

What readers are saying about

The Rails View

This is a must-read for Rails developers looking to juice up their skills for a world

of web apps that increasingly includes mobile browsers and a lot more JavaScript.

➤ Yehuda Katz

Driving force behind Rails 3.0 and Co-founder, Tilde

In the past several years, I’ve been privileged to work with some of the world’s

leading Rails developers. If asked to name the best view-layer Rails developer I’ve

met, I’d have a hard time picking between two names: Bruce Williams and John

Athayde. This book is a rare opportunity to look into the minds of two of the

leading experts on an area that receives far too little attention. Read, apply, and

reread.

➤ Chad Fowler

VP Engineering, LivingSocial

Finally! An authoritative and up-to-date guide to everything view-related in Rails 3.

If you’re stabbing in the dark when putting together your Rails apps’ views, The

Rails View provides a big confidence boost and shows how to get things done the

right way.

➤ Peter Cooper

Editor, Ruby Inside and Ruby Weekly

The Rails view layer has always been a morass, but this book reins it in with details

of how to build views as software, not just as markup. This book represents the

wisdom gained from years’ worth of building maintainable interfaces by two of

the best and brightest minds in our business. I have been writing Ruby code for

over a decade and Rails code since its inception, and out of all the Ruby books

I’ve read, I value this one the most.

➤ Rich Kilmer

Director, RubyCentral

The Rails View
Creating a Beautiful and Maintainable User Experience

John Athayde

Bruce Williams

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian Hogan (editor)

Potomac Indexing, LLC (indexer)

Molly McBeath (copyeditor)

David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93435-687-6

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.1—April 2012

http://pragprog.com

Contents

Acknowledgments ix

Preface xi

1. Creating an Application Layout 1

Creating a Basic Layout 21.1

1.2 Setting Up a Boilerplate 6

1.3 Building the Page Frame 14

1.4 Adding a Sidebar 23

1.5 Adding Navigation 28

1.6 Displaying Notifications 36

1.7 Validating Our Code 39

1.8 Testing Internet Explorer 42

1.9 Wrapping Up 47

2. Improving Readability 49

Choosing a Templating Language 492.1

2.2 Standardizing Coding Practices 51

2.3 Simplifying Complex Output 56

2.4 Working with Models 63

2.5 Displaying Conditional Content 65

2.6 Adding Model DOM IDs for JavaScript 69

2.7 Cleaning Up 71

2.8 Wrapping Up 72

3. Adding Cascading Style Sheets 73

Using the Asset Pipeline 733.1

3.2 Learning SCSS 76

3.3 Adding Sprites 88

3.4 Using Web Fonts 92

3.5 Wrapping Up 98

4. Adding JavaScript 101

4.1 Using JavaScript from Rails 101

4.2 Testing Ajax 110

4.3 Wrapping Up 117

5. Building Maintainable Forms 119

Using Semantic Form Tags 1195.1

5.2 Building Custom Form Builders 132

5.3 Looking Toward the Future of HTML5 Form Elements 140

5.4 Wrapping Up 142

6. Using Presenters 143

Presenting a Record 1446.1

6.2 Presenting Multiple Records 153

6.3 Using Presenters for Serialization 158

6.4 Wrapping Up 161

7. Handling Mobile Views 163

Building a Flexible Layout 1647.1

7.2 The Next Level with Responsive Design (@media

queries) 168

7.3 Using Mobile-Specific Templates 174

7.4 Using jQuery Mobile 179

7.5 Wrapping Up 187

8. Working with Email 189

Building a Mailer 1898.1

8.2 Handling Email Templates 191

8.3 Testing Locally 195

8.4 Testing Across Clients 196

8.5 Wrapping Up 206

9. Optimizing Performance 207

A/B Testing with Vanity 2079.1

9.2 Performance Testing and Maintenance 214

9.3 Wrapping Up 228

9.4 Where Do We Go from Here? 229

Contents • vii

Part I — Appendices

A1. The Rails View Rules 233

A2. Bibliography 235

Index 237

viii • Contents

Acknowledgments

We have many people to thank for making this very ambitious book possible.

First of all, as this is a book about Rails, a lot of credit must go to the creator

of the framework, David Heinemeier Hansson, the members of rails-core (past

and present), and other contributors. The ideas in this book are distilled from

years of discussion and collaboration with the Rails and Ruby communities.

Throughout our careers we’ve drawn inspiration and motivation from a

number of web luminaries, and we would be remiss in failing to mention at

least a few of them: Dan Cederholm, Molly Holzschlag, Paul Irish, Jeremy

Keith, Steve Krug, Eric Meyer, Jakob Nielsen, Mark Pilgrim, and Jeffrey

Zeldman.

We were surprised to learn that a number of people actually volunteered to

read the book before it was complete, thereby putting their own sanity at risk.

We’d like to thank these brave souls for their help in identifying issues, sug-

gesting topics, and otherwise vastly improving the text: Derek Bailey, Kevin

Beam, David A. Black, David Bock, Daniel Bretoi, Jeff Casimir, BJ Clark, Jeff

Cohen, Justin Dell, Joel Friedman, Jeremy Hinegardner, Mark Margolis, Dan

Reedy, Sam Rose, Loren Sands-Ramshaw, Diego Scataglini, Tibor Simac,

Charley Stran, Mark Tabler, and Lynn M. Wallenstein.

This book simply would not have been completed if not for our amazing editor,

Brian Hogan. He continuously challenged our preconceptions and helped to

clarify our intent, all with seemingly unbounded patience and class. And we

promise, Brian, we’ll never again utilize utilize in our writing (except for that

time right there).

Many thanks to Rich Kilmer, Chad Fowler, Aaron Batalion, and our colleagues

in the engineering, design, and product teams at LivingSocial. You keep us

hungry to win every day, constantly building pressure to innovate, which

makes us better designers and developers.

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

John would like to thank his supportive wife, Whitney, for her patience and

encouragement throughout the process; his parents, grandparents, and

extended family for their love and support and for purchasing that Mac SE

back in the day with Hypercard installed; all the members of #caboose for

their patience and discussion over the years; Justin Hankins and Sara

Flemming for all the years of experimenting in HTML, CSS, and Rails with

Meticulous; and Amy Hoy for an intense year of business, design, and devel-

opment boot camp while running Hyphenated People with him. He also thanks

Bruce for agreeing to be a coauthor so that this book could rise to its potential.

Bruce credits the care and support of his wife, Melissa, and his two sons,

Braedyn and Jamis, for the uncharacteristic level of determination and

attention he’s managed to focus on this single project, which broke any

number of personal records. Also, Bruce’s life would have turned out very

differently were it not for the love of his mother, Monique, and father, Bruce

(the elder), and a varied and distributed family he’s proud to call his own,

even if they do occasionally call him for tech support. To his coauthor, Bruce

offers an equal share of sincere thanks and rampant design skill jealousy.

Some things do not change. Finally, Bruce would like to dedicate his work

on this book to the memory of his brother, Tristan Eppler.

John Athayde & Bruce Williams

March 2012

john@therailsview.com | bruce@therailsview.com

x • Acknowledgments

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Preface

In 2004, Rails was born and the web discovered the MVC (model-view-

controller) pattern in earnest, which brought a whole new level of productivity

and fun to a world of developers and designers.

You’ll find no end of books that provide a firm foundation for writing controllers

and models (which benefit greatly from being written top-to-bottom in plain

Ruby), but when it comes to views—that meeting place of Ruby, HTML,

JavaScript, and CSS (not to mention developers and designers)—what’s a

disciplined craftsman to do?

This book aims to widen the discussion of Rails best practices to include

solid, objective principles we can follow when building and refactoring views.

By the time you’re finished reading, you’ll understand how you can structure

your front end to be less brittle and more effective and boost your team’s

productivity.

Taming the Wild West

For all the advantages that Rails has over traditional, everything-in-the-view

approaches like vanilla PHP or ASP, it’s also fostered a culture of complacency

around how views are structured and maintained.

After all, with all the controller and model logic extracted and the addition of

helpers, what could go wrong?

While many of the elements that comprise the view are seen as easy (HTML,

for example), the view layer in its entirety is an incredibly complex thing. This

complexity can be so daunting that developers and designers just give up and

use tables, hackery, and any tweak they can just to make it look somewhat

right on the front end.

There are a lot of reasons for this. Many developers are uneasy around the

view layer, being in such a hurry to get out of it and back to “real code” that

they slap things together and leave a mess. Technical debt in the view layer

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

often goes unpaid, and knowledge of good markup practices can be years

behind or even considered irrelevant. After all, it works all right!

Designers can be uneasy around generated code and, without training, see

ERB blocks as a sort of magical wonderland they can’t hope to understand.

Helpers are just black boxes, and the underlying model relationships and

controller context that drive our views are just as opaque. Many designers

are so visually focused that they, too, disregard the importance and usefulness

of correct, modern markup. After all, it looks all right!

It’s easy for the view layer to become a no-man’s-land that no one owns or

adequately polices or a junkyard that no one feels safe to walk through.

In this book we’ll work hard to convince you not to abdicate responsibility for

the view layer. We’ll work together to learn how we can build application views

sustainably from the ground up, discover useful refactoring patterns and

helpful tools, and tackle integrating disparate technologies like Ruby, HTML,

and JavaScript into a cohesive unit that’s more than just a stumbling block

between you and the new features you need to implement.

Who Should Read This Book?

If you’re a designer working with Rails or a Rails developer working in the

view layer, this book is for you. We’ll cover the technical issues present in the

view layer, and we’ll also highlight some unique challenges that mixed teams

of developers and designers face when working together.

Ruby and Rails Versions

The Rails View was built on top of Rails 3.2.1 and Ruby 1.9.3 and should be

compatible with future stable releases for quite some time. In the event that

we have small compatibility issues with future versions, we will post updates

in the online forum on the book’s website.1

Much of the content and code would need to be modified to work with some

earlier versions due to our coverage of the Rails 3.1+ asset pipeline and use

of the new Ruby 1.9 Hash literal syntax.

You can check your Rails version with the following command:

% rails -v

1. http://www.pragprog.com/titles/warv/

xii • Preface

report erratum • discuss

http://www.pragprog.com/titles/warv/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

You can use gem install with the -v option to manually get the appropriate

version.

% gem install rails -v 3.2.1

To manage your Ruby versions, we recommend RVM (Ruby Version Manager).2

What Is in the Book?

We’ll learn how to build solid, maintainable views in Rails over the next nine

chapters.

In Chapter 1, Creating an Application Layout, on page 1, we look at how to

build the view structure for a new application from the ground up and get

our layout files in order to provide a firm foundation for the rest of our

application.

In Chapter 2, Improving Readability, on page 49, we look at how we can make

our templates easier to read and more naturally convey their intent.

In Chapter 3, Adding Cascading Style Sheets, on page 73, we’ll introduce you

to the asset pipeline, explain the new SCSS format, customize the Sprockets

configuration, and talk about how we can package assets into reusable units.

In Chapter 4, Adding JavaScript, on page 101, we’ll continue our discussion

of the asset pipeline, highlighting CoffeeScript, the Rails UJS drivers, and

some organizational techniques for including JavaScript plugins in our

applications.

In Chapter 5, Building Maintainable Forms, on page 119, we tackle forms,

investigate creating our own form builders, and use some existing libraries

to make complex forms easier to build and maintain.

In Chapter 6, Using Presenters, on page 143, we learn some techniques to make

displaying complex information as easy and maintainable as possible from

the view, building abstractions with our own custom Ruby classes.

In Chapter 7, Handling Mobile Views, on page 163, we discuss the challenges

we face with supporting different screen resolutions and geometries, including

mobile devices, and what solutions exist to aid in reusing templates and

styling or whether to separate them altogether.

2. http://rvm.beginrescueend.com

report erratum • discuss

What Is in the Book? • xiii

http://rvm.beginrescueend.com
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

In Chapter 8, Working with Email, on page 189, we discover some tips and

tricks to make sending rich email less frustrating and designing emails less

dependent on trial-and-error.

Finally, in Chapter 9, Optimizing Performance, on page 207, we’ll learn the

basics of measuring and solving application and business performance

problems.

How to Read This Book

Each chapter in this book builds upon the content in the previous chapter.

While examples will center around the ArtFlow application that we’ll begin to

build in Chapter 1, Creating an Application Layout, on page 1, chapters can

be read sequentially or by jumping around to focus on a specific problem.

You should be able to pull the code from our repository for any given chapter

and work with it.

Chapter 1, Creating an Application Layout, on page 1, covers a lot of HTML

and CSS that may seem out of place for a Rails book, but we feel these topics

are critical to writing good views. Spend some time refreshing yourself on this

subject matter even if you are already familiar with it. You may find some

surprises in there!

Online Resources

The book’s website has links to an interactive discussion forum as well as to

errata for the book.3 You’ll also find the source code for all the projects we

built. Readers of the ebook can click the gray box above the code excerpts to

download that snippet directly.

If you find a mistake, please create an entry on the errata page so we can

address it. If you have an electronic copy of this book, use the links in the

footer of each page to easily submit errata to us.

Let’s get started by looking at how views work and by digging into how we

deliver those to our application’s visitors.

3. http://www.pragprog.com/titles/warv/

xiv • Preface

report erratum • discuss

http://www.pragprog.com/titles/warv/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CHAPTER 1

Creating an Application Layout

The foundation of every Rails application’s view layer is the layout. The layout

provides a consistent, common structure for application pages, it sets the

stage for the content our controllers render, and it pulls in the client-side

scripts and style sheets that our interface needs to look and behave correctly.

In this chapter we’re going to approach building an application layout from

scratch, converting a design mockup into a real layout file while discovering

some new markup and Rails view best practices along the way.

This layout is the first piece of a new application we’re building for a design

studio. The application is called ArtFlow, and it will be used to track designer

progress, take client feedback, and act as a digital asset manager for assets

after the project is complete.

Often projects live in project management applications (such as Basecamp)

or through a string of emails with changes broken up into multiple emails.

The logical flow of taking a concept to production will be one part of the

application. After the project is complete and the team has moved on, there’s

a desire by clients to see previous campaigns they’ve run and look at their

creative assets. Often clients will look at how certain pieces performed and

base a new job on an existing creative asset. We want to be able to provide

an easy way for clients to find those assets and for our design shop clients

to see and track them as well (instead of keeping the assets in a folder hidden

on a file server and identified only by the client’s name).

The modeling at this stage of the application will be fairly straightforward and

will consist of creations, designers, projects, campaigns, and clients. Creations

(the designs themselves) originate from a designer and belong to a project.

The project belongs to a client through a campaign. It will be structured

something like Figure 1, ArtFlow models, on page 2.

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 1—ArtFlow models

All of the view work we’ll be doing to manage these records will sit on top of

our layout, so it’s important we build a good foundation from the beginning.

Let’s dive in, starting with the helpful mockup our user interface designer

put together for the application.

1.1 Creating a Basic Layout

It’s Monday morning, and we’ve been tasked to get the basic layout for ArtFlow

put together. Our designer mocked up a nice-looking screen (as seen in Figure

2, The ArtFlow mockup, on page 3) that we will break up into our global

layout and styles. The main layout for our application lives in app/views/
layouts/application.html.erb and the style sheet is located at app/assets/stylesheets/
application.css.

These follow a paradigm for each controller as well. A controller named

projects_controller.rb will look for a file in the layouts directory named

projects.html.erb. We can also override this either on the controller or by the

action of telling the controller to render a specific layout. At the controller

level we would add layout "{layoutname}", and in an action we would use render
:layout =>"{layoutname}".

In the past versions of Ruby on Rails, we have used HTML4 and XHTML, but

Rails 3 generates an HTML5 layout when a new project is created. HTML5

provides some additional, enhanced functionality on browsers that support

it while gracefully degrading on browsers that don’t. We’ll learn more about

this as we build out our application, and the first step is getting familiar with

some new tags.

We aren’t going to cover HTML5 in its entirety here. Our editor, Brian Hogan,

already wrote an awesome book on HTML5 and CSS3 [Hog10], and you should

2 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 2—The ArtFlow mockup

pick that up. You can also look at Mark Pilgrim’s excellent site,1 and check

out his accompanying book, HTML5: Up and Running [Pil10]. You can also

drink from the fire hose with the HTML5 Specification.2 In addition, there’s

the great resource dedicated to HTML5 called HTML5 Doctor.3 HTML5 is a

specification unto itself, but be careful. People frequently use the acronym

HTML5 to refer to a number of technologies described in different W3C spec-

ifications, including HTML5 itself (including canvas, video, web storage, and

more), CSS3, Web Sockets, Web Workers, Geolocation, and more.

We’re going to focus on the new tags that we can start using today, and we’ll

touch on some other pieces as we move through the various problems we

encounter as we build ArtFlow.

HTML5 and Semantic Markup

Hierarchy and context—these two things are what we’re really creating when

we mark up a document. We build relationships between pieces of content

1. http://www.diveintohtml5.info
2. http://www.w3.org/TR/html5/ and the more user-friendly http://developers.whatwg.org/.
3. http://www.html5doctor.com/

report erratum • discuss

Creating a Basic Layout • 3

http://www.diveintohtml5.info
http://www.w3.org/TR/html5/
http://developers.whatwg.org/
http://www.html5doctor.com/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

that describe the structure of the document and provide hooks for us to style

those pieces of content in separate style sheets. Maintaining this separation

of concerns is one of our rules, on page 233.

In the past we’ve been dependent on the <div> element, which has very little

semantic meaning on its own. While there were many semantic HTML elements

in earlier versions of HTML, most were very specific and limited in scope (e.g.,

definition lists).

HTML5 has changed that. Now that we have several new, more semantic

HTML elements available for overall page structure, we can provide a greater

level of meaning in our documents, make the relationships between pieces

of data more apparent, and make the whole document more readable.

There are also many more tags from earlier versions of HTML that we should

also employ in our markup, such as definition lists (<dl>), which in the new

version of the spec are to be used for any key-value pair. When writing HTML,

we should try to add as much semantic meaning as possible, (again) as stated

in our rules, on page 233.

Let’s look at our new HTML5 tags and briefly see what each is used for:

• abbr: An abbreviation or acronym where the title attribute has the full,

spelled-out version or meaning.

• article: A unique item, sometimes in a list. Common examples would be

an article in a magazine or blog or an item on an e-commerce site.

• aside: Akin to a true sidebar within an article in print magazines, this is

not to be used for our sidebar column. Pull quotes, breakout content, and

similar objects would fit in this element.

• audio: An audio or sound stream. Various browsers support various codecs,

including .wav, .ogg, and .mp3, depending.

• canvas: A canvas element is used for rendering graphics on the fly within

a page. It is raster/bitmap-based and should not be used for things that

have a better option (e.g., don’t render a heading with canvas).

• datalist: A set of options inside an input when it is a list.

• details: A disclosure widget, where the user can find additional information

or controls; for example, a file transfer window that has a series of

key/value pairs about the transfer would be a definition list wrapped in

a details element.

• figcaption: The caption for a figure.

4 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

• figure: Some kind of content that interrupts the main flow of content, such

as a photo, illustration, chart, etc. that is referenced from the content.

The rule of thumb is that you should be able to be remove it from the flow

of the content (that is, to another page) without affecting the flow.

• footer: The footer of a given section of a document or of the document itself.

This often contains copyright information, links, contact information, and

more.

• header: A heading of a given section of a document or of the document

itself. This will contain various h1 through h6 elements but can also contain

other information.

• hgroup: A wrapper around multiple <header> elements when used adjacent

to each other in a section—a heading and subheading that are related.

• mark: A tag to be used to mark or highlight content for reference purposes

to bring the reader’s attention to something or due to relevance in a search.

• meter: An element that reports a scalar value within a known range, or

anything that could be from 0 to 100 percent (or where there is a known

maximum value).

• nav: Navigation for a document or to other documents. Not every group of

links is a <nav> item, however, and it should not be used in places such

as footers, etc.

• output: The result from a calculation.

• progress: The completion progress of a task, either in relationship from 0

to 100 percent or in an unknown state.

• section: A generic document or web app section. It is a themed group and

sometimes has a header and a footer within it.

• summary: A caption or summary of the parent <details> element and its

contents.

• time: A time element, such as a created_at or updated_at column, in our models.

• video: Similar to audio but for a video or movie.

There are also quite a few new HTML5 form elements, which we will discuss

in Chapter 5, Building Maintainable Forms, on page 119.

These are all things we would have probably used <div> tags for in the past,

but now we can call them what they are! Let’s look at our mockups and figure

out where to use these new, more descriptive tags. We won’t be using all of

report erratum • discuss

Creating a Basic Layout • 5

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

these in our build-out, but we should be aware of them so we can identify

the proper tag to use for any content piece we encounter as we build our

application.

Beyond Tags: Microformats and ARIA Roles

While the breadth of HTML tags gives us a lot of options to use, we should

consider combining these meaningful tags with other techniques such as

microformats and ARIA roles to provide as much meaning as possible.

Microformats arose from XHTML as a way to provide more meaning to content

in a web page.4 While there are some well-established microformats, such as

hCard and hAddress, the concepts of a microformat are open-source and commu-

nity-based design principles for formatting data.

ARIA roles are part of the WAI (Web Accessibility Initiative), and ARIA stands

for accessible rich Internet applications.5 These are attributes added to tags

to let the browser better understand the role of an element or group of ele-

ments on a page. Whenever you see role="{value}" or aria-value{something]={value}
as we build out our code, it means we’re using ARIA roles to provide more

meaning.

Analyzing the Design

Since the core user interaction with our application is managing creations,

we’ll start with our creation index. This page has many of the elements that

are used site-wide, and since our designer was nice enough to standardize

screens across the app, we’ll be able to build out a good chunk of the design

concept in one place.

Looking at Figure 3, The creation index as we plan to break it up, on page 7,

we see a header, notifications, navigation, a sidebar, and a footer (in addition

to our main creation listing). Now that we know how to decompose our

mockup, let’s start converting it into markup—once we have some standard

boilerplate in place.

1.2 Setting Up a Boilerplate

A boilerplate refers to the standard view code that we use in every application

we build. It’s a great way to standardize toolsets and quickly get things moving

early in the development cycle. There are as many different boilerplates as

4. http://www.microformats.org
5. http://www.w3.org/TR/wai-aria/

6 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://www.microformats.org
http://www.w3.org/TR/wai-aria/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 3—The creation index as we plan to break it up

there are stars in the sky, but let’s look at the most common example, the

one that Rails generates for us. The standard site-wide layout is located in

app/views/layouts/application.html.erb.

<!DOCTYPE html>
<html>
<head>

<title>Artflow</title>
<%= stylesheet_link_tag "application" %>
<%= javascript_include_tag "application" %>
<%= csrf_meta_tags %>

</head>
<body>

<%= yield %>

</body>
</html>

Here is the initial Rails application.html.erb. It says we’re using HTML5 with the

DOCTYPE (which appears simply as <!DOCTYPE html>), loads all the style sheets

and JavaScript files from their respective directories, and puts the content

rendered by the controller action where yield is placed.

report erratum • discuss

Setting Up a Boilerplate • 7

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

Are Boilerplates Mandatory?

Not at all. They are simply a codified way of doing things, similar to how Rails codifies

certain things about how we build web applications. Boilerplates are also something

that each team will develop over time and standardize for its particular needs. We

have separate boilerplates for our public and internal-facing applications, and we

often update them as best practices change and experience shows us a better way.

This file is intentionally sparse, as the core team put in only the HTML that

is absolutely needed to make Rails deliver a view to a browser. The team could

have put in a full boilerplate of various code pieces, but they left it to us to

extend the basics.

Now let’s add in some additional elements that we’ll need, starting with our

charset. Browsers need to map characters to unicode, and giving them a

charset lets each browser do that correctly—otherwise we have nasty little

things showing up in our text. We use UTF-8 because it provides the best

features across the most devices and works for XML and HTML. We need to

specify a character encoding or we can have various issues arise in our page.6

<head>
<meta charset="utf-8">
<title>ArtFlow</title>
<!-- The rest of our head -->

</head>

We sometimes run across documents that use other encodings, such as ASCII

or the ISO-8859-1 and its variations. These encodings are fine in English and

for specific languages, but the new standards of UTF-8, -16, or -24 support

almost every language in the world. HTML5 spec states that “authors are

encouraged to use UTF-8,” so we’ll use that. UTF-8 makes internationalization

much easier to deal with, and it lets us mix character sets in the same page.

More information is available online.7

This is the same as the much longer (and older style) seen here:

<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<title>ArtFlow</title>
<!-- The rest of our head -->

</head>

6. http://blog.whatwg.org/the-road-to-html-5-character-encoding
7. http://htmlpurifier.org/docs/enduser-utf8.html#whyutf8

8 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://blog.whatwg.org/the-road-to-html-5-character-encoding
http://htmlpurifier.org/docs/enduser-utf8.html#whyutf8
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Both work just fine with all the major browsers, and the shorter declaration

is cleaner. Now that we have the charset in place, let’s start to set up our

code base for all the browsers we will support.

Turning on HTML5 for Internet Explorer and Older Browsers

We need to support MSIE 7 and 8 for this application. While large parts of it

are being used internally and we can limit the browser support from an IT

perspective, our customers’ clients may be using all sorts of browsers to

access the site. How do we balance providing better semantic markup and

code with keeping our sanity while debugging browsers (which we cover in

more depth in Section 1.8, Testing Internet Explorer, on page 42) with back-

wards compatibility?

Modernizr to the Rescue!

Modernizr is a library that uses JavaScript to detect the availability of native

support for next-generation web technologies ranging from HTML5 to CSS3

and more.8 It classes the <html> element with this information and allows for

the loading of polyfills to include functionality in browsers without native

support.9 It also contains an HTML5 shiv to enable many of the new tags we

looked at above. This shiv allows them to be styled, but we will need to add

them to our reset/normalize style sheet (which we do in Getting Browsers on

the Same Page, on page 10) in order to get them working the same across all

browsers.

Modernizr’s HTML shiv does a few things for us. First, the shiv tells the DOM

(document object model) that there are some new elements that the DOM can

address. Some browsers assume that if an element is a tag and the browser

doesn’t know about it, the tag was intended to be something new and the

browser will treat the tag as a generic element. Internet Explorer does not.

We could have typed the following for each new element:

<script>document.createElement("blah");</script>

Instead of typing the above for every new HTML element we want to use, this

script takes care of creating those elements as well as some other things. It

creates an array of the new tags we want to use and then applies .createElement();
to each. It also applied the IE HTML5 Print Protector so that these elements

will print properly.10

8. http://www.modernizr.com
9. https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
10. http://www.iecss.com/print-protector/

report erratum • discuss

Setting Up a Boilerplate • 9

http://www.modernizr.com
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
http://www.iecss.com/print-protector/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We will roll our own custom version at http://modernizr.com/download/ to only include

the functionality that we need and place it in our assets/javascripts folder. Next

we’ll add this to our manifest file in app/assets/javascripts/application.js (a directory

we talk about in more depth in Chapter 4, Adding JavaScript, on page 101):

artflow/layout/app/assets/javascripts/application.js

//= require modernizr-1.7.custom
//= require jquery
//= require jquery_ujs
//= require_tree .

For concerns about what we can support today, we can take a look at

http://html5readiness.com/ or http://www.caniuse.com/ and see which browsers support

which elements (and at what point that support was introduced). While the

spec is not yet final, most browsers have some implementation for many of

the elements of the HTML5 family of tools.

Once we have this in place, the new HTML5 elements are now addressable

in the DOM for both JavaScript and CSS styling. Now we need to make sure

all the browsers are starting from a blank slate, stylistically speaking.

Getting Browsers on the Same Page

Now that all our browsers will recognize the HTML tags we’re tossing at them,

we’ll look at another browser problem we have to solve.

Browsers have their own built-in style sheets that they use as basic presen-

tation defaults. They also contribute and become the foundation for the styles

we add, and as you might expect, these browser presentation defaults are

nowhere near consistent. Each browser family will render things differently.

List tags are rendered with left margins in one browser and left padding in

another. There are extensive subtle presentation changes with elements

having different top and bottom margins, line height, indentation, font pre-

sentation, and more.

The problem results in a lot of hacks to target specific browsers through

JavaScript. Instead of this, we’re going to get browsers on the same page by

using a technique called reset.

Eric Meyer, who came up with the first reset.css, explains the semantic rationale

as follows:11

There’s another reason we want to reset a whole lot of styles on a whole lot of

elements. Not only do we want to strip off the padding and margins, but we also

want all elements to have a consistent font size, weight, style, and family. Yes,

11. http://meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning/

10 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://modernizr.com/download/
http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/javascripts/application.js
http://html5readiness.com/
http://www.caniuse.com/
http://meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

What About Google’s Chrome Frame?

The Chrome Frame by Google is a plugin that effectively turns Internet Explorer into

Google Chrome if the website it is browsing calls for it.a While this is a great tool, we

can’t be sure that our users will have it, nor do we want to force them to download

it in order to use our app. We can provide support for it (which we will do in the build-

out), but we won’t rely on it for this particular application.

a. http://code.google.com/chrome/chromeframe/

we want to remove the boldfacing from headings and strong elements; we want

to un-italicize and <cite> elements.

We want all this because we don’t want to take style effects for granted. This

serves two purposes. First, it makes us think just that little bit harder about the

semantics of our document. With the reset in place, we don’t pick because

the design calls for boldfacing. Instead, we pick the right element—whether it’s

 or or or <h3> or whatever—and then style it as needed.

We reset these internal style sheets (or wipe them out) and then assign basic

styles (or normalize them) so that we have a nice clean slate from which to

work. While we like Eric Meyer’s sentiment of styling each piece by hand, the

reality is that the majority of the time that we are using certain elements, we

are using them with some default presentation. It’s easy enough to strip off

the styling on the outliers as opposed to writing out every piece every time.

And that is why we are not going to use the HTML5 reset nor the original

reset created by Eric Meyer for this task,12 but a new approach that does it

all at once, called Normalize.css.13 According to its authors, it “preserves

useful defaults, normalizes styles for a wide range of elements, corrects bugs

and common browser inconsistencies,” and more.

To see the visual difference in these, we can look at a few experiments that

show the basic differences.14 We end up with some great unified base styles

and we don’t have to spend as much time declaring the basics over and over

again.

We want to pull the raw normalize.css from https://raw.github.com/necolas/normalize.css/
master/normalize.css and place it into our app/assets/stylesheets directory.

12. http://html5doctor.com/html-5-reset-stylesheet/ or http://meyerweb.com/eric/tools/css/reset/, respectively.

13. http://necolas.github.com/normalize.css/
14. http://experiments.botsko.net/tests/html5-boilerplate-css/

report erratum • discuss

Setting Up a Boilerplate • 11

http://code.google.com/chrome/chromeframe/
https://raw.github.com/necolas/normalize.css/master/normalize.css
https://raw.github.com/necolas/normalize.css/master/normalize.css
http://html5doctor.com/html-5-reset-stylesheet/
http://meyerweb.com/eric/tools/css/reset/
http://necolas.github.com/normalize.css/
http://experiments.botsko.net/tests/html5-boilerplate-css/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We are also going to remove the line *= require_tree from app/assets/stylesheets/appli-
cation.css, as we want to be able to load our files in a specific order.

Let’s take a moment to review the normalize.css file and see what it does. The

file starts by setting up the HTML5 elements properly and then moves on to

resetting and standardizing text, link colors (which we will override later),

typography, lists, embedded content, figures, forms, and tables. Using this

file will help us solve most of our cross-browser rendering issues and debug-

ging nightmares. We’ll look at making more targeted corrections in Section

1.8, Testing Internet Explorer, on page 42.

Let’s get back to our layout in app/views/layouts/application.html.erb. Here’s what it

looks like now:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Artflow</title>
<%= stylesheet_link_tag "application" %>
<%= javascript_include_tag "application" %>
<%= csrf_meta_tags %>

</head>
<body>

<%= yield %>

</body>
</html>

We need to add a require directive for our normalize style sheet to the

app/assets/stylesheets/application.css manifest so that Rails includes it (see Chapter

3, Adding Cascading Style Sheets, on page 73, for more information on how

Sprocket directives and the asset pipeline work), taking care to put it before

our other files:

/*
*= require_self
*= require normalize
*/

We’re almost ready to build our page out, but first, let’s quickly look at the

preexisting boilerplates and see if there’s anything we want to use in our

application.

12 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

Can I Use These Techniques Before Rails 3.1?

Before Rails 3.1, style sheets, JavaScripts, images, and other assets lived in the public
folder. The nickname for this became the “junk drawer” of the application. The asset

pipeline, which we cover in Section 3.1, Using the Asset Pipeline, on page 73, is such

a major improvement that we’re only going to work in that paradigm. If you’re in an

older app, there are some ways to work around this.

You can use a tool like Compass to bring in SASS and a tool like Guard or LiveReload

to watch your files for changes and convert them to static assets.a We do this in many

legacy apps that we have to maintain. We create the file structure in app/assets and

then use the SASS gem to convert them as we make SCSS changes:

sass --watch app/assets/stylesheets/application.css:
public/stylesheets/application.css

If you’re adventuresome, you can also look at the Sprockets gem, which is what the

asset pipeline itself uses, and attempt to bring that back to your legacy app.

a. http://compass-style.org/ and http://livereload.com/, respectively.

Borrowing from the Mega-Boilerplate

There are a few different ultimate awesome kick-butt HTML5 boilerplates out

there that do everything under the sun. Using these arbitrarily is not smart

and in many cases can add cruft to our app that we don’t need. These range

from tools like HTML5 Boilerplate to Twitter’s Bootstrap:15 we will use HTML5

Boilerplate here.

HTML5 Boilerplate is a collection of best practices and patterns pulled from

a lot of large public-facing web projects,16 and it covers almost everything we

can think of that we may need. It’s also heavily commented so that most every

line has a reference to what it does and why it’s included.

We are not going to use this out of the box. It is quite a complex monster and

we will start at the beginning by building out the base structure of our page,

including the pieces that we need as we move along. Some of the things that

we are going to pull over are IE PNG fixes (to make CSS image resizing work

in Internet Explorer), the normalize CSS (which we just included) and a clearfix

(to help with issues related to floated elements).

15. http://twitter.github.com/bootstrap/
16. http://www.html5boilerplate.com

report erratum • discuss

Setting Up a Boilerplate • 13

http://compass-style.org/
http://livereload.com/
http://twitter.github.com/bootstrap/
http://www.html5boilerplate.com
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

There’s an argument against using resets, boilerplates, and conditional

comments that says the following:17

The default CSS rules are sensible and make sense (for example, they format

unordered lists correctly)....There are perfectly good CSS hacks that you can

use...18 [and] at least they keep your HTML clean from those super-ugly, totally

weird conditional comments, which quite mess up your code.

While this is a great approach if you’re only coding for one platform or have

the patience to dig everything up each time, a boilerplate (of your own creation)

can save time and therefore money on projects, especially in teams where

you can use the same foundation over and over again.

CSS browser-specific hacks can be problematic to maintain and only work

when the entire development team understands them. The likelihood of this

is low. Resetting and normalizing the built-in browser style sheet is the best

pragmatic approach to use for both developer sanity and future-proofing our

applications.

1.3 Building the Page Frame

We are now going to create our global elements: the header, the sidebar, our

alerts, and the footer. These will include our application’s branding (logo,

taglines, and colors) as well as the primary navigation and utility navigation.

Primary navigation refers to the main items, such as projects, creations,

home, and other elements that help users move around the site. The utility

navigation will support users logging in, logging out, and accessing their

accounts.

From a process standpoint, we always want to write the minimal amount of

HTML first and then add additional elements as required for layout and

interactivity (JavaScript, Ajax, etc.). This helps us keep the code clean and

makes us look at semantics and meaning first, as opposed to simply looking

at presentation and layout.

To begin with, we are going to place some code in partials. While we normally

don’t want to extract things arbitrarily, putting our header and footer into

partials in the layouts folder makes our layout easier to read, which makes

it easier for us to focus on stepping through our build. We’re going to render

a partial named _header.html.erb. When we render it from app/views/layouts/applica-
tion.html.erb, we refer to it with the directory name since it will be used across

17. http://mir.aculo.us/2010/08/10/pragmatic-html-css/
18. http://dimox.net/personal-css-hacks-for-ie6-ie7-ie8/

14 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://mir.aculo.us/2010/08/10/pragmatic-html-css/
http://dimox.net/personal-css-hacks-for-ie6-ie7-ie8/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

many controllers. If we don’t specify the directory, Rails will look for the file

in the current controller’s view directory.

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Artflow</title>
<%= stylesheet_link_tag "application" %>
<%= javascript_include_tag "application" %>
<%= csrf_meta_tags %>

</head>

<body>
<%= render 'layouts/header' %>

<%= yield %>

</body>
</html>

Let’s use one of the new HTML5 elements, <header>, to call out our first section.

Headers, like most of the new HTML5 elements, need not be unique on a page

and are used in various levels of a document’s hierarchy. Since that’s the

case, we want to give it a unique ID. For this case, we’ll call it page_header. Let’s

change app/views/layouts/_header.html.erb:

<header id="page_header">
</header>

Next, let’s look at the elements within the header itself. We have a logo featur-

ing our application name, utility navigation, application navigation, and some

miscellaneous branding elements. The logo should link back to the root_url for

the application. A common practice for developers is to put a logo into an

<h1> tag. We will not, as it’s not the headline of the page.19 Always think of

the true semantics of the content: the headline is a textual content element,

not a graphic. While this may not matter on the home page, when we are

inside a page, what is the main headline? Is it the logo, or, in the case of the

application layout that we’re currently building, is it the title of the collection

(e.g., “Assets”)?

The other elements should be <nav> entities with unique IDs. When we add

these in app/views/layouts/_header.html.erb, it looks like this:

19. http://csswizardry.com/2010/10/your-logo-is-an-image-not-a-h1/

report erratum • discuss

Building the Page Frame • 15

http://csswizardry.com/2010/10/your-logo-is-an-image-not-a-h1/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<header id="page_header" role="banner">
<nav id="utility">
<p>

You are logged in as Sam Spade
<%= link_to "[Your Account]", "#" %> |
<%= link_to "[Logout]", "#" %>

</p>
</nav>
<%= link_to(

image_tag("logo.png",
alt: "Artflow",
id: "logo"),

root_url,
title: "Dashboard") %>

</header>

We’ve also added an ARIA role for the header of banner. This is one of a prede-

fined set of “landmark roles” in the ARIA specification.20 These help with

accessibility, and we should get in the habit of using them while we build,

instead of retrofitting later. As for our main nav, we’ll tackle the application

navigation later (see Section 1.5, Adding Navigation, on page 28), as it’s a bit

more complex.

There’s meaning in how we’ve marked up the header, and now we can use

that semantic markup to style the header. Always write the minimum amount

of HTML required to style the page—additional elements are the bane of our

existence as view hackers. Keep it clean! The base HTML (with a reset CSS)

gives us something that looks like Figure 4, An unstyled header, on page 17.

We don’t see the logo because it’s white text in a 24-bit transparent PNG:

white on white.

Bringing the Pretty to the Header

We’ll start with the overall header itself. This will be a mix of images and CSS.

Normally in the day-to-day flow, we’d either be firing up Photoshop to cut our

pieces or we could have our designer send us the pieces. We’ve included the

Photoshop file as well as the precut pieces, so you can experiment the way

you prefer.

We have a bunch of elements all inline right now that we need to position to

make them look like the final mockup. Our utility navigation shows up in the

HTML before our logo because we are going to use a CSS property called float
to have it sit on the right. float is a property that can cause a lot of headaches,

20. http://www.w3.org/WAI/PF/aria-practices/#kbd_layout

16 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://www.w3.org/WAI/PF/aria-practices/#kbd_layout
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 4—An unstyled header

many of which we will run into in the course of building this application. The

default behavior for an element is to appear in the order in which it appears

in the HTML markup. When we float an element to the right, it simply slides

to the right in the same place that it would currently be. That would make

the top of our element start at the bottom of the logo on the left. To get it to

be equal with the logo, we need to put it in the HTML first.

Looking at the header, we see it’s 78 pixels tall and has an inside padding of

about 10 pixels. We would think that making the height attribute 78px would

be the right solution, but we need to remember the box model.21 The box

model refers to the square space that each element takes up. It has width

and height, padding, a border, and a margin. See Figure 5, The box model,

on page 18.

So padding is inside the border and it gets added to the height and width of

the actual element. To get our actual height attribute, we need to subtract

the total padding from the measured height. So, that being said, if we want

88px in total height, and we have 10 pixels of padding on all sides, we define

height at 68px in order to get the right total (68 + 10 + 10). We add some

styling in a new file, layout.css.scss, taking advantage of the nesting support

SCSS gives us,22 as explained in Chapter 3, Adding Cascading Style Sheets,

on page 73:

21. http://www.w3.org/TR/CSS2/box.html
22. Sassy CSS, http://sass-lang.com/.

report erratum • discuss

Building the Page Frame • 17

http://www.w3.org/TR/CSS2/box.html
http://sass-lang.com/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

PADDING

BORDER

MARGIN

CONTENT (INSIDE PADDING)

BACKGROUND (INSIDE BORDER)

Figure 5—The box model

header#page_header {
background-color: #bc471d;
color: #fff;
height: 68px;
margin-bottom: 10px;
overflow: hidden;
padding: 10px 20px;

a,
a:link,
a:hover,
a:active,
a:visited {

color:#fef8e7;
text-decoration: none;

}

nav#utility {
float: right;
font-size: 0.8em;

}

18 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

#logo {
position: absolute;
top: 15px;

}
}

In order to see it, we need to call this file into the asset pipeline. Let’s add

our layout styling to our application.css manifest, right after the reset we added

in Getting Browsers on the Same Page, on page 10:

/*
*= require_self
*= require normalize
*= require layout

*/

Now that’s starting to look like a header. We’ve defined link colors, determined

the padding and spacing, placed our logo file, and floated our utility nav right.

We just need to add the branding graphics and we’ll be done. We could use

an tag for the logo, but since we have text overlaying it, we’ll put the

image in the background instead. We’ll modify app/assets/stylesheets/layout.css.scss:

header#page_header {
➤ background: #bc471d url('/assets/brandtag.png') bottom right no-repeat;

color: #fff;
font-size: 0.9em;
height: 68px;
margin-bottom: 10px;
overflow: hidden;
padding: 10px 20px;
a,
a:link,
a:hover,
a:active,
a:visited {

color:#fef8e7;
text-decoration: none;

}

nav#utility {
float: right;
font-size: 0.8em;

}

#logo {
position: absolute;
top: 15px;

}
}

report erratum • discuss

Building the Page Frame • 19

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

#tagline {
margin-left: 20px;

}

div.container {
overflow: hidden;
padding: 0 20px;

}

We’ve changed background-color to simply background and used that advanced

definition instead of manually specifying the background color, position,

image, and repeat as four different properties. This is not some new

HTML5/CSS3 trick, but what is called “CSS shorthand.” This allows us to

combine multiple declarations into one line and reduce the verbosity (and

size) of our CSS files. In this case, background includes background-color, background-
image, background-position, and background-repeat, reducing our CSS from four lines

to one.

We now have our header looking correct (Figure 6, The styled header, on page

21). Let’s move on and get our footer in place.

Setting Up Our Footer

Footers have become a whole new domain in web design. They often have

multiple columns, lots of information, and lots and lots of links. One could

argue that, in many cases, the old site map page has shuffled its way into

the footer of every page. Links and icons abound, and the footer can end up

as a junk drawer.

On this app, we’re dealing with something far simpler, as there are only two

elements contained inside it for our example: a and a copyright notice.

Let’s start with our HTML, modifying app/views/layouts/application.html.erb:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Artflow</title>
<%= stylesheet_link_tag "application" %>
<%= javascript_include_tag "application" %>
<%= csrf_meta_tags %>

</head>

<body>
<%= render 'layouts/header' %>
<%= image_tag("tagline.png",

20 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 6—The styled header

alt: "Creative File Management Made Easy",
id: "tagline") %>

<div class="container">

<%= yield %>
</div>
<%= render 'layouts/footer' %>

</body>
</html>

Yes, we’ve used a <div>. Our wrapper’s job will be to center the content and

sidebar <section> tags together—it’s purely for presentation purposes, so the

generic quality of the tag is okay. Usually we’d be the first ones to burn a

<div> tag in effigy, but this isn’t the time.

Here’s our footer partial:

artflow/layout/app/views/layouts/_footer.html.erb

<footer id="page_footer">

<%= link_to "Contact", "" %>
<%= link_to "Help", "" %>
<%= link_to "File a Bug", "" %>

<p>© 2011 AwesomeCo. All Rights Reserved. All Wrongs Reversed.</p>

</footer>

report erratum • discuss

Building the Page Frame • 21

http://media.pragprog.com/titles/warv/code/artflow/layout/app/views/layouts/_footer.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We don’t need to class the or the <p>, as we can target them specifically

by using the parent element’s unique ID of page_footer and child selectors. If

there were more elements within the footer, we would probably want to address

those elements via a class or an ID directly. For now, all we need is this:

artflow/layout/app/assets/stylesheets/layout.css.scss

footer#page_footer {
background-color: #807c77;
border-bottom: 10px solid #4c2719;
color: #fff;
font-size: 0.7em;
height: 100px;
padding: 10px 20px;

ul {
margin-left: -10px;
padding: 0;

li {
border-right: 1px solid #fef8e7;
display: inline;
margin: 0;
&:last-child {
border-right: none;

}

a {
padding: 5px 10px;
&:link,
&:hover,
&:visited,
&.active {

color: #fff;
}

}
}

}
}

You’ll notice the :last-child pseudo-selector in here. This will select the last ele-

ment that is an and apply styles only to that tag. This is ideal for when

you want a border between rows or columns but not on the last column. A

right border works great until the end, and the :last-child lets us turn it off.

Pseudo-class selectors have been around for a while but are starting to get

more support in the mainstream browsers. You can even add it into older

browsers with Selectivizr.23

23. http://selectivizr.com/

22 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/stylesheets/layout.css.scss
http://selectivizr.com/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

A nice feature here is that SCSS’s support for nesting makes the structure

of our styles mirror the structure of our HTML. For more information on SCSS,

see Chapter 3, Adding Cascading Style Sheets, on page 73. It will be easy to

find what we’re looking for if we need to modify the styling later.

We’ve built a solid header and footer that we can expand as our application

grows, but what about the business in between? Next up we build out the

main content portion of our page, making room for a handy sidebar that we’ll

use for secondary navigation and supporting content.

1.4 Adding a Sidebar

We’ve put together a header, and now it’s time to address another important

part of our layout: sidebars. A sidebar sits to the right or left of the main

content and has a few potential purposes:

• Quick links, category breakouts, and other navigation

• Additional context-sensitive instructions and information

• Marketing content, advertisements, or other content on every page of the

application (but which doesn’t make sense in the <header> or <footer>)

• Blogrolls, references, or links to other supporting material

ArtFlow needs to display some secondary navigation, form instructions, and

contact information on all its pages, so we definitely need to add a sidebar.

But is a sidebar and an aside the same thing? No. An aside is an element

that supports your main content, such as a pull quote or related links from

an article. It’s an element that is related to its parent element. For a sidebar,

we should use just a <section> tag and then style the content inside it

accordingly. If it’s a list of categories or dates, a <nav> tag might be ideal.

Remember, don’t overdo the semantic approach. Trying to force things into

these new elements is not in the spirit of semantic markup.

