

What Readers Are Saying About

Seven Languages in Seven Weeks

Knowing multiple paradigms greatly influences our design abilities, so
I’m always on the lookout for good books that’ll help me learn them.
This book nicely brings prominent paradigms together. Bruce has
experience learning and using multiple languages. Now you can gain
from his experience through this book. I highly recommend it.

Dr. Venkat Subramaniam

Award-winning author and founder, Agile Developer, Inc.

As a programmer, the importance of being exposed to new program-
ming languages, paradigms, and techniques cannot be overstated.
This book does a marvelous job of introducing seven important and
diverse languages in a concise—but nontrivial—manner, revealing
their strengths and reasons for being. This book is akin to a dim-sum
buffet for any programmer who is interested in exploring new horizons
or evaluating emerging languages before committing to studying one
in particular.

Antonio Cangiano

Software engineer and technical evangelist, IBM

Fasten your seat belts, because you are in for a fast-paced journey.
This book is packed with programming-language-learning action.
Bruce puts it all on the line, and the result is an engaging, reward-
ing book that passionate programmers will thoroughly enjoy. If you
love learning new languages, if you want to challenge your mind, if
you want to take your programming skills to the next level—this book
is for you. You will not be disappointed.

Frederic Daoud

Author, Stripes ...and Java Web Development Is Fun Again and
Getting Started with Apache Click

Do you want seven kick starts into learning your “language of the
year”? Do you want your thinking challenged about programming in
general? Look no further than this book. I personally was taken back
in time to my undergraduate computer science days, coasting through
my programming languages survey course. The difference is that
Bruce won’t let you coast through this course! This isn’t a leisurely
read—you’ll have to work this book. I believe you’ll find it both mind-
blowing and intensely practical at the same time.

Matt Stine

Group leader, Research Application Development at St. Jude
Children’s Research Hospital

I spent most of my time as a computer sciences student saying I didn’t
want to be a software developer and then became one anyway. Seven

Languages in Seven Weeks expanded my way of thinking about prob-
lems and reminded me what I love about programming.

Travis Kaspar

Software engineer, Northrop Grumman

I have been programming for 25 years in a variety of hardware and
software languages. After reading Seven Languages in Seven Weeks, I
am starting to understand how to evaluate languages for their objec-
tive strengths and weaknesses. More importantly, I feel as if I could
pick one of them to actually get some work done.

Chris Kappler

Senior scientist, Raytheon BBN Technologies

Seven Languages in Seven Weeks
A Pragmatic Guide to Learning

Programming Languages

Bruce A. Tate

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Jackie Carter
Indexing: Potomac Indexing, LLC
Copy edit: Kim Wimpsett
Layout: Steve Peter
Production: Janet Furlow
Customer support: Ellie Callahan
International: Juliet Benda

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-59-X

ISBN-13: 978-1-934356-59-3

Printed on acid-free paper.

P1.0 printing, October 2010

Version: 2010-10-28

http://www.pragprog.com

Contents
Dedication 9

Acknowledgments 11

Foreword 14

1 Introduction 17

1.1 Method to the Madness 17
1.2 The Languages . 19
1.3 Buy This Book . 21
1.4 Don’t Buy This Book . 22
1.5 A Final Charge . 24

2 Ruby 25

2.1 Quick History . 26
2.2 Day 1: Finding a Nanny 28
2.3 Day 2: Floating Down from the Sky 35
2.4 Day 3: Serious Change 48
2.5 Wrapping Up Ruby . 56

3 Io 60

3.1 Introducing Io . 60
3.2 Day 1: Skipping School, Hanging Out 61
3.3 Day 2: The Sausage King 74
3.4 Day 3: The Parade and Other Strange Places 83
3.5 Wrapping Up Io . 92

4 Prolog 95

4.1 About Prolog . 96
4.2 Day 1: An Excellent Driver 97
4.3 Day 2: Fifteen Minutes to Wapner 109
4.4 Day 3: Blowing Up Vegas 120
4.5 Wrapping Up Prolog . 132

CONTENTS 8

5 Scala 135

5.1 About Scala . 135
5.2 Day 1: The Castle on the Hill 139
5.3 Day 2: Clipping Bushes and Other New Tricks 153
5.4 Day 3: Cutting Through the Fluff 167
5.5 Wrapping Up Scala . 176

6 Erlang 181

6.1 Introducing Erlang . 181
6.2 Day 1: Appearing Human 185
6.3 Day 2: Changing Forms 195
6.4 Day 3: The Red Pill . 207
6.5 Wrapping Up Erlang . 219

7 Clojure 223

7.1 Introducing Clojure . 224
7.2 Day 1: Training Luke . 225
7.3 Day 2: Yoda and the Force 243
7.4 Day 3: An Eye for Evil 256
7.5 Wrapping Up Clojure . 264

8 Haskell 268

8.1 Introducing Haskell . 268
8.2 Day 1: Logical . 269
8.3 Day 2: Spock’s Great Strength 285
8.4 Day 3: The Mind Meld 294
8.5 Wrapping Up Haskell . 309

9 Wrap-Up 313

9.1 Programming Models . 313
9.2 Concurrency . 317
9.3 Programming Constructs 319
9.4 Finding Your Voice . 321

A Bibliography 322

Index 323

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=8

Dedication
The five months from December 2009 through April 2010 were among
the most difficult of my life. My brother, not yet 47 years old, had emer-
gency bypass surgery. No one had any clue that anything was wrong
at all. (He came through the surgery without further incident and is
doing well.) In late March, my sister was diagnosed with breast cancer.
The biggest shock of all came in early March. My mother was diagnosed
with terminal cancer. A few short weeks later, she was gone.

As you would expect, I am left to struggle with the grief of a jarring
and unexpected loss because of a brutally efficient disease. I would
not be human otherwise. But strangely, this experience has not been
an entirely negative one. You see, my mother was at peace with the
remarkable life she lived, her relationships with her family were strong
and fulfilling, and she was exactly where she wanted to be with her
faith.

Lynda Lyle Tate put her creative energy into painting with watercolors.
She shared her art primarily through her Madison Avenue Art Gallery
and her classes. Before I left home, I had the opportunity to take a few
lessons from her. For someone from a technical profession, the experi-
ence was always a little disorienting. I would visualize the masterpiece
on my blank canvas. As the actual image took shape, it drifted further
and further from my original vision. When I despaired that things were
beyond my ability to fix, Mom looked over my shoulder and told me
what she saw. After a few flicks of her talented wrist added darks to
accentuate depth and highlights to add clarity and detail, I would real-
ize that I had not been too far astray at all. It just took a gifted touch to
bring back my creation from the brink of disaster. Then, I would throw
my excited arms up in victory and tell everyone in the class about this
thing I had created, not yet realizing that each member of the class was
going through their own private burst of joy.

DEDICATION 10

After a little while, I learned that Mom was working on another canvas
as well. Through her church and through her profession, she’d find
broken people. Encountering a lost spouse here or a troubled marriage
there, my mother would bring them into class where she would use the
paint and paper to slightly open a door that had been slammed shut.
As we spent our last week together, person after person would come
through her room devastated at the thought of losing their teacher, but
Mom would tell the perfect joke or offer the right word of kindness,
comforting those who came to comfort her. I got to meet the human
canvases who had been put right by the master and gone on to do great
things. It was a humbling experience.

When I told my mother that I would dedicate this book to her, she
said that she would like that, but she had nothing to do with com-
puters. That is true enough. The very thought of Windows would leave
her helpless. But Mom, you have had everything to do with me. Your
well-timed words of encouragement inspired me, your love of creativity
shaped me, and your enthusiasm and love of life guide me even now.
As I think about these experiences, I can’t help but feel a little better
and a little stronger because I, too, am a canvas shaped by the master.

This book is dedicated with love to Lynda Lyle Tate, 1936–2010.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=10

Acknowledgments
This is the most demanding book I have ever written. It’s also the most
rewarding. The people who have offered to help in various ways have
made it so. Thanks first and foremost to my family. Kayla and Julia,
your writing amazes me. You can’t yet imagine what you can accom-
plish. Maggie, you are my joy and inspiration.

In the Ruby community, thanks to Dave Thomas for turning me on
to the language that turned my career upside down and helped me
have fun again. Thanks also to Matz for your friendship and your offer
to share your thoughts with my readers. You invited me to Japan to
visit the place where Ruby was born, and that experience inspired me
much more than you will ever know. To Charles Nutter, Evan Phoenix,
and Tim Bray, thanks for the conversations about topics in this book
that must have seemed tiresome but helped me refine and shape the
message.

In the Io community, thanks to Jeremy Tregunna for helping me get
plugged in and sharing some cool examples for the book. Your reviews
were among the best. They were timely and helped build a much
stronger chapter. Steve Dekorte, you’ve created something special,
whether or not the marketplace ever recognizes it as so. The concur-
rency features rock, and the language has intrinsic beauty. I can def-
initely appreciate how much of this language feels right. Thanks for
helping this neophyte debug his installation. Thanks also for your
thoughtful reviews and your interview that helped me capture the es-
sence of Io. You captured the imagination of the beta readers and cre-
ated the favorite language of many of them.

In the Prolog community, thanks to Brian Tarbox for sharing your
remarkable experience with my readers. The dolphin projects, featured
on Nova, certainly add a dramatic flair to the Prolog chapter. Special
thanks go to Joe Armstrong. You can see how much your feedback
shaped the chapter and the overall book. Thanks also for contributing

ACKNOWLEDGMENTS 12

your map-coloring example and your ideas for Append. They were the
right examples delivered at the right time.

In the Scala community, thanks to my good friend Venkat Subrama-
niam. Your Scala book is both rich and understandable. I leaned on
it heavily. I greatly appreciate your review and the little bits of help
that you offered along the way. Those little bits of your time saved
me tremendous anguish and let me focus on the task of teaching.
Thanks also to Martin Odersky for helping this stranger by sharing your
thoughts with my readers. Scala takes a unique and brave approach
to integrating functional programming paradigms with object-oriented
paradigms. Your efforts are greatly appreciated.

In the Erlang community, I again thank Joe Armstrong. Your kindness
and energy have helped me form the ideas in this book. Your tireless
promotion of the way distributed, fault-tolerant systems should be built
is working. More than any other idea in any other language in this
book, Erlang’s “Let it crash” philosophy makes sense to me. I hope to
see those ideas more broadly adopted.

In the Clojure community, thanks to Stuart Halloway for your reviews
and ideas that forced me to work harder to bring a better book to
my readers. Your insights into Clojure and your instincts helped me
understand what was important. Your book was also hugely influential
in the Clojure chapter and actually changed the way I attacked some
problems in other chapters as well. Your approach in your consulting
practice is greatly appreciated. You’re bringing much-needed simplicity
and productivity to this industry. Thanks also to Rich Hickey for your
thoughtful ideas on the creation of the language and what it means to
be a Lisp dialect. Some ideas in Clojure are intensely radical and yet
so practical. Congratulations. You’ve found a way to make Lisp revolu-
tionary. Again.

In the Haskell community, thanks to Phillip Wadler for the opportu-
nity to look inside the process that created Haskell. We share a pas-
sion for teaching, and you’re very good at it. Thanks also to Simon
Peyton-Jones. I enjoyed working through your interview, the insights
you added, and the unique perspective you brought to these readers.

The reviewers did an outstanding job with this book. Thanks to Vladi-
mir G. Ivanovic, Craig Riecke, Paul Butcher, Fred Daoud, Aaron Bedra,
David Eisinger, Antonio Cangiano, and Brian Tarbox. You formed the
most effective review team I’ve ever worked with. The book is much

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=12

ACKNOWLEDGMENTS 13

stronger for it. I know that reviewing a book at this level of detail is
thankless, demanding work. Those of us who still like technical books
thank you. The publishing business could not exist without you.

I also want to thank those of you who shared your ideas about language
choice and programming philosophy. At various times, Neal Ford, John
Heintz, Mike Perham, and Ian Warshak made significant contributions.
These kinds of conversations made me look smarter than I really am.

Beta readers, thank you for reading the book and keeping me working.
Your comments have shown me that a good number of you are working
through the languages rather than casually skimming. I’ve changed the
book based on hundreds of comments so far and expect to do even more
throughout the life of the book.

Finally, to the team at the Pragmatic Bookshelf, I offer my sincerest
gratitude. Dave Thomas and Andy Hunt, you have had an incalculable
impact on my career as a programmer and again as an author. This
publishing platform has made writing viable again for me. We can take
a book like this one that might not be as attractive to the mass market
and make it financially worthwhile. Thanks to all the members of the
publishing team. Jackie Carter, your gentle hand and guidance were
what this book needed, and I hope you enjoyed our conversations as
much as I did. Thanks to those who labored in my shadow to make
this book the best it could be. Specifically, I want to thank the team
that labored so hard to make this book look good and correct all of my
bad habits, including Kim Wimpsett, the copy editor; Seth Maislin, the
indexer; Steve Peter, the typesetter; and Janet Furlow, the producer.
This book would not be what it is without you.

As always, mistakes that slipped through this fine team are all mine.
For those of you I missed, I offer my sincerest apologies. Any oversight
was not intentional.

Finally, thanks to all of my readers. I think that real hard-copy books
have value, and I can follow my passion and write because you do, too.

Bruce Tate

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=13

Foreword
From the yet to be written “How Proust Can Make You a Better

Programmer”

by Joe Armstrong, Creator of Erlang

“The Gmail editor cannot get typographic quotes right.”

“Disgraceful,” said Margery, “the sign of an illiterate programmer and a

decadent culture.”

“What should we do about it?”

“We must insist that the next programmer we hire has read all of ‘A la

recherche du temps perdu.”’

“All seven volumes?”

“All seven volumes.”

“Will it make them better at punctuation and make them get their quotes

right?”

“Not necessarily, but it will make them a better programmer. It’s a Zen

thing....”

Learning to program is like learning to swim. No amount of theory is
a substitute for diving into the pool and flailing around in the water
gasping for air. The first time you sink under the water, you panic, but
when you bob to the surface and gulp in some air, you feel elated. You
think to yourself, “I can swim.” At least that’s how I felt when I learned
to swim.

It’s the same with programming. The first steps are the most difficult,
and you need a good teacher to encourage you to jump into the water.

Bruce Tate is such a teacher. This book gives you the opportunity to
start with what is the most difficult part of learning to program, namely,
getting started.

FOREWORD 15

Let’s assume that you’ve actually managed the difficult task of down-
loading and installing the interpreter or compiler for the language you
are interested in. What should you do next? What will be your first
program?

Bruce neatly answers this question. Just type in the programs and
program fragments in this book to see whether you can reproduce his
results. Don’t think about writing your own programs yet—just try to
reproduce the examples in the book. As you grow in confidence, you
will be able to tackle your own programming projects.

The first step in acquiring any new skill is not being able to do your own
thing but being able to reproduce what other people have done before
you. This is the quickest way to mastering a skill.

Getting started with programming in a new language is not so much
a deep exercise in understanding the underlying principles that a lan-
guage embodies; it is rather a matter of getting the semicolons and
commas in the right places and understanding the weird error mes-
sages that the system spits out when you make an error. It is not until
you get beyond the messy business of entering a program and getting it
through the compiler that you can even start to think about the mean-
ing of the different language constructs.

Once you’ve gotten through the mechanics of entering and running pro-
grams, you can sit back and relax. Your subconscious does the rest.
While your conscious brain is figuring out where to put the semicolons,
your subconscious is figuring out the deep meaning that lies under-
neath the surface structures. Then you’ll wake up one day suddenly
understanding the deeper meaning of a logic program or why a partic-
ular language had a particular construct.

Knowing a small amount about many languages is a useful skill. I often
find that I need to understand a bit of Python or Ruby to solve a par-
ticular problem. The programs I download from the Internet are often
written in a variety of languages and need a little tweaking before I can
use them.

Each language has its own set of idioms, its strengths, and its weak-
nesses. By learning several different programming languages, you will
be able to see which language is best suited to the kinds of problems
that interest you most.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=15

FOREWORD 16

I’m pleased to see that Bruce’s taste in programming languages is eclec-
tic. He covers not only the well-established languages such as Ruby but
also less-well-appreciated languages like Io. Ultimately, programming is
about understanding, and understanding is about ideas. So, exposure
to new ideas is essential to a deeper understanding of what program-
ming is all about.

A Zen master might tell you that to be better at mathematics you’d
better study Latin. Thus it is with programming. To better understand
the essence of OO programming, you should study logic or functional
programming (FP). To be better at FP, you should study Assembler.

Books on comparative programming languages were popular when I
grew up as a programmer, but most of these were academic tomes that
gave little practical guidance to how to actually go about using a lan-
guage. This reflected the technology of the age. You could read about
the ideas in a language, but actually trying it out was virtually impos-
sible.

Today, not only can we read about the ideas, but we can try them in
practice. This makes the difference between standing on the poolside
wondering whether it would be nice to swim and diving in and enjoying
the water.

I warmly recommend this book and hope that you enjoy reading it as
much as I have.

Joe Armstrong, creator of Erlang

2 March 2010

Stockholm

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=16

Chapter 1

Introduction
People learn spoken languages for different reasons. You learned your
first language to live. It gave you the tools to get through your everyday
life. If you learned a second language, the reasons could be very differ-
ent. Sometimes, you might have to learn a second language to further
your career or adapt to a changing environment. But sometimes you
decide to conquer a new language not because you have to but because
you want to learn. A second language can help you encounter new
worlds. You may even seek enlightenment, knowing every new language
can shape the way you think.

So it is with programming languages. In this book, I will introduce you
to seven different languages. My goal is not to make a motherly demand
like your morning spoonful of cod liver oil. I want to guide you through
a journey that will enlighten you and change the way you look at pro-
gramming. I won’t make you an expert, but I’ll teach you more than
“Hello, World.”

1.1 Method to the Madness

Most of the time, when I’m learning a new programming language or
framework, I’ll look for a quick interactive tutorial. My goal is to expe-
rience the language in a controlled environment. If I want, I can go off
script and explore, but I’m basically looking for a quick jolt of caffeine,
a snapshot of syntactic sugar, and core concepts.

But usually, the experience is not fulfilling. If I want to get the true
flavor of a language that is more than a subtle extension of one I already
know, a short tutorial is never going to work. I need a deep, fast dive.

METHOD TO THE MADNESS 18

This book will give you such an experience not once but seven times.
You’ll find answers to the following questions:

• What is the typing model? Typing is strong (Java) or weak (C),
static (Java) or dynamic (Ruby). The languages in this book lean
on the strong typing end of the spectrum, but you’ll encounter
a broad mix of static and dynamic. You will find how the trade-
offs impact a developer. The typing model will shape the way you
attack a problem and control the way the language works. Every
language in this book has its own typing idiosyncrasies.

• What is the programming model? Is it object-oriented (OO), func-
tional, procedural, or some type of hybrid? This book has lan-
guages spanning four different programming models and, some-
times, combinations of more than one. You will find a logic-based
programming language (Prolog), two languages with full support
for object-oriented concepts (Ruby, Scala), four languages that are
functional in nature (Scala, Erlang, Clojure, Haskell), and one pro-
totype language (Io). Several of the languages are multiparadigm
languages, like Scala. Clojure’s multimethods will even let you
implement your own paradigm. Learning new programming para-
digms is one of the most important concepts in this book.

• How will you interact with it? Languages are compiled or inter-
preted, and some have virtual machines while others don’t. In this
book, I’ll begin to explore with an interactive shell, if there is one.
I will move on to files when it’s time to attack bigger projects.
We won’t attack large enough projects to fully dive into packaging
models.

• What are the decision constructs and core data structures? You’d
be surprised how many languages can make decisions with things
other than variations of ifs and whiles. You’ll see pattern matching
in Erlang and unification in Prolog. Collections play a vital role in
just about any language. In languages such as Smalltalk and Lisp,
the collections are defining characteristics of the language. In oth-
ers, like C++ and Java, collections are all over the place, defining
the user’s experience by their absence and lack of cohesion. Either
way, you’ll need a sound understanding of the collections.

• What are the core features that make the language unique? Some
of the languages will support advanced features for concurrent
programming. Others provide unique high-level constructs such
as Clojure’s macros or Io’s message interpretation. Others will give

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=18

THE LANGUAGES 19

you a supercharged virtual machine, like Erlang’s BEAM. Because
of it, Erlang will let you build fault-tolerant distributed systems
much more quickly than you can in other languages. Some lan-
guages support programming models that are laser-focused on a
particular problem, such as using logic to solve constraints.

When you’re through, you will not be an expert in any of these lan-
guages, but you will know what each uniquely has to offer. Let’s get to
the languages.

1.2 The Languages

Choosing the languages in this book was much easier than you might
imagine. I simply asked potential readers. When we rolled up all the
data, we had eight potential candidates. I struck JavaScript because it
was too popular and replaced it with the next most popular prototype
language, Io. I also struck Python because I wanted no more than one
object-oriented language, and Ruby was higher on the list. That made
room for a surprising candidate, Prolog, which was a top-ten language
on the list. These are the languages that did make the cut and the
reasons I picked them:

• Ruby. This object-oriented language gets high marks for ease of
use and readability. I briefly considered not including any object-
oriented language at all, but I found myself wanting to compare
the different programming paradigms to object-oriented program-
ming (OOP), so including at least one OOP language was impor-
tant. I also wanted to push Ruby a little harder than most pro-
grammers do and give readers a flavor for the core decisions that
shaped the design of Ruby. I decided to take a dive into Ruby
metaprogramming, allowing me to extend the syntax of the lan-
guage. I’m quite happy with the result.

• Io. Along with Prolog, Io is the most controversial language I
included. It is not commercially successful, but the concurrency
constructs with the simplicity and uniformity of syntax are impor-
tant concepts. The minimal syntax is powerful, and the similarities
to Lisp are sometimes striking. Io has a small footprint, is a proto-
type language like JavaScript, and has a unique message dispatch
mechanism that I think you’ll find interesting.

• Prolog. Yes, I know it’s old, but it is also extremely powerful. Solv-
ing a Sudoku in Prolog was an eye-opening experience for me.
I’ve worked hard to solve some difficult problems in Java or C

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=19

THE LANGUAGES 20

that would have been effortless in Prolog. Joe Armstrong, creator
of Erlang, helped me gain a deeper appreciation of this language
that strongly influenced Erlang. If you’ve never had an occasion to
use it, I think you will be pleasantly surprised.

• Scala. One of a new generation of languages on the Java vir-
tual machine, Scala has brought strong functional concepts to the
Java ecosystem. It also embraces OOP. Looking back, I see a strik-
ing similarity to C++, which was instrumental to bridging procedu-
ral programming and OOP. As you dive into the Scala community,
you’ll see why Scala represents pure heresy to pure functional
programmers and pure bliss to Java developers.

• Erlang. One of the oldest languages on this list, Erlang is gather-
ing steam as a functional language that gets concurrency, distri-
bution, and fault tolerance right. The creators of CouchDB, one of
the emerging cloud-based databases, chose Erlang and have never
looked back. After spending a little time with this distributed lan-
guage, you’ll see why. Erlang makes designing concurrent, dis-
tributed, fault-tolerant applications much easier than you could
have ever thought possible.

• Clojure. Another JVM language, this Lisp-dialect makes some rad-
ical changes in the way we think about concurrency on the JVM.
It is the only language in this book that uses the same strat-
egy in versioned databases to manage concurrency. As a Lisp
dialect, Clojure packs plenty of punch, supporting perhaps the
most flexible programming model in the book. But unlike other
Lisp dialects, the parentheses are greatly reduced, and you have
a huge ecosystem to lean on, including a huge Java library and
widely available deployment platforms.

• Haskell. This language is the only pure functional language in
the book. That means you won’t find mutable state anywhere.
The same function with the same input parameters will give you
the same output, every time. Of all the strongly typed languages,
Haskell supports the most widely respected typing model. Like
Prolog, it will take a little while to understand, but the results will
be worth it.

I’m sorry if your favorite language didn’t make the list. Believe me, I’ve
already gotten hate mail from more than a few language enthusiasts.
We included several dozen languages in the survey mentioned earlier.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=20

BUY THIS BOOK 21

Those languages that I picked are not necessarily the best, but each
one is unique, with something important to teach you.

1.3 Buy This Book

...if you are a competent programmer who wants to grow. That claim
might seem a little nebulous, but indulge me.

Learning to Learn

Dave Thomas is one of the founders of this publishing company. He has
challenged thousands of students to learn a new language every year.
At worst, by learning languages, you’ll learn to fold new concepts back
into the code that you write in your chosen language.

Writing this book has had a profound impact on the Ruby code that I
write. It is more functional and is easier to read with less repetition. I
reach for mutable variables less and do a better job with code blocks
and higher-order functions. I also use some techniques that are uncon-
ventional in the Ruby community, but they make my code more concise
and readable.

At best, you could launch a new career. Every ten years or so, program-
ming paradigms change. As the Java language became more limiting
for me, I experimented with Ruby to better understand its approach to
web development. After a couple of successful side projects, I pushed
my career hard in that direction and have never looked back. My Ruby
career started with basic experimentation and grew into more.

Help for Dangerous Times

Many of the readers of this book won’t be old enough to remember
the last time our industry switched programming paradigms. Our shift
to object-oriented programming had a couple of false starts, but the
old structural programming paradigm was simply unable to handle the
complexity required for modern web applications. The successful Java
programming language gave us a hard shove in that direction, and the
new paradigm stuck. Many developers got caught with old skills and
had to completely retool the way they thought, the tools they used, and
the way they designed applications.

We may be in the midst of another transformation. This time, new com-
puter designs will be the driver. Five of the seven languages in this book

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=21

DON’T BUY THIS BOOK 22

have compelling concurrency models. (Ruby and Prolog are the excep-
tions.) Whether or not your programming language changes right away,
I’m going to go out on a limb and say that the languages in this book
have some compelling answers to offer. Check out Io’s implementation
of futures, Scala’s actors, or Erlang’s “Let it crash” philosophy. Under-
stand how Haskell programmers leave mutable state behind or how
Clojure uses versioning to solve some of the most difficult concurrency
problems.

You can also find insight in surprising places. Erlang, the language
behind the scenes for several of the cloud-style databases, is a great
example. Dr. Joe Armstrong started that language from a Prolog
foundation.

1.4 Don’t Buy This Book

...until you’ve read this section and agree. I am going to make a deal
with you. You agree to let me focus on the programming language rather
than installation details. My part of the deal is to teach you more in a
shorter time. You’ll have to Google a little more, and you can’t rely on
me to support your installation, but when you’re through the book,
you’ll know much more because I’ll be able to dive deeper.

Please recognize that seven languages is an ambitious undertaking for
both of us. As a reader, you’re going to have to stretch your brain
around seven different syntax styles, four programming paradigms,
four decades worth of language development, and more. As an author,
I have to cover an enormously broad set of topics for you. I learned
several of these languages to support this book. To successfully cover
the most important details of each language, I need to make some sim-
plifying assumptions.

I Will Take You Beyond Syntax

To really get into the head of a language designer, you’re going to have
to be willing to go beyond the basic syntax. That means you’ll have to
code something more than the typical “Hello, World” or even a Fibonacci
series. In Ruby, you will get to do some metaprogramming. In Prolog,
you’ll solve a full Sudoku. And in Erlang, you’ll write a monitor that can
detect the death of another process and launch another one or inform
the user.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=22

DON’T BUY THIS BOOK 23

The second that I decided to go deeper than the basics, I made a com-
mitment to you and a compromise. The commitment: I won’t settle for
a superficial treatment. And the compromise: I won’t be able to cover
some basics that you’d expect to find in dedicated language books. I
will rarely go through exception processing, except where it’s a funda-
mental feature of the language. I will not go into packaging models in
detail because we’ll be dealing with small projects that do not require
them. I will not go over primitives that we don’t need to solve the basic
problems I lay out for you.

I Won’t Be Your Installation Guide

One of my biggest challenges is the platform. I have had direct contact
from readers of various books using three different Windows platforms,
OS X, and at least five different Unix versions. I’ve seen comments on
various message boards of many more. Seven languages on seven plat-
forms is an insurmountable topic for a single author and probably for
a multiauthor book. I can’t support installation for seven languages, so
I’m not going to try.

I suspect that you’re not remotely interested in reading another out-
dated installation guide. Languages and platforms change. I’ll tell you
where to go to install the language, and I’ll tell you what version I’m
using. That way, you’ll be working from up-to-date instructions from
the same list as everyone else. I cannot support your installations.

I Won’t Be Your Programming Reference

We’ve tried hard to get you strong programming reviews for this book.
In some cases, we are lucky enough to get a review from the person who
designed the language. I’m confident that this material will capture the
spirit of each programming language pretty well by the time it has gone
through the entire review process. That said, please understand that I
cannot possibly fully support your endeavors in each language. I would
like to make a comparison to spoken languages.

Knowing a language as a tourist passing through is far different from
being a native speaker. I speak English fluently and Spanish haltingly.
I know a few phrases in three other languages. I ordered fish in Japan.
I asked to find a restroom in Italy. But I know my limitations. From
the programming side, I speak Basic, C, C++, Java, C#, JavaScript,
Ruby, and a few others fluently. I speak dozens of others haltingly,
including the languages in this book. I’m not qualified to support six

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=23

A FINAL CHARGE 24

of the languages on this list. I write Ruby full-time and have for five
years now. But I couldn’t tell you how to write a web server in Io or a
database in Erlang.

I would fail badly if I tried to provide an exhaustive reference for each of
these languages. I could make a programming guide that’s at least as
long as this book on any of the separate languages in here. I will give
you enough information to get started. I will walk you through examples
in each languages, and you’ll see examples of those programs. I will do
my best to compile everything and make sure it all runs. But I couldn’t
support your programming efforts even if I wanted.

The languages on this list all have exceptional support communities.
That’s part of the reason I picked them. In each of the exercises, I try to
have a section that asks you to find resources. This idea is intentional.
It will make you self-reliant.

I Am Going to Push You Hard

This book is going to take you one step beyond your twenty-minute
tutorial. You know Google as well as I do, and you’ll be able to find
one of those simple primers for every language on this list. I will give
you a quick interactive tour. You’ll also get some small programming
challenges and one programming project every week. It’s not going to
be easy, but it will be informative and fun.

If you simply read this book, you’ll experience the flavor of the syntax
and no more. If you look online for the answers before trying to code
the exercises yourself, you’ll fail. You will want to try the exercises first,
fully recognizing that you’ll fail at a few of them. Learning syntax is
always easier than learning to reason.

If you find yourself nervous after reading this description, I suggest
that you put down this book and pick up another. You won’t be happy
with me. You would probably be better served by seven different pro-
gramming books. But if you find yourself excited about the prospect of
coding better quickly, let’s push on.

1.5 A Final Charge

At this point, I expected to have some sweeping, motivational words to
say, but it all seemed to boil down to two words.

Have fun.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=24

A spoonful of sugar makes the medicine go down.

Mary Poppins

Chapter 2

Ruby
If you are sampling this book, chances are we have something in
common: learning programming languages intrigues us. To me, learn-
ing a language is like learning a character. Throughout my career, I’ve
experienced scores of languages firsthand. Like any person, each lan-
guage took on a distinct personality. Java was like having a rich lawyer
as a brother. He was fun when he was younger, but now he’s a black
hole that sucks away all the joy in a 100-mile radius. Visual Basic
was like that bleached-blond cosmetologist. She’s not going to solve
global warming, but she’s always good for a haircut and tremendously
fun to talk to. Throughout the book, I will compare the languages you
will encounter to popular characters. I hope the comparisons will help
you unlock a little bit about the character that makes each language
special.

Meet Ruby, one of my favorites. She’s sometimes quirky, always beau-
tiful, a little mysterious, and absolutely magical. Think Mary Poppins,1

the British nanny. At the time, most nannies were like most of the
C family of languages—draconian beasts who were mercilessly effi-
cient but about as fun as taking that shot of cod liver oil every night.
With a spoonful of sugar, everything changed. Mary Poppins made the
household more efficient by making it fun and coaxing every last bit
of passion from her charges. Ruby does the same thing and with more
syntactic sugar2 than a spoonful. Matz, Ruby’s creator, doesn’t worry

1. Mary Poppins. DVD. Directed by Robert Stevenson. 1964; Los Angeles, CA: Walt Dis-
ney Video, 2004.
2. Syntactic sugar describes a language feature that makes code easier to read and
write, though there are alternative ways to express the same code.

QUICK HISTORY 26

about the efficiency of the language. He optimizes the efficiency of the
programmers.

2.1 Quick History

Yukihiro Matsumoto created Ruby in about 1993. Most people just
call him Matz. As a language, Ruby is an interpreted, object-oriented,
dynamically typed language from a family of so-called scripting lan-
guages. Interpreted means that Ruby code is executed by an interpreter
rather than a compiler. Dynamically typed means that types are bound
at execution time rather than compile time. In general, the trade-off for
such a strategy is flexibility versus execution safety, but we’ll get into
that a little more later. Object-oriented means the language supports
encapsulation (data and behavior are packaged together), inheritance
through classes (object types are organized in a class tree), and poly-
morphism (objects can take many forms). Ruby patiently waited for the
right moment and then burst onto the scene around 2006 with the
emergence of the Rails framework. After wandering for ten years in the
enterprise jungles, programming was fun again. Ruby is not hugely
efficient in terms of execution speed, but it makes programmers very
productive.

Interview with Yukihiro (Matz) Matsumoto

I had the pleasure to travel to Matsumotosan’s hometown of Matsue,
Japan. We had the chance to have some conversations about the foun-
dations of Ruby, and he agreed to answer some questions for this book.

Bruce: Why did you write Ruby?

Matz: Right after I started playing with computers, I got interested in

programming languages. They are the means of programming but also

enhancers for your mind that shape the way you think about program-

ming. So for a long time, for a hobby, I studied a lot of programming

languages. I even implemented several toy languages but no real ones.

In 1993, when I saw Perl, I was somehow inspired that an object-oriented

language that combines characteristics from Lisp, Smalltalk, and Perl

would be a great language to enhance our productivity. So, I started

developing such a language and named it Ruby. The primary motiva-

tion was to amuse myself. It was mere hobby at the beginning, trying to

create a language that fit my taste. Somehow, other programmers all over

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=26

QUICK HISTORY 27

the world have felt sympathy for that language and the policy behind it.

And it became very popular, far beyond my expectation.

Bruce: What is the thing you like about it the most?

Matz: I like the way it makes my programming enjoyable. As a par-

ticular technical issue, I like blocks most. They are tamed higher-order

functions but open up great possibilities in DSL and other features as

well.

Bruce: What is a feature that you would like to change, if you could go

back in time?

Matz: I would remove the thread and add actors or some other more

advanced concurrency features.

As you read through this chapter, whether or not you already know
Ruby, try to keep an eye out for trade-offs that Matz made along the
way. Look for syntactic sugar, those little features that break the basic
rules of the language to give programmers a little friendlier experience
and make the code a little easier to understand. Find places where Matz
used code blocks for marvelous effect in collections and elsewhere. And
try to understand the trade-offs that he made along the way between
simplicity and safety and between productivity and performance.

Let’s get started. Take a peek at some Ruby code:

>> properties = ['object oriented', 'duck typed', 'productive', 'fun']

=> ["object oriented", "duck typed", "productive", "fun"]

>> properties.each {|property| puts "Ruby is #{property}."}

Ruby is object oriented.

Ruby is duck typed.

Ruby is productive.

Ruby is fun.

=> ["object oriented", "duck typed", "productive", "fun"]

Ruby is the language that taught me to smile again. Dynamic to the
core, Ruby has a marvelous support community. The implementations
are all open source. Most commercial support comes from smaller com-
panies, and that has insulated Ruby from some of the over-reaching
frameworks that plague some other kingdoms. Ruby has been slow to
catch on in the enterprise, but it’s taking hold now on the strength of
its productivity, especially in the area of web development.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=27

DAY 1: FINDING A NANNY 28

2.2 Day 1: Finding a Nanny

All magic aside, Mary Poppins is first and foremost a great nanny. When
you first learn a language, your job is to learn how to use it to do the
jobs you already know how to do. Treat this first conversation with
Ruby as a dialogue. Does the conversation flow freely, or is it unnec-
essarily awkward? What’s the core programming model? How does it
treat types? Let’s start digging for some answers.

Lightning Tour

As promised, I’m not going to take you through an exhaustive outdated
installation process, but installing Ruby is a snap. Just go to http://www.

ruby-lang.org/en/downloads/, find your platform, and install Ruby 1.8.6
or newer. I am running Ruby version 1.8.7 for this chapter, and version
1.9 will have some slight differences. If you’re on Windows, there’s a
one-click installer that will work, and if you’re on OS X Leopard or
greater, Ruby comes with the Xcode disks.

To test your installation, just type irb. If you don’t see any errors, you’re
ready to handle the rest of this chapter. If you do, don’t be shy. Very
few installation problems are unique. Google will show the way.

Using Ruby with the Console

If you haven’t done so, type irb. You should see Ruby’s interactive con-
sole. You’ll type a command and get a response. Give these a try:

>> puts 'hello, world'

hello, world

=> nil

>> language = 'Ruby'

=> "Ruby"

>> puts "hello, #{language}"

hello, Ruby

=> nil

>> language = 'my Ruby'

=> "my Ruby"

>> puts "hello, #{language}"

hello, my Ruby

=> nil

If you don’t already know Ruby, this brief example gives you many clues
about the language. You know that Ruby can be interpreted. In fact,
Ruby is almost always interpreted, though some developers are working
on virtual machines that compile Ruby to byte code as it gets executed.
I didn’t declare any variables. Everything I did returned a value, even

Report erratum

this copy is (P1.0 printing, October 2010)

http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=28

DAY 1: FINDING A NANNY 29

when I didn’t ask Ruby to return anything. In fact, every piece of code
in Ruby returns something.

You also saw at least two types of strings. One quote around a string
means the string should be interpreted literally, and two quotes leads
to string evaluation. One of the things that the Ruby interpreter evalu-
ates is string substitution. In this example, Ruby substituted the value
returned by the code language into the string. Let’s keep going.

The Programming Model

One of the first questions about a language you should answer is, “What
is the programming model?” It’s not always a simple answer. You’ve
probably been exposed to procedural languages such as C, Fortran, or
Pascal. Most of us are using object-oriented languages right now, but
many of those languages have procedural elements too. For example, 4

in Java is not an object. You may have picked up this book to explore
functional programming languages. Some of those languages such as
Scala mix programming models by throwing in object-oriented con-
cepts. There are dozens of other programming models as well. Stack-
based languages such as PostScript or Forth use one or more stacks
as a central feature of the language. Logic-based languages such as
Prolog build around rules. Prototype languages like Io, Lua, and Self
use the object, not the class, as the basis for object definition and even
inheritance.

Ruby is a pure object-oriented language. In this chapter, you’ll see just
how far Ruby takes this concept. Let’s look at some basic objects:

>> 4

=> 4

>> 4.class

=> Fixnum

>> 4 + 4

=> 8

>> 4.methods

=> ["inspect", "%", "<<", "singleton_method_added", "numerator", ...

"*", "+", "to_i", "methods", ...

]

I’ve omitted some of the methods from this list, but you get the picture.
Just about everything in Ruby is an object, down to each individual
number. A number is an object that has a class called Fixnum, and the
method called methods returns an array of methods (Ruby represents
arrays in square brackets). In fact, you can call any method on an object
with the dot operator.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=29

DAY 1: FINDING A NANNY 30

Decisions

Programs exist to make decisions, so it stands to reason that the way a
language makes decisions is a central concept that shapes the way you
code, and think, in a given language. Ruby is like most object-oriented
and procedural languages in many ways. Check out these expressions:

>> x = 4

=> 4

>> x < 5

=> true

>> x <= 4

=> true

>> x > 4

=> false

>> false.class

=> FalseClass

>> true.class

=> TrueClass

So, Ruby has expressions that evaluate to true or false. True to form,
true and false are also first-class objects. You can conditionally execute
code with them:

>> x = 4

=> 4

>> puts 'This appears to be false.' unless x == 4

=> nil

>> puts 'This appears to be true.' if x == 4

This appears to be true.

=> nil

>> if x == 4

>> puts 'This appears to be true.'

>> end

This appears to be true.

=> nil

>> unless x == 4

>> puts 'This appears to be false.'

>> else

?> puts 'This appears to be true.'

>> end

This appears to be true.

=> nil

>> puts 'This appears to be true.' if not true

=> nil

>> puts 'This appears to be true.' if !true

=> nil

I really like Ruby’s design choice for simple conditionals. You can use
both block forms (if condition, statements, end) or one-line forms (state-

ment if condition) when you’re working with if or unless. To some, the

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=30

DAY 1: FINDING A NANNY 31

one-line version of the if is off-putting. To me, it allows you to express a
single thought in a line of code:

order.calculate_tax unless order.nil?

Sure, you can express the previous in a block, but you would add addi-
tional noise to what should be a single, coherent thought. When you
can distill a simple idea into one line, you make reading your code less
of a burden. I also like the idea of unless. You could express the same
idea with not or !, but unless expresses the idea much better.

while and until are similar:

>> x = x + 1 while x < 10

=> nil

>> x

=> 10

>> x = x - 1 until x == 1

=> nil

>> x

=> 1

>> while x < 10

>> x = x + 1

>> puts x

>> end

2

3

4

5

6

7

8

9

10

=> nil

Notice that = is for assignment and == tests for equality. In Ruby, each
object will have its notion of equality. Numbers are equal if their values
are equal.

You can use values other than true and false as expressions too:

>> puts 'This appears to be true.' if 1

This appears to be true.

=> nil

>> puts 'This appears to be true.' if 'random string'

(irb):31: warning: string literal in condition

This appears to be true.

=> nil

>> puts 'This appears to be true.' if 0

This appears to be true.

=> nil

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=31

DAY 1: FINDING A NANNY 32

>> puts 'This appears to be true.' if true

This appears to be true.

=> nil

>> puts 'This appears to be true.' if false

=> nil

>> puts 'This appears to be true.' if nil

=> nil

So, everything but nil and false evaluate to true. C and C++ programmers,
take note. 0 is true!

Logical operators work like they do in C, C++, C#, and Java, with a
few minor exceptions. and (alternatively &&) is a logical and. or (alter-
natively ||) is a logical or. With these tests, the interpreter will execute
code only until the value of the test is clear. Use & or | to compare while
executing the whole expression. Here are these concepts in action:

>> true and false

=> false

>> true or false

=> true

>> false && false

=> false

>> true && this_will_cause_an_error

NameError: undefined local variable or method `this_will_cause_an_error'

for main:Object

from (irb):59

>> false && this_will_not_cause_an_error

=> false

>> true or this_will_not_cause_an_error

=> true

>> true || this_will_not_cause_an_error

=> true

>> true | this_will_cause_an_error

NameError: undefined local variable or method `this_will_cause_an_error'

for main:Object

from (irb):2

from :0

>> true | false

=> true

There’s no magic here. You’ll normally use the short-circuit version of
these commands.

Duck Typing

Let’s get into Ruby’s typing model a little. The first thing you need to
know is how much protection Ruby will give you when you make a
mistake with types. We’re talking about type safety. Strongly typed lan-

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=32

DAY 1: FINDING A NANNY 33

guages check types for certain operations and check the types before
you can do any damage. This check can happen when you present the
code to an interpreter or a compiler or when you execute it. Check out
this code:

>> 4 + 'four'

TypeError: String can't be coerced into Fixnum

from (irb):51:in `+'

from (irb):51

>> 4.class

=> Fixnum

>> (4.0).class

=> Float

>> 4 + 4.0

=> 8.0

So, Ruby is strongly typed,3 meaning you’ll get an error when types
collide. Ruby makes these type checks at run time, not compile time.
I’m going to show you how to define a function a little before I normally
would to prove the point. The keyword def defines a function but doesn’t
execute it. Enter this code:

>> def add_them_up

>> 4 + 'four'

>> end

=> nil

>> add_them_up

TypeError: String can't be coerced into Fixnum

from (irb):56:in `+'

from (irb):56:in `add_them_up'

from (irb):58

So, Ruby does not do type checking until you actually try to execute
code. This concept is called dynamic typing. There are disadvantages:
you can’t catch as many errors as you can with static typing because
compilers and tools can catch more errors with a statically typed sys-
tem. But Ruby’s type system also has several potential advantages.
Your classes don’t have to inherit from the same parent to be used
in the same way:

>> i = 0

=> 0

3. I’m lying to you a little, but only a little. Two examples from here, you’ll see me
change an existing class at run time. Theoretically, a user can change a class beyond all
recognition and defeat type safety, so in the strictest sense, Ruby is not strongly typed.
But for the most part, Ruby behaves like a strongly typed language most of the time.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=33

DAY 1: FINDING A NANNY 34

>> a = ['100', 100.0]

=> ['100', 100.0]

>> while i < 2

>> puts a[i].to_i

>> i = i + 1

>> end

100

100

You just saw duck typing in action. The first element of the array is
a String, and the second is a Float. The same code converts each to an
integer via to_i. Duck typing doesn’t care what the underlying type might
be. If it walks like a duck and quacks like a duck, it’s a duck. In this
case, the quack method is to_i.

Duck typing is extremely important when it comes to clean object-
oriented design. An important tenet of design philosophy is to code
to interfaces rather than implementations. If you’re using duck typing,
this philosophy is easy to support with very little added ceremony. If
an object has push and pop methods, you can treat it like a stack. If it
doesn’t, you can’t.

What We Learned in Day 1

So far, you’ve just waded through the basics. It’s an interpreted object-
oriented language. Just about everything is an object, and it’s easy to
get at any object’s parts, like the methods and the class. Ruby is duck
typed, and Ruby behaves mostly like a strongly typed language, though
some academics would argue with that distinction. It’s a free-spirited
language that will let you do just about anything, including changing
core classes like NilClass and String. Now let me turn you loose for a little
self-study.

Day 1 Self-Study

So, you’ve had your first date with Ruby. Now, it’s time to write a little
code. In this session, you’re not going to write whole programs. Instead,
you’ll use irb to execute a few Ruby snippets. As always, you can find
the answers in the back of the book.

Find:

• The Ruby API

• The free online version of Programming Ruby: The Pragmatic Pro-

grammer’s Guide [TFH08]

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=34

DAY 2: FLOATING DOWN FROM THE SKY 35

• A method that substitutes part of a string

• Information about Ruby’s regular expressions

• Information about Ruby’s ranges

Do:

• Print the string “Hello, world.”

• For the string “Hello, Ruby,” find the index of the word “Ruby.”

• Print your name ten times.

• Print the string “This is sentence number 1,” where the number 1
changes from 1 to 10.

• Run a Ruby program from a file.

• Bonus problem: If you’re feeling the need for a little more, write
a program that picks a random number. Let a player guess the
number, telling the player whether the guess is too low or too high.

(Hint: rand(10) will generate a random number from 0 to 9, and
gets will read a string from the keyboard that you can translate to
an integer.)

2.3 Day 2: Floating Down from the Sky

At the time, one of the most striking scenes in Mary Poppins was her
entrance. She floated into town on her umbrella. My kids will never
understand why that entrance was groundbreaking stuff. Today, you’re
going to experience a little bit of the magic that makes Ruby click.
You’ll learn to use the basic building blocks of objects, collections, and
classes. You’ll also learn the basics of the code block. Open up your
mind to a little magic.

Defining Functions

Unlike Java and C#. you don’t have to build a whole class to define a
function. You can define a function right in the console:

>> def tell_the_truth

>> true

>> end

Every function returns something. If you do not specify an explicit re-
turn, the function will return the value of the last expression that’s
processed before exiting. Like everything else, this function is an object.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=35

DAY 2: FLOATING DOWN FROM THE SKY 36

Later, we’ll work on strategies to pass functions as parameters to other
functions.

Arrays

Arrays are Ruby’s workhorse ordered collection. Ruby 1.9 introduces
ordered hashes too, but in general, arrays are Ruby’s primary ordered
collection. Take a look:

>> animals = ['lions', 'tigers', 'bears']

=> ["lions", "tigers", "bears"]

>> puts animals

lions

tigers

bears

=> nil

>> animals[0]

=> "lions"

>> animals[2]

=> "bears"

>> animals[10]

=> nil

>> animals[-1]

=> "bears"

>> animals[-2]

=> "tigers"

>> animals[0..1]

=> ['lions', 'tigers']

>> (0..1).class

=> Range

You can see that Ruby collections will give you some freedom. If you
access any undefined array element, Ruby will simply return nil. You
will also find some features that don’t make arrays more powerful but
just make them easier to use. animals[-1] returned the first element
from the end, animals[-2] returned the second, and so on. These fea-
tures are called syntactic sugar, an added feature for convenience. The
animals[0..1] expression might look like syntactic sugar, but it’s not. 0..1

is actually a Range, meaning all numbers from 0 to 1, inclusive.

Arrays can hold other types as well:

>> a[0] = 0

NameError: undefined local variable or method `a' for main:Object

from (irb):23

>> a = []

=> []

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=36

DAY 2: FLOATING DOWN FROM THE SKY 37

Oops. I tried to use an array before it was an array. That error gives you
a clue to the way Ruby arrays and hashes work. [] is actually a method
on Array:

>> [1].class

=> Array

>> [1].methods.include?('[]')

=> true

>> # use [1].methods.include?(:[]) on ruby 1.9

So, [] and []= are just syntactic sugar to allow access to an array. To do
this right, I need to put an empty array into it first, and then I can play
around with it some:

>> a[0] = 'zero'

=> "zero"

>> a[1] = 1

=> 1

>> a[2] = ['two', 'things']

=> ["two", "things"]

>> a

=> ["zero", 1, ["two", "things"]]

Arrays don’t need to be homogeneous.

>> a = [[1, 2, 3], [10, 20, 30], [40, 50, 60]]

=> [[1, 2, 3], [10, 20, 30], [40, 50, 60]]

>> a[0][0]

=> 1

>> a[1][2]

=> 30

And multidimensional arrays are just arrays of arrays.

>> a = [1]

=> [1]

>> a.push(1)

=> [1, 1]

>> a = [1]

=> [1]

>> a.push(2)

=> [1, 2]

>> a.pop

=> 2

>> a.pop

=> 1

Arrays have an incredibly rich API. You can use an array as a queue,
a linked list, a stack, or a set. Now, let’s take a look at the other major
collection in Ruby, the hash.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=37

DAY 2: FLOATING DOWN FROM THE SKY 38

Hashes

Remember that collections are buckets for objects. In the hash bucket,
every object has a label. The label is the key, and the object is the value.
A hash is a bunch of key-value pairs:

>> numbers = {1 => 'one', 2 => 'two'}

=> {1=>"one", 2=>"two"}

>> numbers[1]

=> "one"

>> numbers[2]

=> "two"

>> stuff = {:array => [1, 2, 3], :string => 'Hi, mom!'}

=> {:array=>[1, 2, 3], :string=>"Hi, mom!"}

>> stuff[:string]

=> "Hi, mom!"

This is not too complicated. A hash works a lot like an array, but instead
of an integer index, the hash can have any arbitrary key. The last hash
is interesting because I’m introducing a symbol for the first time. A
symbol is an identifier preceded with a colon, like :symbol. Symbols are
great for naming things or ideas. Although two strings with the same
value can be different physical strings, identical symbols are the same
physical object. You can tell by getting the unique object identifier of
the symbol several times, like so:

>> 'string'.object_id

=> 3092010

>> 'string'.object_id

=> 3089690

>> :string.object_id

=> 69618

>> :string.object_id

=> 69618

Hashes sometimes show up in unusual circumstances. For example,
Ruby does not support named parameters, but you can simulate them
with a hash. Throw in a little syntactic sugar, and you can get some
interesting behavior:

>> def tell_the_truth(options={})

>> if options[:profession] == :lawyer

>> 'it could be believed that this is almost certainly not false.'

>> else

>> true

>> end

>> end

=> nil

>> tell_the_truth

=> true

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=38

DAY 2: FLOATING DOWN FROM THE SKY 39

>> tell_the_truth :profession => :lawyer

=> "it could be believed that this is almost certainly not false."

This method takes a single optional parameter. If you pass nothing in,
options will be set to an empty hash. If you pass in a :profession of :lawyer,
you will get something different. The result is not fully true, but it is
almost just as good, because the system will evaluate it as true. Notice
that you didn’t have to type in the braces. These braces are optional
for the last parameter of a function. Since array elements, hash keys,
and hash values can be almost anything, you can build some incredibly
sophisticated data structures in Ruby, but the real power comes when
you start to get into code blocks.

Code Blocks and Yield

A code block is a function without a name. You can pass it as a param-
eter to a function or a method. For example:

>> 3.times {puts 'hiya there, kiddo'}

hiya there, kiddo

hiya there, kiddo

hiya there, kiddo

The code between braces is called a code block. times is a method on
Fixnum that simply does something some number of times, where some-
thing is a code block and number is the value of the Fixnum. You can
specify code blocks with {/} or do/end. The typical Ruby convention is
to use braces when your code block is on one line and use the do/end

form when the code blocks span more than one line. Code blocks can
take one or more parameters:

>> animals = ['lions and ', 'tigers and', 'bears', 'oh my']

=> ["lions and ", "tigers and", "bears", "oh my"]

>> animals.each {|a| puts a}

lions and

tigers and

bears

oh my

This code begins to display the power of the code block. That code told
Ruby what to do for every item in the collection. With a fraction of the
syntax, Ruby iterated over each of the elements, printing each one. To
really get a feel for what’s going on, here’s a custom implementation of
the times method:

>> class Fixnum

>> def my_times

>> i = self

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=39

DAY 2: FLOATING DOWN FROM THE SKY 40

>> while i > 0

>> i = i - 1

>> yield

>> end

>> end

>> end

=> nil

>> 3.my_times {puts 'mangy moose'}

mangy moose

mangy moose

mangy moose

This code opens up an existing class and adds a method. In this case,
the method called my_times loops a set number of times, invoking the
code block with yield. Blocks can also be first-class parameters. Check
out this example:

>> def call_block(&block)

>> block.call

>> end

=> nil

>> def pass_block(&block)

>> call_block(&block)

>> end

=> nil

>> pass_block {puts 'Hello, block'}

Hello, block

This technique will let you pass around executable code. Blocks aren’t
just for iteration. In Ruby, you’ll use blocks to delay execution...

execute_at_noon { puts 'Beep beep... time to get up'}

conditionally execute something...

...some code...

in_case_of_emergency do

use_credit_card

panic

end

def in_case_of_emergency

yield if emergency?

end

...more code...

enforce policy...

within_a_transaction do

things_that

must_happen_together

end

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=40

DAY 2: FLOATING DOWN FROM THE SKY 41

def within_a_transaction

begin_transaction

yield

end_transaction

end

and many other places. You’ll see Ruby libraries that use blocks to
process each line of a file, do work within an HTTP transaction, and do
complex operations over collections. Ruby is a block party.

Running Ruby from a File

The code examples are getting a little more complicated, so working
from the interactive console isn’t all that convenient anymore. You’ll
use the console to explore short bits of code, but you’ll primarily put
your code into files. Create a file called hello.rb. You can include any
Ruby code that you’d like:

puts 'hello, world'

Save it to your current directory, and then execute it from the command
line:

batate$ ruby hello.rb

hello, world

A few people are using Ruby from full integrated development environ-
ments, but many are happy to use a simple editor with files. My favorite
is TextMate, but vi, emacs, and many other popular editors have Ruby
plug-ins. With this understanding in our back pocket, we can move on
to the reusable building blocks of Ruby programs.

Defining Classes

Like Java, C#, and C++, Ruby has classes and objects. Think cookie
cutter and cookie—classes are templates for objects. Of course, Ruby
supports inheritance. Unlike C++, a Ruby class can inherit from only
one parent, called a superclass. To see it all in action, from the console,
type the following:

>> 4.class

=> Fixnum

>> 4.class.superclass

=> Integer

>> 4.class.superclass.superclass

=> Numeric

>> 4.class.superclass.superclass.superclass

=> Object

>> 4.class.superclass.superclass.superclass.superclass

=> nil

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=41

DAY 2: FLOATING DOWN FROM THE SKY 42

Class

Module

Object

Fixnum 4

Integer

Numeric

Figure 2.1: Ruby metamodel

So far, so good. Objects are derived from a class. The 4’s class is Fixnum,
which inherits from Integer, Numeric, and ultimately Object.

Check out Figure 2.1 to see how things fit together. Everything even-
tually inherits from Object. A Class is also a Module. Instances of Class

serve as templates for objects. In our case, Fixnum is an instance of a
class, and 4 is an instance of Fixnum. Each of these classes is also an
object:

>> 4.class.class

=> Class

>> 4.class.class.superclass

=> Module

>> 4.class.class.superclass.superclass

=> Object

So, Fixnum is derived from the class Class. From there, it really gets
confusing. Class inherits from Module, and Module inherits from Object.
When all is said and done, everything in Ruby has a common ancestor,
Object.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=42

DAY 2: FLOATING DOWN FROM THE SKY 43

Download ruby/tree.rb

class Tree

attr_accessor :children, :node_name

def initialize(name, children=[])

@children = children

@node_name = name

end

def visit_all(&block)

visit &block

children.each {|c| c.visit_all &block}

end

def visit(&block)

block.call self

end

end

ruby_tree = Tree.new("Ruby",

[Tree.new("Reia"),

Tree.new("MacRuby")])

puts "Visiting a node"

ruby_tree.visit {|node| puts node.node_name}

puts

puts "visiting entire tree"

ruby_tree.visit_all {|node| puts node.node_name}

This power-packed class implements a very simple tree. It has three
methods, initialize, visit, and visit_all, and two instance variables, children

and node_name. initialize has special meaning. Ruby will call it when the
class instantiates a new object.

I should point out a few conventions and rules for Ruby. Classes start
with capital letters and typically use CamelCase to denote capitaliza-
tion. You must prepend instance variables (one value per object) with
@ and class variables (one value per class) with @@. Instance variables
and method names begin with lowercase letters in the underscore_style.
Constants are in ALL_CAPS. This code defines a tree class. Each tree
has two instance variables: @children and @node_name. Functions and
methods that test typically use a question mark (if test?).

The attr keyword defines an instance variable. Several versions exist.
The most common are attr (defining an instance variable and a method

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/ruby/tree.rb
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=43

DAY 2: FLOATING DOWN FROM THE SKY 44

of the same name to access it) and attr_accessor, defining an instance
variable, an accessor, and a setter.

Our dense program packs a punch. It uses blocks and recursion to
allow any user to visit all nodes in a tree. Each instance of Tree has
one node of a tree. The initialize method provides the starting values for
children and node_name. The visit method calls the inbound code block.
The visit_all method calls visit for the node and then recursively calls
visit_all for each of the children.

The remaining code uses the API. It defines a tree, visits one node, and
then visits all nodes. Running it produces this output:

Visiting a node

Ruby

visiting entire tree

Ruby

Reia

MacRuby

Classes are only part of the equation. You’ve briefly seen modules in
the code on page 42. Let’s go back and take a closer look.

Writing a Mixin

Object-oriented languages use inheritance to propagate behavior to
similar objects. When the behaviors are not similar, either you can
allow inheritance from more than one class (multiple inheritance) or
you can look to another solution. Experience has shown that multi-
ple inheritance is complicated and problematic. Java uses interfaces
to solve this problem. Ruby uses modules. A module is a collection of
functions and constants. When you include a module as part of a class,
those behaviors and constants become part of the class.

Take this class, which adds a to_f method to an arbitrary class:

Download ruby/to_file.rb

module ToFile

def filename

"object_#{self.object_id}.txt"

end

def to_f

File.open(filename, 'w') {|f| f.write(to_s)}

end

end

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/ruby/to_file.rb
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=44

DAY 2: FLOATING DOWN FROM THE SKY 45

class Person

include ToFile

attr_accessor :name

def initialize(name)

@name = name

end

def to_s

name

end

end

Person.new('matz').to_f

Start with the module definition. This module has two methods. The
to_f method writes the output of the to_s method to a file with a file-
name supplied by the filename method. What’s interesting here is that
to_s is used in the module but implemented in the class! The class
has not even been defined yet. The module interacts with the including
class at an intimate level. The module will often depend on several class
methods. With Java, this contract is explicit: the class will implement
a formal interface. With Ruby, this contract is implicit, through duck
typing.

The details of Person are not at all interesting, and that’s the point. The
Person includes the module, and we’re done. The ability to write to a file
has nothing to do with whether a class is actually a Person. We add the
capability to add the contents to a file by mixing in the capability. We
can add new mixins and subclasses to Person, and each subclass will
have the capabilities of all the mixins without having to know about
the mixin’s implementation. When all is said and done, you can use a
simplified single inheritance to define the essence of a class and then
attach additional capabilities with modules. This style of programming,
introduced in Flavors and used in many languages from Smalltalk to
Python, is called a mixin. The vehicle that carries the mixin is not always
called a module, but the premise is clear. Single inheritance plus mixins
allow for a nice packaging of behavior.

Modules, Enumerable, and Sets

A couple of the most critical mixins in Ruby are the enumerable and
comparable mixins. A class wanting to be enumerable must implement
each, and a class wanting to be comparable must implement <=>. Called
the spaceship operator, <=> is a simple comparison that returns -1 if

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=45

DAY 2: FLOATING DOWN FROM THE SKY 46

b is greater, 1 if a is greater, and 0 otherwise. In exchange for imple-
menting these methods, enumerable and comparable provide many con-
venience methods for collections. Crack open the console:

>> 'begin' <=> 'end'

=> -1

>> 'same' <=> 'same'

=> 0

>> a = [5, 3, 4, 1]

=> [5, 3, 4, 1]

>> a.sort

=> [1, 3, 4, 5]

>> a.any? {|i| i > 6}

=> false

>> a.any? {|i| i > 4}

=> true

>> a.all? {|i| i > 4}

=> false

>> a.all? {|i| i > 0}

=> true

>> a.collect {|i| i * 2}

=> [10, 6, 8, 2]

>> a.select {|i| i % 2 == 0 } # even

=> [4]

>> a.select {|i| i % 2 == 1 } # odd

=> [5, 3, 1]

>> a.max

=> 5

>> a.member?(2)

=> false

any? returns true if the condition is true for any of the elements; all?

returns true if the condition is true for all elements. Since the space-
ship is implemented on these integers through Fixnum, you can sort and
compute the min or max.

You can also do set-based operations. collect and map apply a function
to each of the elements and return an array of the results. find finds
one element matching the condition, and both select and find_all return
all elements matching a condition. You can also compute the total of a
list or the product with inject:

>> a

=> [5, 3, 4, 1]

>> a.inject(0) {|sum, i| sum + i}

=> 13

>> a.inject {|sum, i| sum + i}

=> 13

>> a.inject {|product, i| product * i}

=> 60

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=46

DAY 2: FLOATING DOWN FROM THE SKY 47

inject seems tricky, but it’s not too complicated. It takes a code block
with two arguments and an expression. The code block will be executed
for each item in the list, with inject passing each list element to the code
block as the second argument. The first argument is the result of the
previous execution of the code block. Since the result won’t have a value
the first time the code block is executed, you just pass the initial value
as the argument to inject. (If you don’t specify a value, inject will use
the first value in the collection.) Take a second look, with a little help:

>> a.inject(0) do |sum, i|

?> puts "sum: #{sum} i: #{i} sum + i: #{sum + i}"

?> sum + i

?>end

sum: 0 i: 5 sum + i: 5

sum: 5 i: 3 sum + i: 8

sum: 8 i: 4 sum + i: 12

sum: 12 i: 1 sum + i: 13

As expected, the result of the previous line is always the first value
passed to the next line. Using inject, you can compute the word count
of many sentences, find the largest word in a paragraph of lines, and
do much more.

