat10] because we believe that is where this industry is going. Languages
like Lua and Factor are clearly steps toward us getting there; they helped us
experiment with code organization and with the way projects and libraries

Chapter 8. Wrapping Up • 278

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

hung together, and they helped to increase our idioms—our vocabulary for
dealing with the world in code.

Like any expedition, ours had to step beyond those initial stepping-stones.
Let’s talk about the next three languages—those practical languages that
formed the well-marked pathways through the heart of our journey.

The Central Expressway
The next few languages in the book are deeply anchored in critical problems
plaguing our industry today. Julia is addressing performance and organiza-
tional problems in the R language; Elixir is José’s answer to the same sorts
of problems he found as a central Ruby developer; and Elm is a deeply prac-
tical language stretching the limits of reactive programming in a functional
language with a better type model.

In these few chapters, you saw some of the major thrusts in language devel-
opment today. Let’s review the major messages.

Functional Programming Meets Practical and Reactive
There was a day when the term functional programming conjured up images
of heavily bearded wizards in the dank halls of academia that brought monads
down to the masses…well, at least the masses who wanted to write programs
without any side effects, like input or output. Elm’s goal is to bring some of
that same purity and power to the browser. The whole language oozes practi-
cality, and the end result is as pleasing and surprising as any new language
I’ve experienced.

It’s my strong belief that as clients get more powerful, we’re going to see more
and more code run there. Since the languages embedded in a browser are
not likely to change, any change in programming language is going to need
to compile to JavaScript as a target. Elm does so, and it allows the user to
solve the most difficult problems without having to redefine problems in terms
of callbacks. When you don’t have to cripple your mental model to express a
program, great things can happen, as you saw as you built the game with
fewer than 200 lines of code. After some exploration in the browser, we
shifted squarely to the server side.

Macros, Beautiful Syntax, and Concurrency
As we picked up speed, we found ourself in the land of Elixir. This community
has an excitement unmatched by any other language in the book right now.
I’m not sure if it’s a magic potion, but something is in the communal water

report erratum • discuss

The Central Expressway • 279

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

supply. The base language was growing almost faster than I could write. It’s
my belief that macros allow that speed. Good developers using macros can
just move more quickly, especially when creating basic building blocks that
require new syntax.

The language itself has marvelously good taste. With Ruby as a model, the
Elixir syntax feels friendly and mixes in powerful concepts like pattern
matching. Elixir allows plenty of rich options for dealing with all aspects of
functions. The ecosystem, though it is young, is already rich and robust; it
offers great build tools, a package manager, and smooth distributed debugging
tools.

It’s not just the core language that’s so exciting. José is not building in a
vacuum. He’s building on top of perhaps the most robust distribution
framework in the world: Erlang’s OTP. The most critical element of that system
is the way that you can use the language to manage failure. When processes
die, the overall system can deal with those problems in practical ways.

Technical Computing Gets an Overhaul
The next stop was Julia. Truth be told, the Julia language was one of the last
we added to this lineup. We didn’t think there was enough to say about yet
another technical language, and if we did decide to do one, MATLAB or R
seemed to be more prominent choices. When we saw what the language cre-
ators were trying to do, we gave it a look. Jack met the language creators in
St. Louis for the Strange Loop conference, and he was solidly convinced.

After spending some time with the language, we could see what all of the buzz
was about. Where other technical languages offer optimizations and C inter-
faces, Julia seeks to achieve strong performance right out of the box with
compiler features and excellence of language design. The language is well
positioned for the future, with good support for parallel computing and the
functional features that a new developer community will increasingly demand.

Now, it’s all about building the libraries. When you look at a new language
with an eye for adoption, it’s important to understand the growth of the
community, as well as the pace of growth of the libraries and core language.
Both of these metrics look great for Julia. It’s my firm belief that Julia, or
something like it, will absolutely emerge as an important player in the techni-
cal community.

Chapter 8. Wrapping Up • 280

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Happening Spots
Each of the languages in this section represents a strong attempt to build a
general-purpose language that’s squarely aimed at a specific problem domain.
These languages were not built for learning; they were built for use. You can
see the decisions that the designers made and see the impacts of those deci-
sions.