Making a Place for Content

When we put together our boilerplate in Section 1.2, Setting Up a Boilerplate,

on page 6, we just tossed a yield into the body to insert the content from the

action. That worked great then, but now that we have a sidebar that needs

to sit alongside, things get a bit more complex. We move our yield into a <section>
in our app/views/layouts/application.html.erb, adding a secondary <section> to boot.

report erratum • discuss

Adding a Sidebar • 23

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Artflow</title>
<%= stylesheet_link_tag "application" %>
<%= javascript_include_tag "application" %>
<%= csrf_meta_tags %>

</head>
<body>
<%= render 'layouts/header' %>
<%= image_tag("tagline.png",

alt: "Creative File Management Made Easy",
id: "tagline") %>

<div class="container">
<section id="content">➤

➤ <%= yield %>
</section>➤

<section id="sidebar">➤

</section>➤

</div>
<%= render 'layouts/footer' %>

</body>
</html>

Getting the sidebar in place is simple enough: we’ll put it to the right of our

content and center our wrapper. This belongs along with the general layout

styling we added in Section 1.3, Building the Page Frame, on page 14:

artflow/layout/app/assets/stylesheets/layout.css.scss

section#content {
float: left;

}
section#sidebar {

float: right;
margin-right: -20px;
width: 300px;

}

We’ll also create a sidebar.css.scss for the sidebar-specific content. For now, let’s

give sections inside the sidebar a light gray background and a bit of padding:

artflow/layout/app/assets/stylesheets/sidebar.css.scss

section#sidebar {
background-color: #edeae6;
-webkit-border-top-left-radius: 10px;
-webkit-border-bottom-left-radius: 10px;
-moz-border-radius-topleft: 10px;
-moz-border-radius-bottomleft: 10px;
border-top-left-radius: 10px;

24 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/stylesheets/layout.css.scss
http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/stylesheets/sidebar.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

border-bottom-left-radius: 10px;
color: #666;
font: {

size: 0.8em;
weight: normal;

}
line-height: 1.3em;
padding: 10px;
a,
a:link,
a:visited {

color: #666;
text-decoration: underline;

}

a:hover,
a:active {

color: #bc471d;
}

section {
}

#functional_nav {
ul {
list-style-type: none;
margin: 0;
padding: 0;

}
}

#recent_activity {
header {
background-color: #bc471d;
border-bottom: 5px solid #807c77;
margin: 10px -10px;
padding: 5px 10px 0 10px;
h1#recent {

background: transparent url('/assets/txt_recent-activity.png')
no-repeat scroll top left;

margin: 5px 0 0 0;
padding: 0;
text-indent: -999px;

}
}

}
}

report erratum • discuss

Adding a Sidebar • 25

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We need to add a require directive for the sidebar to our application.css manifest

to make sure it’s included (for more information on how this works, see

Chapter 3, Adding Cascading Style Sheets, on page 73):

/*
*= require_self
*= require normalize
*= require layout
*= require sidebar
*/

Now that we have an empty sidebar in the right place with a basic style for

its content, let’s figure out how we can add markup to the sidebar from our

action templates.

Filling in the Layout with content_for

From our design, we see that we need a listing of recent creation activity

displayed in the sidebar on every page. After putting the list in a partial, we

simply render it from a new <section> tag in app/views/layouts/application.html.erb:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Artflow</title>
<%= stylesheet_link_tag "application" %>
<%= javascript_include_tag "application" %>
<%= csrf_meta_tags %>

</head>
<body>
<%= render 'layouts/header' %>
<%= image_tag("tagline.png",

alt: "Creative File Management Made Easy",
id: "tagline") %>

<div class="container">
<section id="content">
<%= yield %>

</section>
<section id="sidebar">

<section id="recent_activity">➤

<header><h1 class="ir" id="recent">Recent Activity</h1></header>➤

➤ <%= render partial: 'activity_items/recent' %>
</section>➤

</section>
</div>
<%= render 'layouts/footer' %>

</body>
</html>

26 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

This is great, but we also need to support actions adding more content to the

sidebar for context-sensitive information. How do we get additional content

from the action’s rendering process?

If you’ll remember, we’re already pulling content rendered by our actions in

the layout for the main content. This really isn’t any different; the trick here

is to use yield, but this time indicate which content rendered by the action we

want inserted. yield without an argument will retrieve the main content, but

we want the content for the sidebar, so we modify our app/views/layouts/applica-
tion.html.erb:

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">
<title>Artflow</title>
<%= stylesheet_link_tag "application" %>
<%= javascript_include_tag "application" %>
<%= csrf_meta_tags %>

</head>
<body>

<%= render 'layouts/header' %>
<%= image_tag("tagline.png",

alt: "Creative File Management Made Easy",
id: "tagline") %>

<div class="container">
<section id="content">
<%= yield %>

</section>
<section id="sidebar">

➤ <%= yield :sidebar %>
<section id="recent_activity">
<header><h1 class="ir" id="recent">Recent Activity</h1></header>
<%= render partial: 'activity_items/recent' %>

</section>
</section>

</div>
<%= render 'layouts/footer' %>

</body>
</html>

From a layout perspective, we’re done now. We just need to wire in any actions

that would like to provide content for the sidebar. We do this with a helper

named content_for(), which we can use to add a listing of designers assigned to

a project when viewing the project’s page:

artflow/layout/app/views/projects/show.html.erb

<% content_for :sidebar do %>
<section id='assigned_designers'>

report erratum • discuss

Adding a Sidebar • 27

http://media.pragprog.com/titles/warv/code/artflow/layout/app/views/projects/show.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<header><h1>Assigned Designers</h1></header>

<%= render @project.designers %>

</section>
<% end %>

<article>
<header>

<h1><%= @project.name %></h1>
</header>
<!-- Project information -->

</article>

We can add as much (or as little) sidebar content as we’d like, and it will be

inserted exactly where we’ve put our yield. We can even check to see if there’s

sidebar content using content_for?(:sidebar), which would be helpful if we wanted

to add a CSS class to the <body> to support easily styling both sidebar and

sidebarless layouts.

We can use the same trick to change the contents of the <title> tag for a page,

which is useful for search indexing. Let’s update the layout in app/views/lay-
outs/application.html.erb:

<title>
<% if content_for?(:title) %>

ArtFlow: <%= yield :title %>
<% else %>

Artflow
<% end %>

</title>

With this in place, we can add text to our title from any page just by using

content_for :title. Neat!

Now we have a sidebar, and actions can insert content into it (and our title),

but how do we move between actions? Next we tackle a more complex topic:

adding navigation.

1.5 Adding Navigation

Our application would be pretty useless if we didn’t offer our users a way to

move around, wouldn’t it? ArtFlow has a few important sections that our

users need access to, and we’ve identified them as Home, Creations, Cam-

paigns, Designers, and Projects. We’ve been tasked with adding these naviga-

tion items as a series of simple tabs at the top of the application.

28 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Building the Tabs

First, we add an element with the list of links we’ll need in the <header> we

created in Bringing the Pretty to the Header, on page 16.

We modify app/views/layouts/_header.html.erb:

<header id="page_header" role="banner">
<nav id="utility">

<p>
You are logged in as Sam Spade
<%= link_to "[Your Account]", "#" %> |
<%= link_to "[Logout]", "#" %>

</p>
</nav>
<%= link_to(

image_tag("logo.png",
alt: "Artflow",
id: "logo"),

root_url,
title: "Dashboard") %>

<nav id="main_nav" role="navigation">➤

➤

<%= link_to 'Home', root_path %>➤

<%= link_to 'Creations', creations_path %>➤

<%= link_to 'Campaigns', campaigns_path %>➤

<%= link_to 'Projects', projects_path %>➤

<%= link_to 'Designers', designers_path %>➤

➤

➤ </nav>
</header>

A tag is the natural choice here, as our main navigation really is just a

list of places to visit in the application. Now we just need to make this list

look like tabs running horizontally across the screen. This is a pretty classic

style, so we know exactly what CSS to add to our style sheet. We create a

navigation.css.scss file:

artflow/layout/app/assets/stylesheets/navigation.css.scss

nav#main_nav {
position: absolute;

top: 50px;
left: 300px;

li {
background: #865140;
display: inline-block;
margin: 0 2px;
padding: 4px 6px;
a, a:link, a:visited {
color: #fff;

report erratum • discuss

Adding Navigation • 29

http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/stylesheets/navigation.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

text-decoration: none;
}

}
}

Then we add a require directive to our application.css manifest (for more informa-

tion on how this works, see Chapter 3, Adding Cascading Style Sheets, on

page 73):

/*
*= require_self
*= require normalize
*= require layout
*= require sidebar
*= require navigation➤

*/

We now have our inactive tabs styled and ready to go, and we use inline-block
so they sit side by side. We use this instead of float since it’s a bit less erratic

across browsers, and we use it instead of inline because our tags have

content. We want to have control over the margins around this content, and

inline elements don’t always support dimension attributes. inline-block makes

the most sense because they’re blocks; they’re just sitting next to each other.

The end result looks like this:

Now users know where they can go, but how can they tell where they are?

Providing Context

An important piece of feedback that our application’s main navigation needs

to give our users is context, something we’re not providing yet. We need to

visually differentiate the active tab (where they are) from the inactive tabs

(where they can go). We need to define what the active tab looks like; we’ll do

this by changing the tab background color to the inverse of the rest of the

tabs—light on dark instead of dark on light:

artflow/layout/app/assets/stylesheets/navigation.css.scss

nav#main_nav {
position: absolute;

top: 50px;
left: 300px;

li {
background: #865140;
display: inline-block;

30 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/stylesheets/navigation.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

margin: 0 2px;
padding: 4px 6px;
a, a:link, a:visited {
color: #fff;
text-decoration: none;

}
&.active {➤

➤ background: #fff;
➤ margin-bottom: -1px;
➤ a,
➤ a:link,
➤ a:visited {
➤ color: #555;
➤ font-weight: bold;

}➤

}➤

➤ }
}

So we’ve added a definition for an active CSS class, which is an inverse of the

inactive tabs and sits a pixel lower so it looks like it’s “connected” to the

content below it (just like a real tab). We nested this inside the li selector by

using the SCSS & parent selector (for more information on SCSS syntax, see

Chapter 3, Adding Cascading Style Sheets, on page 73).

Now we just need to add the class to the correct tab, which raises a question:

How does the navigation know what page the user is looking at and which

tab to activate?

Let’s take a step back and remember something important when it comes to

rendering views in Rails: what the user sees is the result of a single action’s

view being rendered. It stands to reason, then, that when we’re editing that

view, we know which tab should be active, right? Why not just have the

action’s view tell the navigation which tab to show as active?

In Section 1.4, Adding a Sidebar, on page 23, we discussed the ability of

templates to define content that is then used in the surrounding layout (using

content_for() and yield). It’s a handy trick that will serve us well with navigation,

too, since we’d like the main template for an action to be able to render the

navigation, but for the navigation to show up where it belongs.

To do this, we extract the navigation and put it into its own partial and wrap

it in a content_for(). We stick the partial in the views/layouts/ directory, since it’s

in direct support of the layout. Let’s add app/views/layouts/_main_nav.html.erb:

➤ <% content_for :main_navigation do %>
<nav id="main_nav" role="navigation">

report erratum • discuss

Adding Navigation • 31

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<%= link_to 'Home', root_path %>
<%= link_to 'Creations', creations_path %>
<%= link_to 'Campaigns', campaigns_path %>
<%= link_to 'Projects', projects_path %>
<%= link_to 'Designers', designers_path %>

<% end %>

</nav>

➤

Then we replace the hole we’ve just put in our app/views/layouts/_header.html.erb
with a yield that will insert the navigation in the <header> no matter where it’s

rendered.

<header id="page_header" role="banner">
<nav id="utility">
<p>

You are logged in as Sam Spade
<%= link_to "[Your Account]", "#" %> |
<%= link_to "[Logout]", "#" %>

</p>
</nav>
<%= link_to(

image_tag("logo.png",
alt: "Artflow",
id: "logo"),

root_url,
title: "Dashboard") %>

➤ <%= yield :main_navigation %>
</header>

At this point we can render the navigation from our action view, but we don’t

handle adding the active CSS class yet. We’ll fix that by having the navigation

partial look for a current_tab local variable and use a simple helper, nav_tab() to
build our tags for us, checking whether each should be activated.

artflow/layout/app/helpers/navigation_helper.rb

def nav_tab(title, url, options = {})
current_tab = options.delete(:current)
options[:class] = (current_tab == title) ? 'active' : 'inactive'
content_tag(:li, link_to(title, url), options)

end

Render the partial with the right current_tab, and the navigation will be added

to the <header> with the right tab activated:

artflow/layout/app/views/layouts/_main_nav.html.erb

<% content_for :main_navigation do %>
<nav id="main_nav" role="navigation">

<%= nav_tab 'Home', root_path, current: current_tab %>➤

32 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/layout/app/helpers/navigation_helper.rb
http://media.pragprog.com/titles/warv/code/artflow/layout/app/views/layouts/_main_nav.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

➤ <%= nav_tab 'Creations', creations_path, current: current_tab %>
➤ <%= nav_tab 'Campaigns', campaigns_path, current: current_tab %>

<%= nav_tab 'Projects', projects_path, current: current_tab %>➤

➤ <%= nav_tab 'Designers', designers_path, current: current_tab %>

</nav>
<% end %>

Since we’ll be rendering this partial from each action and since passing a

local is a bit verbose, we’ll give ourselves a handy little helper, currently_at() that

we can use to make things a bit easier to understand:

artflow/layout/app/helpers/navigation_helper.rb

def currently_at(tab)
render partial: 'layouts/main_nav', locals: {current_tab: tab}

end

Now adding context-aware main navigation is only a currently_at() away. Our

creations index, for instance, is easy to wire up:

artflow/layout/app/views/creations/index.html.erb

<h2>Creations</h2>

<%= currently_at 'Creations' %>➤

That single line adds our navigation exactly as it should be, and it’s always

that simple, no matter how complex the workflow or how deep the page.

Main navigation is just the beginning of the story, as it only provides us with

the starting point for each area of the application. How do we support users

digging deeper?

Secondary Navigation

Designers using ArtFlow need the ability to add a creation quickly from any-

where in the application. Looking at the design, we know we’re supposed to

have a functional, secondary set of navigation at the top of the sidebar, so

we’ll add a link there. First we need to set aside a place within our sidebar.

Let’s put the navigation at the top of our app/views/layouts/application.html.erb:

<section id="sidebar">
<nav id="functional_nav">

<% if current_user && current_user.designer? %>
<%= link_to 'Add Creation', new_creation_path %>

<% end %>
<%= yield :functional_nav %>

</nav>
<%= yield :sidebar %>

report erratum • discuss

Adding Navigation • 33

http://media.pragprog.com/titles/warv/code/artflow/layout/app/helpers/navigation_helper.rb
http://media.pragprog.com/titles/warv/code/artflow/layout/app/views/creations/index.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

Why Not Use controller_name and action_name?

The controller_name() and action_name() helpers provide an easy way for us to determine

which action the user is currently looking at, so why isn’t the navigation using these

to determine the active tab? Why aren’t we just keeping the navigation in the layout

and adding in some logic that figures out which page we’re on?

While it’s true that in small applications there may be a simple mapping between

tabs and controllers, things can get messy pretty quickly in larger applications—when

a controller’s actions are spread across different tabs, when the user workflow requires

more complex rules, or when the way code is broken up within the application falls

out of sync with the way users navigate through it.

To prevent our navigation degenerating into a snarl of conditionals to guess the current

page, we simply tell the navigation which tab is active. It’s explicit, it’s easy to find

and modify, and it never gets more complex than that.

Sure, we can add a heuristic for determining the current page, but is that the simplest

solution, or merely the “cleverest?” Sometimes the best way to fix a problem is to

avoid it entirely.

<section id="recent_activity">
<header><h1 class="ir" id="recent">Recent Activity</h1></header>
<%= render partial: 'activity_items/recent' %>

</section>
</section>

We’ve taken the extra step of adding a yield inside our navigation list so that

we can add additional items from actions that need them using content_for.

Speak of the devil—when we’re looking at a creation, we’d like to quickly

update its details, so we provide a link to the edit action:

artflow/layout/app/views/creations/show.html.erb

<% content_for :functional_nav do %>
<%= link_to 'Edit this creation', @creation %>

<% end %>

Using this pattern, we can easily add context-sensitive functional links that

make navigating laterally within a section of ArtFlow easy for our users (and

for us to develop, too).

Don’t Forget the Breadcrumbs

Just like Hansel and Gretel, our users run the risk of getting lost in our

application (except the witch eats us in this version of the folktale). While our

main navigation gives users immediate feedback on which section of the

34 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/layout/app/views/creations/show.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

application they’re viewing, it’s not enough. We need a simple technique to

lead them back out of the forest—and it’s no surprise the classic user-inter-

action solution is named “breadcrumbs.”

Our ArtFlow product manager is concerned about the feedback that he’s been

getting from customer service since our beta release. Our users want to be

able to navigate from deeper parts of the application back to shallower waters,

especially since many of the workflows we need to support deal with people

jumping into a creation, changing something, then moving on to new creations.

One of the popular features with our enterprise users is fine-grained control

of creation permissions used to support their more “robust” quality controls

and approval processes. The permissions options are sizable, so we’ve

extracted it from our standard creation form and put it on its own page with

additional instructions to make configuration less cluttered. The path from

the creation listing to the permissions form looks something like this:

Our users need to be able to jump back from any point in this path. Here’s

how we model the breadcrumbs for the permissions page:

artflow/layout/app/views/creations/permissions.html.erb

<nav id="breadcrumbs" itemtype="http://schema.org/WebPage"
itemprop="breadcrumb">

<%= link_to 'Creations', creations_path %>
<%= link_to truncate(@creation.name), @creation %>
<%= link_to 'Edit', edit_creations_path(@creation) %>
Permissions

</nav>

Nothing new here, except for the fact that we don’t make the final (current)

location a link. We’ve also added in some optional microformat data for

breadcrumbs, which is part of the WebPage microformat.24 This doesn’t look

like breadcrumbs yet, so let’s fix that with a sprinkling of CSS:

artflow/layout/app/assets/stylesheets/navigation.css.scss

nav#breadcrumbs {
background: #ddd;
li {

display: inline-block;
margin: 0 2px;
padding: 4px 6px;
a,

24. http://www.schema.org/WebPage

report erratum • discuss

Adding Navigation • 35

http://media.pragprog.com/titles/warv/code/artflow/layout/app/views/creations/permissions.html.erb
http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/stylesheets/navigation.css.scss
http://www.schema.org/WebPage
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

a:link,
a:visited {

padding-right: 12px;
color: #000;

}
&:after {

content: " » ";
}

&:last-child {
&:after {
content: "";

}
}

}
}

The secret here is using the :after pseudo-class selector with the content prop-

erty to add our “double greater than” (») characters between the items. We do

this by typing the real character, because the content property doesn’t allow

HTML entities (in this case, raquo) and because the plain numerical form, \00bb,
is a bit esoteric. The result looks like this:

Thankfully we don’t need to worry about IE6 and IE7 (which don’t support

:after) because ArtFlow is a product for internal use, and we’ve long since gone

through the trouble of convincing our IT director to upgrade the company to

more modern browsers.

If we did have to worry about older browsers, we’d be relegated to using a

plain <p> tag with links and character separators between them; we wouldn’t

be able to accomplish the same separation of style and content.

More Feedback

Navigation is important not only because it allows users to move around our

application but also because it provides them with important feedback on

where they are within the application. Now we’ll look at providing a different

kind of feedback: how we give them a well-earned pat on the back—or how

we tell users that something has gone horribly wrong.

1.6 Displaying Notifications

In the course of users interacting with ArtFlow, we will often need to tell them

whether or not an action was successful. In Rails we conventionally do this

36 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

by displaying values stored in the flash object. We add values to the flash object

from our controller actions and display them later in our views.

When a creation is successfully created in ArtFlow, for instance, we add a

notice to flash before we redirect:

artflow/layout/app/controllers/creations_controller.rb

flash[:notice] = "Creation added!"

Likewise, we add an alert when things don’t go as planned right before we re-

render the form in question:

flash.now[:alert] = "Could not save creation!"

When we add a value to flash, we can decide whether or not that value should

be kept until the next request. In the case of the notice above, persisting the

value across requests is exactly what we want; we’re redirecting, so if it wasn’t

persisted, the notice would just disappear. In the case of the alert, however,

we’re not redirecting—we’re simply re-rendering the form. If we persisted the

alert, it would live one request too long and cry wolf unnecessarily. The form

will display additional details about any errors that occurred. We’ll learn more

about this in Displaying Errors, on page 131.

Since we don’t want the alert to persist, we specify that it be added to flash.now
instead of just flash, since the default holds on to the value. Thankfully, our

views don’t have to care how the values are set or how long they’ll live—they

just need to display them, which we do by using the appropriately named

notice() and alert() helpers.

We set up the basic HTML to show these notifications in our layout file:

artflow/layout/app/views/layouts/application.html.erb

<% if notice %>
<p class="notification notice">

<%= notice %>
</p>

<% end %>

<% if alert %>
<p class="notification alert">

<%= alert %>
</p>

<% end %>

We’re using some conditionals here to make sure we don’t add empty <p>
tags to our pages when there’s nothing to report. We’ll give the tags a generic

style that will be shared between both alerts and notices and add them to a

new file, notifications.css.scss:

report erratum • discuss

Displaying Notifications • 37

http://media.pragprog.com/titles/warv/code/artflow/layout/app/controllers/creations_controller.rb
http://media.pragprog.com/titles/warv/code/artflow/layout/app/views/layouts/application.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/layout/app/assets/stylesheets/notifications.css.scss

.notification {
background-position: 10px 9px;
background-repeat: no-repeat;
color: #fff;
font-size: 14px;
font-weight: bold;
line-height: 1.6em;
margin: 0 auto 20px;
padding: 0.75em 0.75em 0.75em 45px;

}

That gives us the overall shape and size of the elements. We add a require
directive for our new style sheet to our application.css manifest (as described in

Chapter 3, Adding Cascading Style Sheets, on page 73):

artflow/layout/app/assets/stylesheets/application.css

/*
*= require_self
*= require normalize
*= require layout
*= require sidebar
*= require navigation
*= require notifications➤

*/

Now we get fancy:

artflow/layout/app/assets/stylesheets/notifications.css.scss

.notification {
background:{

position: 10px 9px;
repeat: no-repeat;

}
color: #fff;
font: {

size: 14px;
weight: bold;

}
line-height: 1.6em;
margin: 0 auto 20px;
padding: 0.75em 0.75em 0.75em 45px;

&.notice {
background: {

color: #006302;
image: image-url("notification_check.png");

}
}

&.alert {

38 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/stylesheets/notifications.css.scss
http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/stylesheets/application.css
http://media.pragprog.com/titles/warv/code/artflow/layout/app/assets/stylesheets/notifications.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

background: {
color: #920202;
image: image-url("notification_x.png");

}
}

}

The spacing on the left is created to give our icon a place to sit as a back-

ground image. Mixing this with color changes on each creates notifications

that look like this:

We can use any icons we’d like to match our overall application branding. In

these two examples, we’ve used icons from Drew Wilson’s Pictos icon set.25

By providing a consistent style to notifications, we improve the user experience

with a common expectation of how success and failure are communicated.

Now we just need to finish the footer element.

1.7 Validating Our Code

We’ve spent a lot of time writing our code in this chapter and we are now

going to make sure that it is valid HTML and CSS. Why do we bother to vali-

date HTML? As long as it renders, isn’t it okay? Not necessarily.

When we validate our HTML, we are looking to use it as our first line of

debugging. If it’s not valid HTML, we really can’t fault the browser for rendering

it in an odd way. We fed it something wrong and it did not like the taste.

While many browsers have been built to handle this malformed HTML (or

“tag soup,” as it’s sometimes called26), in some cases they were not. HTML5

acknowledges that there’s a lot of bad code out there, and it takes the stance

that browsers should try to interpret this code for a better user experience.

25. http://pictos.drewwilson.com/
26. http://en.wikipedia.org/wiki/Tag_soup

report erratum • discuss

Validating Our Code • 39

http://pictos.drewwilson.com/
http://en.wikipedia.org/wiki/Tag_soup
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

As nice as that may be, we are going to write well-formed, valid HTML5 for

our application.

While some would say that we should just know this stuff, the reality is that

HTML can be quite complex, and pages—when rendered from many different

partials and helpers—can sometimes get broken up. Requiring validation as

you work helps our teams write better view code and teaches developers new

and old how to write properly formatted markup.

We are also future-proofing our views in the sense that any future browser

will more than likely render old versions of properly formatted HTML correctly.

In the early days of the browser wars, we might have used a cool proprietary

(and not valid) tag or technique only to find it deprecated or removed from

the next version of the browser.

Let’s get our tools in place. First, we need to download the Total Validator

Basic application.27 This runs on Windows, Mac OS X, and Linux (requiring

the Java framework) and works in conjunction with a Firefox extension. Figure

7, Starting up a test in Total Validator, on page 41 shows an examploe of the

application window.

Not only will Total Validator take care of HTML validation, it will also look at

web accessibility and the WCAG, or Web Content Accessibility Guidelines

and its various levels of support. This may not seem like an important thing

to some of us, but we are professionals, and accessibility and valid code are

important parts of good code craftsmanship. Also, as professionals, we should

be providing the best quality experience to as many people as possible. You

never know who may have a visual impairment that affects the way that user

interacts with the Web.

A nice side benefit of this is that search engine robots, such as Google bot,

see many pages in a manner that is very similar to how a screen reader will

see a web page. By using these best practices, we get an easy double win of

helping our search engine results as well.

We can run a page at a public url (http://www.artflowme.com) or a local URL (such

as http://localhost:3000/ or http://dev.artflowme.com) through the tool. Since

we’re focused on our application right now, we’ll run our localhost:3000 URL.

Let’s turn our creations/index into this and see how we’ve fared through the

course of today’s build. We get a result back that looks something like Figure

27. http://www.totalvalidator.com/downloads/extensiontool.html

40 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://www.artflowme.com
http://www.totalvalidator.com/downloads/extensiontool.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 7—Starting up a test in Total Validator

8, Our validation results, on page 42, and we find that we only have one major

error:

[WCAG v2 3.1.1 (A)] Use the 'lang' or 'xml:lang' attribute to denote the
primary language of the document

Since we were checking for accessibility as well as HTML validation, we were

advised that we need to give a lang attribute to denote the primary language

of the document. Since we’re not looking at internationalization yet, we’ll add

lang="en" to our <html> tag and we’re good to go (for now).

At the end of the day, validating our code is something that we, as profession-

als, should do. It helps future-proof our sites and lets us write better, more

consistent markup. So, validate early and often, and the world will be a better

place.

report erratum • discuss

Validating Our Code • 41

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 8—Our validation results

1.8 Testing Internet Explorer

There are few things more frustrating while working in the view layer than

having a project ready to go except for one bug that seems unsolvable in an

older version of Internet Explorer. We all run into this situation at one point

or another in a development process, and while solving any given bug is

beyond the scope of this book, we can talk about the process used to ensure

that your code works well in as many browsers as you care to try to support.

Our process involves starting with clean, valid HTML markup and CSS and

then debugging older browsers based on that baseline. We just looked at this

in Section 1.7, Validating Our Code, on page 39, so it should be fresh in your

mind.

42 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

Why Support Older Browsers in the First Place?

Truthfully, we might not need to. The first thing we should do is to take a look at our

target market (as well as our existing traffic) and ask ourselves some questions. Do

we have people visiting us in IE6? How about newer versions of IE? How much support

is good enough?

If your traffic doesn’t justify the work, then perhaps you should consider dropping

support for older browsers. Google has recently dropped support for both IE6 and

IE7 for their Apps product. If Google can do it, maybe you can too.

Other sites continue to support IE6 and IE7. At LivingSocial, we have enough traffic

to make it worthwhile. If 1 percent of our traffic is using a browser, it’s generating

enough revenue that we need to make sure that the site is at least functional. We

don’t spend a lot of time on anything below IE7, but we do take a look from time to

time.

To aid in the task of browser testing, we keep a browser library of old versions

around in order to be able to replicate bugs when they come in. In most cases,

it’s as easy as duplicating the application bundle (on OS X) or exe and

renaming it. For Safari, we can even download old binaries from the MultiSa-

fari project.28

Internet Explorer is the one browser that causes a problem with keeping a

library of standalone browsers for testing, as it is so intertwined with the

Windows operating system. If you have a physical machine you can have one

version of IE, but how do you get beyond that? Here are a few options to

explore.

Multiple IEs with a Virtual Machine

It’s nearly impossible to run different versions of MSIE executables on the

same Microsoft system due to numerous conflicts with DLLs and other issues

related to integrating the browser into the Windows operating system. While

the newer versions of IE (9 and 10 previews, as of this writing) have emulation

modes built in for older versions, they don’t behave exactly as the originals

do, especially with regard to JavaScript. Since a lot of our work is now with

dynamic sites, we need to look at some other options.

28. http://michelf.com/projects/multi-safari/

report erratum • discuss

Testing Internet Explorer • 43

http://michelf.com/projects/multi-safari/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Our first option is to create a virtual partition (with Parallels, Virtual Box,

etc.) and use a program called IETester.29 This application includes versions

of Internet Explorer from 5.5 through 10 and will let you have multiple tabs

open at the same time.

This option requires that we have a valid Windows install DVD and a license

for our virtual machine host. This is the simplest setup, as we only need one

drive image and one application in order to run the software.

While IETester is pretty decent at rendering, the intrinsic difficulties that

come with attempting to sandbox browsers will sometimes raise their ugly

heads, and we’ll end up looking at a screen in IETester (or its cousin, Multiple

IE) that looks different than the actual browser. They also exhibit issues with

certain conditional comments and can crash on a regular basis (especially

the IE7 tabs).

The next step is to move into the high-sweat-equity, low-cost solution proposed

by Andrew Ordi.30 Microsoft offers limited disk images that have the operating

system and a browser. They cannot be validated as “genuine” in the Microsoft

system and have a time limitation on them, but they are provided by Microsoft

specifically for testing websites. These are available on Microsoft’s site for

those who want to roll their own.31

Andrew’s technique, which uses these images, has been codified for us in a

script by xdissent on github.32 It saves us a lot of the sweat equity pain of

setting all this up. The downside to this script is the sheer size of these images.

Each one is in multiple images and they total many gigabytes in size—twelve

gigabytes and then some, to be exact. If you have the space and patience,

this is as close as you can get to the real thing without setting up actual

machines for each browser.

One of the best software solutions is to use a combination of dedicated virtual

machines and a sandboxed browser tool called IE Collection.33 This collection

goes all the way back to IE1 (if you happen to have a copy of Windows NT

lying around on which to run it) and has the original JavaScript engines as

well as the IE developer toolbar and Firebug for IE.

29. http://www.my-debugbar.com/wiki/IETester/HomePage
30. http://blog.affirmix.com/2009/04/01/ie6-ie7-and-ie8-on-mac-os-x-step-by-step/
31. http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=11575
32. https://github.com/xdissent/ievms
33. http://utilu.com/IECollection/

44 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://www.my-debugbar.com/wiki/IETester/HomePage
http://blog.affirmix.com/2009/04/01/ie6-ie7-and-ie8-on-mac-os-x-step-by-step/
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=11575
https://github.com/xdissent/ievms
http://utilu.com/IECollection/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

IE Collection has a compatibility chart on its site, which shows us that IE7

doesn’t work right in Windows 7, so we’ll need at least two VMs to make this

work. We’ll use Windows 7 for most everything except IE7. For that we’ll use

Windows XP running Service Pack 3. If that’s not doable, we can run IE8 with

an IE7 compatibility mode that will give us a pretty close view of what the

IE7 user would see.

From here, we can get far more complex if the need arises by creating stan-

dalone environments for each version of IE that we need to target, as well as

even setting up permanent boxes or VMs that are always running and

accessible to our development network for people to test their sites on. These

solutions are generally better used for serious QA applications rather than

for development, so for now we’ll stick with IE Collection.

Using a Testing Service

There are many online software solutions to help us test our browser options

as well. These tools can help identify early problems but can be time-consum-

ing when iteratively beating against the code in an attempt to shake loose a

CSS bug in one browser.

Most of these are software-as-a-service offerings and therefore have a recurring

cost associated with them. The systems take a URL and create snapshots of

that page. It doesn’t give us interactive power (as a tool such as Firebug

would), but it lets us see a wide variety of browsers in relatively short order.

The first of these that we’ll examine is Adobe’s recent Browser Lab offering.

It delivers not only MSIE versions from 6 through 9 but also Chrome 11 and

13 on Windows, Firefox 4 and 5 (on Windows and OS X), and Safari 5 on

OS X as of this writing.

Browser lab has the benefit of a Firefox plugin and ease of integration into

our workflow with Firebug and other Firefox extensions and tools (e.g., Sele-

nium). The downside, as with any hosted service, is that we can’t use it unless

we’re connected to the Net.

Another option for a hosted service is Litmus, which we look at in the Email

Testing section of Chapter 8, Working with Email, on page 189. If the team is

already using this for email testing, we might be able to get what we need out

of the web testing portion of the application without an additional cost.

Targeting and Fixing the Issues

Now that we can look at our site in all the various versions of Internet

Explorer, we can start figuring out what problems we have and then target

report erratum • discuss

Testing Internet Explorer • 45

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

them. While there are many CSS hacks that allow us to target these browsers,

they are arcane and difficult to remember. A developer who doesn’t know

better might clear them out while refactoring and cause our site to break.

Likewise, having a separate CSS file for each version of Internet Explorer

causes readability problems. As developers, we’re constantly jumping back

and forth between files to see what we had to hack.

While we could attempt to force IE to bow to our will through threats, bribes,

and using the Force, the best solution is to expressly target the version of the

browser that is misbehaving with a CSS class.

nav#mainbar {
/* base styles for this element */

}

.ie7 nav#mainbar {
/* Styles that will only apply to IE7 */

}

This uses the power of CSS with the cascade to override our declarations and

fix the rendering problem in whatever version we target. But how do we get

the class detected?

We’re going to use a gem called ie_conditional_tag by our very own Bruce Williams.

This uses IE conditional statements to detect the version of Internet Explorer

and apply a class to the <html> tag.

We are going to add the gem to our gemfile, as follows:

gem 'ie_conditional_tag'

Then we run bundle install to get it pulled in. To implement it, we open up our

application layout file and change two lines, replacing the <html> and </html>
tags with a do block.

<!DOCTYPE html>
<%= ie_conditional_tag :html do %>
<head>

...
</body>

<% end %>

This generates a series of conditional statements:

<!DOCTYPE html>
<!--[if lt IE 7]><html class="ie ie6"><![endif]-->
<!--[if IE 7]><html class="ie ie7"><![endif]-->
<!--[if IE 8]><html class="ie ie8"><![endif]-->
<!--[if IE 9]><html class="ie ie9"><![endif]-->

46 • Chapter 1. Creating an Application Layout

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<!--[if gt IE 9]><html class="ie"><![endif]-->
<!--[if !IE]><html><![endif]-->

<head>
...

Now that we have this in place, we can start fixing our issues. Some of the

common problems are related to floats and the box model. We also might run

into issues with browser support on certain tags and elements. A great place

to research what is supported in which browser is quirksmode.org.

This approach is different than the HTML5 Boilerplate approach that we saw

earlier, since we target MSIE versions explicitly here. Internet Explorer 10 (in

preview version) removes conditional statement support,34 so we may have

to resort to JavaScript or some other technique to target that browser in the

future. IE 10 seems to be close to standards compliance, so we may be in the

clear.

Regardless of support, remember that many different browsers will be hitting

our applications, and every one of them is being used by a potential customer.

We should provide some experience or help if the browser can’t support our

application, and we should encourage people to upgrade to newer browsers.

But let’s be nice about it.

1.9 Wrapping Up

We’ve accomplished a lot this chapter, including building a strong foundation

for our application and picking up some important patterns and tools we’ll

use as we continue to build it out in the next few chapters.

In the next chapter, we will set a few ground rules to head off an all-too-

common problem: letting our views become an unreadable quagmire that no

one wants to touch. We’ll get acquainted with some habits to avoid and some

straightforward approaches to fixing and refactoring hard-to-read view code.

34. http://www.sitepoint.com/microsoft-drop-ie10-conditional-comments/

report erratum • discuss

Wrapping Up • 47

http://quirksmode.org
http://www.sitepoint.com/microsoft-drop-ie10-conditional-comments/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CHAPTER 2

Improving Readability

Our templates often become unreadable and unmaintainable messes that

make applications that we’d otherwise describe as simple and elegant turn

into complex, unapproachable projects that are resistant to change.

We can reduce this complexity by simplifying our display logic, carefully

structuring our templates, and using some common sense Rails tactics to

make the source of our templates as beautiful as the interface it presents to

our users and as elegant and expressive as the controller and model parts of

our application. In this chapter we’ll learn how do just that and improve the

readability and maintainability of our templates by introducing some helpful

tips and techniques.

Let’s start with the basics, such as how we lay out the syntax of our templates

and what we can do to standardize and improve their flow. Later we’ll look

at how we can use helpers and partials to restructure and condense our

templates and catch up on some standards we should be baking into our

markup from the beginning.

2.1 Choosing a Templating Language

It’s tempting to lay the blame for ugly, unreadable templates entirely at ERB’s

feet. It’s the default. There’s no doubt that the format is more verbose than

some other alternatives, especially the popular HAML language, which trades

end tags for whitespace sensitivity and gains a measure of succinctness in

the bargain.1

In our experience, changing template languages has only a minor effect on

readability when compared to other factors. While markup structure may be

1. http://haml-lang.com/

If you can, help others; if you cannot do that, at

least do not harm them.

 ➤ The Dalai Lama

report erratum • discuss

http://haml-lang.com/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Some Text Editors to Try

Text editor choice can be as deep as religion to some developers. Regardless of the

tool, everyone needs to work with the same agreed-upon conventions. At LivingSocial,

many of our developers use TextMate with the Whitespace bundle installed.a This

strips out trailing whitespace and converts tabs to spaces on every save. The reasoning

behind that has been explained well at http://blogobaggins.com/2009/03/31/waging-war-on-
whitespace.html

Here are some other editors to try:

• Emacs: A highly extensible, customizable editor, with Lisp at its core

(http://www.gnu.org/s/emacs). Many variants are available, including one for OS X,b

and Ruby support is available. Much of this book was written with it, as it’s

Bruce’s favorite.

• Vim: A highly configurable text editor built to enable efficient text editing

(http://www.vim.org/). Ruby is supported, and it is available in many system-specific

versions, including OS X.c

• Sublime Text: Another editor that has some nice features. We recommend ver-

sion 2, with updated Ruby support (http://www.sublimetext.com/2).

• BBEdit: Probably one of the most powerful and long-running editors for the Mac.

John used to use it extensively before switching to TextMate. Available at the

App Store or http://www.barebones.com/products/bbedit/.

It doesn’t matter what editor you use, as long as it’s sufficiently configurable and you

know how to use it. As The Pragmatic Programmer: From Journeyman to Master [HT00],

by Andy Hunt and Dave Thomas, suggests, “the editor should be an extension of your

hand.” Pick the one that catches your fancy and learn it inside and out.

a. https://github.com/vigetlabs/whitespace-tmbundle
b. http://emacsformacosx.com/
c. http://code.google.com/p/macvim/

shorter to describe in HAML, a readable ERB template and a readable HAML

template have one thing in common: a developer who cared enough to keep

the markup clean and simple. Without that basic element, it doesn’t matter

what we’re using. No templating language is a silver bullet for bad practices.

We use the templating language that works for our team, and use it where it

makes sense. After all, it doesn’t need to be an all-or-none decision; one

approach is to use HAML for complex layout files (full of stock markup) and

ERB elsewhere.

For ArtFlow, we’re using ERB from top to bottom. Now let’s put down some

ground rules for our team, and quick!

50 • Chapter 2. Improving Readability

report erratum • discuss

http://blogobaggins.com/2009/03/31/waging-war-on-whitespace.html
http://blogobaggins.com/2009/03/31/waging-war-on-whitespace.html
http://www.gnu.org/s/emacs
http://www.vim.org/
http://www.sublimetext.com/2
http://www.barebones.com/products/bbedit/
https://github.com/vigetlabs/whitespace-tmbundle
http://emacsformacosx.com/
http://code.google.com/p/macvim/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

2.2 Standardizing Coding Practices

It’s important that teams follow consistent, sane rules when it comes to

writing templates and style sheets, from indentation standards to the ordering

of CSS properties.

Say we’ve been away on vacation for the past week, soaking up the sun

somewhere suitably tropical and devoid of Internet access. We’ve come back

and found a mess. Our team has been working furiously on new features,

and the templates look like a bowl of half-cooked spaghetti.

What does half-cooked spaghetti look like in code? Avoiding ASCII art, it’s

really what happens when we’ve let our code go during development. Line

length is all over the place, indents are haphazard, tags are not balanced,

and we don’t know what we’re closing when we have a closing </div>. It’s hard

to read, hard to maintain, and hard to extend. Obviously we need to do

something.

Indenting Without Hard Tabs

One of the first things we discover is that some members of our team are

using hard tabs (“hard” refers to using tab characters, as opposed to ”soft”

tabs, which are spaces that emulate tabs). This causes portability problems

across editors and other tools and is inconsistent with the way Ruby develop-

ers write code.

Tabs vs. spaces is somewhat of a holy war in programming circles. We at

ArtFlow Industries Inc. use spaces because we have many programmers,

some of whom prefer tab stops of differing sizes. This becomes a major issue

when we agree on, say, a four-space indent per line. Each individual has tab

stops set differently. For example, Frank uses two-space tabs. So each time

he indents a line with tabs, he inserts two tab characters to achieve the

required four-space indent. Sam likes four-space tab stops, so he only tabs

once. When Frank opens Sam’s recent commits, the indentation is all wrong

in his text editor because it renders tabs as two spaces. Likewise, when Sam

opens Frank’s commits, things are overindented, like in Figure 9, Indenting

going horribly wrong, on page 52.

This gets really bad when Sam decides to reflow his code to make it look

better on his editor. He then commits this to our source code repository, and

when we try to discover who has made specific changes to the file, it looks as

if Sam’s modified the entire file (because, well, he has), as we see in Figure

10, Minor whitespace changes can look like major modifications, on page 53.

report erratum • discuss

Standardizing Coding Practices • 51

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 9—Indenting going horribly wrong

This causes a big problem; let’s fix it. We replace all tabs with standard two-

space indentation, and we make sure our team members are using editors

that transparently support soft tabbing.

Indenting for Logic and Markup

For our ArtFlow app/views/clients/index.html.erb template we have a listing of clients

that breaks an important rule on page 233:

<% @clients.each do |client| %>
<%= link_to client.name, client %>
<% end %>

The contents of any pair of tags—either HTML opening and closing tags or

the start and end tags for an ERB block—should be indented a level to indicate

hierarchy. Things inside a pair of tags are effectively children of the parent

tag. The purpose of indentation is to visually indicate hierarchy and nesting,

no matter which types of tags are involved.

Here it would be helpful to immediately see that our ERB loop is inside the

 tag merely by scanning the template. At first glance here, it appears to

be a sibling. Let’s change the indenting to be cleaned up the way we want it.

artflow/readability/app/views/clients/index.html.erb

<% @clients.each do |client| %>

<%= link_to client.name, client %>
<% end %>

52 • Chapter 2. Improving Readability

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/readability/app/views/clients/index.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 10—Minor whitespace changes can look like major modifications

A good way to think about this is to imagine that the ERB tags are inserted

into the hierarchy between the and its child tags. Following this

simple rule will help make the logical and physical structure of templates

more obvious.

Don’t worry about how the generated HTML looks. Browsers are the ones that

do the reading (or during debugging, Firebug and the Chrome developer tools

are the ones that clean things up2).

Policing Line Length

As developers, we’ve all had the experience where we see code go off the right

edge of the editor screen.

2. http://getfirebug.com/ and http://code.google.com/chrome/devtools/, respectively.

report erratum • discuss

Standardizing Coding Practices • 53

http://getfirebug.com/
http://code.google.com/chrome/devtools/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

But My Whole Team Has Massive Monitors.

Why Can’t We Use Line Lengths More Than 80

Characters Wide?

Even with extra-large monitors in many development environments, the reality is

that we still hit code from a variety of devices and with a variety of preferences. Many

users bump up the font size so that while it may be 1600 pixels wide, it’s still only

80–100 characters wide.

Using 78–80 characters is a standard for editing that will work on almost any system,

because that is the default width of terminals, including older VAX systems. Your

team can decide to go longer, but our rule for this team will be 80.

For more guidance on line length (and many other concepts in this chapter), we rec-

ommend Clean Code: A Handbook of Agile Software Craftsmanship [Mar08], by Robert

C. Martin.

Anything over eighty characters will potentially float off in the ether if someone

views it from a terminal window, and scrolling horizontally (either physically

in the window or with our eyes on a high resolution screen) back and forth

makes for slow reading. It’s easier to read a narrow block of text than one

that stretches across the width of the screen. If we break it into multiple lines,

we can see everything at once much easier.

Soft wrapping might sound like a solution, but it’s a Band-Aid that makes

line editing more difficult and doesn’t work well when our developers use

command-line utilities.

Some text editors, such as TextMate, have a column counter and a wrap

column setting so you automatically know when you hit your determined

character limit. They also have macros and other tools to help with reformat-

ting large blocks of text.

Lining Up Tags and Attributes

When tag contents span multiple lines, take care to line up the opening and

closing tags horizontally and indent the contents one level. Working on the

marketing copy for ArtFlow, you can see our <p> and tags are lined up

correctly and their contents set a level deeper.

Let’s look at a snippet from ArtFlow’s homepage as an example:

54 • Chapter 2. Improving Readability

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

A New Line for Every Element?

If there’s an inline markup tag, such as , <i>, , , <abbr>, <dfn>, and

similar tags, we do not always kick them to a new line. It’s about improving readabil-

ity. If putting one word on a new line doesn’t improve readability, don’t do it.

artflow/readability/app/views/pages/home.v1.html.erb

<p>
Have a file, store a file.
Then change it, tag it, and share it or send it.

This isn't your father's asset management application.

</p>

When we stack lots of classes or have long ID and class names, we can end

up with a long line just for one HTML element. We fix this with a newline

between attributes (and some care to line them up):

<p id="product-description"
class="important blurb rounded">

Have a file, store a file.
Then change it, tag it, and share it or send it.

This isn't your father's asset management application.

</p>

We can add ERB comments to our template for TODOs, placemarkers, or

short descriptions for complex markup. They look like normal ERB tags and

start with a # character, just like Ruby comments do:

<%# TODO: Add list of articles. -BW 2011-11-01 %>

While adding ERB comments can clarify and illuminate, at some point they

can also make a page messy and more cluttered, and just like code comments,

it’s easy to let them get out-of-date. Less is more!

Now that we have some basic formatting rules to serve as our foundation,

let’s dig into the way we’re actually building up our markup to see if we can

simplify things and make our template more readable.

report erratum • discuss

Standardizing Coding Practices • 55

http://media.pragprog.com/titles/warv/code/artflow/readability/app/views/pages/home.v1.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

Why ERB Comments Instead of HTML Comments?

HTML comments are present in your generated markup and visible to users of your

application (if they’re curious and click View Source). ERB comments get stripped

out long before your page ever gets to a browser. This doesn’t matter so much for

smaller apps, but a few kilobytes here and there can start to add up over millions of

users (just ask Twitter).

Use ERB comments unless you really want to whisper something to the geekiest of

your users—or as a temporary debugging technique.

2.3 Simplifying Complex Output

While the Rails view is the place where model attributes get echoed for the

users to see, we get into a bit of a tight spot when we are asked to cobble

together bits from various attributes and display them in a specific way.

Clean Up ArtFlow Filenames

Throughout ArtFlow, we’ve been referring to creations with a combination of

their given names, revision numbers, and file formats (e.g., FooCoWireframe (Draft,
r0004, PDF). This makes for some pretty ugly templates, like our listing of cre-

ation records in app/views/creations/index.html.erb:

<% @creations.each do |creation| %>

<%= creation.name %>
(<%= creation.stage %>,
r<%= "%04d" % creation.revision %>,
<%= creation.format.upcase %>)

<% end %>

That’s a lot of ERB concat tags, isn’t it? Open, close, open, close… We can

use a couple of techniques to remove low-level string formatting and interpo-

lation from this view to support a more fluid and less distracting reading

experience. Anything that complicates the flow and affects readability is your

enemy.

56 • Chapter 2. Improving Readability

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Helpers vs. Model Methods

There’s an argument to be made for adding methods that return display-related

information about a model directly to the model. It’s tempting to do (after all, this is

model information), but we need to keep in mind where we plan to use the information

and what we want to display.

The model layer doesn’t support link_to() or other routing-related methods, and since

it doesn’t have access to the request or session, customizing output for the user is

also out of the question. Add to this that littering a clean data model with string

manipulations like capitalization, snippets of HTML, and other modifications that

support requirements only needed from the view just doesn’t make sense, and a

helper is usually the right option—except in cases where what we need to display is

constrained and not request-specific (e.g., for interactive use in the Rails console or

for output by Rake tasks).

Sometimes we want to go further and use presenters. We’ll learn more about them

in Chapter 6, Using Presenters, on page 143.

Using Helpers

It looks like we’ve decided to pull this out of our template just in time—we’ve

been asked to add links to the file, and our product manager hinted that we’ll

probably need to add links to individual revisions sometime in the near future.

Let’s extract the file information from our list and create a new helper method

in app/helpers/creations_helper.rb:

module CreationsHelper
The standard reference line for a creation
Includes name, stage, revision, and format
def creation_reference(creation)

padded_revision = 'r%04d' % creation.revision
raw("#{link_to(creation.name, creation)} (#{creation.stage},

#{padded_revision}, #{creation.format.upcase})")
end

end

It’s so fresh and so clean. That looks a lot better without all of those ERB

tags, doesn’t it? The raw() method we’re using makes sure Rails doesn’t escape

the tags we’re generating inside the string; we know the contents don’t include

any cross-site scripting (XSS) opportunities.3 Now all we need to do is fill in

the hole we left in our app/views/creations/index.html.erb template by an invocation

of our new helper:

3. http://guides.rubyonrails.org/security.html#cross-site-scripting-xss

report erratum • discuss

Simplifying Complex Output • 57

http://guides.rubyonrails.org/security.html#cross-site-scripting-xss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<% @creations.each do |creation| %>

<%= creation_reference(creation) %>
<% end %>

That is much more readable and straightforward.