What We Learned in Day 2

This is your first chance to see some of Ruby’s sugar and also a little of
the magic. You’re starting to see how flexible Ruby can be. The collec-
tions are dead simple: two collections with multiple APIs layered on top.
Application performance is secondary. Ruby is about the performance
of the programmer. The enumerable module gives you a flavor of just
how well-designed Ruby can be. The single-inheritance object-oriented
structure certainly isn’t novel, but the implementation is packed with
intuitive design and useful features. This level of abstraction gives you
a marginally better programming language, but serious mojo is on
the way.

Day 2 Self-Study

These problems will be a little more demanding. You’ve used Ruby a
little longer, so the gloves are off. These examples will force you to do a
little more analytical thinking.

Find:

• Find out how to access files with and without code blocks. What
is the benefit of the code block?

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=47

DAY 3: SERIOUS CHANGE 48

• How would you translate a hash to an array? Can you translate
arrays to hashes?

• Can you iterate through a hash?

• You can use Ruby arrays as stacks. What other common data
structures do arrays support?

Do:

• Print the contents of an array of sixteen numbers, four numbers
at a time, using just each. Now, do the same with each_slice in
Enumerable.

• The Tree class was interesting, but it did not allow you to specify
a new tree with a clean user interface. Let the initializer accept a
nested structure with hashes and arrays. You should be able to
specify a tree like this: {’grandpa’ => { ’dad’ => {’child 1’ => {}, ’child

2’ => {} }, ’uncle’ => {’child 3’ => {}, ’child 4’ => {} } } }.

• Write a simple grep that will print the lines of a file having any
occurrences of a phrase anywhere in that line. You will need to do
a simple regular expression match and read lines from a file. (This
is surprisingly simple in Ruby.) If you want, include line numbers.

2.4 Day 3: Serious Change

The whole point of Mary Poppins is that she made the household better
as a whole by making it fun and changing the hearts of the people in
it with passion and imagination. You could back off a little and play it
safe, using Ruby to do the same things you already know how to do
in other languages. But when you change the way a language looks
and works, you can capture magic that makes programming fun. In
this book, each chapter will show you some nontrivial problem that the
language solves well. In Ruby, that means metaprogramming.

Metaprogramming means writing programs that write programs. The
ActiveRecord framework that’s the centerpiece of Rails uses metapro-
gramming to implement a friendly language for building classes that
link to database tables. An ActiveRecord class for a Department might
look like this:

class Department < ActiveRecord::Base

has_many :employees

has_one :manager

end

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=48

DAY 3: SERIOUS CHANGE 49

has_many and has_one are Ruby methods that add all the instance vari-
ables and methods needed to establish a has_many relationship. This
class specification reads like English, eliminating all the noise and bag-
gage that you usually find with other database frameworks. Let’s look
at some different tools you can use for metaprogramming.

Open Classes

You’ve already had a brief introduction to open classes. You can change
the definition of any class at any time, usually to add behavior. Here’s a
great example from the Rails framework that adds a method to NilClass:

Download ruby/blank.rb

class NilClass

def blank?

true

end

end

class String

def blank?

self.size == 0

end

end

["", "person", nil].each do |element|

puts element unless element.blank?

end

The first invocation of class defines a class; once a class is already
defined, subsequent invocations modify that class. This code adds a
method called blank? to two existing classes: NilClass and String. When I
check the status of a given string, I often want to see whether it is blank.
Most strings can have a value, be empty, and be possibly nil. This little
idiom lets me quickly check for the two empty cases at once, because
blank? will return true. It doesn’t matter which class String points to. If
it supports the blank? method, it will work. If it walks like a duck and
quacks like a duck, it is a duck. I don’t need to draw blood to check
the type.

Watch what’s going on here. You’re asking for a very sharp scalpel, and
Ruby will gladly give it to you. Your open classes have redefined both
String and Nil. It’s possible to completely disable Ruby by redefining,
say, Class.new. The trade-off is freedom. With the kind of freedom that
lets you redefine any class or object at any time, you can build some
amazingly readable code. With freedom and power come responsibility.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/ruby/blank.rb
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=49

DAY 3: SERIOUS CHANGE 50

Open classes are useful when you’re building languages to encode your
own domain. It’s often useful to express units in a language that works
for your business domain. For example, consider an API that expresses
all distance as inches:

Download ruby/units.rb

class Numeric

def inches

self

end

def feet

self * 12.inches

end

def yards

self * 3.feet

end

def miles

self * 5280.feet

end

def back

self * -1

end

def forward

self

end

end

puts 10.miles.back

puts 2.feet.forward

The open classes make this kind of support possible with minimal syn-
tax. But other techniques can stretch Ruby even further.

Via method_missing

Ruby calls a special debugging method each time a method is miss-
ing in order to print some diagnostic information. This behavior makes
the language easier to debug. But sometimes, you can take advantage
of this language feature to build some unexpectedly rich behavior. All
you need to do is override method_missing. Consider an API to represent
Roman numerals. You could do it easily enough with a method call,
with an API something like Roman.number_for "ii". In truth, that’s not too

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/ruby/units.rb
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=50

DAY 3: SERIOUS CHANGE 51

bad. There are no mandatory parentheses or semicolons to get in the
way. With Ruby, we can do better:

Download ruby/roman.rb

class Roman

def self.method_missing name, *args

roman = name.to_s

roman.gsub!("IV", "IIII")

roman.gsub!("IX", "VIIII")

roman.gsub!("XL", "XXXX")

roman.gsub!("XC", "LXXXX")

(roman.count("I") +

roman.count("V") * 5 +

roman.count("X") * 10 +

roman.count("L") * 50 +

roman.count("C") * 100)

end

end

puts Roman.X

puts Roman.XC

puts Roman.XII

puts Roman.X

This code is a beautiful example of method_missing in action. The code is
clear and simple. We first override method_missing. We’ll get the name of
the method and its parameters as input parameters. We’re interested
only in the name. First, we convert that to String. Then, we replace the
special cases, like iv and ix, with strings that are easier to count. Then,
we just count Roman digits and multiply by the value of that number.
The API is so much easier: Roman.i versus Roman.number_for "i".

Consider the cost, though. We do have a class that will be much more
difficult to debug, because Ruby can no longer tell you when a method
is missing! We would definitely want strong error checking to make sure
it was accepting valid Roman numerals. If you don’t know what you’re
looking for, you could have a tough time finding that implementation of
that ii method on Roman. Still, it’s another scalpel for the tool bag. Use
it wisely.

Modules

The most popular metaprogramming style in Ruby is the module. You
can literally implement def or attr_accessor with a few lines of code in
a module. You can also extend class definitions in surprising ways. A
common technique lets you design your own domain-specific language

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/ruby/roman.rb
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=51

DAY 3: SERIOUS CHANGE 52

(DSL) to define your class.4 The DSL defines methods in a module that
adds all the methods and constants needed to manage a class.

I’m going to break an example down using a common superclass first.
Here’s the type of class that we want to build through metaprogram-
ming. It’s a simple program to open a CSV file based on the name of the
class.

Download ruby/acts_as_csv_class.rb

class ActsAsCsv

def read

file = File.new(self.class.to_s.downcase + '.txt')

@headers = file.gets.chomp.split(', ')

file.each do |row|

@result << row.chomp.split(', ')

end

end

def headers

@headers

end

def csv_contents

@result

end

def initialize

@result = []

read

end

end

class RubyCsv < ActsAsCsv

end

m = RubyCsv.new

puts m.headers.inspect

puts m.csv_contents.inspect

This basic class defines four methods. headers and csv_contents are sim-
ple accessors that return the value of instance variables. initialize initial-
izes the results of the read. Most of the work happens in read. The read

method opens a file, reads headings, and chops them into individual
fields. Next, it loops over lines, placing the contents of each line in an

4. DSLs let you tailor a language for a specific domain. For perhaps the best-known
example in Ruby, the ActiveRecord persistence framework uses domain-specific lan-
guages to map a class to a database table.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/ruby/acts_as_csv_class.rb
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=52

DAY 3: SERIOUS CHANGE 53

array. This implementation of a CSV file is not complete because it does
not handle edge cases like quotes, but you get the idea.

The next step is to take the file and attach that behavior to a class with
a module method often called a macro. Macros change the behavior of
classes, often based on changes in the environment. In this case, our
macro opens up the class and dumps in all the behavior related to a
CSV file:

Download ruby/acts_as_csv.rb

class ActsAsCsv

def self.acts_as_csv

define_method 'read' do

file = File.new(self.class.to_s.downcase + '.txt')

@headers = file.gets.chomp.split(', ')

file.each do |row|

@result << row.chomp.split(', ')

end

end

define_method "headers" do

@headers

end

define_method "csv_contents" do

@result

end

define_method 'initialize' do

@result = []

read

end

end

end

class RubyCsv < ActsAsCsv

acts_as_csv

end

m = RubyCsv.new

puts m.headers.inspect

puts m.csv_contents.inspect

The metaprogramming happens in the acts_as_csv macro. That code
calls define_method for all the methods we want to add to the target
class. Now, when the target class calls acts_as_csv, that code will define
all four methods on the target class.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/ruby/acts_as_csv.rb
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=53

DAY 3: SERIOUS CHANGE 54

So, the acts_as macro code does nothing but add a few methods we
could have easily added through inheritance. That design does not
seem like much of an improvement, but it’s about to get more inter-
esting. Let’s see how the same behavior would work in a module:

Download ruby/acts_as_csv_module.rb

module ActsAsCsv

def self.included(base)

base.extend ClassMethods

end

module ClassMethods

def acts_as_csv

include InstanceMethods

end

end

module InstanceMethods

def read

@csv_contents = []

filename = self.class.to_s.downcase + '.txt'

file = File.new(filename)

@headers = file.gets.chomp.split(', ')

file.each do |row|

@csv_contents << row.chomp.split(', ')

end

end

attr_accessor :headers, :csv_contents

def initialize

read

end

end

end

class RubyCsv # no inheritance! You can mix it in

include ActsAsCsv

acts_as_csv

end

m = RubyCsv.new

puts m.headers.inspect

puts m.csv_contents.inspect

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/ruby/acts_as_csv_module.rb
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=54

DAY 3: SERIOUS CHANGE 55

Ruby will invoke the included method whenever this module gets in-
cluded into another. Remember, a class is a module. In our included
method, we extend the target class called base (which is the RubyCsv

class), and that module adds class methods to RubyCsv. The only class
method is acts_as_csv. That method in turn opens up the class and
includes all the instance methods. And we’re writing a program that
writes a program.

The interesting thing about all these metaprogramming techniques is
that your programs can change based on the state of your application.
ActiveRecord uses metaprogramming to dynamically add accessors that
are the same name as the columns of the database. Some XML frame-
works like builder let users define custom tags with method_missing to
provide a beautiful syntax. When your syntax is more beautiful, you
can let the reader of your code get past the syntax and closer to the
intentions. That’s the power of Ruby.

What We Learned in Day 3

In this section, you learned to use Ruby to define your own syntax and
change classes on the fly. These programming techniques fall in the
category of metaprogramming. Every line of code that you write has
two kinds of audiences: computers and people. Sometimes, it’s hard to
strike a balance between building code that can pass through the inter-
preter or compiler and is also easy to understand. With metaprogram-
ming, you can close the gap between valid Ruby syntax and sentences.

Some of the best Ruby frameworks, such as Builder and ActiveRecord,
heavily depend on metaprogramming techniques for readability. You
used open classes to build a duck-typed interface supporting the blank?

method for String objects and nil, dramatically reducing the amount of
clutter for a common scenario. You saw some code that used many of
the same techniques. You used method_missing to build beautiful Roman
numerals. And finally, you used modules to define a domain-specific
language that you used to specify CSV files.

Day 3 Self-Study

Do:

Modify the CSV application to support an each method to return a
CsvRow object. Use method_missing on that CsvRow to return the value
for the column for a given heading.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=55

WRAPPING UP RUBY 56

For example, for the file:

one, two

lions, tigers

allow an API that works like this:

csv = RubyCsv.new

csv.each {|row| puts row.one}

This should print "lions".

2.5 Wrapping Up Ruby

We have covered a lot of ground in this chapter. I hope you can see
the comparison to Mary Poppins. After speaking at dozens of Ruby
conferences, I have heard scores of people profess their love for Ruby
because it is fun. To an industry that grew up embracing the C family
of languages including C++, C#, Java, and others, Ruby is a breath of
fresh air.

Core Strengths

Ruby’s pure object orientation allows you to treat objects in a uniform
and consistent way. The duck typing allows truer polymorphic designs
based on what an object can support rather than that object’s inheri-
tance hierarchy. And Ruby’s modules and open classes let a program-
mer attach behavior to syntax that goes beyond the typical method or
instance variable definitions in a class.

Ruby is ideal as a scripting language, or as a web development language
if the scaling requirements are reasonable. The language is intensely
productive. Some of the features that enable that productivity make
Ruby hard to compile and make the performance suffer.

Scripting

Ruby is a fantastic scripting language. Writing glue code to munge two
applications together, writing a spider to scrape web pages for a stock
quote or book price, or running local build environments or automated
tests are excellent uses for Ruby.

As a language with a presence on most major operating systems, Ruby
is a good choice for scripting environments. The language has a wide
variety of libraries included with the base, as well as thousands of gems,
or prepackaged plug-ins, that can be used for loading CSV files, pro-
cessing XML, or working with low-level Internet APIs.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=56

WRAPPING UP RUBY 57

Web Development

Rails is already one of the most successful web development frame-
works of all time. The design is based on well-understood model-view-
controller paradigms. The many naming conventions for database and
application elements allow a typical application to be built with few
lines of configuration at all. And the framework has plug-ins that han-
dle some difficult production issues:

• The structure of Rails applications is always consistent and well
understood.

• Migrations handle changes in the database schema.

• Several well-documented conventions reduce the total amount of
configuration code.

• Many different plug-ins are available.

Time to Market

I would consider the productivity of Ruby and Rails to be an important
component in its success. In the mid-2000s, you could not throw a rock
in San Francisco without hitting someone who worked at a start-up
powered by Rails. Even today, Ruby is prolific in these kinds of compa-
nies, including mine. The combination of the beautiful syntax and the
community of programmers, tools, and plug-ins is extremely powerful.
You can find Ruby gems to find the ZIP code of a surfer and another
to calculate all address codes in a fifty-mile radius. You can process
images and credit cards, work with web services, and communicate
across many programming languages.

Many large, commercial websites use Ruby and Ruby on Rails. The
original Twitter implementation was in Ruby, and the extraordinary
productivity of the language allowed the website to grow to huge pro-
portions. Eventually, the core of Twitter was rewritten in Scala. There
are two lessons here. First, Ruby is a great language for getting a viable
product to market quickly. Second, the scalability of Ruby is limited in
some ways.

In formal big enterprises with distributed transactions, fail-safe mes-
saging, and internationalization, the role of Ruby is often seen as a
little more limited, but Ruby can do all of these things. Sometimes,
concerns about the right application frameworks and scalability are
well-founded, but too many people focus on enough scalability to build
the next eBay when they can’t deliver any software on time. Often, Ruby

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=57

WRAPPING UP RUBY 58

would be more than adequate considering the time-to-market pressures
many enterprises face.

Weaknesses

No language is perfect for all applications. Ruby has its share of limita-
tions too. Let’s walk through some of the major ones.

Performance

Ruby’s primary weakness is performance. Sure, Ruby is getting faster.
Version 1.9 is up to ten times faster for some use cases. A new Ruby vir-
tual machine written by Evan Phoenix called Rubinius has the potential
to compile Ruby using a just-in-time compiler. This approach looks at
an interpreter’s usage patterns for a block of code to anticipate which
code is likely to be needed again. This approach works well for Ruby, a
language where syntax clues are usually not enough to allow compila-
tion. Remember, the definition of a class can change at any time.

Still, Matz is very clear. He works to optimize the programmer’s expe-
rience, not the performance of the language. Many of the language’s
features such as open classes, duck typing, and method_missing defeat
the very tools that enable compilation and the associated performance
gains.

Concurrency and OOP

Object-oriented programming has a critical limitation. The whole prem-
ise of the model depends on wrapping behavior around state, and usu-
ally the state can be changed. This programming strategy leads to
serious problems with concurrency. At best, significant resource con-
tentions are built into the language. At worst, object-oriented systems
are next to impossible to debug and cannot be reliably tested for con-
current environments. As of this writing, the Rails team is only now
starting to address the problem of managing concurrency effectively.

Type Safety

I’m a firm believer in duck typing. With this typing strategy, you can
generally have cleaner abstractions with concise, readable code. But
duck typing comes at a price, too. Static typing allows a whole range of
tools that make it easier to do syntax trees and thus provide integrated
development environments. IDEs for Ruby are more difficult to build,
and so far, most Ruby developers do not use them. Many times, I’ve
lamented the loss of an IDE-style debugger. I know I’m not alone.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=58

WRAPPING UP RUBY 59

Final Thoughts

So, Ruby’s core strengths are its syntax and flexibility. The core weak-
nesses are around performance, though the performance is reasonable
for many purposes. All in all, Ruby is an excellent language for object-
oriented development. For the right applications, Ruby can excel. As
with any tool, use it to solve the right set of problems, and you’re not
likely to be disappointed. And keep your eyes open for a little magic
along the way.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=59

The question isn’t, “What are we going to do?” The question

is, “What aren’t we going to do?”

Ferris Bueller

Chapter 3

Io
Meet Io. Like Ruby, Io is a rule bender. He’s young, wicked smart, and
easy to understand but hard to predict. Think Ferris Bueller.1 If you
like a good party, you’ll have to let Io show you around the town. He’ll
try anything once. He might give you the ride of your life, wreck your
dad’s car, or both. Either way, you will not be bored. As the quote above
says, you won’t have many rules to hold you back.

3.1 Introducing Io

Steve Dekorte invented the Io language in 2002. It’s always written with
an uppercase I followed by a lowercase o. Io is a prototype language like
Lua or JavaScript, meaning every object is a clone of another.

Written as an exercise to help Steve understand how interpreters work,
Io started as a hobbyist language and remains pretty small today. You
can learn the syntax in about fifteen minutes and the basic mechanics
of the language in thirty. There are no surprises. But the libraries will
take you a little longer. The complexity and the richness comes from
the library design.

Today, most of Io’s community is focused on Io as an embeddable
language with a tiny virtual machine and rich concurrency. The core
strengths are richly customizable syntax and function, as well as a
strong concurrency model. Try to focus on the simplicity of the syntax
and the prototype programming model. I found that after Io, I had a
much stronger understanding of how JavaScript worked.

1. Ferris Bueller’s Day Off. DVD. Directed by John Hughes. 1986; Hollywood, CA:
Paramount, 1999.

DAY 1: SKIPPING SCHOOL, HANGING OUT 61

3.2 Day 1: Skipping School, Hanging Out

Meeting Io is like meeting any language. You’ll have to put in a little key-
board time to get properly acquainted. It will be much easier if we can
interact outside of stifled conversations in the hallway before history
class. Let’s cut school and skip straight to the good stuff.

Names are sometimes deceiving, but you can tell a lot from Io. It’s
simultaneously reckless (ever try Googling for Io?)2 and brilliant. You
get only two letters, both vowels. The language’s syntax is simple and
low-level, like the name. Io syntax simply chains messages together,
with each message returning an object and each message taking op-
tional parameters in parentheses. In Io, everything is a message that
returns another receiver. There are no keywords and only a handful of
characters that behave like keywords.

With Io, you won’t worry about both classes and objects. You’ll deal
exclusively in objects, cloning them as needed. These clones are called
prototypes, and Io is the first and only prototype-based language we’ll
look at. In a prototype language, every object is a clone of an existing
object rather than a class. Io gets you about as close to object-oriented
Lisp as you’re likely to get. It’s too early to tell whether Io will have
lasting impact, but the simplicity of the syntax means it has a fighting
chance. The concurrency libraries that you’ll see in day 3 are well con-
ceived, and the message semantics are elegant and powerful. Reflection
is everywhere.

Breaking the Ice

Let’s crack open the interpreter and start the party. You can find it at
http://iolanguage.com. Download it and install it. Open the interpreter
by typing io, and enter the traditional “Hello, World” program:

Io> "Hi ho, Io" print

Hi ho, Io==> Hi ho, Io

You can tell exactly what’s going on here. You’re sending the print mes-
sage to the string "Hi ho, Io". Receivers go on the left, and messages go on
the right. You won’t find much syntactic sugar at all. You’ll just send
messages to objects.

In Ruby, you created a new object by calling new on some class. You
created a new kind of object by defining a class. Io makes no distinction

2. Try Googling for Io language instead.

Report erratum

this copy is (P1.0 printing, October 2010)

http://iolanguage.com
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=61

DAY 1: SKIPPING SCHOOL, HANGING OUT 62

between these two things. You’ll create new objects by cloning existing
ones. The existing object is a prototype:

batate$ io

Io 20090105

Io> Vehicle := Object clone

==> Vehicle_0x1003b61f8:

type = "Vehicle"

Object is the root-level object. We send the clone message, which re-
turns a new object. We assign that object to Vehicle. Here, Vehicle is not
a class. It’s not a template used to create objects. It is an object, based
on the Object prototype. Let’s interact with it:

Io> Vehicle description := "Something to take you places"

==> Something to take you places

Objects have slots. Think of the collection of slots as a hash. You’ll refer
to each slot with a key. You can use := to assign something to a slot. If
the slot doesn’t exist, Io will create it. You can also use = for assignment.
If the slot doesn’t exist, Io throws an exception. We just created a slot
called description.

Io> Vehicle description = "Something to take you far away"

==> Something to take you far away

Io> Vehicle nonexistingSlot = "This won't work."

Exception: Slot nonexistingSlot not found.

Must define slot using := operator before updating.

message 'updateSlot' in 'Command Line' on line 1

You can get the value from a slot by sending the slot’s name to the
object:

Io> Vehicle description

==> Something to take you far away

In fact, an object is little more than a collection of slots. We can look at
the names of all the slots on Vehicle like this:

Io> Vehicle slotNames

==> list("type", "description")

We sent the slotNames method to Vehicle and got a list of slot names
back. There are two slots. You’ve seen the description slot, but we also
have a type slot. Every object supports type:

Io> Vehicle type

==> Vehicle

Io> Object type

==> Object

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=62

DAY 1: SKIPPING SCHOOL, HANGING OUT 63

Vehicle

Object

description

Car ferrari
 description:

Something...
Instance

Figure 3.1: An object-oriented design

We’ll get to types in a few paragraphs. For now, know that type repre-
sents the kind of object you’re dealing with. Keep in mind that a type is
an object, not a class. Here’s what we know so far:

• You make objects by cloning other objects.

• Objects are collections of slots.

• You get a slot’s value by sending the message.

You can already see that Io is simple and fun. But sit back. We’re only
scratching the surface. Let’s move on to inheritance.

Objects, Prototypes, and Inheritance

In this section, we’re going to deal with inheritance. Given a car that’s
also a vehicle, think of how you would model a ferrari object that is an
instance of a car. In an object-oriented language, you’d do something
like Figure 3.1.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=63

DAY 1: SKIPPING SCHOOL, HANGING OUT 64

Let’s see how you’d solve the same problem in a prototype language.
We’re going to need a few extra objects. Let’s create another:

Io> Car := Vehicle clone

==> Car_0x100473938:

type = "Car"

Io> Car slotNames

==> list("type")

Io> Car type

==> Car

In Io-speak, we created a new object called Car by sending the clone

message to the Vehicle prototype. Let’s send description to Car:

Io> Car description

==> Something to take you far away

There’s no description slot on Car. Io just forwards the description mes-
sage to the prototype and finds the slot in Vehicle. It’s dead simple but
plenty powerful. Let’s create another car, but this time, we’ll assign it
to ferrari:

Io> ferrari := Car clone

==> Car_0x1004f43d0:

Io> ferrari slotNames

==> list()

A-ha! There’s no type slot. By convention, types in Io begin with upper-
case letters. Now, when you invoke the type slot, you’ll get the type of
your prototype:

Io> ferrari type

==> Car

This is how Io’s object model works. Objects are just containers of slots.
Get a slot by sending its name to an object. If the slot isn’t there, Io calls
the parent. That’s all you have to understand. There are no classes
or metaclasses. You don’t have interfaces or modules. You just have
objects, like you see in Figure 3.2, on the next page.

Types in Io are just conveniences. Idiomatically, an object that begins
with an uppercase name is a type, so Io sets the type slot. Any clones of
that type starting with lowercase letters will simply invoke their parents’
type slot. Types are just tools that help Io programmers better organize
code.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=64

DAY 1: SKIPPING SCHOOL, HANGING OUT 65

Vehicle

Object

Description: Something to take you far away

Car

ferrari

Prototype: Object

Prototype: Vehicle

Prototype: Car

Figure 3.2: Inheritance in Io

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=65

DAY 1: SKIPPING SCHOOL, HANGING OUT 66

If you wanted ferrari to be a type, you would have it begin with an upper-
case letter, like this:

Io> Ferrari := Car clone

==> Ferrari_0x9d085c8:

type = "Ferrari"

Io> Ferrari type

==> Ferrari

Io> Ferrari slotNames

==> list("type")

Io> ferrari slotNames

==> list()

Io>

Notice that ferrari has no type slot, but Ferrari does. We’re using a simple
coding convention rather than a full language feature to distinguish
between types and instances. In other cases, they behave the same
way.

In Ruby and Java, classes are templates used to create objects. bruce

= Person.new creates a new person object from the Person class. They are
different entities entirely, a class and an object. Not so in Io. bruce :=

Person clone creates a clone called bruce from the prototype called Person.
Both bruce and Person are objects. Person is a type because it has a type
slot. In most other respects, Person is identical to bruce. Let’s move on
to behavior.

Methods

In Io, you can create a method easily, like this:

Io> method("So, you've come for an argument." println)

==> method(

"So, you've come for an argument." println

)

A method is an object, just like any other type of object. You can get its
type:

Io> method() type

==> Block

Since a method is an object, we can assign it to a slot:

Io> Car drive := method("Vroom" println)

==> method(

"Vroom" println

)

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=66

DAY 1: SKIPPING SCHOOL, HANGING OUT 67

If a slot has a method, invoking the slot invokes the method:

Io> ferrari drive

Vroom

==> Vroom

Believe it or not, you now know the core organizational principles of
Io. Think about it. You know the basic syntax. You can define types
and objects. You can add data and behavior to an object by assigning
contents to its slots. Everything else involves learning the libraries.

Let’s dig a little deeper. You can get the contents of slots, whether they
are variables or methods, like this:

Io> ferrari getSlot("drive")

==> method(

"Vroom" println

)

getSlot will give you your parent’s slot if the slot doesn’t exist:

Io> ferrari getSlot("type")

==> Car

You can get the prototype of a given object:

Io> ferrari proto

==> Car_0x100473938:

drive = method(...)

type = "Car"

Io> Car proto

==> Vehicle_0x1003b61f8:

description = "Something to take you far away"

type = "Vehicle"

These were the prototypes that you used to clone ferrari and Car. You
also see their custom slots for convenience.

There’s a master namespace called Lobby that contains all the named
objects. All of the assignments you’ve done in the console, plus a few
more, are on Lobby. You can see it like this:

Io> Lobby

==> Object_0x1002184e0:

Car = Car_0x100473938

Lobby = Object_0x1002184e0

Protos = Object_0x1002184e0

Vehicle = Vehicle_0x1003b61f8

exit = method(...)

ferrari = Car_0x1004f43d0

forward = method(...)

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=67

DAY 1: SKIPPING SCHOOL, HANGING OUT 68

You see the exit implementation, forward, Protos, and the stuff we defined.

The prototype programming paradigm seems clear enough. These are
the basic ground rules:

• Every thing is an object.

• Every interaction with an object is a message.

• You don’t instantiate classes; you clone other objects called proto-

types.

• Objects remember their prototypes.

• Objects have slots.

• Slots contain objects, including method objects.

• A message returns the value in a slot or invokes the method in a
slot.

• If an object can’t respond to a message, it sends that message to
its prototype.

And that’s most of it. Since you can see or change any slot or any object,
you can do some pretty sophisticated metaprogramming. But first, you
need to see the next layer of building blocks: collections.

Lists and Maps

Io has a few types of collections. A list is an ordered collection of objects
of any type. List is the prototype for all lists, and Map is the prototype
for key-value pairs, like the Ruby hash. Create a list like this:

Io> toDos := list("find my car", "find Continuum Transfunctioner")

==> list("find my car", "find Continuum Transfunctioner")

Io> toDos size

==> 2

Io> toDos append("Find a present")

==> list("find my car", "find Continuum Transfunctioner", "Find a present")

There’s a shortcut way of representing a list. Object supports the list

method, which wraps the arguments up into a list. Using list, you can
conveniently create a list, like this:

Io> list(1, 2, 3, 4)

==> list(1, 2, 3, 4)

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=68

DAY 1: SKIPPING SCHOOL, HANGING OUT 69

List also has convenience methods for math and to deal with the list as
other data types, such as stacks:

Io> list(1, 2, 3, 4) average

==> 2.5

Io> list(1, 2, 3, 4) sum

==> 10

Io> list(1, 2, 3) at(1)

==> 2

Io> list(1, 2, 3) append(4)

==> list(1, 2, 3, 4)

Io> list(1, 2, 3) pop

==> 3

Io> list(1, 2, 3) prepend(0)

==> list(0, 1, 2, 3)

Io> list() isEmpty

==> true

The other major collection class in Io is the Map. Io maps are like Ruby
hashes. Since there’s no syntactic sugar, you’ll work with them with an
API that looks like this:

Io> elvis := Map clone

==> Map_0x115f580:

Io> elvis atPut("home", "Graceland")

==> Map_0x115f580:

Io> elvis at("home")

==> Graceland

Io> elvis atPut("style", "rock and roll")

==> Map_0x115f580:

Io> elvis asObject

==> Object_0x11c1d90:

home = "Graceland"

style = "rock and roll"

Io> elvis asList

==> list(list("style", "rock and roll"), list("home", "Graceland"))

Io> elvis keys

==> list("style", "home")

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=69

DAY 1: SKIPPING SCHOOL, HANGING OUT 70

Io> elvis size

==> 2

When you think about it, a hash is a lot like an Io object in structure
where the keys are slots that are tied to values. The combination of
slots that can be rapidly translated to objects is an interesting one.

Now that you’ve seen the basic collections, you’ll want to use them.
We’ll need to introduce control structures, and those will depend on
boolean values.

true, false, nil, and singletons

Io’s conditions are pretty similar to those of other object-oriented lan-
guages. Here are a few:

Io> 4 < 5

==> true

Io> 4 <= 3

==> false

Io> true and false

==> false

Io> true and true

==> true

Io> true or true

==> true

Io> true or false

==> true

Io> 4 < 5 and 6 > 7

==> false

Io> true and 6

==> true

Io> true and 0

==> true

That’s simple enough. Make a note: 0 is true as in Ruby, not false as in
C. So, what is true?

Io> true proto

==> Object_0x200490:

= Object_()

!= = Object_!=()

...

Io> true clone

==> true

Io> false clone

==> false

Io> nil clone

==> nil

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=70

DAY 1: SKIPPING SCHOOL, HANGING OUT 71

Now, that’s interesting! true, false, and nil are singletons. Cloning them
just returns the singleton value. You can do the same pretty easily.
Create your own singleton like this:

Io> Highlander := Object clone

==> Highlander_0x378920:

type = "Highlander"

Io> Highlander clone := Highlander

==> Highlander_0x378920:

clone = Highlander_0x378920

type = "Highlander"

We’ve simply redefined the clone method to return Highlander, rather
than letting Io forward requests up the tree, eventually getting to Object.
Now, when you use Highlander, you’ll get this behavior:

Io> Highlander clone

==> Highlander_0x378920:

clone = Highlander_0x378920

type = "Highlander"

Io> fred := Highlander clone

==> Highlander_0x378920:

clone = Highlander_0x378920

type = "Highlander"

Io> mike := Highlander clone

==> Highlander_0x378920:

clone = Highlander_0x378920

type = "Highlander"

Io> fred == mike

==> true

Two clones are equal. That’s not generally true:

Io> one := Object clone

==> Object_0x356d00:

Io> two := Object clone

==> Object_0x31eb60:

Io> one == two

==> false

Now, there can be only one Highlander. Sometimes, Io can trip you up.
This solution is simple and elegant, if a little unexpected. We’ve blasted
through a lot of information, but you know enough to do some pretty
radical things, such as changing an object’s clone method to make a
singleton.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=71

DAY 1: SKIPPING SCHOOL, HANGING OUT 72

Be careful, though. Love him or hate him, you can’t deny that Io is
interesting. As with Ruby, Io can be a love-hate relationship. You can
change just about any slot on any object, even the ones that define the
language. Here’s one that you may not want to try:

Object clone := "hosed"

Since you overrode the clone method on object, nothing can create
objects anymore. You can’t fix it. You just have to kill the process. But
you can also get some pretty amazing behaviors in a short time. Since
you have complete access to operators and the slots that make up any
object, you can build domain-specific languages with a few short fas-
cinating lines of code. Before we wrap up the day, let’s hear what the
inventor of the language has to say.

An Interview with Steve Dekorte

Steve Dekorte is an independent consultant in the San Francisco area.
He invented Io in 2002. I had the pleasure of interviewing him about
his experiences with creating Io.

Bruce Tate: Why did you write Io?

Steve Dekorte: In 2002, my friend Dru Nelson wrote a language called

Cel (inspired by Self) and was asking for feedback on its implementation.

I didn’t feel I understood how programming languages work well enough

to have anything useful to say, so I started writing a small language to

understand them better. It grew into Io.

Bruce Tate: What is the thing that you like about it the most?

Steve Dekorte: I like the simple and consistent syntax and semantics.

They help with understanding what’s going on. You can quickly learn the

basics. I have a terrible memory. I constantly forget the syntax and weird

semantic rules for C and have to look them up. (ed. Steve implemented Io

in C.) That’s one of the things I don’t want to do when I use Io.

For example, you can see the code, such as people select(age > 20)

map(address) println, and get a pretty good idea of what is going on. You’re

filtering a list of people based on age, getting their addresses, and print-

ing them out.

If you simplify the semantics enough, things become more flexible. You

can start to compose things that you did not understand when you imple-

mented the language. Here’s an example. There are video games that are

puzzle games that assume a solution, and there are more games that are

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=72

DAY 1: SKIPPING SCHOOL, HANGING OUT 73

open-ended. The open-ended ones are fun because you can do things

that the designers of the game never imagined. Io is like that.

Sometimes other languages make syntactic shortcuts. That leads to extra

parsing rules. When you program in a language, you need to have the

parser in your head. The more complicated a language, the more of the

parser you need to have in your head. The more work a parser has to do,

the more work you have to do.

Bruce Tate: What are some limitations of Io?

Steve Dekorte: The cost of Io’s flexibility is that it can be slower for

many common uses. That said, it also has certain advantages (such as

coroutines, async sockets, and SIMD support), which can also make it

much faster than even C apps written with traditional thread per socket

concurrency or non-SIMD vector ops.

I’ve also had some complaints that the lack of syntax can make quick

visual inspection trickier. I’ve had similar problems with Lisp, so I under-

stand. Extra syntax makes for quick reading. New users sometimes say

Io has too little syntax, but they usually warm up to it.

Bruce Tate: Where is the strangest place you’ve seen Io in production?

Steve Dekorte: Over the years, I’ve heard rumors of Io from place to

place like on a satellite, in a router configuration language, and as a

scripting language for video games. Pixar uses it too. They wrote a blog

entry about it.

It was a busy first day, so it’s time to break for a little bit. You can now
pause and put some of what you’ve learned into practice.

What We Learned in Day 1

You’re now through a good chunk of Io. So far, you know a good deal
about the basic character of Io. The prototype language has very simple
syntax that you can use to build new basic elements of the language
itself. Even core elements lack even the simplest syntactic sugar. In
some ways, this minimal approach will make you work a little harder
to read the syntax.

A minimal syntax has some benefits as well. Since there is not much
going on syntactically, you don’t have to learn any special rules or
exceptions to them. Once you know how to read one sentence, you
can read them all. Your learning time can go toward establishing your
vocabulary.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=73

DAY 2: THE SAUSAGE KING 74

Your job as a new student is greatly simplified:

• Understand a few basic syntactical rules.

• Understand messages.

• Understand prototypes.

• Understand the libraries.

Day 1 Self-Study

When you’re looking for Io background, searching for answers is going
to be a little tougher because Io has so many different meanings. I
recommend Googling for Io language.

Find:

• Some Io example problems

• An Io community that will answer questions

• A style guide with Io idioms

Answer:

• Evaluate 1 + 1 and then 1 + "one". Is Io strongly typed or weakly
typed? Support your answer with code.

• Is 0 true or false? What about the empty string? Is nil true or false?
Support your answer with code.

• How can you tell what slots a prototype supports?

• What is the difference between = (equals), := (colon equals), and ::=

(colon colon equals)? When would you use each one?

Do:

• Run an Io program from a file.

• Execute the code in a slot given its name.

Spend a little time playing with slots and prototypes. Make sure you
understand how prototypes work.

3.3 Day 2: The Sausage King

Think back to Ferris Bueller for a moment. In the movie, the middle-
class high-school student represented himself as the sausage king of
Chicago in a classic bluff. He got a great table in a great restaurant

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=74

DAY 2: THE SAUSAGE KING 75

because he was willing to bend the rules. If you’re coming from a Java
background and you liked it, you’re thinking about what could have
happened—too much freedom is not always a good thing. Bueller prob-
ably deserved to be thrown out. In Io, you’re going to need to relax
a little and take advantage of the power. If you’re coming from a Perl
scripting background, you probably liked Bueller’s bluff because of the
result of the bluff. If you’ve traditionally played things a little fast and
loose, you’re going to have to pull back a little and inject some dis-
cipline. In day 2, you’ll start to see how you might use Io’s slots and
messages to shape core behaviors.

Conditionals and Loops

All of Io’s conditional statements are implemented without syntacti-
cal sugar. You’ll find they are easy to understand and remember, but
they’re a little harder to read because of fewer syntactic clues. Setting
up a simple infinite loop is easy. Type Control+C to break out:

Io> loop("getting dizzy..." println)

getting dizzy...

getting dizzy...

...

getting dizzy.^C

IoVM:

Received signal. Setting interrupt flag.

...

Loops will often be useful with the various concurrency constructs,
but you’ll normally want to choose one of the conditional looping con-
structs, such as a while loop. A while loop takes a condition and a mes-
sage to evaluate. Keep in mind that a semicolon concatenates two dis-
tinct messages:

Io> i := 1

==> 1

Io> while(i <= 11, i println; i = i + 1); "This one goes up to 11" println

1

2

...

10

11

This one goes up to 11

You could do the same with a for loop. The for loop takes the name of
the counter, the first value, the last value, an optional increment, and
a message with sender.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=75

DAY 2: THE SAUSAGE KING 76

Io> for(i, 1, 11, i println); "This one goes up to 11" println

1

2

...

10

11

This one goes up to 11

==> This one goes up to 11

And with the optional increment:

Io> for(i, 1, 11, 2, i println); "This one goes up to 11" println

1

3

5

7

9

11

This one goes up to 11

==> This one goes up to 11

In fact, you can often have an arbitrary number of parameters. Did you
catch that the optional parameter is the third one? Io will allow you
to attach extra parameters. That may seem to be convenient, but you
need to watch carefully because there is no compiler to babysit you:

Io> for(i, 1, 2, 1, i println, "extra argument")

1

2

==> 2

Io> for(i, 1, 2, i println, "extra argument")

2

==> extra argument

In the first form, “extra argument” is really extra. In the second form,
you’ve omitted the optional increment argument, and that effectively
shifted everything to the left. Your “extra argument” is now the message,
and you’re working in steps of i println, which returns i. If that line of
code is buried deeply into a complex package, Io just puked in your
car. Sometimes, you have to take the bad with the good. Io gives you
freedom. Sometimes, freedom hurts.

The if control structure is implemented as a function with the form
if(condition, true code, false code). The function will execute true code if
condition is true; otherwise, it will execute false code:

Io> if(true, "It is true.", "It is false.")

==> It is true.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=76

DAY 2: THE SAUSAGE KING 77

Io> if(false) then("It is true") else("It is false")

==> nil

Io> if(false) then("It is true." println) else("It is false." println)

It is false.

==> nil

You’ve spent some time on control structures. Now, we can use them to
develop our own operators.

Operators

Like with object-oriented languages, many prototype languages allow
for syntactic sugar to allow operators. These are special methods like
+ and / that take a special form. In Io, you can see the operator table
directly, like this:

Io> OperatorTable

==> OperatorTable_0x100296098:

Operators

0 ? @ @@

1 **
2 % * /

3 + -

4 << >>

5 < <= > >=

6 != ==

7 &

8 ^

9 |

10 && and

11 or ||

12 ..

13 %= &= *= += -= /= <<= >>= ^= |=

14 return

Assign Operators

::= newSlot

:= setSlot

= updateSlot

To add a new operator: OperatorTable addOperator("+", 4)

and implement the + message.

To add a new assign operator: OperatorTable addAssignOperator(

"=", "updateSlot") and implement the updateSlot message.

You can see that an assignment is a different kind of operator. The
number to the left shows the level of precedence. Arguments closer to
0 bind first. You can see that + evaluates before ==, and * before +,
just as you would expect. You can override the precedence with (). Let’s
define an exclusive or operator. Our xor returns true if exactly one of the

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=77

DAY 2: THE SAUSAGE KING 78

arguments is true, and false otherwise. First, we add the operator to the
table:

Io> OperatorTable addOperator("xor", 11)

==> OperatorTable_0x100296098:

Operators

...

10 && and

11 or xor ||

12 ..

...

You can see the new operator in the right place. Next, we need to imple-
ment the xor method on true and false:

Io> true xor := method(bool, if(bool, false, true))

==> method(bool,

if(bool, false, true)

)

Io> false xor := method(bool, if(bool, true, false))

==> method(bool,

if(bool, true, false)

)

We’re using brute force here to keep the concepts simple. Our operator
behaves exactly like you would expect:

Io> true xor true

==> false

Io> true xor false

==> true

Io> false xor true

==> true

Io> false xor false

==> false

When all is said and done, true xor true gets parsed as true xor(true). The
method in the operator table determines the order of precedence and
the simplified syntax.

Assignment operators are in a different table, and they work a little
bit differently. Assignment operators work as messages. You’ll see an
example of them in action in Section 3.4, Domain-Specific Languages,
on page 83. For now, that’s all we’ll say about operators. Let’s move
on to messages, where you will learn to implement your own control
structures.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=78

DAY 2: THE SAUSAGE KING 79

Messages

As I was working through this chapter, one of the Io committers was
helping me through a moment of frustration. He said, “Bruce, there’s
something you have to understand about Io. Almost everything is a
message.” If you look at Io code, everything but comment markers and
the comma (,) between arguments are messages. Everything. Learning
Io well means learning to manipulate them beyond just basic invoca-
tion. One of the most crucial capabilities of the language is message
reflection. You can query any characteristic of any message and act
appropriately.

A message has three components: the sender, the target, and the argu-

ments. In Io, the sender sends a message to a target. The target executes
the message.

The call method gives you access to the meta information about any
message. Let’s create a couple of objects: the postOffice that gets mes-
sages and the mailer that delivers them:

Io> postOffice := Object clone

==> Object_0x100444b38:

Io> postOffice packageSender := method(call sender)

==> method(

call sender

)

Next, I’ll create the mailer to deliver a message:

Io> mailer := Object clone

==> Object_0x1005bfda0:

Io> mailer deliver := method(postOffice packageSender)

==> method(

postOffice packageSender

)

There’s one slot, the deliver slot, that sends a packageSender message
to postOffice. Now, I can have the mailer deliver a message:

Io> mailer deliver

==> Object_0x1005bfda0:

deliver = method(...)

So, the deliver method is the object that sent the message. We can also
get the target, like this:

Io> postOffice messageTarget := method(call target)

==> method(

call target

)

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=79

DAY 2: THE SAUSAGE KING 80

Io> postOffice messageTarget

==> Object_0x1004ce658:

messageTarget = method(...)

packageSender = method(...)

Simple enough. The target is the post office, as you can see from the
slot names. Get the original message name and arguments, like this:

Io> postOffice messageArgs := method(call message arguments)

==> method(

call message arguments

)

Io> postOffice messageName := method(call message name)

==> method(

call message name

)

Io> postOffice messageArgs("one", 2, :three)

==> list("one", 2, : three)

Io> postOffice messageName

==> messageName

So, Io has a number of methods available to let you do message reflec-
tion. The next question is, “When does Io compute a message?”

Most languages pass arguments as values on stacks. For example, Java
computes each value of a parameter first and then places those val-
ues on the stack. Io doesn’t. It passes the message itself and the con-
text. Then, the receivers evaluate the message. You can actually imple-
ment control structures with messages. Recall the Io if. The form is
if(booleanExpression, trueBlock, falseBlock). Let’s say you wanted to imple-
ment an unless. Here’s how you’d do it:

Download io/unless.io

unless := method(

(call sender doMessage(call message argAt(0))) ifFalse(

call sender doMessage(call message argAt(1))) ifTrue(

call sender doMessage(call message argAt(2)))

)

unless(1 == 2, write("One is not two\n"), write("one is two\n"))

This little example is beautiful, so read it carefully. Think of doMes-

sage as somewhat like Ruby’s eval but at a lower level. Where Ruby’s
eval evaluates a string as code, doMessage executes an arbitrary mes-
sage. Io is interpreting the message parameters but delaying binding
and execution. In a typical object-oriented language, the interpreter or
compiler would compute all the arguments, including both code blocks,
and place their return values on the stack. In Io, that’s not what hap-
pens at all.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/io/unless.io
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=80

DAY 2: THE SAUSAGE KING 81

Say the object westley sends the message princessButtercup unless(trueLove,

("It is false" println), ("It is true" println)). The result is this flow:

1. The object westley sends the previous message.

2. Io takes the interpreted message and the context (the call sender,
target, and message) and puts it on the stack.

3. Now, princessButtercup evaluates the message. There is no unless

slot, so Io walks up the prototype chain until it finds unless.

4. Io begins executing the unless message. First, Io executes call

sender doMessage(call message argAt(0)). That code simplifies to
westley trueLove. If you’ve ever seen the movie The Princess Bride,
you know that westley has a slot called trueLove, and the value is
true.

5. The message is not false, so we’ll execute the third code block,
which simplifies to westley ("It is true" println).

We’re taking advantage of the fact that Io does not execute the argu-
ments to compute a return value to implement the unless control struc-
ture. That concept is extremely powerful. So far, you’ve seen one side
of reflection: behavior with message reflection. The other side of the
equation is state. We’ll look at state with an object’s slots.

Reflection

Io gives you a simple set of methods to understand what’s going on in
the slots. Here are a few of them in action. This code creates a couple
of objects and then works its way up the prototype chain with a method
called ancestors:

Download io/animals.io

Object ancestors := method(

prototype := self proto

if(prototype != Object,

writeln("Slots of ", prototype type, "\n---------------")

prototype slotNames foreach(slotName, writeln(slotName))

writeln

prototype ancestors))

Animal := Object clone

Animal speak := method(

"ambiguous animal noise" println)

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/io/animals.io
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=81

DAY 2: THE SAUSAGE KING 82

Duck := Animal clone

Duck speak := method(

"quack" println)

Duck walk := method(

"waddle" println)

disco := Duck clone

disco ancestors

The code is not too complicated. First, we create an Animal prototype
and use that to create a Duck instance, with a speak method. disco’s
prototype is Duck. The ancestors method prints the slots of an object’s
prototype and then calls ancestors on the prototype. Keep in mind that
an object can have more than one prototype, but we don’t handle this
case. To save paper, we halt the recursion before printing all of the slots
in the Object prototype. Run it with io animals.io:

Here’s the output:

Slots of Duck

speak

walk

type

Slots of Animal

speak

type

No surprises there. Every object has a prototype, and those prototypes
are objects that have slots. In Io, dealing with reflection has two parts.
In the post office example, you saw message reflection. Object reflection
means dealing with objects and the slots on those objects. No classes
are involved, anywhere.

What We Learned in Day 2

If you’re still following, day 2 should have been a breakthrough day of
sorts. You should know enough Io to do basic tasks with a little sup-
port from the documentation. You know how to make decisions, define
methods, use data structures, and use the basic control structures. In
these exercises, we’ll put Io through its paces. Get thoroughly familiar
with Io. You will really want to have the basics down when we move
into problems that stretch Io into the metaprogramming and concur-
rency spaces.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=82

DAY 3: THE PARADE AND OTHER STRANGE PLACES 83

Day 2 Self-Study

Do:

1. A Fibonacci sequence starts with two 1s. Each subsequent num-
ber is the sum of the two numbers that came before: 1, 1, 2, 3,
5, 8, 13, 21, and so on. Write a program to find the nth Fibonacci
number. fib(1) is 1, and fib(4) is 3. As a bonus, solve the problem
with recursion and with loops.

2. How would you change / to return 0 if the denominator is zero?

3. Write a program to add up all of the numbers in a two-dimensional
array.

4. Add a slot called myAverage to a list that computes the average of
all the numbers in a list. What happens if there are no numbers
in a list? (Bonus: Raise an Io exception if any item in the list is not
a number.)

5. Write a prototype for a two-dimensional list. The dim(x, y) method
should allocate a list of y lists that are x elements long. set(x, y,

value) should set a value, and get(x, y) should return that value.

6. Bonus: Write a transpose method so that (new_matrix get(y, x)) ==

matrix get(x, y) on the original list.

7. Write the matrix to a file, and read a matrix from a file.

8. Write a program that gives you ten tries to guess a random number
from 1–100. If you would like, give a hint of “hotter” or “colder”
after the first guess.

3.4 Day 3: The Parade and Other Strange Places

My first few days with Io were frustrating, but after a couple of weeks,
I found myself giggling like a school girl at the unexpected places the
language would take me. It’s like Ferris showing up on the news, at the
ball park, in the parade—everywhere you don’t expect him. In the end, I
got out of Io exactly what I wanted, which was a language that changed
the way I think.

Domain-Specific Languages

Just about everyone who is deeply involved with Io appreciates the
power that Io gives you in the area of DSLs. Jeremy Tregunna, one
of the core committers for Io, told me about an implementation of a

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=83

DAY 3: THE PARADE AND OTHER STRANGE PLACES 84

subset of C in Io that took around 40 lines of code! Since that example
is just a little too deep for us to consider, here’s another one of Jeremy’s
gems. This one implements an API that provides an interesting syntax
for phone numbers.

Say you want to represent phone numbers in this form:

{

"Bob Smith": "5195551212",

"Mary Walsh": "4162223434"

}

There are many approaches to the problem of managing such a list.
Two that come to mind are parsing the list or interpreting it. Parsing
it means that you would write a program to recognize the various ele-
ments of the syntax, and then you could place the code in a structure
that Io understands. That’s another problem for another day. It would
be much more fun to interpret that code as an Io hash. To do this, you
will have to alter Io. When you’re done, Io will accept this list as a valid
syntax for building hashes!

Here’s how Jeremy attacked the problem, with an assist from Chris
Kappler, who brought this example up to the current version of Io:

Download io/phonebook.io

OperatorTable addAssignOperator(":", "atPutNumber")

curlyBrackets := method(

r := Map clone

call message arguments foreach(arg,

r doMessage(arg)

)

r

)

Map atPutNumber := method(

self atPut(

call evalArgAt(0) asMutable removePrefix("\"") removeSuffix("\""),

call evalArgAt(1))

)

s := File with("phonebook.txt") openForReading contents

phoneNumbers := doString(s)

phoneNumbers keys println

phoneNumbers values println

That code is slightly more complex than anything you’ve seen so far,
but you know the basic building blocks. Let’s deconstruct it:

OperatorTable addAssignOperator(":", "atPutNumber")

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/io/phonebook.io
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=84

DAY 3: THE PARADE AND OTHER STRANGE PLACES 85

The first line adds an operator to Io’s assignment operator table. When-
ever : is encountered, Io will parse that as atPutNumber, understanding
that the first argument is a name (and thus a string), and the second is
a value. So, key : value will be parsed as atPutNumber("key", value). Moving
on:

curlyBrackets := method(

r := Map clone

call message arguments foreach(arg,

r doMessage(arg)

)

r

)

The parser calls the curlyBrackets method whenever it encounters curly
brackets ({}). Within this method, we create an empty map. Then, we
execute call message arguments foreach(arg, r doMessage(arg)) for each
argument. That’s a seriously dense line of code! Let’s take it apart.

From left to right, we take the call message, which is the part of the code
between the curly brackets. Then, we iterate through each of the phone
numbers in the list with forEach. For each phone name and phone num-
ber, we execute r doMessage(arg). For example, the first phone number
will execute as r "Bob Smith": "5195551212". Since : is in our operator table
as atPutNumber, we’ll execute r atPutNumber("Bob Smith", "5195551212"). That
brings us to the following:

Map atPutNumber := method(

self atPut(

call evalArgAt(0) asMutable removePrefix("\"") removeSuffix("\""),

call evalArgAt(1))

)

Remember, key : value will parse as atPutNumber("key", value). In our case,
the key is already a string, so we strip the leading and trailing quotes.
You can see that atPutNumber simply calls atPut on the target range,
which is self, stripping the quotes off the first argument. Since messages
are immutable, to strip the quotes, we have to translate the message to
a mutable value for it to work.

You can use the code like this:

s := File with("phonebook.txt") openForReading contents

phoneNumbers := doString(s)

phoneNumbers keys println

phoneNumbers values println

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=85

DAY 3: THE PARADE AND OTHER STRANGE PLACES 86

Understanding Io’s syntax is trivial. You just have to know what’s going
on in the libraries. In this case, you see a few new libraries. The doString

message evaluates our phone book as code, File is a prototype for work-
ing with files, with specifies a filename and returns a file object, openFor-

Reading opens that file and returns the file object, and contents returns
the contents of that file. Taken together, this code will read the phone
book and evaluate it as code.

Then, the braces define a map. Each line in the map "string1" : "string2"

does a map atPut("string1", "string2"), and we’re left with a hash of phone
numbers. So, in Io, since you can redefine anything from operators to
the symbols that make up the language, you can build DSLs to your
heart’s content.

So, now you can begin to see how you would change Io’s syntax. How
would you go about dynamically changing the language’s behavior?
That’s the topic of the next section.

Io’s method_missing

Let’s review the flow of control. The behavior for what happens in a
given message is all baked into Object. When you send an object a
message, it will do the following:

1. Compute the arguments, inside out. These are just messages.

2. Get the name, target, and sender of the message.

3. Try to read the slot with the name of the message on the target.

4. If the slot exists, return the data or invoke the method inside.

5. If the slot doesn’t exist, forward the message to the prototype.

These are the basic mechanics of inheritance within Io. You normally
wouldn’t mess with them.

But you can. You can use the forward message in the same way that you
would use Ruby’s method_missing, but the stakes are a little higher. Io
doesn’t have classes, so changing forward also changes the way you get
any of the basic behaviors from object. It’s a bit like juggling hatchets
on the high wire. It’s a cool trick if you can get away with it, so let’s get
started!

XML is a pretty way to structure data with an ugly syntax. You may
want to build something that lets you represent XML data as Io code.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=86

DAY 3: THE PARADE AND OTHER STRANGE PLACES 87

For example, you might want to express this:

<body>

<p>

This is a simple paragraph.

</p>

</body>

like this:

body(

p("This is a simple paragraph.")

)

Let’s call the new language LispML. We’re going to use Io’s forward like
a missing method. Here’s the code:

Download io/builder.io

Builder := Object clone

Builder forward := method(

writeln("<", call message name, ">")

call message arguments foreach(

arg,

content := self doMessage(arg);

if(content type == "Sequence", writeln(content)))

writeln("</", call message name, ">"))

Builder ul(

li("Io"),

li("Lua"),

li("JavaScript"))

Let’s carve it up. The Builder prototype is the workhorse. It overrides
forward to pick up any arbitrary method. First, it prints an open tag.
Next, we use a little message reflection. If the message is a string, Io
will recognize it as a sequence, and Builder prints the string without
quotes. Finally, Builder prints a closing tag.

The output is exactly what you’d expect:

Io

Lua

JavaScript

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/io/builder.io
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=87

DAY 3: THE PARADE AND OTHER STRANGE PLACES 88

I have to say, I’m not sure whether LispML is that much of an improve-
ment over traditional XML, but the example is instructive. You’ve just
completely changed the way inheritance works in one of Io’s prototypes.
Any instance of Builder will have the same behavior. Doing this, you can
create a new language with Io’s syntax but none of the same behaviors
by defining your own Object and basing all of your prototypes on that
new object. You can even override Object to clone your new object.

Concurrency

Io has outstanding concurrency libraries. The main components are
coroutines, actors, and futures.

Coroutines

The foundation for concurrency is the coroutine. A coroutine provides
a way to voluntarily suspend and resume execution of a process. Think
of a coroutine as a function with multiple entry and exit points. Each
yield will voluntarily suspend the process and transfer to another pro-
cess. You can fire a message asynchronously by using @ or @@ before
a message. The former returns a future (more later), and the second
returns nil and starts the message in its own thread. For example, con-
sider this program:

Download io/coroutine.io

vizzini := Object clone

vizzini talk := method(

"Fezzik, are there rocks ahead?" println

yield

"No more rhymes now, I mean it." println

yield)

fezzik := Object clone

fezzik rhyme := method(

yield

"If there are, we'll all be dead." println

yield

"Anybody want a peanut?" println)

vizzini @@talk; fezzik @@rhyme

Coroutine currentCoroutine pause

fezzik and vizzini are independent instances of Object with coroutines.
We fire asynchronous talk and rhyme methods. These run concurrently,
voluntarily yielding control to the other at specified intervals with the

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/io/coroutine.io
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=88

DAY 3: THE PARADE AND OTHER STRANGE PLACES 89

yield message. The last pause waits until all async messages complete
and then exits. Coroutines are great for solutions requiring cooperative
multitasking. With this example, two processes that need to coordinate
can easily do so, to read poetry, for example:

batate$ io code/io/coroutine.io

Fezzik, are there rocks ahead?

If there are, we'll all be dead.

No more rhymes now, I mean it.

Anybody want a peanut?

Scheduler: nothing left to resume so we are exiting

Java and C-based languages use a concurrency philosophy called pre-

emptive multitasking. When you combine this concurrency strategy with
objects that have changeable state, you wind up with programs that are
hard to predict and nearly impossible to debug with the current testing
strategies that most teams use. Coroutines are different. With corou-
tines, applications can voluntarily give up control at reasonable times.
A distributed client could relinquish control when waiting for the server.
Worker processes could pause after processing queue items.

Coroutines are the basic building blocks for higher levels of abstrac-
tions like actors. Think of actors as universal concurrent primitives
that can send messages, process messages, and create other actors.
The messages an actor receives are concurrent. In Io, an actor places
an incoming message on a queue and processes the contents of the
queue with coroutines.

Next, we’ll look into actors. You won’t believe how easy they are to code.

Actors

Actors have a huge theoretical advantage over threads. An actor
changes its own state and accesses other actors only through closely
controlled queues. Threads can change each other’s state without re-
striction. Threads are subject to a concurrency problem called race con-

ditions, where two threads access resources at the same time, leading
to unpredictable results.

Here’s the beauty of Io. Sending an asynchronous message to any object
makes it an actor. End of story. Let’s take a simple example. First, we’ll
create two objects called faster and slower:

Io> slower := Object clone

==> Object_0x1004ebb18:

Io> faster := Object clone

==> Object_0x100340b10:

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=89

DAY 3: THE PARADE AND OTHER STRANGE PLACES 90

Now, we’ll add a method called start to each:

Io> slower start := method(wait(2); writeln("slowly"))

==> method(

wait(2); writeln("slowly")

)

Io> faster start := method(wait(1); writeln("quickly"))

==> method(

wait(1); writeln("quickly")

)

We can call both methods sequentially on one line of code with simple
messages, like this:

Io> slower start; faster start

slowly

quickly

==> nil

They start in order, because the first message must finish before the
second can begin. But we can easily make each object run in its own
thread by preceding each message with @@, which will return immedi-
ately and return nil:

Io> slower @@start; faster @@start; wait(3)

quickly

slowly

We add an extra wait to the end so that all threads finish before the
program terminates, but that’s a great result. We are running in two
threads. We made both of these objects actors, just by sending an asyn-

chronous message to them!

Futures

I will finish up the concurrency discussion with the concept of futures.
A future is a result object that is immediately returned from an asyn-
chronous message call. Since the message may take a while to process,
the future becomes the result once the result is available. If you ask for
the value of a future before the result is available, the process blocks
until the value is available. Say we have a method that takes a long
time to execute:

futureResult := URL with("http://google.com/") @fetch

I can execute the method and do something else immediately until the
result is available:

writeln("Do something immediately while fetch goes on in background...")

// ...

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=90

DAY 3: THE PARADE AND OTHER STRANGE PLACES 91

Then, I can use the future value:

writeln("This will block until the result is available.")

// this line will execute immediately

writeln("fetched ", futureResult size, " bytes")

// this will block until the computation is complete

// and Io prints the value

==> 1955

The futureResult code fragment will return a future object, immediately.
In Io, a future is not a proxy implementation! The future will block
until the result object is available. The value is a Future object until the
result arrives, and then all instances of the value point to the result
object. The console is going to print the string value of the last state-
ment returned.

Futures in Io also provide automatic deadlock detection. It’s a nice
touch, and they are easy to understand and use.

Now that you’ve had a flavor of Io’s concurrency, you have a sound
foundation for evaluating the language. Let’s wrap up day 3 so you can
put what you know into practice.

What We Learned in Day 3

In this section, you learned to do something nontrivial in Io. First, we
bent the rules of syntax and built a new hash syntax with braces.
We added an operator to the operator table and wired that into oper-
ations on a hash table. Next, we built an XML generator that used
method_missing to print XML elements.

Next, we wrote some code that used coroutines to manage concurrency.
The coroutines differed from concurrency in languages like Ruby, C,
and Java because threads could only change their own state, leading
to a more predictable and understandable concurrency model and less
of a need for blocking states that become bottlenecks.

We sent some asynchronous messages that made our prototypes actors.
We didn’t have to do anything beyond changing the syntax of our mes-
sages. Finally, we looked briefly at futures and how they worked in Io.