These languages represent where we are. Though none of them has yet
accumulated a full and practical community, they are each starting to pick
up some traction. You’ll get to see in real time whether those solutions capture
the imagination of enough programmers to accumulate that incredibly difficult
early majority.

For now, though, let’s move on, way out to the edge.

The Frontier
In the last two languages in the book, we traverse the frontiers of programming
theory. We look at a new programming model that combines macros, logic,
and functional programming with a general-purpose language in miniKanren.
We also look at the concepts related to a powerful typing theory in Idris.

Logic, Meet World
Prolog and I have a love-hate relationship. I love the way I can focus on the
problem and leave the solution to the computer. My primary problems with
Prolog have mostly been related to making those ideas more practical. It’s
those areas around the edges, where I’m filtering, presenting, trimming, or
otherwise manipulating a stream of solutions that come up short. I also have
problems extending Prolog when I move into a new problem domain.

Enter miniKanren. The ability to take a logic engine and drop it into the
middle of a powerful general-purpose programming language changes every-
thing. The result, though, is entirely new. When you combine macros with
functions, rules, and logic, you get something that is entirely new. It’s a new
programming model that doesn’t act like anything else out there. I could
imagine miniKanren as a flash in the pan, a model that’s just too difficult or
alien for typical programmers to understand. I can also see it as a game
changer, becoming a critical component of general-purpose languages. Right
now, there’s just not enough experience. You can decide if you can make it
work for you.

report erratum • discuss

The Frontier • 281

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Are You My Type?
I have often thought that the language for expressing types and languages
could be more unified. A vector is interesting—a vector of size n more so.
Seeing dependent types in front of me really floored me. I do confess, some-
times, it felt like too much. I do think these ideas have promise. Languages
like Idris and Agda will help us explore these critical ideals.

The real Idris eye-opener was not just the way my code changed, but how my
attention shifted in the programming process. In one of the many phone
conversations among the authors over the course of writing this book, Ian
and I both expressed the same idea. As we wrote code in Idris, we spent more
time thinking about types than behavior. As the code completion gets more
sophisticated and tools get better, this change would only get more pro-
nounced.

Idris represents a reinforcement of a critical value for me: let the computer
do the work. With Idris, editors can do more comprehensive code completion.
Compilers can do more sophisticated enforcement, such as making sure you
can only write to open files. Provers can do more of the jobs dedicated to
handwritten tests today. At some point, the work required to express and
think about those types could be offset by gains on these other frontiers. I
guess you could say that I’m captivated by the promise of what Idris can
become.

The Dirty Map
I’ve taken many vacations with my family, and whenever we go somewhere
special, we always sit the kids down and pull out the map, with all of its coffee
stains and fragile fold lines. The goal is to start a conversation so that each
voyager can generalize the lessons learned. Eventually, we want our kids to
answer for themselves one question: “What does this trip tell you about the
world that you didn’t know before?” For this journey, your lessons may be
different from mine, but these are some of the trends that I notice.

The Type Pendulum Swings Again
When I started working with Ruby, many developers were rebelling against
the type system in Java. I was a hard-core proponent of dynamic typing. My
stance has softened over time, and I’m not the only one. You can see Idris
and Elm are both doing excellent work on types. After reviewing my chapter,
Evan Czaplicki asked me to review a paper he wrote. He wanted to introduce

Chapter 8. Wrapping Up • 282

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Monads to Elm users but using much more practical terminology, exposing
only the details that are useful to get practical work done.

Edwin Bray with Idris is working on the jagged frontiers of type theory, and
we’re starting to see what magic is possible with tooling and proof engines if
only our compilers have more information to work with. The same things are
generally true across the broader spectrum of language design. It’s early, but
my guess is that we’ll see a new family of strongly typed languages soon, and
we’ll see many more languages with a strong Haskell emphasis.