And Just a Little Accessibility

link_to() is just one of the many helpers that come with Rails, and it generates

an anchor tag with an href attribute. Anchors can have various attributes,

including a title attribute. The title attribute could be spoken by a user agent

or shown as a tool tip in your browser. We can add this to our app/helpers/cre-
ations_helper.rb helper by passing a :title symbol to link_to(). It creates a title attribute

in the rendered HTML.4

module CreationsHelper
The standard reference line for a creation
Includes name, stage, revision, and format
def creation_reference(creation)

padded_revision = 'r%04d' % creation.revision
link = link_to(creation.name,

creation,
title: "More info on #{creation.name}")

raw("#{link} (#{creation.stage}, #{padded_revision},
#{creation.format.upcase})")

end
end

Most browsers render this as the nice yellow box, the tooltip, that shows up

when you hover over a link for a certain amount of time. This isn’t difficult,

taking just a few moments to implement, and our users will thank us later.

This can help to provide more contextual information for users; sometimes

JavaScript popups are too much and the link by itself isn’t enough.

The next thing to add comes directly out of feedback from our clients, who

think it would be great if they could see a thumbnail of the creation (if one

exists). The suggestion makes sense; a thumbnail would help clients more

easily browse and navigate to the creation they want to look at. Let’s add it.

For the sake of sanity, we’ll just say that there’s a creation.default_image that

exists and is created by the file upload and processing method of your choice.

So we can just use an image_tag() helper to put this in, right? Let’s use it from

app/views/creations/_creation.html.erb:

4. http://www.w3.org/TR/html4/struct/links.html#h-12.1.4

58 • Chapter 2. Improving Readability

report erratum • discuss

http://www.w3.org/TR/html4/struct/links.html#h-12.1.4
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<%= image_tag(@creation.default_image) %>

But wait! Frank got this working, and then, while testing it with our client,

we hit the case of a new user without an image and, well, that wasn’t a pretty

exception error. We need to provide some logic to provide a default “no

thumbnail” image. Putting this straight into the app/views/creations/_creation.html.erb
template presents an ugly if/else construct for us to read over every time we

open this view.

<% if @creation.default_image? %>
<%= image_tag(@creation.default_image) %>

<% else %>
<%= image_tag("missing_creation.png")%>

<% end %>

We’ve got that fixed now, but it’s a lot of conditional code in the view. Using

a helper to handle this immediately makes sense. So let’s extract that code

and put it in app/helpers/creations_helper.rb:

def creation_thumbnail(creation)
if creation.default_image?

image_tag(creation.default_image)
else

image_tag("missing_creation.png")
end

end

Now we can get to that by calling creation_thumbnail, and all is well with the

world. Not so fast. We have a user with visual impairment that uses a screen

reader sometimes. There’s nothing worse than listening to a screen reader

say “image, image, image,” and knowing that those are critical to interaction.

We’ll add an :alt attribute to our image_tag helper in the same way we added

:title to our link_to(). This is actually required for Web Accessibility Initiative

(WAI) Level 1 and Section 508 compliance.5

artflow/readability/app/helpers/creations_helper.rb

def creation_thumbnail(creation)
if creation.default_image?

image_tag(creation.default_image, alt: creation.name)
else

image_tag("missing_creation.png",
alt: "No image for this creation")

end
end

5. http://www.section508.gov

report erratum • discuss

Simplifying Complex Output • 59

http://media.pragprog.com/titles/warv/code/artflow/readability/app/helpers/creations_helper.rb
http://www.section508.gov
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Web Accessibility Initiative and Section 508

Web accessibility is optional for many of us working on web apps, but it is required

for any federal government site due to the Section 508 amendment to the Rehabilita-

tion Act of 1973. This bill requires that federal programs (including those on the Web)

do not discriminate or limit access to individuals with disabilities.

For those of us who need to develop in this space, this means that we need to follow

Section 508 guidelines,a which are similar to the W3C Web Accessibility Initiative.b

While private sector apps are not required by law to be accessible, it helps us write

better code and serve a broader segment of the population.

With the advent of AI tools like Apple’s Siri and others, there will be more screen

reading employed outside of the traditional visual-impaired user space, and we need

to support all of our users. Also, search engine robots are effectively the equivalent

of a blind user. It’s not only good business and good stewardship, it’s good SEO, too.

a. http://section508.gov
b. http://www.w3.org/WAI/

Time and time again we’ve seen that users click images more than links, so

in the spirit of defensive design we will make the image a link as well.6

We modify creation_reference in app/helpers/creations_helper.rb, adding our thumbnail:

def creation_reference(creation)
padded_revision = 'r%04d' % creation.revision
link = link_to(creation_thumbnail(creation),

creation,
title: "More info on #{creation.name}")

raw("#{link} (#{creation.stage},
#{padded_revision}, #{creation.format.upcase})")

end

That’s some serious cleanup right there. So far we’ve improved our code’s

readability with whitespace and line length management, moved a bunch of

conditional code into helpers, and added much-needed accessibility. Next we

take a look at some of Rails’s built-in helpers for number formatting.

Formatting Numbers

Management approved this ArtFlow so they could have better reporting on

media campaigns in which the creations were used. After all, once they know

6. Defensive design is a term coined by 37signals before it became the inventor of Ruby

on Rails. As a usability shop, it put forth that developers should plan for users to break

applications and websites in every way possible and should ensure that the web-

site/application responds appropriately in turn.

60 • Chapter 2. Improving Readability

report erratum • discuss

http://section508.gov
http://www.w3.org/WAI/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

It’s About More Than Avoiding Repetition

A common argument for leaving poor, complex view code in place goes like this:

It only happens in one place!

You’ll quickly discover something about views: complexity here is more expensive

than in pure Ruby code. You’re not running against Don’t Repeat Yourself principles,a

but this is poor consolation when you (and others) still can’t read and reason about

your code. Here’s why once is too much:

• More people have to read it, and many of those people may not have the program-

ming chops to understand the backflips you’re doing. This is especially true in

mixed teams of developers, designers, and occasionally even copy editors.

• Complex code should be tested. It’s easier to test helpers in isolation than in

templates.

• Complexity should be documented. While ERB comment tags are useful for

marking TODOs, method comments that can be processed by RDoc and other

real documentation generators can be useful, especially in large, professional

projects that may have team turnover and need long-term continuity.

a. http://pragprog.com/the-pragmatic-programmer

the best performing creations, they can then use them over and over and over

again—until our design staff starts burning effigies of them on the balcony.

While there are whole books dedicated to reporting and we have lots of other

things to fix right now, we’re going to punt and just touch on the display of

the numbers. We know that formatting and presenting numbers in a mean-

ingful way will be critical in our reporting features.

The first “Oh, no!” we run across is on the campaign page. An advertising

campaign has_many :creations, runs for a certain amount of time, and has a cost

associated with it. In our app/views/campaigns/show.html.erb template we find this:

<h1><%= @campaign.name %></h1>
<p>
Costing $<%= @campaign.cost %>
and running from <%= @campaign.start_date %>
to <%= @campaign.end_date %>

</p>

While this isn’t horrible, we are expanding our e-commerce operation within

the year. Before our next trip to the Caribbean, we’ll be dealing in pounds

and euros. How will we handle the differences in formatting, such as when

report erratum • discuss

Simplifying Complex Output • 61

http://pragprog.com/the-pragmatic-programmer
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

to use periods, commas, and the currency symbol? The good news is that

there’s an existing Rails helper already built for us, number_to_currency():

artflow/readability/app/views/campaigns/show.html.erb

<h1><%= @campaign.name %></h1>
<p>
Costing <%= number_to_currency(@campaign.cost) %>
and running from <%= @campaign.start_date %>
to <%= @campaign.end_date %>

</p>

Once we’ve reached global domination, we can look at some of the other

attributes available in this helper, including :locale and :unit.7

We also see that back on our awesome creation index of joy and wonder that

we have a display of the physical size of the file—the only problem is that it

is in bytes, and while that worked in the early computing days, our basic files

are typically in megabytes.

What solutions exist here? Well, part of the NumberHelper methods is some-

thing called number_to_human_size(), which handles file size changes.8 We use it

when we add the file size to our creation_reference() helper:

artflow/readability/app/helpers/creations_helper.rb

def creation_reference(creation)
padded_revision = 'r%04d' % creation.revision
link = link_to(creation_thumbnail(creation),

creation,
title: "More info on #{creation.name}")

➤ size = number_to_human_size(creation.filesize)
raw("#{link} (#{size}, #{creation.stage},

#{padded_revision}, #{creation.format.upcase})")
end

This will display a size of 45444 bytes as 44.3 KB or a size of 97398597 as 92.8
MB. That whole base-1024 system of measurement really messes with the

multiplier if you’re just truncating it, especially as sizes get larger.

There are so many ways to clean up numbers, and our attention to detail

here will have a big payoff for ArtFlow users. Who wants to divide by 1024?

Now that we have some tools for formatting model attributes, we’ll dig into

how to deal with the challenges that come in the view with traversing model

records and rendering templates for those records.

7. http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html#method-i-number_to_currency
8. http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html

62 • Chapter 2. Improving Readability

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/readability/app/views/campaigns/show.html.erb
http://media.pragprog.com/titles/warv/code/artflow/readability/app/helpers/creations_helper.rb
http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html#method-i-number_to_currency
http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

2.4 Working with Models

In Chapter 1, Creating an Application Layout, on page 1, we looked at how

models in ArtFlow are interrelated (see Figure 1, ArtFlow models, on page 2).

Creations are shared across users through groups and various roles and

rights. It’s a tangle of associated data that we constantly need to mine for

information to show in our views.

Simplifying Access to Associations

In ArtFlow, we use ActiveRecord for our models, and we frequently need to

traverse the associations from record to record to get at the data. Here in

app/views/creations/show.html.erb, we show the client name for a creation we’re

viewing:

<dl>
<dt>Client</dt>
<dd><%= @creation.project.client.name %></dd>

</dl>

It’s neat that we can get to the information, but this makes for some pretty

verbose view code, and it can be brittle—as tightly coupled with the model as

it is, changes there may cause exceptions to occur anywhere data is accessed

in templates.

Here’s one approach we could use to protect our templates from changes:

setting an instance variable in the controller action. This is easier to track

down and modify in the event of changes to our modeling.

artflow/readability/app/controllers/creations_controller.rb

@client = @creation.project.client

This works great—it goes a long way toward decoupling the view from the

model, and it’s easier to test. However, there is a complication. It adds a

requirement that templates that need the client name always have a @client
instance variable defined, which is problematic if the templates are being

rendered from other actions and controllers. There’s also the possibility that

in trying to provide all the instance variables needed for a view we’ll end up

querying the database unnecessarily; due to some condition in the view, the

data may not be needed!

Another option is going to the class file; we could add a client_name() method

to our Creation model (avoiding Law of Demeter violations9), but you can

9. http://c2.com/cgi/wiki?LawOfDemeter

report erratum • discuss

Working with Models • 63

http://media.pragprog.com/titles/warv/code/artflow/readability/app/controllers/creations_controller.rb
http://c2.com/cgi/wiki?LawOfDemeter
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

imagine how crowded and muddled our models could become if we did that

often enough, even if we were just delegating. We’d be polluting our models

with “shortcut” methods that are only needed from the view. For now, we’ll

opt for a lighter, more flexible approach using a helper to at least decouple

our templates somewhat:

artflow/readability/app/helpers/creations_helper.rb

def creation_client_name(creation = @creation)
creation.project.client.name

end

This makes our template code very simple, hiding away excessive method

chaining (which we may reduce later by adding methods to our models):

artflow/readability/app/views/creations/show.html.erb

<dl>
<dt>Client</dt>
<dd><%= creation_client_name %></dd>

</dl>

Since we’ve also allowed a creation to be passed as an argument to the helper

(but haven’t required it, instead defaulting to the @creation instance variable

if one isn’t provided), we can also use the helper from views that show more

than one creation.

We’ll use the helper as we build our CreationsController index action template to

show multiple creations.

Displaying Multiple Items

When you’re showing a list of things, it’s easy to let it get ugly; there’s a lot

going on, from the actual mechanics of the iteration itself to stateful, UX-

heavy issues like pagination. Sometimes we just need to go back and simplify,

removing code that doesn’t really matter so that the code that does is more

obvious to the reader.

We’ve been building the markup we use to display a creation in the creation

listing we started in Using Helpers, on page 57. It’s a perfectly serviceable, if

verbose and procedural, approach. We’ll just use the creation_client_name() helper

from earlier to show the client for each creation in app/views/creations/index.html.erb:

<ul id='creations'>
<% @creations.each do |creation| %>

<li class='creation'>
<p>
<%= creation_reference(creation) %>
<%= creation_client_name(creation) %>

</p>

64 • Chapter 2. Improving Readability

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/readability/app/helpers/creations_helper.rb
http://media.pragprog.com/titles/warv/code/artflow/readability/app/views/creations/show.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<% end %>

While this is fine and dandy, we end up with a lot of code in the middle of

our view that deals with what just one creation looks like and has nothing to

do with the listing itself. That doesn’t seem right. One approach we might

take would render the creation with a partial, hiding that logic in another file,

_creation.html.erb. Here’s what our index.html.erb looks like now:

<ul id='creations'>
<% @creations.each do |creation| %>

<%= render creation %>
<% end %>

Here we’re using a partial to render each creation. Rails automatically deter-

mines that we want to render the creation partial based on the class of model

we’re rendering. We go a level further and let render() handle the iteration for

us, merely passing it an array of objects to render:

artflow/readability/app/views/creations/index.html.erb

<ul id='creations'>
<%= render @creations %>

This cuts it down to one line in our view; the boilerplate iteration code is

removed and only the important part—the fact we’re rendering our cre-

ations—remains. That one line can move an awesome amount of logical and

structural complexity to the individual item partial, where it belongs, and

doesn’t even have a procedural loop taking up space in the listing. It’s a nice

benefit to conventional partial naming, which is one of our rules, on page 233.

Now with a single line, we can render the entire listing! Next we’ll deal with

conditional content; mixing logic and presentation sure can make a mess—let’s

see what we can do to clean it up.

2.5 Displaying Conditional Content

One of the most ugly but common patterns you find in templates is large

if/elsif/else clauses used to display alternate sets of content based on different

conditions. This is especially common when handling different visibility rules

based on roles and rights.

In ArtFlow we have a few roles and rights that we need to pay attention to

when we’re displaying ways that a user can interact with a creation. Currently

report erratum • discuss

Displaying Conditional Content • 65

http://media.pragprog.com/titles/warv/code/artflow/readability/app/views/creations/index.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

What If My Partials Aren’t Named Conventionally?

If you’re sitting on top of record-related partials that aren’t named based on the

model with which they’re associated, you have a couple of options:

1. Rename them.

No, we’re not joking. You should be working with tools like source control that

make changes less painful and should have fostered a relationship with your

team that lets you do things like rename files (and methods, classes, etc.) when

it makes sense to do so. Naming things correctly matters, both philosophically

and, in this case, because keeping to Rails conventions makes your code shorter

and more maintainable. Shortcuts, especially officially supported shortcuts, are

a good thing.

2. In cases where this isn’t possible—or if you have several different “flavors” of

partials for a model you’ll want to use the :partial and :collection options to render().a

a. For more about available render() options, see the guide at http://guides.rubyonrails.org/
layouts_and_rendering.html#using-render.

in our _creation.html.erb partial (which we render from the listing on the index
template), we use a standard series of conditions to render the appropriate

management controls for a creation:

<% if current_user.manages?(creation) %>
<ul class='controls'>

<% if current_user.admin? %>
<!-- stuff for admins -->

<% elsif current_user.editor? %>
<!-- stuff for editors -->

<% elsif current_user.authored?(creation) %>
<!-- stuff for the author -->

<% elsif current_user.shares?(creation)%>
<!-- stuff for everyone else -->

<% end %>

<% end %>

Wow, that’s a mess. If our controls are complex, it would be very easy to

glance over this partial and lose track of who sees what. This is a partial that’s

trying to be everything to everybody.

Replacing Clauses with Partials

Let’s rip the logic out of the view and put it into our CreationsHelper, using sep-

arate, focused partials to display the alternate content.

66 • Chapter 2. Improving Readability

report erratum • discuss

http://guides.rubyonrails.org/layouts_and_rendering.html#using-render
http://guides.rubyonrails.org/layouts_and_rendering.html#using-render
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/readability/app/helpers/creations_helper.rb

def controls_for_creation(creation)
if current_user.manages?(creation)

partial = controls_partial_for_creation(creation)
contents = render(partial: partial,

locals: {creation: creation})
content_tag(:ul, contents, class: 'controls')

end
end
def controls_partial_for_creation(creation)

if current_user.admin?
'creations/controls/admin'

elsif current_user.editor?
'creations/controls/editor'

elsif current_user.authored?(creation)
'creations/controls/author'

elsif current_user.shares?(creation)
'creations/controls/collaborator'

end
end

Let’s create a subdirectory, controls, under the creations view directory to keep

our partials nicely grouped; this has a side benefit of letting us see what roles

and rights we’re supporting merely by looking at the file listing.

With this in place, we can clean up our app/views/creations/_creation.html.erb partial

by removing a lot of cruft that isn’t necessary anymore.

<%= controls_for_creation(creation) %>

Look at that, a simple partial; the tangle of ERB tags has been extracted to

leave a single, descriptive line.

By removing the logic and alternate sets of content from our creations/creation
partial, we make reading easier and future modifications less complicated

and error-prone. Peace of mind is knowing an enterprising coworker won’t

accidentally show admin controls to an author because that designer acciden-

tally deleted an elsif while updating a <button> CSS class.

Naming Your Conditions

Throughout ArtFlow we need to keep a user’s permissions and personal pref-

erences in mind when showing creations. A good example is how we handle

creation previews for images. Here’s some old code we’ve just dug up in

app/views/creations/_preview.html.erb. It displays a thumbnail after verifying that a

thumbnail exists, it’s viewable by the current user, and the current user

wants an expanded view:

report erratum • discuss

Displaying Conditional Content • 67

http://media.pragprog.com/titles/warv/code/artflow/readability/app/helpers/creations_helper.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<% if creation.thumbnail? && current_user.can_view?(creation) %>
<% if session[:view] == 'expanded' %>

<%= image_tag creation.file.url(:thumbnail), class: 'thumbnail' %>
<% end %>

<% end %>

This is a bit gnarly, isn’t it? It’s a set of Russian nesting doll–style if statements

wrapping the lone line of actual markup to be shown. We collapse these down

to a meaningfully named helper, show_preview?(), that verifies all the conditions

with an all?() trick:

artflow/readability/app/helpers/creations_helper.rb

def show_preview?(creation)
creation.thumbnail? &&

current_user.can_view?(creation) &&
expanded_view?

end

def expanded_view?
session[:view] == 'expanded'

end

This makes for much better reading; as in the story of Rumpelstiltskin, a

name is a powerful thing to know. We change our app/views/creations/_pre-
view.html.erb partial:

<% if show_preview?(creation) %>
<%= image_tag creation.file.url(:thumbnail), class: 'thumbnail' %>

<% end %>

We could even skip the if entirely by using a helper that conditionally yields

to a block:

artflow/readability/app/helpers/creations_helper.rb

def previewing(creation)
yield if show_preview?(creation)

end

This gives our template a distinctly DSL-like feel:

artflow/readability/app/views/creations/_preview.html.erb

<% previewing creation do %>
<%= image_tag creation.file.url(:thumbnail), alt: creation.title %>

<% end %>

We follow a similar pattern any time we run into long conditions that are hard

to read and that distract from the real content of the template.

We’ve worked hard to make our template shorter, easier to read, and more

obvious at a glance. Next we’ll work on how to stop the identifiers we add to

68 • Chapter 2. Improving Readability

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/readability/app/helpers/creations_helper.rb
http://media.pragprog.com/titles/warv/code/artflow/readability/app/helpers/creations_helper.rb
http://media.pragprog.com/titles/warv/code/artflow/readability/app/views/creations/_preview.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

our markup that support client-side code and asynchronous requests from

muddling up our templates.

<li id='creation-<%= creation.id %>' class='<%= creation.file_type %>'>

2.6 Adding Model DOM IDs for JavaScript

In ArtFlow our users are frequently looking at and modifying data for multiple

creations at once; when making a change to a creation in these batch views,

we can’t switch the users’ context (and lose their progress) by sending them

to a new page—we need to asynchronously update the creation and leave

everything else intact.

Adding In-place Editing

While we were sipping piña coladas, our team added a neat feature to the

listing of creations in ArtFlow: the ability to quickly modify creation attributes

in place, just like we needed. Here’s how it works:

1. The user clicks an Edit button next to the creation.

2. A form for the creation’s attributes replaces the creation information.

3. When the form is submitted, the updated creation information replaces

the form.

To do this (with some unobtrusive JavaScript and Ajax), our team has asso-

ciated an with each creation on the page by assigning an HTML ID

attribute based on the record id. Let’s modify our app/views/creations/_creation.html.erb
partial:

➤

<% if @creation.default_image? %>
<%= image_tag(@creation.default_image) %>

<% else %>
<%= image_tag("missing_creation.png")%>

<% end %>
<%= controls_for_creation(creation) %>

Using the content_tag_for() would have been a better option:

<%= content_tag_for :li, creation, 'class' => creation.file_type,➤

'data-id' => creation.id do %>➤

<% end %>

<% if @creation.default_image? %>
<%= image_tag(@creation.default_image) %>

<% else %>
<%= image_tag("missing_creation.png")%>

<% end %>

<%= controls_for_creation(creation) %>
➤

report erratum • discuss

Adding Model DOM IDs for JavaScript • 69

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

What About div_for?

div_for() is a specialized version of content_tag_for() that specifically generates a <div>.

While there’s nothing wrong with using a <div> for truly generic, display-related

purposes—like wrapping two child elements together to achieve a certain visual effect

—using semantic elements makes our code easier to read and style.

Since div_for() is used to wrap the information for a record in a generic <div>, it’s almost

always the wrong choice. If we have domain data to display, surely we can figure out

a better, more descriptive semantic element to use!

Doing it this way gives us a few nice benefits:

• We don’t need to figure out a scheme for the ID attribute. Rails automat-

ically selects an ID (based on the Ruby class and id). Since we don’t care

what is used—we just need to have a consistent way to refer to the tag

elsewhere—we don’t need to manually create an ID ourselves.10

• Attributes that include characters that could be interpreted badly just

inserted as-is are escaped safely.

• We’re not putting one type of tag inside another type of tag. Not only is

this just plain ugly, but it can cause problems with editor/IDE syntax

highlighting and formatting.

We took the extra step of adding a data-id attribute to our tag as well. This will

let JavaScript extract the ID of our creation more easily without having to

parse the tag ID attribute. We’ll learn more about custom data attributes

later, on page 105.

We have enough for now, and since we have a pretty Ruby-savvy team working

on ArtFlow, we’re comfortable distilling this into a nice, clean helper that we

can reuse in the editing partial that JavaScript switches out, too. We give it

a name that describes exactly what it’s for:

artflow/readability/app/helpers/creations_helper.rb

def switching_creation_tag_for(creation, &block)
content_tag_for(:li, creation, class: creation.file_type, &block)

end

10. We can just use dom_id() where we need it elsewhere: http://api.rubyonrails.org/classes/ActionCon-
troller/RecordIdentifier.html#method-i-dom_id.

70 • Chapter 2. Improving Readability

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/readability/app/helpers/creations_helper.rb
http://api.rubyonrails.org/classes/ActionController/RecordIdentifier.html#method-i-dom_id.
http://api.rubyonrails.org/classes/ActionController/RecordIdentifier.html#method-i-dom_id.
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Our templates end up having a minimum of eye-distracting boilerplate; the

behavior and style nuts and bolts (the id attribute for JavaScript and class
attribute for CSS) are tucked away in our helper.

artflow/readability/app/views/creations/_creation.html.erb

<%= switching_creation_tag_for creation do %>➤

<% if creation.default_image? %>
<%= image_tag(creation.default_image) %>

<% else %>
<%= image_tag("missing_creation.png")%>

<% end %>
<%= controls_for_creation(creation) %>

<% end %>

2.7 Cleaning Up

One of the last things we can do to keep our code in check is to do some

manual inspection of our CSS and HTML and look for opportunities for

refactoring and cleanup. Many features are added separately, and over time

more efficient means of writing various things arise.

One of the first things to look for in large codebases is declarations of the

same selector two or three times in CSS. When this happens once, it’s not

that big a deal, but if it happens a lot, it adds up to hundreds of lines of

redundant and overridden declarations.

We also want to identify where we have different class names that have the

same styles or have styles that we could abstract to a generic class and use

specific overrides. We see this show up a lot when JavaScript show/hide

wizard setups are involved. Each “page” in this instance has a unique ID, and

let’s say they share the same page look and feel. You will often find each

selector declared individually.

If you don’t want to add another class, at least collect them together and write

your declarations once:

#id_number_1,
#id_number_2,
#id_number_3 {

// declarations for all 3 IDs
}

Likewise, look for places where extra, superfluous HTML has entered the mix,

and be a stringent editor. Take out that which is not critical and leave the

cleanest, best-performing code in place.

report erratum • discuss

Cleaning Up • 71

http://media.pragprog.com/titles/warv/code/artflow/readability/app/views/creations/_creation.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Always make time for this kind of work. It’s not as glamorous as launching

a new feature or as exciting as playing with the most cutting-edge new CSS3

techniques, but it is paramount to having healthy code over the long term.

2.8 Wrapping Up

We’ve nearly recovered from the aftermath of our vacation to the Caribbean,

with some of the worst of the view smells scrubbed from our templates. We’ll

need to keep an eye out in case these problems reappear. Be vigilant!

Now we have a semantic page structure, and we’ve cleaned up some messy

view code that got away from us. That’s a pretty good day! Tomorrow we’ll

take a deeper look at our CSS assets and discover some new techniques to

keep things on the right track as we build out the application.

72 • Chapter 2. Improving Readability

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CHAPTER 3

Adding Cascading Style Sheets

Rails makes a lot of decisions for us; from the beginning we’ve had a default

ORM (ActiveRecord), template engine (ActionView with ERB), and support for

testing, so it should come as no surprise that this emphasis on “convention

over configuration” has grown to include the way we handle assets in the view

layer too.

Rails 3.1 introduced the asset pipeline, a set of built-in features that includes

concatenation and compression of our CSS and JavaScript files and support

for alternate syntaxes.

We’ll discuss JavaScript in Chapter 4, Adding JavaScript, on page 101, but

right now let’s look at Cascading Style Sheets, or CSS. Even in mixed teams

with well-defined roles, knowing how to read and edit a CSS file is a skill that

every developer should have, since often missing or badly implemented design

can stop development in its tracks. It doesn’t have to be about making things

pretty. Sometimes in a pinch what we really need to do is just add enough

basic styling to make things work, and we should do so responsibly.

We’ve been adding style sheets to our ArtFlow application, but to build them

more easily and effectively we need to dig a little deeper into how Rails uses

Sprockets, the library at the core of the asset pipeline, to find and process

our asset files.1 Sprockets lets us use a tool that will make our jobs easier—

Sass—which is a more dynamic alternate syntax for CSS than just plain CSS.

3.1 Using the Asset Pipeline

Let’s take a look at how Sprockets works, starting with some changes to where

our assets need to be placed.

1. http://getsprockets.org/

On matters of style, swim with the current. On

matters of principle, stand like a rock.

 ➤ Thomas Jefferson

report erratum • discuss

http://getsprockets.org/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Where to Put Files

Sprockets introduces new locations for our asset files. Instead of a single,

mixed directory for each type of asset under public, Sprockets is configured in

Rails to look for assets in subdirectories of app/assets for application-specific

assets like page styles, lib/assets for assets you wrote but that may be used

across several applications (like company branding), and vendor/assets for assets

we didn’t create but we’re using from the wider community. This separation

makes it easier to determine which things we should be modifying and which

we should leave alone.

Conventionally, the main style sheet for an application is located at app/
assets/stylesheets/application.css. In building the views for our ArtFlow application,

we’ve already added a few new lines:

/*
*= require_self
*= require normalize
*= require text
*= require buttons
*= require layout
*= require sidebar
*= require navigation
*= require notifications
*= require forms
*= require formtastic
*= require media
*/

The require lines we’ve added in comments aren’t technically CSS: they’re

examples of what Sprockets calls directives—instructions that describe the

dependencies of the CSS file, telling Rails which files to combine when serving

the file.

Sprocket Directives

Sprocket directives are placed within CSS comments and must be located at

the top of the file.

The require directive should feel very familiar to Ruby developers. It directs

Rails to treat the file named as a dependency and to pull it into this file when

creating the generated copy. This will kick off any processing necessary to

generate the final content of the dependency, which we’ll see more details

about in Dynamically Building CSS, on page 76.

The require_tree directive is similar but allows us to define an entire directory

of CSS files to recursively combine and include, which it does in alphabetic

74 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

order. Since this can have unintended consequences and to make it more

obvious what our CSS includes, it’s usually best to avoid require_tree and use

require directions with explicit filenames.

The require_self directive takes the styles defined in the file itself and inserts

them at this point. We can use this to add ad hoc styles to our application.css
that we don’t necessarily want to rip out into a separate file. The fact that we

can put require_self before or after the other directives gives us the flexibility to

control in exactly what order the content is inserted, which is important when

it comes to the precedence of the CSS rules.

How Sprockets Finds Files

All of the files referenced from our style sheet don’t need to be in app/
assets/stylesheets. Rails will also search in lib/assets/stylesheets and then in ven-
dor/assets/stylesheets if a file isn’t found. We can see the full list of paths using

the runner command and use the y() method to pretty-print the assets.paths
configuration setting:

% rails runner "y Rails.configuration.assets.paths"

- /path/to/artflow/app/assets/images
- /path/to/artflow/app/assets/javascripts
- /path/to/artflow/app/assets/stylesheets
- /path/to/artflow/lib/assets/images
- /path/to/artflow/lib/assets/stylesheets
- /path/to/artflow/lib/assets/javascripts
- /path/to/artflow/vendor/assets/images
- /path/to/artflow/vendor/assets/javascripts
- /path/to/artflow/vendor/assets/stylesheets

We also see image and JavaScript asset directories listed here, but for style

sheets Rails is only interested in finding files including a .css extension. The

first matching file wins and will be used when generating our CSS. We’ll see

similar behavior when we talk about JavaScript assets in Chapter 4, Adding

JavaScript, on page 101.

We can also reference files in subdirectories; in this case we want to use a

specific set of typography styles in typography.css under vendor/assets/stylesheets/
blueprint:

artflow/css/app/assets/stylesheets/application.css

/*
*= require_self
*= require normalize
*= require layout
*= require sidebar

report erratum • discuss

Using the Asset Pipeline • 75

http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/application.css
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

*= require navigation
*= require notifications
*= require blueprint/typography➤

*= require text
*/

So we can build larger CSS files out of smaller CSS files, but what dynamic

tools do we have to build the CSS content itself?

Dynamically Building CSS

We’re used to dynamically generating HTML; we work with .html.erb files (HTML

preprocessed by the ERB template engine) in our views all the time. A little

library called Tilt, shipped with Rails 3.1 alongside Sprockets, generalizes

and expands this concept for other file types.2 The secret lies in the file

extension.

Want to generate CSS with ERB? Use the .css.erb suffix. How about SCSS

(which we’ll learn more about next in Section 3.2, Learning SCSS, on page

76)? Use .css.scss. Want to mix the two? A .css.scss.erb extension will run the

content through ERB, then SCSS; it starts at the end of the filename and

works backward, extension by extension, until it reaches the final format we

want to generate.

With a little configuration, we can add more preprocessors or even write our

own, but let’s focus on Sass, the default CSS processor for Rails, and on the

format it provides, SCSS, which is uniquely suited to help make our lives

easier when building style sheets.

3.2 Learning SCSS

The Sassy CSS language is provided by Sass, a project by Hampton Catlin

and numerous contributors. It has been included as a default since Rails

3.1.3 SCSS extends the CSS language to include a number of features that

include variables, functions, file imports, nested selectors, mixins, and

inheritance. Let’s look at how this has made writing our CSS easier.

Simplifying Advanced Selectors

On the homepage for our application, we have some marketing content that

needs to be styled. It’s a <section> with some optimistic descriptions of our

product features and links to supporting pages:

2. https://github.com/rtomayko/tilt
3. http://sass-lang.com/

76 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

https://github.com/rtomayko/tilt
http://sass-lang.com/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

The Asset Pipeline in Production

You’d be right to get a little nervous hearing about dynamically generating assets if

it meant you’d be forced to build them in a live production environment, as requests

are being served.

Don’t fret. Rails ships with an assets:precompile Rake task that will handle generating

static files for you.a You can either run this locally (if you don’t want to go through

the bother of installing some dependencies on your server) and ship the files during

deployment, or you can have the task run on the server immediately after deployment

(e.g., for Capistrano, after "deploy:update_code").

Check with your host to determine the best course of action. Some, like Heroku, may

handle this automatically for you.b

a. http://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets
b. http://heroku.com

artflow/css/app/views/pages/home.html.erb

<section id='features'>
<p>
You're in charge! Our flexible, advanced
approval process gives
you the final say on the designs created for your
advertising campaigns.

</p>
<p>

Access the service from the mobile
device of your choice. We support them all!

</p>
</section>

Now we need to select the elements we’re going to style. We do this with

selectors, a key part of CSS syntax. If we were going to style a <section> element,

its <p> elements, and any <a> elements inside of them, we’d do it with three

separate statements:

css/flat_selectors.css

section {
/* section styles go here */

}
section p {

/* p styles go here */
}
section p a {

/* a styles go here */
}

report erratum • discuss

Learning SCSS • 77

http://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets
http://heroku.com
http://media.pragprog.com/titles/warv/code/artflow/css/app/views/pages/home.html.erb
http://media.pragprog.com/titles/warv/code/css/flat_selectors.css
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

These are descendant selectors; the spaces between section, p, and a indicate

depth. If we read the selectors backward, we can substitute the word inside

for each space; we’re styling anchors inside paragraphs inside sections.

CSS forces us to keep our selectors “flat”; even though we’re describing a

deep markup structure, we have to describe individual, narrow slices to

connect our styles with the elements we want to affect. This is one of the most

frustrating constraints of the CSS syntax. Sass gives us a better option,

allowing us to structure our styles to mirror the structure of the markup. We

can nest our selectors! Here’s a refactoring of our styles to make use of this:

css/nested_selectors.scss

section {
/* section styles go here */
p {

/* p styles go here */
a {

/* a styles go here */
}

}
}

Now descendant selectors are much more obvious; they’re implicit in the

structure of our styling. This makes the rules easier to find and harder to

lose, misorder, or accidentally override since they’re not just lying around. It

also makes it easier to show related groupings of rules without the need for

large comment banners marking off different parts of the file.

Let’s revamp a more complex page. In ArtFlow we have a list of parties that

are interested in being notified when changes are made to a creation. This

list includes the designer, project manager, and the client, at a minimum. It

looks something like this:

artflow/css/app/views/creations/_interested.html.erb

<ul id='interested'>
<li class='client'>

Joe Thrower

<li class='staff designer'>

Jack Johnson

<li class='staff pm'>

James Monsanto

<%# Other people here... %>

In our old CSS, we had styles for each type of person à la carte:

78 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://media.pragprog.com/titles/warv/code/css/nested_selectors.scss
http://media.pragprog.com/titles/warv/code/artflow/css/app/views/creations/_interested.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

What’s the Difference: SASS vs. SCSS?

SASS and SCSS are two different dialects of the same thing. They are both present

in the Sass gem. Rails versions since 3.1 default to the SCSS syntax as the preferential

way to write CSS. We also prefer to use SCSS because it allows users to also write

regular CSS while getting the benefits of mixins, includes, and more.

css/interested.css

ul#interested {
list-style: none;

}
ul#interested a {
text-decoration: none;

}
ul#interested a:hover {
text-decoration: underline;

}
ul#interested li.staff a,
ul#interested li.staff a:visited {
font-style: bold;

}

ul#interested li.staff.designer a {
color: #000;

}
ul#interested li.client a {

color: #000;
font-style: italic;

}

It could be worse, of course; these could be missing the ul#interested prefix or

be strewn across the file haphazardly, but you get the idea. Let’s modify this

to use nesting to tell the story a bit more clearly:

ul#interested {
list-style: none;
li {

a {
text-decoration: none;

}
a:hover {
text-decoration: underline;

}
}
li.staff a {

font-style: bold;
}

report erratum • discuss

Learning SCSS • 79

http://media.pragprog.com/titles/warv/code/css/interested.css
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

li.staff.designer {
a, a:visited {

color: #000;
}

}
li.client {

a, a:visited {
color: #000;
font-style: italic;

}
}

}

Now at least these look like a related group of styles. The nesting isn’t quite

complete, and there’s still a bit of duplication, though; the styles for staff,

designer, and client are really extending the style for the li, aren’t they? How

can we put these styles inside the li definition, considering these aren’t

descendants of li but modifications? Easy—SASS has added an & selector.

Let’s see it in action:

artflow/css/app/assets/stylesheets/interested.css.scss

ul#interested {
list-style: none;
li {

a {
text-decoration: none;
&:hover {➤

text-decoration: underline;
}

}
&.staff {➤

a {
font-style: bold;

}
&.designer {➤

a, a:visited {
color: #000;

}
}

}
&.client {➤

a, a:visited {
color: #000;
font-italic: italic;

}
}

}
}

80 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/interested.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

What does this mean? Let’s dig in. When Sass compiles the file and sees &,

instead of adding the selector as a child of the enclosing selector, it replaces

the & with the name of the enclosing selector. So, for instance, &.client becomes

li.client.

In practice it’s easier to forget about all this and just read the & as “with”: “an

 with a client class’s <a> tag should look like...” You can chain & selectors,

too, as you can see with our designer class, an additional modification to the

staff class.

Defining and Using Variables

Our first pass at writing our styles for ArtFlow included a conspicuous legend

in comments we used to try to keep our team on the same page.

/*
* Fonts
* -----
* Verdana, Arial, Helvetica, sans-serif (Heading)
* Georgia, Times New Roman, serif (Accent)
* Times New Roman, Times, serif (Body)
*
* Colors
* -------
* #333 Near Black
* #d4f2ff Light Blue
* #436ca7 Dark Blue
* #ffc Highlight
* #50B450 Dark Green
*

*/

Since our legend was just a comment, we needed to copy and paste the settings

whenever we needed to use them, as we did for our basic text and heading

styles:

body {
font-family: 'Times New Roman', 'Times', serif;

}
h1, h2 {
color: #333333;
font-family: 'Verdana', 'Arial', 'Helvetica', sans-serif;

}
h3 {
color: #50B450;
font: italic bold 20px 'Georgia', 'Times New Roman', serif;

}

report erratum • discuss

Learning SCSS • 81

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

These values are pretty much like constants, aren’t they? Let’s convert our

“merely descriptive” legend into a set of SCSS variables we can reuse and

then turn this into text.css.scss:

$heading-font: 'Verdana', 'Arial', 'Helvetica', sans-serif;
$accent-font: 'Georgia', 'Times New Roman', serif;
$body-font: 'Times New Roman', 'Times', serif;

$near-black: #333;
$light-blue: #d4f2ff;
$dark-blue: #436ca7;
$highlight: #ffc;

Now we can reuse the settings easily across our selectors by applying them

to our properties:

body {
font-family: $body-font;

}
h1, h2 {
color: $near-black;
font-family: $heading-font;

}
h3 {
color: $dark-green
font: italic bold 20px $accent-font;

}

It turns out our $dark-blue setting isn’t quite right, since we just eyeballed it in

a color picker. We’d like it to be exactly 25 percent darker than $light-blue, but

doing the math ourselves is just silly. Sass ships with a set of ready-to-use

utility functions for colors. We’ll let Sass figure it out:

$dark-blue: darken($light-blue, 25%);

We don’t need to know the exact color code for $dark-blue; Sass calculates it,

and we’ve assigned it to a variable for later use. So now that we have these

settings in one SCSS file, how do we share it?

File Imports

CSS has an @import rule that allows it to load CSS files; a basic use looks

something like this:

artflow/css/app/assets/stylesheets/text.css.scss

@import "brand";

The @import rule exists in SCSS as well—it’s just been extended to allow

including .scss files, too. We use @import in our Rails SCSS when the contents

82 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/text.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

of an SCSS file need definitions provided elsewhere, commonly for variables

and mixins (which we’ll cover in Mixins, on page 84). For example, we could

define our brand colors in a separate SCSS partial, _brand.scss:

$heading-font: 'Verdana', 'Arial', 'Helvetica', sans-serif;
$accent-font: 'Georgia', 'Times New Roman', serif;
$body-font: 'Times New Roman', 'Times', serif;

$near-black: #333;
$light-blue: #d4f2ff;
$dark-blue: darken($light-blue, 25%);
$highlight: #ffc;

We can use these mixins in our .css.scss files elsewhere simply by adding an

@import. Now that we’ve extracted our variables, we’ll import it to use in our

headings:

artflow/css/app/assets/stylesheets/text.css.scss

@import "brand";

body {
font-family: $body-font;

}
h1, h2 {
color: $near-black;
font-family: $heading-font;

}
h3 {
color: $dark-blue;
font: italic bold 20px $accent-font;

}

It’s important to remember that the Sprockets require directive and the @import
rule that SASS provides occur at different times and serve two completely

different purposes.

The Sprockets require directive just pulls in the final, processed result for the

file named into the current document (usually application.css). While it kicks off

the processing by asking for the file, it doesn’t care about what the internal

semantics of the file are; it’s just concatenating.

The @import rule in SCSS files is quite a bit different, since it is loading and

parsing the related file to use those mixins as SCSS language definitions.

This happens while processing the document, and since each SCSS file is

processed separately, each file should @import the definitions it needs.

Use require when you just want to shove content together and @import when

you want to use the definitions present in the dependency in the current file.

report erratum • discuss

Learning SCSS • 83

http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/text.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Mixins

In our ArtFlow application there are a number of UI components that have a

similar look and feel. One common pattern we’re using pops an element off

of the gray background by setting the top border to white and the bottom

border to a dark gray, as you can see here:

This doesn’t have enough semantic meaning to sprinkle as CSS classes in

our HTML markup, but we don’t want to have to type this for a bunch of CSS

selectors either:

css/popout.css

border-top: #fff 1px solid;
border-bottom: #bbb 1px solid;

Let’s pull this out into a SCSS mixin instead, which will let us mix this

purely presentation-related feature into the style definition for our semanti-

cally named classes. We put this in _popout.scss:

@mixin popout {
border-top: #fff 1px solid;
border-bottom: #aaa 1px solid;

}

We put this into an SCSS partial so that we can @import it elsewhere, as we

do for our sidebar, where the section headers are designed as bars:

@import "popout";

section#sidebar {
section {

header {
@include popout;
background: #ccc;
font-family: $heading-font;
font-size: 18px;

}
}

}

We need to make our popout mixin a bit more flexible, though, since it turns

out we need it to work with a variety of surrounding backgrounds (the page

body is a light gray, but we have other background colors elsewhere) and

internal backgrounds. Let’s update the mixin to handle this for us and calcu-

late a light top border and dark bottom border from the options we give it.

84 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://media.pragprog.com/titles/warv/code/css/popout.css
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/css/app/assets/stylesheets/_popout.scss

@mixin popout($inside: #ccc, $surrounding: #ddd) {
background-color: $inside;
border-top: lighten($inside, 80%) 1px solid;
border-bottom: darken($surrounding, 20%) 1px solid;

}

This gives us the flexibility to use the popout style regardless of the back-

ground of the element or its surroundings. If our sidebar was dark blue and

we wanted light blue bars, we could simply @include our mixin with additional

arguments:

artflow/css/app/assets/stylesheets/sidebar.css.scss

@import "popout";

$sidebar-bg: #003366;
$bars-bg: #97d4fe;

section#sidebar {
background: $sidebar-bg;
section {

header {
@include popout($bars-bg, $sidebar-bg);
font-family: $heading-font;
font-size: 18px;

}
}

}

As we can see in the following graphic, the mixin now automatically compen-

sates for the darker background.

The sky’s the limit with mixins. We could go further, defining default font

styles, a border radius, and box shadows—anything CSS can do, Sass mixins

can do dynamically.

Selector Inheritance

Mixins are great, but there’s an even simpler way to add common styles to a

selector—if there’s another selector we can inherit from, we can just pull it

in.

In ArtFlow we used to have separate button and modifier classes (like red), but

we’d like to combine the more generic button class with the different styles so

we don’t have to remember to compose button styles using multiple classes.

report erratum • discuss

Learning SCSS • 85

http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/_popout.scss
http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/sidebar.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We took the à la carte approach:

css/buttons.css

.button {
display: inline-block;
padding: 5px 10px;
font: small-caps bold 14px/21px "Arvo", "Courier New", serif;
background: #ddd;
-moz-box-shadow: 0 1px 2px #888;
-webkit-box-shadow: 0 1px 2px#888;
box-shadow: 0 0 1pxpx #888;

}
.red {
background: #f00;
color: #fff;

}

In our latest revision, we’ve named our buttons for the purpose they serve

instead and pulled in the settings from our generic button class with @extend:

artflow/css/app/assets/stylesheets/buttons.css.scss

.button {
display: inline-block;
padding: 5px 10px;
font: small-caps bold 14px/21px "Arvo", "Courier New", serif;
background: #ddd;
-moz-box-shadow: 0 1px 2px #888;
-webkit-box-shadow: 0 1px 2px#888;
box-shadow: 0 0 1pxpx #888;

}
.cancel-button {
@extend .button;
background: #f00;
color: #fff;

}
.ok-button {
@extend .button;
background: #16A000;
color: #333;
text-shadow: 0 -1px 1px #fff;

}

This lets us use simpler, single classes (cancel-button and ok-button) on elements

we want to style without having to manually copy over attributes. We keep

the generic .button style, too, for simple gray buttons—which is why we didn’t

use @mixin, the definition of which is always abstract.

86 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://media.pragprog.com/titles/warv/code/css/buttons.css
http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/buttons.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Referencing Images from SCSS

We need to take special care when we reference other assets, such as images,

from our style sheets. Because Rails adds “fingerprints” to the asset filenames

during compilation (which helps prevent stale client-side caches across

deployments without invalidating caches for assets that haven’t changed),

we can’t “guess” the correct filename by ourselves.

Instead, we can use a few convenient Sass functions that Rails has added for

us. In our notifications.css.scss we can look up the correct path for our alert

notification image using the asset-path() function:

artflow/css/app/assets/stylesheets/notifications.css.scss

.alert {
background: {

color: #920202;
image: url(asset-path("notification_x.png", image));➤

}
}

We have to tell Rails that this is an image by passing a second argument.

There’s a handy shortcut for images we can use instead, image-path(). Let’s use

that to add the checkmark image we use for our notice notifications. Don’t

worry, we’ll change the alert notification too.

artflow/css/app/assets/stylesheets/notifications.css.scss

.notice {
background: {

color: #006302;
image: url(image-path("notification_check.png"));➤

}
}

Just as with the path-suffixed route helpers in Rails, there are url versions of

image-path() and asset-path(), too, but for our purposes path is fine (and saves us

a few bytes).4

We’ve learned a lot about Sass—from useful missing syntactic features of

CSS like nested selectors to dynamic functions and inheritance mechanisms.

For more information, check the project website or see the Pragmatic Guide

to Sass [CC11].5

Now that we know where to put files for the asset pipeline and understand

the format we should be using, let’s focus on some specific CSS techniques

we can use as we build out our application’s look and feel.

4. http://edgeguides.rubyonrails.org/asset_pipeline.html#css-and-sass
5. http://sass-lang.com/

report erratum • discuss

Learning SCSS • 87

http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/notifications.css.scss
http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/notifications.css.scss
http://edgeguides.rubyonrails.org/asset_pipeline.html#css-and-sass
http://sass-lang.com/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Adding the Power of Bourbon

Bourbon is a powerful extension to SASS that lets us simplify many of the cutting-

edge CSS3 calls. Normally when we write a new feature call (e.g., border-radius), we end

up with four or five lines to target each vendor-specific switch (-moz or -webkit). Bourbon

lets us easily use includes to only call one line and pass it a parameter. We’d simply

call the following:

@include border-radius(5px);

And that will output all the relevant browser-specific CSS. This keeps our development

style sheets much cleaner and easier to maintain. You can find out more about

Bourbon at https://github.com/thoughtbot/bourbon.

