

What Readers Are Saying About SQL Antipatterns

I am a strong advocate of best practices. I prefer to learn from other

people’s mistakes. This book is a comprehensive collection of those

other people’s mistakes and, quite surprisingly, some of my own. I

wish I had read this book sooner.

Marcus Adams

Senior Software Engineer

Bill has written an engaging, useful, important, and unique book.

Software developers will certainly benefit from reading the anti-

patterns and solutions described here. I immediately applied tech-

niques from this book and improved my applications. Fantastic work!

Frederic Daoud

Author of Stripes: ...And Java Web Development Is Fun Again

and Getting Started with Apache Click

SQL Antipatterns is a must-read for software developers, who will

frequently encounter the database design choices presented in this

book. It helps development teams to understand the consequences of

their database designs and to make the best decisions possible based

on requirements, expectations, measurements, and reality.

Darby Felton

Cofounder, DevBots Software Development

I really like how Bill has approached this book; it shows his unique

style and sense of humor. Those things are really important when

discussing potentially dry topics. Bill has succeeded in making the

teachings accessible for developers in a good descriptive form, as

well as being easy to reference later. In short, this is an excellent new

resource for your pragmatic bookshelf!

Arjen Lentz

Executive Director of Open Query (http://openquery.com);

Coauthor of High Performance MySQL, Second Edition

http://openquery.com

This book is obviously the product of many years of practical expe-

rience with SQL databases. Each topic is covered in great depth,

and the attention to detail in the book was beyond my expectations.

Although it’s not a beginner’s book, any developer with a reasonable

amount of SQL experience should find it to be a valuable reference

and would be hard-pressed not to learn something new.

Mike Naberezny

Partner at Maintainable Software; Coauthor of Rails for PHP

Developers

This is an excellent book for the software engineer who knows basic

SQL but finds herself needing to design SQL databases for projects

that go a little beyond the basics.

Liz Neely

Senior Database Programmer

Karwin’s book is full of good and practical advice, and it was pub-

lished at the right time. While many people are focusing on the new

and seemingly fancy stuff, professionals now have the chance and the

perfect book to sharpen their SQL knowledge.

Maik Schmidt

Author of Enterprise Recipes with Ruby and Rails and

Enterprise Integration with Ruby

Bill has captured the essence of a slew of traps that we’ve probably all

dug for ourselves at one point or another when working with SQL —

without even realizing we’re in trouble. Bill’s antipatterns range from

“I can’t believe I did that (again!)” hindsight gotchas to tricky scenar-

ios where the best solution may run counter to the SQL dogma you

grew up with. A good read for SQL diehards, novices, and everyone in

between.

Danny Thorpe

Microsoft Principal Engineer; Author of Delphi Component

Design

SQL Antipatterns
Avoiding the Pitfalls of Database Programming

Bill Karwin

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Bill Karwin.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-55-7

ISBN-13: 978-1-934356-55-5

Printed on acid-free paper.

P1.0 printing, May 2010

Version: 2010-6-9

http://www.pragprog.com

Contents
1 Introduction 13

1.1 Who This Book Is For . 14

1.2 What’s in This Book . 15

1.3 What’s Not in This Book 17

1.4 Conventions . 18

1.5 Example Database . 19

1.6 Acknowledgments . 22

I Logical Database Design Antipatterns 24

2 Jaywalking 25

2.1 Objective: Store Multivalue Attributes 26

2.2 Antipattern: Format Comma-Separated Lists 26

2.3 How to Recognize the Antipattern 29

2.4 Legitimate Uses of the Antipattern 30

2.5 Solution: Create an Intersection Table 30

3 Naive Trees 34

3.1 Objective: Store and Query Hierarchies 35

3.2 Antipattern: Always Depend on One’s Parent 35

3.3 How to Recognize the Antipattern 39

3.4 Legitimate Uses of the Antipattern 40

3.5 Solution: Use Alternative Tree Models 41

4 ID Required 54

4.1 Objective: Establish Primary Key Conventions 55

4.2 Antipattern: One Size Fits All 57

4.3 How to Recognize the Antipattern 61

4.4 Legitimate Uses of the Antipattern 61

4.5 Solution: Tailored to Fit 62

CONTENTS 8

5 Keyless Entry 65

5.1 Objective: Simplify Database Architecture 66

5.2 Antipattern: Leave Out the Constraints 66

5.3 How to Recognize the Antipattern 69

5.4 Legitimate Uses of the Antipattern 70

5.5 Solution: Declare Constraints 70

6 Entity-Attribute-Value 73

6.1 Objective: Support Variable Attributes 73

6.2 Antipattern: Use a Generic Attribute Table 74

6.3 How to Recognize the Antipattern 80

6.4 Legitimate Uses of the Antipattern 80

6.5 Solution: Model the Subtypes 82

7 Polymorphic Associations 89

7.1 Objective: Reference Multiple Parents 90

7.2 Antipattern: Use Dual-Purpose Foreign Key 91

7.3 How to Recognize the Antipattern 94

7.4 Legitimate Uses of the Antipattern 95

7.5 Solution: Simplify the Relationship 96

8 Multicolumn Attributes 102

8.1 Objective: Store Multivalue Attributes 102

8.2 Antipattern: Create Multiple Columns 103

8.3 How to Recognize the Antipattern 106

8.4 Legitimate Uses of the Antipattern 107

8.5 Solution: Create Dependent Table 108

9 Metadata Tribbles 110

9.1 Objective: Support Scalability 111

9.2 Antipattern: Clone Tables or Columns 111

9.3 How to Recognize the Antipattern 116

9.4 Legitimate Uses of the Antipattern 117

9.5 Solution: Partition and Normalize 118

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=8

CONTENTS 9

II Physical Database Design Antipatterns 122

10 Rounding Errors 123

10.1 Objective: Use Fractional Numbers Instead of Integers 124

10.2 Antipattern: Use FLOAT Data Type 124

10.3 How to Recognize the Antipattern 128

10.4 Legitimate Uses of the Antipattern 128

10.5 Solution: Use NUMERIC Data Type 128

11 31 Flavors 131

11.1 Objective: Restrict a Column to Specific Values 131

11.2 Antipattern: Specify Values in the Column Definition . 132

11.3 How to Recognize the Antipattern 135

11.4 Legitimate Uses of the Antipattern 136

11.5 Solution: Specify Values in Data 136

12 Phantom Files 139

12.1 Objective: Store Images or Other Bulky Media 140

12.2 Antipattern: Assume You Must Use Files 140

12.3 How to Recognize the Antipattern 143

12.4 Legitimate Uses of the Antipattern 144

12.5 Solution: Use BLOB Data Types As Needed 145

13 Index Shotgun 148

13.1 Objective: Optimize Performance 149

13.2 Antipattern: Using Indexes Without a Plan 149

13.3 How to Recognize the Antipattern 153

13.4 Legitimate Uses of the Antipattern 154

13.5 Solution: MENTOR Your Indexes 154

III Query Antipatterns 161

14 Fear of the Unknown 162

14.1 Objective: Distinguish Missing Values 163

14.2 Antipattern: Use Null as an Ordinary Value, or Vice Versa163

14.3 How to Recognize the Antipattern 166

14.4 Legitimate Uses of the Antipattern 168

14.5 Solution: Use Null as a Unique Value 168

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=9

CONTENTS 10

15 Ambiguous Groups 173

15.1 Objective: Get Row with Greatest Value per Group . . . 174

15.2 Antipattern: Reference Nongrouped Columns 174

15.3 How to Recognize the Antipattern 176

15.4 Legitimate Uses of the Antipattern 178

15.5 Solution: Use Columns Unambiguously 179

16 Random Selection 183

16.1 Objective: Fetch a Sample Row 184

16.2 Antipattern: Sort Data Randomly 184

16.3 How to Recognize the Antipattern 185

16.4 Legitimate Uses of the Antipattern 186

16.5 Solution: In No Particular Order. 186

17 Poor Man’s Search Engine 190

17.1 Objective: Full-Text Search 191

17.2 Antipattern: Pattern Matching Predicates 191

17.3 How to Recognize the Antipattern 192

17.4 Legitimate Uses of the Antipattern 193

17.5 Solution: Use the Right Tool for the Job 193

18 Spaghetti Query 204

18.1 Objective: Decrease SQL Queries 205

18.2 Antipattern: Solve a Complex Problem in One Step . . 205

18.3 How to Recognize the Antipattern 207

18.4 Legitimate Uses of the Antipattern 208

18.5 Solution: Divide and Conquer 209

19 Implicit Columns 214

19.1 Objective: Reduce Typing 215

19.2 Antipattern: a Shortcut That Gets You Lost 215

19.3 How to Recognize the Antipattern 217

19.4 Legitimate Uses of the Antipattern 218

19.5 Solution: Name Columns Explicitly 219

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=10

CONTENTS 11

IV Application Development Antipatterns 221

20 Readable Passwords 222

20.1 Objective: Recover or Reset Passwords 222

20.2 Antipattern: Store Password in Plain Text 223

20.3 How to Recognize the Antipattern 225

20.4 Legitimate Uses of the Antipattern 225

20.5 Solution: Store a Salted Hash of the Password 227

21 SQL Injection 234

21.1 Objective: Write Dynamic SQL Queries 235

21.2 Antipattern: Execute Unverified Input As Code 235

21.3 How to Recognize the Antipattern 242

21.4 Legitimate Uses of the Antipattern 243

21.5 Solution: Trust No One 243

22 Pseudokey Neat-Freak 250

22.1 Objective: Tidy Up the Data 251

22.2 Antipattern: Filling in the Corners 251

22.3 How to Recognize the Antipattern 254

22.4 Legitimate Uses of the Antipattern 254

22.5 Solution: Get Over It . 254

23 See No Evil 259

23.1 Objective: Write Less Code 260

23.2 Antipattern: Making Bricks Without Straw 260

23.3 How to Recognize the Antipattern 262

23.4 Legitimate Uses of the Antipattern 263

23.5 Solution: Recover from Errors Gracefully 264

24 Diplomatic Immunity 266

24.1 Objective: Employ Best Practices 267

24.2 Antipattern: Make SQL a Second-Class Citizen 267

24.3 How to Recognize the Antipattern 268

24.4 Legitimate Uses of the Antipattern 269

24.5 Solution: Establish a Big-Tent Culture of Quality . . . 269

25 Magic Beans 278

25.1 Objective: Simplify Models in MVC 279

25.2 Antipattern: The Model Is an Active Record 280

25.3 How to Recognize the Antipattern 286

25.4 Legitimate Uses of the Antipattern 287

25.5 Solution: The Model Has an Active Record 287

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=11

CONTENTS 12

V Appendixes 293

A Rules of Normalization 294

A.1 What Does Relational Mean? 294

A.2 Myths About Normalization 296

A.3 What Is Normalization? 298

A.4 Common Sense . 308

B Bibliography 309

Index 311

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=12

An expert is a person who has made all the mistakes that

can be made in a very narrow field.

Niels Bohr

Chapter 1

Introduction
I turned down my first SQL job.

Shortly after I finished my college degree in computer and information

science at the University of California, I was approached by a manager

who worked at the university and knew me through campus activi-

ties. He had his own software startup company on the side that was

developing a database management system portable between various

UNIX platforms using shell scripts and related tools such as awk (at this

time, modern dynamic languages like Ruby, Python, PHP, and even Perl

weren’t popular yet). The manager approached me because he needed a

programmer to write the code to recognize and execute a limited version

of the SQL language.

He said, “I don’t need to support the full language—that would be too

much work. I need only one SQL statement: SELECT.”

I hadn’t been taught SQL in school. Databases weren’t as ubiquitous

as they are today, and open source brands like MySQL and PostgreSQL

didn’t exist yet. But I had developed complete applications in shell,

and I knew something about parsers, having done projects in classes

like compiler design and computational linguistics. So, I thought about

taking the job. How hard could it be to parse a single statement of a

specialized language like SQL?

I found a reference for SQL and noticed immediately that this was a

different sort of language from those that support statements like if()

and while(), variable assignments and expressions, and perhaps func-

tions. To call SELECT only one statement in that language is like calling

an engine only one part of an automobile. Both sentences are literally

true, but they certainly belie the complexity and depth of their subjects.

To support execution of that single SQL statement, I realized I would

WHO THIS BOOK IS FOR 14

have to develop all the code for a fully functional relational database

management system and query engine.

I declined this opportunity to code an SQL parser and RDBMS engine

in shell script. The manager underrepresented the scope of his project,

perhaps because he didn’t understand what an RDBMS does.

My early experience with SQL seems to be a common one for software

developers, even those who have a college degree in computer science.

Most people are self-taught in SQL, learning it out of self-defense when

they find themselves working on a project that requires it, instead

of studying it explicitly as they would most programming languages.

Regardless of whether the person is a hobbyist or a professional pro-

grammer or an accomplished researcher with a PhD, SQL seems to be

a software skill that programmers learn without training.

Once I learned something about SQL, I was surprised how different

it is from procedural programming languages such as C, Pascal, and

shell, or object-oriented languages like C++, Java, Ruby, or Python.

SQL is a declarative programming language like LISP, Haskell, or XSLT.

SQL uses sets as a fundamental data structure, while object-oriented

languages use objects. Traditionally trained software developers are

turned off by this so-called impedance mismatch, so many program-

mers are drawn to object-oriented libraries to avoid learning how to

use SQL effectively.

Since 1992, I’ve worked with SQL a lot. I’ve used it when developing

applications, I’ve provided technical support and developed training

and documentation for the InterBase RDBMS product, and I’ve devel-

oped libraries for SQL programming in Perl and PHP. I’ve answered

thousands of questions on Internet mailing lists and newsgroups. I see

a lot of repeat business—frequently asked questions that show that

software developers make the same mistakes over and over again.

1.1 Who This Book Is For

I’m writing SQL Antipatterns for software developers who need to use

SQL so I can help you use the language more effectively. It doesn’t

matter whether you’re a beginner or a seasoned professional. I’ve talked

to people of all levels of experience who would benefit from the subjects

in this book.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=14

WHAT’S IN THIS BOOK 15

You may have read a reference on SQL syntax. Now you know all the

clauses of a SELECT statement, and you can get some work done. Gradu-

ally, you may increase your SQL skills by inspecting other applications

and reading articles. But how can you tell good examples from bad

examples? How can you be sure you’re learning best practices, instead

of yet another way to paint yourself into a corner?

You may find some topics in SQL Antipatterns that are well-known to

you. You’ll see new ways of looking at the problems, even if you’re

already aware of the solutions. It’s good to confirm and reinforce your

good practices by reviewing widespread programmer misconceptions.

Other topics may be new to you. I hope you can improve your SQL

programming habits by reading them.

If you are a trained database administrator, you may already know

the best ways to avoid the SQL pitfalls described in this book. This

book can help you by introducing you to the perspective of software

developers. It’s not uncommon for the relationship between developers

and DBAs to be contentious, but mutual respect and teamwork can

help us to work together more effectively. Use SQL Antipatterns to help

explain good practices to the software developers you work with and

the consequences of straying from that path.

1.2 What’s in This Book

What is an antipattern? An antipattern is a technique that is intended

to solve a problem but that often leads to other problems. An antipat-

tern is practiced widely in different ways, but with a thread of common-

ality. People may come up with an idea that fits an antipattern inde-

pendently or with help from a colleague, a book, or an article. Many

antipatterns of object-oriented software design and project manage-

ment are documented at the Portland Pattern Repository,1 as well as

in the 1998 book AntiPatterns [BMMM98] by William J. Brown et al.

SQL Antipatterns describes the most frequently made missteps I’ve seen

people naively make while using SQL as I’ve talked to them in techni-

cal support and training sessions, worked alongside them developing

software, and answered their questions on Internet forums. Many of

these blunders I’ve made myself; there’s no better teacher than spend-

ing many hours late at night making up for one’s own errors.

1. Portland Pattern Repository: http://c2.com/cgi-bin/wiki?AntiPattern

Report erratum

this copy is (P1.0 printing, May 2010)

http://c2.com/cgi-bin/wiki?AntiPattern
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=15

WHAT’S IN THIS BOOK 16

Parts of This Book

This book has four parts for the following categories of antipatterns:

Logical Database Design Antipatterns

Before you start coding, you should decide what information you

need to keep in your database and the best way to organize and

interconnect your data. This includes planning your database

tables, columns, and relationships.

Physical Database Design Antipatterns

After you know what data you need to store, you implement the

data management as efficiently as you can using the features of

your RDBMS technology. This includes defining tables and in-

dexes and choosing data types. You use SQL’s data definition lan-

guage—statements such as CREATE TABLE.

Query Antipatterns

You need to add data to your database and then retrieve data. SQL

queries are made with data manipulation language—statements

such as SELECT, UPDATE, and DELETE.

Application Development Antipatterns

SQL is supposed to be used in the context of applications written

in another language, such as C++, Java, PHP, Python, or Ruby.

There are right ways and wrong ways to employ SQL in an applica-

tion, and this part of the book describes some common blunders.

Many of the antipattern chapters have humorous or evocative titles,

such as Golden Hammer, Reinventing the Wheel, or Design by Commit-

tee. It’s traditional to give both positive design patterns and antipat-

terns names that serve as a metaphor or mnemonic.

The appendix provides practical descriptions of some relational data-

base theory. Many of the antipatterns this book covers are the result of

misunderstanding database theory.

Anatomy of an Antipattern

Each antipattern chapter contains the following subheadings:

Objective

This is the task that you may be trying to solve. Antipatterns are

used with an intention to provide that solution but end up causing

more problems than they solve.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=16

WHAT’S NOT IN THIS BOOK 17

The Antipattern

This section describes the nature of the common solution and

illustrates the unforeseen consequences that make it an anti-

pattern.

How to Recognize the Antipattern

There may be certain clues that help you identify when an antipat-

tern is being used in your project. Certain types of barriers you

encounter, or quotes you may hear yourself or others saying, can

tip you off to the presence of an antipattern.

Legitimate Uses of the Antipattern

Rules usually have exceptions. There may be circumstances in

which an approach normally considered an antipattern is never-

theless appropriate, or at least the lesser of all evils.

Solution

This section describes the preferred solutions, which solve the

original objective without running into the problems caused by

the antipattern.

1.3 What’s Not in This Book

I’m not going to give lessons on SQL syntax or terminology. There are

plenty of books and Internet references for the basics. I assume you

have already learned enough SQL syntax to use the language and get

some work done.

Performance, scalability, and optimization are important for many peo-

ple who develop database-driven applications, especially on the Web.

There are books specifically about performance issues related to data-

base programming. I recommend SQL Performance Tuning [GP03] and

High Performance MySQL, Second Edition [SZT+08]. Some of the topics

in SQL Antipatterns are relevant to performance, but it’s not the main

focus of the book.

I try to present issues that apply to all database brands and also solu-

tions that should work with all brands. The SQL language is specified

as an ANSI and ISO standard. All brands of databases support these

standards, so I describe vendor-neutral use of SQL whenever possible,

and I try to be clear when describing vendor extensions to SQL.

Data access frameworks and object-relational mapping libraries are

helpful tools, but these aren’t the focus of this book. I’ve written most

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=17

CONVENTIONS 18

code examples in PHP, in the plainest way I can. The examples are

simple enough that they’re equally relevant to most programming lan-

guages.

Database administration and operation tasks such as server sizing,

installation and configuration, monitoring, backups, log analysis, and

security are important and deserve a book of their own, but I’m target-

ing this book to developers using the SQL language more than database

administrators.

This book is about SQL and relational databases, not alternative tech-

nology such as object-oriented databases, key/value stores, column-

oriented databases, document-oriented databases, hierarchical data-

bases, network databases, map/reduce frameworks, or semantic data

stores. Comparing the strengths and weaknesses and appropriate uses

of these alternative solutions for data management would be interesting

but is a matter for other books.

1.4 Conventions

The following sections describe some conventions I use in this book.

Typography

SQL keywords are formatted in all-capitals and in a monospaced font

to make them stand out from the text, as in SELECT.

SQL tables, also in a monospaced font, are spelled with a capital for the

initial letter of each word in the table name, as in Accounts or BugsProd-

ucts. SQL columns, also in a monospaced font, are spelled in lowercase,

and words are separated by underscores, as in account_name.

Literal strings are formatted in italics, as in bill@example.com.

Terminology

SQL is correctly pronounced “ess-cue-ell,” not “see-quell.” Though I

have no objection to the latter being used colloquially, I try to use the

former, so in this book you will read phrases like “an SQL query,” not

“a SQL query.”

In the context of database-related usage, the word index refers to an

ordered collection of information. The preferred plural of this word is

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=18

EXAMPLE DATABASE 19

indexes. In other contexts, an index may mean an indicator and is typ-

ically pluralized as indices. Both are correct according to most dictio-

naries, and this causes some confusion among writers. In this book, I

spell the plural as indexes.

In SQL, the terms query and statement are somewhat interchangeable,

being any complete SQL command that you can execute. For the sake

of clarity, I use query to refer to SELECT statements and statement for all

others, including INSERT, UPDATE, and DELETE statements, as well as data

definition statements.

Entity-Relationship Diagrams

The most common way to diagram relational databases is with entity-

relationship diagrams. Tables are shown as boxes, and relationships

are shown as lines connecting the boxes, with symbols at either end of

the lines describing the cardinality of the relationship. For examples,

see Figure 1.1, on the following page.

1.5 Example Database

I illustrate most of the topics in SQL Antipatterns using a database for a

hypothetical bug-tracking application. The entity-relationship diagram

for this database is shown in Figure 1.2, on page 21. Notice the three

connections between the Bugs table and the Accounts table, representing

three separate foreign keys.

The following data definition language shows how I define the tables.

In some cases, choices are made for the sake of examples later in the

book, so they might not always be the choices one would make in a

real-world application. I try to use only standard SQL so the example is

applicable to any brand of database, but some MySQL data types also

appear, such as SERIAL and BIGINT.

Download Introduction/setup.sql

CREATE TABLE Accounts (

account_id SERIAL PRIMARY KEY,

account_name VARCHAR(20),

first_name VARCHAR(20),

last_name VARCHAR(20),

email VARCHAR(100),

password_hash CHAR(64),

portrait_image BLOB,

hourly_rate NUMERIC(9,2)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Introduction/setup.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=19

EXAMPLE DATABASE 20

Accounts

CommentsBugs

Many-to-One
Each account may log many bugs

One-to-Many
Each bug may have many comments

InstallersProducts

One-to-One
Each product has one installer

ProductsBugs

Many-to-Many
Each product may have many bugs;

a bug may pertain to many products

ProductsBugs

Many-to-Many
Same as above, with intersection table

BugsProducts

Bugs

Figure 1.1: Examples of entity-relationship diagrams

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=20

EXAMPLE DATABASE 21

Products

Bugs

BugsProducts

Accounts

BugStatus

Screenshots

Tags

Comments

Figure 1.2: Diagram for example bug database

CREATE TABLE BugStatus (

status VARCHAR(20) PRIMARY KEY

);

CREATE TABLE Bugs (

bug_id SERIAL PRIMARY KEY,

date_reported DATE NOT NULL,

summary VARCHAR(80),

description VARCHAR(1000),

resolution VARCHAR(1000),

reported_by BIGINT UNSIGNED NOT NULL,

assigned_to BIGINT UNSIGNED,

verified_by BIGINT UNSIGNED,

status VARCHAR(20) NOT NULL DEFAULT 'NEW',

priority VARCHAR(20),

hours NUMERIC(9,2),

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),

FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id),

FOREIGN KEY (verified_by) REFERENCES Accounts(account_id),

FOREIGN KEY (status) REFERENCES BugStatus(status)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=21

ACKNOWLEDGMENTS 22

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

bug_id BIGINT UNSIGNED NOT NULL,

author BIGINT UNSIGNED NOT NULL,

comment_date DATETIME NOT NULL,

comment TEXT NOT NULL,

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (author) REFERENCES Accounts(account_id)

);

CREATE TABLE Screenshots (

bug_id BIGINT UNSIGNED NOT NULL,

image_id BIGINT UNSIGNED NOT NULL,

screenshot_image BLOB,

caption VARCHAR(100),

PRIMARY KEY (bug_id, image_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

CREATE TABLE Tags (

bug_id BIGINT UNSIGNED NOT NULL,

tag VARCHAR(20) NOT NULL,

PRIMARY KEY (bug_id, tag),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

CREATE TABLE Products (

product_id SERIAL PRIMARY KEY,

product_name VARCHAR(50)

);

CREATE TABLE BugsProducts(

bug_id BIGINT UNSIGNED NOT NULL,

product_id BIGINT UNSIGNED NOT NULL,

PRIMARY KEY (bug_id, product_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

In some chapters, especially those in Logical Database Design Anti-

patterns, I show different database definitions, either to exhibit the

antipattern or to show an alternative solution that avoids the anti-

pattern.

1.6 Acknowledgments

First and foremost, I owe my gratitude to my wife Jan. I could not have

written this book without the inspiration, love, and support you give

me, not to mention the occasional kick in the pants.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=22

ACKNOWLEDGMENTS 23

I also want to express thanks to my reviewers for giving me a lot of their

time. Their suggestions improved the book greatly. Marcus Adams, Jeff

Bean, Frederic Daoud, Darby Felton, Arjen Lentz, Andy Lester, Chris

Levesque, Mike Naberezny, Liz Nealy, Daev Roehr, Marco Romanini,

Maik Schmidt, Gale Straney, and Danny Thorpe.

Thanks to my editor Jacquelyn Carter and the publishers of Pragmatic

Bookshelf, who believed in the mission of this book.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=23

Part I

Logical Database Design

Antipatterns

A Netscape engineer who shan’t be named once passed a

pointer to JavaScript, stored it as a string, and later passed

it back to C, killing 30.

Blake Ross

Chapter 2

Jaywalking
You’re developing a feature in the bug-tracking application to designate

a user as the primary contact for a product. Your original design allowed

only one user to be the contact for each product. However, it was no

surprise when you were requested to support assigning multiple users

as contacts for a given product.

At the time, it seemed simple to change the database to store a list

of user account identifiers separated by commas, instead of the single

identifier it used before.

Soon your boss approaches you with a problem. “The engineering de-

partment has been adding associate staff to their projects. They tell me

they can add five people only. If they try to add more, they get an error.

What’s going on?”

You nod, “Yeah, you can only list so many people on a project,” as

though this is completely ordinary.

Sensing that your boss needs a more precise explanation, “Well, five to

ten—maybe a few more. It depends on how old each person’s account

is.” Now your boss raises his eyebrows. You continue, “I store the ac-

count IDs for a project in a comma-separated list. But the list of IDs has

to fit in a string with a maximum length. If the account IDs are short,

I can fit more in the list. So, people who created the earlier accounts

have an ID of 99 or less, and those are shorter.”

Your boss frowns. You have a feeling you’re going to be staying late.

Programmers commonly use comma-separated lists to avoid creating

an intersection table for a many-to-many relationship. I call this anti-

pattern Jaywalking, because jaywalking is also an act of avoiding an

intersection.

OBJECTIVE: STORE MULTIVALUE ATTRIBUTES 26

2.1 Objective: Store Multivalue Attributes

When a column in a table has a single value, the design is straightfor-

ward: you can choose an SQL data type to represent a single instance

of that value, for example an integer, date, or string. But how do you

store a collection of related values in a column?

In the example bug-tracking database, we might associate a product

with a contact using an integer column in the Products table. Each

account may have many products, and each product references one

contact, so we have a many-to-one relationship between products and

accounts.

Download Jaywalking/obj/create.sql

CREATE TABLE Products (

product_id SERIAL PRIMARY KEY,

product_name VARCHAR(1000),

account_id BIGINT UNSIGNED,

-- . . .

FOREIGN KEY (account_id) REFERENCES Accounts(account_id)

);

INSERT INTO Products (product_id, product_name, account_id)

VALUES (DEFAULT, 'Visual TurboBuilder', 12);

As your project matures, you realize that a product might have multiple

contacts. In addition to the many-to-one relationship, we also need to

support a one-to-many relationship from products to accounts. One

row in the Products table must be able to have more than one contact.

2.2 Antipattern: Format Comma-Separated Lists

To minimize changes to the database structure, you decide to redefine

the account_id column as a VARCHAR so you can list multiple account

IDs in that column, separated by commas.

Download Jaywalking/anti/create.sql

CREATE TABLE Products (

product_id SERIAL PRIMARY KEY,

product_name VARCHAR(1000),

account_id VARCHAR(100), -- comma-separated list

-- . . .

);

INSERT INTO Products (product_id, product_name, account_id)

VALUES (DEFAULT, 'Visual TurboBuilder', '12,34');

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Jaywalking/obj/create.sql
http://media.pragprog.com/titles/bksqla/code/Jaywalking/anti/create.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=26

ANTIPATTERN: FORMAT COMMA-SEPARATED LISTS 27

This seems like a win, because you’ve created no additional tables or

columns; you’ve changed the data type of only one column. However,

let’s look at the performance problems and data integrity problems this

table design suffers from.

Querying Products for a Specific Account

Queries are difficult if all the foreign keys are combined into a single

field. You can no longer use equality; instead, you have to use a test

against some kind of pattern. For example, MySQL lets you write some-

thing like the following to find all the products for account 12:

Download Jaywalking/anti/regexp.sql

SELECT * FROM Products WHERE account_id REGEXP '[[:<:]]12[[:>:]]';

Pattern-matching expressions may return false matches and can’t ben-

efit from indexes. Since pattern-matching syntax is different in each

database brand, your SQL code isn’t vendor-neutral.

Querying Accounts for a Given Product

Likewise, it’s awkward and costly to join a comma-separated list to

matching rows in the referenced table.

Download Jaywalking/anti/regexp.sql

SELECT * FROM Products AS p JOIN Accounts AS a

ON p.account_id REGEXP '[[:<:]]' || a.account_id || '[[:>:]]'

WHERE p.product_id = 123;

Joining two tables using an expression like this one spoils any chance

of using indexes. The query must scan through both tables, generate a

cross product, and evaluate the regular expression for every combina-

tion of rows.

Making Aggregate Queries

Aggregate queries use functions like COUNT(), SUM(), and AVG(). How-

ever, these functions are designed to be used over groups of rows, not

comma-separated lists. You have to resort to tricks like the following:

Download Jaywalking/anti/count.sql

SELECT product_id, LENGTH(account_id) - LENGTH(REPLACE(account_id, ',', '')) + 1

AS contacts_per_product

FROM Products;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Jaywalking/anti/regexp.sql
http://media.pragprog.com/titles/bksqla/code/Jaywalking/anti/regexp.sql
http://media.pragprog.com/titles/bksqla/code/Jaywalking/anti/count.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=27

ANTIPATTERN: FORMAT COMMA-SEPARATED LISTS 28

Tricks like this can be clever but never clear. These kinds of solutions

are time-consuming to develop and hard to debug. Some aggregate

queries can’t be accomplished with tricks at all.

Updating Accounts for a Specific Product

You can add a new ID to the end of the list with string concatenation,

but this might not leave the list in sorted order.

Download Jaywalking/anti/update.sql

UPDATE Products

SET account_id = account_id || ',' || 56

WHERE product_id = 123;

To remove an item from the list, you have to run two SQL queries: one

to fetch the old list and a second to save the updated list.

Download Jaywalking/anti/remove.php

<?php

$stmt = $pdo->query(

"SELECT account_id FROM Products WHERE product_id = 123");

$row = $stmt->fetch();

$contact_list = $row['account_id'];

// change list in PHP code

$value_to_remove = "34";

$contact_list = split(",", $contact_list);

$key_to_remove = array_search($value_to_remove, $contact_list);

unset($contact_list[$key_to_remove]);

$contact_list = join(",", $contact_list);

$stmt = $pdo->prepare(

"UPDATE Products SET account_id = ?

WHERE product_id = 123");

$stmt->execute(array($contact_list));

That’s quite a lot of code just to remove an entry from a list.

Validating Product IDs

What prevents a user from entering invalid entries like banana?

Download Jaywalking/anti/banana.sql

INSERT INTO Products (product_id, product_name, account_id)

VALUES (DEFAULT, 'Visual TurboBuilder', '12,34,banana');

Users will find a way to enter any and all variations, and your database

will turn to mush. There won’t necessarily be database errors, but the

data will be nonsense.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Jaywalking/anti/update.sql
http://media.pragprog.com/titles/bksqla/code/Jaywalking/anti/remove.php
http://media.pragprog.com/titles/bksqla/code/Jaywalking/anti/banana.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=28

HOW TO RECOGNIZE THE ANTIPATTERN 29

Choosing a Separator Character

If you store a list of string values instead of integers, some list entries

may contain your separator character. Using a comma as the separator

between entries may become ambiguous. You can choose a different

character as the separator, but can you guarantee that this new sepa-

rator will never appear in an entry?

List Length Limitations

How many list entries can you store in a VARCHAR(30) column? It de-

pends on the length of each entry. If each entry is two characters long,

then you can store ten (including the commas). But if each entry is six

characters, then you can store only four entries:

Download Jaywalking/anti/length.sql

UPDATE Products SET account_id = '10,14,18,22,26,30,34,38,42,46'

WHERE product_id = 123;

UPDATE Products SET account_id = '101418,222630,343842,467790'

WHERE product_id = 123;

How can you know that VARCHAR(30) supports the longest list you will

need in the future? How long is long enough? Try explaining the reason

for this length limit to your boss or to your customers.

2.3 How to Recognize the Antipattern

If you hear phrases like the following spoken by your project team, treat

it as a clue that the Jaywalking antipattern is being employed:

• “What is the greatest number of entries this list must support?”

This question comes up when you’re trying to choose the maxi-

mum length of the VARCHAR column.

• “Do you know how to match a word boundary in SQL?”

If you use regular expressions to pick out parts of a string, this

could be a clue that you should store those parts separately.

• “What character will never appear in any list entry?”

You want to use an unambiguous separator character, but you

should expect that any character might someday appear in a value

in the list.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Jaywalking/anti/length.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=29

LEGITIMATE USES OF THE ANTIPATTERN 30

2.4 Legitimate Uses of the Antipattern

You might improve performance for some kinds of queries by apply-

ing denormalization to your database organization. Storing lists as a

comma-separated string is an example of denormalization.

Your application may need the data in a comma-separated format and

have no need to access individual items in the list. Likewise, if your

application receives a comma-separated format from another source

and you simply need to store the full list in a database and retrieve it

later in exactly the same format, there’s no need to separate the values.

Be conservative if you decide to employ denormalization. Start by using

a normalized database organization, because it permits your applica-

tion code to be more flexible, and it allows your database to help pre-

serve data integrity.

2.5 Solution: Create an Intersection Table

Instead of storing the account_id in the Products table, store it in a sepa-

rate table, so each individual value of that attribute occupies a separate

row. This new table Contacts implements a many-to-many relationship

between Products and Accounts:

Download Jaywalking/soln/create.sql

CREATE TABLE Contacts (

product_id BIGINT UNSIGNED NOT NULL,

account_id BIGINT UNSIGNED NOT NULL,

PRIMARY KEY (product_id, account_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id),

FOREIGN KEY (account_id) REFERENCES Accounts(account_id)

);

INSERT INTO Contacts (product_id, accont_id)

VALUES (123, 12), (123, 34), (345, 23), (567, 12), (567, 34);

When the table has foreign keys referencing two tables, it’s called an

intersection table.1 This implements a many-to-many relationship be-

tween the two referenced tables. That is, each product may be associ-

ated through the intersection table to multiple accounts, and likewise

each account may be associated to multiple products. See the entity-

relationship diagram in Figure 2.1, on the following page.

1. Some people use a join table, a many-to-many table, a mapping table, or other terms

to describe this table. The name doesn’t matter; the concept is the same.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Jaywalking/soln/create.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=30

SOLUTION: CREATE AN INTERSECTION TABLE 31

Contacts ProductsAccounts

Figure 2.1: Intersection table entity-relationship diagram

Let’s see how using an intersection table resolves all the problems we

saw in the “Antipattern” section.

Querying Products by Account and the Other Way Around

To query the attributes of all products for a given account, it’s more

straightforward to join the Products table with the Contacts table:

Download Jaywalking/soln/join.sql

SELECT p.*
FROM Products AS p JOIN Contacts AS c ON (p.account_id = c.account_id)

WHERE c.account_id = 34;

Some people resist queries that contain a join, thinking that they per-

form poorly. However, this query uses indexes much better than the

solution shown earlier in the “Antipattern” section.

Querying account details is likewise easy to read and easy to optimize. It

uses indexes for the join efficiently, instead of an esoteric use of regular

expressions:

Download Jaywalking/soln/join.sql

SELECT a.*
FROM Accounts AS a JOIN Contacts AS c ON (a.account_id = c.account_id)

WHERE c.product_id = 123;

Making Aggregate Queries

The following example returns the number of accounts per product:

Download Jaywalking/soln/group.sql

SELECT product_id, COUNT(*) AS accounts_per_product

FROM Contacts

GROUP BY product_id;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Jaywalking/soln/join.sql
http://media.pragprog.com/titles/bksqla/code/Jaywalking/soln/join.sql
http://media.pragprog.com/titles/bksqla/code/Jaywalking/soln/group.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=31

SOLUTION: CREATE AN INTERSECTION TABLE 32

The number of products per account is just as simple:

Download Jaywalking/soln/group.sql

SELECT account_id, COUNT(*) AS products_per_account

FROM Contacts

GROUP BY account_id;

Other more sophisticated reports are possible too, such as the product

with the greatest number of accounts:

Download Jaywalking/soln/group.sql

SELECT c.product_id, c.accounts_per_product

FROM (

SELECT product_id, COUNT(*) AS accounts_per_product

FROM Contacts

GROUP BY product_id

) AS c

HAVING c.accounts_per_product = MAX(c.accounts_per_product)

Updating Contacts for a Specific Product

You can add or remove entries in the list by inserting or deleting rows

in the intersection table. Each product reference is stored in a separate

row in the Contacts table, so you can add or remove them one at a time.

Download Jaywalking/soln/remove.sql

INSERT INTO Contacts (product_id, account_id) VALUES (456, 34);

DELETE FROM Contacts WHERE product_id = 456 AND account_id = 34;

Validating Product IDs

You can use a foreign key to validate the entries against a set of legiti-

mate values in another table. You declare that Contacts.account_id ref-

erences Accounts.account_id, and therefore you rely on the database to

enforce referential integrity. Now you can be sure that the intersection

table contains only account IDs that exist.

You can also use SQL data types to restrict entries. For example, if the

entries in the list should be valid INTEGER or DATE values and you declare

the column using those data types, you can be sure all entries are legal

values of that type (not nonsense entries like banana).

Choosing a Separator Character

You use no separator character, since you store each entry on a sepa-

rate row. There’s no ambiguity if the entries contain commas or other

characters you might have used as a separator.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Jaywalking/soln/group.sql
http://media.pragprog.com/titles/bksqla/code/Jaywalking/soln/group.sql
http://media.pragprog.com/titles/bksqla/code/Jaywalking/soln/remove.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=32

SOLUTION: CREATE AN INTERSECTION TABLE 33

List Length Limitations

Since each entry is in a separate row in the intersection table, the

list is limited only by the number of rows that can physically exist in

one table. If it’s appropriate to limit the number of entries, you should

enforce the policy in your application using the count of entries rather

than the collective length of the list.

Other Advantages of the Intersection Table

An index on Contacts.account_id makes performance better than match-

ing a substring in a comma-separated list. Declaring a foreign key on

a column implicitly creates an index on that column in many database

brands (but check your documentation).

You can also create additional attributes for each entry by adding col-

umns to the intersection table. For example, you could record the date

a contact was added for a given product or an attribute noting who is

the primary contact vs. the secondary contacts. You can’t do this in a

comma-separated list.

Store each value in its own column and row.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=33

A tree is a tree—how many more do you need to look at?

Ronald Reagan

Chapter 3

Naive Trees
Suppose you work as a software developer for a famous website for

science and technology news.

This is a modern website, so readers can contribute comments and

even reply to each other, forming threads of discussion that branch

and extend deeply. You choose a simple solution to track these reply

chains: each comment references the comment to which it replies.

Download Trees/intro/parent.sql

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

parent_id BIGINT UNSIGNED,

comment TEXT NOT NULL,

FOREIGN KEY (parent_id) REFERENCES Comments(comment_id)

);

It soon becomes clear, however, that it’s hard to retrieve a long chain

of replies in a single SQL query. You can get only the immediate chil-

dren or perhaps join with the grandchildren, to a fixed depth. But the

threads can have an unlimited depth. You would need to run many SQL

queries to get all the comments in a given thread.

The other idea you have is to retrieve all the comments and assemble

them into tree data structures in application memory, using traditional

tree algorithms you learned in school. But the publishers of the website

have told you that they publish dozens of articles every day, and each

article can have hundreds of comments. Sorting through millions of

comments every time someone views the website is impractical.

There must be a better way to store the threads of comments so you

can retrieve a whole discussion thread simply and efficiently.

http://media.pragprog.com/titles/bksqla/code/Trees/intro/parent.sql

OBJECTIVE: STORE AND QUERY HIERARCHIES 35

3.1 Objective: Store and Query Hierarchies

It’s common for data to have recursive relationships. Data may be orga-

nized in a treelike or hierarchical way. In a tree data structure, each

entry is called a node. A node may have a number of children and one

parent. The top node, which has no parent, is called the root. The nodes

at the bottom, which have no children, are called leaves. The nodes in

the middle are simply nonleaf nodes.

In the previous hierarchical data, you may need to query individual

items, related subsets of the collection, or the whole collection. Exam-

ples of tree-oriented data structures include the following:

Organization chart: The relationship of employees to managers is the

textbook example of tree-structured data. It appears in count-

less books and articles on SQL. In an organizational chart, each

employee has a manager, who represents the employee’s parent in

a tree structure. The manager is also an employee.

Threaded discussion: As seen in the introduction, a tree structure may

be used for the chain of comments in reply to other comments. In

the tree, the children of a comment node are its replies.

In this chapter, we’ll use the threaded discussion example to show the

antipattern and its solutions.

3.2 Antipattern: Always Depend on One’s Parent

The naive solution commonly shown in books and articles is to add

a column parent_id. This column references another comment in the

same table, and you can create a foreign key constraint to enforce this

relationship. The SQL to define this table is shown next, and the entity-

relationship diagram is shown in Figure 3.1, on the next page.

Download Trees/anti/adjacency-list.sql

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

parent_id BIGINT UNSIGNED,

bug_id BIGINT UNSIGNED NOT NULL,

author BIGINT UNSIGNED NOT NULL,

comment_date DATETIME NOT NULL,

comment TEXT NOT NULL,

FOREIGN KEY (parent_id) REFERENCES Comments(comment_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (author) REFERENCES Accounts(account_id)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/anti/adjacency-list.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=35

ANTIPATTERN: ALWAYS DEPEND ON ONE’S PARENT 36

Bugs

Comments

Figure 3.1: Adjacency list entity-relationship diagram

This design is called Adjacency List. It’s probably the most common

design software developers use to store hierarchical data. The following

is some sample data to show a hierarchy of comments, and an illustra-

tion of the tree is shown in Figure 3.2, on the following page.

comment_id parent_id author comment

1 NULL Fran What’s the cause of this bug?

2 1 Ollie I think it’s a null pointer.

3 2 Fran No, I checked for that.

4 1 Kukla We need to check for invalid input.

5 4 Ollie Yes, that’s a bug.

6 4 Fran Yes, please add a check.

7 6 Kukla That fixed it.

Querying a Tree with Adjacency List

Adjacency List can be an antipattern when it’s the default choice of so

many developers yet it fails to be a solution for one of the most common

tasks you need to do with a tree: query all descendants.

You can retrieve a comment and its immediate children using a rela-

tively simple query:

Download Trees/anti/parent.sql

SELECT c1.*, c2.*
FROM Comments c1 LEFT OUTER JOIN Comments c2

ON c2.parent_id = c1.comment_id;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/anti/parent.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=36

ANTIPATTERN: ALWAYS DEPEND ON ONE’S PARENT 37

(1) Fran:
What’s the

cause
of this bug?

(2) Ollie:
I think it’s a
null pointer.

(3) Fran:
No, I checked

for that.

(4) Kukla:
We need to

check for valid
input.

(5) Ollie:
Yes, that’s
a bug.

(6) Fran:
Yes, please add

a check.

(7) Kukla:
That fixed it.

Figure 3.2: Threaded comments illustration

However, this queries only two levels of the tree. One characteristic of a

tree is that it can extend to any depth, so you need to be able to query

the descendents without regard to the number of levels. For example,

you may need to compute the COUNT() of comments in the thread or

the SUM() of the cost of parts in a mechanical assembly.

This kind of query is awkward when you use Adjacency List, because

each level of the tree corresponds to another join, and the number of

joins in an SQL query must be fixed. The following query retrieves a

tree of depth up to four but cannot retrieve the tree beyond that depth:

Download Trees/anti/ancestors.sql

SELECT c1.*, c2.*, c3.*, c4.*
FROM Comments c1 -- 1st level

LEFT OUTER JOIN Comments c2

ON c2.parent_id = c1.comment_id -- 2nd level

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/anti/ancestors.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=37

ANTIPATTERN: ALWAYS DEPEND ON ONE’S PARENT 38

LEFT OUTER JOIN Comments c3

ON c3.parent_id = c2.comment_id -- 3rd level

LEFT OUTER JOIN Comments c4

ON c4.parent_id = c3.comment_id; -- 4th level

This query is also awkward because it includes descendants from pro-

gressively deeper levels by adding more columns. This makes it hard to

compute an aggregate such as COUNT().

Another way to query a tree structure from Adjacency List is to retrieve

all the rows in the collection and instead reconstruct the hierarchy in

the application before you can use it like a tree.

Download Trees/anti/all-comments.sql

SELECT * FROM Comments WHERE bug_id = 1234;

Copying a large volume of data from the database to the application

before you can analyze it is grossly inefficient. You might need only a

subtree, not the whole tree from its top. You might require only aggre-

gate information about the data, such as the COUNT() of comments.

Maintaining a Tree with Adjacency List

Admittedly, some operations are simple to accomplish with Adjacency

List, such as adding a new leaf node:

Download Trees/anti/insert.sql

INSERT INTO Comments (bug_id, parent_id, author, comment)

VALUES (1234, 7, 'Kukla', 'Thanks!');

Relocating a single node or a subtree is also easy:

Download Trees/anti/update.sql

UPDATE Comments SET parent_id = 3 WHERE comment_id = 6;

However, deleting a node from a tree is more complex. If you want to

delete an entire subtree, you have to issue multiple queries to find all

descendants. Then remove the descendants from the lowest level up to

satisfy the foreign key integrity.

Download Trees/anti/delete-subtree.sql

SELECT comment_id FROM Comments WHERE parent_id = 4; -- returns 5 and 6

SELECT comment_id FROM Comments WHERE parent_id = 5; -- returns none

SELECT comment_id FROM Comments WHERE parent_id = 6; -- returns 7

SELECT comment_id FROM Comments WHERE parent_id = 7; -- returns none

DELETE FROM Comments WHERE comment_id IN (7);

DELETE FROM Comments WHERE comment_id IN (5, 6);

DELETE FROM Comments WHERE comment_id = 4;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/anti/all-comments.sql
http://media.pragprog.com/titles/bksqla/code/Trees/anti/insert.sql
http://media.pragprog.com/titles/bksqla/code/Trees/anti/update.sql
http://media.pragprog.com/titles/bksqla/code/Trees/anti/delete-subtree.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=38

HOW TO RECOGNIZE THE ANTIPATTERN 39

You can use a foreign key with the ON DELETE CASCADE modifier to auto-

mate this, as long as you know you always want to delete the descen-

dants instead of promoting or relocating them.

If you instead want to delete a nonleaf node and promote its children

or move them to another place in the tree, you first need to change the

parent_id of children and then delete the desired node.

Download Trees/anti/delete-non-leaf.sql

SELECT parent_id FROM Comments WHERE comment_id = 6; -- returns 4

UPDATE Comments SET parent_id = 4 WHERE parent_id = 6;

DELETE FROM Comments WHERE comment_id = 6;

These are examples of operations that require multiple steps when you

use the Adjacency List design. That’s a lot of code you have to write for

tasks that a database should make simpler and more efficient.

3.3 How to Recognize the Antipattern

If you hear a question like the following, it’s a clue that the Naive Trees

antipattern is being employed:

• “How many levels do we need to support in trees?”

You’re struggling to get all descendants or all ancestors of a node,

without using a recursive query. You could compromise by sup-

porting only trees of a limited depth, but the next natural question

is, how deep is deep enough?

• “I dread ever having to touch the code that manages the tree data

structures.”

You’ve adopted one of the more sophisticated solutions of manag-

ing hierarchies, but you’re using the wrong one. Each technique

makes some tasks easier, but usually at the cost of other tasks

that become harder. You may have chosen a solution that isn’t

the best choice for the way you need to use hierarchies in your

application.

• “I need to run a script periodically to clean up the orphaned rows

in the trees.”

Your application creates disconnected nodes in the tree as it de-

letes nonleaf nodes. When you store complex data structures in

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/anti/delete-non-leaf.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=39

LEGITIMATE USES OF THE ANTIPATTERN 40

a database, you need to keep the structure in a consistent, valid

state after any change. You can use one of the solutions presented

later in this chapter, along with triggers and cascading foreign key

constraints, to store data structures that are resilient instead of

fragile.

3.4 Legitimate Uses of the Antipattern

The Adjacency List design might be just fine to support the work you

need to do in your application. The strength of the Adjacency List design

is retrieving the direct parent or child of a given node. It’s also easy

to insert rows. If those operations are all you need to do with your

hierarchical data, then Adjacency List can work well for you.

Don’t Over-Engineer

I wrote an inventory-tracking application for a computer data center.

Some equipment was installed inside computers; for example, a caching

disk controller was installed in a rackmount server, and extra memory

modules were installed on the disk controller.

I needed an SQL solution to track the usage of hierarchical collections

easily. But I also needed to track each individual piece of equipment to

produce accounting reports of equipment utilization, amortization, and

return on investment.

The manager said the collections could have subcollections, and thus the

tree could in theory descend to any depth. It took quite a few weeks to

perfect the code for manipulating trees in the database storage, user

interface, administration, and reporting.

In practice, however, the inventory application never needed to create a

grouping of equipment with a tree deeper than a single parent-child

relationship. If my client had acknowledged that this would be enough to

model his inventory requirements, we could have saved a lot of work.

Some brands of RDBMS support extensions to SQL to support hierar-

chies stored in the Adjacency List format. The SQL-99 standard defines

recursive query syntax using the WITH keyword followed by a common

table expression.

Download Trees/legit/cte.sql

WITH CommentTree

(comment_id, bug_id, parent_id, author, comment, depth)

AS (

SELECT *, 0 AS depth FROM Comments

WHERE parent_id IS NULL

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/legit/cte.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=40

SOLUTION: USE ALTERNATIVE TREE MODELS 41

UNION ALL

SELECT c.*, ct.depth+1 AS depth FROM CommentTree ct

JOIN Comments c ON (ct.comment_id = c.parent_id)

)

SELECT * FROM CommentTree WHERE bug_id = 1234;

Microsoft SQL Server 2005, Oracle 11g, IBM DB2, and PostgreSQL 8.4

support recursive queries using common table expressions, as shown

earlier.

MySQL, SQLite, and Informix are examples of database brands that

don’t support this syntax yet. It’s the same for Oracle 10g, which is still

widely used. In the future, we might assume recursive query syntax will

become available across all popular brands, and then using Adjacency

List won’t be so limiting.

Oracle 9i and 10g support the WITH clause, but not for recursive queries.

Instead, there is proprietary syntax: START WITH and CONNECT BY PRIOR.

You can use this syntax to perform recursive queries:

Download Trees/legit/connect-by.sql

SELECT * FROM Comments

START WITH comment_id = 9876

CONNECT BY PRIOR parent_id = comment_id;

3.5 Solution: Use Alternative Tree Models

There are several alternatives to the Adjacency List model of storing

hierarchical data, including Path Enumeration, Nested Sets, and Clo-

sure Table. The following three sections show examples using these

designs to solve the scenario in the “Antipattern” section, storing and

querying a tree-like collection of comments.

These solutions take some getting used to. They may seem more com-

plex than Adjacency List at first, but they make some tree operations

easier that were very difficult or inefficient using the Adjacency List

design. If your application needs to perform those operations, then

these designs are a better choice than the simple Adjacency List.

Path Enumeration

One weakness of Adjacency List is that it’s expensive to retrieve ances-

tors of a given node in the tree. In Path Enumeration, this is solved by

storing the string of ancestors as an attribute of each node.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/legit/connect-by.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=41

SOLUTION: USE ALTERNATIVE TREE MODELS 42

You can see a form of Path Enumeration in directory hierarchies. A

UNIX path like /usr/local/lib/ is a Path Enumeration of the filesystem,

where usr is the parent of local, which in turn is the parent of lib.

In the Comments table, instead of the parent_id column, define a column

called path as a long VARCHAR. The string stored in this column is the

sequence of ancestors of the current row in order from the top of the

tree down, just like a UNIX path. You can even choose / as a separator

character.

Download Trees/soln/path-enum/create-table.sql

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

path VARCHAR(1000),

bug_id BIGINT UNSIGNED NOT NULL,

author BIGINT UNSIGNED NOT NULL,

comment_date DATETIME NOT NULL,

comment TEXT NOT NULL,

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (author) REFERENCES Accounts(account_id)

);

comment_id path author comment

1 1/ Fran What’s the cause of this bug?

2 1/2/ Ollie I think it’s a null pointer.

3 1/2/3/ Fran No, I checked for that.

4 1/4/ Kukla We need to check for invalid input.

5 1/4/5/ Ollie Yes, that’s a bug.

6 1/4/6/ Fran Yes, please add a check.

7 1/4/6/7/ Kukla That fixed it.

You can query ancestors by comparing the current row’s path to a pat-

tern formed from the path of another row. For example, to find ances-

tors of comment #7, whose path is 1/4/6/7/, do this:

Download Trees/soln/path-enum/ancestors.sql

SELECT *
FROM Comments AS c

WHERE '1/4/6/7/' LIKE c.path || '%';

This matches the patterns formed from paths of ancestors 1/4/6/%,

1/4/%, and 1/%.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/path-enum/create-table.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/path-enum/ancestors.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=42

SOLUTION: USE ALTERNATIVE TREE MODELS 43

You can query descendants by reversing the arguments of the LIKE pred-

icate. To find the descendants of comment #4 whose path is 1/4/, use

this:

Download Trees/soln/path-enum/descendants.sql

SELECT *
FROM Comments AS c

WHERE c.path LIKE '1/4/' || '%';

The pattern 1/4/% matches the paths of descendants 1/4/5/, and

1/4/6/, and 1/4/6/7/.

Once you can easily select a subset of the tree or the chain of ancestors

to the top of the tree, you can perform many other queries easily, such

as computing the SUM() of costs of nodes in a subtree or simply counting

the number of nodes. For example, to count the comments per author

in the subtree starting at comment #4, do this:

Download Trees/soln/path-enum/count.sql

SELECT COUNT(*)

FROM Comments AS c

WHERE c.path LIKE '1/4/' || '%'

GROUP BY c.author;

Inserting a node is similar to inserting in the Adjacency List model.

You can insert a nonleaf node without needing to modify any other

row. Copy the path from the new node’s parent, and append the ID

of the new node to this string. If your primary key generates its value

automatically during the insert, you may need to insert the row and

then update the path once you know the ID value for the new row.

For example, if you use MySQL, the built-in function LAST_INSERT_ID()

returns the most recent ID value generated for an inserted row in the

current session. Get the rest of the path from the parent of your new

node.

Download Trees/soln/path-enum/insert.sql

INSERT INTO Comments (author, comment) VALUES ('Ollie', 'Good job!');

UPDATE Comments

SET path = (SELECT path FROM Comments WHERE comment_id = 7)

|| LAST_INSERT_ID() || '/'

WHERE comment_id = LAST_INSERT_ID();

Path Enumeration has some drawbacks similar to those shown in

Chapter 2, Jaywalking, on page 25. The database can’t enforce that the

path is formed correctly or that values in the path correspond to exist-

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/path-enum/descendants.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/path-enum/count.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/path-enum/insert.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=43

SOLUTION: USE ALTERNATIVE TREE MODELS 44

ing nodes. Maintaining the path string depends on application code,

and verifying it is costly. No matter how long you make theVARCHAR

column, it still has a length limit, so it doesn’t strictly support trees of

unlimited depth.

Path Enumeration allows you to sort a set of rows easily by their hier-

archy, as long as the elements between the separator are of consistent

length.1

Nested Sets

The Nested Sets solution stores information with each node that per-

tains to the set of its descendants, rather than the node’s immediate

parent. This information can be represented by encoding each node in

the tree with two numbers, which you can call nsleft and nsright.

Download Trees/soln/nested-sets/create-table.sql

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

nsleft INTEGER NOT NULL,

nsright INTEGER NOT NULL,

bug_id BIGINT UNSIGNED NOT NULL,

author BIGINT UNSIGNED NOT NULL,

comment_date DATETIME NOT NULL,

comment TEXT NOT NULL,

FOREIGN KEY (bug_id) REFERENCES Bugs (bug_id),

FOREIGN KEY (author) REFERENCES Accounts(account_id)

);

Each node is given nsleft and nsright numbers in the following way:

the nsleft number is less than the numbers of all the node’s children,

whereas the nsright number is greater than the numbers of all the node’s

children. These numbers have no relation to the comment_id values.

An easy way to assign these values is by following a depth-first traversal

of the tree, assigning nsleft numbers incrementally as you descend a

branch of the tree and assigning nsright numbers as you ascend back

up the branch.

It may be easier to visualize the pattern from Figure 3.3, on the follow-

ing page than from this description.

1. On the other hand, this may smell too much like the Jaywalking antipattern.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/nested-sets/create-table.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=44

SOLUTION: USE ALTERNATIVE TREE MODELS 45

(1) Fran:
What’s the

cause
of this bug?

(2) Ollie:
I think it’s a
null pointer.

(3) Fran:
No, I checked

for that.

(4) Kukla:
We need to

check for valid
input.

(5) Ollie:
Yes, that’s
a bug.

(6) Fran:
Yes, please add

a check.

(7) Kukla:
That fixed it.

1

2 5

3 4 7 8 9 12

6 13

14

10 11

Figure 3.3: Nested Sets illustration

comment_id nsleft nsright author comment

1 1 14 Fran What’s the cause of this bug?

2 2 5 Ollie I think it’s a null pointer.

3 3 4 Fran No, I checked for that.

4 6 13 Kukla We need to check for invalid input.

5 7 8 Ollie Yes, that’s a bug.

6 9 12 Fran Yes, please add a check.

7 10 11 Kukla That fixed it.

Once you have assigned each node with these numbers, you can use

them to find ancestors and descendants of any given node. For exam-

ple, you can retrieve comment #4 and its descendants by searching for

nodes whose numbers are between the current node’s nsleft and nsright.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=45

SOLUTION: USE ALTERNATIVE TREE MODELS 46

Download Trees/soln/nested-sets/descendants.sql

SELECT c2.*
FROM Comments AS c1

JOIN Comments as c2

ON c2.nsleft BETWEEN c1.nsleft AND c1.nsright

WHERE c1.comment_id = 4;

You can retrieve comment #6 and its ancestors by searching for nodes

whose numbers span the current node’s numbers. For example:

Download Trees/soln/nested-sets/ancestors.sql

SELECT c2.*
FROM Comments AS c1

JOIN Comment AS c2

ON c1.nsleft BETWEEN c2.nsleft AND c2.nsright

WHERE c1.comment_id = 6;

One chief strength of the Nested Sets design is that when you delete a

nonleaf node, its descendants are automatically considered direct chil-

dren of the deleted node’s parents. Although the right and left numbers

of each node shown in the illustration have values forming a continuous

series and the difference is always one compared to adjacent siblings

and parents, this is not necessary for the Nested Sets design to preserve

the hierarchy. So when gaps in the values result from deleting a node,

there is no interruption to the tree structure.

For example, you can count the depth of a given node and delete its

parent, and then when you count the depth of the node again, it seems

to have decreased depth by one level.

Download Trees/soln/nested-sets/depth.sql

-- Reports depth = 3

SELECT c1.comment_id, COUNT(c2.comment_id) AS depth

FROM Comment AS c1

JOIN Comment AS c2

ON c1.nsleft BETWEEN c2.nsleft AND c2.nsright

WHERE c1.comment_id = 7

GROUP BY c1.comment_id;

DELETE FROM Comment WHERE comment_id = 6;

-- Reports depth = 2

SELECT c1.comment_id, COUNT(c2.comment_id) AS depth

FROM Comment AS c1

JOIN Comment AS c2

ON c1.nsleft BETWEEN c2.nsleft AND c2.nsright

WHERE c1.comment_id = 7

GROUP BY c1.comment_id;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/nested-sets/descendants.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/nested-sets/ancestors.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/nested-sets/depth.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=46

SOLUTION: USE ALTERNATIVE TREE MODELS 47

However, some queries that are simple in the Adjacency List design,

such as retrieving the immediate child or immediate parent, are more

complex in the Nested Sets design. The direct parent of a given node

c1 is an ancestor of that node, but no other node can exist in between

them. So, you can use an additional outer join to search for a node that

is both an ancestor of c1 and a descendant of the parent. Only if no

such node is found (that is, the result of the outer join is null) is the

ancestor truly the direct parent of c1.

For example, to find the immediate parent of comment #6, do this:

Download Trees/soln/nested-sets/parent.sql

SELECT parent.*
FROM Comment AS c

JOIN Comment AS parent

ON c.nsleft BETWEEN parent.nsleft AND parent.nsright

LEFT OUTER JOIN Comment AS in_between

ON c.nsleft BETWEEN in_between.nsleft AND in_between.nsright

AND in_between.nsleft BETWEEN parent.nsleft AND parent.nsright

WHERE c.comment_id = 6

AND in_between.comment_id IS NULL;

Manipulations of the tree, inserting and moving nodes, are generally

more complex in the Nested Sets design than they are in other models.

When you insert a new node, you need to recalculate all the left and

right values greater than the left value of the new node.

This includes the new node’s right siblings, its ancestors, and the right

siblings of its ancestors. It also includes descendants, if the new node

is inserted as a nonleaf node. Assuming the new node is a leaf node,

the following statement should update everything necessary:

Download Trees/soln/nested-sets/insert.sql

-- make space for NS values 8 and 9

UPDATE Comment

SET nsleft = CASE WHEN nsleft >= 8 THEN nsleft+2 ELSE nsleft END,

nsright = nsright+2

WHERE nsright >= 7;

-- create new child of comment #5, occupying NS values 8 and 9

INSERT INTO Comment (nsleft, nsright, author, comment)

VALUES (8, 9, 'Fran', 'Me too!');

The Nested Sets model is best when it’s more important to perform

queries for subtrees quickly and easily, rather than operations on indi-

vidual nodes. Inserting and moving nodes is complex, because of the

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/nested-sets/parent.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/nested-sets/insert.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=47

SOLUTION: USE ALTERNATIVE TREE MODELS 48

requirement to renumber the left and right values. If your usage of the

tree involves frequent insertions, Nested Sets isn’t the best choice.

Closure Table

The Closure Table solution is a simple and elegant way of storing hier-

archies. It involves storing all paths through the tree, not just those

with a direct parent-child relationship.

In addition to a plain Comments table, create another table TreePaths,

with two columns, each of which is a foreign key to the Comments table.

Download Trees/soln/closure-table/create-table.sql

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

bug_id BIGINT UNSIGNED NOT NULL,

author BIGINT UNSIGNED NOT NULL,

comment_date DATETIME NOT NULL,

comment TEXT NOT NULL,

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (author) REFERENCES Accounts(account_id)

);

CREATE TABLE TreePaths (

ancestor BIGINT UNSIGNED NOT NULL,

descendant BIGINT UNSIGNED NOT NULL,

PRIMARY KEY(ancestor, descendant),

FOREIGN KEY (ancestor) REFERENCES Comments(comment_id),

FOREIGN KEY (descendant) REFERENCES Comments(comment_id)

);

Instead of using the Comments table to store information about the tree

structure, use the TreePaths table. Store one row in this table for each

pair of nodes in the tree that shares an ancestor/descendant relation-

ship, even if they are separated by multiple levels in the tree. Also add

a row for each node to reference itself. For an illustration of how the

nodes are paired, see Figure 3.4, on the next page.

ancestor descendant ancestor descendant ancestor descendant

1 1 1 7 4 6

1 2 2 2 4 7

1 3 2 3 5 5

1 4 3 3 6 6

1 5 4 4 6 7

1 6 4 5 7 7

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/closure-table/create-table.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=48

SOLUTION: USE ALTERNATIVE TREE MODELS 49

(1) Fran:
What’s the

cause
of this bug?

(2) Ollie:
I think it’s a
null pointer.

(3) Fran:
No, I checked

for that.

(4) Kukla:
We need to

check for valid
input.

(5) Ollie:
Yes, that’s
a bug.

(6) Fran:
Yes, please add

a check.

(7) Kukla:
That fixed it.