Concurrency Pushes Hard
Y2K, the date problem that ominously arrived at the turn of the millennium,
came with dire warnings from every corner of the globe but went out with
barely a whimper. A silent killer is coming that will have much more business
impact. Hardware is moving aggressively toward multicore without the software
to support it. Most existing languages will be too slow, too buggy, and too
complicated. A few extra locks and threads won’t solve the problem. The
overhaul must be much more foundational. Most of the languages in this
book have a good story for concurrency. For Julia and Elixir, simple parallel
programming is one of the fundamental problems each language solves. Pro-
grammers and companies must start moving toward languages that support
new hardware today to have any chance of competing in the next few years
to come.

The Browser Needs Help
I overheard a language expert as he and a colleague were trying to name all
of the languages that compiled to JavaScript. They were able to name over
20. When they looked online to see if they had gotten them all, there were
128! Innovation doesn’t just happen because new technologies are cool. It
happens when there’s a market need. In this case, the market is keenly feeling
the need for better control, cleaner programs, and better reliability, which
can only come from a better language, one that treats types in a cleaner way.
Since JavaScript isn’t going to slip away any time soon, that new language
is going to have to support JavaScript compilation.

Functional Languages Evolve
In 2010, Seven Languages in Seven Weeks [Tat10] described a new wave of
functional languages. Those languages focused primarily on basic functional
concepts. The next generation, languages like Elixir, Julia, and Elm, is more
practical and easier to understand, and generally has cleaner foundations.

report erratum • discuss

The Dirty Map • 283

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Each of these languages does something very well and significantly raises the
bar of their counterparts. Elixir’s macros are allowing the language to evolve
much more quickly than the Erlang counterpart. Elm’s signals allow a more
beautiful implementation, especially where callbacks are concerned. Julia’s
compiler technology allows more intuitive code through constructs that the
typical technical programmer understands and achieves optimizations through
better libraries and just-in-time compilation rather than forcing use of obscure
libraries or writing significant chunks in C. Across the board, we’re seeing
excellent support for things like macros, with an eye for developing good
libraries quickly.

The World Shrinks
For rapid adoption, languages depend on a large and active community, per-
haps more so than any other technology. When Erlang was developed in the
late 1980s, just about all of the team was from Stockholm, Sweden. Fast-
forward to 2014. José Valim, who created the language, is from Brazil and
lives in Poland. Eric Meadows Johnson, the other core team member, lives
in Sweden, as does Joe Armstrong, one of the original creators of Erlang and
key advisor. Dave Thomas, who wrote the first book on Elixir, is from Dallas,
and Elixir committers span five continents.

The language team is not the only part of the global equation. Today, Elixir
workshops have been held in more than ten countries, and hundreds enjoyed
the first dedicated Elixir conference in Austin, Texas this year.

The world is smaller than it used to be. Once again, we’re seeing small teams
use programming languages for a competitive advantage, and teams once
again correctly fear failure more than they do lack of language adoption. It’s
just much easier to do business with a smaller ecosystem, as long as that
community is active and effective.

A Final Challenge
From the bottom of our hearts, thanks for sharing this journey with us. Rather
than preach at you for a couple more minutes, I’m going to let José’s foreword
do the talking. Take what you’ve learned in this book and use it. Maybe you
can use the languages in this book to implement your own language as José
did. Or maybe you’ll take one of the five languages that are still very much
in the formative developmental stages and dive in. You won’t have to look too
far to find your own wide open road. Open up the throttle and see where it
takes you.

Chapter 8. Wrapping Up • 284

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Bibliography

[Arm07] Joe Armstrong. Programming Erlang. The Pragmatic Bookshelf, Raleigh,
NC, and Dallas, TX, 2007.

[Cyl07] Topher Cyll. Practical Ruby Projects. Addison-Wesley, Reading, MA, 2007.

[Dao14] Jack Moffitt, Fred Daoud. Seven Web Frameworks in Seven Weeks. The
Pragmatic Bookshelf, Raleigh, NC, and Dallas, TX, 2014.

[FBK05] Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The Reasoned
Schemer. MIT Press, Cambridge, MA, 2005.

[Hel13] Ian Dees, Matt Wynne, Aslak Hellesoy. Cucumber Recipes. The Pragmatic
Bookshelf, Raleigh, NC, and Dallas, TX, 2013.