Day 3 Self-Study

Do:

• Enhance the XML program to add spaces to show the indentation
structure.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=91

WRAPPING UP IO 92

• Create a list syntax that uses brackets.

• Enhance the XML program to handle attributes: if the first argu-
ment is a map (use the curly brackets syntax), add attributes to
the XML program. For example:

book({"author": "Tate"}...) would print <book author="Tate">:

3.5 Wrapping Up Io

Io is an excellent language for learning how to use prototype-based lan-
guages. Like Lisp, the syntax is stunningly simple, but the semantics
of the language lend plenty of power. The prototype languages encap-
sulate data and behavior like object-oriented programming languages.
Inheritance is simpler. There are no classes or modules in Io. One object
inherits behavior directly from its prototype.

Strengths

Prototype languages are generally quite malleable. You can change any
slot on any object. Io takes this flexibility to the max, allowing you to
quickly create the syntax you want. Like Ruby, some of the trade-offs
that make Io so dynamic tend to cap the performance, at least in a
single thread. The strong, modern concurrency libraries often make Io a
good language for parallel processing. Let’s look at where Io is excelling
today.

Footprint

Io’s footprint is small. Most of the production Io applications are embed-
ded systems. This application makes sense, since the language is small,
powerful, and quite flexible. The virtual machine is easy to port to dif-
ferent operating environments.

Simplicity

Io’s syntax is remarkably compact. You can learn Io very quickly. Once
you understand the core syntax, everything else is learning the library
structures. I found that I could work my way into metaprogramming
quite quickly, within my first month of using the language. In Ruby,
getting to the same point took a little longer. In Java, it took many
months to get to the point where I could make any sense of metapro-
gramming at all.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=92

WRAPPING UP IO 93

Flexibility

Io’s duck typing and freedom allow you to change any slot in any object
at any time. This free-wheeling nature means you can change the basic
rules of the language to suit your application. It’s quite easy to add
proxies at any place through changing the forward slot. You can also
override key language constructs by changing their slots directly. You
can even create your own syntax quickly.

Concurrency

Unlike Java and Ruby, the concurrency constructs are up-to-date and
fresh. Actors, futures, and coroutines make it much easier to build
multithreaded applications that are easier to test and have better per-
formance. Io also gives considerable thought to mutable data and how
to avoid it. Having these features baked into the core libraries made it
easy to learn a robust concurrency model. Later, in other languages,
we will build on these concepts. You’ll see actors in Scala, Erlang, and
Haskell.

Weaknesses

There’s much to like about Io and some suboptimal aspects as well.
Freedom and flexibility come at a price. Also, since Io has the smallest
community of any of the languages in this book, it’s a riskier choice for
some projects. Let’s take a look at the problems associated with Io.

Syntax

Io has very little syntax sugar. Simple syntax is a double-edged sword.
On one side, the clean syntax makes Io, the language, easy to under-
stand. But there’s a cost. Simple syntax often makes it hard to commu-
nicate difficult concepts concisely. Said another way, you may find it
easy to understand how a given program uses the Io language and, at
the same time, have a difficult time understanding what your program
is doing.

For a point of contrast, consider Ruby. At first, you may find the Ruby
code array[-1] baffling because you don’t understand the syntactic sugar:
-1 is shorthand for the last element in the array. You would also need
to learn that [] is a method to get the value at a specified index of an
array. Once you understood those concepts, you’d be able to process
more code at a glance. With Io, the trade-off is the opposite. You don’t
have to learn very much to get started, but you do have to work a little

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=93

WRAPPING UP IO 94

harder to absorb concepts that might be otherwise communicated with
sugar.

The balance of syntactic sugar is a difficult one. Add too much sugar,
and it’s too difficult to learn a language and remember how to use it.
Add too little, and you need to spend more time to express code and
potentially more energy to debug it. In the end, syntax is a matter of
preference. Matz prefers plenty of sugar. Steve doesn’t.

Community

Right now, the Io community is very small. You cannot always find
libraries in Io like you can with other languages. It’s also harder to find
programmers. These issues are somewhat mitigated by having a good
C interface (which talks to a variety of languages) and a syntax that is
so easy to remember. Good JavaScript programmers could pick up Io
quickly. But having a smaller community is a definite weakness and is
the main thing that holds powerful, new languages back. Either Io will
get a killer application that drives acceptance or it will remain a niche
player.

Performance

Discussing performance in a vacuum of other issues such as concur-
rency and application design is not usually wise, but I should point out
that Io has a number of features that will slow raw, single-threaded exe-
cution speed. This problem is somewhat mitigated by Io’s concurrency
constructs, but you should still keep this limitation in mind.

Final Thoughts

In general, I liked learning Io. The simple syntax and small footprint
intrigued me. I also think that, like Lisp, Io has a strong overriding
philosophy of simplicity and flexibility. By staying with this philosophy
uniformly in the language creation, Steve Dekorte has created some-
thing like the Lisp of the prototype languages. I think the language has
a shot to grow. Like Ferris Bueller, it has a bright, but perilous, future.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=94

Sally Dibbs, Dibbs Sally. 461-0192.

Raymond

Chapter 4

Prolog
Ah, Prolog. Sometimes spectacularly smart, other times just as frus-
trating. You’ll get astounding answers only if you know how to ask the
question. Think Rain Man.1 I remember watching Raymond, the lead
character, rattle off Sally Dibbs’ phone number after reading a phone
book the night before, without thinking about whether he should. With
both Raymond and Prolog, I often find myself asking, in equal parts,
“How did he know that?” and “How didn’t he know that?” He’s a foun-
tain of knowledge, if you can only frame your questions in the right
way.

Prolog represents a serious departure from the other languages we’ve
encountered so far. Both Io and Ruby are called imperative languages.
Imperative languages are recipes. You tell the computer exactly how to
do a job. Higher-level imperative languages might give you a little more
leverage, combining many longer steps into one, but you’re basically
putting together a shopping list of ingredients and describing a step-
by-step process for baking a cake.

It took me a couple of weeks of playing with Prolog before I could make
an attempt at this chapter. I used several tutorials as I ramped up,
including a tutorial by J. R. Fisher2 for some examples to wade through
and another primer by A. Aaby3 to help the structure and terminology
gel for me, and lots of experimentation.

Prolog is a declarative language. You’ll throw some facts and inferences
at Prolog and let it do the reasoning for you. It’s more like going to a

1. Rain Man. DVD. Directed by Barry Levinson. 1988; Los Angeles, CA: MGM, 2000.
2. http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

3. http://www.lix.polytechnique.fr/~liberti/public/computing/prog/prolog/prolog-tutorial.html

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html
http://www.lix.polytechnique.fr/~liberti/public/computing/prog/prolog/prolog-tutorial.html

ABOUT PROLOG 96

good baker. You describe the characteristics of cakes that you like and
let the baker pick the ingredients and bake the cake for you, based on
the rules you provided. With Prolog, you don’t have to know how. The
computer does the reasoning for you.

With a casual flip through the Internet, you can find examples to solve
a Sudoku with fewer than twenty lines of code, crack Rubik’s Cube,
and solve famous puzzles such as the Tower of Hanoi (around a dozen
lines of code). Prolog was one of the first successful logic programming
languages. You make assertions with pure logic, and Prolog determines
whether they are true. You can leave gaps in your assertions, and Prolog
will try to fill in the holes that would make your incomplete facts true.

4.1 About Prolog

Developed in 1972 by Alain Colmerauer and Phillipe Roussel, Prolog
is a logic programming language that gained popularity in natural-
language processing. Now, the venerable language provides the pro-
gramming foundation for a wide variety of problems, from scheduling
to expert systems. You can use this rules-based language for expressing
logic and asking questions. Like SQL, Prolog works on databases, but
the data will consist of logical rules and relationships. Like SQL, Prolog
has two parts: one to express the data and one to query the data. In
Prolog, the data is in the form of logical rules. These are the building
blocks:

• Facts. A fact is a basic assertion about some world. (Babe is a pig;
pigs like mud.)

• Rules. A rule is an inference about the facts in that world. (An
animal likes mud if it is a pig.)

• Query. A query is a question about that world. (Does Babe like
mud?)

Facts and rules will go into a knowledge base. A Prolog compiler com-
piles the knowledge base into a form that’s efficient for queries. As we
walk through these examples, you’ll use Prolog to express your knowl-
edge base. Then, you’ll do direct retrieval of data and also use Prolog to
link rules together to tell you something you might not have known.

Enough background. Let’s get started.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=96

DAY 1: AN EXCELLENT DRIVER 97

4.2 Day 1: An Excellent Driver

In Rain Man, Raymond told his brother he was an excellent driver,
meaning he could do a fine job of handling the car at five miles per
hour in parking lots. He was using all the main elements—the steer-
ing wheel, the brakes, the accelerator—he just used them in a limited
context. That’s your goal today. We’re going to use Prolog to state some
facts, make some rules, and do some basic queries. Like Io, Prolog is
an extremely simple language syntactically. You can learn the syntax
rules quickly. The real fun begins when you layer concepts in inter-
esting ways. If this is your first exposure, I guarantee either you will
change the way you think or you’ll fail. We’ll save the in-depth con-
struction for a later day.

First things first. Get a working installation. I’m using GNU Prolog,
version 1.3.1, for this book. Be careful. Dialects can vary. I’ll do my
best to stay on common ground, but if you choose a different version
of Prolog, you’ll need to do a little homework to understand where your
dialect is different. Regardless of the version you choose, here’s how
you’ll use it.

Basic Facts

In some languages, capitalization is entirely at the programmer’s dis-
cretion, but in Prolog, the case of the first letter is significant. If a word
begins with a lowercase character, it’s an atom—a fixed value like a
Ruby symbol. If it begins with an uppercase letter or an underscore,
it’s a variable. Variable values can change; atoms can’t. Let’s build a
simple knowledge base with a few facts. Key the following into an edi-
tor:

Download prolog/friends.pl

likes(wallace, cheese).

likes(grommit, cheese).

likes(wendolene, sheep).

friend(X, Y) :- \+(X = Y), likes(X, Z), likes(Y, Z).

The previous file is a knowledge base with facts and rules. The first
three statements are facts, and the last statement is a rule. Facts are
direct observations of our world. Rules are logical inferences about our
world. For now, pay attention to the first three lines. These lines are
each facts. wallace, grommit, and wendolene are atoms. You can read

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/friends.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=97

DAY 1: AN EXCELLENT DRIVER 98

them as wallace likes cheese, grommit likes cheese, and wendolene likes
sheep. Let’s put the facts into action.

Start your Prolog interpreter. If you’re using GNU Prolog, type the com-
mand gprolog. Then, to load your file, enter the following:

| ?- ['friends.pl'].

compiling /Users/batate/prag/Book/code/prolog/friends.pl for byte code...

/Users/batate/prag/Book/code/prolog/friends.pl compiled, 4 lines read -

997 bytes written, 11 ms

yes

| ?-

Unless Prolog is waiting on an intermediate result, it will respond with
yes or no. In this case, the file loaded successfully, so it returned yes.
We can start to ask some questions. The most basic questions are yes

and no questions about facts. Ask a few:

| ?- likes(wallace, sheep).

no

| ?- likes(grommit, cheese).

yes

These questions are pretty intuitive. Does wallace like sheep? (No.) Does
grommit like cheese? (Yes.) These are not too interesting: Prolog is just
parroting your facts back to you. It starts to get a little more exciting
when you start to build in some logic. Let’s take a look at inferences.

Basic Inferences and Variables

Let’s try the friend rule:

| ?- friend(wallace, wallace).

no

So, Prolog is working through the rules we gave it and answering yes

or no questions. There’s more here than meets the eye. Check out the
friend rule again:

In English, for X to be a friend of Y, X cannot be the same as Y. Look at
the first part to the right of :-, called a subgoal. \+ does logical negation,
so \+(X = Y) means X is not equal to Y.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=98

DAY 1: AN EXCELLENT DRIVER 99

Try some more queries:

| ?- friend(grommit, wallace).

yes

| ?- friend(wallace, grommit).

yes

In English, X is a friend of Y if we can prove that X likes some Z and Y

likes that same Z. Both wallace and grommit like cheese, so these queries
succeed.

Let’s dive into the code. In these queries, X is not equal to Y, proving the
first subgoal. The query will use the second and third subgoals, likes(X,

Z) and likes(Y, Z). grommit and wallace like cheese, so we prove the second
and third subgoals. Try another query:

| ?- friend(wendolene, grommit).

no

In this case, Prolog had to try several possible values for X, Y, and Z:

• wendolene, grommit, and cheese

• wendolene, grommit, and sheep

Neither combination satisfied both goals, that wendolene likes Z and
grommit likes Z. None existed, so the logic engine reported no, they are
not friends.

Let’s formalize the terminology. This...

friend(X, Y) :- \+(X = Y), likes(X, Z), likes(Y, Z).

...is a Prolog rule with three variables, X, Y, and Z. We call the rule
friend/2, shorthand for friend with two parameters. This rule has three
subgoals, separated by commas. All must be true for the rule to be true.
So, our rule means X is a friend of Y if X and Y are not the same and X

and Y like the same Z.

Filling in the Blanks

We’ve used Prolog to answer some yes or no questions, but we can do
more than that. In this section, we’ll use the logic engine to find all
possible matches for a query. To do this, you will specify a variable in
your query.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=99

DAY 1: AN EXCELLENT DRIVER 100

Consider the following knowledge base:

Download prolog/food.pl

food_type(velveeta, cheese).

food_type(ritz, cracker).

food_type(spam, meat).

food_type(sausage, meat).

food_type(jolt, soda).

food_type(twinkie, dessert).

flavor(sweet, dessert).

flavor(savory, meat).

flavor(savory, cheese).

flavor(sweet, soda).

food_flavor(X, Y) :- food_type(X, Z), flavor(Y, Z).

We have a few facts. Some, such as food_type(velveeta, cheese), mean
a food has a certain type. Others, such as flavor(sweet, dessert), mean
a food type has a characteristic flavor. Finally, we have a rule called
food_flavor that infers the flavor of food. A food X has a food_flavor Y if
the food is of a food_type Z and that Z also has that characteristic flavor.
Compile it:

| ?- ['code/prolog/food.pl'].

compiling /Users/batate/prag/Book/code/prolog/food.pl for byte code...

/Users/batate/prag/Book/code/prolog/food.pl compiled,

12 lines read - 1557 bytes written, 15 ms

(1 ms) yes

and ask some questions:

| ?- food_type(What, meat).

What = spam ? ;

What = sausage ? ;

no

Now, that’s interesting. We’re asking Prolog, “Find some value for What

that satisfies the query food_type(What, meat).” Prolog found one, spam.
When we typed the ;, we were asking Prolog to find another, and it
returned sausage. They were easy values to find since the queries
depended on basic facts. Then, we asked for another, and Prolog re-
sponded with no. This behavior can be slightly inconsistent. As a conve-

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/food.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=100

DAY 1: AN EXCELLENT DRIVER 101

nience, if Prolog can detect that there are no more alternatives remain-
ing, you’ll see a yes. If Prolog can’t immediately determine whether there
are more alternatives without doing more computation, it will prompt
you for the next and return no. The feature is really a convenience. If
Prolog can give you information sooner, it will. Try a few more:

| ?- food_flavor(sausage, sweet).

no

| ?- flavor(sweet, What).

What = dessert ? ;

What = soda

yes

No, sausage is not sweet. What food types are sweet? dessert and soda.
These are all facts. But you can let Prolog connect the dots for you, too:

| ?- food_flavor(What, savory).

What = velveeta ? ;

What = spam ? ;

What = sausage ? ;

no

Remember, food_flavor(X, Y) is a rule, not a fact. We’re asking Prolog to
find all possible values that satisfy the query, “What foods have a savory
flavor?” Prolog must tie together primitive facts about food, types, and
flavors to reach the conclusion. The logic engine has to work through
possible combinations that could make all the goals true.

Map Coloring

Let’s use the same idea to do map coloring. For a more spectacular look
at Prolog, take this example. We want to color a map of the southeastern
United States. We’ll cover the states shown in Figure 4.1, on the next
page. We do not want two states of the same color to touch.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=101

DAY 1: AN EXCELLENT DRIVER 102

Tennessee

Mississippi Alabama Georgia

Florida

Figure 4.1: Map of some southeastern states

We code up these simple facts:

Download prolog/map.pl

different(red, green). different(red, blue).

different(green, red). different(green, blue).

different(blue, red). different(blue, green).

coloring(Alabama, Mississippi, Georgia, Tennessee, Florida) :-

different(Mississippi, Tennessee),

different(Mississippi, Alabama),

different(Alabama, Tennessee),

different(Alabama, Mississippi),

different(Alabama, Georgia),

different(Alabama, Florida),

different(Georgia, Florida),

different(Georgia, Tennessee).

We have three colors. We tell Prolog the sets of different colors to use
in the map coloring. Next, we have a rule. In the coloring rule, we tell
Prolog which states neighbor others, and we’re done. Try it:

| ?- coloring(Alabama, Mississippi, Georgia, Tennessee, Florida).

Alabama = blue

Florida = green

Georgia = red

Mississippi = red

Tennessee = green ?

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/map.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=102

DAY 1: AN EXCELLENT DRIVER 103

Sure enough, there is a way to color these five states with three colors.
You can get the other possible combinations too by typing a. With a
dozen lines of code, we’re done. The logic is ridiculously simple—a child
could figure it out. At some point, you have to ask yourself...

Where’s the Program?

We have no algorithm! Try solving this problem in the procedural lan-
guage of your choice. Is your solution easy to understand? Think
through what you’d have to do to solve complex logic problems like
this in Ruby or Io. One possible solution would be as follows:

1. Collect and organize your logic.

2. Express your logic in a program.

3. Find all possible solutions.

4. Put the possible solutions through your program.

And you would have to write this program over and over. Prolog lets you
express the logic in facts and inferences and then lets you ask ques-
tions. You’re not responsible for building any step-by-step recipe with
this language. Prolog is not about writing algorithms to solve logical
problems. Prolog is about describing your world as it is and presenting
logical problems that your computer can try to solve.

Let the computer do the work!

Unification, Part 1

At this point, it’s time to back up and provide a little more theory. Let’s
shine a little more light on unification. Some languages use variable
assignment. In Java or Ruby, for example, x = 10 means assign 10 to the
variable x. Unification across two structures tries to make both struc-
tures identical. Consider the following knowledge base:

Download prolog/ohmy.pl

cat(lion).

cat(tiger).

dorothy(X, Y, Z) :- X = lion, Y = tiger, Z = bear.

twin_cats(X, Y) :- cat(X), cat(Y).

In this example, = means unify, or make both sides the same. We have
two facts: lions and tigers are cats. We also have two simple rules. In
dorothy/3, X, Y, and Z are lion, tiger, and bear, respectively. In twin_cats/2,

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/ohmy.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=103

DAY 1: AN EXCELLENT DRIVER 104

X is a cat, and Y is a cat. We can use this knowledge base to shed a little
light on unification.

First, let’s use the first rule. I’ll compile and then do a simple query
with no parameters:

| ?- dorothy(lion, tiger, bear).

yes

Remember, unification means “Find the values that make both sides
match.” On the right side, Prolog binds X, Y, and Z to lion, tiger, and
bear. These match the corresponding values on the left side, so unifi-
cation is successful. Prolog reports yes. This case is pretty simple, but
we can spice it up a little bit. Unification can work on both sides of the
implication. Try this one:

| ?- dorothy(One, Two, Three).

One = lion

Three = bear

Two = tiger

yes

This example has one more layer of indirection. In the goals, Prolog
unifies X, Y, and Z to lion, tiger, and bear. On the left side, Prolog unifies
X, Y, and Z to One, Two, and Three and then reports the result.

Now, let’s shift to the last rule, twin_cats/2. This rule says twin_cats(X, Y)

is true if you can prove that X and Y are both cats. Try it:

| ?- twin_cats(One, Two).

One = lion

Two = lion ?

Prolog reported the first example. lion and lion are both cats. Let’s see
how it got there:

1. We issued the query twin_cats(One, Two). Prolog binds One to X and
Two to Y. To solve these, Prolog must start working through the
goals.

2. The first goal is cat(X).

3. We have two facts that match, cat(lion) and cat(tiger). Prolog tries
the first fact, binding X to lion, and moves on to the next goal.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=104

DAY 1: AN EXCELLENT DRIVER 105

4. Prolog now binds Y to cat(Y). Prolog can solve this goal in exactly
the same way as the first, choosing lion.

5. We’ve satisfied both goals, so the rule is successful. Prolog reports
the values of One and Two that made it successful and reports yes.

So, we have the first solution that makes the rules true. Sometimes,
one solution is enough. Sometimes, you need more than one. We can
now step through solutions one by one by using ;, or we can get all of
the rest of the solutions by pressing a.

Two = lion ? a

One = lion

Two = tiger

One = tiger

Two = lion

One = tiger

Two = tiger

(1 ms) yes

Notice that Prolog is working through the list of all combinations of X

and Y, given the information available in the goals and corresponding
facts. As you’ll see later, unification also lets you do some sophisticated
matching based on the structure of your data. That’s enough for day 1.
We’re going to do a little more heavy lifting in day 2.

Prolog in Practice

It has to be a little disconcerting to see a “program” presented in this
way. In Prolog, there’s not often a finely detailed step-by-step recipe,
only a description of the cake you’ll take out of the pan when you’re
done. When I was learning Prolog, it helped me tremendously to inter-
view someone who had used the language in practice. I talked to Brian
Tarbox who used this logic language to create schedules for working
with dolphins for a research project.

An Interview with Brian Tarbox, Dolphin Researcher

Bruce: Can you talk about your experiences learning Prolog?

Brian: I learned Prolog back in the late 1980s when I was in gradu-

ate school at the University of Hawaii at Manoa. I was working at the

Kewalo Basin Marine Mammal Laboratory doing research into the cogni-

tive capabilities of bottlenosed dolphins. At the time I noticed that much

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=105

DAY 1: AN EXCELLENT DRIVER 106

of the discussion at the lab concerned people’s theories about how the

dolphins thought. We worked primarily with a dolphin named Akeaka-

mai, or Ake for short. Many debates started with “Well, Ake probably

sees the situation like this.”

I decided that my master’s thesis would be to try to create an executable

model that matched our beliefs about Ake’s understanding of the world,

or at least the tiny subset of it that we were doing research on. If our

executable model predicted Ake’s actual behavior, we would gain some

confidence in our theories about her thinking.

Prolog is a wonderful language, but until you drink the Kool-Aid, it can

give you some pretty weird results. I recall one of my first experiments

with Prolog, writing something along the lines of x = x + 1. Prolog re-

sponded “no.” Languages don’t just say “no.” They might give the wrong

answer or fail to compile, but I had never had a language talk back to

me. So, I called Prolog support and said that the language had said “no”

when I tried to change the value of a variable. They asked me, “Why

would you want to change the value of a variable?” I mean, what kind

of language won’t let you change the value of a variable? Once you grok

Prolog, you understand that variables either have particular values or

are unbound, but it was unsettling at the time.

Bruce: How have you used Prolog?

Brian: I developed two main systems: the dolphin simulator and a lab-

oratory scheduler. The lab would run four experiments a day with each

of four dolphins. You have to understand that research dolphins are an

incredibly limited resource. Each dolphin was working on different exper-

iments, and each experiment required a different set of personnel. Some

roles, such as the actual dolphin trainer, could be filled by only a few

people. Other roles such as data recorder could be done by several peo-

ple but still required training. Most experiments required a staff of six to

a dozen people. We had graduate students, undergraduates, and Earth-

watch volunteers. Every person had their own schedule and their own

shift set of skills. Finding a schedule that utilized everyone and made

sure all tasks were done had become a full-time job for one of the staff.

I decided to try to build a Prolog-based schedule builder. It turned out to

be a problem tailor-made for the language. I built a set of facts describing

each person’s skill set, each person’s schedule, and each experiment’s

requirements. I could then basically tell Prolog “make it so.” For each task

listed in an experiment, the language would find an available person

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=106

DAY 1: AN EXCELLENT DRIVER 107

with that skill and bind them to the task. It would continue until it either

satisfied the needs of the experiment or was unable to. If it could not

find a valid binding, it would start undoing previous bindings and trying

again with another combination. In the end, it would either find a valid

schedule or declare that the experiment was over-constrained.

Bruce: Are there some interesting examples of facts, rules, or asser-

tions related to dolphins that would make sense to our readers?

Brian: There was one particular situation I remember where the sim-

ulated dolphin helped us understand Ake’s actual behavior. Ake re-

sponded to a gestural sign language containing “sentences” such as

“hoop through” or “right ball tail-touch.” We would give her instructions,

and she would respond.

Part of my research was to try to teach new words such as “not.” In this

context, “touch not ball” meant touch anything but the ball. This was a

hard problem for Ake to solve, but the research was proceeding well for

a while. At one point, however, she started simply sinking underwater

whenever we gave her the instruction. We didn’t understand it all. This

can be a very frustrating situation because you can’t ask a dolphin why

it did something. So, we presented the training task to the simulated dol-

phin and got an interesting result. Although dolphins are very smart, they

will generally try to find the simplest answer to a problem. We had given

the simulated dolphin the same heuristic. It turns out that Ake’s gestu-

ral language included a “word” for one of the windows in the tank. Most

trainers had forgotten about this word because it was rarely used. The

simulated dolphin discovered the rule that “window” was a successful

response to “not ball.” It was also a successful response to “not hoop,”

“not pipe,” and “not frisbee.” We had guarded against this pattern with

the other objects by changing the set of objects in the tank for any given

trial, but obviously we could not remove the window. It turns out that

when Ake was sinking to the bottom of the tank she was positioned next

to the window, though I could not see the window!

Bruce: What do you like about Prolog the most?

Brian: The declarative programming model is very appealing. In gen-

eral, if you can describe the problem, you have solved the problem. In

most languages I’ve found myself arguing with the computer at some

point saying, “You know what I mean; just do it!” C and C++ compiler

errors such as “semicolon expected” are symbolic of this. If you expected

a semicolon, how about inserting one and seeing whether that fixes it?

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=107

DAY 1: AN EXCELLENT DRIVER 108

In Prolog, all I had to do in the scheduling problem was basically say, “I

want a day that looks like this, so go make me one” and it would do it.

Bruce: What gave you the most trouble?

Brian: Prolog seemed to be an all-or-nothing approach to problems, or

at least to the problems I was working on. In the laboratory scheduling

problem, the system would churn for 30 minutes and then either give

us a beautiful schedule for the day or simply print “no.” “No” in this

case meant that we had over-constrained the day, and there was no full

solution. It did not, however, give us a partial solution or much of any

information about where the over-constraint was.

What you see here is an extremely powerful concept. You don’t have
to describe the solution to a problem. You have only to describe the
problem. And the language for the description of the problem is logic,
only pure logic. Start from facts and inferences, and let Prolog do the
rest. Prolog programs are at a higher level of abstraction. Schedules
and behavior patterns are great examples of problems right in Prolog’s
wheelhouse.

What We Learned in Day 1

Today, we learned the basic building blocks of the Prolog language.
Rather than encoding steps to guide Prolog to a solution, we encoded
knowledge using pure logic. Prolog did the hard work of weaving that
knowledge together to find solutions. We put our logic into knowledge
bases and issued queries against them.

After we built a few knowledge bases, we then compiled and queried
them. The queries had two forms. First, the query could specify a fact,
and Prolog would tell us whether the facts were true or false. Second,
we built a query with one or more variables. Prolog then computed all
possibilities that made those facts true.

We learned that Prolog worked through rules by going through the
clauses for a rule in order. For any clause, Prolog tried to satisfy each of
the goals by going through the possible combinations of variables. All
Prolog programs work this way.

In the sections to come, we’re going to make more complex inferences.
We’re also going to learn to use math and more complex data structures
such as lists, as well as strategies to iterate over lists.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=108

DAY 2: FIFTEEN MINUTES TO WAPNER 109

Day 1 Self-Study

Find:

• Some free Prolog tutorials

• A support forum (there are several)

• One online reference for the Prolog version you’re using

Do:

• Make a simple knowledge base. Represent some of your favorite
books and authors.

• Find all books in your knowledge base written by one author.

• Make a knowledge base representing musicians and instruments.
Also represent musicians and their genre of music.

• Find all musicians who play the guitar.

4.3 Day 2: Fifteen Minutes to Wapner

Grumpy Judge Wapner from The People’s Court is an obsession of the
central character in Rain Man. Like most autistics, Raymond obsesses
over all things familiar. He latched on to Judge Wapner and The People’s

Court. As you’re plowing through this enigmatic language, you might be
ready for things to start to click. Now, you might be one of the lucky
readers who has everything click for them right away, but if you don’t,
take heart. Today, there are definitely “fifteen minutes to Wapner.” Sit
tight. We will need a few more tools in the toolbox. You’ll learn to use
recursion, math, and lists. Let’s get going.

Recursion

Ruby and Io were imperative programming languages. You would spell
out each step of an algorithm. Prolog is the first of the declarative lan-
guages we’ll look at. When you’re dealing with collections of things such
as lists or trees, you’ll often use recursion rather than iteration. We’ll
look at recursion and use it to solve some problems with basic infer-
ences, and then we’ll apply the same technique to lists and math.

Take a look at the following database. It expresses the extensive family
tree of the Waltons, characters in a 1963 movie and subsequent series.
It expresses a father relationship and from that infers the ancestor rela-
tionship. Since an ancestor can mean a father, grandfather, or great

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=109

DAY 2: FIFTEEN MINUTES TO WAPNER 110

grandfather, we will need to nest the rules or iterate. Since we’re deal-
ing with a declarative language, we’re going to nest. One clause in the
ancestor clause will use ancestor. In this case, ancestor(Z, Y) is a recursive
subgoal. Here’s the knowledge base:

Download prolog/family.pl

father(zeb, john_boy_sr).

father(john_boy_sr, john_boy_jr).

ancestor(X, Y) :-

father(X, Y).

ancestor(X, Y) :-

father(X, Z), ancestor(Z, Y).

father is the core set of facts that enables our recursive subgoal. The rule
ancestor/2 has two clauses. When you have multiple clauses that make
up a rule, only one of them must be true for the rule to be true. Think
of the commas between subgoals as and conditions and the periods
between clauses as or conditions. The first clause says “X is the ancestor

of Y if X is the father of Y.” That’s a straightforward relationship. We can
try that rule like this:

| ?- ancestor(john_boy_sr, john_boy_jr).

true ?

no

Prolog reports true, john_boy_sr is an ancestor of john_boy_jr. This first
clause depends on a fact.

The second clause is more complex: ancestor(X, Y) :- father(X, Z), ancestor(Z,

Y). This clause says X is an ancestor of Y if we can prove that X is the
father of Z and we can also prove that same Z is an ancestor of Y.

Whew. Let’s use the second clause:

| ?- ancestor(zeb, john_boy_jr).

true ?

Yes, zeb is an ancestor of john_boy_jr. As always, we can try variables in
a query, like this:

| ?- ancestor(zeb, Who).

Who = john_boy_sr ? a

Who = john_boy_jr

no

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/family.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=110

DAY 2: FIFTEEN MINUTES TO WAPNER 111

And we see that zeb is an ancestor for john_boy_jr and john_boy_sr. The
ancestor predicate also works in reverse:

| ?- ancestor(Who, john_boy_jr).

Who = john_boy_sr ? a

Who = zeb

(1 ms) no

That’s a beautiful thing, because we can use this rule in our knowledge
base for two purposes, to find both ancestors and descendants.

A brief warning. When you use recursive subgoals, you need to be care-
ful because each recursive subgoal will use stack space, and you can
eventually run out. Declarative languages often solve this problem with
a technique called tail recursion optimization. If you can position the
recursive subgoal at the end of a recursive rule, Prolog can optimize
the call to discard the call stack, keeping the memory use constant.
Our call is tail recursive because the recursive subgoal, ancestor(Z, Y),
is the last goal in the recursive rule. When your Prolog programs crash
by running out of stack space, you’ll know it’s time to look for a way to
optimize with tail recursion.

With that last bit of housekeeping out of the way, let’s start to look at
lists and tuples.

Lists and Tuples

Lists and tuples are a big part of Prolog. You can specify a list as [1, 2, 3]

and a tuple as (1, 2, 3). Lists are containers of variable length, and tuples
are containers with a fixed length. Both lists and tuples get much more
powerful when you think of them in terms of unification.

Unification, Part 2

Remember, when Prolog tries to unify variables, it tries to make both
the left and right sides match. Two tuples can match if they have the
same number of elements and each element unifies. Let’s take a look
at a couple of examples:

| ?- (1, 2, 3) = (1, 2, 3).

yes

| ?- (1, 2, 3) = (1, 2, 3, 4).

no

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=111

DAY 2: FIFTEEN MINUTES TO WAPNER 112

| ?- (1, 2, 3) = (3, 2, 1).

no

Two tuples unify if all the elements unify. The first tuples were exact
matches, the second tuples did not have the same number of elements,
and the third set did not have the same elements in the same order.
Let’s mix in some variables:

| ?- (A, B, C) = (1, 2, 3).

A = 1

B = 2

C = 3

yes

| ?- (1, 2, 3) = (A, B, C).

A = 1

B = 2

C = 3

yes

| ?- (A, 2, C) = (1, B, 3).

A = 1

B = 2

C = 3

yes

It doesn’t really matter which sides the variables are on. They unify if
Prolog can make them the same. Now, for some lists. They can work
like tuples:

| ?- [1, 2, 3] = [1, 2, 3].

yes

| ?- [1, 2, 3] = [X, Y, Z].

X = 1

Y = 2

Z = 3

yes

| ?- [2, 2, 3] = [X, X, Z].

X = 2

Z = 3

yes

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=112

DAY 2: FIFTEEN MINUTES TO WAPNER 113

| ?- [1, 2, 3] = [X, X, Z].

no

| ?- [] = [].

The last two examples are interesting. [X, X, Z] and [2, 2, 3] unified because
Prolog could make them the same with X = 2. [1, 2, 3] = [X, X, Z] did not
unify because we used X for both the first and second positions, and
those values were different. Lists have a capability that tuples don’t.
You can deconstruct lists with [Head|Tail]. When you unify a list with
this construct, Head will bind to the first element of the list, and Tail will
bind to the rest, like this:

| ?- [a, b, c] = [Head|Tail].

Head = a

Tail = [b,c]

yes

[Head|Tail] won’t unify with an empty list, but a one-element list is fine:

| ?- [] = [Head|Tail].

no

| ?- [a] = [Head|Tail].

Head = a

Tail = []

yes

You can get complicated by using various combinations:

| ?- [a, b, c] = [a|Tail].

Tail = [b,c]

(1 ms) yes

Prolog matched the a and unified the rest with Tail. Or we can split this
tail into the head and tail:

| ?- [a, b, c] = [a|[Head|Tail]].

Head = b

Tail = [c]

yes

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=113

DAY 2: FIFTEEN MINUTES TO WAPNER 114

Or grab the third element:

| ?- [a, b, c, d, e] = [_, _|[Head|_]].

Head = c

yes

_ is a wildcard and unifies with anything. It basically means “I don’t care
what’s in this position.” We told Prolog to skip the first two elements and
split the rest into head and tail. The Head will grab the third element,
and the trailing _ will grab the tail, ignoring the rest of the list.

That should be enough to get you started. Unification is a powerful tool,
and using it in conjunction with lists and tuples is even more powerful.

Now, you should have a basic understanding of the core data structures
in Prolog and how unification works. We’re now ready to combine these
elements with rules and assertions to do some basic math with logic.

Lists and Math

In our next example, I thought I’d show you an example of using recur-
sion and math to operate on lists. These are examples to do counting,
sums, and averages. Five rules do all the hard work.

Download prolog/list_math.pl

count(0, []).

count(Count, [Head|Tail]) :- count(TailCount, Tail), Count is TailCount + 1.

sum(0, []).

sum(Total, [Head|Tail]) :- sum(Sum, Tail), Total is Head + Sum.

average(Average, List) :- sum(Sum, List), count(Count, List), Average is Sum/Count.

The simplest example is count. Use it like this:

| ?- count(What, [1]).

What = 1 ? ;

no

The rules are trivially simple. The count of an empty list is 0. The count
of a list is the count of the tail plus one. Let’s talk about how this works,
step-by-step:

• We issue the query count(What, [1]), which can’t unify with the first
rule, because the list is not empty. We move on to satisfying the

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/list_math.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=114

DAY 2: FIFTEEN MINUTES TO WAPNER 115

goals for the second rule, count(Count, [Head|Tail]). We unify, bind-
ing What to Count, Head to 1, and Tail to [].

• After unification, the first goal is count(TailCount, []). We try to prove
that subgoal. This time, we unify with the first rule. That binds
TailCount to 0. The first rule is now satisfied, so we can move on to
the second goal.

• Now, we evaluate Count is TailCount + 1. We can unify variables. Tail-

Count is bound to 0, so we bind Count to 0 + 1, or 1.

And that’s it. We did not define a recursive process. We defined logical
rules. The next example is adding up the elements of a list. Here’s the
code for those rules again:

sum(0, []).

sum(Total, [Head|Tail]) :- sum(Sum, Tail), Total is Head + Sum.

This code works precisely like the count rule. It also has two clauses, a
base case and the recursive case. The usage is similar:

| ?- sum(What, [1, 2, 3]).

What = 6 ? ;

no

If you look at it imperatively, sum works exactly as you would expect in
a recursive language. The sum of an empty list is zero; the sum of the
rest is the Head plus the sum of the Tail.

But there’s another interpretation here. We haven’t really told Prolog
how to compute sums. We’ve merely described sums as rules and goals.
To satisfy some of the goals, the logic engine must satisfy some sub-
goals. The declarative interpretation is as follows: “The sum of an empty
list is zero, and the sum of a list is Total if we can prove that the sum of
the tail plus the head is Total.” We’re replacing recursion with the notion
of proving goals and subgoals.

Similarly, the count of an empty list is zero; the count of a list is one for
the Head plus the count of the Tail.

As with logic, these rules can build on each other. For example, you can
use sum and count together to compute an average:

average(Average, List) :- sum(Sum, List), count(Count, List), Average is Sum/Count.

So, the average of List is Average if you can prove that

• the sum of that List is Sum,

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=115

DAY 2: FIFTEEN MINUTES TO WAPNER 116

• the count of that List is Count, and

• Average is Sum/Count.

And it works just as you’d expect:

| ?- average(What, [1, 2, 3]).

What = 2.0 ? ;

no

Using Rules in Both Directions

At this point, you should have a fairly good understanding of how recur-
sion works. I’m going to shift gears a little bit and talk about a tight little
rule called append. The rule append(List1, List2, List3) is true if List3 is List1

+ List2. It’s a powerful rule that you can use in a variety of ways.

That short little bit of code packs a punch. You can use it in many
different ways. It’s a lie detector:

| ?- append([oil], [water], [oil, water]).

yes

| ?- append([oil], [water], [oil, slick]).

no

It’s a list builder:

| ?- append([tiny], [bubbles], What).

What = [tiny,bubbles]

yes

It does list subtraction:

| ?- append([dessert_topping], Who, [dessert_topping, floor_wax]).

Who = [floor_wax]

yes

And it computes possible permutations:

| ?- append(One, Two, [apples, oranges, bananas]).

One = []

Two = [apples,oranges,bananas] ? a

One = [apples]

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=116

DAY 2: FIFTEEN MINUTES TO WAPNER 117

Two = [oranges,bananas]

One = [apples,oranges]

Two = [bananas]

One = [apples,oranges,bananas]

Two = []

(1 ms) no

So, one rule gives you four. You may think that building such a rule
will take a lot of code. Let’s find out exactly how much. Let’s rewrite
the Prolog append, but we’ll call it concatenate. We’ll take it in several
steps:

1. Write a rule called concatenate(List1, List2, List3) that can concatenate
an empty list to List1.

2. Add a rule that concatenates one item from List1 onto List2.

3. Add a rule that concatenates two and three items from List1 onto
List2.

4. See what we can generalize.

Let’s get started. Our first step is to concatenate an empty list to List1.
That’s a fairly easy rule to write:

Download prolog/concat_step_1.pl

concatenate([], List, List).

No problem. concatenate is true if the first parameter is a list and the
next two parameters are the same.

It works:

| ?- concatenate([], [harry], What).

What = [harry]

yes

Onto the next step. Let’s add a rule that concatenates the first element
of List1 to the front of List2:

Download prolog/concat_step_2.pl

concatenate([], List, List).

concatenate([Head|[]], List, [Head|List]).

For concatenate(List1, List2, List3), we break List1 into the head and tail,
with the tail being an empty list. We’ll break our third element into

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/concat_step_1.pl
http://media.pragprog.com/titles/btlang/code/prolog/concat_step_2.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=117

DAY 2: FIFTEEN MINUTES TO WAPNER 118

the head and tail, using List1’s head and List2 as the tail. Remember to
compile your knowledge base. It works just fine:

| ?- concatenate([malfoy], [potter], What).

What = [malfoy,potter]

yes

Now, we can define another couple of rules to concatenate lists of
lengths 2 and 3. They work in the same way:

Download prolog/concat_step_3.pl

concatenate([], List, List).

concatenate([Head|[]], List, [Head|List]).

concatenate([Head1|[Head2|[]]], List, [Head1, Head2|List]).

concatenate([Head1|[Head2|[Head3|[]]]], List, [Head1, Head2, Head3|List]).

| ?- concatenate([malfoy, granger], [potter], What).

What = [malfoy,granger,potter]

yes

So, what we have is a base case and a strategy where each subgoal
shrinks the first list and grows the third. The second stays constant.
We now have enough information to generalize a result. Here’s the con-
catenate using nested rules:

Download prolog/concat.pl

concatenate([], List, List).

concatenate([Head|Tail1], List, [Head|Tail2]) :-

concatenate(Tail1, List, Tail2).

That terse little block of code has an incredibly simple explanation. The
first clause says concatenating an empty list to List gives you that List.
The second clause says concatenating List1 to List2 gives you List3 if the
heads of List1 and List3 are the same, and you can prove that concate-
nating the tail of List1 with List2 gives you the tail of List3. The simplicity
and elegance of this solution are a testament to the power of Prolog.

Let’s see what it would do with the query concatenate([1, 2], [3], What).
We’ll walk through unification at each step. Keep in mind that we’re
nesting the rules, so each time we try to prove a subgoal, we’ll have a
different copy of the variables. I’ll mark the important ones with a letter
so you can keep them straight. With each pass, I’ll show what happens
when Prolog tries to prove the next subgoal.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/concat_step_3.pl
http://media.pragprog.com/titles/btlang/code/prolog/concat.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=118

DAY 2: FIFTEEN MINUTES TO WAPNER 119

• Start with this:

concatenate([1, 2], [3], What)

• The first rule doesn’t apply, because [1, 2] is not an empty list. We
unify to this:

concatenate([1|[2]], [3], [1|Tail2-A]) :- concatenate([2], [3], [Tail2-A])

Everything unifies but the second tail. We now move on to the
goals. Let’s unify the right side.

• We try to apply the rule concatenate([2], [3], [Tail2-A]). That’s going to
give us this:

concatenate([2|[]], [3], [2|Tail2-B]) :- concatenate([], [3], Tail2-B)

Notice that Tail2-B is the tail of Tail2-A. It’s not the same as the orig-
inal Tail2. But now, we have to unify the right side again.

• concatenate([], [3], Tail2-C) :- concatenate([], [3], [3]) .

• So, we know Tail2-C is [3]. Now, we can work back up the chain.
Let’s look at the third parameter, plugging in Tail2 at each step.
Tail2-C is [3], which means [2|Tail2-2] is [2, 3], and finally [1|Tail2] is [1,

2, 3]. What is [1, 2, 3].

Prolog is doing a lot of work for you here. Go over this list until you
understand it. Unifying nested subgoals is a core concept for the ad-
vanced problems in this book.

Now, you’ve taken a deep look at one of the richest functions in Pro-
log. Take a little time to explore these solutions, and make sure you
understand them.

What We Learned in Day 2

In this section, we moved into the basic building blocks that Prolog
uses to organize data: lists and tuples. We also nested rules, allowing
us to express problems that you might handle with iteration in other
languages. We took a deeper look at Prolog unification and how Prolog
works to match up both sides of a :- or =. We saw that when we’re
writing rules, we described logical rules instead of algorithms and let
Prolog work its way through the solution.

We also used math. We learned to use basic arithmetic and nested
subgoals to compute sums and averages.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=119

DAY 3: BLOWING UP VEGAS 120

Finally, we learned to use lists. We matched one or more variables
within a list to variables, but more importantly, we matched the head
of a list and the remaining elements with variables using the [Head|Tail]

pattern. We used this technique to recursively iterate through lists.
These building blocks will serve as the foundations of the complex prob-
lems we solve in day 3.

Day 2 Self-Study

Find:

• Some implementations of a Fibonacci series and factorials. How
do they work?

• A real-world community using Prolog. What problems are they
solving with it today?

If you’re looking for something more advanced to sink your teeth into,
try these problems:

• An implementation of the Towers of Hanoi. How does it work?

• What are some of the problems of dealing with “not” expressions?
Why do you have to be careful with negation in Prolog?

Do:

• Reverse the elements of a list.

• Find the smallest element of a list.

• Sort the elements of a list.

4.4 Day 3: Blowing Up Vegas

You should be getting a better understanding of why I picked the Rain
Man, the autistic savant, for Prolog. Though it’s sometimes difficult to
understand, it’s amazing to think of programming in this way. One of
my favorite points in Rain Man was when Ray’s brother realized he
could count cards. Raymond and his brother went to Vegas and just
about broke the bank. In this section, you’re going to see a side of
Prolog that will leave you smiling. Coding the examples in this chapter
was equal parts maddening and exhilarating. We’re going to solve two
famous puzzles that are right in Prolog’s comfort zone, solving systems
with constraints.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=120

DAY 3: BLOWING UP VEGAS 121

You may want to take a shot at some of these puzzles yourself. If you
do, try describing the rules you know about each game rather than
showing Prolog a step-by-step solution. We’re going to start with a small
Sudoku and then give you a chance to build up to a larger one in the
daily exercises. Then, we’ll move on to the classic Eight Queens puzzle.

Solving Sudoku

Coding the Sudoku was almost magical for me. A Sudoku is a grid that
has rows, columns, and boxes. A typical puzzle is a nine-by-nine grid,
with some spaces filled in and some blank. Each cell in the grid has a
number, from 1–9 for a nine-by-nine square. Your job is to fill out the
solution so that each row, column, and square has one each of all of
the digits.

We’re going to start with a four-by-four Sudoku. The concepts are ex-
actly the same, though the solutions will be shorter. Let’s start by
describing the world, as we know it. Abstractly, we’ll have a board with
four rows, four columns, and four squares. The table shows squares
1–4:

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

The first task is to decide what the query will look like. That’s simple
enough. We’ll have a puzzle and a solution, of the form sodoku(Puzzle,

Solution). Our users can provide a puzzle as a list, substituting under-
scores for unknown numbers, like this:

sodoku([_, _, 2, 3,

_, _, _, _,

_, _, _, _,

3, 4, _, _],

Solution).

If a solution exists, Prolog will provide the solution. When I solved this
puzzle in Ruby, I had to worry about the algorithm for solving the puz-
zle. With Prolog, that’s not so. I merely need to provide the rules for the
game. These are the rules:

• For a solved puzzle, the numbers in the puzzle and solution should
be the same.

• A Sudoku board is a grid of sixteen cells, with values from 1–4.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=121

DAY 3: BLOWING UP VEGAS 122

• The board has four rows, four columns, and four squares.

• A puzzle is valid if the elements in each row, column, and square
has no repeated elements.

Let’s start at the top. The numbers in the solution and puzzle should
match:

Download prolog/sudoku4_step_1.pl

sudoku(Puzzle, Solution) :-

Solution = Puzzle.

We’ve actually made some progress. Our “Sudoku solver” works for the
case where there are no blanks:

| ?- sudoku([4, 1, 2, 3,

2, 3, 4, 1,

1, 2, 3, 4,

3, 4, 1, 2], Solution).

Solution = [4,1,2,3,2,3,4,1,1,2,3,4,3,4,1,2]

yes

The format isn’t pretty, but the intent is clear enough. We’re getting
sixteen numbers back, row by row. But we are a little too greedy:

| ?- sudoku([1, 2, 3], Solution).

Solution = [1,2,3]

yes

Now, this board isn’t valid, but our solver reports that there is a valid
solution. Clearly, we have to limit the board to sixteen elements. We
have another problem, too. The values in the cells can be anything:

| ?- sudoku([1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6], Solution).

Solution = [1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6]

yes

For a solution to be valid, it should have numbers from 1–4. This prob-
lem will impact us in two ways. First, we may allow some invalid solu-
tions. Second, Prolog doesn’t have enough information to test possible
values for each cell. In other words, the set of results is not grounded.
That means that we have not expressed rules that limit possible values
of each cell, so Prolog will not be able to guess what the values are.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/sudoku4_step_1.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=122

DAY 3: BLOWING UP VEGAS 123

Let’s solve these problems by solving the next rule to the game. Rule
2 says a board has sixteen cells, with values from 1–4. GNU Prolog
has a built-in predicate to express possible values, called fd_domain(List,

LowerBound, UpperBound). This predicate is true if all the values in List are
between LowerBound and UpperBound, inclusive. We just need to make
sure all values in Puzzle range from 1–4.

Download prolog/sudoku4_step_2.pl

sudoku(Puzzle, Solution) :-

Solution = Puzzle,

Puzzle = [S11, S12, S13, S14,

S21, S22, S23, S24,

S31, S32, S33, S34,

S41, S42, S43, S44],

fd_domain(Puzzle, 1, 4).

We unified Puzzle with a list of sixteen variables, and we limited the
domain of the cells to values from 1–4. Now, we fail if the puzzle is not
valid:

| ?- sudoku([1, 2, 3], Solution).

no

| ?- sudoku([1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6], Solution).

no

Now, we get to the main piece of the solution. Rule 3 says a board
consists of rows, columns, and squares. We’re going to carve the puzzle
up into rows, columns, and squares. Now, you can see why we named
the cells the way we did. It’s a straightforward process to describe the
rows:

Row1 = [S11, S12, S13, S14],

Row2 = [S21, S22, S23, S24],

Row3 = [S31, S32, S33, S34],

Row4 = [S41, S42, S43, S44],

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/sudoku4_step_2.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=123

DAY 3: BLOWING UP VEGAS 124

Likewise for columns:

Col1 = [S11, S21, S31, S41],

Col2 = [S12, S22, S32, S42],

Col3 = [S13, S23, S33, S43],

Col4 = [S14, S24, S34, S44],

And squares:

Square1 = [S11, S12, S21, S22],

Square2 = [S13, S14, S23, S24],

Square3 = [S31, S32, S41, S42],

Square4 = [S33, S34, S43, S44].

Now that we’ve chopped the board into pieces, we can move on to the
next rule. The board is valid if all rows, columns, and squares have no
repeated elements. We’ll use a GNU Prolog predicate to test for repeated
elements. fd_all_different(List) succeeds if all the elements in List are differ-
ent. We need to build a rule to test that all rows, columns, and squares
are valid. We’ll use a simple rule to accomplish this:

valid([]).

valid([Head|Tail]) :-

fd_all_different(Head),

valid(Tail).

This predicate is valid if all the lists in it are different. The first clause
says that an empty list is valid. The second clause says that a list is
valid if the first element’s items are all different and if the rest of the
list is valid.

All that remains is to invoke our valid(List) rule:

valid([Row1, Row2, Row3, Row4,

Col1, Col2, Col3, Col4,

Square1, Square2, Square3, Square4]).

Believe it or not, we’re done. This solution can solve a four-by-four
Sudoku:

| ?- sudoku([_, _, 2, 3,

_, _, _, _,

_, _, _, _,

3, 4, _, _],

Solution).

Solution = [4,1,2,3,2,3,4,1,1,2,3,4,3,4,1,2]

yes

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=124

DAY 3: BLOWING UP VEGAS 125

Breaking that into a friendlier form, we have the solution:

4 1 2 3
2 3 4 1
1 2 3 4
3 4 1 2

Here’s the completed program, beginning to end:

Download prolog/sudoku4.pl

valid([]).

valid([Head|Tail]) :-

fd_all_different(Head),

valid(Tail).

sudoku(Puzzle, Solution) :-

Solution = Puzzle,

Puzzle = [S11, S12, S13, S14,

S21, S22, S23, S24,

S31, S32, S33, S34,

S41, S42, S43, S44],

fd_domain(Solution, 1, 4),

Row1 = [S11, S12, S13, S14],

Row2 = [S21, S22, S23, S24],

Row3 = [S31, S32, S33, S34],

Row4 = [S41, S42, S43, S44],

Col1 = [S11, S21, S31, S41],

Col2 = [S12, S22, S32, S42],

Col3 = [S13, S23, S33, S43],

Col4 = [S14, S24, S34, S44],

Square1 = [S11, S12, S21, S22],

Square2 = [S13, S14, S23, S24],

Square3 = [S31, S32, S41, S42],

Square4 = [S33, S34, S43, S44],

valid([Row1, Row2, Row3, Row4,

Col1, Col2, Col3, Col4,

Square1, Square2, Square3, Square4]).

If you haven’t had your Prolog moment, this example should give you a
nudge in the right direction. Where’s the program? Well, we didn’t write
a program. We described the rules of the game: a board has sixteen
cells with digits from 1–4, and none of the rows, columns, or squares
should repeat any of the values. The puzzle took a few dozen lines of

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/sudoku4.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=125

DAY 3: BLOWING UP VEGAS 126

code to solve and no knowledge of any Sudoku solving strategies. In
the daily exercises, you’ll get the chance to solve a nine-row Sudoku. It
won’t be too difficult.

This puzzle is a great example of the types of problems Prolog solves
well. We have a set of constraints that are easy to express but hard
to solve. Let’s look at another puzzle involving highly constrained re-
sources: the Eight Queens problem.

Eight Queens

To solve the Eight Queens problem, you put eight queens on a chess
board. None can share the same row, column, or diagonal. It may
appear to be a trivial problem on the surface. It’s just a kid’s game.
But on another level, you can look at the rows, columns, and diagonals
as constrained resources. Our industry is full of problems that solve
constrained systems. Let’s look at how we can solve this one in Prolog.

First, we’ll look at what the query should look like. We can express each
queen as (Row, Col), a tuple having a row and a column. A Board is a list
of tuples. eight_queens(Board) succeeds if we have a valid board. Our
query will look like this:

eight_queens([(1, 1), (3, 2), ...]).

Let’s look at the goals we need to satisfy to solve the puzzle. If you want
to take a shot at this game without looking at the solution, just look at
these goals. I won’t show the full solution until later in the chapter.

• A board has eight queens.

• Each queen has a row from 1–8 and a column from 1–8.

• No two queens can share the same row.

• No two queens can share the same column.

• No two queens can share the same diagonal (southwest to north-
east).

• No two queens can share the same diagonal (northwest to south-
east).

Rows and columns must be unique, but we must be more careful with
diagonals. Each queen is on two diagonals, one running from the lower
left (northwest) to the upper right (southeast) and the other running
from the upper left to the lower right as in Figure 4.2, on the following
page. But these rules should be relatively easy to encode.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=126

DAY 3: BLOWING UP VEGAS 127

!

D
ia
go
na
l 2

D
iagonal 1

RowRow

C
o
lu
m
n

Figure 4.2: Eight Queens rules

Once again, we’ll start at the top of the list. A board has eight queens.
That means our list must have a size of eight. That’s easy enough to
do. We can use the count predicate you saw earlier in the book, or we
can simply use a built-in Prolog predicate called length. length(List, N)

succeeds if List has N elements. This time, rather than show you each
goal in action, I’m going to walk you through the goals we’ll need to
solve the whole problem. Here’s the first goal, then:

eight_queens(List) :- length(List, 8).

Next, we need to make sure each queen from our list is valid. We build
a rule to test whether a queen is valid:

valid_queen((Row, Col)) :-

Range = [1,2,3,4,5,6,7,8],

member(Row, Range), member(Col, Range).

The predicate member does just what you think; it tests for member-
ship. A queen is valid if both the row and column are integers from 1–8.
Next, we’ll build a rule to check whether the whole board is made up of
valid queens:

valid_board([]).

valid_board([Head|Tail]) :- valid_queen(Head), valid_board(Tail).

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=127

DAY 3: BLOWING UP VEGAS 128

An empty board is valid, and a board is valid if the first item is a valid
queen and the rest of the board is valid.

Moving on, the next rule is that two queens can’t share the same row.
To solve the next few constraints, we’re going to need a little help. We
will break down the program into pieces that can help us describe the
problem: what are the rows, columns, and diagonals? First up is rows.
We’ll build a function called rows(Queens, Rows). This function should be
true if Rows is the list of Row elements from all the queens.

rows([], []).

rows([(Row, _)|QueensTail], [Row|RowsTail]) :-

rows(QueensTail, RowsTail).

This one takes a little imagination, but not much. rows for an empty list
is an empty list, and rows(Queens, Rows) is Rows if the Row from the first
queen in the list matches the first element of Rows and if rows of the
tail of Queens is the tail of Rows. If it’s confusing to you, walk through it
with a few test lists. Luckily, columns works exactly the same way, but
we’re going to use columns instead of rows:

cols([], []).

cols([(_, Col)|QueensTail], [Col|ColsTail]) :-

cols(QueensTail, ColsTail).

The logic works exactly the same as rows, but we match the second
element of a queen tuple instead of the first.

Moving on, we’re going to number diagonals. The easiest way to number
them is to do some simple subtraction and addition. If north and west
are 1, we’re going to assign the diagonals that run from northwest to
southeast a value of Col – Row. This is the predicate that grabs those
diagonals:

diags1([], []).

diags1([(Row, Col)|QueensTail], [Diagonal|DiagonalsTail]) :-

Diagonal is Col - Row,

diags1(QueensTail, DiagonalsTail).

That rule worked just like rows and cols, but we had one more con-
straint: Diagonal is Col -- Row. Note that this is not unification! It’s an
is predicate, and it will make sure that the solution is fully grounded.
Finally, we’ll grab the southeast to northwest like this:

diags2([], []).

diags2([(Row, Col)|QueensTail], [Diagonal|DiagonalsTail]) :-

Diagonal is Col + Row,

diags2(QueensTail, DiagonalsTail).

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=128

DAY 3: BLOWING UP VEGAS 129

The formula is a little bit tricky, but try a few values until you’re sat-
isfied that queens with the same sum of row and col are in fact on
the same diagonal. Now that we have the rules to help us describe
rows, columns, and diagonals, all that remains is to make sure rows,
columns, and diagonals are all different.

So you can see it all in context, here’s the entire solution. The tests for
rows and columns are the last eight clauses.

Download prolog/queens.pl

valid_queen((Row, Col)) :-

Range = [1,2,3,4,5,6,7,8],

member(Row, Range), member(Col, Range).

valid_board([]).

valid_board([Head|Tail]) :- valid_queen(Head), valid_board(Tail).

rows([], []).

rows([(Row, _)|QueensTail], [Row|RowsTail]) :-

rows(QueensTail, RowsTail).

cols([], []).

cols([(_, Col)|QueensTail], [Col|ColsTail]) :-

cols(QueensTail, ColsTail).

diags1([], []).

diags1([(Row, Col)|QueensTail], [Diagonal|DiagonalsTail]) :-

Diagonal is Col - Row,

diags1(QueensTail, DiagonalsTail).

diags2([], []).

diags2([(Row, Col)|QueensTail], [Diagonal|DiagonalsTail]) :-

Diagonal is Col + Row,

diags2(QueensTail, DiagonalsTail).

eight_queens(Board) :-

length(Board, 8),

valid_board(Board),

rows(Board, Rows),

cols(Board, Cols),

diags1(Board, Diags1),

diags2(Board, Diags2),

fd_all_different(Rows),

fd_all_different(Cols),

fd_all_different(Diags1),

fd_all_different(Diags2).

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/queens.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=129

DAY 3: BLOWING UP VEGAS 130

At this point, you could run the program, and it would run... and
run... and run. There are just too many combinations to efficiently sort
through. If you think about it, though, we know that there will be one
and only queen in every row. We can jump start the solution by provid-
ing a board that looks like this:

| ?- eight_queens([(1, A), (2, B), (3, C), (4, D), (5, E), (6, F), (7, G), (8, H)]).

A = 1

B = 5

C = 8

D = 6

E = 3

F = 7

G = 2

H = 4 ?

That works just fine, but the program is still working too hard. We can
eliminate the row choices quite easily and simplify the API while we’re
at it. Here’s a slightly optimized version:

Download prolog/optimized_queens.pl

valid_queen((Row, Col)) :- member(Col, [1,2,3,4,5,6,7,8]).

valid_board([]).

valid_board([Head|Tail]) :- valid_queen(Head), valid_board(Tail).

cols([], []).

cols([(_, Col)|QueensTail], [Col|ColsTail]) :-

cols(QueensTail, ColsTail).

diags1([], []).

diags1([(Row, Col)|QueensTail], [Diagonal|DiagonalsTail]) :-

Diagonal is Col - Row,

diags1(QueensTail, DiagonalsTail).

diags2([], []).

diags2([(Row, Col)|QueensTail], [Diagonal|DiagonalsTail]) :-

Diagonal is Col + Row,

diags2(QueensTail, DiagonalsTail).

eight_queens(Board) :-

Board = [(1, _), (2, _), (3, _), (4, _), (5, _), (6, _), (7, _), (8, _)],

valid_board(Board),

cols(Board, Cols),

diags1(Board, Diags1),

diags2(Board, Diags2),

fd_all_different(Cols),

fd_all_different(Diags1),

fd_all_different(Diags2).

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/optimized_queens.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=130

DAY 3: BLOWING UP VEGAS 131

Philosophically, we’ve made one major change. We matched the Board

with (1, _), (2, _), (3, _), (4, _), (5, _), (6, _), (7, _), (8, _) to reduce the total
permutations significantly. We also removed all rules related to rows,
and the results show. On my ancient MacBook, all solutions compute
inside of three minutes.

Once again, the end result is quite pleasing. We built in very little
knowledge of the solution set. We just described the rules to the game
and applied a little logic to speed things up a little. Given the right
problems, I could really find myself getting into Prolog.

What We Learned in Day 3

Today, you put together some of the ideas we’ve used in Prolog to solve
some classic puzzles. The constraint-based problems have many of the
same characteristics as classic industrial applications. List constraints,
and crunch out a solution. We would never think of doing a SQL nine-
table join imperatively, yet we don’t even blink at solving logical prob-
lems in this way.

We started with a Sudoku puzzle. Prolog’s solution was remarkably sim-
ple. We mapped sixteen variables onto rows, columns, and squares.
Then, we described the rules of the game, forcing each row, column,
and square to be unique. Prolog then methodically worked through the
possibilities, quickly arriving at a solution. We used wildcards and vari-
ables to build an intuitive API, but we didn’t provide any help at all for
solution techniques.

Next, we used Prolog to solve the Eight Queens puzzle. Once again,
we encoded the rules of the game and let Prolog work into a solution.
This classic problem was computationally intensive, having 92 possible
solutions, but even our simple approach could solve it within a handful
of minutes.