Figure 3.4: Closure Table illustration

The queries to retrieve ancestors and descendants from this table are

even more straightforward than those in the Nested Sets solution. To

retrieve descendants of comment #4, match rows in TreePaths where the

ancestor is 4:

Download Trees/soln/closure-table/descendants.sql

SELECT c.*
FROM Comments AS c

JOIN TreePaths AS t ON c.comment_id = t.descendant

WHERE t.ancestor = 4;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/closure-table/descendants.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=49

SOLUTION: USE ALTERNATIVE TREE MODELS 50

To retrieve ancestors of comment #6, match rows in TreePaths where the

descendant is 6:

Download Trees/soln/closure-table/ancestors.sql

SELECT c.*
FROM Comments AS c

JOIN TreePaths AS t ON c.comment_id = t.ancestor

WHERE t.descendant = 6;

To insert a new leaf node, for instance a new child of comment #5, first

insert the self-referencing row. Then add a copy of the set of rows in

TreePaths that reference comment #5 as a descendant (including the row

in which comment #5 references itself), replacing the descendant with

the number of the new comment:

Download Trees/soln/closure-table/insert.sql

INSERT INTO TreePaths (ancestor, descendant)

SELECT t.ancestor, 8

FROM TreePaths AS t

WHERE t.descendant = 5

UNION ALL

SELECT 8, 8;

To delete a leaf node, for instance comment #7, delete all rows in

TreePaths that reference comment #7 as a descendant:

Download Trees/soln/closure-table/delete-leaf.sql

DELETE FROM TreePaths WHERE descendant = 7;

To delete a complete subtree, for instance comment #4 and its descen-

dants, delete all rows in TreePaths that reference comment #4 as a

descendant, as well as all rows that reference any of comment #4’s

descendants as descendants:

Download Trees/soln/closure-table/delete-subtree.sql

DELETE FROM TreePaths

WHERE descendant IN (SELECT descendant

FROM TreePaths

WHERE ancestor = 4);

Notice that if you delete rows in TreePaths, this doesn’t delete the com-

ments themselves. This seems odd for this example of Comments, but

it makes more sense if you’re working with other kinds of trees, for

instance categories in a product catalog or employees in an org chart.

You don’t necessarily want to delete a node when you change its rela-

tionship to other nodes. When you store paths in a separate table, it

helps make this more flexible.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/closure-table/ancestors.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/closure-table/insert.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/closure-table/delete-leaf.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/closure-table/delete-subtree.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=50

SOLUTION: USE ALTERNATIVE TREE MODELS 51

To move a subtree from one location in the tree to another, first discon-

nect the subtree from its ancestors by deleting rows that reference the

ancestors of the top node in the subtree and the descendants of that

node. For instance, to move comment #6 from its position as a child of

comment #4 to a child of comment #3, start with the following deletion.

Make sure not to delete comment #6’s self-reference.

Download Trees/soln/closure-table/move-subtree.sql

DELETE FROM TreePaths

WHERE descendant IN (SELECT descendant

FROM TreePaths

WHERE ancestor = 6)

AND ancestor IN (SELECT ancestor

FROM TreePaths

WHERE descendant = 6

AND ancestor != descendant);

By selecting ancestors of #6, but not #6 itself, and descendants of #6,

including #6, this correctly removes all the paths from #6’s ancestors

to #6 and its descendants. In other words, this deletes the paths (1, 6),

(1,7), (4, 6), and (4, 7). It does not delete (6, 6) or (6, 7).

Then add the orphaned subtree by inserting rows matching the ances-

tors of the new location and the descendants of the subtree. You can

use the CROSS JOIN syntax to create a Cartesian product, generating the

rows needed to match ancestors of the new location to all the nodes in

the subtree you need to move.

Download Trees/soln/closure-table/move-subtree.sql

INSERT INTO TreePaths (ancestor, descendant)

SELECT supertree.ancestor, subtree.descendant

FROM TreePaths AS supertree

CROSS JOIN TreePaths AS subtree

WHERE supertree.descendant = 3

AND subtree.ancestor = 6;

This creates new paths using the ancestors of #3, including #3, and

the descendants of #6, including #6. So, the new paths are (1, 6), (2,

6), (3, 6), (1, 7), (2, 7), (3, 7). The result is that the subtree starting

with comment #6 is relocated as a child of comment #3. The cross join

creates all the needed paths, even if the subtree is moved to a higher or

lower level in the tree.

The Closure Table design is more straightforward than the Nested Sets

design. Both have quick and easy methods for querying ancestors and

descendants, but the Closure Table is easier to maintain the hierarchy

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/closure-table/move-subtree.sql
http://media.pragprog.com/titles/bksqla/code/Trees/soln/closure-table/move-subtree.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=51

SOLUTION: USE ALTERNATIVE TREE MODELS 52

Design
Adjacency List
Recursive Query
Path Enumeration
Nested Sets
Closure Table

Tables
1
1
1
1
2

Query Child
Easy
Easy
Easy
Hard
Easy

Query Tree
Hard
Easy
Easy
Easy
Easy

Insert
Easy
Easy
Easy
Hard
Easy

Delete
Easy
Easy
Easy
Hard
Easy

Ref. Integ.
Yes
Yes
No
No
Yes

Figure 3.5: Comparing hierarchical data designs

information. In both designs, it’s more convenient to query immediate

child or parent nodes than in the Adjacency List or Path Enumeration

designs.

However, you can improve the Closure Table to make queries for imme-

diate parent or child nodes easier. Add a TreePaths.path_length attribute

to the Closure Table design. The path_length of a node’s self-reference

is zero, the path_length of its immediate child is 1, the path_length of its

grandchild is 2, and so on. Finding the children of comment #4 is now

straightforward:

Download Trees/soln/closure-table/child.sql

SELECT *
FROM TreePaths

WHERE ancestor = 4 AND path_length = 1;

Which Design Should You Use?

Each of the designs has its own strengths and weaknesses. Choose the

design depending on which operations you need to be most efficient.

In Figure 3.5, some operations are marked as easy or hard with each

respective tree design. You can also consider the following strengths

and weaknesses of each design:

• Adjacency List is the most conventional design, and many soft-

ware developers recognize it.

• Recursive Queries using WITH or CONNECT BY PRIOR make it more

efficient to use the Adjacency List design, provided you use one of

the database brands that supports the syntax.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Trees/soln/closure-table/child.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=52

SOLUTION: USE ALTERNATIVE TREE MODELS 53

• Path Enumeration is good for breadcrumbs in user interfaces, but

it’s fragile because it fails to enforce referential integrity and stores

information redundantly.

• Nested Sets is a clever solution—maybe too clever. It also fails to

support referential integrity. It’s best used when you need to query

a tree more frequently than you need to modify the tree.

• Closure Table is the most versatile design and the only design in

this chapter that could allow a node to belong to multiple trees. It

requires an additional table to store the relationships. This design

also uses a lot of rows when encoding deep hierarchies, increasing

space consumption as a trade-off for reducing computing.

There’s more to learn about storing and manipulating hierarchical data

in SQL. A good book that covers hierarchical queries is Joe Celko’s

Trees and Hierarchies in SQL for Smarties [Cel04]. Another book that

covers trees and even graphs is SQL Design Patterns [Tro06] by Vadim

Tropashko. The latter book has a more formal, academic style.

A hierarchy consists of entries and relationships.

Model both of these to suit your work.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=53

The creatures outside looked from pig to man, and from

man to pig, and from pig to man again; but already it was

impossible to say which was which.

George Orwell, Animal Farm

Chapter 4

ID Required
Recently I answered a question that I see frequently, from a software

developer trying to prevent duplicate rows. At first I thought he must

lack a primary key. But that wasn’t his problem.

In his content management database, he stored articles for publishing

on a website. He used an intersection table for a many-to-many associ-

ation between a table of articles and a table of tags.

Download ID-Required/intro/articletags.sql

CREATE TABLE ArticleTags (

id SERIAL PRIMARY KEY,

article_id BIGINT UNSIGNED NOT NULL,

tag_id BIGINT UNSIGNED NOT NULL,

FOREIGN KEY (article_id) REFERENCES Articles (id),

FOREIGN KEY (tag_id) REFERENCES Tags (id)

);

He was getting incorrect results from queries when counting the num-

ber of articles with a given tag. He knew that there were only five articles

with the “economy” tag, but the query was telling him there were seven.

Download ID-Required/intro/articletags.sql

SELECT tag_id, COUNT(*) AS articles_per_tag FROM ArticleTags WHERE tag_id = 327;

When he queried all the rows matching that tag_id, he saw that the

tag was associated with one particular article in triplicate; three rows

showed the same association, although they had different values for id.

http://media.pragprog.com/titles/bksqla/code/ID-Required/intro/articletags.sql
http://media.pragprog.com/titles/bksqla/code/ID-Required/intro/articletags.sql

OBJECTIVE: ESTABLISH PRIMARY KEY CONVENTIONS 55

id tag_id article_id

22 327 1234

23 327 1234

24 327 1234

This table had a primary key, but that primary key wasn’t preventing

duplicates in the columns that mattered. One remedy might be to create

a UNIQUE constraint over the other two columns, but given that, why is

the id column needed at all?

4.1 Objective: Establish Primary Key Conventions

The objective is to make sure every table has a primary key, but confu-

sion about the nature of a primary key has resulted in an antipattern.

Everyone who has been introduced to database design knows that a

primary key is an important, even mandatory, part of a table. This is

true; primary keys are integral to good database design. A primary key

is guaranteed to be unique over all rows in the table, so this is the

logical mechanism to address individual rows and to prevent duplicate

rows from being stored. A primary key is also referenced by foreign keys

to create table associations.

The tricky part is choosing a column to serve as the primary key. The

value of any attribute in most tables has the potential to belong on more

than one row. Textbook examples such as a person’s first name and last

name are clearly subject to having duplication. Even an email address

or administrative identification numbers such as a United States Social

Security number or taxpayer ID number aren’t strictly unique.

A new column is needed in such tables to store an artificial value that

has no meaning in the domain modeled by the table. This column is

used as the primary key, so you can address rows uniquely while allow-

ing any other attribute column to contain duplicates, if that’s appropri-

ate. This type of primary key column is sometimes called a pseudokey

or a surrogate key.

To ensure rows can be given unique pseudokey values even when con-

current clients are inserting new rows, most databases provide a mech-

anism to generate unique integer values serially, outside the scope of

transaction isolation.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=55

OBJECTIVE: ESTABLISH PRIMARY KEY CONVENTIONS 56

Do I Really Need a Primary Key?

I’ve heard some software developers claim that their table
doesn’t need a primary key.

Sometimes these programmers want to avoid the imagined
overhead of maintaining a unique index, or else they have
tables with no columns they can use for this purpose.

A primary key constraint is important when you need to do the
following:

• Prevent a table from containing duplicate rows

• Reference individual rows in queries

• Support foreign key references

If you don’t use primary key constraints, you create a chore for
yourself: checking for duplicate rows.

SELECT bug_id FROM Bugs GROUP BY bug_id HAVING COUNT(*) > 1;

How frequently should you run this check? What should you do
with a duplicate when you find one?

A table without a primary key is like organizing your MP3 col-
lection with no song titles. You can still listen to the music, but
you can’t find the one you want or keep duplicates out of your
collection.

Pseudokeys weren’t standardized until SQL:2003, so each database

uses its own extension to SQL to implement them. Even the termi-

nology for pseudokeys is vendor-dependent, as shown by the following

table:

Feature Supported by Database Brands

AUTO_INCREMENT MySQL

GENERATOR Firebird, InterBase

IDENTITY DB2, Derby, Microsoft SQL Server, Sybase

ROWID SQLite

SEQUENCE DB2, Firebird, Informix, Ingres, Oracle, PostgreSQL

SERIAL MySQL, PostgreSQL

Pseudokeys are a useful feature, but they aren’t the only solution for

declaring a primary key.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=56

ANTIPATTERN: ONE SIZE FITS ALL 57

4.2 Antipattern: One Size Fits All

Books, articles, and programming frameworks have established a cul-

tural convention that every database table must have a primary key

column with the following characteristics:

• The primary key’s column name is id.

• Its data type is a 32-bit or 64-bit integer.

• Unique values are generated automatically.

The presence of a column named id in every table is so common that

this has become synonymous with a primary key. Programmers learn-

ing SQL get the false idea that a primary key always means a column

defined in this manner.

Download ID-Required/anti/id-ubiquitous.sql

CREATE TABLE Bugs (

id SERIAL PRIMARY KEY,

description VARCHAR(1000),

-- . . .

);

Adding an id column to every table causes several effects that make its

use seem arbitrary.

Making a Redundant Key

You might see an id column defined as the primary key simply for the

sake of tradition, even when another column in the same table could

be used as the natural primary key. The other column may even be

defined with a UNIQUE constraint. For example, in the Bugs table, the

application might label bugs using a string with a mnemonic for the

project the bug belongs to, or other identifying information.

Download ID-Required/anti/id-redundant.sql

CREATE TABLE Bugs (

id SERIAL PRIMARY KEY,

bug_id VARCHAR(10) UNIQUE,

description VARCHAR(1000),

-- . . .

);

INSERT INTO Bugs (bug_id, description, ...)

VALUES ('VIS-078', 'crashes on save', ...);

The bug_id column in the previous example has similar usage to the id,

in that it serves to identify each row uniquely.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/ID-Required/anti/id-ubiquitous.sql
http://media.pragprog.com/titles/bksqla/code/ID-Required/anti/id-redundant.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=57

ANTIPATTERN: ONE SIZE FITS ALL 58

Allowing Duplicate Rows

A compound key consists of multiple columns. One typical use for a

compound key is in an intersection table like BugsProducts. The primary

key should ensure that a given combination of values for bug_id and

product_id appears only once in the table, even though each value may

appear many times in different pairings.

However, when you use the mandatory id column as the primary key,

the constraint no longer applies to two columns that should be unique.

Download ID-Required/anti/superfluous.sql

CREATE TABLE BugsProducts (

id SERIAL PRIMARY KEY,

bug_id BIGINT UNSIGNED NOT NULL,

product_id BIGINT UNSIGNED NOT NULL,

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

INSERT INTO BugsProducts (bug_id, product_id)

VALUES (1234, 1), (1234, 1), (1234, 1); -- duplicates are permitted

Duplicates in this intersection table cause unintended results when

you use the table to match Bugs to Products. To prevent duplicates, you

could declare a UNIQUE constraint over the two columns besides id:

Download ID-Required/anti/superfluous.sql

CREATE TABLE BugsProducts (

id SERIAL PRIMARY KEY,

bug_id BIGINT UNSIGNED NOT NULL,

product_id BIGINT UNSIGNED NOT NULL,

UNIQUE KEY (bug_id, product_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

But if you need a unique constraint over those two columns anyway,

the id column is superfluous.

Obscuring the Meaning of the Key

The word code has a number of definitions, one of which is a way to

communicate a message with brevity or secrecy. In programming, we

should have the opposite goal—to make meaning clearer.

The name id is so generic that it holds no meaning. This is especially

important when you join two tables and they have the same primary

key column name.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/ID-Required/anti/superfluous.sql
http://media.pragprog.com/titles/bksqla/code/ID-Required/anti/superfluous.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=58

ANTIPATTERN: ONE SIZE FITS ALL 59

Download ID-Required/anti/ambiguous.sql

SELECT b.id, a.id

FROM Bugs b

JOIN Accounts a ON (b.assigned_to = a.id)

WHERE b.status = 'OPEN';

How do you tell the bug id from the account id in your application code

if you reference columns by name instead of by ordinal position? This

is a problem especially in dynamic languages like PHP, when a query

result is an associative array: one column overwrites the other unless

you specify column aliases in your query.

The name of the id column doesn’t help make the query any clearer.

But if the columns were named bug_id and account_id, the reader would

have a much easier time reading the query results. We use a primary

key to address individual rows of a table, so the column’s name should

give a clue about the type of entity in that table.

Using USING

You’re probably familiar with the SQL syntax for a join, using the key-

words JOIN and ON preceding an expression to evaluate matching rows

in the two tables.

Download ID-Required/anti/join.sql

SELECT * FROM Bugs AS b JOIN BugsProducts AS bp ON (b.bug_id = bp.bug_id);

SQL also supports a more concise syntax for expressing a join between

two tables. You can rewrite the previous query in the following way if

the columns have the same name in both tables:

Download ID-Required/anti/join.sql

SELECT * FROM Bugs JOIN BugsProducts USING (bug_id);

However, if all tables are required to define a pseudokey primary key

named id, then a foreign key column in a dependent table can never

use the same name as the primary key it references. Instead, you must

always use the more verbose ON syntax:

Download ID-Required/anti/join.sql

SELECT * FROM Bugs AS b JOIN BugsProducts AS bp ON (b.id = bp.bug_id);

Compound Keys Are Hard

Some developers refuse to use compound keys because they say these

keys are too hard to use. Any expression that compares a key to another

must compare all columns. A foreign key that references a compound

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/ID-Required/anti/ambiguous.sql
http://media.pragprog.com/titles/bksqla/code/ID-Required/anti/join.sql
http://media.pragprog.com/titles/bksqla/code/ID-Required/anti/join.sql
http://media.pragprog.com/titles/bksqla/code/ID-Required/anti/join.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=59

ANTIPATTERN: ONE SIZE FITS ALL 60

Special Scope for Sequences

Some people allocate a value for a new row by taking the
greatest value currently in use and adding one.

SELECT MAX(bug_id) + 1 AS next_bug_id FROM Bugs;

This isn’t reliable when you have concurrent clients both query-
ing for the next value to use. The same value could be used by
both clients. This is called a race condition.

To avoid the race condition, you have to block concurrent
inserts while you read the current maximum value and then use
it in a new row. To do this, you have to lock the whole table—
row-level locking isn’t enough. Table locks create a bottleneck
because they cause concurrent clients to queue up for access.

Sequences solve this by operating outside of transaction scope.
They never allocate the same value to multiple clients and
therefore never roll back allocation of a value, whether or not
you commit that value in a row. Because sequences work this
way, multiple clients can generate unique values concurrently
and be assured they won’t try to use the same value.

Most databases support some function to return the last value
a sequence generated. For example, MySQL calls this function
LAST_INSERT_ID(), Microsoft SQL Server uses SCOPE_IDENTITY(), and
Oracle uses SequenceName.CURRVAL().

These functions return the value generated during the current
session, even if other clients generate their own values concur-
rently. No race condition exists.

primary key must itself be a compound foreign key. It requires more

typing to use compound keys.

This refusal is like a mathematician refusing to use two-dimensional or

three-dimensional coordinates, instead performing all calculations as

though objects exist within a one-dimensional, linear space. It’s true

that this would make a lot of geometry and trigonometry much simpler,

but it fails to describe real-world objects that we need to work with.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=60

HOW TO RECOGNIZE THE ANTIPATTERN 61

4.3 How to Recognize the Antipattern

The symptom of this antipattern is easy to recognize: tables use the

overly generic name id for the primary key. There’s virtually no reason

to prefer this column name over one that is more descriptive.

The following can also be evidence of the antipattern:

• “I don’t think I need a primary key in this table.”

The developer who says this is confusing the term primary key

with pseudokey. Every table must have a primary key constraint

to prevent duplicate rows and identify individual rows. They might

want to use a natural key or a compound key instead.

• “How did I get duplicate many-to-many associations?”

An intersection table for a many-to-many relationship should de-

clare a primary key constraint, or at least a unique key constraint,

over the set of foreign key columns.

• “I read that database theory says I should move values to a lookup

table and refer to them by ID. But I don’t want to do that because

I have to do a join every time I want the actual values.”

This is a common misunderstanding of database design theory

called normalization, which has nothing to do with pseudokeys in

reality. For more on this, see Appendix A, on page 294.

4.4 Legitimate Uses of the Antipattern

Some object-relational frameworks simplify development by assuming

convention over configuration. They expect every table to define its pri-

mary key in the same way: as an integer pseudokey column named id.

If you use such a framework, you may want to conform to its conven-

tions, because this gives you access to other desirable features of the

framework.

There’s also nothing wrong with using a pseudokey, or assigning val-

ues from an auto-incrementing integer mechanism. But not every table

needs a pseudokey, and it’s not necessary to name every pseudokey id.

A pseudokey is a good choice as a surrogate for a natural key that’s too

long to be practical. For example, for a table that records attributes of

a file on the filesystem, the path of the file might be a good natural key,

but it would be costly to index a string column that long.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=61

SOLUTION: TAILORED TO FIT 62

4.5 Solution: Tailored to Fit

A primary key is a constraint, not a data type. You can declare a pri-

mary key on any column or set of columns, as long as the data types

support indexing. You should also be able to define a column as an

auto-incrementing integer without making it the primary key of the

table. The two concepts are independent.

Don’t let inflexible conventions get in the way of good design.

Tell It Like It Is

Choose sensible names for your primary key. The name should con-

vey the type of entity that the primary key identifies. For example, the

primary key of the Bugs table should be bug_id.

Use the same column name in foreign keys where possible. This often

means that the name of a primary key should be unique within your

schema; no two tables should use the same name for their primary

key, unless one is also a foreign key referencing the other. However,

there are exceptions: sometimes it is appropriate for a foreign key to be

named differently from the primary key it references, for instance to be

descriptive of the nature of the association.

Download ID-Required/soln/foreignkey-name.sql

CREATE TABLE Bugs (

-- . . .

reported_by BIGINT UNSIGNED NOT NULL,

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)

);

An industry standard exists to describe naming conventions for meta-

data. The standard, called ISO/IEC 11179,1 is a guideline for “manag-

ing classification schemes” in information technology systems. In other

words, this is how you should name your tables and columns sensibly.

Like most ISO standards, this document is nearly impenetrable, but

Joe Celko applies it practically to SQL in his book SQL Programming

Style [Cel05].

1. http://metadata-standards.org/11179/

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/ID-Required/soln/foreignkey-name.sql
http://metadata-standards.org/11179/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=62

SOLUTION: TAILORED TO FIT 63

Be Unconventional

Object-relational frameworks expect you to use a pseudokey named id,

but they also allow you to override this and declare a different name

instead. The following example uses Ruby on Rails:2

Download ID-Required/soln/custom-primarykey.rb

class Bug < ActiveRecord::Base

set_primary_key "bug_id"

end

Some developers think that specifying the primary key column is nec-

essary only when supporting legacy databases where they can’t use

their preferred conventions. In fact, supporting sensible column names

is also important in new projects.

Embrace Natural Keys and Compound Keys

If your table contains an attribute that’s guaranteed to be unique, is

non-null, and can serve to identify the row, don’t feel obligated to add

a pseudokey solely for the sake of tradition.

Practically speaking, it’s not uncommon for every attribute in a table to

be subject to change or to be nonunique. Databases tend to evolve dur-

ing the lifetime of a project, and decision makers may not respect the

sanctity of a natural key. Sometimes a column that at first seemed like

it would be a good natural key turns out to have legitimate duplicates.

In those cases, a pseudokey is the only solution.

Use compound keys when they’re appropriate. When a row is best

identified by the combination of multiple attribute columns, as in the

BugsProducts table, use those columns in a compound primary key.

Download ID-Required/soln/compound.sql

CREATE TABLE BugsProducts (

bug_id BIGINT UNSIGNED NOT NULL,

product_id BIGINT UNSIGNED NOT NULL,

PRIMARY KEY (bug_id, product_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

INSERT INTO BugsProducts (bug_id, product_id)

VALUES (1234, 1), (1234, 2), (1234, 3);

2. “Rails” and “Ruby on Rails” are trademarks of David Heinemeier Hansson.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/ID-Required/soln/custom-primarykey.rb
http://media.pragprog.com/titles/bksqla/code/ID-Required/soln/compound.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=63

SOLUTION: TAILORED TO FIT 64

INSERT INTO BugsProducts (bug_id, product_id)

VALUES (1234, 1); -- error: duplicate entry

Note that foreign keys that reference a compound primary key also need

to be compound. This may seem clumsy to duplicate these columns in

dependent tables, but they can have advantages too: you might sim-

plify a query that would have required a join to fetch attributes of the

referenced row.

Conventions are good only if they are helpful.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=64

Victorious warriors win first and then go to war, while

defeated warriors go to war first and then seek to win.

Sun Tzu

Chapter 5

Keyless Entry
“Bill, it looks like two managers have reserved the same server in our

lab for the same days—how can this happen?” the testing lab manager

burst into my cube. “Can you take a look into this and get it fixed?

They’re screaming at me that they both need the equipment and that

I’m holding up their project schedule.”

I designed an equipment-tracking application some years ago using

MySQL. The default storage engine for MySQL was MyISAM, which

doesn’t support foreign key constraints. The database had many log-

ical relationships but could not enforce referential integrity.

As the project evolved and the application manipulated data in new

ways, we developed a problem: when referential integrity wasn’t satis-

fied, discrepancies showed up in reports, subtotals didn’t add up, and

schedules became double-booked.

The project manager asked me to write quality control scripts that we

could run periodically to let us know when discrepancies occurred.

These scripts examined the state of the database, found mistakes such

as orphaned rows in child tables, and sent an email to report them.

Every table relationship had to be checked by these scripts. As the

volume of data grew larger and the number of tables increased, the

number of quality control queries also grew, and the scripts took longer

to run. The email reports became longer too. Sound familiar?

The script solution worked, of course, but it was a costly reinvention

of the wheel. What I needed was a way to make the application fail

early whenever a user submitted invalid data. Guess what foreign key

constraints do?

OBJECTIVE: SIMPLIFY DATABASE ARCHITECTURE 66

5.1 Objective: Simplify Database Architecture

Relational database design is almost as much about relationships be-

tween tables as it is about the individual tables themselves. Referential

integrity is an important part of proper database design and opera-

tion. When you declare a foreign key constraint for a column or set of

columns, the values in these columns must exist in the primary key or

unique key columns of the parent table. This seems simple enough.

However, some software developers recommend avoiding referential in-

tegrity constraints. The reasons you might hear to ignore foreign keys

include the following:

• Your data updates can conflict with the constraints.

• You’re using a database design that’s so flexible it can’t support

referential integrity constraints.

• You believe that the index the database creates for the foreign key

will impact performance.

• You use a database brand that doesn’t support foreign keys.

• You have to look up the syntax for declaring foreign keys.

5.2 Antipattern: Leave Out the Constraints

Even though it seems at first that skipping foreign key constraints

makes your database design simpler, more flexible, or speedier, you

pay for this in other ways. It becomes your responsibility to write code

to ensure referential integrity manually.

Assuming Flawless Code

Many people’s solution for referential integrity is to write application

code so that data relationships are always satisfied. Every time you

insert a row, make sure that values in foreign key columns reference

existing values in the referenced table. Every time you delete a row,

make sure that any child tables are also updated appropriately. In other

words, the popular answer is simply to make no mistakes.

To avoid making referential integrity mistakes when you have no foreign

key constraints, you’d have to run extra SELECT queries before you apply

changes to confirm the change won’t result in broken references. For

instance, to insert a new row, you’d check that the parent row exists:

Download Keyless-Entry/anti/insert.sql

SELECT account_id FROM Accounts WHERE account_id = 1;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/anti/insert.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=66

ANTIPATTERN: LEAVE OUT THE CONSTRAINTS 67

Then you could add a bug that references it:

Download Keyless-Entry/anti/insert.sql

INSERT INTO Bugs (reported_by) VALUES (1);

To delete a row, you’d have to make sure no child rows exist:

Download Keyless-Entry/anti/delete.sql

SELECT bug_id FROM Bugs WHERE reported_by = 1;

Then you could delete the account:

Download Keyless-Entry/anti/delete.sql

DELETE FROM Accounts WHERE account_id = 1;

What if the user with account_id 1 sneaks in and enters a new bug

in the moment after your query and before you delete that account?

This may seem unlikely, but as Gordon Letwin, architect of DOS 4,

famously said, “One in a million is next Tuesday.” That still leaves a

broken reference—a bug reported by an account that no longer exists.

The only remedy is for you to explicitly lock the Bugs table while you’re

checking it and unlock it after you have finished deleting the account.

Any architecture that requires that kind of locking is never going to do

well when high concurrency and scalability are required.

Checking for Mistakes

The antisolution described in the story in this chapter uses developer-

written scripts to report corrupted data.

For example, in our bugs database, the Bugs.status column references

the lookup table BugStatus. To find bugs with an invalid status value,

you could use a query like the following:

Download Keyless-Entry/anti/find-orphans.sql

SELECT b.bug_id, b.status

FROM Bugs b LEFT OUTER JOIN BugStatus s

ON (b.status = s.status)

WHERE s.status IS NULL;

You can imagine that you’d have to write a similar query for every ref-

erential relationship in your database.

If you find yourself in the habit of checking for broken references like

this, your next question is, how often do you need to run these checks?

Running hundreds of checks every day, or even more frequently, be-

comes quite a chore.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/anti/insert.sql
http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/anti/delete.sql
http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/anti/delete.sql
http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/anti/find-orphans.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=67

ANTIPATTERN: LEAVE OUT THE CONSTRAINTS 68

What happens when you do find a broken reference? Can you correct

it? You can—sometimes. For instance, you might change an invalid bug

status value to a sensible default.1

Download Keyless-Entry/anti/set-default.sql

UPDATE Bugs SET status = DEFAULT WHERE status = 'BANANA';

Inevitably, there are other cases where you can’t synthesize data to cor-

rect these kinds of mistakes. For example, the Bugs.reported_by column

should reference the account of the user who reported the given bug,

but if this value is invalid, which user’s account should you use as a

replacement?

“It’s Not My Fault!”

It’s pretty unlikely that all your code touching the database is perfect.

You could easily perform similar database updates in several functions

in your application. When you have to change the code, how can you

be sure you’ve applied compatible changes to every case in your appli-

cation?

You may also have users applying changes directly to the database,

using an SQL query tool or through private scripts. It’s easy to intro-

duce broken references through ad hoc SQL statements. You should

assume this will happen at some point in the life of your application.

You need the database to be consistent—that is, you need to be able to

depend on references in the database being satisfied at all times. But

you can’t be certain that all applications and scripts that have accessed

your database have made their changes correctly.

Catch-22 Updates

Many developers avoid foreign key constraints because the constraints

make it inconvenient to update related columns in multiple tables. For

instance, if you need to delete a row that other rows depend on, you

have to delete the child rows first to avoid violating foreign key con-

straints:

Download Keyless-Entry/anti/delete-child.sql

DELETE FROM BugStatus WHERE status = 'BOGUS'; -- ERROR!

DELETE FROM Bugs WHERE status = 'BOGUS';

DELETE FROM BugStatus WHERE status = 'BOGUS'; -- retry succeeds

1. SQL supports using the keyword DEFAULT as shown.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/anti/set-default.sql
http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/anti/delete-child.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=68

HOW TO RECOGNIZE THE ANTIPATTERN 69

You have to execute multiple statements manually, one for each child

table. If you add another child table in a future enhancement to your

database, you have to fix your code to delete from the new table too.

But this problem is solvable.

The unsolvable problem is when you UPDATE a column that child rows

depend on. You can’t update the child rows before you update the par-

ent, and you can’t update the parent before you update the child values

that reference it. You need to make both changes simultaneously, but

that’s impossible using two separate updates. It’s a catch-22 scenario.

Download Keyless-Entry/anti/update-catch22.sql

UPDATE BugStatus SET status = 'INVALID' WHERE status = 'BOGUS'; -- ERROR!

UPDATE Bugs SET status = 'INVALID' WHERE status = 'BOGUS'; -- ERROR!

Some developers find these scenarios difficult to manage, so they decide

not to use foreign keys at all. We’ll see later how foreign keys address

multitable updates and deletes in a simple and effective way.

5.3 How to Recognize the Antipattern

If you hear people use phrases like the following, they’re probably prac-

ticing the Keyless Entry antipattern:

• “How do I query to check for a value that exists in one table and

not the other table?”

Usually this is to find orphan child rows whose parent has been

updated or deleted.

• “Is there a quick way to check that a value exists in one table as

part of my insert to a second table?”

This is to ensure that the parent row exists. A foreign key does

this for you automatically and uses any index on the parent table

to make the check as efficient as possible.

• “Foreign keys? I was told not to use them because they slow down

the database.”

Performance is often used as a justification for cutting corners,

but it usually creates more problems than it solves—including

performance problems.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/anti/update-catch22.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=69

LEGITIMATE USES OF THE ANTIPATTERN 70

5.4 Legitimate Uses of the Antipattern

Sometimes you’re forced to use a database brand that doesn’t support

foreign key constraints (for example MySQL’s MyISAM storage engine

or SQLite prior to version 3.6.19). If that’s the case, then you have to

find a way to compensate, like the quality control scripts described in

this chapter’s story.

There are also some ultra-flexible database designs where foreign keys

can’t model the relationships. It should be a strong clue that you’re

using another SQL antipattern if you can’t use traditional referential

integrity constraints. For more detail, you may want to look at Chap-

ter 6, Entity-Attribute-Value, on page 73 and Chapter 7, Polymorphic

Associations, on page 89.

5.5 Solution: Declare Constraints

The Japanese phrase poka-yoke means “mistake-proofing.”2 This term

refers to a manufacturing process that helps eliminate product defects

by preventing, correcting, or drawing attention to errors as they occur.

This practice improves quality and decreases the need for correction,

which more than makes up for the cost of its use.

You can apply the poka-yoke principle to your database design by

using foreign key constraints to enforce referential integrity. Instead of

searching for and correcting data integrity mistakes, you can prevent

these mistakes from entering your database in the first place.

Download Keyless-Entry/soln/foreign-keys.sql

CREATE TABLE Bugs (

-- . . .

reported_by BIGINT UNSIGNED NOT NULL,

status VARCHAR(20) NOT NULL DEFAULT 'NEW',

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),

FOREIGN KEY (status) REFERENCES BugStatus(status)

);

Your existing code and also ad hoc queries obey the same constraints,

so there’s no way for any forgotten code or back doors to bypass en-

forcement. The database rejects any improper change, no matter where

the change comes from.

2. Poka-yoke was coined by industrial engineer Dr. Shigeo Shingo in his study of the

Toyota Production System.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/soln/foreign-keys.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=70

SOLUTION: DECLARE CONSTRAINTS 71

Using foreign keys saves you from writing unnecessary code and en-

sures that all your code works the same way if you change the data-

base. This reduces the time to develop the code and also many hours of

debugging and maintenance. The software industry average is 15 to 50

bugs per 1,000 lines of code. All other things being equal, if you have

fewer lines of code, you have fewer bugs.

Supporting Multitable Changes

Foreign keys have another feature you can’t mimic using application

code: cascading updates.

Download Keyless-Entry/soln/cascade.sql

CREATE TABLE Bugs (

-- . . .

reported_by BIGINT UNSIGNED NOT NULL,

status VARCHAR(20) NOT NULL DEFAULT 'NEW',

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)

ON UPDATE CASCADE

ON DELETE RESTRICT,

FOREIGN KEY (status) REFERENCES BugStatus(status)

ON UPDATE CASCADE

ON DELETE SET DEFAULT

);

This solution allows you to update or delete the parent row and lets the

database takes care of any child rows that reference it. Updates to the

parent tables BugStatus and Accounts propagate automatically to child

rows in Bugs. There’s no longer a catch-22 problem.

The way you declare the ON UPDATE or ON DELETE clauses in the foreign

key constraint allow you to control the result of a cascading operation.

For example, RESTRICT for the foreign key on reported_by means that you

can’t delete an account if some rows in Bugs reference it. The constraint

blocks the delete and raises an error. Whereas if you delete a status

value, any bugs with that status are automatically reset to the default

status value.

In either case, the database changes both tables atomically. The foreign

key references remain satisfied both before and after the changes.

If you add a new child table to the database, the foreign keys in the

child table dictate the cascading behavior. You don’t need to change

your application code. Neither do you need to change anything about

the parent table, no matter how many child tables reference it.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Keyless-Entry/soln/cascade.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=71

SOLUTION: DECLARE CONSTRAINTS 72

Overhead? Not Really

It’s true that foreign key constraints have a bit of overhead. But com-

pared to the alternative, foreign keys prove to be a lot more efficient.

• You don’t need to run SELECT queries to check before you insert or

update or delete.

• You don’t need to lock tables to protect multitable changes.

• You don’t need to run periodic quality control scripts to correct

the inevitable orphans.

Foreign keys are easy to use, improve performance, and help you main-

tain consistent referential integrity during any data change, both simple

and complex.

Make your database mistake-proof with constraints.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=72

If you try and take a cat apart to see how it works, the first

thing you have in your hands is a non-working cat.

Douglas Adams

Chapter 6

Entity-Attribute-Value
“How do I count the number of rows by date?” This is an example of a

simple task for a database programmer. This solution is covered in any

introductory tutorial on SQL. It involves basic SQL syntax:

Download EAV/intro/count.sql

SELECT date_reported, COUNT(*)

FROM Bugs

GROUP BY date_reported;

However, the simple solution assumes two things:

• Values are stored in the same column, as in Bugs.date_reported.

• Values can be compared to one another so that GROUP BY can

accurately group dates with equal values together.

What if you can’t rely on those assumptions? What if the date is stored

in the date_reported or report_date column or in any other column name

that may be different on each row? What if dates can take a variety of

different formats and the computer can’t easily compare two dates?

You may encounter these problems and others when you employ the

antipattern known as Entity-Attribute-Value.

6.1 Objective: Support Variable Attributes

Extensibility is frequently a goal of software projects. We would like to

design software that can adapt fluidly to future usage with little or no

additional programming.

This is not a new problem; similar arguments against the inflexibility

of relational database metadata have been made almost continuously

http://media.pragprog.com/titles/bksqla/code/EAV/intro/count.sql

ANTIPATTERN: USE A GENERIC ATTRIBUTE TABLE 74

since 1970, when the relational model was first proposed in A Relational

Model of Data for Large Shared Data Banks [Cod70] by E. F. Codd.

A conventional table consists of attribute columns that are relevant

for every row in the table, since every row represents an instance of a

similar object. A different set of attributes represents a different type of

object, so it belongs in a different table.

In modern object-oriented programming models, however, different ob-

ject types can be related, for instance, by extending the same base type.

In object-oriented design, these objects are considered instances of the

same base type, as well as instances of their respective subtypes. We

would like to store objects as rows in a single database table to sim-

plify comparisons and calculations over multiple objects. But we also

need to allow objects of each subtype to store their respective attribute

columns, which may not apply to the base type or to other subtypes.

Let’s use an example from our bugs database. In Figure 6.1, on the

following page, we can see that a Bug and a Feature Request share some

attributes in common, seen in the Issue base type. Every issue is associ-

ated with a person who reported it. It’s also associated with a product,

and it has a priority for completion. However, a Bug has some distinct

attributes: the version of the product in which the bug occurs and the

severity or impact of the bug. Likewise, a FeatureRequest may have its

own attributes as well. For this example, suppose a feature is associ-

ated with a sponsor whose budget supports that feature’s development.

6.2 Antipattern: Use a Generic Attribute Table

The solution that appeals to some programmers when they need to sup-

port variable attributes is to create a second table, storing attributes as

rows. See the diagram showing the two tables in Figure 6.2, on page 76.

Each row in this attribute table has three columns:

• The Entity. Typically this is a foreign key to a parent table that has

one row per entity.

• The Attribute. This is simply the name of a column in a con-

ventional table, but in this new design, we have to identify the

attribute on each given row.

• The Value. Each entity has a value for each of its attributes.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=74

ANTIPATTERN: USE A GENERIC ATTRIBUTE TABLE 75

Issue
+ Date_reported
+ Reporter
+ Priority
+ Status

Bug
+ Severity
+ Version_affected

FeatureRequest
+ Sponsor

Figure 6.1: Object-oriented class diagram for bug types

For example, a given bug is an entity we identify by its primary

key value 1234. It has an attribute called status. The value of that

attribute for bug 1234 is NEW .

This design is called Entity-Attribute-Value, or EAV for short. It’s also

sometimes called open schema, schemaless, or name-value pairs.

Download EAV/anti/create-eav-table.sql

CREATE TABLE Issues (

issue_id SERIAL PRIMARY KEY

);

INSERT INTO Issues (issue_id) VALUES (1234);

CREATE TABLE IssueAttributes (

issue_id BIGINT UNSIGNED NOT NULL,

attr_name VARCHAR(100) NOT NULL,

attr_value VARCHAR(100),

PRIMARY KEY (issue_id, attr_name),

FOREIGN KEY (issue_id) REFERENCES Issues(issue_id)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/anti/create-eav-table.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=75

ANTIPATTERN: USE A GENERIC ATTRIBUTE TABLE 76

Issues IssueAttributes

Figure 6.2: EAV entity relationship

INSERT INTO IssueAttributes (issue_id, attr_name, attr_value)

VALUES

(1234, 'product', '1'),

(1234, 'date_reported', '2009-06-01'),

(1234, 'status', 'NEW'),

(1234, 'description', 'Saving does not work'),

(1234, 'reported_by', 'Bill'),

(1234, 'version_affected', '1.0'),

(1234, 'severity', 'loss of functionality'),

(1234, 'priority', 'high');

By adding one additional table, you seem to gain the following benefits:

• Both tables have few columns.

• The number of columns doesn’t need to grow to support new

attributes.

• You avoid a clutter of columns that contain null in rows where the

attribute is inapplicable.

This appears to be an improved design. However, the simple database

structure doesn’t make up for the difficulty of using it.

Querying an Attribute

Your boss needs to run a report of the bugs reported per day. In a

conventional table design, the Issues table would have a simple attribute

column such as date_reported. To query all bugs with their report dates,

your boss could use a simple query like this:

Download EAV/anti/query-plain.sql

SELECT issue_id, date_reported FROM Issues;

To get the same information as the previous query using the EAV de-

sign, your boss needs to fetch rows from the IssueAttributes table that

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/anti/query-plain.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=76

ANTIPATTERN: USE A GENERIC ATTRIBUTE TABLE 77

stores an attribute named by the string date_reported. This query is

more verbose but less clear.

Download EAV/anti/query-eav.sql

SELECT issue_id, attr_value AS "date_reported"

FROM IssueAttributes

WHERE attr_name = 'date_reported';

Supporting Data Integrity

When you use EAV, you sacrifice many advantages that a conventional

database design would have given you.

You Can’t Make Mandatory Attributes

To help your boss generate accurate project reports, you should also

require that the date_reported attribute has a value. In a conventional

database design, it would be simple to enforce a mandatory column by

declaring the column NOT NULL.

In the EAV design, each attribute corresponds to a row in the IssueAt-

tributes table, not a column. You would need a constraint that checks

that a row exists for each issue_id value, and the row must have the

string date_reported in its attr_name column.

However, SQL doesn’t support a constraint that can do this. So, you

must write application code to enforce it. If you do find a bug with no

reported date, should you add a value for this attribute? What value

should you give it? If you make a guess or use some default value for

a missing attribute, how does that affect the accuracy of your boss’s

reports?

You Can’t Use SQL Data Types

Your boss tells you he is having trouble running his report because

people have entered dates in different formats or sometimes even a

string that isn’t a date. In a conventional database, you can prevent

this if you declared the column with the DATE data type.

Download EAV/anti/insert-plain.sql

INSERT INTO Issues (date_reported) VALUES ('banana'); -- ERROR!

In the EAV design, the data type of the IssueAttributes.attr_value column

is typically a string to accommodate all possible attributes in a single

column. So, it has no way of rejecting invalid data.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/anti/query-eav.sql
http://media.pragprog.com/titles/bksqla/code/EAV/anti/insert-plain.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=77

ANTIPATTERN: USE A GENERIC ATTRIBUTE TABLE 78

Download EAV/anti/insert-eav.sql

INSERT INTO IssueAttributes (issue_id, attr_name, attr_value)

VALUES (1234, 'date_reported', 'banana'); -- Not an error!

Some people try to extend the EAV design by defining a separate attr_

value column for each SQL data type, leaving null in the unused col-

umns. This allows you to use data types but makes queries even worse:

Download EAV/anti/data-types.sql

SELECT issue_id, COALESCE(attr_value_date, attr_value_datetime,

attr_value_integer, attr_value_numeric, attr_value_float,

attr_value_string, attr_value_text) AS "date_reported"

FROM IssueAttributes

WHERE attr_name = 'date_reported';

You would need to add even more columns to support user-defined data

types or domains.

You Can’t Enforce Referential Integrity

In a conventional database, you can restrict the range of some attri-

butes by defining a foreign key to a lookup table. For example, the

status attribute of a bug or issue should be one of a short list of values

stored in the BugStatus table.

Download EAV/anti/foreign-key-plain.sql

CREATE TABLE Issues (

issue_id SERIAL PRIMARY KEY,

-- other columns

status VARCHAR(20) NOT NULL DEFAULT 'NEW',

FOREIGN KEY (status) REFERENCES BugStatus(status)

);

In the EAV design, you can’t apply this kind of constraint on the attr_

value column. A referential integrity constraint applies to every row in

the table.

Download EAV/anti/foreign-key-eav.sql

CREATE TABLE IssueAttributes (

issue_id BIGINT UNSIGNED NOT NULL,

attr_name VARCHAR(100) NOT NULL,

attr_value VARCHAR(100),

FOREIGN KEY (attr_value) REFERENCES BugStatus(status)

);

If you define this constraint, it would force every attribute to match a

value in BugStatus, not just the status attribute.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/anti/insert-eav.sql
http://media.pragprog.com/titles/bksqla/code/EAV/anti/data-types.sql
http://media.pragprog.com/titles/bksqla/code/EAV/anti/foreign-key-plain.sql
http://media.pragprog.com/titles/bksqla/code/EAV/anti/foreign-key-eav.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=78

ANTIPATTERN: USE A GENERIC ATTRIBUTE TABLE 79

You Can’t Make Up Attribute Names

Your boss’ reports are still not reliable. You find that attributes are

not being named consistently. One bug uses an attribute named by

the string date_reported, but another bug names the attribute by the

string report_date. Both are clearly intended to represent the same

information.

How would you count bugs per date?

Download EAV/anti/count.sql

SELECT date_reported, COUNT(*) AS bugs_per_date

FROM (SELECT DISTINCT issue_id, attr_value AS date_reported

FROM IssueAttributes

WHERE attr_name IN ('date_reported', 'report_date'))

GROUP BY date_reported;

How would you know if a given bug has stored an attribute by yet

another name? How would you know if a given bug has stored a given

attribute twice, by two different names? How can you prevent such

mistakes?

One remedy might be to declare a foreign key on the attr_name column

to a lookup table that contains your approved attribute names. How-

ever, this doesn’t support attributes you define on the fly for each entity.

That’s a common use of the EAV design.

Reconstructing a Row

It’s natural to retrieve a row from the Issues table with all its attributes

in columns. You want to fetch an issue in a single row as though it were

stored in a conventional table.

issue_id date_reported status priority description

1234 2009-06-01 NEW HIGH Saving does not work

Because each attribute is stored on a separate row of the IssueAttributes

table, retrieving them all as part of a single row requires a join for each

attribute. You must know all attributes at the time you write this query.

The following query reconstructs the row shown earlier:

Download EAV/anti/reconstruct.sql

SELECT i.issue_id,

i1.attr_value AS "date_reported",

i2.attr_value AS "status",

i3.attr_value AS "priority",

i4.attr_value AS "description"

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/anti/count.sql
http://media.pragprog.com/titles/bksqla/code/EAV/anti/reconstruct.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=79

HOW TO RECOGNIZE THE ANTIPATTERN 80

FROM Issues AS i

LEFT OUTER JOIN IssueAttributes AS i1

ON i.issue_id = i1.issue_id AND i1.attr_name = 'date_reported'

LEFT OUTER JOIN IssueAttributes AS i2

ON i.issue_id = i2.issue_id AND i2.attr_name = 'status'

LEFT OUTER JOIN IssueAttributes AS i3

ON i.issue_id = i3.issue_id AND i3.attr_name = 'priority';

LEFT OUTER JOIN IssueAttributes AS i4

ON i.issue_id = i4.issue_id AND i4.attr_name = 'description';

WHERE i.issue_id = 1234;

You must use outer joins because inner joins would cause the query

to return no rows if any one of the attributes were not present in the

IssueAttributes table. As the number of attributes increases, so does the

number of joins, and the cost of this query increases exponentially.

6.3 How to Recognize the Antipattern

If you hear phrases like the following spoken by your project team, it’s

a clue that someone is employing the EAV antipattern:

• “This database is totally extensible without metadata changes. You

can define new attributes at runtime.”

Relational databases don’t support that degree of flexibility. When

someone claims to have designed an arbitrarily extensible data-

base, they’re probably using the EAV design.

• “What’s the maximum number of joins I can do in a query?”

If you need a query to support such a high number of joins that

you’re concerned about exceeding the database’s limits, you may

have a problem in your database design. It’s common for an EAV

design to lead to this problem.

• “I can’t figure out how to write a report for our e-commerce plat-

form. We need to hire a consultant to do it for us.“

It seems that many turnkey database-driven software packages

designed for customizability use the EAV design. This makes most

common reporting queries very complex or even impractical.

6.4 Legitimate Uses of the Antipattern

It’s hard to justify using the EAV antipattern in a relational database.

You have to compromise too many features that are strengths of the

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=80

LEGITIMATE USES OF THE ANTIPATTERN 81

relational paradigm. But that doesn’t address the legitimate need in

some applications to support dynamic attributes.

Most applications that need schemaless data really need it for only a

few tables or even just one table. The rest of your data requirements

conform to standard table designs. If you account for the extra work

and risk of EAV in your project plan, it may be the lesser evil to use

it sparingly. But keep in mind that experienced database consultants

report that systems using EAV become unwieldy within a year.

If you have nonrelational data management needs, the best answer is

to use a nonrelational technology. This is a book about SQL, not about

SQL alternatives, so I’ll list only a sampling of these technologies:

• Berkeley DB is a popular key-value store that’s easy to embed in

a variety of applications.

http://www.oracle.com/technology/products/berkeley-db/

• Cassandra is a distributed column-oriented database developed

at Facebook and contributed to the Apache project.

http://incubator.apache.org/cassandra/

• CouchDB is a document-oriented database — a distributed key-

value store that encodes values in JSON.

http://couchdb.apache.org/

• Hadoop and HBase make up an open source DBMS inspired by

Google’s MapReduce algorithm for distributing queries against

very large-scale semistructured data stores.

http://hadoop.apache.org/

• MongoDB is a document-oriented database like CouchDB.

http://www.mongodb.org/

• Redis is a document-oriented in-memory database.

http://code.google.com/p/redis/

• Tokyo Cabinet is a key-value store, designed in the vein of POSIX

DBM, GNU GDBM, or Berkeley DB.

http://1978th.net/

Many other nonrelational projects are also emerging. However, the

weaknesses of EAV relative to relational databases also apply to these

Report erratum

this copy is (P1.0 printing, May 2010)

http://www.oracle.com/technology/products/berkeley-db/
http://incubator.apache.org/cassandra/
http://couchdb.apache.org/
http://hadoop.apache.org/
http://www.mongodb.org/
http://code.google.com/p/redis/
http://1978th.net/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=81

SOLUTION: MODEL THE SUBTYPES 82

alternatives. When metadata is fluid, it’s harder to formulate simple

queries. Applications spend a lot of energy discovering the structure of

data and adapting to it.

6.5 Solution: Model the Subtypes

If EAV seems like the right design, you should take a second look before

you implement it. If you do some good old-fashioned analysis, you will

probably find that your project’s data can be modeled in a traditional

table design more easily and with greater assurance of data integrity.

There are several ways to store such data without using EAV. Most

solutions work best when you have a finite number of subtypes and

you know the attribute of each subtype. Which solution is best to use

depends on how you intend to query the data, so you should decide on

a design on a case-by-case basis.

Single Table Inheritance

The simplest design is to store all related types in one table, with

distinct columns for every attribute that exists in any type. Use one

attribute to define the subtype of a given row. In this example, this

attribute is called issue_type. Some attributes are common to all sub-

types. Many attributes are subtype-specific, and these columns must

be given a null value on any row storing an object for which the attri-

bute does not apply; the columns with non-null values become sparse.

The name of this design comes from Martin Fowler’s book Patterns of

Enterprise Application Architecture [Fow03].

Download EAV/soln/create-sti-table.sql

CREATE TABLE Issues (

issue_id SERIAL PRIMARY KEY,

reported_by BIGINT UNSIGNED NOT NULL,

product_id BIGINT UNSIGNED,

priority VARCHAR(20),

version_resolved VARCHAR(20),

status VARCHAR(20),

issue_type VARCHAR(10), -- BUG or FEATURE

severity VARCHAR(20), -- only for bugs

version_affected VARCHAR(20), -- only for bugs

sponsor VARCHAR(50), -- only for feature requests

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/soln/create-sti-table.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=82

SOLUTION: MODEL THE SUBTYPES 83

As new object types are introduced, the database must accommodate

the attributes that describe these new object types. You must alter the

table to add more columns as you add distinct attributes for the new

object types. You may encounter a practical limit on the number of

columns per table.

Another limitation of Single Table Inheritance is that there is no meta-

data to define which attributes belong to which subtypes. In your appli-

cation, you can ignore some attributes if you know they don’t apply to

the object subtype on a given row. But you must track manually which

attributes are applicable to each subtype. It would be better if you could

use metadata to define this in the database.

Single Table Inheritance is best when you have few subtypes and few

subtype-specific attributes, and you need to use a single-table database

access pattern like Active Record.

Concrete Table Inheritance

Another solution is to create a separate table for each subtype. Every

table contains the same attributes that are common to the base type,

as well as the respective subtype-specific attribute. The name of this

design also comes from Martin Fowler’s book.

Download EAV/soln/create-concrete-tables.sql

CREATE TABLE Bugs (

issue_id SERIAL PRIMARY KEY,

reported_by BIGINT UNSIGNED NOT NULL,

product_id BIGINT UNSIGNED,

priority VARCHAR(20),

version_resolved VARCHAR(20),

status VARCHAR(20),

severity VARCHAR(20), -- only for bugs

version_affected VARCHAR(20), -- only for bugs

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

CREATE TABLE FeatureRequests (

issue_id SERIAL PRIMARY KEY,

reported_by BIGINT UNSIGNED NOT NULL,

product_id BIGINT UNSIGNED,

priority VARCHAR(20),

version_resolved VARCHAR(20),

status VARCHAR(20),

sponsor VARCHAR(50), -- only for feature requests

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/soln/create-concrete-tables.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=83

SOLUTION: MODEL THE SUBTYPES 84

An advantage of Concrete Table Inheritance over Single Table Inheri-

tance is that you are prevented from storing a row containing values

for attributes that don’t apply to that row’s subtype. If you reference an

attribute column that doesn’t exist in that table, the database informs

you of the error automatically. For example, the severity column does

not appear in the FeatureRequests table:

Download EAV/soln/insert-concrete.sql

INSERT INTO FeatureRequests (issue_id, severity) VALUES (...); -- ERROR!

Another advantage of Concrete Table Inheritance is that you don’t need

an extra attribute to define the subtype on each row, as you do in the

Single Table Inheritance design.

However, it’s hard to tell the common attributes from subtype-specific

attributes. Also, if you add a new attribute to the set of common attri-

butes, you must alter every subtype table.

No metadata shows that the data stored in these subtype tables belong

to related objects. That is, if a programmer new to your project looks

at the table definitions, he would see that some columns are common

to all these subtype tables, but the metadata does not tell him whether

any logical relationship exists or whether the tables have similarities

merely by coincidence.

If you want to search all objects regardless of their subtypes, this is

complicated if each subtype is stored in a separate table. To make this

query easier, define a view that is the union of the tables, selecting only

common attributes.

Download EAV/soln/view-concrete.sql

CREATE VIEW Issues AS

SELECT b.*, 'bug' AS issue_type

FROM Bugs AS b

UNION ALL

SELECT f.*, 'feature' AS issue_type

FROM FeatureRequests AS f;

The Concrete Table Inheritance design is best used when you seldom

need to query against all subtypes at once.

Class Table Inheritance

A third solution mimics inheritance, as though tables were object-ori-

ented classes. Create a single table for the base type, containing attri-

butes common to all subtypes. Then for each subtype, create another

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/soln/insert-concrete.sql
http://media.pragprog.com/titles/bksqla/code/EAV/soln/view-concrete.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=84

SOLUTION: MODEL THE SUBTYPES 85

table, with a primary key that also serves as a foreign key to the base

table. The name of this design also comes from Martin Fowler’s book.

Download EAV/soln/create-class-tables.sql

CREATE TABLE Issues (

issue_id SERIAL PRIMARY KEY,

reported_by BIGINT UNSIGNED NOT NULL,

product_id BIGINT UNSIGNED,

priority VARCHAR(20),

version_resolved VARCHAR(20),

status VARCHAR(20),

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

CREATE TABLE Bugs (

issue_id BIGINT UNSIGNED PRIMARY KEY,

severity VARCHAR(20),

version_affected VARCHAR(20),

FOREIGN KEY (issue_id) REFERENCES Issues(issue_id)

);

CREATE TABLE FeatureRequests (

issue_id BIGINT UNSIGNED PRIMARY KEY,

sponsor VARCHAR(50),

FOREIGN KEY (issue_id) REFERENCES Issues(issue_id)

);

The one-to-one relationship is enforced by the metadata, since the

dependent table’s foreign key is also a primary key and thus must

be unique. This solution provides an efficient way to search against

all subtypes, as long as your search references only the base type’s

attributes. Once you’ve found the entries that match your search, you

can get the subtype-specific attributes by querying against the respec-

tive subtype tables.

You don’t need to know from the row in the base table what subtype the

row represents; as long as you have a small number of subtypes, you

can write a join against all of them at once, producing a sparse result

set like in the Single Table Inheritance table. Attributes are null where

the attribute doesn’t apply in the subtype for a given row.

Download EAV/soln/select-class.sql

SELECT i.*, b.*, f.*
FROM Issues AS i

LEFT OUTER JOIN Bugs AS b USING (issue_id)

LEFT OUTER JOIN FeatureRequests AS f USING (issue_id);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/soln/create-class-tables.sql
http://media.pragprog.com/titles/bksqla/code/EAV/soln/select-class.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=85

SOLUTION: MODEL THE SUBTYPES 86

This is also a good candidate for defining a VIEW.

This design is best when you often need to query across all subtypes,

referencing the columns they have in common.

Semistructured Data

If you have many subtypes or if you must support new attributes fre-

quently, you can add a BLOB column to store data in a format such

as XML or JSON, which encodes both the attribute names and their

values. Martin Fowler calls this pattern the Serialized LOB.

Download EAV/soln/create-blob-tables.sql

CREATE TABLE Issues (

issue_id SERIAL PRIMARY KEY,

reported_by BIGINT UNSIGNED NOT NULL,

product_id BIGINT UNSIGNED,

priority VARCHAR(20),

version_resolved VARCHAR(20),

status VARCHAR(20),

issue_type VARCHAR(10), -- BUG or FEATURE

attributes TEXT NOT NULL, -- all dynamic attributes for the row

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

The advantage of this design is that it’s completely extensible. You can

store new attributes in the blob at any time. Every row stores a poten-

tially distinct set of attributes, so you have as many subtypes as you

have rows.

The disadvantage is that SQL has little support for accessing specific

attributes in such a structure. You can’t easily select individual attri-

butes within the blob for row-based restriction, aggregate calculation,

sorting, or other operations. You must fetch the whole blob of attributes

as a single value and write application code to decode and interpret the

attributes.

This design is best when you can’t limit yourself to a finite set of sub-

types and when you need complete flexibility to define new attributes

at any time.

Post-Processing

Unfortunately, sometimes you’re stuck with the EAV design, such as if

you inherited a project and can’t change it or if your company acquired

a third-party software platform that uses EAV. If this is the case, famil-

iarize yourself with the trouble areas in the “Antipattern” section so

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/soln/create-blob-tables.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=86

SOLUTION: MODEL THE SUBTYPES 87

you can anticipate and plan for the extra work it takes to work with

this design.

Above all, don’t try to write queries that fetch entities as a single row

as though data were stored in a conventional table. Instead, query the

attributes associated with the entity and fetch them as a set of rows,

like they are stored.

Download EAV/soln/post-process.sql

SELECT issue_id, attr_name, attr_value

FROM IssueAttributes

WHERE issue_id = 1234;

The result of this query might look like the following:

issue_id attr_name attr_value

1234 date_reported 2009-06-01

1234 description Saving does not work

1234 priority HIGH

1234 product Open RoundFile

1234 reported_by Bill

1234 severity loss of functionality

1234 status NEW

This query is easier for you to write, and it’s easier for the database to

process. It returns all the attributes associated with the issue, even if

you don’t know how many there are when you write the query.

To use a result in this format, you need to write application code to loop

over the rows of the result set and set properties of an object in your

application. See the following PHP code for an example:

Download EAV/soln/post-process.php

<?php

$objects = array();

$stmt = $pdo->query(

"SELECT issue_id, attr_name, attr_value

FROM IssueAttributes

WHERE issue_id = 1234");

while ($row = $stmt->fetch()) {

$id = $row['issue_id'];

$field = $row['attr_name'];

$value = $row['attr_value'];

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/EAV/soln/post-process.sql
http://media.pragprog.com/titles/bksqla/code/EAV/soln/post-process.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=87

SOLUTION: MODEL THE SUBTYPES 88

if (!array_key_exists($id, $objects)) {

$objects[$id] = new stdClass();

}

$objects[$id]->$field = $value;

}

This might seem like too much work, but it’s the consequence of a

system-within-a-system like EAV. SQL already offers a way to identify

distinct attributes—in distinct columns. By using EAV, you’re layering

onto SQL a new way to identify attributes, so it should be no surprise

that SQL supports this awkwardly and inefficiently.

Use metadata for metadata.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=88

Of course, some people do go both ways.

The Scarecrow, The Wizard of Oz

Chapter 7

Polymorphic Associations
Let’s allow users to make comments on bugs. A given bug may have

many comments, but any given comment must pertain to a single bug.

So, there’s a one-to-many relationship between Bugs and Comments. The

entity-relationship diagram for this kind of simple association is shown

in Figure 7.1, on the following page, and the following SQL shows how

you would create this table:

Download Polymorphic/intro/comments.sql

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

bug_id BIGINT UNSIGNED NOT NULL,

author_id BIGINT UNSIGNED NOT NULL,

comment_date DATETIME NOT NULL,

comment TEXT NOT NULL,

FOREIGN KEY (author_id) REFERENCES Accounts(account_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

However, you might have two tables you can comment on. Bugs and Fea-

tureRequests are similar entities, although you might store them as sep-

arate tables (see Section 6.5, Concrete Table Inheritance, on page 83).

You’d like to store Comments in a single table regardless of whether they

pertain to either type of issue—a bug or a feature—but you can’t declare

a foreign key that references multiple parent tables. The following dec-

laration is nonsense:

Download Polymorphic/intro/nonsense.sql

...

FOREIGN KEY (issue_id)

REFERENCES Bugs(issue_id) OR FeatureRequests(issue_id)

);

http://media.pragprog.com/titles/bksqla/code/Polymorphic/intro/comments.sql
http://media.pragprog.com/titles/bksqla/code/Polymorphic/intro/nonsense.sql

OBJECTIVE: REFERENCE MULTIPLE PARENTS 90

CommentsBugs

Figure 7.1: Simple association

Developers also try to write invalid SQL to query multiple tables, such

as the following:

Download Polymorphic/intro/nonsense.sql

SELECT c.*, i.summary, i.status

FROM Comments AS c

JOIN c.issue_type AS i USING (issue_id);

But you can’t join to a different table per row in SQL. SQL syntax

requires that you name all the tables literally at the time you submit

the query. The tables cannot vary during the query. What’s wrong with

this picture, and how do we solve it?

7.1 Objective: Reference Multiple Parents

The Scarecrow in The Wizard of Oz gives Dorothy uncertain directions

when she asks which fork in the road she should take to get to the

Emerald City. What should be a clear answer to Dorothy’s simple ques-

tion just confuses her when the Scarecrow tries to give her two answers

at once.

This kind of association is illustrated in the entity-relationship diagram

in Figure 7.2, on the following page. The foreign key in the child table

“forks,” so a row in the Comments table matches either a row in the

Bugs table or a row in the FeatureRequests table. The curved arc in the

diagram indicates an exclusive choice: a given comment must reference

either one bug or one feature request.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/intro/nonsense.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=90

ANTIPATTERN: USE DUAL-PURPOSE FOREIGN KEY 91

Comments

Bugs

Feature

Requests

Figure 7.2: Polymorphic association

7.2 Antipattern: Use Dual-Purpose Foreign Key

A solution for these cases has become popular enough to be given a

name, Polymorphic Associations. This is also sometimes called a promis-

cuous association, because it can reference multiple tables.

Defining a Polymorphic Association

To make Polymorphic Associations work, you must add an extra string

column alongside the foreign key on issue_id. The extra column con-

tains the name of the parent table referenced by the current row. In

this example, the new column is called issue_type, and it contains either

Bugs or FeatureRequests, corresponding to the names of the two possi-

ble parent tables in this association.