3.3 Adding Sprites

Some of ArtFlow’s users have complained that the application is loading too

slowly for them. After some analysis, we discover that the amount of time

spent requesting individual images for pages is completely unreasonable. We

have a lot of little images and icons, and every one of these results in another

request sent to the server. While this isn’t much of a problem on a low traffic

site, high traffic sites can get hammered into oblivion by too many assets.

One approach here is to hand off delivery to a content delivery network, or

CDN, such as Akamai or Amazon’s CloudFront. But, of course, there’s a

financial cost associated with delivering assets from someone else’s fast

servers, and the core problem is that there’s overhead for the client with every

file request.

Instead, we are going to cut down the number of requests and get rid of lots

of extraneous overhead by combining these images into one image. This is a

process taken from the days of low processing (8-bit) gaming, when computers

built complex scenes out of a series of images, or sprites.6 Sprites are combined

into a grid of images that use basic CSS properties of clip and background-position
to display the right piece of the overall image in the UI. Then our client only

downloads the single image instead of several smaller ones.

Working the Images

Building a set of sprites takes time and attention to detail. Pieces must be

spaced correctly and not show up when other adjacent sprites are called from

the same image.

6. http://www.alistapart.com/articles/sprites

88 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

https://github.com/thoughtbot/bourbon
http://www.alistapart.com/articles/sprites
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Let’s look at the icons we’ve currently got in ArtFlow. As we see below, there

are about twenty different images that we use, all of which are licensed from

Drew Wilson’s Pictos set.7

We’ve created a sprite (as seen in the following graphic) by lining up our icons

on a grid. Since the icons are 32 pixels square, we used a 40 pixel grid to

make it easier for us to write the CSS for these. Our background position on

the image will always be a multiple of 40 in the x and y dimensions. That

makes things easier for us to work with compared to constantly measuring

the original file to find out where things start and stop.

Now we add a helper to build the HTML for our icons:

artflow/css/app/helpers/icons_helper.rb

module IconsHelper

def icon_to(text, icon, destination)
link_to(text, destination,

class: "#{icon}-icon sprite-icon",
title: text)

end

end

To make this a sprite, we’re going to use what amounts to image replacement,

substituting the text for the pretty icon we define through the specific icon

CSS class, which will be displayed in the background.

7. http://pictos.drewwilson.com/

report erratum • discuss

Adding Sprites • 89

http://media.pragprog.com/titles/warv/code/artflow/css/app/helpers/icons_helper.rb
http://pictos.drewwilson.com/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

There are various image replacement techniques that have been tested over

the years, but they all come down to taking an element, setting its height and

width, and setting an image background. If the element previously had content,

such as a headline tag, we’ll move that out of frame with a negative text-indent
property. Our CSS in app/assets/stylesheets/icons.css.scss looks like this:

a.email-icon {
background: transparent url(image-path("iconsprite.png")) top left no-repeat;
background-position: 40px 80px;
height: 32px;
text-indent: -5000px;
width: 32px;

}

This works great, but with this many icons, we’ll be repeating a lot of the

same CSS and only changing the background position. Let’s use the sprite-icon
class on our link to extract some of this to one place.

a.sprite-icon {
background: transparent url(image-path("iconsprite.png")) top left no-repeat;
background-position: 0 0;
height: 32px;
text-indent: -5000px;
width: 32px;

}

a.email-icon { background-position: 40px 80px; }

Now for each new icon, we only need to add one line of CSS. That simplifies

things and also lets us handle alternate cases with an override.

Let’s use our helper to add an icon to approve an ArtFlow creation:

artflow/css/app/views/creations/show.html.erb

<% if @creation.approvable? %>
<p>

<%= icon_to("Approve Creation",
:approve, approve_creation_path(@creation)) %>

</p>
<% end %>

Now for the magic: some CSS to handle the image replacement. Since there’s

no such thing as an “abstract” icon, and since we don’t want to use multiple

classes on our elements, we define a @mixin as follows:

artflow/css/app/assets/stylesheets/icons.css.scss

@mixin icon($x-offset: 160px, $y-offset: -160px) {
background-image: url("iconsprite.png");
background-position: $x-offset $y-offset;
background-repeat: no-repeat;

90 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/css/app/views/creations/show.html.erb
http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/icons.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

height: 0;
width: 40px;
padding: 40px 0 0 0;
overflow: hidden;

/* half transparent */
-khtml-opacity:.50;
-moz-opacity:.50;
-ms-filter:”alpha(opacity=50)”;
filter:alpha(opacity=50);
opacity:.50;

/* more opaque on hover */
&:hover {

-khtml-opacity:.80;
-moz-opacity:.80;
-ms-filter:”alpha(opacity=80)”;
filter:alpha(opacity=80);
opacity:.80;

}
}

The mixin supports passing the x- and y-coordinate offsets needed to “move”

the image so that the icon we’d like is in our 40 x 40 pixel window. The default

offset is currently a white background (no icon) taken from the bottom right

of our sprites image. We add a few icon definitions overriding this default

with the correct offsets for each icon:

artflow/css/app/assets/stylesheets/icons.css.scss

.approve-icon {
@include icon(80px, -40px);

}
.person-icon {

@include icon(0, 0);
}
.star-icon {

@include icon(0, -40px);
}

It’s worth mentioning that while this works great on sites with a lot of sprite

usage, the fancy hover behavior we’ve added can cause performance issues,

especially with the -ms-filter and filter directives. Since these target Internet

Explorer, the relevance of this depends on IE usage by our users.

The solution is to actually make the images grayed out and either have two

different sprite collection images (at different color levels) or place them all

into one and have the CSS set the background to a different area of the image

on hover.

report erratum • discuss

Adding Sprites • 91

http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/icons.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

This can get a bit tedious if we have a lot of images. If the overhead of handling

sprites becomes a major concern, another approach we can take is to build

Compass, a comprehensive Sass framework, into our Rails application.8

Compass has built-in support for sprites in addition to layout, typography,

and other tools.9

Remember, we don’t want to start with sprites. Sprites are a technique we

use when image downloads become a performance problem. We’re careful

not to make these sprite collections just because we can. When we get to a

critical point where images start to become a problem, then we can turn to

this method to help cut down connection requests and improve render times

and user-side caching.

Now that we’ve tackled images, we’re going to move on to see what we can do

to improve the look and selection of the fonts we’re using for our design.

3.4 Using Web Fonts

Over lunch we start talking about our app with our designers. We invariably

end up in a discussion about the state of web fonts. One of our designers

complains that there’s no good web fonts for headlines and that she’s limited

to ugly or more ugly when choosing fonts.

Traditionally, we have been limited to a certain number of fonts that exist by

default on the majority of systems. These are Times New Roman and Georgia

for serif fonts and Verdana, Helvetica, and Arial for sans-serif fonts. There

are a handful of other fonts available, but those are the ones most used.

Since we could not always ensure that the browser being used would have

our font of choice, the concepts of font stacks started to be used to provide

fallbacks. We use a font stack to specify the font we’d like to see first, and if

that’s not available, it gives us the next one. A traditional font stack for a

sans-serif font would look like this, put in app/assets/stylesheets/fonts.css.scss:

body {
font-family: Verdana, Helvetica, Arial, sans-serif;

}

The browser will first ask the system for Verdana, then Helvetica, and so on

down the list. Fonts that have a space in the name need to be placed in quotes,

like "Trebuchet MS".

8. http://compass-style.org/
9. http://compass-style.org/help/tutorials/spriting/

92 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://compass-style.org/
http://compass-style.org/help/tutorials/spriting/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We’ll be building on the old approach to integrate a new font served from our

application because we always want to provide a fallback for browsers that

may not support the newest techniques or if there’s an issue with the font.

And we always want to provide a fallback to a generic font in any font stack

(e.g., ending with “sans-serif”) to make sure that the text is rendered correctly

even on browsers and devices that have small user bases (or that we simply

can’t test). If we don’t define a fallback font such as sans-serif, the font will be

rendered in whatever the default font is for the browser. This is more than

likely a serif font in 16px height.

There is an alternate technique called @font-face that lets us embed fonts into

our web pages and render text in all sorts of new ways.

@font-face first arrived in the CSS2 specification, but it was removed in CSS2.1.

It has come back in the CSS3 spec, and it’s been supported by Firefox 3.5+,

Opera 10, Chrome 4+, Safari 3.2+, and Internet Explorer since version 5.

Unlike tools like sIFR or Cufon,10 these font files are downloaded with the

page and then rendered like any other text. This is good, because you typically

don’t have the jump after a screen renders with the new font. This is bad,

because if you have too many nonstandard fonts, you have a much higher

initial page load time.

Like many web standards, each browser has taken a different approach to

fonts. Firefox likes the WOFF font format. iOS needs SVG. Microsoft has

supported this technology since Internet Explorer 5.5 but only using the EOT

file format. Some newer browsers support TTF (TrueType) and OTF (OpenType)

formats. There are also licensing issues with just the formats (same reason

we have OGG video vs. MP4). We will use the possible formats in a cascading

order of preference and end up with a solution that works for most browsers.

Creating a Font to Serve

In the design mockups he provided earlier, our designer specified a free font

that we can use on the Web called Museo Sans. It is distributed with a license

that allows us to use it for web embedding from the exljbris Font Foundry.11

We have our font file, which is in OpenType (.otf) format. While we can serve

this file, we won’t see our fonts in many browsers, as they don’t all support

OTF. We’re going to use a free online tool at FontSquirrel.com to generate our

web font kit, which will include EOT, WOFF, OTF, and SVG formats.

10. http://www.mikeindustries.com/blog/sifr or http://cufon.shoqolate.com/generate/, respectively.

11. http://www.exljbris.com/museosans.html

report erratum • discuss

Using Web Fonts • 93

http://www.mikeindustries.com/blog/sifr
http://cufon.shoqolate.com/generate/
http://www.exljbris.com/museosans.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

For fonts, we should create a separate fonts folder in the app/assets directory

and place our font files in there. The asset pipeline will put these into the

public/assets folder when it processes everything.

We type this in our shell:

% cd app/assets
% mkdir fonts

And we’re ready to build our custom @font-face font.

We could have purchased a piece of software (e.g., FontLab) and done this

ourselves, but Font Squirrel’s online tool is simply too good not to use. We

choose the font(s) we want in the kit and upload them, and it generates the

various file types we need to provide coverage to almost every browser.

Looking at the Font Squirrel interface, we just need to upload a font file and

then let it do its processing. We could get really specific on the Expert mode,

but since we’re not trying to achieve some great typographic solution, we can

just use the Optimal setting.

Optimal helps us ensure that we don’t include parts of the font we aren’t

likely to use, such as odd characters. This technology is great, but overusing

it can kill our initial page load times. Not only will that make our clients

frustrated, but it can affect page rank and other factors as well. If we are only

using this on an internal network, we can be more lenient with large font

sets, but for public facing sites, optimization is paramount.

Google now uses page load time to affect the page rank of a site.12 It’s not

critical for an internal facing app, but it’s a best practice to not keep users

waiting for the initial site load.

We may be forced to look at a close, web-friendly font instead of our ideal font

selected from legal sources. Always weigh the end user in determining if

embedded fonts are right for our website or application.

After the font generator is done processing, it will let us download the fonts,

an example HTML and CSS file, and some other notes. We will need to put

the @font-face declaration into our CSS file and adjust the paths to be relative

to where we actually placed our fonts using the construct we looked at earlier

in this tip.

Next, we can add this font name into our font-family declarations, and if the

browser supports it, we will see our text rendered in a lovely font:

12. http://searchengineland.com/google-now-counts-site-speed-as-ranking-factor-39708

94 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://searchengineland.com/google-now-counts-site-speed-as-ranking-factor-39708
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Let’s add it to the _brand.scss file we created in File Imports, on page 82, to

specify our brand-level styles:

➤ $heading-font: "Museo Sans", 'Verdana', 'Arial', 'Helvetica', sans-serif;
$accent-font: 'Georgia', 'Times New Roman', serif;
$body-font: 'Times New Roman', 'Times', serif;

$near-black: #333;
$light-blue: #d4f2ff;
$dark-blue: darken($light-blue, 25%);
$highlight: #ffc;

Now that we have our font files ready, let’s integrate them into our application.

Serving a Font File

To serve this font file via @font-face, we add this in the beginning of our

app/assets/stylesheets/fonts.css.scss CSS file:

@font-face {
font-family: 'Museo Sans';
src: url('MuseoSans.eot');
src: url('MuseoSans.eot?iefix') format('eot'),

url('MuseoSans.woff') format('woff'),
url('MuseoSans.otf') format('opentype'),
url('MuseoSans.svg') format('svg');

}

We use a declaration that starts with an @ symbol. In this case, we tell CSS

that we are defining a font face. The second line names the font and how we

will access it later when we apply it to elements. We then start with an .eot
file, which is the format supported by Internet Explorer.

The second line specifies a local font, since Internet Explorer can’t understand

the local() value. But why the declaration again for the EOT format? Well, we

want to make sure that browsers that do understand the local() value won’t

pull an actual font from the local machine. The ?iefix switch on the path to

the file makes IE stop right there. In this way, we can almost guarantee that

we will always display the font we serve as opposed to a user’s local font.

As mentioned earlier, we have multiple formats to support multiple browser

types: WOFF will be read by Firefox. SVG is the favorite of iOS. And OTF (or

TTF) works nicely in Safari and Chrome. If you don’t have all of these, you

can go back and use the Font Squirrel service to convert a font into these

formats.

report erratum • discuss

Using Web Fonts • 95

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Font Services

Sometimes fonts we want aren’t available for us to embed but are available through

a software-as-a-service provider such as TypeKit, Google Webfonts, or Fontspring.

These have benefits and drawbacks. First, they handle encoding and provide tools

for creating and optimizing font bundles for our site. They also handle serving of the

font bundle, which is a benefit but can be problematic on rare occasions. Once in a

while, we’ve seen a page load delay because of an externally served font.

We’ll need to weigh the benefits and the drawbacks as well as look at other options,

such as image replacement for static text, in order to provide the best implementation

of the designer’s mockup.

We now have awesome typography, and our designer and design staff are

happy and all will be well with the world. But we need to provide attribution

on this font as per the license instructions. We’re going to add this line right

before our @font-face declaration in app/assets/stylesheets/fonts.css.scss:

/* A font by Jos Buivenga (exljbris) -> www.exljbris.nl */

Now we’re ready to move on. We want to call this font, so we simply add it to

our body font stack. If it downloads and the browser recognizes it, we’ll see it

rendered in our interface.

body {
font-family: 'Museo Sans', Verdana, Helvetica, Arial, sans-serif;

}

After the afternoon coffee run, our designer stops by to see how things are

going and notices that the italics aren’t quite right. We’re using a system-

faked italicization, but this font has different characters for actual italics. So

how can we use the actual italic font provided by the font foundry?

We need to define a different @font-face declaration. We can use the font-style
attribute to group the fonts together, like this:

/* A font by Jos Buivenga (exljbris) -> www.exljbris.nl */
@font-face {
font-family: 'Museo Sans';
src: url('MuseoSans.eot');
src: url('MuseoSans.eot?iefix') format('eot'),

url('MuseoSans.woff') format('woff'),
url('MuseoSans.otf') format('opentype'),
url('MuseoSans.svg') format('svg');

}
@font-face {
font-family: 'Museo Sans';
font-style: italic;

96 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

Can I Use Any Font?

No. Fonts, like many creative products, are licensed. Some fonts are licensed for use

as included files (many of them available at the League of Movable Type website), but

for most fonts, your license does not allow you to include them in a web page that

you serve to other computers. If it’s not clear in the license, you need to contact the

typographer and clarify. Ignorance of the law is not a defense to break it.

Be wary of “free” fonts from large collection sites, as many of these are actually copies

of fonts requiring licenses.

src: url('MuseoSansItalic.eot');
src: url('MuseoSansItalic.eot?iefix') format('eot'),

url('MuseoSansItalic.woff') format('woff'),
url('MuseoSansItalic.otf') format('opentype'),
url('MuseoSansItalic.svg') format('svg');

}

We change our HTML to handle it like this:

body {
font-family: 'Museo Sans', Verdana, Helvetica, Arial, sans-serif;

}

em {
font-style: italic;

}

We check our browsers, and the italic font now looks correct in Safari, Firefox,

and Chrome. Internet Explorer, however, does not recognize the font-style at-

tribute here, and we will not have italicized text in MSIE. Opera 10 also has

issues with italics. To work around this, we’re going to create two separate

@font-face names in our CSS.

artflow/css/app/assets/stylesheets/fonts.css.scss

/* A font by Jos Buivenga (exljbris) -> www.exljbris.nl */
@font-face {

font-family: 'Museo Sans';
src: url('MuseoSans.eot');
src: url('MuseoSans.eot?iefix') format('eot'),

url('MuseoSans.woff') format('woff'),
url('MuseoSans.otf') format('opentype'),
url('MuseoSans.svg') format('svg');

}
@font-face {

font-family: 'Museo Sans Italic';
src: url('MuseoSansItalic.eot');

report erratum • discuss

Using Web Fonts • 97

http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/fonts.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

src: url('MuseoSansItalic.eot?iefix') format('eot'),
url('MuseoSansItalic.woff') format('woff'),
url('MuseoSansItalic.otf') format('opentype'),
url('MuseoSansItalic.svg') format('svg');

}

We’ve given the italic form a unique name. This requires that we define the

font-family attribute for any element that we want to be italicized in the proper

font. This may not be an issue for you, but many italic fonts have different

character styles that differ greatly from the guessed italics (or oblique) font

that the system can generate on the fly.

artflow/css/app/assets/stylesheets/fonts.css.scss

body {
font-family: 'Museo Sans', Verdana, Helvetica, Arial, sans-serif;

}

em {
font-family: 'Museo Sans Italic', Verdana, Helvetica, Arial, sans-serif;
font-style: italic;

}

If we didn’t have to support MSIE, we would have skipped this step and gone

with the cleaner grouping of fonts that respect the font-style: italic declaration.

As with most of these techniques, it’s best to know what you need to support

up front and target those devices and browsers.

Font faces can help reduce images and provide a closer level of control for

design staff, especially on internal-facing apps. It’s important that we not

overuse this tool and that we optimize our fonts to be as small as possible

for the task required.

There are so many exciting things coming down the pike with the CSS3 Fonts

Module that have not yet been implemented.13 While these things may take

a while to get into all browsers, we can start using them today and marking

up our code properly. Good typography starts with familiarizing yourself with

typographic rules, such as those found in Robert Bringhurst’s The Elements

of Typographic Style, which is being translated to the Web.14

3.5 Wrapping Up

As we’ve learned in this chapter, CSS can be a pretty deep topic, but it’s

surmountable given Rails’s improved asset tools and some attention to detail.

13. http://www.w3.org/TR/css3-fonts/
14. http://webtypography.net/

98 • Chapter 3. Adding Cascading Style Sheets

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/css/app/assets/stylesheets/fonts.css.scss
http://www.w3.org/TR/css3-fonts/
http://webtypography.net/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Even if we don’t have a design bone in our body and think that bright green

and violent purple are completely reasonable choices for a pair of background

and body text colors, we can edit a CSS file responsibly and even use some

neat SCSS shortcuts to cut down on the drudgery.

Next we look at another arena where Rails has made significant improvements

to ease the tasks of the developer, and we look at another dark art of the front

end developer, JavaScript.

report erratum • discuss

Wrapping Up • 99

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CHAPTER 4

Adding JavaScript

Sometimes we need to add client-side behavior to our Rails applications to

support a more interactive user experience, adding features like custom form

controls and asynchronous requests (Ajax). This is where Ruby stops being

useful and it’s time to rely on our JavaScript. Today, knowledge of JavaScript

is necessary to being effective as a user interface developer. Luckily (and not

surprisingly), Rails developers have an advantage. Out of the box, we can use

CoffeeScript, a cleaner, more concise language that compiles into JavaScript.1

In this chapter we’ll focus on making our ArtFlow application user interface

easier to use by adding some client-side behavior and improving the creation-

commenting interface and messaging systems. While we do this, we’ll pick

up some CoffeeScript and learn how we can make our code shorter, cleaner,

and more expressive by letting it write JavaScript for us. (Bid the curly braces

adieu!)

4.1 Using JavaScript from Rails

The way Rails developers have used JavaScript from Rails has changed over

the years; in the early days of Rails we commonly dropped JavaScript directly

into our templates in <script> tags, inline in onclick attributes, and even gener-

ated JavaScript by interacting with Ruby object proxies, an approach termed

Ruby JavaScript (RJS). While all of these approaches worked in a general

sense, they involved dirtying our template code with yet another language

(aren’t HTML and Ruby enough?), and things got messy very quickly.

Let’s look at an example. In ArtFlow we display a list of comments on each

creation’s page. This is how our designers and clients discuss the work being

1. http://jashkenas.github.com/coffee-script/

A different language is a different vision of life.

 ➤ Federico Fellini

report erratum • discuss

http://jashkenas.github.com/coffee-script/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

done. By default, we only show the last three comments, but we support

displaying all of the comments with a link at the top of the comment stream.

Users can click the link to toggle the expanded view.

In the past, we implemented this control with JavaScript directly inserted

into the template, setting the link’s onclick attribute. Here’s what our code in

app/views/creations/show.html.erb looked like:

<p>
<%= link_to 'View All Comments', '#comments',

onclick: "var comments = $('#comments li');
if ($(this).text() == 'View All Comments') {

comments.show();
$(this).text('Collapse Comments');

} else {
comments.slice(3).hide();
$(this).text('View All Comments')

}
return false;" %>

</p>

This isn’t the easiest code to read. In just a few lines we have to switch lan-

guages from HTML to Ruby (via ERB) and then to JavaScript. The code itself

is fairly basic DOM querying and manipulation using jQuery, the default

JavaScript framework (read: handy box of tools) that ships with Rails. We

used jQuery’s $() function to change the link text and find all the comment

 tags to change their visibility.2

Let’s figure out how we can make this code a bit easier to read and maintain.

While we could shorten this up by extracting the code into a function and

invoking it from our onclick, what if we could take the JavaScript out of the

template entirely, attaching the behavior to our element just like we apply

CSS styles to a selector? This technique is called Unobtrusive JavaScript, it’s

the leading best practice for adding client-side behavior to a web page, and

it’s one of the rules we follow, on page 233.

Coding Unobtrusively

Let’s put Unobtrusive JavaScript, or UJS, into practice by converting our

expander link. The first step is to give the element we’d like to add our

behavior to some identifying feature, like an id or a class, just as we would if

we wanted to style the element with CSS:

2. http://jquery.com

102 • Chapter 4. Adding JavaScript

report erratum • discuss

http://jquery.com
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/js/app/views/creations/show.html.erb

<% if @creation.comments.any? %>
<p><%= link_to 'View All Comments', '#comments', id: 'comment_expander' %></p>

<% end %>

OK, so we have an id we can use. Let’s define and attach our behavior. We’ll

do this in a separate file under app/assets/javascripts (this is similar to how we

handled style sheets in Chapter 3, Adding Cascading Style Sheets, on page

73). Instead of using plain, vanilla JavaScript, we’ll use CoffeeScript instead.

When we originally created our Comment (using rails generate resource), Rails cre-

ated a stub at comments.js.coffee, so we’ll use that.

CoffeeScript syntax is more concise than JavaScript for a number of reasons.

Since anonymous functions are used so frequently in JavaScript, it supports

a shorter syntax for defining them: -> instead of function. It also uses indentation

rather than curly braces to denote code blocks, doesn’t use semicolons (unless,

like Ruby, you want more than one statement on a line), and has a host of

other features like string interpolation and iterators that will feel familiar to

Rubyists.

We add the expander link code to our CoffeeScript file with a few small

modifications:

artflow/js/app/assets/javascripts/comments.js.coffee

$(document).ready ->

$('#comment_expander').click (e) ->
comments = $('#comments li')
if $(this).text() == 'View All Comments'

comments.show()
$(this).text('Collapse Comments')

else
comments.slice(3).hide()
$(this).text('View All Comments')

e.preventDefault()

The first difference is that we wrap our code in a function we pass to $(docu-
ment).ready() (everything indented is the function body). This delays execution

of the code until the DOM has been completely put together by the browser.

Next, we use jQuery’s $() function to find an element with the id we’re looking

for. If it finds one, a click event handler is attached using the click() function.

The only difference to the function body is that we call preventDefault() on the

click event rather than using return false, as it’s more explicit (and doesn’t have

any event propagation side effects). We’re replacing the default behavior of

report erratum • discuss

Using JavaScript from Rails • 103

http://media.pragprog.com/titles/warv/code/artflow/js/app/views/creations/show.html.erb
http://media.pragprog.com/titles/warv/code/artflow/js/app/assets/javascripts/comments.js.coffee
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

the link, which would take users to the list of comments farther down the

page, but only for browsers that support JavaScript.3

Let’s talk about how this is an improvement over inlining the JavaScript. First

of all, look at the template code—a single, easily readable line that only does

one thing! We use Rails and HTML to configure the JavaScript behavior, rather

than define it in place. Since the code itself is in a separate file, managed by

the asset pipeline (as explained in Section 3.1, Using the Asset Pipeline, on

page 73), we get to use the flavor of JavaScript we want, too—CoffeeScript—

and make use of detailed comments with nice tools like Docco to make

teaching and maintaining our client-side code easier in the long term.4 If this

was a consulting project, this would help us build a more polished deliverable

for our client, too.

Now we need to make sure our comments.js.coffee gets loaded by the browser.

We used javascript_include_tag() to pull in our application.js:

artflow/js/app/views/layouts/application.html.erb

<%= javascript_include_tag "application" %>

Now it’s just a matter of adding a Sprockets require directive (see Sprocket

Directives, on page 74) in application.js for comments:

artflow/js/app/assets/javascripts/application.js

//= require comments

//= require modernizr-1.7.custom
//= require jquery
//= require jquery_ujs

➤

Now our code will be included in application.js, and after the DOM is completely

loaded by the browser, our expander behavior will be automatically attached

to the link for our comment list.

We need to use JavaScript in several other places in our ArtFlow user interface.

We’ll see that in many cases adding client-side behavior in Rails is even easier

than the custom control we just built; often it doesn’t require even a single

line of JavaScript. This is thanks to Rails’s inclusion of jQuery UJS, a library

that automatically adds some common client-side features purely based on

hints we leave in our HTML.

Using jQuery UJS

The automatic inclusion of the jQuery UJS library, an “Unobstrusive Java-

Script adapter” for Rails and jQuery, gives us a lot of JavaScript power for

3. http://fuelyourcoding.com/jquery-events-stop-misusing-return-false/
4. http://jashkenas.github.com/docco/

104 • Chapter 4. Adding JavaScript

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/js/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/warv/code/artflow/js/app/assets/javascripts/application.js
http://fuelyourcoding.com/jquery-events-stop-misusing-return-false/
http://jashkenas.github.com/docco/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

free. Just by providing a special option or two to standard Rails helpers, we

can add client-side behavior without writing any JavaScript (or CoffeeScript)

ourselves.5

Rails puts the jQuery UJS library into our application.js automatically:

artflow/js/app/assets/javascripts/application.js

//= require jquery_ujs

Let’s try using it. One thing that the adapter can handle for us is adding

confirmation dialogs for links. This would be nice for our Remove Creation

control in ArtFlow. Rather than needing the screen real estate for a confirma-

tion checkbox on the page (we don’t want people to remove their hard work

by accident), we can just ask the user for confirmation when clicking the

control. We just need to pass a :confirm option to link_to():

artflow/js/app/views/creations/show.html.erb

<p>
<%= link_to "Remove Creation", @creation, method: 'delete',

confirm: "Are you sure you want to remove this creation?" %>
</p>

Clicking the link in our browser yields a nice little modal dialog box with our

question, as seen in Figure 11, A JavaScript confirmation dialog, on page 106.

How does JavaScript know it should pop up the confirmation dialog? Well,

let’s look at the HTML our link_to() generated:

js/confirm.html

<p>
<a href="/creations/1"

data-method="delete"
data-confirm="Are you sure you want to remove this creation?">

Remove Creation

</p>

The thing to notice here is the addition of a data-confirm attribute to our <a>
tag. We also have a data-method attribute to support sending an HTTP DELETE

request (which the adapter also sets up for us). Custom data attributes are

a part of the HTML5 specification and are meant to be used by a site’s own

scripts to add behavior.6

These data attributes are the hints that Rails leaves behind for the jQuery

UJS adapter to look for. When the page loads, it automatically finds the

5. https://github.com/rails/jquery-ujs
6. http://www.w3.org/TR/html5/elements.html#embedding-custom-non-visible-data-with-the-data-attributes

report erratum • discuss

Using JavaScript from Rails • 105

http://media.pragprog.com/titles/warv/code/artflow/js/app/assets/javascripts/application.js
http://media.pragprog.com/titles/warv/code/artflow/js/app/views/creations/show.html.erb
http://media.pragprog.com/titles/warv/code/js/confirm.html
https://github.com/rails/jquery-ujs
http://www.w3.org/TR/html5/elements.html#embedding-custom-non-visible-data-with-the-data-attributes
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 11—A JavaScript confirmation dialog

elements containing these special attributes and attaches the appropriate

behavior, all without a single line of custom JavaScript. In this case, the

data-confirm attribute tells the adapter to check the user’s intention with a

confirmation dialog before following through and sending the request. The

request itself is also handled by the adapter; since it found a data-method
attribute, it will help the browser put together the request as needed for Rails

to route it to the CreationsController destroy() action.

This unobtrusive approach, prepackaged and behind-the-scenes, is so

decoupled that in many cases we can ignore the details and just use the Rails

helpers to get the behavior we want. Now let’s look at a more advanced

example by building an asynchronous form and adding some special behavior

of our own to the page with a bit of jQuery.

Building a Remote Form

In Coding Unobtrusively, on page 102, we looked at the creation commenting

system that our designers and clients use when discussing the progress of a

Creation. Let’s continue to improve that portion of our ArtFlow user interface.

The comment list is at the bottom of our show.html.erb:

artflow/js/app/views/creations/show.html.erb

<ul id='comments'>
<%= render @creation.comments %>

Since we’re passing the creation’s set of comments to render(), it will render

each one of them with the _comment.html.erb partial:

artflow/js/app/views/comments/_comment.html.erb

<%= raw textilize(comment.body) %>
<p class='meta'>

<%= link_to comment.user.name, comment.user %>,
<%=l comment.created_at %>

</p>

106 • Chapter 4. Adding JavaScript

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/js/app/views/creations/show.html.erb
http://media.pragprog.com/titles/warv/code/artflow/js/app/views/comments/_comment.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Now let’s create our comment form. We don’t allow comment editing, so we’ll

hardcode in Comment.new as the object for the semantic_form_for() we learned about

in Formtastic, on page 138. Let’s edit app/views/comments/_form.html.erb:

<%= semantic_form_for [@creation, Comment.new] do |f| %>
<%= f.inputs :body, label: false %>
<%= f.buttons do %>

<%= f.commit_button 'Add Comment' %>
<% end %>

<% end %>

Passing in the creation and the comment together as an array will make sure

the form submits to the nested route for the comments that we’ve defined in

our config/routes.rb:

artflow/js/config/routes.rb

resources :creations do
➤ resources :comments

member do
get 'permissions'

end
end

Our form will submit to POST /creations/:creation_id/comments, which is created by

this route. We insert the form partial at the bottom of our comment listing:

artflow/js/app/views/creations/show.html.erb

<ul id='comments'>
<%= render @creation.comments %>

<h3>Add Comment</h3>
<%= render 'comments/form' %>

Our CommentsController create() action is pretty simple; it merely creates the

comment and redirects back to the comment listing:

artflow/js/app/controllers/comments_controller.v1.rb

class CommentsController < ApplicationController
before_filter :find_creation

def create
@comment = @creation.comments.new(params[:comment])
@comment.user = current_user
@comment.save
redirect_to @creation

end
private
def find_creation

@creation = Creation.find(params[:creation_id])
end

end

report erratum • discuss

Using JavaScript from Rails • 107

http://media.pragprog.com/titles/warv/code/artflow/js/config/routes.rb
http://media.pragprog.com/titles/warv/code/artflow/js/app/views/creations/show.html.erb
http://media.pragprog.com/titles/warv/code/artflow/js/app/controllers/comments_controller.v1.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Right now this form is synchronous, which means when we submit a new

comment, the browser changes location; it does a POST to our controller, and

we’re redirected back. We want people to be able to submit comments and

see those comments pop up in place immediately without leaving their place

on the page.

Let’s change this to an asynchronous operation by modifying comments/
_form.html.erb and telling Rails that the form is remote.

artflow/js/app/views/comments/_form.html.erb

<%= semantic_form_for [@creation, Comment.new], remote: true do |f| %>➤

<%= f.inputs :body, label: false %>
<%= f.buttons do %>

<%= f.commit_button 'Add Comment' %>
<% end %>

<% end %>

When Rails sees the remote option, it adds a data-remote attribute to the <form>
tag it outputs, just as it added a data-confirm attribute when we used a confirm
option for the link_to() for Figure 11, A JavaScript confirmation dialog, on page

106. The behavior that the jQuery driver attaches this time is a bit more com-

plex; it intercepts user submission of the form and stops the browser from

sending a normal, synchronous HTTP POST. Instead, an asynchronous request

is sent by JavaScript and the browser stays put while it waits for a response.

All of this happens without us having to do anything special except make

sure the controller is sending a JavaScript response that tells the script what

to do next.

Right now, our controller will respond to all requests with a redirect. That’s

not going to work for the asynchronous request JavaScript will send; we want

to send back JavaScript code to be evaluated, not send the browser back to

this page—that’s the whole point of the asynchronous request in the first

place! Let’s edit our create() action in our CommentsController to differentiate

between HTML and JavaScript requests:

artflow/js/app/controllers/comments_controller.rb

class CommentsController < ApplicationController
before_filter :authenticate_user!
before_filter :find_creation

def create
@comment = @creation.comments.new(params[:comment])
@comment.user = current_user
@comment.save!
respond_to do |format|

format.html do

108 • Chapter 4. Adding JavaScript

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/js/app/views/comments/_form.html.erb
http://media.pragprog.com/titles/warv/code/artflow/js/app/controllers/comments_controller.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

redirect_to comments_url
end
format.js

end
end

private

def find_creation
@creation = Creation.find(params[:creation_id])

end
end

By not passing a block to format.js, we’re indicating that the template for this

action and format should be rendered. This will be the JavaScript code we’d

like evaluated. Let’s have our create.js.erb template insert the new comment at

the bottom of the comment list on the page:

artflow/js/app/views/comments/create.js.erb

$('#comments').append("<%=j raw(render(@comment)) %>");

This is just an ERB template that generates JavaScript instead of the HTML

we’re used to. It’s just a single line, so it’s tempting to use render :inline from

the CommentsController, but we don’t! The brevity isn’t an excuse to get messy

and inconsistent. We keep all of our templates in files, where they belong,

and other developers on our team will know where to find them.

In create.js.erb we’re finding the comments list with a CSS selector using jQuery’s

$() function and then appending content to it with append(). The content we’re

adding is the result of rendering the comment’s _comment.html.erb partial. But

what’s with the raw() and j() we’re wrapping it in?

Whenever we insert content into an ERB template with a concatenation tag

(that is, a <%=%>), Rails will automatically escape any embedded HTML inside

the string, unless we tell it we’re sure the content is safe to insert by using

the raw() helper. We don’t want to see the HTML itself, do we?

The j() helper is a bit of syntactic sugar for escape_javascript(), which takes a

string and cleans it up so that it can be safely inserted into JavaScript. If the

result of our render() includes any quotes, we don’t need them causing a

JavaScript syntax error by prematurely closing the string. This little j() handles

escaping these quotes for us.

Let’s review how this all works from end to end. First, our user fills in a

comment and submits the form. The form submittal is intercepted by Java-

Script, which kicks off an asynchronous request to the server. The server

responds with a chunk of JavaScript code that appends a new comment

report erratum • discuss

Using JavaScript from Rails • 109

http://media.pragprog.com/titles/warv/code/artflow/js/app/views/comments/create.js.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

(our comment partial) to our of comments. When JavaScript receives the

response, it evaluates it, and a new comment is added to the bottom of the

list. With just a touch of JavaScript, we’ve made the interface feel more

responsive.

So far we’ve been content letting Rails and the jQuery UJS driver add behavior

to the page by looking for custom data attributes. Let’s go a step further and

figure out how we can manipulate the DOM and add our own events.

We’ve seen that with jQuery (which we can learn more about in jQuery in

Action [BK10] by Bear Bibeault and Yehuda Katz) and Rails’s powerful jQuery

UJS driver we can quickly build Ajax interfaces and even easily attach our

own custom behavior to the page, all while using a new, cleaner syntax for

JavaScript and CoffeeScript.

As more and more of our application’s interaction code moves out of traditional

requests and into asynchronous requests with JavaScript, we should ensure

that our code has test coverage to prevent breakage when we push to produc-

tion servers and our users. Let’s take a look at adding a layer of tests to make

sure our interface is built correctly and will keep working as our system grows.

4.2 Testing Ajax

While our web browser will notify us of errors in the console (and sometimes

also through popup alerts), we need a more automated solution that will help

us track down problems quickly and with less effort and won’t be completely

constrained to the JavaScript bits of code. We’d like to test how our JavaScript

and Ruby parts work together. We’ll install a couple libraries to help us out.

Cucumber is a framework that lets us define how we expect our user interface

to work using an easy-to-read, domain-specific language (Gherkin) and then

lets us verify our system against that definition.7 To do this, Cucumber can

use Capybara, a library of test drivers ranging from the simple and lightweight

to full-blown control of a browser session complete with JavaScript support.8

Testing with Cucumber and Capybara

Together, Cucumber and Capybara make an impressive acceptance testing

framework that will help us make sure all the pieces of our application work

correctly for our users. Surprisingly, getting such an advanced system up

and running is remarkably straightforward. Let’s do it now.

7. http://cukes.info/
8. https://github.com/jnicklas/capybara

110 • Chapter 4. Adding JavaScript

report erratum • discuss

http://cukes.info/
https://github.com/jnicklas/capybara
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Getting our testing environment starts in our Gemfile, where we add capybara,
cucumber-rails, launchy (used to launch the browser for debugging, as explained

in Show Me the Page, on page 114), and database_cleaner (used for resetting our

database between tests):

artflow/js/Gemfile

group :test do
➤ gem 'capybara'
➤ gem 'cucumber-rails'
➤ gem 'launchy'
➤ gem 'database_cleaner'

gem 'turn', :require => false
gem 'factory_girl'

end

After installing the new libraries with Bundler, we need to run the cucumber:install
generator to configure our application to run Cucumber.

% rails generate cucumber:install
create config/cucumber.yml
create script/cucumber
chmod script/cucumber
create features/step_definitions
create features/support
create features/support/env.rb
exist lib/tasks
create lib/tasks/cucumber.rake

gsub config/database.yml
gsub config/database.yml

force config/database.yml

Once the generator has finished its work, we test run Cucumber to make

sure everything’s configured correctly. We’ll use the handy cucumber Rake task

that’s been set up for us:

% rake cucumber
0 scenarios
0 steps
0m0.000s

Great! The zeroes here are good news: Cucumber runs! Let’s start our first

scenario by creating a new file in the features directory and write out how we

expect the interface to behave.

Scenarios consist of multiple lines, or steps, written in Cucumber’s extensible

Gherkin language.9 We’ll start with making sure a designer can sign in, then

we’ll build on that later to verify the designer can add a comment.

9. https://github.com/cucumber/cucumber/wiki/Gherkin

report erratum • discuss

Testing Ajax • 111

http://media.pragprog.com/titles/warv/code/artflow/js/Gemfile
https://github.com/cucumber/cucumber/wiki/Gherkin
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/js/features/session.feature

Scenario: Designer can sign in
Given I am designer "Lindsay Bluth" with an account
And I sign in
Then I should see "Welcome, Lindsay Bluth"

Let’s try running Cucumber again:

% rake cucumber
...
1 scenario (1 undefined)
3 steps (3 undefined)
0m0.005s

Cucumber ran our scenario line by line...or it would have, if it understood

what we wanted the first step to be. Thankfully Cucumber told us exactly

what it needs: new step definitions added. Let’s copy the first chunk of Ruby

code it output and paste it into a new file, features/step_definitions/common_steps.rb.
We replace pending with what we want the step to do:

artflow/js/features/step_definitions/common_steps.rb

Given /^I am designer "([^"]*)" with an account$/ do |name|
email = "#{name.downcase.gsub(' ', '.')}@artflowme.com"
@user = Designer.create!(name: name, email: email, password: 'testtest')

end

Step definitions consist of a pattern and a block to execute when run.

Matches for groups in the regular expression are automatically yielded as

arguments to the block. In this step we capture the name of the designer,

then in the body of the step definition we create the designer record with a

simple password and an email address we generate so that validations pass.

We assign the record to an instance variable, @user, so we can reference it in

later steps.

Let’s put in our other two step definitions now:

artflow/js/features/step_definitions/common_steps.rb

Given /^I sign in$/ do
visit new_designer_session_path
fill_in('Email', :with => @user.email)
fill_in('Password', :with => 'testtest')
click_button('Sign in')

end

Then /^I should see "([^"]*)"$/ do |text|
has_content?(text)

end

112 • Chapter 4. Adding JavaScript

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/js/features/session.feature
http://media.pragprog.com/titles/warv/code/artflow/js/features/step_definitions/common_steps.rb
http://media.pragprog.com/titles/warv/code/artflow/js/features/step_definitions/common_steps.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

As we implement these steps we dive more fully into Capybara’s DSL.10 Not

surprisingly, it feels like we’re giving instructions to a browser. We will be!

In our first step, we use visit() to request a URL. We go to the sign-in page for

designers, then we use the fill_in() method to fill in our form fields. We wrap

up the sign-in process by pressing the “Sign in” button. It’s exactly what we

would do with a browser in front of us.

We verify that the page contains the welcome message by using the has_content?()
method. Running Cucumber again, we see everything’s passing. Success!

% rake cucumber
...
1 scenario (1 passed)
3 steps (3 passed)
0m0.005s

Now we know our sign-in process works, and we’ve built up step definitions

that we’ll need to use in future scenarios. We can use them now to check our

comment form. Let’s add features/comments.feature.

Since all of our comment scenarios require a signed-in user, we’ll add our

first two sign-in steps (we don’t need to check the welcome message) as a

background. This will will make them run before each scenario automatically.11

artflow/js/features/comments.feature

Background:
Given I am designer "Lindsay Bluth" with an account
And I sign in

We also want to make sure there’s a creation around for us to add comments

to. Let’s add a new step to our background:

artflow/js/features/comments.feature

Background:
Given I am designer "Lindsay Bluth" with an account

➤ And a creation
And I sign in

This is a step that’s around purely to set up some data for us, just like when

we created our designer. Its implementation is a bit more complex, though,

because we need to create the ecosystem of associated records for the creation

and make sure it belongs to our designer! We add the step definition in

features/step_definitions/creation_steps.rb:

10. http://rubydoc.info/github/jnicklas/capybara/file/README.md
11. https://github.com/cucumber/cucumber/wiki/Background

report erratum • discuss

Testing Ajax • 113

http://media.pragprog.com/titles/warv/code/artflow/js/features/comments.feature
http://media.pragprog.com/titles/warv/code/artflow/js/features/comments.feature
http://rubydoc.info/github/jnicklas/capybara/file/README.md
https://github.com/cucumber/cucumber/wiki/Background
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Show Me the Page

Sometimes when we encounter an error or an unexpected step failure, we may want

to see what the content of the actual page that Cucumber is interacting with looks

like.

We can do this by adding a step definition that calls the Capybara method

save_and_open_page(), for instance:

Then /^show me the page$/ do
save_and_open_page

end

When Cucumber executes this step (and the Launchy library is installed), Capybara

will pop up a browser window, showing the page content. We won’t be able to interact

with the page (since our application isn’t running), but we can view the source and

verify that the page looks as expected or fix our step definitions to suit.a

a. http://rubygems.org/gems/launchy

artflow/js/features/step_definitions/creation_steps.rb

Given 'a creation' do

Create client record
client = Client.create!(name: 'TestClient',

email: 'client@test.artflowme.com',
password: 'testtest',
password_confirmation: 'testtest')

campaign = client.campaigns.create!(name: 'National 1')
project = campaign.projects.create!(name: 'Pamphlet')
Add current user to project
project.designers << @user
Add creation
sample = File.open('test/fixtures/creation.png')
@creation = project.creations.create!(name: "Logo",

designer: @user,
description: "Test",
file: sample)

end

Now we’ll add our first scenario to the file, verifying that the comment form

is visible to our user before any comments have been added. This is important:

the user needs the form to add the first comment!

artflow/js/features/comments.feature

Scenario: Designer sees form when comments empty
When I go to the creation's page
Then there should be 0 comments
Then the comment form should be visible

114 • Chapter 4. Adding JavaScript

report erratum • discuss

http://rubygems.org/gems/launchy
http://media.pragprog.com/titles/warv/code/artflow/js/features/step_definitions/creation_steps.rb
http://media.pragprog.com/titles/warv/code/artflow/js/features/comments.feature
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We’ll put the step definitions in features/step_definitions/comment_steps.rb.

artflow/js/features/step_definitions/comment_steps.rb

When /^I go to the creation's page$/ do
visit creation_path(@creation)

end

Then /^there should be (\d+) comments?$/ do |number|
assert_equal Integer(number), all(:css, '#comments li').size

end

Then /^the comment form should be visible$/ do
assert has_selector?(:css, 'form#new_comment')

end

The visit() method has made another appearance here by taking us to the

creation’s page. We kept around the creation we generated earlier just so we

could figure out the right URL to go to.

To check the number of comments, we match a count in our step and compare

it to the number of tags we can find inside our comment list using

Capybara’s all() method.

The has_content?() method we used earlier has a brother, has_selector?(), that we

use in our third step to make certain our comment form is present in the

document.

Running rake cucumber shows we’re on track; our designer can reach the creation

page and see the form. Now let’s see if we can get a comment submitted! It’s

time to run a browser.

By default, when Capybara runs our Cucumber steps, it uses the Rack::Test

driver, which is very fast since it doesn’t need to drive a browser session, but

it doesn’t support JavaScript.12 We can tell it to use the Selenium driver (and

Firefox) instead by adding a Cucumber tag, @javascript, to our scenarios.13

We’ll use that tag in our next scenario, testing the comment form we created

in Building a Remote Form, on page 106:

artflow/js/features/comments.feature

@javascript
Scenario: Designer adds comment

When I go to the creation's page
Then there should be 0 comments
When I enter a comment and submit it
Then there should be 1 comment

12. https://github.com/brynary/rack-test
13. http://seleniumhq.org/

report erratum • discuss

Testing Ajax • 115

http://media.pragprog.com/titles/warv/code/artflow/js/features/step_definitions/comment_steps.rb
http://media.pragprog.com/titles/warv/code/artflow/js/features/comments.feature
https://github.com/brynary/rack-test
http://seleniumhq.org/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We only need to add one custom step definition for this scenario to run, which

is to add some text to the comment form and then submit it:

artflow/js/features/step_definitions/comment_steps.rb

When /^I enter a comment and submit it$/ do
fill_in('comment_body', with: 'Test Comment')
click_button('Add Comment')

end

We told Capybara to fill_in() the form field that matched comment_body. Earlier

when we used fill_in(), on page 113, we could rely on the name of the associated

label() tags, but here we can’t, since our <textarea> doesn’t have one. Thankfully

Capybara’s flexible enough to handle either case.

Now that we have everything in place, we can run our new, JavaScript-enabled

scenario with rake cucumber.

This time things work a bit differently. The other scenarios run just as before,

but when Cucumber hits our new scenario, a browser window opens and,

guided by Cucumber, acts out our scenario, testing our full user interface.

Now that we know how to automate a battery of tests against our user inter-

face, let’s look at how our team can use Selenium to manually test our

application without having to know a line of code.

Manual Testing with Selenium IDE

There are tools out there to make manual testing a reasonable choice, too,

especially for team members without access to our application code and test

suite. One favorite of our quality assurance team is the Selenium IDE, which

allows them to record the tests while browsing the site in Mozilla Firefox, as

shown in Figure 12, The Selenium IDE in Firefox, on page 117.

To install the Selenium IDE, we simply visit the Selenium website with Firefox

and install the extension.14 After it’s in, we visit our ArtFlow application in

Firefox and start the Selenium IDE.

When we click Add Creation, it calls a function called clickAndWait(), which does

exactly what a user would do: it clicks a link and waits for it to load. The

parameter of link= is what is called a locator, and it lets us select a block of

text and act upon it, in this case, by clicking it.