I still don’t know all of the tricks and techniques to solve advanced
Sudokus, but with Prolog, I don’t need to know them. I only need the
rules of the game to play.

Day 3 Self-Study

Find:

• Prolog has some input/output features as well. Find print predi-
cates that print out variables.

• Find a way to use the print predicates to print only successful
solutions. How do they work?

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=131

WRAPPING UP PROLOG 132

Do:

• Modify the Sudoku solver to work on six-by-six puzzles (squares
are 3x2) and 9x9 puzzles.

• Make the Sudoku solver print prettier solutions.

If you’re a puzzle enthusiast, you can get lost in Prolog. If you want
to dive deeper into the puzzles I’ve presented, Eight Queens is a good
place to start.

• Solve the Eight Queens problem by taking a list of queens. Rather
than a tuple, represent each queen with an integer, from 1–8. Get
the row of a queen by its position in the list and the column by the
value in the list.

4.5 Wrapping Up Prolog

Prolog is one of the older languages in this book, but the ideas are still
interesting and relevant today. Prolog means programming with logic.
We used Prolog to process rules, composed of clauses, which were in
turn composed with a series of goals.

Prolog programming has two major steps. Start by building a knowl-
edge base, composed of logical facts and inferences about the problem
domain. Next, compile your knowledge base, and ask questions about
the domain. Some of the questions can be assertions, and Prolog will
respond with yes or no. Other queries have variables. Prolog fills in these
gaps that makes those queries true.

Rather than simple assignment, Prolog uses a process called unifica-

tion that makes variables on both sides of a system match. Sometimes,
Prolog has to try many different possible combinations of variables to
unify variables for an inference.

Strengths

Prolog is applicable for a wide variety of problems, from airline schedul-
ing to financial derivatives. Prolog has a serious learning curve, but the
demanding problems that Prolog solves tend to make the language, or
others like it, worthwhile.

Think back to Brian Tarbox’s work with the dolphins. He was able to
make simple inferences about the world and make a breakthrough with
a complex inference about dolphin behavior. He was also able to take

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=132

WRAPPING UP PROLOG 133

highly constrained resources and use Prolog to find schedules that fit
among them. These are some areas where Prolog is in active use today:

Natural-Language Processing

Prolog was perhaps first used to work with language recognition. In
particular, Prolog language models can take natural language, apply
a knowledge base of facts and inferences, and express that complex,
inexact language in concrete rules appropriate for computers.

Games

Games are getting more complex, especially modeling the behavior of
competitors or enemies. Prolog models can easily express the behav-
ior of other characters in the system. Prolog can also build different
behaviors into different types of enemies, making a more lifelike and
enjoyable experience.

Semantic Web

The semantic Web is an attempt to attach meaning to the services
and information on the Web, making it easier to satisfy requests. The
resource description language (RDF) provides a basic description of
resources. A server can compile these resources into a knowledge base.
That knowledge, together with Prolog’s natural-language processing,
can provide a rich end user experience. Many Prolog packages exist
for providing this sort of functionality in the context of a web server.

Artificial Intelligence

Artificial intelligence (AI) centers around building intelligence into ma-
chines. This intelligence can take different forms, but in every case,
some “agent” modifies behavior based on complex rules. Prolog excels
in this arena, especially when the rules are concrete, based on formal
logic. For this reason, Prolog is sometimes called a logic programming

language.

Scheduling

Prolog excels in working with constrained resources. Many have used
Prolog to build operating system schedulers and other advanced sched-
ulers.

Weaknesses

Prolog is a language that has held up over time. Still, the language is
dated in many ways, and it does have significant limitations.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=133

WRAPPING UP PROLOG 134

Utility

While Prolog excels in its core domain, it’s a fairly focused niche, logic
programming. It is not a general-purpose language. It also has some
limitations related to language design.

Very Large Data Sets

Prolog uses a depth-first search of a decision tree, using all possible
combinations matched against the set of rules. Various languages and
compilers do a pretty good job of optimizing this process. Still, the strat-
egy is inherently computationally expensive, especially as data sets get
very large. It also forces Prolog users to understand how the language
works to keep the size of data sets manageable.

Mixing the Imperative and Declarative Models

Like many languages in the functional family, particularly those that
rely heavily on recursion, you must understand how Prolog will resolve
recursive rules. You must often have tail-recursive rules to complete
even moderately large problems. It’s relatively easy to build Prolog ap-
plications that cannot scale beyond a trivial set of data. You must often
have a deep understanding of how Prolog works to effectively design
rules that will scale at acceptable levels.

Final Thoughts

As I worked through the languages in this book, I often kicked myself,
knowing that through the years, I’ve driven many a screw with a sledge-
hammer. Prolog was a particularly poignant example of my evolving
understanding. If you find a problem that’s especially well suited for
Prolog, take advantage. In such a setting, you can best use this rules-
based language in combination with other general-purpose languages,
just as you would use SQL within Ruby or Java. If you’re careful with
the way you tie them together, you’re likely to come out ahead in the
long run.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=134

We are not sheep.

Edward Scissorhands

Chapter 5

Scala
So far, I have introduced three languages and three different program-
ming paradigms. Scala will be the fourth, sort of. It’s a hybrid lan-
guage, meaning that it intentionally tries to bridge the gaps between
programming paradigms. In this case, the bridge is between object-
oriented languages like Java and functional languages like Haskell. In
this sense, Scala is a Frankenstein monster of sorts but not a monster.
Think Edward Scissorhands.1

In this surreal Tim Burton movie, Edward was part boy, part machine,
with scissors for hands, and was one of my favorite characters of all
time. Edward was a fascinating character in a beautiful movie. He
was often awkward, was sometimes amazing, but always had a unique
expression. Sometimes, his scissors let him do incredible things. Other
times, he was awkward and humiliated. As with anything new or differ-
ent, he was often misunderstood, accused of “straying too far from the
path of righteousness.” But in one of his stronger moments, the shy kid
offers, “We are not sheep.” Indeed.

5.1 About Scala

As requirements for computer programs get more complex, languages,
too, must evolve. Every twenty years or so, the old paradigms become
inadequate to handle the new demands for organizing and expressing
ideas. New paradigms must emerge, but the process is not a simple one.

1. Edward Scissorhands. DVD. Directed by Tim Burton. 1990; Beverly Hills, CA: 20th
Century Fox, 2002.

ABOUT SCALA 136

Each new programming paradigm ushers in a wave of programming
languages, not just one. The initial language is often strikingly pro-
ductive and wildly impractical. Think Smalltalk for objects or Lisp for
functional languages. Then, languages from other paradigms build in
features that allow people to absorb the new concepts while users can
live safely within the old paradigm. Ada, for example, allowed some
core object-oriented ideas such as encapsulation to exist within a pro-
cedural language. At some point, some hybrid language offers just the
right practical bridge between the old paradigm and the new, such as
a C++. Next, we see a commercially adoptable language, such as Java
or C#. Finally, we see some mature, pure implementations of the new
paradigm.

Affinity with Java...

Scala is at least a bridge and maybe more. It offers tight integration into
Java, offering a chance for people to protect their investment in many
ways:

• Scala runs on the Java virtual machine, so Scala can run side-by-
side with existing deployments.

• Scala can use Java libraries directly, so developers can leverage
existing frameworks and legacy code.

• Like Java, Scala is statically typed, so the languages share a philo-
sophical bond.

• Scala’s syntax is relatively close to Java’s, so developers can learn
the basics quickly.

• Scala supports both object-oriented and functional programming
paradigms, so programmers can gradually learn to apply func-
tional programming ideas to their code.

Without Slavish Devotion

Some languages that embrace their ancestors go too far, extending
the very limiting concepts that make the base inadequate. Although
the similarities to Java are striking, Scala’s design has some signifi-
cant departures that will serve its community well. These important
improvements represent important departures from the Java language:

• Type inference. In Java, you must declare the type of every vari-
able, argument, or parameter. Scala infers variable types where
possible.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=136

ABOUT SCALA 137

• Functional concepts. Scala introduces important functional con-
cepts to Java. Specifically, the new language allows you to use
existing functions in many different ways to form new ones. Con-
cepts you’ll see in this chapter are code blocks, higher-order func-
tions, and a sophisticated collection library. Scala goes far beyond
some basic syntactical sugar.

• Immutable variables. Java does allow immutable variables but
with a rarely used modifier. In this chapter, you’ll see that Scala
forces you to explicitly make a decision about whether a variable
is mutable. These decisions will have a profound effect on how
applications behave in a concurrent context.

• Advanced programming constructs. Scala uses the foundational
language well, layering on useful concepts. In this chapter, we’ll
introduce you to actors for concurrency, Ruby-style collections
with higher-order functions, and first-class XML processing.

Before we dive in, we should know about the motivations behind Scala.
We’ll spend some time with the creator, focusing on how he decided to
tie two programming paradigms together.

An Interview with Scala’s Creator, Martin Odersky

Martin Odersky, the creator of Scala, is a professor at École Polytech-
nique Fédérale de Lausanne (EPFL), one of two Swiss Federal Institutes
of Technology. He has worked on the Java Generics specification and is
the creator of the javac reference compiler. He is also the author of Pro-

gramming in Scala: A Comprehensive Step-by-Step Guide [OSV08], one
of the best Scala books available today. Here is what he had to say:

Bruce: Why did you write Scala?

Dr. Odersky: I was convinced that unifying functional and object-ori-

ented programming would have great practical value. I was frustrated

both by the dismissive attitude of the functional programming commu-

nity toward OOP and by the belief of object-oriented programmers that

functional programming was just an academic exercise. So, I wanted to

show that the two paradigms can be unified and that something new and

powerful could result from that combination. I also wanted to create a

language in which I would personally feel comfortable writing programs.

Bruce: What is the thing you like about it the most?

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=137

ABOUT SCALA 138

Dr. Odersky: I like that it lets programmers express themselves freely

and that it feels lightweight, yet at the same time gives strong support

through its type system.

Bruce: What kinds of problems does it solve the best?

Dr. Odersky: It’s really general purpose. There’s no problem I would

not try to solve with it. That said, a particular strength of Scala relative to

other mainstream languages is its support of functional programming. So,

everywhere a functional approach is important Scala shines, be that con-

currency and parallelism or web apps dealing with XML or implementing

domain-specific languages.

Bruce: What is a feature that you would like to change, if you could

start over?

Dr. Odersky: Scala’s local type inference works generally well but has

limitations. If I could start over, I’d try to use a more powerful constraint

solver. Maybe it’s still possible to do that, but the fact that we have to

deal with a large installed base makes it more difficult.

The buzz around Scala is growing, because Twitter has switched its core
message processing from Ruby to Scala. The object-oriented features
allow a pretty smooth transition from the Java language, but the ideas
that are drawing attention to Scala are the functional programming
features. Pure functional languages allow a style of programming that
has strong mathematical foundations. A functional language has these
characteristics:

• Functional programs are made up of functions.

• A function always returns a value.

• A function, given the same inputs, will return the same values.

• Functional programs avoid changing state or mutating data. Once
you’ve set a value, you have to leave it alone.

Strictly speaking, Scala is not a pure functional programming language,
just like C++ is not a pure object-oriented language. It allows mutable
values, which can lead to functions with the same inputs but different
outputs. (With most object-oriented languages, using getters and set-
ters would break that rule.) But it offers tools that allow developers to
use functional abstractions where they make sense.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=138

DAY 1: THE CASTLE ON THE HILL 139

Functional Programming and Concurrency

The biggest problem facing concurrency-minded programmers in ob-
ject-oriented languages today is mutable state, meaning data that can
change. Any variable that can hold more than one value, after initializa-
tion, is mutable. Concurrency is the Dr. Evil to mutable state’s Austin
Powers. If two different threads can change the same data at the same
time, it’s difficult to guarantee that the execution will leave the data in
a valid state, and testing is nearly impossible. Databases deal with this
problem with transactions and locking. Object-oriented programming
languages deal with this problem by giving programmers the tools to
control access to shared data. And programmers generally don’t use
those tools very well, even when they know how.

Functional programming languages can solve these problems by elim-
inating mutable state from the equation. Scala does not force you to
completely eliminate mutable state, but it does give you the tools to
code things in a purely functional style.

With Scala, you don’t have to choose between making some Smalltalk
and having a little Lisp. Let’s get busy merging the object-oriented and
functional worlds with some Scala code.

5.2 Day 1: The Castle on the Hill

In Edward Scissorhands, there’s a castle on a hill that is, well, a lit-
tle different. In a bygone era, the castle was a strange and enchanting
place but is now showing signs of age and neglect. Broken windows
let the weather in, and the rooms aren’t all what they once were. The
house that once felt so comfortable to its inhabitants is now cold and
uninviting. The object-oriented paradigm, too, is showing some signs
of age, especially the earlier object-oriented implementations. The Java
language, with its dated implementations of static typing and concur-
rency, needs a face-lift. In this section, we’re going to talk primarily
about Scala in the context of that house on the hill, the object-oriented
programming paradigm.

Scala runs on the Java virtual machine (JVM). I’m not going to offer an
exhaustive overview of the Java language; that information is freely
available elsewhere. You’ll see some Java ideas creeping through to
Scala, but I’ll try to minimize their impact so you won’t have to learn two
languages at once. For now, install Scala. I’m using version 2.7.7.final
for this book.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=139

DAY 1: THE CASTLE ON THE HILL 140

Scala Types

When you have Scala working, fire up the console with the command
scala. If all is well, you won’t get any error messages, and you will see
a scala> prompt. You can then type a little code.

scala> println("Hello, surreal world")

Hello, surreal world

scala> 1 + 1

res8: Int = 2

scala> (1).+(1)

res9: Int = 2

scala> 5 + 4 * 3

res10: Int = 17

scala> 5.+(4.*(3))

res11: Double = 17.0

scala> (5).+((4).*(3))

res12: Int = 17

So, integers are objects. In Java, I’ve pulled out my fair share of hair
converting between Int (primitives) and Integer (objects). In fact, every-
thing is an object in Scala, with some small exceptions. That’s a signif-
icant departure from most statically typed object oriented languages.
Let’s see how Scala handles strings:

scala> "abc".size

res13: Int = 3

So a string, too, is a first-class object, with a little syntactic sugar mixed
in. Let’s try to force a type collision:

scala> "abc" + 4

res14: java.lang.String = abc4

scala> 4 + "abc"

res15: java.lang.String = 4abc

scala> 4 + "1.0"

res16: java.lang.String = 41.0

Hm...that’s not quite what we were looking for. Scala is coercing those
integers into strings. Let’s try a little harder to force a mismatch:

scala> 4 * "abc"

<console>:5: error: overloaded method value * with alternatives (Double)Double

<and> (Float)Float <and> (Long)Long <and> (Int)Int <and> (Char)Int

<and> (Short)Int <and> (Byte)Int cannot be applied to (java.lang.String)

4 * "abc"

^

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=140

DAY 1: THE CASTLE ON THE HILL 141

Ah. That’s the ticket. Scala is actually strongly typed. Scala will use
type inference, so most of the time, it will understand the types of vari-
ables through syntactical clues, but unlike Ruby, Scala can do that
type checking at compile time. Scala’s console actually compiles lines
of code and runs each one piecemeal.

On a side note, I know you’re getting back Java strings. Most Scala
articles and books go into this topic in more detail, but we can’t do so
and still dive into the programming constructs that I think will be most
interesting to you. I’ll point you to a few books that will go into the
Java integration in detail. For now, I’m going to tell you that in many
places, Scala has a strategy for managing types across two languages.
Part of that is using simple Java types where they make sense, like
java.lang.String. Please trust me, and accept these oversimplifications.

Expressions and Conditions

Now we’re going to move through some basic syntax quickly and strictly
by example. Here are a few Scala true/false expressions:

scala> 5 < 6

res27: Boolean = true

scala> 5 <= 6

res28: Boolean = true

scala> 5 <= 2

res29: Boolean = false

scala> 5 >= 2

res30: Boolean = true

scala> 5 != 2

res31: Boolean = true

There’s nothing too interesting going on there. This is the C-style syn-
tax that you’re familiar with from several of the languages we’ve talked
about so far. Let’s use an expression in an if statement:

scala> val a = 1

a: Int = 1

scala> val b = 2

b: Int = 2

scala> if (b < a) {

| println("true")

| } else {

| println("false")

| }

false

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=141

DAY 1: THE CASTLE ON THE HILL 142

We assign a couple of variables and compare them in an if/else state-
ment. Take a closer look at the variable assignment. First, notice that
you didn’t specify a type. Unlike Ruby, Scala binds types at compile
time. But unlike Java, Scala can infer the type, so you don’t have to
type val a : Int = 1, though you can if you want.

Next, notice that these Scala variable declarations start with the val

keyword. You can also use the var keyword. val is immutable; var is not.
We’ll talk more about this later.

In Ruby, 0 evaluated to true. In C, 0 was false. In both languages, nil

evaluated to false. Let’s see how Scala handles them:

scala> Nil

res3: Nil.type = List()

scala> if(0) {println("true")}

<console>:5: error: type mismatch;

found : Int(0)

required: Boolean

if(0) {println("true")}

^

scala> if(Nil) {println("true")}

<console>:5: error: type mismatch;

found : Nil.type (with underlying type object Nil)

required: Boolean

if(Nil) {println("true")}

^

So, a Nil is an empty list, and you can’t even test Nil or 0. This behav-
ior is consistent with Scala’s strong, static typing philosophy. Nils and
numbers are not booleans, so don’t treat them like booleans. With sim-
ple expressions and the most basic decision construct behind us, let’s
move on to loops.

Loops

As the next couple of programs get more complex, we’re going to run
them as scripts rather than in the console. Like Ruby and Io, you’ll run
them with scala path/to/program.scala.

You’ll see a number of ways to iterate over result sets in day 2 when we
attack code blocks. For now, we’ll focus on the imperative programming
style of loops. You’ll see that these look a lot like the Java-style loop
structures.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=142

DAY 1: THE CASTLE ON THE HILL 143

My Inner Battle with Static Typing

Some novice programming language enthusiasts confuse the
ideas of strong typing and static typing. Loosely speaking,
strong typing means the language detects when two types are
compatible, throwing an error or coercing the types if they are
not. On the surface, Java and Ruby are both strongly typed.
(I realize this idea is an oversimplification.) Assembly language
and C compilers, on the other hand, are weakly typed. The
compiler doesn’t necessarily care whether the data in a mem-
ory location is an integer, a string, or just data.

Static and dynamic typing is another issue. Statically typed lan-
guages enforce polymorphism based on the structure of the
types. Is it a duck by the genetic blueprint (static), or is it a
duck because it quacks or walks like one? Statically typed lan-
guages benefit because compilers and tools know more about
your code to trap errors, highlight code, and refactor. The cost
is having to do more work and living with some restrictions. Your
history as a developer will often determine how you feel about
the trade-offs of static typing.

My first OO development was in Java. I saw one framework
after another try to break free from the chains of Java’s
static typing. The industry invested hundreds of millions of dol-
lars in three versions of Enterprise Java Beans, Spring, Hiber-
nate, JBoss, and aspect-oriented programming to make cer-
tain usage models more malleable. We were making Java’s
typing model more dynamic, and the battles at every step
of the way were intense, feeling more like rival cults than pro-
gramming environments. My books took the same journey, from
increasingly dynamic frameworks to dynamic languages.

So, my bias against static typing was shaped by the Java wars.
Haskell and its great static type system are helping me recover
but slowly. My conscience is clear. You’ve invited a closet politi-
cian to this casual dinner, but I’ll try my hardest to keep the
conversation light and unbiased.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=143

DAY 1: THE CASTLE ON THE HILL 144

First is the basic while loop:

Download scala/while.scala

def whileLoop {

var i = 1

while(i <= 3) {

println(i)

i += 1

}

}

whileLoop

We define a function. As a side note, Java developers will notice that
you don’t have to specify public. In Scala, public is the default visibility,
meaning this function will be visible to all.

Within the method, we declare a simple while loop that counts to three.
i changes, so we declare it with var. Then, you see a Java-style dec-
laration of a while statement. As you can see, the code inside braces
executes unless the condition is false. You can run the code like this:

batate$ scala code/scala/while.scala

1

2

3

The for loop works a lot like Java’s and C’s but with a slightly different
syntax:

Download scala/for_loop.scala

def forLoop {

println("for loop using Java-style iteration")

for(i <- 0 until args.length) {

println(args(i))

}

}

forLoop

The argument is a variable, followed by the <- operator, followed by a
range for the loop in the form of initialValue until endingValue. In this case,
we’re iterating over the incoming command-line arguments:

batate$ scala code/scala/forLoop.scala its all in the grind

for loop using Java-style iteration

its

all

in

the

grind

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/while.scala
http://media.pragprog.com/titles/btlang/code/scala/for_loop.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=144

DAY 1: THE CASTLE ON THE HILL 145

As with Ruby, you can also use loops to iterate over a collection. For
now, we’ll start with foreach, which is reminiscent of Ruby’s each:

Download scala/ruby_for_loop.scala

def rubyStyleForLoop {

println("for loop using Ruby-style iteration")

args.foreach { arg =>

println(arg)

}

}

rubyStyleForLoop

args is a list with the inbound command-line arguments. Scala passes
each element into this block, one by one. In our case, arg is one argu-
ment from the inbound args list. In Ruby, the same code would be
args.each {|arg| println(arg) }. The syntax for specifying each argument
is slightly different, but the idea is the same. Here’s the code in action:

batate$ scala code/scala/ruby_for_loop.scala freeze those knees chickadees

for loop using Ruby-style iteration

freeze

those

knees

chickadees

Later, you’ll find yourself using this method of iteration much more
often than the other imperative loops. But since we’re concentrating on
the house on the hill, we’ll delay that part of the conversation for a little
while.

Ranges and Tuples

Like Ruby, Scala supports first-class ranges. Start the console, and
enter these code snippets:

scala> val range = 0 until 10

range: Range = Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> range.start

res2: Int = 0

scala> range.end

res3: Int = 10

That all makes sense. It works like Ruby’s range. You can also specify
increments:

scala> range.step

res4: Int = 1

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/ruby_for_loop.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=145

DAY 1: THE CASTLE ON THE HILL 146

scala> (0 to 10) by 5

res6: Range = Range(0, 5, 10)

scala> (0 to 10) by 6

res7: Range = Range(0, 6)

The equivalent of Ruby’s range, 1..10, is 1 to 10, and the equivalent of
Ruby’s range, 1...10, is 1 until 10. to is inclusive:

scala> (0 until 10 by 5)

res0: Range = Range(0, 5)

You can also specify direction with this:

scala> val range = (10 until 0) by -1

range: Range = Range(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

But the direction is not inferred:

scala> val range = (10 until 0)

range: Range = Range()

scala> val range = (0 to 10)

range: Range.Inclusive = Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

1 is the default step, regardless of the endpoints that you express for
your range. You are not limited to integers:

scala> val range = 'a' to 'e'

range: RandomAccessSeq.Projection[Char] = RandomAccessSeq.Projection(a, b, c, d, e)

Scala will do some implicit type conversions for you. In fact, when you
specified a for statement, you were actually specifying a range.

Like Prolog, Scala offers tuples. A tuple is a fixed-length set of objects.
You’ll find this pattern in many other functional languages as well. The
objects in a tuple can all have different types. In purely functional lan-
guages, programmers often express objects and their attributes with
tuples. Try this example:

scala> val person = ("Elvis", "Presley")

person: (java.lang.String, java.lang.String) = (Elvis,Presley)

scala> person._1

res9: java.lang.String = Elvis

scala> person._2

res10: java.lang.String = Presley

scala> person._3

<console>:6: error: value _3 is not a member of (java.lang.String, java.lang.String)

person._3

^

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=146

DAY 1: THE CASTLE ON THE HILL 147

Scala uses tuples rather than lists to do multivalue assignments:

scala> val (x, y) = (1, 2)

x: Int = 1

y: Int = 2

Since tuples have a fixed length, Scala can do static type checking
based on each of the tuple values:

scala> val (a, b) = (1, 2, 3)

<console>:15: error: constructor cannot be instantiated to expected type;

found : (T1, T2)

required: (Int, Int, Int)

val (a, b) = (1, 2, 3)

^

<console>:15: error: recursive value x$1 needs type

val (a, b) = (1, 2, 3)

^

With these foundations out of the way, let’s put it all together. We’ll
create some object-oriented class definitions.

Classes in Scala

The simplest classes, those with attributes but no methods or construc-
tors, are simple, one-line definitions in Scala:

class Person(firstName: String, lastName: String)

You don’t have to specify any body to specify a simple value class. The
Person class will be public and have firstName and lastName attributes.
And you can use that class in the console:

scala> class Person(firstName: String, lastName: String)

defined class Person

scala> val gump = new Person("Forrest", "Gump")

gump: Person = Person@7c6d75b6

But you’re looking for a little more. Object-oriented classes mix data
and behavior. Let’s build a full object-oriented class in Scala. We’ll call
this class Compass. The compass orientation will start with north. We’ll
tell the compass to turn 90 degrees left or right and update the direction
accordingly. Here’s what the Scala code looks like, in its entirety:

Download scala/compass.scala

class Compass {

val directions = List("north", "east", "south", "west")

var bearing = 0

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/compass.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=147

DAY 1: THE CASTLE ON THE HILL 148

print("Initial bearing: ")

println(direction)

def direction() = directions(bearing)

def inform(turnDirection: String) {

println("Turning " + turnDirection + ". Now bearing " + direction)

}

def turnRight() {

bearing = (bearing + 1) % directions.size

inform("right")

}

def turnLeft() {

bearing = (bearing + (directions.size - 1)) % directions.size

inform("left")

}

}

val myCompass = new Compass

myCompass.turnRight

myCompass.turnRight

myCompass.turnLeft

myCompass.turnLeft

myCompass.turnLeft

The syntax is relatively straightforward, with a couple of notable pecu-
liarities. The constructor is responsible for defining instance variables
(at least, those you don’t pass into the constructor) and methods. Un-
like Ruby, all method definitions have parameter types and names. And
the initial block of code isn’t in any method definition at all. Let’s take
it apart:

class Compass {

val directions = List("north", "east", "south", "west")

var bearing = 0

print("Initial bearing: ")

println(direction)

The whole block of code following the class definition is actually the
constructor. Our constructor has a List of directions and a bearing,
which is simply an index for the directions. Later, turning will manip-
ulate the bearing. Next, there are a couple of convenience methods to
show the user of the class the current direction, in English:

def direction() = directions(bearing)

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=148

DAY 1: THE CASTLE ON THE HILL 149

def inform(turnDirection: String) {

println("Turning " + turnDirection + ". Now bearing " + direction)

}

The constructor continues with method definitions. The direction meth-
od just returns the element of directions at the index of bearing. Scala
conveniently allows an alternate syntax for one-line methods, omitting
the braces around the method body.

The inform method prints a friendly message whenever the user turns. It
takes a simple parameter, the direction of the turn. This method doesn’t
return a value. Let’s look at the methods to handle turns.

def turnRight() {

bearing = (bearing + 1) % directions.size

inform("right")

}

def turnLeft() {

bearing = (bearing + (directions.size - 1)) % directions.size

inform("left")

}

The turns method changes the bearing based on the direction of the
turn. The % operator is modular division. (This operator does a division
operation, discarding the quotient and returning only the remainder.)
The result is that right turns add one to the bearing and left turns
subtract one, wrapping the result accordingly.

Auxiliary Constructors

You’ve seen how the basic constructor works. It’s a code block that
initializes classes and methods. You can have alternate constructors as
well. Consider this Person class, with two constructors:

Download scala/constructor.scala

class Person(first_name: String) {

println("Outer constructor")

def this(first_name: String, last_name: String) {

this(first_name)

println("Inner constructor")

}

def talk() = println("Hi")

}

val bob = new Person("Bob")

val bobTate = new Person("Bob", "Tate")

The class has a constructor with one parameter, firstName, and a method
called talk. Notice the this method. That’s the second constructor. It takes

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/constructor.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=149

DAY 1: THE CASTLE ON THE HILL 150

two parameters, firstName and lastName. Initially, the method invokes this

with the primary constructor, with only the firstName parameter.

The code after the class definition instantiates a person in two ways,
first with the primary constructor, then next with the auxiliary
constructor:

batate$ scala code/scala/constructor.scala

Outer constructor

Outer constructor

Inner constructor

That’s all there is to it. Auxiliary constructors are important because
they allow for a broad array of usage patterns. Let’s look at how to
create class methods.

Extending Classes

So far, the classes have been pretty vanilla. We created a couple of basic
classes with nothing more than attributes and methods. In this section,
we’ll look at some of the ways that classes can interact.

Companion Objects and Class Methods

In Java and Ruby, you create both class methods and instance methods
within the same body. In Java, class methods have the static keyword.
Ruby uses def self.class_method. Scala uses neither of these strategies.
Instead, you will declare instance methods in the class definitions. When
there’s something that can have only one instance, you’ll define it with
the object keyword instead of the class keyword. Here’s an example:

Download scala/ring.scala

object TrueRing {

def rule = println("To rule them all")

}

TrueRing.rule

The TrueRing definition works exactly like any class definition, but it cre-
ates a singleton object. In Scala, you can have both an object defini-
tion and a class definition with the same name. Using this scenario,
you can create class methods within the singleton object declaration
and instance methods within the class declaration. In our example, the
method rule is a class method. This strategy is called companion objects.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/ring.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=150

DAY 1: THE CASTLE ON THE HILL 151

Inheritance

Inheritance in Scala is pretty straightforward, but the syntax must be
exact. Here’s an example of extending a Person class with Employee.
Notice that the Employee has an additional employee number in the id

field. Here’s the code:

Download scala/employee.scala

class Person(val name: String) {

def talk(message: String) = println(name + " says " + message)

def id(): String = name

}

class Employee(override val name: String,

val number: Int) extends Person(name) {

override def talk(message: String) {

println(name + " with number " + number + " says " + message)

}

override def id():String = number.toString

}

val employee = new Employee("Yoda", 4)

employee.talk("Extend or extend not. There is no try.")

In this example, we’re extending the Person base class with Employee.
We’re adding a new instance variable called number in Employee, and
we’re also overriding the talk message to add some new behavior. Most
of the tricky syntax is around the class constructor definition. Notice
that you must specify the complete parameter list for Person, though
you can omit the types.

The override keyword, both in the constructor and for any methods
you want to extend from the base class, is mandatory. This keyword
will keep you from inadvertently introducing new methods with mis-
spellings. All in all, there are no major surprises here, but at times, I do
feel a bit like Edward trying to pet a fragile baby bunny. Moving on....

Traits

Every object-oriented language must solve the problem that one object
can have several different roles. An object can be a persistent, serial-
izable shrubbery. You don’t want your shrubbery to have to know how
to push binary data into MySQL. C++ uses multiple inheritance, Java
uses interfaces, Ruby uses mixins, and Scala uses traits. A Scala trait
is like a Ruby mixin, implemented with modules. Or, if you prefer, a
trait is like a Java interface plus an implementation. Look at a trait as

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/employee.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=151

DAY 1: THE CASTLE ON THE HILL 152

a partial-class implementation. Ideally, it should implement one critical
concern. Here’s an example that adds the trait Nice to Person:

Download scala/nice.scala

class Person(val name:String)

trait Nice {

def greet() = println("Howdily doodily.")

}

class Character(override val name:String) extends Person(name) with Nice

val flanders = new Character("Ned")

flanders.greet

The first element you see is Person. It is a simple class with a single
attribute called name. The second element is the trait called Nice. That
is the mixin. It has a single method called greet. The final element, a
class called Character, mixes in the Nicetrait. Clients can now use the
greet method on any instance of Character. The output is what you
would expect:

batate$ scala code/scala/nice.scala

Howdily doodily.

There’s nothing too complicated here. We can take our trait called Nice

with a method called greet and mix it into any Scala class to introduce
the greet behavior.

What We Learned in Day 1

We covered a tremendous amount of territory in day 1 because we have
to fully develop two different programming paradigms in one language.
Day 1 showed that Scala embraces object-oriented concepts, running
in the JVM side-by-side with existing Java libraries. Scala’s syntax is
similar to that of Java and is also strongly and statically typed. But
Martin Odersky wrote Scala to bridge two paradigms: object-oriented
programming and functional programming. These functional program-
ming concepts that we’ll introduce in day 2 will make it easier to design
concurrent applications.

Scala’s static typing is also inferred. Users do not always need to declare
types for all variables in all situations because Scala can often infer
those types from syntactical clues. The compiler can also coerce types,
such as integers to strings, allowing implicit type conversions when
they make sense.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/nice.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=152

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 153

Scala’s expressions work much like they do in other languages, but they
are a little more strict. Most conditionals must take a boolean type, and
0 or Nil will not work at all; they can substitute for neither true nor
false. But there’s nothing dramatically different about Scala’s looping or
control structures. Scala does support some more advanced types, like
tuples (fixed-length lists with heterogeneous types) and ranges (a fixed,
all-inclusive ordered sequence of numbers).

Scala classes work much like they do in Java, but they don’t support
class methods. Instead, Scala uses a concept called companion objects

to mix class and instance methods on the same class. Where Ruby
uses mixins and Java uses interfaces, Scala uses a structure like a
mixin called a Trait.

In day 2, we’ll take a full pass through Scala’s functional features.
We’ll cover code blocks, collections, immutable variables, and some
advanced built-in methods like foldLeft.

Day 1 Self-Study

The first day of Scala covered a lot of ground, but it should be mostly
familiar territory. These object-oriented concepts should be familiar to
you. These exercises are a little advanced compared to the earlier exer-
cises in the book, but you can handle it.

Find:

• The Scala API

• A comparison of Java and Scala

• A discussion of val versus var

Do:

• Write a game that will take a tic-tac-toe board with X, O, and blank
characters and detect the winner or whether there is a tie or no
winner yet. Use classes where appropriate.

• Bonus problem: Let two players play tic-tac-toe.

5.3 Day 2: Clipping Bushes and Other New Tricks

In Edward Scissorhands, a magical moment happens when Edward
realizes that he’s come far from the house on the hill and his unique
abilities may give him a special place in the existing society.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=153

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 154

Anyone with an eye for programming language history has seen this
fable played out before. When the object-oriented paradigm was new,
the masses could not accept Smalltalk because the paradigm was too
new. We needed a language that would let them continue to do pro-
cedural programming and experiment with object-oriented ideas. With
C++, the new object-oriented tricks could live safely beside the existing
C procedural features. The result was that people could start using the
new tricks in an old context.

Now, it’s time to put Scala through its paces as a functional language.
Some of this will seem awkward at first, but the ideas are powerful
and important. They will form the foundation for the concurrency con-
structs you’ll see later in day 3. Let’s start from the beginning, with a
simple function:

scala> def double(x:Int):Int = x * 2

double: (Int)Int

scala> double(4)

res0: Int = 8

Defining a function looks a whole lot like it does with Ruby. The def

keyword defines both a function and a method. The parameters and
their types come next. After that, you can specify an optional return
type. Scala can often infer the return type.

To invoke the function, just use the name and the argument list. Notice
that unlike Ruby, the parentheses are not optional in this context.

This is a one-line method definition. You can also specify a method
definition in block form:

scala> def double(x:Int):Int = {

| x * 2

| }

double: (Int)Int

scala> double(6)

res3: Int = 12

That = after the Int return type is mandatory. Forgetting it will cause
you trouble. These are the major forms of function declarations. You’ll
see minor variations, such as omitting parameters, but these are the
forms you’ll see most often.

Let’s move on to the variables that you’ll use within a function. You’ll
want to pay careful attention to the life cycle of the variable if you want
to learn the pure functional programming model.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=154

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 155

var versus val

Scala is based on the Java virtual machine and has a tight relation-
ship with Java. In some ways, these design goals limit the language.
In other ways, Scala can take advantage of the last fifteen or twenty
years of programming language development. You’ll see an increased
emphasis on making Scala friendly for concurrent programming. But
all the concurrency features in the world won’t help you if you don’t
follow basic design principles. Mutable state is bad. When you declare
variables, you should make them immutable whenever you can to avoid
conflicting state. In Java, that means using the final keyword. In Scala,
immutable means using val instead of var:

scala> var mutable = "I am mutable"

mutable: java.lang.String = I am mutable

scala> mutable = "Touch me, change me..."

mutable: java.lang.String = Touch me, change me...

scala> val immutable = "I am not mutable"

immutable: java.lang.String = I am not mutable

scala> immutable = "Can't touch this"

<console>:5: error: reassignment to val

immutable = "Can't touch this"

^

So, var values are mutable; val values are not. In the console, as a
convenience, you can redefine a variable several times even if you use
val. Once you step outside of the console, redefining a val will generate
an error.

In some ways, Scala had to introduce the var-style variables to support
the traditional imperative programming style, but while you’re learning
Scala, it’s best to avoid var when you can for better concurrency. This
basic design philosophy is the key element that differentiates functional
programming from object-oriented programming: mutable state limits

concurrency.

Let’s move on to some of my favorite areas within functional languages,
dealing with collections.

Collections

Functional languages have a long history of spectacularly useful fea-
tures for collections. One of the earliest functional languages, Lisp, was
built around the idea of dealing with lists. The very name stands for

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=155

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 156

LISt Processing. Functional languages make it easy to build complex
structures containing data and code. Scala’s primary collections are
lists, sets, and maps.

Lists

As with most functional languages, the bread-and-butter data struc-
ture is the list. Scala’s lists, of type List, are ordered collections of like
things with random access. Enter these lists into the console:

scala> List(1, 2, 3)

res4: List[Int] = List(1, 2, 3)

Notice the first return value: List[Int] = List(1, 2, 3). This value not only
shows the type of the overall list but also shows the type of the data
structures within the list. A list of Strings looks like this:

scala> List("one", "two", "three")

res5: List[java.lang.String] = List(one, two, three)

If you’re seeing a little Java influence here, you’re right. Java has a
feature called Generics that allows you to type the items within a data
structure like a list or array. Let’s see what happens when you have a
list combining Strings and Ints:

scala> List("one", "two", 3)

res6: List[Any] = List(one, two, 3)

You get the data type Any, which is the catchall data type for Scala.
Here’s how you’d access an item of a list:

scala> List("one", "two", 3)(2)

res7: Any = 3

scala> List("one", "two", 3)(4)

java.util.NoSuchElementException: head of empty list

at scala.Nil$.head(List.scala:1365)

at scala.Nil$.head(List.scala:1362)

at scala.List.apply(List.scala:800)

at .<init>(<console>:5)

at .<clinit>(<console>)

at RequestResult$.<init>(<console>:3)

at RequestResult$.<clinit>(<console>)

at RequestResult$result(<console>)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Met...

You use the () operator. List access is a function, so you use () instead
of []. Scala’s index for list starts with 0, as it does with Java and Ruby.
Unlike Ruby, accessing an item out of range will throw an exception.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=156

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 157

You can try to index with a negative number. Earlier versions return
the first element:

scala> List("one", "two", 3)(-1)

res9: Any = one

scala> List("one", "two", 3)(-2)

res10: Any = one

scala> List("one", "two", 3)(-3)

res11: Any = one

Since that behavior is a little inconsistent with the NoSuchElement excep-
tion for an index that’s too large, version 2.8.0 corrects that behavior,
returning java.lang.IndexOutOfBoundsException.

One final note. Nil in Scala is an empty list:

scala> Nil

res33: Nil.type = List()

We’ll use this list as a basic building block when we cover code blocks,
but for now, bear with me. I’m going to introduce a couple of other types
of collections first.

Sets

A set is like a list, but sets do not have any explicit order. You specify a
set with the Set keyword:

scala> val animals = Set("lions", "tigers", "bears")

animals: scala.collection.immutable.Set[java.lang.String] =

Set(lions, tigers, bears)

Adding or subtracting from that set is easy:

scala> animals + "armadillos"

res25: scala.collection.immutable.Set[java.lang.String] =

Set(lions, tigers, bears, armadillos)

scala> animals - "tigers"

res26: scala.collection.immutable.Set[java.lang.String] = Set(lions, bears)

scala> animals + Set("armadillos", "raccoons")

<console>:6: error: type mismatch;

found : scala.collection.immutable.Set[java.lang.String]

required: java.lang.String

animals + Set("armadillos", "raccoons")

^

Keep in mind that set operations are not destructive. Each set operation
builds a new set rather than modifying the old ones. By default, sets

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=157

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 158

are immutable. As you can see, adding or removing a single element is
a piece of cake, but you can’t use the + or - to combine sets, as you
would in Ruby. In Scala, you want to use ++ and -- for set union and
set difference:

scala> animals ++ Set("armadillos", "raccoons")

res28: scala.collection.immutable.Set[java.lang.String] =

Set(bears, tigers, armadillos, raccoons, lions)

scala> animals -- Set("lions", "bears")

res29: scala.collection.immutable.Set[java.lang.String] = Set(tigers)

You can also perform set intersection (elements in two sets that are the
same) with **2:

scala> animals ** Set("armadillos", "raccoons", "lions", "tigers")

res1: scala.collection.immutable.Set[java.lang.String] = Set(lions, tigers)

Unlike a List, a Set is independent of order. This rule will mean that
equality for sets and lists is different:

scala> Set(1, 2, 3) == Set(3, 2, 1)

res36: Boolean = true

scala> List(1, 2, 3) == List(3, 2, 1)

res37: Boolean = false

That’s enough set manipulation for now. Let’s move on to maps.

Maps

A Map is a key-value pair, like a Ruby Hash. The syntax should be famil-
iar to you:

scala> val ordinals = Map(0 -> "zero", 1 -> "one", 2 -> "two")

ordinals: scala.collection.immutable.Map[Int,java.lang.String] =

Map(0 -> zero, 1 -> one, 2 -> two)

scala> ordinals(2)

res41: java.lang.String = two

Like a Scala List or Set, you specify a Map with the Map keyword. You
separate the elements of the map with the -> operator. You just used
some syntactic sugar that makes it easy to create a Scala map. Let’s
use another form of the hash map and specify the types of the key and
value:

scala> import scala.collection.mutable.HashMap

import scala.collection.mutable.HashMap

2. Use & beginning in Scala 2.8.0, because ** is deprecated.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=158

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 159

scala> val map = new HashMap[Int, String]

map: scala.collection.mutable.HashMap[Int,String] = Map()

scala> map += 4 -> "four"

scala> map += 8 -> "eight"

scala> map

res2: scala.collection.mutable.HashMap[Int,String] =

Map(4 -> four, 8 -> eight)

First, we import the Scala libraries for a mutable HashMap. That means
the values within the hash map can change. Next, we declare an im-
mutable variable called map. That means that the reference to the map
cannot change. Notice that we’re also specifying the types of the key-
value pairs. Finally, we add some key-value pairs and return the result.

Here’s what would happen if you specified the wrong types:

scala> map += "zero" -> 0

<console>:7: error: overloaded method value += with alternatives (Int)map.MapTo

<and> ((Int, String))Unit cannot be applied to ((java.lang.String, Int))

map += "zero" -> 0

^

As expected, you get a typing error. The type constraints are enforced
where possible at compile time but also at run time. So now that you’ve
seen the basics for collections, let’s dive into some of the finer details.

Any and Nothing

Before we move on to anonymous functions, let’s talk a little bit more
about the class hierarchy in Scala. When you’re using Scala with Java,
you will often be more concerned about the Java class hierarchy. Still,
you should know a little bit about the Scala types. Any is the root class
in the Scala class hierarchy. It’s often confusing, but know that any
Scala type will inherit from Any.

Similarly, Nothing is a subtype of every type. That way, a function, say
for a collection, can return Nothing and conform to the return value for
the given function. It is all laid out in Figure 5.1, on the next page.
Everything inherits from Any, and Nothing inherits from everything.

There are a few different nuances when you’re dealing with nil concepts.
Null is a Trait, and null is an instance of it that works like Java’s null,
meaning an empty value. An empty collection is Nil. By contrast, Nothing

is a trait that is a subtype of everything. Nothing has no instance, so

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=159

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 160

Any

Nothing

AnyVal

Float Int etc...

AnyRef

ScalaObject

List

etc...

Null

Map

Figure 5.1: Any and Nothing

you can’t dereference it like Null. For example, a method that throws an
Exception has the return type Nothing, meaning no value at all.

Keep those rules in the back of your mind, and you’ll be fine. Now,
you’re ready to do a little bit more with collections using higher-order
functions.

Collections and Functions

As we start on languages that have a stronger functional foundation,
I want to formalize some of the concepts we’ve been working with all
along. The first such concept is higher-order functions.

As with Ruby and Io, Scala collections get a whole lot more interest-
ing with higher-order functions. Just as Ruby used each and Io used
foreach, Scala will let you pass functions into foreach. The underlying
concept that you’ve been using all along is the higher-order function.
In layman’s terms, a higher-order function is one that produces or con-

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=160

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 161

sumes functions. More specifically, a higher-order function is one that
takes other functions as input parameters or returns functions as out-
put. Composing functions that use other functions in this way is a
critical concept for the functional family of languages and one that will
shape the way you code in other languages as well.

Scala has powerful support for higher-order functions. We don’t have
time to look at some of the advanced topics such as partially applied
functions or currying, but we will learn to pass simple functions, often
called code blocks, as parameters into collections. You can take a func-
tion and assign it to any variable or parameter. You can pass them
into functions and return them from functions. We’re going to focus on
anonymous functions as input parameters to a few of the more inter-
esting methods on collections.

foreach

The first function we’re going to examine is foreach, the iteration work-
horse in Scala. As with Io, the foreach method on a collection takes a
code block as a parameter. In Scala, you’ll express that code block in
the form variableName => yourCode like this:

scala> val list = List("frodo", "samwise", "pippin")

list: List[java.lang.String] = List(frodo, samwise, pippin)

scala> list.foreach(hobbit => println(hobbit))

frodo

samwise

pippin

hobbit => println(hobbit) is an anonymous function, meaning a function
without a name. The declaration has the arguments to the left of the
=>, and the code is to the right. foreach calls the anonymous function,
passing in each element of the list as an input parameter. As you might
have guessed, you can use the same technique for sets and maps too,
though the order won’t be guaranteed:

val hobbits = Set("frodo", "samwise", "pippin")

hobbits: scala.collection.immutable.Set[java.lang.String] =

Set(frodo, samwise, pippin)

scala> hobbits.foreach(hobbit => println(hobbit))

frodo

samwise

pippin

scala> val hobbits = Map("frodo" -> "hobbit",

"samwise" -> "hobbit", "pippin" -> "hobbit")

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=161

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 162

hobbits: scala.collection.immutable.Map[java.lang.String,java.lang.String] =

Map(frodo -> hobbit, samwise -> hobbit, pippin -> hobbit)

scala> hobbits.foreach(hobbit => println(hobbit))

(frodo,hobbit)

(samwise,hobbit)

(pippin,hobbit)

Of course, maps will return tuples instead of elements. As you recall,
you can access either end of the tuple, like this:

scala> hobbits.foreach(hobbit => println(hobbit._1))

frodo

samwise

pippin

scala> hobbits.foreach(hobbit => println(hobbit._2))

hobbit

hobbit

hobbit

With these anonymous functions, you can do far more than just iterate.
I’m going to walk you through some basics and then a few of the other
interesting ways Scala uses functions in conjunction with collections.

More List Methods

I’m going to take a brief diversion to introduce a few more methods on
List. These basic methods provide the features you’ll need to do manual
iteration or recursion over lists. First, here are the methods to test for
the empty state or check the size:

scala> list

res23: List[java.lang.String] = List(frodo, samwise, pippin)

scala> list.isEmpty

res24: Boolean = false

scala> Nil.isEmpty

res25: Boolean = true

scala> list.length

res27: Int = 3

scala> list.size

res28: Int = 3

Notice that you can check the size of a list with both length and size. Also,
remember that the implementation of Nil is an empty list. As with Prolog,
it’s useful to be able to grab the head and tail of a list for recursion.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=162

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 163

scala> list.head

res34: java.lang.String = frodo

scala> list.tail

res35: List[java.lang.String] = List(samwise, pippin)

scala> list.last

res36: java.lang.String = pippin

scala> list.init

res37: List[java.lang.String] = List(frodo, samwise)

There’s a surprise. You can use head and tail to recurse head first, or
last and init to recurse tail first. We’ll do a little more with recursion later.
Let’s wrap up the basics with a few interesting convenience methods:

scala> list.reverse

res29: List[java.lang.String] = List(pippin, samwise, frodo)

scala> list.drop(1)

res30: List[java.lang.String] = List(samwise, pippin)

scala> list

res31: List[java.lang.String] = List(frodo, samwise, pippin)

scala> list.drop(2)

res32: List[java.lang.String] = List(pippin)

These do just about what you’d expect. reverse returns the list with
inverted ordering, and drop(n) returns the list with the first n elements
removed, without modifying the original list.

count, map, filter, and Others

As with Ruby, Scala has many other functions that manipulate lists in
various ways. You can filter the list to match a given condition, sort
a list using whatever criteria you want, create other lists using each
element as an input, and create aggregate values:

scala> val words = List("peg", "al", "bud", "kelly")

words: List[java.lang.String] = List(peg, al, bud, kelly)

scala> words.count(word => word.size > 2)

res43: Int = 3

scala> words.filter(word => word.size > 2)

res44: List[java.lang.String] = List(peg, bud, kelly)

scala> words.map(word => word.size)

res45: List[Int] = List(3, 2, 3, 5)

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=163

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 164

scala> words.forall(word => word.size > 1)

res46: Boolean = true

scala> words.exists(word => word.size > 4)

res47: Boolean = true

scala> words.exists(word => word.size > 5)

res48: Boolean = false

We start with a Scala list. Then, we count all the words with a size
greater than two. count will call the code block word => word.size > 2,
evaluating the expression word.size > 2 for each element in the list. The
count method counts all the true expressions.

In the same way, words.filter(word => word.size > 2) returns a list of all
words that have a size greater than two, much like Ruby’s select. Using
the same pattern, map builds a list of the sizes of all the words in the
list, forall returns true if the code block returns true for all items in the
set, and exists returns true if the code block returns true for any item in
the set.

Sometimes, you can generalize a feature using code blocks to make
something more powerful. For example, you may want to sort in the
traditional way:

scala> words.sort((s, t) => s.charAt(0).toLowerCase < t.charAt(0).toLowerCase)

res49: List[java.lang.String] = List(al, bud, kelly, peg)

This code uses a code block that takes two parameters, s and t. Using
sort,3 you can compare the two arguments any way you want. In the
previous code, we convert the characters to lowercase4 and compare
them. That will yield a case-insensitive search. We can also use the
same method to sort the list by the size of the words:

scala> words.sort((s, t) => s.size < t.size)

res50: List[java.lang.String] = List(al, bud, peg, kelly)

By using a code block, we can sort5 based on any policy that we want.
Let’s take a look at a more complex example, foldLeft.

foldLeft

The foldLeft method in Scala is much like the inject method in Ruby.
You’ll supply an initial value and a code block. foldLeft will pass to the

3. In version 2.8.0, sort is deprecated. Use sortWith instead.
4. In version 2.8.0, toLowerCase is deprecated. Use toLower instead.
5. In version 2.8.0, sort is deprecated. Use sortWith instead.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=164

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 165

code block each element of the array and another value. The second
value is either the initial value (for the first invocation) or the result
from the code block (for subsequent invocations). There are two ver-
sions of the method. The first version, /:, is an operator with initialValue

/: codeBlock. Here’s the method in action:

scala> val list = List(1, 2, 3)

list: List[Int] = List(1, 2, 3)

scala> val sum = (0 /: list) {(sum, i) => sum + i}

sum: Int = 6

We walked through this sequence for Ruby, but it may help you to see
it again. Here’s how it works:

• We invoke the operator with a value and a code block. The code
block takes two arguments, sum and i.

• Initially, /: takes the initial value, 0, and the first element of list, 1,
and passes them into the code block. sum is 0, i is 1, and the result
of 0 + 1 is 1.

• Next, /: takes 1, the result returned from the code block, and folds
it back into the calculation as sum. So, sum is 1; i is the next ele-
ment of list, or 2; and the result of the code block is 3.

• Finally, /: takes 3, the result returned from the code block, and
folds it back into the calculation as sum. So, sum is 3; i is the next
element of list, or 3; and sum + i is 6.

The syntax of the other version of foldLeft will seem strange to you.
It uses a concept called currying. Functional languages use currying
to transform a function with multiple parameters to several functions
with their own parameter lists. We’ll see more currying in Chapter 8,
Haskell, on page 268. Just understand that what’s going on under
the covers is a composition of functions rather than a single function.
Though the mechanics and syntax are different, the result is exactly
the same:

scala> val list = List(1, 2, 3)

list: List[Int] = List(1, 2, 3)

scala> list.foldLeft(0)((sum, value) => sum + value)

res54: Int = 6

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=165

DAY 2: CLIPPING BUSHES AND OTHER NEW TRICKS 166

Notice that the function call list.foldLeft(0)((sum, value) => sum + value) has
two parameter lists. That’s the currying concept that I mentioned ear-
lier. You’ll see versions of this method with all the rest of the languages
in this book.

What We Learned in Day 2

Day 1 was encumbered with working through the object-oriented fea-
tures that you already know. Day 2 introduced Scala’s primary reason
for being: functional programming.

We started with a basic function. Scala has flexible syntax with function
definitions. The compiler can often infer the return type, the function
body has one-line and code-block forms, and the parameter list can
vary.

Next, we looked at various collections. Scala supports three: lists, maps,
and sets. A set is a collection of objects. A list is an ordered collection.
Finally, maps are key-value pairs. As with Ruby, you saw the powerful
combinations of code blocks and collections of various kinds. We looked
at some collection APIs that are indicative of functional programming
paradigms.

For lists, we could also use Lisp-style head and tail methods, just like
Prolog, to return the first element of the list or the rest. We also used
count, empty, and first methods for obvious purposes. But the most pow-
erful methods took function blocks.

We iterated with foreach and used filter to selectively return various ele-
ments of the lists. We also learned to use foldLeft to accumulate results
as we iterated through a collection to do things such as keeping a run-
ning total.

Much of functional programming is learning to manipulate collections
with higher-level constructs instead of Java-style iteration. We will put
these skills through their paces in day 3, when we will learn to use
concurrency, do some XML, and work a simple practical example. Stay
tuned.

Day 2 Self-Study

Now that we’ve gotten deeper into Scala, you’re starting to see some
of its functional aspects. Whenever you deal with functions, the collec-
tions are a great place to start. These exercises will let you use some of
the collections, as well as some functions.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=166

DAY 3: CUTTING THROUGH THE FLUFF 167

Find:

• A discussion on how to use Scala files

• What makes a closure different from a code block

Do:

• Use foldLeft to compute the total size of a list of strings.

• Write a Censor trait with a method that will replace the curse words
Shoot and Darn with Pucky and Beans alternatives. Use a map to
store the curse words and their alternatives.

• Load the curse words and alternatives from a file.

5.4 Day 3: Cutting Through the Fluff

Just before the climax of Edward Scissorhands, Edward learns to wield
his scissors as an artist in everyday life. He molds shrubs into dino-
saurs, crafts spectacular hair with the effortless skill of Vidal Sassoon,
and even carves the family roast. With Scala, we’ve encountered some
awkward moments, but when this language feels right, it’s borderline
spectacular. Hard things, like XML and concurrency, become almost
routine. Let’s take a look.

XML

Modern programming problems meet Extensible Markup Language
(XML) with increasing regularity. Scala takes the dramatic step of ele-
vating XML to a first-class programming construct of the language. You
can express XML just as easily as you do any string:

scala> val movies =

| <movies>

| <movie genre="action">Pirates of the Caribbean</movie>

| <movie genre="fairytale">Edward Scissorhands</movie>

| </movies>

movies: scala.xml.Elem =

<movies>

<movie genre="action">Pirates of the Caribbean</movie>

<movie genre="fairytale">Edward Scissorhands</movie>

</movies>

After you’ve defined the movies variable with XML, you can access dif-
ferent elements directly.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=167

DAY 3: CUTTING THROUGH THE FLUFF 168

For example, to see all the inner text, you would simply type this:

scala> movies.text

res1: String =

Pirates of the Caribbean

Edward Scissorhands

You see all the inner text from the previous example. But we’re not lim-
ited to working with the whole block at once. We can be more selective.
Scala builds in a query language that’s much like XPath, an XML search
language. But since the // keyword in Scala is a comment, Scala will
use \ and \\. To search the top-level nodes, you’d use one backslash,
like this:

scala> val movieNodes = movies \ "movie"

movieNodes: scala.xml.NodeSeq =

<movie genre="action">Pirates of the Caribbean</movie>

<movie genre="fairytale">Edward Scissorhands</movie>

In that search, we looked for XML movie elements. You can find indi-
vidual nodes by index:

scala> movieNodes(0)

res3: scala.xml.Node = <movie genre="action">Pirates of the Caribbean</movie>

We just found element number zero, or Pirates of the Caribbean. You can
also look for attributes of individual XML nodes by using the @ sym-
bol. For example, to find the genre attribute of the first element in the
document, we’d do this search:

scala> movieNodes(0) \ "@genre"

res4: scala.xml.NodeSeq = action

This example just scratches the surface with what you can do, but
you get the idea. If we mix in Prolog-style pattern matching, things get
a little more exciting. Next, we’ll walk through an example of pattern
matching with simple strings.

Pattern Matching

Pattern matching lets you conditionally execute code based on some
piece of data. Scala will use pattern matching often, such as when you
parse XML or pass messages between threads.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=168

DAY 3: CUTTING THROUGH THE FLUFF 169

Here’s the simplest form of pattern matching:

Download scala/chores.scala

def doChore(chore: String): String = chore match {

case "clean dishes" => "scrub, dry"

case "cook dinner" => "chop, sizzle"

case _ => "whine, complain"

}

println(doChore("clean dishes"))

println(doChore("mow lawn"))

We define two chores, clean dishes and cook dinner. Next to each chore,
we have a code block. In this case, the code blocks simply return
strings. The last chore we define is _, a wildcard. Scala executes the
code block associated with the first matching chore, returning “whine,
complain” if neither chore matches, like this:

>> scala chores.scala

scrub, dry

whine, complain

Guards

Pattern matching has some embellishments too. In Prolog, the pattern
matching often had associated conditions. To implement a factorial in
Scala, we specify a condition in a guard for each match statement:

Download scala/factorial.scala

def factorial(n: Int): Int = n match {

case 0 => 1

case x if x > 0 => factorial(n - 1) * n

}

println(factorial(3))

println(factorial(0))

The first pattern match is a 0, but the second guard has the form case x

if x > 0. It matches any x for x > 0. You can specify a wide variety of condi-
tions in this way. Pattern matching can also match regular expressions
and types. You’ll see an example later that defines empty classes and
uses them as messages in our concurrency examples later.

Regular Expressions

Scala has first-class regular expressions. The .r method on a string can
translate any string to a regular expression. On the next page is an
example of a regular expression that can match uppercase or lowercase
F at the beginning of a string.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/chores.scala
http://media.pragprog.com/titles/btlang/code/scala/factorial.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=169

DAY 3: CUTTING THROUGH THE FLUFF 170

scala> val reg = """^(F|f)\w*""".r

reg: scala.util.matching.Regex = ^(F|f)\w*

scala> println(reg.findFirstIn("Fantastic"))

Some(Fantastic)

scala> println(reg.findFirstIn("not Fantastic"))

None

We start with a simple string. We use the """ delimited form of a string,
allowing multiline string and eliminating evaluation. The .r method con-
verts the string to a regular expression. We then use the method find-

FirstIn to find the first occurrence.

scala> val reg = "the".r

reg: scala.util.matching.Regex = the

scala> reg.findAllIn("the way the scissors trim the hair and the shrubs")

res9: scala.util.matching.Regex.MatchIterator = non-empty iterator

In this example, we build a regular expression and use the findAllIn

method to find all occurrences of the word the in the string "the way the

scissors trim the hair and the shrubs". If we wanted, we could iterate through
the entire list of matches with foreach. That’s really all there is to it. You
can match with regular expressions just as you would use a string.

XML with Matching

An interesting combination in Scala is the XML syntax in combination
with pattern matching. You can go through an XML file and condition-
ally execute code based on the various XML elements that come back.
For example, consider the following XML movies file:

Download scala/movies.scala

val movies = <movies>

<movie>The Incredibles</movie>

<movie>WALL E</movie>

<short>Jack Jack Attack</short>

<short>Geri's Game</short>

</movies>

(movies \ "_").foreach { movie =>

movie match {

case <movie>{movieName}</movie> => println(movieName)

case <short>{shortName}</short> => println(shortName + " (short)")

}

}

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/movies.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=170

DAY 3: CUTTING THROUGH THE FLUFF 171

It queries for all nodes in the tree. Then, it uses pattern matching to
match shorts and movies. I like the way Scala makes the most com-
mon tasks trivial by working in XML syntax, pattern matching, and
the XQuery-like language. The result is almost effortless.

So, that’s a basic tour of pattern matching. You’ll see it in practice in
the concurrency section next.

Concurrency

One of the most important aspects of Scala is the way it handles con-
currency. The primary constructs are actors and message passing. Ac-
tors have pools of threads and queues. When you send a message to an
actor (using the ! operator), you place an object on its queue. The actor
reads the message and takes action. Often, the actor uses a pattern
matcher to detect the message and perform the appropriate message.
Consider the kids program:

Download scala/kids.scala

import scala.actors._

import scala.actors.Actor._

case object Poke

case object Feed

class Kid() extends Actor {

def act() {

loop {

react {

case Poke => {

println("Ow...")

println("Quit it...")

}

case Feed => {

println("Gurgle...")

println("Burp...")

}

}

}

}

}

val bart = new Kid().start

val lisa = new Kid().start

println("Ready to poke and feed...")

bart ! Poke

lisa ! Poke

bart ! Feed

lisa ! Feed

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/kids.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=171

DAY 3: CUTTING THROUGH THE FLUFF 172

In this program, we create two empty, trivial singletons called Poke and
Feed. They don’t do anything. They simply serve as messages. The meat
of the program is the Kid class. Kid is an actor, meaning it will run from
a pool of threads and get messages in a queue. It will process each
message and move on to the next. We start a simple loop. Within that
is a react construct. react receives an actor’s messages. The pattern
match lets us match the appropriate message, which will always be
Poke or Feed.

The rest of the script creates a couple of kids and manipulates them by
sending them Poke or Feed messages. You can run it like this:

batate$ scala code/scala/kids.scala

Ready to poke and feed...

Ow...

Quit it...

Ow...

Quit it...

Gurgle...

Burp...

Gurgle...

Burp...

batate$ scala code/scala/kids.scala

Ready to poke and feed...

Ow...

Quit it...

Gurgle...

Burp...

Ow...

Quit it...

Gurgle...

Burp...

I run the application a couple of times to show that it is actually con-
current. Notice that the order is different. With actors, you can also
react with a timeout (reactWithin), which will time out if you don’t receive
the message within the specified time. Additionally, you can use receive

(which blocks a thread) and receiveWithin (which blocks a thread with a
timeout).