Download Polymorphic/anti/comments.sql

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

issue_type VARCHAR(20), -- "Bugs" or "FeatureRequests"

issue_id BIGINT UNSIGNED NOT NULL,

author BIGINT UNSIGNED NOT NULL,

comment_date DATETIME,

comment TEXT,

FOREIGN KEY (author) REFERENCES Accounts(account_id)

);

You can see one difference immediately: the foreign key declaration for

issue_id is missing. In fact, since a foreign key must specify exactly one

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/anti/comments.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=91

ANTIPATTERN: USE DUAL-PURPOSE FOREIGN KEY 92

Mixing Data with Metadata

You might have noticed a similar characteristic between the
Polymorphic Associations antipattern and the Entity-Attribute-
Value antipattern described in the previous chapter. In both
antipatterns, the name of a metadata object is stored as a
string value. In EAV, the name of an attribute column is stored
as a string in the attr_name column. In Polymorphic Associations,
the names of the parent tables are stored in the issue_type col-
umn. This is sometimes called mixing data with metadata. This
concept appears in another form in Chapter 8, Multicolumn
Attributes, on page 102.

table, using a Polymorphic Association means that you can’t declare

this association in metadata. As a result, there is no enforcement of

data integrity to ensure that the value in Comments.issue_id matches a

value in the parent table.

Likewise, no metadata ensures that the string in Comments.issue_type

corresponds to a table that exists in this database.

Querying a Polymorphic Association

The issue_id value in the Comments table may occur in the primary key

column of both parent tables, Bugs and FeatureRequests. Or the value

may occur in one parent table but be missing in the other parent table.

It’s therefore crucial to use the issue_type correctly when joining the

child table to the parent table. You must not match an issue_id value to

the FeatureRequests table if it was intended to be matched to the Bugs

table.

For example, this will retrieve comments for a given bug by its primary

key value 1234:

Download Polymorphic/anti/select.sql

SELECT *
FROM Bugs AS b JOIN Comments AS c

ON (b.issue_id = c.issue_id AND c.issue_type = 'Bugs')

WHERE b.issue_id = 1234;

Although the previous query works if bugs are stored in the single table

Bugs, you run into a problem when Comments is associated with both

tables Bugs and FeatureRequests. In SQL, you must specify all tables

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/anti/select.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=92

ANTIPATTERN: USE DUAL-PURPOSE FOREIGN KEY 93

in a join; you cannot join Comments to two separate tables, switch-

ing between them row by row, depending on the value in the Com-

ments.issue_type column.

To retrieve either a bug or a feature given a specific comment, you need

to run a query with an outer join to both parent tables. Only one of

the parent tables will satisfy its join, since part of the join condition

relies on the value in the Comment.issue_type column. Using an outer

join means that fields from the table that does not match contain null

in the result set.

Download Polymorphic/anti/select.sql

SELECT *
FROM Comments AS c

LEFT OUTER JOIN Bugs AS b

ON (b.issue_id = c.issue_id AND c.issue_type = 'Bugs')

LEFT OUTER JOIN FeatureRequests AS f

ON (f.issue_id = c.issue_id AND c.issue_type = 'FeatureRequests');

The result may look something like this:

c.comment_id c.issue_type c.issue_id c.comment b.issue_id f.issue_id

6789 Bugs 1234 It crashes! 1234 NULL

9876 Feature. . . 2345 Great idea! NULL 2345

Non-Object-Oriented Example

In the example of Bugs and FeatureRequests, these two parent tables are

meant to model related subtypes. Polymorphic Associations may also

be used when the parent tables are completely unrelated to each other.

For example, in an ecommerce database, both tables Users and Orders

may be associated with Addresses, as illustrated in Figure 7.3, on the

following page.

Download Polymorphic/anti/addresses.sql

CREATE TABLE Addresses (

address_id SERIAL PRIMARY KEY,

parent VARCHAR(20), -- "Users" or "Orders"

parent_id BIGINT UNSIGNED NOT NULL,

address TEXT

);

In this case, the Addresses table contains a polymorphic column that

names either Users or Orders as the parent table for a given address.

Notice that you have to choose one or the other. You can’t associate a

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/anti/select.sql
http://media.pragprog.com/titles/bksqla/code/Polymorphic/anti/addresses.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=93

HOW TO RECOGNIZE THE ANTIPATTERN 94

Addresses

Users

Orders

Figure 7.3: Polymorphic Associations for addresses

given address with both a user and an order, even an order placed by

that user, to ship merchandise to himself.

Also, if a user has a shipping address as well as a billing address, you

need some way to make this distinction in the Addresses table; likewise,

any other parents need to note the special usage of addresses in the

Addresses table. These notes can propagate like weeds.

Download Polymorphic/anti/addresses.sql

CREATE TABLE Addresses (

address_id SERIAL PRIMARY KEY,

parent VARCHAR(20), -- "Users" or "Orders"

parent_id BIGINT UNSIGNED NOT NULL,

users_usage VARCHAR(20), -- "billing" or "shipping"

orders_usage VARCHAR(20), -- "billing" or "shipping"

address TEXT

);

7.3 How to Recognize the Antipattern

If you hear statements like the following, it’s a clue that the Polymorphic

Associations antipattern is being employed:

• “This tagging schema allows you to associate a tag (or other attri-

bute) with any other resource in the database.”

Like in EAV, you should be suspicious of any claims of unlimited

flexibility.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/anti/addresses.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=94

LEGITIMATE USES OF THE ANTIPATTERN 95

• “You can’t declare foreign keys in our database design.”

This is another red flag. Foreign keys are a fundamental feature

of relational databases, and a design that can’t work with proper

referential integrity has a lot of problems.

• “What’s the entity_type column for? Oh, that tells you which thing

this other column points to.”

Any foreign key must reference the same table on all rows.

The Ruby on Rails framework supports Polymorphic Associations by

declaring Active Record classes with the :polymorphic attribute. For ex-

ample, you could associate Comments to Bugs and FeatureRequests as

follows:

Download Polymorphic/recog/commentable.rb

class Comment < ActiveRecord::Base

belongs_to :commentable, :polymorphic => true

end

class Bug < ActiveRecord::Base

has_many :comments, :as => :commentable

end

class FeatureRequest < ActiveRecord::Base

has_many :comments, :as => :commentable

end

The Hibernate framework for Java supports Polymorphic Associations

using a variety of schema declarations.1

7.4 Legitimate Uses of the Antipattern

You should avoid the Polymorphic Associations antipattern—use con-

straints like foreign keys to ensure referential integrity. Polymorphic

Associations often relies too much on application code instead of meta-

data.

You may find that this antipattern is unavoidable if you use an object-

relational programming framework such as Hibernate. Such a frame-

work may mitigate the risks introduced by Polymorphic Associations

by encapsulating application logic to maintain referential integrity. If

1. See http://www.hibernate.org/hib_docs/reference/en/html/inheritance.html. “Hibernate” is a

service mark of Red Hat, Inc.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/recog/commentable.rb
http://www.hibernate.org/hib_docs/reference/en/html/inheritance.html
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=95

SOLUTION: SIMPLIFY THE RELATIONSHIP 96

you choose a mature and reputable framework, then you have some

confidence that its designers have written the code to implement the

association without error. However, if you are implementing Polymor-

phic Associations from scratch without the aid of a framework, you’re

reinventing the wheel.

7.5 Solution: Simplify the Relationship

It’s better to redesign your database to avoid the weaknesses of Poly-

morphic Associations but still support the data modeling you need. The

following sections describe a few solutions that accommodate the data

relationship but make better use of metadata to enforce integrity.

Reverse the Reference

One solution to this antipattern is simple once you see the nature of

the problem: Polymorphic Associations are backward.

Creating Intersection Tables

A foreign key in the child table Comments can’t reference multiple parent

tables, so instead, use multiple foreign keys to reference the Comments

table. Create a separate intersection table for each parent table, and in

each intersection table include a foreign key to Comments, as well as a

foreign key to the respective parent table. This design is illustrated in

the entity-relationship diagram in Figure 7.4, on the next page.

Download Polymorphic/soln/reverse-reference.sql

CREATE TABLE BugsComments (

issue_id BIGINT UNSIGNED NOT NULL,

comment_id BIGINT UNSIGNED NOT NULL,

PRIMARY KEY (issue_id, comment_id),

FOREIGN KEY (issue_id) REFERENCES Bugs(issue_id),

FOREIGN KEY (comment_id) REFERENCES Comments(comment_id)

);

CREATE TABLE FeaturesComments (

issue_id BIGINT UNSIGNED NOT NULL,

comment_id BIGINT UNSIGNED NOT NULL,

PRIMARY KEY (issue_id, comment_id),

FOREIGN KEY (issue_id) REFERENCES FeatureRequests(issue_id),

FOREIGN KEY (comment_id) REFERENCES Comments(comment_id)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/soln/reverse-reference.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=96

SOLUTION: SIMPLIFY THE RELATIONSHIP 97

Comments

Bugs

Comments

Bugs

Features

Comments

Feature

Requests

Figure 7.4: Reversing a polymorphic association

This solution removes the need for the Comments.issue_type column.

Now the metadata can enforce data integrity, instead of relying on appli-

cation code to manage the associations without error.

Putting Up Traffic Lights

A potential weakness of this solution is that it permits associations that

you might not want to be permitted. Intersection tables usually model

many-to-many associations, so this would allow a given comment to be

associated with multiple bugs or multiple feature requests. However,

you probably want each comment to pertain to only one bug or one

feature request. You can enforce at least part of this rule by declaring a

UNIQUE constraint on the comment_id column of each intersection table.

Download Polymorphic/soln/reverse-unique.sql

CREATE TABLE BugsComments (

issue_id BIGINT UNSIGNED NOT NULL,

comment_id BIGINT UNSIGNED NOT NULL,

UNIQUE KEY (comment_id),

PRIMARY KEY (issue_id, comment_id),

FOREIGN KEY (issue_id) REFERENCES Bugs(issue_id),

FOREIGN KEY (comment_id) REFERENCES Comments(comment_id)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/soln/reverse-unique.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=97

SOLUTION: SIMPLIFY THE RELATIONSHIP 98

This ensures that a given comment can be referenced only once in the

intersection table, which naturally prevents it from being associated

with multiple bugs or multiple feature requests. However, the meta-

data doesn’t prevent a given comment from being referenced once in

both intersection tables, associating the comment with both a bug and

a feature request. This is probably not what you want, but ensuring

against it remains the responsibility of your application code.

Looking Both Ways

You can query comments given a specific bug or feature request simply

by using the intersection table.

Download Polymorphic/soln/reverse-join.sql

SELECT *
FROM BugsComments AS b

JOIN Comments AS c USING (comment_id)

WHERE b.issue_id = 1234;

You can query the matching bug or feature request based on an in-

stance of a comment by using an outer join to both intersection tables.

You have to name all the possible parent tables, but that’s no more

complex than the query you had to use in the Polymorphic Associa-

tions antipattern. Also, you can depend on referential integrity when

using intersection tables, whereas with Polymorphic Associations you

couldn’t.

Download Polymorphic/soln/reverse-join.sql

SELECT *
FROM Comments AS c

LEFT OUTER JOIN (BugsComments JOIN Bugs AS b USING (issue_id))

USING (comment_id)

LEFT OUTER JOIN (FeaturesComments JOIN FeatureRequests AS f USING (issue_id))

USING (comment_id)

WHERE c.comment_id = 9876;

Merging Lanes

Sometimes you need to make the result of a query against multiple

parent tables appear is if you had stored the parents in a single table

(see Section 6.5, Single Table Inheritance, on page 82). You can do this

in either of two ways.

First look at the following query using UNION:

Download Polymorphic/soln/reverse-union.sql

SELECT b.issue_id, b.description, b.reporter, b.priority, b.status,

b.severity, b.version_affected,

NULL AS sponsor

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/soln/reverse-join.sql
http://media.pragprog.com/titles/bksqla/code/Polymorphic/soln/reverse-join.sql
http://media.pragprog.com/titles/bksqla/code/Polymorphic/soln/reverse-union.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=98

SOLUTION: SIMPLIFY THE RELATIONSHIP 99

FROM Comments AS c

JOIN (BugsComments JOIN Bugs AS b USING (issue_id))

USING (comment_id)

WHERE c.comment_id = 9876;

UNION

SELECT f.issue_id, f.description, f.reporter, f.priority, f.status,

NULL AS severity, NULL AS version_affected,

f.sponsor

FROM Comments AS c

JOIN (FeaturesComments JOIN FeatureRequests AS f USING (issue_id))

USING (comment_id)

WHERE c.comment_id = 9876;

This query should be guaranteed to return a single row if your applica-

tion has associated each comment with exactly one parent table. Since

query results can be combined with UNION only if their columns are

the same in number and data type, you must provide null placehold-

ers for columns that are unique to each parent table. You must list the

columns in the same order in both queries involved in the UNION.

Alternatively, look at the following query using the SQL COALESCE()

function. This function returns its first non-null argument. Since you

are using an outer join in the query, a comment that pertains to a fea-

ture request and has no matching row in Bugs would return all fields

in b.* as null. Likewise, all fields in f.* would be null if the comment

pertains to a bug instead of a feature request. List the fields specific to

one parent table or the other in a simple manner; if they are irrelevant

to the matching parent table, they are returned as null.

Download Polymorphic/soln/reverse-coalesce.sql

SELECT c.*,

COALESCE(b.issue_id, f.issue_id) AS issue_id,

COALESCE(b.description, f.description) AS description,

COALESCE(b.reporter, f.reporter) AS reporter,

COALESCE(b.priority, f.priority) AS priority,

COALESCE(b.status, f.status) AS status,

b.severity,

b.version_affected,

f.sponsor

FROM Comments AS c

LEFT OUTER JOIN (BugsComments JOIN Bugs AS b USING (issue_id))

USING (comment_id)

LEFT OUTER JOIN (FeaturesComments JOIN FeatureRequests AS f USING (issue_id))

USING (comment_id)

WHERE c.comment_id = 9876;

Both of these queries are pretty complex, so they’re good candidates for

a database view, and you can use them more simply in your application.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/soln/reverse-coalesce.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=99

SOLUTION: SIMPLIFY THE RELATIONSHIP 100

Issues

Comments

Feature

Requests
Bugs

Figure 7.5: Association of Comments to the Base Issues table

Create a Common Super-Table

In object-oriented polymorphism, two subtypes can be referenced sim-

ilarly because they implicitly share a common supertype. In SQL, the

Polymorphic Associations antipattern leaves out that crucial entity: the

common supertype. You can fix that by creating a base table that all of

your parent tables extend (see Section 6.5, Class Table Inheritance, on

page 84). Add the foreign key in the child Comments table to reference

the base table. You don’t need an issue_type column. This solution is

illustrated in the entity-relationship diagram in Figure 7.5.

Download Polymorphic/soln/super-table.sql

CREATE TABLE Issues (

issue_id SERIAL PRIMARY KEY

);

CREATE TABLE Bugs (

issue_id BIGINT UNSIGNED PRIMARY KEY,

FOREIGN KEY (issue_id) REFERENCES Issues(issue_id),

. . .

);

CREATE TABLE FeatureRequests (

issue_id BIGINT UNSIGNED PRIMARY KEY,

FOREIGN KEY (issue_id) REFERENCES Issues(issue_id),

. . .

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/soln/super-table.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=100

SOLUTION: SIMPLIFY THE RELATIONSHIP 101

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

issue_id BIGINT UNSIGNED NOT NULL,

author BIGINT UNSIGNED NOT NULL,

comment_date DATETIME,

comment TEXT,

FOREIGN KEY (issue_id) REFERENCES Issues(issue_id),

FOREIGN KEY (author) REFERENCES Accounts(account_id),

);

Note that the primary keys of Bugs and FeatureRequests are also foreign

keys. They reference the surrogate key value generated in the Issues

table, instead of generating a new value for themselves.

Given a specific comment, you can retrieve the referenced bug or fea-

ture request using a relatively simple query. You don’t have to include

the Issues table in that query at all, unless you defined attribute columns

in that table. Also, since the primary key value of the Bugs table and its

ancestor Issues table are the same, you can join Bugs directly to Com-

ments. You can join two tables even if there is no foreign key constraint

linking them directly, as long as you use columns that represent com-

parable information in your database.

Download Polymorphic/soln/super-join.sql

SELECT *
FROM Comments AS c

LEFT OUTER JOIN Bugs AS b USING (issue_id)

LEFT OUTER JOIN FeatureRequests AS f USING (issue_id)

WHERE c.comment_id = 9876;

Given a specific bug, you can retrieve its comments just as easily.

Download Polymorphic/soln/super-join.sql

SELECT *
FROM Bugs AS b

JOIN Comments AS c USING (issue_id)

WHERE b.issue_id = 1234;

The point is that if you use an ancestor table like Issues, you can rely on

the enforcement of your database’s data integrity by foreign keys.

In every table relationship, there is one referencing table

and one referenced table.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Polymorphic/soln/super-join.sql
http://media.pragprog.com/titles/bksqla/code/Polymorphic/soln/super-join.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=101

The sublime and the ridiculous are often so nearly related

that it is difficult to class them separately.

Thomas Paine

Chapter 8

Multicolumn Attributes
I can’t count the number of times I have created a table to store peo-

ple’s contact information. Always this kind of table has commonplace

columns such as the person’s name, salutation, address, and probably

company name.

Phone numbers are a little trickier. People use multiple numbers: a

home number, a work number, a fax number, and a mobile number are

common. In the contact information table, it’s easy to store these in

four columns.

But what about additional numbers? The person’s assistant, second

mobile phone, or field office have distinct phone numbers, and there

could be other unforeseen categories. I could create more columns for

the less common cases, but that seems clumsy because it adds seldom-

used fields to data entry forms. How many columns is enough?

8.1 Objective: Store Multivalue Attributes

This is the same objective as in Chapter 2, Jaywalking, on page 25:

an attribute seems to belong in one table, but the attribute has mul-

tiple values. Previously, we saw that combining multiple values into

a comma-separated string makes it hard to validate the values, hard

to read or change individual values, and hard to compute aggregate

expressions such as counting the number of distinct values.

We’ll use a new example to illustrate this antipattern. We want the bugs

database to allow tags so we can categorize bugs. Some bugs may be

categorized by the software subsystem that they affect, for instance

printing, reports, or email. Other bugs may be categorized by the nature

ANTIPATTERN: CREATE MULTIPLE COLUMNS 103

of the defect; for instance, a crash bug could be tagged crash, while you

could tag a report of slowness with performance, and you could tag a

bad color choice in the user interface with cosmetic.

The bug-tagging feature must support multiple tags, because tags are

not necessarily mutually exclusive. A defect could affect multiple sys-

tems or could affect the performance of printing.

8.2 Antipattern: Create Multiple Columns

We still have to account for multiple values in the attribute, but we

know the new solution must store only a single value in each column.

It might seem natural to create multiple columns in this table, each

containing a single tag.

Download Multi-Column/anti/create-table.sql

CREATE TABLE Bugs (

bug_id SERIAL PRIMARY KEY,

description VARCHAR(1000),

tag1 VARCHAR(20),

tag2 VARCHAR(20),

tag3 VARCHAR(20)

);

As you assign tags to a given bug, you’d put values in one of these three

columns. Unused columns remain null.

Download Multi-Column/anti/update.sql

UPDATE Bugs SET tag2 = 'performance' WHERE bug_id = 3456;

bug_id description tag1 tag2 tag3

1234 Crashes while saving crash NULL NULL

3456 Increase performance printing performance NULL

5678 Support XML NULL NULL NULL

Most tasks you could do easily with a conventional attribute now be-

come more complex.

Searching for Values

When searching for bugs with a given tag, you must search all three

columns, because the tag string could occupy any of these columns.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/create-table.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/update.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=103

ANTIPATTERN: CREATE MULTIPLE COLUMNS 104

For example, to retrieve bugs that reference performance, use a query

like the following:

Download Multi-Column/anti/search.sql

SELECT * FROM Bugs

WHERE tag1 = 'performance'

OR tag2 = 'performance'

OR tag3 = 'performance';

You might need to search for bugs that reference both tags, performance

and printing. To do this, use a query like the following one. Remember

to use parentheses correctly, because OR has lower precedence than

AND.

Download Multi-Column/anti/search-two-tags.sql

SELECT * FROM Bugs

WHERE (tag1 = 'performance' OR tag2 = 'performance' OR tag3 = 'performance')

AND (tag1 = 'printing' OR tag2 = 'printing' OR tag3 = 'printing');

The syntax required to search for a single value over multiple columns

is lengthy and tedious to write. You can make it more compact by using

an IN predicate in a slightly untraditional manner:

Download Multi-Column/anti/search-two-tags.sql

SELECT * FROM Bugs

WHERE 'performance' IN (tag1, tag2, tag3)

AND 'printing' IN (tag1, tag2, tag3);

Adding and Removing Values

Adding and removing a value from the set of columns presents its own

issues. Simply using UPDATE to change one of the columns isn’t safe,

since you can’t be sure which column is unoccupied, if any. You might

have to retrieve the row into your application to see.

Download Multi-Column/anti/add-tag-two-step.sql

SELECT * FROM Bugs WHERE bug_id = 3456;

In this case, for instance, the result shows you that tag2 is null. Then

you can form the UPDATE statement.

Download Multi-Column/anti/add-tag-two-step.sql

UPDATE Bugs SET tag2 = 'performance' WHERE bug_id = 3456;

You face the risk that in the moment after you query the table and

before you update it, another client has gone through the same steps

of reading the row and updating it. Depending on who applied their

update first, either you or he risks getting an update conflict error or

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/search.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/search-two-tags.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/search-two-tags.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/add-tag-two-step.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/add-tag-two-step.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=104

ANTIPATTERN: CREATE MULTIPLE COLUMNS 105

having his changes overwritten by the other. You can avoid this two-

step query by using complex SQL expressions.

The following statement uses the NULLIF() function to make each col-

umn null if it equals a specific value. NULLIF() returns null if its two

arguments are equal.1

Download Multi-Column/anti/remove-tag.sql

UPDATE Bugs

SET tag1 = NULLIF(tag1, 'performance'),

tag2 = NULLIF(tag2, 'performance'),

tag3 = NULLIF(tag3, 'performance')

WHERE bug_id = 3456;

The following statement adds the new tag performance to the first col-

umn that is currently null. However, if none of the three columns is

null, then the statement makes no change to the row, and the new tag

value is not recorded at all. Also, constructing this statement is labori-

ous. Notice you must repeat the string performance six times.

Download Multi-Column/anti/add-tag.sql

UPDATE Bugs

SET tag1 = CASE

WHEN 'performance' IN (tag2, tag3) THEN tag1

ELSE COALESCE(tag1, 'performance') END,

tag2 = CASE

WHEN 'performance' IN (tag1, tag3) THEN tag2

ELSE COALESCE(tag2, 'performance') END,

tag3 = CASE

WHEN 'performance' IN (tag1, tag2) THEN tag3

ELSE COALESCE(tag3, 'performance') END

WHERE bug_id = 3456;

Ensuring Uniqueness

You probably don’t want the same value to appear in multiple columns,

but when you use the Multicolumn Attributes antipattern, the database

can’t prevent this. In other words, it’s hard to prevent the following

statement:

Download Multi-Column/anti/insert-duplicate.sql

INSERT INTO Bugs (description, tag1, tag2, tag3)

VALUES ('printing is slow', 'printing', 'performance', 'performance');

1. The NULLIF() is a standard function in SQL; it’s supported by all brands except Informix

and Ingres.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/remove-tag.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/add-tag.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/insert-duplicate.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=105

HOW TO RECOGNIZE THE ANTIPATTERN 106

Handling Growing Sets of Values

Another weakness of this design is that three columns might not be

enough. To keep the design of one value per column, you must define as

many columns as the maximum number of tags a bug can have. How

can you predict, at the time you define the table, what that greatest

number will be?

One tactic is to guess at a moderate number of columns and expand

later, if necessary, by adding more columns. Most databases allow you

to restructure existing tables, so you can add Bugs.tag4, or even more

columns, as you need them.

Download Multi-Column/anti/alter-table.sql

ALTER TABLE Bugs ADD COLUMN tag4 VARCHAR(20);

However, this change is costly in three ways:

• Restructuring a database table that already contains data may

require locking the entire table, blocking access for other concur-

rent clients.

• Some databases implement this kind of table restructure by defin-

ing a new table to match the desired structure, copying the data

from the old table, and then dropping the old table. If the table in

question has a lot of data, this transfer can take a long time.

• When you add a column in the set for a multicolumn attribute,

you must revisit every SQL statement in every application that

uses this table, editing the statement to support new columns.

Download Multi-Column/anti/search-four-columns.sql

SELECT * FROM Bugs

WHERE tag1 = 'performance'

OR tag2 = 'performance'

OR tag3 = 'performance'

OR tag4 = 'performance'; -- you must add this new term

This is a meticulous and time-consuming development task. If you

miss any queries that need edits, it can lead to bugs that are dif-

ficult to detect.

8.3 How to Recognize the Antipattern

If the user interface or documentation for your project describes an

attribute to which you can assign multiple values but is limited to a

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/alter-table.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/anti/search-four-columns.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=106

LEGITIMATE USES OF THE ANTIPATTERN 107

Patterns Among Antipatterns

The Jaywalking and Multicolumn Attributes antipatterns have a
common thread: these two antipatterns are both solutions for
the same objective: to store an attribute that may have multi-
ple values.

In the examples for Jaywalking, we saw how that antipattern
relates to many-to-many relationships. In this chapter, we see a
simpler one-to-many relationship. Be aware that both antipat-
terns are sometimes used for both types of relationships.

fixed maximum number of values, this might indicate that the Multi-

column Attributes antipattern is in use.

Admittedly, some attributes might have a limit on the number of selec-

tions on purpose, but it’s more common that there’s no such limit.

If the limit seems arbitrary or unjustified, it might be because of this

antipattern.

Another clue that the antipattern might be in use is if you hear state-

ments such as the following:

• “How many is the greatest number of tags we need to support?”

You need to decide how many columns to define in the table for a

multivalue attribute like tag.

• “How can I search multiple columns at the same time in SQL?”

If you’re searching for a given value across multiple columns, this

is a clue that the multiple columns should really be stored as a

single logical attribute.

8.4 Legitimate Uses of the Antipattern

In some cases, an attribute may have a fixed number of choices, and

the position or order of these choices may be significant. For example,

a given bug may be associated with several users’ accounts, but the

nature of each association is unique. One is the user who reported the

bug, another is a programmer assigned to fix the bug, and another is

the quality control engineer assigned to verify the fix. Even though the

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=107

SOLUTION: CREATE DEPENDENT TABLE 108

values in each of these columns are compatible, their significance and

usage actually makes them logically different attributes.

It would be valid to define three ordinary columns in the Bugs table

to store each of these three attributes. The drawbacks described in

this chapter aren’t as important, because you are more likely to use

them separately. Sometimes you might still need to query over all three

columns, for instance to report everyone involved with a given bug. But

you can accept this complexity for a few cases in exchange for greater

simplicity in most other cases.

Another way to structure this is to create a dependent table for multiple

associations from the Bugs table the Accounts table and give this new

table an extra column to note the role each account has in relation to

that bug. However, this structure might lead to some of the problems

described in Chapter 6, Entity-Attribute-Value, on page 73.

8.5 Solution: Create Dependent Table

As we saw in Chapter 2, Jaywalking, on page 25, the best solution is to

create a dependent table with one column for the multivalue attribute.

Store the multiple values in multiple rows instead of multiple columns.

Also, define a foreign key in the dependent table to associate the values

to its parent row in the Bugs table.

Download Multi-Column/soln/create-table.sql

CREATE TABLE Tags (

bug_id BIGINT UNSIGNED NOT NULL

tag VARCHAR(20),

PRIMARY KEY (bug_id, tag),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

INSERT INTO Tags (bug_id, tag)

VALUES (1234, 'crash'), (3456, 'printing'), (3456, 'performance');

When all the tags associated with a bug are in a single column, search-

ing for bugs with a given tag is more straightforward.

Download Multi-Column/soln/search.sql

SELECT * FROM Bugs JOIN Tags USING (bug_id)

WHERE tag = 'performance';

Even more complex searches, such as a bug that relates to two specific

tags, is easy to read.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Multi-Column/soln/create-table.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/soln/search.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=108

SOLUTION: CREATE DEPENDENT TABLE 109

Download Multi-Column/soln/search-two-tags.sql

SELECT * FROM Bugs

JOIN Tags AS t1 USING (bug_id)

JOIN Tags AS t2 USING (bug_id)

WHERE t1.tag = 'printing' AND t2.tag = 'performance';

You can add or remove an association much more easily than with the

Multicolumn Attributes antipattern. Simply insert or delete a row from

the dependent table. There’s no need to inspect multiple columns to see

where you can add a value.

Download Multi-Column/soln/insert-delete.sql

INSERT INTO Tags (bug_id, tag) VALUES (1234, 'save');

DELETE FROM Tags WHERE bug_id = 1234 AND tag = 'crash';

The PRIMARY KEY constraint ensures that no duplication is allowed. A

given tag can be applied to a given bug only once. If you attempt to

insert a duplicate, SQL returns a duplicate key error.

You are not limited to three tags per bug, as you were when there were

only three tagN columns in the Bugs table. Now you can apply as many

tags per bug as you need.

Store each value with the same meaning in a single column.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Multi-Column/soln/search-two-tags.sql
http://media.pragprog.com/titles/bksqla/code/Multi-Column/soln/insert-delete.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=109

I want these things off the ship. I don’t care if it takes every

last man we’ve got, I want them off the ship.

James T. Kirk

Chapter 9

Metadata Tribbles
My wife worked for years as a programmer in Oracle PL/SQL and Java.

She described a case that showed how a database design that was

intended to simplify work instead created more work.

A table Customers used by the Sales division at her company kept data

such as customers’ contact information, their business type, and how

much revenue had been received from that customer:

Download Metadata-Tribbles/intro/create-table.sql

CREATE TABLE Customers (

customer_id NUMBER(9) PRIMARY KEY,

contact_info VARCHAR(255),

business_type VARCHAR(20),

revenue NUMBER(9,2)

);

But the Sales division needed to break down the revenue by year so they

could track recently active customers. They decided to add a series of

new columns, each column’s name indicating the year it covered:

Download Metadata-Tribbles/intro/alter-table.sql

ALTER TABLE Customers ADD (revenue2002 NUMBER(9,2));

ALTER TABLE Customers ADD (revenue2003 NUMBER(9,2));

ALTER TABLE Customers ADD (revenue2004 NUMBER(9,2));

Then they entered incomplete data, only for customers they thought

were interesting to track. On most rows, they left null in those revenue

columns. The programmers started wondering whether they could store

other information in these mostly unused columns.

Each year, they needed to add one more column. A database admin-

istrator was responsible for managing Oracle’s tablespaces. So each

year, they had to have a series of meetings, schedule a data migration

http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/intro/create-table.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/intro/alter-table.sql

OBJECTIVE: SUPPORT SCALABILITY 111

to restructure the tablespace, and add the new column. Ultimately they

wasted a lot of time and money.

9.1 Objective: Support Scalability

Performance degrades for any database query as the volume of data

goes up. Even if a query returns results promptly with a few thousand

rows, the tables naturally accumulate data to the point where the same

query may not have acceptable performance. Using indexes intelligently

helps, but nevertheless the tables grow, and this affects the speed of

queries against them.

The objective is to structure a database to improve the performance of

queries and support tables that grow steadily.

9.2 Antipattern: Clone Tables or Columns

In the television series Star Trek,1 “tribbles” are small furry animals

kept as pets. Tribbles are very appealing at first, but soon they reveal

their tendency to reproduce out of control, and managing the overpop-

ulation of tribbles becomes a serious problem.

Where do you put them? Who’s responsible for them? How long would

it take to pick up every tribble? Eventually, Captain Kirk discovers that

his ship and crew can’t function, and he has to order his crew to make

it top priority to remove the tribbles.

We know from experience that querying a table with few rows is quicker

than querying a table with many rows, all other things being equal. This

leads to a common fallacy that we must make every table contain fewer

rows, no matter what we have to do. This leads to two forms of the

antipattern:

• Split a single long table into multiple smaller tables, using table

names based on distinct data values in one of the table’s

attributes.

• Split a single column into multiple columns, using column names

based on distinct values in another attribute.

But you can’t get something for nothing; to meet the goal of having few

rows in every table, you have to either create tables that have too many

1. “Star Trek” and related marks are trademarks of CBS Studios Inc.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=111

ANTIPATTERN: CLONE TABLES OR COLUMNS 112

Mixing Metadata with Data

Notice that by appending the year onto the base table name,
we’ve combined a data value with a metadata identifier.

This is the reverse of mixing data with metadata that we saw
earlier in the Entity-Attribute-Value and Polymorphic Associa-
tions antipatterns. In those cases, we stored metadata identi-
fiers (a column name and table name) as string data.

In Multicolumn Attributes and Metadata Tribbles, we’re making
a data value into a column name or a table name. If you use
any of these antipatterns, you create more problems than you
solve.

columns or else create a greater number of tables. In both cases, you

find that the number of tables or columns continues to grow, since new

data values can make you create new schema objects.

Spawning Tables

To split data into separate tables, you’d need some policy for which

rows belong in which tables. For example, you could split them up by

the year in the date_reported column:

Download Metadata-Tribbles/anti/create-tables.sql

CREATE TABLE Bugs_2008 (. . .);

CREATE TABLE Bugs_2009 (. . .);

CREATE TABLE Bugs_2010 (. . .);

As you insert rows into the database, it’s your responsibility to use the

correct table, depending on the values you insert:

Download Metadata-Tribbles/anti/insert.sql

INSERT INTO Bugs_2010 (..., date_reported, ...) VALUES (..., '2010-06-01', ...);

Fast forward to January 1 of the next year. Your application starts get-

ting an error from all new bug reports, because you didn’t remember to

create the Bugs_2011 table.

Download Metadata-Tribbles/anti/insert.sql

INSERT INTO Bugs_2011 (..., date_reported, ...) VALUES (..., '2011-02-20', ...);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/create-tables.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/insert.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/insert.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=112

ANTIPATTERN: CLONE TABLES OR COLUMNS 113

This means that introducing a new data value can cause a need for a

new metadata object. This is not usually the relationship between data

and metadata in SQL.

Managing Data Integrity

Suppose your boss is trying to count bugs reported during the year,

but his numbers don’t adding up. After investigating, you discover that

some 2010 bugs were entered in the Bugs_2009 table by mistake. The

following query should always return an empty result, and if it doesn’t,

you have a problem:

Download Metadata-Tribbles/anti/data-integrity.sql

SELECT * FROM Bugs_2009

WHERE date_reported NOT BETWEEN '2009-01-01' AND '2009-12-31';

There’s no way to limit the data relative to the name of its table auto-

matically, but you can declare a CHECK constraint in each of your

tables:

Download Metadata-Tribbles/anti/check-constraint.sql

CREATE TABLE Bugs_2009 (

-- other columns

date_reported DATE CHECK (EXTRACT(YEAR FROM date_reported) = 2009)

);

CREATE TABLE Bugs_2010 (

-- other columns

date_reported DATE CHECK (EXTRACT(YEAR FROM date_reported) = 2010)

);

Remember to adjust the value in the CHECK constraint when you create

Bugs_2011. If you make a mistake, you could create a table that rejects

the rows it’s supposed to accept.

Synchronizing Data

One day, your customer support analyst asks to change a bug report

date. It’s in the database as reported on 2010-01-03, but the customer

who reported it actually sent it in by fax a week earlier, on 2009-12-27.

You could change the date with a simple UPDATE:

Download Metadata-Tribbles/anti/anomaly.sql

UPDATE Bugs_2010

SET date_reported = '2009-12-27'

WHERE bug_id = 1234;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/data-integrity.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/check-constraint.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/anomaly.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=113

ANTIPATTERN: CLONE TABLES OR COLUMNS 114

But this correction makes the row an invalid entry in the Bugs_2010

table. You would need to remove the row from one table and insert it

into the other table, in the infrequent case that a simple UPDATE would

cause this anomaly.

Download Metadata-Tribbles/anti/synchronize.sql

INSERT INTO Bugs_2009 (bug_id, date_reported, ...)

SELECT bug_id, date_reported, ...

FROM Bugs_2010

WHERE bug_id = 1234;

DELETE FROM Bugs_2010 WHERE bug_id = 1234;

Ensuring Uniqueness

You should make sure that the primary key values are unique across

all the split tables. If you need to move a row from one table to another,

you need some assurance that the primary key value doesn’t conflict

with another row.

If you use a database that supports sequence objects, you can use a

single sequence to generate values for all the split tables. For databases

that support only per-table ID uniqueness, this may be more awkward.

You have to define one extra table solely to produce primary key values:

Download Metadata-Tribbles/anti/id-generator.sql

CREATE TABLE BugsIdGenerator (bug_id SERIAL PRIMARY KEY);

INSERT INTO BugsIdGenerator (bug_id) VALUES (DEFAULT);

ROLLBACK;

INSERT INTO Bugs_2010 (bug_id, . . .)

VALUES (LAST_INSERT_ID(), . . .);

Querying Across Tables

Inevitably, your boss needs a query that references multiple tables. For

example, he may ask for a count of all open bugs regardless of the

year they were created. You can reconstruct the full set of bugs using a

UNION of all the split tables and query that as a derived table:

Download Metadata-Tribbles/anti/union.sql

SELECT b.status, COUNT(*) AS count_per_status FROM (

SELECT * FROM Bugs_2008

UNION

SELECT * FROM Bugs_2009

UNION

SELECT * FROM Bugs_2010) AS b

GROUP BY b.status;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/synchronize.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/id-generator.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/union.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=114

ANTIPATTERN: CLONE TABLES OR COLUMNS 115

As the years go on and you create more tables such as Bugs_2011, you

need to keep your application code up-to-date to reference the newly

created tables.

Synchronizing Metadata

Your boss tells you to add a column to track the hours of work required

to resolve each bug.

Download Metadata-Tribbles/anti/alter-table.sql

ALTER TABLE Bugs_2010 ADD COLUMN hours NUMERIC(9,2);

If you’ve split the table, then the new column applies only to the one

table you alter. None of the other tables contains the new column.

If you use a UNION query across your split tables as in the previous

section, you stumble upon a new problem: you can combine tables

using UNION if they have the same columns. If they differ, then you

have to name only the columns that all tables have in common, without

using the * wildcard.

Managing Referential Integrity

If a dependent table like Comments references Bugs, the dependent table

cannot declare a foreign key. A foreign key must specify a single table,

but in this case the parent table is split into many.

Download Metadata-Tribbles/anti/foreign-key.sql

CREATE TABLE Comments (

comment_id SERIAL PRIMARY KEY,

bug_id BIGINT UNSIGNED NOT NULL,

FOREIGN KEY (bug_id) REFERENCES Bugs_????(bug_id)

);

The split table may also have problems being a dependent instead of a

parent. For example, Bugs.reported_by references the Accounts table. If

you want to query all bugs reported by a given person regardless of the

year, you need a query like the following:

Download Metadata-Tribbles/anti/join-union.sql

SELECT * FROM Accounts a

JOIN (

SELECT * FROM Bugs_2008

UNION ALL

SELECT * FROM Bugs_2009

UNION ALL

SELECT * FROM Bugs_2010

) t ON (a.account_id = t.reported_by)

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/alter-table.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/foreign-key.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/join-union.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=115

HOW TO RECOGNIZE THE ANTIPATTERN 116

Identifying Metadata Tribbles Columns

Columns can be Metadata Tribbles, too. You can create a table contain-

ing columns that are bound to propagate by their nature, as we saw in

the story at the beginning of this chapter.

Another example we might have in our bugs database is a table that

records summary data for project metrics, where individual columns

store subtotals. For instance, in the following table, it’s only a matter of

time before you need to add the column bugs_fixed_2011:

Download Metadata-Tribbles/anti/multi-column.sql

CREATE TABLE ProjectHistory (

bugs_fixed_2008 INT,

bugs_fixed_2009 INT,

bugs_fixed_2010 INT

);

9.3 How to Recognize the Antipattern

The following phrases may indicate that the Metadata Tribbles antipat-

tern is growing in your database:

• “Then we need to create a table (or column) per . . . ”

When you describe your database with phrases using per in this

way, you’re splitting tables by distinct values in one of the

columns.

• “What’s the maximum number of tables (or columns) that the

database supports?”

Most brands of database can handle many more tables and col-

umns than you would need, if you used a sensible database de-

sign. If you think you might exceed the maximum, it’s a strong

sign that you need to rethink your design.

• “We found out why the application failed to add new data this

morning: we forgot to create a new table for the new year.”

This is a common consequence of Metadata Tribbles. When new

data demands new database objects, you need to define those

objects proactively or else risk unforeseen failures.

• “How do I run a query to search many tables at once? All the tables

have the same columns.”

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/anti/multi-column.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=116

LEGITIMATE USES OF THE ANTIPATTERN 117

If you need to search many tables with identical structure, you

should have stored them together in a single table, with one extra

attribute column to distinguish the rows.

• “How do I pass a parameter for a table name? I need to query a

table name appended with the year number dynamically.”

You wouldn’t need to do this if your data were in one table.

9.4 Legitimate Uses of the Antipattern

One good use of manually splitting tables is forarchiving—removing his-

torical data from day-to-day use. Often the need to run queries against

historical data is greatly reduced after the data is no longer current.

If you have no need to query current data and historical data together,

it’s appropriate to copy the older data to another location and delete it

from the active tables. Archiving keeps the data in a compatible table

structure for occasional analysis but allows queries against current

data to run with greater performance.

Sharding Databases at WordPress.com

At the MySQL Conference & Expo 2009, I had lunch with Barry

Abrahamson, database architect for WordPress.com, a popular hosting

service for blogging software.

Barry said when he started out hosting blogs, he hosted all his customers

together in a single database. The content of a single blog site really

wasn’t that much, after all. It stood to reason that a single database is

more manageable.

This did work well for the site initially, but it soon grew to very large-scale

operations. Now it hosts 7 million blogs on 300 database servers. Each

server hosts a subset of their customers.

When Barry adds a server, it would be very hard to separate data within a

single database that belongs to an individual customer’s blog. By splitting

the data into a separate database per customer, he made it much easier to

move any individual blog from one server to another. As customers come

and go and some customers’ blogs are busy while others go stale, his job

to rebalance the load over multiple servers becomes even more important.

It’s easier to back up and restore individual databases of moderate size

than a single database containing terabytes of data. For example, if a

customer calls and says their data got SNAFU’d because of bad data

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=117

SOLUTION: PARTITION AND NORMALIZE 118

entry, how would Barry restore one customer’s data if all the customers

share a single, monolithic database backup?

Although it seems like the right thing to do from a data modeling

perspective to keep everything in a single database, splitting the database

sensibly makes database administration tasks easier after the database

size passes a certain threshold.

9.5 Solution: Partition and Normalize

There are better ways to improve performance if a table gets too large,

instead of splitting the table manually. These include horizontal parti-

tioning, vertical partitioning, and using dependent tables.

Using Horizontal Partitioning

You can gain the benefits of splitting a large table without the draw-

backs by using a feature that is called either horizontal partitioning or

sharding. You define a logical table with some rule for separating rows

into individual partitions, and the database manages the rest. Physi-

cally, the table is split, but you can still execute SQL statements against

the table as though it were whole.

You have flexibility in that you can define the way each individual table

splits its rows into separate storage. For example, using the partitioning

support in MySQL version 5.1, you can specify partitions as an optional

part of a CREATE TABLE statement.

Download Metadata-Tribbles/soln/horiz-partition.sql

CREATE TABLE Bugs (

bug_id SERIAL PRIMARY KEY,

-- other columns

date_reported DATE

) PARTITION BY HASH (YEAR(date_reported))

PARTITIONS 4;

The previous example achieves a partitioning similar to that which we

saw earlier in this chapter, separating rows based on the year in the

date_reported column. However, its advantages over splitting the table

manually are that rows are never placed in the wrong split table, even if

the value of date_reported column is updated, and you can run queries

against the Bugs table without the need to reference individual split

tables.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/soln/horiz-partition.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=118

SOLUTION: PARTITION AND NORMALIZE 119

The number of separate physical tables used to store the rows is fixed

at four in this example. When you have rows spanning more than four

years, one of the partitions will be used to store more than one year’s

worth of data. This will continue as the years go on. You don’t need to

add new partitions unless the volume of data becomes so great that you

feel the need to split it further.

Partitioning is not defined in the SQL standard, so each brand of data-

base implements it in their own nonstandard way. The terminology,

syntax, and specific features of partitioning vary between brands. Nev-

ertheless, some form of partitioning is now supported by every major

brand of database.

Using Vertical Partitioning

Whereas horizontal partitioning splits a table by rows, vertical parti-

tioning splits a table by columns. Splitting a table by columns can have

advantages when some columns are bulky or seldom needed.

BLOB and TEXT columns have variable size, and they may be very large.

For efficiency of both storage and retrieval, many database brands

automatically store columns with these data types separately from the

other columns of a given row. If you run a query without referencing

any BLOB or TEXT columns of a table, you can access the other columns

more efficiently. But if you use the column wildcard * in your query,

the database retrieves all columns from that table, including any BLOB

or TEXT columns.

For example, in the Products table of our bugs database, we might store

a copy of the installation file for the respective product. This file is

typically a self-extracting archive with an extension such as .exe on

Windows or .dmg on a Mac. The files are usually very large, but a BLOB

column can store binary data of enormous size.

Logically, the installer file should be an attribute of the Products table.

But in most queries against that table, you wouldn’t need the installer.

Storing such a large volume of data in the Products table, which you use

infrequently, could lead to inadvertent performance problems if you’re

in the habit of retrieving all columns using the * wildcard.

The remedy is to store the BLOB column in another table, separate from

but dependent on the Products table. Make its primary key also serve as

a foreign key to the Products table to ensure there is at most one row

per product row.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=119

SOLUTION: PARTITION AND NORMALIZE 120

Download Metadata-Tribbles/soln/vert-partition.sql

CREATE TABLE ProductInstallers (

product_id BIGINT UNSIGNED PRIMARY KEY,

installer_image BLOB,

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

The previous example is extreme to make the point, but it shows the

benefit of storing some columns in a separate table. For example, in

MySQL’s MyISAM storage engine, querying a table is most efficient

when the rows are of fixed size. VARCHAR is a variable-length data type,

so the presence of a single column with that data type in a table pre-

vents the table from gaining that advantage. If you store all variable-

length columns in a separate table, then queries against the primary

table can benefit (if even a little bit).

Download Metadata-Tribbles/soln/separate-fixed-length.sql

CREATE TABLE Bugs (

bug_id SERIAL PRIMARY KEY, -- fixed length data type

summary CHAR(80), -- fixed length data type

date_reported DATE, -- fixed length data type

reported_by BIGINT UNSIGNED, -- fixed length data type

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)

);

CREATE TABLE BugDescriptions (

bug_id BIGINT UNSIGNED PRIMARY KEY,

description VARCHAR(1000), -- variable length data type

resolution VARCHAR(1000) -- variable length data type

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

Fixing Metadata Tribbles Columns

Similar to the solution we saw in Chapter 8, Multicolumn Attributes,

on page 102, the remedy for Metadata Tribbles columns is to create a

dependent table.

Download Metadata-Tribbles/soln/create-history-table.sql

CREATE TABLE ProjectHistory (

project_id BIGINT,

year SMALLINT,

bugs_fixed INT,

PRIMARY KEY (project_id, year),

FOREIGN KEY (project_id) REFERENCES Projects(project_id)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/soln/vert-partition.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/soln/separate-fixed-length.sql
http://media.pragprog.com/titles/bksqla/code/Metadata-Tribbles/soln/create-history-table.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=120

SOLUTION: PARTITION AND NORMALIZE 121

Instead of one row per project with multiple columns for each year, use

multiple rows, with one column for bugs fixed. If you define the table

in this way, you don’t need to add new columns to support subsequent

years. You can store any number of rows per project in this table as

time goes on.

Don’t let data spawn metadata.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=121

Part II

Physical Database Design

Antipatterns

10.0 times 0.1 is hardly ever 1.0.

Brian Kernighan

Chapter 10

Rounding Errors
Your boss asks you to produce a report of the cost of programmer time

for the project, based on the total work to fix each bug. Each program-

mer in the Accounts table has a different hourly rate, so you record

the number of hours required to fix each bug in the Bugs table, and you

multiply it by the hourly_rate of the programmer assigned to do the work.

Download Rounding-Errors/intro/cost-per-bug.sql

SELECT b.bug_id, b.hours * a.hourly_rate AS cost_per_bug

FROM Bugs AS b

JOIN Accounts AS a ON (b.assigned_to = a.account_id);

To support this query, you need to create new columns in the Bugs

and Accounts tables. Both columns should support fractional values,

because you need to track the costs precisely. You decide to define

the new columns as FLOAT, because this data type supports fractional

values.

Download Rounding-Errors/intro/float-columns.sql

ALTER TABLE Bugs ADD COLUMN hours FLOAT;

ALTER TABLE Accounts ADD COLUMN hourly_rate FLOAT;

You update the columns with information from the bug work logs and

the programmers’ rates, test the report, and call it a day.

The next day, your boss shows up in your office with a copy of the

project cost report. “These numbers don’t add up,” he tells you through

gritted teeth. “I did the calculation by hand for comparison, and your

report is inaccurate—slightly, by only a few dollars. How do you explain

this?” You start to perspire. What could have gone wrong with such a

simple calculation?

http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/intro/cost-per-bug.sql
http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/intro/float-columns.sql

OBJECTIVE: USE FRACTIONAL NUMBERS INSTEAD OF INTEGERS 124

10.1 Objective: Use Fractional Numbers Instead of Integers

The integer is a useful data type, but it stores only whole numbers like

1 or 327 or -19. It can’t represent fractional values like 2.5. You need

a different data type if you need numbers with more precision than

an integer. For example, sums of money are usually represented by

numbers with two decimal places, like $19.95.

So, the objective is to store numeric values that aren’t whole numbers

and to use them in arithmetic computations. There is an additional

objective, although it ought to go without saying: the results of arith-

metic computations must be correct.

10.2 Antipattern: Use FLOAT Data Type

Most programming languages support a data type for real numbers,

called float or double. SQL supports a similar data type of the same

name. Many programmers naturally use the SQL FLOAT data type every-

where they need fractional numeric data, because they are accustomed

to programming with the float data type.

The FLOAT data type in SQL, like float in most programming languages,

encodes a real number in a binary format according to the IEEE 754

standard. You need to understand some characteristics of floating-

point numbers in this format to use them effectively.

Rounding by Necessity

Many programmers are not aware of a characteristic of this floating-

point format: not all values you can describe in decimal can be stored

in binary. Out of necessity, some numbers must be rounded to a value

that is very close.

To give some context for this rounding behavior, compare with ratio-

nal numbers such as one-third, represented by a repeating decimal

number like 0.333. . . . The true value cannot be represented in deci-

mal, because you would need to write an infinite number of digits. The

number of digits is the precision of the number, so a repeating decimal

number would require infinite precision.

The compromise is to use finite precision, choosing a numeric value as

close as possible to the original value, for example 0.333. However, this

means that the value isn’t exactly the same number we intended.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=124

ANTIPATTERN: USE FLOAT DATA TYPE 125

1

3
+ 1

3
+ 1

3
= 1.000

0.333 + 0.333 + 0.333 = 0.999

Even if we increase the precision, we still can’t add three of these

approximations of one-third to get a true value of 1.0. This is the nec-

essary compromise of using finite precision to represent numbers that

may have repeating decimals.

1

3
+ 1

3
+ 1

3
= 1.000000

0.333333 + 0.333333 + 0.333333 = 0.999999

This means some legitimate numbers that you can imagine cannot be

represented with finite precision. You might think this is OK, because

you can’t really type a number with infinite digits anyway, so naturally

any number you can type has finite precision and should be stored

precisely, right? Unfortunately not.

IEEE 754 represents floating-point numbers in a base-2 format. The

values that require infinite precision in binary are different values from

those that behave this way in decimal. Some values that only need

finite precision in decimal, for instance 59.95, require infinite precision

to be represented exactly in binary. The FLOAT data type can’t do this,

so it uses the closest value in base-2 it can store, which is equal to

59.950000762939 in base-10.

Some values coincidentally use finite precision in both formats. In the-

ory, if you understand the details of storing numbers in the IEEE 754

format, you can predict how a given decimal value is represented in

binary. But in practice, most people won’t do this computation for every

floating-point value they use. You can’t guarantee that a FLOAT column

in the database will be given only values that are cooperative, so your

application should assume that any value in this column may have

been rounded.

Some databases support related data types called DOUBLE PRECISION and

REAL. The precision that these data types and FLOAT support varies by

database implementation, but they all represent floating-point values

with a finite number of binary digits, so they all have similar rounding

behavior.

Using FLOAT in SQL

Some databases can compensate for the inexactness and display the

intended value.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=125

ANTIPATTERN: USE FLOAT DATA TYPE 126

Meet the IEEE 754 Format

The proposals for a standard binary format for floating-point
numbers dates back to 1979. It was formally made a standard
in 1985, and it is now widely implemented in software, most pro-
gramming languages, and microprocessors.

The format has three fields to encode a floating-point value: a
field for a fraction portion of the value, a field for the exponent
to which to raise the fraction, and a single-bit sign field.

One advantage of IEEE 754 is that by using the exponent, it
can represent fractional values that are both very small and
very large. The format not only supports real numbers, but the
range of values it supports is greater than integers in fixed-point
format. The double-precision format supports an even greater
range of values. So, these formats are useful for scientific appli-
cations.

But the most common use of fractional numeric values is proba-
bly to represent quantities of money. There’s no need to use IEEE
754 for money, because the scaled decimal format described
in this chapter can handle money values just as easily and more
accurately.

Good references for learning more about this format are
the Wikipedia article (http://en.wikipedia.org/wiki/IEEE_754-1985)
or David Goldberg’s article, “What Every Computer Scientist
Should Know About Floating-Point Arithmetic.” [Gol91]

Goldberg’s article is also reprinted at http://www.validlab.com/

goldberg/paper.pdf.

Download Rounding-Errors/anti/select-rate.sql

SELECT hourly_rate FROM Accounts WHERE account_id = 123;

Returns: 59.95

But the actual value stored in the FLOAT column may not be exactly this

value. If you magnify the value by a billion, you see the discrepancy:

Download Rounding-Errors/anti/magnify-rate.sql

SELECT hourly_rate * 1000000000 FROM Accounts WHERE account_id = 123;

Returns: 59950000762.939

Report erratum

this copy is (P1.0 printing, May 2010)

http://en.wikipedia.org/wiki/IEEE_754-1985
http://www.validlab.com/goldberg/paper.pdf
http://www.validlab.com/goldberg/paper.pdf
http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/anti/select-rate.sql
http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/anti/magnify-rate.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=126

ANTIPATTERN: USE FLOAT DATA TYPE 127

You might expect the magnified value returned by the previous query

to be 59950000000.000. This shows that the value 59.95 has been

rounded to a value that can be represented in the finite precision of-

fered by the IEEE 754 binary format. In this case, the value is within 1

ten-millionth, which is close enough for many calculations.

However, it’s not close enough for some other kinds of calculations to

be accurate. One example is using a FLOAT in an equality comparison.

Download Rounding-Errors/anti/inexact.sql

SELECT * FROM Accounts WHERE hourly_rate = 59.95;

Result: empty set; no rows match.

We saw before that the value stored in hourly_rate is actually slightly

more than 59.95. So even though you assigned the value 59.95 to this

column for account_id 123, now the row fails to match the previous

query.

One common workaround for this issue is to treat floating-point values

as “effectively equal” if they are close within a small threshold. Subtract

one value from the other, and use SQL’s absolute value function ABS()

to strip the sign from the difference. If the result is zero, then the two

values were exactly equal. If the result is small enough, then the two

values can be treated as effectively equal. The following query succeeds

in finding the row:

Download Rounding-Errors/anti/threshold.sql

SELECT * FROM Accounts WHERE ABS(hourly_rate - 59.95) < 0.000001;

However, the difference is still large enough that a comparison of finer

precision fails:

Download Rounding-Errors/anti/threshold.sql

SELECT * FROM Accounts WHERE ABS(hourly_rate - 59.95) < 0.0000001;

The appropriate threshold varies, because the absolute difference be-

tween the base-10 value and the rounded base-2 value varies.

Another example of the inexact nature of FLOAT causing accuracy prob-

lems is when you calculate aggregates of many values. For example, if

you use SUM() to add up the floating-point values in a column, the sum

accumulates the discrepancy caused by rounding all the values.

Download Rounding-Errors/anti/cumulative.sql

SELECT SUM(b.hours * a.hourly_rate) AS project_cost

FROM Bugs AS b

JOIN Accounts AS a ON (b.assigned_to = a.account_id);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/anti/inexact.sql
http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/anti/threshold.sql
http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/anti/threshold.sql
http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/anti/cumulative.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=127

HOW TO RECOGNIZE THE ANTIPATTERN 128

The cumulative impact of inexact floating-point numbers is even more

severe when calculating the aggregate product of a set of numbers

instead of the sum. The difference seems small, but it compounds. For

example, if you multiply the value 1 by a factor of exactly 1.0, the result

is always 1. It doesn’t matter how many times you apply this factor.

However, if the factor is actually 0.999, this has a different result. If

you multiply a value of one by 0.999 a thousand times in succession,

you get a result of about 0.3677. The more times you multiply, the more

the discrepancy grows.

A good example of applying a multiplication many times in succession

is to calculate compounding interest in a financial application. Using

inexact floating-point numbers introduces an error that seems tiny but

grows as it compounds on itself. So, using exact values in financial

applications is important.

10.3 How to Recognize the Antipattern

Virtually any use of FLOAT, REAL, or DOUBLE PRECISION data types is sus-

pect. Most applications that use floating-point numbers don’t require

the range of values supported by IEEE 754 formats.

It seems natural to use FLOAT data types in SQL, because it shares

its name with a data type found in most programming languages. But

there is a better choice for the data type.

10.4 Legitimate Uses of the Antipattern

FLOAT is a good data type when you need real number values with a

greater range than INTEGER or NUMERIC data types support. Scientific

applications are often cited as the best use of a FLOAT.

Oracle uses the FLOAT data type to mean an exact scaled numeric,

whereas the BINARY_FLOAT data type is an inexact numeric, using the

IEEE 754 encoding.

10.5 Solution: Use NUMERIC Data Type

Instead of FLOAT or its siblings, use the NUMERIC or DECIMAL SQL data

types for fixed-precision fractional numbers.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=128

SOLUTION: USE NUMERIC DATA TYPE 129

Download Rounding-Errors/soln/numeric-columns.sql

ALTER TABLE Bugs ADD COLUMN hours NUMERIC(9,2);

ALTER TABLE Accounts ADD COLUMN hourly_rate NUMERIC(9,2);

These data types store numeric values exactly, up to the precision you

specify in the column definition. Specify precision as an argument to

the data type, similar to the syntax you would use for the length of a

VARCHAR data type. The precision is the total number of decimal digits

you can use in a value in this column. A precision of 9 means that you

can store a value like 123456789, but you may not be able to store

1234567890.1

You may also specify a scale in a second argument to the data type.

The scale is the number of digits to the right of the decimal point. These

digits are included in the precision digits, so a precision of 9 with a scale

of 2 means you can store a value like 1234567.89, but not 12345678.91

or 123456.789.

The precision and scale you specify applies to the column on all rows in

the table. In other words, you can’t store values with scale 2 on some

rows and scale 4 on other rows. It’s ordinary in SQL that a column’s

data type applies uniformly on all rows (just as a column defined as

VARCHAR(20) would allow a string of that length on every row).

The advantage of NUMERIC and DECIMAL are that they store rational

numbers without rounding, as the FLOAT data types do. After you set

a value to 59.95, you can depend on that value being stored exactly.

When you compare it for equality to a literal value 59.95, the compari-

son succeeds.

Download Rounding-Errors/soln/exact.sql

SELECT hourly_rate FROM Accounts WHERE hourly_rate = 59.95;

Returns: 59.95

Likewise, if you scale up the value by a billion, you get the expected

value:

Download Rounding-Errors/soln/magnify-rate-exact.sql

SELECT hourly_rate * 1000000000 FROM Accounts WHERE hourly_rate = 59.95;

Returns: 59950000000

1. In some brands of database, the size of the column is rounded up internally to the

nearest byte, word, or double word, so the maximum value of a NUMERIC column may

have more digits than the precision you specified.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/soln/numeric-columns.sql
http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/soln/exact.sql
http://media.pragprog.com/titles/bksqla/code/Rounding-Errors/soln/magnify-rate-exact.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=129

SOLUTION: USE NUMERIC DATA TYPE 130

The data types NUMERIC and DECIMAL behave identically; there should

be no difference between them. DEC is also a synonym for DECIMAL.

You still can’t store values that require infinite precision, such as one-

third. But at least we’re more familiar with values that have this restric-

tion in decimal format.

If you need exact decimal values, use the NUMERIC data type. The FLOAT

data type is unable to represent many decimal rational numbers, so

they should be treated as inexact values.

Do not use FLOAT if you can avoid it.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=130

Science is feasible when the variables are few and can be

enumerated; when their combinations are distinct and

clear.

Paul Valéry

Chapter 11

31 Flavors
In a personal contact information table, the salutation is a good exam-

ple of a column that can have only a few values. Once you support Mr.,

Mrs., Ms., Dr., and Rev., you’ve accounted for virtually everyone. You

could specify this list in the column definition, using a data type or a

constraint, so that no one can accidentally enter an invalid string into

the salutation column.

Download 31-Flavors/intro/create-table.sql

CREATE TABLE PersonalContacts (

-- other columns

salutation VARCHAR(4)

CHECK (salutation IN ('Mr.', 'Mrs.', 'Ms.', 'Dr.', 'Rev.')),

);

That should settle it, since there are no other salutations you need to

support, right?

Unfortunately, your boss tells you that your company is opening a sub-

sidiary in France. You need to support the salutations M., Mme., and

Mlle. Your assignment is to alter your contact table to permit these val-

ues. This is a delicate job and may not be possible without interrupting

availability of that table.

You also thought your boss mentioned that the company is trying to

open an office next month in Brazil.

11.1 Objective: Restrict a Column to Specific Values

Restricting a column’s values to a fixed set of values is very useful. If

we can ensure that the column never contains an invalid entry, it can

simplify use of that column.

http://media.pragprog.com/titles/bksqla/code/31-Flavors/intro/create-table.sql

ANTIPATTERN: SPECIFY VALUES IN THE COLUMN DEFINITION 132

Baskin-Robbins 31 Ice Cream

In 1953, this famous chain of ice cream parlors offered one
flavor for each day of the month. The chain used the slogan
31 Flavors for many years.

Today, more than sixty years later, Baskin-Robbins offers twenty-
one classic flavors, twelve seasonal flavors, sixteen regional
flavors, as well as a variety of Bright Choices and Flavors of
the Month. Even though its ice cream flavors were once an
immutable set that defined its brand, Baskin-Robbins expanded
its choices and made them configurable and variable.

The same thing could happen in the project for which you’re
designing a database—in fact, you should count on it.

For example, in the Bugs table of our example database, the status col-

umn indicates whether a given bug is NEW , IN PROGRESS, FIXED, and

so on. The significance of each of these status values depends on how

we manage bugs in our project, but the point is that the data in the

column must be one of these values.

Ideally, we need the database to reject invalid data:

Download 31-Flavors/obj/insert-invalid.sql

INSERT INTO Bugs (status) VALUES ('NEW'); -- OK

INSERT INTO Bugs (status) VALUES ('BANANA'); -- Error!

11.2 Antipattern: Specify Values in the Column Definition

Many people choose to specify the valid data values when they define

the column. The column definition is part of the metadata—the defini-

tion of the table structure itself.

For example, you could define a check constraint on the column. This

constraint disallows any insert or update that would make the con-

straint false.

Download 31-Flavors/anti/create-table-check.sql

CREATE TABLE Bugs (

-- other columns

status VARCHAR(20) CHECK (status IN ('NEW', 'IN PROGRESS', 'FIXED'))

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/31-Flavors/obj/insert-invalid.sql
http://media.pragprog.com/titles/bksqla/code/31-Flavors/anti/create-table-check.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=132

ANTIPATTERN: SPECIFY VALUES IN THE COLUMN DEFINITION 133

MySQL supports a nonstandard data type called ENUM that restricts the

column to a specific set of values.

Download 31-Flavors/anti/create-table-enum.sql

CREATE TABLE Bugs (

-- other columns

status ENUM('NEW', 'IN PROGRESS', 'FIXED'),

);

In MySQL’s implementation, you declare the values as strings, but

internally the column is stored as the ordinal number of the string

in the enumerated list. The storage is therefore compact, but when you

sort a query by this column, the result is ordered by the ordinal value,

not alphabetically by the string value. You may not expect this behavior.

Other solutions include domains and user-defined types (UDTs). You

can use these to restrict a column to a specific set of values and conve-

niently apply the same domain or data type to several columns within

your database. But these features are not supported widely among

brands of RDBMSs yet.

Finally, you could write a trigger that contains the set of permitted

values and raises an error unless the status matches one of these values.

All of these solutions share some disadvantages. The following sections

describe some of these problems.

What Was the Middle One?

Suppose you’re developing a user interface for the bug tracker so that

a user can edit bug reports. To make the interface guide the user to

pick one of the valid status values, you choose to fill a drop-down menu

control with these values. How do you query the database for an enu-

merated list of values that are currently allowed in the status column?