Once we’ve followed a particular flow or a UI flow that we want to test, we

can stop recording and save the test by selecting Save Test Case from the File

menu in the IDE.

14. http://www.seleniumhq.com/download/

116 • Chapter 4. Adding JavaScript

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/js/features/step_definitions/comment_steps.rb
http://www.seleniumhq.com/download/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 12—The Selenium IDE in Firefox

One of the other powers of Selenium is its ability to work with a third-party

solution, like SauceLabs’ OnDemand offering,15 which uses Selenium Remote

Control and Selenium Grid,16 to test multiple browsers at once. This will let

us address these browsers and find out if our JavaScript is breaking or if

there are other UI issues that may haunt us.

You can find out more about Selenium testing and driving it with Ruby and

Cucumber in Web Development Recipes [HWWJ12] and Scripted GUI Testing

with Ruby [Dee08], both published by The Pragmatic Bookshelf.

4.3 Wrapping Up

In this chapter we’ve dug into JavaScript and CoffeeScript and how we can

use them from Rails unobtrusively. We learned how to wire Ruby and Java-

Script together to make asynchronous requests that keep our users on task

15. http://saucelabs.com/ondemand
16. http://selenium-grid.seleniumhq.org/

report erratum • discuss

Wrapping Up • 117

http://saucelabs.com/ondemand
http://selenium-grid.seleniumhq.org/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

and in one place, and we’ve discovered we can use Cucumber and Selenium

to test our user interface to make sure it works correctly. Next up, we tackle

one of the most complex aspects of view development (and one of Rails’s

greatest strengths): building usable, maintainable forms.

118 • Chapter 4. Adding JavaScript

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CHAPTER 5

Building Maintainable Forms

Forms, in many ways, are the core interface that users rely on to interact

with the applications we write. Forms allow us to get input from the user and

to support users signing in, submitting content, and searching for data

—really, to do just about anything meaningful. Keeping our form code clean

and easy to read, maintain, and extend means we can react to user feedback

more quickly and produce consistent input UI changes across our application

more easily.

There’s a lot going on in a good form—labels and field layout, hints, placehold-

ers, default values, validation errors—but all of this complexity is manageable

using the tools that Rails provides.

In this chapter we’ll build the creation form for the creation management

application we’ve been developing, ArtFlow. First we’ll build the form using

standard Rails helpers, then we’ll clean it up by creating our own custom

form builder (a powerful but underused feature of Rails), and finally we’ll

learn how some tools the Rails community has developed can take us even

further. When we’re done, the form used by designers, clients, and managers

to upload and annotate creations will feel simple and intuitive to everyone—

even us! We’ll lay the groundwork for that form first.

5.1 Using Semantic Form Tags

When we build forms to create or update records in Rails, we use the form_for()
helper. This helper does a lot of work for us, including automatically deter-

mining which HTML action and method to use for the record based on Rails and

REST conventions.

We start the form for our ArtFlow creation using form_for() in app/views/cre-
ations/_form.html.erb:

If I want your opinion, I’ll ask you to fill out the

necessary forms.

 ➤ Unknown

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<%= form_for @creation do |f| %>
<% end %>

That’s as basic as a form gets, though this is quite a bit less than what’s

actually useful! What we can see, though, is that our form_for() helper accepts

a block (everything between the do and the end) and yields a form builder

instance (which we call f).1 We’ll use methods on this form builder instance

to generate our fields themselves. We start with name and description, plus a

submit button for good measure:

<%= form_for @creation do |f| %>
<%= f.label :name %>
<%= f.text_field :name %>

<%= f.label :description %>
<%= f.text_area :description, cols: 40, rows: 4 %>

<%= f.submit %>
<% end %>

We added labels to our fields with label(); this form builder method generates

<label> HTML tags, which tell our users the name of the field and provide an

easy way to focus the related form control (by letting users click the labels).

We associated our labels to the name and description form controls by passing

their names as arguments to label().

The form controls themselves are pretty easy to understand too. The name
form control uses text_field(), which produces an <input> element with type="text"
suitable for single-line entry. Our description is a more substantial form control,

a <textarea>, generated with the text_area() method.

We can’t forget our file_field, can we? This would be a pretty poor creation form

if we couldn’t actually upload a creation!

<%= form_for @creation, html: {multipart: true} do |f| %>➤

<%= f.label :name %>
<%= f.text_field :name %>
<%= f.label :description %>
<%= f.text_area :description, cols: 40, rows: 4 %>

➤

<%= f.file_field :file %>
<%= f.label :file %>

➤

<%= f.submit %>
<% end %>

1. We’ll go into detail about form builders in Section 5.2, Building Custom Form Builders,

on page 132.

120 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

What About form_tag Instead of form_for?

form_tag() is the generic form tag helper and can be used to create ad hoc forms. Because

form_tag() doesn’t have the model-related smarts of form_for(), we don’t use it when the

form’s subject is a model: we’d rather let Rails do the extra work for us. Why figure

out which URL to send the form results to and what the current value of every field

is if we don’t have to?

One case where it makes sense to use form_tag() is when we’d just like a parameter or

two sent to an action: for instance, a search form that submits a parameter named

q entered in a text_field_tag().a

When your form is backed by a model, use form_for(). When it’s not, use form_tag().

a. For an example of a search form that has been implemented with form_tag(), see

http://guides.rubyonrails.org/form_helpers.html#a-generic-search-form.

Notice we modified our form_for() invocation to pass multipart: true. This option

tells Rails to generate the <form> tag with an enctype attribute that will force

the request to be encoded as multipart/form-data. If we forgot this, we’d only be

sending the filename, so we’re glad we caught it!

Right now the form is just a loose bag of mixed labels and form controls. We

add some structure to more clearly define how these elements are related so

it makes a little more sense when we read it (and so we can style it more

easily). Let’s start by adding a <fieldset>.

The Case for Fieldsets

There is an HTML element ignored by Rails scaffolding (and unknown to many

developers) called <fieldset>. It is, as the name would imply, a group of fields

that are somehow associated. In the wilds of static HTML, you might see an

example like this:

<fieldset>
<legend>Label for this Fieldset</legend>
<!-- inputs, etc -->

</fieldset>

The <legend> here is, in effect, the label for the <fieldset>. A standard browser

rendering of this looks something like this:

report erratum • discuss

Using Semantic Form Tags • 121

http://guides.rubyonrails.org/form_helpers.html#a-generic-search-form
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Using a <fieldset> is great for things like address blocks and credit card blocks

in e-commerce systems, not to mention grouping a series of checkboxes or

radio buttons into a single input. We use <fieldset> to group related fields in

our forms and rely on it for styling. Even when there’s one group of fields in

a form, it’s a good habit to get into, so we’ll add it to our creation form, skip-

ping the optional <legend>:

<%= form_for @creation do |f| %>
<fieldset>

<%= f.label :name %>
<%= f.text_field :name %>

<%= f.label :description %>
<%= f.text_area :description, cols: 40, rows: 4 %>

</fieldset>
<%= f.submit %>

<% end %>

Let’s get these fieldsets lined up.

Laying Out Fields

The layout of the form isn’t quite right yet; we have our labels and their

related form controls in a <fieldset>, but since they’re all inline elements,

everything is placed in one long horizontal line!

We’d like a vertical form with each label above its form control, which turns

out to be more readable than side-by-side pairings2—and definitely more

usable than the mess we have now!

We could add some CSS to force each element to display: block, but that won’t

give us the level of control we’d like for styling, plus it feels a little like a dirty

hack. Since it’s pretty safe to say that a <fieldset> consists of a list of fields,

let’s use a list to break this up; we’d like a tag around each field that groups

the label and form control for styling anyway.

<%= form_for @creation, html: {multipart: true} do |f| %>
<fieldset>

<%= f.label :name %>
<%= f.text_field :name %>

<%= f.label :description %>

2. See the extensive usability testing by Luke Wroblewski at http://www.lukew.com/resources/
articles/web_forms.html.

122 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://www.lukew.com/resources/articles/web_forms.html
http://www.lukew.com/resources/articles/web_forms.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<%= f.text_area :description, cols: 40, rows: 4 %>

<%= f.label :file %>
<%= f.file_field :file %>

</fieldset>
<%= f.submit %>

<% end %>

Now we add a little CSS to give each label its own line by default; we want

that vertical form! Let’s add a style to app/assets/stylesheets/forms.css.scss:

artflow/forms/app/assets/stylesheets/forms.css.scss

fieldset label {
display: block;

}

We can’t forget to add a require directive for this style sheet to our application.css
manifest so that it’s included:

/*
*= require_self
*= require reset
*= require layout
*= require sidebar
*= require forms➤

*/

Things are really coming together; as we can see in the browser, our labels

and form controls are perfectly stacked against the left side of the form:

This is a good start on our form, but what happens when things get more

complex?

report erratum • discuss

Using Semantic Form Tags • 123

http://media.pragprog.com/titles/warv/code/artflow/forms/app/assets/stylesheets/forms.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Wrapping Fields in Tags

There’s a lot of conflicting opinions about which tag (or tags) is most suitable for

grouping labels with their form controls. Persuasive arguments can be made for using

 inside ordered and unordered lists, going the ultra-semantic route with description

(formerly “definition”) lists (whose <dt> and <dd> pairs sadly don’t provide an easily

stylable grouping) and treating the fieldset as a normal flow of paragraph tags. Some

might even claim that, as a purely display-related issue, generic <div> tags are the

best fit.

We picked an ordered list () because it most resembles how we see the natural

structure and purpose of a form: a list of fields our users fill in one by one. The fact

that we could come up with a reasonable semantic choice ruled out using a <div>
from the very beginning.

Side-by-Side Fields

If only our form could stay this simple, but in reality sometimes we need to

support side-by-side labels and form controls.

For our creation form we’ve been tasked to add a secondary fieldset with some

printing-related metadata for our creations (since our designers have the good

fortune of being tasked with print design, too):

<fieldset id='creation-print' class='inline'>

<%= f.label :color_space %>
<%= f.select :color_space, %w(CMYK RGB Other) %>

<%= f.label :bleed, "Bleed size (in.)" %>
<%= f.text_field :bleed, size: 5 %>

</fieldset>

This new fieldset needs to look a bit different, with a smaller font size and

side-by-side labels and form controls. Easy enough—with a bit of CSS we can

make sure our labels sit to the left of the form controls and line up correctly:

artflow/forms/app/assets/stylesheets/forms.css.scss

fieldset#creation-print {
font-size: 0.9em;

}
fieldset.inline label {

display: inline;
width: 240px;

}

124 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/forms/app/assets/stylesheets/forms.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We normally don’t want to use a class named “inline,” as it confuses style

with markup. For this purpose, we’ll show it, but we would want to replace

that name with something more meaningful—for example, the contents of

the fieldset or some other designator. With this in place, a horizontal layout

pops into view for our print-related fields:

Supporting inline fields on a case-by-case basis isn’t difficult either. For

instance, in our creation form’s main fieldset we need to include a form control

designers can toggle to indicate if the creation is visible to the client. It’s a

checkbox, and it looks a bit weird placed below its label instead of next to it.

We’ll fix that by switching the order of the label and the field, then adding a

more focused CSS selector for the :

artflow/forms/app/assets/stylesheets/forms.css.scss

fieldset.inline label,
➤ fieldset li.inline label {

display: inline;
width: 240px;

}

We can even switch the order of the label and the checkbox (so the checkbox

is to the left) without having to edit the CSS, since we’re just using inline and

don’t need to deal with floats:

<li class='inline'>
<%= f.check_box :visible %>
<%= f.label :visible, 'Visible to client?' %>

Our use of .inline for both <fieldset> and brings up an important point: CSS

specificity.

The Important of Being Explicit

Imagine if we had multiple developers/designers working on this form (and

others in our application), and they all had ideas on different tags that could

be used to define content that should be shown inline. What would happen

if, instead of using specific CSS selectors, they decided to use a more generic

selector like .inline? What if someone else modified it later to match how his/her

tag should look? They’d step all over each other, especially in cases where a

tag itself wasn’t inline but contained elements that should be (like our <fieldset>
above). In CSS, context (and specificity) is everything; to prevent unexpected

styling elsewhere, we need to make our selectors a little more explicit.

report erratum • discuss

Using Semantic Form Tags • 125

http://media.pragprog.com/titles/warv/code/artflow/forms/app/assets/stylesheets/forms.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

What About CSS Frameworks?

There are a bevy of CSS frameworks out there, and many have extensive definitions

loaded up from the get-go (some of them very useful in laying out forms). While this

can help jump-start your work in certain instances, it can also be a chain around

your neck as your forms become more complex. We looked at some of these in

Chapter 3, Adding Cascading Style Sheets, on page 73.

Generic classes can cause nightmares for developers; CSS is hard to document

clearly, and tracking down unexpected display behavior (someone else’s idea

of how everyone else’s inline class should look) can be time-consuming and

frustrating.

While providing more specific selectors may seem verbose and can create

longer style sheets, it can also reduce nightmares of views breaking left and

right when development is moving at a good clip. Why slam on the design

brakes?

We don’t start with generalized CSS classes; we work toward them as we

notice commonalities appear in various places throughout our application.

It’s an interactive refactoring process that developers will be familiar with

elsewhere.

Getting specific is easy to accomplish when using CSS selectors. There is a

variety of selectors in the CSS2 and CSS3 references at the W3C.3

Now that we’ve tackled the basics of single-column form layout and have

some solid CSS selector practices to follow, we’ll look at how usability can

become more complicated when our form grows another column.

Tabbing Order

Time passes and requirements change. Now we’ve been told our little fieldset

of print-related metadata, which had been languishing at the bottom of our

form, needs to be placed at the top right of our form so print designers see it

immediately.

Up to the top it goes:

<%= form_for @creation, html: {multipart: true} do |f| %>
<fieldset id='creation-print' class='inline'>➤

<legend>Print Details</legend>➤

3. http://www.w3.org/TR/CSS2/selector.html and http://www.w3.org/TR/css3-selectors/, respectively.

126 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://www.w3.org/TR/CSS2/selector.html
http://www.w3.org/TR/css3-selectors/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

➤

➤

➤ <%= f.label :color_space %>
➤ <%= f.select :color_space, %w(CMYK RGB Other) %>

➤

➤

➤ <%= f.label :bleed, "Bleed size" %>
➤ <%= f.text_field :bleed, size: 5, placeholder: "Inches" %>

➤

➤

➤ </fieldset>
<fieldset>

<%= f.label :name %>
<%= f.text_field :name %>

<%= f.label :description %>
<%= f.text_area :description, cols: 80, rows: 4 %>

<%= f.label :file %>
<%= f.file_field :file %>

</fieldset>
<%= f.submit %>

<% end %>

We’ve also added a <legend > tag to describe these fields as “print details,” and

we’ve set the size and placeholder HTML attributes of bleed to give our users a

hint as to the value that’s expected (we might as well do things right). Now

we float the fieldset to the right with a little CSS:

artflow/forms/app/assets/stylesheets/forms.css.scss

fieldset#creation-print {
float: right;

}

Wait, now we’ve screwed up our tab ordering! Our users spend all day in the

application, adding and updating creations, and they rely on tabbing to

quickly fill out the form. While we need the print details at the top of the form,

we don’t want them replacing more important, general-purpose fields in the

tab order.

Thankfully there’s a way to manually indicate how tabbing between form

controls works: while by default tabs will cycle through any <a>, <area>,

report erratum • discuss

Using Semantic Form Tags • 127

http://media.pragprog.com/titles/warv/code/artflow/forms/app/assets/stylesheets/forms.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<button>, <input>, <object>, <select>, or <textarea> element in the page, we can

use tabindex to change this behavior.

First off, we need to think like a user. What are the first things our user would

be likely to edit in our form? Probably the creation name and not the color

space or bleed settings (nor the upsell link in the sidebar the guy in marketing

added for clients to see). The tab ordering should directly relate to what’s

important for our users.

These should not be our navigation items. A good case in point from elsewhere

in our application is the login form. tabindex="1" should probably be the user

or email field, and the next item (2) should probably be the password field.

And finally? You got it—the Submit button. We should take the same amount

of care with all the forms in our application, especially a form as important

as the creation form.

We can see this in our revised form in app/views/creations/_form.html.erb:

<%= form_for @creation, html: {multipart: true} do |f| %>
<fieldset id='creation-print' class='inline'>➤

<legend>Print Details</legend>➤

➤

➤

➤ <%= f.label :color_space %>
➤ <%= f.select :color_space, %w(CMYK RGB Other),

tabindex: '4' %>➤

➤

➤

➤ <%= f.label :bleed, "Bleed size" %>
➤ <%= f.text_field :bleed, size: 5,

placeholder: "Inches",➤

tabindex: 5 %>➤

➤

➤

➤ </fieldset>
<fieldset>

<%= f.label :name %>
<%= f.text_field :name, tabindex: '1' %>

<%= f.label :description %>
<%= f.text_area :description, cols: 80,

rows: 4,
tabindex: 2 %>

<%= f.label :file %>

128 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<%= f.file_field :file, tabindex: 3 %>

</fieldset>
<%= f.submit %>

<% end %>

Grouping Options

The <option> element is a child element of a form <select>. In our creation form,

for instance, we’d like our designers to categorize the type and dimensions

of a creation used in advertising across both print and Web.

We could mix these together, but as there’s a pretty clear separation concep-

tually, why not group the options in our <select> as well? This will make it

easier for users to find the option they’re looking for when filling out the form.

We can do this with <optgroup>.

The select() method on form builders doesn’t support generating <optgroup>
tags, so we’ll need to create our <select> using a combination of the more

general purpose select_tag() and grouped_options_for_select() helpers. Here’s what

we put in our form:

<%= ad_dimensions_tag(f) %>

In our CreationsHelper, we define ad_dimensions_tag():

artflow/forms/app/helpers/creations_helper.rb

def ad_dimensions_tag(builder)
options = grouped_options_for_select(ad_dimensions_options,

builder.object.ad_dimensions)
select_tag('creation[ad_dimensions]', options)

end

def ad_dimensions_options
[
['Print',
['legal', 'letter', 'half letter', 'half legal', 'other print']],

['Web',
['full banner', 'half banner', 'vertical banner', 'button']]

]
end

Our ad_dimensions_tag() helper calls ad_dimension_options() for the possible values

of our tag. For the moment we’re using a limited set of options—there are a

lot of standard advertisement dimensions. Later we may want to pull these

from another source or even create a model for them (with an association to

Creation).

report erratum • discuss

Using Semantic Form Tags • 129

http://media.pragprog.com/titles/warv/code/artflow/forms/app/helpers/creations_helper.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Automatically Focusing Form Elements

A nice touch to making web apps more usable is to automatically move the focus to

the first form field in our form. It’s just one less tab that users have to hit—potentially

one of many, depending on their settings.

In HTML5, we can simply add autofocus to the input that we want to have this jump

to, like so:

<%= f.text_field :name, autofocus: true %>

Since this only works in browsers that recognize HTML5 attributes on elements, we

need to go ahead and provide a JavaScript fallback. We want to detect this so that it

doesn’t run on our newer browsers. We add a new CoffeeScript file at

app/assets/javascripts/forms.js.coffee to handle this.

artflow/forms/app/assets/javascripts/forms.js.coffee

$(document).ready ->
if not Modernizr.input.autofocus
$('#creation_name').trigger 'focus'

Remember Modernizr? We added it to our layout in Turning on HTML5 for Internet

Explorer and Older Browsers, on page 9. Here we use it to see if the browser supports

autofocus. If it doesn’t, we autofocus our creation name field manually with a bit of

jQuery.

Let’s make sure we add a require directive for our form’s JavaScript to our application.js
manifest:

artflow/forms/app/assets/javascripts/application.js

//= require modernizr-1.7.custom
//= require jquery
//= require jquery_ujs
//= require comments
//= require forms

Now we’ll add some more design metadata to our creations form.

To determine the current value of the field, ad_dimensions_tag() calls ad_dimensions()
on builder.object, which is our creation instance.

The result speaks for itself (Figure 13, Selection options for ad dimensions, on

page 131).

This provides a much clearer delineation and grouping of select options and

allows for a user to find the ad dimensions faster; instead of hunting through

a long list of mixed dimensions, a designer working on a legal-sized print ad

can find it quicker under Print.

Now we’ll see what we tell our users when they submit a form with bad or

missing data.

130 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/forms/app/assets/javascripts/forms.js.coffee
http://media.pragprog.com/titles/warv/code/artflow/forms/app/assets/javascripts/application.js
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 13—Selection options for ad dimensions

Displaying Errors

Nothing’s more frustrating to users than a form that they can’t successfully

submit for reasons they can’t figure out. Providing users with useful feedback

when they fail to provide a Rails action with the information it needs (to pass

model validations, for instance) is something we need to take very seriously.

In our creation form, a number of the fields we’ve defined are required for

validations. We’ve taken care to make this apparent by adding a required CSS

class to the markup for those fields. For example, for name we use this:

<li class='required'>
<%= f.label :name %>
<%= f.text_field :name, autofocus: true %>

Our CSS for this is simple; we simply bold the <label>:

artflow/forms/app/assets/stylesheets/forms.css.scss

fieldset li.required label {
font-weight: bold;

}

If a user submits our form and a validation for name fails, Rails will wrap both

our <label> and <input> (generated by text_field()) in a <div> with a .field_with_errors
CSS class when the form is re-rendered.

We can highlight our <input> tags and change the text color of our <label>
easily enough to make the problem more obvious:

report erratum • discuss

Using Semantic Form Tags • 131

http://media.pragprog.com/titles/warv/code/artflow/forms/app/assets/stylesheets/forms.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/forms/app/assets/stylesheets/forms.css.scss

fieldset div.field_with_errors {
label {

color: #f00; /* red */
}
input {

background: #ffc; /* light yellow */
}

}

If we want to show the specific error messages, there are a number of options.

We could use the error_messages() form builder method that’s been extracted to

a separate gem,4 which would let us add the following to our form:

<%= f.error_messages %>

This is a pattern that was commonly used before Rails 3, and it provides a

block of configurable errors that can be styled to look good, as Yahoo has

done in its design pattern library.5

Another option is to check and display the errors beside the fields themselves.

This is the preferred option, as it puts the cause of the problem directly next

to the field where a user can fix it. Instead of adding this nice (but verbose)

feature ourselves, we’ll look at a prepackaged solution in Formtastic, on page

138.

We’ve put together a pretty solid beginning on our creation form, starting

with a simple form_for() and adding <fieldset> tags, handling different form lay-

outs, and tackling usability issues like grouped options, tabindex, and autofocus.

Next we’ll look at how we can extend the form builders form_for() to do more of

the heavy lifting, simplifying some of the semantic boilerplate we’ve been

using.

5.2 Building Custom Form Builders

In Section 5.1, Using Semantic Form Tags, on page 119, we built a semantic

form from the ground up using the form_for() helper and learned that it yields

an object to the body of our form:

<%= form_for @creation, html: {multipart: true} do |f| %>
<% end %>

What is this mysterious object, this f that’s yielded to the body of the form?

4. https://github.com/joelmoss/dynamic_form
5. http://developer.yahoo.com/ypatterns/ and http://developer.yahoo.com/ypatterns/about/stencils/.

132 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/forms/app/assets/stylesheets/forms.css.scss
https://github.com/joelmoss/dynamic_form
http://developer.yahoo.com/ypatterns/
http://developer.yahoo.com/ypatterns/about/stencils/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Meet ActionView::Helpers::FormBuilder. It might just be the best friend you never

knew you had.

The FormBuilder instance yielded to our block knows all about the object the

form is handling (in our case, @creation) and has access to the template so that

it can generate and insert tags. It can check for errors, create labels and

inputs for attributes, and even change a portion of a form to handle a com-

pletely different object (using f.fields_for).

Since form builders know all about the object we’re building the form to create

or modify, it can really reduce the hoops we have to jump through to create

our form fields: it can make decisions about fields so we don’t have to. Take

a simple text field, for example. If we were using the generic text_field_tag(),
here’s how we might add a <textarea> to allow designers to edit the body of a

comment they made to a client (oops, they called him “Jim” instead of

“James”!). We do this in app/views/comments/_form.html.erb:

<%= text_area_tag 'comment[body]', @comment.body %>

We need to provide the name of the field and the current value, since

text_area_tag() doesn’t have the first clue about our comment. When we’re using

a form_for @comment, things become significantly more succinct and magical:

artflow/forms/app/views/comments/_form.html.erb

<%= f.text_area :body %>

Here the form builder handles all the details. We don’t need to tell it what to

name the field; it knows what the standard convention is and applies it,

freeing us from the vagaries of typos and accidental misnaming. It also deals

with inserting the current value of the comment; since the record was supplied

to form_for() and safely hidden away in the form builder (as its object>, as we’ll

see later), it can just ask the comment for its body. We don’t need to get involved

—it’s a pretty boring conversation that we don’t need to know about. Since

we’ve got bigger fish to fry than mucking around with field names and value

insertions that Rails can do easier, faster, and more reliably, we let it handle

the details.

FormBuilder really shines, however, when we go beyond the stock helpers it

provides and extend it to support the specific requirements of our applications.

If our forms have been designed to follow a consistent pattern, why not codify

that pattern in a little domain-specific language we can use easily? Why not

convince our form builders to do a little more heavy lifting for us, building in

the helpers for the look-and-feel of our forms instead of using them à la carte?

report erratum • discuss

Building Custom Form Builders • 133

http://media.pragprog.com/titles/warv/code/artflow/forms/app/views/comments/_form.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Defining a Form Builder

To create our own FormBuilder, we just create a new class that inherits from

ActionView::Helpers::FormBuilder. For our application we’ll create ApplicationFormBuilder
in our lib/application_form_builder.rb:

class ApplicationFormBuilder < ActionView::Helpers::FormBuilder
end

Great, now we just need to make sure Rails can find it. Autoloading is a

facility that Rails uses to automatically require() files when it encounters a

constant that it doesn’t recognize in an attempt to resolve the constant. It

does this by a simple naming convention, looking under a whitelist of direc-

tories. New in Rails 3, lib/ has been removed from that list. Since we’re going

to conform to the naming conventions (putting modules in subdirectories,

etc.), we’ll tell Rails it’s really okay to allow autoloading from lib/. We modify

our config/application.rb and set the following:

artflow/forms/config/application.rb

config.autoload_paths += %W(#{config.root}/lib)

We can drop into the console quickly and see that our autoloading is working:

% rails console
>> ApplicationFormBuilder
=> ApplicationFormBuilder

Autoloading is working just fine, so our new form builder class is accessible

and ready to be used. Now to make it do something useful!

Simplifying Markup

We’ve made a few important decisions about how the forms in ArtFlow should

be structured. We’d like to make sure all of our forms follow this structure

consistently, so we’ll build some tools other developers on our team can use

to make it as easy as possible.

In our forms all of our fields are surrounded by tags and include a <label>.

In the ArtFlow’s creation form in app/views/creations/_form.html.erb, it would be nice

to have a new method on our form builder, field_item(), that creates these tags

for us:

<%= f.field_item :name do %>
<%= f.text_field :name %>

<% end %>

Instant and <label> tags! Now, how do we do it? We open up our form

builder class in lib/application_form_builder.rb and add field_item():

134 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/forms/config/application.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

def field_item(attribute, text = nil, &block)
@template.content_tag :li do
@template.concat @template.label(attribute, text)
yield

end
end

Our method starts out by calling a helper, content_tag(), to create our tag.

Since it’s a normal helper (and not a method on the form builder itself, it

needs to be called on @template, our form builder’s reference to the template

itself. We pass a block to content_tag(), which will be used to generate the tags

inside the.

The other method we call on @template is concat(). This method takes its argu-

ment (in this case, the generated <label> tag) and adds it to the template output

at that point (just as if we used a <%= %> ERB tag.

Finally, our method calls yield, executing the block we passed to field_item() in
the template, which inserts the text input for our name field (but could insert

any form control we’d like).

The nice thing about this is that, once written, our team won’t have to

remember (or care about) the details of how fields are created, and in the

future if we need to change the way fields are laid out, we only need to edit

one place.

Before we can use our ApplicationFormBuilder in our application, we need to con-

figure Rails to use it for forms.

Hooking It Up

The first à la carte method to tell Rails to use our form builder is the :builder
option for form_for(). Let’s modify app/views/creations/_form.html.erb:

<%= form_for @creation, builder: ApplicationFormBuilder,
html: {multipart: true} do |f| %>

<% end %>

This can get a bit tedious; it’s unlikely we’d want to use multiple builders

anyhow, so instead let’s set our FormBuilder as the default for form_for(). To do

this, we need to add an initializer in config/initializers:

artflow/forms/config/initializers/form_builder_initializer.rb

ActionView::Base.default_form_builder = ApplicationFormBuilder

Now all our forms will have access to the new form builder methods without

using the :builder option.

Now we’ll take a look at how we can make our form builder a bit smarter.

report erratum • discuss

Building Custom Form Builders • 135

http://media.pragprog.com/titles/warv/code/artflow/forms/config/initializers/form_builder_initializer.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Getting Introspective

Often in a form builder we’ll want to do more than just take the pain out of

retyping commonly used tags; we may want to introspect and interact with

the object the form references in new and interesting ways.

Getting a hold of the referenced object is easy in a form builder: it’s assigned

to the @object instance variable.

We’d love to add attribute-specific errors right next to the fields. We add an

errors_on() method to our form builder:

artflow/forms/lib/application_form_builder.rb

def errors_on(attribute)
if @object.errors[attribute].any?

@template.content_tag(:span,
@object.errors[attribute].to_sentence,
class: 'error'

)
end

end

The idea here is simple—if there are any errors on the object for our attribute,

we return a tag flagged with an error CSS class. We can build this into

our field_item() method:

artflow/forms/lib/application_form_builder.rb

def field_item(attribute, text = nil, &block)
@template.content_tag :li do

@template.concat @template.label(attribute, text)
yield
@template.concat errors_on(attribute)➤

end
end

We can’t forget that Rails already, by default, wraps all attribute-related fields

in a <div> with a CSS class of field_with_errors. We don’t really need that now, so

we turn it off by changing out the field_error_proc it uses so that it just returns

the generated field without adding a <div>; it changes the structure of our

markup unnecessarily.

artflow/forms/config/initializers/form_builder_initializer.rb

ActionView::Base.field_error_proc = ->(field, instance) { field }

Great, now we have automatically generated tags, labels, and error mes-

sages for each field. We can take it a level further, too; usually we’re going to

be building fields with text_field() anyway—and there aren’t that many other

types of form control. What if we created a method for each type, taking care

of the whole thing? We can even throw in the new HTML5 input types,

136 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/forms/lib/application_form_builder.rb
http://media.pragprog.com/titles/warv/code/artflow/forms/lib/application_form_builder.rb
http://media.pragprog.com/titles/warv/code/artflow/forms/config/initializers/form_builder_initializer.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

repurposing the helpers we added in Chapter 2, Improving Readability, on

page 49.

artflow/forms/lib/application_form_builder.rb

def email_field_item(attribute, *args)
field = email_field_tag(attribute, @object.send(attribute), *args)
field_item do
@template.concat field

end
end
def number_field_item(attribute, *args)

field = number_field_tag(attribute, @object.send(attribute), *args)
field_item do
@template.concat field

end
end
def range_field_item(attribute, *args)

field = range_field_tag(attribute, @object.send(attribute), *args)
field_item do
@template.concat field

end
end

It might be a little tempting to do something like this to try to guess the right

form control for the attribute:

artflow/forms/lib/application_form_builder.rb

def guess_field_item(attribute, *args)
Match on attribute name...
if attribute =~ /_url$/

url_field_item(attribute, *args)
Match on attribute column type

elsif @object.class.columns_hash[attribute.to_s].type == :integer
number_field_item(attribute, *args)

else
More insanity...

end
end

We don’t do this! It’s easy enough to explicitly state which form control we

want for an attribute; often the tricks necessary to determine how attributes

should be editable automatically become so overblown that the code becomes

unmaintainable. Keep in mind the level of mental overhead we’d add to your

applications with code like this; why perform code backflips to solve a problem

that doesn’t exist?

If we really want our forms shorter and more “magical,” maybe we should

look at some prepackaged form builders others have created. One popular

choice that might be worth a look is Formtastic.

report erratum • discuss

Building Custom Form Builders • 137

http://media.pragprog.com/titles/warv/code/artflow/forms/lib/application_form_builder.rb
http://media.pragprog.com/titles/warv/code/artflow/forms/lib/application_form_builder.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Formtastic

Formtastic is a plugin by Justin French (and contributors) that packs a punch

when it comes to easily building forms with more semantic, modern markup.6

It doesn’t act as a drop-in replacement for form_for(), but rather it gives you an

easy-to-recognize semantic_form_for() helper that offers a whole slew of handy

methods to get the job done—without the manual boilerplate we hate to type

ourselves (but which should be a part of our forms nonetheless).

Adding Formtatstic to our Rails application is easy. First, we add the following

line to our Gemfile:

artflow/forms/Gemfile

gem 'formtastic'

Then we use Bundler to handle the install.7

% bundle install

Once the Formtastic plugin has been added, we need to add a require directive

to our application.css to include its styling, making sure it’s included before our

own form styles:

artflow/forms/app/assets/stylesheets/application.css

/*
*= require_self
*= require normalize
*= require layout
*= require sidebar
*= require navigation
*= require notifications
*= require blueprint/typography
*= require text
*= require formtastic➤

*= require forms
*/

Let’s convert our earlier form in app/views/creations/_form.html.erb to use Formtastic,

shall we?

<%= semantic_form_for @creation do |f| %>
<%= f.inputs %>
<%= f.buttons %>

<% end %>

Wait, that can’t be it, can it? Let’s take a look at the top bit of the form from

the browser:

6. http://github.com/justinfrench/formtastic
7. http://gembundler.com

138 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/forms/Gemfile
http://media.pragprog.com/titles/warv/code/artflow/forms/app/assets/stylesheets/application.css
http://github.com/justinfrench/formtastic
http://gembundler.com
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

If we look under the covers, we’ll quickly notice a few things. First, the form

correctly uses the <fieldset> tag and even uses / tags, which makes

sense, given that a form is an ordered list of fields. It even lets you select

associations (in this case, the creation’s project) and shows required attributes!

We submit the form without a name and see that Formtastic is even showing

errors like the errors_on() method we added to our custom form builder:

All of our fields are jumbled together right now; we separate our fieldsets and

put them where they’re needed. Formtastic still gives us control over where

we place fields, what to call them, and smaller details—including inline hints.

artflow/forms/app/views/creations/_form.html.erb

<%= semantic_form_for @creation, html: {multipart: true} do |f| %>
<%= f.inputs 'Print Details', id: 'creation-print', class: 'inline' do %>
<%= f.input :color_space, collection: %w(CMYK RGB Other) %>
<%= f.input :bleed, size: 5, placeholder: 'Inches' %>

<% end %>
<%= f.inputs do %>

<%= f.input :name %>
<%= f.input :description, input_html: {cols: 80, rows: 4} %>
<%= f.input :file %>

<% end %>
<%= f.buttons %>

<% end %>

That’s quite a bit shorter than what we built ourselves!

The thing that’s really compelling about Formtastic is that it is semantic

HTML that’s out of your way. Here we have the rare case where what is right

and what is easy are the same thing.

report erratum • discuss

Building Custom Form Builders • 139

http://media.pragprog.com/titles/warv/code/artflow/forms/app/views/creations/_form.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Formtastic has a lot of bells and whistles we could look at later, including

easy internationalization and ways to build on additional input types (without

the work it takes to add them to a vanilla form builder on your own).

Sometimes a less opinionated library is warranted, especially when it comes

to building complex forms. In that case we’d use SimpleForm, a very flexible

alternative.8

We’ve certainly come a long way from our hand-built form and have learned

a lot about how form builders (either ones we build from scratch or commu-

nity-maintained projects we extend) can help us make our forms more pow-

erful and still maintain the Rails simplicity we love so dearly.

5.3 Looking Toward the Future of HTML5 Form Elements

HTML5 has provided us with a large variety of new form elements that aim

to take a lot of the JavaScript complexity out of forms and make these com-

mon-use cases into actual HTML tags and attributes. Doing this lets us

improve the interaction with our users by changing keyboard layouts on

mobile devices and by formatting text in fields.

As we move into the future, we’ll be able to use these elements in our appli-

cations. Some of them we can use today, especially if we are developing for

iOS or Opera environments. But for many of these elements, we’ll have to

wait a year or two before we start using them every day.

Let’s take a look at what the future holds for our forms.

The Elements

There are some browsers that handle these new form fields today, and the

most common of these are Mobile Safari and iOS. Anyone who has spent time

with an iPhone, iPad, or iPod Touch has seen the keyboard change based on

the input. If we look at Figure 14, The various iOS keyboards, on page 141, we

can see what these keyboard types are.

There is a default keyboard, which is used in most typing instances. This is

automatically changed by altering the type attribute of an <input>. If we change

the attribute to type="email", we end up with a space bar broken into three

buttons: the space bar, the @ symbol, and a period. Any email address

includes each of those at least once, so this change cuts down on having to

hit the number button to get to additional symbols. If we make it type="tel",

8. https://github.com/plataformatec/simple_form

140 • Chapter 5. Building Maintainable Forms

report erratum • discuss

https://github.com/plataformatec/simple_form
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 14—The various iOS keyboards

we get only a number pad with the ability to access some special characters.

If we make it type="url", we are presented with something similar to email but

without a space bar at all. Instead we see a period, a forward slash, and a

“.com” button. The return key is replaced with a Go button as well.

The best part about using these new <input> types is that they will revert to

a text input in browsers that don’t understand the new functionality, so we

can use them without fear of backward compatibility.

There are more than just these four types of inputs and other elements, but

they aren’t all currently supported in modern browsers. These include the

following:

• color: An element to provide color picking.

• datetime: An input for putting in dates and times with various child elements

of date, month, week, and time.

• keygen: An element to generate key pairs. Keeps the private key locally and

sends the public key to the server.

• meter: A scalar measurement within a known range of numbers. Usable

for scores, percentages, disk use, and more. Should not be used for

progress of a download or other similar progress bar.

• output: An element for the result of a calculation between other inputs.

report erratum • discuss

Looking Toward the Future of HTML5 Form Elements • 141

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

• progress: An element to show progress of a task, such as a file upload or

server-side processing.

• range: An input for setting a range of options that a user can select within,

such as “between 5 and 10.”

• search: Widely supported in modern browsers and can be seen most dra-

matically in Safari, where Apple has changed the default look to have very

rounded ends and a search icon inside of it.

In addition to these elements, there are a lot of new attributes to use in our

form fields, such as required and placeholder. More information about these can

be found on various sites on the Web, including the developers’ specification.9

While the HTML5 elements promise that one day we’ll be able to stop using

JavaScript and have more semantic form tags for the core of interaction in

our app, the reality is that they just aren’t ready in most browsers (save Opera

11.50+).10 For apps that only need brand-new browser support, experiment

and see if they will work for you. The nature of working on the cutting edge

is that you never know exactly when something will be supported. In some

cases, some of these elements may have been removed from the working

specification before you read this. Always check on the specification to see

what is actually usable when it comes time to build out our forms.

5.4 Wrapping Up

During this chapter we’ve picked up a few techniques and tools that can help

us clean up and make our forms more consistent by using semantic tags and

form builders.

Unfortunately, many people never move beyond the most basic and shallow

of helper methods, never embrace the idea of defining their own view-focused

classes, and never reap the benefits we’ve discovered. In a way, it’s a

byproduct of the mixed nature of views; the templates make us forget that,

just like the controller and model layers, the view layer has the full power of

Ruby behind it.

As Rubyists, we should responsibly embrace the comprehensive and domain-

specific use of our own Ruby classes in views. We’ll be discussing some of

these approaches in more depth in our next chapter, Using Presenters.

9. http://developers.whatwg.org/
10. http://wufoo.com/html5/

142 • Chapter 5. Building Maintainable Forms

report erratum • discuss

http://developers.whatwg.org/
http://wufoo.com/html5/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CHAPTER 6

Using Presenters

There’s a very limited amount of interaction between the view and controller

layers in a Rails application. During rendering, instance variables are copied

over, and the template has access to parameters and the session, but it’s on

its own to make sense of all the information that needs to come together to

be displayed.

Sometimes the best way the view can do this is by using presenters, which

are custom classes that simplify access to a model or other aggregation of

information and know how to get at (or build) the information we need to

display.

We’ve already run across this pattern when we worked with FormBuilder in-

stances in Section 5.2, Building Custom Form Builders, on page 132, which

knew how to build form fields for a record. It’s time we learn how to build our

own presenters from scratch. First we’ll look at how we can use presenters

in templates to help us more easily display information about model records,

and then we will see how we can use presenters from controllers for data

serialization.

In our ArtFlow application we need to display designer status information on

the designer dashboard, the profile, and the administrative scheduling pages

for our management team. The information shown for the designer status

needs to be extracted from the objects associated with the designer: projects,

creations, and clients that the designer is currently working with.

While we could do some of these lookups inline in our template and aggregate

larger sets of data (like the project hours) in helpers or even in the model, it

makes sense to live in our presenter instead because this data belongs

together and is only used in this standardized view. Think of our presenter

as a super-powered helper—a helper object.

I wouldn’t give a nickel for the simplicity on this

side of complexity, but I would give my life for

the simplicity on the other side of complexity.

 ➤ Albert Einstein

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

6.1 Presenting a Record

Let’s put together the presenter class to more easily expose the status data

related to our Designer model. We call it DesignerStatus, since that’s what it is,

and to initialize it, we just pass in the Designer instance. We’ll put it in

lib/designer_status.rb:

class DesignerStatus
def initialize(designer)

@designer = designer
end

end

Our DesignerStatus inherits directly from Ruby’s default Object class. While it’s

easy to become accustomed to using the classes that Rails provides, we’re

not limited to them. Just like Rails itself, we can build our own classes any

time we like.

The data we need to pull together for the view is pulled from some associations

on the designer. We add a few methods to our class:

def active_projects_count
active_projects.count

end

def pending_approvals_count
active_creations.pending_approval.count

end

def approved_count
active_creations.approved.count

end

def active_hours
active_projects.total_hours

end

def hours_per_project
active_projects.inject({}) do |memo, project|

memo[project] = project.total_hours
memo

end
end

private

def active_projects
@designer.projects.active

end

144 • Chapter 6. Using Presenters

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

def active_creations
@designer.creations.active

end

Our presenter only displays information on the active projects and creations

for the designer, so we’ve created a couple of private methods, active_projects()
and active_creations(), that handle getting that information for us. This way we

won’t need to have the same method chaining repeated in the methods we’ll

be calling from our template.

Now we need to instantiate our DesignerStatus presenter for use in our template.

Sometimes it makes sense for the controller to set up the presenter, especially

in cases where the presenter needs to be configured with session or request

parameters. In this case, however, we prefer to instantiate our presenter in

a helper because it’s purely a view concern: it’s only used from a template

and it doesn’t need any additional information about the request. The con-

troller doesn’t necessarily need to retrieve or instantiate every single object a

template might need. Here it’s the view’s job. We’ll use a helper method we’ll

put in app/helpers/designers_helper.rb to create the presenter instance.

module DesignersHelper
def designer_status_for(designer = @designer)

presenter = DesignerStatus.new(designer)
if block_given?

yield presenter
else

presenter
end

end
end

This helper takes an optional designer and defaults to the current @designer if
it’s not provided. When we’re in an action template focused on a single

designer (like the show() action of DesignersController), using this keeps our tem-

plate brief and it doesn’t lock us out of cases where we’d want to display

status information for multiple designers on a single template, since we can

just pass in the specific Designer record whenever we need it.

Once we instantiate our presenter, we yield it to the block if we can, which

would let us invoke methods repeatedly on the presenter without having to

assign it in the template (we don’t do that, as we covered in Chapter 2,

Improving Readability, on page 49).

Now that we have our presenter instance, let’s put together the Designer

Dashboard view that uses it, which is rendered by the DesignersController show()
action from app/views/designers/show.html.erb:

report erratum • discuss

Presenting a Record • 145

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<% designer_status_for do |status| %>
<section class='designer-status'>

<title>Status</title>
<dl>

<dt>Active Projects</dt>
<dd><%= status.active_projects_count %></dd>
<dt>Pending Approval</dt>
<dd><%= status.pending_approvals_count %></dd>
<dt>Approved</dt>
<dd><%= status.approved_count %></dd>

</dl>
<h3>Active Project Hours</h3>
<table>

<tr>
<th>Project</th>
<th>Hours</th>

</tr>
<% status.hours_per_project.each do |project, hours| %>

<tr>
<td><%= link_to project.name, project %></td>
<td><%= hours %></td>

</tr>
<% end %>
<tr>
<th>Total</th>
<td><%= status.active_hours %></td>

</tr>
</table>

</section>
<% end %>

This is great! We have all of these helpers bundled together into one unit

without muddying our model or losing them in the crush of methods in our

helper modules.

How can we support this more generically and make using the presenter

elsewhere in the application as easy as possible? As we said before, we’d like

to display this information in other places, too, but we’d like the information

to be more condensed. Let’s extract the designer status markup out of our

show.html.erb into a partial, _status.html.erb, and add a condition to determine if

we want the “expanded” view that includes our hourly breakdown by project.

We’ll also remove the designer_status_for() call since we won’t need it; we’ll be

passing in our DesignerStatus instance when we render the partial, instead of

creating it there.

artflow/presenters/app/views/designers/_status.html.erb

<section class='designer-status'>
<title>Status</title>
<dl>

146 • Chapter 6. Using Presenters

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/designers/_status.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Joe asks:

When Should I Use a Presenter?

Here are a few signs a part of your view could be better built or refactored as a

presenter:

• It displays specialized, complex data for a record or an aggregation of records,

especially if it requires grouping, sorting, calculations, or transformation to new

data structures for view-specific iteration.

• It uses several interrelated helpers, especially if they call each other, pass around

some type of shared state, are grouped together by a common prefix, or have

been considered cohesive enough to be extracted into a separately named helper

module.

• It’s displayed by an action whose authentication or other environmental con-

straints would make testing the view difficult or slow.

<dt>Active Projects</dt>
<dd class='active-projects'><%= status.active_projects_count %></dd>
<dt>Pending Approval</dt>
<dd class='pending-creations'><%= status.pending_approvals_count %></dd>
<dt>Approved</dt>
<dd class='approved-creations'><%= status.approved_count %></dd>

</dl>
<% if status.expanded? %>➤

<h3>Active Project Hours</h3>
<table>
<tr>

<th>Project</th>
<th>Hours</th>

</tr>
<% status.hours_per_project.each do |project, hours| %>
<tr>

<td><%= link_to project.name, project %></td>
<td><%= hours %></td>

</tr>
<% end %>
<tr>

<th>Total</th>
<td><%= status.active_hours %></td>

</tr>
</table>

➤ <% end %>
</section>

We need to add an expanded?() method to our DesignerStatus and support an

options hash passed to our initializer:

report erratum • discuss

Presenting a Record • 147

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/presenters/lib/designer_status.v3.rb

def initialize(designer, options = {})
@designer = designer
@options = options

end

def expanded?➤

➤

end
@options[:expanded]

➤

In expanded?() we just look for a non-nil or non–false :expanded option. Let’s update

our helper to accept additional options and pass them along. We’ll make the

default non-expanded, since usually we’ll want the short status displayed:

➤ def designer_status_for(designer = @designer, options = {})
➤ presenter = DesignerStatus.new(designer, options)

if block_given?
yield presenter

else
presenter

end
end

Now we can change how our show.html.erb template renders the presenter now

using the partial. We pass along the presenter instance using the :object option,

which will make sure it’s assigned to a variable with the same name as the

partial (in this case, status):

artflow/presenters/app/views/designers/show.v2.html.erb

<%= render partial: 'status',
object: designer_status_for(@designer, expanded: true) %>

We can go even farther than this, tossing out the need for a render() in our

template at all. We can make the DesignerStatus render itself! To do this, our

class needs access to the template instance. This isn’t a problem, since our

helpers are executed in the context of the view; self is what we need to give

our presenter. We edit our designer_status_for() helper and pass it along:

artflow/presenters/app/helpers/designers_helper.rb

def designer_status_for(designer = @designer, options = {})
presenter = DesignerStatus.new(designer, self, options)➤

if block_given?
yield presenter

else
presenter

end
end

end

148 • Chapter 6. Using Presenters

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/lib/designer_status.v3.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/designers/show.v2.html.erb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/helpers/designers_helper.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Now the DesignerStatus initialize() method needs to be modified to accept the

template argument:

artflow/presenters/lib/designer_status.rb

def initialize(designer, template, options = {})
@designer = designer
@template = template
@options = options

end

Now that our presenter has the template instance, what can we do with it?

Well, let’s look at how we want to add the markup for the designer status

from our template:

artflow/presenters/app/views/designers/show.html.erb

<%= designer_status_for(@designer, expanded: true) %>

Wow, that’s short! What’s going on here?