Concurrency in Action

Since there’s only a limited market for simulated Simpsons, let’s do
something a little more robust. In this application called sizer, we’re
computing the size of web pages. We hit a few pages and then compute
the size. Since there’s a lot of waiting time, we would like to get all of

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=172

DAY 3: CUTTING THROUGH THE FLUFF 173

the pages concurrently using actors. Take a look at the overall program,
and then we’ll look at some individual sections:

Download scala/sizer.scala

import scala.io._

import scala.actors._

import Actor._

object PageLoader {

def getPageSize(url : String) = Source.fromURL(url).mkString.length

}

val urls = List("http://www.amazon.com/",

"http://www.twitter.com/",

"http://www.google.com/",

"http://www.cnn.com/")

def timeMethod(method: () => Unit) = {

val start = System.nanoTime

method()

val end = System.nanoTime

println("Method took " + (end - start)/1000000000.0 + " seconds.")

}

def getPageSizeSequentially() = {

for(url <- urls) {

println("Size for " + url + ": " + PageLoader.getPageSize(url))

}

}

def getPageSizeConcurrently() = {

val caller = self

for(url <- urls) {

actor { caller ! (url, PageLoader.getPageSize(url)) }

}

for(i <- 1 to urls.size) {

receive {

case (url, size) =>

println("Size for " + url + ": " + size)

}

}

}

println("Sequential run:")

timeMethod { getPageSizeSequentially }

println("Concurrent run")

timeMethod { getPageSizeConcurrently }

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/scala/sizer.scala
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=173

DAY 3: CUTTING THROUGH THE FLUFF 174

So, let’s start at the top. We do a few basic imports to load the libraries
for actors and io so we can do concurrency and HTTP requests. Next, we
will compute the size of a page, given a URL:

object PageLoader {

def getPageSize(url : String) = Source.fromURL(url).mkString.length

}

Next, we create a val with a few URLs. After that, we build a method to
time each web request:

def timeMethod(method: () => Unit) = {

val start = System.nanoTime

method()

val end = System.nanoTime

println("Method took " + (end - start)/1000000000.0 + " seconds.")

}

Then, we do the web requests with two different methods. The first is
sequentially, where we iterate through each request in a forEach loop.

def getPageSizeSequentially() = {

for(url <- urls) {

println("Size for " + url + ": " + PageLoader.getPageSize(url))

}

}

Here’s the method to do things asynchronously:

def getPageSizeConcurrently() = {

val caller = self

for(url <- urls) {

actor { caller ! (url, PageLoader.getPageSize(url)) }

}

for(i <- 1 to urls.size) {

receive {

case (url, size) =>

println("Size for " + url + ": " + size)

}

}

}

In this actor, we know we’ll be receiving a fixed set of messages. Within a
forEach loop, we send four asynchronous requests. This happens more
or less instantly. Next, we simply receive four messages with receive.
This method is where the real work happens. Finally, we’re ready to
run the script that invokes the test:

println("Sequential run:")

timeMethod { getPageSizeSequentially }

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=174

DAY 3: CUTTING THROUGH THE FLUFF 175

println("Concurrent run")

timeMethod { getPageSizeConcurrently }

And here’s the output:

>> scala sizer.scala

Sequential run:

Size for http://www.amazon.com/: 81002

Size for http://www.twitter.com/: 43640

Size for http://www.google.com/: 8076

Size for http://www.cnn.com/: 100739

Method took 6.707612 seconds.

Concurrent run

Size for http://www.google.com/: 8076

Size for http://www.cnn.com/: 100739

Size for http://www.amazon.com/: 84600

Size for http://www.twitter.com/: 44158

Method took 3.969936 seconds.

As expected, the concurrent loop is faster. That’s an overview of an
interesting problem in Scala. Let’s review what we learned.

What We Learned in Day 3

What day 3 lacked in size, it made up in intensity. We built a couple
of different concurrent programs and worked in direct XML processing,
distributed message passing with actors, pattern matching, and regular
expressions.

Over the course of the chapter, we learned four fundamental constructs
that built on one another. First, we learned to use XML directly in Scala.
We could query for individual elements or attributes using an XQuery-
like syntax.

We then introduced Scala’s version of pattern matching. At first, it
looked like a simple case statement, but as we introduced guards,
types, and regular expressions, their power became readily apparent.

Next, we shifted to concurrency. We used the actor concept. Actors
are objects built for concurrency. They usually have a loop statement
wrapped around a react or receive method, which does the dirty work
of receiving queued messages to the object. Finally, we had an inner
pattern match. We used raw classes as messages. They are small, light,
robust, and easy to manipulate. If we needed parameters within the
message, we could just add naked attributes to our class definitions,
as we did with the URL within the sizer application.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=175

WRAPPING UP SCALA 176

Like all of the languages in this book, Scala is far more robust than
you’ve seen here. The interaction with Java classes is far deeper than
I’ve shown you here, and I’ve merely scratched the surface on complex
concepts such as currying. But you have a good foundation should you
choose to explore further.

Day 3 Self-Study

So, now you’ve seen some of the advanced features Scala has to offer.
Now, you can try to put Scala through its paces yourself. As always,
these exercises are more demanding.

Find.

• For the sizer program, what would happen if you did not create a
new actor for each link you wanted to follow? What would happen
to the performance of the application?

Do:

• Take the sizer application and add a message to count the number
of links on the page.

• Bonus problem: Make the sizer follow the links on a given page,
and load them as well. For example, a sizer for “google.com” would
compute the size for Google and all of the pages it links to.

5.5 Wrapping Up Scala

We’ve covered Scala more exhaustively than the other languages so
far because Scala strongly supports two programming paradigms. The
object-oriented features firmly position Scala as a Java alternative.
Unlike Ruby and Io, Scala has a static typing strategy. Syntactically,
Scala borrows many elements from Java, including curly braces and
constructor usage.

Scala also offers strong support for functional concepts and immutable
variables. The language has a strong focus on concurrency and XML,
fitting a wide variety of enterprise applications currently implemented
in the Java language.

Scala’s functional capabilities go beyond what I’ve covered in this chap-
ter. I haven’t covered constructs such as currying, full closures, mul-
tiple parameter lists, or exception processing, but they are all worthy
concepts that add to the power and flexibility of Scala.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=176

WRAPPING UP SCALA 177

Let’s look at some of Scala’s core strengths and weaknesses.

Core Strengths

Most of Scala’s strengths are centered around an advanced program-
ming paradigm that integrates well with the Java environment and
some core well-designed features. In particular, actors, pattern match-
ing, and the XML integration are important and well-designed. Let’s get
right to the list.

Concurrency

Scala’s treatment of concurrency represents a significant advance in
concurrent programming. The actor model and the thread pool are
welcome improvements, and the ability to design applications without
mutable state is absolutely huge.

The actor paradigm that you’ve seen in Io and now Scala is easy to
understand for developers and well studied by the academic commu-
nity. Both Java and Ruby could use some improvement in this area.

The concurrency model is only part of the story. When objects share
state, you must strive for immutable values. Io and Scala get this at
least partially right, allowing mutable state but also offering libraries
and keywords that support immutability. Immutability is the single
most important thing you can do to improve code design for concur-
rency.

Finally, the message-passing syntax you see in Scala is much like you
will see in the next chapter on Erlang. It is a significant improvement
over the standard Java threading libraries.

Evolution of Legacy Java

Scala starts with a strong, built-in user base: the Java community.
Scala applications can use Java libraries directly, and through the use
of code generation of proxy objects when necessary, the interoperability
is excellent. Inferred typing is a much-needed advance over the archaic
Java typing system. The best way to establish a new programming com-
munity is to fully embrace an existing one. Scala does a good job offer-
ing a more concise Java, and that idea has value.

Scala also offers new features to the Java community. Code blocks
are a first-class language construct, and they work well with the core
collection libraries. Scala also offers first-class mixins in the form of
traits. Pattern matching is also a significant improvement. With these

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=177

WRAPPING UP SCALA 178

and other features, Java developers can have an advanced program-
ming language without even touching the more advanced functional
paradigms.

Throw in the functional constructs, and you can have significantly
improved applications. Scala applications will usually have a fraction
of the total lines of code than an equivalent Java app would have,
and that’s extremely important. A better programming language should
allow you to express more complex ideas with fewer lines of code, with
minimal overhead. Scala delivers on this promise.

Domain-Specific Languages

Scala’s flexible syntax and operator overloading make it an ideal lan-
guage for developing Ruby-style domain-specific languages. Remem-
ber, as in Ruby, operators are simply method declarations, and you
can override them in most cases. Additionally, optional spaces, peri-
ods, and semicolons let the syntax take many different forms. Together
with robust mixins, these are the tools that a DSL developer seeks.

XML

Scala has integrated XML support. The pattern matching makes pars-
ing blocks of disparate XML structures easy to use. The integration of
the XPath syntax for diving deep into complex XML leads to simple and
readable code. This advance is welcome and important, especially to
the XML-heavy Java community.

Bridging

The emergence of each new programming paradigm needs a bridge.
Scala is well-positioned to be that bridge. The functional programming
model is important because it handles concurrency well, and evolving
processor designs are much more concurrent. Scala offers an iterative
way to take developers there.

Weaknesses

Although I like many of the Scala ideas in concept, I find the syntax
demanding and academic. Although syntax is a matter of taste, Scala
does have a higher burden than most other languages, at least to these
old eyes. I also recognize that some of the compromises that make Scala
such an effective bridge also will undercut its value. I only see three
weaknesses, but they are big ones.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=178

WRAPPING UP SCALA 179

Static Typing

Static typing is a natural fit for functional programming languages,
but Java-style static typing for object-oriented systems is a deal with
the devil. Sometimes, you must satisfy a compiler’s requirements by
putting more of a burden on your developers. With static typing, the
burden is much more than you ever expect. The impact on code, syntax,
and program design are profound. As I learned Scala, I found myself in
a fairly constant battle with the language syntax and in program design.
Traits eased this burden somewhat, but I found the trade-off between
programmer flexibility and compile-time checking wanting.

Later in this book, you’ll see what a purely functional strong, static type
system looks like with Haskell. Without the burden of two programming
paradigms, the type system becomes much more fluid and productive,
providing better support for polymorphism and requiring less rigor from
programmers for similar benefit.

Syntax

I do find Scala’s syntax to be a little academic and hard on the eyes. I
hesitate to put this in print because syntax can be so subjective, but
some elements are a little baffling. Sometimes, Scala keeps Java con-
ventions, such as constructors. You’d use new Person rather than Per-

son.new. At other times, Scala introduces a new convention, as with
argument types. In Java, you’d use setName(String name) versus Scala’s
setName(name: String). Return types shift to the end of the method dec-
laration versus the beginning, as they are with Java. These little differ-
ences keep me thinking about syntax rather than code. The problem
is that moving back and forth between Scala and Java will take more
effort than it should.

Mutability

When you build a bridge language, you must factor in compromises.
One significant compromise in Scala is the introduction of mutability.
With var, Scala opens Pandora’s box in some ways, because the mutable
state allows a wide variety of concurrency bugs. But such compromises
are unavoidable if you want to bring home the special kid who lived in
the house on the hill.

Final Thoughts

All in all, my experience with Scala was mixed. The static typing threw
me. At the same time, the Java developer in me greatly appreciates the

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=179

WRAPPING UP SCALA 180

improved concurrency models, inferred typing, and XML. Scala repre-
sents a significant jump in the state of the art.

I would use Scala to improve my productivity if I had a significant
investment in Java programs or programmers. I’d also consider Scala
for an application that has significant scalability requirements that
would require concurrency. Commercially, this Frankenstein has a
good shot because it represents a bridge and fully embraces a signifi-
cant programming community.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=180

Do you hear that, Mr. Anderson? That is the sound of

inevitability.

Agent Smith

Chapter 6

Erlang
Few languages have the mystique of Erlang, the concurrency language
that makes hard things easy and easy things hard. Its virtual machine,
called BEAM, is rivaled only by the Java virtual machine for robust
enterprise deployment. You could call it efficient, even brutally so, but
Erlang’s syntax lacks the beauty and simplicity of, say, a Ruby. Think
Agent Smith of The Matrix.1

The Matrix was a 1999 science-fiction classic that painted our current
world as a virtual world, created and maintained with computers, as
an illusion. Agent Smith was an artificial intelligence program in the
matrix that had an amazing ability to take any form and bend the rules
of reality to be in many places at once. He was unavoidable.

6.1 Introducing Erlang

The name is strange, but the acronym for Ericsson Language that
shares a name with a Danish mathematician somehow fits. Agner Kar-
up Erlang was a huge name in the math behind telephone network
analysis.

In 1986, Joe Armstrong developed the first version at Ericsson, con-
tinuing to develop and polish it through the last half of the decade.
Through the 1990s, it grew in fits and starts and gained still more
traction in the 2000s. It is the language behind CouchDB and Sim-
pleDB, popular databases for cloud-based computing. Erlang also pow-
ers Facebook’s chat. The buzz for Erlang is growing steadily because it

1. The Matrix. DVD. Directed by Andy Wachowski, Lana Wachowski. 1999; Burbank,
CA: Warner Home Video, 2007.

INTRODUCING ERLANG 182

provides what many other languages can’t: scalable concurrency and
reliability.

Built for Concurrency

Erlang is a product of years of research from Ericsson to develop near-
real-time fault-tolerant distributed applications for telecom applica-
tions. The systems often could not be taken down for maintenance,
and software development was prohibitively expensive. Ericsson stud-
ied programming languages through the 1980s and found that, for one
reason or another, existing languages were inadequate for their needs.
These requirements eventually led to the development of an entirely
new language.

Erlang is a functional language—one with many reliability features
cooked in. Erlang can support insanely reliable systems. You can’t
take a phone switch down for maintenance, and you don’t have to take
Erlang down to replace entire modules. Some of its applications have
run for years without ever coming down for maintenance. But the key
Erlang capability is concurrency.

Concurrency experts do not always agree on the best approaches. One
common debate is whether threads or processes lead to better con-
currency. Many threads make up a process. Processes have their own
resources; threads have their own execution path but share resources
with other threads in the same process. Usually, a thread is lighter
weight than a process, though implementations vary.

No Threading

Many languages, like Java and C, take a threading approach to con-
currency. Threads take fewer resources, so theoretically, you should
be able to get better performance from them. The downside to threads
is that shared resources can lead to complex, buggy implementations
and the need for locks that form bottlenecks. To coordinate control
between two applications sharing resources, threading systems require
semaphores, or operating system level locks. Erlang takes a different
approach. It tries to make processes as lightweight as possible.

Lightweight Processes

Rather than wade through the quagmire of shared resources and re-
source bottlenecks, Erlang embraces the philosophy of lightweight pro-
cesses. Erlang’s creators spent effort to simplify the creation, manage-
ment, and communication within applications with many processes.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=182

INTRODUCING ERLANG 183

Distributed message passing is a basic language-level construct, elimi-
nating the need for locking and improving concurrency.

Like Io, Armstrong’s creation uses actors for concurrency, so message
passing is a critical concept. You’ll recognize Scala’s message passing
syntax, which is similar to Erlang’s message passing. In Scala, an actor
represents an object, backed by a thread pool. In Erlang, an actor rep-
resents a lightweight process. The actor reads inbound messages from
a queue and uses pattern matching to decide how to process it.

Reliability

Erlang does have traditional error checking, but in a traditional appli-
cation, you’ll see far less error handling than you would in a traditional
fault-tolerant application. The Erlang mantra is “Let it crash.” Since
Erlang makes it easy to monitor the death of a process, killing related
processes and starting new ones are trivial exercises.

You can also hot-swap code, meaning you can replace pieces of your
application without stopping your code. This capability allows far sim-
pler maintenance strategies than similar distributed applications. Er-
lang combines the robust “Let it crash” error strategies with hot-swap-
ping and lightweight processes that you can start with minimal over-
head. It’s easy to see how some applications run for years at a time
without downtime.

So, the Erlang concurrency story is compelling. The important primi-
tives—message passing, spawning a process, monitoring a process—are
all there. The processes that you spawn are lightweight, so you don’t
have to worry about constrained resources in this area. The language
is heavily slanted to remove side effects and mutability, and monitoring
the death of a process is simple, even trivial. The combined package is
compelling.

Interview with Dr. Joe Armstrong

Through writing this book, I’ve had the chance to meet some of the peo-
ple who I respect the most, at least, through email. Dr. Joe Armstrong,
creator of Erlang and author of Programming Erlang: Software for a Con-

current World [Arm07], is high on that list for me. I finally got to have
several conversations with Erlang’s first implementor, who hails from
Stockholm, Sweden.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=183

INTRODUCING ERLANG 184

Bruce: Why did you write Erlang?

Dr. Armstrong: By accident. I didn’t set out to invent a new program-

ming language. At the time we wanted to find a better way of writing the

control software for a telephone exchange. I started fiddling around with

Prolog. Prolog was fantastic but didn’t do exactly what I wanted. So, I

started messing around with Prolog. I thought, “I wonder what would

happen if I changed the way Prolog does things?” So, I wrote a Pro-

log meta-interpreter that added parallel processes to Prolog, and then

I added error handling mechanisms, and so on. After a while, this set

of changes to Prolog acquired a name, Erlang, and a new language was

born. Then more people joined the project, the language grew, we figured

out how to compile it, we added more stuff and got some more users, and

. . . .

Bruce: What do you like about it the most?

Dr. Armstrong: The error handling and on-the-fly code upgrade mech-

anisms and the bit-level pattern matching. Error handling is one of the

least understood parts of the language and the part where it most differs

from other languages. The whole notion of “nondefensive” programming

and “Let It Crash,” which is the mantra of Erlang programming, is com-

pletely the opposite of conventional practice, but it leads to really short

and beautiful programs.

Bruce: What is a feature you most would want to change, if you could

do it all over again? (Alternatively, you could answer, what are the great-

est limitations of Erlang?)

Dr. Armstrong: This is a difficult question; I’d probably give different

answers on different days of the week. It would be nice to add mobility to

the language so we could send computations over the Net. We can do this

in library code, but it’s not supported in the language. Right now I think it

would be really nice to go back to the roots of Erlang and add Prolog-like

predicate logic to the language, a kind of new mixture of predicate logic

plus message passing.

Then there are a number of small changes that are desirable, adding

hash maps, higher-order modules, and so on.

If I were to do it all over again, I’d probably give a lot more thought to

how we fit things together, such as how we run big projects with lots

of code—how we manage versions of code, how we find things, how

things evolve. When lots of code has been written, the programmer’s job

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=184

DAY 1: APPEARING HUMAN 185

changes from writing fresh code to finding and integrating existing code,

so finding things and fitting things together becomes increasingly impor-

tant. It would be nice to integrate ideas from things like GIT and Mercurial

and type systems into the language itself so that we could understand

how code evolves in a controlled manner.

Bruce: What’s the most surprising place you’ve ever seen Erlang used

in production?

Dr. Armstrong: Well, I wasn’t actually surprised since I knew this was

going to happen. When I upgraded my version of Ubuntu to Karmic Koala,

I found a rather well-hidden Erlang ticking away in the background. This

was to support CouchDB, which was also running live on my machine.

This kind of sneaked in Erlang under the radar to 10 million machines.

In this chapter, we’re going to cover some Erlang basics. Then, we’ll
put Erlang through its paces as a functional language. Finally, we’ll
spend some time with concurrency and some cool reliability features.
Yes, friends, reliability can be cool.

6.2 Day 1: Appearing Human

Agent Smith is as a program that kills other programs, or simulated
people, that disrupt the simulated reality known as the Matrix. The
most basic trait that makes him dangerous is his ability to appear
human. In this section, we’re going to look at Erlang’s ability to build
general-purpose applications. I’m going to try my best to give you “nor-
mal.” It’s not going to be easy.

If you started this book as a pure object-oriented programmer, you may
struggle a little bit, but don’t fight it. You’ve already seen code blocks
in Ruby, actors in Io, pattern matching in Prolog, and distributed mes-
sage passing in Scala. These are foundational principles in Erlang. This
chapter will start with another important concept. Erlang is the first of
our functional languages. (Scala is a hybrid functional/object-oriented
language.) To you, that means the following:

• Your programs are going to be built entirely out of functions, with
no objects anywhere.

• Those functions will usually return the same values, given the
same inputs.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=185

DAY 1: APPEARING HUMAN 186

• Those functions will not usually have side effects, meaning they
will not modify program state.

• You will only be able to assign any variable once.

Living by the first rule is mildly challenging. Living by the next three
can knock you down, at least for a little while. Know that you can learn
to code this way, and the result will be programs that are built from the
inside out for concurrency. When you remove mutable state from the
equation, concurrency gets dramatically simpler.

If you paid close attention, you caught the word usually in the second
and third rules. Erlang is not a pure functional language; it does allow
a few exceptions. Haskell is the only pure functional language in this
book. But you will get a strong flavor of functional-style programming,
and you will code to these rules more often than not.

Getting Started

I’m working with Erlang version R13B02, but the basic stuff in this
chapter should work OK on any reasonable version. You’ll get to the
Erlang shell by typing erl (werl on some Windows systems) at the com-
mand line, like this:

batate$ erl

Erlang (BEAM) emulator version 5.4.13 [source]

Eshell V5.4.13 (abort with ^G)

1>

We’ll do most of our work there, early on, as with other chapters.
Like Java, Erlang is a compiled language. You’ll compile a file with
c(filename). (you need the period at the end). You can break out of the
console, or a loop, with Control+C. Let’s get started.

Comments, Variables, and Expressions

Let’s get some of the basic syntax out of the way. Crack open the con-
sole, and type the following:

1> % This is a comment

That was simple enough. Comments start with a % and eat everything
until the end of a line. Erlang parses a comment as a single space.

1> 2 + 2.

4

2> 2 + 2.0.

4.0

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=186

DAY 1: APPEARING HUMAN 187

3> "string".

"string"

Each statement ends in a period. These are some of the basic types:
strings, integers, and floats. Now, for a list:

4> [1, 2, 3].

[1,2,3]

As with the Prolog family of languages, lists are in square brackets.
Here’s a little surprise:

4> [72, 97, 32, 72, 97, 32, 72, 97].

"Ha Ha Ha"

So, a String is really a List, and Agent Smith just laughed at your mamma.
Oh, those social skills. 2 + 2.0 tells us that Erlang does some basic type
coercion. Let’s try to break a line of code with a bad type:

5> 4 + "string".

** exception error: bad argument in an arithmetic expression

in operator +/2

called as 4 + "string"

Unlike Scala, there’s no coercion between strings and ints. Let’s assign
a variable:

6> variable = 4.

** exception error: no match of right hand side value 4

Ah. Here, you see the ugly side of the comparison between agents and
Erlang. Sometimes, this pesky language has more brain than soul. This
error message is really a reference to Erlang’s pattern matching. It’s
breaking because variable is an atom. Variables must start with an
uppercase letter.

7> Var = 1.

1

8> Var = 2.

=ERROR REPORT==== 8-Jan-2010::11:47:46 ===

Error in process <0.39.0> with exit value: {{badmatch,2},[{erl_eval,expr,3}]}

** exited: {{badmatch,2},[{erl_eval,expr,3}]} **
8> Var.

1

As you can see, variables begin with a capital letter, and they are
immutable. You can assign each value only once. This concept gives

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=187

DAY 1: APPEARING HUMAN 188

most first-time programmers trouble within a functional language. Let’s
introduce some data types with more complexity.

Atoms, Lists, and Tuples

In functional languages, symbols become more important. They are the
most primitive data element and can represent anything you want to
name. You’ve encountered symbols in each of the other programming
languages in this book. In Erlang, a symbol is called an atom and begins
with a lowercase character. They are atomic values that you can use to
represent something. You’ll use them like this:

9> red.

red

10> Pill = blue.

blue

11> Pill.

blue

red and blue are atoms—arbitrary names that we can use to symbolize
real-world things. We first return a simple atom called red. Next, we
assign the atom called blue to the variable called Pill. Atoms get more
interesting as you attach them to more robust data structures that
we’ll see a little later. For now, let’s build on the primitives by looking
at the list. You’ll represent lists with square brackets:

13> [1, 2, 3].

[1,2,3]

14> [1, 2, "three"].

[1,2,"three"]

15> List = [1, 2, 3].

[1,2,3]

So, the list syntax is familiar. Lists are heterogeneous and can be any
length. You can assign them to variables, just as you would a primitive.
Tuples are fixed-length heterogeneous lists:

18> {one, two, three}.

{one,two,three}

19> Origin = {0, 0}.

{0,0}

There are no surprises here. You can see the strong Prolog influence
here. Later, when we cover pattern matching, you will notice that when
you match a tuple, the size will matter. You can’t match a three-tuple
to a two-tuple. When you match a list, the length can vary, just as it
did in Prolog.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=188

DAY 1: APPEARING HUMAN 189

In Ruby, you use hash maps to associate names with values. In Erlang,
you’ll often see tuples used as you would use maps or hashes:

20> {name, "Spaceman Spiff"}.

{name,"Spaceman Spiff"}

21> {comic_strip, {name, "Calvin and Hobbes"}, {character, "Spaceman Spiff"}}.

{comic_strip,{name,"Calvin and Hobbes"},

{character,"Spaceman Spiff"}}

We’ve represented a hash for a comic strip. We use atoms for the hash
keys and use strings for the values. You can mix lists and tuples as
well, such as a list of comics, represented by tuples. So, how do you
access the individual elements? If Prolog is fresh in your mind, you’re
already thinking in the right direction. You’ll use pattern matching.

Pattern Matching

If you worked through the Prolog chapter, you got a pretty solid foun-
dation of pattern matching. I want to point out one major difference.
In Prolog, when you defined a rule, you matched all the values in
the database, and Prolog worked through all the combinations. Erlang
works like Scala. A match will work against a single value. Let’s use
pattern matching to extract the values from a tuple. Say we have a
person:

24> Person = {person, {name, "Agent Smith"}, {profession, "Killing programs"}}.

{person,{name,"Agent Smith"},

{profession,"Killing programs"}}

Let’s say we want to assign the name to Name, and the profession to
Profession. This match would do the trick:

25> {person, {name, Name}, {profession, Profession}} = Person.

{person,{name,"Agent Smith"},

{profession,"Killing programs"}}

26> Name.

"Agent Smith"

27> Profession.

"Killing programs"

Erlang will match up the data structures, assigning variables to the
values in the tuples. An atom will match itself, so the only work to be
done is to match the variable Name to "Agent Smith" and the variable
Profession to "Killing programs". This feature works much like it does in
Prolog and will be the fundamental decision-making construct that you
use.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=189

DAY 1: APPEARING HUMAN 190

If you are used to Ruby or Java-style hashes, it may seem strange to
have the initial atom of person. In Erlang, you’ll often have multiple
matching statements and multiple kinds of tuples. By designing your
data structures this way, you can quickly match all person tuples, leav-
ing the others behind.

List pattern matching is similar to Prolog’s:

28> [Head | Tail] = [1, 2, 3].

[1,2,3]

29> Head.

1

30> Tail.

[2,3]

Easy as one, two, three. You can bind to more than one variable at the
head of a list, too:

32> [One, Two|Rest] = [1, 2, 3].

[1,2,3]

33> One.

1

34> Two.

2

35> Rest.

[3]

If there are not enough elements in the list, the pattern won’t match:

36> [X|Rest] = [].

** exception error: no match of right hand side value []

Now, some of the other error messages make a little more sense. Let’s
say you forget to start your variables with an uppercase letter. You’ll get
this error message:

31> one = 1.

** exception error: no match of right hand side value 1

As you’ve seen before, the = statement is not a simple assignment. It is
actually a pattern match. You’re asking Erlang to match the integer 1

with the atom one, and it can’t.

Bit Matching

Sometimes, you need to access data at the bit level. If you’re cramming
more data into less space or dealing with predefined formats such as
JPEGs or MPEGs, the location of each bit matters. Erlang lets you pack
several pieces of data into one byte quite easily. To do these two things,

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=190

DAY 1: APPEARING HUMAN 191

you need two operations: pack and unpack. In Erlang, a bitmap works
just like other types of collections. To pack a data structure, you’ll just
tell Erlang how many bits to take for each item, like this:

1> W = 1.

1

2> X = 2.

2

3>

3> Y = 3.

3

4> Z = 4.

4

5> All = <<W:3, X:3, Y:5, Z:5>>.

<<"(d">>

The << and >> bracket binary patterns in this constructor. In this case,
it means take 3 bits for the variable W, 3 bits for X, 5 bits for Y, and 5
bits for Z. Next, we need to be able to unpack. You can probably guess
the syntax:

6> <<A:3, B:3, C:5, D:5>> = All.

<<"(d">>

7> A

7> .

1

8> D.

4

Just like tuples and lists, we just supply the same syntax and let pat-
tern matching do the rest. With these bitwise operations, Erlang is sur-
prisingly powerful for low-level tasks.

We’re covering a lot of ground pretty quickly, because you’ve already
been introduced to all the major concepts in the chapter. Believe it or
not, we’re almost through the first day of the Erlang chapter, but we
first need to introduce the most important concept, the function.

Functions

Unlike Scala, Erlang is dynamically typed. You won’t have to worry too
much about assigning types to data elements. Like Ruby, Erlang typing
is dynamic. Erlang will bind types at run time, based on syntactic clues
such as quotes or decimal points. At this point, I’m going to crack open
a fresh copy of the console. Let me introduce a few terms. You’re going
to write functions in a file with an .erl extension. The file contains code
for a module, and you have to compile it to run it. After you’ve compiled

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=191

DAY 1: APPEARING HUMAN 192

a file, it produces a .beam executable. The .beam compiled module will
run in a virtual machine called the beam.

With the housekeeping out of the way, it’s time to create some basic
functions.

I’m going to enter a file that looks like this:

Download erlang/basic.erl

-module(basic).

-export([mirror/1]).

mirror(Anything) -> Anything.

The first line defines the name of the module. The second line defines
a function that you want to use outside of the module. The function
is called mirror, and the /1 means it has one parameter. Finally, you
get to the function itself. You can see the influence of the Prolog-style
rule. The function definition names the function and determines the
arguments. Afterward, you have the -> symbol, which simply returns
the first argument.

With a function definition complete, I’ll fire up the console from the
same directory that has the code file. I can then compile it like this:

4> c(basic).

{ok,basic}

We compiled basic.erl, and you will find a basic.beam file in the same
directory. You can run it like this:

5> mirror(smiling_mug).

** exception error: undefined shell command mirror/1

6> basic:mirror(smiling_mug).

smiling_mug

6> basic:mirror(1).

1

Notice that it is not enough to have the function name alone. You also
need to include the module name, followed by a colon. This function is
dead simple.

Notice one thing. We were able to bind Anything to two different types.
Erlang is dynamically typed, and to me, it feels good. After Scala’s
strong typing, I’m coming home from a weekend in Siberia, or at least
Peoria.

Let’s look at a function that’s slightly more complicated. This one de-
fines several matching alternatives.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/basic.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=192

DAY 1: APPEARING HUMAN 193

You can create a matching_function.erl file like this:

Download erlang/matching_function.erl

-module(matching_function).

-export([number/1]).

number(one) -> 1;

number(two) -> 2;

number(three) -> 3.

And you can execute it like this:

8> c(matching_function).

{ok,matching_function}

9> matching_function:number(one).

1

10> matching_function:number(two).

2

11> matching_function:number(three).

3

12> matching_function:number(four).

** exception error: no function clause matching matching_function:number(four)

This is the first function I’ve introduced with multiple matching pos-
sibilities. Each possible match has the function name, the argument
to match, and the code to execute after the -> symbol. In each case,
Erlang just returns an integer. Terminate the last statement with . and
all others with ;.

Just as with Io, Scala, and Prolog, recursion will play a big role. Like
Prolog, Erlang is optimized for tail recursion. Here is the obligatory
factorial:

Download erlang/yet_again.erl

-module(yet_again).

-export([another_factorial/1]).

-export([another_fib/1]).

another_factorial(0) -> 1;

another_factorial(N) -> N * another_factorial(N-1).

another_fib(0) -> 1;

another_fib(1) -> 1;

another_fib(N) -> another_fib(N-1) + another_fib(N-2).

So, it’s another factorial, and it’s defined recursively just like all the
others. While I was at it, I may as well include a Fibonacci series, too.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/matching_function.erl
http://media.pragprog.com/titles/btlang/code/erlang/yet_again.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=193

DAY 1: APPEARING HUMAN 194

Let me try to make it worth your while this time:

18> c(yet_again).

{ok,yet_again}

19> yet_again:another_factorial(3).

6

20> yet_again:another_factorial(20).

2432902008176640000

21> yet_again:another_factorial(200).

788657867364790503552363213932185062295135977687173263294742533244359

449963403342920304284011984623904177212138919638830257642790242637105

061926624952829931113462857270763317237396988943922445621451664240254

033291864131227428294853277524242407573903240321257405579568660226031

904170324062351700858796178922222789623703897374720000000000000000000

000000000000000000000000000000

22> yet_again:another_factorial(2000).

3316275092450633241175393380576324038281117208105780394571935437060380

7790560082240027323085973259225540235294122583410925808481741529379613

1386633526343688905634058556163940605117252571870647856393544045405243

9574670376741087229704346841583437524315808775336451274879954368592474

... and on and on...

00

Ooooh-kaaay. That was certainly different. Now, you’re starting to see
the butt-kicking side of the Agent Smith/Erlang comparison. If you
didn’t take the time to run it, let me assure you, the results are abso-
lutely instantaneous. I don’t know what the maximum integer size is,
but I’m going to go out on a limb and say it’s big enough for me.

That’s a pretty good starting point. You’ve created some simple func-
tions and seen them work. It’s a good time to wrap up day 1.

What We Learned in Day 1

Erlang is a functional language. It is strongly, dynamically typed. There
is not a lot of syntax, but what is there is not at all like the typical
object-oriented languages.

Like Prolog, Erlang has no notion of an object. However, Erlang does
have a strong connection to Prolog. The pattern matching constructs
and multiple function entry points should look familiar to you, and
you handle some problems in the same way, through recursion. The
functional language has no notion of mutable state or even side effects.
Maintaining program state is awkward, but you will learn a new bag
of tricks. You’ll soon see the other side of the coin. Eliminating state
and side effects will have a dramatic impact on how you will manage
concurrency.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=194

DAY 2: CHANGING FORMS 195

In the first day, you worked both in the console and with the compiler.
Primarily, you focused on the basics. You created basic expressions.
You also created simple functions. Like Prolog, Erlang lets a function
have multiple entry points. You used basic pattern matching.

You also used basic tuples and lists. Tuples took the place of Ruby
hashes and formed the foundation of data structures. You learned
to pattern match across lists and tuples. These ideas will allow you
to quickly attach behavior to tuples or interprocess messages in later
chapters.

In day 2, I’m going to expand the basic functional concepts. We’ll learn
how to build code that will work in a concurrent world, but we won’t
actually go there yet. Take a little time to do some self-study to practice
what you’ve learned so far.

Day 1 Self-Study

The online community for Erlang is growing rapidly. A conference in
San Francisco is picking up momentum. And unlike Io and C, you
should be able to use Google to find what you need.

Find:

• The Erlang language’s official site

• Official documentation for Erlang’s function library

• The documentation for Erlang’s OTP library

Do:

• Write a function that uses recursion to return the number of
words in a string.

• Write a function that uses recursion to count to ten.

• Write a function that uses matching to selectively print “success”
or “error: message” given input of the form {error, Message} or suc-

cess.

6.3 Day 2: Changing Forms

In this section, you’re going to begin to appreciate Agent Smith’s power.
The agents in The Matrix have super-human strength. They can dodge
bullets and punch through concrete. Functional languages are at a
higher level of abstraction than object-oriented languages. Though they

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=195

DAY 2: CHANGING FORMS 196

are more difficult to understand, you can express bigger ideas with less
code.

Agent Smith can also take the form of any other person in the matrix.
That’s an important capability in a functional language. You’re going
to learn to apply functions to lists that can quickly shape the list into
exactly what you need. Do you want to turn a shopping list into a list
of prices? What about turning a list of URLs into tuples containing
content and URLs? These are the problems that functional languages
simply devour.

Control Structures

Let’s start with a few mundane pieces of Erlang: basic control struc-
tures. You’ll notice that this section of the book is much shorter than
Scala’s. Often, you’ll see programs with plenty of case statements, be-
cause they will interpret which message to process when you’re writing
concurrent applications. ifs are less prevalent.

Case

Let’s start with a case. Most of the time, you think of a pattern match in
the context of function invocation. Think of this control structure as a
pattern match that you can use anywhere. For example, say you have a
variable called Animal. You want to conditionally execute the code based
on the value:

1> Animal = "dog".

2> case Animal of

2> "dog" -> underdog;

2> "cat" -> thundercat

2> end.

underdog

So, in this example, the string matched the first clause and returned
the atom underdog. As with Prolog, you can use the underscore (_) to
match anything, like this (note: Animal is still "dog"):

3> case Animal of

3> "elephant" -> dumbo;

3> _ -> something_else

3> end.

something_else

The animal was not "elephant", so it matched the last clause. You can
also use underscores in any other Erlang match. I’d like to point out
a basic syntactic wart here. Notice that all case clauses but the last
end in a semicolon. That means if you want to edit your statement to

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=196

DAY 2: CHANGING FORMS 197

reorder your clauses, you must adjust the syntax accordingly, though
it would have been pretty easy to allow an optional semicolon after the
last clause. Sure, the syntax is logical: the semicolon is a separator for
the case clauses. It’s just not very convenient. Agent Smith just kicked
sand all over my kid nephew, and I think I heard him laugh. He has
to brush up on those public relations if he wants to win Agent of the
Month. Let’s move on to the basic if.

If

The case statement uses pattern matching, and the if statement uses
guards. In Erlang, a guard is a condition that must be satisfied for a
match to succeed. Later, we’ll introduce guards on pattern matches,
but the most basic form of a guard is in an if statement. You start with
the if keyword and then follow it with several guard -> expression clauses.
Here’s the idea:

if

ProgramsTerminated > 0 ->

success;

ProgramsTerminated < 0 ->

error

end.

What happens if there is no match?

8> X = 0.

0

9> if

9> X > 0 -> positive;

9> X < 0 -> negative

9> end.

** exception error: no true branch found when evaluating an if expression

Unlike Ruby or Io, one of the statements must be true, because if is
a function. Each case must return a value. If you truly want an else,
make the last guard true, like this:

9> if

9> X > 0 -> positive;

9> X < 0 -> negative;

9> true -> zero

9> end.

That’s really it for control structures. You’re going to get much more
out of higher-order functions and pattern matching to accomplish your
goals, so let’s leave these control statements behind and dive in deeper
into functional programming. We’re going to work with higher-order

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=197

DAY 2: CHANGING FORMS 198

functions and use them to process lists. We’ll learn to solve progres-
sively more complex problems with functions.

Anonymous Functions

As you recall, higher-order functions either return functions or take
functions as arguments. Ruby used code blocks for higher-order func-
tions, with special attention to passing code blocks to iterate over lists.
In Erlang, you can assign arbitrary functions to variables and pass
them around like any other data types.

You’ve seen some of these concepts before, but we’re going to lay some
of the foundations in Erlang and then build some higher-level abstrac-
tions. It all starts with anonymous functions. Here’s how you’d assign
a function to a variable:

16> Negate = fun(I) -> -I end.

#Fun<erl_eval.6.13229925>

17> Negate(1).

-1

18> Negate(-1).

1

Line 16 uses a new keyword called fun. That keyword defines an anony-
mous function. In this case, the function takes a single argument called
I and returns the negation, -I. We assign that anonymous function to
Negate. To be clear, Negate is not the value returned by the function. It
actually is the function.

Two significant ideas are happening here. First, we’re assigning a func-
tion to a variable. This concept allows us to pass around behaviors just
as we would any other data. Second, we can easily invoke the under-
lying function, just by specifying an argument list. Notice the dynamic
typing. We don’t have to concern ourselves with the return type of the
function, so we’re protected from some of the invasive syntax you see
with, say, Scala. The downside is that these functions can fail. I’ll show
you some of the ways Erlang lets you compensate for that limitation.

Let’s use some of this newfound power. We’ll use anonymous functions
to handle the each, map, and inject concepts that you initially encoun-
tered with Ruby.

Lists and Higher-Order Functions

As you’ve seen, lists and tuples are the heart and soul of functional
programming. It’s no accident that the first functional language started

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=198

DAY 2: CHANGING FORMS 199

with lists, and everything built on that foundation. In this section, you’ll
start to apply higher-order functions to lists.

Applying Functions to Lists

By now, the idea should be pretty clear to you. We’re going to use func-
tions to help us manage lists. Some, like ForEach, will iterate over lists.
Others, like filter or map, will return lists, either filtered or mapped onto
other functions. Still more, like foldl or foldr, will process lists, rolling up
results along the way, like Ruby’s inject or Scala’s FoldLeft. Open a fresh
console, define a list or two, and get cracking.

First, we’ll handle basic iteration. The lists:foreach method takes a func-
tion and a list. The function can be anonymous, like this:

1> Numbers = [1, 2, 3, 4].

[1,2,3,4]

2> lists:foreach(fun(Number) -> io:format("~p~n", [Number]) end, Numbers).

1

2

3

4

ok

The syntax of line 2 is a little tricky, so we’ll walk through it. We start by
invoking a function called lists:foreach. The first argument is the anony-
mous function fun(Number) -> io:format("~p~n", [Number]) end. That func-
tion has one argument and prints the value of whatever you pass in
with the io:format function.2 Finally, the second argument to foreach is
Numbers, the list we defined on line 1. We could simplify this by defining
the function in a separate line:

3> Print = fun(X) -> io:format("~p~n", [X]) end.

Now, Print is bound to the io:format function. We can simplify the code
like this:

8> lists:foreach(Print, Numbers).

1

2

3

4

ok

That’s basic iteration. Let’s move on to a function that maps. The map
function works like Ruby’s collect, passing each value of a list to a

2. ~p pretty prints an argument, ~n is a newline, and [Number] is a list of arguments to
print.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=199

DAY 2: CHANGING FORMS 200

function and building a list with the results. Like lists:foreach, lists:map

takes a function and a list. Let’s use map with our list of numbers,
increasing each value by one:

10> lists:map(fun(X) -> X + 1 end, Numbers).

[2,3,4,5]

That was easy. This time, our anonymous function was fun(X) -> X + 1

end. It increased each value by one, and lists:map built a list with the
results.

Defining map is really easy:

map(F, [H|T]) -> [F(H) | map(F, T)];

map(F, []) -> [].

Simple enough. The map of F over a list is F(head) plus map(F, tail). We’ll
look at a more concise version when we look at list comprehensions.

Moving on, we can filter lists with a boolean. Let’s define an anonymous
function and assign it to Small:

11> Small = fun(X) -> X < 3 end.

#Fun<erl_eval.6.13229925>

12> Small(4).

false

13> Small(1).

true

Now, we can take that function and use it to filter the list. The function
lists:filter will build a list of all the elements that satisfy Small or those less
than three:

14> lists:filter(Small, Numbers).

[1,2]

You can see that Erlang is making it very easy to code in this way.
Alternatively, we can use the Small function to test lists with all and any.
lists:all returns true only if all the items in a list satisfy the filter, like this:

15> lists:all(Small, [0, 1, 2]).

true

16> lists:all(Small, [0, 1, 2, 3]).

false

Alternatively, lists:any returns true if any of the items in the list satisfies
the filter:

17> lists:any(Small, [0, 1, 2, 3]).

true

18> lists:any(Small, [3, 4, 5]).

false

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=200

DAY 2: CHANGING FORMS 201

Let’s see what happens with empty lists:

19> lists:any(Small, []).

false

20> lists:all(Small, []).

true

As you’d expect, all returns true (meaning all of the items present in
the list satisfy the filter, though there are no items in the list), and any

returns false (meaning no element in the empty list satisfies the filter).
In these cases, it doesn’t matter what the filter is.

You can also make a list of all the elements at the head of a list that
match a filter or discard all the items at the front of a list that satisfy
the filter:

22> lists:takewhile(Small, Numbers).

[1,2]

23> lists:dropwhile(Small, Numbers).

[3,4]

24> lists:takewhile(Small, [1, 2, 1, 4, 1]).

[1,2,1]

25> lists:dropwhile(Small, [1, 2, 1, 4, 1]).

[4,1]

These tests are useful to do things such as process or discard headers
of messages. Let’s finish this whirlwind with foldl and foldr.

foldl

I realize that you’ve seen these concepts before. If you’re Neo and you’ve
mastered this part of the matrix, read the basic example and fight on.
For some, foldl takes a little while to master, so I’m going to teach it a
few different ways.

Remember, these functions are useful for rolling up the results of a
function across a list. One of the arguments serves as an accumulator,
and the other represents each item. lists:foldl takes a function, the initial
value of the accumulator, and the list:

28> Numbers.

[1,2,3,4]

29> lists:foldl(fun(X, Sum) -> X + Sum end, 0, Numbers).

10

To simplify a little bit, let’s break that anonymous function into a vari-
able and make our intentions clear with better variable names:

32> Adder = fun(ListItem, SumSoFar) -> ListItem + SumSoFar end.

#Fun<erl_eval.12.113037538>

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=201

DAY 2: CHANGING FORMS 202

33> InitialSum = 0.

0

34> lists:foldl(Adder, InitialSum, Numbers).

10

Ah, that’s better. So, we are going to keep a running sum. We’re going
to pass the SumSoFar and each number from Numbers into a function
called Adder, one at a time. Each time, the sum will get bigger, and the
lists:foldl function will remember the running total and pass it back into
Adder. Ultimately, the function will return the last running sum.

So far, all you’ve seen are functions that work on existing lists. I haven’t
shown you how to build a list a piece at a time. Let’s shift gears toward
list building.

Advanced List Concepts

All of the list concepts I’ve introduced are extensions of the ideas you’ve
seen in the other languages. But we can get a little more sophisticated.
We haven’t yet talked about building lists, and we’ve only used pretty
basic abstractions with simple code blocks.

List Construction

On the surface, it may seem difficult to build lists without mutable
state. With Ruby or Io, you would continually add items to a list. There’s
another way. You can return a new list with the list item added. Often,
you’ll add items to a list headfirst. You’ll use the [H|T] construct but in
the right side of a match instead. This program uses the list construc-
tion technique to double each item of a list:

Download erlang/double.erl

-module(double).

-export([double_all/1]).

double_all([]) -> [];

double_all([First|Rest]) -> [First + First|double_all(Rest)].

The module exports one function, called double_all. That function has
two distinct clauses. The first says that double_all for an empty list
returns an empty list. This rule stops the recursion.

The second rule uses the [H|T] construct, but in the predicate of the
match as well as the function definition. You’ve already seen something
like [First|Rest] on the left side of a match. It lets you break a list into the
first element and the rest of the list.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/double.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=202

DAY 2: CHANGING FORMS 203

Using it on the right side does list construction instead of destruction.
In this case, [First + First|double_all(Rest)] means build a list with First + First

as the first element and double_all(Rest) as the rest of the list.

You can compile and run the program as usual:

8> c(double).

{ok,double}

9> double:double_all([1, 2, 3]).

[2,4,6]

Let’s take another look at list construction with | from the console:

14> [1| [2, 3]].

[1,2,3]

15> [[2, 3] | 1].

[[2,3]|1]

16> [[] | [2, 3]].

[[],2,3]

17> [1 | []].

[1]

There should be no surprises in there. The second argument must be a
list. Whatever is on the left side will be added as the first element of a
new list.

Let’s look at a more advanced Erlang concept, called list comprehen-

sions. They combine some of the concepts we have been talking about
so far.

List Comprehensions

One of the most important functions in just about any functional lan-
guage is map. With it, your lists can mutate, just like The Matrix ene-
mies. Since the feature is so important, Erlang provides a more power-
ful form that is concise and allows you to do multiple transformations
at once.

Let’s start things off with a fresh console. We’ll do a map the old-
fashioned way:

1> Fibs = [1, 1, 2, 3, 5].

[1,1,2,3,5]

2> Double = fun(X) -> X * 2 end.

#Fun<erl_eval.6.13229925>

3> lists:map(Double, Fibs).

[2,2,4,6,10]

We have a list of numbers called Fibs and an anonymous function called
Double that will double whatever you pass in. Then, we called lists:map

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=203

DAY 2: CHANGING FORMS 204

to call Double on each element and build a list out of the result. That’s
a great tool, but it’s used often enough that Erlang provides a much
more concise way to provide the same syntax. The construct is called a
list comprehension. Here’s the equivalent to what we just typed, with a
list comprehension:

4> [Double(X) || X <- Fibs].

[2,2,4,6,10]

In English, we’re saying compute the Double of X for each X taken from
the list called Fibs. If you’d prefer, we can cut out the middleman:

5> [X * 2 || X <- [1, 1, 2, 3, 5]].

[2,2,4,6,10]

The concept is the same. We’re computing X * 2 for each X taken from the
list called [1, 1, 2, 3, 5]. This feature is a bit more than syntactic sugar.
Let’s build some more sophisticated list comprehensions. We will start
with a more concise definition of map:

map(F, L) -> [F(X) || X <- L].

In English, the map of some function F over some list L is the collection
of F(X) for each X that is a member of L. Now, let’s use a list comprehen-
sion to work with a catalog having a product, quantity, and price:

7> Cart = [{pencil, 4, 0.25}, {pen, 1, 1.20}, {paper, 2, 0.20}].

[{pencil,4,0.25},{pen,1,1.2},{paper,2,0.2}]

Say that I need to add a tax that is eight cents on the dollar. I can add a
simple list comprehension to roll up the new cart with tax with a single
list comprehension, like this:

8> WithTax = [{Product, Quantity, Price, Price * Quantity * 0.08} ||

8> {Product, Quantity, Price} <- Cart].

[{pencil,4,0.25,0.08},{pen,1,1.2,0.096},{paper,2,0.2,0.032}]

All the earlier Erlang concepts you’ve learned still apply: there’s pattern
matching going on here! So in English, we’re returning a list of tuples
having a Product, Price, Quantity, and tax (Price * Quantity * 0.08), for each
tuple of {Product, Quantity, Price} taken from the list called Cart. This code
is absolutely beautiful to me. This syntax allows me to change the form
of my list, literally on demand.

As another example, say I have a catalog and I want to provide a simi-
lar catalog to my preferred customers with a 50 percent discount. The
catalog could look something like this. I’ll just take the catalog from the
cart, ignoring quantity:

10> Cat = [{Product, Price} || {Product, _, Price} <- Cart].

[{pencil,0.25},{pen,1.2},{paper,0.2}]

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=204

DAY 2: CHANGING FORMS 205

In English, give me tuples with Product and Price for each tuple of Prod-

uct, and Price (ignoring the second attribute) taken from the Cart list.
Now, I can provide my discount:

11> DiscountedCat = [{Product, Price / 2} || {Product, Price} <- Cat].

[{pencil,0.125},{pen,0.6},{paper,0.1}]

It’s concise, readable, and powerful. It’s a beautiful abstraction.

In truth, I’ve showed you only part of the power of a list comprehension.
The full form can be even more powerful:

• A list comprehension takes the form of [Expression || Clause1,
Clause2, ..., ClauseN].

• List comprehensions can have an arbitrary number of clauses.

• The clauses can be generators or filters.

• A filter can be a boolean expression or a function returning a
boolean.

• A generator, of the form Match <-List, matches a pattern on the left
to the elements of a list on the right.

Really, it’s not too hard. Generators add, and filters remove. There’s a
lot of Prolog influence here. Generators determine the possible values,
and filters trim the list down to the specified conditions. Here are a
couple of examples:

[X || X <- [1, 2, 3, 4], X < 4, X > 1].

[2,3]

In English, return X, where X is taken from [1, 2, 3, 4], X is less than four,
and X is greater than one. You can also have multiple generators:

23> [{X, Y} || X <- [1, 2, 3, 4], X < 3, Y <- [5, 6]].

[{1,5},{1,6},{2,5},{2,6}]

24>

This one makes a tuple {X, Y} by combining X values from [1, 2, 3, 4] that
are less than 3 with Y values from [5, 6]. You wind up with two X values
and two Y values, and Erlang computes a Cartesian product.

And that’s the whole story. You’ve learned to use Erlang to do sequential
programming. Let’s take a break to wrap up and put this stuff into
practice.

What We Learned in Day 2

Admittedly, we didn’t go into deep detail about Erlang expressions or
the library, but you are now armed with enough information to write

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=205

DAY 2: CHANGING FORMS 206

functional programs. You started the day with some mundane control
structures, but we picked up the pace quickly.

Next, we covered higher-order functions. You used higher-order func-
tions within lists to iterate through lists, filter them, and modify them.
You also learned to use foldl to roll up results, just as you did with
Scala.

Finally, we moved on to advanced list concepts. We used [H|T] on the
left side of a match to deconstruct a list into the first element of the
list and the rest. We used [H|T] on the right side of a match, or solo, to
construct lists, headfirst. We then moved on to list comprehensions, an
elegant and powerful abstraction that can quickly transform lists with
generators and filters.

The syntax was a mixed bag. You could cruise through the higher con-
cepts with very little typing, thanks to Erlang’s dynamic typing strat-
egy. Still, there were some awkward moments, especially with the semi-
colons after the various pieces of case and if clauses.

In the next section, we’ll learn what all of the fuss was about. We’ll
tackle concurrency.

Day 2 Self-Study

Do:

• Consider a list of keyword-value tuples, such as [{erlang, "a func-

tional language"}, {ruby, "an OO language"}]. Write a function that ac-
cepts the list and a keyword and returns the associated value for
the keyword.

• Consider a shopping list that looks like [{item quantity price}, ...].
Write a list comprehension that builds a list of items of the form
[{item total_price}, ...], where total_price is quantity times price.

Bonus problem:

• Write a program that reads a tic-tac-toe board presented as a list
or a tuple of size nine. Return the winner (x or o) if a winner
has been determined, cat if there are no more possible moves,
or no_winner if no player has won yet.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=206

DAY 3: THE RED PILL 207

6.4 Day 3: The Red Pill

Most of you have heard it before. In the matrix, take the blue pill, and
you can continue to live in blissful ignorance. Take the red pill, and
your eyes are open to reality. Sometimes, reality hurts.

We have a whole industry slamming blue pills like a preacher’s kid in
Amsterdam. Concurrency is hard, so we punt. We add mutable state,
so our programs collide when we run them concurrently. Our func-
tions and methods have side effects, so we can’t prove correctness or
predict their outcomes. We use threads with shared state rather than
shared-nothing processes for performance, so we have to do extra work
to protect each piece of code.

The result is chaos. Concurrency hurts, not because it is inherently
difficult but because we’ve been using the wrong programming model!

Earlier in the chapter, I said Erlang made some easy things hard. With-
out side effects and mutable state, you’ll have to change the way you
approach coding altogether. You’ll have to put up with a Prolog-based
syntax that seems alien to many. But now, you’ll get the payoff. That
red pill, concurrency and reliability, will seem like candy to you. Let’s
find out how.

Basic Concurrency Primitives

Your three basic primitives for concurrency will be sending a message
(using !), spawning a process (with spawn), and receiving a message
(with receive). In this section, I’ll show you how to use these three prim-
itives to send and receive a message and to wrap them in a basic client-
server idiom.

A Basic Receive Loop

We’ll start with a translation process. If you send the process a string
in Spanish, it will reply with an English translation. In general, your
strategy will be to spawn a process that receives and processes the
message in a loop.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=207

DAY 3: THE RED PILL 208

Here’s what a basic receive loop looks like:

Download erlang/translate.erl

-module(translate).

-export([loop/0]).

loop() ->

receive

"casa" ->

io:format("house~n"),

loop();

"blanca" ->

io:format("white~n"),

loop();

_ ->

io:format("I don't understand.~n"),

loop()

end.

That’s longer than our other examples so far, so we’ll break it down.
The first two lines just define the module called translate and export the
function called loop. The next block of code is the function called loop():

loop() ->

...

end.

Notice that the code inside calls loop() three times, without any returns.
That’s OK: Erlang is optimized for tail recursion, so there’s very little
overhead, as long as the last thing in any receive clause is a loop().
We’re basically defining an empty function and looping forever. Moving
on to the receive:

receive ->

...

This function will receive a message from another process. receive

works like the other pattern matching constructs in Erlang, the case

and the function definitions. You’ll follow receive with several pattern
matching constructs. Moving on to the individual matches:

"casa" ->

io:format("house~n"),

loop();

This is a matching clause. The syntax is nicely consistent with case

statements. If the inbound message matches the string "casa", Erlang

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/translate.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=208

DAY 3: THE RED PILL 209

will execute the following code. Separate lines are delimited with a ,

character, and you’ll terminate the clause with a ; character. This code
displays the word house and then calls loop. (Remember, there’s no
overhead on the stack, because loop is the last function called.) All of
the other matching clauses look the same.

Now, we have a module with a receive loop in it. It’s time to put it to
use.

Spawning a Process

First, we compile this module:

1> c(translate).

{ok,translate}

To spawn a process, you’ll use the function spawn, which takes a func-
tion. That function will be started in a new lightweight process. spawn

returns a process ID (PID). We’ll pass in the function from our translate

module, like this:

2> Pid = spawn(fun translate:loop/0).

<0.38.0>

You can see that Erlang returned the process ID of <0.38.0>. In the con-
sole, you’ll see process IDs enclosed in angle brackets. We’re going to
cover only the primitive version of process spawning, but you should
know about a few others too. You can register processes by name, so
other processes can find, say, common services by name rather than
process ID. You can also use another version of spawn for code that you
want to be able to change on the fly, or hot-swap. If you were spawning
a remote process, you would use spawn(Node, function) instead. These
topics are beyond the scope of this book.

So now, we’ve coded a module with a code block, and we’ve spawned it
as a lightweight process. The last step is to pass messages to it. That is
the third Erlang primitive.

Sending Messages

As you saw in Scala, you will pass distributed messages to Erlang with
the ! operator. The form is Pid ! message. The Pid is any process identifier.
message can be any value, including primitives, lists, or tuples. Let’s
send a few messages:

3> Pid ! "casa".

"house"

"casa"

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=209

DAY 3: THE RED PILL 210

4> Pid ! "blanca".

"white"

"blanca"

5> Pid ! "loco".

"I don't understand."

"loco"

Each line sends a message. The io:format in our receive clauses prints
a message, and then the console prints the return value of the expres-
sion, which is the message you sent.

If you were sending a distributed message to a named resource, you’d
use the syntax node@server ! message instead. Setting up a remote server
is beyond the scope of this book, but with very little self-study, you can
easily get a distributed server going.

This example illustrates the basic primitives and how you’d weave them
together to form a basic asynchronous service. You may have noticed
that there is no return value. In the next section, we’ll explore how to
send synchronous messages.

Synchronous Messaging

Some concurrent systems work asynchronously, like phone chats. The
sender transmits a message and goes on, without waiting for a re-
sponse. Others work synchronously, like the Web. We ask for a page,
and the web server sends it while we wait for the response. Let’s turn
the translation service that prints return values into a service that actu-
ally returns the translated string to the user.

To change our messaging model from asynchronous to synchronous,
we’ll have a three-part strategy:

• Each receive clause in our messaging service will need to match
a tuple having the ID of the process requesting the translation
and the word to translate. Adding this ID will allow us to send a
response.

• Each receive clause will need to send a response to the sender
instead of printing the result.

• Instead of using the simple ! primitive, we’ll write a simple function
to send the request and await the response.

Now that you know the background, take a look at the pieces of the
implementation.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=210

DAY 3: THE RED PILL 211

Receiving Synchronously

The first order of business is to modify our receive clauses to take addi-
tional parameters. That means we’re going to have to use tuples. Pat-
tern matching makes it easy. Each receive clause looks like this:

receive

{Pid, "casa"} ->

Pid ! "house",

loop();

...

We match any element (this should always be a process ID), followed by
the word casa. We then send the word house to the receiver and loop
back to the top.

Note the pattern match. This is a common form for a receive, where
the ID of the sending process is the first element of a tuple. Otherwise,
the only major difference is sending the result rather than printing it.
Sending a message gets a little more complicated, though.

Sending Synchronously

The other side of the equation needs to send a message and then imme-
diately wait for a response. Given a process ID in Receiver, sending a
synchronous message will look something like this:

Receiver ! "message_to_translate",

receive

Message -> do_something_with(Message)

end

Since we’ll be sending messages so often, we’ll simplify the service by
encapsulating a request to the server. In our case, that simple remote
procedure call looks like this:

translate(To, Word) ->

To ! {self(), Word},

receive

Translation -> Translation

end.

When you put it all together, you get a concurrent program that’s only
marginally more complicated.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=211

DAY 3: THE RED PILL 212

Download erlang/translate_service.erl

-module(translate_service).

-export([loop/0, translate/2]).

loop() ->

receive

{From, "casa"} ->

From ! "house",

loop();

{From, "blanca"} ->

From ! "white",

loop();

{From, _} ->

From ! "I don't understand.",

loop()

end.

translate(To, Word) ->

To ! {self(), Word},

receive

Translation -> Translation

end.

The usage model looks like this:

1> c(translate_service).

{ok,translate_service}

2> Translator = spawn(fun translate_service:loop/0).

<0.38.0>

3> translate_service:translate(Translator, "blanca").

"white"

4> translate_service:translate(Translator, "casa").

"house"

We simply compile the code, spawn the loop, and then request a syn-
chronous service through the helper function we wrote. As you can see,
the Translator process now returns the translated value for the word. And
now, you have a synchronous message.

Now, you can see the structure of a basic receive loop. Each process
has a mailbox. The receive construct just picks messages off the queue
and matches them to some function to execute. Processes communi-
cate between one another with message passing. It’s no accident that
Dr. Armstrong calls Erlang a true object-oriented language! It gives you
message passing and encapsulation of behavior. We’re just losing muta-
ble state and inheritance, though it’s possible to simulate inheritance,
and more, through higher-order functions.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/translate_service.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=212

DAY 3: THE RED PILL 213

Client
(console)

Server
(roulette)

Figure 6.1: Simple client-server design

So far, we’ve worked in basic, sterile conditions with no error recovery
capability. Erlang does provide checked exceptions, but I want to walk
you through another way of handling errors instead.

Linking Processes for Reliability

In this section, we’re going to look at ways to link processes for better
reliability. In Erlang, you can link two processes together. Whenever a
process dies, it sends an exit signal to its linked twin. A process can
then receive that signal and react accordingly.

Spawning a Linked Process

To see how linking processes works, let’s first create a process that can
easily die. I’ve created a Russian roulette game. It has a gun with six
chambers. To fire a chamber, you just send a number 1–6 to the gun
process. Enter the wrong number, and the process kills itself. Here’s
the code:

Download erlang/roulette.erl

-module(roulette).

-export([loop/0]).

% send a number, 1-6

loop() ->

receive

3 -> io:format("bang.~n"), exit({roulette,die,at,erlang:time()});

_ -> io:format("click~n"), loop()

end.

The implementation is pretty easy. We have a message loop. Matching
3 executes the code io:format("bang~n"), exit({roulette,die,at,erlang:time()};,
killing the process. Anything else just prints a message and goes back
to the top of the loop.