Your first instinct might be to query all the values currently in use, with

a simple query like the following one:

Download 31-Flavors/anti/distinct.sql

SELECT DISTINCT status FROM Bugs;

However, if all the bugs are new, the previous query returns only NEW .

If you use this result to populate a user interface control for the status of

bugs, you could create a chicken-and-egg situation; you can’t change a

bug to any status other than those currently in use.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/31-Flavors/anti/create-table-enum.sql
http://media.pragprog.com/titles/bksqla/code/31-Flavors/anti/distinct.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=133

ANTIPATTERN: SPECIFY VALUES IN THE COLUMN DEFINITION 134

To get the complete list of permitted status values, you need to query

the definition of that column’s metadata. Most SQL databases support

system views for these kinds of queries, but using them can be com-

plex. For example, if you used MySQL’s ENUM data type, you can use

the following query to query the INFORMATION_SCHEMA system views:

Download 31-Flavors/anti/information-schema.sql

SELECT column_type

FROM information_schema.columns

WHERE table_schema = 'bugtracker_schema'

AND table_name = 'bugs'

AND column_name = 'status';

You can’t simply get the discrete enumeration values from the INFOR-

MATION_SCHEMA in a conventional result set. Instead, you get a string

containing the definition of the check constraint or ENUM data type.

For example, the previous query in MySQL returns a column of type

LONGTEXT, with the value ENUM('NEW', 'IN PROGRESS', 'FIXED'), includ-

ing the parentheses, commas, and single quotes. You must write appli-

cation code to parse this string and extract the individual quoted values

before you can use them to populate a user interface control.

The queries needed to report check constraints, domains, or UDTs are

progressively more complex. Most people choose the better part of valor

and manually maintain a parallel list of values in application code.

This is an easy way for bugs to affect your project as application data

becomes out of sync with the database metadata.

Adding a New Flavor

The most common alterations are to add or remove one of the permitted

values. There’s no syntax to add or remove a value from an ENUM or

check constraint; you can only redefine the column with a new set of

values. The following is an example of adding DUPLICATE as one new

status value in the MySQL ENUM:

Download 31-Flavors/anti/add-enum-value.sql

ALTER TABLE Bugs MODIFY COLUMN status

ENUM('NEW', 'IN PROGRESS', 'FIXED', 'DUPLICATE');

You need to know that the previous definition of the column allowed

NEW , IN PROGRESS, and FIXED. This leads you back to the difficulty

of querying the current set of values as described earlier.

Some database brands can’t change the definition of a column unless

the table is empty. You might need to dump the contents of the table,

redefine the table, and then import your saved data, making the table

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/31-Flavors/anti/information-schema.sql
http://media.pragprog.com/titles/bksqla/code/31-Flavors/anti/add-enum-value.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=134

HOW TO RECOGNIZE THE ANTIPATTERN 135

inaccessible in the meantime. This work is common enough that it

has a name: ETL for “extract, transform, and load.” Other brands of

database support restructuring a populated table with ALTER TABLE com-

mands, but it can still be complex and expensive to perform these

changes.

As a matter of policy, changing metadata—that is, changing the defi-

nition of tables and columns—should be infrequent and with attention

to testing and quality assurance. If you need to change metadata to

add or remove a value from an ENUM, then you either have to skip

the appropriate testing or spend a lot of software engineering effort on

short notice to make the change. Either way, these changes introduce

risk and destabilize your project.

Old Flavors Never Die

If you make a value obsolete, you could upset historical data. For exam-

ple, you change your quality control process to replace FIXED with two

stages, CODE COMPLETE and VERIFIED:

Download 31-Flavors/anti/remove-enum-value.sql

ALTER TABLE Bugs MODIFY COLUMN status

ENUM('NEW', 'IN PROGRESS', 'CODE COMPLETE', 'VERIFIED');

If you remove FIXED from the enumeration, what do you do with bugs

whose status was FIXED? Should you advance all FIXED bugs to VERI-

FIED? Should you instead set obsolete values to null or a default value?

You may have to keep an obsolete value that old rows reference. But

then how can you distinguish between obsolete values and exclude

them from your user interface so that no one can set a bug’s status

to the obsolete value?

Portability Is Hard

Check constraints, domains, and UDTs are not supported uniformly

among brands of SQL databases. The ENUM data type is a proprietary

feature in MySQL. Each brand of database may have a different limit

on the length of the list you can give in a column definition. Trigger lan-

guages vary as well. These variations make it hard to choose a solution

if you need to support multiple brands of database.

11.3 How to Recognize the Antipattern

The problems with using ENUM or a check constraint arise when the set

of values is not fixed. If you’re considering using ENUM, first ask yourself
Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/31-Flavors/anti/remove-enum-value.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=135

LEGITIMATE USES OF THE ANTIPATTERN 136

whether the set of values are expected to change or even whether they

might change. If so, it’s probably not a good time to employ an ENUM.

• “We have to take the database offline so we can add a new choice

in one of our application’s menus. It should take no more than

thirty minutes, if all goes well.”

This is a sign that a set of values is baked into the definition of a

column. You should never need to interrupt service for a change

like this.

• “The status column can have one of the following values. We should

not need to revise this list.”

Shouldn’t need to are weasel words, and this says something quite

different from can’t.

• “The list of values in the application code got out of sync with the

business rules in the database—again.”

This is a risk of maintaining information in two different places.

11.4 Legitimate Uses of the Antipattern

As we discussed, ENUM may cause fewer problems if the set of values

is unchanging. It’s still difficult to query the metadata for the set of

values, but you can maintain a matching list of values in application

code without getting out of sync.

ENUM is most likely to succeed when it would make no sense to alter the

set of permitted values, such as when a column represents an either/or

choice with two mutually exclusive values:LEFT/RIGHT , ACTIVE/IN-

ACTIVE, ON/OFF , INTERNAL/EXTERNAL, and so on.

Check constraints can be used in many ways other than simply to

implement an ENUM-like mechanism, such as checking that a time

interval’s start is less than its end.

11.5 Solution: Specify Values in Data

There’s a better solution to restrict values in a column: create a lookup

table with one row for each value you allow in the Bugs.status column.

Then declare a foreign key constraint on Bugs.status referencing the new

table.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=136

SOLUTION: SPECIFY VALUES IN DATA 137

Download 31-Flavors/soln/create-lookup-table.sql

CREATE TABLE BugStatus (

status VARCHAR(20) PRIMARY KEY

);

INSERT INTO BugStatus (status) VALUES ('NEW'), ('IN PROGRESS'), ('FIXED');

CREATE TABLE Bugs (

-- other columns

status VARCHAR(20),

FOREIGN KEY (status) REFERENCES BugStatus(status)

ON UPDATE CASCADE

);

When you insert or update a row in the Bugs table, you must use a

status value that exists in the BugStatus table. This enforces the status

values like the ENUM or a check constraint, but there are several ways

this solution offers more flexibility.

Querying the Set of Values

The set of permitted values is now stored in data, not metadata as it

was with the ENUM data type. You can query data values from a lookup

table with SELECT, just like any other table. This makes it much easier to

retrieve the set of values as a data set to present in your user interface.

You can even sort the set of values the user can choose from.

Download 31-Flavors/soln/query-canonical-values.sql

SELECT status FROM BugStatus ORDER by status;

Updating the Values in the Lookup Table

When you use a lookup table, you can add a value to the set with

an ordinary INSERT statement. You can make a change like this with-

out interrupting access to the table. You don’t need to redefine any

columns, schedule downtime, or perform an ETL operation. You also

don’t need to know the current set of values in the lookup table to add

or remove a value.

Download 31-Flavors/soln/insert-value.sql

INSERT INTO BugStatus (status) VALUES ('DUPLICATE');

You can also rename a value easily, if you declared the foreign key with

the ON UPDATE CASCADE option.

Download 31-Flavors/soln/update-value.sql

UPDATE BugStatus SET status = 'INVALID' WHERE status = 'BOGUS';

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/31-Flavors/soln/create-lookup-table.sql
http://media.pragprog.com/titles/bksqla/code/31-Flavors/soln/query-canonical-values.sql
http://media.pragprog.com/titles/bksqla/code/31-Flavors/soln/insert-value.sql
http://media.pragprog.com/titles/bksqla/code/31-Flavors/soln/update-value.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=137

SOLUTION: SPECIFY VALUES IN DATA 138

Supporting Obsolete Values

You can’t DELETE a row from the lookup table if it’s referenced by a row in

Bugs. The foreign key on the status column enforces referential integrity,

so the value must exist in the lookup table.

However, you can add another attribute column to the lookup table to

designate some values as obsolete. This allows you to maintain his-

torical data in the Bugs.status column, while distinguishing between the

obsolete values and values that are eligible to appear in your user inter-

face.

Download 31-Flavors/soln/inactive.sql

ALTER TABLE BugStatus ADD COLUMN active

ENUM('INACTIVE', 'ACTIVE') NOT NULL DEFAULT 'ACTIVE';

Use UPDATE instead of DELETE to make a value obsolete:

Download 31-Flavors/soln/update-inactive.sql

UPDATE BugStatus SET active = 'INACTIVE' WHERE status = 'DUPLICATE';

When you retrieve the set of values to show in a user interface for users

to pick, restrict the query to status values that are ACTIVE:

Download 31-Flavors/soln/select-active.sql

SELECT status FROM BugStatus WHERE active = 'ACTIVE';

This gives you more flexibility than an ENUM or a check constraint,

because those solutions don’t support extra attributes per value.

Portability Is Easy

Unlike the ENUM data type, check constraints, or domains or UDTs, the

lookup table solution relies only on the standard SQL feature of declar-

ative referential integrity using foreign key constraints. This makes the

solution more portable.

You can also keep a virtually unlimited number of values in your lookup

table, since you store each value on a separate row.

Use metadata when validating against a fixed set of values.

Use data when validating against a fluid set of values.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/31-Flavors/soln/inactive.sql
http://media.pragprog.com/titles/bksqla/code/31-Flavors/soln/update-inactive.sql
http://media.pragprog.com/titles/bksqla/code/31-Flavors/soln/select-active.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=138

Whenever a theory appears to you as the only possible one,

take this as a sign that you have neither understood the

theory nor the problem which it was intended to solve.

Karl Popper

Chapter 12

Phantom Files
Catastrophe strikes your database server. While relocating a rack full

of hard drives, the rack tipped over and crashed. Fortunately, no one

was hurt, but the massive hard drives shattered. Even the raised floor

was broken where they fell. Fortunately, the IT department is prepared:

they make good backups of every important system every day, and they

quickly deploy a new server and restore your database.

It doesn’t take long during smoke testing to notice a problem: your

application associates graphic images with many database entities, but

all the images are missing! You call the IT technician immediately.

“We restored the database and verified it’s complete as of the last back-

up,” the technician says. “Where were the images stored?”

You remember now that in this application, images are stored outside

the database, and ordinary files are stored on the filesystem. The data-

base stores the path to the image, and the application opens each image

file at that path. “The images were stored as files. They were on the /var

filesystem, same as the databases.”

The technician shakes his head. “We don’t back up files on the /var

filesystem unless you specifically told us which ones. We back up any

databases, of course, but other files on /var are usually just logs, cache

data, or other temporary files. By default, they don’t get backed up.”

Your heart sinks. There were more than 11,000 images used in your

product catalog database. Most of them probably exist in other places,

but tracking them all down, reformatting them, and generating thumb-

nail versions for web searches will take weeks.

OBJECTIVE: STORE IMAGES OR OTHER BULKY MEDIA 140

12.1 Objective: Store Images or Other Bulky Media

Images and other media are used in most applications these days.

Sometimes media are associated with entities stored in the database.

For example, you may allow a user to have a portrait or avatar that is

displayed when he posts a comment. In our bugs database, bugs often

need a screenshot to illustrate the circumstances of the defect.

The objective described in this chapter is to store images and associate

them with database entities, such as user accounts or bugs. When

we query these entities from the database, we need the capability to

retrieve the associated images in the application.

12.2 Antipattern: Assume You Must Use Files

Conceptually, an image is an attribute in a table. For example, the

Accounts table may have a portrait_image column.

Download Phantom-Files/anti/create-accounts.sql

CREATE TABLE Accounts (

account_id SERIAL PRIMARY KEY

account_name VARCHAR(20),

portrait_image BLOB

);

Likewise, you can store multiple images of the same type in a depen-

dent table. For example, each bug may have multiple screenshots that

illustrate the bug.

Download Phantom-Files/anti/create-screenshots.sql

CREATE TABLE Screenshots (

bug_id BIGINT UNSIGNED NOT NULL,

image_id SERIAL NOT NULL,

screenshot_image BLOB,

caption VARCHAR(100),

PRIMARY KEY (bug_id, image_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

That much is straightforward, but choosing the data type for an image

is a subject of controversy. Raw binary data for an image can be stored

in a BLOB data type, as shown previously. However, many people instead

store the image as a file on the filesystem and store the path to this file

as a VARCHAR.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Phantom-Files/anti/create-accounts.sql
http://media.pragprog.com/titles/bksqla/code/Phantom-Files/anti/create-screenshots.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=140

ANTIPATTERN: ASSUME YOU MUST USE FILES 141

Download Phantom-Files/anti/create-screenshots-path.sql

CREATE TABLE Screenshots (

bug_id BIGINT UNSIGNED NOT NULL,

image_id BIGINT UNSIGNED NOT NULL,

screenshot_path VARCHAR(100),

caption VARCHAR(100),

PRIMARY KEY (bug_id, image_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

Software developers argue passionately about this issue. There are good

reasons for both solutions, but it’s common for programmers to be

unequivocal that we should always store files external to the database.

It may put me in an unpopular position, but I’m going to describe sev-

eral real risks to this design in the following sections.

Files Don’t Obey DELETE

The first problem is one of garbage collection. If your images are outside

the database and you delete the row that contains the path, there is no

way for the file named by that path to be removed automatically.

Download Phantom-Files/anti/delete.sql

DELETE FROM Screenshots WHERE bug_id = 1234 and image_id = 1;

Unless you design your application to remove these “orphaned” image

files as you delete the database row that references them, they will

accumulate.

Files Don’t Obey Transaction Isolation

Normally, when you update or delete data, these changes aren’t visible

to other clients until you finish your transaction with COMMIT.

However, any change you make to files outside the database don’t work

this way. If you remove a file, it is immediately inaccessible to other

clients. And if you change the contents of the file, other clients see

those changes immediately, instead of seeing the previous content of

the file while your transaction is still uncommitted.

Download Phantom-Files/anti/transaction.php

<?php

$stmt = $pdo->query("DELETE FROM Screenshots

WHERE bug_id = 1234 AND image_id =1");

unlink('images/screenshot1234-1.jpg');

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Phantom-Files/anti/create-screenshots-path.sql
http://media.pragprog.com/titles/bksqla/code/Phantom-Files/anti/delete.sql
http://media.pragprog.com/titles/bksqla/code/Phantom-Files/anti/transaction.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=141

ANTIPATTERN: ASSUME YOU MUST USE FILES 142

// Other clients still see the row in the database,

// but not the image file.

$pdo->commit();

In practice, these kinds of anomalies may be infrequent. Also, the im-

pact is minor in this example; a missing image is hardly rare in a web

application. But in other scenarios, the consequences could be unfor-

tunate.

Files Don’t Obey ROLLBACK

It’s normal to roll back transactions in case of errors, or even if the logic

of your application requires that changes be canceled.

For example, suppose you remove a screenshot file as you execute a

DELETE statement to remove the corresponding row in the database. If

you roll back this change, the deletion of the row in the database is

reversed, but the file is still gone.

Download Phantom-Files/anti/rollback.php

<?php

$stmt = $pdo->query("DELETE FROM Screenshots

WHERE bug_id = 1234 AND image_id =1");

unlink("images/screenshot1234-1.jpg");

$pdo->rollback();

The row in the database is restored but not the image file.

Files Don’t Obey Database Backup Tools

Most database brands provide a client tool to assist in backing up a

database that is in use. For example, MySQL provides mysqldump, Ora-

cle provides rman, PostgreSQL provides pg_dump, SQLite provides the

.dump command, and so on. Using a backup tool is important because if

other clients are making changes concurrently, your backup could con-

tain partial changes, potentially breaking referential integrity or even

making the backup corrupt and useless for recovery.

A backup tool doesn’t know how to include files referenced by pathname

in a VARCHAR column of a table. So when you back up a database, you

need to remember a two-step process: use the database backup tool,

and then use a filesystem backup tool for the collection of external

image files.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Phantom-Files/anti/rollback.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=142

HOW TO RECOGNIZE THE ANTIPATTERN 143

Even if you include the external files with the backup, it’s hard to

ensure that copies of these files are in sync with the transaction you

used to back up the database. Applications may add or change image

files at any time, perhaps only a moment after you began your database

backup.

Files Don’t Obey SQL Access Privileges

External files circumvent any privileges that you assign with the GRANT

and REVOKE SQL statements. SQL privileges manage access to tables

and columns, but they don’t apply to external files named by strings in

the database.

Files Are Not SQL Data Types

The path stored in screenshot_path is merely a string. The database

doesn’t verify that the string is a valid pathname, nor can the database

verify that the file exists at the path you name. If the file is renamed,

moved, or deleted, the database doesn’t update the string in the data-

base automatically. Any logic that treats this string as a pathname

depends on code you write in your application.

Download Phantom-Files/anti/file-get.php

<?php

define('DATA_DIRECTORY', '/var/bugtracker/data/');

$stmt = $pdo->query("SELECT image_path FROM Screenshots

WHERE bug_id = 1234 AND image_id = 1");

$row = $stmt->fetch();

$image_path = $row[0];

// Read the actual image -- I hope the path is correct!

$image = file_get_contents(DATA_DIRECTORY . $image_path);

One advantage of using a database is that it helps us preserve data

integrity. When you put some of your data in external files, you circum-

vent this advantage, and you have to write application code to perform

checks that should be handled by the database.

12.3 How to Recognize the Antipattern

The signs of this antipattern require a little investigation. If the project

has any documentation to guide software administrators or if you have

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Phantom-Files/anti/file-get.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=143

LEGITIMATE USES OF THE ANTIPATTERN 144

the opportunity to interview the programmers who designed it (even if

that’s you), seek the answers to questions like the following:

• What is the data backup and restore procedure? How can a back-

up be verified? Have you tested restoring data on a clean server or

a different server than where the backup was made?

• Do images accumulate, or are they removed from the system when

they are obsolete? What is the procedure for removing them? Is

this an automated or manual procedure?

• Which users of the application have access to view images? How is

access enforced? What do users see if they request to view images

they don’t have privilege to see?

• Can I cancel a change to an image? If so, should the application

restore the previous state of an image?

Projects that are guilty of the antipattern typically fail to think through

some or all of these questions. Not every application needs robust trans-

action management or SQL access control for image files. You might

find that taking a database offline during backups is a fair trade-off. If

these answers are unclear or not forthcoming, it could indicate that the

project designed their use of external files carelessly.

12.4 Legitimate Uses of the Antipattern

There are good reasons to store images or other large objects in files

outside the database:

• The database is much leaner without images, because images tend

to be large compared to simple datatypes like integers and strings.

• Backing up the database is faster and the result is smaller if

images are not included. You must copy images from the filesys-

tem as a separate backup step, but this can be more manageable

than a huge database backup.

• If images are in files external to the database, it’s easier to do ad

hoc image previewing or editing. For example, if you need to apply

a batch edit to all your images, it’s especially good to keep images

external to the database.

If these advantages of storing images in files are important and the

issues described earlier are not deal-breakers, you may decide that it’s

the right thing to do in this project.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=144

SOLUTION: USE BLOB DATA TYPES AS NEEDED 145

Some database brands support special SQL data types that do refer-

ence external files more or less transparently. Oracle calls this data

type BFILE, while SQL Server 2008 calls it FILESTREAM.

Don’t Rule Out Either Design

I designed an application that stored images outside a database for a

contract project in 1992. My employer was hired to develop a registration

application for a technical conference. As conference attendees arrived, a

video camera took their picture, added it to their registration record, and

printed it on their conference badge.

My application was fairly simple. Each image could be inserted and

updated only by one client application (if the person blinked or didn’t like

their photo, we could replace it during registration). There was no

requirement for sophisticated transaction handling, concurrent access

from multiple clients, or rollback. We were not using SQL access

privileges. Previewing the images was simpler without having to fetch

them from the database.

I worked on this project at a time when the practical limits of applications

and databases were much lower than what today’s technology can

handle. It made sense given these constraints to store images in a

collection of directories and manage them with application code.

You need to plan how your application uses images to know whether the

issues described in the “Antipattern” section would affect you. Make an

informed decision, instead of listening to generalizations from program-

mers that storing images in external files is always the best solution.

12.5 Solution: Use BLOB Data Types As Needed

If any of the issues described in the “Antipattern” section of this chapter

apply to you, you should consider storing images inside the database

instead of in external files. All database brands support the BLOB data

type, which you can use to store any binary data.

Download Phantom-Files/soln/create-screenshots.sql

CREATE TABLE Screenshots (

bug_id BIGINT UNSIGNED NOT NULL,

image_id BIGINT UNSIGNED NOT NULL,

screenshot_image BLOB,

caption VARCHAR(100),

PRIMARY KEY (bug_id, image_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Phantom-Files/soln/create-screenshots.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=145

SOLUTION: USE BLOB DATA TYPES AS NEEDED 146

If you store an image in this way in a BLOB column, all the issues are

solved:

• The image data is stored in the database. There is no extra step to

load it. There’s no risk that the file’s pathname is incorrect.

• Deleting a row deletes the image automatically.

• Changes to an image are not visible to other clients until you com-

mit the change.

• Rolling back a transaction restores the previous state of the image.

• Updating a row creates a lock, so no other client can update the

same image concurrently.

• Database backups include all the images.

• SQL privileges control access to the image as well as the row.

The maximum size for a BLOB varies by database brand, but it’s enough

to store most images. All databases should support BLOB or something

akin to it. MySQL, for example, provides a data type called MEDIUMBLOB

that stores up to 16 megabytes, which is enough for most images. Ora-

cle supports data types called LONG RAW or BLOB, with capacity up to

2 or 4 gigabytes, respectively. Similar data types are available in other

database brands.

Images usually exist in a file to begin with, so you need some way to

load them into a BLOB column in the database. Some databases provide

functions to load external files. For example, MySQL has a function

called LOAD_FILE() you can use to read a file, typically to store the con-

tent in a BLOB column.

Download Phantom-Files/soln/load-file.sql

UPDATE Screenshots

SET screenshot_image = LOAD_FILE('images/screenshot1234-1.jpg')

WHERE bug_id = 1234 AND image_id = 1;

You can also save the contents of a BLOB column to a file. For example,

MySQL has an optional clause of the SELECT statement to store the result

of a query verbatim, without any formatting to denote column or row

termination.

Download Phantom-Files/soln/dumpfile.sql

SELECT screenshot_image

INTO DUMPFILE 'images/screenshot1234-1.jpg'

FROM Screenshots

WHERE bug_id = 1234 AND image_id =1;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Phantom-Files/soln/load-file.sql
http://media.pragprog.com/titles/bksqla/code/Phantom-Files/soln/dumpfile.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=146

SOLUTION: USE BLOB DATA TYPES AS NEEDED 147

You can also fetch the image data from the BLOB and output it directly.

In a web application, you can output binary content such as an image,

but you need to set the content type appropriately.

Download Phantom-Files/soln/binary-content.php

<?php

header('Content-type: image/jpg');

$stmt = $pdo->query("SELECT screenshot_image FROM Screenshots

WHERE bug_id = 1234 AND image_id = 1");

$row = $stmt->fetch();

print $row[0];

Resources outside the database are not managed by the database.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Phantom-Files/soln/binary-content.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=147

Whenever any result is sought by its aid, the question will

then arise—By what course of calculation can these results

be arrived at by the machine in the shortest time?

Charles Babbage, Passages from the Life of a

Philosopher (1864)

Chapter 13

Index Shotgun
“Hey! You got a minute? I could use your help,” the Oklahoman accent

on the phone is shouting over the data center ventilation. It’s the lead

database administrator for your company.

“Sure,” you answer, a little unsure what he could want.

“The thing is, you’ve got a database here that’s pretty much taken over

the server,” the DBA continues. “I got in there to take a look, and I see

the problem. You’ve got no indexes on some tables and every index in

the world on some other tables.

We’ve got to get this worked out or give you a server all to yerself,

because nobody else can get any time!”

“I’m sorry—actually, I don’t know that much about databases,” you

reply, trying to calm down the DBA. “We did our best to guess at the

optimization, but obviously that’s what an expert like you can do. Isn’t

there some database tuning you can do?”

“Son, I tuned everything I can; that’s why we’re still running down here

at all,” the DBA answers. “The only option left is to throttle your app,

and I don’t think you want that. We’ve got to stop guessing and start

getting some answers on what your app needs the database to do.”

You can tell this is getting over your head. Warily you ask, “What do

you have in mind? I told you, we don’t have expert database knowledge

in our team.”

“That’s no problem,” the DBA laughs. “You do know your application,

right? That’s the part that counts—and the part I can’t help with. I’ll

get one of my boys to set you up with the right tools, and then we’ll fix

your bottleneck. You just need a little mentoring. You’ll see.”

OBJECTIVE: OPTIMIZE PERFORMANCE 149

13.1 Objective: Optimize Performance

Performance is the single most common concern I hear from database

developers. Just look at the talks scheduled at any technical confer-

ence: they’re full of tools and techniques to squeeze more work out of

your database. When I give a talk about a way to structure a database

or write SQL to give better reliability, security, or correctness, I’m not

surprised when the only question from the audience is, “OK, but how

does that affect performance?”

The best technique for improving performance in your database is to

use indexes well. An index is a data structure that the database uses

to correlate values to the rows where these values occur in a given

column. An index provides an easy way for the database to find values

more quickly than the brute-force method of searching the whole table

from top to bottom.

Software developers typically don’t understand how or when to use an

index. Documentation and books about databases rarely or never con-

tains a clear guide for when to use an index. Developers can only guess

how to use indexes effectively.

13.2 Antipattern: Using Indexes Without a Plan

When we choose our indexes by guessing, we inevitably make some

wrong choices. Misunderstandings about when to use indexes leads to

mistakes in one of these three categories:

• Defining no indexes or not enough indexes

• Defining too many indexes or indexes that don’t help

• Running queries that no index can help

No Indexes

We commonly read that a database incurs overhead as it keeps an index

up-to-date. Each time we use INSERT, UPDATE, or DELETE, the database has

to update the index data structures for that table to be consistent so

that our subsequent searches use these indexes to find the right set of

rows reliably.

We’re trained to think that overhead means waste. So when we read

that the database incurs overhead to keep an index updated, we want

to eliminate that overhead. Some developers conclude that the remedy

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=149

ANTIPATTERN: USING INDEXES WITHOUT A PLAN 150

Indexes Aren’t Standard

Did you know that the ANSI SQL standard says nothing about
indexes? The implementation and optimization of data storage
is not specified by the SQL language, so every brand of data-
base is free to implement indexes differently.

Most brands have similar CREATE INDEX syntax, but each brand
has flexibility to innovate and add their own proprietary tech-
nology. There’s no standard for index capabilities. Likewise,
there is no standard for index maintenance, automatic query
optimization, query plan reporting, or commands like EXPLAIN.

To get the most out of indexes, you have to study the docu-
mentation for your brand of database. The specific syntax and
features of indexes vary greatly, but the logical concepts apply
across the board.

is to eliminate the indexes. This advice is common, but it ignores the

fact that indexes have benefits that justify their overhead.

Not all overhead is waste. Does your company employ administrative

staff, legal professionals, accountants, and pay for facilities, even

though those expenses don’t directly contribute to generating revenue?

Yes, because those people contribute to the success of your company

in important ways.

In a typical application, you’ll run hundreds of queries against a table

for every one update. Every time you run a query that uses an index,

you win back the overhead that went into maintaining that index.

An index can also help an UPDATE or DELETE statement by finding the

desired rows quickly. For example, the index on the bug_id primary key

helps the following statement:

Download Index-Shotgun/anti/update.sql

UPDATE Bugs SET status = 'FIXED' WHERE bug_id = 1234;

A statement that searches an unindexed column has to perform a full

table scan to find matching rows.

Download Index-Shotgun/anti/update-unindexed.sql

UPDATE Bugs SET status = 'OBSOLETE' WHERE date_reported < '2000-01-01';

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Index-Shotgun/anti/update.sql
http://media.pragprog.com/titles/bksqla/code/Index-Shotgun/anti/update-unindexed.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=150

ANTIPATTERN: USING INDEXES WITHOUT A PLAN 151

Too Many Indexes

You benefit from an index only if you run queries that use that index.

There’s no benefit to creating indexes that you don’t use. Here are some

examples:

Download Index-Shotgun/anti/create-table.sql

CREATE TABLE Bugs (

bug_id SERIAL PRIMARY KEY,

date_reported DATE NOT NULL,

summary VARCHAR(80) NOT NULL,

status VARCHAR(10) NOT NULL,

hours NUMERIC(9,2),
Ê INDEX (bug_id),
Ë INDEX (summary),
Ì INDEX (hours),
Í INDEX (bug_id, date_reported, status)

);

In the previous example, there are several useless indexes:

Ê bug_id: Most databases create an index automatically for a primary

key, so it’s redundant to define another index. There’s no benefit

to it, and it could just be extra overhead. Each database brand

has its own rules for when to create an index automatically. You

need to read the documentation for the database you use.

Ë summary: An indexing for a long string datatype like VARCHAR(80) is

larger than an index for a more compact data type. Also, you’re

not likely to run queries that search or sort by the full summary

column.

Ì hours: This is another example of a column that you’re probably not

going to search for specific values.

Í bug_id, date_reported, status: There are good reasons to use com-

pound indexes, but many people create compound indexes that

are redundant or seldom used. Also, the order of columns in a

compound index is important; you should use the columns left-

to-right in search criteria, join criteria, or sorting order.

Hedging Your Bets

Bill Cosby told a story about his vacation in Las Vegas: He was so

frustrated by losing in the casinos that he decided he had to win

something—once—before he left. So he bought $200 in quarter chips,

went to the roulette table, and put chips on every square, red and black.

He covered the table. The dealer spun the ball. . . and it fell on the floor.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Index-Shotgun/anti/create-table.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=151

ANTIPATTERN: USING INDEXES WITHOUT A PLAN 152

Some people create indexes on every column—and every combination

of columns—because they don’t know which indexes will benefit their

queries. If you cover a database table with indexes, you incur a lot of

overhead with no assurance of payoff.

When No Index Can Help

The next type of mistake is to run a query that can’t use any index.

Developers create more and more indexes, trying to find some magical

combination of columns or index options to make their query run faster.

We can think of a database index using an analogy to a telephone book.

If I ask you to look up everyone in the telephone book whose last name

is Charles, it’s an easy task. All the people with the same last name are

listed together, because that’s how the telephone book is ordered.

However, if I ask you to look up everyone in the telephone book whose

first name is Charles, this doesn’t benefit from the order of names in the

book. Anyone can have that first name, regardless of their last name,

so you have to search through the entire book line by line.

The telephone book is ordered by last name and then by first name,

just like a compound database index on last_name, first_name. This index

doesn’t help you search by first name.

Download Index-Shotgun/anti/create-index.sql

CREATE INDEX TelephoneBook ON Accounts(last_name, first_name);

Some examples of queries that can’t benefit from this index include the

following:

• SELECT * FROM Accounts ORDER BY first_name, last_name;

This query shows the telephone book scenario. If you create a com-

pound index for the columns last_name followed by first_name (as in

a telephone book), the index doesn’t help you sort primarily by

first_name.

• SELECT * FROM Bugs WHERE MONTH(date_reported) = 4;

Even if you create an index for the date_reported column, the order

of the index doesn’t help you search by month. The order of this

index is based on the entire date, starting with the year. But each

year has a fourth month, so the rows where the month is equal to

4 are scattered through the table.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Index-Shotgun/anti/create-index.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=152

HOW TO RECOGNIZE THE ANTIPATTERN 153

Some databases support indexes on expressions, or indexes on

generated columns, as well as indexes on plain columns. But you

have to define the index prior to using it, and that index helps only

for the expression you specify in its definition.

• SELECT * FROM Bugs WHERE last_name = 'Charles' OR first_name = 'Charles';

We’re back to the problem that rows with that specific first name

are scattered unpredictably with respect to the order of the index

we defined. The result of the previous query is the same as the

result of the following:

SELECT * FROM Bugs WHERE last_name = 'Charles'

UNION

SELECT * FROM Bugs WHERE first_name = 'Charles';

The index in our example helps find that last name, but it doesn’t

help find that first name.

• SELECT * FROM Bugs WHERE description LIKE '%crash%';

Because the pattern in this search predicate could occur any-

where in the string, there’s no way the sorted index data structure

can help.

13.3 How to Recognize the Antipattern

The following are symptoms of the Index Shotgun antipattern:

• “Here’s my query; how can I make it faster?”

This is probably the single most common SQL question, but it’s

missing details about table description, indexes, data volume, and

measurements of performance and optimization. Without this

context, any answer is just guesswork.

• “I defined an index on every field; why isn’t it faster?”

This is the classic Index Shotgun antisolution. You’ve tried every

possible index—but you’re shooting in the dark.

• “I read that indexes make the database slow, so I don’t use them.”

Like many developers, you’re looking for a one-size-fits-all strategy

for performance improvement. No such blanket rule exists.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=153

LEGITIMATE USES OF THE ANTIPATTERN 154

Low-Selectivity Indexes

Selectivity is a statistic about a database index. It’s the ratio of
the number of distinct values in the index to the total number
of rows in the table:

SELECT COUNT(DISTINCT status) /
COUNT(status) AS selectivity FROM Bugs;

The lower the selectivity ratio, the less effective an index is. Why
is this? Let’s consider an analogy.

This book has an index of a different type: each entry in a
book’s index lists the pages where the entry’s words appear.
If a word appears frequently in the book, it may list many page
numbers. To find the part of the book you’re looking for, you
have to turn to each page in the list one by one.

Indexes don’t bother to list words that appear on too many
pages. If you have to flip back and forth from the index to the
pages of the book too much, then you might as well just read
the whole book cover to cover.

Likewise in a database index, if a given value appears on many
rows in the table, it’s more trouble to read the index than simply
to scan the entire table. In fact, in these cases it can actually
be more expensive to use that index.

Ideally your database tracks the selectivity of indexes and
shouldn’t use an index that gives no benefit.

13.4 Legitimate Uses of the Antipattern

If you need to design a database for general use, without knowing what

queries are important to optimize, you can’t be sure of which indexes

are best. You have to make an educated guess. It’s likely that you’ll

miss some indexes that could have given benefit. It’s also likely that

you’ll create some indexes that turn out to be unneeded. But you have

to make the best guess you can.

13.5 Solution: MENTOR Your Indexes

The Index Shotgun antipattern is about creating or dropping indexes

without reason, so let’s come up with ways to analyze a database and

find good reasons to include indexes or omit them.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=154

SOLUTION: MENTOR YOUR INDEXES 155

The Database Isn’t Always the Bottleneck

Common wisdom in software developer communities is that the
database is always the slowest part of your application and the
source of performance issues. However, this isn’t true.

For example, in one application I worked on, my manager
asked me to find out why it was so slow, and he insisted it was
the fault of the database. After I used a profiling tool to mea-
sure the application code, I found that it spent 80 percent of its
time parsing its own HTML output to find form fields so it could
populate values into forms. The performance issue had nothing
to do with the database queries.

Before making assumptions about where the performance
problem exists, use software diagnostic tools to measure. Oth-
erwise, you could be practicing premature optimization.

You can use the mnemonic MENTOR to describe a checklist for analyz-

ing your database for good index choices: Measure, Explain, Nominate,

Test, Optimize, and Rebuild.

Measure

You can’t make informed decisions without information. Most data-

bases provide some way to log the time to execute SQL queries so you

can identify the operations with the greatest cost. For example:

• Microsoft SQL Server and Oracle both have SQL Trace facilities

and tools to report and analyze trace results. Microsoft calls this

tool the SQL Server Profiler, and Oracle calls it TKProf.

• MySQL and PostgreSQL can log queries that take longer to exe-

cute than a specified threshold of time. MySQL calls this the slow

query log, and its long_query_time configuration parameter defaults

to 10 seconds. PostgreSQL has a similar configuration variable

log_min_duration_statement.

PostgreSQL also has a companion tool called pgFouine, which

helps you analyze the query log and identify queries that need

attention (http://pgfouine.projects.postgresql.org/).

Once you know which queries account for the most time in your appli-

cation, you know where you should focus your optimizing attention for

Report erratum

this copy is (P1.0 printing, May 2010)

http://pgfouine.projects.postgresql.org/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=155

SOLUTION: MENTOR YOUR INDEXES 156

the greatest benefit. You might even find that all queries are working

efficiently except for one single bottleneck query. This is the query you

should start optimizing.

The area of greatest cost in your application isn’t necessarily the most

time-consuming query if that query is run only rarely. Other simpler

queries might be run frequently, more often than you would expect, so

they account for more total time. Giving attention to optimizing these

queries gives you more bang for your buck.

Disable any query result caching while you’re measuring query perfor-

mance. This type of cache is designed to bypass query execution and

index usage, so it won’t give an accurate measurement.

You can get more accurate information by profiling your application

after you deploy it. Collect aggregate data of where the code spends its

time when real users are using it, and against the real database. You

should monitor profiling data from time to time to be sure you haven’t

acquired a new bottleneck.

Remember to disable or turn down the reporting rate of profilers after

you’re done measuring, because these tools incur some overhead.

Explain

Having identified the query that has the greatest cost, your next step is

to find out why it’s so slow. Every database uses an optimizer to pick

indexes for your query. You can get the database to give you a report of

its analysis, called the query execution plan (QEP).

The syntax to request a QEP varies by database brand:

Database Brand QEP Reporting Solution

IBM DB2 EXPLAIN, db2expln command, or Visual Explain

Microsoft SQL Server SET SHOWPLAN_XML, or Display Execution Plan

MySQL EXPLAIN

Oracle EXPLAIN PLAN

PostgreSQL EXPLAIN

SQLite EXPLAIN

There’s no standard for what information a QEP report includes or the

format of the report. In general, the QEP shows you which tables are

involved in a query, how the optimizer chooses to use indexes, and what

order it will access the tables. The report may also include statistics,

such as the number of rows generated by each stage of the query.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=156

SOLUTION: MENTOR YOUR INDEXES 157

table

Bugs

BugsProducts

Products

type

ALL

ref

ALL

possible_keys

PRIMARY,bug_id

PRIMARY,product_id

PRIMARY,product_id

key

NULL

PRIMARY

NULL

key_len

NULL

8

NULL

ref

NULL

Bugs.bug_id

NULL

rows

4650

1

3

filtered

100

100

100

Extra

Using where; Using
temporary; Using filesort
Using index

Using where; Using join
buffer

Figure 13.1: MySQL query execution plan

Let’s look at a sample SQL query and request a QEP report:

Download Index-Shotgun/soln/explain.sql

EXPLAIN SELECT Bugs.*
FROM Bugs

JOIN (BugsProducts JOIN Products USING (product_id))

USING (bug_id)

WHERE summary LIKE '%crash%'

AND product_name = 'Open RoundFile'

ORDER BY date_reported DESC;

In the MySQL QEP report shown in Figure 13.1, the key column shows

that this query makes use of only the primary key index BugsProducts.

Also, the extra notes in the last column indicate that the query will sort

the result in a temporary table, without the benefit of an index.

The LIKE expression forces a full table scan in Bugs, and there is no index

on Products.product_name. We can improve this query if we create a new

index on product_name and also use a full-text search solution.1

The information in a QEP report is vendor-specific. In this example,

you should read the MySQL manual page “Optimizing Queries with

EXPLAIN” to understand how to interpret the report.2

Nominate

Now that you have the optimizer’s QEP for your query, you should look

for cases where the query accesses a table without using an index.

1. See Chapter 17, Poor Man’s Search Engine, on page 190.
2. http://dev.mysql.com/doc/refman/5.1/en/using-explain.html

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Index-Shotgun/soln/explain.sql
http://dev.mysql.com/doc/refman/5.1/en/using-explain.html
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=157

SOLUTION: MENTOR YOUR INDEXES 158

Covering Indexes

If an index provides all the columns we need, then we don’t
need to read rows of data from the table at all.

Imagine if telephone book entries contained only a page num-
ber; after you looked up a name, you would then have to turn
to the page it referenced to get the actual phone number. It
makes more sense to look up the information in one step. Look-
ing up a name is quick because the book is ordered, and right
there you can get other attributes you need for that entry, such
as the phone number and perhaps also an address.

This is how a covering index works. You can define the index
to include extra columns, even though they’re not otherwise
necessary for the index.

CREATE INDEX BugCovering ON Bugs
(status, bug_id, date_reported, reported_by, summary);

If your query references only the columns included in the index
data structure, the database generates your query results by
reading only the index.

SELECT status, bug_id, date_reported, summary
FROM Bugs WHERE status = 'OPEN';

The database doesn’t need to read the corresponding rows
from this table. You can’t use covering indexes for every query,
but when you can, it’s usually a great win for performance.

Some databases have tools to do this for you, collecting query trace

statistics and proposing a number of changes, including creating new

indexes that you’re missing but would benefit your query. For example:

• IBM DB2 Design Advisor

• Microsoft SQL Server Database Engine Tuning Advisor

• MySQL Enterprise Query Analyzer

• Oracle Automatic SQL Tuning Advisor

Even without automatic advisors, you can learn how to recognize when

an index could benefit a query. You need to study your database’s doc-

umentation to interpret the QEP report.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=158

SOLUTION: MENTOR YOUR INDEXES 159

Test

This step is important: after creating indexes, profile your queries

again. It’s important to confirm that your change made a difference

so you know that your work is done.

You can also use this step to impress your boss and justify the work

you put into this optimization. You don’t want your weekly status to

be like this: “I’ve tried everything I can think of to fix our performance

issues, and we’ll just have to wait and see. . . .” Instead, you should have

the opportunity to report this: “I determined we could create one new

index on a high-activity table, and I improved the performance of our

critical queries by 38 percent.”

Optimize

Indexes are compact, frequently used data structures, which makes

them good candidates for keeping in cache memory. Reading indexes

in memory improves performance an order of magnitude greater than

reading indexes via disk I/O.

Database servers allow you to configure the amount of system memory

to allocate for caching. Most databases set the cache buffer size pretty

low to ensure that the database works well on a wide variety of systems.

You probably want to raise the size of the cache.

How much memory should you allocate to cache? There’s no single

answer to this, because it depends on the size of your database and

how much system memory you have available.

You may also benefit from preloading indexes into cache memory, in-

stead of relying on database activity to bring the most frequently used

data or indexes into the cache. For instance, on MySQL, use the LOAD

INDEX INTO CACHE statement.

Rebuild

Indexes provide the most efficiency when they are balanced. Over time,

as you update and delete rows, the indexes may become progressively

imbalanced, similar to how filesystems become fragmented over time.

In practice, you may not see a large difference between an index that is

optimal vs. one that has some imbalance. But we want to get the most

out of indexes, so it’s worthwhile to perform maintenance on a regular

schedule.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=159

SOLUTION: MENTOR YOUR INDEXES 160

Like most features related to indexes, each database brand uses ven-

dor-specific terminology, syntax, and capabilities.

Database Brand Index Maintenance Command

IBM DB2 REBUILD INDEX

Microsoft SQL Server ALTER INDEX ... REORGANIZE, ALTER INDEX ... REBUILD,

or DBCC DBREINDEX

MySQL ANALYZE TABLE or OPTIMIZE TABLE

Oracle ALTER INDEX ... REBUILD

PostgreSQL VACUUM or ANALYZE

SQLite VACUUM

How frequently should you rebuild an index? You might hear generic

answers such as “once a week,” but in truth there’s no single answer

that fits all applications. It depends on how frequently you commit

changes to a given table that could introduce imbalance. It also de-

pends on how large the table is and how important it is to get optimal

benefit from indexes for this table. Is it worth spending hours rebuild-

ing indexes for a large but seldom used table if you can expect to gain

only an extra 1 percent performance? You’re the best judge of this,

because you know your data and your operation requirements better

than anyone else does.

A lot of the knowledge about getting the most out of indexes is vendor-

specific, so you’ll need to research the brand of database you use. Your

resources include the database manual, books and magazines, blogs

and mailing lists, and also lots of experimentation on your own. The

most important rule is that guessing blindly at indexing isn’t a good

strategy.

Know your data, know your queries, and MENTOR your indexes.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=160

Part III

Query Antipatterns

As we know, there are known knowns; there are things we

know we know. We also know there are known unknowns;

that is to say we know there are some things we do not

know. But there are also unknown unknowns—the ones

we don’t know we don’t know.

Donald Rumsfeld

Chapter 14

Fear of the Unknown
In our example bugs database, the Accounts table has columns first_

name and last_name. You can use an expression to format the user’s

full name as a single column using the string concatenation operator:

Download Fear-Unknown/intro/full-name.sql

SELECT first_name || ' ' || last_name AS full_name FROM Accounts;

Suppose your boss asks you to modify the database to add the user’s

middle initial to the table (perhaps two users have the same first name

and last name, and the middle initial is a good way to avoid confusion).

This is a pretty simple alteration. You also manually add the middle

initials for a few users.

Download Fear-Unknown/intro/middle-name.sql

ALTER TABLE Accounts ADD COLUMN middle_initial CHAR(2);

UPDATE Accounts SET middle_initial = 'J.' WHERE account_id = 123;

UPDATE Accounts SET middle_initial = 'C.' WHERE account_id = 321;

SELECT first_name || ' ' || middle_initial || ' ' || last_name AS full_name

FROM Accounts;

Suddenly, the application ceases to show any names. Actually, on a

second look, you notice it isn’t universal. Only the names of users who

have specified their middle initial appear normally; every else’s name is

now blank.

What happened to everyone else’s names? Can you fix this before your

boss notices and starts to panic, thinking you’ve lost data in the data-

base?

http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/intro/full-name.sql
http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/intro/middle-name.sql

OBJECTIVE: DISTINGUISH MISSING VALUES 163

14.1 Objective: Distinguish Missing Values

It’s inevitable that some data in your database has no value. Either you

need to insert a row before you have discovered the values for all the

columns, or else some columns have no meaningful value in some legit-

imate circumstances. SQL supports a special null value, corresponding

to the NULL keyword.

There are many ways you can use a null value productively in SQL

tables and queries:

• You can use null in place of a value that is not available at the

time the row is created, such as the date of termination for an

employee who is still working.

• A given column can use a null value when it has no applicable

value on a given row, such as the fuel efficiency rating for a car

that is fully electric.

• A function can return a null value when given invalid inputs, as

in DAY(’2009-12-32’).

• An outer join uses null values as placeholders for the columns of

an unmatched table in an outer join.

The objective is to write queries against columns that contain null.

14.2 Antipattern: Use Null as an Ordinary Value, or Vice Versa

Many software developers are caught off-guard by the behavior of null

in SQL. Unlike in most programming languages, SQL treats null as a

special value, different from zero, false, or an empty string. This is true

in standard SQL and most brands of database. However, in Oracle and

Sybase, null is exactly the same as a string of zero length. The null

value follows some special behavior, too.

Using Null in Expressions

One case that surprises some people is when you perform arithmetic

on a column or expression that is null. For example, many program-

mers would expect the result to be 10 for bugs that have been given no

estimate in the hours column, but instead the query returns null.

Download Fear-Unknown/anti/expression.sql

SELECT hours + 10 FROM Bugs;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/anti/expression.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=163

ANTIPATTERN: USE NULL AS AN ORDINARY VALUE, OR VICE VERSA 164

Null is not the same as zero. A number ten greater than an unknown

is still an unknown.

Null is not the same as a string of zero length. Combining any string

with null in standard SQL returns null (despite the behavior in Oracle

and Sybase).

Null is not the same as false. Boolean expressions with AND, OR, and

NOT also produce results that some people find confusing.

Searching Nullable Columns

The following query returns only rows where assigned_to has the value

123, not rows with other values or rows where the column is null:

Download Fear-Unknown/anti/search.sql

SELECT * FROM Bugs WHERE assigned_to = 123;

You might think that the next query returns the complementary set of

rows, that is, all rows not returned by the previous query:

Download Fear-Unknown/anti/search-not.sql

SELECT * FROM Bugs WHERE NOT (assigned_to = 123);

However, neither query result includes rows where assigned_to is null.

Any comparison to null returns unknown, not true or false. Even the

negation of null is still null.

It’s common to make the following mistakes searching for null values

or non-null values:

Download Fear-Unknown/anti/equals-null.sql

SELECT * FROM Bugs WHERE assigned_to = NULL;

SELECT * FROM Bugs WHERE assigned_to <> NULL;

The condition in a WHERE clause is satisfied only when the expression

is true, but a comparison to NULL is never true; it’s unknown. It doesn’t

matter whether the comparison is for equality or inequality; it’s still

unknown, which is certainly not true. Neither of the previous queries

return rows where assigned_to is null.

Using Null in Query Parameters

It’s also difficult to use null in a parameterized SQL expression as if the

null were an ordinary value.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/anti/search.sql
http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/anti/search-not.sql
http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/anti/equals-null.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=164

ANTIPATTERN: USE NULL AS AN ORDINARY VALUE, OR VICE VERSA 165

Download Fear-Unknown/anti/parameter.sql

SELECT * FROM Bugs WHERE assigned_to = ?;

The previous query returns predictable results when you send an ordi-

nary integer value for the parameter, but you can’t use a literal NULL as

the parameter.

Avoiding the Issue

If handling null makes queries more complex, many software develop-

ers choose to disallow nulls in the database. Instead, they choose an

ordinary value to signify “unknown” or “inapplicable.”

“We Hate Nulls!”

Jack, a software developer, described his client’s request that he prevent

any null values in their database. Their explanation was simply “We hate

nulls” and that the presence of nulls would lead to errors in their

application code. Jack asked what other value should he use to represent

a missing value.

I told Jack that representing a missing value is the exact purpose of null.

No matter what other value he chooses to signify a missing value, he’d

need to modify the application code to treat that value as special.

Jack’s client’s attitude to null is wrong; similarly, I could say that I don’t

like writing code to prevent division by zero errors, but that doesn’t make

it a good choice to prohibit all instances of the value zero.

What exactly is wrong with this practice? In the following example, de-

clare the previously nullable columns assigned_to and hours as NOT NULL:

Download Fear-Unknown/anti/special-create-table.sql

CREATE TABLE Bugs (

bug_id SERIAL PRIMARY KEY,

-- other columns

assigned_to BIGINT UNSIGNED NOT NULL,

hours NUMERIC(9,2) NOT NULL,

FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id)

);

Let’s say you use -1 to represent an unknown value.

Download Fear-Unknown/anti/special-insert.sql

INSERT INTO Bugs (assigned_to, hours) VALUES (-1, -1);

The hours column is numeric, so you’re restricted to a numeric value to

mean “unspecified.” It has to have no meaning in that column, so you

chose a negative value. But the value -1 would throw off calculations

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/anti/parameter.sql
http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/anti/special-create-table.sql
http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/anti/special-insert.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=165

HOW TO RECOGNIZE THE ANTIPATTERN 166

such as SUM() or AVG(). You have to exclude rows with this value, using

special-case expressions, which is what you were trying to avoid by

prohibiting null.

Download Fear-Unknown/anti/special-select.sql

SELECT AVG(hours) AS average_hours_per_bug FROM Bugs

WHERE hours <> -1;

In another column, the value -1 might be significant, so you have to

choose a different value on a case-by-case basis for each column. You

also have to remember or document the special values used by each col-

umn. This adds a lot of meticulous and unnecessary work to a project.

Now let’s look at the assigned_to column. It is a foreign key to the

Accounts table. When a bug has been reported but not assigned yet,

what non-null value can you use? Any non-null value must reference

a row in Accounts, so you need to create a placeholder row in Accounts,

meaning “no one“ or “unassigned.” It seems ironic to create an account

to reference, so you can represent the absence of a reference to a real

user’s account.

When you declare a column as NOT NULL, it should be because it would

make no sense for the row to exist without a value in that column. For

example, the Bugs.reported_by column must have a value, because every

bug was reported by someone. But a bug may exist without having been

assigned yet. Missing values should be null.

14.3 How to Recognize the Antipattern

If you find yourself or another member of your team describing issues

like the following, it could be because of improper handling of nulls:

• “How do I find rows where no value has been set in the assigned_to

(or other) column?”

You can’t use the equality operator for null. We’ll see how to use

the IS NULL predicate later in this chapter.

• “The full names of some users appear blank in the application

presentation, but I can see them in the database.”

The problem might be that you’re concatenating strings with null,

which produces null.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/anti/special-select.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=166

HOW TO RECOGNIZE THE ANTIPATTERN 167

Are Nulls Relational?

There is some controversy about null in SQL. E. F. Codd, the com-
puter scientist who developed relational theory, recognized the
need for null to signify missing data. However, C. J. Date has
shown that the behavior of null as defined in the SQL standard
has some edge cases that conflict with relational logic.

The fact is that most programming languages are not perfect
implementations of computer science theories. The SQL lan-
guage supports null, for better or for worse. We’ve seen some of
the hazards, but you can learn how to account for these cases
and use null productively.

• “The report of total hours spent working on this project includes

only a few of the bugs that we completed! Only those for which we

assigned a priority are included.”

Your aggregate query to sum the hours probably includes an ex-

pression in the WHERE clause that fails to be true when priority is

null. Watch out for unexpected results when you use not equals

expressions. For example, on rows where priority is null, the ex-

pression priority <> 1 will fail.

• “It turns out we can’t use the string we’ve been using to represent

unknown in the Bugs table, so we need to have a meeting to discuss

what new special value we can use and estimate the development

time to migrate our data and convert our code to use that value.”

This is a likely consequence of assigning a special flag value that

could be a legitimate value in your column’s domain. Eventually,

you may find you need to use that value for its literal meaning

instead of its flag meaning.

Recognizing problems with your handling of nulls can be elusive. Prob-

lems may not occur during application testing, especially if you over-

looked some edge cases while designing sample data for tests. However,

when your application is used in production, data can take many unan-

ticipated forms. If a null can creep into the data, you can count on it

happening.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=167

LEGITIMATE USES OF THE ANTIPATTERN 168

14.4 Legitimate Uses of the Antipattern

Using null is not the antipattern; the antipattern is using null like an

ordinary value or using an ordinary value like null.

One situation where you need to treat null as an ordinary value is when

you import or export external data. In a text file with comma-separated

fields, all values must be represented by text. For example, in MySQL’s

mysqlimport tool for loading data from a text file, \N represents a null.

Similarly, user input cannot represent a null directly. An application

that accepts user input may provide a way to map some special input

sequence to null. For example, Microsoft .NET 2.0 and newer supports a

property called ConvertEmptyStringToNull for web user interfaces. Parame-

ters and bound fields with this property automatically convert an empty

string value (“”) to null.

Finally, null won’t work if you need to support several distinct missing-

value cases. Let’s say you want to distinguish between a bug that has

never been assigned and a bug that was previously assigned to a person

who has left the project—you have to use a distinct value for each state.

14.5 Solution: Use Null as a Unique Value

Most problems with null values are based on a common misunder-

standing of the behavior of SQL’s three-valued logic. For programmers

accustomed to the conventional true/false logic implemented in most

other languages, this can be a challenge. You can handle null values in

SQL queries with a little study of how they work.

Null in Scalar Expressions

Suppose Stan is thirty years old, while Oliver’s age is unknown. If I ask

you whether Stan is older than Oliver, your only possible answer is “I

don’t know.” If I ask you whether Stan is the same age as Oliver, your

answer is also “I don’t know.” If I ask you what is the sum of Stan’s age

and Oliver’s age, your answer is the same.

Suppose Charlie’s age is also unknown. If I ask you whether Oliver’s

age is equal to Charlie’s age, your answer is still “I don’t know.” This

shows why the result of a comparison like NULL = NULL is also null.

The following table describes some cases where programmers expect

one result but get something different.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=168

SOLUTION: USE NULL AS A UNIQUE VALUE 169

Expression Expected Actual Because

NULL = 0 TRUE NULL Null is not zero.

NULL = 12345 FALSE NULL Unknown if the unspecified value is

equal to a given value.

NULL <> 12345 TRUE NULL Also unknown if it’s unequal.

NULL + 12345 12345 NULL Null is not zero.

NULL || ’string’ ’string’ NULL Null is not an empty string.

NULL = NULL TRUE NULL Unknown if one unspecified value

is the same as another.

NULL <> NULL FALSE NULL Also unknown if they’re different.

Of course, these examples apply not only when using the NULL keyword

but also to any column or expression whose value is null.

Null in Boolean Expressions

The key concept for understanding how null values behave in boolean

expressions is that null is neither true nor false.

The following table describes some cases where programmers expect

one result but get something different.

Expression Expected Actual Because

NULL AND TRUE FALSE NULL Null is not false.

NULL AND FALSE FALSE FALSE Any truth value AND FALSE is false.

NULL OR FALSE FALSE NULL Null is not false.

NULL OR TRUE TRUE TRUE Any truth value OR TRUE is true.

NOT (NULL) TRUE NULL Null is not false.

A null value certainly isn’t true, but it isn’t the same as false. If it were,

then applying NOT to a null value would result in true. But that’s not

the way it works; NOT (NULL) results in another null. This confuses some

people who try to use boolean expressions with null.

Searching for Null

Since neither equality nor inequality return true when comparing one

value to a null value, you need some other operation if you are search-

ing for a null. Older SQL standards define the IS NULL predicate, which

returns true if its single operand is null. The opposite, IS NOT NULL,

returns false if its operand is null.

Download Fear-Unknown/soln/search.sql

SELECT * FROM Bugs WHERE assigned_to IS NULL;

SELECT * FROM Bugs WHERE assigned_to IS NOT NULL;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/soln/search.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=169

SOLUTION: USE NULL AS A UNIQUE VALUE 170

The Right Result for the Wrong Reason

Consider the following case, where a nullable column may
behave in a more intuitive way by serendipity.

SELECT * FROM Bugs WHERE assigned_to <> 'NULL';

Here the nullable column assigned_to is compared to the string
value ’NULL’ (notice the quotes), instead of the actual NULL key-
word.

Where assigned_to is null, comparing it to the string ’NULL’ is not
true. The row is excluded from the query result, which is the pro-
grammer’s intent.

The other case is that the column is an integer compared to
the string ’NULL’. The integer value of a string like ’NULL’ is zero
in most brands of database. The integer value of assigned_to is
almost certainly greater than zero. It’s unequal to the string, so
therefore the row is included in the query result.

Thus, by making another common mistake, that of putting
quotes around the NULL keyword, some programmers may
unwittingly get the result they wanted. Unfortunately, this
coincidence doesn’t hold in other searches, such as WHERE

assigned_to = ’NULL’.

In addition, the SQL-99 standard defines another comparison predi-

cate, IS DISTINCT FROM. This works like an ordinary inequality operator

<>, except that it always returns true or false, even when its operands

are null.

This relieves you from writing tedious expressions that must test IS NULL

before comparing to a value. The following two queries are equivalent:

Download Fear-Unknown/soln/is-distinct-from.sql

SELECT * FROM Bugs WHERE assigned_to IS NULL OR assigned_to <> 1;

SELECT * FROM Bugs WHERE assigned_to IS DISTINCT FROM 1;

You can use this predicate with query parameters to which you want to

send either a literal value or NULL:

Download Fear-Unknown/soln/is-distinct-from-parameter.sql

SELECT * FROM Bugs WHERE assigned_to IS DISTINCT FROM ?;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/soln/is-distinct-from.sql
http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/soln/is-distinct-from-parameter.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=170

SOLUTION: USE NULL AS A UNIQUE VALUE 171

Support for IS DISTINCT FROM is inconsistent among database brands.

PostgreSQL, IBM DB2, and Firebird do support it, whereas Oracle and

Microsoft SQL Server don’t support it yet. MySQL offers a proprietary

operator <=> that works like IS NOT DISTINCT FROM.

Declare Columns NOT NULL

It’s recommended to declare a NOT NULL constraint on a column for

which a null would break a policy in your application or otherwise be

nonsensical. It’s better to allow the database to enforce constraints uni-

formly rather than rely on application code.

For example, it’s reasonable that any entry in the Bugs table should have

a non-null value for the date_reported, reported_by, and status columns.

Likewise, rows in child tables like Comments must include a non-null

bug_id, referencing an existing bug. You should declare these columns

with the NOT NULL option.

Some people recommend that you define a DEFAULT for every column,

so that if you omit the column in an INSERT statement, the column gets

some value instead of null. That’s good advice for some columns but

not for other columns. For example, Bugs.reported_by should not be null.

What default, if any, should you declare for this column? It’s valid and

common for a column to need a NOT NULL constraint yet have no logical

default value.

Dynamic Defaults

In some queries, you may need to force a column or expression to be

non-null for the sake of simplifying the query logic, but you don’t want

that value to be stored. What you need is a way to set a default for a

given column or expression ad hoc, in a specific query only. For this you

should use the COALESCE() function. This function accepts a variable

number of arguments and returns its first non-null argument.

In the story about concatenating users’ names shown in the story open-

ing this chapter, you could use COALESCE() to make an expression that

uses a single space in place of the middle initial, so a null-valued middle

initial doesn’t make the whole expression become null.

Download Fear-Unknown/soln/coalesce.sql

SELECT first_name || COALESCE(' ' || middle_initial || ' ', ' ') || last_name

AS full_name

FROM Accounts;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Fear-Unknown/soln/coalesce.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=171

SOLUTION: USE NULL AS A UNIQUE VALUE 172

COALESCE() is a standard SQL function. Some database brands support

a similar function by another name, such as NVL() or ISNULL().

Use null to signify a missing value for any data type.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=172

Intellect distinguishes between the possible and the

impossible; reason distinguishes between the sensible and

the senseless. Even the possible can be senseless.

Max Born

Chapter 15

Ambiguous Groups
Suppose your boss needs to know which projects in the bugs database

are still active and which projects have been abandoned. One report he

asks you to generate is the latest bug reported per product. You write a

query using the MySQL database to calculate the greatest value in the

date_reported column per group of bugs sharing a given product_id. The

report looks like this:

product_name latest bug_id

Open RoundFile 2010-06-01 1234

Visual TurboBuilder 2010-02-16 3456

ReConsider 2010-01-01 5678

Your boss is a detail-oriented person, and he spends some time looking

up each bug listed in the report. He notices that the row listed as the

most recent for “Open RoundFile” shows a bug_id that isn’t the latest

bug. The full data shows the discrepancy:

product_name date_reported bug_id

Open RoundFile 2009-12-19 1234 This bug_id. . .

Open RoundFile 2010-06-01 2248 doesn’t match this date

Visual TurboBuilder 2010-02-16 3456

Visual TurboBuilder 2010-02-10 4077

Visual TurboBuilder 2010-02-16 5150

ReConsider 2010-01-01 5678

ReConsider 2009-11-09 8063

How can you explain this problem? Why does it affect one product but

not the others? How can you get the desired report?

OBJECTIVE: GET ROW WITH GREATEST VALUE PER GROUP 174

15.1 Objective: Get Row with Greatest Value per Group

Most programmers who learn SQL get to the stage of using GROUP BY

in a query, applying some aggregate function to groups of rows, and

getting a result with one row per group. This is a powerful feature that

makes it easy to get a wide variety of complex reports using relatively

little code.

For example, a query to get the latest bug reported for each product in

the bugs database looks like this:

Download Groups/anti/groupbyproduct.sql

SELECT product_id, MAX(date_reported) AS latest

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

A natural extension to this query is to request the ID of the specific bug

with the latest date reported:

Download Groups/anti/groupbyproduct.sql

SELECT product_id, MAX(date_reported) AS latest, bug_id

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

However, this query results in either an error or an unreliable answer.

This is a common source of confusion for programmers using SQL.

The objective is to run a query that not only reports the greatest value

in a group (or the least value or the average value) but also includes

other attributes of the row where that value is found.

15.2 Antipattern: Reference Nongrouped Columns

The root cause of this antipattern is simple, and it reveals a com-

mon misconception that many programmers have about how grouping

queries work in SQL.

The Single-Value Rule

The rows in each group are those rows with the same value in the col-

umn or columns you name after GROUP BY. For example, in the following

query, there is one row group for each distinct value in product_id.

Download Groups/anti/groupbyproduct.sql

SELECT product_id, MAX(date_reported) AS latest

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Groups/anti/groupbyproduct.sql
http://media.pragprog.com/titles/bksqla/code/Groups/anti/groupbyproduct.sql
http://media.pragprog.com/titles/bksqla/code/Groups/anti/groupbyproduct.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=174

ANTIPATTERN: REFERENCE NONGROUPED COLUMNS 175

Every column in the select-list of a query must have a single value row

per row group. This is called the Single-Value Rule. Columns named in

the GROUP BY clause are guaranteed to be exactly one value per group,

no matter how many rows the group matches.

The MAX() expression is also guaranteed to result in a single value for

each group: the highest value found in the argument of MAX() over all

the rows in the group.

However, the database server can’t be so sure about any other column

named in the select-list. It can’t always guarantee that the same value

occurs on every row in a group for those other columns.