When we insert content with ERB, it automatically calls to_s() (read: “to string”)

on the content first. Let’s define that method on our DesignerStatus presenter

so that inserting our presenter will work out of the box:

artflow/presenters/lib/designer_status.rb

def to_s
@template.render partial: 'designers/status', object: self

end

It’s just as easy to generate the condensed version of our designer status

elsewhere, as we do on the page for a project, showing the status for the

designers styled as a badge:

artflow/presenters/app/views/projects/show.html.erb

<% @project.designers.each do |designer| %>

<%= designer_status_for(designer) %>
<% end %>

Keep in mind we don’t need to use the rendering shortcut or even need to

use the partial at all. We can use designer_status_for() at any point, in any tem-

plate, and extract any of the bits of data we need directly by calling methods

on the DesignerStatus instance. We could support more options in our presenter,

hide and show additional information, or even render an entirely different

partial based on some criteria. Presenters can be amazingly flexible pieces of

machinery.

report erratum • discuss

Presenting a Record • 149

http://media.pragprog.com/titles/warv/code/artflow/presenters/lib/designer_status.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/designers/show.html.erb
http://media.pragprog.com/titles/warv/code/artflow/presenters/lib/designer_status.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/projects/show.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Testing Template Presenters

There are a few aspects of these presenters that make sense to test. We should

test the presenter instances themselves to make sure they’re accurately

extracting the data from the related records. We should also make sure users

are seeing what we expect; that the helper creating the presenter instance

behaves correctly, and that the template for the presenter displays the infor-

mation as we’d like it to.

Let’s focus on the DesignerStatus presenter, helper, and template that we put

together in Section 6.1, Presenting a Record, on page 144, and look at how we

might build our tests. We’ll move from the core behavior of the presenter out

to what the user sees.

Since presenters are just plain old Ruby objects, we can test them with a

plain unit test. We’ll use an ActiveSupport::TestCase, since it gives us some niceties

(like String test names):

artflow/presenters/test/unit/designer_status_test.rb

require 'test_helper'
class DesignerTest < ActiveSupport::TestCase
def setup

setup_designer
@status = DesignerStatus.new(@designer, nil)

end

test 'DesignerStatus instance calculates active projects' do
assert_equal 3, @status.active_projects_count

end

test 'DesignerStatus instance calculates hours' do
assert_equal [2, 2, 2], @status.hours_per_project.values
assert_equal 6, @status.active_hours

end
end

Here we instantiated our DesignerStatus just as our helper would, except we

pass in nil instead of a template or a fancy mock. We’re not testing the to_s()
method: the template won’t be tested.

In the test’s setup() we create a Designer and related Project and Creation records

by calling a method, setup_designer(), that we defined in our test helper:

artflow/presenters/test/test_helper.rb

require 'factories'
class ActiveSupport::TestCase

We don't use fixtures, so we comment this out:
fixtures :all

150 • Chapter 6. Using Presenters

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/test/unit/designer_status_test.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/test/test_helper.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

def setup_designer
@designer = Factory(:designer)
3.times do
creation = Factory(:creation, hours: 2, designer: @designer)
@designer.projects << creation.project

end
@designer.save

end

end

This setup_designer() utility method builds our objects using factory_girl, a test

fixture library we prefer to Rails’s built-in, static YAML-based fixtures.1 Static

fixtures are fine, but it’s nice to be able to dynamically generate fixture data

at will, trying out different combinations of data and using shortcuts like the

Faker gem to give it a little variety.2 Here are the definitions we’re using and

loading from factories.rb:

artflow/presenters/test/factories.rb

Factory.define :designer do |x|
x.sequence(:email) { |n| "designer#{n}@artflowme.com" }
x.password 'testtest'

end

Factory.define :project do |x|
x.sequence(:name) { |n| "Project #{n}" }
x.association :campaign
x.active true

end

Factory.define :campaign do |x|
x.sequence(:name) { |n| "Campaign #{n}" }
x.association :client

end

Factory.define :creation do |x|
x.sequence(:name) { |n| "Creation #{n}" }
x.association :project
x.association :designer
x.stage 'initial'
x.revision 1
x.description "This is a description"

end

With our prepopulated designer, we can test our active_projects_count(),
hours_per_project(), and active_hours() methods to make sure they extract the data

1. https://github.com/thoughtbot/factory_girl
2. http://rubygems.org/gems/faker

report erratum • discuss

Presenting a Record • 151

http://media.pragprog.com/titles/warv/code/artflow/presenters/test/factories.rb
https://github.com/thoughtbot/factory_girl
http://rubygems.org/gems/faker
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

we expect from our record. We can build on this as the data we need to display

grows, and having these tests around will help prevent regression in the

future; it seems likely time tracking and reporting will become more and more

complex as our project grows.

Now let’s make sure our helper behaves correctly. We’ll do this with a Action-
View::TestCase unit test:

artflow/presenters/test/unit/helpers/designers_helper_test.rb

require 'test_helper'

class DesignersHelperTest < ActionView::TestCase

def setup
setup_designer
@status = DesignerStatus.new(@designer, nil)

end

test 'designer_status_for helper returns a DesignerStatus instance' do
assert_kind_of DesignerStatus, designer_status_for(@designer)

end

test 'designer_status_for helper yields a DesignerStatus instance' do
yielded = nil
designer_status_for(@designer) { |obj| yielded = obj }
assert_kind_of DesignerStatus, yielded

end

end

So far we’re just concerned with making sure the helper returns or yields the

DesignerStatus, but we can test the presenter to_s() method, too; since Action-
View::TestCase sets up a template for us, we can use render()! We’ll check that

it’s working as expected by checking a bit of the resulting content:

artflow/presenters/test/unit/helpers/designers_helper_test.rb

test 'calling to_s returns status markup' do
status = designer_status_for(@designer)
assert status.to_s.include?('<title>Status</title>')

end

test 'non-expanded status markup does not include active hours' do
status = designer_status_for(@designer)
assert !status.to_s.include?('Active Project Hours')

end

test 'expanded status markup includes active hours' do
status = designer_status_for(@designer, expanded: true)
assert status.to_s.include?('Active Project Hours')

end

152 • Chapter 6. Using Presenters

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/test/unit/helpers/designers_helper_test.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/test/unit/helpers/designers_helper_test.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We’re careful not to test too much of the markup. We want to avoid writing

brittle tests that will break unnecessarily the next time someone tweaks the

look and feel of the designer status widgets. Instead of ensuring that the

structure of the returned markup meets today’s expectations, we focus on

verifying important pieces of information that are more likely to stand the

test of time.

Let’s add a quick test for our DesignersController show() action, where we display

the “expanded” designer status. We’ll limit our assertions to verifying that

the presenter is rendered and just check the number of active projects dis-

played for our designer.

artflow/presenters/test/functional/designers_controller_test.rb

require 'test_helper'

class DesignersControllerTest < ActionController::TestCase

def setup
setup_designer

end

test "should render designer status presenter" do
get :show, id: @designer.id
assert_response :success
assert_select 'section.designer-status .active-projects', text: '3'

end

end

Once again we don’t want to exhaustively test the structure of the markup,

and since our unit tests will check the accuracy of the data our presenter

extracts from the record, there’s no need to double-check it here. Verifying

the presenter is displayed for the designer is enough and is the best “bang

for our buck.”

Now that we’ve used a presenter to show information from one record, let’s

look at how we can use it to help us deal with aggregations of records.

6.2 Presenting Multiple Records

In ArtFlow we try to keep our clients up-to-date with our progress. Keeping

the feedback loop short is key to making sure we deliver the best work we

can in the shortest time possible. One of the ways we display status informa-

tion to our clients is in a table, displaying specific pieces of information for

the creations being worked on by our designers.

report erratum • discuss

Presenting Multiple Records • 153

http://media.pragprog.com/titles/warv/code/artflow/presenters/test/functional/designers_controller_test.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Over time, keeping the markup for the table nice and tidy has become more

and more difficult. It’s grown in size based on our clients’ needs, and similar

tables have popped up elsewhere in ArtFlow as well. We’re going to try to

clean things up using a presenter that will model the table’s headers and

columns for us. This will also make testing a lot easier, too!

We’ll build the table presenter generically so we can reuse it elsewhere. We’ll

call it SimpleTable, and its initializer should just take a set of attribute names

that it will display for a collection of records. We’ll also pass along the current

template so the presenter can render itself with to_s(). In lib/simple_table.rb:

class SimpleTable

def initialize(template, records, columns)
@template = template
@records = records
@columns = columns

end

def to_s
@template.render partial: 'presenters/simple_table', object: self

end

end

We’ll instantiate it from a helper we put in a new module, SimpleTableHelper.
Just as with our DesignerStatus presenter, we pass in self, which is the current

template instance.

artflow/presenters/app/helpers/simple_table_helper.rb

module SimpleTableHelper

def simple_table_for(records, columns = {}, options)
presenter = SimpleTable.new(self, records, columns, options)
if block_given?

yield presenter
else

presenter
end

end

end

Now we create a partial that will render all the information from our presenter:

artflow/presenters/app/views/presenters/_simple_table.html.erb

<table>
<thead>

<tr>
<% simple_table.columns.each_key do |title| %>

154 • Chapter 6. Using Presenters

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/app/helpers/simple_table_helper.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/presenters/_simple_table.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

<th><%= title %></th>
<% end %>

</tr>
</thead>
<tbody>
<% simple_table.each do |record| %>

<tr>
<% simple_table.values(record).each do |title, value|
<td><%= value %></td>

<% end %>
</tr>

<% end %>
</tbody>

</table>

This builds our table headers from the column definitions and extracts the

values from each record while building the rows. Let’s add the methods we

need to the SimpleTable class:

class SimpleTable

attr_reader :columns

delegate :each, to: :@records

def initialize(template, records, columns = {})
@template = template
@records = records
@columns = columns

end

def values(record)
@columns.each_with_object({}) do |(title, attribute), memo|
memo[title] = record.send(attribute)

end
end

def to_s
@template.render partial: 'presenters/simple_table', object: self

end

end

First we expose an attribute reader method so we can call columns(), then we

delegate each() to our records so that we can easily iterate over them. Our values()
method is a bit more complex: its job is to extract the values for the columns

we’ve defined, building up a Hash using each_with_object() (a handy, easier-to-use

method than the old standard for this sort of thing, inject()).

report erratum • discuss

Presenting Multiple Records • 155

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Let’s use the simple_table_helper() we built earlier to display the list of creations

awaiting approval by a client. We’ll put it on the client dashboard:

artflow/presenters/app/views/clients/show.html.erb

<h3>Awaiting Approval</h3>
<%= awaiting_approval_table %>

We’re calling a new helper in our template, awaiting_approval_table(). We’ll define

the helper to create our SimpleTable presenter instance for us, since putting

the instantiation in the markup doesn’t read as nicely as a descriptively named

helper. Let’s put awaiting_approval_table() in app/helpers/clients_helper.rb, since we’re

on a client page.

module ClientsHelper
def awaiting_approval_table

simple_table_for(@client.creations.awaiting_approval,
'Name' => :name,
'Revision #' => :revision)

end
end

This gives us a table with the name and revision of each creation, but the

table implementation doesn’t seem very flexible yet. We’re limited to calling

methods defined directly in our model class, Creation. We need to be able to

show information from the Designer and from other records associated with

the Creation as well.

There are three obvious options here, two of which we’ve already covered in

Section 6.1, Presenting a Record, on page 144; we could either expose additional

methods in our model, or we could pass our SimpleTable instance a collection

of presenters exposing those methods for the model. The third option is to

make our SimpleTable API more flexible, allowing us to define ad hoc strategies

to extract the data we need. We’ll support passing in Proc instances to extract

the values for each column in addition to just calling specific methods on our

records:

artflow/presenters/app/helpers/clients_helper.rb

def awaiting_approval_table
simple_table_for(@client.creations.awaiting_approval,

'Name' => :name,
'Revision #' => :revision,
'Designer' => ->(creation) {
link_to(creation.designer.name, creation.designer)

},
'File Size' => ->(creation) {
number_to_human_size(creation.file.size)

})
end

156 • Chapter 6. Using Presenters

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/app/views/clients/show.html.erb
http://media.pragprog.com/titles/warv/code/artflow/presenters/app/helpers/clients_helper.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We’ve provided some Proc objects to define how data will be pulled out. To get

this to work inside our SimpleTable presenter, we’ll use a little duck typing,

checking to see if our extractor responds to the call() method.3 We don’t need to

artificially limit ourselves to Proc, either; anything that responds to the call()
method is good enough for us.

artflow/presenters/lib/simple_table.rb

def values(record)
@columns.values.each_with_object({}) do |(title, extractor), memo|
memo[title] = extract_value(record, extractor)➤

end
end

def to_s
@template.render partial: 'presenters/simple_table', object: self

end

private

def extract_value(record, extractor)
➤ if extractor.respond_to?(:call)

extractor.call(record)➤

else
record.send(extractor)

end
end

We pulled our logic for extracting the value out of values() and into a private

method, extract_value(). This keeps our code from becoming cluttered. After all,

accumulating the data and extracting the data are two different operations.

We could expand our presenter considerably, extending support for column

header and row element configuration and even polishing the API by crafting

a column definition DSL. For now, however, we’ll keep our SimpleTable, well,

simple.

Presenters can be useful and elegant tools when we use them in our templates.

They can let us access information we need from our models with cleaner,

more readable semantics without muddying our models or turning our helper

modules into junk drawers. There are existing libraries that simplify the

creation of presenters, too. The Draper gem is a good example of a more

comprehensive approach and is worth a look.4

3. http://c2.com/cgi/wiki?DuckTyping
4. https://github.com/jcasimir/draper

report erratum • discuss

Presenting Multiple Records • 157

http://media.pragprog.com/titles/warv/code/artflow/presenters/lib/simple_table.rb
http://c2.com/cgi/wiki?DuckTyping
https://github.com/jcasimir/draper
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We can use presenters for more than just building markup, too. Building up

a data structure for serialization to a JSON, XML, or other document format

is another area where presenters can make our lives easier.

6.3 Using Presenters for Serialization

The term “presenter” doesn’t just apply to domain objects used from a tem-

plate. We can use presenters for formats other than HTML; this is a technique

that works well for object serialization, where we might use a presenter to

aggregate information for one or more records before returning it in serialized

form.

Here in our CreationsController we offer a JSON version of the show() action that

details important status and history information for the artwork our designers

create.

artflow/presenters/app/controllers/creations_controller.rb

def show
@creation = Creation.find(params[:id])
@client = @creation.project.client
respond_to do |format|

➤ format.json do
➤ render :json => CreationSummary.new(@creation, current_user).to_json

end➤

format.html
end

end

The CreationSummary class here is the presenter responsible for extracting the

information we’d like returned with the response for the current user. It lives

in lib/creation_summary.rb:

class CreationSummary

delegate :to_json, :to => :data

def initialize(creation, user)
@creation = creation
@user = user

end

def data
case @user
when Admin

data_with_estimate
when Designer

standard_data
else

158 • Chapter 6. Using Presenters

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/app/controllers/creations_controller.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

sanitized_data
end

end
end

We delegate to_json() to the result of the data() method, which determines the

scope of the data to return based on the user type. The data contents are

defined in data_with_estimate() to support tools for our management team, stan-
dard_data() for our designers and other staff, and sanitized_data() for clients.

artflow/presenters/lib/creation_summary.rb

def standard_data
{

campaign: @creation.campaign.name,
client: @creation.client.name,
designer: @creation.designer.name,
hours: @creation.hours,
name: @creation.name,
project: @creation.project.name,
revision: @creation.revision,
stage: @creation.name

}
end

def sanitized_data
standard_data.reject do |k, v|
[:hours, :client].include?(k)

end
end

def data_with_estimate
estimate_data = {

hours: @creation.estimate.hours,
rate: @creation.estimate.rate,
total: @creation.estimate.total

}
standard_data.merge(estimate: estimate_data)

end

Putting this customized serialization logic in a separate presenter instead of

our model keeps things clean; we only use this logic from this action anyhow;

the separation lets us write more focused tests and documentation for the

business logic.

Testing Serialization Presenters

One of the benefits we learned in Testing Template Presenters, on page 150,

was how useful the extraction of logic from models and helpers can be for

testing. When we have a decoupled, plain object to test, things get a lot easier.

report erratum • discuss

Using Presenters for Serialization • 159

http://media.pragprog.com/titles/warv/code/artflow/presenters/lib/creation_summary.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

This holds true with presenters used from the controller as well. Testing our

CreationSummary is a lot more straightforward than testing a random collection

of private methods in our controller or testing additional methods we’ve tacked

onto our model. We also know where to put the tests and where to look for

them later. There’s a huge benefit just in being able to give this idea of a

“creation summary” a real name!

Let’s add some unit testing for our presenter. We’ll get some data in place

first:

artflow/presenters/test/unit/creation_summary_test.rb

require 'test_helper'

class CreationSummaryTest < ActiveSupport::TestCase

def setup
@creation = Factory(:creation)
@client = @creation.client
@designer = @creation.designer
@admin = Factory(:admin)

end
end

Our setup() uses the factory_girl definitions we used earlier in Testing Template

Presenters, on page 150, to create a Creation record. We assign the @designer and

@client from the creation for convenience, then create an Admin and assign it

to @admin. The factory for Admin, like Designer, was just a few lines:

artflow/presenters/test/factories.rb

Factory.define :admin do |x|
x.sequence(:email) { |n| "admin#{n}@artflowme.com" }
x.password 'testtest'

end

First we’ll test the CreationSummary for our @admin, an unadulterated dump of

data for the Creation, including the initial estimate information:

artflow/presenters/test/unit/creation_summary_test.rb

test "an admin sees data including the estimate" do
summary = CreationSummary.new(@creation, @admin)
fields = [:campaign, :client, :designer,

:hours, :name, :project, :revision, :stage,
:estimate]

assert_serializes fields, summary
end

The assert_serializes() method we’re using is one of our own design, added as a

private method on our CreationSummaryTest. As the name indicates, it lets us

verify that specific fields will be exposed in the serialized document.

160 • Chapter 6. Using Presenters

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/presenters/test/unit/creation_summary_test.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/test/factories.rb
http://media.pragprog.com/titles/warv/code/artflow/presenters/test/unit/creation_summary_test.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

def assert_serializes(fields, summary)
assert_equal(fields.sort, summary.data.keys.sort,

"Serialization fields do not match")
end

Because assert_serializes() uses assert_equal() under the covers, it also verifies that

the fields are the only fields serialized, which saves us from having to provide

a negative assertion to verify our @designer doesn’t get the estimate information:

test "a designer sees the standard data" do
summary = CreationSummary.new(@creation, @designer)
fields = [:campaign, :client, :designer,

:hours, :name, :project, :revision, :stage]
assert_serializes fields, summary

end

Likewise, our client doesn’t need to see the client name or the hours spent

by the designer on this specific piece of artwork; that’s information we prefer

to provide on our invoices instead.

test "a client only sees the sanitized data" do
summary = CreationSummary.new(@creation, @client)
fields = [:campaign, :designer,

:name, :project, :revision, :stage]
assert_serializes fields, summary

end

This is just the tip of the iceberg when it comes to testing this presenter. For

now, we’re focusing on ensuring that the policy we’ve defined for each

requesting user is upheld, returning only the data the user needs to see. If

we took this further, we’d want to dig into the individual bits of data them-

selves and verify that the values for each field are being returned correctly,

though we wouldn’t want to duplicate model unit tests that are already

checking the logic.

For other, more complete approaches to serializing models, see the JBuilder

(Builder-style DSL) and ActiveModel Serializers projects.5 The latter is an

especially elegant solution to the problem and sticks closer to presenter

principles.

6.4 Wrapping Up

Now that we’ve tackled how to build presenters in our templates and con-

trollers to make displaying information easier, let’s turn to a design concern:

how to present the data to the widest audience possible. In this day and age

5. https://github.com/rails/jbuilder and https://github.com/josevalim/active_model_serializers, respectively.

report erratum • discuss

Wrapping Up • 161

https://github.com/rails/jbuilder
https://github.com/josevalim/active_model_serializers
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

of mobile browsers and mixing of small screens with “traditional,” larger

desktop and (less mobile) laptop resolutions, how do we keep everyone happy

with what they’re seeing?

162 • Chapter 6. Using Presenters

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CHAPTER 7

Handling Mobile Views

These days, there are more and more users hitting our products and sites

with mobile devices of all shapes and sizes, such as iPhones, Android devices,

and iPads and other tablets. Mobile design and development gives us oppor-

tunities that don’t exist in the desktop environment. With many mobile devices,

we have access to multitouch input, user location from the GPS and compass,

interaction with the accelerometer and gyroscope (which way the device is

angled or positioned) and other items. These can improve and inform our

users’ interactions in ways previously unattainable outside the mobile space.

Mobile users often open a site in their mobile browser only to see text that is

completely unreadable and content that requires constant zooming and

panning for them to consume. This is what we get when we cram 800 to 1200

pixels into a screen that is 320 pixels or 480 pixels wide. This is just a bad

experience and, with large downloads of images that get in the way of us

getting to the content, can downright stop our users cold in their tracks.

Mobile usage continues to grow at an exciting pace and is poised to eclipse

traditional desktop browsing by 2015, according to a 2011 study by Morgan

Stanley.1 To ignore this trend would be as foolish as ignoring the advent of

the World Wide Web in the late 1990s. But we should not rush headlong into

a mobile site without analyzing what we’re doing and what our customers

need.

The best way to approach mobile is to answer one simple question: What is

the user trying to accomplish while mobile?

There are lots of ways to handle mobile users, and each method has benefits

and detractions. We’ll start by using a technique known as responsive design,

where we use CSS media queries to transform our document for different

1. http://www.morganstanley.com/institutional/techresearch/pdfs/MS_Economy_Internet_Trends_102009_FINAL.pdf

To be happy in this world, first you need a cell

phone and then you need an airplane. Then

you’re truly wireless.

 ➤ Ted Turner

report erratum • discuss

http://www.morganstanley.com/institutional/techresearch/pdfs/MS_Economy_Internet_Trends_102009_FINAL.pdf
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

devices. Then we’ll look into serving device-specific views using Rails’s

responders, and we’ll wrap up by exploring how we can use jQuery Mobile to

provide a version of our site that is optimized for touch devices.

Let’s start with the foundation of a site that will work well on multiple screen

sizes: the flexible layout.

7.1 Building a Flexible Layout

In the early days of the World Wide Web, designers complained that it didn’t

work like the printed page. They were accustomed to the “pixel-perfect layout”

of the print world, where the page and every element on it are precisely sized

and located. Web designers today complain about mobile not working like a

full-screen browser. It’s effectively the same short-sighted complaint and

deserves the same kind of answer:

The medium of mobile is different and needs to be handled differently.

When we talk about a flexible layout, we’re looking at creating a page that

lays itself out in percentages of the whole. To do this we can use any nonab-

solute value, such as %, em, and to a lesser extent the new rem type (or root

ems in CSS3).

Let’s take our app’s two-column design. When we set it up in Chapter 1,

Creating an Application Layout, on page 1, the page wrapper was 960 pixels

wide, the left column was 800 pixels wide, and the sidebar was 150 pixels

wide, which left us a gutter of 10 pixels between the two sides. Opening up

app/assets/stylesheets/layout.css.scss, we see the following:

div#wrapper {
width: 960px;
margin: 0 auto;

}
section#content {
float: left;
width: 800px;

}
section#sidebar {
float: right;
width: 150px;

}

Translating that to percentages, roughly 83 percent is in the left column and

15 percent is in the right column. The actual math is achieved by dividing

the child element’s width by the parent element and moving the decimal over

by two (also known as multiplying by 100). This results in values of

164 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

83.3333333333 percent and 15.625 percent for the left and right, respectively.

Since the browser is translating this to pixels, having the extra decimals will

help get us closer to the proper size.

div#wrapper {
width: 960px;
margin: 0 auto;

}

section#content {
float: left;

➤ width: 83.333333333333%;
}
section#sidebar {
float: right;

➤ width: 15.625%;
}

We would not notice much of a difference at this point, because the parent

container is still determined in pixels. We’ll need to change that to achieve

the basics of a flexible layout.

div#wrapper {
➤ width: 95%;

margin: 0 auto;
}

section#content {
float: left;
width: 83.333333333333%;

}
section#sidebar {
float: right;
width: 15.625%;

}

This will give us a slight margin on each side, which works out to 2.5 percent

per side, or approximately 25 pixels when the screen is 1024px wide. We also

need to plan for “browser chrome,” or the space taken up by the edges of the

application window and scroll bars. We don’t want to actually max out at 100

percent, because in most cases the box model (which we discussed back in

Section 1.3, Building the Page Frame, on page 14) will come back to haunt

us and we will end up with more than 100 percent once we add padding into

the equation.

We now have flexible columns set up for the page and can begin to bring our

other elements into the framework as well. Looking quickly at our page layout

from Chapter 1, Creating an Application Layout, on page 1, our header and

report erratum • discuss

Building a Flexible Layout • 165

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

footer elements were already set up to be flexible. In the header, our logo sits

left and our background image floats right.

Building a Flexible Grid

We’ve got a pretty simple setup here, and as we move into multiple pages, it

could be difficult to have an elegant, flexible solution by coding everything by

hand. In this case, we’re going to look at utilizing SCSS mixins to create a

flexible—and semantic—grid.

Flexible layouts and grid layouts have both been around for a while, but

combining the two is a more recent invention. Twitter was one of the first to

codify it in their Bootstrap framework.2 This set up both static and fluid lay-

outs with predefined grid elements that would allow developers to reuse CSS

across the Twitter front end without reinventing the wheel on every new page.

The problem with Bootstrap is similar to the problems that exist with other

grid systems, such as 960.gs. They introduce excessive, nonsemantic class

names into our HTML. This is where the power of Sass comes in. Semantic.gs

uses mixins to move these presentation elements to the style sheet where

they belong.3 Semantic.gs is available on GitHub.4

First we’ll get the contents of stylesheets/scss/grid.scss from the repository,5 and

we’ll save it as vendor/assets/stylesheets/_semanticgs.scss in ArtFlow. We’ll place it in

vendor/assets to separate it from the stuff we’ve written in this application (placed

in app/assets) and from the stuff we’ve written that is shared by other applica-

tions as well (placed in lib/assets). We may want to modify it to match our grid

settings, and we’ll want to @import it into files that need it.

Let’s take a look at how semantic.gs works. At the top of the file, we have

some default grid defined:

artflow/responsive/app/assets/stylesheets/_semanticgs.scss

// Defaults that you can freely override
$column-width: 60px;
$gutter-width: 20px;
$columns: 12;

The system defaults to a grid 960 pixels wide. If we have twelve columns with

20-pixel gutters between them, that would be 60 pixels for each column. The

next line does most of the work in our file:

2. http://twitter.github.com/bootstrap/
3. http://semantic.gs/
4. https://github.com/twigkit/semantic.gs
5. https://github.com/twigkit/semantic.gs/blob/master/stylesheets/scss/grid.scss

166 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/assets/stylesheets/_semanticgs.scss
http://twitter.github.com/bootstrap/
http://semantic.gs/
https://github.com/twigkit/semantic.gs
https://github.com/twigkit/semantic.gs/blob/master/stylesheets/scss/grid.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/responsive/app/assets/stylesheets/_semanticgs.scss

// Set $total-width to 100% for a fluid layout
$total-width: ($column-width*$columns) + ($gutter-width*$columns);

This utility variable does the calculation to figure out how large the page

actually is. Basically, it adds the columns and gutters together to get a total

width. We’re going to change that to be 100 percent:

artflow/responsive/app/assets/stylesheets/_semanticgs.scss

$total-width: 100%;

By setting $total-width to 100 percent, we override the static layout and make

the layout flexible. It will work in the proportions defined at the 960-pixel

fixed size. We have to go to 100 percent to engage the flexible layout aspects

of the tool. We’ll make margins to pull the content back from the edges.

Now all we need to do is change the values in our layout.css.scss to use the

semantic grid measurements, then use the column Sass mixin that semantic.gs

provides to place our <section> elements correctly on the page:

@import "semanticgs";➤

div#wrapper {
➤ width: $total-width;

margin: 0 auto;
}

section#content {
➤ @include column(10);

}
section#sidebar {

➤ @include column(2);
}

This gives us a lot of power and clarity in our source code and lets us work

with a grid system that is both flexible and powerful. We can use these decla-

rations on any of our elements as we move forward.

Flexible layouts and flexible grids provide us a lot of power and embrace the

nature of the Web with multiple sizes of screens, but at some point, the screen

is too small or too large for content originally designed for a different size.

Next we’re going to take a look at @media queries and utilize their conditional

nature to improve our view for the small and the large screen.

report erratum • discuss

Building a Flexible Layout • 167

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/assets/stylesheets/_semanticgs.scss
http://media.pragprog.com/titles/warv/code/artflow/responsive/app/assets/stylesheets/_semanticgs.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

7.2 The Next Level with Responsive Design (@media queries)

The Web is a dynamic medium. Designers have fought with this for years and

we, as the implementers of those designs, have had to deal with striving for

pixel perfection. This chapter is about letting go. The power of the Web is that

the content can be experienced in a variety of ways on a variety of devices.

We should build applications and websites that let the content be easily

accessible on those devices.

Responsive design means that we as developers try to build our apps and

sites in a way that lets any device access them. We are providing a response

based on various conditions, including the user’s role, the task the user is

trying to accomplish, and the tool with which the user intends to accomplish

the task. It’s specifically being used as a term right now to refer to using

@media queries to change the way a page is rendered depending on the device

that is rendering it. While we can zoom in and out on an iPhone, it would be

better if the page realized it was on an iPhone and changed its layout

accordingly.

The term was first introduced by Ethan Marcotte on A List Apart in May 2010.6

He used @media queries with flexible layouts to create a site that would render

differently depending on the width of the screen.

Flexible layouts have been around for a while and work relatively well when

you’re looking at a specific type of browser (e.g., desktop only). Once someone

accesses that site or app with a mobile device, things get messy because you

can only go so small with floated elements, such as a right-side column.

We pulled up our app on our mobile device (an iPhone in this case) and it’s

unusable. Let’s not mince words. Working with this all day would be on par

with reading in 6 point lawyer font. Zooming in and zooming out, mixed with

a limited visual area, creates a bad experience.

We will look at serving mobile specific templates in Section 7.3, Using Mobile-

Specific Templates, on page 174, but our VP of marketing isn’t happy waiting

for us to deliver that. He wants to drink from the fire hose and he wants it

today. If he can do it on his desktop, he wants the same on his iPad and

iPhone too.

@media queries and flexible layouts to the rescue!

6. http://www.alistapart.com/articles/responsive-web-design/

168 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://www.alistapart.com/articles/responsive-web-design/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We can tackle this using flexible layouts and something new in CSS3 called

@media queries. These techniques will allow us to build something that will

work for future devices of all shapes and sizes and keep us from needing to

write a custom page for each and every device type that comes into use in

our organization.

There are two steps we’re concerned about as we build this solution. The first

is when a user’s window is under 800 pixels wide. This covers the iPad and

most tablet or netbook kinds of devices. The next is when it goes below 640

pixels in width. This is for when we access the site from most mobile phones,

including iPhones with the Retina display. We then have a rule block for the

smallest and lowest resolution of devices that we want to support.

A Simple View

We’ll add a new file to hold our media queries, media.css.scss. First let’s edit our

application.css to make sure it pulls them in at the end. We want them to apply

after any other rules have been rendered; otherwise, they may be overruled

by other CSS declarations:

artflow/responsive/app/assets/stylesheets/application.css

/*
*= require_self
*= require normalize
*= require layout
*= require sidebar
*= require navigation
*= require notifications
*= require blueprint/typography
*= require text
*= require formtastic
*= require forms
*= require media➤

*/

Here are the basic definitions we’ll stick in a new file,

app/assets/stylesheets/media.css.scss:

@media screen and (max-width: 800px) {
}

@media screen and (max-width: 640px) {
}

@media only screen and (min-device-width: 320px) and (max-device-width: 480px) {
}

report erratum • discuss

The Next Level with Responsive Design (@media queries) • 169

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/assets/stylesheets/application.css
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We’ve got an @media query for the screen only and we’ve got maximum width

settings. These could be any value. We could even do variations for people

with really large screens by saying (min-width: 1600px). We could target people

with HDTV 1080p equivalent monitors (1920 x 1080) or almost any device

we can think of by having our CSS affect devices within certain parameters.

We are going to start by turning off the columns by disabling floats and

making the former columns the full width of the screen.

@media screen and (max-width: 800px) {
➤ /* Kills columns */
➤ section#content,
➤ section#sidebar {float: none; width: $total-width; margin-bottom: 5px;}
➤ section#page {min-width: 310px;}

}

@media screen and (max-width: 640px) {
}

@media only screen and (min-device-width: 320px) and (max-device-width: 480px) {
}

This looks great, but the sidebar info really isn’t valuable here for our users,

so let’s hide that entirely.

@media screen and (max-width: 800px) {
/* Kills columns */
section#content { float: none; width: $total-width; margin-bottom: 5px; }
section#page { min-width: 310px; }

➤ section#sidebar {display: none;}
}

@media screen and (max-width: 640px) {
}

@media only screen and (min-device-width: 320px) and (max-device-width: 480px) {
}

Because media queries run after the content is loaded in the browser, the

content is loaded and then acted on by the CSS. We can only show or hide

or reposition content and elements within the page. This can be problematic

if there’s a lot of content hidden because download times can seem really long

for a small amount of visible content.

We also need to address smaller screens, as most of our truly mobile users

will be checking this on a small screen no more than four inches wide. We’re

going to drop the body font size to 70 percent of what it is and resize elements

to be smaller.

170 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

@media screen and (max-width: 800px) {
/* Kills columns */
section#content { float: none; width: $total-width; margin-bottom: 5px; }
section#page { min-width: 310px; }
section#sidebar {display: none;}

}

@media screen and (max-width: 640px) {
/* Kicks the size down on smaller windows,➤

* e.g., iPhone, to fit the nav➤

➤ */
➤ body { font-size: 70%; }
➤ header#page_header {

background-image: url('../images/brandtag_sm.png');➤

➤ height: 30px;
➤ }
➤ header #appbar img#logo {width: 127px;}
➤ header img#logo {

top: 10px;➤

➤ width: 140px;
➤ }
➤ section#page {margin: 5px; }
➤ a, a:link {font-weight: bold;}

}

@media only screen and (min-device-width: 320px) and (max-device-width: 480px) {
}

We’ve shrunk everything down and effectively redesigned the screen specifi-

cally for this type of interface (one that is smaller than 640px wide). Remember,

we’re not limited here to only certain numbers or a certain device. We can

create as many of these rules as we want in order to target specific devices

for that guy in accounting who just won’t stop whining. Remember that the

more rules we have, the more things we’ll need to test to make sure they work.

Great power means great responsibility and whatnot.

Getting Horizontal

Until now we’ve been working only in portrait mode with these devices. What

happens when the user turns the device? Do we ignore that the device has

changed orientation and simply zoom? Or do we want to recast the screen to

use the real estate in a different way?

We’re going to try the latter. To start, let’s write an @media query that specifies

this type of device (tablets in the horizontal position).

@media only screen and (device-width: 768px) and (orientation: landscape) {
}

report erratum • discuss

The Next Level with Responsive Design (@media queries) • 171

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We’ve sketched a quick mockup of what we want to do, and we’re going to

build to this. In this case we will need to add some HTML to the design

specifically for this horizontal view. We can hide it in our web version of the

app.

So, first things first, let’s add the HTML placeholder we need into our applica-

tion.html.erb file.

artflow/responsive/app/views/layouts/application.html.erb

<% if content_for?(:ipad_sidebar) %>
<div id="ipad_sidebar">

<%= yield :ipad_sidebar %>
</div>

<% end %>

By default we don’t want this showing up, so let’s modify our application.css,
adding display: none;.

artflow/responsive/app/assets/stylesheets/layout.css.scss

div#ipad_sidebar {
display: none; /* Needed to hide for regular app users */
background-color: #999;
border: 2px solid #444;
border-left: none;
-moz-border-radius-topright: 10px;
-moz-border-radius-bottomright: 10px;
-webkit-border-top-right-radius: 10px;
-webkit-border-bottom-right-radius: 10px;
border-top-right-radius: 10px;
border-bottom-right-radius: 10px;
-moz-box-shadow: 0px 0px 10px #333 inset;
-webkit-box-shadow: 0px 0px 10px #333 inset;
box-shadow: 0px 0px 10px #333 inset;
color: #fff;
float: left;
padding: 10px;
@include column(3); /* approx 200px */

}

We will now turn this on for our users of horizontal devices with a width of

768 pixels, aka iPads.

@media screen and (max-width: 800px) {
/* Kills columns */
section#content { float: none; width: $total-width; margin-bottom: 5px; }
section#page { min-width: 310px; }
section#sidebar {display: none;}

}

@media screen and (max-width: 640px) {

172 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/warv/code/artflow/responsive/app/assets/stylesheets/layout.css.scss
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

/* Kicks the size down on smaller windows,
* e.g .iPhone, to fit the nav
*/
body { font-size: 70%; }
header#page_header {

background-image: url('../images/brandtag_sm.png');
height: 30px;

}
header #appbar img#logo {width: 127px;}
header img#logo {

top: 10px;
width: 140px;

}
section#page {margin: 5px; }
a, a:link {font-weight: bold;}

}

@media only screen and (device-width: 768px) and (orientation: landscape) {
➤ div#ipad_sidebar {

display: visible;➤

➤ }
}

@media only screen and (device-width: 768px) and (orientation: landscape) {
}

@media only screen and (min-device-width: 320px) and (max-device-width: 480px) {
}

Now wherever we want to surface page-specific content or general functional-

ity, we can provide a content_for :ipad_sidebar block, and the app will display it

within the gray, rounded sidebar.

How Does It Look?

There are a few ways we can test our @media queries site. The easiest is simply

to resize our browser window down to each size we’d like to test, either by

using a plugin or extension to give us a specific size or by just grabbing and

dragging.

We can also look at using some development tools, such as the Opera Mobile

Emulator,7 the Opera Mini Simulator,8 iOS simulator,9 and the Android

emulator,10 to view our application from the desktop.

7. http://www.opera.com/developer/tools/mobile/
8. http://www.opera.com/mobile/demo/
9. http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/ios_development_workflow/25-

Using_iOS_Simulator/ios_simulator_application.html#//apple_ref/doc/uid/TP40007959-CH9-SW1
10. http://developer.android.com/guide/developing/tools/emulator.html

report erratum • discuss

The Next Level with Responsive Design (@media queries) • 173

http://www.opera.com/developer/tools/mobile/
http://www.opera.com/mobile/demo/
http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/ios_development_workflow/25-Using_iOS_Simulator/ios_simulator_application.html#//apple_ref/doc/uid/TP40007959-CH9-SW1
http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/ios_development_workflow/25-Using_iOS_Simulator/ios_simulator_application.html#//apple_ref/doc/uid/TP40007959-CH9-SW1
http://developer.android.com/guide/developing/tools/emulator.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

For a quicker overview, we can use a tool by Matt Kersley that shows us the

site in a variety of predefined widths.11

Conclusion

Media queries are a flexible way to quickly provide some CSS-only changes

to our app and get it working better on a slew of devices with browsers. To

see what can be done with this approach, check out the http://mediaqueri.es/ site.

One of the problems that we have with this approach is download size. Even

though we’ve hidden images with CSS and resized many of them to be

smaller, mobile users are still downloading the full size and all these images.

They’re also downloading all of the JavaScript and stylesheet assets, even

ones they probably will not use.

Interaction is different on mobile. There’s no hover state, but there’s a tactility

of “pushing” a button with your finger that needs to register more so than for

a typical browser. How do we overcome these issues? In some cases, they

aren’t relevant and we’d stop here. But since we need to provide our end users

with the fastest experience possible (sales people can be needy that way),

we’re going to examine some other options.

7.3 Using Mobile-Specific Templates

How do we handle cases where we want to give mobile users special features?

What happens when the content we want to show our mobile users is so dif-

ferent from our standard templates—exposing special mobile functionality

—that CSS media queries don’t go far enough?

We could provide a mobile-specific site, but this creates a sandboxed experi-

ence that can sometimes be forgotten and seem overly dumbed down for

people with higher-end smartphones. We also don’t want people sharing a

URL that is specifically for mobile browsers and having people on a desktop

or tablet open up a mobile page instead of the expected experience. Finally,

can we really prove that a tablet is in fact a mobile device? More and more,

these are being used in place of home computers.

Instead, we will let Rails do some heavy lifting! We make use of its extensible

templating system, which allows us to register new MIME-type aliases for

formats and, when requests come from mobile user agents, render the

matching templates we’ve prepared especially for our mobile users.12

11. http://mattkersley.com/responsive/
12. http://en.wikipedia.org/wiki/Internet_media_type

174 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://mediaqueri.es/
http://mattkersley.com/responsive/
http://en.wikipedia.org/wiki/Internet_media_type
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Let’s make a mobile-specific version of the creation index in ArtFlow that

shows a grid of creation previews—a different, quicker navigation interface

than the normal version—where the workflow is a lot more about editing

metadata and managing the list, not browsing.

Identifying Mobile Requests

Let’s identify our incoming requests as coming from a mobile user agent.

Unlike normal nonmobile requests, where format is pulled directly from the

“file” extension of the request path (and defaults to html), we’re going to instruct

ArtFlow to be a bit sneakier. We’ll be looking out for specific user agents.

Rails makes this easy: the information is available on the request object and

readily available to the controller. Let’s add a private method that we can use

on our ApplicationController to figure it out for us. For now we’ll just look for iOS

devices, checking the user agent against a regular expression. In our app/con-
trollers/application_controller.rb we add the following:

def mobile_request?
request.user_agent =~ /iP(?:hone|ad|od)/

end
helper_method :mobile_request?

We’ll use this to change the request’s format if it looks like a mobile request.

Because we’ve made mobile_request?() a helper_method, we can also use it from the

view to include mobile-specific markup. Now let’s figure out how to register

a new MIME-type alias for the text/html content type. There are plenty of

examples commented out in config/initializers/mime_types.rb, so we just add the

following at the bottom of the file:

artflow/responsive/config/initializers/mime_types.rb

Mime::Type.register_alias "text/html", :mobile

So we have a new MIME-type alias, and we have a way to check if a request

is mobile (at least for iOS). Now we need to put these two together and let

Rails know that the requests from mobile devices are implicitly asking for

mobile templates. We do this with a before_filter setting the format of the request.

Rails will use this later when determining which template to render for the

request. Let’s edit our app/controllers/application_controller.rb:

before_filter :prepare_mobile_request!

def prepare_mobile_request!
if mobile_request?

request.format = :mobile
end

end

report erratum • discuss

Using Mobile-Specific Templates • 175

http://media.pragprog.com/titles/warv/code/artflow/responsive/config/initializers/mime_types.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We’ve added our MIME-type alias and identified when to display a mobile

page to our users—now we get down to the business of creating our views.

Creating Mobile Templates

First up, we tackle the layout. Because we’ve added a mobile, the filename

should be application.mobile.erb instead of application.html.erb. Since we’re catering

to a crowd with smaller screens, we keep the layout minimal:

<!DOCTYPE html>
<html lang="en">
<head>

<title>ArtFlow: Mobile Edition!</title>
</head>
<body>
<%= yield %>
<%= render partial: 'layouts/footer' %>

</body>
</html>

Let’s focus the creation listing that we want inserted at the yield in our layout.

We’ll build this as a list that we’ll use CSS to style into a flexible grid and put

it in app/views/creations/index.mobile.erb:

<%= render @creations %>

We can render each Creation record differently than we do on the main site by

creating a _creation.mobile.erb partial. Here we link to a square thumbnail image

of the creation:

artflow/responsive/app/views/creations/_creation.mobile.erb

<%= link_to(image_tag(creation.url(:square_thumb), alt: creation.name) %>

There we go—a view of our creations specifically for our mobile users. Right

now it’s the only listing they can see, and they’re not allowed to view the

standard interface. Is that too strict?

Letting Users Decide

Let’s be honest. It’s not nice to force users into a mobile layout. Sometimes

they may be trying to find something they saw earlier on a nonmobile device,

and the changes we’ve made to make the mobile experience “better” for them

just end up getting in their way. While our mobile layout should be the default

for mobile users, we don’t want to lock them to it unnecessarily. Mobile users

176 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/views/creations/_creation.mobile.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

should be able to see the normal, unadulterated version of our application

when they want, but how?

If we break it down, we see a couple of things need to be done. We need to

add a way for a mobile user to let us know which type of view is preferred,

and we need to store that preference for the duration of the session. We can

do this by looking for a query parameter and toggling a session variable. We

handle these issues in the ApplicationController.

before_filter :set_preferred_view!
before_filter :prepare_mobile_request!
def set_preferred_view!

if mobile_request?
case params[:prefer_view]
when 'standard'

session[:preferred_view] = :standard
when 'mobile'

session[:preferred_view] = :mobile
end

end
end

Notice we made sure this new before_filter runs before the prepare_mobile_request!()
logic we worked on earlier. We need to use the user’s preference there. We’ll

also allow Ajax requests (request.xhr?) to pass through without being modified,

since we don’t want to stop JavaScript responses from being returned:

def prepare_mobile_request!
if !request.xhr?

if mobile_request? && preferred_view == :mobile
request.format = :mobile

end
end

end
def preferred_view

if mobile_request?
session[:preferred_view] || :mobile

else
:standard

end
end
helper_method :preferred_view

We’ve added a convenience method, preferred_view(), to make checking the

preference easier. We’ll use this in a helper method we’ll add to make links

in our footer—these links will let the user change the preference by sending

mobile or standard as the value of the prefers_view parameter to the current URL,

which will be caught by set_preferred_view!().

report erratum • discuss

Using Mobile-Specific Templates • 177

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/responsive/app/helpers/application_helper.rb

def link_to_prefer_view(name)
link_to_unless(preferred_view == name,

"#{name.capitalize} View", prefer_view: name)
end

The helper we’ve defined here uses link_to_unless() so it will only create a link

for the other view preference. Now all we need to do is use this helper twice

in our footer—once for mobile and once for the standard preference.

Because the footer partial is an html.erb instead of a mobile.erb template, we need

to be specific about the file extension. If we wanted to get rid of this require-

ment, we could rename the file to footer.erb to make it apply to any format, but

for now we’ll just be specific. We might want to create a mobile-specific foot-
er.mobile.html later that’s a bit more compact and shows links to items of special

interest to our mobile users (like the new iOS app we’ve just released):

artflow/responsive/app/views/layouts/_footer.html.erb

<% if mobile_request? %>
<%= link_to_prefer_view :mobile %>
|
<%= link_to_prefer_view :standard %>

<% end %>

The choice will only be shown to mobile users, and it should make it easy to

switch.

Shortcut: mobile-fu

Remember how we only supported iOS mobile devices? Felt like a bit of a cop-

out, didn’t it? We did this because the list of mobile devices we could support

is long, and, sadly, they don’t all include a simple mobile identifier in their user

agent strings to take it easy on us.

Thankfully, someone’s taken the pain out of the process and built a library

for us to use, mobile-fu, which we add to our Gemfile:13

artflow/responsive/Gemfile

gem 'mobile-fu'

Then we install the library with Bundler:

% bundle install

The mobile-fu library identifies a wide range of mobile devices and automati-

cally sets :format for us with a single line in our ApplicationController:

13. http://github.com/brendanlim/mobile-fu

178 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/helpers/application_helper.rb
http://media.pragprog.com/titles/warv/code/artflow/responsive/app/views/layouts/_footer.html.erb
http://media.pragprog.com/titles/warv/code/artflow/responsive/Gemfile
http://github.com/brendanlim/mobile-fu
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/responsive/app/controllers/application_controller.rb

has_mobile_fu

The library includes per-device CSS overrides and an ability to turn off the

mobile views with a bit of extra work and a session variable, similar to what

we did in set_preferred_view!.

The decision to use mobile templates instead of just media queries, client-

side JavaScript modifications, or a completely separate application isn’t one

to make lightly. We could even combine mobile templates together with the

power of @media queries to provide a better experience to our users. There are

definite trade-offs involved when you’re supporting multiple types of devices,

but sometimes the ability to sit our views on top of controller and model code

we’re already using means it’s worth it.

7.4 Using jQuery Mobile

As we saw in Section 7.2, The Next Level with Responsive Design (@media

queries), on page 168, and Section 7.3, Using Mobile-Specific Templates, on

page 174, building our Rails applications to recognize mobile users and modify

the layout accordingly (and even decide which templates to render) isn’t diffi-

cult. What is tricky is keeping up-to-date with all the mobile devices out there

and designing interfaces that work well with them. New touch-enabled devices

are crowding the market—and our applications. How do we make the user

experience and interaction work for these mobile users as quickly as possible?

jQuery Mobile, a library that addresses a lot of the issues we run into while

developing and designing for mobile devices on the Web,14 is built on top of

the semantic HTML we know and love and offers niceties like page transitions

(a mainstay of mobile applications), themes, and ready-to-go mobile icons.