We really have a simple client-server program. The client is the console,
and the server is the roulette process, as shown in Figure 6.1.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/roulette.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=213

DAY 3: THE RED PILL 214

And here’s what the execution looks like:

1> c(roulette).

{ok,roulette}

2> Gun = spawn(fun roulette:loop/0).

<0.38.0>

3> Gun ! 1.

"click"

1

4> Gun ! 3.

"bang"

3

5> Gun ! 4.

4

6> Gun ! 1.

1

The problem is that after a 3, the gun process is dead, and further
messages do nothing. We can actually tell whether the process is alive:

7> erlang:is_process_alive(Gun).

false

The process is definitely dead. It’s time to get on the cart. We can do
a little bit better. Let’s build a monitor that will tell us whether the
process dies. I guess that’s more of a coroner than a monitor. We’re
only interested in death.

Here’s what the code looks like:

Download erlang/coroner.erl

-module(coroner).

-export([loop/0]).

loop() ->

process_flag(trap_exit, true),

receive

{monitor, Process} ->

link(Process),

io:format("Monitoring process.~n"),

loop();

{'EXIT', From, Reason} ->

io:format("The shooter ~p died with reason ~p.", [From, Reason]),

io:format("Start another one.~n"),

loop()

end.

As usual, we’re building a receive loop. Before we do anything else, the
program must register the process as one that will trap exits. You won’t
receive EXIT messages without it.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/coroner.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=214

DAY 3: THE RED PILL 215

Then, we process a receive. The receive gets two types of tuples: those
beginning with the atom monitor and those beginning with the string
’EXIT’. Let’s look at each in more detail.

{monitor, Process} ->

link(Process),

io:format("Monitoring process.~n"),

loop();

This code links the coroner process to any process with a PID of Pro-

cess. You can also spawn a process with the links already in place with
spawn_link. Now, if the monitored process should die, it will send an exit
message to this coroner. Moving on to trapping the error:

{'EXIT', From, Reason} ->

io:format("The shooter died. Start another one.~n"),

loop()

end.

This is the code that matches the exit message. It will be a three-tuple
with ’EXIT’, followed by the PID from the dying process as From and the
reason for failure. We print the PID of the dying process and the reason.
Here’s the overall flow:

1> c(roulette).

{ok,roulette}

2> c(coroner).

{ok,coroner}

3> Revolver=spawn(fun roulette:loop/0).

<0.43.0>

4> Coroner=spawn(fun coroner:loop/0).

<0.45.0>

5> Coroner ! {monitor, Revolver}.

Monitoring process.

{monitor,<0.43.0>}

6> Revolver ! 1.

click

1

7> Revolver ! 3.

bang.

3

The shooter <0.43.0> died with reason

{roulette,die,at,{8,48,1}}. Start another one.

Now, we’re getting more sophisticated than client-server. We’ve added a
monitor process, as in Figure 6.2, on the following page, so we can tell
when the process dies.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=215

DAY 3: THE RED PILL 216

Client
(console)

Server
(roulette)

Monitor

(coroner)

Figure 6.2: Adding monitoring

From Coroner to Doctor

We can do better. If we register the gun (gun pun intended), game play-
ers will no longer have to know the PID of the gun to play. Then, we can
push the gun creation into the coroner. Finally, the coroner can restart
the process whenever the process dies. And we’ve achieved much bet-
ter reliability and without excessive error reporting. At this point, the
coroner is not just a coroner. He’s a doctor, and one that’s capable of
raising the dead. Here’s the new doctor:

Download erlang/doctor.erl

-module(doctor).

-export([loop/0]).

loop() ->

process_flag(trap_exit, true),

receive

new ->

io:format("Creating and monitoring process.~n"),

register(revolver, spawn_link(fun roulette:loop/0)),

loop();

{'EXIT', From, Reason} ->

io:format("The shooter ~p died with reason ~p.", [From, Reason]),

io:format(" Restarting. ~n"),

self() ! new,

loop()

end.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/doctor.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=216

DAY 3: THE RED PILL 217

The receive block now matches two messages: new and the same EXIT

tuple. They are both a little different from the coroner predecessor. This
is the magic line of code in the new block:

register(revolver, spawn_link(fun roulette:loop/0)),

Working from the inside out, we spawn a process with spawn_link. That
version of spawn will link the processes so the doctor will get notified
whenever a roulette process dies. We then register the PID, associating
it with the revolver atom. Now, users can send messages to this process
by using revolver ! message. We no longer need the PID. The EXIT match
block is also smarter. Here’s the new line of code:

self() ! new,

We send a message to ourself, spawning and registering a new gun. The
game is much easier to play, too:

2> c(doctor).

{ok,doctor}

3> Doc = spawn(fun doctor:loop/0).

<0.43.0>

4> revolver ! 1.

** exception error: bad argument

in operator !/2

called as revolver ! 1

As expected, we have not created the process yet, so we get an error.
Now, we’ll create and register one:

5> Doc ! new.

Creating and monitoring process.

new

6> revolver ! 1.

click

1

7> revolver ! 3.

bang.

3

The shooter <0.47.0> died with reason {roulette,die,at,{8,53,40}}.

Restarting.

Creating and monitoring process.

8> revolver ! 4.

click

4

We now take the incongruous step of creating the revolver through the
Doctor. We interact with the revolver by sending messages through the
revolver atom instead of the Gun PID. You can also see after line 8 that
we in fact create and register a new revolver. The overall topology is

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=217

DAY 3: THE RED PILL 218

generally the same as it was in Figure 6.2, on page 216, with the doctor

playing a more active role than the coroner did.

We’ve just scratched the surface, but I hope that you can see how
Erlang can make it easy to create much more robust concurrent sys-
tems. You don’t see much error handling here at all. When something
crashes, we just start a new one. It’s relatively simple to build mon-
itors that watch each other. In fact, the base libraries have plenty of
tools to build monitoring services and keep-alives that Erlang restarts
automatically upon any kind of failure.

What We Learned in Day 3

In day 3, you started to get a pretty good feel for what you can do
with Erlang. We started with the concurrency primitives: send, receive,
and spawn. We built the natural asynchronous version of a translator
to illustrate how basic message-passing works. Then, we built a sim-
ple helper function that encapsulated a send and a receive together to
simulate a remote procedure call with a send and receive.

Next, we linked processes together to show how one process notifies
another when it dies. We also learned to monitor one process with
another for better reliability. Our system was not fault tolerant, though
the ideas that we used could be used to build fault-tolerant systems.
Erlang distributed communication works exactly like interprocess com-
munication. We could link two processes, on separate computers, so
that a standby monitored the master and took over in the event of a
problem.

Let’s put some of what you’ve learned to work.

Day 3 Self-Study

These exercises are relatively easy, but I did add some bonus questions
to stretch you a little bit.

Open Telecom Platform (OTP) is a powerful package with much of what
you’ll need to build a distributed, concurrent service.

Find:

• An OTP service that will restart a process if it dies

• Documentation for building a simple OTP server

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=218

WRAPPING UP ERLANG 219

Do:

• Monitor the translate_service and restart it should it die.

• Make the Doctor process restart itself if it should die.

• Make a monitor for the Doctor monitor. If either monitor dies,
restart it.

The following bonus questions will take a little bit of research to com-
plete:

• Create a basic OTP server that logs messages to a file.

• Make the translate_service work across a network.

6.5 Wrapping Up Erlang

At the beginning of this chapter, I said that Erlang made hard things
easy and easy things hard. The Prolog-style syntax is alien to those
familiar with the broad family of C-style languages, and the functional
programming paradigm has its own set of challenges.

But Erlang has some core capabilities that will be tremendously impor-
tant as new hardware designs make programming for concurrency
more important. Some of the capabilities are philosophical. The light-
weight processes run counter to Java’s thread and process models. The
“Let it crash” philosophy simplifies code tremendously but also requires
base support at the virtual machine level that just doesn’t exist in other
systems. Let’s break down the core advantages and disadvantages.

Core Strengths

Erlang is all about concurrency and fault tolerance, from the inside out.
As processor designers look to distributed cores, the state of the art in
programming must evolve. Erlang’s strengths are in the most important
areas that this generation of programmers will face.

Dynamic and Reliable

First and foremost, Erlang is built for reliability. The core libraries
have been tested, and Erlang applications are among the most reliable
and available in the world. Most impressively, the language designers
achieved this reliability without sacrificing the dynamic typing strate-
gies that make Erlang so productive. Rather than depend on the com-
piler for an artificial safety net, Erlang depends on the ability to link

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=219

WRAPPING UP ERLANG 220

concurrent processes, reliably and simply. I was astounded about how
easy it was to build dependable monitors without relying on operating
system kludges.

I think the set of compromises that you find in Erlang is compelling and
unique. The Java language and virtual machine does not provide the
right set of primitives to duplicate Erlang performance or reliability. The
libraries built on the BEAM also reflect this philosophy, so it’s relatively
easy to build reliable, distributed systems.

Lightweight, Share-Nothing Processes

Another place Erlang shines is the underlying process model. Erlang
processes are light, so Erlang programmers use them often. Erlang
builds on a philosophy of enforcing immutability, so programmers build
systems that are inherently less likely to fail by conflicting with one
another. The message-passing paradigm and primitives make it easy
to code applications with a level of separation that you rarely find in
object-oriented applications.

OTP, the Enterprise Libraries

Since Erlang grew up in a telecom company with high requirements for
availability and reliability, it has twenty years worth of libraries that
support this style of development. The primary library is Open Telecom
Platform (OTP). You can find libraries that help you build monitored,
keep-alive processes; link to databases; or build distributed applica-
tions. OTP has a full web server and many tools for binding to telecom
applications.

The nice thing about the set of libraries is that fault tolerance, scalabil-
ity, transactional integrity, and hot-swapping are all built in. You don’t
have to worry about them. You can build your own server processes
that take advantage of these features.

Let It Crash

When you’re dealing with parallel processes and no side effects, “Let
it crash” works—you’re not as worried about why individual processes
crash because you can restart them. The functional programming
model amplifies the benefits of Erlang’s distribution strategy.

Like all the other languages in this book, Erlang is tainted. Only the
nature of the problems changes. These are the places that Agent Smith
may not always play so nice.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=220

WRAPPING UP ERLANG 221

Core Weaknesses

Erlang’s fundamental problems with adoption come from roots firmly
planted in a niche language. The syntax is alien to the vast majority of
programmers. Also, the functional programming paradigm is different
enough that it will cause problems with widespread adoption. Finally,
by far the best implementation is on the BEAM and not the Java virtual
machine. Let’s dig in a little deeper.

Syntax

Like a movie, syntax is subjective. Beyond this problem, though, Erlang
has some problems that even the impartial will notice. Let’s look at two
of them.

Interestingly, some of Erlang’s core strengths come from the Prolog
foundations, as well as its weaknesses. To most of the programming
population, Prolog is obscure, and the syntax comes off as awkward
and alien. A little syntactic sugar to ease the transition could go a long
way.

In the chapter, I mentioned the problems with if and case constructs.
The syntactic rules are logical—use a separator between statements—
but not practical because you can’t change the order of case, if, or
receive blocks without having to change your punctuation. These re-
strictions are unnecessary. And there are other oddities, such as the
conditional presentation of an array of numbers as strings. Cleaning
these up would help Erlang tremendously.

Integration

As with the Prolog heritage, not being on the JVM has been a double-
edged sword. Recently, a JVM-based VM called Erjang has made pro-
gress but is not yet to the level of the best JVM alternatives. The JVM
does come with baggage, such as a process and threading model that’s
inadequate for Erlang’s needs. But being on the JVM has a set of advan-
tages as well, too, including the wealth of Java libraries and the hun-
dreds of thousands of potential deployment servers.

Final Thoughts

The success of a programming language is a fickle thing. Erlang faces
some serious obstacles on the marketing side, and having to lure Java

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=221

WRAPPING UP ERLANG 222

programmers over to a Lisp-style programming paradigm and a Prolog-
style syntax won’t be easy. Erlang does seem to be gathering momen-
tum because it solves the right problems in the right way at the right
time. In this battle between Anderson and Agent Smith, I give Agent
Smith an even-money chance at success.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=222

Do or do not...there is no try.

Yoda

Chapter 7

Clojure
Clojure is Lisp on the JVM. Perplexing and powerful, Lisp is one of
the first programming languages and one of the latest too. Dozens of
dialects tried to launch Lisp into the mainstream and failed. The syntax
and programming model so far have been too much for a typical devel-
oper to absorb. Yet, there’s something special about Lisp that’s worth
revisiting, so the new dialects continue to emerge. Some of the best
programming universities lead with the Lisp language to form young
minds while they are still open.

In many ways, Clojure is the wise kung fu master, the oracle on the
hill, or the enigmatic Jedi trainer. Think Yoda. In Star Wars Episode

V: The Empire Strikes Back,1 Yoda was introduced as a cute character
with little significance. His communication style is often inverted and
hard to understand, like Lisp prefix notation (understand me later you

will). He seems too small to make a difference, like the Lisp syntactic
rules with little more than parentheses and symbols. But it quickly
becomes apparent that there is more to Yoda than meets the eye. As
with Lisp, he is old, with wisdom (like the quote above) that has been
honed by time and tried under fire. Like Lisp’s macros and higher-order
constructs, he has an inner power that others can’t seem to master. In
many ways, Lisp started it all. Before diving in too deeply, let’s talk
a little bit about Lisp and then shift gears to what’s exciting about
Clojure.

1. Star Wars Episode V: The Empire Strikes Back. Directed by George Lucas. 1980; Bev-
erly Hills, CA: 20th Century Fox, 2004.

INTRODUCING CLOJURE 224

7.1 Introducing Clojure

When all is said and done, Clojure is yet another Lisp dialect. It will
have the same language limitations and many of the same considerable
strengths. Understanding Clojure starts with understanding Lisp.

All Lisp

After Fortran, Lisp is the oldest commercially active language. It’s a
functional language but not a pure functional language. The acronym
stands for LISt Processing, and early on, you’ll see why. Lisp has some
interesting characteristics:

• Lisp is a language of lists. A function call uses the first list element
as the function and the rest as the arguments.

• Lisp uses its own data structures to express code. Lisp followers
call this strategy data as code.

When you combine these two ideas, you get a language that’s ideal for
metaprogramming. You can arrange your code as named methods in a
class. You could arrange those objects into a tree, and you have a basic
object model. You could also build a prototype-based code organiza-
tion with slots for data and behavior. You can build a pure-functional
implementation. It’s this flexibility that allows Lisp to morph the lan-
guage into just about any programming paradigm you want.

In Hackers and Painters [Gra04], Paul Graham chronicles the story of
how a small development team used Lisp and its powerful programming
model to defeat much larger companies. They believed Lisp provided a
significant programming advantage. In fact, they paid more attention to
start-ups posting jobs requiring Lisp and other higher-level languages.

The primary Lisp dialects are Common Lisp and Scheme. Scheme and
Clojure are from the same family of dialects called lisp-1, and Com-
mon Lisp is a lisp-2 dialect. The primary difference between the dialect
families has to do with the way namespaces work. Common Lisp uses
a separate namespace for functions and variables, while Scheme uses
the same namespace for both. With the Lisp side of the equation behind
us, let’s move on to the Java side.

On the JVM

Every Lisp dialect caters to its audience. For Clojure, one of the most
important characteristics is the JVM. With Scala, you saw that hav-
ing a commercially successful deployment platform can make all the

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=224

DAY 1: TRAINING LUKE 225

difference in the world. You don’t have to sell a Clojure server to your
deployment people to use it. Though the language is relatively new,
you can access the tens of thousands of Java libraries to do just about
anything you need.

Throughout this chapter, you’ll see evidence of the JVM, in the way you
invoke it, in the libraries we use, and in artifacts we create. But you’ll
also see liberation, too. Clojure is functional, so you’ll be able to apply
advanced concepts to your code. Clojure is dynamically typed, so your
code will be more concise, easier to read, and more fun to write. And
Clojure has the expressiveness of Lisp.

Clojure and Java desperately need each other. Lisp needs the market
place that the Java virtual machine can offer, and the Java community
needs a serious update and an injection of fun.

Updated for a Concurrent World

The last piece of the equation for this language is the set of libraries.
Clojure is a functional language, with emphasis on functions without
side effects. But when you do use mutable state, the language sup-
ports a number of concepts to help. Transactional memory works like
transactional databases to provide safe, concurrent access to mem-
ory. Agents allow encapsulated access to mutable resources. We’ll cover
some of these concepts in day 3.

Impatient are you? Start with Clojure, we will.

7.2 Day 1: Training Luke

In Star Wars, the apprentice Luke joined with Yoda for advanced train-
ing in the ways of the Jedi. He had started his training under another.
Like Luke, you have already started your training for functional lan-
guages. You used closures in Ruby and graduated to higher-order func-
tions in Scala and Erlang. In this chapter, you’re going to learn to apply
some of those concepts in Clojure.

Go to the Clojure home site at http://www.assembla.com/wiki/show/clojure/

Getting_Started. Follow the instructions to install Clojure on your plat-
form and with your preferred development environment. I’m using a
prerelease version of Clojure 1.2, and it should be fully ready by the
time this book is in your hands. You may first need to install the
Java platform, though today, most operating systems come with Java

Report erratum

this copy is (P1.0 printing, October 2010)

http://www.assembla.com/wiki/show/clojure/Getting_Started
http://www.assembla.com/wiki/show/clojure/Getting_Started
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=225

DAY 1: TRAINING LUKE 226

installed. I’m using the leiningen tool2 to manage my Clojure projects
and Java configuration. That tool lets me build a project and insulates
me from the Java details such as classpaths. Once that’s installed, I
can then create a new project:

batate$ lein new seven-languages

Created new project in: seven-languages

batate$ cd seven-languages/

seven-languages batate$

Then, I can start the Clojure console, called the repl:

seven-languages batate$ lein repl

Copying 2 files to /Users/batate/lein/seven-languages/lib

user=>

...and I’m off to the races. Underneath, leiningen is installing some
dependencies and calling Java with a few Clojure Java archives (jars)
and options. Your installation may require you to start the repl some
other way. From here on out, I’ll just tell you to start the repl.

After all of that work, you have a primitive console. When I ask you to
evaluate code, you can use this repl, or you can use one of any number
of IDEs or editors that have Clojure support.

Let’s type some code:

user=> (println "Give me some Clojure!")

Give me some Clojure!

nil

So, the console is working. In Clojure, you’ll enclose any function call
entirely in parentheses. The first element is the function name, and the
rest are the arguments. You can nest them, too. Let’s demonstrate the
concept with a little math.

Calling Basic Functions

user=> (- 1)

-1

user=> (+ 1 1)

2

user=> (* 10 10)

100

That’s just basic math. Division is a little more interesting:

user=> (/ 1 3)

1/3

2. http://github.com/technomancy/leiningen

Report erratum

this copy is (P1.0 printing, October 2010)

http://github.com/technomancy/leiningen
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=226

DAY 1: TRAINING LUKE 227

user=> (/ 2 4)

1/2

user=> (/ 2.0 4)

0.5

user=> (class (/ 1 3))

clojure.lang.Ratio

Clojure has a basic data type called a ratio. It’s a nice feature that will
allow delaying computation to avoid the loss of precision. You can still
easily work in floats if you so choose. You can easily calculate remain-
ders:

user=> (mod 5 4)

1

That’s short for modulus operator. This notation is called prefix nota-

tion. Languages to this point have supported infix notation, with the
operator between the operands, like 4 + 1 - 2. Many people prefer infix
notation because we’re used to it. We’re used to seeing math expressed
in this way. After warming up, you should be getting into the flow of pre-
fix notation. It’s a little awkward doing math in this way, but it works.
Prefix notation with parentheses does have advantages, though. Con-
sider this expression:

user=> (/ (/ 12 2) (/ 6 2))

2

There’s no ambiguity. Clojure will evaluate this statement in parenthet-
ical order. And check out this expression:

user=> (+ 2 2 2 2)

8

You can easily add elements to the calculation, if you so choose. You
can even use this style when working with subtraction or division:

user=> (- 8 1 2)

5

user=> (/ 8 2 2)

2

We’ve evaluated (8 - 1) - 2 and (8 / 2) / 2 in conventional (infix) notation.
Or, if you’d like to see the Clojure equivalent using only two operands at
a time, it is (- (- 8 1) 2) and (/ (/ 8 2) 2). You can also get some surprisingly
powerful results out of simple operator evaluation:

user=> (< 1 2 3)

true

user=> (< 1 3 2 4)

false

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=227

DAY 1: TRAINING LUKE 228

Nice. We can see whether a list is in order with a single operator and
an arbitrary number of arguments.

Aside from the prefix notation and the extra wrinkle of multiple param-
eter lists, Clojure’s syntax is very simple. Let’s try to push the typing
system a little, probing for strong typing and coerced types:

user=> (+ 3.0 5)

8.0

user=> (+ 3 5.0)

8.0

Clojure works to coerce types for us. In general, you’ll find that Clojure
supports strong, dynamic typing. Let’s get a little more focused and
look at some of Clojure’s basic building blocks, called forms.

Think of a form as a piece of syntax. When Clojure parses code, it
first breaks the program down into pieces called forms. Then, Clojure
can compile or interpret the code. I’m not going to distinguish between
code and data, because in Lisp, they are one and the same. Booleans,
characters, strings, sets, maps, and vectors are all examples of forms
that you’ll see throughout this chapter.

Strings and Chars

You’ve already been introduced to strings, but we can take it a little
deeper. You’ll enclose strings in double quotes, and use C-style escaping
characters, as in Ruby:

user=> (println "master yoda\nluke skywalker\ndarth vader")

master yoda

luke skywalker

darth vader

nil

No surprises. As an aside, so far, we’ve used a single argument with
println, but the function also works well with zero or more arguments to
print a blank line or several values concatenated together.

In Clojure, you can convert things to a string with the str function:

user=> (str 1)

"1"

If the target underneath is a Java class, str will call the underlying
toString function. This function takes more than one argument, like this:

user=> (str "yoda, " "luke, " "darth")

"yoda, luke, darth"

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=228

DAY 1: TRAINING LUKE 229

As a result, Clojure developers use str to concatenate strings together.
Conveniently, you can concatenate items that are not strings:

user=> (str "one: " 1 " two: " 2)

"one: 1 two: 2"

You can even concatenate different types together. To represent a char-
acter outside of double quotes, you can precede it with a \ character,
like this:

user=> \a

\a

And as usual, you can concatenate them together with str:

user=> (str \f \o \r \c \e)

"force"

Let’s make some comparisons:

user=> (= "a" \a)

false

So, characters are not strings of length 1.

user=> (= (str \a) "a")

true

But you can easily convert characters to strings. That’s enough string
manipulation for now. Let’s move on to some boolean expressions.

Booleans and Expressions

Clojure has strong, dynamic typing. Recall that dynamic typing means
types are evaluated at run time. You’ve already seen a few of the types
in action, but let’s focus that discussion a little bit. A boolean is the
result of an expression:

user=> (= 1 1.0)

true

user=> (= 1 2)

false

user=> (< 1 2)

true

As with most other languages in this book, true is a symbol. But it is also
something else. Clojure’s types are unified with the underlying Java
type system. You can get the underlying class with the class function.
Here’s the class of a boolean:

user=> (class true)

java.lang.Boolean

user=> (class (= 1 1))

java.lang.Boolean

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=229

DAY 1: TRAINING LUKE 230

So, you can see the JVM peeking through. This type strategy will make
things far more convenient for you as you move along. You can use the
result of booleans in many expressions. Here is a simple if:

user=> (if true (println "True it is."))

True it is.

nil

user=> (if (> 1 2) (println "True it is."))

nil

Like Io, we passed in code as the second argument to the if. Conve-
niently, Lisp lets us treat the data as code. We can make it prettier by
breaking the code across multiple lines:

user=> (if (< 1 2)

(println "False it is not."))

False it is not.

nil

We can add an else as the third argument:

user=> (if false (println "true") (println "false"))

false

nil

Now, let’s see what else we can use as booleans. First, what passes for
a nil in Clojure?

user=> (first ())

nil

Ah. That’s simple. The symbol called nil.

user=> (if 0 (println "true"))

true

nil

user=> (if nil (println "true"))

nil

user=> (if "" (println "true"))

true

nil

0 and "" are true, but nil is not. We’ll introduce other boolean expressions
as we need them. Now, let’s look at some more complex data structures.

Lists, Maps, Sets, and Vectors

As with all functional languages, core data structures such as lists and
tuples do the heavy lifting. In Clojure, three big ones are lists, maps,
and vectors. We’ll start things off with the collection you’ve spent most
of your time with so far, the list.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=230

DAY 1: TRAINING LUKE 231

Lists

A list is an ordered collection of elements. These elements can be any-
thing, but in idiomatic Clojure, lists are used for code and vectors for
data. I’ll walk you through lists with data, though, to prevent confusion.
Since lists evaluate as functions, you can’t do this:

user=> (1 2 3)

java.lang.ClassCastException: java.lang.Integer

cannot be cast to clojure.lang.IFn (NO_SOURCE_FILE:0)

If you really want a list made up of 1, 2, and 3, you need to do one of
these things, instead:

user=> (list 1 2 3)

(1 2 3)

user=> '(1 2 3)

(1 2 3)

Then, you can manipulate the lists as usual. The second form is called
quoting. The four main operations for a list are first (the head), rest (the
list minus the head), last (the last element), and cons (construct a new
list given a head and a tail):

user=> (first '(:r2d2 :c3po))

:r2d2

user=> (last '(:r2d2 :c3po))

:c3po

user=> (rest '(:r2d2 :c3po))

(:c3po)

user=> (cons :battle-droid '(:r2d2 :c3po))

(:battle-droid :r2d2 :c3po)

Of course, you can combine these with higher-order functions, but we’ll
wait to do so until we encounter sequences. Now, let’s move to a close
cousin of the list, the vector.

Vectors

Like a list, a vector is an ordered collection of elements. Vectors are opti-
mized for random access. You’ll surround vectors with square brackets,
like this:

user=> [:hutt :wookie :ewok]

[:hutt :wookie :ewok]

Use lists for code and vectors for data. You can get various elements
like this:

user=> (first [:hutt :wookie :ewok])

:hutt

user=> (nth [:hutt :wookie :ewok] 2)

:ewok

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=231

DAY 1: TRAINING LUKE 232

user=> (nth [:hutt :wookie :ewok] 0)

:hutt

user=> (last [:hutt :wookie :ewok])

:ewok

user=> ([:hutt :wookie :ewok] 2)

:ewok

Note that vectors are functions, too, taking an index as an argument.
You can combine two vectors like this:

user=> (concat [:darth-vader] [:darth-maul])

(:darth-vader :darth-maul)

You may have noticed that repl printed out a list instead of a vector.
Many of the functions that return collections use a Clojure abstraction
called sequences. We’ll learn more about them in day 2. For now, just
understand that Clojure is returning a sequence and rendering it as a
list in the repl.

Clojure lets you get the typical head and tail of a vector, of course:

user=> (first [:hutt :wookie :ewok])

:hutt

user=> (rest [:hutt :wookie :ewok])

(:wookie :ewok)

We’ll use both of these features as we do pattern matching. Both lists
and vectors are ordered. Let’s move on to some of the unordered collec-
tions, sets and maps.

Sets

A set is an unordered collection of elements. The collection has a stable
order, but that order is implementation-dependent, so you shouldn’t
count on it. You’ll wrap a set in #{}, like this:

user=> #{:x-wing :y-wing :tie-fighter}

#{:x-wing :y-wing :tie-fighter}

We can assign those to a variable called spacecraft and then manipulate
them:

user=> (def spacecraft #{:x-wing :y-wing :tie-fighter})

#'user/spacecraft

user=> spacecraft

#{:x-wing :y-wing :tie-fighter}

user=> (count spacecraft)

3

user=> (sort spacecraft)

(:tie-fighter :x-wing :y-wing)

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=232

DAY 1: TRAINING LUKE 233

We can also create a sorted set that takes items in any order and
returns them in sorted order:

user=> (sorted-set 2 3 1)

#{1 2 3}

You can merge two sets, like this:

user=> (clojure.set/union #{:skywalker} #{:vader})

#{:skywalker :vader}

Or compute the difference:

(clojure.set/difference #{1 2 3} #{2})

I’ll give you one last convenient oddity before I move on. Sets are also
functions. The set #{:jar-jar, :chewbacca} is an element but also a func-
tion. Sets test membership, like this:

user=> (#{:jar-jar :chewbacca} :chewbacca)

:chewbacca

user=> (#{:jar-jar :chewbacca} :luke)

nil

When you use a set as a function, the function will return the first
argument if that argument is a member of the set. That covers the
basics for sets. Let’s move on to maps.

Maps

As you know, a map is a key-value pair. Using Clojure, you’ll represent
a map with curly braces, like this:

user=> {:chewie :wookie :lea :human}

{:chewie :wookie, :lea :human}

These are examples of maps, key-value pairs, but they are tough to
read. It would be hard to see an odd number of keys and values, leading
to an error:

user=> {:jabba :hut :han}

java.lang.ArrayIndexOutOfBoundsException: 3

Clojure solves this problem by allowing commas as whitespace, like
this:

user=> {:darth-vader "obi wan", :luke "yoda"}

{:darth-vader "obi wan", :luke "yoda"}

A word preceded with : is a keyword, like symbols in Ruby or atoms in
Prolog or Erlang. Clojure has two kinds of forms that are used to name
things in this way, keywords and symbols. Symbols point to something
else, and keywords point to themselves. true and map are symbols. Use

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=233

DAY 1: TRAINING LUKE 234

keywords to name domain entities such as a property in a map as you
would use an atom in Erlang.

Let’s define a map called mentors:

user=> (def mentors {:darth-vader "obi wan", :luke "yoda"})

#'user/mentors

user=> mentors

{:darth-vader "obi wan", :luke "yoda"}

Now, you can retrieve a value by passing a key as the first value:

user=> (mentors :luke)

"yoda"

Maps are also functions. Keywords are also functions:

user=> (:luke mentors)

"yoda"

:luke, the function, looks itself up in a map. It’s odd but useful. As with
Ruby, you can use any data type as a key or value. And you can merge
two maps with merge:

user=> (merge {:y-wing 2, :x-wing 4} {:tie-fighter 2})

{:tie-fighter 2, :y-wing 2, :x-wing 4}

You can also specify an operator to use when a hash exists in both
maps:

user=> (merge-with + {:y-wing 2, :x-wing 4} {:tie-fighter 2 :x-wing 3})

{:tie-fighter 2, :y-wing 2, :x-wing 7}

In this case, we combined the 4 and the 3 values associated with the x-

wing keys with +. Given an association, you can create a new association
with a new key-value pair, like this:

user=>(assoc {:one 1} :two 2)

{:two 2, :one 1}

You can create a sorted map that takes items in any order and spits
them out sorted, like this:

user=> (sorted-map 1 :one, 3 :three, 2 :two)

{1 :one, 2 :two, 3 :three}

We’re gradually adding more structure to data. Now, we can move on to
the form that adds behavior, the function.

Defining Functions

Functions are the centerpiece of all kinds of Lisps. Use defn to define a
function.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=234

DAY 1: TRAINING LUKE 235

user=> (defn force-it [] (str "Use the force," "Luke."))

#'user/force-it

The simplest form is (defn [params] body). We defined a function called
force-it with no parameters. The function simply concatenated two
strings together. Call the function like any other:

user=> (force-it)

"Use the force,Luke."

If you want, you can specify an extra string describing the function:

user=> (defn force-it

"The first function a young Jedi needs"

[]

(str "Use the force," "Luke"))

Then, you can recall documentation for the function with doc:

user=> (doc force-it)

user/force-it

([])

The first function a young Jedi needs

nil

Let’s add a parameter:

user=> (defn force-it

"The first function a young Jedi needs"

[jedi]

(str "Use the force," jedi))

#'user/force-it

user=> (force-it "Luke")

"Use the force,Luke"

By the way, you can use this doc feature on any other function that
specifies a documentation line:

user=> (doc str)

clojure.core/str

([] [x] [x & ys])

With no args, returns the empty string. With one arg x, returns

x.toString(). (str nil) returns the empty string. With more than

one arg, returns the concatenation of the str values of the args.

nil

Now that you can define a basic function, let’s move on to the parameter
list.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=235

DAY 1: TRAINING LUKE 236

Bindings

As in most of the other languages we’ve looked at so far, the process of
assigning parameters based on the inbound arguments is called bind-

ing. One of the nice things about Clojure is its ability to access any
portion of any argument as a parameter. For example, say you had a
line, represented as a vector of points, like this:

user=> (def line [[0 0] [10 20]])

#'user/line

user=> line

[[0 0] [10 20]]

You could build a function to access the end of the line, like this:

user=> (defn line-end [ln] (last ln))

#'user/line-end

user=> (line-end line)

[10 20]

But we don’t really need the whole line. It would be nicer to bind our
parameter to the second element of the line. With Clojure, it’s easy:

(defn line-end [[_ second]] second)

#'user/line-end

user=> (line-end line)

[10 20]

The concept is called destructuring. We’re taking a data structure apart
and grabbing only the pieces that are important to us. Let’s take a closer
look at the bindings. We have [[_ second]]. The outer brackets define the
parameter vector. The inner brackets say we’re going to bind to individ-
ual elements of a list or vector. _ and second are individual parameters,
but it’s idiomatic to use _ for parameters you want to ignore. In English,
we’re saying “The parameters for this function are _ for the first element
of the first argument, and second for the second element of the first
argument.”

We can also nest these bindings. Let’s say we have a tic-tac-toe board,
and we want to return the value of the middle square. We’ll represent
the board as three rows of three, like this:

user=> (def board [[:x :o :x] [:o :x :o] [:o :x :o]])

#'user/board

Now, we want to pick up the second element of the second row of three,
like this:

user=> (defn center [[_ [_ c _] _]] c)

#'user/center

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=236

DAY 1: TRAINING LUKE 237

Beautiful! We’re essentially nesting the same concept. Let’s break it
down. The bindings are [[_ [_ c _] _]]. We’ll bind one parameter to the
inbound argument, [_ [_ c _] _]. That parameter says we’re going to ignore
the first and third elements, which are the top and bottom rows in our
tic-tac-toe board. We’ll focus on the middle row, which is [_ c _]. We’re
expecting another list and grabbing the center one:

user=> (center board)

:x

We can simplify that function in a couple of different ways. First, we
don’t have to list any of the wildcard arguments that come after the
target arguments:

(defn center [[_ [_ c]]] c)

Next, destructuring can happen in the argument list or also in a let

statement. In any Lisp, you’ll use let to bind a variable to a value. We
could use let to hide the destructuring from the clients of the center

function:

(defn center [board]

(let [[_ [_ c]] board] c))

let takes two arguments. First is a vector with the symbol you want to
bind ([[_ [_c]]]) followed by the value (board) that you want bound. Next
is some expression that presumably uses that value (we just returned
c). Both forms produce equivalent results. It all depends on where you
want the destructuring to happen. I’ll show you a couple of brief exam-
ples using let, but understand that you could also use them within an
argument list.

You can destructure a map:

user=> (def person {:name "Jabba" :profession "Gangster"})

#'user/person

user=> (let [{name :name} person] (str "The person's name is " name))

"The person's name is Jabba"

You can also combine maps and vectors:

user=> (def villains [{:name "Godzilla" :size "big"} {:name "Ebola" :size "small"}])

#'user/villains

user=> (let [[_ {name :name}] villains] (str "Name of the second villain: " name))

"Name of the second villain: Ebola"

We bound to a vector, skipping the first and picking out the name of
the second map. You can see the influence of Lisp on Prolog and, by
extension, Erlang. Destructuring is simply a form of pattern matching.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=237

DAY 1: TRAINING LUKE 238

Anonymous Functions

In Lisp, functions are just data. Higher-order functions are built into
the language from the ground up because code is just like any other
kind of data. Anonymous functions let you create unnamed functions.
It’s a fundamental capability for every language in this book. In Clo-
jure, you’ll define a higher-order function with the fn function. Typi-
cally, you’ll omit the name, so the form looks like (fn [parameters*] body).
Let’s take an example.

Let’s use a higher-order function to build a list of word counts, given a
list of words. Let’s say we have a list of people’s names:

user=> (def people ["Lea", "Han Solo"])

#'user/people

We can compute the length of one word like this:

user=> (count "Lea")

3

We can build a list of the lengths of the names, like this:

user=> (map count people)

(3 8)

You’ve seen these concepts before. count in this context is a higher-
order function. In Clojure, that concept is easy because a function is
a list, just like any other list element. You can use the same building
blocks to compute a list having twice the lengths of person names, like
this:

user=> (defn twice-count [w] (* 2 (count w)))

#'user/twice-count

user=> (twice-count "Lando")

10

user=> (map twice-count people)

(6 16)

Since that function is so simple, we can write it as an anonymous func-
tion, like this:

user=> (map (fn [w] (* 2 (count w))) people)

(6 16)

We can also use a shorter form:

user=> (map #(* 2 (count %)) people)

(6 16)

With the short form, # defines an anonymous function, with % bound
to each item of the sequence. # is called a reader macro.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=238

DAY 1: TRAINING LUKE 239

Anonymous functions give you convenience and leverage to create a
function that doesn’t need a name right now. You’ve seen them in
other languages. Here are some of the functions on collections that use
higher-order functions. For all of these functions, we’re going to use a
common vector, called v:

user=> (def v [3 1 2])

#'user/v

We’ll use that list with several anonymous functions in the following
examples.

apply

apply applies a function to an argument list. (apply f ’(x y)) works like (f

x y), like this:

user=> (apply + v)

6

user=> (apply max v)

3

filter

The filter function works like find_all in Ruby. It takes a function that
is a test and returns the sequence of elements that pass the test. For
example, to get only the odd elements or the elements less than 3, use
this:

user=> (filter odd? v)

(3 1)

user=> (filter #(< % 3) v)

(1 2)

We’ll take a deeper look at some of the anonymous functions as we look
deeper into Clojure sequences. For now, let’s take a break and see what
Rich Hickey, creator of Clojure, has to say.

Interview with Rich Hickey, Creator of Clojure

Rich Hickey answered some questions for the readers of this book. He
had a special interest in why this Lisp version could be more broadly
successful than other Lisps, so this interview is a little more extensive
than most. I hope you find his answers as fascinating as I did.

Bruce Tate: Why did you write Clojure?

Rich Hickey: I’m just a practitioner who wanted a predominantly func-

tional, extensible, dynamic language, with a solid concurrency story, for

the industry-standard platforms of the JVM and CLR and didn’t find one.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=239

DAY 1: TRAINING LUKE 240

Bruce Tate: What do you like about it the most?

Rich Hickey: I like the emphasis on abstractions in the data structures

and library and the simplicity. Maybe that’s two things, but they are

related.

Bruce Tate: What feature would you change if you could start over

again?

Rich Hickey: I’d explore a different approach to numbers. Boxed num-

bers are certainly a sore spot on the JVM. This is an area I am actively

working on.

Bruce Tate: What’s the most interesting problem you’ve seen solved

with Clojure?

Rich Hickey: I think Flightcaster3 (a service that predicts flight delays

in real time) leverages many aspects of Clojure—from using the syntactic

abstraction of macros to make a DSL for the machine learning and sta-

tistical inference bits to the Java interop for working with infrastructure

like Hadoop and Cascading.

Bruce Tate: But how can Clojure be more broadly successful when so

many other dialects of Lisp have failed?

Rich Hickey: This is an important question! I’m not sure I would char-

acterize the major dialects of Lisp (Scheme and Common Lisp) as having

failed at their missions. Scheme was an attempt at a very small language

that captured the essentials of computation, while Common Lisp strove

to standardize the many variant dialects of Lisp being used in research.

They have failed to catch on as practical tools for general-purpose pro-

duction programming by developers in industry, something that neither

was designed to be.

Clojure, on the other hand, is designed to be a practical tool for general-

purpose production programming by developers in industry and as such

adds these additional objectives to the Lisps of old. We work better in

teams, we play well with other languages, and we solve some traditional

Lisp problems.

Bruce Tate: How does Clojure work better in a team setting?

Rich Hickey: There is a sense in which some Lisps are all about max-

imally empowering the individual developer, but Clojure recognizes that

3. http://www.infoq.com/articles/flightcaster-clojure-rails

Report erratum

this copy is (P1.0 printing, October 2010)

http://www.infoq.com/articles/flightcaster-clojure-rails
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=240

DAY 1: TRAINING LUKE 241

development is a team effort. For example, it doesn’t support user-de-

fined reader macros, which could lead to code being written in small

incompatible micro-dialects.

Bruce Tate: Why did you choose to run on existing virtual machines?

Rich Hickey: The existence of large and valuable code bases written

in other languages is a fact of life today and wasn’t when the older Lisps

were invented. The ability to call and be called by other languages is

critical, especially on the JVM and CLR.4

The whole idea of standard multilanguage platforms abstracting away

the host OS barely existed when the older Lisps were invented. The

industry is orders of magnitude larger now, and de facto standards have

arisen. Technically, the stratification that supports the reuse of core tech-

nologies like sophisticated garbage collectors and dynamic compilers like

HotSpot is a good thing. So, Clojure emphasizes language-on-platform

rather than language-is-platform.

Bruce Tate: Fair enough. But how is this Lisp any more approachable?

Rich Hickey: Lots of reasons. For example, we wanted to deal with

the parentheses “problem.” Lisp programmers know the value of code-

is-data, but it is wrong to simply dismiss those who are put off by the

parentheses. I don’t think moving from foo(bar, baz) to (foo bar baz) is

difficult for developers. But I did take a hard look at the parentheses

use in the older Lisps to see whether the story could be better, and it

could. Older Lisps use parentheses for everything. We don’t. And in older

Lisps, there are simply too many parentheses. Clojure takes the opposite

approach, doing away with the grouping parentheses, making it slightly

harder for macro writers but easier for users.

The combination of fewer parentheses and almost no overloading of

parentheses renders Clojure much easier to scan, visually parse, and

understand than older Lisps. Leading double parentheses are more com-

mon in Java code, the horrid ((AType)athing).amethod(), than in Clojure

code.

What We Learned in Day 1

Clojure is a functional language on the JVM. Like Scala and Erlang, this
Lisp dialect is a functional language but not a pure functional language.
It allows limited side effects. Unlike other Lisp dialects, Clojure adds a

4. Microsoft’s common language runtime, a virtual machine for the .NET platform

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=241

DAY 1: TRAINING LUKE 242

little syntax, preferring braces for maps and brackets for vectors. You
can use commas for whitespace and omit parentheses in some places.

We learned to use the basic Clojure forms. The simpler forms included
booleans, characters, numbers, keywords, and strings. We also broke
into the various collections. Lists and vectors were ordered contain-
ers with vectors optimized for random access and lists optimized for
ordered traversal. We also used sets, or unordered collections, and
maps, which were key-value pairs.

We defined some named functions, providing a name, parameter list,
and function body with an optional documentation string. Next, we
used deconstruction with bindings, allowing us to bind any parame-
ter to any part of an inbound argument. The feature was reminiscent
of Prolog or Erlang. Finally, we defined some anonymous functions and
used them to iterate over a list with the map function.

On day 2, we’ll look at recursion in Clojure, a basic building block
in most functional languages. We’ll also look at sequences and lazy
evaluations, some cornerstones of the Clojure models that help layer a
common, powerful abstraction on top of collections.

Now, we’ll take a break to put into practice what you’ve learned so far.

Day 1 Self-Study

Clojure is a new language, but you’ll still find a surprisingly active,
and growing, community. They were among the best that I found as I
researched this book.

Find:

• Examples using Clojure sequences

• The formal definition of a Clojure function

• A script for quickly invoking the repl in your environment

Do:

• Implement a function called (big st n) that returns true if a string st

is longer than n characters.

• Write a function called (collection-type col) that returns :list, :map,
or :vector based on the type of collection col.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=242

DAY 2: YODA AND THE FORCE 243

7.3 Day 2: Yoda and the Force

As a Jedi master, Yoda trained apprentices to use and understand
the Force, the unifying presence between all living things. In this sec-
tion, we get to the concepts fundamental to Clojure. We’ll talk about
sequences, the abstraction layer that unifies all Clojure collections and
ties them to Java collections. We’ll also look at lazy evaluation, the just-
in-time strategy that computes sequence members only when you need
them. And then we’ll look at that mystical language feature that is the
Force for all Lisps, the macro.

Recursion with loop and recur

As you’ve learned in other languages in this book, functional languages
depend on recursion rather than iteration. Here’s a recursive program
to evaluate the size of a vector:

(defn size [v]

(if (empty? v)

0

(inc (size (rest v)))))

(size [1 2 3])

It’s not hard to understand. The size of an empty list is zero; the size
of another list is one more than the size of the tail. We’ve seen similar
solutions for other languages throughout this book.

You’ve also learned that stacks can grow, so recursive algorithms will
continue to consume memory until all memory is exhausted. Func-
tional languages work around this limitation with tail recursion opti-
mization. Clojure does not support implicit tail recursion optimization
because of limitations of the JVM. You must explicitly recur through
the use of loop and recur. Think of a loop as a let statement.

(loop [x x-initial-value, y y-initial-value] (do-something-with x y))

Initially, given a vector, loop binds the variables in the even positions to
the values in the odd positions. In fact, if you don’t specify a recur, loop

works exactly like a let:

user=> (loop [x 1] x)

1

The function recur will invoke the loop again but this time pass new
values.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=243

DAY 2: YODA AND THE FORCE 244

Let’s refactor the size function to use recur:

(defn size [v]

(loop [l v, c 0]

(if (empty? l)

c

(recur (rest l) (inc c)))))

In the second version of size, we’ll use the tail-recursion-optimized loop

and recur. Since we won’t actually return a value, we’ll maintain the
result in a variable called an accumulator. In this case, c will maintain
a count.

This version works like a tail-optimized call, but we’re stuck with more
kludgy lines of code. Sometimes, the JVM is a double-edged sword. If
you want the community, you need to deal with the problems. But since
this function is built into some basic collection APIs, you won’t often
need to use recur. Also, Clojure gives you some excellent alternatives
to recursion, including lazy sequences that we’ll get to later in this
chapter.

With day 2’s bad news out of the way, we’re free to shift to more pleas-
ant matters. Sequences will start to take us into some of the features
that make Clojure special.

Sequences

A sequence is an implementation-independent abstraction around all
the various containers in the Clojure ecosystem. Sequences wrap all
Clojure collections (sets, maps, vectors, and the like), strings, and even
file system structures (streams, directories). They also provide a com-
mon abstraction for Java containers, including Java collections, arrays,
and strings. In general, if it supports the functions first, rest, and cons,
you can wrap it in a sequence.

Earlier, when you were working with vectors, Clojure sometimes re-
sponded with a list in the console like this:

user=> [1 2 3]

[1 2 3]

user=> (rest [1 2 3])

(2 3)

Notice that we started with a vector. The result is not a list. repl actually
responded with a sequence. That means we can treat all collections in a
generic way. Let’s look at the common sequence library. It’s too rich and
powerful to cover entirely in one section of a chapter, but I’ll try to give

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=244

DAY 2: YODA AND THE FORCE 245

you a flavor of what’s available. I’m going to cover sequence functions
that change, test, and create sequences, but I’m going to touch on them
only briefly.

Tests

When you want to test a sequence, you will use a function called a
predicate. These take a sequence and a test function and return a
boolean. every? returns true if the test function is true for all items
in the sequence:

user=> (every? number? [1 2 3 :four])

false

So, one of the items is not a number. some is true if the test is true for
any of the items in the sequence:5

(some nil? [1 2 nil])

true

One of the items is nil. not-every? and not-any? are the inverses:

user=> (not-every? odd? [1 3 5])

false

user=> (not-any? number? [:one :two :three])

true

These behave exactly as you would expect. Let’s shift to functions that
change sequences.

Changing a Sequence

The sequence library has a number of sequences that transform se-
quences in various ways. You’ve already seen filter. To grab only the
words with a length greater than four, use this:

user=> (def words ["luke" "chewie" "han" "lando"])

#'user/words

user=> (filter (fn [word] (> (count word) 4)) words)

("chewie" "lando")

And you’ve also seen map, which calls a function on all the items in a
collection and returns the results. You can build a sequence of squares
of all items in a vector:

user=> (map (fn [x] (* x x)) [1 1 2 3 5])

(1 1 4 9 25)

5. More precisely, some returns the first value that is not nil or false. For example, (some

first [[] [1]]) returns 1.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=245

DAY 2: YODA AND THE FORCE 246

The list comprehension combines maps and filters, as you saw in Er-
lang and Scala. Recall that a list comprehension combines multiple lists
and filters, taking the possible combinations of the lists and applying
the filters. First, let’s take a simple case. We have a couple of lists, colors

and toys:

user=> (def colors ["red" "blue"])

#'user/colors

user=> (def toys ["block" "car"])

#'user/toys

We can apply a function to all the colors with a list comprehension,
similar to the way a map works:

user=> (for [x colors] (str "I like " x))

("I like red" "I like blue")

[x colors] binds x to an element from the colors list. (str "I like " x) is an arbi-
trary function that’s applied to every x from colors. It gets more interest-
ing when you bind to more than one list:

user=> (for [x colors, y toys] (str "I like " x " " y "s"))

("I like red blocks" "I like red cars"

"I like blue blocks" "I like blue cars")

The comprehension created every possible combination from the two
lists. We can also apply a filter with the :when keyword in the bindings:

user=> (defn small-word? [w] (< (count w) 4))

#'user/small-word?

user=> (for [x colors, y toys, :when (small-word? y)]

(str "I like " x " " y "s"))

("I like red cars" "I like blue cars")

We wrote a filter called small-word?. Any word that is less than four char-
acters is small. We applied the small-word? filter to y with :when (small-

word? y). We got all possibilities of (x, y), where x is a member of colors, y

is a member of toys, and the size of y is less than four characters. The
code is dense but expressive. That’s an ideal combination. Let’s move
on.

You’ve seen foldl, foldleft, and inject in Erlang, Scala, and Ruby. In Lisp,
the equivalent is reduce. To compute a quick total or factorial, use this:

user=> (reduce + [1 2 3 4])

10

user=> (reduce * [1 2 3 4 5])

120

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=246

DAY 2: YODA AND THE FORCE 247

You can sort a list:

user=> (sort [3 1 2 4])

(1 2 3 4)

and sort on the result of a function:

user=> (defn abs [x] (if (< x 0) (- x) x))

#'user/abs

user=> (sort-by abs [-1 -4 3 2])

(-1 2 3 -4)

We define a function called abs to compute an absolute value and then
use that function in our sort. These are some of the most important
sequence transformation functions in Clojure. Next, we’ll move on to
functions that create sequences, but to do that, you’re going to have to
get a little lazier.

Lazy Evaluation

In mathematics, infinite sequences of numbers are often easier to de-
scribe. In functional languages, you’d often like to have the same ben-
efits, but you can’t actually compute an infinite sequence. The answer
is lazy evaluation. Using this strategy, Clojure’s sequence library com-
putes values only when they are actually consumed. In fact, most se-
quences are lazy. Let’s walk through creating some finite sequences
and move into lazy sequences.

Finite Sequences with range

Unlike Ruby, Clojure supports ranges as functions. A range creates a
sequence:

user=> (range 1 10)

(1 2 3 4 5 6 7 8 9)

Note that the upper bound is not inclusive. The sequence did not in-
clude 10. You can specify any increment:

user=> (range 1 10 3)

(1 4 7)

You don’t have to specify the lower bound if there is no increment:

user=> (range 10)

(0 1 2 3 4 5 6 7 8 9)

Zero is the default lower bound. The sequences created with range are
finite. What if you wanted to create a sequence with no upper bound?
That would be an infinite sequence. Let’s find out how.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=247

DAY 2: YODA AND THE FORCE 248

Infinite Sequences and take

Let’s start with the most basic of infinite sequences, an infinite se-
quence of one repeated element. We can specify (repeat 1). If you try
it in the repl, you’ll get 1s until you kill the process. Clearly, we need
some way to grab only a finite subset. That function is take:

user=> (take 3 (repeat "Use the Force, Luke"))

("Use the Force, Luke" "Use the Force, Luke" "Use the Force, Luke")

So, we created an infinite sequence of the repeated string "Use the Force,

Luke", and then we took the first three. You can also repeat the elements
in a list with cycle:

user=> (take 5 (cycle [:lather :rinse :repeat]))

(:lather :rinse :repeat :lather :rinse)

We’re taking the first five elements of the cycle from the vector [:lather

:rinse :repeat]. Fair enough. We can drop the first few elements of a
sequence as well:

user=> (take 5 (drop 2 (cycle [:lather :rinse :repeat])))

(:repeat :lather :rinse :repeat :lather)

Working from the inside out, we again build a cycle, drop the first two,
and take the first five after that. But you don’t have to work inside out.
You can use the new left-to-right operator (->>) to apply each function
to a result:

user=> (->> [:lather :rinse :repeat] (cycle) (drop 2) (take 5))

(:repeat :lather :rinse :repeat :lather)

So, we take a vector, build a sequence with cycle, drop 2, and then take
5. Sometimes, left-to-right code is easier to read. What if you wanted to
add some kind of separator between words? You’d use interpose:

user=> (take 5 (interpose :and (cycle [:lather :rinse :repeat])))

(:lather :and :rinse :and :repeat)

We’re taking the keyword :and and placing it between all the elements
of an infinite sequence. Think of this function like a generalized version
of Ruby’s join. What if you wanted an interpose that took interposing
members from a sequence? That’s interleave:

user=> (take 20 (interleave (cycle (range 2)) (cycle (range 3))))

(0 0 1 1 0 2 1 0 0 1 1 2 0 0 1 1 0 2 1 0)

We’re interleaving two infinite sequences, (cycle (range 2)) and (cycle

(range 3)). Then, we take the first 20. As you read the result, even num-
bers are (0 1 0 1 0 1 0 1 0 1), and odd numbers are (0 1 2 0 1 2 0 1 2 0).
Beautiful.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=248

DAY 2: YODA AND THE FORCE 249

The iterate function provides another way of creating sequences. Check
out these examples:

user=> (take 5 (iterate inc 1))

(1 2 3 4 5)

user=> (take 5 (iterate dec 0))

(0 -1 -2 -3 -4)

iterate takes a function and a starting value. iterate then applies the
function to the starting value repeatedly. In these two examples, we
called inc and dec.

Here’s an example that calculates consecutive pairs in the Fibonacci
sequence. Remember, each number of a sequence is the sum of the last
two. Given a pair, [a b], we can generate the next with [b, a + b]. We
can generate an anonymous function to generate one pair, given the
previous value, like this:

user=> (defn fib-pair [[a b]] [b (+ a b)])

#'user/fib-pair

user=> (fib-pair [3 5])

[5 8]

Next, we’ll use iterate to build an infinite sequence. Don’t execute this
yet:

(iterate fib-pair [1 1])

We’ll use map to grab the first element from all of those pairs:

(map

first

(iterate fib-pair [1 1]))

That’s an infinite sequence. Now, we can take the first 5:

user=> (take 5

(map

first

(iterate fib-pair [1 1])))

(1 1 2 3 5)

Or we can grab the number at index 500, like this:

(nth (map first (iterate fib-pair [1 1])) 500)

(225... more numbers ...626)

The performance is excellent. Using lazy sequences, you can often de-
scribe recursive problems like Fibonacci. Factorial is another example:

user=> (defn factorial [n] (apply * (take n (iterate inc 1))))

#'user/factorial

user=> (factorial 5)

120

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=249

DAY 2: YODA AND THE FORCE 250

We grab n elements from the infinite sequence (iterate inc 1). Then we
take n of them and multiply them together with apply *. The solution is
dead simple. Now that we’ve spent some time with lazy sequences, it’s
time to explore new Clojure functions called defrecord and protocol.

defrecord and protocols

So far, we’ve talked about Java integration at a high level, but you
haven’t seen much of the JVM bleed through to the Clojure language.
When all is said and done, the JVM is about types and interfaces. (For
you non-Java programmers, think of types as Java classes. Think of
interfaces as Java classes without implementations.) To make Clojure
integrate well with the JVM, the original implementation has a signifi-
cant amount of Java in it.

As Clojure picked up more speed and began to prove itself as an effec-
tive JVM language, there was a strong thrust to implement more of
Clojure in Clojure itself. To do so, Clojure developers needed a way to
build platform-fast open extensions by programming to abstractions
rather than implementations. The results are defrecord for types and
protocol, which groups functions together around a type. From a Clo-
jure perspective, the best parts of OO are types and protocols (such as
interfaces), and the worst parts are implementation inheritance. Clo-
jure’s defrecord and protocol preserve the good parts of OO and leave
the rest.

As this book is being written, these language features are important,
but they are evolving. I’m going to lean hard on Stuart Halloway, co-
founder of Relevance and author of Programming Clojure [Hal09], to
help walk through a practical implementation. We’re going to go back
to another functional language on the JVM, Scala. We’ll rewrite the
Compass program in Clojure. Let’s get started.

First, we’ll define a protocol. A Clojure protocol is like a contract. Types
of this protocol will support a specific set of functions, fields, and argu-
ments. Here’s a protocol describing a Compass:

Download clojure/compass.clj

(defprotocol Compass

(direction [c])

(left [c])

(right [c]))

This protocol defines an abstraction called Compass and enumerates
the functions that a Compass must support—direction, left, and right with

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/clojure/compass.clj
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=250

DAY 2: YODA AND THE FORCE 251

the specified number of arguments. We are now free to implement the
protocol with defrecord. Next, we’ll need the four directions:

(def directions [:north :east :south :west])

We’ll need a function to handle a turn. Recall that our base direction is
an integer, 0, 1, 2, and 3 represent :north, :east, :south, and :west, respec-
tively. Every 1 you add to the base will move the compass ninety degrees
to the right. We’ll take the remainder of the base/4 (more precisely,
base/number-of-directions) so that we’ll wrap around correctly from
:west to :north, like this:

(defn turn

[base amount]

(rem (+ base amount) (count directions)))

The turn works, just as you’d expect. I’ll load the compass file and then
use the turn functions:

user=> (turn 1 1)

2

user=> (turn 3 1)

0

user=> (turn 2 3)

1

Said another way, turning right once from :east gives you :south, turning
right once from :west gives you :north, and turning right three times from
:south gives you :east.

It’s time to implement the protocol. We do that with defrecord. We’ll do
that in pieces. First, we use defrecord to declare we’re implementing the
protocol, like this:

(defrecord SimpleCompass [bearing]

Compass

We’re defining a new record called SimpleCompass. It has one field called
bearing. Next, we will implement the Compass protocol, beginning with
the direction function:

(direction [_] (directions bearing))

The direction function looks up the element of directions at the bearing

index. For example, (directions 3) returns :west. Each argument list has
a reference to the instance (e.g., self in Ruby or this in Java), but we’re
not using it, so we add _ to our argument list. Next, on to left and right:

(left [_] (SimpleCompass. (turn bearing 3)))

(right [_] (SimpleCompass. (turn bearing 1)))

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=251

DAY 2: YODA AND THE FORCE 252

Remember, in Clojure, we’re using immutable values. That means that
turning will return a new, modified compass rather than changing the
existing compass in place. Both left and right use syntax that you have
not seen before. (SomeType. arg) means fire the constructor for Simple-

Compass, binding arg to the first parameter. You can verify that entering
(String. "new string") into the repl returns the new string "new string".

So, the left and right functions are easy. Each returns a new compass
with the appropriate bearing, configured for the new bearing, using the
turn function we defined earlier. right turns right ninety degrees once,
and left turns right ninety degrees three times. So far, we have a type
SimpleCompass that implements the Compass protocol. We just need a
function that returns a string representation, but toString is a method
on java.lang.Object. That’s easy enough to add to our type.

Object

(toString [this] (str "[" (direction this) "]")))

We then implement part of the Object protocol with the toString method,
returning a string that looks like SimpleCompass [:north].

Now, the type is complete. Create a new compass:

user=> (def c (SimpleCompass. 0))

#'user/c

Turns return a new compass:

user=> (left c) ; returns a new compass

#:SimpleCompass{:bearing 3}

user=> c ; original compass unchanged

#:SimpleCompass{:bearing 0}

Notice that the old compass is unchanged. Since we’re defining a JVM
type, you can access all fields as Java fields. But you can also access
the fields in the type as Clojure map keywords:

user=> (:bearing c)

0

Because these types work like maps, you can easily prototype new types
as maps and iteratively convert them to types as your design stabilizes.
You can also replace types as maps in your tests as stubs or mocks.
There are other benefits as well:

• Types play nice with other Clojure concurrency constructs. In day
3, we’ll learn how to create mutable references of Clojure objects

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=252

DAY 2: YODA AND THE FORCE 253

in ways that maintain transactional integrity, much like relational
databases do.

• We implemented a protocol, but you’re not limited to the new way
of doing things. Since we’re building JVM types, the types can
interoperate with Java classes and interfaces.

With defrecord and protocol, Clojure offers the ability to build native
code for the JVM, without Java. This code can fully interact with other
types on the JVM, including Java classes or interfaces. You can use
them to subclass Java types or implement interfaces. Java classes can
also build on your Clojure types. Of course, this is not the entire Java
interop story, but it’s an important part. Now that you’ve learned to
extend Java, let’s learn how to extend the Clojure language itself with
macros.

Macros

For this section, we’re going to refer to the Io chapter. We implemented
the Ruby unless in Section 3.3, Messages, on page 79. The form is (unless

test form1). The function will execute form1 if the test is false. We can’t
simply design a function, because each parameter will execute:

user=> ; Broken unless

user=> (defn unless [test body] (if (not test) body))

#'user/unless

user=> (unless true (println "Danger, danger Will Robinson"))

Danger, danger Will Robinson

nil

We discussed this problem in Io. Most languages execute parameters
first and then put the results on the call stack. In this case, we don’t
want to evaluate the block unless the condition is false. In Io, the lan-
guage circumvented this problem by delaying the execution of the unless

message. In Lisp, we can use macros. When we type (unless test body),
we want Lisp to translate that to (if (not test) body). Macros to the rescue.

A Clojure program executes in two stages. Macro expansion translates
all macros in the language to their expanded form. You can see what’s
happening with a command called macroexpand. We’ve already used a
couple of macros, called reader macros. A semicolon (;) is a comment, a
single quote mark (’) is a quote, and a number sign (#) is an anonymous
function. To prevent premature execution, we’ll put a quote in front of
the expression we want to expand:

user=> (macroexpand ''something-we-do-not-want-interpreted)

(quote something-we-do-not-want-interpreted)

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=253

DAY 2: YODA AND THE FORCE 254

user=> (macroexpand '#(count %))

(fn* [p1__97] (count p1__97))

These are macros. In general, macro expansion will let you treat code
like lists. If you don’t want a function to execute right away, quote it.
Clojure will replace the arguments intact. Our unless will look like this:

user=> (defmacro unless [test body]

(list 'if (list 'not test) body))

#'user/unless

Note that Clojure substitutes test and body without evaluating them,
but we have to quote if and not. We also have to package them in lists.
We’re building a list of code in the exact form that Clojure will execute.
We can macroexpand it:

user=> (macroexpand '(unless condition body))

(if (not condition) body)

And we can execute it:

user=> (unless true (println "No more danger, Will."))

nil

user=> (unless false (println "Now, THIS is The FORCE."))