Download Groups/anti/groupbyproduct.sql

SELECT product_id, MAX(date_reported) AS latest, bug_id

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

In this example, there are many distinct values for bug_id for a given

product_id, because the BugsProducts table associates multiple bugs to

a given product. In a grouping query that reduces to a single row per

product, there’s no way to represent all the values of bug_id.

Since there is no guarantee of a single value per group in the “extra”

columns, the database assumes that they violate the Single-Value Rule.

Most brands of database report an error if you try to run any query

that tries to return a column other than those columns named in the

GROUP BY clause or as arguments to aggregate functions.

MySQL and SQLite have different behavior from other brands of data-

base, which we’ll explore in Section 15.4, Legitimate Uses of the Antipat-

tern, on page 178.

Do-What-I-Mean Queries

The common misconception that programmers have is that SQL can

guess which bug_id you want in the report, based on the fact that MAX()

is used in another column. Most people assume that if the query fetches

the greatest value, then other columns named will naturally take their

value from the same row where that greatest value occurs.

Unfortunately, SQL can’t make this inference in several cases:

• If two bugs have the exact same value for date_reported and that is

the greatest value in the group, which value of bug_id should the

query report?

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Groups/anti/groupbyproduct.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=175

HOW TO RECOGNIZE THE ANTIPATTERN 176

• If you query for two different aggregate functions, for example

MAX() and MIN(), these probably correspond to two different rows

in the group. Which bug_id should the query return for this group?

Download Groups/anti/maxandmin.sql

SELECT product_id, MAX(date_reported) AS latest,

MIN(date_reported) AS earliest, bug_id

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

• If none of the rows in the table matches the value returned by the

aggregate function, what is the value of bug_id? This is commonly

true for the functions AVG(), COUNT(), and SUM().

Download Groups/anti/sumbyproduct.sql

SELECT product_id, SUM(hours) AS total_project_estimate, bug_id

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

These are examples of why the Single-Value Rule is important. Not every

query that fails to follow this rule would produce an ambiguous result,

but many do. It would be clever if the database could tell an ambiguous

query from an unambiguous one and produce an error only when the

data contains ambiguity. But that would not be good for application

reliability; it would mean that the same query might be valid or invalid,

depending on the state of data.

15.3 How to Recognize the Antipattern

In most brands of database, writing a query that violates the Single-

Value Rule should elicit an error immediately as you prepare the query.

The following are examples of error messages given by some brands of

database:

• Firebird 2.1:

Invalid expression in the select list (not contained in either an

aggregate function or the GROUP BY clause)

• IBM DB2 9.5:

An expression starting with "BUG_ID" specified in a SELECT clause,

HAVING clause, or ORDER BY clause is not specified in the GROUP BY

clause or it is in a SELECT clause, HAVING clause, or ORDER BY clause

with a column function and no GROUP BY clause is specified.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Groups/anti/maxandmin.sql
http://media.pragprog.com/titles/bksqla/code/Groups/anti/sumbyproduct.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=176

HOW TO RECOGNIZE THE ANTIPATTERN 177

GROUP BY and DISTINCT

SQL supports a query modifier called DISTINCT that reduces the
rows of the query result so that every row is unique. For example,
the following query reports who reported bugs and which days
they reported bugs, but only one row per date and person:

SELECT DISTINCT date_reported, reported_by FROM Bugs;

A grouping query can achieve the same result by omitting any
aggregate function. The query result is reduced to one row
for each distinct pair of values in the column named in the
GROUP BY clause:

SELECT date_reported, reported_by FROM Bugs
GROUP BY date_reported, reported_by;

Both queries produce the same result and should be optimized
and executed similarly, so the difference in this example is only
a matter of preference.

• Microsoft SQL Server 2008:

Column 'Bugs.bug_id' is invalid in the select list because it is not

contained in either an aggregate function or the GROUP BY clause.

• MySQL 5.1, after setting the ONLY_FULL_GROUP SQL mode to disal-

low ambiguous queries.

'bugs.b.bug_id' isn't in GROUP BY

• Oracle 10.2:

not a GROUP BY expression

• PostgreSQL 8.3:

column "bp.bug_id" must appear in the GROUP BY clause or be

used in an aggregate function

In SQLite and in MySQL, ambiguous columns may contain unexpected

and unreliable values. In MySQL, the value returned is from the first

row in the group, where first corresponds to physical storage. SQLite

gives the opposite result: the value is from the last row in the group. In

both cases, the behavior is not documented, and these databases aren’t

obligated to work the same in future versions. It’s your responsibility to

notice these cases and to design your queries to avoid ambiguity.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=177

LEGITIMATE USES OF THE ANTIPATTERN 178

15.4 Legitimate Uses of the Antipattern

As we’ve seen, MySQL and SQLite can’t guarantee a reliable result for

a column that doesn’t fit the Single-Value Rule. There are cases when

you can take advantage of the fact that these databases enforce the rule

less strictly than other brands.

Download Groups/legit/functional.sql

SELECT b.reported_by, a.account_name

FROM Bugs b JOIN Accounts a ON (b.reported_by = a.account_id)

GROUP BY b.reported_by;

In the previous query, the account_name column technically violates

the Single-Value Rule, since it’s named neither in the GROUP BY clause

nor in an aggregate function. Nevertheless, there is only one value

possible for account_name in each group; the groups are based on

Bugs.reported_by, which is a foreign key to the Accounts table. Therefore,

the groups correspond one-to-one with rows in the Accounts table.

In other words, if you know the value of reported_by, then you know the

value of account_name unambiguously, like if you had queried by the

primary key of the Accounts table.

This kind of unambiguous relationship is called a functional depen-

dency. The most common example of this is between the primary key of

a table and the table’s attributes: account_name is a functional depen-

dency of its primary key, account_id. If you group a query by a table’s

primary key column(s), then the groups correspond to a single row of

that table, and therefore all other columns of the same table must have

a single value per group.

Bugs.reported_by has a similar relationship with the dependent attri-

butes of the Accounts table, because it references the primary key of

the Accounts table. When the query groups by the reported_by column,

which is a foreign key, the attributes of the Accounts table are function-

ally dependent, and the query result contains no ambiguity.

However, most brands of database still return an error. Not only is this

the behavior required by the SQL standard, but it’s not too expen-

sive to figure out functional dependencies on the fly.1 But if you use

MySQL or SQLite and you’re careful to query only functionally depen-

dent columns, you can use this kind of grouping query and still avoid

problems of ambiguity.

1. The example queries in this chapter are simple. Figuring out functional dependencies

for any arbitrary SQL query is harder.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Groups/legit/functional.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=178

SOLUTION: USE COLUMNS UNAMBIGUOUSLY 179

15.5 Solution: Use Columns Unambiguously

The sections that follow describe several ways you can resolve this

antipattern and write unambiguous queries.

Query Only Functionally Dependent Columns

The most straightforward solution is to eliminate ambiguous columns

from the query.

Download Groups/anti/groupbyproduct.sql

SELECT product_id, MAX(date_reported) AS latest

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

The query reveals the date of the latest bug per product, even though it

doesn’t report the bug_id corresponding to that latest bug. Sometimes

this is enough, so don’t overlook a simple solution.

Using a Correlated Subquery

A correlated subquery contains a reference to the outer query and so

produces different results for each row of the outer query. We can use

this to find the latest bug per product by running a subquery to search

for bugs with the same product and a greater date. When the subquery

finds none, the bug in the outer query is the latest.

Download Groups/soln/notexists.sql

SELECT bp1.product_id, b1.date_reported AS latest, b1.bug_id

FROM Bugs b1 JOIN BugsProducts bp1 USING (bug_id)

WHERE NOT EXISTS

(SELECT * FROM Bugs b2 JOIN BugsProducts bp2 USING (bug_id)

WHERE bp1.product_id = bp2.product_id

AND b1.date_reported < b2.date_reported);

Use this solution as a simple solution that is readable and easy to code.

However, keep in mind that this solution isn’t likely to be the best for

performance, because correlated subqueries are executed once for each

row of the outer query.

Using a Derived Table

You can use a subquery as a derived table, producing an interim result

that contains only the product_id and the corresponding greatest bug

report date for each product. Then use this result to join against the

tables so that the query result contains only bugs with the latest date

per product.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Groups/anti/groupbyproduct.sql
http://media.pragprog.com/titles/bksqla/code/Groups/soln/notexists.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=179

SOLUTION: USE COLUMNS UNAMBIGUOUSLY 180

Download Groups/soln/derived-table.sql

SELECT m.product_id, m.latest, b1.bug_id

FROM Bugs b1 JOIN BugsProducts bp1 USING (bug_id)

JOIN (SELECT bp2.product_id, MAX(b2.date_reported) AS latest

FROM Bugs b2 JOIN BugsProducts bp2 USING (bug_id)

GROUP BY bp2.product_id) m

ON (bp1.product_id = m.product_id AND b1.date_reported = m.latest);

product_id latest bug_id

1 2010-06-01 2248

2 2010-02-16 3456

2 2010-02-16 5150

3 2010-01-01 5678

Notice that you can get multiple rows per product if the latest date

returned by the subquery matches multiple rows. If you need to ensure

a single row per product_id, you can use another grouping function in

the outer query:

Download Groups/soln/derived-table-no-duplicates.sql

SELECT m.product_id, m.latest, MAX(b1.bug_id) AS latest_bug_id

FROM Bugs b1 JOIN

(SELECT product_id, MAX(date_reported) AS latest

FROM Bugs b2 JOIN BugsProducts USING (bug_id)

GROUP BY product_id) m

ON (b1.date_reported = m.latest)

GROUP BY m.product_id, m.latest;

product_id latest latest_bug_id

1 2010-06-01 2248

2 2010-02-16 5150

3 2010-01-01 5678

Use the derived table solution as a more scalable alternative to the cor-

related subquery. The derived table is noncorrelated, so most database

brands should be able to execute the subquery once. However, the data-

base must store the interim result set in a temporary table, so this still

isn’t the best for performance.

Using a JOIN

You can create a join that tries to match against a set of rows that may

not exist. This type of join is called an outer join. Where the matching

rows don’t exist, null is used for all columns in that nonexistent row.

So, where the query finds null, we know no such row was found.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Groups/soln/derived-table.sql
http://media.pragprog.com/titles/bksqla/code/Groups/soln/derived-table-no-duplicates.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=180

SOLUTION: USE COLUMNS UNAMBIGUOUSLY 181

Download Groups/soln/outer-join.sql

SELECT bp1.product_id, b1.date_reported AS latest, b1.bug_id

FROM Bugs b1 JOIN BugsProducts bp1 ON (b1.bug_id = bp1.bug_id)

LEFT OUTER JOIN (Bugs AS b2 JOIN BugsProducts AS bp2 ON (b2.bug_id = bp2.bug_id))

ON (bp1.product_id = bp2.product_id AND (b1.date_reported < b2.date_reported

OR b1.date_reported = b2.date_reported AND b1.bug_id < b2.bug_id))

WHERE b2.bug_id IS NULL;

product_id latest bug_id

1 2010-06-01 2248

2 2010-02-16 5150

3 2010-01-01 5678

It takes a few minutes of gazing at this query, and perhaps some doo-

dles on notepaper, for most people to see how it works. But once you

do, this technique can be an important tool.

Use the JOIN solution when the scalability of the query over large sets of

data is important. Although it’s a tougher concept to grasp and there-

fore more difficult to maintain, it often scales better than a subquery-

based solution. Remember to measure the performance of several query

forms, instead of assuming that one performs better than the other.

Using an Aggregate Function for Extra Columns

You can make the extra column comply with the Single-Value Rule by

applying another aggregate function to it.

Download Groups/soln/extra-aggregate.sql

SELECT product_id, MAX(date_reported) AS latest,

MAX(bug_id) AS latest_bug_id

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

Use this solution only when you can rely on the latest bug_id being the

bug with the latest date, in other words, if bugs are guaranteed to be

reported in chronological order.

Concatenating All Values per Group

Finally, you can use another aggregate function on bug_id to avoid vio-

lating the Single-Value Rule. MySQL and SQLite support a function

GROUP_CONCAT() that concatenates all the values in the group into one

value. By default, this is a comma-separated string.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Groups/soln/outer-join.sql
http://media.pragprog.com/titles/bksqla/code/Groups/soln/extra-aggregate.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=181

SOLUTION: USE COLUMNS UNAMBIGUOUSLY 182

Download Groups/soln/group-concat-mysql.sql

SELECT product_id, MAX(date_reported) AS latest

GROUP_CONCAT(bug_id) AS bug_id_list,

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

product_id latest bug_id_list

1 2010-06-01 1234,2248

2 2010-02-16 3456,4077,5150

3 2010-01-01 5678,8063

This query doesn’t reveal which bug_id corresponds to the latest date;

the bug_id_list includes all bug_id values in each group.

Another disadvantage of this solution is that it isn’t standard SQL. and

other brands of database don’t support this function. Some brands of

database support custom functions and custom aggregate functions.

For example, here’s the solution for PostgreSQL:

Download Groups/soln/group-concat-pgsql.sql

CREATE AGGREGATE GROUP_ARRAY (

BASETYPE = ANYELEMENT,

SFUNC = ARRAY_APPEND,

STYPE = ANYARRAY,

INITCOND = '{}'

);

SELECT product_id, MAX(date_reported) AS latest

ARRAY_TO_STRING(GROUP_ARRAY(bug_id), ',') AS bug_id_list,

FROM Bugs JOIN BugsProducts USING (bug_id)

GROUP BY product_id;

Some other brands of database don’t support custom functions, so the

solution may require writing a stored procedure to loop over an non-

grouped query result, concatenating values manually.

Use this solution when you expect the extra column to have a single

value per group but the column still violates the Single-Value Rule.

Follow the Single-Value Rule to avoid ambiguous query results.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Groups/soln/group-concat-mysql.sql
http://media.pragprog.com/titles/bksqla/code/Groups/soln/group-concat-pgsql.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=182

The generation of random numbers is too important to be

left to chance.

Robert R. Coveyou

Chapter 16

Random Selection
You’re writing a web application that displays advertisements. You’re

supposed to choose a random ad on each viewing so that all your adver-

tisers have an even chance of showing their ads and so that readers

don’t get bored seeing the same ad repeatedly.

Things go well for the first few days, but the application gradually

becomes more sluggish. A few weeks later, people are complaining that

your website is too slow. You discover it’s not just psychological; you

can measure a real difference in the page load time. Your readership is

starting to lose interest, and traffic is declining.

Learning from past experiences, you first try to find the performance

bottleneck using profiling tools and a test version of your database with

a sample of the data. You measure the time to load web page, but curi-

ously, there are no problems with the performance in any of the SQL

queries used to produce the page. Yet the production website is getting

slower and slower.

Finally, you realize that the database on your production website is

much greater than the sample in your tests. You repeat your tests with

a database of similar size to the production data and find that it’s the

ad-selection query. With a greater number of ads to choose from, the

performance of that query drops sharply. You’ve discovered the query

that fails to scale, and that’s an important first step.

How can you redesign the query that chooses random ads before your

website loses its audience and therefore your sponsors?

OBJECTIVE: FETCH A SAMPLE ROW 184

16.1 Objective: Fetch a Sample Row

It’s surprising how frequently we need an SQL query that returns a ran-

dom result. This seems to go against the principles of repeatability and

deterministic programming. However, it’s ordinary to ask for a sample

from a large data set. The following are some examples:

• Displaying rotating content, such as an advertisement or a news

story to highlight

• Auditing a subset of records

• Assigning incoming calls to available operators

• Generating test data

It’s better to query the database for this sample, as an alternative to

fetching the entire data set into your application just so you can pick a

sample from the set.

The objective is to write an efficient SQL query that returns only a

random sample of data.1

16.2 Antipattern: Sort Data Randomly

The most common SQL trick to pick a random row from a query is to

sort the query randomly and pick the first row. This technique is easy

to understand and easy to implement:

Download Random/anti/orderby-rand.sql

SELECT * FROM Bugs ORDER BY RAND() LIMIT 1;

Although this is a popular solution, it quickly shows its weakness. To

understand this weakness, let’s first compare it to conventional sorting,

in which we compare values in a column and order the rows according

to which row has a greater or lesser value in that column. This kind of

sort is repeatable, in that it produces the same results when you run

it more than once. It also benefits from an index, because an index is

essentially a presorted set of the values from a given column.

Download Random/anti/indexed-sort.sql

SELECT * FROM Bugs ORDER BY date_reported;

1. Mathematicians and computer scientists make a distinction between truly random

and pseudorandom. In practice, computers can produce only pseudorandom values.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Random/anti/orderby-rand.sql
http://media.pragprog.com/titles/bksqla/code/Random/anti/indexed-sort.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=184

HOW TO RECOGNIZE THE ANTIPATTERN 185

If your sorting criteria is a function that returns a random value per

row, this makes it random whether a given row is greater or less than

another row. So, the order has no relation to the values in each row.

The order is also different each time you sort in this way. So far so

good—this is the result we want.

Sorting by a nondeterministic expression (RAND()) means the sorting

cannot benefit from an index. There is no index containing the values

returned by the random function. That’s the point of them being ran-

dom: they are different and unpredictable each time they’re selected.

This is a problem for the performance of the query, because using an

index is one of the best ways of speeding up sorting. The consequence

of not using an index is that the query result set has to be sorted by the

database “manually.” This is called a table scan, and it often involves

saving the entire result as a temporary table and sorting it by physically

swapping rows. A table scan sort is much slower than an index-assisted

sort, and the performance difference grows with the size of the data set.

Another weakness of the sort-by-random technique is that after the

expensive process of sorting the entire data set, most of that work is

wasted because all but the first row is immediately discarded. In a table

with a thousand rows, why go to the trouble of randomizing all thou-

sand when all we need is one row?

Both of these problems are unnoticeable when you run the query over a

small number of rows, so during development and testing it may appear

to be a good solution. But as the volume in your database increases over

time, the query fails to scale well.

16.3 How to Recognize the Antipattern

The technique shown in the antipattern is straightforward, and many

programmers use it, either after reading it in an article or coming up

with it on their own. Some of the following quotes are clues that your

colleague is practicing the antipattern:

• “In SQL, returning a random row is really slow.”

The query to select a random sample worked well against triv-

ial data during development and testing, but it gets progressively

slower as the real data grows. No amount of database server tun-

ing, indexing, or caching can improve the scalability.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=185

LEGITIMATE USES OF THE ANTIPATTERN 186

• “How can I increase memory for my application? I need to fetch all

the rows so I can randomly pick one.”

You shouldn’t have to load all the rows into the application, and

it’s wildly wasteful to do this. Besides, the database tends to grow

larger than your application memory can handle.

• “Does it seem to you like some entries come up more frequently

than they should? This randomizer doesn’t seem very random.”

Your random numbers are not synchronized with the gaps in pri-

mary key values in the database (see Section 16.5, Choose Next

Higher Key Value, on the following page).

16.4 Legitimate Uses of the Antipattern

The inefficiency of the sort-by-random solution is tolerable if your data

set is bound to be small.

For example, you could use a random method for assigning a program-

mer to fix a given bug. It’s safe to assume that you’ll never have so

many programmers that you need to use a highly scalable method for

choosing a random person.

Another example could be selecting a random U.S. state from a list of

the 50 states, which is a list of modest size and not likely to grow during

our lifetimes.

16.5 Solution: In No Particular Order. . .

The sort-by-random technique is an example of a query that’s bound to

perform a table scan and an expensive manual sort. When you design

solutions in SQL, you should be on the lookout for inefficient queries

like this. Instead of searching fruitlessly for a way to optimize an unop-

timizable query, rethink your approach. You can use the alternative

techniques shown in the following sections to query a random row from

a query result set. In different circumstances, each of these solutions

can produce the same result with greater efficiency.

Choose a Random Key Value Between 1 and MAX

One technique that avoids sorting the table is to choose a random value

between 1 and the greatest primary key value.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=186

SOLUTION: IN NO PARTICULAR ORDER. . . 187

Download Random/soln/rand-1-to-max.sql

SELECT b1.*
FROM Bugs AS b1

JOIN (SELECT CEIL(RAND() * (SELECT MAX(bug_id) FROM Bugs)) AS rand_id) AS b2

ON (b1.bug_id = b2.rand_id);

This solution assumes that primary key values start at 1 and that pri-

mary key values are contiguous. That is, there are no values unused

between 1 and the greatest value. If there are gaps, a randomly chosen

value may not match a row in the table.

Use this solution when you know your key uses all values between 1

and the greatest key value.

Choose Next Higher Key Value

This is similar to the preceding solution, but if you have gaps of unused

values between 1 and the greatest key value, this query matches a ran-

dom value to the first key value it finds.

Download Random/soln/next-higher.sql

SELECT b1.*
FROM Bugs AS b1

JOIN (SELECT CEIL(RAND() * (SELECT MAX(bug_id) FROM Bugs)) AS bug_id) AS b2

WHERE b1.bug_id >= b2.bug_id

ORDER BY b1.bug_id

LIMIT 1;

This solves the problem of a random number that misses any key

value, but it means that a key value that follows a gap is chosen more

often. Random values should be approximately even in distribution, but

bug_id values aren’t.

Use this solution when gaps are uncommon and when it’s not impor-

tant for all key values to be chosen with equal frequency.

Get a List of All Key Values, Choose One at Random

You can use application code to pick one value from the primary keys

in the result set. Then query the full row from the database using that

primary key. This technique is shown in the following PHP code:

Download Random/soln/rand-key-from-list.php

<?php

$bug_id_list = $pdo->query("SELECT bug_id FROM Bugs")->fetchAll();

$rand = random(count($bug_id_list));

$rand_bug_id = $bug_id_list[$rand]["bug_id"];

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Random/soln/rand-1-to-max.sql
http://media.pragprog.com/titles/bksqla/code/Random/soln/next-higher.sql
http://media.pragprog.com/titles/bksqla/code/Random/soln/rand-key-from-list.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=187

SOLUTION: IN NO PARTICULAR ORDER. . . 188

$stmt = $pdo->prepare("SELECT * FROM Bugs WHERE bug_id = ?");

$stmt->execute(array($rand_bug_id));

$rand_bug = $stmt->fetch();

This avoids sorting the table, and the chance of choosing each key value

is approximately equal, but this solution has other costs:

• Fetching all the bug_id values from the database might return a

list of impractical size. It can even exceed application memory

resources and cause an error such as the following:

Fatal error: Allowed memory size of 16777216 bytes exhausted

• The query must be run twice: once to produce the list of primary

keys and a second time to fetch the random row. If the query is

too complex and costly, this is a problem.

Use this solution when you’re selecting a random row from a simple

query with a moderately sized result set. This solution is good for choos-

ing from a list of noncontiguous values.

Choose a Random Row Using an Offset

Still another technique that avoids problems found in the preceding

alternatives is to count the rows in the data set and return a random

number between 0 and the count. Then use this number as an offset

when querying the data set.

Download Random/soln/limit-offset.php

<?php

$rand = "SELECT ROUND(RAND() * (SELECT COUNT(*) FROM Bugs))";

$offset = $pdo->query($rand)->fetch(PDO::FETCH_ASSOC);

$sql = "SELECT * FROM Bugs LIMIT 1 OFFSET :offset";

$stmt = $pdo->prepare($sql);

$stmt->execute($offset);

$rand_bug = $stmt->fetch();

This solution relies on the nonstandard LIMIT clause, supported by My-

SQL, PostgreSQL, and SQLite.

An alternative that uses the ROW_NUMBER() window function works in

Oracle, Microsoft SQL Server, and IBM DB2.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Random/soln/limit-offset.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=188

SOLUTION: IN NO PARTICULAR ORDER. . . 189

For example, here’s the solution in Oracle:

Download Random/soln/row_number.php

<?php

$rand = "SELECT 1 + MOD(ABS(dbms_random.random()),

(SELECT COUNT(*) FROM Bugs)) AS offset FROM dual";

$offset = $pdo->query($rand)->fetch(PDO::FETCH_ASSOC);

$sql = "WITH NumberedBugs AS (

SELECT b.*, ROW_NUMBER() OVER (ORDER BY bug_id) AS RN FROM Bugs b

) SELECT * FROM NumberedBugs WHERE RN = :offset";

$stmt = $pdo->prepare($sql);

$stmt->execute($offset);

$rand_bug = $stmt->fetch();

Use this solution when you can’t assume contiguous key values and

you need to make sure each row has an even chance of being selected.

Proprietary Solutions

Any given brand of database might implement its own solution for this

kind of task. For example, Microsoft SQL Server 2005 added a TABLE-

SAMPLE clause:

Download Random/soln/tablesample-sql2005.sql

SELECT * FROM Bugs TABLESAMPLE (1 ROWS);

Oracle uses a slightly different SAMPLE clause, for example to return 1

percent of the rows in the table:

Download Random/soln/sample-oracle.sql

SELECT * FROM (SELECT * FROM Bugs SAMPLE (1)

ORDER BY dbms_random.value) WHERE ROWNUM = 1;

You should read the documentation for the proprietary solution in your

brand of database. There are often limitations or other options you need

to know about.

Some queries cannot be optimized; take a different approach.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Random/soln/row_number.php
http://media.pragprog.com/titles/bksqla/code/Random/soln/tablesample-sql2005.sql
http://media.pragprog.com/titles/bksqla/code/Random/soln/sample-oracle.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=189

Some people, when confronted with a problem,

think “I know, I’ll use regular expressions.”

Now they have two problems.

Jamie Zawinski

Chapter 17

Poor Man’s Search Engine
I was working in a technical support job in 1995, at a time when compa-

nies were just starting to adopt the Web as a way to provide information

to their customers. We had a collection of short documents describing

solutions to common support questions, and we wanted to put them on

the Web in a knowledge-base application.

We quickly realized that as the collection grew, it needed to be search-

able, because customers didn’t want to browse through hundreds of

articles to find their answers. One strategy would be to organize the

articles in categories, but even these groups were too large, and many

articles belonged in multiple groups.

We wanted our customers to search the articles, narrowing down the

list to those matching any criteria. The most flexible and straightfor-

ward interface was to allow the customer to enter any set of words

and show them the articles in which those words appear. An article

was weighted higher if it matched the search terms more fully. Also,

we wanted to match word forms. For example, a search for the word

crash should also match crashed, crashes, and crashing. Of course,

the search had to work in a growing collection of documents quickly

enough to be useful in a web application.

If that careful description sounds superfluous to you, that shouldn’t be

surprising. Searching through text online has become so common that

we can hardly recall the time before it was available. But using SQL

to search by keywords, while also making the solution both fast and

accurate, is deceptively difficult.

OBJECTIVE: FULL-TEXT SEARCH 191

17.1 Objective: Full-Text Search

Any application that stores text needs to search for words or phrases

within that text. We use databases to store more textual data than ever,

and at the same time we demand to be able to search for matching text

at greater speeds. Web applications especially need high-performance

and scalable database techniques for searching text.

One fundamental principle of SQL (and relational theory from which

SQL is derived) is that a value in a column is atomic. That is, you can

compare a value to another value, but you always compare the whole

value when you do that. Comparing substrings is bound to be ineffi-

cient or inaccurate in SQL.

In spite of this, we need a way to compare a short string to a longer

string and find a match when the short string occurs anywhere within

the longer string. How can we bridge this gulf using SQL?

17.2 Antipattern: Pattern Matching Predicates

SQL provides pattern-matching predicates for comparing strings, and

this is the first solution most programmers use when searching for key

words. The most widely supported of these is the LIKE predicate.

The LIKE predicate supports a wildcard (%) that matches zero or more

characters. Using this wildcard before and after a key word matches

any string that contains that word. The first wildcard matches any text

preceding the word, and the second wildcard matches any text following

the word.

Download Search/anti/like.sql

SELECT * FROM Bugs WHERE description LIKE '%crash%';

Regular expressions are also supported by many database brands, al-

though not in a standard way. You don’t need wildcards, because con-

ventionally regular expressions match the pattern against any sub-

string anyway. Here’s an example using MySQL’s regular expression

predicate:1

Download Search/anti/regexp.sql

SELECT * FROM Bugs WHERE description REGEXP 'crash';

1. Although SQL-99 defines the predicate SIMILAR TO for matching regular expressions,

most brands of SQL database use nonstandard syntax.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/anti/like.sql
http://media.pragprog.com/titles/bksqla/code/Search/anti/regexp.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=191

HOW TO RECOGNIZE THE ANTIPATTERN 192

The most important disadvantage of pattern-matching operators is that

they have poor performance. They can’t benefit from a conventional

index, so they must scan every row in a table. Since matching a pattern

against a string column is a fairly expensive operation (relative to, for

instance, comparing two integers for equality), the total cost of a table

scan for this search is very high.

A second problem of simple pattern-matching using LIKE or regular

expressions is that it can find unintended matches.

Download Search/anti/like-false-match.sql

SELECT * FROM Bugs WHERE description LIKE '%one%';

The previous example matches text that contains the words one, but

it also matches strings money, prone, lonely, and so on. Searching for

a pattern with the key word delimited by spaces doesn’t match occur-

rences of the word with punctuation or at the start or end of the text.

The regular expressions supported by your database might support a

special pattern for a word boundary, to solve this issue:2

Download Search/anti/regexp-word.sql

SELECT * FROM Bugs WHERE description REGEXP '[[:<:]]one[[:>:]]';

Given the problems of performance and scalability and the gymnastics

you have to do to prevent irrelevant matches, simple pattern matching

is a poor technique for searching for key words.

17.3 How to Recognize the Antipattern

Some questions like the following commonly indicate that the Poor

Man’s Search Engine antipattern is being employed:

• “How do I insert a variable in between two wildcards in a LIKE

expression?”

The question usually comes up when the programmer wants to do

a pattern-matching search using input from a user.

• “How can I write a regular expression to check that a string con-

tains multiple words, that the string doesn’t contain a certain

word, or that the string contains any form of a given word?”

2. This example uses MySQL syntax.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/anti/like-false-match.sql
http://media.pragprog.com/titles/bksqla/code/Search/anti/regexp-word.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=192

LEGITIMATE USES OF THE ANTIPATTERN 193

If a complex problem seems too hard to solve with a regular ex-

pression, it probably is.

• “The search feature of our website has become unusably slow as

we’ve added more documents to the database. What’s wrong?”

As the volume of data goes up, the antipattern solution shows

poor scalability.

17.4 Legitimate Uses of the Antipattern

The expressions shown in the antipattern section are legal SQL queries,

and they have a straightforward and simple usage. That counts for a lot.

Performance is often important, but some queries are run so infre-

quently that it doesn’t make sense to invest a lot of resources to opti-

mize them. Maintaining indexes to benefit a rarely used query could

be just as costly as running that query in an inefficient manner. If the

nature of the query is ad hoc, there’s no guarantee that the index you

defined would benefit that given query anyway.

It’s hard to use pattern-matching operators for complex queries, but

if you design the patterns for simple cases, they can help you get the

right results with a minimum of fuss.

17.5 Solution: Use the Right Tool for the Job

It’s best to use a specialized search engine technology, instead of SQL.

Another alternative is to reduce the recurring cost of search by saving

the result.

The following sections describe some of the technologies offered as

built-in extensions by different database brands and also technologies

offered by independent projects. Also, we’ll develop a solution that uses

standard SQL but is more efficient on average than substring matching.

Vendor Extensions

Every major brand of database has invented their own answer to the

common requirement of full-text search, but these features are not

standard or compatible between database brands. If you use a single

brand (or are willing to use vendor-dependent features), these features

are the best way to get high-performance text search, with the greatest

integration with SQL queries.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=193

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 194

The following are brief descriptions of full-text search features in several

brands of SQL database. The details are subject to change, so be sure

to read the current documentation for your brand.

Full-Text Index in MySQL

MySQL provides a simple full-text index type for the MyISAM storage

engine only. You can define a full-text index over columns of type CHAR,

VARCHAR, or TEXT. Here’s an example that defines a full-text index that

includes content from the bug summary and description columns:

Download Search/soln/mysql/alter-table.sql

ALTER TABLE Bugs ADD FULLTEXT INDEX bugfts (summary, description);

Use the MATCH() function to search for a key word among the indexed

text. You must name the columns in the full-text index (so you can

match using another index that covers different columns in the same

table).

Download Search/soln/mysql/match.sql

SELECT * FROM Bugs WHERE MATCH(summary, description) AGAINST ('crash');

Since MySQL 4.1, you can also use a simple boolean expression nota-

tion in the pattern to filter results more carefully.

Download Search/soln/mysql/match-boolean.sql

SELECT * FROM Bugs WHERE MATCH(summary, description)

AGAINST ('+crash -save' IN BOOLEAN MODE);

Text Indexing in Oracle

Oracle has supported text-indexing features since Oracle 8 in 1997,

when it was part of a data cartridge called ConText. The technology has

been updated several times, and the feature is now integrated into the

database software. The text indexing in Oracle is complex and rich, so

here is a greatly simplified summary:

• CONTEXT

Create an index of this type for a single text column. Use the CON-

TAINS() operator to search using this index. The index doesn’t stay

consistent with changes to data, so you have to rebuild the index

manually or on a schedule.

Download Search/soln/oracle/create-index.sql

CREATE INDEX BugsText ON Bugs(summary) INDEXTYPE IS CTSSYS.CONTEXT;

SELECT * FROM Bugs WHERE CONTAINS(summary, 'crash') > 0;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/soln/mysql/alter-table.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/mysql/match.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/mysql/match-boolean.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/oracle/create-index.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=194

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 195

• CTXCAT

This index type is specialized for short text samples such as those

used in online catalogs, along with other structured columns from

the same table. The index stays consistent as transactions update

the indexed data.

Download Search/soln/oracle/ctxcat-create.sql

CTX_DDL.CREATE_INDEX_SET('BugsCatalogSet');

CTX_DDL.ADD_INDEX('BugsCatalogSet', 'status');

CTX_DDL.ADD_INDEX('BugsCatalogSet', 'priority');

CREATE INDEX BugsCatalog ON Bugs(summary) INDEXTYPE IS CTSSYS.CTXCAT

PARAMETERS('BugsCatalogSet');

The CATSEARCH() operator takes two arguments for searching the

text column and the structured column set, respectively.

Download Search/soln/oracle/ctxcat-search.sql

SELECT * FROM Bugs

WHERE CATSEARCH(summary, '(crash save)', 'status = "NEW"') > 0;

• CTXXPATH

This index type is specialized for searching an XML document with

the existsNode() operator.

Download Search/soln/oracle/ctxxpath.sql

CREATE INDEX BugTestXml ON Bugs(testoutput) INDEXTYPE IS CTSSYS.CTXXPATH;

SELECT * FROM Bugs

WHERE testoutput.existsNode('/testsuite/test[@status="fail"]') > 0;

• CTXRULE

Suppose you have a large collection of documents in your data-

base and you need to classify them based on their content.

With the CTXRULE index, you can design rules to analyze docu-

ments and report their classification. Alternatively, you can pro-

vide a sample set of documents with your idea of their classifica-

tions and have Oracle design the rules to apply to the rest of the

document collection. You can even fully automate the process, let-

ting Oracle analyze your document collection and come up with a

set of rules and classifications for identifying them.

Examples using CTXRULE indexes are beyond the scope of this book.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/soln/oracle/ctxcat-create.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/oracle/ctxcat-search.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/oracle/ctxxpath.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=195

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 196

Full-Text Search in Microsoft SQL Server

SQL Server 2000 and later support full-text searching, with complex

configuration options for languages, a thesaurus, and automatic syn-

chronization with data changes. SQL Server provides a series of stored

procedures for creating full-text indexes, and you can use the CON-

TAINS() operator in queries to employ the full-text index.

To perform the familiar example of searching for bugs that include the

word crash, first enable the full-text feature, and define a catalog in

your database:

Download Search/soln/microsoft/catalog.sql

EXEC sp_fulltext_database 'enable'

EXEC sp_fulltext_catalog 'BugsCatalog', 'create'

Next, define a full-text index on the Bugs table, add columns to the

index, and activate the index:

Download Search/soln/microsoft/create-index.sql

EXEC sp_fulltext_table 'Bugs', 'create', 'BugsCatalog', 'bug_id'

EXEC sp_fulltext_column 'Bugs', 'summary', 'add', '2057'

EXEC sp_fulltext_column 'Bugs', 'description', 'add', '2057'

EXEC sp_fulltext_table 'Bugs', 'activate'

Enable automatic synchronization for the full-text index so that

changes to the indexed column are propagated to the index. Then begin

the process of populating the index. This will run in the background,

so it may take some time to complete before queries benefit from the

index.

Download Search/soln/microsoft/start.sql

EXEC sp_fulltext_table 'Bugs', 'start_change_tracking'

EXEC sp_fulltext_table 'Bugs', 'start_background_updateindex'

EXEC sp_fulltext_table 'Bugs', 'start_full'

Finally, run a query using the CONTAINS() operator:

Download Search/soln/microsoft/search.sql

SELECT * FROM Bugs WHERE CONTAINS(summary, '"crash"');

Text Search in PostgreSQL

PostgreSQL 8.3 provides a sophisticated and highly configurable way

of converting text into a searchable collections of lexical elements and

matching these documents against patterns.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/soln/microsoft/catalog.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/microsoft/create-index.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/microsoft/start.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/microsoft/search.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=196

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 197

To get the best benefit of performance, you need to store content as its

original text form and also as a searchable form using the special data

type TSVECTOR.

Download Search/soln/postgresql/create-table.sql

CREATE TABLE Bugs (

bug_id SERIAL PRIMARY KEY,

summary VARCHAR(80),

description TEXT,

ts_bugtext TSVECTOR

-- other columns

);

Make sure the TSVECTOR column is kept in sync with the content in the

text column(s) you want to make searchable. PostgreSQL provides a

built-in trigger procedure to make this easier:

Download Search/soln/postgresql/trigger.sql

CREATE TRIGGER ts_bugtext BEFORE INSERT OR UPDATE ON Bugs

FOR EACH ROW EXECUTE PROCEDURE

tsvector_update_trigger(ts_bugtext, 'pg_catalog.english', summary, description);

You should also create a generalized inverted index (GIN) index on the

TSVECTOR column:

Download Search/soln/postgresql/create-index.sql

CREATE INDEX bugs_ts ON Bugs USING GIN(ts_bugtext);

After this, you can use the PostgreSQL text search operator @@ to

search efficiently, aided by the full-text index:

Download Search/soln/postgresql/search.sql

SELECT * FROM Bugs WHERE ts_bugtext @@ to_tsquery('crash');

There are many other options for customizing searchable content,

search queries, and search results.

Full-Text Search (FTS) in SQLite

Standard tables in SQLite don’t support efficient full-text searches, but

you can use an optional extension for SQLite to store searchable text

in a virtual table specialized for searching text. Three versions of the

searchable text extension exist, known as FTS1, FTS2, and FTS3.

FTS extensions are not typically enabled in a default build of SQLite,

so you need to build it from source with one of the FTS extensions

enabled. For example, add the following options to Makefile.in, and then

build SQLite.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/soln/postgresql/create-table.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/postgresql/trigger.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/postgresql/create-index.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/postgresql/search.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=197

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 198

Download Search/soln/sqlite/makefile.in

TCC += -DSQLITE_CORE=1

TCC += -DSQLITE_ENABLE_FTS3=1

Once you have a version of SQLite with FTS enabled, you can create

a virtual table for the searchable text. Any data type, constraints, or

other column options are ignored.

Download Search/soln/sqlite/create-table.sql

CREATE VIRTUAL TABLE BugsText USING fts3(summary, description);

If you are indexing text from another table (as in this example using

the Bugs table), you must copy the data into the virtual table. The FTS

virtual table always contains a primary key column called docid, so you

can correlate rows to those in a source table.

Download Search/soln/sqlite/insert.sql

INSERT INTO BugsText (docid, summary, description)

SELECT bug_id, summary, description FROM Bugs;

Now you can query the FTS virtual table BugsText using the efficient full-

text search predicate MATCH, and you can join matching rows to the

source table Bugs. Using the name of the FTS table as a pseudocolumn

matches the pattern against any column.

Download Search/soln/sqlite/search.sql

SELECT b.* FROM BugsText t JOIN Bugs b ON (t.docid = b.bug_id)

WHERE BugsText MATCH 'crash';

The matching pattern also supports limited boolean expressions.

Download Search/soln/sqlite/search-boolean.sql

SELECT * FROM BugsText WHERE BugsText MATCH 'crash -save';

Third-Party Search Engines

If you need to search text in a way that works the same regardless of

which database brand you use, you need a search engine that runs

independently from the SQL database. This section briefly describes

two such products, Sphinx Search and Apache Lucene.

Sphinx Search

Sphinx Search (http://www.sphinxsearch.com/) is an open source search

engine technology that integrates well with MySQL and PostgreSQL. As

of this writing, an unofficial patch exists for using Sphinx Search with

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/soln/sqlite/makefile.in
http://media.pragprog.com/titles/bksqla/code/Search/soln/sqlite/create-table.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/sqlite/insert.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/sqlite/search.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/sqlite/search-boolean.sql
http://www.sphinxsearch.com/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=198

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 199

the open source Firebird database. Perhaps in the future this search

engine will support other databases.

Indexing and searching is fast in Sphinx Search, and it supports dis-

tributed queries as well. It’s a good choice for high-scale searching

applications that have data that updates infrequently.

You can use Sphinx Search to index data stored in a MySQL data-

base. By modifying a few fields in a configuration file sphinx.conf, you

can specify the database. You must also write an SQL query to fetch

data for building the index. The first column in this query is the integer

primary key. You may declare some columns as attributes for restrict-

ing or sorting results. The remaining columns are those to be full-text

indexed. Finally, another SQL query fetches a full row from the data-

base given a primary key value coded as $id.

Download Search/soln/sphinx/sphinx.conf

source bugsrc

{

type = mysql

sql_user = bugsuser

sql_pass = xyzzy

sql_db = bugsdatabase

sql_query = \

SELECT bug_id, status, date_reported, summary, description \

FROM Bugs

sql_attr_timestamp = date_reported

sql_attr_str2ordinal = status

sql_query_info = SELECT * FROM Bugs WHERE bug_id = $id

}

index bugs

{

source = bugsrc

path = /opt/local/var/db/sphinx/bugs

}

Once you declare this configuration in sphinx.conf, you can create the

index at the shell with the indexer command:

Download Search/soln/sphinx/indexer.sh

indexer -c sphinx.conf bugs

You can search the index using the search command:

Download Search/soln/sphinx/search.sh

search -b "crash -save"

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/soln/sphinx/sphinx.conf
http://media.pragprog.com/titles/bksqla/code/Search/soln/sphinx/indexer.sh
http://media.pragprog.com/titles/bksqla/code/Search/soln/sphinx/search.sh
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=199

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 200

Sphinx Search also has a daemon process and an API with which to

invoke searches from popular scripting languages such as PHP, Perl,

and Ruby. The major disadvantage of the current software is that the

index algorithm doesn’t support incremental updates efficiently. Using

Sphinx Search over a data source that updates frequently requires

some compromises. For example, split your searchable table into two

tables, the first to store the majority of historical data that doesn’t

change and the second to store a smaller set of current data that

grows incrementally and must be reindexed. Then your application

must search two Sphinx Search indexes.

Apache Lucene

Lucene (http://lucene.apache.org/) is a mature search engine for Java

applications. Work-alike projects exist for other languages including

C++, C#, Perl, Python, Ruby, and PHP.

Lucene builds an index in its proprietary format for a collection of text

documents. The Lucene index doesn’t stay in sync with the source data

it indexes. If you insert, delete, or update rows in the database, you

must apply matching changes to a Lucene index.

Using the Lucene search engine is a bit like using a car engine; you

need quite a bit of supporting technology around it to make it useful.

Lucene doesn’t read data collections from an SQL database directly.

you have to write documents in the Lucene index. For example, you

could run an SQL query and, for each row of the result, create one

Lucene document and save it to the Lucene index. You can use Lucene

through its Java API.

Fortunately, Apache also offers a complementary project called Solr

(http://lucene.apache.org/solr/. Solr is a server that provides a gateway

to a Lucene index. You can add documents to Solr and submit search

queries using a REST-like interface so you can use it from any pro-

gramming language.

You can also direct Solr to connect to a database itself, run a query,

and index the results using its DataImportHandler tool.

Roll Your Own

Suppose you don’t want to use proprietary search features, nor do you

want to install an independent search engine product. You need an

efficient, database-independent solution to make text searchable. In

this section, we design what’s called an inverted index. Basically, an

Report erratum

this copy is (P1.0 printing, May 2010)

http://lucene.apache.org/
http://lucene.apache.org/solr/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=200

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 201

inverted index is a list of all words one might search for. In a many-

to-many relationship, the index associates these words with the text

entries that contain the respective word. That is, a word like crash can

appear in many bugs, and each bug may match many other keywords.

This section shows how to design an inverted index.

First, define a table Keywords to list keywords for which users search,

and define an intersection table BugsKeywords to establish a many-to-

many relationship:

Download Search/soln/inverted-index/create-table.sql

CREATE TABLE Keywords (

keyword_id SERIAL PRIMARY KEY,

keyword VARCHAR(40) NOT NULL,

UNIQUE KEY (keyword)

);

CREATE TABLE BugsKeywords (

keyword_id BIGINT UNSIGNED NOT NULL,

bug_id BIGINT UNSIGNED NOT NULL,

PRIMARY KEY (keyword_id, bug_id),

FOREIGN KEY (keyword_id) REFERENCES Keywords(keyword_id),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)

);

Next, add a row to BugsKeywords for every keyword that matches the

description text for a given bug. We can use substring-match query

to determine these matches using LIKE or regular expressions. This is

nothing more costly than the naive searching method described in the

“Antipattern” section, but we gain efficiency because we only need to

perform the search once. If we save the result in the intersection table,

all subsequent searches for the same keyword are much faster.

Next, we write a stored procedure to make it easier to search for a

given keyword.3 If the word has already been searched, the query is

faster because the rows in BugsKeywords are a list of the documents

that contain the keyword. If no one has searched for the given keyword

before, we need to search the collection of text entries the hard way.

Download Search/soln/inverted-index/search-proc.sql

CREATE PROCEDURE BugsSearch(keyword VARCHAR(40))

BEGIN

SET @keyword = keyword;

3. This example stored procedure uses MySQL syntax.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/soln/inverted-index/create-table.sql
http://media.pragprog.com/titles/bksqla/code/Search/soln/inverted-index/search-proc.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=201

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 202

Ê PREPARE s1 FROM 'SELECT MAX(keyword_id) INTO @k FROM Keywords

WHERE keyword = ?';

EXECUTE s1 USING @keyword;

DEALLOCATE PREPARE s1;

IF (@k IS NULL) THEN
Ë PREPARE s2 FROM 'INSERT INTO Keywords (keyword) VALUES (?)';

EXECUTE s2 USING @keyword;

DEALLOCATE PREPARE s2;
Ì SELECT LAST_INSERT_ID() INTO @k;

Í PREPARE s3 FROM 'INSERT INTO BugsKeywords (bug_id, keyword_id)

SELECT bug_id, ? FROM Bugs

WHERE summary REGEXP CONCAT(''[[:<:]]'', ?, ''[[:>:]]'')

OR description REGEXP CONCAT(''[[:<:]]'', ?, ''[[:>]]'')';

EXECUTE s3 USING @k, @keyword, @keyword;

DEALLOCATE PREPARE s3;

END IF;

Î PREPARE s4 FROM 'SELECT b.* FROM Bugs b

JOIN BugsKeywords k USING (bug_id)

WHERE k.keyword_id = ?';

EXECUTE s4 USING @k;

DEALLOCATE PREPARE s4;

END

Ê Search for the user-specified keyword. Return either the integer

primary key from Keywords.keyword_id or null if the word has not

been seen previously.

Ë If the word was not found, insert it as a new word.

Ì Query for the primary key value generated in Keywords.

Í Populate the intersection table by searching Bugs for rows contain-

ing the new keyword.

Î Finally, query the full rows from Bugs that match the keyword_id,

whether the keyword was found or had to be inserted as a new

entry.

Now we can call this stored procedure and pass the desired keyword.

The procedure returns the set of matching bugs, whether it has to

calculate the matching bugs and populate the intersection table for a

new keyword or whether it simply benefits from the result of an earlier

search.

Download Search/soln/inverted-index/search-proc.sql

CALL BugsSearch('crash');

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/soln/inverted-index/search-proc.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=202

SOLUTION: USE THE RIGHT TOOL FOR THE JOB 203

There’s another piece to this solution: we need to define a trigger to

populate the intersection table as each new bug is inserted. If you need

to support edits to bug descriptions, you may also have to write a trigger

to reanalyze text and add or delete rows in the BugsKeywords table.

Download Search/soln/inverted-index/trigger.sql

CREATE TRIGGER Bugs_Insert AFTER INSERT ON Bugs

FOR EACH ROW

BEGIN

INSERT INTO BugsKeywords (bug_id, keyword_id)

SELECT NEW.bug_id, k.keyword_id FROM Keywords k

WHERE NEW.description REGEXP CONCAT('[[:<:]]', k.keyword, '[[:>:]]')

OR NEW.summary REGEXP CONCAT('[[:<:]]', k.keyword, '[[:>:]]');

END

The keyword list is populated naturally as users perform searches, so

we don’t need to fill the keyword list with every word found in the

knowledge-base articles. On the other hand, if we can anticipate likely

keywords, we can easily run a search for them, thus bearing the initial

cost of being the first to search for each keyword so that doesn’t fall on

our users.

I used an inverted index for my knowledge-base application that I de-

scribed at the start of this chapter. I also enhanced the Keywords table

with an additional column num_searches. I incremented this column

each time a user searched for a given keyword so I could track which

searches were most in demand.

You don’t have to use SQL to solve every problem.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Search/soln/inverted-index/trigger.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=203

Enita non sunt multiplicanda praeter necessitatem

(Latin, “entities are not to be multiplied beyond necessity”).

William of Ockham

Chapter 18

Spaghetti Query
Your boss is on the phone with his boss, and he waves to you to come

over. He covers his phone receiver with his hand and whispers to you,

“The executives are in a budget meeting, and we’re going to have our

staff cut unless we can feed my VP some statistics to prove that our

department keeps a lot of people busy. I need to know how many prod-

ucts we work on, how many developers fixed bugs, the average bugs

fixed per developer, and how many of our fixed bugs were reported by

customers. Right now!”

You leap to your SQL tool and start writing. You want all the answers at

once, so you make one complex query, hoping to do the least amount

of duplicate work and therefore produce the results faster.

Download Spaghetti-Query/intro/report.sql

SELECT COUNT(bp.product_id) AS how_many_products,

COUNT(dev.account_id) AS how_many_developers,

COUNT(b.bug_id)/COUNT(dev.account_id) AS avg_bugs_per_developer,

COUNT(cust.account_id) AS how_many_customers

FROM Bugs b JOIN BugsProducts bp ON (b.bug_id = bp.bug_id)

JOIN Accounts dev ON (b.assigned_to = dev.account_id)

JOIN Accounts cust ON (b.reported_by = cust.account_id)

WHERE cust.email NOT LIKE '%@example.com'

GROUP BY bp.product_id;

The numbers come back, but they seem wrong. How did we get dozens

of products? How can the average bugs fixed be exactly 1.0? And it

wasn’t the number of customers; it was the number of bugs reported

by customers that your boss needs. How can all the numbers be so far

off? This query will be a lot more complex than you thought.

Your boss hangs up the phone. “Never mind,” he sighs. “It’s too late.

Let’s clean out our desks.”

http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/intro/report.sql

OBJECTIVE: DECREASE SQL QUERIES 205

18.1 Objective: Decrease SQL Queries

One of the most common places where SQL programmers get stuck is

when they ask, “How can I do this with a single query?” This question is

asked for virtually any task. Programmers have been trained that one

SQL query is difficult, complex, and expensive, so they reason that two

SQL queries must be twice as bad. More than two SQL queries to solve

a problem is generally out of the question.

Programmers can’t reduce the complexity of their tasks, but they want

to simplify the solution. They state their goal with terms like “elegant”

or “efficient,” and they think they’ve achieved those goals by solving the

task with a single query.

18.2 Antipattern: Solve a Complex Problem in One Step

SQL is a very expressive language—you can accomplish a lot in a single

query or statement. But that doesn’t mean it’s mandatory or even a

good idea to approach every task with the assumption it has to be done

in one line of code. Do you have this habit with any other programming

language you use? Probably not.

Unintended Products

One common consequence of producing all your results in one query

is a Cartesian product. This happens when two of the tables in the

query have no condition restricting their relationship. Without such a

restriction, the join of two tables pairs each row in the first table to

every row in the other table. Each such pairing becomes a row of the

result set, and you end up with many more rows than you expect.

Let’s see an example. Suppose we want to query our bugs database to

count the number of bugs fixed, and the number of bugs open, for a

given product. Many programmers would try to use a query like the

following to calculate these counts:

Download Spaghetti-Query/anti/cartesian.sql

SELECT p.product_id,

COUNT(f.bug_id) AS count_fixed,

COUNT(o.bug_id) AS count_open

FROM BugsProducts p

LEFT OUTER JOIN Bugs f ON (p.bug_id = f.bug_id AND f.status = 'FIXED')

LEFT OUTER JOIN Bugs o ON (p.bug_id = o.bug_id AND o.status = 'OPEN')

WHERE p.product_id = 1

GROUP BY p.product_id;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/anti/cartesian.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=205

ANTIPATTERN: SOLVE A COMPLEX PROBLEM IN ONE STEP 206

bug_id

1234

3456

4567

5678

6789

7890

8901

9012

10123

11234

12345

status

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

bug_id

4077

8063

5150

867

5309

6060

842

status

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

OPEN

Figure 18.1: Cartesian product between fixed and open bugs

You happen to know that in reality there are twelve fixed bugs and

seven open bugs for the given product. So, the result of the query is

puzzling:

product_id count_fixed count_open

1 84 84

What caused this to be so inaccurate? It’s no coincidence that 84 is 12

times 7. This example joins the Products table to two different subsets

of Bugs, but this results in a Cartesian product between those two sets

of bugs. Each of the twelve rows for FIXED bugs is paired with all seven

rows for OPEN bugs.

You can visualize the Cartesian product graphically as shown in Fig-

ure 18.1. Each line connecting a fixed bug to an open bug becomes

a row in the interim result set (before grouping is applied). We can see

this interim result set by eliminating the GROUP BY clause and aggregate

functions.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=206

HOW TO RECOGNIZE THE ANTIPATTERN 207

Download Spaghetti-Query/anti/cartesian-no-group.sql

SELECT p.product_id, f.bug_id AS fixed, o.bug_id AS open

FROM BugsProducts p

JOIN Bugs f ON (p.bug_id = f.bug_id AND f.status = 'FIXED')

JOIN Bugs o ON (p.bug_id = o.bug_id AND o.status = 'OPEN')

WHERE p.product_id = 1;

The only relationships expressed in that query are between the Bugs-

Products table and each subset of Bugs. No conditions restrict every

FIXED bug from matching with every OPEN bug, and the default is

that they do. The result produces twelve times seven rows.

It’s all too easy to produce an unintentional Cartesian product when

you try to make a query do double-duty like this. If you try to do more

unrelated tasks with a single query, the total could be multiplied by yet

another Cartesian product.

As Though That Weren’t Enough. . .

Besides the fact that you can get the wrong results, it’s important to

consider that these queries are simply hard to write, hard to modify,

and hard to debug. You should expect to get regular requests for incre-

mental enhancements to your database applications. Managers want

more complex reports and more fields in a user interface. If you design

intricate, monolithic SQL queries, it’s more costly and time-consuming

to make enhancements to them. Your time is worth something, both to

you and to your project.

There are runtime costs, too. An elaborate SQL query that has to use

many joins, correlated subqueries, and other operations is harder for

the SQL engine to optimize and execute quickly than a more straight-

forward query. Programmers have an instinct that executing fewer SQL

queries is better for performance. This is true assuming the SQL

queries in question are of equal complexity. On the other hand, the cost

of a single monster query can increase exponentially, until it’s much

more economical to use several simpler queries.

18.3 How to Recognize the Antipattern

If you hear the following statements from members of your project, it

could indicate a case of the Spaghetti Query antipattern:

• “Why are my sums and counts impossibly large?”

An unintended Cartesian product has multiplied two different

joined data sets.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/anti/cartesian-no-group.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=207

LEGITIMATE USES OF THE ANTIPATTERN 208

• “I’ve been working on this monster SQL query all day!”

SQL isn’t this difficult—really. If you’ve been struggling with a sin-

gle query for too long, you should reconsider your approach.

• “We can’t add anything to our database report, because it will take

too long to figure out how to recode the SQL query.”

The person who coded the query will be responsible for maintain-

ing that code forever, even if they have moved on to other projects.

That person could be you, so don’t write overly complex SQL that

no one else can maintain!

• “Try putting another DISTINCT into the query.”

Compensating for the explosion of rows in a Cartesian product,

programmers reduce duplicates using the DISTINCT keyword as a

query modifier or an aggregate function modifier. This hides the

evidence of the malformed query but causes extra work for the

RDBMS to generate the interim result set only to sort it and dis-

card duplicates.

Another clue that a query might be a Spaghetti Query is simply that

it has an excessively long execution time. Poor performance could be

symptomatic of other causes, but as you investigate such a query, you

should consider that you may be trying to do too much in a single SQL

statement.

18.4 Legitimate Uses of the Antipattern

The most common reason that you might need to run a complex task

with a single query is that you’re using a programming framework or a

visual component library that connects to a data source and presents

data in an application. Simple business intelligence and reporting tools

also fall into this category, although more sophisticated BI software can

merge results from multiple data sources.

A component or reporting tool that assumes its data source is a single

SQL query may have a simpler usage, but it encourages you to design

monolithic queries to synthesize all the data for your report. If you use

one of these reporting applications, you may be forced to write a more

complex SQL query than if you had the opportunity to write code to

process the result set.

If the reporting requirements are too complex to be satisfied by a single

SQL query, it might be better to produce multiple reports. If your boss

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=208

SOLUTION: DIVIDE AND CONQUER 209

doesn’t like this, remind him or her of the relationship between the

report’s complexity and the hours it takes to produce it.

Sometimes, you may want to produce a complex result in one query

because you need all the results combined in sorted order. It’s easy

to specify a sort order in an SQL query. It’s likely to be more efficient

for the database to do that than for you to write custom code in your

application to sort the results of several queries.

18.5 Solution: Divide and Conquer

The quote from William of Ockham at the beginning of this chapter is

also known as the law of parsimony:

The Law of Parsimony

When you have two competing theories that make exactly the same

predictions, the simpler one is the better.

What this means to SQL is that when you have a choice between two

queries that produce the same result set, choose the simpler one. We

should keep this in mind when straightening out instances of this

antipattern.

One Step at a Time

If you can’t see a logical join condition between the tables involved in

an unintended Cartesian product, that could be because there simply is

no such condition. To avoid the Cartesian product, you have to split up

a Spaghetti Query into several simpler queries. In the simple example

shown earlier, we need only two queries:

Download Spaghetti-Query/soln/split-query.sql

SELECT p.product_id, COUNT(f.bug_id) AS count_fixed

FROM BugsProducts p

LEFT OUTER JOIN Bugs f ON (p.bug_id = f.bug_id AND f.status = 'FIXED')

WHERE p.product_id = 1

GROUP BY p.product_id;

SELECT p.product_id, COUNT(o.bug_id) AS count_open

FROM BugsProducts p

LEFT OUTER JOIN Bugs o ON (p.bug_id = o.bug_id AND o.status = 'OPEN')

WHERE p.product_id = 1

GROUP BY p.product_id;

The results of these two queries are 12 and 7, as expected.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/soln/split-query.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=209

SOLUTION: DIVIDE AND CONQUER 210

You may feel slight regret at resorting to an “inelegant” solution by

splitting this into multiple queries, but this should quickly be replaced

by relief as you realize this has several positive effects for development,

maintenance, and performance:

• The query doesn’t produce an unwanted Cartesian product, as

shown in the earlier examples, so it’s easier to be sure the query

is giving you accurate results.

• When new requirements are added to the report, it’s easier to add

another simple query than to integrate more calculations into an

already-complicated query.

• The SQL engine can usually optimize and execute a simple query

more easily and reliably than a complex query. Even if it seems like

the work is duplicated by splitting the query, it may nevertheless

be a net win.

• In a code review or a teammate training session, it’s easier to

explain how several straightforward queries work than to explain

one intricate query.

Look for the UNION Label

You can combine the results of several queries into one result set with

the UNION operation. This can be useful if you really want to submit a

single query and consume a single result set, for instance because the

result needs to be sorted.

Download Spaghetti-Query/soln/union.sql

(SELECT p.product_id, f.status, COUNT(f.bug_id) AS bug_count

FROM BugsProducts p

LEFT OUTER JOIN Bugs f ON (p.bug_id = f.bug_id AND f.status = 'FIXED')

WHERE p.product_id = 1

GROUP BY p.product_id, f.status)

UNION ALL

(SELECT p.product_id, o.status, COUNT(o.bug_id) AS bug_count

FROM BugsProducts p

LEFT OUTER JOIN Bugs o ON (p.bug_id = o.bug_id AND o.status = 'OPEN')

WHERE p.product_id = 1

GROUP BY p.product_id, o.status)

ORDER BY bug_count;

The result of the query is the result of each subquery, concatenated

together. This example has two rows, one for each subquery. Remember

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/soln/union.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=210

SOLUTION: DIVIDE AND CONQUER 211

to include a column to distinguish the results of one subquery from the

other, in this case the status column.

Use the UNION operation only when the columns in both subqueries

are compatible. You can’t change the number, name, or data type of

columns midway through a result set, so be sure that the columns

apply to all the rows consistently and sensibly. If you catch yourself

defining a column alias like bugcount_or_customerid_or_null, you’re prob-

ably using UNION to combine query results that are not compatible.

Solving Your Boss’s Problem

How could you have solved the urgent request for statistics about your

project? Your boss said, “I need to know how many products we work

on, how many developers fixed bugs, the average bugs fixed per devel-

oper, and how many of our fixed bugs were reported by customers.”

The best solution is to split up the work:

• How many products:

Download Spaghetti-Query/soln/count-products.sql

SELECT COUNT(*) AS how_many_products

FROM Products;

• How many developers fixed bugs:

Download Spaghetti-Query/soln/count-developers.sql

SELECT COUNT(DISTINCT assigned_to) AS how_many_developers

FROM Bugs

WHERE status = 'FIXED';

• Average number of bugs fixed per developer:

Download Spaghetti-Query/soln/bugs-per-developer.sql

SELECT AVG(bugs_per_developer) AS average_bugs_per_developer

FROM (SELECT dev.account_id, COUNT(*) AS bugs_per_developer

FROM Bugs b JOIN Accounts dev

ON (b.assigned_to = dev.account_id)

WHERE b.status = 'FIXED'

GROUP BY dev.account_id) t;

• How many of our fixed bugs were reported by customers:

Download Spaghetti-Query/soln/bugs-by-customers.sql

SELECT COUNT(*) AS how_many_customer_bugs

FROM Bugs b JOIN Accounts cust ON (b.reported_by = cust.account_id)

WHERE b.status = 'FIXED' AND cust.email NOT LIKE '%@example.com';

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/soln/count-products.sql
http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/soln/count-developers.sql
http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/soln/bugs-per-developer.sql
http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/soln/bugs-by-customers.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=211

SOLUTION: DIVIDE AND CONQUER 212

Some of these queries are tricky enough by themselves. Trying to com-

bine them all into a single pass would be a nightmare.

Writing SQL Automatically—with SQL

When you split up a complex SQL query, the result may be many simi-

lar queries, perhaps varying slightly depending on data values. Writing

these queries is a chore, so it’s a good application of code generation.

Code generation is the technique of writing code whose output is new

code you can compile or run. This can be worthwhile if the new code

is laborious to write by hand. A code generator can eliminate repetitive

work for you.

Multitable Updates

During a consulting job, I was called to solve an urgent SQL problem for a

manager in another department.

I went to the manager’s office and found a harried-looking fellow who was

clearly at the end of his rope. We had barely exchanged greetings when he

began sharing with me his woes. “I sure hope you can solve this problem

quickly; our inventory system has been offline all day.” He was no

amateur with SQL, but he told me he had been working for hours on a

statement that could update a large set of rows.

His problem was that he couldn’t use a consistent SQL expression in his

UPDATE statement for all values of rows. In fact, the value he needed to set

was different on each row. His database tracked inventory for a computer

lab and the usage of each computer. He wanted to set a column called

last_used to the most recent date each computer had been used.

He was too focused on solving this complex task in a single SQL

statement, another example of the Spaghetti Query antipattern. In the

hours he had been struggling to write the perfect UPDATE, he could have

made the changes manually.

Instead of writing one SQL statement to solve his complex update, I wrote

a script to generate a set of simpler SQL statements that had the desired

effect:

Download Spaghetti-Query/soln/generate-update.sql

SELECT CONCAT('UPDATE Inventory '

' SET last_used = ''', MAX(u.usage_date), '''',

' WHERE inventory_id = ', u.inventory_id, ';') AS update_statement

FROM ComputerUsage u

GROUP BY u.inventory_id;

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Spaghetti-Query/soln/generate-update.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=212

SOLUTION: DIVIDE AND CONQUER 213

The output of this query is a series of UPDATE statements, complete with

semicolons, ready to run as an SQL script:

update_statement

UPDATE Inventory SET last_used = ’2002-04-19’ WHERE inventory_id = 1234;

UPDATE Inventory SET last_used = ’2002-03-12’ WHERE inventory_id = 2345;

UPDATE Inventory SET last_used = ’2002-04-30’ WHERE inventory_id = 3456;

UPDATE Inventory SET last_used = ’2002-04-04’ WHERE inventory_id = 4567;

. . .