[RW12] Eric Redmond and Jim R. Wilson. Seven Databases in Seven Weeks. The
Pragmatic Bookshelf, Raleigh, NC, and Dallas, TX, 2012.

[Tat10] Bruce A. Tate. Seven Languages in Seven Weeks. The Pragmatic Bookshelf,
Raleigh, NC, and Dallas, TX, 2010.

report erratum • discuss

http://pragprog.com/titles/7lang/errata/add
http://forums.pragprog.com/forums/7lang

Index

A
anonymous functions

Elixir, 130–131
Elm, 95
Factor quotations as, 55
Idris, 247
Julia, 192

applicative languages, 50

arrays
Julia, 174, 177–181
Lua tables as, 16–17

B
Bezanson, Jeff (creator of Ju-

lia), 193–194

bike trip example, 270–273

Brady, Edwin (creator of
Idris), 259–261

branching, see conditionals

C
C++

Lua integrating with, 32–
38

type design example,
270–273

callbacks
Elixir, 149, 156
Elm alternative to, 102–

106

cart checkout example, 73–79

Clojure, 209–211, 220

CMake tool, 33, 36

code completion example,
262–263

combinators, Factor, 58

comma-separated values
(CSV), 2

communities, for languages,
284

concatenative languages, 50

concurrency, 283
Elixir, 160–161
Julia, 189–192
Lua, 24–29

conditionals
Elixir, 127
Elm, 92
Factor, 55
Julia, 183–185
Lua, 10–11
miniKanren, 216–217,

224–226

control structures, see condi-
tionals; iteration

core.logic implementation of
miniKanren, 209–211

coroutines, Lua, 24–29

CSV (comma-separated val-
ues), 2

currying, Elm, 97–99

Czaplicki, Evan (creator of
Elm), 101–102

D
Daoud, Fred (author), xvii

data types
dependent, 243–244,

254–259, 282
dynamic, 5–6, 243, 282–

283
Elixir, 128–130, 147
Elm, 91–94, 97–99, 114–

115

Factor, 54–55
Idris, 243–246, 249–252,

254–259
immutable, 95, 128–130,

147
Julia, 173–174
Lua, 5–6
polymorphic, 98–99, 250–

251
static, 243
strongly-typed, 282–283
user-defined, 185–186

date type checking example,
257–259

Dees, Ian (author), xvii–xviii

denotational design, 271

dependent types, 243–244,
254–259, 282

dictionaries
Julia, 174–177
Lua tables as, 14–17

drawing graphics, Elm, 108–
109, 120–122

dynamic types, 5–6, 243,
282–283

E
Edelman, Alan (creator of Ju-

lia, 193–194

Elixir language, xvii, 125,
167–169

as functional, 128, 278
callbacks, 149, 156
compared to Ruby, 127–

130
compile-time flow, 152–

156
concurrency, 160–161

conditionals, 127
creator of, 158–160
data types, 128–130, 147
destructuring, 128
Enum libraries, 138
Erlang OTP libraries with,

161–166
expressions, 127
for comprehensions, 139–

140
functions, 130–132, 140
guards, 133
immutable types, 128–

130, 147
installation, 126
interactive interface, 126–

127
iteration, 127, 133–134
keyword lists, 140
lists, 136–139
macros, 150–156, 279
maps, 135
metaprogramming, 143–

144
Mix build tool, 142, 163–

164
modules, 131–134
nil value, 127
pattern matching, 128,

135, 137
pipes, 131
recursion, 138
spawning processes, 160–

161
state machine, 143–157
strengths of, 125, 167–

168, 279–280
strings, 127
structs, 144–145
supervisor for applica-

tions, 164–166
tests for, writing, 149–

150
tuples, 128
video store example, 143–

157, 161–166
weaknesses of, 168

Elm language, xvii, 89–90,
123–124

as functional, 95, 279
callbacks, alternative to,

102–106
compiling to JavaScript,

89
conditionals, 92
creator of, 101–102
currying, 97–99
data types, 91–94, 97–

99, 114–115

drawing graphics, 108–
109, 120–122

expressions, 90–92
functions, 95–99
immutable types, 95
installation, 90
Language Head game ex-

ample, 111–122
lists, 91–94, 96
maintaining state, 104–

105
map function, 103–106
modules, 114
online editor, 103
pattern matching, 92, 97
pipes, 95
polymorphic types, 98–99
records, 94–95
recursion, 96, 116
REPL, 90
signals, 103–106, 112–