Now, THIS is The FORCE.

nil

What we’ve done is change the base definition of the language. We
are adding our own control structure, without requiring the language
designers to add their own keywords. Macro expansion is perhaps the
most powerful feature of Lisp, and few languages can do it. The secret
sauce is the expression of data as code, not just a string. The code is
already in a higher-order data structure.

Let’s wrap up day 2. There’s a lot of meat here. We should pause to use
what we’ve learned.

What We Learned in Day 2

It’s been another packed day. You’ve added a tremendous set of ab-
stractions to your expanding bag of tricks. Let’s review.

First, we learned to use recursion. Since the JVM doesn’t support tail-
recursion optimization, we had to use loop and recur. That looping con-
struct allowed us to implement many algorithms you would usually
implement with recursive function calls, though the syntax was more
invasive.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=254

DAY 2: YODA AND THE FORCE 255

We also used sequences. With them, Clojure encapsulates access to
all of its collections. With a common library, we could apply common
strategies for dealing with collections. We used different functions to
mutate, transform, and search sequences. Higher-order functions
added power and simplicity to the sequence libraries.

With lazy sequences, we were able to add another powerful layer to
sequences. Lazy sequences simplified algorithms. They also offered de-
layed execution, potentially significantly improving performance and
loosening coupling.

Next, we spent some time implementing types. With defrecord and pro-

tocols, we were able to implement types that were full citizens on the
JVM.

Finally, we used macros to add features to the language. We learned
that there is a step, called macro expansion, that occurs before Clojure
implements or interprets code. We implemented unless by using an if

function within macro expansion.

There’s a lot to digest. Take some time to use what you’ve learned.

Day 2 Self-Study

This day was packed with some of the most sophisticated and power-
ful elements of the Clojure language. Take some time to explore and
understand those features.

Find:

• The implementation of some of the commonly used macros in the
Clojure language

• An example of defining your own lazy sequence

• The current status of the defrecord and protocol features (these fea-
tures were still under development as this book was being devel-
oped)

Do:

• Implement an unless with an else condition using macros.

• Write a type using defrecord that implements a protocol.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=255

DAY 3: AN EYE FOR EVIL 256

7.4 Day 3: An Eye for Evil

In Star Wars, Yoda was the first to detect the evil in Darth Vader.
With Clojure, Rich Hickey has identified the core problems that plague
the development of concurrent object-oriented systems. We’ve said fre-
quently that mutable state is the evil that lurks in the hearts of object-
oriented programs. We’ve shown several different approaches to han-
dling mutable state. Io and Scala used the actor-based model and pro-
vided immutable constructs that gave the programmer the power to
solve those problems without mutable state. Erlang provided actors
with lightweight processes, and a virtual machine that allowed effec-
tive monitoring and communication, allowing unprecedented reliabil-
ity. The Clojure approach to concurrency is different. It uses software

transactional memory (STM). In this section, we’ll look at STM and also
several tools to share state across threaded applications.

References and Transactional Memory

Databases use transactions to ensure data integrity. Modern databases
use at least two types of concurrency control. Locks prevent two com-
peting transactions from accessing the same row at the same time.
Versioning uses multiple versions to allow each transaction to have a
private copy of its data. If any transaction interferes with another, the
database engine simply reruns that transaction.

Languages like Java use locking to protect the resources of one thread
from competing threads that might corrupt them. Locking basically
puts the burden of concurrency control on the programmer. We are
rapidly learning that this burden is too much to bear.

Languages like Clojure use software transactional memory (STM). This
strategy uses multiple versions to maintain consistency and integrity.
Unlike Scala, Ruby, or Io, when you want to change the state of a refer-
ence in Clojure, you must do so within the scope of a transaction. Let’s
see how it works.

References

In Clojure, a ref (short for reference) is a wrapped piece of data. All
access must conform to specified rules. In this case, the rules are to
support STM. You cannot change a reference outside of a transaction.
To see how it works, let’s create a reference:

user=> (ref "Attack of the Clones")

#<Ref@ffdadcd: "Attack of the Clones">

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=256

DAY 3: AN EYE FOR EVIL 257

That’s not too interesting. We should assign the reference to a value,
like this:

user=> (def movie (ref "Star Wars"))

#'user/movie

You can get the reference back, like this:

user=> movie

#<Ref@579d75ee: "Star Wars">

But we’re really worried about the value in the reference. Use deref:

user=> (deref movie)

"Star Wars"

Or, you can use the short form of deref:

user=> @movie

"Star Wars"

That’s better. Now, we can easily access the value within our reference.
We haven’t tried to change the state of the reference yet. Let’s try. With
Clojure, we’ll send a function that will mutate the value. The derefer-
enced ref will be passed as the first argument of the function:

user=> (alter movie str ": The Empire Strikes Back")

java.lang.IllegalStateException: No transaction running (NO_SOURCE_FILE:0)

As you can see, you can mutate state only within a transaction. Do so
with the dosync function. The preferred way to modify a reference is to
alter it with some transforming function, like this:

user=> (dosync (alter movie str ": The Empire Strikes Back"))

"Star Wars: The Empire Strikes Back"

We could also set some initial value with ref-set:

user=> (dosync (ref-set movie "Star Wars: The Revenge of the Sith"))

"Star Wars: The Revenge of the Sith"

You can see that the reference changed:

user=> @movie

"Star Wars: The Revenge of the Sith"

That’s what we expected. The reference is different. It may seem painful
to modify mutable variables in this way, but Clojure is enforcing a lit-
tle policy now to save a lot of pain later. We know that programs that
behave in this manner will absolutely execute correctly, with respect
to race conditions and deadlock. Most of our code will use functional
paradigms, and we’ll save STM for the problems that could benefit the
most from mutability.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=257

DAY 3: AN EYE FOR EVIL 258

Working with Atoms

If you want thread safety for a single reference, uncoordinated with
any other activity, then you can use atoms. These data elements allow
change outside the context of a transaction. Like a reference, a Clojure
atom is an encapsulated bit of state. Let’s try it. Create an atom:

user=> (atom "Split at your own risk.")

#<Atom@53f64158: "Split at your own risk.">

Now, bind an atom:

user=> (def danger (atom "Split at your own risk."))

#'user/danger

user=> danger

#<Atom@3a56860b: "Split at your own risk.">

user=> @danger

"Split at your own risk."

You can bind danger to a new value with reset!:

user=> (reset! danger "Split with impunity")

"Split with impunity"

user=> danger

#<Atom@455fc40c: "Split with impunity">

user=> @danger

"Split with impunity"

reset! replaces the entire atom, but the preferred usage is to provide a
function to transform the atom. If you’re changing a large vector, you
can modify an atom in place with swap! like this:

user=> (def top-sellers (atom []))

#'user/top-sellers

user=> (swap! top-sellers conj {:title "Seven Languages", :author "Tate"})

[{:title "Seven Languages in Seven Weeks", :author "Tate"}]

user=> (swap! top-sellers conj {:title "Programming Clojure" :author "Halloway"})

[{:title "Seven Languages in Seven Weeks", :author "Tate"}

{:title "Programming Clojure", :author "Halloway"}]

As with a reference, you’ll want to create a value once and then change
that value with swap!. Let’s look at a practical example.

Building an Atom Cache

Now, you’ve seen both references and atoms. You’ll see the same gen-
eral philosophy when we work with Haskell. You wrap a bit of state in
a package that you can later mutate with functions. While references
required transactions, atoms do not. Let’s build a simple atom cache.
It’s a perfect problem for an atom. We’ll simply use hashes to associate

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=258

DAY 3: AN EYE FOR EVIL 259

names with values. This example is provided courtesy of Stuart Hal-
loway of Relevance,6 a consultancy that provides Clojure training and
consulting.

We’ll need to create the cache, and then we’ll need functions to add
elements to the cache and remove elements from the cache. First, we’ll
create the cache:

Download clojure/atomcache.clj

(defn create

[]

(atom {}))

We’re simply creating an atom. We’ll let the client of this class bind it.
Next, we need to be able to get a cache key:

(defn get

[cache key]

(@cache key))

We take the cache and a key as arguments. The cache is an atom, so
we dereference it and return the item associated with the key. Finally,
we need to put an item in the cache:

(defn put

([cache value-map]

(swap! cache merge value-map))

([cache key value]

(swap! cache assoc key value)))

We defined two different functions called put. The first version uses
merge to allow us to add all of the associations in a map to our cache.
The second version uses assoc to add a key and value. Here’s the cache
in use. We add an item to the cache and then return it:

(def ac (create))

(put ac :quote "I'm your father, Luke.")

(println (str "Cached item: " (get ac :quote)))

And the output:

Cached item: I'm your father, Luke.

Atoms and refs are simple and safe ways to handle mutable state, syn-
chronously. In the next few sections, we’ll look at a couple of asyn-
chronous examples.

6. http://www.thinkrelevance.com

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/clojure/atomcache.clj
http://www.thinkrelevance.com
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=259

DAY 3: AN EYE FOR EVIL 260

Working with Agents

Like an atom, an agent is a wrapped piece of data. Like an Io future, the
state of a dereferenced agent will block until a value is available. Users
can mutate the data asynchronously using functions, and the updates
will occur in another thread. Only one function can mutate the state of
an agent at a time.

Give it a try. Let’s define a function called twice that doubles the value
of whatever you pass in:

user=> (defn twice [x] (* 2 x))

#'user/twice

Next, we’ll define an agent called tribbles that has an initial value of one:

user=> (def tribbles (agent 1))

#'user/tribbles

Now, we can mutate tribbles by sending the agent a value:

user=> (send tribbles twice)

#<Agent@554d7745: 1>

This function will run in another thread. Let’s get the value of the agent:

user=> @tribbles

2

Reading a value from a ref, agent, or atom will never lock and never
block. Reads should be fast, and with the right abstractions around
them, they can be. With this function, you can see the difference in the
values that you read from each agent:

user=> (defn slow-twice [x]

(do

(Thread/sleep 5000)

(* 2 x)))

#'user/slow-twice

user=> @tribbles

2

user=> (send tribbles slow-twice)

#<Agent@554d7745: 16>

user=> @tribbles

2

user=> ; do this five seconds later

user=> @tribbles

4

Don’t get hung up in the syntax. (Thread/sleep 5000) simply invokes
Java’s sleep method on Thread. For now, focus on the value of the agent.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=260

DAY 3: AN EYE FOR EVIL 261

We defined a slower version of twice that took five seconds. That was
enough time to see the differences in @tribbles over time in the repl.

So, you will get a value of tribbles. You might not get the latest changes
from your own thread. If you want to be sure to get the latest value
with respect to your own thread, you can call (await tribbles) or (await-

for timeout tribbles), where timeout is a timeout in milliseconds. Keep
in mind that await and await-for block only until actions from your
thread are dispatched. This says nothing about what other threads
may have asked the thread to do. If you think you want the latest value
of something, you have already failed. Clojure’s tools involve working
with a snapshot whose value is instantaneous and potentially out-of-
date immediately. That’s exactly how versioning databases work for fast
concurrency control.

Futures

In Java, you would start threads directly to solve a specific task. Cer-
tainly, you can use Java integration to start a thread in this way, but
there’s often a better way. Say you wanted to create a thread to handle
a complex computation around a bit of encapsulated state. You could
use an agent. Or say you wanted to start the computation of a value,
but you did not want to await the result. As with Io, you could use a
future. Let’s take a look.

First, let’s create a future. The future returns a reference immediately:

user=> (def finer-things (future (Thread/sleep 5000) "take time"))

#'user/finer-things

user=> @finer-things

"take time"

Depending on how fast you type, you may have had to wait for the
result. A future takes a body of one or more expressions, returning the
value of the last expression. The future starts in another thread. If you
dereference it, the future will block until the value becomes available.

So, a future is a concurrency construct that allows an asynchronous
return before computation is complete. We can use futures to allow
several long-running functions to run in parallel.

What We’ve Missed

Clojure is a Lisp, which is an extremely rich language in its own right.
It’s based on the JVM, which has more than a decade of development.
The language also mixes in some new and powerful concepts. It would

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=261

DAY 3: AN EYE FOR EVIL 262

be impossible to cover Clojure in one chapter of a book. There are some
pieces that you should know about.

Metadata

Sometimes, it’s nice to associate metadata to a type. Clojure allows
you to attach and access metadata on both symbols and collections.
(with-meta value metadata) gives you a new value associated with the
metadata, usually implemented as a map.

Java Integration

Clojure has excellent Java integration. We touched on Java integration
very loosely, and we also built a type on the JVM. We did not use the
existing Java libraries at all. We also did not extensively cover the Java
compatibility forms. For example, (.toUpperCase "Fred") calls the .toUp-

perCase member function on the string "Fred".

Multimethods

Object-oriented languages allow one style of organization for behavior
and data. Clojure allows you to build your own code organization with
multimethods. You can associate a library of functions with a type. You
can also implement polymorphism by using multimethods to do method
dispatch based on type, metadata, arguments, and even attributes. The
concept is powerful and extremely flexible. You could implement, for
example, Java-style inheritance, prototype inheritance, or something
entirely different.

Thread State

Clojure offers atoms, refs, and agents for various concurrency models.
Sometimes, you need to store data per thread instance. Clojure allows
you to do so quite simply with vars. For example, (binding [name "value"]

...) would bind name to "value" only for the current thread.

What We Learned in Day 3

Today, we walked through the concurrency structures. We encountered
several interesting concurrency constructs along the way.

Refs allowed us to implement mutable state while maintaining consis-
tency across threads. We used STM, or software transactional mem-
ory. For our part, we placed all mutations to refs within transactions,
expressed using a dosync function.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=262

DAY 3: AN EYE FOR EVIL 263

Next, we used atoms, lightweight concurrency constructs with less pro-
tection but a simpler usage model. We modified an atom outside of a
transaction.

Finally, we used agents to implement a pool that could be used to
do long-running computations. Agents were different from Io actors,
because we could mutate the value of the agent with an arbitrary func-
tion. Agents also returned a snapshot in time, a value that may be
changed at any time.

Day 3 Self-Study

On day 2, your focus was on advanced programming abstractions. Day
3 brought the concurrency constructs of Clojure. In these exercises,
you’ll put some of what you’ve learned to the test.

Find:

• A queue implementation that blocks when the queue is empty and
waits for a new item in the queue

Do:

• Use refs to create a vector of accounts in memory. Create debit
and credit functions to change the balance of an account.

In this section, I’m going to outline a single problem called sleeping

barber. It was created by Edsger Dijkstra in 1965. It has these charac-
teristics:

• A barber shop takes customers.

• Customers arrive at random intervals, from ten to thirty millisec-
onds.

• The barber shop has three chairs in the waiting room.

• The barber shop has one barber and one barber chair.

• When the barber’s chair is empty, a customer sits in the chair,
wakes up the barber, and gets a haircut.

• If the chairs are occupied, all new customers will turn away.

• Haircuts take twenty milliseconds.

• After a customer receives a haircut, he gets up and leaves.

Write a multithreaded program to determine how many haircuts a bar-
ber can give in ten seconds.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=263

WRAPPING UP CLOJURE 264

7.5 Wrapping Up Clojure

Clojure combines the power of a Lisp dialect with the convenience of
the JVM. From the JVM, Clojure benefits from the existing commu-
nity, deployment platform, and code libraries. As a Lisp dialect, Clojure
comes with the corresponding strengths and limitations.

The Lisp Paradox

Clojure is perhaps the most powerful and flexible language in this book.
Multimethods allow multiparadigm code, and macros let you redefine
the language on the fly. No other language in this book provides this
powerful combination. That flexibility has proven to be an incredible
strength. In Hackers and Painters, Graham chronicles a start-up that
leveraged productivity with Lisp to achieve productivity that no other
vendors could match. Some emerging consultancies are taking the
same approach, betting that Clojure will provide a productivity and
quality advantage that other languages simply cannot match.

Lisp’s flexibility can also be a weakness. Macro expansion is a powerful
feature in the hands of an expert but will lead to unmitigated disaster
without the proper thought and care. The same ability to effortlessly
apply many powerful abstractions in a few lines of code makes Lisp
especially demanding for all but the most skilled programmers.

To successfully evaluate Clojure, you need to look at Lisp but also the
other unique aspects of the Java ecosystem and the new unique fea-
tures. Let’s take a deeper look at the fundamental strengths of Clojure.

Core Strengths

Clojure is one of a handful of languages vying for the position as the
next great popular language on the Java virtual machine. There are
many reasons that it is a powerful candidate.

A Good Lisp

Tim Bray, programming language expert and superblogger, called Clo-
jure a good Lisp in a post called “Eleven Theses on Clojure.”7 In fact,
he calls Clojure “the best Lisp ever.” I would agree that Clojure is a very
good Lisp.

7. http://www.tbray.org/ongoing/When/200x/2009/12/01/Clojure-Theses

Report erratum

this copy is (P1.0 printing, October 2010)

http://www.tbray.org/ongoing/When/200x/2009/12/01/Clojure-Theses
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=264

WRAPPING UP CLOJURE 265

In this chapter, you saw Rich Hickey’s discussion on what makes Clo-
jure such a good Lisp:

• Reduced parentheses. Clojure improves readability by opening up
the syntax a little, including brackets for vectors, braces for maps,
and a combination of characters for sets.

• The ecosystem. Lisp’s many dialects water down the support and
library set that you can have for any single dialect. Ironically, hav-
ing one more dialect can help solve that problem. By being on the
JVM, Clojure can take advantage of Java programmers who are
looking for more and the fabulous set of libraries.

• Restraint. By exercising restraint and limiting Clojure’s syntax to
avoid reader macros, Hickey effectively limited Clojure’s power but
also decreased the likelihood that harmful splinter dialects might
emerge.

You might appreciate Lisp as a programming language in its own right.
By that measure, you can look at Clojure purely as a new Lisp. On that
level, it succeeds.

Concurrency

Clojure’s approach to concurrency has the potential to change the way
we design concurrent systems completely. STM does place some addi-
tional burden on developers because of its novelty, but for the first time,
it protects developers by detecting whether state mutations happen
within appropriately protected functions. If you’re not within a trans-
action, you can’t mutate state.

Java Integration

Clojure has great integration with Java. It uses some native types such
as strings and numbers transparently and offers type hints for perfor-
mance. But Clojure shines by allowing tight JVM integration, so Clojure
types can fully participate in Java applications. You’ll soon see much
more of Clojure itself implemented within the JVM.

Lazy Evaluation

Clojure adds powerful lazy evaluation features. Lazy evaluation can
simplify problems. You have seen only a taste of how lazy sequences can
shape the way you attack a problem. Lazy sequences can reduce com-
putation overhead significantly by delaying execution until it is actu-
ally needed or by preventing execution altogether. Finally, lazy problem

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=265

WRAPPING UP CLOJURE 266

solving offers just one more tool to solve difficult problems. You can
often use lazy sequences to replace recursion, iteration, or realized
collections.

Data as Code

Programs are lists. As with any Lisp, you can represent data as code.
Working with Ruby has helped me see the value of writing programs in
programs. I think this is the most important capability of any program-
ming language. Functional programs allow metaprogramming through
higher-order functions. Lisp extends this idea through evaluating data
as code.

Core Weaknesses

Clojure is a language that’s firmly targeted as a general-purpose pro-
gramming language. Whether it can actually be broadly successful on
the JVM is yet to be determined. Clojure has wonderful abstractions
but many of them. To truly embrace and use those features effectively
and safely, a programmer will need to be highly educated and extremely
talented. Here are some of my concerns.

Prefix Notation

Representing code in list form is one of the most powerful features in
any Lisp, but there is a cost—prefix notation.8 Typical object-oriented
languages have a wildly different syntax. The adjustment to prefix nota-
tion is not easy. It requires a better memory and requires a developer
to comprehend code from the inside out, rather than outside in. Some-
times, I find that reading Clojure pushes me toward understanding too
much detail too soon. At best, Lisp syntax pushes my short-term mem-
ory. With experience, I’m told this improves. I’ve not yet turned that
corner.

Readability

Another cost to data as code is the oppressive number of parentheses.
Optimizing for people and computers is not at all the same thing. The
location and number of parentheses is still a problem. Lisp developers
lean heavily on their editors to provide the feedback for matching paren-
theses, but tools can never fully mask readability problems. Kudos to
Rich for improving this problem, but it will still be a problem.

8. Clojure does have left-to-right macros, ->> and ->, which mitigate these problems a
little.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=266

WRAPPING UP CLOJURE 267

Learning Curve

Clojure is rich, and the learning curve is oppressive. You need to have
an extremely talented and experienced team to make Lisp work. Lazy
sequences, functional programming, macro expansion, transactional
memory, and the sophistication of the approaches are all powerful con-
cepts that take time to master.

Limited Lisp

All compromises have some cost. By being on the JVM, Clojure limits
tail-recursion optimization. Clojure programmers must use the awk-
ward recur syntax. Try implementing (size x) that computes the size of a
sequence x with recursion and with loop/recur.

The elimination of user-defined reader macros is also significant. The
benefit is clear. Reader macros, when abused, can lead to the splinter-
ing of the language. The cost, too, is clear. You lose one more metapro-
gramming tool.

Accessibility

One of the most beautiful aspects of Ruby or an early Java is its acces-
sibility as a programming language. Both of those languages were rela-
tively easy to pick up. Clojure places tremendous demands on a devel-
oper. It has so many abstraction tools and concepts that the result can
be overwhelming.

Final Thoughts

Most of Clojure’s strengths and weaknesses are related to the power
and flexibility. True, you might work hard to learn Clojure. In fact, if
you’re a Java developer, you’re already working hard. You’re just spend-
ing your time on Java application-level abstractions. You are looking
for looser coupling through Spring or aspect-oriented programming, for
example. You’re just not getting the full benefits of additional flexibil-
ity at the language level. For many, that trade-off has worked. I will
humbly suggest that the new demands of concurrency and complexity
will continue to make the Java platform less and less viable.

If you need an extreme programming model and are willing to pay the
price of learning the language, Clojure is a great fit. I think this is a
great language for disciplined, educated teams looking for leverage. You
can build better software faster with Clojure.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=267

Logic is little tweeting bird chirping in meadow.

Spock

Chapter 8

Haskell
Haskell represents purity and freedom for many functional program-
ming purists. It’s rich and powerful, but the power comes at a price.
You can’t eat just a couple of bites. Haskell will force you to eat the
whole functional programming burrito. Think Spock from Star Trek.
The quote above1 is typical, embracing logic and truth. His charac-
ter has a single-minded purity that has endeared him to generations.
Where Scala, Erlang, and Clojure let you use imperative concepts in
small doses, Haskell leaves no such wiggle room. This pure functional
language will challenge you when it’s time to do I/O or accumulate
state.

8.1 Introducing Haskell

As always, to understand why a language embraces a certain set of
compromises, you should start with the history. In the early and mid-
1980s, pure functional programming splintered across several lan-
guages. The key concepts driving new research were lazy processing, as
we encountered in Clojure, and pure functional programming. A group
from the Functional Programming Languages and Computer Architec-
ture conference in 1987 formed and decided to build an open standard
for a pure functional language. Out of that group, Haskell was born in
1990 and revised again in 1998. The current standard, called Haskell
98, has been revised several times, including a revision of Haskell 98
and the definition of a new version of Haskell called Haskell Prime.

1. Star Trek: The Original Series, Episodes 41 and 42: “I, Mudd”/“The Trouble with Trib-
bles.” Directed by Marc Daniels. 1967; Burbank, CA: 20th CBS Paramount International
Television, 2001.

DAY 1: LOGICAL 269

So, Haskell was built from the ground up to be a pure functional lan-
guage, combining ideas from the best functional languages, with special
emphasis on lazy processing.

Haskell has strong, static typing, like Scala. The type model is mostly
inferred and is widely considered to be one of the most effective type
systems of any functional language. You’ll see that the type system
allows for polymorphism and very clean designs.

Haskell also supports other concepts you’ve seen in this book. Haskell
allows Erlang-style pattern matching and guards. You’ll also find Clo-
jure-style lazy evaluation and list comprehensions from both Clojure
and Erlang.

As a pure functional language, Haskell does not do side effects. Instead,
a function can return a side effect, which is later executed. You’ll see
an example of this in day 3, as well as an example of preserving state
using a concept called monads.

The first couple of days will get you through typical functional program-
ming concepts, such as expressions, defining functions, higher-order
functions, and the like. We’ll also get into Haskell’s typing model, which
will give you some new concepts. Day 3 will stretch you. We’ll look at the
parameterized type system and monads, which are sometimes difficult
concepts to grasp. Let’s get started.

8.2 Day 1: Logical

Like Spock, you’ll find that Haskell’s core concepts are easy to grasp.
You’ll work strictly with defining functions. Given the same input pa-
rameters, you’ll get the same output parameters, every time. I’m going
to use GHC, or the Glasgow Haskell Compiler, version 6.12.1. It’s widely
available across many platforms, but you can find other implementa-
tions as well. As always, I’m going to start in the console. Type ghci:

GHCi, version 6.12.1: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

You’ll see Haskell load a few packages, and then you’re ready to type
commands.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=269

DAY 1: LOGICAL 270

Expressions and Primitive Types

We’re going to talk about Haskell’s type system a little later. In this
section, we’ll focus on using primitive types. As with many of the other
languages, we’ll start with numbers and some simple expressions. We’ll
move quickly into more advanced types such as functions.

Numbers

By now, you know the drill. Type a few expressions:

Prelude> 4

4

Prelude> 4 + 1

5

Prelude> 4 + 1.0

5.0

Prelude> 4 + 2.0 * 5

14.0

Order of operations works just about like you’d expect:

Prelude> 4 * 5 + 1

21

Prelude> 4 * (5 + 1)

24

Notice you can group operations with parentheses. You’ve seen a couple
of types of numbers. Let’s look at some character data.

Character Data

Strings are represented with double quotes, like this:

Prelude> "hello"

"hello"

Prelude> "hello" + " world"

<interactive>:1:0:

No instance for (Num [Char])

arising from a use of `+' at <interactive>:1:0-17

Possible fix: add an instance declaration for (Num [Char])

In the expression: "hello" + " world"

In the definition of `it': it = "hello" + " world"

Prelude> "hello" ++ " world"

"hello world"

Notice that you’ll concatenate with ++ instead of +. You can represent
single characters like this:

Prelude> 'a'

'a'

Prelude> ['a', 'b']

"ab"

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=270

DAY 1: LOGICAL 271

Notice that a string is just a list of characters. Let’s briefly look at some
boolean values.

Booleans

A boolean is another primitive type that works much as they do in most
of the other infix notation languages in this book. These are equal and
not-equal expressions, returning booleans:

Prelude> (4 + 5) == 9

True

Prelude> (5 + 5) /= 10

False

Try an if/then statement:

Prelude> if (5 == 5) then "true"

<interactive>:1:23: parse error (possibly incorrect indentation)

That’s the first major departure from other languages in the book. In
Haskell, indentation is significant. Haskell is guessing that there’s a
follow-up line that is not indented correctly. We’ll see some indented
structures later. We won’t talk about layouts, which control indentation
patterns; follow predictable indentation strategies that mimic what you
see here, and you will be OK. Let’s do a full if/then/else statement:

Prelude> if (5 == 5) then "true" else "false"

"true"

In Haskell, if is a function, not a control structure, meaning it returns
a value just like any other function. Let’s try a few true/false values:

Prelude> if 1 then "true" else "false"

<interactive>:1:3:

No instance for (Num Bool)

arising from the literal `1' at <interactive>:1:3

...

Haskell is strongly typed. if takes strictly boolean types. Let’s try to force
another type collision:

Prelude> "one" + 1

<interactive>:1:0:

No instance for (Num [Char])

arising from a use of `+' at <interactive>:1:0-8

...

This error message gives us the first glimpse into Haskell’s type system.
It says “There is no function called + that takes a Num argument fol-

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=271

DAY 1: LOGICAL 272

lowed by [Char], a list of characters.” Notice that we haven’t told Haskell
what types things are. The language is inferring types based on clues.
At any point, you can see what Haskell’s type inference is doing. You
can use :t, or you can turn on the :t option that does something similar,
like this:

Prelude> :set +t

Prelude> 5

5

it :: Integer

Prelude> 5.0

5.0

it :: Double

Prelude> "hello"

"hello"

it :: [Char]

Prelude> (5 == (2 + 3))

True

it :: Bool

Now, after every expression, you can see the type that each expression
returns. Let me warn you that using :t with numbers is confusing. That
has to do with the interplay between numbers and the console. Try to
use the :t function:

Prelude> :t 5

5 :: (Num t) => t

That is not the same as the type we got before, it :: Integer. The con-
sole will try to treat numbers as generically as possible, unless you
have done a :set t. Rather than a pure type, you get a class, which is a
description of a bunch of similar types. We’ll learn more in Section 8.4,
Classes, on page 299.

Functions

The centerpiece of the whole Haskell programming paradigm is the
function. Since Haskell has strong, static typing, you’ll specify each
function in two parts: an optional type specification and the implemen-
tation. We’re going to go quickly through concepts you’ve seen in other
languages, so hang on tight.

Defining Basic Functions

A Haskell function traditionally has two parts: the type declaration and
the function declaration.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=272

DAY 1: LOGICAL 273

Initially, we’re going to be defining functions within the console. We’ll
use the let function to bind values to implementations. Before defining
a function, try let. As with Lisp, in Haskell, let binds a variable to a
function in a local scope.

Prelude> let x = 10

Prelude> x

10

When you’re coding a Haskell module, you’ll declare functions like this:

double x = x * 2

In the console, though, we’ll use let to assign the function in local scope,
so we can use it. Here’s an example of a simple double function:

Prelude> let double x = x * 2

Prelude> double 2

4

At this point, we’ll switch to using files with programs. We can then
work with multiline definitions. Using GHC, the full double definition
would look like this:

Download haskell/double.hs

module Main where

double x = x + x

Notice that we added a module called Main. In Haskell, modules collect
related code into a similar scope. The Main module is special. It is the
top-level module. Focus on the double function for now. Load Main into
the console, and use it like this:

Prelude> :load double.hs

[1 of 1] Compiling Main (double.hs, interpreted)

Ok, modules loaded: Main.

*Main> double 5

10

So far, we haven’t enforced a type. Haskell is being forgiving by inferring
a type for us. There’s definitely an underlying type definition for each
function. Here’s an example of a definition with a type definition:

Download haskell/double_with_type.hs

module Main where

double :: Integer -> Integer

double x = x + x

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/double.hs
http://media.pragprog.com/titles/btlang/code/haskell/double_with_type.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=273

DAY 1: LOGICAL 274

And we can load it and use it as before:

[1 of 1] Compiling Main (double_with_type.hs, interpreted)

Ok, modules loaded: Main.

*Main> double 5

10

You can see the associated type of the new function:

*Main> :t double

double :: Integer -> Integer

This definition means that the function double takes an Integer argu-
ment (the first Integer) and returns an Integer.

This type definition is limited. If you went back to the earlier, typeless
version of double, you’d see something else entirely:

*Main> :t double

double :: (Num a) => a -> a

Now, that’s different! In this case, a is a type variable. The definition
means “The function double takes a single argument of some type a

and returns a value of that same type a.” With this improved definition,
we can use this function with any type that supports the + function.
Let’s start to crank up the power. Let’s look at implementing something
slightly more interesting, a factorial.

Recursion

Let’s start with a little recursion. Here’s a recursive one-liner that imple-
ments a factorial within the console:

Prelude> let fact x = if x == 0 then 1 else fact (x - 1) * x

Prelude> fact 3

6

That’s a start. The factorial of x is 1 if x is 0, and it’s fact (x - 1) * x

otherwise. We can do a little better by introducing pattern matching.
Actually, this syntax looks and acts a lot like Erlang’s pattern matching:

Download haskell/factorial.hs

module Main where

factorial :: Integer -> Integer

factorial 0 = 1

factorial x = x * factorial (x - 1)

The definition has three lines. The first declares the type of the argu-
ment and return value. The next two are different functional definitions
that depend on the pattern match of the inbound arguments. factorial

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/factorial.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=274

DAY 1: LOGICAL 275

of 0 is 1, and factorial of n is factorial x = x * factorial (x - 1). That defi-
nition looks exactly like the mathematical definition. In this case, the
order of the patterns is important. Haskell will take the first match. If
you wanted to reverse the order, you’d have to use a guard. In Haskell,
guards are conditions that restrict the value of the arguments, like this:

Download haskell/fact_with_guard.hs

module Main where

factorial :: Integer -> Integer

factorial x

| x > 1 = x * factorial (x - 1)

| otherwise = 1

In this case, the guards have boolean values on the left and the func-
tion to apply on the right. When a guard is satisfied, Haskell calls the
appropriate function. Guards often replace pattern matching, and we’re
using it to initiate the base condition for our recursion.

Tuples and Lists

As you’ve seen in other languages, Haskell depends on tail-recursion
optimization to efficiently deal with recursion. Let’s see several versions
of a Fibonacci sequence with Haskell. First, we’ll see a simple case:

Download haskell/fib.hs

module Main where

fib :: Integer -> Integer

fib 0 = 1

fib 1 = 1

fib x = fib (x - 1) + fib (x - 2)

That’s simple enough. fib 0 or fib 1 is 1, and fib x is fib (x - 1) + fib (x - 2). But
that solution is inefficient. Let’s build a more efficient solution.

Programming with Tuples

We can use tuples to provide a more efficient implementation. A tuple
is a collection of a fixed number of items. Tuples in Haskell are comma-
separated items in parentheses. This implementation creates a tuple
with consecutive Fibonacci numbers and uses a counter to assist in
recursion. Here’s the base solution:

fibTuple :: (Integer, Integer, Integer) -> (Integer, Integer, Integer)

fibTuple (x, y, 0) = (x, y, 0)

fibTuple (x, y, index) = fibTuple (y, x + y, index - 1)

fibTuple takes a three-tuple and returns a three-tuple. Be careful here.
A single parameter that is a three-tuple is not the same as taking three

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/fact_with_guard.hs
http://media.pragprog.com/titles/btlang/code/haskell/fib.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=275

DAY 1: LOGICAL 276

parameters. To use the function, we’ll start recursion with two num-
bers, 0 and 1. We will also provide a counter. As the counter counts
down, the first two numbers get successively larger numbers in the
sequence. Successive calls to fibTuple (0, 1, 4) would look like this:

• fibTuple (0, 1, 4)

• fibTuple (1, 1, 3)

• fibTuple (1, 2, 2)

• fibTuple (2, 3, 1)

• fibTuple (3, 5, 0)

You can run the program, like this:

Prelude> :load fib_tuple.hs

[1 of 1] Compiling Main (fib_tuple.hs, interpreted)

Ok, modules loaded: Main.

*Main> fibTuple(0, 1, 4)

(3, 5, 0)

The answer will be in the first position. We can grab the answer like
this:

fibResult :: (Integer, Integer, Integer) -> Integer

fibResult (x, y, z) = x

We just use pattern matching to grab the first position. We can simplify
the usage model like this:

fib :: Integer -> Integer

fib x = fibResult (fibTuple (0, 1, x))

That function uses the two helper functions to build a quite fast Fibo-
nacci generator. Here is the whole program together:

Download haskell/fib_tuple.hs

module Main where

fibTuple :: (Integer, Integer, Integer) -> (Integer, Integer, Integer)

fibTuple (x, y, 0) = (x, y, 0)

fibTuple (x, y, index) = fibTuple (y, x + y, index - 1)

fibResult :: (Integer, Integer, Integer) -> Integer

fibResult (x, y, z) = x

fib :: Integer -> Integer

fib x = fibResult (fibTuple (0, 1, x))

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/fib_tuple.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=276

DAY 1: LOGICAL 277

And here are the results (which appear instantaneously):

*Main> fib 100

354224848179261915075

*Main> fib 1000

43466557686937456435688527675040625802564660517371780

40248172908953655541794905189040387984007925516929592

25930803226347752096896232398733224711616429964409065

33187938298969649928516003704476137795166849228875

Let’s try another approach with function composition.

Using Tuples and Composition

Sometimes, you need to combine functions by chaining them together
by passing the results of one function to another. Here’s an example
that computes the second item of a list by matching the head of the tail

of a list:

*Main> let second = head . tail

*Main> second [1, 2]

2

*Main> second [3, 4, 5]

4

We’re just defining a function in the console. second = head . tail is equiv-
alent to second lst = head (tail lst). We’re feeding the result of one function
into another. Let’s use this feature with yet another Fibonacci sequence.
We’ll compute a single pair, as before, but without a counter:

fibNextPair :: (Integer, Integer) -> (Integer, Integer)

fibNextPair (x, y) = (y, x + y)

Given two numbers in the sequence, we can always compute the next
one. The next job is to recursively compute the next item in the
sequence:

fibNthPair :: Integer -> (Integer, Integer)

fibNthPair 1 = (1, 1)

fibNthPair n = fibNextPair (fibNthPair (n - 1))

The base case is the value (1, 1) for an n of 1. From there, it is simple.
We just compute the next item of the sequence based on the last one.
We can get any pair in the sequence:

*Main> fibNthPair(8)

(21,34)

*Main> fibNthPair(9)

(34,55)

*Main> fibNthPair(10)

(55,89)

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=277

DAY 1: LOGICAL 278

Now, all that remains is to match the first item of each pair and combine
them into a sequence. We’ll use a convenient function composition of
fst to grab the first element and fibNthPair to build a pair:

Download haskell/fib_pair.hs

module Main where

fibNextPair :: (Integer, Integer) -> (Integer, Integer)

fibNextPair (x, y) = (y, x + y)

fibNthPair :: Integer -> (Integer, Integer)

fibNthPair 1 = (1, 1)

fibNthPair n = fibNextPair (fibNthPair (n - 1))

fib :: Integer -> Integer

fib = fst . fibNthPair

Said another way, we take the first element of the nth tuple. And we’re
done. With a little work done for tuples, let’s solve a few problems with
lists.

Traversing Lists

You’ve seen lists in many different languages. I’m not going to fully
rehash them, but I will go over a basic recursion example and then
introduce a few functions you haven’t seen yet. Breaking a list into the
head and tail can work in any binding, like a let statement or a pattern
match:

let (h:t) = [1, 2, 3, 4]

*Main> h

1

*Main> t

[2,3,4]

We’re binding the list [1, 2, 3, 4] to (h:t). Think of this construct as the
various head|tail constructs you’ve seen in Prolog, Erlang, and Scala.
With this tool, we can do a few simple recursive definitions. Here are
size and prod functions for a list:

Download haskell/lists.hs

module Main where

size [] = 0

size (h:t) = 1 + size t

prod [] = 1

prod (h:t) = h * prod t

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/fib_pair.hs
http://media.pragprog.com/titles/btlang/code/haskell/lists.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=278

DAY 1: LOGICAL 279

I’m going to use Haskell’s type inference to handle the types of these
functions, but the intention is clear. The size of a list is 1 + the size of a
tail.

Prelude> :load lists.hs

[1 of 1] Compiling Main

(lists.hs, interpreted)

Ok, modules loaded: Main.

*Main> size "Fascinating."

12

zip is a powerful way to combine lists. Here’s the function in action:

*Main> zip "kirk" "spock"

[('kirk','spock')]

So, we built a tuple of the two items. You can also zip lists together, like
this:

Prelude> zip ["kirk", "spock"] ["enterprise", "reliant"]

[("kirk","enterprise"),("spock","reliant")]

It’s an effective way to combine two lists.

So far, the features you’ve seen in Haskell have been remarkably similar
to those covered in other languages. Now, we’ll start working with some
more advanced constructs. We’ll look at advanced lists including ranges
and list comprehensions.

Generating Lists

We’ve already looked at a few ways to process lists with recursion. In
this section, we’ll look at a few options for generating new lists. In par-
ticular, we’ll look at recursion, ranges, and list comprehensions.

Recursion

The most basic building block for list construction is the : operator,
which combines a head and tail to make a list. You’ve seen the operator
in reverse used in pattern matching as we call a recursive function.
Here’s : on the left side of a let:

Prelude> let h:t = [1, 2, 3]

Prelude> h

1

Prelude> t

[2,3]

We can also use : to do construction, instead of deconstruction.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=279

DAY 1: LOGICAL 280

Here’s how that might look:

Prelude> 1:[2, 3]

[1,2,3]

Remember, lists are homogeneous. You can’t add a list to a list of inte-
gers, for example:

Prelude> [1]:[2, 3]

<interactive>:1:8:

No instance for (Num [t])

arising from the literal `3' at <interactive>:1:8

You could, however, add a list to a list of lists or even an empty list:

Prelude> [1]:[[2], [3, 4]]

[[1],[2],[3,4]]

Prelude> [1]:[]

[[1]]

Here’s list construction in action. Let’s say we wanted to create a func-
tion that returns the even numbers from a list. One way to write that
function is with list construction:

Download haskell/all_even.hs

module Main where

allEven :: [Integer] -> [Integer]

allEven [] = []

allEven (h:t) = if even h then h:allEven t else allEven t

Our function takes a list of integers and returns a list of even integers.
allEven for an empty list is an empty list. If there is a list, if the head is
even, we add the head to allEven applied to the tail. If the head is odd,
we discard it by applying allEven to the tail. No problem. Let’s look at
some other ways to build lists.

Ranges and Composition

As with Ruby and Scala, Haskell includes first-class ranges and some
syntactic sugar to support them. Haskell provides a simple form, con-
sisting of the end points of a range:

Prelude> [1..2]

[1,2]

Prelude> [1..4]

[1,2,3,4]

You specify the endpoints, and Haskell computes the range. The default
increment is 1. What if Haskell can’t reach the endpoint with the default
increment?

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/all_even.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=280

DAY 1: LOGICAL 281

Prelude> [10..4]

[]

You’ll get an empty list. You can specify an increment by specifying the
next item in the list:

Prelude> [10, 8 .. 4]

[10,8,6,4]

You can also work in fractional numbers:

Prelude> [10, 9.5 .. 4]

[10.0,9.5,9.0,8.5,8.0,7.5,7.0,6.5,6.0,5.5,5.0,4.5,4.0]

Ranges are syntactic sugar for creating sequences. The sequences need
not be bound. As with Clojure, you can take some of the elements of a
sequence:

Prelude> take 5 [1 ..]

[1,2,3,4,5]

Prelude> take 5 [0, 2 ..]

[0,2,4,6,8]

We’ll talk more about lazy sequence in day 2. For now, let’s look at
another way to automatically generate lists, the list comprehension.

List Comprehensions

We first looked at list comprehensions in the Erlang chapter. In Haskell,
a list comprehension works the same way. On the left side, you’ll see
an expression. On the right side, you’ll see generators and filters, just
as you did with Erlang. Let’s look at a few examples. To double all items
in a list, we do this:

Prelude> [x * 2 | x <- [1, 2, 3]]

[2,4,6]

In English, the list comprehension means “Collect x * 2 where x is taken
from the list [1, 2, 3].”

As with Erlang, we can also use pattern matching within our list com-
prehensions. Say we had a list of points representing a polygon and
wanted to flip the polygon diagonally. We could just transpose x and y,
like this:

Prelude> [(y, x) | (x, y) <- [(1, 2), (2, 3), (3, 1)]]

[(2,1),(3,2),(1,3)]

Or, to flip the polygon horizontally, we could subtract x from 4, like this:

Prelude> [(4 - x, y) | (x, y) <- [(1, 2), (2, 3), (3, 1)]]

[(3,2),(2,3),(1,1)]

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=281

DAY 1: LOGICAL 282

We can also compute combinations. Let’s say we wanted to find all of
the possible landing parties of two taken from a crew of Kirk, Spock, or
McCoy:

Prelude> let crew = ["Kirk", "Spock", "McCoy"]

Prelude> [(a, b) | a <- crew, b <- crew]

[("Kirk","Kirk"),("Kirk","Spock"),("Kirk","McCoy"),

("Spock","Kirk"),("Spock","Spock"),("Spock","McCoy"),

("McCoy","Kirk"),("McCoy","Spock"),("McCoy","McCoy")]

That composition almost worked but did not remove duplicates. We can
add conditions to filter the list comprehension like this:

Prelude> [(a, b) | a <- crew, b <- crew, a /= b]

[("Kirk","Spock"),("Kirk","McCoy"),("Spock","Kirk"),

("Spock","McCoy"),("McCoy","Kirk"),("McCoy","Spock")]

That is a little better, but order doesn’t matter. We can do a little better
by including only the options that appear in sorted order, discarding
the rest:

Prelude> [(a, b) | a <- crew, b <- crew, a < b]

[("Kirk","Spock"),("Kirk","McCoy"),("McCoy","Spock")]

With a short, simple list comprehension, we have the answer. List com-
prehensions are a great tool for rapidly building and transforming lists.

An Interview with Philip Wadler

Now that you’ve seen some of the core features of Haskell, let’s see
what someone from the committee that designed Haskell has to say. A
theoretical computer science professor at the University of Edinburgh,
Philip Wadler is an active contributor of not only Haskell but also Java
and XQuery. Previously, he worked or studied at Avaya Labs, Bell Labs,
Glasgow, Chalmers, Oxford, CMU, Xerox Parc, and Stanford.

Bruce Tate: Why did your team create Haskell?

Philip Wadler: In the late 1980s there were a large number of different

groups creating designs and implementations of functional languages,

and we realized we would be stronger working together than apart. The

original goals were not modest: we wanted the language to be a foun-

dation for research, suitable for teaching, and up to industrial uses. The

entire history is covered in detail in a paper we wrote for the History of

Programming Languages conference, which you can find on the Web.2

2. http://www.haskell.org/haskellwiki/History_of_Haskell

Report erratum

this copy is (P1.0 printing, October 2010)

http://www.haskell.org/haskellwiki/History_of_Haskell
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=282

DAY 1: LOGICAL 283

Bruce Tate: What are the things you like about it the most?

Philip Wadler: I really enjoy programming with list comprehensions.

It’s nice to see that they’ve finally made their way into other languages,

like Python.

Type classes provide a simple form of generic programming. You define a

data type, and just by adding one keyword, derived, you can get routines

to compare values, to convert values to and from strings, and so on. I find

that very convenient and miss it when I’m using other languages.

Any good programming language really becomes a means of extending

itself to embed other programming languages specialized to the task at

hand. Haskell is particularly good as a tool for embedding other lan-

guages. Laziness, lambda expressions, monad and arrow notation, type

classes, the expressive type system, and template Haskell all support

extending the language in various ways.

Bruce Tate: What are the things you’d change if you had it to do all

over again?

Philip Wadler: With distribution becoming so important, we need to

focus on programs that run on multiple machines, sending values from

one to the other. When you send a value, you probably want it to be the

value itself (eager evaluation), rather than a program (and the values of

all the free variables of the program) that can be evaluated to yield the

value. So, in the distributed world, I think it would be better to be eager

by default but make it easy to be lazy when you want.

Bruce Tate: What’s the most interesting problem you’ve seen solved

with Haskell?

Philip Wadler: I’m always blown away by the uses folks find for

Haskell. I remember years ago being amazed at uses of Haskell for

natural-language processing and years after that when it was used for

protein folding with an application to fighting AIDS. I just had a look at

the Haskell Community page, and it lists forty industrial applications of

Haskell. There are now many users in finance: ABN Amro, Credit Suisse,

Deutsche Bank, and Standard Chartered. Facebook uses Haskell for an

in-house tool to update code in PHP. One of my favorites is the use of

Haskell for garbage collection—not the kind we do in software but real

garbage collection...programming engines to be used in garbage trucks!

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=283

DAY 1: LOGICAL 284

What We Learned in Day 1

Haskell is a functional programming language. Its first distinguishing
characteristic is that it is a pure functional language. A function with
the same arguments will always produce the same result. There are no
side effects. We spent most of day 1 covering features you have seen in
other languages in this book.

We first covered basic expressions and simple data types. Since there
are no mutable variable assignments, we used recursion to define some
simple math functions and to deal with lists. We worked with basic
Haskell expressions and rolled those up into functions. We saw pattern
matching and guards as we found in Erlang and Scala. We used lists
and tuples as the basic collections as you found in Erlang.

Finally, we took a look at building lists that took us into list comprehen-
sions, ranges, and even lazy sequences. Let’s put some of those ideas
into practice.

Day 1 Self-Study

By this time, writing functional programs should be getting easier if
you’ve been working through all of the other functional languages. In
this section, I’m going to push you a little harder.

Find:

• The Haskell wiki

• A Haskell online group supporting your compiler of choice

Do:

• How many different ways can you find to write allEven?

• Write a function that takes a list and returns the same list in
reverse.

• Write a function that builds two-tuples with all possible combina-
tions of two of the colors black, white, blue, yellow, and red. Note
that you should include only one of (black, blue) and (blue, black).

• Write a list comprehension to build a childhood multiplication
table. The table would be a list of three-tuples where the first two
are integers from 1–12 and the third is the product of the first two.

• Solve the map-coloring problem (Section 4.2, Map Coloring, on
page 101) using Haskell.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=284

DAY 2: SPOCK’S GREAT STRENGTH 285

8.3 Day 2: Spock’s Great Strength

With some characters, you might not notice their best qualities for
quite some time. With Spock, it’s easy to grasp his great strengths.
He’s brilliant, always logical, and completely predictable. Haskell’s great
strength is also that predictability and simplicity of logic. Many univer-
sities teach Haskell in the context of reasoning about programs. Haskell
makes creating proofs for correctness far easier than imperative coun-
terparts. In this section, we’ll dig into the practical concepts that lead
to better predictability. We will start with higher-order functions. Then,
we’ll talk about Haskell’s strategy for combining them. That will take us
into partially applied functions and currying. We’ll finally look at lazy
computation. It’s going to be a full day, so let’s get started.

Higher-Order Functions

Every language in this book addresses the idea of higher-order pro-
gramming. Haskell depends on the concept extensively. We will work
quickly through anonymous functions and then apply them with the
many prebuilt functions that work on lists. I will move much faster
than I have with the other languages, because you’ve seen the concepts
before, and there’s so much ground to cover. We’ll start things with
anonymous functions.

Anonymous Functions

As you might expect, anonymous functions in Haskell have a ridicu-
lously simple syntax. The form is (\param1 .. paramn -> function_body).
Try it, like this:

Prelude> (\x -> x) "Logical."

"Logical."

Prelude> (\x -> x ++ " captain.") "Logical,"

"Logical, captain."

Taken alone, they don’t add much. Combined with other functions, they
become extremely powerful.

map and where

First, we built an anonymous function that just returns the first param-
eter. Next, we append a string. As you’ve seen in other languages,
anonymous functions are an important feature for list libraries. Haskell
has a map:

map (\x -> x * x) [1, 2, 3]

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=285

DAY 2: SPOCK’S GREAT STRENGTH 286

We’re applying the map function to an anonymous function and a list.
map applies the anonymous function to each item in the list and col-
lects the results. There’s no surprise here, but that form might be a bit
much to digest all at once. We can package it all up as a function and
break out the anonymous function as a locally scoped function, like
this:

Download haskell/map.hs

module Main where

squareAll list = map square list

where square x = x * x

We’ve declared a function called squareAll that takes a parameter called
list. Next, we use map to apply a function called square to all the items in
list. Then, we use a new feature, called where, to declare a local version of
square. You don’t have to bind functions with where; you can also bind
any variable. We’ll see some examples of where throughout the rest of
the chapter. Here’s the result:

*Main> :load map.hs

[1 of 1] Compiling Main (map.hs, interpreted)

Ok, modules loaded: Main.

*Main> squareAll [1, 2, 3]

[1,4,9]

You can also use map with part of a function, called a section, like this:

Prelude> map (+ 1) [1, 2, 3]

[2,3,4]

(+ 1) is actually a partially applied function. The + function takes two
parameters, and we’ve supplied only one. The result is that we get a
function like (x + 1), with a single parameter x.

filter, foldl, foldr

The next common function is filter, which applies a test to items in a
list, like this:

Prelude> odd 5

True

Prelude> filter odd [1, 2, 3, 4, 5]

[1,3,5]

You can also fold left and right, just as you did in Clojure and Scala.
The functions you will use are variations of foldl and foldr:

Prelude> foldl (\x carryOver -> carryOver + x) 0 [1 .. 10]

55

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/map.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=286

DAY 2: SPOCK’S GREAT STRENGTH 287

We took an initial carry-over value of 0 and then applied the function to
every item in the list, using the result of the function as the carryOver

argument and each item of the list as the other. Another form of fold is
convenient when you are folding with an operator:

Prelude> foldl1 (+) [1 .. 3]

6

This is using the + operator as a pure function taking two parameters
and returning an integer. The result gives you the same thing as evalu-
ating this:

Prelude> 1 + 2 + 3

6

You can also fold right to left, with foldr1.

As you might imagine, Haskell offers many other functions in the libra-
ry of list functions, and many of them use higher-order functions.
Rather than spend a whole chapter on dealing with them, I’ll let you
do your own discovery. Now, I want to move on to the ways Haskell
combines functions to work together.

Partially Applied Functions and Currying

We’ve talked briefly about function composition and partially applied
functions. These concepts are important and central enough to Haskell
that we should spend a little more time here.

Every function in Haskell has one parameter. You might ask yourself,
“If that’s true, how could you write a function like + that adds two
numbers together?”

In fact, it is true. Every function does have one parameter. To simplify
the type syntax, let’s create a function called prod:

Prelude> let prod x y = x * y

Prelude> prod 3 4

12

We created a function, and you can see that it works. Let’s get the type
of the function:

Prelude> :t prod

prod :: (Num a) => a -> a -> a

The portion Num a => means “In the following type definition, a is a type
of Num.” You’ve seen the rest before, and I lied to you about the meaning
to simplify things. Now, it’s time to set the record straight. Haskell uses

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=287

DAY 2: SPOCK’S GREAT STRENGTH 288

a concept to split one function on multiple arguments into multiple
functions, each with one argument. Haskell does this job with partial
application.

Don’t let the term confuse you. Partial application binds some of the
arguments, but not all. For example, we can partially apply prod to
create some other functions:

Prelude> let double = prod 2

Prelude> let triple = prod 3

Look at the left side of these functions first. We defined prod with two
parameters, but we applied only the first one. So, computing prod 2 is
easy, Just take the original function of prod x y = x * y, substitute 2 for x,
and you have prod y = 2 * y. The functions work just as you’d expect:

Prelude> double 3

6

Prelude> triple 4

12

So, the mystery is solved. When Haskell computes prod 2 4, it is really
computing (prod 2) 4, like this:

• First, apply prod 2. That returns the function (\y -> 2 * y).

• Next, apply (\y -> 2 * y) 4, or 2 * 4, giving you 8.

That process is called currying, and just about every multiple-argument
function in Haskell gets curried. That leads to greater flexibility and
simpler syntax. Most of the time, you don’t really have to think about
it, because the value of curried and uncurried functions is equivalent.

Lazy Evaluation

Like Clojure’s sequence library, Haskell makes extensive use of lazy
evaluation. With it, you can build functions that return infinite lists.
Often, you’ll use list construction to form an infinite list. Take this
example that builds an infinite range, starting at x, in steps of y:

Download haskell/my_range.hs

module Main where

myRange start step = start:(myRange (start + step) step)

The syntax is strange, but the overall effect is beautiful. We’re building
a function called myRange, taking a starting point and a step for our
range. We use list composition to build a list with start as the head

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/my_range.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=288

DAY 2: SPOCK’S GREAT STRENGTH 289

and (myRange (start + step) step) as the tail. These are the successive
evaluations for myRange 1 1:

• 1:myRange (2 1)

• 1:2:myRange (3 1)

• 1:2:3:myRange (4 1)

...and so on.

This recursion will go on infinitely, so we’ll typically use the function
with others that will limit the recursion. Make sure you load my_range.hs

first:

*Main> take 10 (myRange 10 1)

[10,11,12,13,14,15,16,17,18,19]

*Main> take 5 (myRange 0 5)

[0,5,10,15,20]

Some recursive functions work more efficiently using list construction.
Here’s an example of the Fibonacci sequence, using lazy evaluation with
composition:

Download haskell/lazy_fib.hs

module Main where

lazyFib x y = x:(lazyFib y (x + y))

fib = lazyFib 1 1

fibNth x = head (drop (x - 1) (take (x) fib))

The first function builds a sequence where every number is the sum of
the previous two. We effectively have a sequence, but we can improve on
the API. To be a proper Fibonacci sequence, we must start the sequence
with 1 and 1, so fib seeds lazyFib with the first two numbers. Finally, we
have one more helper function that allows the user to grab just one
number of the sequence with drop and take. Here are the functions in
action:

*Main> take 5 (lazyFib 0 1)

[1,1,2,3,5]

*Main> take 5 (fib)

[1,1,2,3,5]

*Main> take 5 (drop 20 (lazyFib 0 1))

[10946,17711,28657,46368,75025]

*Main> fibNth 3

2

*Main> fibNth 6

8

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/lazy_fib.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=289

DAY 2: SPOCK’S GREAT STRENGTH 290

The three functions are beautiful and concise. We define an infinite
sequence, and Haskell computes only the part necessary to do the job.
You can really start to have fun when you start to combine infinite
sequences together. First, let’s add two Fibonacci sequences together,
offset by one:

*Main> take 5 (zipWith (+) fib (drop 1 fib))

[2,3,5,8,13]

Surprise. We get a Fibonacci sequence. These higher-order functions
play well together. We called zipWith, which pairs each item of the infinite
list by index. We passed it the + function. Or, we could double a range:

*Main> take 5 (map (*2) [1 ..])

[2,4,6,8,10]

We’re using map to apply the partially applied function * 2 to the infinite
range [1 ..], and then we’re using the infinite range, beginning with 1.

The nice thing about functional languages is that you can compose
them in unexpected ways. For example, we can use function composi-
tion in conjunction with partially applied functions and lazy sequences
effortlessly:

Main> take 5 (map ((2) . (* 5)) fib)

[10,10,20,30,50]

That code packs a punch, so let’s take it apart. Starting from the inside
and working out, we first have (* 5). That’s a partially applied function.
Whatever we pass into the function will be multiplied by five. We pass
that result into another partially applied function, (* 2). We pass that
composed function into map and apply the function to every element
in the infinite fib sequence. We pass that infinite result to take 5 and
generate the first five elements of a Fibonacci sequence, multiplied by
five and then again by 2.

You can easily see how you’d compose the solutions to problems. You
just pass one function to the next. In Haskell, f . g x is shorthand for
f(g x). When you’re building functions in this way, you might want to
apply them from first to last. You’d do so with the . operator. For exam-
ple, to invert an image, flip it vertically and then flip it horizontally,
an image processor might do something like (flipHorizontally . flipVertically

. invert) image.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=290

DAY 2: SPOCK’S GREAT STRENGTH 291

An Interview with Simon Peyton-Jones

To take a quick break, let’s hear from another person on the commit-
tee that created Haskell. Simon Peyton Jones spent seven years as a
lecturer at University College London and nine years as a professor at
Glasgow University, before moving to Microsoft Research (Cambridge)
in 1998 where his research focus is the implementation and applica-
tion of functional programming languages for uniprocessor and parallel
machines. He is the lead designer of the compiler used in this book.

Bruce Tate: Tell me about the creation of Haskell.

Simon Peyton-Jones: A very unusual thing about Haskell is that it

is a successful committee language. Think of any successful language,

and the chances are that it was originally developed by one person or

a very small team. Haskell is different: it was originally designed by an

international group of twenty-ish researchers. We had enough agreement

about the core principles of the language—and Haskell is a very princi-

pled language—to keep the design coherent.

Also, Haskell is enjoying a substantial upsurge in popularity some twen-

ty years after it was designed. Languages usually succeed or (mostly)

fail in the first few years of their lives, so what is going on? I believe

that it is because Haskell’s principled adherence to purity, the absence

of side effects, is an unfamiliar discipline that has prevented Haskell

from being a mainstream language. Those long-term benefits are gradu-

ally becoming apparent. Whether or not the mainstream languages of the

future look like Haskell, I believe they will have strong mechanisms for

controlling side effects.

Bruce Tate: What are the things you like about it the most?

Simon Peyton-Jones: Apart from purity, probably the most unusual

and interesting feature of Haskell is its type system. Static types are by

far the most widely used program verification technique available today:

millions of programmers write types (which are just partial specifications)

every day, and compilers check them every time they compile the pro-

gram. Types are the UML of functional programming: a design language

that forms an intimate and permanent part of the program.

From day 1 Haskell’s type system was unusually expressive, mainly

because of type classes and higher-kinded type variables. Since then,

Haskell has served as a laboratory in which to explore new type system

ideas, something I have enjoyed very much. Multiparameter type classes,

higher-rank types, first-class polymorphism, implicit parameters, GADTs,

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=291

DAY 2: SPOCK’S GREAT STRENGTH 292

and type families...we are having fun! And, more importantly, we are

extending the range of properties that can be statically checked by the

type system.

Bruce Tate: What are the things you’d change if you had it to do all

over again?

Simon Peyton-Jones: I’d like a better record system. There are reasons

that Haskell’s record system is so simple, but it’s still a weak point.

I’d like a better module system. Specifically, I want to be able to ship a

Haskell package P to someone else, saying “P needs to import interfaces

I and J from somewhere: you provide them, and it will offer interface K.”

Haskell has no formal way to say this.

Bruce Tate: What’s the most interesting problem you’ve seen solved

with Haskell?

Simon Peyton-Jones: Haskell is a truly general-purpose programming

language, which is a strength but also a weakness because it has no

single “killer app.” That said, it is quite common to find that Haskell is

a medium in which people have been able to dream up particularly ele-

gant and unusual ways to solve problems. Look at Conal Elliot’s work on

functional reactive animation, for example, which rewired my brain by

making me think of a “time-varying value” as a single value that could

be manipulated by a functional program. On a more mundane (but very

useful) level, there are lots of libraries of parser and pretty-printing com-

binators, each encapsulating great intellectual cleverness behind simple

interfaces. In a third domain, Jean-Marc Eber showed me how to design

a combinatory library to describe financial derivatives, something I would

never have thought of on my own.

In each case, the medium (Haskell) has allowed a new level of expres-

siveness that would be much harder to achieve in a mainstream lan-

guage.

By now, you have enough knowledge to tackle some hard problems
in Haskell, but you can’t do some easy stuff, such as dealing with
I/O, state, and error handling. These problems will take us into some
advanced theory. On day 3, we’ll look into monads.

What We Learned in Day 2

In day 2, we looked at higher-order functions. We started with the same
kinds of list libraries that you’ve seen in almost every language in this

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=292

DAY 2: SPOCK’S GREAT STRENGTH 293

book. You saw map, several versions of fold, and some additional func-
tions like zip and zipWith. After working with them on fixed lists, we then
worked with some lazy techniques such as the ones you used with Clo-
jure.