With this technique, I solved in minutes what that manager had been

struggling with for hours.

Executing so many SQL queries or statements may not be the most

efficient way to accomplish a task. But you should balance the goal of

efficiency against the goal of getting the task done.

Although SQL makes it seem possible to solve a complex problem in a

single line of code, don’t be tempted to build a house of cards.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=213

How can I tell what I think till I see what I say?

E. M. Forster

Chapter 19

Implicit Columns
A PHP programmer asked for help troubleshooting the confusing result

of a seemingly straightforward SQL query against his library database:

Download Implicit-Columns/intro/join-wildcard.sql

SELECT * FROM Books b JOIN Authors a ON (b.author_id = a.author_id);

This query returned all book titles as null. Even stranger, when he ran

a different query without joining to the Authors, the result included the

real book titles as expected.

I helped him find the cause of his trouble: the PHP database extension

he was using returned each row resulting from the SQL query as an

associative array. For example, he could access the Books.isbn column as

$row["isbn"]. In his tables, both Books and Authors had a column called title

(the latter was for titles like Dr. or Rev.). A single-result array element

$row["title"] can store only one value; in this case, Authors.title occupied

that array element. Most authors in the database had no title, so the

result was that $row["title"] appeared to be null. When the query skipped

the join to Authors, no conflict existed between column names, and the

book title occupied the array element as expected.

I told the programmer that the solution was to declare a column alias

to give one or the other title column a different name so that each would

have a separate entry in the array.

Download Implicit-Columns/intro/join-alias.sql

SELECT b.title, a.title AS salutation

FROM Books b JOIN Authors a ON (b.author_id = a.author_id);

http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/intro/join-wildcard.sql
http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/intro/join-alias.sql

OBJECTIVE: REDUCE TYPING 215

His second question was, “How do I give one column an alias but also

request other columns?” He wanted to continue using the wildcard

(SELECT *) but apply an alias to one column covered by the wildcard.

19.1 Objective: Reduce Typing

Software developers don’t seem to like to type, which in a way makes

their choice of career ironic, like the twist ending in an O. Henry story.

One example that programmers cite as requiring too much typing is

when writing all the columns used in an SQL query:

Download Implicit-Columns/obj/select-explicit.sql

SELECT bug_id, date_reported, summary, description, resolution,

reported_by, assigned_to, verified_by, status, priority, hours

FROM Bugs;

It’s no surprise that software developers gratefully use the SQL wildcard

feature. The * symbol means every column, so the list of columns is

implicit rather than explicit. This helps make queries more concise.

Download Implicit-Columns/obj/select-implicit.sql

SELECT * FROM Bugs;

Likewise, when using INSERT, it seems smart to take advantage of the

default: the values apply to all the columns in the order they’re defined

in the table.

Download Implicit-Columns/obj/insert-explicit.sql

INSERT INTO Accounts (account_name, first_name, last_name, email,

password, portrait_image, hourly_rate) VALUES

('bkarwin', 'Bill', 'Karwin', 'bill@example.com', SHA2('xyzzy'), NULL, 49.95);

It’s shorter to write the statement without listing the columns.

Download Implicit-Columns/obj/insert-implicit.sql

INSERT INTO Accounts VALUES (DEFAULT,

'bkarwin', 'Bill', 'Karwin', 'bill@example.com', SHA2('xyzzy'), NULL, 49.95);

19.2 Antipattern: a Shortcut That Gets You Lost

Although using wildcards and unnamed columns satisfies the goal of

less typing, this habit creates several hazards.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/obj/select-explicit.sql
http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/obj/select-implicit.sql
http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/obj/insert-explicit.sql
http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/obj/insert-implicit.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=215

ANTIPATTERN: A SHORTCUT THAT GETS YOU LOST 216

Breaking Refactoring

Suppose you need to add a column to the Bugs table, such as date_due

for scheduling purposes.

Download Implicit-Columns/anti/add-column.sql

ALTER TABLE Bugs ADD COLUMN date_due DATE;

Your INSERT statement now results in an error, because you listed eleven

values instead of the twelve the table now expects.

Download Implicit-Columns/anti/insert-mismatched.sql

INSERT INTO Bugs VALUES (DEFAULT, CURDATE(), 'New bug', 'Test T987 fails...',

NULL, 123, NULL, NULL, DEFAULT, 'Medium', NULL);

-- SQLSTATE 21S01: Column count doesn't match value count at row 1

In an INSERT statement that uses implicit columns, you must give val-

ues for all columns in the same order that columns are defined in the

table. If the columns change, the statement produces an error—or even

assigns values to the wrong columns.

Suppose you run a SELECT * query, and since you don’t know the column

names, you reference columns based on their ordinal position:

Download Implicit-Columns/anti/ordinal.php

<?php

$stmt = $pdo->query("SELECT * FROM Bugs WHERE bug_id = 1234");

$row = $stmt->fetch();

$hours = $row[10];

But unknown to you, another person on the team dropped a column:

Download Implicit-Columns/anti/drop-column.sql

ALTER TABLE Bugs DROP COLUMN verified_by;

The hours column is no longer at position 10. Your application is using

the value in another column by mistake. As columns are renamed,

added, or dropped, your query result could change in ways your code

doesn’t support. You can’t predict how many columns your query re-

turns if you use a wildcard.

These errors can propagate through your code, and by the time you

notice the problem in the output of the application, it’s hard to trace

back to the line where the mistake occurred.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/anti/add-column.sql
http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/anti/insert-mismatched.sql
http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/anti/ordinal.php
http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/anti/drop-column.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=216

HOW TO RECOGNIZE THE ANTIPATTERN 217

Hidden Costs

The convenience of using wildcards in queries can harm performance

and scalability. The more columns your query fetches, the more data

must travel over the network between your application and the data-

base server.

You probably have many queries running concurrently in your produc-

tion application environment. They compete for access to the same net-

work bandwidth. Even a gigabit network can be saturated by a hundred

application clients querying for thousands of rows at a time.

Object-relational mapping (ORM) techniques such as Active Record of-

ten use SELECT * by default to populate the fields of an object represent-

ing a row in a database. Even if the ORM offers the means to override

this behavior, most programmers don’t bother.

You Asked for It, You Got It

One of the most common questions I see from programmers using the

SQL wildcard is, “Is there a shortcut to request all columns, except a

few that I specify?” Perhaps these programmers are trying to avoid the

resource cost of fetching bulky TEXT columns that they don’t need, but

they do want the convenience of using a wildcard.

The answer is no, SQL does not support any syntax, which means, “all

the columns I want but none that I don’t want.” Either you use the

wildcard to request all columns from a table, or else you have to list the

columns you want explicitly.

19.3 How to Recognize the Antipattern

The following scenarios may indicate that your project is using implicit

columns inappropriately, and it’s causing trouble:

• “The application broke because it’s still referencing columns in the

database result set by the old column names. We tried to update

all the code, but I guess we missed some.”

You’ve changed a table in the database—adding, deleting, renam-

ing, or changing the order of columns—but you failed to change

your application code that references the table. It’s laborious to

track down all these references.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=217

LEGITIMATE USES OF THE ANTIPATTERN 218

• “It took us days to track down our network bottleneck, and we

finally narrowed it down to excessive traffic to the database server.

According to our statistics, the average query fetches more than

2MB of data but displays less than a tenth of that.”

You’re fetching a lot of data you don’t need.

19.4 Legitimate Uses of the Antipattern

A well-justified use of wildcards is in ad hoc SQL when you’re writing

quick queries to test a solution or as a diagnostic check of current data.

A single-use query benefits less from maintainability.

The examples in this book use wildcards to save space and to avoid

distracting from the more interesting parts of the example queries. I

rarely use SQL wildcards in production application code.

If your application needs to run a query that adapts when columns are

added, dropped, renamed, or repositioned, you may find it best to use

wildcards. Be sure to plan for the extra work it takes to troubleshoot

the pitfalls described earlier.

You can use wildcards for each table individually in a join query. Prefix

the wildcard with the table name or alias. This allows you to specify a

short list of specific columns you need from one table, while using the

wildcard to fetch all columns from the other table. For example:

Download Implicit-Columns/legit/wildcard-one-table.sql

SELECT b.*, a.first_name, a.email

FROM Bugs b JOIN Accounts a

ON (b.reported_by = a.account_id);

Keying in a long list of column names can be time-consuming. For

some people, development efficiency is more important than runtime

efficiency. Likewise, you might place a priority on writing queries that

are shorter and therefore more readable. Using wildcards does reduce

keystrokes and result in a shorter query, so if this is your priority, then

use wildcards.

I’ve heard a developer claim that a long SQL query passing from the

application to the database server causes too much network overhead.

In theory, query length could make a difference in some cases. But

it’s more common that the rows of data that your query returns use

much more network bandwidth than your SQL query string. Use your

judgment about exception cases, but don’t sweat the small stuff.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/legit/wildcard-one-table.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=218

SOLUTION: NAME COLUMNS EXPLICITLY 219

19.5 Solution: Name Columns Explicitly

Always spell out all the columns you need, instead of relying on wild-

cards or implicit column lists.

Download Implicit-Columns/soln/select-explicit.sql

SELECT bug_id, date_reported, summary, description, resolution,

reported_by, assigned_to, verified_by, status, priority, hours

FROM Bugs;

Download Implicit-Columns/soln/insert-explicit.sql

INSERT INTO Accounts (account_name, first_name, last_name, email,

password_hash, portrait_image, hourly_rate)

VALUES ('bkarwin', 'Bill', 'Karwin', 'bill@example.com',

SHA2('xyzzy'), NULL, 49.95);

All this typing seems burdensome, but it’s worth it in several ways.

Mistake-Proofing

Remember poka-yoke?1 You make your SQL queries more resistant

to the errors and confusion described earlier when you specify the

columns in the select-list of the query.

• If a column has been repositioned in the table, it doesn’t change

position in a query result.

• If a column has been added in the table, it doesn’t appear in the

query result.

• If a column has been dropped from the table, your query raises an

error—but it’s a good error, because you’re led directly to the code

that you need to fix, instead of left to hunt for the root cause.

You get similar benefits when you specify columns in INSERT statements.

The order of columns you specify overrides the order in the table defini-

tion, and values are assigned to the columns you intend. Newly added

columns you haven’t named in your statement are given default values

or null. If you reference a column that has been deleted, you get an

error, but troubleshooting is easier.

This is an example of the fail early principle.

1. The practice from the Japanese industry of designing mistake-proof systems. See

Chapter 5, Keyless Entry, on page 65.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/soln/select-explicit.sql
http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/soln/insert-explicit.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=219

SOLUTION: NAME COLUMNS EXPLICITLY 220

You Ain’t Gonna Need It

If you’re concerned about the scalability and throughput of your soft-

ware, you should look for possible wasteful use of network bandwidth.

The bandwidth of an SQL query can seem harmless during software

development and testing, but it bites you when your production envi-

ronment is running thousands of SQL queries per second.

Once you abandon the SQL wildcard, you’re naturally motivated to

leave out unneeded columns—it means less typing. This promotes more

efficient use of bandwidth too.

Download Implicit-Columns/soln/yagni.sql

SELECT date_reported, summary, description, resolution, status, priority

FROM Bugs;

You Need to Give Up Wildcards Anyway

When you buy a bag of M&M’s candies from the vending machine, the

wrapper is a convenience, making it easy to carry the package of can-

dies back to your desk. Once you open the bag, however, you need to

treat M&M’s as individuals. They roll, slide, and bounce all over the

place. If you’re not careful, some may fall under your desk and attract

bugs. But there’s no way to eat one until you tear open the bag.

In an SQL query, as soon as you want to apply an expression to a col-

umn or use a column alias or exclude columns for the sake of efficiency,

you need to break open the “container” provided by the wildcard. You

lose the convenience of treating the collection of columns as a single

package, but you gain access to all of its contents.

You’ll inevitably need to treat some columns in a query individually by

employing a column alias or a function or removing a column from the

list. If you skip the use of wildcards from the beginning, it’ll be easier

to change your query later.

Take all you want, but eat all you take.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Implicit-Columns/soln/yagni.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=220

Part IV

Application Development

Antipatterns

The enemy knows the system.

Shannon’s maxim

Chapter 20

Readable Passwords
Suppose you receive a phone call from a man using one of the applica-

tions you support. The caller is having trouble logging in.

“This is Pat Johnson in Sales. I must have forgotten my password. Can

you just look it up and tell me what it is?” Pat sounds a bit sheepish

but also strangely in a hurry.

“I’m sorry, I’m not supposed to do that,” you answer. “I can reset your

account, and that’ll send an email to the address you registered for

your account. You can use the instructions in that email to set a new

password.”

The man on the phone becomes more impatient and assertive. “That’s

ridiculous,” he says. “At my last company the support staff could look

up my password. Are you unable to do your job? Do you want me to

call your manager?”

Naturally, you want to preserve a smooth relationship with your users,

so you run an SQL query to look up the plain-text password for Pat

Johnson’s account and read it to him over the phone.

The man hangs up. You comment to your co-worker, “That was a close

call. I almost had an escalation from Pat Johnson. I hope he doesn’t

complain.”

Your co-worker looks puzzled. “He? Pat Johnson in Sales is a woman. I

think you just gave her password to a con artist.”

20.1 Objective: Recover or Reset Passwords

It’s a sure bet that in any application that has passwords, a user will

forget his password. Most modern applications handle this by giving

the user a chance to recover or reset his password through an email

ANTIPATTERN: STORE PASSWORD IN PLAIN TEXT 223

feedback mechanism. This solution depends on the user having access

to the email address associated with the user profile in the application.

20.2 Antipattern: Store Password in Plain Text

The frequent mistake in these kinds of password-recovery solutions

is that the application allows the user to request an email containing

his password in clear text. This is a dire security flaw related to the

database design, and it leads to several security risks that could allow

unauthorized people to gain privileged access to the application.

Let’s explore these risks in the following sections, assuming our exam-

ple bug-tracking database has a table Accounts, where each user’s ac-

count is stored as a row in this table.

Storing Passwords

A password is typically stored in the Accounts table as a string attribute

column:

Download Passwords/anti/create-table.sql

CREATE TABLE Accounts (

account_id SERIAL PRIMARY KEY,

account_name VARCHAR(20) NOT NULL,

email VARCHAR(100) NOT NULL,

password VARCHAR(30) NOT NULL

);

You can create an account simply by inserting one row and specifying

the password as a string literal:

Download Passwords/anti/insert-plaintext.sql

INSERT INTO Accounts (account_id, account_name, email, password)

VALUES (123, 'billkarwin', 'bill@example.com', 'xyzzy');

It’s not secure to store a password in clear text or even to pass it over

the network in the clear. If an attacker can read the SQL statement you

use to insert a password, they can see the password plainly. This is

also true for SQL statements to change a password or verify that user

input matches a stored password. Hackers have several opportunities

to steal a password, including the following:

• Intercepting network packets as the SQL statement is sent from

the application client to the database server. This is easier than it

sounds; there are free software tools such as Wireshark.1

1. Wireshark (formerly known as Ethereal) is available at http://www.wireshark.org/.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Passwords/anti/create-table.sql
http://media.pragprog.com/titles/bksqla/code/Passwords/anti/insert-plaintext.sql
http://www.wireshark.org/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=223

ANTIPATTERN: STORE PASSWORD IN PLAIN TEXT 224

• Searching SQL query logs on the database server. The attacker

needs access to the database server host, but assuming they have

that, they can access log files that may include a record of SQL

statements executed by that database server.

• Reading data from database backup files on the server or on back-

up media. Are your backup media kept safe? Do you erase backup

media destructively before they are recycled or disposed of?

Authenticating Passwords

Later, when the user tries to log in, your application compares the

user’s input to the password string stored in the database. This com-

parison is done as plain text, since the password itself is stored in plain

text. For example, you can use a query like the following to return a

0 (false) or 1 (true), indicating whether the user’s input matches the

password in the database:

Download Passwords/anti/auth-plaintext.sql

SELECT CASE WHEN password = 'opensesame' THEN 1 ELSE 0 END

AS password_matches

FROM Accounts

WHERE account_id = 123;

In the previous example, the password the user entered, opensesame,

is incorrect, and the query returns a zero value.

Like in the earlier section on storing passwords, interpolating the user’s

input string into the SQL query in plain text exposes it to discovery by

an attacker.

Don’t Lump Together Two Different Conditions

Most of the time, I see the authentication query place conditions for both

the account_id and password columns in the WHERE clause:

Download Passwords/anti/auth-lumping.sql

SELECT * FROM Accounts

WHERE account_name = 'bill' AND password = 'opensesame';

This query returns an empty result set if the account doesn’t exist or if

the user gave the wrong password. Your application can’t separate the two

causes for failed authentication. It’s better to use a query that can treat

the two cases as distinct. Then you can handle the failure appropriately.

For example, you may want to lock an account temporarily if you detect

many failed logins, because this may indicate an attempted intrusion.

However, you can’t detect this pattern if you can’t tell the difference

between a wrong account name and a wrong password.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Passwords/anti/auth-plaintext.sql
http://media.pragprog.com/titles/bksqla/code/Passwords/anti/auth-lumping.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=224

HOW TO RECOGNIZE THE ANTIPATTERN 225

Sending Passwords in Email

Since the password is stored in plain text in the database, retrieving

the password in your application is simple:

Download Passwords/anti/select-plaintext.sql

SELECT account_name, email, password

FROM Accounts

WHERE account_id = 123;

Your application can then send to a user’s email address on request.

You’ve probably seen one of these emails as part of the password re-

minder feature of any number of websites you use. An example of this

kind of email is shown here:

Example of Password Recovery Email:

From: daemon

To: bill@example.com

Subject: password request

You requested a reminder of the password for your account "bill".

Your password is "xyzzy".

Click the link below to log in to your account:

http://www.example.com/login

Sending an email with the password in plain text is a serious security

risk. Email can be intercepted, logged, and stored in multiple ways by

hackers. It’s not good enough that you use a secure protocol to view

mail or that the sending and receiving mail servers are managed by

responsible system administrators. Since email is routed across the

Internet, it can be intercepted at other sites. Secure protocols for email

aren’t necessarily widespread or under your control.

20.3 How to Recognize the Antipattern

Any application that can recover your password and send it to you must

be storing it in plain text or at least with some reversible encoding. This

is the antipattern. If your application can read a password for a legit-

imate purpose, then it’s possible that a hacker can read the password

illicitly.

20.4 Legitimate Uses of the Antipattern

Your application may need to use a password to access another third-

party service—that is, your application can be a client. In this case,
Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Passwords/anti/select-plaintext.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=225

LEGITIMATE USES OF THE ANTIPATTERN 226

Ethics of Software Development

If you’re developing an application that supports passwords
and you’re asked to design a password recovery feature, you
should push back respectfully, warn the project decision makers
about the risks, and offer an alternative solution that provides
similar value.

Just as an electrician should recognize and correct a wiring
design that poses an unsafe fire risk, it’s your responsibility as a
software engineer to be aware of safety issues and to promote
safer software.

A good book you should read is 19 Deadly Sins of Software
Security [HLV05]. Another good resource is the Open Web
Application Security Project (http://owasp.org).

you must store that password in a readable format. Preferably, you use

some encoding that your application can reverse, instead of using plain

text in the database.

You can make a distinction between identification and authentication.

A user can identify himself as anyone he wants, but authentication is

proving he is who he says he is. Passwords are the most common way

of doing this.

If you can’t enforce security strong enough to defeat skilled and deter-

mined attackers, then you effectively have an identification mechanism

but not a reliable authentication mechanism. But this isn’t necessarily

a deal-breaker.

Not every software application is at risk for attack, and not every appli-

cation contains sensitive information that must be protected. For exam-

ple, an intranet application may be accessed by only a few people who

are known to be honest and cooperative. In this case, an identifica-

tion mechanism may be enough for the application to work, and in

those informal environments, a simpler login design may be adequate.

The additional work necessary to create a strong authentication system

may not be justified.

Be careful, though—applications have a tendency to evolve beyond their

original environment or role. Before you make your quaint little intranet

application available outside your company firewall, you should get a

qualified security expert to evaluate it.

Report erratum

this copy is (P1.0 printing, May 2010)

http://owasp.org
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=226

SOLUTION: STORE A SALTED HASH OF THE PASSWORD 227

20.5 Solution: Store a Salted Hash of the Password

The chief problem in this antipattern is that the original form of the

password is readable. But you can authenticate the user’s input against

a password without reading it. This section describes how to implement

this kind of secure password storage in an SQL database.

Understanding Hash Functions

Encode the password using a one-way cryptographic hash function.

This function transforms its input string into a new string, called the

hash, that is unrecognizable. Even the length of the original string is

obscured, because the hash returned by a hash function is a fixed-

length string. For example, the SHA-256 algorithm converts our example

password, xyzzy, to a 256-bit string of bits, usually represented as a

64-character string of hexadecimal digits:

SHA2('xyzzy') = '184858a00fd7971f810848266ebcecee5e8b69972c5ffaed622f5ee078671aed'

Another characteristic of a hash is that it’s not reversible. You can’t

recover the input string from its hash because the hashing algorithm

is designed to “lose” some information about the input. A good hashing

algorithm should take as much work to crack as it would to simply

guess the input through trial and error.

A popular algorithm in the past has been SHA-1, but researchers have

recently proved this 160-bit hashing algorithm to have insufficient

cryptographic strength; a technique exists to infer the input from a

hash string. This technique is very time-consuming but nevertheless

takes less time than it would take to guess the password by trial and

error. The National Institute of Standards and Technology (NIST) has

announced a plan to phase out SHA-1 as an approved secure hash-

ing algorithm after 2010 in favor of these stronger variants: SHA-224,

SHA-256, SHA-384, and SHA-512.2 Whether you need to comply with NIST

standards or not, it’s a good idea to use at least SHA-256 for passwords.

MD5() is another popular hash function, producing hash strings of 128

bits. MD5() has also been shown to be cryptographically weak, so you

shouldn’t use it for encoding passwords. Weaker algorithms still have

uses but not for sensitive information like passwords.

2. http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

Report erratum

this copy is (P1.0 printing, May 2010)

http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=227

SOLUTION: STORE A SALTED HASH OF THE PASSWORD 228

Using a Hash in SQL

The following is a redefinition of the Accounts table. The SHA-256 pass-

word hash is always 64 characters long, so define the column as a

fixed-length CHAR column of that length.

Download Passwords/soln/create-table.sql

CREATE TABLE Accounts (

account_id SERIAL PRIMARY KEY,

account_name VARCHAR(20),

email VARCHAR(100) NOT NULL,

password_hash CHAR(64) NOT NULL

);

Hashing functions aren’t part of the standard SQL language, so you

may need to rely on your database brand to support hashing as an

extension. For example, MySQL 6.0.5 with SSL support includes a

function SHA2(), which returns a 256-bit hash by default.

Download Passwords/soln/insert-hash.sql

INSERT INTO Accounts (account_id, account_name, email, password_hash)

VALUES (123, 'billkarwin', 'bill@example.com', SHA2('xyzzy'));

You can validate a user’s input by applying the same hash function to

it and comparing the result to the value stored in the database.

Download Passwords/soln/auth-hash.sql

SELECT CASE WHEN password_hash = SHA2('xyzzy') THEN 1 ELSE 0 END

AS password_matches

FROM Accounts

WHERE account_id = 123;

You can lock an account easily by changing the value in the password

hash to a string that the hash function can’t return. For example, the

string noaccess contains letters that aren’t hexadecimal digits.

Adding Salt to Your Hash

If you store hashes instead of passwords and the attacker gains access

to your database (by searching your trash for a CDROM backup, for

example), he can still attempt to guess passwords by trial and error.

Guessing each password may take a long time, but he can prepare his

own database of hashes of likely passwords against which to compare

the hash strings he finds in your database. If only one user chose a

password that is a word in the dictionary, it’s easy for an attacker to

find it by searching your password database for hashes that match his

prepared table of hashes. He can even do this with SQL:

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Passwords/soln/create-table.sql
http://media.pragprog.com/titles/bksqla/code/Passwords/soln/insert-hash.sql
http://media.pragprog.com/titles/bksqla/code/Passwords/soln/auth-hash.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=228

SOLUTION: STORE A SALTED HASH OF THE PASSWORD 229

Download Passwords/soln/dictionary-attack.sql

CREATE TABLE DictionaryHashes (

password VARCHAR(100),

password_hash CHAR(64)

);

SELECT a.account_name, h.password

FROM Accounts AS a JOIN DictionaryHashes AS h

ON a.password_hash = h.password_hash;

One way to defeat this kind of “dictionary attack” is by including a salt

in your password-encoding expression. A salt is a string of meaningless

bytes you concatenate with the user’s password, before passing the

resulting string to the hash function. Even if the user chose a word

in the dictionary as their password, the hash produced from a salted

password won’t match the hash in the attacker’s hash database. For

example, if the password is the word password, you can see that the

hash of this word is different from a hash of the word with a few random

bytes appended:

SHA2('password')

= '5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8'

SHA2('password-0xT!sp9')

= '7256d8d7741f740ee83ba7a9b30e7ac11fcd9dbd7a0147f4cc83c62dd6e0c45b'

Each password should use a different salt value to make an attacker

have to generate a new dictionary table of hashes for each password.

Then he’s back to square one, because cracking passwords in your

database takes as much time as guessing them with trial and error.3

Download Passwords/soln/salt.sql

CREATE TABLE Accounts (

account_id SERIAL PRIMARY KEY,

account_name VARCHAR(20),

email VARCHAR(100) NOT NULL,

password_hash CHAR(32) NOT NULL,

salt BINARY(8) NOT NULL

);

INSERT INTO Accounts (account_id, account_name, email,

password_hash, salt)

VALUES (123, 'billkarwin', 'bill@example.com',

SHA2('xyzzy' || '-0xT!sp9'), '-0xT!sp9');

3. A related, and more sophisticated, technique to recover passwords from their hashes

is called a rainbow table. Employing a salt defends against this technique too.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Passwords/soln/dictionary-attack.sql
http://media.pragprog.com/titles/bksqla/code/Passwords/soln/salt.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=229

SOLUTION: STORE A SALTED HASH OF THE PASSWORD 230

SELECT (password_hash = SHA2('xyzzy' || salt)) AS password_matches

FROM Accounts

WHERE account_id = 123;

A good length for a salt is 8 bytes. You should generate the salt ran-

domly for each password. The previous examples show a salt string

containing printable characters, but remember you can make a salt

using any random, unprintable bytes.

Hiding the Password from SQL

Now that you’re using a strong hashing function to encode the pass-

word before you store it and you use a salt to thwart dictionary attacks,

you would think this is enough to ensure security. But the password

still appears in plain text in the SQL expression, which means that it’s

readable if an attacker can intercept network packets or if SQL queries

are logged and the log files fall into the wrong hands.

You can protect against this kind of exposure if you don’t put the plain-

text password into the SQL query. Instead, compute the hash in your

application code, and use only the hash in the SQL query. It does an

attacker little good to intercept the hash, because he can’t reverse it to

get the password.

You do need the salt before you can compute the hash.

The following is a PHP example using the PDO extension to get the salt,

compute a hash, and run a query to validate the password against the

salted hash stored in the database:

Download Passwords/soln/auth-salt.php

<?php

$password = 'xyzzy';

$stmt = $pdo->query(

"SELECT salt

FROM Accounts

WHERE account_name = 'bill'");

$row = $stmt->fetch();

$salt = $row[0];

$hash = hash('sha256', $password . $salt);

$stmt = $pdo->query("

SELECT (password_hash = '$hash') AS password_matches;

FROM Accounts AS a

WHERE a.acct_name = 'bill'");

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Passwords/soln/auth-salt.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=230

SOLUTION: STORE A SALTED HASH OF THE PASSWORD 231

$row = $stmt->fetch();

if ($row === false) {

// account 'bill' does not exist

} else {

$password_matches = $row[0];

if (!$password_matches) {

// password given was incorrect

}

}

The hash() function is guaranteed to return only hexadecimal digits,

so there’s no risk of SQL injection (see Chapter 21, SQL Injection, on

page 234).

In web applications, there’s another place where attackers have an

opportunity to intercept data on the network: between the user’s brow-

ser and the web application server. When the user submits a login

form, the browser sends his password in plain text to the server, where

it’s used to compute a hash as described earlier. You could protect

against this by encoding the password into a hash in the user’s browser

before sending the form data. But this is awkward because you need to

retrieve the salt associated with that password before you can compute

the correct hash. A good compromise is to use a secure HTTP connec-

tion whenever sending a password from browser to the application.

Resetting the Password Instead of Recovering the Password

Now that the password is stored in a more secure way, you still need to

solve the original objective: help users who have forgotten their pass-

word. You can’t recover their password, because now your database

stores a hash instead of the password. You can’t reverse the hash any

more easily than an attacker could. But you can allow a user access in

other ways. Two sample implementations are described here.

The first alternative is that when a user who has forgotten his password

requests help, instead of emailing his password to him, your application

can send an email with a temporary password generated by the applica-

tion. For additional security, the application may expire the temporary

password after a short time, so if the email is intercepted, it’s more

likely that it will not allow unauthorized access. Also, the application

should be designed so that the user is forced to change the password

as his first action when he logs in.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=231

SOLUTION: STORE A SALTED HASH OF THE PASSWORD 232

Example of Email with a System-Generated Temporary Password

From: daemon

To: bill@example.com

Subject: password reset

You requested to reset your password for your account.

Your temporary password is "p0trz3b1e".

This password will cease to allow access after one hour.

Click the link below to log in to your account and

set your new password:

http://www.example.com/login

In a second alternative, instead of including a new password in an

email, the request is logged in a database table and assigned a unique

token as an identifier:

Download Passwords/soln/reset-request.sql

CREATE TABLE PasswordResetRequest (

token CHAR(32) PRIMARY KEY,

account_id BIGINT UNSIGNED NOT NULL,

expiration TIMESTAMP NOT NULL,

FOREIGN KEY (account_id) REFERENCES Accounts(account_id)

);

SET @token = MD5('billkarwin' || CURRENT_TIMESTAMP);

INSERT INTO PasswordResetRequest (token, account_id, expiration)

VALUES (@token, 123, CURRENT_TIMESTAMP + INTERVAL 1 HOUR);

Then you include the token in an email. You could also send the token

in some other message, such as SMS, as long as it’s an address that’s

already associated with the account requesting a password reset. That

way, if a stranger requests a password reset illicitly, it sends a spurious

email only to the actual owner of the account.

Example of Email with a Temporary Link to a Password Reset Page

From: daemon

To: bill@example.com

Subject: password reset

You requested to reset your password for your account.

Click the link below within one hour to change your password.

After one hour, the link below will no longer work and your

password will remain unchanged.

http://www.example.com/reset_password?token=f5cabff22532bd0025118905bdea50da

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Passwords/soln/reset-request.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=232

SOLUTION: STORE A SALTED HASH OF THE PASSWORD 233

When the application receives a request for the special reset_password

screen, the value in the token parameter must match a row in the Pass-

wordResetRequest table, and the expiration timestamp on this row must

still be upcoming, not past. The account_id on this row references the

Accounts table, so the token is restricted to enable a password reset of

only one specific account.

Of course, it would be harmful if the wrong people could access this

page. Simple restrictions reduce this risk, such as giving the special

screen a short expiration period and making sure the screen does not

show the account for which the password is being set.

The state of cryptography is constantly advancing, trying to stay ahead

of attack technology. The techniques in this chapter will improve a great

number of typical applications, but if you need to develop very secure

systems, you should move on to more advanced techniques such as the

following:

• PBKDF2 (http://tools.ietf.org/html/rfc2898) is a widely used key

strengthening standard.

• Bcrypt (http://bcrypt.sourceforge.net/) implements an adaptive

hashing function.

If you can read passwords, so can a hacker.

Report erratum

this copy is (P1.0 printing, May 2010)

http://tools.ietf.org/html/rfc2898
http://bcrypt.sourceforge.net/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=233

Quote me as saying I was misquoted.

Groucho Marx

Chapter 21

SQL Injection
In March 2010, serial computer hacker Albert Gonzalez was convicted

for his role in the largest identity theft in history. He acquired an esti-

mated 130 million credit and debit card numbers by hacking into ATM

machines and payment systems of several major retail store chains and

the credit-card processing companies that serve them.

Gonzales broke the previous record, which he also held, for stealing

45.6 million credit and debit card numbers in 2006. He performed that

earlier crime by exploiting vulnerable wireless networks.

How did Gonzalez nearly triple his own record? We imagine a daring plot

from a James Bond movie, with black-clad agents rappelling down ele-

vators shafts, using supercomputers to crack state-of-the-art encrypted

passwords, or sabotaging electrical power to an entire city.

The indictment describes a more mundane reality. Gonzalez exploited

a vulnerability that is one of the most common security weaknesses on

the Internet. He was able to use an attack technique called SQL Injec-

tion to gain privileged access to upload files to the corporate victims’

servers. After Gonzalez and his coconspirators gained this access, the

indictment states:1

Executing the Attacks: The Malware

...they would install “sniffer” programs that would capture credit and

debit card numbers, corresponding Card Data, and other information on

a real-time basis as the information moved through the Corporate

Victims’ credit and debit card processing networks, and then periodically

transmit that information to the coconspirators.

1. http://voices.washingtonpost.com/securityfix/heartlandIndictment.pdf

http://voices.washingtonpost.com/securityfix/heartlandIndictment.pdf

OBJECTIVE: WRITE DYNAMIC SQL QUERIES 235

The retailers whose websites Gonzalez attacked have said that they’ve

made changes to correct these security holes. However, they’ve plugged

only one hole, while new web applications are created every day that

contain other holes. SQL Injection attacks remain an easy target for

hackers, because software developers don’t understand the nature of

the vulnerability or how to write code to prevent it.

21.1 Objective: Write Dynamic SQL Queries

SQL is intended to be used in concert with application code. When you

build SQL queries as strings and combine application variables into the

string, this is commonly called dynamic SQL.2

Download SQL-Injection/obj/dynamic-sql.php

<?php

$sql = "SELECT * FROM Bugs WHERE bug_id = $bug_id";

$stmt = $pdo->query($sql);

This simple example shows interpolating a PHP variable into a string.

We intend that $bug_id is an integer so that by the time the database

receives the query, the value of $bug_id is part of the query.

Dynamic SQL queries are a natural way to get the most out of a data-

base. When you use application data to specify how you want to query

a database, you’re using SQL as a two-way language. Your application

is having a kind of dialogue with the database.

However, it’s not too hard to make your software do tasks that you

want it to do—the harder challenge is making your software secure so

it doesn’t allow actions that you don’t want it to do. Software defects

resulting from SQL Injection are failures to satisfy the latter.

21.2 Antipattern: Execute Unverified Input As Code

SQL injection happens when you interpolate some content into an SQL

query string and the content modifies the syntax of your query in ways

you didn’t intend. In the classic example of SQL Injection, the value you

interpolate into your string finishes the SQL statement and executes a

second complete statement. For instance, if the value of the $bug_id

2. Technically, any query parsed at runtime is dynamic SQL, but in common usage, it

describes SQL that includes variable data.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/obj/dynamic-sql.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=235

ANTIPATTERN: EXECUTE UNVERIFIED INPUT AS CODE 236

Figure 21.1: Exploits of a mom

variable is 1234; DELETE FROM Bugs, the resulting SQL shown earlier

would look like this:

Download SQL-Injection/anti/delete.sql

SELECT * FROM Bugs WHERE bug_id = 1234; DELETE FROM Bugs

This type of SQL Injection can be spectacular, as shown in Figure 21.1.3

Usually these flaws are more subtle—but still dangerous.

Accidents May Happen

Suppose you are writing a web interface to view the bugs database and

one page allows you to view a project based on its name:

Download SQL-Injection/anti/ohare.php

<?php

$project_name = $_REQUEST["name"];

$sql = "SELECT * FROM Projects WHERE project_name = '$project_name'";

The trouble begins when your team is hired to develop software for

O’Hare International Airport in Chicago. You naturally give the project

a name like “O’Hare.” How do you submit a request to view the project

in your web application?

http://bugs.example.com/project/view.php?name=O’Hare

3. Cartoon by Randall Munroe, used with permission (http://xkcd.com/327/).

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/delete.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare.php
http://xkcd.com/327/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=236

ANTIPATTERN: EXECUTE UNVERIFIED INPUT AS CODE 237

Your PHP code takes the value of that request parameter and interpo-

lates it into the SQL query, but it produces a query that neither you nor

the user intended:

Download SQL-Injection/anti/ohare.sql

SELECT * FROM Projects WHERE project_name = 'O'Hare'

Because a string is terminated by the first quote character it finds, the

resulting expression contains a short string, ’O’, followed by some extra

characters, Hare’, that make no sense in this context. The database can

only report this as a syntax error. This is an honest accident. The risk of

anything bad happening is low, because a statement with a syntax error

can’t execute. The greater risk is that the statement executes without

error but does something you didn’t intend.

The Top Web Security Threat

SQL Injection becomes a greater threat when an attacker can use this

to manipulate your SQL statements. For example, your application may

allow a user to change his or her password:

Download SQL-Injection/anti/set-password.php

<?php

$password = $_REQUEST["password"];

$userid = $_REQUEST["userid"];

$sql = "UPDATE Accounts SET password_hash = SHA2('$password')

WHERE account_id = $userid";

A clever attacker who can guess how the request parameters are used

in your SQL statement can send a carefully chosen string to exploit it:

http://bugs.example.com/setpass?password=xyzzy&userid=123 OR TRUE

After interpolating the string from the userid parameter into your SQL

expression, the string has changed the syntax of the statement. Now it

changes the password for every account in the database, not for one

specific account:

Download SQL-Injection/anti/set-password.sql

UPDATE Accounts SET password_hash = SHA2('xyzzy')

WHERE account_id = 123 OR TRUE;

This is key to understanding SQL Injection and also how to combat

it: SQL Injection works by changing the syntax of the SQL statement

before the statement is parsed. As long as you insert dynamic portions

to the statement before it’s parsed, you have a risk of SQL Injection.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=237

ANTIPATTERN: EXECUTE UNVERIFIED INPUT AS CODE 238

There are countless ways a maliciously chosen string can alter the

behavior of your SQL statements. It’s limited only by the imagination of

the attacker and your ability to protect your SQL statements.

The Quest for a Cure

Now that we know the threat of SQL Injection, the next natural question

is, what do we need to do to protect code from being exploited? You may

have read a blog or an article that described some single technique and

claimed it’s the universal remedy against SQL Injection. In reality, none

of these techniques is proof against all forms of SQL Injection, so you

need to use all of them in different cases.

Escaping Values

The oldest way to protect SQL queries from accidental unmatched quote

characters is to escape any quote characters to prevent them from

becoming the end of the quoted string. In standard SQL, you can use

two quote characters to make one literal quote character:

Download SQL-Injection/anti/ohare-escape.sql

SELECT * FROM Projects WHERE project_name = 'O''Hare'

Most brands of database also support the backslash to escape the fol-

lowing quote character, just like most other programming languages

do:

Download SQL-Injection/anti/ohare-escape.sql

SELECT * FROM Projects WHERE project_name = 'O\'Hare'

The idea is that you transform application data before you interpolate

it into SQL strings. Most SQL programming interfaces provide a conve-

nience function. For example, in PHP’s PDO extension, use the quote()

function to both delimit a string with quote characters and escape any

literal quote characters within the string.

Download SQL-Injection/anti/ohare-escape.php

<?php

$project_name = $pdo->quote($_REQUEST["name"]);

$sql = "SELECT * FROM Projects WHERE project_name = $project_name";

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare-escape.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare-escape.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/ohare-escape.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=238

ANTIPATTERN: EXECUTE UNVERIFIED INPUT AS CODE 239

This technique can reduce the risk of SQL Injection resulting from

unmatched quote characters within the dynamic content. But it doesn’t

work as well for nonstring content.

Download SQL-Injection/anti/set-password-escape.php

<?php

$password = $pdo->quote($_REQUEST["password"]);

$userid = $pdo->quote($_REQUEST["userid"]);

$sql = "UPDATE Accounts SET password_hash = SHA2($password)

WHERE account_id = $userid";

Download SQL-Injection/anti/set-password-escape.sql

UPDATE Accounts SET password_hash = SHA2('xyzzy')

WHERE account_id = '123 OR TRUE'

You can’t compare a numeric column directly to a string containing

digits in all brands of database. Some databases may implicitly cast

the string to a sensible numeric equivalent, but in standard SQL you

have to use the CAST() function deliberately to convert a string to a

numeric data type.

There are also obscure corner cases where strings in non-ASCII char-

acter sets can pass through a function intended to escape the quote

characters but leave unescaped quote characters intact.4

Query Parameters

The solution most frequently cited as a panacea to SQL Injection is to

use query parameters. Instead of interpolating dynamic values into your

SQL string, leave parameter placeholders in the string as you prepare

the query. Then provide a parameter value as you execute the prepared

query.

Download SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM Projects WHERE project_name = ?");

$params = array($_REQUEST["name"]);

$stmt->execute($params);

Many programmers recommend this solution because you don’t have to

escape dynamic content or worry about flawed escaping functions. In

fact, query parameters are a very strong defense against SQL Injection.

But parameters aren’t a universal solution because the value of a query

parameter is always interpreted as a single literal value.

4. See http://bugs.mysql.com/8378 for an example.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password-escape.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password-escape.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://bugs.mysql.com/8378
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=239

ANTIPATTERN: EXECUTE UNVERIFIED INPUT AS CODE 240

• No lists of values can be a single parameter:

Download SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM Bugs WHERE bug_id IN (?)");

$stmt->execute(array("1234,3456,5678"));

This works as though you provided a single string value composed

of digits and commas, which doesn’t work the same as a series of

integers:

Download SQL-Injection/anti/parameter.sql

SELECT * FROM Bugs WHERE bug_id IN ('1234,3456,5678')

• No table identifier can be a parameter:

Download SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM ? WHERE bug_id = 1234");

$stmt->execute(array("Bugs"));

This works as though you had entered a string literal in place of

the table name, which is simply a syntax error:

Download SQL-Injection/anti/parameter.sql

SELECT * FROM 'Bugs' WHERE bug_id = 1234

• No column identifier can be a parameter:

Download SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM Bugs ORDER BY ?");

$stmt->execute(array("date_reported"));

In this example, the sort is a no-op, because the expression is a

constant string, the same on every row:

Download SQL-Injection/anti/parameter.sql

SELECT * FROM Bugs ORDER BY 'date_reported';

• No SQL keyword can be a parameter:

Download SQL-Injection/anti/parameter.php

<?php

$stmt = $pdo->prepare("SELECT * FROM Bugs ORDER BY date_reported ?");

$stmt->execute(array("DESC"));

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=240

ANTIPATTERN: EXECUTE UNVERIFIED INPUT AS CODE 241

What Was My Complete Query?

Many people think that using SQL query parameters is a way
to quote values into an SQL statement automatically. This isn’t
accurate, and thinking about query parameters this way leads
to misunderstanding about how they work.

The RDBMS server parses your SQL as you prepare the query.
After this, nothing can change the syntax of that SQL query.

You provide values as you execute a prepared query. Each
value you provide is used for each placeholder, one for one.

You can execute a prepared query again, substituting new
parameter values for the old values. So, the RDBMS must keep
track of the query and the parameter values separately. This is
good for security.

This means that if you retrieve the prepared SQL query string,
it doesn’t contain any parameter values. It would be handy
to see the SQL statement including parameter values if you’re
debugging or logging queries, but these values are never com-
bined with the query in its human-readable SQL form.

The best way to debug your dynamic SQL statements is to log
both the statement with parameter placeholders at prepare
time and the parameter values at execute time.

The parameter is interpreted as a literal string, not an SQL key-

word. In this example, the result is a syntax error.

Download SQL-Injection/anti/parameter.sql

SELECT * FROM Bugs ORDER BY date_reported 'DESC'

Stored Procedures

Use of stored procedures is another method that many software devel-

opers claim is proof against SQL Injection vulnerabilities. Typically,

stored procedures contain fixed SQL statements, parsed when you de-

fine the procedure.

However, it’s possible to use dynamic SQL in stored procedures un-

safely. In the following example, the input_userid argument is interpo-

lated into the SQL query verbatim, which is unsafe.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/parameter.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=241

HOW TO RECOGNIZE THE ANTIPATTERN 242

Download SQL-Injection/anti/procedure.sql

CREATE PROCEDURE UpdatePassword(input_password VARCHAR(20),

input_userid VARCHAR(20))

BEGIN

SET @sql = CONCAT('UPDATE Accounts

SET password_hash = SHA2(', QUOTE(input_password), ')

WHERE account_id = ', input_userid);

PREPARE stmt FROM @sql;

EXECUTE stmt;

END

Using dynamic SQL in a stored procedure is no more and no less safe

than using dynamic SQL in application code. The input_userid argument

can contain harmful content and produce an unsafe SQL statement:

Download SQL-Injection/anti/set-password.sql

UPDATE Accounts SET password_hash = SHA2('xyzzy')

WHERE account_id = 123 OR TRUE;

Data Access Frameworks

You might see advocates of data access frameworks claim that their

library protects your code from SQL Injection risks. This is a false claim

for any framework that allows you to write SQL statements as strings.

Practice Good Hygiene

After I gave a presentation on a PHP data access framework that I had

developed, a member of the audience approached me and asked, “Does

your framework prevent SQL Injection?” I answered that it provides

functions for quoting strings and using query parameters.

The young man looked puzzled. “But can it prevent SQL Injection?” he

repeated. He was looking for an automatic way to ensure that he doesn’t

make a mistake that he doesn’t know how to recognize himself.

I told him the framework prevents SQL Injection like a toothbrush

prevents cavities. You have to use it consistently to get the benefit.

No framework can force you to write safe SQL code. A framework may

provide convenience functions to help you, but it’s easy to bypass these

functions and instead use common string manipulation to build an SQL

statement unsafely.

21.3 How to Recognize the Antipattern

Practically every database application builds SQL statements dynam-

ically. If you build any portion of an SQL statement by concatenating

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/procedure.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/anti/set-password.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=242

LEGITIMATE USES OF THE ANTIPATTERN 243

Rule #31: Check the Back Seat

If you like to watch monster movies, you know that creatures
like to hide behind the driver seat of your car and grab you
after you get in. The lesson is that you shouldn’t assume there’s
no danger inside a familiar space like your car.

SQL Injection can take indirect forms. Even if you insert user-
supplied data safely using query parameters, you might use
that data later as you form dynamic SQL queries:

<?php
$sql1 = "SELECT last_name FROM Accounts WHERE account_id = 123";
$row = $pdo->query($sql1)->fetch();
$sql2 = "SELECT * FROM Bugs WHERE MATCH(description) AGAINST ('"

. $row["last_name"] . "')";

What would happen in the previous query if the user had
spelled their name as O’Hara—or if they had deliberately
entered their name to contain SQL syntax?

strings together or interpolating variables into strings, then the state-

ment potentially exposes your application to SQL Injection attacks.

SQL Injection vulnerabilities are so common that you should assume

that you have some in any application that uses SQL, unless you’ve just

completed a code review specifically to find and correct these issues.

21.4 Legitimate Uses of the Antipattern

This antipattern is different from most of the others in this book, in that

there aren’t any legitimate reasons for allowing your application to have

a security vulnerability because of SQL Injection. It’s your responsibility

as a software developer to write code defensively and to help your peers

to do so as well. Software is only as secure as its weakest link—make

sure you’re not responsible for that weakest link!

21.5 Solution: Trust No One

There is no single technique for securing your SQL code. You should

learn all of the following techniques and use them in appropriate cases.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=243

SOLUTION: TRUST NO ONE 244

Filter Input

Instead of wondering whether some input contains harmful content,

you should strip away any characters that aren’t valid for that input.

That is, if you need an integer, use only the part of the content that

comprises an integer. The best way to do this depends on your pro-

gramming language; for example, in PHP, use the filter extension:

Download SQL-Injection/soln/filter.php

<?php

$bugid = filter_input(INPUT_GET, "bugid", FILTER_SANITIZE_NUMBER_INT);

$sql = "SELECT * FROM Bugs WHERE bug_id = {$bugid}";

$stmt = $pdo->query($sql);

You can use type casting functions for simple cases like numbers:

Download SQL-Injection/soln/casting.php

<?php

$bugid = intval($_GET["bugid"]);

$sql = "SELECT * FROM Bugs WHERE bug_id = {$bugid}";

$stmt = $pdo->query($sql);

You can also use regular expressions to match safe substrings, filtering

out illegitimate content:

Download SQL-Injection/soln/regexp.php

<?php

$sortorder = "date_reported"; // default

if (preg_match("/[_[:alnum:]]+/", $_GET["order"], $matches)) {

$sortorder = $matches[1];

}

$sql = "SELECT * FROM Bugs ORDER BY {$sortorder}";

$stmt = $pdo->query($sql);

Parameterize Dynamic Values

When the dynamic parts of your query are simple values, you should

use query parameters to separate them from SQL expressions.

Download SQL-Injection/soln/parameter.php

<?php

$sql = "UPDATE Accounts SET password_hash = SHA2(?) WHERE account_id = ?";

$stmt = $pdo->prepare($sql);

$params = array($_REQUEST["password"], $_REQUEST["userid"]);

$stmt->execute($params);

We saw examples in the “Antipattern” section that a parameter can

substitute only for a single value. If you add the parameter values after

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/filter.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/casting.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/regexp.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/parameter.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=244

SOLUTION: TRUST NO ONE 245

the RDBMS parses the SQL statement, no SQL Injection attack can

change the syntax of a parameterized query. Even if an attacker tries

to use a malicious parameter value such as 123 OR TRUE, the RDBMS

interprets the parameter as a value. At worst, the query fails to apply

to any rows; it’s not likely to apply to the wrong rows. The malicious

value would result in a relatively safe SQL statement equivalent to the

following:

Download SQL-Injection/soln/parameter.sql

UPDATE Accounts SET password_hash = SHA2('xyzzy')

WHERE account_id = '123 OR TRUE'

You should use query parameters when you need to combine applica-

tion variables as literal values in SQL expressions.

Quoting Dynamic Values

Query parameters are usually the best solution, but in rare cases a

query with parameter placeholders causes the query optimizer to make

odd decisions about which indexes to use.

For example, suppose you have a column in the Accounts table called

is_active. This column stores a true value for 99 percent of the rows,

giving it an uneven distribution of values. A query that searches for

is_active = false would benefit from an index, but it would be a waste

to read the index for a query searching for is_active = true. However,

if you used a parameter in the expression is_active = ?, the optimizer

can’t know which value you will supply when you execute the prepared

query, so it’s liable to choose the wrong optimization plan.

In exotic cases like this, it could be better to interpolate values directly

into the SQL statement, in spite of the general recommendation to use

query parameters. If you do this, you should quote the strings carefully.

Download SQL-Injection/soln/interpolate.php

<?php

$quoted_active = $pdo->quote($_REQUEST["active"]);

$sql = "SELECT * FROM Accounts WHERE is_active = {$quoted_active}";

$stmt = $pdo->query($sql);

Make sure you use a function that is mature and well-tested against

obscure SQL security issues. Most data access libraries include such

a string-quoting function. For example, in PHP, use PDO::quote(). Don’t

try to implement your own quoting function unless you have studied

the security risks thoroughly.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/parameter.sql
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/interpolate.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=245

SOLUTION: TRUST NO ONE 246

Parameterizing an IN() Predicate

We’ve seen that you can’t pass a comma-separated string in a
single parameter. You need as many parameters as the number
of items in your list.

For example, say you need to query six bugs by their primary
keys, which you have in an array variable $bug_list:

<?php
$sql = "SELECT * FROM Bugs WHERE bug_id IN (?, ?, ?, ?, ?, ?)");
$stmt = $pdo->prepare($sql);
$stmt->execute($bug_list);

This works only if you have exactly six items in $bug_list, match-
ing the number of parameter placeholders. You should build
the SQL IN() predicate dynamically, using a number of place-
holders equal to the number of items in $bug_list.

The following example in PHP uses some built-in array func-
tions to produce an array of placeholders the same length
as $bug_list and then joins that array with comma separators
before interpolating it into the SQL expression.

<?php
$sql = "SELECT * FROM Bugs WHERE bug_id IN ("

. join(",", array_fill(0, count($bug_list), "?")) . ")";
$stmt = $pdo->prepare($sql);
$stmt->execute($bug_list);

Use this technique to parameterize a list of values.

Isolate User Input from Code

Query parameters and escaping techniques help you combine literal

values into SQL expressions, but they don’t help with other parts of a

statement, such as table or column identifiers or SQL keywords. You

need another solution to make these parts of a query dynamic.

Suppose your users want to choose how to sort lists of bugs, for in-

stance by status or by date created. They also want to choose the direc-

tion of sorting.

Download SQL-Injection/soln/orderby.sql

SELECT * FROM Bugs ORDER BY status ASC

SELECT * FROM Bugs ORDER BY date_reported DESC

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/orderby.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=246

SOLUTION: TRUST NO ONE 247

In the following example, a PHP script accepts request parameters order

and dir, and your code interpolates these user choices into the SQL

query to be a column name and a keyword.

Download SQL-Injection/soln/mapping.php

<?php

$sortorder = $_REQUEST["order"];

$direction = $_REQUEST["dir"];

$sql = "SELECT * FROM Bugs ORDER BY $sortorder $direction";

$stmt = $pdo->query($sql);

The script assumes that order contains the name of a column and that

dir contains either ASC or DESC. This is not a safe assumption, because

a user can send any parameter values in a web request.

Instead, you can use the request parameters to look up predefined val-

ues and then use these values in your SQL query.

1. Declare a $sortorders array that maps user choices as keys and SQL

column names as values. Declare a $directions array that maps

user choices as keys and SQL keywords ASC and DESC as values.

Download SQL-Injection/soln/mapping.php

$sortorders = array("status" => "status", "date" => "date_reported");

$directions = array("up" => "ASC", "down" => "DESC");

2. Set variables $sortorder and $dir to default values in case the user’s

choices aren’t in the arrays.

Download SQL-Injection/soln/mapping.php

$sortorder = "bug_id";

$direction = "ASC";

3. If the user’s choices match array keys you declared in $sortorders

and $directions, use the corresponding values.

Download SQL-Injection/soln/mapping.php

if (array_key_exists($_REQUEST["order"], $sortorders)) {

$sortorder = $sortorders[$_REQUEST["order"]];

}

if (array_key_exists($_REQUEST["dir"], $directions)) {

$direction = $directions[$_REQUEST["dir"]];

}

4. Now it’s safe to use the $sortorder and $direction variables in your

SQL query, because they can contain only values you declared in

your code.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/mapping.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/mapping.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/mapping.php
http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/mapping.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=247

SOLUTION: TRUST NO ONE 248

Download SQL-Injection/soln/mapping.php

$sql = "SELECT * FROM Bugs ORDER BY {$sortorder} {$direction}";

$stmt = $pdo->query($sql);

Using this technique has several advantages:

• You never combine user input with your SQL query, so you reduce

the risk of SQL Injection.

• You can make any part of an SQL statement dynamic, including

identifiers, SQL keywords, and even entire expressions.

• You have an easy and efficient way to validate user choices.

• You decouple the internal details of your database queries from

the user interface.

The choices are hard-coded in your application, but this is appropriate

for table names, column names, and SQL keywords. Choices over the

full range of strings or numbers are typical for data values, but not for

identifiers or syntax.

Get a Buddy to Review Your Code

The best way to catch flaws is to get another pair of eyes to look at it.

Ask a teammate who is familiar with SQL Injection risks to help you

inspect your code. Don’t let pride or ego keep you from doing the right

thing—you may be embarrassed now over missing a coding mistake,

but would you rather have to admit responsibility later for a security

flaw that allowed hackers to exploit your website?

In an inspection for SQL Injection, use the following guidelines:

1. Find SQL statements that are formed using application variables,

string concatenation, or replacement.

2. Trace the origin of all dynamic content used in your SQL state-

ments. Find any data that comes from an external source, such

as user input, files, environment, web services, third-party code,

or even a string fetched from the database.

3. Assume any external content is potentially hazardous. Use filters,

validators, and mapping arrays to transform untrusted content.

4. Combine external data into your SQL statements using query

parameters or robust escaping functions.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/SQL-Injection/soln/mapping.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=248

SOLUTION: TRUST NO ONE 249

5. Don’t forget to inspect your stored procedures and other places

where you may find dynamic SQL statements.

Code inspection is the most accurate and economical way to find SQL

Injection flaws. You should budget your time for this and treat it as a

mandatory activity. You can also return the favor by inspecting your

teammates’ code.

Let users input values, but never let users input code.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=249

Those who matter don’t mind, and those who mind don’t

matter.

Bernard Baruch (on seating arrangements for

his dinner party guests)

Chapter 22

Pseudokey Neat-Freak
Your manager approaches you, holding two report printouts. “The bean

counters are saying we have discrepancies between this quarter’s report

and last quarter’s. I’m looking at them, and they’re absolutely right.

Most of the later assets have disappeared. What happened?”

You look at the reports, and the pattern of discrepancies rings a bell.

“No, everything is still there. You asked me to clean up the rows in

the database so there are no missing rows. You said the accountants

kept asking you questions about missing assets, because of gaps in the

numbering.

“So, I renumbered some of the rows to make them all fit into the places

where there were missing rows before. There aren’t any missing rows

now—every number between 1 and about 12,340 is used. They’re all

still there, but some have just changed number and moved up. You

told me to do this.”

Your manager shakes his head. “But that’s not what I want. The ac-

countants have to track depreciation by the asset numbers. The num-

ber for each piece of equipment has to stay the same in each quarterly

report. Besides, all the asset ID numbers are printed on labels on each

piece. It’d take weeks to relabel everything in the company. Can you

please change all the ID numbers back to their original values?”

You want to be cooperative, so you turn back to your keyboard to start

working, but suddenly you think of a new problem. “What about new

assets we bought this month, after I consolidated the asset IDs? The

new assets have been assigned ID values that were in use before I did

the renumbering. If I change the asset IDs back to their old values,

what should I do about the duplicates?”

OBJECTIVE: TIDY UP THE DATA 251

22.1 Objective: Tidy Up the Data

There’s a certain type of person who is unnerved by a gap in a series of

numbers.

bug_id status product_name

1 OPEN Open RoundFile

2 FIXED ReConsider

4 OPEN ReConsider

On one hand, it’s understandable to be concerned, because it’s unclear

what happened to the row with bug_id 3. Why didn’t the query return

that bug? Did the database lose it? What was in that bug? Was the

bug reported by one of our important customers? Am I going to be held

responsible for the lost data?

The objective of one who practices the Pseudokey Neat-Freak antipat-

tern is to resolve these troubling questions. This person is accountable

for data integrity issues, but typically they don’t have enough under-

standing of or confidence in the database technology to feel confident

of the generated report results.

22.2 Antipattern: Filling in the Corners

Most people’s first reaction to a perceived gap is naturally to want to

seal the gap. There are two ways you might do this.

Assigning Numbers Out of Sequence

Instead of allocating a new primary key value using the automatic pseu-

dokey mechanism, you might want to make any new row use the first

unused primary key value. This way, as you insert data, you naturally

make gaps fill in.

bug_id status product_name

1 OPEN Open RoundFile

2 FIXED ReConsider

4 OPEN ReConsider

3 NEW Visual TurboBuilder

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=251

ANTIPATTERN: FILLING IN THE CORNERS 252

However, you have to run an unnecessary self-join query to find the

lowest unused value:

Download Neat-Freak/anti/lowest-value.sql

SELECT b1.bug_id + 1

FROM Bugs b1

LEFT OUTER JOIN Bugs AS b2 ON (b1.bug_id + 1 = b2.bug_id)

WHERE b2.bug_id IS NULL

ORDER BY b1.bug_id LIMIT 1;

Earlier in the book, we looked at a concurrency issue when you try to

allocate a unique primary key value by running a query such as SELECT

MAX(bug_id)+1 FROM Bugs.1 This has the same flaw when two applica-

tions may try to find the lowest unused value at the same time. As both

try to use the same value as a primary key value, one succeeds, and the

other gets an error. This method is both inefficient and prone to errors.

Renumbering Existing Rows

You might find it’s more urgent to make the primary key values be con-

tiguous, and waiting for new rows to fill in the gaps won’t fix the issue

quickly enough. You might think to use a strategy of updating the key

values of existing rows to eliminate gaps and make all the values con-

tiguous. This usually means you find the row with the highest primary

key value and update it with the lowest unused value. For example, you

could update the value 4 to 3:

Download Neat-Freak/anti/renumber.sql

UPDATE Bugs SET bug_id = 3 WHERE bug_id = 4;

bug_id status product_name

1 NEW Open RoundFile

2 FIXED ReConsider

3 DUPLICATE ReConsider

To accomplish this, you need to find an unused key value using a

method similar to the previous one for inserting new rows. You also

need to run the UPDATE statement to reassign the primary key value.

Either one of these steps is susceptible to concurrency issues. You need

to repeat the steps many times to fill a wide gap in the numbers.

You must also propagate the changed value to all child records that

reference the rows you renumber. This is easiest if you declared for-

1. See the sidebar on page 60.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Neat-Freak/anti/lowest-value.sql
http://media.pragprog.com/titles/bksqla/code/Neat-Freak/anti/renumber.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=252

ANTIPATTERN: FILLING IN THE CORNERS 253

eign keys with the ON UPDATE CASCADE option, but if you didn’t, you

would have to disable constraints, update all child records manually,

and restore the constraints. This is a laborious, error-prone process

that can interrupt service in your database, so if you feel you want to

avoid it, you’re right.

Even if you do accomplish this cleanup, it’s short-lived. When a pseu-

dokey generates a new value, the value is greater than the last value

it generated (even if the row with that value has since been deleted or

changed), not the highest value currently in the table, as some database

programmers assume. Suppose you update the row with the greatest

bug_id value 4 to the lower unused value to fill a gap. The next row you

insert using the default pseudokey generator will allocate 5, leaving a

new gap at 4.

Manufacturing Data Discrepancies

Mitch Ratcliffe said, “A computer lets you make more mistakes faster

than any other human invention in human history. . . with the possible

exception of handguns and tequila.”2

The story at the beginning of this chapter describes some hazards of

renumbering primary key values. If another system external to your

database depends on identifying rows by their primary keys, then your

updates invalidate the data references in that system.

It’s not a good idea to reuse the row’s primary key value, because a

gap could be the result of deleting or rolling back a row for a good

reason. For example, suppose a user with account_id 789 is barred from

your system for sending offensive emails. Your policies require you to

delete the offender’s account, but if you recycle primary keys, you would

subsequently assign 789 to another user. Since some offensive emails

are still waiting to be read by some recipients, you could get further

complaints about account 789. Through no fault of his own, the poor

user who now has that number catches the blame.

Don’t reallocate pseudokey values just because they seem to be unused.

2. MIT Technology Review, April 1992.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=253

HOW TO RECOGNIZE THE ANTIPATTERN 254

22.3 How to Recognize the Antipattern

The following quotes can be hints that someone in your organization is

about to use the Pseudokey Neat-Freak antipattern.

• “How can I reuse an autogenerated identity value after I roll back

an insert?”

Pseudokey allocation doesn’t roll back; if it did, the RDBMS would

have to allocate pseudokey values within the scope of a transac-

tion. This would cause either race conditions or blocking when

multiple clients are inserting data concurrently.

• “What happened to bug_id 4?”

This is an expression of misplaced anxiety over unused numbers

in the sequence of primary keys.

• “How can I query for the first unused ID?”

The reason to do this search is almost certainly to reassign the ID.

• “What if I run out of numbers?”

This is used as a justification for reallocating unused ID values.

22.4 Legitimate Uses of the Antipattern

There’s no reason to change the value of a pseudokey, since the value

should have no significance anyway. If the values in the primary key

column carry some meaning, then this column is a natural key, not a

pseudokey. It’s not unusual to change values in a natural key.

22.5 Solution: Get Over It

The values in any primary key must be unique and non-null so you

can use them to reference individual rows, but that’s the only rule—

they don’t have to be consecutive numbers to identify rows.

Numbering Rows

Most pseudokey generators return numbers that look almost like row

numbers, because they’re monotonically increasing (that is, each suc-

cessive value is one greater than the preceding value), but this is only

a coincidence of their implementation. Generating values in this way is

a convenient way to ensure uniqueness.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=254

SOLUTION: GET OVER IT 255

Don’t confuse row numbers with primary keys. A primary key identifies

one row in one table, whereas row numbers identify rows in a result

set. Row numbers in a query result set don’t correspond to primary key

values in the table, especially when you use query operations like JOIN,

GROUP BY, or ORDER BY.

There are good reasons to use row numbers, for example to return a

subset of rows from a query result. This is often called pagination, like

a page of an Internet search. To select a subset in this way, you need to

use true row numbers that are increasing and consecutive, regardless

of the form of the query.