113, 115–116
strengths of, 124
text input, handling,

107–108
type classes, 91
user input/output, han-

dling, 102–108
weaknesses of, 124

Enum libraries, 138

Erlang OTP libraries, 161–166

examples
bike trip, 270–273
C++ type design, 270–273
cart checkout applica-

tion, 73–79
code completion, 262–

263
date type checking, 257–

259
Fizz Buzz, 80–83
image codec, 199–204
Language Head game,

111–122
music library, 32–45
proving theorems, 264–

269
story generator, 229–238
video store, 143–157,

161–166
website for, xxi

expressions
Elixir, 127
Elm, 90–92
Idris, 246
Julia, 197
Lua, 6–7
miniKanren, 212

F
Factor language, xvii, 49–50,

86–87
as concatenative, 50
as functional, 49, 278
Boolean values, 54
cart checkout example,

73–79
code editors for, 84
combinators, 58
comments, 53
conditionals, 55
conflicting with factor util-

ity, 67
creator of, 70–72
data types, 54–55
demos for, 85
Fizz Buzz example, 80–83
installation, 51
Listener UI, 51
math operators, 53
online help, 63
pipelines of words, 77–83
quotations, 55
ranges, 56
sequences, 54, 56
stack, 49, 51–54, 57–58
standalone programs, 65–

68
strengths of, 49–50, 86
tuples, 74–76
unit tests for, 68–70
vocabularies, 63–68, 83–

84
weaknesses of, 87
whitespace, 56
words (functions), 49, 51–

54, 62–63

finite domains, miniKanren,
229–231

first-class values, Lua, 7

Fizz Buzz example, 80–83

for comprehensions, Elixir,
139–140

functional languages, 278–
279, 283–284

Clojure, 210, 220
Elixir, 128, 278
Elm, 95, 279
Factor, 49, 278
Idris, 252
Julia, 206

functions
Elixir, 130–132, 140
Elm, 95–99
Factor words as, 49, 51–

54, 62–63

Index • 288

Idris, 246–249, 256–257
Julia, 186–189, 192
Lua, 7–10
miniKanren, 212, 217–

218, 221–222

G
games

graphics for, 108–109,
120–122

modeling, 114–115
rules of, 113
skeleton for, 111–113
stepping through, 116–

120
timing and input states,

115–116
user input/output, han-

dling, 102–108

graphics, drawing, with Elm,
108–109, 120–122

guards, Elixir, 133

H
Haskell, Idris based on, 244,

252

help, Factor, 63

Homebrew package manager,
34

homoiconicity, 196

I
idioms, xv–xvi

Idris language, xviii, 243–
244, 274–275

as functional, 252
based on Haskell, 244,

252
bike trip example, 270–

273
C++ type design example,

270–273
code completion example,

262–263
compiling and running

programs, 245
creator of, 259–261
data types, 243–246,

249–252, 254–259
date type checking exam-

ple, 257–259
denotational design, 271
dependent types, 243–

244, 254–259, 282
expressions, 246
functions, 246–249, 256–

257

installation, 244–245
lazy evaluation, 252
nil or null values, 251
parameterized types,

250–251, 255
pattern matching, 259
Prelude library, 247–248
proving theorems exam-

ple, 264–269
recursion, 256
REPL, 245
strengths of, 243–244,

274–275, 282
type classes, 251
vectors, 254–257
Vim editor plugin, 262
weaknesses of, 275

idris-vim plugin, 262

Ierusalimschy, Roberto (cre-
ator of Lua), 29–30

iex command, 126–127

image codec example, 199–
204

immutable types
Elixir, 128–130, 147
Elm, 95

inheritance, Lua, 23–24

installation
Elixir, 126
Elm, 90
Factor, 51
Idris, 244–245
Julia, 172
Lua, 3–4
miniKanren, 210–211