As we worked through advanced functions, we learned to take a func-
tion and apply some of the parameters. This technique was called par-

tially applied functions. Then, we used partially applied functions to
translate a function that took multiple arguments at once (f (x, y)) to a
function that took arguments one at a time (f(x)(y)). We learned that in
Haskell, all functions are curried, which explained the type signatures
of Haskell functions taking multiple arguments. For example, the type
signature of the function f x y = x + y is f :: (Num a) => a -> a -> a.

We also learned function composition, a process that used the return
from one function as the input of another. We could effectively string
functions together this way.

Finally, we worked with lazy evaluation. We were able to define func-
tions that built infinite lists, which would be processed on demand. We
defined a Fibonacci sequence in this way and also used composition
with lazy sequences to effortlessly produce new lazy sequences.

Day 2 Self-Study

Find:

• Functions that you can use on lists, strings, or tuples

• A way to sort lists

Do:

• Write a sort that takes a list and returns a sorted list.

• Write a sort that takes a list and a function that compares its two
arguments and then returns a sorted list.

• Write a Haskell function to convert a string to a number. The string
should be in the form of $2,345,678.99 and can possibly have leading
zeros.

• Write a function that takes an argument x and returns a lazy
sequence that has every third number, starting with x. Then, write
a function that includes every fifth number, beginning with y.
Combine these functions through composition to return every
eighth number, beginning with x + y.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=293

DAY 3: THE MIND MELD 294

• Use a partially applied function to define a function that will re-
turn half of a number and another that will append \n to the end
of any string.

Here are some more demanding problems if you’re looking for some-
thing even more interesting:

• Write a function to determine the greatest common denominator
of two integers.

• Create a lazy sequence of prime numbers.

• Break a long string into individual lines at proper word bound-
aries.

• Add line numbers to the previous exercise.

• To the above exercise, add functions to left, right, and fully justify
the text with spaces (making both margins straight).

8.4 Day 3: The Mind Meld

In Star Trek, Spock had a special talent of connecting with a charac-
ter with what he called the mind meld. Haskell enthusiasts often claim
such a connection to their language. For many of them, the language
feature that engenders the most respect is the type system. After spend-
ing so much time with the language, I can easily see why this is true.
The type system is flexible and rich enough to infer most of my intent,
staying out of my way unless I need it. I also get a sanity check as I build
my functions, especially the abstract ones that compose functions.

Classes and Types

Haskell’s type system is one of its strongest features. It allows type
inference, so programmers do not have heavier responsibilities. It is
also robust enough to catch even subtle programming errors. It is poly-
morphic, meaning you can treat different forms of the same type the
same. In this section, we’ll look at a few examples of types and then
build some of our own types.

Basic Types

Let’s review what you’ve learned so far with some basic types. First,
we’ll turn on the type option in the shell:

Prelude> :set +t

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=294

DAY 3: THE MIND MELD 295

Now, we’ll see the types that each statement returns. Try some charac-
ters and strings:

Prelude> 'c'

'c'

it :: Char

Prelude> "abc"

"abc"

it :: [Char]

Prelude> ['a', 'b', 'c']

"abc"

it :: [Char]

it always gives you the value of the last thing you typed, and you can
read :: as is of type. To Haskell, a character is a primitive type. A string
is an array of characters. It doesn’t matter how you represent the array
of characters, with an array or with the double quotes. To Haskell, the
values are the same:

Prelude> "abc" == ['a', 'b', 'c']

True

There are a few other primitive types, like this:

Prelude> True

True

it :: Bool

Prelude> False

False

it :: Bool

As we dig deeper into typing, these ideas will help us see what’s really
going on. Let’s define some of our own types.

User-Defined Types

We can define our own data types with the data keyword. The simplest
of type declarations uses a finite list of values. Boolean, for example,
would be defined like this:

data Boolean = True | False

That means that the type Boolean will have a single value, either True

or False. We can define our own types in the same way. Consider this
simplified deck of cards, with two suits and five ranks:

Download haskell/cards.hs

module Main where

data Suit = Spades | Hearts

data Rank = Ten | Jack | Queen | King | Ace

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/cards.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=295

DAY 3: THE MIND MELD 296

In this example, Suit and Rank are type constructors. We used data to
build a new user-defined type. You can load the module like this:

*Main> :load cards.hs

[1 of 1] Compiling Main (cards.hs, interpreted)

Ok, modules loaded: Main.

*Main> Hearts

<interactive>:1:0:

No instance for (Show Suit)

arising from a use of `print' at <interactive>:1:0-5

Argh! What happened? Haskell is basically telling us that the console is
trying to show these values but doesn’t know how. There’s a shorthand
way to derive the show function as you declare user-defined data types.
It works like this:

Download haskell/cards-with-show.hs

module Main where

data Suit = Spades | Hearts deriving (Show)

data Rank = Ten | Jack | Queen | King | Ace deriving (Show)

type Card = (Rank, Suit)

type Hand = [Card]

Notice we added a few alias types to our system. A Card is a tuple with
a rank and a suit, and a Hand is a list of cards. We can use these types
to build new functions:

value :: Rank -> Integer

value Ten = 1

value Jack = 2

value Queen = 3

value King = 4

value Ace = 5

cardValue :: Card -> Integer

cardValue (rank, suit) = value rank

For any card game, we need to be able to assign the ranks of a card.
That’s easy. The suit really doesn’t play a role. We simply define a func-
tion that computes the value of a Rank and then another that computes
a cardValue. Here’s the function in action:

*Main> :load cards-with-show.hs

[1 of 1] Compiling Main (cards-with-show.hs, interpreted)

Ok, modules loaded: Main.

*Main> cardValue (Ten, Hearts)

1

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/cards-with-show.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=296

DAY 3: THE MIND MELD 297

We’re working with a complex tuple of user-defined types. The type
system keeps our intentions clear, so it’s easier to reason about what’s
happening.

Functions and Polymorphism

Earlier, you saw a few function types. Let’s look at a simple function:

backwards [] = []

backwards (h:t) = backwards t ++ [h]

We could add a type to that function that looks like this:

backwards :: Hand -> Hand

...

That would restrict the backwards function to working with only one
kind of list, a list of cards. What we really want is this:

backwards :: [a] -> [a]

backwards [] = []

backwards (h:t) = backwards t ++ [h]

Now, the function is polymorphic. [a] means we can use a list of any
type. It means that we can define a function that takes a list of some
type a and returns a list of that same type a. With [a] -> [a], we’ve built
a template of types that will work with our function. Further, we’ve told
the compiler that if you start with a list of Integers, this function will
return a list of Integers. Haskell now has enough information to keep
you honest.

Let’s build a polymorphic data type. Here’s one that builds a three-tuple
having three points of the same type:

Download haskell/triplet.hs

module Main where

data Triplet a = Trio a a a deriving (Show)

On the left side we have data Triplet a. In this instance, a is a type vari-
able. So now, any three-tuple with elements of the same type will be of
type Triplet a. Take a look:

*Main> :load triplet.hs

[1 of 1] Compiling Main (triplet.hs, interpreted)

Ok, modules loaded: Main.

*Main> :t Trio 'a' 'b' 'c'

Trio 'a' 'b' 'c' :: Triplet Char

I used the data constructor Trio to build a three-tuple. We’ll talk more
about the data constructors in the next section. Based on our type dec-

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/triplet.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=297

DAY 3: THE MIND MELD 298

laration, the result was a Triplet a, or more specifically, a Triplet char and
will satisfy any function that requires a Triplet a. We’ve built a whole tem-
plate of types, describing any three elements whose type is the same.

Recursive Types

You can also have types that are recursive. For example, think about a
tree. You can do this in several ways, but in our tree, the values are on
the leaf nodes. A node, then, is either a leaf or a list of trees. We could
describe the tree like this:

Download haskell/tree.hs

module Main where

data Tree a = Children [Tree a] | Leaf a deriving (Show)

So, we have one type constructor, Tree. We also have two data construc-
tors, Children and Leaf. We can use all of those together to represent
trees, like this:

Prelude> :load tree.hs

[1 of 1] Compiling Main (tree.hs, interpreted)

Ok, modules loaded: Main.

*Main> let leaf = Leaf 1

*Main> leaf

Leaf 1

First, we build a tree having a single leaf. We assign the new leaf to a
variable. The only job of the data constructor Leaf is to hold the val-
ues together with the type. We can access each piece through pattern
matching, like this:

*Main> let (Leaf value) = leaf

*Main> value

1

Let’s build some more complex trees.

*Main> Children[Leaf 1, Leaf 2]

Children [Leaf 1,Leaf 2]

*Main> let tree = Children[Leaf 1, Children [Leaf 2, Leaf 3]]

*Main> tree

Children [Leaf 1,Children [Leaf 2,Leaf 3]]

We build a tree with two children, each one being a leaf. Next, we build
a tree with two nodes, a leaf and a right tree. Once again, we can use
pattern matching to pick off each piece. We can get more complex from
there. The definition is recursive, so we can go as deep as we need
through let and pattern matching.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/tree.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=298

DAY 3: THE MIND MELD 299

*Main> let (Children ch) = tree

*Main> ch

[Leaf 1,Children [Leaf 2,Leaf 3]]

*Main> let (fst:tail) = ch

*Main> fst

Leaf 1

We can clearly see the intent of the designer of the type system, and we
can peel off the pieces that we need to do the job. This design strategy
obviously comes with an overhead, but as you dive into deeper abstrac-
tions, sometimes the extra overhead is worth the hassles. In this case,
the type system allows us to attach functions to each specific type con-
structor. Let’s look at a function to determine the depth of a tree:

depth (Leaf _) = 1

depth (Children c) = 1 + maximum (map depth c)

The first pattern in our function is simple. If it’s a leaf, regardless of the
content of the leaf, the depth of the tree is one.

The next pattern is a little more complicated. If we call depth on Children,
we add one to maximum (map depth c). The function maximum computes
the maximum element in an array, and you’ve seen that map depth c

will compute a list of the depths of all the children. In this case, you
can see how we use the data constructors to help us match the exact
pieces of the data structure that will help us do the job.

Classes

So far, we’ve been through the type system and how it works in a cou-
ple of areas. We’ve built user-defined type constructors and got tem-
plates that would allow us to define data types and declare functions
that would work with them. Haskell has one more important concept
related to types, and it’s a big one. The concept is called the class, but
be careful. It’s not an object-oriented class, because there’s no data
involved. In Haskell, classes let us carefully control polymorphism and
overloading.

For example, you can’t add two booleans together, but you can add two
numbers together. Haskell allows classes for this purpose. Specifically,
a class defines which operations can work on which inputs. Think of it
like a Clojure protocol.

Here’s how it works. A class provides some function signatures. A type
is an instance of a class if it supports all those functions. For example,
in the Haskell library, there’s a class called Eq.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=299

DAY 3: THE MIND MELD 300��
(equality)

Ord
(sequential)

Num
(numbers)

ShowEval

Real
(numbers)

Fractional
(numbers)

Enum
(ordering)

Integral
(integers)

RealFrac
(numbers)

Floating
(numbers)

Read

Support for most types

Bounded
(tuples, etc)

Figure 8.1: Important Haskell classes

Here’s what it looks like:

class Eq a where

(==), (/=) :: a -> a -> Bool

-- Minimal complete definition:

-- (==) or (/=)

x /= y = not (x == y)

x == y = not (x /= y)

So, a type is an instance of Eq if it supports both == and /=. You can also
specify boilerplate implementations. Also, if an instance defines one of
those functions, the other will be provided for free.

Classes do support inheritance, and it behaves like you think it should.
For example, the Num class has subclasses Fractional and Real. The hier-
archy of the most important Haskell classes in Haskell 98 is shown in
Figure 8.1. Remember, instances of these classes are types, not data
objects!

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=300

DAY 3: THE MIND MELD 301

Monads

From the time I decided to write this book, I’ve dreaded writing the sec-
tion on monads. After some study, I’ve learned that the concepts are
not all that difficult. In this section, I’ll walk you through the intuitive
description of why we need monads. Then, we’ll look at a high-level
description of how monads are built. Finally, we’ll introduce some syn-
tactic sugar that should really bring home how they work.

I leaned on a couple of tutorials to help shape my understanding. The
Haskell wiki3 has several good examples that I read, and also Under-
standing Monads4 has some good practical examples. But you’ll prob-
ably find that you need to wade through several examples from many
different sources to come to an understanding of what monads can do
for you.

The Problem: Drunken Pirate

Let’s say you have a pirate making a treasure map. He’s drunk, so he
picks up a known point and a known direction and makes his way to
the treasure with a series of staggers and crawls. A stagger moves two
steps, and a crawl moves one step. In an imperative language, you will
have statements strung together sequentially, where v is the value that
holds distance from the original point, like this:

def treasure_map(v)

v = stagger(v)

v = stagger(v)

v = crawl(v)

return(v)

end

We have several functions that we call within treasure_map that sequen-
tially transform our state, the distance traveled. The problem is that we
have mutable state. We could do the problem in a functional way, like
this:

Download haskell/drunken-pirate.hs

module Main where

stagger :: (Num t) => t -> t

stagger d = d + 2

crawl d = d + 1

3. http://www.haskell.org/tutorial/monads.html

4. http://en.wikibooks.org/wiki/Haskell/Understanding_monads

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/drunken-pirate.hs
http://www.haskell.org/tutorial/monads.html
http://en.wikibooks.org/wiki/Haskell/Understanding_monads
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=301

DAY 3: THE MIND MELD 302

treasureMap d =

crawl (

stagger (

stagger d))

You can see that the functional definition is inconvenient to read. Rath-
er than stagger, stagger, and crawl, we must read crawl, stagger, and
stagger, and the arguments are awkwardly placed. Instead, we’d like a
strategy that will let us chain several functions together sequentially.
We can use a let expression instead:

letTreasureMap (v, d) = let d1 = stagger d

d2 = stagger d1

d3 = crawl d2

in d3

Haskell allows us to chain let expressions together and express the
final form in an in statement. You can see that this version is almost
as unsatisfying as the first. The inputs and outputs are the same, so
it should be easier to compose these kinds of functions. We want to
translate stagger(crawl(x)) into stagger(x) · crawl(x), where · is function
composition. That’s a monad.

In short, a monad lets us compose functions in ways that have specific
properties. In Haskell, we’ll use monads for several purposes. First,
dealing with things such as I/O is difficult because in a pure functional
language, a function should deliver the same results when given the
same inputs, but for I/O, you would want your functions to change
based on the state of the contents of a file, for example.

Also, code like the drunken pirate earlier works because it preserves
state. Monads let you simulate program state. Haskell provides a spe-
cial syntax, called do syntax, to allow programs in the imperative style.
Do syntax depends on monads to work.

Finally, something as simple as an error condition is difficult because
the type of thing returned is different based on whether the function
was successful. Haskell provides the Maybe monad for this purpose.
Let’s dig a little deeper.

Components of a Monad

At its basic level, a monad has three basic things:

• A type constructor that’s based on some type of container. The
container could be a simple variable, a list, or anything that can

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=302

DAY 3: THE MIND MELD 303

hold a value. We will use the container to hold a function. The con-
tainer you choose will vary based on what you want your monad
to do.

• A function called return that wraps up a function and puts it in
the container. The name will make sense later, when we move into
do notation. Just remember that return wraps up a function into a
monad.

• A bind function called >>= that unwraps a function. We’ll use bind

to chain functions together.

All monads will need to satisfy three rules. I’ll mention them briefly
here. For some monad m, some function f, and some value x:

• You should be able to use a type constructor to create a monad
that will work with some type that can hold a value.

• You should be able to unwrap and wrap values without loss of
information. (monad >>= return = monad)

• Nesting bind functions should be the same as calling them se-
quentially. ((m >>= f) >>= g = m >>= (\x -> f x >>= g))

We won’t spend a lot of time on these laws, but the reasons are pretty
simple. They allow many useful transformations without losing infor-
mation. If you really want to dive in, I’ll try to leave you plenty of refer-
ences.

Enough of the theory. Let’s build a simple monad. We’ll build one from
scratch, and then I’ll close the chapter with a few useful monads.

Building a Monad from Scratch

The first thing we’ll need is a type constructor. Our monad will have a
function and a value, like this:

Download haskell/drunken-monad.hs

module Main where

data Position t = Position t deriving (Show)

stagger (Position d) = Position (d + 2)

crawl (Position d) = Position (d + 1)

rtn x = x

x >>== f = f x

The three main elements of a monad were a type container, a return,
and a bind. Our monad is the simplest possible. The type container is

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/drunken-monad.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=303

DAY 3: THE MIND MELD 304

a simple type constructor that looks like data Position t = Position t. All it
does is define a basic type, based on an arbitrary type template. Next,
we need a return that wraps up a function as a value. Since our monad
is so simple, we just have to return the value of the monad itself, and
it’s wrapped up appropriately, with (rtn x = x). Finally, we needed a bind
that allows us to compose functions. Ours is called >>==, and we define
it to just call the associated function with the value in the monad (x
>>== f = f x). We’re using >>== and rtn instead of >>= and return to prevent
collisions with Haskell’s built-in monad functions.

Notice that we also rewrote stagger and crawl to use our homegrown
monad instead of naked integers. We can take our monad out for a test-
drive. Remember, we were after a syntax that translates from nesting
to composition. The revised treasure map looks like this:

treasureMap pos = pos >>==

stagger >>==

stagger >>==

crawl >>==

rtn

And it works as expected:

*Main> treasureMap (Position 0)

Position 5

Monads and do Notation

That syntax is much better, but you can easily imagine some syntactic
sugar to improve it some more. Haskell’s do syntax does exactly that.
The do syntax comes in handy especially for problems like I/O. In the
following code, we read a line from the console and print out the same
line in reverse, using do notation:

Download haskell/io.hs

module Main where

tryIo = do putStr "Enter your name: " ;

line <- getLine ;

let { backwards = reverse line } ;

return ("Hello. Your name backwards is " ++ backwards)

Notice that the beginning of this program is a function declaration.
Then, we use the simple do notation to give us the syntactic sugar
around monads. That makes our program feel stateful and imperative,
but we’re actually using monads. You’ll want to be aware of a few syntax
rules.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/io.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=304

DAY 3: THE MIND MELD 305

Assignment uses <-. In GHCI, you must separate lines with semicolons
and include the body of do expressions, and let expressions therein,
within braces. If you have multiple lines, you should wrap your code in
:{ and }: with each on a separate line. And now, you can finally see why
we called our monad’s wrapping construct return. It neatly packages a
return value in a tidy form that the do syntax can absorb. This code
behaves as if it were in a stateful imperative language, but it’s using
monads to manage the stateful interactions. All I/O is tightly encap-
sulated and must be captured using one of the I/O monads in a do

block.

Different Computational Strategies

Every monad has an associated computational strategy. The identity
monad, which we used in the drunken-monad example, just parrots
back the thing you put into it. We used it to convert a nested program
structure to a sequential program structure. Let’s take another exam-
ple. Strange as it may seem, a list is also a monad, with return and bind
(>>=) defined like this:

instance Monad [] where

m >>= f = concatMap f m

return x = [x]

Recall that a monad needs some container and a type constructor,
a return method that wraps up a function, and a bind method that
unwraps it. A monad is a class, and [] instantiates it, giving us our type
constructor. We next need a function to wrap up a result as return.

For the list, we wrap up the function in the list. To unwrap it, our bind
calls the function on every element of the list with map and then con-
catenates the results together. concat and map are applied in sequence
often enough that there’s a function that does both for convenience,
but we could have easily used concat (map f m).

To give you a feel for the list monad in action, take a look at the following
script, in do notation:

Main> let cartesian (xs,ys) = do x <- xs; y <- ys; return (x,y)

Main> cartesian ([1..2], [3..4])

[(1,3),(1,4),(2,3),(2,4)]

We created a simple function with do notation and monads. We took x

from a list of xs, and we took y from a list of xy. Then, we returned each
combination of x and y. From that point, our password cracker is easy.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=305

DAY 3: THE MIND MELD 306

Download haskell/password.hs

module Main where

crack = do x <- ['a'..'c'] ; y <- ['a'..'c'] ; z <- ['a'..'c'] ;

let { password = [x, y, z] } ;

if attempt password

then return (password, True)

else return (password, False)

attempt pw = if pw == "cab" then True else False

Here, we’re using the list monad to compute all possible combinations.
Notice that in this context, x <- [lst] means “for each x taken from [lst].”
We let Haskell do the heavy lifting. At that point, all you need to do is
try each password. Our password is hard-coded into the attempt func-
tion. There are many computational strategies that we could have used
to solve this problem such as list comprehensions, but this problem
showed the computational strategy behind list monads.

Maybe Monad

So far, we’ve seen the Identity monad and the List monad. With the latter,
we learned that monads supported a central computational strategy. In
this section, we’ll look at the Maybe monad. We’ll use this one to handle
a common programming problem: some functions might fail. You might
think we’re talking about the realm of databases and communications,
but other far simpler APIs often need to support the idea of failure.
Think a string search that returns the index of a string. If the string is
present, the return type is an Integer. Otherwise, the type is Nothing.

Stringing together such computations is tedious. Let’s say you have a
function that is parsing a web page. You want the HTML page, the body
within that page, and the first paragraph within that body. You want to
code functions that have signatures that look something like this:

paragraph XmlDoc -> XmlDoc

...

body XmlDoc -> XmlDoc

...

html XmlDoc -> XmlDoc

...

They will support a function that looks something like this:

paragraph body (html doc)

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/haskell/password.hs
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=306

DAY 3: THE MIND MELD 307

The problem is that the paragraph, body, and html functions can fail, so
you need to allow a type that may be Nothing. Haskell has such a type,
called Just. Just x can wrap Nothing, or some type, like this:

Prelude> Just "some string"

Just "some string"

Prelude> Just Nothing

Just Nothing

You can strip off the Just with pattern matching. So, getting back to our
example, the paragraph, body, and html documents can return Just Xml-

Doc. Then, you could use the Haskell case statement (which works like
the Erlang case statement) and pattern matching to give you something
like this:

case (html doc) of

Nothing -> Nothing

Just x -> case body x of

Nothing -> Nothing

Just y -> paragraph 2 y

And that result is deeply unsatisfying, considering we wanted to code
paragraph 2 body (html doc). What we really need is the Maybe monad.
Here’s the definition:

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just

Nothing >>= f = Nothing

(Just x) >>= f = f x

...

The type we’re wrapping is a type constructor that is Maybe a. That type
can wrap Nothing or Just a.

return is easy. It just wraps the result in Just. The bind is also easy. For
Nothing, it returns a function returning Nothing. For Just x, it returns a
function returning x. Either will be wrapped by the return. Now, you
can chain together these operations easily:

Just someWebPage >>= html >>= body >>= paragraph >>= return

So, we can combine the elements flawlessly. It works because the mon-
ad takes care of the decision making through the functions that we
compose.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=307

DAY 3: THE MIND MELD 308

What We Learned in Day 3

In this section, we took on three demanding concepts: Haskell types,
classes, and monads. We started with types, by looking at the inferred
types of existing functions, numbers, booleans, and characters. We
then moved on to some user-defined types. As a basic example, we
used types to define playing cards made up of suits and ranks for play-
ing cards. We learned how to parameterize types and even use recursive
type definitions.

Then, we wrapped up the language with a discussion of monads. Since
Haskell is a purely functional language, it can be difficult to express
problems in an imperative style or accumulate state as a program exe-
cutes. Haskell’s designers leaned on monads to solve both problems. A
monad is a type constructor with a few functions to wrap up functions
and chain them together. You can combine monads with different type
containers to allow different kinds of computational strategies. We used
monads to provide a more natural imperative style for our program and
to process multiple possibilities.

Day 3 Self-Study

Find:

• A few monad tutorials

• A list of the monads in Haskell

Do:

• Write a function that looks up a hash table value that uses the
Maybe monad. Write a hash that stores other hashes, several lev-
els deep. Use the Maybe monad to retrieve an element for a hash
key several levels deep.

• Represent a maze in Haskell. You’ll need a Maze type and a Node

type, as well as a function to return a node given its coordinates.
The node should have a list of exits to other nodes.

• Use a List monad to solve the maze.

• Implement a Monad in a nonfunctional language. (See the article
series on monads in Ruby.5)

5. http://moonbase.rydia.net/mental/writings/programming/monads-in-ruby/00introduction.html

Report erratum

this copy is (P1.0 printing, October 2010)

http://moonbase.rydia.net/mental/writings/programming/monads-in-ruby/00introduction.html
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=308

WRAPPING UP HASKELL 309

8.5 Wrapping Up Haskell

Of all the languages in this book, Haskell was the only one created
by committee. After the proliferation of purely functional languages
with lazy semantics, a committee was formed to build an open stan-
dard that would consolidate existing capabilities and future research.
Haskell was born, with version 1.0 defined in 1990. The language and
community have grown since then.

Haskell supports a wide variety of functional capabilities including list
comprehensions, lazy computing strategies, partially applied functions,
and currying. In fact, by default, Haskell functions process one param-
eter at a time, using currying to support multiple arguments.

The Haskell type system provides an excellent balance of type safety
and flexibility. The fully polymorphic template system allows sophisti-
cated support for user-defined types and even type classes that fully
support inheritance of interface. Usually, the Haskell programmer is
not burdened with type details except in the function declarations, but
the type system protects users from all kinds of type errors.

As with any pure functional language, Haskell developers must be cre-
ative to deal with imperative-style programs and accumulated state.
I/O can also be a challenge. Fortunately, Haskell developers can rely
on monads for that purpose. A monad is a type constructor and a
container that supports basic functions to wrap and unwrap func-
tions as values. Different container types provide different computa-
tional strategies. These functions allow programmers to chain together
monads in interesting ways, providing do syntax. This syntactic sugar
allows imperative-style programs with certain limitations.

Core Strengths

Since Haskell takes the absolute approach of pure functions with no
compromise, the advantages and disadvantages can be often extreme.
Let’s break them down.

Type System

If you like strong typing (and maybe even if you don’t), you’ll love
Haskell’s typing system. It is there when you need it but not when
you don’t. The type system can add a helpful level of protection from
common errors, and they can be caught at compile time rather than
run time. But the extra safety is only part of the story.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=309

WRAPPING UP HASKELL 310

Perhaps the most interesting part of a Haskell type is how easy it is to
associate new types with new behaviors. You can build up sophisticated
types from the ground up. With type constructors and classes, you can
even customize extremely complex types and classes such as Monads
effortlessly. With classes, your new custom types can take advantage of
existing Haskell libraries.

Expressiveness

The Haskell language has fantastic power. From an abstract sense, it
has everything you need to express powerful ideas concisely. Those
ideas encompass behavior through a rich functional library and a pow-
erful syntax. The ideas extend to data types where you can create
types, even recursive types that bind the right functions to the right
data without excessive syntax. In an academic setting, you can find no
stronger language for teaching functional programming than Haskell.
Everything you will need is in there.

Purity of Programming Model

Pure programming models can radically change the way you approach
problems. They force you to leave old programming paradigms behind
and embrace different ways of doing things. Pure functional languages
give you something you can depend on. Given the same inputs, a func-
tion will always return the same values. This property makes it much
easier to reason about programs. You can sometimes prove that a pro-
gram is correct, or not. You can also be free of many of the problems
that come from depending on side effects, such as accidental complex-
ity and unstable or slow behavior in concurrent situations.

Lazy Semantics

Once upon a time, dealing with functional languages meant dealing
with recursion. Lazy computing strategies offer a whole new set of
strategies to deal with data. You can often build programs that per-
form better and take a fraction of the total lines of code that another
strategy might take.

Academic Support

Some of the most important and influential languages such as Pascal
grew up in academia, benefitting greatly from research and use in that
setting. As the primary teaching language for functional techniques,
Haskell continues to improve and grow. Though it is not fully a main-

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=310

WRAPPING UP HASKELL 311

stream language, you’ll always be able to find pockets of programmers
to do important tasks.

Core Weaknesses

You know by now that no programming language is perfect for every
task. Haskell’s strengths typically have a flip side as well.

Inflexibility of Programming Model

Being a pure functional language offers some advantages but also a
set of headaches. You might have noticed that programming with mon-
ads was the last part of the last chapter in a book about programming
languages, and rightfully so. The concepts are intellectually demand-
ing. But we used monads to do some things that were trivial in other
languages, such as write imperative-style programs, process I/O, and
even handle list functions that may or may not find a value. I’ve said it
before about other languages, but I’ll say it again here. Though Haskell
makes some hard things easy, it also makes some easy things hard.

Certain styles lend themselves to certain programming paradigms.
When you’re building a step-by-step algorithm, imperative languages
work well. Heavy I/O and scripting do not lend themselves to func-
tional languages. Purity in one man’s eyes may seem like failure to
compromise in another.

Community

Speaking of compromise, you can really see the differences in the ap-
proach of Scala and Haskell. Though both are strongly typed, both
have radically different philosophies. Scala is all about compromise,
and Haskell is all about purity. By making compromises, Scala has ini-
tially attracted a much bigger community than Haskell. Though you
can’t measure success by the size of a programming community, you
must have sufficient numbers to succeed, and having more users lends
more opportunity and community resources.

Learning Curve

The monad is not the only intellectually demanding concept in Haskell.
Currying is used in every function with more than one argument. Most
basic functions have parameterized types, and functions on numbers
often use a type class. Though the payoff may be well worth it in the
end, you must be a strong programmer with firm theoretical footing to
have a fighting chance of succeeding with Haskell.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=311

WRAPPING UP HASKELL 312

Final Thoughts

Of the functional languages in the book, Haskell was the most difficult
to learn. The emphasis on monads and the type system made the learn-
ing curve steep. Once I mastered some of the key concepts, things got
easier, and it became the most rewarding language I learned. Based on
the type system and the elegance of the application of monads, one day
we’ll look back at this language as one of the most important in this
book.

Haskell plays another role, too. The purity of the approach and the
academic focus will both improve our understanding of programming.
The best of the next generation of functional programmers in many
places will cut their teeth on Haskell.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=312

Chapter 9

Wrap-Up
Congratulations on making it through seven programming languages.
Perhaps you’re expecting me to pick winners and losers in this chapter,
but this book is not about winners and losers. It’s about discovering
new ideas. You may have been like me early in my career, buried deeply
in commercial projects in large teams with little imagination, the soft-
ware factories of our generation. In such a world, my exposure to pro-
gramming languages was extremely limited. I was like a 1970s movie
lover in a small town with one theater, getting only the big-money block-
busters.

Since I started building software for myself, I feel like I’ve just discov-
ered independent films. I’ve been able to make a living coding Ruby,
but I’m not naive enough to think Ruby has all of the answers. Just
as independent films are advancing the state of the art in movie mak-
ing, emerging programming languages are changing the way we think
about program organization and construction. Let’s review what we’ve
seen throughout the book.

9.1 Programming Models

Programming models change extremely slowly. So far, we’ve seen new
models emerge every twenty years or so. My training started with some
procedural languages, Basic and Fortran. In college, I learned a more
structured approach with Pascal. At IBM, I started to code C and C++
commercially and was introduced to Java for the first time. I also began
writing object-oriented code. My programming experience has spanned
more than thirty years, and I’ve seen only two major programming

PROGRAMMING MODELS 314

paradigms. You might be asking yourself why I am so enthusiastic
about introducing a few other programming paradigms. It’s a fair
question.

Though programming paradigms change slowly, they do change. Like
a tornado’s path, they can leave behind some devastation, taking the
form of broken careers and companies that invested poorly. When you
find yourself fighting a programming paradigm, you need to start paying
attention. Concurrency and reliability are starting to nudge us in the
direction of a higher-level programming language. Minimally, I think
we’re going to start to see more specialized languages to solve specific
problems. These are the programming models we encountered.

Object Orientation (Ruby, Scala)

The current “king of the hill” is object orientation, typically in the Java
language. This programming paradigm has three major ideas: encap-
sulation, inheritance, and polymorphism. With Ruby, we experienced
dynamic duck typing. Rather than enforcing a contract based on the
definition of a class or objects, Ruby enforced typing based on the meth-
ods an object could support. We learned that Ruby supported several
functional concepts through code blocks.

Scala, too, offered object-oriented programming. Though it supports
static typing, it is much less verbose than Java, offering features such
as type inference to simplify the syntax. With this feature, Scala auto-
matically deduces the type of variables based on clues in syntax and
usage. Scala goes beyond Ruby to introduce functional concepts.

Both of these languages run in widespread production applications
today, and both represent significant advances in language design com-
pared to mainstream languages such as Java. There are many vari-
ations of object-oriented languages, including the next programming
paradigm, prototype languages.

Prototype Programming (Io)

You could actually say that prototype languages are a subset of object-
oriented languages, but they are just different enough in practice that I
introduced them as a different programming model. Rather than work-
ing through a class, all prototypes are object instances. Some specially
designated instances serve as prototypes for other object instances.
This family of languages includes JavaScript and Io. Simple and expres-
sive, prototype languages are typically dynamically typed and work well

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=314

PROGRAMMING MODELS 315

for scripting and application development, especially for user inter-
faces.

As you learned within Io, a simple programming model with a small,
consistent syntax can be a powerful combination. We used the Io lan-
guage in broadly different contexts ranging from scripting concurrent
programs together to coding our own DSL. But this prototype program-
ming was not the most specialized paradigm that we encountered.

Constraint-Logic Programming (Prolog)

Prolog comes from a family of programming languages built for con-
straint-logic programming. The different applications we built with Pro-
log solved a fairly narrow type of problem, but the results were often
spectacular. We defined logical constraints that we knew about our uni-
verse and had Prolog find the solution.

When the programming model fit this paradigm, we were able to get
results with a fraction of the lines of code that it would take in other
languages. This family of language supports many of the most critical
applications in the world in domains such as air traffic control and civil
engineering. You can also find crude logical rules engines in other lan-
guages such as C and Java. Prolog served as the inspiration of Erlang,
from another family of languages in this book.

Functional Programming (Scala, Erlang, Clojure, Haskell)

Perhaps the most widely anticipated programming paradigm in this
book is functional programming. The degree of purity found in func-
tional programming languages differs, but the concepts are consistent
throughout. Functional programs are made up of mathematical func-
tions. Calling the same function more than once will give you the same
result each time, and side effects are either frowned on or forbidden.
You can compose those functions in a variety of ways.

You’ve seen that functional programming languages are usually more
expressive than object-oriented languages. Your examples were often
shorter and simpler than the object-oriented counterparts because you
had a broader range of tools for composing programs than you did
in the object-oriented paradigm. We introduced higher-order functions
and also complex concepts such as currying as two examples that
you can’t always find in object-oriented languages. As you learned in
Haskell, different levels of purity lead to different sets of advantages
and disadvantages. One clear win for the functional languages was the

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=315

PROGRAMMING MODELS 316

absence of side effects, making concurrent programming easier. When
mutable state goes away, so do many of the traditional concurrency
problems.

Changing Paradigms

If you do decide that you want to do more functional programming,
there are several different ways to get there. You can make a clean
break from OOP, or you can pick an approach that is slightly more
evolutionary.

As we waded through each of the seven languages, you saw languages
spanning four decades and at least as many programming paradigms.
I hope you can appreciate the evolution of programming languages as
well. You saw three distinctly different approaches to evolving para-
digms. With Scala, the approach is coexistence. The Scala programmer
can construct an object-oriented program using strong functional ten-
dencies. The very nature of the language is that both programming
paradigms are first-class. Clojure takes the approach of compatibil-
ity. The language is built on the JVM, allowing Clojure applications
to use Java objects directly, but the Clojure philosophy is that cer-
tain elements of OOP are fundamentally flawed. Unlike Scala, Clojure-
Java Interop is provided to leverage frameworks existing on the Java
virtual machine, not to broaden the programming language. Haskell
and Erlang are basically stand-alone languages. Philosophically, they
do not embrace object-oriented programming in any form. So, you can
embrace both paradigms, make a clean break, or embrace object-ori-
ented libraries but decide to leave the OOP paradigm behind. Take your
pick.

Whether or not you choose to adopt one of the languages in this book,
you’ll be better for knowing what’s out there. As a Java developer, I
had to wait a decade for closures, mainly because people like me were
uneducated and did not scream loud enough for them. In the mean-
time, mainstream frameworks like Spring were stuck with anonymous
inner classes to solve problems that could have used closures exten-
sively. My fingers bled from the oppressive amount of typing, and my
eyes bled because I had to read that stuff. The modern Java developer
knows much more, partially because people such as Martin Odersky
and Rich Hickey gave us alternatives that are now pushing the state of
the art and forcing Java to advance or get left behind.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=316

CONCURRENCY 317

9.2 Concurrency

A repeated theme in this book is the need for better language constructs
and programming models to handle concurrency. Across the languages,
the approaches were often strikingly different but extremely effective.
Let’s walk through some of the approaches we saw.

Controlling Mutable State

By far, the most common theme in the concurrency discussion was the
programming model. Object-oriented programming allows side effects
and mutable state. Taken together, programs got much more compli-
cated. When you mix in multiple threads and processes, the complexity
got too great to manage.

The functional programming language adds structure through an im-
portant rule. Multiple invocations of the same function lead to the same
result. Variables have a single assignment. When side effects go away,
race conditions and all related complexities also go away. Still, we saw
tangible techniques that went beyond the basic programming model.
Let’s take a closer look.

Actors in Io, Erlang, and Scala

Whether using an object or a process, the actor approach is the same.
It takes unstructured interprocess communication across any object
boundary and transforms it onto structured message passing between
first-class constructs, each one supporting a message queue. The
Erlang and Scala languages use pattern matching to match inbound
messages and conditionally execute them. In Chapter 6, Erlang, on
page 181, we built an example around Russian roulette to demonstrate
a dying process. Recall that we put the bullet in chamber 3:

Download erlang/roulette.erl

-module(roulette).

-export([loop/0]).

% send a number, 1-6

loop() ->

receive

3 -> io:format("bang.~n"), exit({roulette,die,at,erlang:time()});

_ -> io:format("click~n"), loop()

end.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/roulette.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=317

CONCURRENCY 318

We then started a process, assigning the ID to Gun. We could kill the
process with Gun ! 3. The Erlang virtual machine and language sup-
ported robust monitoring, allowing notification and even restarting pro-
cesses at the first sign of trouble.

Futures

To the actor model, Io added two additional concurrency constructs:
coroutines and futures. Coroutines allowed two objects to multitask
cooperatively, with each relinquishing control at the appropriate time.
Recall that futures were placeholders for long-running concurrent com-
putations.

We executed the statement futureResult := URL with("http://google.com/")

@fetch. Though the result was not immediately available, program con-
trol returned immediately, blocking only when we attempted to access
the future. An Io future actually morphs into a result when the result
becomes available.

Transactional Memory

In Clojure, we saw a number of interesting approaches to concur-
rency. Software transactional memory (STM) wrapped each distributed
access of a shared resource in a transaction. This same approach, but
for database objects, maintains database integrity across concurrent
invocations. We wrapped each access in a dosync function. With this
approach, Clojure developers can break away from strict functional
designs where it makes sense and still have integrity across multiple
threads and processes.

STM is a relatively new idea that is just creeping into more popular
languages. As a Lisp derivative, Clojure is an ideal language for such
an approach because Lisp is a multiparadigm language. Users can use
different programming paradigms when they make sense with the con-
fidence that the application will maintain integrity and performance,
even through highly concurrent accesses.

The next generation of programmers will demand more out of his lan-
guage. The simple wheel and stick that let you start a thread and wait
on a semaphore are no longer good enough. A newer language must
have a coherent philosophy supporting concurrency and the tools to
match. It may be that the need for concurrency renders whole pro-
gramming paradigms obsolete, or it may be that older languages will

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=318

PROGRAMMING CONSTRUCTS 319

adapt by using stricter controls for mutable variables and smarter con-
currency constructs such as actors and futures.

9.3 Programming Constructs

One of the most exciting parts of writing this book was the exposure
to the basic building blocks in the various languages of this book. For
each new language, I introduced major new concepts. These are some
of the programming constructs that you’re likely to see in other new
languages you might discover. They are among my favorite discoveries.

List Comprehensions

As you saw in Erlang, Clojure, and Haskell,1 the list comprehension is
a compact structure that combines several ideas into a single powerful
construct. A list comprehension has a filter, a map, and a Cartesian
product.

We first encountered list comprehensions in Erlang. We started with a
shopping cart of items such as Cart = [{pencil, 4, 0.25}, {pen, 1, 1.20}, {paper,

2, 0.20}]. To add tax to the list, we built a single list comprehension to
solve the problem at once, like this:

8> WithTax = [{Product, Quantity, Price, Price * Quantity * 0.08} ||

8> {Product, Quantity, Price} <- Cart].

[{pencil,4,0.25,0.08},{pen,1,1.2,0.096},{paper,2,0.2,0.032}]

Several different language creators mention list comprehensions as one
of their favorite features. I agree with this sentiment.

Monads

Perhaps the biggest intellectual growth for me was in the area of mon-
ads. With pure functional languages, we could not build programs with
mutable state. Instead, we built monads that let us compose functions
in a way that helped us structure problems as if they allowed muta-
ble state. Haskell has do notation, supported by monads, to solve this
problem.

We also found that monads allow us to simplify complex computation.
Each of our monads supported a computational strategy. We used the
Maybe monad to handle failure conditions, such as a List search that

1. Scala also supports list comprehensions, but we did not use them.

Report erratum

this copy is (P1.0 printing, October 2010)

http://books.pragprog.com/titles/btlang/errata/add?pdf_page=319

PROGRAMMING CONSTRUCTS 320

could potentially return Nothing. We used the List monad to compute a
Cartesian product and unlock a combination.

Matching

One of the more common programming features we saw was pattern
matching. We first encountered this programming construct in Prolog,
but we also saw it in Scala, Erlang, Clojure, and Haskell. Each of these
languages leaned on pattern matching to significantly simplify code.
The problem domains included parsing, distributed message passing,
destructuring, unification, XML processing, and more.

For a typical Erlang pattern match, recall the translate service:

Download erlang/translate_service.erl

-module(translate_service).

-export([loop/0, translate/2]).

loop() ->

receive

{From, "casa"} ->

From ! "house",

loop();

{From, "blanca"} ->

From ! "white",

loop();

{From, _} ->

From ! "I don't understand.",

loop()

end.

translate(To, Word) ->

To ! {self(), Word},

receive

Translation -> Translation

end.

The loop function matched a process ID (From) followed by a word (casa

or blanca) or a wildcard. The pattern match allows the programmer to
quickly pick out the important pieces of the message without requiring
any parsing from the programmer.

Unification

Prolog uses unification, a close cousin of pattern matching. You learned
that Prolog would substitute possible values into a rule to force the left

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/erlang/translate_service.erl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=320

FINDING YOUR VOICE 321

and right sides to match. Prolog would keep trying values until possi-
bilities were exhausted. We looked at a simple Prolog program called
concatenate as an example of unification:

Download prolog/concat.pl

concatenate([], List, List).

concatenate([Head|Tail1], List, [Head|Tail2]) :-

concatenate(Tail1, List, Tail2).

We learned that unification makes this program so powerful because
it could work in three ways: testing truth, matching the left side, or
matching the right side.

9.4 Finding Your Voice

We’ve talked about movies and characters throughout this book. The
joy of movie making means combining your experiences with the actors,
sets, and locations that tell the story you want to tell. Everything you
do goes into pleasing your audience. The more you know, the better
your movies can be.

We need to think about programming in the same way. We, too, have an
audience. I’m not talking about the users of our applications, though.
I’m talking about the people who read our code. To be a great program-
mer, you need to write to your audience and find the voice that pleases
them. You’ll have more room to find that voice and let it evolve if you
learn what other languages have to offer. Your voice is your unique way
of expressing yourself in code. It will never be any better than the sum
of your experience. I hope this book has helped you find your voice.
Most of all, I hope you had fun.

Report erratum

this copy is (P1.0 printing, October 2010)

http://media.pragprog.com/titles/btlang/code/prolog/concat.pl
http://books.pragprog.com/titles/btlang/errata/add?pdf_page=321

Appendix A

Bibliography

[Arm07] Joe Armstrong. Programming Erlang: Software for a Concur-

rent World. The Pragmatic Programmers, LLC, Raleigh, NC,
and Dallas, TX, 2007.

[Gra04] Paul Graham. Hackers and Painters: Big Ideas from the Com-

puter Age. O’Reilly & Associates, Inc, Sebastopol, CA, 2004.

[Hal09] Stuart Halloway. Programming Clojure. The Pragmatic Pro-
grammers, LLC, Raleigh, NC, and Dallas, TX, 2009.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming

in Scala. Artima, Inc., Mountain View, CA, 2008.

[TFH08] David Thomas, Chad Fowler, and Andrew Hunt. Program-

ming Ruby: The Pragmatic Programmers’ Guide. The Prag-
matic Programmers, LLC, Raleigh, NC, and Dallas, TX, third
edition, 2008.

Index
A
actors, 317–318

Erlang, 183
Io, 89
Scala, 171–175

agents, Clojure, 260–261
anonymous functions

Clojure, 238–239
Erlang, 198
Haskell, 285

Armstrong, Joe, 181, 183–185
arrays, Ruby, 36–37
atoms, Clojure, 258–259

B
Bueller, Ferris, see Io

C
classes

Haskell, 299–300
Ruby, 41–44
Scala, 147–152
see also objects

Clojure, 20, 223–267
agents, 260–261
anonymous functions, 238–239
atoms, 258–259
bindings, 236–237
booleans, 229–230
concurrency, 256–262, 265
console, 226
creator of, 239–241
destructuring, 236
expressions, 229–230
forms, 228
functions, 234–239
futures, 261, 318
infinite sequences, 248–250

installing, 225
Java integration, 224, 250, 262, 265
lazy evaluation, 247–250, 265
leiningen, 226
Lisp and, 224, 264, 267
lists, 231, 319
macros, 253–254
maps, 233–234
mathematical operations, 226–228
metadata, 262
multimethods, 262
pattern matching, 320
prefix notation, 266
programming model, 315
protocols, 250–253
readability of, 266
recursion, 243–244
references, 256–257
repl, 226
sequences, 244–250
sets, 232–233
strengths of, 264–266
strings, 228–229
thread state, 262
transactional memory, 256–257, 318
typing model, 228
vectors, 231–232
weaknesses of, 266–267

clone message, Io, 62
code blocks, Ruby, 39–41
collections, see arrays; hashes; lists;

maps; sets; tuples; vectors
Colmerauer, Alain, 96
compiled languages

Erlang as, 186
Prolog as, 96
Scala as, 141

concurrency, 317–319
Clojure, 256–262, 265

CONDITIONS HASKELL

Erlang, 182–183, 207–213
Io, 88–91, 93
Ruby, 58
Scala, 139, 155, 171–175, 177

conditions
Io, 70–72
Scala, 141–143

currying
Haskell, 287–288
Scala, 165

D
data structures, 18
decision constructs, 18
declarative languages, Prolog as, 95
Dekorte, Steve, 60, 72–73
domain-specific languages

with Io, 83–86
with Scala, 178

duck typing, Ruby, 32–34
dynamic typing

Clojure, 228
Erlang, 191, 194
Ruby, 33

E
Erlang, 20, 181–222

actors, 183, 317–318
anonymous functions, 198
atoms, 188–189
concurrency, 182–183, 207–213
control structures, 196–198
creator of, 181, 183–185
expressions, 186–188
functions, 191–194, 198–202
iteration, 199
libraries, 220
lightweight processes, 182, 220
linked processes, 213–218
lists, 188–189, 198–205, 319
messages, 207–213
pattern matching, 189–191, 320
programming model, 185–186, 315
reliability, 182, 183, 213–219
strengths of, 219–220
tuples, 188–189
typing model, 191
variables, 186–188
weaknesses of, 221

expressions, Haskell, 270–272

F
filtering, Haskell, 286–287
folding, Haskell, 286–287
foldLeft method, Scala, 164
forms, Clojure, 228
forward message, Io, 86–88
functional programming languages,

315–316
Clojure as, 241
concurrency and, 139
Erlang as, 185–186
Haskell as, 268, 310, 311
Scala as, 154–155

functions
Clojure, 234–239
Erlang, 191–194, 198–202
Haskell, 272–274, 297–298
Ruby, 35
Scala, 160–166

futures, 318
Clojure, 261
Io, 90

G
games, Prolog for, 133

H
hashes, Ruby, 38–39
Haskell, 20, 268–312

anonymous functions, 285
classes, 299–300
creators of, 282–283, 291–292
currying, 287–288
expressions, 270–272
filtering, 286–287
folding, 286–287
function composition, 277–278
functions, 272–274, 297–298
higher-order functions, 285–287
lazy evaluation, 288–290
list comprehensions, 281–282
lists, 278–282, 319
mapping, 285–286
monads, 301–307, 319
partially applied functions, 286–288
pattern matching, 320
polymorphism, 297–298
programming model, 268, 310, 311,

315
ranges, 280–281

324

HICKEY MONADS

recursion, 274–275, 279–280
recursive types, 298–299
starting, 269
strengths of, 309–311
tuples, 275–278
types, 270–272, 294–300
typing model, 269, 309

Hickey, Rich, 239–241
higher-order functions

Haskell, 285–287
Scala, 160

hybrid languages, Scala as, 135–137

I
imperative languages, 95
inferences, Prolog, 98–99
inheritance

Io, 63–66
Scala, 151

interaction model, 18
interpreted languages

Io as, 61
Ruby as, 28

Io, 19, 60–94
actors, 89, 317–318
assignment, 77
clone message, 62
concurrency, 88–91, 93
conditional statements, 75–77
conditions, 70–72
creator of, 60, 72–73
domain-specific languages with,

83–86
forward message, 86–88
futures, 90, 318
inheritance, 63–66
installing, 61
interpreted model for, 61
iteration, 75–77
lists, 68–70
loops, 75–77
maps, 69
messages, 61, 68, 79–81
methods, 66–68
objects, 61–66, 68
operators, 77–78
performance, 94
programming model, 314
prototypes, 61, 68
reflection, 81
slots in objects, 62, 68

strengths of, 92–93
typing model, 64
weaknesses of, 93–94

iteration
Erlang, 199
Io, 75–77
Scala, 142–145, 161–163

J
Java

Clojure and, 224, 250, 262, 265
Scala and, 136–137, 177

K
knowledge base, Prolog, 96, 97

L
lazy evaluation

Clojure, 265
Haskell, 288–290

lightweight processes, Erlang, 220
linked processes, Erlang, 213–218
Lisp, Clojure and, 224, 264, 267
lists, 319

Clojure, 231
Erlang, 188–189, 198–205
Haskell, 278–282
Io, 68–70
Prolog, 111–116
Scala, 156–157, 161–166

logic programming languages, Prolog
as, 96, 315

loops, see iteration

M
macros, Clojure, 253–254
maps

Clojure, 233–234
Haskell, 285–286
Io, 69
Scala, 158–159

Matsumoto, Yukihiro (Matz), 26–27
messages, Io, 61, 68, 79–81
metadata, Clojure, 262
metaprogramming, Ruby, 48–55
method_missing behavior, Ruby, 50–51
methods, Io, 66–68
mixins, Ruby, 44–47
modules, Ruby, 44–47, 51–55
monads, Haskell, 301–307, 319

325

MULTIMETHODS RUBY

multimethods, Clojure, 262
mutable state, controlling, 317

N
natural-language processing, Prolog

for, 133

O
object-oriented languages, 314

Io as, 61
Ruby as, 29, 314
Scala as, 314

objects
Io, 68
see also classes

Odersky, Martin, 137–138
open classes, Ruby, 49–50

P
partially applied functions, Haskell,

286–288
pattern matching, 320

Erlang, 189–191
Scala, 168–171

performance
Io, 94
Ruby, 58

Peyton-Jones, Simon, 291–292
polymorphism, Haskell, 297–298
Poppins, Mary, see Ruby
programming languages

installing, 23
learning, 17–19, 21–22

programming model, 18, 313–316
Prolog, 19, 95–134

append rule, 116–119
capitalization in, 97
creators of, 96
Eight Queens example, 126–131
inferences, 98–99
knowledge base, 96, 97
lists, 111–116
map coloring example, 101–103
math, 114–116
pattern matching, 320
programming model, 315
queries, 99–101
recursion, 109–111, 114–116
scheduling example, 105–108
strengths of, 132–133

Sudoku example, 121–126
tuples, 111–114
unification, 103–105, 111–114, 320
weaknesses of, 133

protocols, Clojure, 250–253
prototype programming languages, Io

as, 61, 314–315
prototypes, Io, 68

Q
queries, Prolog, 99–101

R
Rain Man, see Prolog
ranges, Haskell, 280–281
recursion

Clojure, 243–244
Haskell, 274–275, 279–280
Prolog, 109–111, 114–116
Scala, 162

recursive types, Haskell, 298–299
references, Clojure, 256–257
reflection, Io, 81
Roussel, Phillipe, 96
Ruby, 19, 25–59

arrays, 36–37
classes, 41–44
code blocks, 39–41
concurrency, 58
creator of, 26–27
decision constructs, 30–32
functions, 35
hashes, 38–39
history of, 26
installing, 28
interactive console for, 28
interpreted model for, 28
metaprogramming, 48–55
method_missing behavior, 50–51
mixins, 44–47
modules, 44–47, 51–55
open classes, 49–50
performance, 58
programming model, 29, 314
running from a file, 41
scripting, 56
spaceship operator, 45
strengths of, 56–58
string handling, 29
time to market, 57
type safety, 58

326

SCALA YODA

typing model, 32–34
weaknesses of, 58
web development, 57

S
Scala, 20, 135–180

actors, 171–175, 317–318
Any class, 159
auxiliary constructors, 149
classes, 147–152
collections, 155–166
concurrency, 139, 155, 171–175,

177
conditions, 141–143
creator of, 137–138
currying, 165
domain-specific languages with, 178
expressions, 141–143
foldLeft method, 164
functions, 160–166
higher-order functions, 160
immutable variables, 155
inheritance, 151
iteration, 142–145, 161–163
Java and, 136–137, 177
lists, 156–157, 161–166
maps, 158–159
Nothing type, 159
pattern matching, 168–171, 320
programming model, 314, 315
ranges, 145–147
recursion, 162
sets, 157–158
strengths of, 177–178
traits, 151
tuples, 146–147
types, 140–141
typing model, 143, 179
weaknesses of, 178–179
XML and, 167–168, 170, 178

Scissorhands, Edward, see Scala
scripting, Ruby, 56
semantic Web, Prolog for, 133
sequences, Clojure, 244–250
sets

Clojure, 232–233
Scala, 157–158

slots in objects, Io, 62, 68
Smith (Agent), see Erlang
spaceship operator, Ruby, 45
Spock, see Haskell

static typing
Haskell, 269
Scala, 143, 179

strings
Clojure, 228–229
Ruby’s handling of, 29

strongly typed languages
Clojure, 228
Erlang, 194
Haskell, 269, 309
Ruby, 32
Scala, 141

syntactic sugar, 25

T
Tarbox, Brian, 108
thread state, Clojure, 262
traits, Scala, 151
transactional memory, Clojure,

256–257, 318
Tregunna, Jeremy, 83
tuples

Erlang, 188–189
Haskell, 275–278
Prolog, 111–114

type safety, Ruby, 58
typing model, 18

Clojure, 228
Erlang, 191
Haskell, 309
Io, 64
Ruby, 32–34
Scala, 140–141

U
unification, Prolog, 103–105, 111–114,

320

V
vectors, Clojure, 231–232

W
Wadler, Philip, 282–283
web development, Ruby, 57

X
XML, Scala and, 167–168, 170, 178

Y
Yoda, see Clojure

327

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of August 2010; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Beginning Mac Programming: Develop with

Objective-C and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Cocoa Programming: A Quick-Start Guide for

Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

Continued on next page

pragprog.com

Title Year ISBN Pages

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2010 9781934356562 320

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program, 2nd Edition 2009 9781934356364 240

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby

Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Continued on next page

Title Year ISBN Pages

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

2010 9781934356555 352

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship It! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

Test-Drive ASP.NET MVC 2010 9781934356531 296

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

iPhone SDK Development 2009 9781934356258 576

Erlang and Scala

Programming Erlang
Learn how to write truly concurrent programs—
programs that run on dozens or even hundreds of
local and remote processors. See how to write
high-reliability applications—even in the face of
network and hardware failure—using the Erlang
programming language.

Programming Erlang: Software for a Concurrent

World

Joe Armstrong
(536 pages) ISBN: 1-934356-00-X. $36.95
http://pragprog.com/titles/jaerlang

Programming Scala
Scala is an exciting, modern, multi-paradigm
language for the JVM. You can use it to write
traditional, imperative, object-oriented code. But
you can also leverage its higher level of abstraction
to take full advantage of modern, multicore
systems. Programming Scala will show you how to
use this powerful functional programming
language to create highly scalable, highly
concurrent applications on the Java Platform.

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

Venkat Subramaniam
(250 pages) ISBN: 9781934356319. $34.95
http://pragprog.com/titles/vsscala

http://pragprog.com/titles/jaerlang
http://pragprog.com/titles/vsscala

JavaScript and Clojure

Pragmatic Guide to JavaScript
JavaScript is now a powerful, dynamic language
with a rich ecosystem of professional-grade
development tools, infrastructures, frameworks,
and toolkits. You can’t afford to ignore it–this book
will get you up to speed quickly and painlessly.
Presented as two-page tasks, these JavaScript tips
will get you started quickly and save you time.

Pragmatic Guide to JavaScript

Christophe Porteneuve
(150 pages) ISBN: 978-1934356-67-8. $25.00
http://pragprog.com/titles/pg_js

Programming Clojure
Clojure is a general-purpose language with direct
support for Java, a modern Lisp dialect, and
support in both the language and data structures
for functional programming. Programming Clojure

shows you how to write applications that have the
beauty and elegance of a good scripting language,
the power and reach of the JVM, and a modern,
concurrency-safe functional style. Now you can
write beautiful code that runs fast and scales well.

Programming Clojure

Stuart Halloway
(304 pages) ISBN: 9781934356333. $32.95
http://pragprog.com/titles/shcloj

http://pragprog.com/titles/pg_js
http://pragprog.com/titles/shcloj

Mac and SQL

Beginning Mac Programming
Aimed at beginning developers without prior
programming experience. Takes you through
concrete, working examples, giving you the core
concepts and principles of development in context
so you will be ready to build the applications you’ve
been imagining. It introduces you to Objective-C
and the Cocoa framework in clear,
easy-to-understand lessons, and demonstrates how
you can use them together to write for the Mac, as
well as the iPhone and iPod.

Beginning Mac Programming: Develop with

Objective-C and Cocoa

Tim Isted
(300 pages) ISBN: 978-1934356-51-7. $34.95
http://pragprog.com/titles/tibmac

SQL Antipatterns
If you’re programming applications that store data,
then chances are you’re using SQL, either directly
or through a mapping layer. But most of the SQL
that gets used is inefficient, hard to maintain, and
sometimes just plain wrong. This book shows you
all the common mistakes, and then leads you
through the best fixes. What’s more, it shows you
what’s behind these fixes, so you’ll learn a lot about
relational databases along the way.

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

Bill Karwin
(300 pages) ISBN: 978-19343565-5-5. $34.95
http://pragprog.com/titles/bksqla

http://pragprog.com/titles/tibmac
http://pragprog.com/titles/bksqla

Ruby and Ruby on the Java VM

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,
is the definitive reference to this highly-regarded
language.

• Up-to-date and expanded for Ruby version 1.9
• Complete documentation of all the built-in
classes, modules, and methods • Complete
descriptions of all standard libraries • Learn more
about Ruby’s web tools, unit testing, and
programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt
(992 pages) ISBN: 978-1-9343560-8-1. $49.95
http://pragprog.com/titles/ruby3

Using JRuby
Ruby has the heart, and Java has the reach. With
JRuby, you can bring the best of Ruby into the
world of Java. Written in 100% Java, JRuby has
Ruby’s expressiveness and wide array of
open-source libraries—it’s an even better Ruby.
With Using JRuby, the entire JRuby core team
helps experienced Java developers and Rubyists
exploit the interoperability of their respective
languages. With JRuby, you’ll be surprised at
what’s now possible.

Using JRuby: Bringing Ruby to Java

Charles O Nutter, Thomas Enebo, Nick Sieger, Ola
Bini, and Ian Dees
(300 pages) ISBN: 978-1934356-65-4. $34.95
http://pragprog.com/titles/jruby

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/jruby

Groovy and Grails

Programming Groovy
Programming Groovy will help you learn the
necessary fundamentals of programming in Groovy.
You’ll see how to use Groovy to do advanced
programming techniques, including meta
programming, builders, unit testing with mock
objects, processing XML, working with databases
and creating your own domain-specific languages
(DSLs).

Programming Groovy: Dynamic Productivity for

the Java Developer

Venkat Subramaniam
(320 pages) ISBN: 978-1-9343560-9-8. $34.95
http://pragprog.com/titles/vslg

Grails
Grails is a full stack web development framework
that enables you to build complete web
applications in a fraction of the time and with less
code than other frameworks. In Grails: A

Quick-Start Guide, you’ll see how to use Grails by
iteratively building a unique, working application.
By the time we’re done, you’ll have built and
deployed a real, functioning website.

Grails: A Quick-Start Guide

Dave Klein
(200 pages) ISBN: 9781934356463. $32.95
http://pragprog.com/titles/dkgrails

http://pragprog.com/titles/vslg
http://pragprog.com/titles/dkgrails

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers
will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Seven Languages in Seven Weeks

http://pragprog.com/titles/btlang

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragprog.com/titles/btlang.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/btlang
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/btlang
www.pragprog.com/catalog

	Contents
	Dedication
	Acknowledgments
	Foreword
	Introduction
	Method to the Madness
	The Languages
	Buy This Book
	Don't Buy This Book
	A Final Charge

	Ruby
	Quick History
	Day 1: Finding a Nanny
	Day 2: Floating Down from the Sky
	Day 3: Serious Change
	Wrapping Up Ruby

	Io
	Introducing Io
	Day 1: Skipping School, Hanging Out
	Day 2: The Sausage King
	Day 3: The Parade and Other Strange Places
	Wrapping Up Io

	Prolog
	About Prolog
	Day 1: An Excellent Driver
	Day 2: Fifteen Minutes to Wapner
	Day 3: Blowing Up Vegas
	Wrapping Up Prolog

	Scala
	About Scala
	Day 1: The Castle on the Hill
	Day 2: Clipping Bushes and Other New Tricks
	Day 3: Cutting Through the Fluff
	Wrapping Up Scala

	Erlang
	Introducing Erlang
	Day 1: Appearing Human
	Day 2: Changing Forms
	Day 3: The Red Pill
	Wrapping Up Erlang

	Clojure
	Introducing Clojure
	Day 1: Training Luke
	Day 2: Yoda and the Force
	Day 3: An Eye for Evil
	Wrapping Up Clojure

	Haskell
	Introducing Haskell
	Day 1: Logical
	Day 2: Spock's Great Strength
	Day 3: The Mind Meld
	Wrapping Up Haskell

	Wrap-Up
	Programming Models
	Concurrency
	Programming Constructs
	Finding Your Voice

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