SQL:2003 specifies window functions including ROW_NUMBER(), which

returns consecutive numbers specific to a query result set. A common

use of row numbering is to limit the query result to a range of rows:

Download Neat-Freak/soln/row_number.sql

SELECT t1.* FROM

(SELECT a.account_name, b.bug_id, b.summary,

ROW_NUMBER() OVER (ORDER BY a.account_name, b.date_reported) AS rn

FROM Accounts a JOIN Bugs b ON (a.account_id = b.reported_by)) AS t1

WHERE t1.rn BETWEEN 51 AND 100;

These functions are currently supported by many leading brands of

database, including Oracle, Microsoft SQL Server 2005, IBM DB2, Post-

greSQL 8.4, and Apache Derby.

MySQL, SQLite, Firebird, and Informix don’t support SQL:2003 window

functions, but they have proprietary syntax you can use in the scenario

presented in this section. MySQL and SQLite support a LIMIT clause, and

Firebird and Informix support a query option with keywords FIRST and

SKIP.

Using GUIDs

You could also generate random pseudokey values, as long as you don’t

use any number more than once. Some databases support a globally

unique identifier (GUID) for this purpose.

A GUID is a pseudorandom number of 128 bits (usually represented by

32 hexadecimal digits). For practical purposes, a GUID is unique, so

you can use it to generate a pseudokey.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Neat-Freak/soln/row_number.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=255

SOLUTION: GET OVER IT 256

Are Integers a Nonrenewable Resource?

Another misconception related to the Pseudokey Neat-Freak
antipattern is the idea that a monotonically increasing pseu-
dokey generator eventually exhausts the set of integers, so you
must take precautions not to waste values.

At first glance, this seems sensible. In mathematics, the set of
integers is countably infinite, but in a database, any data type
has a finite number of values. A 32-bit integer can represent
a maximum of 2

32 distinct values. It’s true that each time you
allocate a value for a primary key, you’re one step closer to the
last one.

But do the math: if you generate unique primary key values as
you insert 1,000 rows per second, 24 hours per day, you can
continue for 136 years before you use all values in an unsigned
32-bit integer.

If that doesn’t meet your needs, then use a 64-bit integer.
Now you can use 1 million integers per second continuously for
584,542 years.

It’s very unlikely that you will run out of integers!

The following example uses Microsoft SQL Server 2005 syntax:

Download Neat-Freak/soln/uniqueidentifier-sql2005.sql

CREATE TABLE Bugs (

bug_id UNIQUEIDENTIFIER DEFAULT NEWID(),

-- . . .

);

INSERT INTO Bugs (bug_id, summary)

VALUES (DEFAULT, 'crashes when I save');

This creates a row like the following:

bug_id summary

0xff19966f868b11d0b42d00c04fc964ff Crashes when I save

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Neat-Freak/soln/uniqueidentifier-sql2005.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=256

SOLUTION: GET OVER IT 257

You gain at least two advantages over traditional pseudokey generators

when you use GUIDs:

• You can generate pseudokeys on multiple database servers con-

currently without using the same values.

• No one will complain about gaps—they’ll be too busy complaining

about typing thirty-two hex digits for primary key values.

The latter point leads to some of the disadvantages:

• The values are long and hard to type.

• The values are random, so you can’t infer any pattern or rely on a

greater value indicating a more recent row.

• Storing a GUID requires 16 bytes. This takes more space and runs

more slowly than using a typical 4-byte integer pseudokey.

The Most Important Problem

Now that you know the problems caused by renumbering pseudokeys

and some alternative solutions for related goals, you still have one big

problem to solve: how do you fend off an order from a boss who wants

you to tidy up the database by closing the gaps in a pseudokey? This is

a problem of communication, not technology. Nevertheless, you might

need to manage your manager to defend the data integrity of your data-

base.

• Explain the technology. Honesty is usually the best policy. Be re-

spectful and acknowledge the feeling behind the request. For ex-

ample, tell your manager this:

“The gaps do look strange, but they’re harmless. It’s normal for

rows to be skipped, rolled back, or deleted from time to time. We

allocate a new number for each new row in the database, instead

of writing code to figure out which old numbers we can reuse

safely. This makes our code cheap to develop, makes it faster to

run, and reduces errors.”

• Be clear about the costs. Changing the primary key values seems

like a trivial task, but you should give realistic estimates for the

work it will take to calculate new values, write and test code to

handle duplicate values, cascade changes throughout the data-

base, investigate the impact to other systems, and train users and

administrators to manage the new procedures.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=257

SOLUTION: GET OVER IT 258

Most managers prioritize based on cost of a task, and they should

back down from requesting frivolous, micro-optimizing work when

they’re confronted with the real cost.

• Use natural keys. If your manager or other users of the database

insist on interpreting meaning in the primary key values, then

let there be meaning. Don’t use pseudokeys—use a string or a

number that encodes some identifying meaning. Then it’s easier

to explain any gaps within the context of the meaning of these

natural keys.

You can also use both a pseudokey and another attribute column

you use as a natural identifier. Hide the pseudokey from reports if

gaps in the numeric sequence make readers anxious.

Use pseudokeys as unique row identifiers; they’re not row numbers.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=258

It is a capital mistake to theorize before you have all the

evidence.

Sherlock Holmes

Chapter 23

See No Evil
“I found another bug in your product,” the voice on the phone said.

I got this call while working as a technical support engineer for an SQL

RDBMS in the 1990s. We had one customer who was well-known for

making spurious reports against our database. Nearly all of his reports

turned out to be simple mistakes on his part, not bugs.

“Good morning, Mr. Davis. Of course, we’d like to fix any problem you

find,” I answered. “Can you tell me what happened?”

“I ran a query against your database, and nothing came back.” Mr.

Davis said sharply. “But I know the data is in the database—I can verify

it in a test script.”

“Was there any problem with your query?” I asked. “Did the API return

any error?”

Davis replied, “Why would I look at the return value of an API function?

The function should just run my SQL query. If it returns an error, that

indicates your product has a bug in it. If your product didn’t have bugs,

there would be no errors. I shouldn’t have to work around your bugs.”

I was stunned, but I had to let the facts speak for themselves. “OK, let’s

try a test. Copy and paste the exact SQL query from your code into the

query tool, and run it. What does it say?” I waited for him.

“Syntax error at SELCET.” After a pause, he said, “You can close this

issue,” and he hung up abruptly.

Mr. Davis was the sole developer for an air traffic control company,

writing software that logged data about international airplane flights.

We heard from him every week.

OBJECTIVE: WRITE LESS CODE 260

23.1 Objective: Write Less Code

Everyone wants to write elegant code. That is, we want to do cool work

with little code. The cooler the work is and the less code it takes us, the

greater the ratio of elegance. If we can’t make our work cooler, it stands

to reason that at least we can improve the elegance ratio of coolness to

code volume by doing the same work with less code.

That’s a superficial reason, but there are more rational reasons to write

concise code:

• We’ll finish coding a working application more quickly.

• We’ll have less code to test, to document, or to have peer-reviewed.

• We’ll have fewer bugs if we have fewer lines of code.

It’s therefore an instinctive priority for programmers to eliminate any

code they can, especially if that code fails to increase coolness.

23.2 Antipattern: Making Bricks Without Straw

Developers commonly practice the See No Evil antipattern in two forms:

first, ignoring the return values of a database API; and second, read-

ing fragments of SQL code interspersed with application code. In both

cases, developers fail to use information that is easily available to them.

Diagnoses Without Diagnostics

Download See-No-Evil/anti/no-check.php

<?php
Ê $pdo = new PDO("mysql:dbname=test;host=db.example.com",

"dbuser", "dbpassword");

$sql = "SELECT bug_id, summary, date_reported FROM Bugs

WHERE assigned_to = ? AND status = ?";
Ë $stmt = $dbh->prepare($sql);
Ì $stmt->execute(array(1, "OPEN"));
Í $bug = $stmt->fetch();

This code is concise, but there are several places in this code where

status values returned from functions could indicate a problem, but

you’ll never know about it if you ignore the return values.

Probably the most common error from a database API occurs when

you try to create a database connection, for example at Ê. You could

accidentally mistype the database name or server hostname or you

could get the user or password wrong, or the database server could

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/See-No-Evil/anti/no-check.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=260

ANTIPATTERN: MAKING BRICKS WITHOUT STRAW 261

your users will see

this utterly blank

screen; then you will

get the phone calls

Figure 23.1: A fatal error in PHP results in a blank screen

be unreachable. An error with instantiating a PDO connection throws

an exception, which would terminate the example script shown previ-

ously.

The call to prepare() at Ë could return false if you have a simple syntax

error caused by a typo or an imbalanced parenthesis or a misspelled

column name. If this happens, the attempt to call execute() as a method

of $stmt at Ì would be a fatal error because the value false isn’t an object.

PHP Fatal error: Call to a member function execute() on a non-object

The call to execute() could also fail, for example, because the state-

ment violates a constraint or exceeds access privileges. The method

also returns false on error.

The call to fetch() at Í would return false if any other error occurs, such

as if the connection to the RDBMS fails.

Programmers with attitudes like Mr. Davis aren’t uncommon. They may

feel that checking return values and exceptions adds nothing to their

code, because those cases aren’t supposed to happen anyway. Also, the

extra code is repetitive and makes an application ugly and hard to read.

It definitely adds no coolness.

But users don’t see the code; they only see the output. When a fatal

error goes unhandled, the user may see only a blank white screen, as

in Figure 23.1, or else an incomprehensible exception message. When

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=261

HOW TO RECOGNIZE THE ANTIPATTERN 262

this happens, it’s little consolation that the application code is tidy and

concise.

Lines Between the Reading

Another common bad habit that fits the See No Evil antipattern is to

debug by staring at application code that builds an SQL query as a

string. This is difficult because it’s hard to visualize the resulting SQL

string after you build it with application logic, string concatenation, and

extra content from application variables. Trying to debug in this way is

like trying to solve a jigsaw puzzle without looking at the photo on the

box.

For a simple example, let’s look at a type of question I see frequently

from developers. The following code builds a query conditionally by con-

catenating a WHERE clause if the script needs to search for a specific bug

instead of a collection of bugs.

Download See-No-Evil/anti/white-space.php

<?php

$sql = "SELECT * FROM Bugs";

if ($bug_id) {

$sql .= "WHERE bug_id = " . intval($bug_id);

}

$stmt = $pdo->prepare($sql);

Why would the query in this example give an error? The answer is

clearer if you look at the full $sql string resulting from the concatena-

tion:

Download See-No-Evil/anti/white-space.sql

SELECT * FROM BugsWHERE bug_id = 1234

There’s no whitespace between Bugs and WHERE, which gives the query

invalid syntax, as though it were reading a table called BugsWHERE, fol-

lowed by an SQL expression in an invalid context. The code concate-

nated the strings with no space between them.

Developers waste an unbelievable amount of time and energy trying to

debug problems like this by looking at the code that builds the SQL,

instead of looking at the SQL itself.

23.3 How to Recognize the Antipattern

Though you might think that the absence of code is by nature diffi-

cult to spot, many modern IDE products highlight instances in your

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/See-No-Evil/anti/white-space.php
http://media.pragprog.com/titles/bksqla/code/See-No-Evil/anti/white-space.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=262

LEGITIMATE USES OF THE ANTIPATTERN 263

code where you ignore a return value from a function that returns one

or where your code calls a function but neglects to handle a checked

exception.1 You could also encounter the See No Evil antipattern if you

hear phrases like the following:

• “My program crashes after I query the database.”

Often the crash happens because your query failed, and you tried

to use the result in an illegal manner, such as calling a method on

a nonobject or dereferencing a null pointer.

• “Can you help me find my SQL error? Here’s my code. . . ”

First, start by looking at the SQL, not the code that builds it.

• “I don’t bother cluttering up my code with error handling.”

Some computer scientists have estimated that up to 50 percent

of the lines of code in a robust application are devoted to han-

dling error cases. This may seem like a lot, unless you think of all

the steps that you could include under error handling: detecting,

classifying, reporting, and compensating. It’s important for any

software to be able to do all that.

23.4 Legitimate Uses of the Antipattern

You can omit error checking when there’s really nothing for you to do in

response to the error. For example, the close() function for a database

connection returns a status, but if your application is about to finish

and exit anyway, it’s likely that the resources for that connection will

be cleaned up regardless.

Exceptions in object-oriented languages allow you to trigger an excep-

tion without being responsible for handling it. Your code trusts that

whatever code called yours is the code that’s responsible for handling

the exception. Your code therefore can allow the exception to pass back

up the calling stack.

1. A checked exception is one that a function’s signature declares, so you know that the

function might throw that exception type.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=263

SOLUTION: RECOVER FROM ERRORS GRACEFULLY 264

23.5 Solution: Recover from Errors Gracefully

Anyone who enjoys dancing knows that missteps are inevitable. The

secret to remaining graceful is to know how to recover. Give yourself a

chance to notice the cause of the mistake. Then you can react quickly

and seamlessly, getting back into rhythm before anyone has noticed

your gaffe.

Maintain the Rhythm

Checking return status and exceptions from database API calls is the

best way to ensure that you haven’t missed a step. The following exam-

ple shows code that checks the status after each call that could cause

an error:

Download See-No-Evil/soln/check.php

<?php

try {

$pdo = new PDO("mysql:dbname=test;host=localhost",

"dbuser", "dbpassword");
Ê } catch (PDOException $e) {

report_error($e->getMessage());

return;

}

$sql = "SELECT bug_id, summary, date_reported FROM Bugs

WHERE assigned_to = ? AND status = ?";

Ë if (($stmt = $pdo->prepare($sql)) === false) {

$error = $pdo->errorInfo();

report_error($error[2]);

return;

}

Ì if ($stmt->execute(array(1, "OPEN")) === false) {

$error = $stmt->errorInfo();

report_error($error[2]);

return;

}

Í if (($bug = $stmt->fetch()) === false) {

$error = $stmt->errorInfo();

report_error($error[2]);

return;

}

The code at Ê catches the exception that is thrown if a database con-

nection fails. The other functions return false when there’s a problem.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/See-No-Evil/soln/check.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=264

SOLUTION: RECOVER FROM ERRORS GRACEFULLY 265

After checking for a problem at Ë, Ì, and Í, you can get more informa-

tion from the database connection object or the statement object.

Retrace Your Steps

It’s also important to use the actual SQL query to debug a problem,

instead of the code that produces an SQL query. Many simple mis-

takes, such as misspellings or imbalanced quotes or parentheses, are

apparent instantly, even though they’re obscure and puzzling other-

wise.

• Build your SQL query in a variable, instead of building it ad hoc in

the arguments of the API method to prepare the query. This gives

you the opportunity to examine the variable before you use it.

• Choose a place to output SQL that is not part of your application

output, such as a log file, an IDE debugger console, or a browser

extension to show diagnostic output.2

• Do not print the SQL query within HTML comments of a web appli-

cation’s output. Any user can view your page source. Reading the

SQL query gives hackers a lot of knowledge about your database

structure.

Using an object-relational mapping (ORM) framework that builds and

executes SQL queries transparently can make debugging complicated.

If you don’t have access to the content of the SQL query, how can you

observe it for debugging? Some ORM frameworks solve this by sending

generated SQL to a log.

Finally, most database brands provide their own logging mechanism on

the database servers instead of in application client code. If you can’t

enable SQL logging in the application, you can still monitor queries as

the database server executes them.

Troubleshooting code is already hard enough.

Don’t hinder yourself by doing it blind.

2. Firebug (http://getfirebug.com/) is a good example.

Report erratum

this copy is (P1.0 printing, May 2010)

http://getfirebug.com/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=265

Humans are allergic to change. They love to say, “We’ve

always done it this way.” I try to fight that. That’s why I

have a clock on my wall that runs counterclockwise.

Rear Adm. Grace Murray Hopper

Chapter 24

Diplomatic Immunity
One of my earliest jobs gave me a lesson in the importance of using soft-

ware engineering best practices, after a tragic accident left me respon-

sible for an important database application.

I interviewed for a contract job at Hewlett-Packard to develop and main-

tain an application on UNIX, written in C with HP ALLBASE/SQL. The

manager and staff interviewing me told me sadly that their programmer

who had worked on that application was killed in a traffic accident. No

one else in their department knew how to use UNIX or anything about

the application.

After I started the job, I found that the developer had never written

documentation or tests for this application, and he never used a source

code control system or even code comments. All his code resided in a

single directory, including code that was part of the live system, code

that was under development, and code that was no longer used.

This project had high technical debt—a consequence of using shortcuts

instead of best practices.1 Technical debt causes risk and extra work in

a project until you pay it off by refactoring, testing, and documenting.

I worked for six months to organize and document the code for what

was really a fairly modest application, because I had to spend a lot of

my time supporting its users and continuing development.

There was obviously no way that I could ask my predecessor to help me

come up to speed on the project. The experience really demonstrated

the impact of letting technical debt get out of control.

1. Ward Cunningham coined this metaphor in his experience report for OOPSLA 1992

(http://c2.com/doc/oopsla92.html).

http://c2.com/doc/oopsla92.html

OBJECTIVE: EMPLOY BEST PRACTICES 267

24.1 Objective: Employ Best Practices

Professional programmers strive to use good software engineering hab-

its in their projects, such as the following:

• Keeping application source code under revision control using tools

such as Subversion or Git.

• Developing and running automated unit tests or functional tests

for applications.

• Writing documentation, specifications, and code comments to

record the requirements and implementation strategies of an ap-

plication.

The time you take to develop software using best practices is a net win,

because it reduces a lot of needless or repetitive work. Most experi-

enced developers know that sacrificing these practices for the sake of

expediency is a recipe for failure.

24.2 Antipattern: Make SQL a Second-Class Citizen

Even among developers who accept best practices when developing

application code, there’s a tendency to think of database code as ex-

empt from these practices. I call this antipattern Diplomatic Immunity

because it assumes that the rules of application development don’t

apply to database development.

Why would developers make this assumption? The following are some

possible reasons:

• The role of software engineer and database administrator are sep-

arate in some companies. The DBA typically works with several

teams of programmers, so there’s a perception that she’s not a

full-time member of any one of these teams. She’s treated like a

visitor, and she’s not subject to the same responsibilities as the

software engineers.

• The SQL language used for relational databases is different from

conventional programming. Even the way we invoke SQL state-

ments as a specialized language within application code suggests

a kind of guest-like status.

• Advanced IDE tools are popular for application code languages,

making editing, testing, and source control quick and painless.

But tools for database development are not as advanced, or at

least not as widely used. Developers can code applications with

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=267

HOW TO RECOGNIZE THE ANTIPATTERN 268

best practices easily, but applying these practices to SQL feels

clumsy by comparison. Developers tend to find other things to do.

• In IT, it’s ordinary for knowledge and operation of the database to

be focused on one person—the DBA. Because the DBA is the only

one who has access to the database server, she serves as a living

knowledge base and source control system.

The database is the foundation of an application, and quality matters.

You know how to develop application code with high quality, but you

may be building your application on top of a database that has failed

to solve the needs of the project or that no one understands. The risk

is that you’re developing an application only to find that you have to

scrap it.

24.3 How to Recognize the Antipattern

You might think it’s hard to show evidence of not doing something, but

that isn’t always true. The following are some telltale signs of cutting

corners:

• “We are adopting the new engineering process—that is, a light-

weight version of it.”

Lightweight in this context means that the team intends to skip

some tasks that the engineering process calls for. Some of these

may be legitimate to skip, but it could also be a euphemism for

not following important best practices.

• “We don’t need the DBA staff to attend training for our new source

control system, since they don’t use it anyway.”

Excluding some technical team members from training (and prob-

ably access) ensures that they won’t use those tools.

• “How can I track usage of tables and columns in the database?

There are some elements we don’t know the purpose of, and we’d

like to eliminate them if they’re obsolete.”

You are not using the project documentation for the database

schema. The document may be out-of-date, may be inaccessi-

ble, or may never have existed at all. Even if you don’t know the

purpose of some tables or columns, they might be important to

someone, and you can’t remove them.

• “Is there a tool to compare two database schema, report the dif-

ferences, and create a script to alter one to match the other?”

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=268

LEGITIMATE USES OF THE ANTIPATTERN 269

If you don’t follow a process of deploying changes to database

schema, they can get out of sync, and then it’s a complicated task

to bring them back into order.

24.4 Legitimate Uses of the Antipattern

I do write documentation and tests, and I use source control and other

good habits for any code I want to use more than once. But I also write

code that is truly ad hoc, such as a one-time test of an API function to

remind myself how to use it or an SQL query I write to answer a user’s

question.

A good guideline for whether code is really temporary is to delete it

immediately after you’ve used it. If you can’t bring yourself to do that,

it’s probably worth keeping. That’s OK, but that means it’s worth stor-

ing in source control and writing at least some brief notes about what

the code is for and how to use it.

24.5 Solution: Establish a Big-Tent Culture of Quality

Quality is simply testing to most software developers, but that’s only

quality control—only part of the story. The full life cycle of software

engineering involves quality assurance, which includes three parts:

1. Specify project requirements clearly and in writing.

2. Design and develop a solution for your requirements.

3. Validate and test that your solution matches the requirements.

You need to do all three of these to perform QA correctly, although in

some software methodologies, you don’t necessarily have to do them in

that order.

You can achieve quality assurance in database development by follow-

ing best practices in documentation, source code control, and testing.

Exhibit A: Documentation

There’s no such thing as self-documenting code. Although it’s true that

a skilled programmer can decipher most code through a combination

of careful analysis and experimentation, this is laborious.2 Also, code

can’t tell you about missing features or unsolved problems.

2. If code were readable, why would we call it code?

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=269

SOLUTION: ESTABLISH A BIG-TENT CULTURE OF QUALITY 270

You should document the requirements and implementation of a data-

base just as you do application code. Whether you’re the original de-

signer of the database or you’re inheriting a database designed by

someone else, use the following checklist to document a database:

Entity-relationship diagram: The single most important piece of docu-

mentation for a database is an ER diagram showing the tables

and their relationships. Several chapters in this book use a simple

form of ER diagrams. More complex ER diagrams have notation for

columns, keys, indexes, and other database objects.

Some diagramming software packages include elements for ER

diagram notation. Some tools can even reverse-engineer an SQL

script or a live database and produce an ER diagram.

One caveat is that databases can be complex and have so many

tables that it’s impractical to use a single diagram. In this case,

you should decompose it into several diagrams. Usually you can

choose natural subgroups of tables so each diagram is readable

enough to be useful and not overwhelming to the reader.

Tables, columns, and views: You also need written documentation for

your database, because an ER diagram isn’t the right format to

describe the purpose and usage of each table, column, and other

object.

Tables need a description of what type of entity the table models.

For example, Bugs, Products, and Accounts are pretty clear, but what

about a lookup table like BugStatus or an intersection table like

BugsProducts or a dependent table like Comments? Also, how many

rows do you anticipate each table to have? What queries against

this table do you expect? What indexes exist in this table?

Columns each have a name and a data type, but that doesn’t tell

the reader what the column’s values mean. What values make

sense in that column (it’s rarely the full range of the data type)?

For columns storing a quantitative value, what is the unit of mea-

surement? Does the column allow nulls or not, and why? Does it

have a unique constraint, and if so, why?

Views store frequently used queries against one or more tables.

What made it worthwhile to create a given view? What application

or user is expected to use the view? Was the view intended to

abstract a complex relationship of tables? Does it exist as a way

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=270

SOLUTION: ESTABLISH A BIG-TENT CULTURE OF QUALITY 271

to allow unprivileged users to query a subset of rows or columns

in a privileged table? Is the view updatable?

Relationships: Referential integrity constraints implement dependen-

cies between tables, but this might not tell everything that you

intend the constraints to model. For example, Bugs.reported_by is

not nullable, but Bugs.assigned_to is nullable. Does that mean a

bug can be fixed before it’s assigned? If not, what are the business

rules for when the bug must be assigned?

In some cases, you may have implicit relationships but no con-

straints for them. Without documentation, it’s hard to know where

these relationships exist.

Triggers: Data validation, data transformation, and logging database

changes are examples of tasks for a trigger. What business rules

are you implementing in triggers?

Stored procedures: Document your stored procedures like an API. What

problem is the procedure solving? Does a procedure perform any

changes to data? What are the data types and meanings of the

input and output parameters? Do you intend the procedure to

replace a certain type of query to eliminate a performance bottle-

neck? Do you use the procedure to grant unprivileged users access

to privileged tables?

SQL Security: What database users do you define for applications to

use? What access privileges do each of these users have? What

SQL roles do you provide, and which users can use them? Are any

users designated for specific tasks, such as backups or reports?

What system-level security provisions do you use, such as if the

client must reach the RDBMS server via SSL? What measures do

you take to detect and block attempts at illicit authentication,

such as brute-force password guessing? Have you done a thor-

ough code review for SQL Injection vulnerabilities?

Database infrastructure: This information is chiefly used by IT staff

and DBAs, but developers need to know some of it too. What

RDBMS brand and version do you operate? What is your database

server hostname? Do you use multiple database servers, replica-

tion, clusters, proxies, and so on? What is your network organi-

zation and the port number used by the database server? What

connection options do client applications need to use? What are

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=271

SOLUTION: ESTABLISH A BIG-TENT CULTURE OF QUALITY 272

the database user passwords? What are your database backup

policies?

Object-relational mapping: Your project may implement some database-

handling logic in application code, as part of an layer of ORM-

based code classes. What business rules are implemented in this

way? Data validation, data transformation, logging, caching, or

profiling?

Developers don’t like to maintain engineering documentation. It’s hard

to write, it’s hard to keep up-to-date, and it’s dispiriting when few peo-

ple read what you do write. But even battle-hardened, extreme pro-

grammers know that they need to document the database, even if they

document no other part of their software.3

Trail of Evidence: Source Code Control

If your database server failed completely, how would you re-create a

database? What’s the best way to track a complex upgrade to your

database design? How would you back out a change?

We know how we would use a source control system to manage applica-

tion code, solving similar problems of software development. A project

under source control should include everything you need to rebuild and

redeploy the project if your existing deployment explodes. Source con-

trol also serves as a history of changes and an incremental backup so

you can reverse any of these changes.

You can use source control with your database code and get similar

benefits for development.

You should check into source control the files related to your database

development, including the following:

Data definition scripts: All brands of database provide ways to execute

SQL scripts containing CREATE TABLE and other statements that

define the database objects.

Triggers and procedures: Many projects supplement application code

with routines stored in the database. Your application probably

won’t work without these routines, so they count as part of your

project’s code.

3. For example, Jeff Atwood and Joel Spolsky see little value in doc-

umenting code, except for the database, in StackOverflow podcast #80,

http://blog.stackoverflow.com/2010/01/podcast-80/.

Report erratum

this copy is (P1.0 printing, May 2010)

http://blog.stackoverflow.com/2010/01/podcast-80/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=272

SOLUTION: ESTABLISH A BIG-TENT CULTURE OF QUALITY 273

Schema Evolution Tools

Your code is under source control, but your database isn’t. Ruby
on Rails popularized a technique called migrations to manage
upgrades to a database instance under source control. Let’s
briefly see an example of an upgrade:

Write a script with code to upgrade a database by one step,
based on Rails’ abstract class for making database changes.
Also write a downgrade function that reverses the changes
from those in the upgrade function.

class AddHoursToBugs < ActiveRecord::Migration
def self.up
add_column :bugs, :hours, :decimal

end

def self.down
remove_column :bugs, :hours

end
end

The Rails tool that runs migrations automatically creates a table
to record the revision or revisions that apply to your current
database instance. Rails 2.1 introduced changes to make this
system more flexible, and subsequent versions of Rails may also
change the way migrations work.

Create a new migration script for each schema alteration in
the database. You accumulate a set of these migration scripts;
each one can upgrade or downgrade the database schema
one step. If you need to change your database to version 5,
specify an argument to the migration tool.

$ rake db:migrate VERSION=5

There’s a lot more to learn about migrations in Agile Web
Development with Rails, Third Edition [RTH08] or http://guides.

rubyonrails.org/migrations.html.

Most other web development frameworks, including Doctrine
for PHP, Django for Python, and Microsoft ASP.NET, support fea-
tures similar to Rails’ migrations, either included with the frame-
work or available as a community project.

Migrations automate a lot of tedious work of synchronizing
a database instance with the structure expected in a given
revision of your project under source code control. But they
aren’t perfect. They handle only a few simple types of schema
changes, and they basically implement a revision system on
top of your conventional source control.

Report erratum

this copy is (P1.0 printing, May 2010)

http://guides.rubyonrails.org/migrations.html
http://guides.rubyonrails.org/migrations.html
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=273

SOLUTION: ESTABLISH A BIG-TENT CULTURE OF QUALITY 274

Bootstrap data: Lookup tables may contain some set of data that rep-

resents an initial state of your database, before any users enter

new data. You should keep bootstrap data to help if you need to

re-create a database from your project source. Also called seed

data.

ER diagrams and documentation: These files aren’t code, but they’re

closely tied to the code, describing database requirements, imple-

mentation, and integration with the application. As the project

evolution results in changes to both the database and the appli-

cation, you should keep these files up-to-date. Make sure the doc-

uments describe the current designs.

DBA scripts: Most projects have a collection of data-handling jobs that

run outside the application. These include tasks for import/ex-

port, synchronization, reporting, backups, validation, testing, and

so on. These may be written as SQL scripts, not part of a conven-

tional application programming language.

Make sure your database code files are associated with the application

code that uses that database. Part of the benefit of using source control

is that if you check out your project from source control given a cer-

tain revision number, date, or milestone, the files should work together.

Use the same source control repository for both application code and

database code.

Burden of Proof: Testing

The final part of quality assurance is quality control—validating that

your application does what it set out to do. Most professional devel-

opers are familiar with techniques to write automated tests to vali-

date application code behavior. One important principle of testing is

isolation, testing only one part of the system at a time so that if a defect

exists, you can narrow down where it exists as precisely as possible.

We can extend the practice of isolation testing to the database by val-

idating the database structure and behavior independently from your

application code.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=274

SOLUTION: ESTABLISH A BIG-TENT CULTURE OF QUALITY 275

The following example shows a unit test script using the PHPUnit test

framework:4

Download Diplomatic_immunity/DatabaseTest.php

<?php

require_once "PHPUnit/Framework/TestCase.php";

class DatabaseTest extends PHPUnit_Framework_TestCase

{

protected $pdo;

public function setUp()

{

$this->pdo = new PDO("mysql:dbname=bugs", "testuser", "xxxxxx");

}

public function testTableFooExists()

{

$stmt = $this->pdo->query("SELECT COUNT(*) FROM Bugs");

$err = $this->pdo->errorInfo();

$this->assertType("object", $stmt, $err[2]);

$this->assertEquals("PDOStatement", get_class($stmt));

}

public function testTableFooColumnBugIdExists()

{

$stmt = $this->pdo->query("SELECT COUNT(bug_id) FROM Bugs");

$err = $this->pdo->errorInfo();

$this->assertType("object", $stmt, $err[2]);

$this->assertEquals("PDOStatement", get_class($stmt));

}

static public function main()

{

$suite = new PHPUnit_Framework_TestSuite(__CLASS__);

$result = PHPUnit_TextUI_TestRunner::run($suite);

}

}

DatabaseTest::main();

You can use the following checklist for tests that validate your database:

Tables, columns, views: You should test that tables and views you ex-

pect to exist in the database do exist. Each time you enhance

the database with a new table, view, or column, add a new test

4. See http://www.phpunit.de/. Admittedly, testing database functionality isn’t strictly unit

testing, but you still can use this tool to organize and automate the tests.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Diplomatic_immunity/DatabaseTest.php
http://www.phpunit.de/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=275

SOLUTION: ESTABLISH A BIG-TENT CULTURE OF QUALITY 276

that confirms that the object is present. You can also use negative

tests to confirm that a table or column you removed in the current

revision of your project is in fact no longer present.

Constraints: This is another use of negative testing. Try to execute

INSERT, UPDATE, or DELETE statements that should result in an error

because of a constraint. For example, try to violate not-null,

unique constraints, or foreign keys. If the statement doesn’t return

an error, then your constraint isn’t working. You can catch many

bugs early by identifying these failures.

Triggers: Triggers can enforce constraints too. Triggers can perform

cascading effects, transform values, log changes, and so on. You

should test these scenarios by executing a statement that spawns

the trigger and then querying to confirm that the trigger performed

the action you intended.

Stored procedures: Testing procedures in the database is closest to con-

ventional unit testing of application code. A stored procedure has

input parameters, which could throw errors if you try to pass val-

ues outside the range of valid input. Logic within the body of the

procedure could allow multiple execution paths. The procedure

could return a single value or a query result set, depending on the

inputs and the state of data in the database. Also, the procedure

could have side effects in the form of updating the database. You

can test all of these features of procedures.

Bootstrap data: Even a supposedly empty database typically needs

some initial data, such as in lookup tables. You can run queries

to validate that the initial data is present.

Queries: Application code is laced with SQL queries. You can execute

queries in a test environment to validate syntax and results. Con-

firm that the result set includes the column names and data types

you expect, just like testing tables and views.

ORM classes: Like triggers, ORM classes contain logic, including

validation, transformation, or monitoring. You should test your

ORM-based database abstraction code as you would any other

application code. Confirm that these classes do the expected

actions with input and also that they reject invalid input.

If any of your tests fail, your application could be using the wrong data-

base instance. Always double-check that you’re connecting to the right

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=276

SOLUTION: ESTABLISH A BIG-TENT CULTURE OF QUALITY 277

database—the mistake is frequently simply a matter of connecting to

the wrong instance. Edit the configuration if needed and try again. If

you’re sure you’re connection is proper but you need to alter the data-

base, then you can run a migration script (see the sidebar on page 273)

to synchronize this database instance to match what your application

expects.

Case Load: Working in Multiple Branches

While you develop your application, you could work on multiple revi-

sions of the code. You might even work on different revisions in the

same day. For example, you could fix an urgent bug in the branch

of the application currently deployed and then moments later resume

working on long-term development in the main branch.

But the database your application uses isn’t under revision control. It’s

not practical to set up and tear down a database on a moment’s notice,

even if the database brand you use is relatively agile and easy to use.

Ideally, create a separate instance of your database for each revision of

the application you need to develop, test, stage, or deploy. Also, each

developer in your project team needs a separate database instance so

they can work without interfering with the rest of the team.

Make your application support a configurable means to specify data-

base connection parameters so that whichever application revision you

work on, you can specify which database to use without overwriting

code.

Today every RDBMS brand, both commercial and open source, offers a

free solution for development and testing. Platform virtualization tech-

nology such as VMware Workstation, Xen, and VirtualBox allow every

developer to run a clone of the server infrastructure at little cost. There

is no reason that software developers can’t develop and test in a fully

functional environment that matches the production environment.

Use software development best practices, including documentation, test-

ing, and source control, for your database as well as your application.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=277

Explanations exist; they have existed for all time; there is

always a well-known solution to every human

problem—neat, plausible, and wrong.

H. L. Mencken

Chapter 25

Magic Beans
“Why is it taking so long to add one little feature?” Your manager had

assigned your team to enhance the bug-tracking application to show a

count of how many comments a bug had received. You’ve been working

on this task for four weeks.

Your group of software developers in the meeting room looks reluctant

to answer the question. As project lead, you answer. “We’ve had a couple

of false starts,” you explain. “It seemed simple at first, until we realized

there were some other screens in the application where we needed to

show the comment count.”

“And designing the screens took four weeks?” your manager asks.

“Well, no, that’s just a little bit of HTML, and that’s pretty easy since we

use the framework that separates code from presentation,” you go on.

“But each time we added this element to a screen, we had to duplicate

code to fetch data in the screen’s back-end code. And that meant each

back-end class needed a new suite of tests.”

“Don’t we use a testing framework?” your manager asks. “How long

does it take to code a few more tests?”

“Writing tests isn’t as simple as writing the code,” another engineer

says hesitantly. “We also created scripts for test data. Then we needed

to reload data on the test database for each test. We needed to test the

front end too, with all the permutations of the new feature combined

with old scenarios.”

Your manager’s eyes are now starting to glaze over, but your co-worker

continues, “We now have 600 tests for the front end, and each one runs

an instance of a browser emulator. It just takes time to run through all

those tests.” He shrugs, “There’s nothing we can do about that.”

OBJECTIVE: SIMPLIFY MODELS IN MVC 279

Your manager takes a deep breath, and says, “OK. . . I didn’t follow all

that; I just want to know why this is so complicated to add one simple

feature. Wasn’t your object-oriented framework supposed to make it

quicker and easier to add features?”

Good question.

25.1 Objective: Simplify Models in MVC

Web application frameworks make it faster and easier to add features

and code to an application. The greatest contributor to the cost of a soft-

ware project is development time. So, the more we can reduce developer

time, the less expensive it is to produce software.

Robert L. Glass found that “eighty percent of software work is intellec-

tual. A fair amount of it is creative. Little of it is clerical.”1

One way we assist the intellectual part of software development is to

adopt the terminology and conventions of design patterns. When we

say Singleton or Facade or Factory, the other developers on our team

know what we mean. That saves a lot of time.

Much of the code in any application is repetitive—practically boiler-

plate. Frameworks help improve coding productivity by giving us re-

usable components and code generation tools. We can produce working

software applications while writing less original code.

Design patterns and software frameworks come together when we use

the Model View Controller (MVC) architecture. This is a technique for

separating concerns in an application, as illustrated in Figure 25.1, on

the following page.

• The controllers accept user input, define the work the application

should do in response, delegate work to the appropriate models,

and send results to the view.

• The models handle everything else; they are the heart of the appli-

cation and include input validation, business logic, and database

interaction.

• The views present information in the user interface.

It’s easy to understand what the controller and the view do. But the

purpose of the model is more vague. There’s a great desire in the soft-

ware developer community to simplify and generalize what a model is,

1. Facts and Fallacies of Software Engineering [Gla92], p.60.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=279

ANTIPATTERN: THE MODEL IS AN ACTIVE RECORD 280

controller view

model

input output

Figure 25.1: Model View Controller

with the goal of reducing the complexity of software design. But often

that goal leads them to oversimplify by assuming the model is only a

data access object.

25.2 Antipattern: The Model Is an Active Record

In simple applications, you don’t need much custom logic in a model.

It’s relatively straightforward to match the fields of a model object to

the columns of a single table in a database. This is a type of object-

relational mapping. All you need the object to do is know how to create

a row in the table, read the row, and update and delete it—the basic

CRUD operations.

Martin Fowler described a design pattern to support this mapping,

called Active Record.2 Active Record is a data access pattern. You define

a class corresponding to a table or view in your database. You can call

a class method find() that returns an object instance of the class, cor-

responding to an individual row in that table or view. You can also use

the class constructor to create a new row. Calling save() on this object

either inserts a new row or updates the existing row.

Download Magic-Beans/anti/doctrine.php

<?php

$bugsTable = Doctrine_Core::getTable('Bugs');

$bugsTable->find(1234);

$bug = new Bugs();

$bug->summary = "Crashes when I save";

$bug->save();

2. See Active Record in Patterns of Enterprise Application Architecture [Fow03], p.160.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Magic-Beans/anti/doctrine.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=280

ANTIPATTERN: THE MODEL IS AN ACTIVE RECORD 281

Leaky Abstractions

Joel Spolsky coined the term leaky abstractions in 2002.∗ An
abstraction simplifies the internal workings of some technology
and makes it easier to use. But when you have to know the inter-
nals anyway to be productive, that’s when it’s called a leaky
abstraction.

The use of the Active Record pattern as a model in MVC is
a good example of a leaky abstraction. In very simple cases,
Active Record works like magic. But if you try to use it for all
database access, you find many operations such as JOIN or
GROUP BY that are simple to express in SQL are awkward in
Active Record.

Some frameworks try to enhance Active Record to support a
variety of SQL clauses. The more these enhancements expose
the fact that the class uses SQL internally, the more you feel like
you might be better off using SQL directly.

The abstraction has failed to hide its secrets, like Toto exposing
the Wizard of Oz as an ordinary man behind a curtain.

∗. See The Law of Leaky Abstractions [Spo02].

Ruby on Rails popularized Active Record for web development frame-

works in 2004, and now most web application frameworks use this

pattern as the de facto data access object (DAO). There’s nothing wrong

with using Active Record; it’s a fine pattern that provides a simple inter-

face to individual rows in a single table. The antipattern is the conven-

tion that all model classes in an MVC application inherit from the base

Active Record class. This is an example of the Golden Hammer antipat-

tern: if the only tool you have is a hammer, treat everything as if it were

a nail.

It’s tempting to embrace any convention that simplifies software design.

We can make our work easier if we’re willing to sacrifice some flexibility,

and if we never really needed the flexibility to begin with, that’s even

better.

But this is a fairy tale, like Jack and the Beanstalk. Jack believed that

his magic beans would grow into a mighty beanstalk while he slept. It

worked out all right in Jack’s story, but we may not always be so lucky.

Let’s look at the consequences of the Magic Beans antipattern.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=281

ANTIPATTERN: THE MODEL IS AN ACTIVE RECORD 282

Active Record Couples Models to the Schema

Active Record is a simple pattern, because a plain Active Record class

represents a single table or view in the database. The fields of each

Active Record object match the columns in one corresponding table. If

you have sixteen tables, you define sixteen model subclasses.

This means that if you need to refactor your database to represent a

new structure of data, your model classes need to change, as well as

any code in your application that uses the model classes. Likewise, if

you add a controller to handle a new screen in your application, you

may have to duplicate code that queries your models.

Active Record Exposes CRUD Functions

The next problem you may run into is that other programmers who

use your model class can bypass your intended usage, updating data

directly using CRUD functions.

For example, you might add a method assignUser() to a bug model, be-

cause you need to send an email to that engineer after updating the

bug.

Download Magic-Beans/anti/crud.php

<?php

class CustomBugs extends BaseBugs

{

public function assignUser(Accounts $a)

{

$this->assigned_to = $a->account_id;

$this->save();

mail($a->email, "Assigned bug",

"You are now responsible for bug #{$this->bug_id}.");

}

}

However, another programmer working on the bug application bypasses

your method and assigns the bug manually without sending the email.

Download Magic-Beans/anti/crud.php

$bugsTable = Doctrine_Core::getTable('Bugs');

$bugsTable->find(1234);

$bug->assigned_to = $user->account_id;

$bug->save();

Your requirement was to have an email notification sent whenever the

assignment changes. This allows that step to be bypassed. Does it make

sense for your derived model class to expose the CRUD methods of

the base Active Record class? How can you prevent other programmers

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Magic-Beans/anti/crud.php
http://media.pragprog.com/titles/bksqla/code/Magic-Beans/anti/crud.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=282

ANTIPATTERN: THE MODEL IS AN ACTIVE RECORD 283

from using these methods inappropriately? How can you exclude the

base Active Record interface from your model class’s generated docu-

mentation and code completion in programming editors?

Active Record Encourages an Anemic Domain Model

A closely related point is that a model frequently has no behavior except

generic CRUD methods. Many developers extend the base Active Record

class without adding any new methods related to the work the model

should do.

Treating models as simple data access objects encourages you to code

your business logic outside the model, usually spread over multiple

controller classes and reducing cohesion of the model’s behavior. Mar-

tin Fowler calls this antipattern the Anemic Domain Model in his blog.3

For example, you might have separate Active Record classes corre-

sponding to the Bugs, Accounts, and Products tables. But you need data

from all three of these tables in many application tasks.

Let’s look at a simple code example for our bug-tracking application

that implements bug assignment, data entry, bug display, and bug

search tasks. It uses a PHP framework called Doctrine to provide a

simple active record interface, and it uses the Zend Framework for the

MVC architecture.

Download Magic-Beans/anti/anemic.php

<?php

class AdminController extends Zend_Controller_Action

{

public function assignAction()

{

$bugsTable = Doctrine_Core::getTable("Bugs");

$bug = $bugsTable->find($_POST["bug_id"]);

$bug->Products[] = $_POST["product_id"];

$bug->assigned_to = $_POST["user_assigned_to"];

$bug->save();

}

}

class BugController extends Zend_Controller_Action

{

public function enterAction()

{

$bug = new Bugs();

$bug->summary = $_POST["summary"];

3. http://www.martinfowler.com/bliki/AnemicDomainModel.html

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Magic-Beans/anti/anemic.php
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=283

ANTIPATTERN: THE MODEL IS AN ACTIVE RECORD 284

$bug->description = $_POST["summary"];

$bug->status = "NEW";

$accountsTable = Doctrine_Core::getTable("Accounts");

$auth = Zend_Auth::getInstance();

if ($auth && $auth->hasIdentity()) {

$bug->reported_by = $auth->getIdentity();

}

$bug->save();

}

public function displayAction()

{

$bugsTable = Doctrine_Core::getTable("Bugs");

$this->view->bug = $bugsTable->find($_GET["bug_id"]);

$accountsTable = Doctrine_Core::getTable("Accounts");

$this->view->reportedBy = $accountsTable->find($bug->reported_by);

$this->view->assignedTo = $accountsTable->find($bug->assigned_to);

$this->view->verifiedBy = $accountsTable->find($bug->verified_by);

$productsTable = Doctrine_Core::getTable("Products");

$this->view->products = $bug->Products;

}

}

class SearchController extends Zend_Controller_Action

{

public function bugsAction()

{

$q = Doctrine_Query::create()

->from("Bugs b")

->join("b.Products p")

->where("b.status = ?", $_GET["status"])

->andWhere("MATCH(b.summary, b.description) AGAINST (?)", $_GET["search"]);

$this->view->searchResults = $q->fetchArray();

}

}

Code that uses Active Record in controller classes expands to become

a procedural approach to organizing application logic. If the database

schema or the desired application behavior ever changes, you need to

update many places in the code. Likewise, if you add a controller, you

need to write new code even if your queries against the model are simi-

lar to those in other controllers.

The class interaction diagram (shown in Figure 25.2, on the next page)

is messy and hard to read; it only gets worse as we add more con-

trollers and DAO classes. This should be a strong clue that the code

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=284

ANTIPATTERN: THE MODEL IS AN ACTIVE RECORD 285

DataEntry
controller

Bugs
ActiveRecord

Display
controller

Admin
controller

Search
controller

Accounts
ActiveRecord

Products
ActiveRecord

Figure 25.2: Using Magic Beans leads to vinelike tangles.

that uses different models together is duplicated across controllers. You

need to use another approach to simplify and encapsulate part of your

application.

Unit Testing Magic Beans Is Hard

When you employ the Magic Beans antipattern, you find that testing

each of the layers in MVC is harder.

• Testing the model: Since you’ve made the model the same class as

the Active Record, you can’t test model behavior separately from

data access. To test the model, you have to execute queries against

a live database.

Many people use database fixtures. A database fixture loads data

into a test database to ensure that each test runs against a base-

line state. Doing this much complex setup and teardown work

makes testing models slow and error-prone, as well as requiring a

live database for tests.

• Testing the view: Testing views involves rendering the view into

HTML and parsing the result to verify that dynamic HTML ele-

ments provided by models appear in the output. Even if your

framework simplifies the assertions in your test scripts, the frame-

work has to run complex and time-consuming code to perform the

rendering and then parse the HTML for specific elements.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=285

HOW TO RECOGNIZE THE ANTIPATTERN 286

• Testing the controller: You also find that testing the controller is

complex, because a model that is a data access object leads to

repetitions of the same code in multiple controllers, all of which

need to be tested.

To test a controller, you need to create a fake HTTP request. The

output of a web application is an HTTP response header and body.

To verify the test, you have to pick apart the HTTP response the

controller returns. This needs a lot of setup code to test business

logic, and it makes tests run slowly.

If you could separate business logic from the database access and sep-

arate business logic from presentation, it would help to meet the goals

of MVC, and it would make testing simpler too.

25.3 How to Recognize the Antipattern

The following clues may mean that you have Magic Beans:

• “How can I pass a custom SQL query to a model?”

The question suggests that you’re using a database access class

as a model class. You shouldn’t have to pass SQL queries to the

model—the model class should encapsulate any queries it needs.

• “Should I copy complex model queries to all my controllers, or

should I code them once in an abstract controller?”

Neither of these solutions gives you the stability or simplicity you

are looking for. You should code complex queries within the model,

exposed as part of the interface of the model. That way, you fol-

low the Don’t Repeat Yourself (DRY) principle, and you make the

model’s usage simpler.4

• “I have to write more database fixtures to unit test my models.”

If you’re using database fixtures, you’re testing database access,

not business logic. You should be able to unit test a model in

isolation from the database.

4. DRY was coined in The Pragmatic Programmer [HT00] by Andy Hunt and Dave

Thomas.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=286

LEGITIMATE USES OF THE ANTIPATTERN 287

25.4 Legitimate Uses of the Antipattern

There’s nothing wrong with the Active Record design pattern per se. It’s

a convenient pattern for simple CRUD operations. In most applications,

you have some cases where you need only a simple data access object

for simple operations on individual rows of a table. You can simplify

these cases by defining the model as coincident with its DAO.

Another good use of Active Record is for prototyping code. When writing

code quickly is more important than writing code that’s testable and

maintainable, shortcuts are important. Showing a working prototype

early and often is a great way to refine the project with active feedback.

Anything you can do to speed up development of the prototype is helpful

in these circumstances, and using simple application frameworks can

help in this case.

Just be sure to budget some time for refactoring the code to pay back

the technical debt you gather by writing coding in a prototype mode.

25.5 Solution: The Model Has an Active Record

Controllers handle application input and views handle application out-

put, both relatively simple and well-defined tasks. Frameworks are best

at helping you put these together quickly. But it’s hard for a framework

to provide a one-size-fits-all solution for models, because models com-

prise the rest of the object-oriented design for your application.

This is where you actually need to think hard about what the objects

are in your application and what data and behavior those objects have.

Remember Robert L. Glass’s estimate that the majority of software

development is intellectual and creative?

Grasping the Model

Fortunately, there’s a lot of wisdom in the field of object-oriented design

to guide you. Craig Larman’s book Applying UML and Patterns [Lar04],

for example, describes guidelines called the General Responsibility As-

signment Software Patterns (GRASP). Some of these guidelines are es-

pecially relevant to separating models from their data access objects:

Information Expert

The object responsible for an operation should have all the data needed

to fulfill that operation. Since some operations in your application in-

volve multiple tables (or no tables) and Active Record is good at working

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=287

SOLUTION: THE MODEL HAS AN ACTIVE RECORD 288

with only one table at a time, we need another class to aggregate sev-

eral database access objects together and use them for the composite

operation.

The relationship between a model and a DAO like Active Record should

be HAS-A (aggregation) instead of IS-A (inheritance). Most frameworks

that rely on Active Record assume the IS-A solution. If your model uses

DAOs instead of inheriting from the DAO class, then you can design

the model to contain all data and code for the domain it’s supposed to

model—even if it takes multiple database tables to represent it.

Creator

How the model persists its data in a database should be an inter-

nal implementation detail. A domain model that aggregates its DAOs

should have the responsibility to create those objects.

The controllers and views in your application should use the domain

model interface, without being aware of what kind of database interac-

tion is necessary for the model to fetch or store data. This makes it easy

to change the database queries later, in one place in your application.

Low Coupling

It’s important to decouple logically independent blocks of code. This

gives you the flexibility to change the implementation of a class with-

out affecting its consumers. You can’t simplify the requirements of the

application; some complexity has to reside somewhere in your code.

But you can make the best choice about where you implement that

complexity.

High Cohesion

The interface for the domain model class should reflect its intended

usage, not the physical database structure or CRUD operations. Gen-

eric methods of the Active Record interface like find(), first(), insert(), or

even save() don’t tell you much about how they apply to application

requirements. Methods like assignUser() are more descriptive, and your

controller code is easier to understand.

When you decouple a model class from the DAO it uses, you can even

design more than one model class for the same DAO. This is better for

cohesion than trying to combine all work related to the given tables into

a single class extending Active Record.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=288

SOLUTION: THE MODEL HAS AN ACTIVE RECORD 289

Putting the Domain Model into Action

In Domain-Driven Design: Tackling Complexity in the Heart of Software

[Eva03], Eric Evans describes a better solution: the domain model.

A model in the original MVC sense—not in the opinionated software

sense—is an object-oriented representation of a domain in your appli-

cation, that is, the business rules in your application and the data for

those business rules. The model is where you implement business logic

for the application; storing it in a database is an internal implementa-

tion detail of a model.

Once we have the model designed around concepts in our application,

instead of database layout, we can start to implement database opera-

tions completely hidden within our model classes. Let’s look at a possi-

ble refactoring of our earlier example code:

Download Magic-Beans/soln/domainmodel.php

<?php

class BugReport

{

protected $bugsTable;

protected $accountsTable;

protected $productsTable;

public function __construct()

{

$this->bugsTable = Doctrine_Core::getTable("Bugs");

$this->accountsTable = Doctrine_Core::getTable("Accounts");

$this->productsTable = Doctrine_Core::getTable("Products");

}

public function create($summary, $description, $reportedBy)

{

$bug = new Bugs();

$bug->summary = $summary

$bug->description = $description

$bug->status = "NEW";

$bug->reported_by = $reportedBy;

$bug->save();

}

public function assignUser($bugId, $assignedTo)

{

$bug = $bugsTable->find($bugId);

$bug->assigned_to = $assignedTo"];

$bug->save();

}

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Magic-Beans/soln/domainmodel.php
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=289

SOLUTION: THE MODEL HAS AN ACTIVE RECORD 290

public function get($bugId)

{

return $bugsTable->find($bugId);

}

public function search($status, $searchString)

{

$q = Doctrine_Query::create()

->from("Bugs b")

->join("b.Products p")

->where("b.status = ?", $status)

->andWhere("MATCH(b.summary, b.description) AGAINST (?)", $searchString]);

return $q->fetchArray();

}

}

class AdminController extends Zend_Controller_Action

{

public function assignAction()

{

$this->bugReport->assignUser(

$this->_getParam("bug"),

$this->_getParam("user"));

}

}

class BugController extends Zend_Controller_Action

{

public function enterAction()

{

$auth = Zend_Auth::getInstance();

if ($auth && $auth->hasIdentity()) {

$identity = $auth->getIdentity();

}

$this->bugReport->create(

$this->_getParam("summary"),

$this->_getParam("description"),

$identity);

}

public function displayAction()

{

$this->view->bug = $this->bugReport->get(

$this->_getParam("bug"));

}

}

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=290

SOLUTION: THE MODEL HAS AN ACTIVE RECORD 291

class SearchController extends Zend_Controller_Action

{

public function bugsAction()

{

$this->view->searchResults = $this->bugReport->search(

$this->_getParam("status", "OPEN"),

$this->_getParam("search"));

}

}

You should be able to notice several improvements:

• The class interaction diagram (shown in Figure 25.3, on the fol-

lowing page) is much simpler and easier to read, indicating an

improvement in decoupling classes.

• By decoupling the model’s interface from its underlying database

structure, we’ve reduced and simplified the code in the controller.

• Each model class creates the objects to interact with one or more

tables. The controllers do not need to know which tables are

involved.

• The model classes encapsulate and hide the database queries. The

controller is concerned only with retrieving user inputs and invok-

ing higher-level tasks through the model API.

• In some cases, a query is too complex to do easily through a DAO,

and writing custom SQL is needed. Using plain SQL seems less

scary when it’s safely encapsulated inside a model class.

Testing Plain Objects

Ideally, you should be able to test your model without connecting to a

live database. If you decouple your model from its DAO, then you can

create stub and mock DAOs to help unit test your model.

Likewise, you can test the interface of a domain model just like any

other object-oriented testing: call methods of the object, and then vali-

date the method’s return value. This is faster and easier than creating

fake HTTP requests to feed to a controller and parsing the resulting

HTTP response.

You still test your controllers with fake HTTP requests, but because the

controller code is simpler, you don’t need to test as many logical paths.

If you separate models and controllers and separate data access compo-

nents from models, then you can unit test all these classes more simply

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=291

SOLUTION: THE MODEL HAS AN ACTIVE RECORD 292

DataEntry
controller

Bugs
ActiveRecord

Display
controller

Admin
controller

Search
controller

Accounts
ActiveRecord

Products
ActiveRecord

BugReport
DomainModel

Figure 25.3: Untangling the vines by decoupling

and with better isolation. This makes it easier to diagnose defects when

they occur. Isn’t this the point of unit tests?

Getting Down to Earth

You can use a data access object productively in any software devel-

opment framework, even one that encourages the Magic Beans anti-

pattern. However, developers who don’t learn how to employ object-

oriented design principles are doomed to write spaghetti code.

The basics of domain modeling described and cited in this chapter will

help you choose the best design to support testing and code mainte-

nance. You’ll finally be able to achieve great productivity developing

database-driven applications.

Decouple your models from your tables.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=292

Part V

Appendixes

Young man, in mathematics you don’t understand things.

You just get used to them.

John von Neumann

Appendix A

Rules of Normalization
Relational database design isn’t arbitrary or mysterious. You can use

a number of well-defined rules to design a data storage strategy that

avoids redundancy and helps make your application mistake-proof, like

the poka-yoke ideas mentioned earlier in this book. You’ve probably

heard other metaphors for the same idea, such as defensive design or

fail early.

The rules of normalization aren’t complicated, but they are subtle.

Developers often misunderstand how they work, perhaps because they

expect the rules to be harder than they are.

Another possibility is that people are turned off by having to follow

rules at all. Rules are the bête noire of developers who value newness,

creativity, and innovation. Rules are in a way the opposite of freedom.

Software developers continually make trade-offs between simplicity and

flexibility. You can make a lot of work for yourself by reinventing the

wheel and developing custom data management software for every ap-

plication. Or you can take advantage of existing knowledge and tech-

nology if you can conform to a relational design.

I’ve described the antipatterns in this book using their own merits (or

faults) to avoid being too academic or theoretical. But in this appendix,

we’ll see that theory can also be practical.

A.1 What Does Relational Mean?

This term relational doesn’t refer to relationships between tables. It

refers to the table itself, or rather, the relationship between columns

within a table. In a way, it refers to both.

WHAT DOES RELATIONAL MEAN? 295

Mathematicians define a relation as the combination of two sets of val-

ues from different domains, with some condition applied that gives us

a subset of all the possible combinations.

For example, one set is the names of baseball teams, and the other

set is cities. The combination of every team to every city is a long list

of pairings. But we’re interested in a particular subset of this list: the

teams paired with their home city. Valid pairs include Chicago/White

Sox, Chicago/Cubs, or Boston/Red Sox, but not Miami/Red Sox.

The word relation is used in two ways: as a rule (“this city is the home

city of that team”) and as the subset of pairings that comply with the

rule. In SQL, we can store that result in a table with two columns, and

one row per pair.

Of course, relations support more than two columns. You can combine

any number of domains, one per column, into a relation. Also, you can

use domains like the set of 32-bit integers or the set of text strings of a

specific length.

Before we can begin normalizing tables, we need to be sure that they

are proper relations. They have to meet a few criteria.

Rows Have No Order from Top to Bottom

In SQL, a query returns results in an unpredictable order, unless you

use an ORDER BY clause to specify the order. But apart from the order,

the set of rows is the same.

Columns Have No Order from Left to Right

Whether we ask Steven to test the product Open RoundFile against

bug #1234 or whether we need to know if bug #1234 can be verified in

product Open RoundFile by Steven, the result should be the same.

This is related to the antipattern in Chapter 19, Implicit Columns, on

page 214, where we would use columns by their position instead of by

their name.

Duplicate Rows Are Not Allowed

Once you know a fact, stating it again doesn’t make it any more true.

Given the name of a baseball team, your data dictates the city. We say

the city depends on the team name.

To prevent duplicates, we have to be able to tell one row from another

and to address individual rows. To ensure this in SQL, we declare a

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=295

MYTHS ABOUT NORMALIZATION 296

primary key constraint for a column or set of columns, whatever is

needed to uniquely identify rows.

We might have duplication among nonkey columns—there are two

teams in the city of Boston—but the row as a whole is still unique

because the team names are different.

Every Column Has One Type, and One Value per Row

A relation has a header that defines the names and data types of

the columns. Every row must have the same columns as those in the

header, and a given column must have the same meaning on all rows.

We saw an antipattern break this rule in two ways in Chapter 6, Entity-

Attribute-Value, on page 73. First, the EAV table models an entity that

can have a custom set of attributes for every instance, so the entity is

not bound by any header that defines its attributes.

Second, the EAV attr_value column contains all the entity’s attributes,

such as the bug’s date reported, the bug’s status, the account the bug

is assigned to, and so on. A given value like 1234 in this column may be

valid for two different attributes but mean something totally different.

The antipattern in Chapter 7, Polymorphic Associations, on page 89 also

breaks this rule, because a given value like 1234 references the primary

key of any of the multiple parent tables. You can’t say 1234 on one row

means the same thing as 1234 on another row.

Rows Have No Hidden Components

Columns contain data values, not physical storage indicators such as

row IDs or object IDs. Above in Chapter 22, Pseudokey Neat-Freak, on

page 250, we saw that primary keys are unique, but they aren’t row

numbers.

Some databases bend this rule, giving you access to internal storage

details with extensions to SQL (for example, the ROWNUM pseudocol-

umn in Oracle or OID in PostgreSQL). However, these values aren’t

properly part of the relation.

A.2 Myths About Normalization

It’s hard to find a subject that is so widely misunderstood, despite hav-

ing a precise definition. You are practically guaranteed to encounter

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=296

MYTHS ABOUT NORMALIZATION 297

developers who express with complete confidence untruths such as

these:

• “Normalization makes a database slower. Denormalization makes

a database faster.”

False. It’s true that you may need to use a join to retrieve attri-

butes from separate tables after you apply normalization. If you

denormalize data, you can avoid some joins.

For example, the comma-separated list in Chapter 2, Jaywalking,

on page 25 stores products for a given bug. But what if you also

need a list of bugs for a given product? Denormalization usually

helps convenience or performance for one type of query, but at a

great cost for some other types of queries.

There are legitimate uses for denormalization. But you should

model your database in a normal form first, before deciding to use

denormaliziation. The MENTOR guide for indexing in Chapter 13,

Index Shotgun, on page 148 applies to denormalization too: be

sure you measure performance both before and after you imple-

ment a change for the sake of efficiency.

• “Normalization says to push the data out to child tables and ref-

erence it using a pseudokey.”

False. You can use pseudokeys for the goal of convenience, per-

formance, or storage efficiency, and those reasons are legitimate.

But don’t believe that it has anything to do with normalization.

• “Normalization is where you separate attributes as much as pos-

sible, such as in the Entity-Attribute-Value design.”

False. It’s common for developers to use the word normalization

inaccurately, implying that it makes data less human-readable or

less convenient to query. In fact, the opposite is true.

• “No one needs to normalize past the third normal form. The other

normal forms are so esoteric that you’ll never encounter them.”

False. One study showed that more than 20 percent of business

databases contain designs that satisfy the first three normal forms

but violate the fourth normal form. This is a minority, but it’s far

from insignificant. If you learn of a bug that potentially results in

data loss and occurs in 20 percent of your applications, wouldn’t

you want to fix it?

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=297

WHAT IS NORMALIZATION? 298

6NF5NF4NF3NF2NF1NF

BCNF DKNF

Figure A.1: Progression of normal forms

A.3 What Is Normalization?

The following are the objectives of normalization:

• To represent facts about the real world in a way that we can

understand

• To reduce storing facts redundantly and to prevent anomalous or

inconsistent data

• To support integrity constraints

Notice that improving database performance is not on this list. Normal-

ization helps us store data correctly and avoid getting into trouble. It’s

practically inevitable that a database that is not normalized becomes a

mess. We find ourselves developing a lot more code to clean up incon-

sistent or duplicate data. We experience delays and expenses to our

businesses from faulty data. If you include these scenarios, the bene-

fits to performance from normalizing a database become clearer.

When a table satisfies rules of normalization, we say the table is in

normal form. There are five traditional normal forms, describing pro-

gressive levels of normalization. Each normal form eliminates a specific

type of redundancy or anomaly when you design a relation. Generally,

if your table satisfies a normal form, the table also satisfies all the

preceding normal forms. There are three additional normal forms that

researchers have described. The progression of normal forms is shown

in Figure A.1.

First Normal Form

The most fundamental requirement for first normal form is that the

table must be a relation. If it doesn’t meet the criteria for a relation

described in the first section, then your table can’t be in first normal

form or any of the subsequent normal forms.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=298

WHAT IS NORMALIZATION? 299

bug_id tag1 tag2 tag3

1234 crash

3456 printing crash

5678 report crash data

bug_id tags

1234 crash

3456 printing,crash

5678 report,crash,data

Jaywalking

Multicolumn
Attributes

bug_id

1234

3456

5678

First
Normal
Form

bug_id tag

1234 crash

3456 printing

3456 crash

5678 report

5678 crash

5678 data

Bugs BugsTags

BugsTags

Figure A.2: Repeating groups vs. first normal form

The next requirement is that the table must not have any repeating

groups. Remember that each row in a relation is a combination between

several sets, choosing one value from each set. A repeating group means

that one row may have multiple values from the given set.