inversion of control, 102

iteration
Elixir, 127, 133–134
Julia, 183–185
Lua, 11, 15

J
Java Virtual Machine (JVM),

210

JavaScript
as applicative, 50
callbacks, Elm alternative

to, 102–106
compiling to, 89, 283
Fizz Buzz example, com-

pared to Factor, 81–83
limitations of, 89
prototypes, compared to

Lua metatables, 17

Julia language, xviii, 171–
172, 206–207

arrays, 174, 177–181

as functional, 206
concurrency, 189–192
conditionals, 183–185
creators of, 193–194
data types, 173–174
dictionaries, 174–177
expressions, 197
functions, 186–189, 192
homoiconicity, 196
image codec example,

199–204
installation, 172
iteration, 183–185
macros, 195–198
modules, 202–204
multiple dispatch, 187–

189
operators, 174–175
Pkg package manager,

199–200
REPL, 172–173
sets, 177
strengths of, 171–172,

206, 280
symbols, 173, 196
tuples, 174
user-defined types, 185–

186
weaknesses of, 206

JVM (Java Virtual Machine),
210

K
Karpinski, Stefan (creator of

Julia), 193–194

keyword arguments, Lua, 10

L
Language Head game exam-

ple, 111–122

lazy evaluation, 252

Leiningen build tool, 210

Listener UI, Factor, 51

lists
Elixir, 136–139
Elm, 91–94, 96
Factor sequences as, 54

logic programming, 209, 211–
212, 281

loops, see iteration

Lua language, xvii, 1–3, 47
arrays, 16–17
as table-based, 3
concurrency, 24–29
conditionals, 10–11
coroutines, 24–29
creator of, 29–30

Index • 289

data types, 5–6
expressions, 6–7
functions, 7–10
importing libraries, 15
inheritance, 23–24
installation, 3–4
integration with C++, 32–

38
interpreter for, creating,

35
iteration, 11, 15
keyword arguments, 10
metatables, 17–20, 23
modules, 27, 29
music library example,

32–45
nil value, 6, 8, 10, 15
non-interactive develop-

ment, 12
OO functionality, imple-

menting, 21–24
prototypes, 3, 22–23, 278
REPL, 4
scheduler using, 26–29,

42–43
strengths of, 1–3, 47
strings, 5–6
syntax, 5
tables, 3, 9–10, 14–20
tail calls, 9
variables, 11
weaknesses of, 47
whitespace, 5

M
macros

Elixir, 150–156, 279
Julia, 195–198
miniKanren, 220–221,

230

maintaining state, Elm, 104–
105

maps
Elixir, 135
Factor sequences as, 55
miniKanren, 222–223

metaprogramming, Elixir,
143–144

metatables, Lua, 17–20, 23

MIDI (Musical Instrument
Digital Interface), 32

miniKanren language, xviii,
209, 240–241
conda macro, 224–226
conde macro, 216–217,

226
conditionals, 216–217,

224–226

condu macro, 225–226
conso relation, 217–218
core.logic implementa-

tion, 209–211
creator of, 226–227
db function, 214
db-rel function, 214
defn macro, 218
defne macro, 221–222
embedded in Clojure,

209, 211
expressions, 212
featurec relation, 223
finite domains, 229–231
fresh macro, 215–216
functions, 212, 217–218,

221–222
installation, 210–211
logic programming, 209,

211–212, 281
macros, 220–221, 230
maps, 222–223
matche macro, 220–221
membero relation, 213
pattern matching, 220–

222
pldb database, 214
recursion, 217–218
relations, 213–216
results, 212–213
run macro, 213
run* macro, 211, 213
story generator example,