A lot of our clients are constantly on the go, and getting them to approve

creations can be a bit of a struggle. It sure would be helpful to tighten up the

feedback loop with a mobile version of our creation-commenting workflow in

ArtFlow to speed things along. Clients could slip in some feedback on the taxi

ride to the airport, which would give us the chance to deliver a new iteration

by the time they land!

14. http://jquerymobile.com/

report erratum • discuss

Using jQuery Mobile • 179

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/controllers/application_controller.rb
http://jquerymobile.com/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Creating a Page

After we download jQuery Mobile,15 we get the CSS and JS linked into our

layout, making sure that the images are accessible. We download the zipfile

and unzip it in vendor/assets/javascripts. Mobile’s a moving target, and by keeping

things together now (and not modifying the file contents), we make upgrades

easier later.

% unzip jquery.mobile-1.0.zip
Archive: jquery.mobile-1.0.zip

creating: jquery.mobile-1.0/
creating: jquery.mobile-1.0/images/

inflating: jquery.mobile-1.0/images/ajax-loader.png
inflating: jquery.mobile-1.0/images/icon-search-black.png
inflating: jquery.mobile-1.0/images/icons-18-black.png
inflating: jquery.mobile-1.0/images/icons-18-white.png
extracting: jquery.mobile-1.0/images/icons-36-black.png
inflating: jquery.mobile-1.0/images/icons-36-white.png
inflating: jquery.mobile-1.0/jquery.mobile-1.0.css
inflating: jquery.mobile-1.0/jquery.mobile-1.0.js
inflating: jquery.mobile-1.0/jquery.mobile-1.0.min.css
inflating: jquery.mobile-1.0/jquery.mobile-1.0.min.js

We can then remove the minified files.

Now we’ll create a new file, vendor/assets/javascripts/jquery.mobile.js, to pull in the

versioned JavaScript file with a Sprockets require directive:

artflow/responsive/app/assets/javascripts/jquery.mobile.js

//= require 'jquery.mobile-1.0/jquery.mobile-1.0'

Since jQuery Mobile includes a style sheet and images, we need to tell Rails

to serve them as well. We do that with a couple of provide directives in the same

file:

//= provide 'jquery.mobile-1.0/jquery.mobile-1.0.css'
//= provide 'jquery.mobile-1.0/images'

While we could have edited the library’s JavaScript directly (jquery.mobile-1.0.js)
and just added our provide directives at the top, we use this little configuration

stub so we can leave files in vendor untouched. We view files in vendor as

someone else’s (the vendor’s!) and easily replaceable when a new version

comes out. Then there’s no need to worry about losing our modifications.

Starting the server, we test by hitting our stub at /assets/jquery.mobile.js (pulling

in the library’s JavaScript), the style sheet at /assets/jquery.mobile-1.0/jquery.mobile-
1.0.css, and an image at /assets/jquery.mobile-1.0/images/ajax-loader.png. It works!

15. http://jquerymobile.com/download/

180 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/assets/javascripts/jquery.mobile.js
http://jquerymobile.com/download/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Now we link jQuery and our assets in a .mobile.erb layout (just like we set up

in Section 7.3, Using Mobile-Specific Templates, on page 174):

artflow/responsive/app/views/layouts/application.mobile.erb

<%= stylesheet_link_tag 'jquery.mobile-1.0/jquery.mobile-1.0' %>
<%= javascript_include_tag 'http://code.jquery.com/jquery-1.6.4.min.js',

'jquery.mobile-1.0/jquery.mobile-1.0.min' %>

Our list of project creations will live at /projects/:project_id/creations and will be one

of the most important pages for our clients. We’ll show a thumbnail of the

creation and allow quick access to a larger view of the creation, complete with

comments and metadata. Pay special attention to the data-role attributes we

use in the markup:

artflow/responsive/app/views/creations/index.mobile.erb

<article data-role='page'>➤

<header data-role='header'>➤

<section data-role='content'>

<h1><%= @project.name %></h1>
</header>

➤

<ul data-role='listview'>➤

<% @creations.each do |creation| %>

<%= image_tag creation.file.url(:thumb) %>
<%= link_to creation.name, [@project, creation] %>

<% end %>

</section>

</article>

The data-role attributes are used to provide jQuery Mobile with the information

it needs to map components to areas of the view.16 In this template we’ve

identified four components: the page-level container, the header, the content
portion of the page, and a listview containing our creations. jQuery Mobile

supports a wide range of roles, but these are the only ones we need for this

template.

We can see the results of this in Figure 15, Creation list, on page 182.

Since we put the image thumbnails in at the beginning of each list item,

JavaScript has automatically handled its placement for us, and the default

right arrow icons work perfectly. Those are pretty good defaults!

We have our list. Now we’ll put together the pages for the individual items.

16. http://jquerymobile.com/demos/1.0/docs/api/data-attributes.html

report erratum • discuss

Using jQuery Mobile • 181

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/views/layouts/application.mobile.erb
http://media.pragprog.com/titles/warv/code/artflow/responsive/app/views/creations/index.mobile.erb
http://jquerymobile.com/demos/1.0/docs/api/data-attributes.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 15—Creation list

Going Deeper

When we click or touch a creation, jQuery Mobile will load the show() action

of the CreationsController asynchronously and, after a page transition, display it.

The template we build for that page is similar, with a few additions:

artflow/responsive/app/views/creations/show.mobile.erb

<article data-role='page' data-theme='c'>➤

<footer data-role='footer'>

<header data-role='header'>
<h1><%= @creation.name %></h1>

</header>
<div data-role='content'>

<p><%= image_tag @creation.file.url %></p>
</div>

➤

<div data-role='navbar'>➤

➤

<%= link_to_preview(true) %>➤

<%= link_to_comments %>➤

<%= link_to_modify %>➤

➤

</div>➤

➤ </footer>
</article>

182 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/views/creations/show.mobile.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Here we added a few components, namely footer and navbar, which we use for

lateral navigation between the creation image preview, comments, and meta-

data pages. We also specified a theme swatch with data-theme,17 since our

designers wanted the pages for the individual creations to have a distinct feel

that was different from the project pages. Our navigation bar icons were added

with data-icon attributes,18 and we used some helpers to create the links:

artflow/responsive/app/helpers/creations_helper.rb

def link_to_preview(active = false)
navbar_link_to('Preview', [@project, @creation], 'grid', active)

end

def link_to_comments(active = false)
navbar_link_to('Comments', [@project, @creation, :comments], 'info', active)

end

def link_to_modify(active = false)
navbar_link_to('Modify', [:edit, @project, @creation], 'gear', active)

end

def navbar_link_to(text, url, icon, active = false)
link_to text, url, 'class' => navbar_link_class(active),

'data-icon' => icon
end

def navbar_link_class(active = false)
active ? 'ui-btn-active' : nil

end

We now see the page (in Figure 16, Creation preview, on page 184), with the

navbar showing the active page (set with the ui-btn-active CSS class):

Clients can browse their creations but can’t add feedback yet. Let’s fix that

by building the commenting page next.

Adding a Form

The comments page sits at /comments, displays the full list of comments on the

creation, and allows our users to quickly add another. Adding a form to a

page is as easy as anywhere else in Rails; in fact, because jQuery Mobile

handles laying out the labels and inputs automatically, it’s arguably easier.

We create comments/index.mobile.erb and add this code:

17. http://jquerymobile.com/demos#docs/api/themes.html
18. http://jquerymobile.com/demos#docs/buttons/buttons-icons.html

report erratum • discuss

Using jQuery Mobile • 183

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/helpers/creations_helper.rb
http://jquerymobile.com/demos#docs/api/themes.html
http://jquerymobile.com/demos#docs/buttons/buttons-icons.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 16—Creation preview

artflow/responsive/app/views/comments/index.mobile.erb

<article data-role='page' data-theme='c'>

<header data-role='header'>
<h1><%= @creation.name %></h1>

</header>
<div data-role='content'>

<% if @comments.any? %>

<%= render @comments %>

<% end %>
<%= form_for [@project, @creation, Comment.new],➤

:html => {'data-transition' => 'pop'} do |f| %>➤

<%= f.label :body, 'Comment' %>
<%= f.text_area :body, :cols => nil %>
<%= f.submit 'Add' %>

<% end %>
</div>
<footer data-role='footer'>

<div data-role='navbar'>

<%= link_to_preview %>

184 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/views/comments/index.mobile.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Multiple Pages per Template

In this tip we focus on building out a min–mobile application, with each page served

up by a different request. This isn’t a constraint that jQuery Mobile forces on us—in

fact, we can include as many data-role="page" elements in a template as we’d like and

the library will manage their visibility for us. Instead of linking to full URLs to change

pages, we just refer to the page we’d like to display with a named anchor; for instance,

in this example we link from one page to another:

responsive/jquerymobile/_page_link_example.mobile.erb

<article data-role='page' id='first-page'>
<header data-role='header'>

<h1>First Page</h1>
</header>
<section data-role='content'>

<p><%= link_to 'Show second page', '#second-page' %></p>➤

</section>
</article>

<article data-role='page' id='second-page'>➤

<header data-role='header'>
<h1>Second Page</h1>

</header>
<section data-role='content'>
<p>Welcome to Page #2!</p>

</section>
</article>

We might use this in situations when it made sense to render all the data for a

resource all at once but only display it in pieces on a mobile device.

<%= link_to_comments(true) %>➤

<%= link_to_modify %>

</div>
</footer>

</article>

This form is pretty vanilla, except we’re setting a custom page transition with

the data-transition set to pop; we’ll show this same page after the comment is

added, so this effect seems like a better choice than the default page slide,

which gives the impression of forward movement.

The form looks as we’d expect in Figure 17, The Comment form, on page 186.

New comments are displayed using the simple comment template we added,

which just shows the comment body and author (as seen in Figure 18, Dis-

playing comments, on page 188).

report erratum • discuss

Using jQuery Mobile • 185

http://media.pragprog.com/titles/warv/code/responsive/jquerymobile/_page_link_example.mobile.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 17—The Comment form

That was relatively painless. Forms just worked out of the box and jQuery

Mobile handled the bulk of our UI concerns. Now we’ll tweak the header of

our creation pages a little.

Customizing the Header

jQuery Mobile automatically adds a Back button to the header, but we’ll

remove it. Because this should feel like an application and not like a web

page, retaining browsing history as people change from page to page in the

navbar isn’t a requirement. Instead, we’ll add a Home button to get back to

the creation list. Since this will make our header a little more complex, we’ll

extract it to its own partial and render() inside our templates.

artflow/responsive/app/views/layouts/_header.mobile.erb

<header data-role='header' data-backbtn='false'>➤

<h1><%= @creation.name %></h1>
➤ <%= link_to_home %>

</header>

Turning off the Back button was just a matter of setting data-backbtn to false.
Adding the Home button is a bit more complex, so we use a helper:

artflow/responsive/app/helpers/creations_helper.rb

def link_to_home
link_to('Home', [@project, :creations],

186 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/responsive/app/views/layouts/_header.mobile.erb
http://media.pragprog.com/titles/warv/code/artflow/responsive/app/helpers/creations_helper.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

'class' => 'ui-btn-right',
'data-icon' => 'home',
'data-iconpos' => 'notext',
'data-direction' => 'reverse')

end

Here we tell jQuery Mobile to put the button on the right (with class), to use

the little home icon (with data-icon), to hide the button text (with data-iconpos),
and to show a reverse page transition without touching the page history (with

data-direction). While this might seem complex, keep in mind that each of these

provides a specific visual or behavioral flavor that makes the effect more

closely match what users would expect to see in a native application.

jQuery Mobile is a serious painkiller. Sure, it’s a lot to learn—as any large,

magical library is (Rails, anyone?)—but the time savings and stress relief we

get by using it, even in the most shallow, incomplete way, makes it well worth

the effort. After all, with your company bent on world domination, don’t you

have more important things to focus on than the intricacies of (and differences

in) mobile interaction on the Web?

7.5 Wrapping Up

We’ve looked at a few different means of handling mobile users. For most

content sites, responsive design solutions with @media queries will get us to

the finish line. For web applications, we need to determine if our users are

going to be served better by minimum web pages returned with responders

or by a full-blown experience in jQuery Mobile.

We now have a pretty robust system running, but we’re missing out on how

we interact with our users most often, and that is email. From notifications

to marketing, we’ll take a look at how we should best handle email delivery

in the next chapter.

report erratum • discuss

Wrapping Up • 187

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 18—Displaying comments

188 • Chapter 7. Handling Mobile Views

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CHAPTER 8

Working with Email

Since the early days of the Internet, email has provided one of the main

methods of interaction with website users. Users receive updates, transaction

notices, activity alerts, and more in their inboxes on a daily basis. Since this

is one of the main starting points for users interacting with our application,

we need to pay it some serious attention while we work on other aspects of

the Rails view.

In ArtFlow, we want to send a notification to our users when someone adds

a creation to a campaign. An iOS push notification, which is a way we can

send a quick message to a user on a mobile platform, might look like Figure

19, A sample push notification, on page 190. We can see from this notification

that Bruce just posted a creation in a specific campaign, but we can’t provide

more information than that. This is the perfect opportunity for us to send an

email notification with more specific information. We’ll create a notification

that includes the creation’s synopsis, date and time added, and some infor-

mation about its project.

Let’s dive in! Before we create the template, let’s configure ArtFlow to send

out emails.

8.1 Building a Mailer

For our email testing, we’re going to configure our application to use our

company’s SMTP account but deliver the test emails locally. There are many

other options for delivery, and you can read about those in the API or in Agile

Web Development with Rails [RTH11]. For this setup we’re going to need to

edit development.rb in the directory config/environments in our application.

You’ve got mail!

 ➤ AOL system sound bite

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 19—A sample push notification

artflow/email/config/environments/development.rb

config.action_mailer.delivery_method = :smtp
config.action_mailer.smtp_settings = {

:address => "smtp.gmail.com",
:port => 587,
:domain => "artflowme.com",
:authentication => "plain",
:user_name => "artflow",
:password => "secret",
:enable_starttls_auto => true

}

We need to restart our application if we have it running locally. After we’ve

restarted, let’s generate an ActionMailer.1 We’ll just call it Notifier to keep it simple:

% rails generate mailer Notifier creation_added
create app/mailers/notifier.rb
invoke erb
create app/views/notifier
create app/views/notifier/creation_added.text.erb
invoke test/unit
create test/functional/notifier_test.rb

Our Notifier is similar to a controller in that there are templates associated

with its methods, but instead of rendering for the Web, it sends an email.

artflow/email/app/mailers/notifier.rb

class Notifier < ActionMailer::Base
default :from => 'Art Flow <artflow@artflowme.com>'
def creation_added(creation)

@creation = creation
@campaign = creation.project.campaign
mail to: "test@artflowme.com",

subject: "Creation Added"
end

end

1. http://api.rubyonrails.org/classes/ActionMailer/Base.html

190 • Chapter 8. Working with Email

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/email/config/environments/development.rb
http://media.pragprog.com/titles/warv/code/artflow/email/app/mailers/notifier.rb
http://api.rubyonrails.org/classes/ActionMailer/Base.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Always Ask: What Is the Action?

With emails we need to provide a call to action to users. What do we want them to

do with this email? Is it simply for their notification, or do we require their approval

or review? If this was an e-commerce project and we were sending out sales emails,

what would we want them to do? In many cases, this call to action encourages our

users to “click through” to the website.

There’s also nothing as frustrating as seeing something that we need to visit with no

clear way to get there. As users, we don’t want to go to a site and dig around for the

place the email spoke about.

We shouldn’t send an email without a call to action.

We are going to change out our development code for our production code

once we’ve finished developing these emails. We’ve put it in and commented

it out for right now. We have a mailer ready to go, but we need to get a tem-

plate for it to send to our users. That’s where we’ll head next.

8.2 Handling Email Templates

We know that the majority of our internal users are using either Mac OS X

Mail or our internal Google Mail for Domains setup, and therefore we can

assume certain capabilities about our users. This is good, because internal

messages can rely on a cleaner markup and can use CSS for styling.

However, our external clients use a myriad of systems, including Microsoft

Outlook. How can we ensure that our company’s main interaction with them

(email) is not an abysmal failure? The answer is to have contingencies in the

way we build our emails. Every graphical email will have a plain text alterna-

tive. Since plain text is far easier to implement, we’ll start with that and get

sending!

Creating Plain Text Emails

While HTML emails are nice, starting with straightforward text-based emails

gets us communicating a lot faster and supporting every email client in the

world from the get-go, including Blackberry and other older mobile platforms

(such as Symbian).

Plain text isn’t just dumping the content of the email into a paragraph and

handing it off to Postfix to deliver, lest we end up with the nightmare that

appears in Figure 20, A plain-text dump with no treatment, on page 192. A

report erratum • discuss

Handling Email Templates • 191

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 20—A plain-text dump with no treatment

plain-text email can be as difficult to design as a regular email. A lot of our

own best practices from writing readable code apply here as well.

We want to keep our column count under eighty characters wide, regardless

of if we’re using fixed or variable-width fonts. We want to make paragraphs

logical and provide clarity of content. Since we won’t have font size, bold,

italics, and other typographic standards to play with, we need to use ASCII

punctuation and lines to aid with breaking up the page and providing hierar-

chy. Rows of equal symbols and hyphens can help create some visual breaks.

Underscores and other punctuation marks can also be used. We could even

use something as a brand element (such as a row of forward slashes) if we

use it graphically in our brand. If we are presenting financial or columnar

data, we want to use a monospace font.

This email notification is going to be sent to members of a project or a cam-

paign when another user adds a new creation. We’ll want context as well as

some details about the file. To this end, we’ll include the following information

in this email:

• Creation title

• Creation created_at

• Campaign name

• Project name

• The user who added it

• A clear call to action (or CTA) to the recipient

192 • Chapter 8. Working with Email

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/email/app/views/notifier/creation_added.text.erb

==
| ArtFlow Notification |
==

Hi there <%= @creation.client.name %>!

<%= @creation.designer.name %> has posted a new creation at
<%=l @creation.created_at %> in your campaign, <%= @campaign.name %>.

Here's more information about it:

Name: <%= @creation.name %>
Project: <%= @creation.project.name %>

<% if @creation.approvable? %>
This creation is <%= link_to "awaiting approval",

edit_creation_url(@creation) %>.
<% end %>

==
| Thank you for using ArtFlow, http://www.artflowme.com |
==

By using some hard returns and some ASCII characters, we were able to

break up the awful dump of plain text with nothing in it and provide clarity

to our end user for when the email is opened. The only thing left to do is to

actually have it send on an event, namely when a new creation is added. We’ll

do this with an after_create() Creation model:

artflow/email/app/models/creation.rb

after_create :notify_created

private

def notify_created
Notifier.creation_added(self).deliver

end

We’ve built a plain-text email that will be readable on a wide variety of low-

end devices and email clients, but it doesn’t reinforce our brand. Let’s take

this a step further and build an HTML email template that lets us use our

brand and design elements to present a more engaging experience, including

showing a preview of the asset.

Using Graphics-Based Emails

Supporting a broad variety of email clients means that we have to code to the

lowest common denominator. Email clients, unlike web browsers, still have

report erratum • discuss

Handling Email Templates • 193

http://media.pragprog.com/titles/warv/code/artflow/email/app/views/notifier/creation_added.text.erb
http://media.pragprog.com/titles/warv/code/artflow/email/app/models/creation.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

very poor support for HTML and CSS standards. It’s as if we are still living

in 1998 with some of them, and that means we need to code like it’s 1998.

We have to resort to old-style table-based markup to lay out the email. (This

is probably the only case for using table-based markup outside of tabular

data.) While we could design an email that has excessive graphics, the best

course of action is to not look like a spam email and to use the design elements

to support the content.

First we need to create a new template in our app/views/notifier folder named

creation_added.html.erb. This will be our HTML version of the email. According to

Agile Web Development with Rails [RTH11]:

If you create multiple templates with the same name but with different content

types embedded in their filenames, Rails will send all of them in one email,

arranging the content so that the email client will be able to distinguish each.

Voilà—instant multipart awesomeness! So now all we need to do is to write

up the HTML email template and give it a whirl.

artflow/email/app/views/notifier/creation_added.html.erb

<h2>ArtFlow Notification</h2>

<p>Hi there, <%= @creation.client.name %>!</p>

<p>
<%= @creation.designer.name %> has posted a new creation at
<%=l @creation.created_at %>
in your campaign, <i><%= @campaign.name %></i>.

</p>

<h3>Here's more information about it</h3>

<dl>
<dt>Name</dt>
<dd><%= @creation.name %></dd>
<dt>Project</dt>
<dd><%= @creation.project.name %></dd>

</dl>

<% if @creation.approvable? %>
<p>
This creation is
<%= link_to "awaiting approval",

edit_creation_url(@creation) %>.
</p>
<% end %>

<p class="footnote">

194 • Chapter 8. Working with Email

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/email/app/views/notifier/creation_added.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Thank you for using <%= link_to 'ArtFlow', root_url %>.
</p>

We can now add our styles either in a <style> block at the top of the email or

inline. Some email clients just play nicer with them inline. And since we’re

going to support the lowest common denominator, we’re going to use inline

styles.

While HTML emails are great, don’t forget that not all clients will support

them and that some connections, especially mobile ones, can be very slow to

download a lot of images. Let’s write another rule up on the whiteboard:

With an HTML email, always provide a plain-text alternative and a link to view the

email on a website.

We can send this URL to a controller that shows email contents from a

database or simply to a controller handling static pages to show these off.

Since the email is a standalone HTML entity, we’d show it without a layout

or within an iFrame on a page.

We’ve finished generating our emails, but we are by no means ready for

production yet. We first need to test these and refine them. While we can

constantly send them to our test email account, this becomes burdensome

and slows down our development. In the next section we’re going to build a

Rake task to help us with this issue and then look at some testing services

for checking different email clients.

8.3 Testing Locally

Testing our emails is a bit more difficult, as we don’t generally have access

to every email client with our email accounts. Sending and checking each

one by hand would also be tedious. The process we are going to follow is more

iterative.

Normally, when our email service does its job, it creates a message, connects

to an SMTP server, and sends that to an account somewhere in the ether (or

to a “series of very large tubes”). This can be time-consuming and completely

clog up our email inbox in order to do testing, so we need a shortcut.

The best way to do this is to take the sending issue out of the equation. We

can do rapid development in the web browser itself. While many email clients

are not as sophisticated as browsers, the prevalence of web-based email

clients lets us choose this as the primary environment. We’ll get to debugging

across multiple clients in Section 8.4, Testing Across Clients, on page 196.

report erratum • discuss

Testing Locally • 195

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

The Letter Opener gem by Ryan Bates is a nifty tool that lets us skip the

configuration to send our emails and lets us just open them in a web browser.2

This really speeds up our development cycle!

artflow/email/Gemfile

group :development do
gem 'letter_opener'

end

We put the gem in our :development group in order to keep this out of our pro-

duction environment. After running bundle install, we have to change our

ActionMailer delivery method in our config/environment/development.rb:

artflow/email/config/environments/development.rb

config.action_mailer.delivery_method = :letter_opener

This tells Rails to pass emails over to Letter Opener for email delivery. Now

in order to test our email, we’re going to trigger an email out of our system

from the console using our Notifier:

>> Notifier.creation_added(Creation.first).deliver❮

This creates an email that is saved in the tmp/letter_opener directory and then

opens it for us in a browser. Now we can see how our email should be ren-

dered. This helps us proof our HTML email, but it would be nice to see if our

email design works in all our situations for the email clients we need to

support.

8.4 Testing Across Clients

Once we have our email looking good locally, we need to venture into the

world of the various email clients that our users might be using. With most

of ArtFlow, it’s easier to control what people are using, since it’s an internal

application. But our external clients could be using anything from Outlook

to OS X Mail to Gmail to AOL. Some might even be so brave as to only use

PINE.

Regardless of their client choice, we want to make sure that they are getting

the information in a manner that looks good and reflects well on our company.

To this end, we need to test our emails in these clients.

Do we set up lots of accounts on every possible service and check these by

hand? Well, that certainly is one solution, but it’s a bit of a waste of our time.

In this instance, we find it far more valuable to use a system like Litmus to

2. https://github.com/ryanb/letter_opener

196 • Chapter 8. Working with Email

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/email/Gemfile
http://media.pragprog.com/titles/warv/code/artflow/email/config/environments/development.rb
https://github.com/ryanb/letter_opener
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

test our emails and send us screen shots.3 Litmus has a seven-day free trial

account to see if you like it.

Enter the Marketing Email

So far we’ve been working with transactional emails that are notification and

interaction based. They’re pretty simple. We’ve just been handed our new

marketing email design for the next quarter and we need to make sure it looks

great in as many email clients as possible.

This will be easy to crank out. We break it into HTML and call our CSS files

and...wait a minute—not so fast. In some cases, email clients will ignore style

sheets referenced in <link> tags, and some remove the <head> tag contents

entirely. Most won’t load an external style sheet either, so we need to use

inline styles for our email.

email/marketing_email.html

<!DOCTYPE html>
<html>

<head>
<style>
#page {

min-width: 600px;
}
#header {

background-color: #bc471d;
height: 94px;
overflow: hidden;
padding: 0 10px;

}
img#logo {float: left;}
img#cloud {float: right;}
img#subhead {margin-top:7px;}
img#creatives {float: right;}
p {

color: #666666;
font-family: verdana, arial, sans-serif;
font-size: 14px;
line-height: 20px;
margin-bottom: 12px;
margin-top:15px;
width: 315px;

}
#footer p {

color: #999999;
font-size: 10px;
margin-bottom: 12px;

3. http://www.litmus.com

report erratum • discuss

Testing Across Clients • 197

http://media.pragprog.com/titles/warv/code/email/marketing_email.html
http://www.litmus.com
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

}
</style>
<meta http-equiv="content-type"

content="text/html; charset=ISO-8859-1">
<title>25% off ArtFlow for a limited time</title>

</head>
<body>

<p style="font-family: verdana, arial, sans-serif;
font-size: 9px;">

Can't view this email? View it on the Web.
</p>
<div id="header">

<img src="http://artflowme.com/images/email/logo.gif"
alt="ArtFlow" id="logo">

<img src="http://artflowme.com/images/email/cloud.gif"
alt="cloud icon" id="cloud">

</div>
<div id="page">

<img src="http://artflowme.com/images/email/creatives.jpg"
alt="image of creative elements"
id="creatives">

<img src="http://artflowme.com/images/email/subhead.gif"
alt="Creative File Management Made Easy"
id="subhead">

<p>
We here at AwesomeCo know how the end of the year can just be too much
for keeping your files in order. Lots of "get it out the door
before the holiday" projects end up in file server soup when you
get back after New Year's.

</p>
<p>

That's why, for a limited time only, we're offering all new customers:
</p>

<img src="http://artflowme.com/images/email/pitch.gif"
alt="Sign up today and get 25% off artflow">

<p>

Make your New Year's resolution to not have any more "to
sort" folders. Get your team and your clients communicating
better with our industry-changing software.

</p>
<p>

Because no designs should be alone this holiday season.
</p>

<img src="http://artflowme.com/images/email/button1.gif"
alt="Sign up today and get 25% off artflow"
border="0">

198 • Chapter 8. Working with Email

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

</div>
<div id="footer">
<img src="http://artflowme.com/images/email/footer.gif"

alt="©2011 John Athayde, Bruce Williams. All Rights
Reserved, All Wrongs Reversed.">

<p>
We hate spam too, so if you received this in error, or simply no
longer wish to receive our marketing emails,
simply click here
to unsubscribe.

</p>
</div>

</body>
</html>

You’ll notice that we actually spell out our CSS declarations entirely instead

of using the shorthand methods we’ve used throughout our application. This

is due to the fact that some clients don’t yet support the shorthand declara-

tions. To find a list of supported features for various email clients, visit

CampaignMonitor, which has a handy chart. We’re going to try to support as

many clients as possible,4 so we will approach this as a lowest-common-

denominator solution. But first, we need to see how bad off we are with our

existing email template.

Before we do that we need to change our image paths to absolute paths (or

to paths that start with http://) and make sure that those images exist on our

server. FTP, Capistrano, or some other method will suffice to get our assets

where they need to be on the server.

Once our image paths are fixed, we can set up our application to send to

Litmus so we can see how this email renders. We’re going to create a new test

and select our clients, as seen in Figure 21, Starting a new test in Litmus:

Choose your clients, on page 200. When we click Start Test at the bottom, the

system will give us the option to send the email to a certain address or upload

the HTML. Since we already have letter_opener generating local HTML files, we’ll

just upload the HTML.

If we look at Figure 22, Litmus: HTML/CSS email results, on page 201, we see

that Apple Mail, AOL, and many of the Outlooks and newer Lotus Notes, as

well as iOS clients, look pretty good. The newer Outlooks don’t get the float

right. We also see some other clients that don’t play so nicely, such as Gmail

and Hotmail.

4. http://www.campaignmontior.com/css/

report erratum • discuss

Testing Across Clients • 199

http://www.campaignmontior.com/css/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 21—Starting a new test in Litmus: Choose your clients

The reason is that a lot of these email clients don’t support proper HTML and

CSS layout. Many of them strip out the entire <head> section or remove head

styles. In order to get this working globally, we have to take a trip back to

1998 and think in table-based layout for these emails.

200 • Chapter 8. Working with Email

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 22—Litmus: HTML/CSS email results

Table-Based Layout

Tables? Yes, tables. Table-based markup was so vilified in the early 2000s

that it created a backlash and caused DIVitis, which occurs when you see

markup that only uses <div> and for everything. For those of you who

never learned about table-based markup before <div>s and CSS ruled the

Web, the only way to achieve layout control was to design your site as a fixed-

width table and break out various images into a grid of cells. This was the

dominant method of layout from about 1997 until the early 2000s, and it is

going to get us as close as we can to a unified look across our email clients.

If you haven’t learned or need a refresher on table-based layout, you can find

some excellent resources online at Campaign Monitor and Sitepoint.5

5. http://www.campaignmonitor.com/blog/post/2491/tables-in-html-emails-nesting/ and http://www.sitepoint.com/
code-html-email-newsletters/, respectively.

report erratum • discuss

Testing Across Clients • 201

http://www.campaignmonitor.com/blog/post/2491/tables-in-html-emails-nesting/
http://www.sitepoint.com/code-html-email-newsletters/
http://www.sitepoint.com/code-html-email-newsletters/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

This leads us to another of our rules for the wall:

When building complex emails, use table-based markup to ensure similar presenta-

tion across a variety of email clients.

Let’s take the marketing email that we see in Enter the Marketing Email, on

page 197, and change it to a table-based layout. We’ll think of things as rows

(<tr>s) and then add additional cells (<td>s) as needed. This is designed as

600 pixels wide, which is about as wide as we want to go in email design.

Many desktop email client’s chrome covers anything over this, and the actual

message window is quite small. Also, our mobile email clients will be limited

to smaller sizes as well.

email/marketing_email_tables.html

<!DOCTYPE html PUBLIC "-//W3C/DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<style>
table, tr, th, td {margin: 0; padding: 0;}
a img { border: 0; }

</style>
<meta http-equiv="content-type"

content="text/html; charset=ISO-8859-1">
<title>25% off ArtFlow for a limited time</title>

</head>
<body>

<center>
<p style="font-family: verdana, arial, sans-serif;

font-size: 9px;">
Can't view this email? View it on the Web.

</p>
<table border="0" cellpadding="0" cellspacing="0" width="100%">

<tr>
<th bgcolor="#bc471d">
<img src="http://artflowme.com/images/email/spacer.gif"

width="10" height="1">
</th>
<th bgcolor="#bc471d" align="left" valign="top">

<img src="http://artflowme.com/images/email/logo.gif"
alt="ArtFlow">

</th>
<th bgcolor="#bc471d" align="right" valign="top">
<img src="http://artflowme.com/images/email/cloud.gif"

alt="cloud icon">
</th>
<th bgcolor="#bc471d">
<img src="http://artflowme.com/images/email/spacer.gif"

width="10" height="1">
</th>

202 • Chapter 8. Working with Email

report erratum • discuss

http://media.pragprog.com/titles/warv/code/email/marketing_email_tables.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

</tr>
<tr>

<td>
<img src="http://artflowme.com/images/email/spacer.gif"

width="10" height="1">
</td>
<td align="left" valign="top">
<img src="http://artflowme.com/images/email/subhead.gif"

alt="Creative File Management Made Easy"
style="margin-top:7px;">

<p style="color: #666666;
font-family: verdana, arial, sans-serif;
font-size: 14px;
line-height: 20px;
margin-bottom: 12px;
margin-top:15px;">

We here at AwesomeCo know how the end of the year can
just be too much for keeping your files in order. Lots
of "get it out the door before the holiday"
projects end up in file server soup when you get back
after New Year's.

</p>
<p style="color: #666666;

font-family: verdana, arial, sans-serif;
font-size: 14px;
line-height: 20px;
margin-bottom: 12px;">

That's why, for a limited time only, we're offering all
new customers:

</p>

<img src="http://artflowme.com/images/email/pitch.gif"

alt="Sign up today and get 25% off ArtFlow">

<p style="color: #666666;

font-family: verdana, arial, sans-serif;
font-size: 14px;
line-height: 20px;
margin-bottom: 12px;">

Make your New Year's resolution to not have any more
"to sort" folders. Get your team and your
clients communicating better with our industry-changing
software.

</p>
<p style="color: #666666;

font-family: verdana, arial, sans-serif;
font-size: 14px;
line-height: 20px;
margin-bottom: 12px;">

Because no designs should be alone this holiday season.

report erratum • discuss

Testing Across Clients • 203

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

</p>

<img src="http://artflowme.com/images/email/button1.gif"

alt="Sign up today and get 25% off ArtFlow"
border="0">

</td>
<td align="right" valign="top">
<img src="http://artflowme.com/images/email/creatives.jpg"

alt="image of creative elements">
</td>
<td>
<img src="http://artflowme.com/images/email/spacer.gif"

width="10" height="1">
</td>

</tr>
<tr>

<td>
<img src="http://artflowme.com/images/email/spacer.gif"

width="10" height="1">
</td>
<td colspan="2">

<img src="http://artflowme.com/images/email/footer.gif"
alt="©2011 John Athayde, Bruce Williams.

All Rights Reserved, All Wrongs Reversed.">
<p style="color: #999999;

font-family: verdana, arial, sans-serif;
font-size: 10px;
margin-bottom: 12px;">

We hate spam too, so if you received this in error, or
simply no longer wish to receive our marketing emails,

simply click here to unsubscribe.

</p>
</td>
<td>
<img src="http://artflowme.com/images/email/spacer.gif"

width="10" height="1">
</td>

</table>
</center>

</body>
</html>

That sure takes us back. We used images where we needed to and used plain

text for the body font. This way, if people have images disabled, they can still

see some of the content. We also provided alt attributes for every image because

many users have their clients configured to block images on emails. We’ve

defined the styles inline for the paragraph tags as well. We also used a spacer.gif,

204 • Chapter 8. Working with Email

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

which is a 1-pixel-by-1-pixel transparent GIF, to create our left and right

margins, since just defining width and height doesn’t always work.

Let’s send this to Litmus now and see what we get. As it’s working, it will

have placeholders for the email clients we selected. They will become

thumbnails as soon as they are processed, as we see in Figure 23, The results

of our first test, on page 206.

The first thing that jumps out is the blue box around our images that are

links. We have to go in and add a border="0" attribute to each element

that falls inside a link/anchor to take those out.

email/marketing_email_tables.html

<img src="http://artflowme.com/images/email/button1.gif"

alt="Sign up today and get 25% off ArtFlow"
border="0">

For good measure, we’ll also add a style to our header:

email/marketing_email_tables.html

a img { border: 0; }

We’ll also add an inline style attribute to those same tags and say style="bor-
der:0;". That will take care of Gmail stripping out the <style> in the header.

We’ll use both because certain clients look in different places for styles.

We’ll go back to Litmus now and click Retest in the upper right corner. By

using Retest instead of sending a new test to the system, it will keep the tests

together and give us a new version number so we can compare our tests as

we fix problems.

Our email looks much better now, but our users who prefer text-only email

clients remind us that we have not put in a plain-text alternative. Litmus

doesn’t support uploading HTML and text-only emails together, so we’d need

to make sure we take care of this in whatever email sending solution we

choose. Most third-party systems will simply have a field to fill in with the

alternative. Remember that this needs some design love too!

Email is one of the more complex pieces of the view, but it can be essential

to marketing and interaction with customers. It has more possible clients

than the Web side of our application, and special considerations need to be

taken into account so that we can deliver the content in a manner that suits

our users.

report erratum • discuss

Testing Across Clients • 205

http://media.pragprog.com/titles/warv/code/email/marketing_email_tables.html
http://media.pragprog.com/titles/warv/code/email/marketing_email_tables.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 23—The results of our first test

8.5 Wrapping Up

Now that we’ve figured out how to send both transactional and marketing

emails, as well as how to design them within the complex constraints of the

mail readers available, let’s tackle some post-launch concerns for our ArtFlow

application and ask ourselves some difficult questions about how our appli-

cation is performing and how we can make it better.

206 • Chapter 8. Working with Email

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CHAPTER 9

Optimizing Performance

There are two basic types of performance characteristics we can look at as

our application grows and gains users: how efficiently it’s performing techni-

cally (in terms of concurrent requests and other code metrics) and how

effectively it’s serving our business interests. As we build our ArtFlow appli-

cation, we need to ask ourselves a few important questions.

Is the way we’ve built our views making things run slower, possibly necessi-

tating higher hosting costs? Is the marketing copy or the design stale and

uninviting, hindering user acquisition? Is the user interface confusing and

unintuitive, preventing users from fully connecting with the product?

Let’s tackle these questions head on, getting the answers we need with some

tools we can use to objectively measure how fast our application is running

and how effectively it’s catering to our customers. Once we have our answers,

we’ll use some optimization techniques to make things better.

The first tool we’ll look at is “A/B” testing, which we’ll use to see how ArtFlow

users interact with the system.

9.1 A/B Testing with Vanity

We live in exciting times. We’ve built such a good asset manager that we’re

now selling it as a SaaS (software-as-a-service) to other firms, and the sub-

scriptions are rolling in. Never complacent, though, what we’re doing this

bright and sunny morning is asking the question “How do we sell more

subscriptions?”

We’re focused on optimizing conversion, the number of users that go from

casually perusing the site to signing up to becoming paying members. To

increase our conversion rate, we need to rapidly determine which elements

Without continual growth and progress, such

words as improvement, achievement, and

success have no meaning.

 ➤ Benjamin Franklin

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

of the application increase (or decrease) it, then tweak it, and then rinse and

repeat until we win.

To help us measure how each part of the application is helping (or hurting)

our conversion, we are going to integrate a system to do A/B testing (also

called multivariate testing1). These methods compare two or more options of

the same item, be it a Submit button, a logo, a color, or anything else we (or

our friends in marketing) can come up with to test and give us statistics we

can use to make decisions.

It’s important for any organization to improve its online presence and offerings

to its users. We, as the front-end developers, are responsible for providing

tools to let the company’s presence move from nice-in-theory to awesome-in-

practice. So we’ll test everything from varying headlines on stories to price

points to colors on buttons and everything in between.

We’ll use a Ruby library called Vanity to help us automate this testing.2 That

way we can skip the whole “let’s write an A/B testing engine from scratch”

problem and get right down to providing business value.

Setting Up Vanity

To store Vanity’s metrics, we’ll use Redis, which is fast and easy to install.3

On OS X, the easiest way to get Redis is with Homebrew,4 and it’s as simple

as:

$ brew install redis

If we weren’t using OS X or Homebrew, we’d need to see the Redis site for the

appropriate installation details.5

Next, let’s get the gem into our application by adding it to our Gemfile:

artflow/performance/Gemfile

gem 'vanity'

Run Bundler and we’re in business. Next, we need to create some folders to

place our ongoing files in for the tests and metrics.

$ mkdir -p experiments/metrics

1. http://en.wikipedia.org/wiki/Multivariate_statistics
2. http://vanity.labnotes.org/
3. http://redis.io/
4. http://mxcl.github.com/homebrew/
5. http://redis.io/download

208 • Chapter 9. Optimizing Performance

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/performance/Gemfile
http://en.wikipedia.org/wiki/Multivariate_statistics
http://vanity.labnotes.org/
http://redis.io/
http://mxcl.github.com/homebrew/
http://redis.io/download
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We edit our ApplicationController to tell Vanity to track the account that is currently

signed in.

artflow/performance/app/controllers/application_controller.rb

use_vanity :current_user

We need to add a Vanity configuration file, config/vanity.yml, that points the

library at our local Redis server:

artflow/performance/config/vanity.yml

development:
collecting: false
adapter: redis
host: localhost
port: 6379

production:
collecting: true
adapter: redis
database: vanity

test:
collecting: false

Vanity comes with a built-in dashboard tool, so we won’t have to write a front

end to view our results and switch between tests. We do, however, need to

tell our application where to make the interface available, so we add a quick

route:

artflow/performance/config/routes.rb

match '/vanity(/:action/:id)', :controller => :vanity, :as => :vanity

Now we make a basic controller, VanityController, to run the dashboard:

artflow/performance/app/controllers/vanity_controller.rb

class VanityController < ApplicationController
include Vanity::Rails::Dashboard

layout false
end

When we browse to http://localhost:3000/vanity, we’ll see our dashboard. This has

all our tests that are active in the experiments directory as well as the ongoing

metrics that are being tracked. We’ll set up those metrics now.

Setting Up a Test

We don’t want to just change items on the page on a whim. What are we

planning for? We should approach these as science experiments. We want a

report erratum • discuss

A/B Testing with Vanity • 209

http://media.pragprog.com/titles/warv/code/artflow/performance/app/controllers/application_controller.rb
http://media.pragprog.com/titles/warv/code/artflow/performance/config/vanity.yml
http://media.pragprog.com/titles/warv/code/artflow/performance/config/routes.rb
http://media.pragprog.com/titles/warv/code/artflow/performance/app/controllers/vanity_controller.rb
http://localhost:3000/vanity
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

control and a variable and a hypothesis about what will happen. The test

proves or disproves that hypothesis.

We need to establish a funnel, or a path we want users to take. This generally

ends up in a conversion (be it a signup or a purchase). From there we want

to install analytics, such as Google Analytics,6 and figure out what people are

doing. Do they bounce from (immediately leave) our landing page once they

get there? Do they browse around but not sign up? Do they sign up for more

info? Do they sign up for a free plan but not a paid one? We should find out

those pain points and then base our tests on those. Testing without a target

and adequate measurement tools is worthless.

We need to talk about what we want to measure here. In Vanity, these are

called metrics. A metric could be anything from opening a page to adding

items to a cart to checking out. We can also track any element of the data

model—for example, the quantity of items in the cart.

Metrics run even when tests are not running, and we’ll see them in the

dashboard. This is important because we want to know what the “normal”

baseline is before we can adequately judge if our test is helping or hurting.

We define metrics in our /experiments/metrics directory. A metric for someone

clicking to buy would look like this:

artflow/performance/experiments/metrics/subscriptions.rb

metric "Subscriptions" do
description "Measures how many visitors subscribe to ArtFlow"

end

It’s that simple. We give it a name and a description. It’ll track the number

of times this happens. Nothing too crazy, as we’re just capturing event counts,

but this data is critical for analysis.

To get this recording data, we need to tell the system to track it. We can do

this two ways: from the controller or from the model. Since the subscriptions
metric is tied to the number of Subscription records we have, we’ll have the Sub-
scription model increment the metric every time one is created by using the

track!() method in our after_create callback in app/models/subscription.rb:

after_create :increment_subscriptions!

def increment_subscription!
track! :subscriptions

end

6. http://www.google.com/analytics/

210 • Chapter 9. Optimizing Performance

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/performance/experiments/metrics/subscriptions.rb
http://www.google.com/analytics/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Now when a new Subscription is created, Vanity will know when subscriptions

happen and increment our subscriptions metric. It turns out that this is such a

common case that, instead of putting this in the model, we can just bake it

directly into the metric itself. Let’s edit our experiments/metrics/subscriptions.rb again:

artflow/performance/experiments/metrics/subscriptions.rb

metric "Subscriptions" do
description "Measures how many visitors subscribe to ArtFlow"

➤ model Subscription
end

Now the Vanity metric definition can handle the business of tracking its value

instead. Since metrics on record counts are so common, this handy decoupling

keeps the number of times we manually have to call track!() in our controllers

and models to a minimum.

Now we’re getting data on those metrics, so we can see how our changes affect

them. We’ll capture these in an experiment and then watch how much the

metric changes (either improves or declines). Depending on our customer

base, this could be a big or a small change. If we are dealing with hundreds

of thousands of users every day, then a small percentage change is a very

large number. We should always know what our metric goals are before we

start, such as “Improve conversion by 1 percent.”

We want to have our metrics collecting regardless of whether a test is running

or not so we can see the change and also avoid any other statistical anomalies

or other issues that arise, which is why we enabled collection in the production
environment portion of our config/vanity.yml:

artflow/performance/config/vanity.yml

production:
collecting: true
adapter: redis
database: vanity

We spoke with our product team and they’re convinced we have what is called

a paradox of choice.7 A paradox of choice is a hypothesis that too many

choices can create anxiety with customers when they are looking to purchase

something and actually hurt conversion. With three choices, there’s less self-

filtering required, less information on the page, and a better chance, we

believe, that users will convert on that page. It’s a great hypothesis and

something we can easily check with A/B testing. We’ll write this up as an

experiment file, 3_vs_5_plans.rb, and put it in our experiments folder.

7. http://en.wikipedia.org/wiki/The_Paradox_of_Choice:_Why_More_Is_Less

report erratum • discuss

A/B Testing with Vanity • 211

http://media.pragprog.com/titles/warv/code/artflow/performance/experiments/metrics/subscriptions.rb
http://media.pragprog.com/titles/warv/code/artflow/performance/config/vanity.yml
http://en.wikipedia.org/wiki/The_Paradox_of_Choice:_Why_More_Is_Less
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

artflow/performance/experiments/3_vs_5_plans.rb

ab_test "3 vs 5 plans" do
description "Testing to see if 3 plans converts better than 5."
metrics :subscriptions

end

We display the plans to our users in a partial, so to build our A/B test we’ll

split this into two different partials, one that shows three plans and one that

shows five. We’ll put a conditional statement on the partial call. If the test is

active, it will render the variable option of three plans.

artflow/performance/app/views/subscriptions/_form.html.erb

<% if ab_test(:3_vs_5_plans) %>
<%= render '3plans' %>

<% else %>
<%= render '5plans' %>

<% end %>

These two options provide a distinct difference for our users. We are mainly

interested in testing the paradox of choice. We don’t want to completely change

the design because we want to have as few variables as possible to see which

option outperforms the other so we can move forward with other tests.

Now we just sit back and wait for the results to roll in!

Reading the Results

The metric we are tracking is conversion. We want to increase the number of

people buying a plan subscription. When there is no change in other factors,

if that number goes down, we have done something wrong. When we set up

the test, we set it to turn off at a thousand visitors. Based on our site stats,

we know this will take about a week to run. We could set it higher, but we

want to actually move forward on A/B tests, not just be stuck in one.

We go and load up the Vanity dashboard that comes with the plugin and take

a look at our metric graphs. It looks like our test was a success. During the

period that we had it enabled, conversion went up. But let’s dig a little deeper.

What exactly happened? Is it statistically significant? What does that even

mean?

Statistical significance is when a result in a test is unlikely to have occurred

by chance or randomness.8 If our result just looks great but had a low number

of users or some other event occurred, it may not be as significant as we

think. The significance is referred to as the p-value and we want our p-values

in Vanity’s dashboard to be over 95 percent.

8. http://en.wikipedia.org/wiki/Statistical_significance

212 • Chapter 9. Optimizing Performance

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/performance/experiments/3_vs_5_plans.rb
http://media.pragprog.com/titles/warv/code/artflow/performance/app/views/subscriptions/_form.html.erb
http://en.wikipedia.org/wiki/Statistical_significance
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Looking at our results we see that the three-price options variable converts

7.2 percent better than the control. We ran this over a week with twenty

thousand views, so, for our business, we’ll go ahead and switch to only

showing the three main options for price. And now we can look at the next

test that our marketing guys want to run.

We could, in the future, get more detailed and set other metrics in place, such

as saving which plan the user signed up for (compared to our current mode

of “they signed up or not”). There are all sorts of things we can track as we

move forward. Remember that it’s not just about the quantity of throughput

but the quality as well. Getting a lot of clicks that don’t convert is not worth

as much fewer clicks that convert at a higher rate.