We saw two antipatterns that create repeating groups:

• Multiple values from the same domain across multiple columns,

in Chapter 8, Multicolumn Attributes, on page 102

• Multiple values within a single column, in Chapter 2, Jaywalking,

on page 25

In Figure A.2, we can see repeating groups according to each of these

antipatterns. The proper design that satisfies first normal form is to

create a separate table. Tags now occupy a single column, and we can

support multiple tags by storing one tag per row.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=299

WHAT IS NORMALIZATION? 300

Second Normal Form

The second normal form is identical to the first normal form, unless

your table has a compound primary key. In the tagging example, let’s

keep track of which user chose to apply each given tag to a bug. We’re

also interested in who first coined a given tag.

Download Normalization/2NF-anti.sql

CREATE TABLE BugsTags (

bug_id BIGINT NOT NULL,

tag VARCHAR(20) NOT NULL,

tagger BIGINT NOT NULL,

coiner BIGINT NOT NULL,

PRIMARY KEY (bug_id, tag),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (tagger) REFERENCES Accounts(account_id),

FOREIGN KEY (coiner) REFERENCES Accounts(account_id)

);

In Figure A.3, on the next page, we can see that the identity of the coiner

is stored redundantly.1 This means someone might create an anomaly

by changing the identity of the coiner on one row for a given tag (crash)

without changing all rows for the same tag.

To satisfy second normal form, we should store the coiner for a given

tag only once. That means we have to define another table, Tags, where

the tag is the primary key, so there’s bound to be only one row per

distinct tag. Then we can store the coiner of that tag in this new table

instead of in BugsTags and prevent anomalies.

Download Normalization/2NF-normal.sql

CREATE TABLE Tags (

tag VARCHAR(20) PRIMARY KEY,

coiner BIGINT NOT NULL,

FOREIGN KEY (coiner) REFERENCES Accounts(account_id)

);

CREATE TABLE BugsTags (

bug_id BIGINT NOT NULL,

tag VARCHAR(20) NOT NULL,

tagger BIGINT NOT NULL,

PRIMARY KEY (bug_id, tag),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (tag) REFERENCES Tags(tag),

FOREIGN KEY (tagger) REFERENCES Accounts(account_id)

);

1. The figure uses names instead of ID numbers for the user identities.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Normalization/2NF-anti.sql
http://media.pragprog.com/titles/bksqla/code/Normalization/2NF-normal.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=300

WHAT IS NORMALIZATION? 301

bug_id tag tagger coiner

1234 crash Larry Shemp

3456 printing Larry Shemp

3456 crash Moe Shemp

5678 report Moe Shemp

5678 crash Larry Shemp

5678 data Moe Shemp

BugsTags

Redundancy

bug_id tag tagger coiner

1234 crash Larry Shemp

3456 printing Larry Shemp

3456 crash Moe Shemp

5678 report Moe Shemp

5678 crash Larry Curly

5678 data Moe Shemp

Anomaly

Tags

bug_id tag tagger

1234 crash Larry

3456 printing Larry

3456 crash Moe

5678 report Moe

5678 crash Larry

5678 data Moe

tag coiner

crash Shemp

printing Shemp

report Shemp

data Shemp

Second
Normal
Form

BugsTags

Figure A.3: Redundancy vs. second normal form

Third Normal Form

In the Bugs table, you might want to store the email of the engineer

working on the bug.

Download Normalization/3NF-anti.sql

CREATE TABLE Bugs (

bug_id SERIAL PRIMARY KEY

-- . . .

assigned_to BIGINT,

assigned_email VARCHAR(100),

FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id)

);

However, the email is an attribute of the assigned engineer’s account;

it’s not strictly an attribute of the bug. It’s redundant to store the email

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Normalization/3NF-anti.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=301

WHAT IS NORMALIZATION? 302

bug_id assigned_to assigned_email

1234 Larry larry@example.com

3456 Moe moe@example.com

5678 Moe moe@example.com

Bugs

Redundancy

Anomaly

Accounts

Third
Normal
Form

bug_id assigned_to assigned_email

1234 Larry larry@example.com

3456 Moe moe@example.com

5678 Moe curly@example.com

bug_id assigned_to

1234 Larry

3456 Moe

5678 Moe

Bugs

account_id email

Larry larry@example.com

Moe moe@example.com

Figure A.4: Redundancy vs. third normal form

in this way, and we risk anomalies like in the table that fails second

normal form.

In the example for second normal form the offending column is related

to at least part of the compound primary key. In this example, that

violates third normal form, the offending column doesn’t correspond to

the primary key at all.

To fix this, we need to put the email address into the Accounts table.

See how you can separate the column from the Bugs table in Figure A.4.

That’s the right place because the email corresponds directly to the

primary key of that table, without redundancy.

Boyce-Codd Normal Form

A slightly stronger version of third normal form is called Boyce-Codd

normal form. The difference between these two normal forms is that in

third normal form, all nonkey attributes must depend on the key of the

table. In Boyce-Codd normal form, key columns are subject to this rule

as well. This would come up only when the table has multiple sets of

columns that could serve as the table’s key.

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=302

WHAT IS NORMALIZATION? 303

Anomaly

Multiple
Candidate
Keys

Boyce-Codd
Normal
Form

bug_id tag tag_type

1234 crash impact

3456 printing subsystem

3456 crash impact

5678 report subsystem

5678 crash impact

5678 data fix

BugsTags

bug_id tag tag_type

1234 crash impact

3456 printing subsystem

3456 crash impact

5678 report subsystem

5678 crash subsystem

5678 data fix

bug_id tag

1234 crash

3456 printing

3456 crash

5678 report

5678 crash

5678 data

tag tag_type

crash impact

printing subsystem

report subsystem

data fix

Tags

BugsTags

Figure A.5: Third normal form vs. Boyce-Codd normal form

For example, suppose we have three tag types: tags that describe the

impact of the bug, tags for the subsystem the bug affects, and tags that

describe the fix for the bug. We decide that each bug must have at most

one tag of each type. Our candidate key could be bug_id plus tag, but

it could also be bug_id plus tag_type. Either pair of columns would be

specific enough to address every row individually.

In Figure A.5, we see an example of a table that is in third normal form,

but not Boyce-Codd normal form, and how to change it.

Fourth Normal Form

Now let’s alter our database to allow each bug to be reported by multi-

ple users, assigned to multiple development engineers, and verified by

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=303

WHAT IS NORMALIZATION? 304

multiple quality engineers. We know that a many-to-many relationship

deserves an additional table:

Download Normalization/4NF-anti.sql

CREATE TABLE BugsAccounts (

bug_id BIGINT NOT NULL,

reported_by BIGINT,

assigned_to BIGINT,

verified_by BIGINT,

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),

FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id),

FOREIGN KEY (verified_by) REFERENCES Accounts(account_id)

);

We can’t use bug_id alone as the primary key. We need multiple rows

per bug so we can support multiple accounts in each column. We also

can’t declare a primary key over the first two or the first three columns,

because that would still fail to support multiple values in the last col-

umn. So, the primary key would need to be over all four columns. How-

ever, assigned_to and verified_by should be nullable, because bugs can

be reported before being assigned or verified, All primary key columns

standardly have a NOT NULL constraint.

Another problem is that we may have redundant values when any col-

umn contains fewer accounts than some other column. The redundant

values are shown in Figure A.6, on the following page.

All the problems shown previously are caused by trying to create an

intersection table that does double-duty—or triple-duty in this case.

When you try to use a single intersection table to represent multiple

many-to-many relationships, it violates fourth normal form.

The figure shows how we can solve this by splitting the table so that we

have one intersection table for each type of many-to-many relationship.

This solves the problems of redundancy and mismatched numbers of

values in each column.

Download Normalization/4NF-normal.sql

CREATE TABLE BugsReported (

bug_id BIGINT NOT NULL,

reported_by BIGINT NOT NULL,

PRIMARY KEY (bug_id, reported_by),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)

);

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Normalization/4NF-anti.sql
http://media.pragprog.com/titles/bksqla/code/Normalization/4NF-normal.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=304

WHAT IS NORMALIZATION? 305

Fourth
Normal
Form

bug_id reported_by assigned_to verified_by

1234 Zeppo NULL NULL

3456 Chico Groucho Harpo

3456 Chico Spalding Harpo

5678 Chico Groucho NULL

5678 Zeppo Groucho NULL

5678 Gummo Groucho NULL

BugsReported

bug_id reported_by

1234 Zeppo

3456 Chico

5678 Chico

5678 Zeppo

5678 Gummo

BugsAssigned

bug_id assigned_to

3456 Groucho

3456 Spalding

5678 Groucho

BugsVerified

bug_id verified_by

3456 Harpo

Redundancy,
NULLs,
No Primary Key

BugsAccounts

Figure A.6: Merged relationships vs. fourth normal form

CREATE TABLE BugsAssigned (

bug_id BIGINT NOT NULL,

assigned_to BIGINT NOT NULL,

PRIMARY KEY (bug_id, assigned_to),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id)

);

CREATE TABLE BugsVerified (

bug_id BIGINT NOT NULL,

verified_by BIGINT NOT NULL,

PRIMARY KEY (bug_id, verified_by),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (verified_by) REFERENCES Accounts(account_id)

);

Fifth Normal Form

Any table that meets the criteria of Boyce-Codd normal form and does

not have a compound primary key is already in fifth normal form. But

to understand fifth normal form, let’s work through an example.

Some engineers work only on certain products. We should design our

database so that we know the facts of who works on which products and

Report erratum

this copy is (P1.0 printing, May 2010)

http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=305

WHAT IS NORMALIZATION? 306

Fifth
Normal
Form

bug_id assigned_to product_id

3456 Groucho Open RoundFile

3456 Spalding Open RoundFile

5678 Groucho Open RoundFile

BugsAssigned

bug_id assigned_to

3456 Groucho

3456 Spalding

5678 Groucho

EngineerProducts

account_id product_id

Groucho Open RoundFile

Groucho ReConsider

Spalding Open RoundFile

Spalding Visual Turbo Builder

Redundancy,
Multiple Facts

BugsAssigned

Figure A.7: Merged relationships vs. fifth normal form

which bugs, with a minimum of redundancy. Our first try at supporting

this is to add a column to our BugsAssigned table to show that a given

engineer works on a product:

Download Normalization/5NF-anti.sql

CREATE TABLE BugsAssigned (

bug_id BIGINT NOT NULL,

assigned_to BIGINT NOT NULL,

product_id BIGINT NOT NULL,

PRIMARY KEY (bug_id, assigned_to),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

This doesn’t tell us which products we may assign the engineer to work

on; it only tells us which products the engineer is currently assigned

to work on. It also stores the fact that an engineer works on a given

product redundantly. This is caused by trying to store multiple facts

about independent many-to-many relationships in a single table, simi-

lar to the problem we saw in the fourth normal form. The redundancy

is illustrated in Figure A.7.2

2. The figure uses names instead of ID numbers for the products.

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Normalization/5NF-anti.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=306

WHAT IS NORMALIZATION? 307

Our solution is to isolate each relationship into separate tables:

Download Normalization/5NF-normal.sql

CREATE TABLE BugsAssigned (

bug_id BIGINT NOT NULL,

assigned_to BIGINT NOT NULL,

PRIMARY KEY (bug_id, assigned_to),

FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),

FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

CREATE TABLE EngineerProducts (

account_id BIGINT NOT NULL,

product_id BIGINT NOT NULL,

PRIMARY KEY (account_id, product_id),

FOREIGN KEY (account_id) REFERENCES Accounts(account_id),

FOREIGN KEY (product_id) REFERENCES Products(product_id)

);

Now we can record the fact that an engineer is available to work on a

given product, independently from the fact that the engineer is working

on a given bug for that product.

Further Normal Forms

Domain-Key normal form (DKNF) says that every constraint on a table

is a logical consequence of the table’s domain constraints and key con-

straints. Normal forms three, four, five, and Boyce-Codd normal form

are all encompassed by DKNF.

For example, you may decide that a bug that has a status of NEW or

DUPLICATE has resulted in no work, so there should be no hours logged,

and also it makes no sense to assign a quality engineer in the veri-

fied_by column. You might implement these constraints with a trigger

or a CHECK constraint. These are constraints between nonkey columns

of the table, so they don’t meet the criteria of DKNF.

Sixth normal form seeks to eliminate all join dependencies. It’s typically

used to support a history of changes to attributes. For example, the

Bugs.status changes over time, and we might want to record this history

in a child table, as well as when the change occurred, who made the

change, and perhaps other details.

You can imagine that for Bugs to support sixth normal form fully, nearly

every column may need a separate accompanying history table. This

Report erratum

this copy is (P1.0 printing, May 2010)

http://media.pragprog.com/titles/bksqla/code/Normalization/5NF-normal.sql
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=307

COMMON SENSE 308

leads to an overabundance of tables. Sixth normal form is overkill for

most applications, but some data warehousing techniques use it.3

A.4 Common Sense

Rules of normalization aren’t esoteric or complicated. They’re really just

a commonsense technique to reduce redundancy and improve consis-

tency of data.

You can use this brief overview of relations and normal forms as an

quick reference to help you design better databases in future projects.

3. For example, Anchor Modeling uses it (http://www.anchormodeling.com/).

Report erratum

this copy is (P1.0 printing, May 2010)

http://www.anchormodeling.com/
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=308

Appendix B

Bibliography

[BMMM98] William J. Brown, Raphael C. Malveau, Hays W.

McCormick III, and Thomas J. Mowbray. AntiPatterns. John

Wiley and Sons, Inc., New York, 1998.

[Cel04] Joe Celko. Joe Celko’s Trees and Hierarchies in SQL for

Smarties. Morgan Kaufmann Publishers, San Francisco,

2004.

[Cel05] Joe Celko. Joe Celko’s SQL Programming Style. Morgan

Kaufmann Publishers, San Francisco, 2005.

[Cod70] Edgar F. Codd. A relational model of data for large shared

data banks. Communications of the ACM, 13(6):377–387,

June 1970.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in

the Heart of Software. Addison-Wesley Professional, Read-

ing, MA, first edition, 2003.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architec-

ture. Addison Wesley Longman, Reading, MA, 2003.

[Gla92] Robert L. Glass. Facts and Fallacies of Software Engineering.

Addison-Wesley Professional, Reading, MA, 1992.

[Gol91] David Goldberg. What every computer scientist should

know about floating-point arithmetic. ACM Com-

put. Surv., pages 5–48, March 1991. Reprinted

http://www.validlab.com/goldberg/paper.pdf.

http://www.validlab.com/goldberg/paper.pdf

APPENDIX B. BIBLIOGRAPHY 310

[GP03] Peter Gulutzan and Trudy Pelzer. SQL Performance Tuning.

Addison-Wesley, 2003.

[HLV05] Michael Howard, David LeBlanc, and John Viega. 19 Deadly

Sins of Software Security. McGraw-Hill, Emeryville, Califor-

nia, 2005.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Lar04] Craig Larman. Applying UML and Patterns: an Introduction

to Object-Oriented Analysis and Design and Iterative Devel-

opment. Prentice Hall, Englewood Cliffs, NJ, third edition,

2004.

[RTH08] Sam Ruby, David Thomas, and David Heinemeier Hansson.

Agile Web Development with Rails. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, third edition, 2008.

[Spo02] Joel Spolsky. The law of leaky abstractions.

http://www.joelonsoftware.com/articles/LeakyAbstractions.html,

2002.

[SZT+08] Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Jeremy

Zawodny, Arjen Lentz, and Derek J. Balling. High Perfor-

mance MySQL. O’Reilly Media, Inc., second edition, 2008.

[Tro06] Vadim Tropashko. SQL Design Patterns. Rampant Tech-

press, Kittrell, NC, USA, 2006.

Report erratum

this copy is (P1.0 printing, May 2010)

http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://books.pragprog.com/titles/bksqla/errata/add?pdf_page=310

Index
Symbols
% wildcard, 191

A
ABS() function, with floating-point

numbers, 127

access privileges, external files and,

143

accuracy, numeric, see Rounding

Errors antipattern

Active Record pattern as MVC model,

278–292

avoiding, 287–292

consequences of, 282–286

how it works, 280–281

legitimate uses of, 287

recognizing as antipattern, 286

ad hoc programming, 269

adding (inserting) rows

assigning keys out of sequence, 251

with comma-separated attributes, 32

dependent tables for multivalue

attributes, 109

with insufficient indexing, 149–150

with multicolumn attributes, 104

with multiple spawned tables, 112

nodes in tree structures

Adjacency List pattern, 38

Closure Table pattern, 50

Nested Sets pattern, 47

Path Enumeration model, 43

reference integrity without foreign

key constraints, 66

testing to validate database, 276

using intersection tables, 32

using wildcards for column names,

214–220

consequences of, 215–217

legitimate uses of, 218

naming columns instead of,

219–220

recognizing as antipattern,

217–218

see also race conditions

adding allowed values for columns

with lookup tables, 137

with restrictive column definitions,

134

addresses

as multivalue attributes, 102

polymorphic associations for

(example), 93

adjacency lists, 34–53

alternative models for, 41–53

Closure Table pattern, 48–52

comparison among, 52–53

Nested Sets model, 44–48

Path Enumeration model, 41–44

compared to other models, 52–53

consequences of, 35–39

legitimate uses of, 40–41

recognizing as antipattern, 39–40

aggregate functions, 181

aggregate queries

with intersection tables, 31

see also queries

Ambiguous Groups antipattern,

173–182

avoiding with unambiguous

columns, 179–182

consequences of, 174–176

legitimate uses of, 178

recognizing, 176–177

ancestors, tree, see Naive Trees

antipattern

Apache Lucene search engine, 200

API return values, ignoring, see See No

Evil antipattern

APPLICATION TESTING COLUMN DEFINITIONS TO RESTRICT VALUES

application testing, 274

archiving, splitting tables for, 117

arithmetic with null values, 163, 168

assigning primary key values, 251

atomicity, 191

attribute tables, 73–88

avoiding with subtype modeling,

82–88

Class Table Inheritance, 84–86

Concrete Table Inheritance, 83–84

with post-processing, 86–88

semistructured data, 86

Single Table Inheritance, 82–83

consequences of using, 74–80

legitimate uses of, 80–82

recognizing as antipattern, 80

attributes, multivalue

in delimited lists in columns, 25–33,

107

consequences of, 26–29

legitimate uses of, 30

recognizing as antipattern, 29

in delimited lists in columns

intersection tables instead of,

30–33

in multiple columns, 102–109

avoiding with dependent tables,

108–109

consequences of, 103–106

legitimate uses of, 107–108

recognizing as antipattern,

106–107

authentication, 224

automatic code generation, 212

AVG() function, 31

B
backing up databases, external files

and, 142

backup media, passwords stored on,

224

bandwidth of SQL queries, 220

Berkeley DB database, 81

best practices, 266–277

establishing culture of quality,

269–277

documenting code, 269

source code control, 272

validation and testing, 274

excuses for doing otherwise,

267–268

legitimate excuses, 269

recognizing as antipattern,

268–269

BFILE data type, 145

BINARY_FLOAT data type, 128

BLOB data type

for dynamic attributes, 86

for images and media, 140, 145–147

Boolean expressions, nulls in, 169

bootstrap data, 274, 276

Boyce-Codd normal form, 302

branches, application, 277

broken references, checking for, 67

buddy review of code, 248–249

C
Cartesian products, 51, 205, 208

avoiding with multiple queries, 209

cascading updates, 71

Cassandra database, 81

CATSEARCH() operator, 195

characters, escaping, 238

check constraints, 132

legitimate uses of, 136

lookup tables instead of, 136

recognizing as antipattern, 135

for split tables, 113

child nodes, tree, see Naive Trees

antipattern

Class Table Inheritance, 84–86

clear-text passwords, see passwords,

readable

cloning to achieve scalability, 110–121

consequences of, 111–116

legitimate uses of, 117

recognizing as antipattern, 116–117

solutions to, 118

creating dependent tables,

120–121

horizontal partitioning, 118–119

vertical partitioning, 119–120

close() function, 263

Closure Table pattern, 48–52

compared to other models, 52–53

COALESCE() function, 99, 171

code generation, 212

column definitions to restrict values,

131–138

consequences of, 132–135

legitimate uses of, 136

lookup tables instead of, 136–138

312

COLUMN INDEXING CRUD FUNCTIONS

recognizing as antipattern, 135–136

column indexing, see indexing

columns

BLOB, for image storage, 140

defaults for, 171

documenting, 270

functionally dependent, 178, 179

having no order, 295

multivalue attributes across

multiple, 102–109

avoiding with dependent tables,

108–109

consequences of, 103–106

legitimate uses of, 107–108

recognizing as antipattern,

106–107

multivalue attributes in, 25–33, 107

consequences of, 26–29

intersection tables instead of,

30–33

legitimate uses of, 30

recognizing as antipattern, 29

nongrouped, referencing, 173–182

avoiding with unambiguous

columns, 179–182

consequences of, 174–176

legitimate uses of, 178

recognizing as antipattern,

176–177

NOT NULL columns, 165, 171

nullable, searching, 164, 169

for parent identifiers, 34–53

alternative tree models for, 41–53

consequences of, 35–39

legitimate uses of, 40–41

recognizing as antipattern, 39–40

partitioning tables by, 119–120

restricting to specific values,

131–138

using column definitions, 132–136

using lookup tables, 136–138

split (spawned), 116

testing to validate databases, 275

using wildcards for, 214–220

avoiding by naming columns,

219–220

consequences of, 215–217

legitimate uses of, 218

recognizing as antipattern,

217–218

value atomicity, 191

columns for primary keys, see

duplicate rows, avoiding

comma-delimited lists in columns, see

Jaywalking pattern

common super-tables, 100–101

common table expressions, 40

comparing strings

good tools for, 193–203, 203

inverted indexes, 200–203

third-party engines, 198–200

vendor extensions, 193–198

with pattern-matching predicates,

191–192

legitimate uses of, 193

recognizing as antipattern,

192–193

comparisons to NULL, 164, 169

complex queries, using, 204–213

consequences of, 205–207

legitimate uses of, 208–209

recognizing as antipattern, 207–208

using multiple queries instead,

209–213

compound indexes, 151, 152

compound keys, 58

as better than pseudokeys, 63

as hard to use, 59

referenced by foreign keys, 64

concise code, writing, 260

Concrete Table Inheritance, 83–84

concurrent inserts

assigning IDs out of sequence, 252

race conditions with, 60

consistency of database, see referential

integrity

constraints, testing to validate

database, 276

CONTAINS() operator, 194

CONTEXT indexes (Oracle), 194

ConText technology, 194

ConvertEmptyStringToNull property, 168

correlated subqueries, 179

CouchDB database, 81

COUNT() function, 31

items in adjacency lists, 38

coupling independent blocks of code,

288

CREATE INDEX syntax, 150

CROSS JOIN clause, 51

CRUD functions, exposed by Active

Record, 282

313

CTXCAT INDEXES (ORACLE) DELIMITED LISTS IN COLUMNS

CTXCAT indexes (Oracle), 195

CTXRULE indexes (Oracle), 195

CTXXPATH indexes (Oracle), 195

culture of quality, establishing,

269–277

documenting code, 269

source code control, 272

validation and testing, 274

D
DAO, decoupling model class from, 288

DAOs, testing with, 291

data

archiving, by splitting tables, 117

mixing with metadata, 92, 112

synchronizing with split tables, 113

data access frameworks, 242

data integrity

defending to your manager, 257

Entity-Attribute-Value antipattern,

77–79

with multicolumn attributes, 105

renumbering primary key values

and, 250–258

methods and consequences of,

251–253

recognizing as antipattern, 254

stopping habit of, 254–258

with split tables, 113, 114

transaction isolation and files, 141

value-restricted columns, 131–138

using column definitions, 132–136

using lookup tables, 136–138

see also referential integrity

data types

generic attribute tables and, 77

for referencing external files, 143,

145

see also specific data type by name

data uniqueness, see data integrity

data validation, see validation

data values, confusing null with, 163,

168

data, fractional, see Rounding Errors

antipattern

database backup, external files and,

142

database consistency, see referential

integrity

database indexes, see indexing

database infrastructure, documenting,

271

database validity, testing, 274

DBA scripts, source code control for,

274

debugging against SQL injection,

248–249

debugging dynamic SQL, 262

DECIMAL data type, 128–130

decoupling independent blocks of code,

288

DEFAULT keyword, 171

deleting allowed values for columns

designating values as obsolete, 135,

138

with lookup tables, 137

with restrictive column definitions,

134

deleting image files, 141

rollbacks and, 142

deleting rows

archiving data by splitting tables,

117

associated with image files, 141

rollbacks and, 142

with comma-separated attributes, 32

dependent tables for multivalue

attributes, 109

with insufficient indexing, 149–150

with multicolumn attributes, 104

nodes in tree structures

Adjacency List pattern, 38

Closure Table pattern, 50

Nested Sets pattern, 46, 47

reference integrity and

cascading updates and, 71

without foreign key constraints,

67, 68

reusing primary key values and, 253

testing to validate database, 276

using intersection tables, 32

using wildcards for column names,

214–220

consequences of, 215–217

legitimate uses of, 218

naming columns instead of,

219–220

recognizing as antipattern,

217–218

delimited lists in columns, see

Jaywalking pattern

314

DELIMITING ITEMS WITHIN COLUMNS ENUMERATED VALUES FOR COLUMNS

delimiting items within columns, 32

denormalization, 297

dependent tables

to avoid multicolumn attributes,

108–109

split tables as, 115

to resolve Metadata Tribbles

antipattern, 120–121

depth-first traversal, 44

derived tables, 179

descendants, tree, see Naive Trees

antipattern

Diplomatic Immunity antipattern,

266–277

consequences, 267–268

establishing quality culture instead,

269–277

documenting code, 269

source code control, 272

validation and testing, 274

legitimate uses of, 269

recognizing, 268–269

directory hierarchies, 42

DINSTINCT keyword, 177

DISTINCT keyword, 208

documentation

source code control for, 274

documenting code, 269

domain modeling, 278–292

Active Record as model

consequences of, 282–286

how it works, 280–281

legitimate uses of, 287

recognizing as antipattern, 286

designing appropriate model for,

287–292

Domain-Key normal form (DKNF), 307

domains, to restrict column values, 133

DOUBLE PRECISION data type, 125

dual-purpose foreign keys, 89–101

consequences of using, 91–94

legitimate uses of, 95–96

recognizing as antipattern, 94–95

solutions for avoiding, 96–101

common super-tables, 100–101

reversing the references, 96–99

duplicate rows, avoiding, 54–64

creating good primary keys, 62–64

using primary key column

consequences of, 57–60

legitimate uses of, 61

recognizing as antipattern, 61

duplicate rows, disallowed, 295

dynamic attributes, supporting, 73–88

with generic attribute tables, 74–80

legitimate uses of, 80–82

recognizing as antipattern, 80

with subtype modeling, 82–88

cConcrete Table Inheritance,

83–84

Class Table Inheritance, 84–86

with post-processing, 86–88

semistructured data, 86

Single Table Inheritance, 82–83

dynamic defaults for columns, 171

dynamic SQL, 212

debugging, 262

SQL injection with, 234–249

how to prevent, 243–249

mechanics and consequences of,

235–242

no legitimate reasons for, 243

recognizing as antipattern, 242

E
EAV, see Entity-Attribute-Value

antipattern

elegant code, writing, 260

email, sending passwords in, 225

empty strings, null vs., 164

Entity-Attribute-Value antipattern,

73–88

avoiding by modeling subtypes,

82–88

Class Table Inheritance, 84–86

Concrete Table Inheritance, 83–84

with post-processing, 86–88

semistructured data, 86

Single Table Inheritance, 82–83

consequences of, 74–80

legitimate uses of, 80–82

recognizing, 80

entity-relationship diagrams (ERDs),

270, 274

ENUM data type, 133

legitimate uses of, 136

lookup tables instead of, 136

recognizing as antipattern, 135

enumerated values for columns,

131–138

using column definitions, 132–135

legitimate uses of, 136

315

EQUALITY WITH NULL VALUES FOREIGN KEYS

recognizing as antipattern,

135–136

using lookup tables, 136–138

equality with null values, 163, 168

ERDs (entity-relationship diagrams),

270, 274

error return values, ignoring, see See

No Evil antipattern

error-free code, assuming, 66

errors

breaking refactoring, 216

fatal, ignoring, 261

rounding errors with FLOAT, 123–130

avoiding with NUMERIC, 128–130

consequences of, 124–128

how caused, 124

legitimate uses of FLOAT, 128

recognizing potential for, 128

update errors, 60, 104

violations of Single-Value Rule, 176

errors, duplication, see duplicate rows,

avoiding

errors, reference, see referential

integrity

escaping characters, 238

ETL (Extract, Transform, Load)

operation, 135

exceptions from API calls, ignoring, see

See No Evil antipattern

executing unverified user input,

234–249

how to prevent, 243–249

buddy review, 248–249

filtering input, 244

isolating input from code,

246–248

quoting dynamic values, 245

using parameter placeholders,

244–245

mechanics and consequences of,

235–242

no legitimate reasons for, 243

recognizing as antipattern, 242

existsNode() operator, 195

expressions, nulls in, 163, 168

external media files, 139–147

consequences of, 140–143

legitimate uses for, 144–145

recognizing as antipattern, 143–144

using BLOBs instead of, 145–147

F
false, null vs., 164, 169

fatal errors, ignoring, 261

Fear of the Unknown antipattern,

162–172

avoiding with NULL as unique,

168–172

consequences of, 163–166

legitimate uses of, 168

recognizing, 166–167

fetching, see querying

fifth normal form, 305

file existence, checking for, 143

files, storing externally, 139–147

consequences of, 140–143

legitimate uses for, 144–145

recognizing as antipattern, 143–144

using BLOBs instead of, 145–147

FILESTREAM data type, 145

filesystem hierarchies, 42

filter extension, 244

filtering input against SQL injection,

244

finite precision, 124

first normal form, 298

flawless code, assuming, 66

FLOAT data type, 125

foreign key constraints, 65–72

avoiding

consequences of, 66–69

legitimate uses of, 70

recognizing as antipattern, 69

declaring, need for, 70–72

foreign keys

common super-tables, 100–101

in dependent tables, 108–109

as entities in attribute tables, 73–88

avoiding with subtype modeling,

82–88

consequences of using, 74–80

legitimate uses of, 80–82

recognizing as antipattern, 80

with intersection tables, 33

multiple in single field, 27

names for, 62

referencing compound keys, 59, 64

referencing multiple parent tables,

89–101

with dual-purpose foreign keys,

91–96

workable solutions for, 96–101

316

FOURTH NORMAL FORM INFINITE PRECISION

split tables and, 115

fourth normal form, 297, 304

fractional numbers, storing, 123–130

legitimate uses of FLOAT, 128

rounding errors with FLOAT, 124–128

avoiding with NUMERIC, 128–130

recognizing potential for, 128

FTS extensions, SQLite, 197

full-text indexes, MySQL, 194

full-text search, 190

good tools for, 193–203, 203

inverted indexes, 200–203

third-party engines, 198–200

vendor extensions, 193–198

using pattern-matching predicates,

191–192

legitimate uses of, 193

recognizing as antipattern,

192–193

functionally dependent columns, 178,

179

G
garbage collection with image files, 141

generalized inverted index (GIN), 197

generating pseudokeys, 254

generic attribute tables, 73–88

avoiding with subtype modeling,

82–88

Class Table Inheritance, 84–86

Concrete Table Inheritance, 83–84

with post-processing, 86–88

semistructured data, 86

Single Table Inheritance, 82–83

consequences of using, 74–80

legitimate uses of, 80–82

recognizing as antipattern, 80

GIN (generalized inverted index), 197

globally unique identifiers (GUIDs), 255

Gonzalez, Albert, 234

GRANT statements, files and, 143

GROUP BY clause, 174, 177

GROUP_CONCAT() function, 181

grouping queries, see nongrouped

columns, referencing

GUIDs (globally unique identifiers), 255

H
Hadoop, 81

HAS-A relationship between model and

DAO, 288

HBase database, 81

hierarchies, storing and querying,

34–53

alternatives to adjacency lists, 41–53

Closure Table pattern, 48–52

comparison among, 52–53

Nested Sets model, 44–48

Path Enumeration model, 41–44

using adjacency lists

consequences of, 35–39

legitimate uses of, 40–41

recognizing as antipattern, 39–40

historical data, splitting tables for, 117

horizontal partitioning, 118–119

I
id columns, renaming, 58, 62

ID Required antipattern, 54–64

consequences of, 57–60

legitimate uses of, 61

recognizing, 61

successful solutions to, 62–64

ID values, renumbering, 250–258

methods and consequences of,

251–253

recognizing as antipattern, 254

stopping habit of, 254–258

IEEE 754 format, 125, 126

images, storing externally, 139–147

consequences of, 140–143

legitimate uses for, 144–145

recognizing as antipattern, 143–144

using BLOBs instead of, 145–147

Implicit Columns antipattern, 214–220

consequences of, 215–217

legitimate uses of, 218

naming columns instead of, 219–220

recognizing, 217–218

IN() predicate, 246

Index Shotgun antipattern, 148

consequences of, 149–153

indexing, 148

insufficiently, 149–150

intersection tables and, 33

inverted indexes, 200–203

overzealous, 151–152

queries that can’t use, 152–153

with randomly sorted columns, 185

for rarely used queries, 193

inequality with null values, 163, 168

infinite precision, 124, 130

317

INHERITANCE MAGIC BEANS ANTIPATTERN

inheritance

Class Table Inheritance, 84–86

Concrete Table Inheritance, 83–84

Single Table Inheritance, 82–83

inner joins, see joins

input

filtering against SQL injection, 244

isolating from code, 246–248

inserting rows, see adding (inserting)

rows

inspecting code against SQL injection,

248–249

integers, as unlimited resource, 256

integers, fractional numbers instead of,

123–130, see Rounding Errors

antipattern

legitimate uses of FLOAT, 128

rounding errors with FLOAT, 124–128

avoiding with NUMERIC, 128–130

recognizing potential for, 128

integrity, see data integrity; referential

integrity

intercepting network packets, 223

intersection tables

advantages of using, 30–33

to avoid multicolumn attributes,

108–109

to avoid polymorphic associations,

96

avoiding, 25–33

consequences of, 26–29

legitimate uses of, 30

recognizing as antipattern, 29

compound keys in, 58

defined, 30

fourth normal form, 304

inverted indexes, 200–203

IS DISTINCT FROM predicate, 170

IS NOT NULL predicate, 169

IS NULL predicate, 169

IS-A relationship between model and

DAO, 288

ISNULL() function, 172

ISO/IEC 11179 standard, 62

isolating input from code, 246–248

isolation testing, 274

J
Jaywalking antipattern, 25–33, 107

avoiding with intersection tables,

30–33

consequences of, 26–29

legitimate uses of, 30

recognizing, 29

join tables, see intersection tables

joins

with comma-separated attributes, 27

creating Cartesian products, 205,

209

with generic attribute tables, 79

pseudokey primary keys and, 59

querying polymorphic associations,

93

for unambiguous queries, 180

wildcards for tables, 218

K
key selection, random, 186

Keyless Entry antipattern, 65–72

consequences of, 66–69

legitimate uses of, 70

recognizing, 69

solving with foreign key constraints,

70–72

keyword search, see full-text search

L
large objects, storing, see external

media files

LAST_INSERT_ID() function, 43

law of parsimony, 209

leaky abstractions, 281

leaves, tree, see Naive Trees

antipattern

length limit on multivalue attributes,

29, 33

levels, tree, see Naive Trees antipattern

lightweight code, 268

LIKE predicates, 191–192

better tools for search, 193–203, 203

inverted indexes, 200–203

third-party engines, 198–200

vendor extensions, 193–198

legitimate uses of, 193

recognizing as antipattern, 192–193

LIMIT clause, 188

lookup tables, to restrict values,

136–138

Lucene search engine, 200

M
Magic Beans antipattern, 278–292

318

MAINTAINING DATABASE NAIVE TREES ANTIPATTERN

consequences of, 282–286

how it works, 280–281

legitimate uses of, 287

recognizing, 286

solution to, 287–292

maintaining database, see adding

(inserting) rows; deleting rows;

updating rows

mandatory attributes, disallowing, 77

many-to-many relationships, 107

many-to-many tables, see intersection

tables

mapping tables, see intersection tables

MATCH() function, 194

media files, storing externally, 139–147

consequences of, 140–143

legitimate uses for, 144–145

recognizing as antipattern, 143–144

using BLOBs instead of, 145–147

metadata

changing, policy on, 135

cloning tables and columns for,

110–121

consequences of, 111–116

legitimate uses of, 117

recognizing as antipattern,

116–117

solutions to, 118

lists of allowable values as, 132

mixing data with, 92, 112

subtype modeling

Class Table Inheritance and, 85

Concrete Table Inheritance and,

84

Single Table Inheritance and, 83

synchronizing, with split tables, 115

metadata naming conventions, 62

Metadata Tribbles antipattern,

110–121

consequences of, 111–116

legitimate uses of, 117

recognizing, 116–117

solutions to, 118

creating dependent tables,

120–121

horizontal partitioning, 118–119

vertical partitioning, 119–120

Microsoft SQL Server, full-text search

in, 196

migrations (migration scripts), 273

mistake-proofing databases, see

referential integrity

mixing data with metadata, 92, 112

mock DAOs, testing with, 291

Model View Controller (MVC)

architecture, 278–292

Active Record as model

consequences of, 282–286

how it works, 280–281

legitimate uses of, 287

recognizing as antipattern, 286

designing appropriate model,

287–292

MongoDB database, 81

monotonically increasing pseudokeys,

254

moving rows, see adding (inserting)

rows; deleting rows; updating

rows

Multicolumn Attributes antipattern,

102–109

avoiding with dependent tables,

108–109

consequences of, 103–106

legitimate uses of, 107–108

recognizing, 106–107

multitable (cascading) updates, 71

multivalue attributes

in delimited lists in columns, 25–33,

107

consequences of, 26–29

legitimate uses of, 30

recognizing as antipattern, 29

in delimited lists in columns

intersection tables instead of,

30–33

in multiple columns, 102–109

avoiding with dependent tables,

108–109

consequences of, 103–106

legitimate uses of, 107–108

recognizing as antipattern,

106–107

mutually exclusive column values, 136

MySQL full-text indexes, 194

N
Naive Trees antipattern, 34–53

alternative tree models for, 41–53

Closure Table pattern, 48–52

comparison among, 52–53

319

NAME-VALUE PAIRS PARENT TABLES

Nested Sets model, 44–48

Path Enumeration model, 41–44

consequences of, 35–39

legitimate uses of, 40–41

recognizing, 39–40

name-value pairs, see

Entity-Attribute-Value antipattern

names

of attributes, in EAV antipattern, 79

of columns, using explicitly, 219–220

of columns, using wildcards,

214–220

consequences of, 215–217

legitimate uses of, 218

recognizing as antipattern,

217–218

for primary keys, 58, 62

natural primary key, 63, 258

negative tests, 276

Nested Sets pattern, 44–48

compared to other models, 52–53

nodes, tree, see Naive Trees antipattern

nongrouped columns, referencing,

173–182

avoiding with unambiguous

columns, 179–182

consequences of, 174–176

legitimate uses of, 178

recognizing as antipattern, 176–177

nonleaf nodes (tree data), 35, 43

nonrelational data management tools,

81

normal forms, defined, 298

normalization, 294–308

defined, 298

myths about, 296

NOT NULL columns, 165, 171

NULL keyword, quoting, 170

null values, 162–172

productive uses of, 163

substituting values for, 163–166

legitimate uses of, 168

recognizing as antipattern,

166–167

using NULL as unique value, 168–172

NULLIF() function, 105

numeric accuracy problems, see

Rounding Errors antipattern

NUMERIC data type, 128–130

numeric values, confusing null with,

163, 168

NVL() function, 172

O
object-relational mapping (ORM)

frameworks, 265, 272

obsolete column values, managing

in column definitions, 135

in lookup tables, 138

offset, random selection using, 188

ON DELETE clause, 71

ON syntax, 59

ON UPDATE clause, 71

one-to-many relationships, 107

open schema design, see

Entity-Attribute-Value antipattern

optimizing performance, see indexing;

performance

Oracle text indexes, 194

order, columns, 295

order, rows, 295

organization charts, 35

ORM (object-relational mapping)

frameworks, 265, 272

ORM classes, testing, 276

outer joins, see joins

overhead, see performance

P
packet sniffing, 223

pagination, 255

parameter placeholders, 239, 244–245

vs. interpolating values in SQL, 245

parameters, see query parameters

parent identifiers in columns, 34–53

alternative tree models for, 41–53

Closure Table pattern, 48–52

comparison among, 52–53

Nested Sets model, 44–48

Path Enumeration model, 41–44

consequences of, 35–39

legitimate uses of, 40–41

recognizing as antipattern, 39–40

parent nodes, tree, see Naive Trees

antipattern

parent tables, referencing multiple,

89–101

with common super-table, 100–101

with dual-purpose foreign keys

consequences of, 91–94

legitimate uses of, 95–96

recognizing as antipattern, 94–95

320

PARSIMONY PSEUDOKEY NEAT -FREAK ANTIPATTERN

by reversing references, 96–99

parsimony, law of, 209

partitioning tables

horizontally, 118–119

vertically, 119–120

passwords, changing with SQL

injection, 237

passwords, readable, 222–233

avoiding with salted hashes,

227–233

legitimate uses of, 225–226

mechanisms and consequences,

223–225

recognizing as antipattern, 225

Path Enumeration pattern, 41–44

compared to other models, 52–53

pathname validity, checking, 143

paths to files, storing, see external

media files

pattern-matching predicates, 191–192

better tools for search, 193–203, 203

inverted indexes, 200–203

third-party engines, 198–200

vendor extensions, 193–198

legitimate uses of, 193

recognizing as antipattern, 192–193

peer review of code, 248–249

% wildcard, 191

performance

cloning to achieve scalability,

110–121

consequences of, 111–116

legitimate uses of, 117

recognizing as antipattern,

116–117

solutions to, 118

foreign keys and, 69, 72

normalization and, 297

query complexity and, 207, 208

random selection, 183

removing data to archives, 117

searching with pattern-matching

operators, 192

wildcards in queries, 217

performance, with indexes, see

indexing

Phantom Files antipattern, 139–147

avoiding with BLOBs, 145–147

consequences of, 140–143

legitimate uses of, 144–145

recognizing, 143–144

plaintext passwords, see passwords,

readable

poka-yoke (mistake-proofing), 70, 219

Polymorphic Associations antipattern,

89–101

consequences of, 91–94

legitimate uses of, 95–96

recognizing, 94–95

solutions for avoiding, 96–101

common super-tables, 100–101

reversing the references, 96–99

polymorphic associations, defining, 91

:polymorphic attribute (Ruby on Rails),

95

Poor Man’s Search Engine antipattern,

190

better tools for search, 193–203, 203

inverted indexes, 200–203

third-party engines, 198–200

vendor extensions, 193–198

consequences of, 191–192

legitimate uses of, 193

recognizing, 192–193

post-processing with EAV antipattern,

86–88

Postgre, text search in, 196

precision, numeric, see Rounding

Errors antipattern

primary key

random key value selection, 186

PRIMARY KEY constraint, 109

primary key conventions, see duplicate

rows, avoiding

primary keys

names for, 58, 62

need for, about, 56

renumbering values for, 250–258

methods and consequences of,

251–253

recognizing as antipattern, 254

stopping habit of, 254–258

row numbers vs., 255

privileges, external files and, 143

procedures, source code control for,

272

promiscuous associations, see

polymorphic associations

Pseudokey Neat-Freak antipattern,

250–258

methods and consequences of,

251–253

321

PSEUDOKEYS RANDOM SELECTION ANTIPATTERN

recognizing, 254

stopping habit of, 254–258

pseudokeys, 55

good alternatives for, 63

joins and, 59

legitimate uses of, 61

naming, 63

see also ID Required antipattern

Q
quality code, writing, 266–277

establishing culture of quality,

269–277

documenting code, 269

source code control, 272

validation and testing, 274

excuses for doing otherwise,

267–268

legitimate excuses, 269

recognizing as antipattern,

268–269

queries, indexes for, see indexing

query parameters, 239, 241, 244–245

nulls as, 164

vs. interpolating values in SQL, 245

query speed, see performance

querying

against comma-delimited attributes,

27

allowed values for columns

with lookup tables, 137

with restrictive column

definitions, 133

ambiguously, 173–182

consequences of, 174–176

legitimate uses of, 178

recognizing as antipattern,

176–177

with dynamic attributes

Class Table Inheritance, 85

Concrete Table Inheritance, 84

in generic attribute tables, 76, 79

in semistructured blobs, 86

using post-processing, 87

failures from rounding errors, 127

with intersection tables, 31

less, by increasing complexity,

204–213

consequences of, 205–207

legitimate uses of, 208–209

recognizing as antipattern,

207–208

using multiple queries instead,

209–213

limiting results by row numbers, 255

multicolumn attributes, 103

multiple parent tables, 89–101

with dual-purpose foreign keys,

91–96

workable solutions for, 96–101

nullable columns, 164, 169

polymorphic associations, 92

random selection, 183–189

better implementations of,

186–189

with random data sorts, 184–185,

186

reference integrity and, 66, 67

across split tables, 114

testing to validate database, 276

trees with adjacency lists, 34–53

alternative tree models for, 41–53

consequences of, 35–39

legitimate uses of, 40–41

recognizing as antipattern, 39–40

unambiguously, 179–182

using wildcards for column names,

214–220

consequences of, 215–217

legitimate uses of, 218

naming columns instead of,

219–220

recognizing as antipattern,

217–218

querying dynamically, see dynamic

SQL

quote characters, escaping, 238

quotes around NULL keyword, 170

quotes, unmatched, 237, 238

quoting dynamic values, 245

R
race conditions, 60

random pseudokey values, 255

Random Selection antipattern,

183–189

better alternatives to, 186–189

random key value selection, 186

consequences of, 184–185

legitimate uses of, 186

recognizing, 185–186

322

RATIONAL NUMBERS REVERSING REFERENCES TO AVOID POLYMORPHIC ASSOCIATIONS

rational numbers, about, 124

rational numbers, storing, 123–130

legitimate uses of FLOAT, 128

rounding errors with FLOAT, 124–128

avoiding with NUMERIC, 128–130

recognizing potential for, 128

raw binary data, storing, 140, 145–147

Readable Passwords antipattern,

222–233

avoiding with salted hashes,

227–233

legitimate uses of, 225–226

mechanisms and consequences,

223–225

recognizing, 225

REAL data type, 125

reallocating pseudokey values, 253

recognizing antipatterns

Ambiguous Groups, 176–177

Diplomatic Immunity, 268–269

Entity-Attribute-Value, 80

Fear of the Unknown, 166–167

ID Required, 61

Implicit Columns, 217–218

Jaywalking, 29

Keyless Entry, 69

Magic Beans, 286

Metadata Tribbles, 116–117

Multicolumn Attributes, 106–107

Naive Trees (Adjacent Lists), 39–40

Phantom Files, 143–144

Polymorphic Associations, 94–95

Poor Man’s Search Engine, 192–193

Pseudokey Neat-Freak, 254

Random Selection, 185–186

Readable Passwords, 225

Rounding Errors, 128

See No Evil, 262–263

Spaghetti Query, 207–208

SQL Injection, 242

31 Flavors antipattern, 135–136

recovering passwords, see passwords,

readable

recursive queries, 40

Redis database, 81

redundant keys, 57

refactoring, breaking, 216

referenced files, see external media files

referencing multiple parent tables,

89–101

with common super-table, 100–101

with dual-purpose foreign keys

consequences of, 91–94

legitimate uses of, 95–96

recognizing as antipattern, 94–95

by reversing references, 96–99

referencing nongrouped columns,

173–182

avoiding with unambiguous

columns, 179–182

consequences of, 174–176

legitimate uses of, 178

recognizing as antipattern, 176–177

referential integrity, 65–72

avoiding foreign key constraints

consequences of, 66–69

legitimate uses of, 70

recognizing as antipattern, 69

declaring foreign key constraints,

70–72

documentation and, 271

with generic attribute tables, 78

polymorphic associations and, 95

with split tables, 115

see also data integrity

regular expressions, 191

relational database design constraints,

see referential integrity

relational logic, nulls and, 167

relational, defined, 294

relationships, documenting, 271

renumbering primary key values,

250–258

methods and consequences of,

251–253

recognizing as antipattern, 254

stopping habit of, 254–258

reporting tools, complexity of, 208

resetting passwords, see passwords,

readable

restricting values in columns, 131–138

using column definitions, 132–135

legitimate uses of, 136

recognizing as antipattern,

135–136

using lookup tables, 136–138

retrieving data, see querying

return values, ignoring, see See No Evil

antipattern

reusing primary key values, 253

reversing references to avoid

polymorphic associations, 96–99

323

REVIEWING CODE AGAINST SQL INJECTION SPAGHETTI QUERY ANTIPATTERN

reviewing code against SQL injection,

248–249

REVOKE statements, files and, 143

rollbacks

external files and, 142

reusing primary key values, 253

roots, tree, see Naive Trees antipattern

Rounding Errors antipattern, 123–130

avoiding with NUMERIC, 128–130

consequences of, 124–128

legitimate uses of FLOAT, 128

recognizing, 128

rounding errors, how caused, 124

ROW_NUMBER() function, 188

row renumbering, 252

ROW_NUMBER() function, 255

rows

duplicate, disallowed, 295

having no order, 295

partitioning by, 118–119

rows, duplicate, see duplicate rows,

avoiding

rules of normalization, 294–308

objects of normalization, 298

runtime costs of complex queries, 207

S
salted hashes for passwords, 227–233

scalar expressions, nulls in, 163, 168

scale for data type, 129

schema evolution tools, 273

schemaless design, see

Entity-Attribute-Value antipattern

scope, sequence, 60

scripts, source code control for, 272

searching, see querying

searching text, see full-text search

second normal form, 300

security

documenting, 271

readable passwords, 222–233

avoiding with salted hashes,

227–233

legitimate uses of, 225–226

mechanisms and consequences,

223–225

recognizing as antipattern, 225

SQL Injection antipattern, 234–249

how to prevent, 243–249

mechanics and consequences of,

235–242

no legitimate uses of, 243

recognizing, 242

See No Evil antipattern, 259–265

consequences of, 260–262

legitimate uses of, 263

managing errors gracefully instead,

264–265

recognizing, 262–263

seed data, 274

SELECT queries, see querying

semistructured data, 86

sending messages with passwords, 225

separator character in multivalue

attributes, 32

sequence of ID values, see

renumbering primary key values

sequences, scope for, 60

serialized LOB pattern, 86

sharding databases, 117–119

Single Table Inheritance, 82–83

single-use queries, 218

Single-Value Rule, 174

compliance with aggregate functions,

181

recognizing violations of, 176

sixth normal form, 307

software development best practices,

266–277

establishing culture of quality,

269–277

documenting code, 269

source code control, 272

validation and testing, 274

excuses for doing otherwise,

267–268

legitimate excuses, 269

recognizing as antipattern,

268–269

Solr server, 200

sorting rows randomly, 184–185

better alternatives to, 186–189

random key value selection, 186

legitimate uses of, 186

recognizing as antipattern, 185–186

source code control, 272

Spaghetti Query antipattern, 204–213

consequences of, 205–207

legitimate uses of, 208–209

recognizing, 207–208

using multiple queries instead,

209–213

324

SPANNING TABLES TECHNICAL DEBT

spanning tables, 111

spawning columns, 116

spawning tables, 112

for archiving, 117

speed, see performance

Sphinx Search engine, 198

split columns, 116

splitting tables, 111, 112

for archiving, 117

SQL data types, see data types; specific

data type by name

SQL Injection antipattern, 234–249

how to prevent, 243–249

buddy review, 248–249

filtering input, 244

isolating input from code,

246–248

quoting dynamic values, 245

using parameter placeholders,

244–245

mechanics and consequences of,

235–242

no legitimate uses of, 243

recognizing, 242

SQL Server, full-text search in, 196

SQLite, full-text search in, 197

standard for indexes, nonexistent, 150

stored procedures

documenting, 271

testing to validate database, 276

stored procedures, dynamic SQL in,

241

storing hierarchies, see Naive Trees

antipattern

storing images and media externally,

139–147

consequences of, 140–143

legitimate uses for, 144–145

recognizing as antipattern, 143–144

using BLOBs instead of, 145–147

storing passwords, see passwords,

readable

strings of zero length, null vs., 164

strings, comparing

good tools for, 193–203, 203

inverted indexes, 200–203

third-party engines, 198–200

vendor extensions, 193–198

with pattern-matching predicates,

191–192

legitimate uses of, 193

recognizing as antipattern,

192–193

stub DAOs, testing with, 291

substituting values for nulls, 162–172

avoiding, 168–172

consequences of, 163–166

legitimate uses of, 168

recognizing as antipattern, 166–167

subtrees, deleting, 38, 50

subtrees, querying, 43

subtype modeling, 82–88

Class Table Inheritance, 84–86

Concrete Table Inheritance, 83–84

with post-processing, 86–88

semistructured data, 86

Single Table Inheritance, 82–83

SUM() function

with comma-separated lists, 31

with floating-point numbers, 127

super-tables, shared, 100–101

surrogate keys, see pseudokeys

synchronizing

data, with split tables, 113

metadata, with split tables, 115

T
table columns, see columns

table inheritance

Class Table Inheritance, 84–86

Concrete Table Inheritance, 83–84

Single Table Inheritance, 82–83

table joins, see joins

table locks, 60

table scans, 185

tables

documenting, 270

as object-oriented classes, 84

partitioning by columns (vertically),

119–120

partitioning by rows (horizontally),

118–119

primary key columns in, 54–64

better approaches than, 62–64

consequences of, 57–60

legitimate uses of, 61

recognizing as antipattern, 61

testing to validate database, 275

TABLESAMPLE clause, 189

team review against SQL injection,

248–249

technical debt, 266

325

TEMPORARY CODE VALIDATION

temporary code, 269

testing code, 274

testing model with DAOs, 291

text search, see full-text search

third normal form, 297, 301

third-party search engines, 198–200

31 Flavors antipattern, 131–138

avoiding with lookup tables, 136–138

consequences of, 132–135

legitimate uses of, 136

recognizing, 135–136

threaded discussions, 35

three-valued logic, 168

Tokyo Cabinet database, 81

transaction isolation, files and, 141

tree data structures, see Naive Trees

antipattern

tribbles, explained, 111

triggers

documenting, 271

to restrict column values, 133

source code control for, 272

testing to validate database, 276

TSVECTOR data type, 197

U
UNION syntax

combining query results with, 210

querying multiple parent tables, 98

of split tables, 114, 115

UNIQUE constraint, 57, 58

hindering polymorphic associations

with, 97

unique keys, see duplicate rows,

avoiding

uniqueness, data, see data integrity

unmatched quotes, 237, 238

unnamed columns, see wildcards for

column names

unverified user input, 234–249

how to prevent, 243–249

buddy review, 248–249

filtering input, 244

isolating input from code,

246–248

quoting dynamic values, 245

using parameter placeholders,

244–245

mechanics and consequences of,

235–242

no legitimate reasons for, 243

recognizing as antipattern, 242

updating allowed values for columns

designating values as obsolete, 135,

138

with lookup tables, 137

with restrictive column definitions,

134

updating rows

with comma-separated attributes, 32

with insufficient indexing, 149–150

with multicolumn attributes, 104

multiple split tables, 113

nodes in tree structures

Adjacency List pattern, 38

Nested Sets pattern, 47

reference integrity and

cascading updates and, 71

without foreign key constraints,

69

reference integrity without foreign

key constraints, 66

renumbering rows when, 252

testing to validate database, 276

using intersection tables, 32

using wildcards for column names,

214–220

consequences of, 215–217

legitimate uses of, 218

naming columns instead of,

219–220

recognizing as antipattern,

217–218

user input

filtering against SQL injection, 244

isolating from code, 246–248

representing nulls, 168

unverified, executing, 234–249

how to prevent, 243–249

mechanics and consequences of,

235–242

no legitimate reasons for, 243

recognizing as antipattern, 242

user-defined types, 133

USING syntax, 59

V
validation, 274

executing unverified input, 234–249

how to prevent, 243–249

mechanics and consequences of,

235–242

326

VALUE-CONTROLLED COLUMNS ZERO

no legitimate reasons for, 243

recognizing as antipattern, 242

with intersection tables, 32

of items in comma-separated

attributes, 28

value-controlled columns, 131–138

using column definitions, 132–135

legitimate uses of, 136

recognizing as antipattern,

135–136

using lookup tables, 136–138

values, confusing null with, 163, 168

VARCHAR data type

length limit on multivalue attributes,

29, 33, 44

paths to external files, 140

variable attributes, supporting, 73–88

with generic attribute tables, 74–80

legitimate uses of, 80–82

recognizing as antipattern, 80

with subtype modeling, 82–88

Class Table Inheritance, 84–86

Concrete Table Inheritance, 83–84

with post-processing, 86–88

semistructured data, 86

Single Table Inheritance, 82–83

vendor-specific search extensions,

193–198

vertical partitioning, 119–120

views

documenting, 270

testing to validate databases, 275

W
wildcards for column names, 214–220

consequences of

consequences of, 215–217

legitimate uses of, 218

recognizing as antipattern,

217–218

naming columns instead of, 219–220

window functions (SQL:2003), 255

WITH keyword

for recursive queries, 40

Z
zero, null vs., 164

327

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of June 2010; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Beginning Mac Programming: Develop with

Objective-C and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Cocoa Programming: A Quick-Start Guide for

Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

Continued on next page

pragprog.com

Title Year ISBN Pages

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program, 2nd Edition 2009 9781934356364 240

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby

Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Ajax: A Web 2.0 Primer 2006 9780976694083 296

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Continued on next page

Title Year ISBN Pages

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship It! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

iPhone SDK Development 2009 9781934356258 576

How to Get It Done

Driving Technical Change
Your co-workers’ resistance to new technologies

can be baffling. Learn to read users’ "patterns of

resistance"—and then dismantle their objections.

Every developer must master the art of

evangelizing. With these techniques and strategies,

you’ll help your organization adopt your

solutions—without selling your soul to

organizational politics.

Driving Technical Change: Why People On Your

Team Don’t Act On Good Ideas, and How to

Convince Them They Should

Terrence Ryan

(200 pages) ISBN: 978-1934356-60-9. $32.95

http://pragprog.com/titles/trevan

The Agile Samurai
Faced with a software project of epic proportions?

Tired of over-committing and under-delivering?

Enter the dojo of the agile samurai, where agile

expert Jonathan Rasmusson shows you how to

kick-start, execute, and deliver your agile projects.

You’ll see how agile software delivery really works

and how to help your team get agile fast, while

having fun along the way.

The Agile Samurai: How Agile Masters Deliver

Great Software

Jonathan Rasmusson

(275 pages) ISBN: 9781934356586. $34.95

http://pragprog.com/titles/jtrap

http://pragprog.com/titles/trevan
http://pragprog.com/titles/jtrap

Expand Your Boundaries

Seven Languages in Seven Weeks
In this book you’ll get a hands-on tour of Clojure,

Haskell, Io, Prolog, Scala, Erlang, and Ruby.

Whether or not your favorite language is on that

list, you’ll broaden your perspective of

programming by examining these languages

side-by-side. You’ll learn something new from each,

and best of all, you’ll learn how to learn a language

quickly.

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages

Bruce A. Tate

(300 pages) ISBN: 978-1934356-59-3. $34.95

http://pragprog.com/titles/btlang

The RSpec Book
RSpec, Ruby’s leading Behaviour Driven

Development tool, helps you do TDD right by

embracing the design and documentation aspects

of TDD. It encourages readable, maintainable

suites of code examples that not only test your

code, they document it as well. The RSpec Book will

teach you how to use RSpec, Cucumber, and other

Ruby tools to develop truly agile software that gets

you to market quickly and maintains its value as

evolving market trends drive new requirements.

The RSpec Book: Behaviour Driven

Development with RSpec, Cucumber, and

Friends

David Chelimsky, Dave Astels, Zach Dennis, Aslak

Hellesøy, Bryan Helmkamp, Dan North

(450 pages) ISBN: 978-1-9343563-7-1. $42.95

http://pragprog.com/titles/achbd

http://pragprog.com/titles/btlang
http://pragprog.com/titles/achbd

Grow Your Skills

Language Implementation Patterns
Learn to build configuration file readers, data

readers, model-driven code generators,

source-to-source translators, source analyzers, and

interpreters. You don’t need a background in

computer science—ANTLR creator Terence Parr

demystifies language implementation by breaking it

down into the most common design patterns.

Pattern by pattern, you’ll learn the key skills you

need to implement your own computer languages.

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

Terence Parr

(350 pages) ISBN: 978-1934356-45-6. $34.95

http://pragprog.com/titles/tpdsl

Debug It!
Debug It! will equip you with the tools, techniques,

and approaches to help you tackle any bug with

confidence. These secrets of professional debugging

illuminate every stage of the bug life cycle, from

constructing software that makes debugging easy;

through bug detection, reproduction, and

diagnosis; to rolling out your eventual fix. Learn

better debugging whether you’re writing Java or

assembly language, targeting servers or embedded

micro-controllers, or using agile or traditional

approaches.

Debug It! Find, Repair, and Prevent Bugs in Your

Code

Paul Butcher

(232 pages) ISBN: 978-1-9343562-8-9. $34.95

http://pragprog.com/titles/pbdp

http://pragprog.com/titles/tpdsl
http://pragprog.com/titles/pbdp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home page for SQL Antipatterns

http://pragprog.com/titles/bksqla

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/bksqla.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/bksqla
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/bksqla
www.pragprog.com/catalog

	Contents
	Introduction
	Who This Book Is For
	What's in This Book
	What's Not in This Book
	Conventions
	Example Database
	Acknowledgments

	Logical Database Design Antipatterns
	Jaywalking
	Objective: Store Multivalue Attributes
	Antipattern: Format Comma-Separated Lists
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Create an Intersection Table

	Naive Trees
	Objective: Store and Query Hierarchies
	Antipattern: Always Depend on One's Parent
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use Alternative Tree Models

	ID Required
	Objective: Establish Primary Key Conventions
	Antipattern: One Size Fits All
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Tailored to Fit

	Keyless Entry
	Objective: Simplify Database Architecture
	Antipattern: Leave Out the Constraints
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Declare Constraints

	Entity-Attribute-Value
	Objective: Support Variable Attributes
	Antipattern: Use a Generic Attribute Table
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Model the Subtypes

	Polymorphic Associations
	Objective: Reference Multiple Parents
	Antipattern: Use Dual-Purpose Foreign Key
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Simplify the Relationship

	Multicolumn Attributes
	Objective: Store Multivalue Attributes
	Antipattern: Create Multiple Columns
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Create Dependent Table

	Metadata Tribbles
	Objective: Support Scalability
	Antipattern: Clone Tables or Columns
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Partition and Normalize

	Physical Database Design Antipatterns
	Rounding Errors
	Objective: Use Fractional Numbers Instead of Integers
	Antipattern: Use FLOAT Data Type
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use NUMERIC Data Type

	31 Flavors
	Objective: Restrict a Column to Specific Values
	Antipattern: Specify Values in the Column Definition
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Specify Values in Data

	Phantom Files
	Objective: Store Images or Other Bulky Media
	Antipattern: Assume You Must Use Files
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use BLOB Data Types As Needed

	Index Shotgun
	Objective: Optimize Performance
	Antipattern: Using Indexes Without a Plan
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: MENTOR Your Indexes

	Query Antipatterns
	Fear of the Unknown
	Objective: Distinguish Missing Values
	Antipattern: Use Null as an Ordinary Value, or Vice Versa
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use Null as a Unique Value

	Ambiguous Groups
	Objective: Get Row with Greatest Value per Group
	Antipattern: Reference Nongrouped Columns
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use Columns Unambiguously

	Random Selection
	Objective: Fetch a Sample Row
	Antipattern: Sort Data Randomly
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: In No Particular Order…

	Poor Man's Search Engine
	Objective: Full-Text Search
	Antipattern: Pattern Matching Predicates
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use the Right Tool for the Job

	Spaghetti Query
	Objective: Decrease SQL Queries
	Antipattern: Solve a Complex Problem in One Step
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Divide and Conquer

	Implicit Columns
	Objective: Reduce Typing
	Antipattern: a Shortcut That Gets You Lost
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Name Columns Explicitly

	Application Development Antipatterns
	Readable Passwords
	Objective: Recover or Reset Passwords
	Antipattern: Store Password in Plain Text
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Store a Salted Hash of the Password

	SQL Injection
	Objective: Write Dynamic SQL Queries
	Antipattern: Execute Unverified Input As Code
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Trust No One

	Pseudokey Neat-Freak
	Objective: Tidy Up the Data
	Antipattern: Filling in the Corners
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Get Over It

	See No Evil
	Objective: Write Less Code
	Antipattern: Making Bricks Without Straw
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Recover from Errors Gracefully

	Diplomatic Immunity
	Objective: Employ Best Practices
	Antipattern: Make SQL a Second-Class Citizen
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Establish a Big-Tent Culture of Quality

	Magic Beans
	Objective: Simplify Models in MVC
	Antipattern: The Model Is an Active Record
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: The Model Has an Active Record

	Appendixes
	Rules of Normalization
	What Does Relational Mean?
	Myths About Normalization
	What Is Normalization?
	Common Sense

	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