229–238
strengths of, 240, 281
unification operator (==),

212
weaknesses of, 240
with-db macro, 215

Mix build tool, Elixir, 142,
163–164

modules
Elixir, 131–134
Elm, 114
Factor vocabularies as,

63–66
Julia, 202–204
Lua, 27, 29

Moffit, Jack (author), xviii

multiple dispatch, Julia, 187–
189

multitasking, Lua coroutines
for, 26–29

multithreading, see concur-
rency

music library example, 32–45

Musical Instrument Digital
Interface, see MIDI

N
nil or null values

Elixir, 127
Idris, 251
Lua, 6, 8, 10, 15

Nolen, David (creator of
core.logic), 226–227

O
object-oriented programming,

see OO programming

online resources, see website
resources

OO (object-oriented) program-
ming

prototypes for, in Lua, 3,
21–24

tuples for, in Factor, 74–
76

OTP libraries, Erlang, 161–
166

P
package managers, Julia,

199–200

padsp program, 34

parameterized types, Idris,
250–251, 255

pattern matching
Elixir, 128, 135, 137
Elm, 92, 97
Idris, 259
miniKanren, 220–222

Pestov, Slava (creator of Fac-
tor), 70–72

pipelines of words, Factor,
77–83

pipes
Elixir, 131
Elm, 95

Pkg package manager, Julia,
199–200

pldb database, miniKanren,
214

polymorphic types, 251
Elm, 98–99
Idris, 250

Prelude library, 247–248

processes, spawning, Elixir,
160–161

Index • 290

programming languages, rea-
sons to learn, xv–xvi, see
also specific languages

prototypes, Lua, 3, 22–23,
278

proving theorems example,
264–269

Q
quotations, Factor, 55

R
ranges, Factor, 56

records, Elm, 94–95

recursion
Elixir, 138
Elm, 96, 116
Idris, 256
Lua, 9
miniKanren, 217–218

relations, miniKanren, 213–
216

REPL (read–eval–print loop)
Clojure, 211
Elm, 90
Idris, 245
Julia, 172–173
Lua, 4

RtMidi library, 33, 36

Ruby, compared to Elixir,
127–130

S
scheduler, Lua, 26–29, 42–43

sequences, Factor, 54, 56

sets, Julia, 177

Shah, Viral (creator of Julia),
193–194

signals, Elm, 103–106, 112–
113, 115–116

SimpleSynth MIDI player, 34

spawning processes, Elixir,
160–161

stack, Factor, 49, 51–54, 57–
58

state machine, Elixir, 143–
157

static types, 243

story generator example, 229–
238

strongly-typed languages,
282–283

structs, Elixir, 144–145

symbols, Julia, 173, 196

Synaptic package manager,
34

T
table-based languages, 3

tables, Lua, 3, 9–10, 14–20

Tate, Bruce (author), xvi–xvii

theorem proofs example, 264–
269

threading, see concurrency

tuples
Elixir, 128
Factor, 74–76
Julia, 174

type classes
Elm, 91
Idris, 251

types, see data types

U
unit tests, Factor, 68–70

user input/output handling,
Elm, 102–108

V
Valim, José (creator of Elixir),

158–160

variadic functions, Lua, 8

vectors, Idris, 254–257

video store example, 143–
157, 161–166

Vim editor plugin, Idris, 262

VirtualMIDISynth MIDI play-
er, 34

Visual Studio Express, 33

vocabularies, Factor, 63–66,
83–84

W
website resources

CMake tool, 33
Elixir, 126
Elm, 90
Enum libraries, 138
examples in this book,

xxi
Factor, 51
Homebrew package man-

ager, 34
Julia, 172
JVM, 210
Leiningen build tool, 210
Lua, 4
miniKanren, 209
padsp program, 34
RtMidi library, 33
SimpleSynth MIDI player,

34
Synaptic package manag-

er, 34
VirtualMIDISynth MIDI

player, 34
Visual Studio Express, 33
Xcode command-line

tools, 34
ZynAddSubFX synthesiz-

er, 34

words, Factor, see functions:
Factor

X
Xcode command-line tools,

34

Z
ZynAddSubFX synthesizer,

34

Index • 291

Seven in Seven
From Web Frameworks to Concurrency Models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will
help you create better apps. You’ll see frameworks that
leverage modern programming languages, employ
unique architectures, live client-side instead of server-
side, or embrace type systems. You’ll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38
https://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle
thousands of users and terabytes of data, and continue
working in the face of both hardware and software
failure. Concurrency and parallelism are the keys, and
Seven Concurrency Models in Seven Weeks equips you
for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con

https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

More Seven in Seven
There’s so much new to learn with the latest crop of NoSQL databases. And instead of
learning a language a year, how about seven?

Seven Databases in Seven Weeks
Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond your basic tutorial to explore
the essential concepts at the core of each technology.

Eric Redmond and Jim R. Wilson
(354 pages) ISBN: 9781934356920. $35
https://pragprog.com/book/rwdata

Seven Languages in Seven Weeks
You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
https://pragprog.com/book/btlang

https://pragprog.com/book/rwdata
https://pragprog.com/book/btlang

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir
You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Maybe you need something that’s closer to Ruby, but
with a battle-proven environment that’s unrivaled for
massive scalability, concurrency, distribution, and
fault tolerance. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(340 pages) ISBN: 9781937785581. $36
https://pragprog.com/book/elixir

Programming Erlang (2nd edition)
A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(548 pages) ISBN: 9781937785536. $42
https://pragprog.com/book/jaerlang2

https://pragprog.com/book/elixir
https://pragprog.com/book/jaerlang2

Roll Your Own Languages
From domain-specific languages to your own full-blown parsers, let Terence Parr show you
how.

Language Implementation Patterns
Learn to build configuration file readers, data readers,
model-driven code generators, source-to-source
translators, source analyzers, and interpreters. You
don’t need a background in computer science—ANTLR
creator Terence Parr demystifies language implementa-
tion by breaking it down into the most common design
patterns. Pattern by pattern, you’ll learn the key skills
you need to implement your own computer languages.

Terence Parr
(378 pages) ISBN: 9781934356456. $34.95
https://pragprog.com/book/tpdsl

The Definitive ANTLR 4 Reference
Programmers run into parsing problems all the time.
Whether it’s a data format like JSON, a network proto-
col like SMTP, a server configuration file for Apache,
a PostScript/PDF file, or a simple spreadsheet macro
language—ANTLR v4 and this book will demystify the
process. ANTLR v4 has been rewritten from scratch to
make it easier than ever to build parsers and the lan-
guage applications built on top. This completely
rewritten new edition of the bestselling Definitive ANTLR
Reference shows you how to take advantage of these
new features.

Terence Parr
(328 pages) ISBN: 9781934356999. $37
https://pragprog.com/book/tpantlr2

https://pragprog.com/book/tpdsl
https://pragprog.com/book/tpantlr2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/7lang
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/7lang

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/7lang
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/7lang
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	The Languages
	The Authors
	The Book

	Introduction
	The Lay of the Land
	Bruce Tate (Elixir, Elm)
	Fred Daoud (Factor)
	Ian Dees (Lua, Idris)
	Jack Moffit (Julia, miniKanren)
	Who Should Read This Book
	A Final Charge
	Online Resources

	1. Lua
	Day 1: The Call to Adventure
	Day 2: Tables All the Way Down
	Day 3: Lua and the World
	Wrapping Up Lua

	2. Factor
	Day 1: Stack On, Stack Off
	Day 2: Painting the Fence
	Day 3: Balancing on a Boat
	Wrapping Up Factor

	3. Elm
	Day 1: Handling the Basics
	Day 2: Taming Callbacks
	Day 3: It’s All a Game
	Wrapping Up Elm

	4. Elixir
	Day 1: Laying a Great Foundation
	Day 2: Controlling Mutations
	Day 3: Spawning and Respawning
	Wrapping Up Elixir

	5. Julia
	Day 1: Resistance Is Futile
	Day 2: Getting Assimilated
	Day 3: Become One with Julia
	Wrapping Up Julia

	6. miniKanren
	Day 1: Unified Theories of Code
	Day 2: Mixing the Logical and Functional
	Day 3: Writing Stories with Logic
	Wrapping Up miniKanren

	7. Idris
	Day 1: The Basics
	Day 2: Getting Started With Dependent Types
	Day 3: Dependent Types in Action
	Wrapping Up Idris

	8. Wrapping Up
	The Origins
	The Central Expressway
	The Frontier
	The Dirty Map
	A Final Challenge

	Bibliography
	Index
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Z –