Moving Beyond A/B: Multivariate

Vanity supports more than two variables in a test, but it takes a little more

configuration to handle the potential mix of variables.

Say we’ve been doing some research and found that the color of the button

can affect if people click on it or not. We’re going to test the color and text of

our main call-to-action button. Right now it’s a green button that says “Find

Out More.” We are going to test the following options: “Try Now” vs. “Find Out

More” for the wording, and blue vs. green for the button color.

The control in this experiment is the Find Out More button in green. We have

three other variables that we are also going to test: “Find Out More” in blue,

“Try Now” in green, and “Try Now” in blue.

With multivariate tests we need to have a much larger sample size, and the

sample size can grow exponentially with the number of variables in the test.

We’re able to roughly calculate the potential number of variations by using

a factorial.9

It’s not too difficult to set these up. Instead of our basic true/false, we’re going

to be looking at various states. We have two widgets. We want to show both,

show one or the other, and finally show neither to see what works better with

conversion.10

This test would run in the same way and show us four options in the end.

When our site has enough throughput, multivariate can get a solution much

faster than many single control/variable experiments. When to use which

type of test depends on our traffic and who we are targeting.

9. http://en.wikipedia.org/wiki/Factorial
10. http://vanity.labnotes.org/ab_testing.html#multiple

report erratum • discuss

A/B Testing with Vanity • 213

http://en.wikipedia.org/wiki/Factorial
http://vanity.labnotes.org/ab_testing.html#multiple
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Testing is an excellent way for us to incrementally improve certain metrics,

or, in simpler terms, to help improve our business. At the end of the day, we

can test everything in the world, but keeping our focus on the customer will

always win the field.

9.2 Performance Testing and Maintenance

Inevitably in our application’s life cycle, we’ll experience some slow page loads.

These are caused by a variety of issues that can range from server configura-

tion to how our models interact with ActiveRecord and the database layer to

inefficiencies in our view code. These problems take a long time to manifest

themselves, and we should remain vigilant about preventing them before the

symptoms appear. Many of these are beyond the scope of this book, so we

are going to focus on the things that we can affect as view layer developers.

We are going to look at some tools for keeping our view code running like a

well-oiled machine. These include tools to find unused CSS classes, manage

our load times, and implement quick caching, as well as a brief overview of

what we can ask our Ops guys to do on their end to help speed up our site

and improve our customer’s experience.

Auditing and Cleaning CSS Declarations

Over time, our application changes. We add new screens, remove screens,

implement redesigns, and more. With these changes comes the potential for

lots of cruft in our CSS files, stuff that is no longer needed or called. These

files, while only transferred once and cached, can add up on large traffic sites.

Since one of our highest costs is going to be transfer costs, optimizing these

files can save us costs. These dead code areas can get really out of control in

larger apps when our team is big. Lucky for us, there are some great tools we

can use to attack this issue.

Auditing from the Browser

The first and easiest way to start auditing pages for unused CSS is to install

the Firefox extension called Dust Me Selectors, which is available from Site-

point.11 This hasn’t been updated in a while, and there’s a replacement for

newer browsers (up to Firefox version 8) called CSS Roundup.12 In it’s simplest

form, this will compare all the IDs, classes, and DOM elements on the page

11. http://www.sitepoint.com/dustmeselectors/
12. http://blog.brothersmorrison.com/?p=198

214 • Chapter 9. Optimizing Performance

report erratum • discuss

http://www.sitepoint.com/dustmeselectors/
http://blog.brothersmorrison.com/?p=198
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

with our style sheets and tells us what is not used on the page. Google’s

PageSpeed tool, which we’ll use in a little bit, also does this for us.

Let’s take a look at our login page at http://localhost:3000/designers/sign_in and see

where we can clean it up. Once the page loads, we can click the small broom

in the lower right of the status bar. It will prompt us with what it is going to

do (review selectors) and then we’ll see it start counting. When it’s done, it

will display results similar to Figure 24, Results from Dust Me Selectors, on

page 216.

That returned a whole bunch of stuff! Is our CSS actually that bad? No.

Because our style sheet covers our whole application, and Dust Me Selectors

is only looking at one page, it’s going to say that we have a whole lot of unused

CSS. While we could script it to spider the application, we’d then have to

share that script by hand and make sure people have the newest version.

There’s a Ruby gem that will let us create a Rake task to do this for us and

walk through the application looking for errant CSS that is hiding out.

Using the Deadweight Gem

Once an application gets a few years on it, we end up with large chunks that

get rewritten or altered. Designs change, and with them, CSS. If we don’t

remove old CSS when we make those edits, we’ll end up with a bloated

stylesheets directory, with all sorts of declarations that are never used.

To find these unused declarations, which are called “deadweight,”13 we can

add something to our application and our test suite to search through and

find the cruft. The Deadweight gem takes a given set of style sheets and URLs

and determines which CSS selectors are being used and which ones aren’t.

Its report will let us know what we can delete and, in doing so, will reduce

the size of the style sheet that we serve.

We’ll install Deadweight by adding it to our Gemfile, but we’ll do so in our test

group, like so:

artflow/performance/Gemfile

group :test do
gem 'capybara'
gem 'cucumber-rails'
gem 'database_cleaner'
gem 'turn', :require => false
gem 'factory_girl'

➤ gem 'deadweight', require: 'deadweight/hijack/rails'
end

13. https://github.com/aanand/deadweight

report erratum • discuss

Performance Testing and Maintenance • 215

http://localhost:3000/designers/sign_in
http://media.pragprog.com/titles/warv/code/artflow/performance/Gemfile
https://github.com/aanand/deadweight
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 24—Results from Dust Me Selectors

After doing that, we need to run bundle install and make sure it is in our system.

We’re going to create a new Rake task in lib/tasks/deadweight.rake:

artflow/performance/lib/tasks/deadweight.rake

require 'deadweight'

Deadweight::RakeTask.new do |dw|
dw.stylesheets = ["/assets/application.css",

"/assets/normalize.css",
"/assets/layout.css",
"/assets/sidebar.css",
"/assets/navigation.css",
"/assets/notifications.css",
"/assets/creations.css"]

dw.pages = ["/creations/index",
"/creations/1"]

end

This will load all our relevant style sheets and then check them to see what

is used and what is not. To run this task, we need to start our application

216 • Chapter 9. Optimizing Performance

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/performance/lib/tasks/deadweight.rake
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

running on localhost:3000 with the rails server command. Once that’s up we can

run rake deadweight from our terminal session.

Deadweight can also be used with the Mechanize library to improve its anal-

ysis of applications by actually interacting with pages.14 More information

can be found in Deadweight’s documentation.15

Now that we’ve cleaned things up a bit by getting rid of unnecessary style

declarations, let’s look at measuring and optimizing our page load times.

Speeding Up Page Load Time

There are many ways to speed up the load time of our pages, and while none

alone is the end all be all, performing these audits and cleaning up will help

create a more efficient site and a better user experience. One of the biggest

wins since Rails 3.1 has been the built-in asset pipeline, which bundles and

minifies our JavaScript and CSS through YUI and UglifierJS, respectively.

This helps us reduce the number of http requests and speeds up our pages.

But there are many other things we can tackle.

Finding Problems with ySlow and PageSpeed

The developer team at Yahoo has spent a lot of time figuring out things that

affect web page performance and has codified them into a testing tool for our

usage called ySlow.16 This is available as an extension for Firefox, Chrome,

and Opera and as a bookmarklet.

The tool comes with three predefined rulesets, or we can create our own.

When we run it against a ruleset, it will provide suggestions for improving

our page’s performance, such as reducing http requests, reducing DNS

lookups, minifying JavaScript and CSS, and other best practices.

Google PageSpeed is a similar extension that fills a similar role. One of the

main differences (and why we prefer it over Yahoo’s ySlow) is that PageSpeed

does not dock us points for not using a CDN, or content delivery network.

There is also a PageSpeed online tool that saves us the extension download

(for those who don’t want to use Chrome or Firefox) available at http://page-
speed.googlelabs.com/pagespeed/.

14. http://mechanize.rubyforge.org/
15. https://github.com/aanand/deadweight
16. http://developer.yahoo.com/yslow/

report erratum • discuss

Performance Testing and Maintenance • 217

http://pagespeed.googlelabs.com/pagespeed/
http://pagespeed.googlelabs.com/pagespeed/
http://mechanize.rubyforge.org/
https://github.com/aanand/deadweight
http://developer.yahoo.com/yslow/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Generating a Sitemap.xml

There are a few different sitemap utilities available for Rails apps, but two of the best

(and most complex) are https://github.com/christianhellsten/sitemap-generator and https://github.com/
alexrabarts/big_sitemap. The latter is great for exceptionally large sites. For something

simpler or to roll your own, take a look at the sitemap fork of the Enki blog system

for inspiration.a

a. https://github.com/fernandogomes/enki/blob/sitemap/app/controllers/sitemap_controller.rb

Both of these tools work through the Firebug extension for Firefox and live

on a tab in the interface.17 To use PageSpeed, we hit the PageSpeed tab and

run the analysis. After running the test, we get a 39/100, and the tool gives

us some suggestions for speeding up our site: we should gzip certain resources

(we will look at this later), we should minify JavaScript, and we may have

some unused CSS selectors.

In order to precompile and minify our assets, we can use the bundle exec rake
assets:precompile command locally, or we can use Capistrano (in 2.8.0 and above),

loading a recipe:

load 'deploy/assets'

There are lots of configuration options in the asset pipeline that can be set

for this, depending on the need and the level we are trying to get things run-

ning at, with details available in the Asset Pipeline guide.18

Once we’re sure our assets are being precompiled as they’re deployed, we

should use some analysis tools to look for other holes in our interface.

Ongoing Auditing with Google Webmaster Tools

Google has an online suite of analysis tools that help us figure out where

links are coming from, where we have crawl errors, what search queries are

coming in, if our sitemap.xml has problems, and a variety of other items.19

This will integrate with the PageSpeed browser extension for some of the

newer Google Labs functionality Google has as well. These tools help us to

control the site links served in Google results, identify web crawl errors, and

manage other things to keep us running smoothly.

17. http://getfirebug.com/
18. http://guides.rubyonrails.org/asset_pipeline.html
19. https://www.google.com/webmasters/tools/

218 • Chapter 9. Optimizing Performance

report erratum • discuss

https://github.com/christianhellsten/sitemap-generator
https://github.com/alexrabarts/big_sitemap
https://github.com/alexrabarts/big_sitemap
https://github.com/fernandogomes/enki/blob/sitemap/app/controllers/sitemap_controller.rb
http://getfirebug.com/
http://guides.rubyonrails.org/asset_pipeline.html
https://www.google.com/webmasters/tools/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

There are a number of local tools we can use as well, some of which are even

built into our browsers!

Analyzing with Web Inspector, ApacheBench, and More

Some of the most overlooked tools when trying to get our site moving faster

are right under our noses. In Safari, we have the built-in Web Inspector,

which has a tab for viewing the speed of downloads for the elements that

make up each page. With this we can quickly see what items the page is

hanging on and fix those problems.

Is our jQuery loading slow from a third-party server? Maybe we want to bring

that in-house. Lots of images taking a while? Maybe we should use image

sprites (which we covered in Section 3.3, Adding Sprites, on page 88). The

results in Figure 25, The Safari/WebKit Web Inspector, on page 219, are from

our development environment, so we don’t have any of the benefits of asset

minification and precompiling occurring, and we have a twenty-second page

load time from start to finish.

Figure 25—The Safari/WebKit Web Inspector

report erratum • discuss

Performance Testing and Maintenance • 219

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

We know that’s not going to cut it in production, so we can make sure our

asset pipeline is configured correctly, bundle our static assets, and work

from that baseline.

$ bundle exec rake assets:precompile

This dropped our development environment request time from 20.71 seconds

to 8.91 seconds. That’s under half the time!

That’s great for one request, but what happens to our servers when they get

hammered? We can use a tool that comes built into Mac OS X (and avail-

able on most Unix systems) called ApacheBench.20 If we run this, we can

see what is going on with our site and where problems may occur. Running

this on therailsview.com, for example, yields:

$ ab -n 100 -c 5 therailsview.com/
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd,
http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking therailsview.com (be patient).....done

Server Software: Apache
Server Hostname: therailsview.com
Server Port: 80

Document Path: /
Document Length: 1605 bytes

Concurrency Level: 5
Time taken for tests: 3.631 seconds
Complete requests: 100
Failed requests: 0
Write errors: 0
Total transferred: 188000 bytes
HTML transferred: 160500 bytes
Requests per second: 27.54 [#/sec] (mean)
Time per request: 181.572 [ms] (mean)
Time per request: 36.315 [ms] (mean, across all concurrent requests)
Transfer rate: 50.56 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 55 174 103.8 150 763
Processing: 0 5 11.3 2 61
Waiting: 0 4 11.3 1 59

20. http://httpd.apache.org/docs/2.0/programs/ab.html

220 • Chapter 9. Optimizing Performance

report erratum • discuss

http://httpd.apache.org/docs/2.0/programs/ab.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Total: 99 179 102.0 152 763

Percentage of the requests served within a certain time (ms)
50% 152
66% 175
75% 190
80% 197
90% 225
95% 256
98% 629
99% 763
100% 763 (longest request)

We see that our requests range from 99 ms to 763 ms. With this baseline, we

can start optimizing both the server settings (with the help of our DevOps

guys) and other page elements to lower these times.

We can start by using our Web Inspector and see if certain requests are getting

tied up and then target those. After that, we can look at merging our CSS

and JavaScript files and creating image sprites. This is all about reducing

requests to the server. A page served in five requests is much faster than one

served in thirty.

After we’ve spent some time dialing in the request side of the equation, we

want to start looking at the transfer side. How can we get the data transferred

to our customer’s browser with a smaller amount of information?

Image Optimization

One of the easiest wins in loading our pages is to optimize our images. On

the (Mac) desktop, one of the best solutions for this is a program called

ImageOptim.21 This wraps up seven different optimization tools into a single

interface (and an optional eighth tool with some extra work). It also has a

sister application called ImageAlpha, where we can convert 24-bit PNGs down

to PNG8+alpha, saving a lot of size with little visual change.

The quickest thing we can do is to run our public/images directory through this

tool. It will reduce the images by taking 24-bit PNGs and changing them to

PNG8+alpha, as well as removing gamma information and other content that

is not needed in most cases.

Real quick, let’s just drop our images directory into ImageOptim and see what

happens. It looks like we save, on average, 65 percent in file size. (See Figure

26, ImageOptim compressing our site graphic elements, on page 222.) That’s a

big win for static assets, especially as we scale to handle more customers.

21. http://imageoptim.pornel.net/

report erratum • discuss

Performance Testing and Maintenance • 221

http://imageoptim.pornel.net/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Figure 26—ImageOptim compressing our site graphic elements

ImageOptim saved us so much space by converting any image with under

256 colors to a PNG8+alpha format. Photoshop doesn’t support this format,

so therefore “Save for Web” only gives us 24-bit when we want true alpha

transparency. We can replicate some of this in Adobe Fireworks, but since

our team doesn’t use that tool, we don’t see those benefits.

For Windows and Unix systems, we can download and run these tools on our

own or make them part of our application’s image processing tools, such as

OptiPNG and the Ruby Gem interface to it, also called optipng.22

Outside of this, we can also look at SVG and SVGZ images. SVGs are “scalable

vector graphics” and the SVGZ is a gzipped equivalent.23 Many modern

browsers support this (including IE9+) and as a vector file, we can scale them

quite large with no file size increase. We can also include raster elements

within an SVG.

Many browsers don’t deal with this right, and there are a handful of tools

available online, such as “SVG to HTML” and more.24 This has a very limited

use for dealing with really large images of a specific type.

Speeding Up the Web Server

On the server itself, we want to ensure that our site keeps humming along

and serving files quickly and without too much hand-holding from us. There

are a few ways we can help it accomplish that.

22. http://optipng.sourceforge.net/ and https://github.com/martinkozak/optipng, respectively.

23. http://www.adobe.com/svg/illustrator/compressedsvg.html
24. http://www.irunmywebsite.com/raphael/SVGTOHTML_LIVE.php

222 • Chapter 9. Optimizing Performance

report erratum • discuss

http://optipng.sourceforge.net/
https://github.com/martinkozak/optipng
http://www.adobe.com/svg/illustrator/compressedsvg.html
http://www.irunmywebsite.com/raphael/SVGTOHTML_LIVE.php
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

First, we want to send any file types that we can down as gzip compressed.

In Apache-based web servers, there’s a module called mod_deflate that will do

this.25 This lets us compress things on a browser-by-browser basis as well as

on a file-type basis. This is really a DevOps kind of fix, but it’s one of the first

things we should do when we’re getting set up for production.

Another tool is Google’s mod_pagespeed.26 It optimizes both our web pages

and the resources on them to implement web performance best practices.

This will also bat cleanup for us on our finished code. While we can control

the code that renders the pages, it’s difficult to control the code that comes

out of text fields, especially in content management systems and places where

we allow HTML-formatted comments. If we have a missing end tag or things

of that nature, mod_pagespeed can help us clean those up before we send

them to the client machine.

We have a wide variety of tools for auditing and catching problems on the

server and as we develop, and our site is already running faster. Now let’s

look at some Rails stack solutions for speeding up request times and

improving performance.

Implementing Caching

Many of our application’s pages don’t change all that often. They change due

to actions our users engage in, such as adding assets, creating new projects,

and posting comments. One of the fastest ways we can speed up our site is

to add page caching to serve static HTML files whenever there is no new

information on the page. Not only will this help with page load on the customer

side, but it will reduce the load on our application and database servers as

well.

Caching is already enabled in our production environment, as we can see by

opening up config/environments/production.rb:

artflow/performance/config/environments/production.rb

config.action_controller.perform_caching = true

There are a few types of caching we can do to help speed up our server. For

pages that don’t require authentication or have restricted access, we can use

page caching. If we need to have filters run before a page is served, we need

to use action caching. We can also cache pieces of a page using fragment

caching.

25. http://httpd.apache.org/docs/2.0/mod/mod_deflate.html
26. http://code.google.com/speed/page-speed/docs/module.html

report erratum • discuss

Performance Testing and Maintenance • 223

http://media.pragprog.com/titles/warv/code/artflow/performance/config/environments/production.rb
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html
http://code.google.com/speed/page-speed/docs/module.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Page Caching

Our creations index is a view that gets a lot of mileage in our application.

What happens in a request is that Rails processes the commands in the

controller and turns it into a web page that is served. It’s destroyed as soon

as it’s done, and it has to start all over the next time.

We don’t add creations as often as people view the index, so we can save some

time by caching the results of our controller action and serving them a static

HTML file (let’s call it creations.html) instead.

To turn on page caching, we simply open up our controller and add one line

above our method definitions.

class CreationsController < ApplicationController

cached_page :index➤

The rest of the controller...

end

This static file will be placed in the default public_path and will be called instead

of the action if it is present. The default public_path is typically the public/ direc-

tory, but it can be changed by altering config.action_controller.page_cache_directory in
our environment file.

So we are now serving a static file, which is much faster than running through

the actual database calls. But what happens when we add a file? Since the

static creations.html is present, it will serve that first. We need to tell Rails that

the cached page is no longer valid, and we do that in app/controllers/creations_con-
troller.rb again, but this time for the create action (and probably the update

action as well):

def create
@creation = Creation.new(params[:creation])
if @creation.save

➤ expire_page action: :index
flash[:notice] = "Creation added!"
redirect_to @creation

else
flash.now[:alert] = "Could not save creation!"
render action: 'new'

end
end

That’s the simplest form of caching. It generally works only for pages that

don’t need a login. So how do we handle that state? We use action caching.

224 • Chapter 9. Optimizing Performance

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Action Caching

Most of our application is one that restricts access. Users must log in to see

creative files associated with their accounts. Page caching won’t work for this

situation, so we need to look at using action caching instead. It acts similarly

to page caching except that it runs through the Action Pack part of the Rails

stack before the cache is served. This lets before_filter directives, such as

authentication, actually work first.

So for our authenticated CreationsController.rb, our code would look something

like this:

artflow/performance/app/controllers/creations_controller.rb

caches_action :index

class CreationsController < ApplicationController

before_filter :authenticate_user!
➤

def index
@creations = current_user.creations

end

def create
@creation = current_project.creations.new(params[:creation])
if @creation.save

➤ expire_action action: :index
flash[:notice] = "Creation added!"
redirect_to @creation

else
flash.now[:alert] = "Could not save creation!"
render action: 'new'

end
end

end

We simply change the caches_page directive to caches_action and do the same for

our expiration function. This kind of caching is an after filter, so we’ll only

get caches of successful requests.

Fragment Caching

What do we do when we only want to cache part of a page? The solution here

is to use fragment caching. It’s completely done in our view layer as well, so

we can cache as we go without having to delve too deep into the internals.

Let’s look at our CreationsController index action again. We have an area for

“Recent Activity” in our sidebar. This will probably change at a different rate

than the creations themselves, so we’re going to set up two separate fragment

caches.

report erratum • discuss

Performance Testing and Maintenance • 225

http://media.pragprog.com/titles/warv/code/artflow/performance/app/controllers/creations_controller.rb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Fragment caches work in a similar way to action caches and store their data

in the same place.

artflow/performance/app/views/creations/index.html.erb

<% cache action: 'index', action_suffix: 'all_creations' do %>
<ul id='creations'>

<%= render @creations %>

<% end %>

We also add caching to our sidebar partial, app/views/creations/_sidebar.html.erb:

<% content_for :sidebar do %>
<% cache action: 'index', action_suffix: 'recent_activity' do %>

<section id="recent_activity">
<header>
<h1 class="ir" id="recent">Recent Activity</h1>

</header>
<%= render 'activity_items/recent' %>

</section>
<% end %>

<% end %>

The expiration of this is as easy as using the expire_fragment method, like so:

expire_fragment(controller: 'creations',
action: 'index',
action_suffix: 'recent_activity')

But say we want to use the same recent activity cache on other controllers.

We can use a globally keyed fragment by adding a key in the cache() call.

artflow/performance/app/views/creations/_sidebar.html.erb

<% content_for :sidebar do %>
<% cache action: 'recent_app_activity' do %>➤

<section id="recent_activity">
<header>
<h1 class="ir" id="recent">Recent Activity</h1>

</header>
<%= render 'activity_items/recent' %>

</section>
<% end %>

<% end %>

And then to expire it, simply expire that key:

expire_fragment('recent_app_activity')

226 • Chapter 9. Optimizing Performance

report erratum • discuss

http://media.pragprog.com/titles/warv/code/artflow/performance/app/views/creations/index.html.erb
http://media.pragprog.com/titles/warv/code/artflow/performance/app/views/creations/_sidebar.html.erb
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

There’s more complexity we can investigate, such as sweepers for cleaning

up caches and other tricks; details can be found in the “Caching with Rails”

guide or through other online articles.27

Caching will make our production application feel much snappier and help

reduce load on our server resources as well. Whenever we find things are

slowing down, we should look at what we can cache.

DevOps Fixes

To some extent, we can only do so much in our code to make the site more

efficient. A certain number of requests will overload any hardware setup in

the world. Here are some things that we should discuss with our DevOps

team to see if we can implement them.

Load Balancing

Once our application moves beyond one server or instance, we want to start

splitting up our web, application, and database servers. Once we get more

than one of each, we need to have a way to share the love and the load among

the servers. A load balancer, which is typically another machine or instance

that routes requests, will be an essential part of scaling our systems.

We’ll also need to make sure our database servers replicate each other, and

we’ll need to update our Capistrano tasks to push to all the right places.

Fixing Query Times

For all the power that ActiveRecord gives us, it can also lead to massive joins

in queries that take a long time to process. If this is the case, we’ll need to

either add indexes to our database tables or look at utilizing find_by_sql() and

drop down to calling our data by hand. We can also investigate utilizing

something like Memcached to help with caching queries and speeding up

response times.

Static Asset Servers and CDNs

If we’re dealing with a lot of images or video creations as we grow, we might

consider using a static asset server or even a CDN (content delivery network)

to handle our static files. This will help our servers focus on what they need

to do, which is run the application, and allow us to offload the high bandwidth

static files to dedicated, stripped-down servers.

27. http://guides.rubyonrails.org/caching_with_rails.html

report erratum • discuss

Performance Testing and Maintenance • 227

http://guides.rubyonrails.org/caching_with_rails.html
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

CDNs are a unique class in this group. While having static asset servers with

your other servers lets us dial in our web server software (Apache, Nginx,

etc.), we’re still limited by the connection from our customer’s ISP to the

server and back again. Any hiccups along that path or a lot of concurrent

users can really hurt the experience on the customer side.

Enter the CDN.

This service has mirrored copies of our static assets all over the world, and

load balancing servers will send from the fastest available machine at any

given point. This keeps videos streaming, large images downloading, and

software updating in a smooth fashion.

Two of the largest CDNs are Akamai and Amazon’s CloudFront.28 They have

various pricing plans based on bandwidth or files served. When the app gets

to a point that our own static asset servers don’t cut it anymore, it’s time to

look into these tools.

Varnish and RAM Caching (Reverse Proxies)

For extreme performance on caching, we can look at Varnish Cache,29 a

caching tool that speeds up our pages by caching them in RAM instead of on

disk. It can eat up a lot of resources and basically intercepts all requests on

port 80. We’d then have it talk to our application on, say, port 8080. Varnish

Cache uses the expiration in the Apache config for time-based expiration and

has an API, so we can talk to it and tell it when to expire pages. If Rails caching

and memcached aren’t enough, this is where we’d need to go next.

Remember that in speeding up our server and providing better content flows,

we are going to reduce the amount of time people spend on our site and the

number of pages they visit. In an age of TL;DR (“too long; didn’t read”), effi-

ciency is the name of the game.

9.3 Wrapping Up

Ongoing performance testing and refactoring our code to run smoother and

faster makes for a better experience for our customers. It also makes our code

easier to maintain and lets us keep up with current best practices. A little

extra time out of our iterations will help us from having whole iterations of

“fixing problems” and make for a smoother work flow for all.

28. http://www.akamai.com and http://aws.amazon.com/cloudfront/, respectively.

29. https://www.varnish-cache.org/

228 • Chapter 9. Optimizing Performance

report erratum • discuss

http://www.akamai.com
http://aws.amazon.com/cloudfront/
https://www.varnish-cache.org/
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

9.4 Where Do We Go from Here?

We’ve got ArtFlow up and running and in production, and we’re now optimizing

performance and adding new features for our users. Our View layer has come

a long way from the start of this adventure. Here, at the end, we have a

toolkit full of new libraries, gems, and techniques to keep our future develop-

ment on the right track.

But we can’t rest on our laurels. The view is constantly changing. Today’s

cutting-edge techniques are tomorrow’s old news. It’s important that we stay

caught up on developments with the myriad of technologies that make up

the view and continue to adjust our approach.

Good luck! It’s a [code] jungle out there!

report erratum • discuss

Where Do We Go from Here? • 229

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Part I

Appendices

APPENDIX 1

The Rails View Rules

Throughout the book we’ve been establishing rules of thumb for use in our

daily development tasks. Here they are, all collected in one place. We’ve also

provided a handy PDF download to print out at http://therailsview.com/rules.pdf.

1. Our markup should have meaning. We write templates using semantic

HTML.

2. Our style sheets should handle presentation. We don’t use markup to

style or use images when CSS will do.

3. Our templates should be free of client-side code. We unobtrusively attach

behavior from our JavaScript files.

4. Our templates should be easy to read. We consistently indent correctly

using spaces instead of tabs, type lines no longer than eighty characters,

and extract complex logic to helpers and presenters.

5. Our templates should be easy to find. We use standard naming conven-

tions and place them in the directory for the related resource (or the

layout).

6. Our markup should be easy for the entire team to modify. We prefer ren-

dering partials over generating markup from Ruby code.

7. Our technology choices should help, not hinder, the team. We use the

templating language and tools that work best for all of us.

8. Our designs for the Web should work on a variety of devices and browsers.

We build for the simplest interactions first and support progressive

enhancement.

report erratum • discuss

http://therailsview.com/rules.pdf
http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

9. Our designs for email must work for a wide range of providers. We use

HTML tables and images as necessary and always provide a plain-text

alternative.

10. Our application should perform as well as it needs to, when it needs to.

We implement the most elegant approach first, then we optimize when

necessary.

234 • Appendix 1. The Rails View Rules

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

APPENDIX 2

Bibliography

[BK10] Bear Bibeault and Yehuda Katz. jQuery in Action. Manning Publications

Co., Greenwich, CT, Second Edition, 2010.

[CC11] Hampton Catlin and Michael Lintorn Catlin. Pragmatic Guide to Sass. The

Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2011.

[Dee08] Ian Dees. Scripted GUI Testing with Ruby. The Pragmatic Bookshelf, Raleigh,

NC and Dallas, TX, 2008.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Jour-

neyman to Master. Addison-Wesley, Reading, MA, 2000.

[HWWJ12] Brian P. Hogan, Chris Warren, Mike Weber, Chris Johnson, and Aaron

Godin. Web Development Recipes. The Pragmatic Bookshelf, Raleigh, NC

and Dallas, TX, 2012.

[Hog10] Brian P. Hogan. HTML5 and CSS3: Develop with Tomorrow’s Standards

Today. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2010.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.

Prentice Hall, Englewood Cliffs, NJ, 2008.

[Pil10] Mark Pilgrim. HTML5: Up and Running. O’Reilly & Associates, Inc.,

Sebastopol, CA, 2010.

[RTH11] Sam Ruby, Dave Thomas, and David Heinemeier Hansson. Agile Web

Development with Rails, 4th Edition. The Pragmatic Bookshelf, Raleigh, NC

and Dallas, TX, 2011.

report erratum • discuss

http://pragprog.com/titles/warv/errata/add
http://forums.pragprog.com/forums/warv

Index

SYMBOLS
$() function, 102–103

A
A/B testing, with Vanity,

207–214

<abbr> tag, 5

acceptance testing frame-
work, 110

accessibility to websites, 60

action caching, 225

action_name() helper, 34

ActionView::Helpers::FormBuilder,
133–134

active tabs, differentiating
from inactive tabs, 30–33

:after pseudo-class selector, 36

after_create(), sending email on
event using, 193

Agile Web Development with

Rails (Ruby et al.), 189, 194

AI tools, accessibility to web-
sites and, 60

Ajax, testing, 110–116

Akamai CDN, 88, 228

analyzing, website speed,
219–221

analyzing design of layout, 6–
7

anchors, 58

Apache-based web servers,
mod_deflate, 223

ApacheBench, 220–221

application layout
about, 1
adding sidebar, 23–28

building page frame, 14–
23

creating basic, 2–6, 42–
47

displaying notifications,
36–39

model for creating, 2
navigation, adding to, 28–

36
setting up boilerplate, 6–

9
supporting older IE

browsers, 43
validating code, 39–41

ARIA roles, 6, 16

ArtFlow application
A/B testing with Vanity,

208–212
about, 1–2
action caching in, 225
adding more form

columns, 126–127
adding navigation to lay-

out, 28–36
applying @import rule>,

82
applying jQuery UJS,

104–106
boilerplate, setting up, 6–

9
building custom form

builder, 132–140
building mobile grid,

166–167
building page frame, 14–

23
caching implemented in,

223
changing buttons using

selector inheritance,
85–86

cleaning up filenames,
56–58

comments, testing envi-
ronment, 111–116

comments coding, 102–
104, 106–110

creating form using
jQuery Mobile, 183–
188

creating layout, 2–6, 42–
47

creating link to mobile
template, 176

creating page using
jQuery Mobile, 180–
184

creating plain text emails,
191–193

creating thumbnails, 58–
60

Deadweight gem,in-
stalling, 215–217

defining and using vari-
ables, 81–82

displaying form errors,
131–132

displaying notifications,
36–39

email configuration, 189–
191

floating fieldset to right,
127

focusing on first field in
form, 130

formatting numbers in,
60–62

Formtastic plugin, 138–
140

fragment caching in,
226–227

graphics-based emails,
using, 193–195

grouping options, 129
identifying mobile devices

using mobile-fu, 178–
179

identifying mobile re-
quests using MIME
type, 174

IE browsers, supporting
older, 43

indenting to indicate hier-
archies, 52–53

Letter Opener gem, send-
ing emails using, 196

lining up tags and at-
tributes, 54–55

making apps accessible
using responsive de-
sign (@media queries),
169–173

marketing for, 197–199
mixins, using popout

style on borders, 84–85
mockup, 3
models, for creating appli-

cation layout, 2
notifications, displaying,

36–39
presenters, using for seri-

alization, 158–161
presenting a record, 146–

153
presenting multiple

records, 153–157
referencing files in subdi-

rectories, 75–76
SASS, using for image

filenames, 87
setting up and running

testing environment,
111–116

side-by-side forms in,
124–125

sidebar, adding, 23–28
simplifying advanced se-

lectors, 76–81
sprites, adding, 88–92
table-based markup in,

201–205
using popout style mixins

on borders, 84–85
validating code, 39–41
variables, defining and

using, 81–82

<article> tag, 4

aside
about, 5
vs. sidebar, 23

asset pipeline
built in, 217
file, 19
in production, 77
Sprockets and, 13, 74–76

Asset Pipeline guide, online,
218

asset servers, CDNs and stat-
ic, 227

assets, precompile and minify
, 218

assets:precompile Rake task,
77, 218

asynchronous forms, syn-
chronous to, 108–109

attributes
helper, 58
lining up, 54–55

<audio> tag, 5

auditing
and cleaning CSS declara-

tions, 214–217
using Google Webmaster

Tools, 218

autofocus, 130

B
Bates, Ryan, 196

BBEdit text editor, 50

benchmarking, using
ApacheBench, 220–221

Bibeault, Bear, 110

boilerplate
borrowing from mega,

13–14
setting up, 6–9

Bootstrap, Twitter’s, 13, 166

border, in box model, 17

borders
in box model, 18
using popout style mix-

ins, 84–85

Bourbon extension, of SASS,
88

box model, header and, 17–
18

breadcrumbs
as user-interaction solu-

tion, 34–36
finished, 36
path, 35

Bringhurst, Robert, 98

browsers
approaches to fonts, 93

auditing from, 214–217
dealing with raster ele-

ments within SVG, 222
getting style sheets on

same page, 10–12
handling HTML5 ele-

ments, 140–142
HTML5 support of, 2
problems with fancy hov-

er behavior, 91
supporting older versions

of, 43
testing IE, 42–47
tooltips in, 58
understanding local() font

value, 95
using HTML5 in older

browsers, 9–10

Bundler, 111, 138, 208

C
caching

action, 225
fragment, 225–227
implementing, 223
page, 224

"Caching with Rails" guide,
online, 227

Campaign Monitor, learning
table-based layout, 201

<canvas> tag, 5

Capistrano, 218

Capybara, testing with, 110–
116

Capybara popups, 114

Cascading Style Sheets,
see CSS (Cascading Style
Sheets)

Catlin, Hampton, 76

CDNs (content delivery net-
works), 88, 227

character standard, on line
length, 54

charsets, 8

Chrome
approach to fonts, 95
ySlow in, 217

Chrome Developer Tools, 53

Chrome Frame, 11

Clean Code (Martin), 54

cleaning, and auditing CSS
declarations, 214–217

clickAndWait() function, 116

CloudFront (Amazon) CDN,
88, 228

238 • Index

coding practices, standardiz-
ing, 51–55

CoffeeScript
focusing on first field in

form using, 130
vs. JavaScript, 103

color input type, 141

colors, SASS utility functions
for, 82

Compass, 13

compatibility issues, with
Rails View, xii

complex view code, simplify-
ing, 56–62

computer monitors, line
length and large, 54

concatenation tags, inserting
content into ERB templates
with, 109

conditional statements, fixing
and targeting IE issues us-
ing, 46

content
changing page titles, 28
filling in, for sidebar style

sheets, 26–28
retrieving sidebar main,

27

content delivery networks
(CDNs), 88, 227

content_for() helper, 27

context and hierarchy, creat-
ing, 3

controller_name() helper, 34

creation index, 6–7

Creation model, sending email
on event using, 193

creation_reference() helper, 62

CSS (Cascading Style Sheets)
adding common styles to

selectors, 85–86
adding sprites, 88–92
adding to form layout la-

bels, 123
asset pipeline, 74–76
browser-specific hacks,

14
declarations, auditing

and cleaning, 214–217
default rules, 14
defining and using vari-

ables, 81–82
displaying form errors,

131–132
dynamically building, 76

email results, 199, 201
floating fieldset to right

using, 127
frameworks, 126
image replacement using,

90
@import rule in, 82–83
in marketing email app,

197–199
referencing images from

SCSS, 87
Sassy CSS, 76–87
shorthand, 20
simplifying advanced se-

lectors, 76–81
specificity, 125–126
Sprocket directives in,

74–75
using web fonts, 92–99

Cucumber, testing with, 110–
116

cucumber:install generator, 111

currently_at() helper, 33

D
data-confirm, 105–106

database_cleaner, 111

<datalist> tag, 5

datetime input type, 141

Deadweight gem, using, 215–
217

defensive design, 60

definition lists (<dl>)tag, 4

design studio, about building,
1

Designer Dashboard view,
putting together, 145–146

DesignersController show(), 145,
153

DesignersController), 145–146

DesignerStatus presenter, 144–
145, 149–150, 154

<details> tag, 5

DevOps fixes, 223, 227–228

directives, 74–75
require, 83

<div> element
replacements in HTML5

for, 4–6
using in page frame foot-

er, 21

<dl> tag, 4

Docco, 104

documents, marking up, 3

DOM (document object model)
code, using jQuery, 102,
104

Dust Me Selectors, Firefox
extension, 214–216

E
The Elements of Typographic

Style (Bringhurst), 98

Emacs text editor, 50

emails
as call to action, 191–192
building mailer, 189–191
handling templates, 191–

195
testing across clients,

196–205
testing locally, 195–196

EOT font format, 93

ERB comments, 55–56

ERB templates, inserting
content with concatenation
tags, 109

errors, displaying form, 131–
132

expanded?() method, 147

F
faked italicization, 96

fancy hover behavior, prob-
lems with a lot of sprite us-
age, 91

feedback, displaying notifica-
tions, 36–39

fields
laying out fields, 122–123
side by side, 124–125
supporting inline, 125

<fieldset> in forms
adding more columns,

126–127
changing layout, 122–

123, 127–130
displaying errors, 131–

132
side-by-side fields, 124–

125
using, 121–122

<figcaption> tag, 5

<figure> tag, 5

file extensions, CSS, 76

filenames
cleaning up, 56–58
using SASS for image, 87

Firebug, 53

Index • 239

Firefox
approach to fonts, 93
extension, Dust Me Selec-

tors, 214–216
PageSpeed in, 218
Selenium IDE in, 116–

117
ySlow in, 217–218

fixing, and targeting IE is-
sues, 45–47

fixing query times, 227

float property
causing headaches, 16
vs. inline-block, 30

font files
creating for serving, 93–

95
serving, 95–99

font services, 96

Font Squirrel online tool, 94–
95

font stacks, 92

@font-face technique, 93
serving font file via, 95–

99

font-family declarations, 94

font-style attribute, for
grouping fonts, 96–97

fonts
creating to serve files, 94
default system, 92
embedding into web

pages, 93
EOT format, 93
licensing of, 97
Museo Sans, 93–94
OTF (OpenType) format,

93
SVG format, 93
TTF TrueType format, 93
using web, 92–99
WOFF format, 93

<footer> tag, 5

footers, setting up, 20–23

form elements
automatically focusing,

130
HTML5, 140–142

form tags, using semantic,
119–121

form_for() helper, 119–121

form_for() method, 133, 135,
138

form_tag() helper, 121

formatting, display of num-
bers, 60–62

FormBuilder
defining, 134
going beyond helpers us-

ing, 133
instances, 133

forms
about, 119
adding more columns,

126–127
adding to page using

jQuery Mobile, 183–
188

building custom builders,
132–140

building maintainable,
119–140

building remote, 106–110
changing layout, 122–

123, 127–130
displaying errors, 131–

132
future of, 140–142
grouping options, 129–

130
search forms implement-

ed using form_tag(), 121
side-by-side fields in

forms, 124–125
using <fieldset> in, 121–

122

Formtastic plugin, 138–140

fragment caching, 225–227

free fonts, 97

French, Justin, 138

function, clickAndWait(), 116

functions
$(), 102–103
asset-path(), 87
image-path(), 87
preventDefault(), 103

G
Gherkin language, 110–111

Google
approach to fonts in

Chrome, 95
Chrome Developer Tools,

53
Chrome Frame, 11
finding problems using

PageSpeed, 217–218
mod_pagespeed, 223
PageSpeed, 215
ranking of website, 94

Webmaster Tools, 218
ySlow in Chrome, 217

graphics-based emails, using,
193–195

grid, building mobile, 166–
167

Guard, 13

gzip compressed
equivalent, 222
sending files as, 223

H
hard tabs, indenting without,

51–53

header
adding <nav> element, 29
adding navigation to, 32
box model and, 17–18
bringing pretty to, 16–20
marking up and styling,

16
styled, 21
tag, 4
unstyled, 17

headline, 15

helper
link_to(), 108
number_to_currency(), 62

helpers
action_name(), 34
anchors and attributes,

58
content_for(), 27
controller_name(), 34
creation_reference(), 62
currently_at(), 33
form_for(), 119–121
form_tag(), 121
j(), 109
link_to(), 58
nav_tab(), 32
semantic_form_for(), 138
using to clean up file-

names, 57–58
vs. model methods, 57

<hgroup> tag, 4

hierarchies, indenting, 52–53

hierarchy and context, creat-
ing, 3

Hogan, Brian, 3

Homebrew, getting Redis
with, 208

hover behavior, fancy, prob-
lems with a lot of sprite us-
age, 91

240 • Index

HTML
element, 9
email results, 199, 201
emails, 193–195
showing notifications in

layout file using, 37
tag, 46
validating code, 39–41
vs. ERB comments, 56

HTML shiv, Modernizr’s, 9

HTML5
adding autofocus, 130
browser support of, 2–3
elements, 15
form elements, 140–142
list of tags, 4–5
resources, 3
semantic markup and, 3–

6
using in older browsers,

9–10

HTML5 Boilerplate, 13

HTML5 Doctor website, 3

HTML5 Reset, 11

Hunt, Andy, 50

I
iOS

approach to fonts, 93
browsers, 140
keyboards, 140–141
push notification, 189–

190

iPad/iPhone devices
making apps accessible

using @media queries
(responsive design),
168–174

portrait to landscape
mode in, 169–173

IE Collection, 44

IE HTML5 Print Protector, 9

IETester, 44

image paths, email market-
ing, 199

image-path() function, 87

ImageOptim, image optimiza-
tion using, 221–222

images
calling sprites, 88–92
calling sprites to, 89
checking loading speed

of, 219
optimization of, 222

optimizing, 221–222
referencing from SCSS,

87

@import rule
in CSS, 82–83
in SCSS, 83

inactive tabs, differentiating
from active tabs, 30–33

indenting
for logic and markup, 52–

53
multiple line tags, 54–55
without hard tabs, 51–53

inline fields, supporting, 125

inline-block, vs. inline elements,
30

<input> types, 141–142

Internet Explorer (IE)
approach to fonts, 93
fancy hover behavior

problems with, 91
supporting older versions

of, 43
testing, 42–47
turning on HTML5, 9–10
understanding local() font

value, 95

introspective, getting, 136–
137

italicization, faked , 96

J
j() helper, 109

jQuery
analyzing loading speed

of, 219
DOM using basic, 102

jQuery Mobile
adding multiple pages to

templates using, 185
using, 179–187

jQuery UJS, using, 104–106

jQuery in Action (Bibeault and
Katz), 110

JavaScript
adding, 101–118
confirmation dialog box,

106
focusing on first field in

form using, 130
popups, 58
testing Ajax, 110–116
using from Rails, 101–

110
vs. CoffeeScript, 103

javascript_include_tag(), 104

JSON, customized serializa-
tion logic in, 158–159

“junk drawer” of Rails 3.1, 13

K
Katz, Yehuda, 110

Kersley, Matt, 174

keyboards, iOS, 140–141

keygen input type, 141

L
labels

adding CSS to form, 123
tags used for grouping,

124

landscape to portrait mode,
in mobile devices, 169–173

layout, learning table-based,
201

layout, application
about, 1
adding navigation to, 28–

36
adding sidebar, 23–28
building page frame, 14–

23
creating basic, 2–6, 42–

47
displaying notifications,

36–39
model for creating, 2
setting up boilerplate, 6–

9
supporting older IE

browsers, 43
validating code, 39–41

layouts, mobile, building flex-
ible, 164–167

learning table-based layout,
201

<legend > tags, 127

Letter Opener gem, 196

 tags, 30, 32, 102

licensing, of, 97

line length, watching, 53–54

link_to() helper, 58, 108

A List Apart website, on re-
sponsive design, 168

Litmus
HTML/CSS email results,

199, 201
results of first test, 205–

206

Index • 241

starting new test in, 199–
200

testing emails with, 196

LiveReload, 13

load balancing, 227

logo, 15, 19

M
main content, retrieving, for

sidebar, 27

manual testing, with Seleni-
um IDE, 116–118

Marcotte, Ethan, 168

margins, in box model, 17–18

<mark tag>, 5

marketing emails, 197–199

marking up documents, creat-
ing hierarchy and context
when, 3

markup, simplifying in form
builder, 134–135

Martin, Robert C., 54

@media queries (responsive
design), making apps acces-
sible using, 168–174

meter input type, 141

<meter> tag, 5

methods
expanded?(), 147
form_for(), 133, 135, 138
helpers vs. model, 57
number_to_human_size(), 62
text_area(), 120
track!(), 210
y(), 75

metrics, testing, 210–214

Meyer, Eric, 10

microformats, 6

Microsoft Internet Explorer
(MSIE)

approach to fonts, 93
fancy hover behavior,

problems with, 91
supporting older versions

of, 43
testing, 42–47
turning on HTML5, 9–10
understanding local() font

value, 95

MIME type, identifying mobile
requests using, 174–176

minify assets, 218

mixins
building mobile flexible

grid, 166
defining for image replace-

ment, 91
using popout style, 84–85

Mobile Safari, 140

mobile views
about, 163
building flexible layouts,

164–167
making apps accessible

using responsive de-
sign (@media queries),
168–174

using jQuery Mobile,
179–187

using mobile-specific
templates, 174–179

mobile-fu library, 178–179

mod_deflate, in Apache-based
web servers, 223

mod_pagespeed, optimizing
web pages, 223

model methods vs. helpers,
57

models, creating application
layout, 2

Modernizr, 9–10, 130

monitors, computer, line
length and large, 54

multivariate testing, 208–214

Museo Sans fonts, 93–94

N
<nav> tag

about, 4
building tab by adding,

29–30
using in sidebar, 23

nav_tab() helper, 32

navigating layout, 29–36

navigation
as feedback, 36
secondary, 33–34

navigation tabs, basic, 30

normalize CSS, using, 11–12

notifications, types of styled,
39

number_to_currency() helper, 62

number_to_human_size() method,
62

NumberHelper methods, 62

numbers, formatting, 60–62

O
onclick attribute, 102

online
researching browser sup-

port, 47
testing service for IE, 45

Opera browser, 142, 217

Opera Mobile Emulator, 173

<optgroup> tag, 129

options, grouping, 129–130

OptiPNG, image optimization
using, 222

optipng, image optimization
using Ruby, 222

Ordi, Andrew, technique for
supporting multiple IE
browsers, 44

OTF (OpenType) font format,
93

output
simplifying complex, 56–

62
tag, 5

output input type, 141

P
padding, in box model, 17–18

page
caching, 224
load time,speeding up ,

217–218

page frame, building, 14–23

PageSpeed, finding problems
using, 217–218

performance testing and
maintenance, 214, see al-

so testing
action caching, 225
analyzing website speed,

219–221
auditing and cleaning

CSS declarations, 214–
217

auditing using Google
Webmaster Tools, 218

DevOps fixes, 223, 227–
228

fragment caching, 225–
227

image optimization, 221–
222

implementing caching,
223

page caching, 224

242 • Index

speeding up, 222
speeding up page load

time, 217–218

Pilgrim, Mark, 3

plain-text emails
as alternative to HTML,

195
creating, 191–193
dump of, 192

polyfills, 9

popout style, 84–85

popups
Capybara, 114
JavaScript, 58

portrait to landscape mode,
in mobile devices, 169–173

Pragmatic Guide to Sass

(Catlin and Lintorn Catlin),
87

The Pragmatic Programmer:

From Journeyman to Master

(Hunt and Thomas), 50

precompile assets, 218

presenters
about, 143
presenting multiple

records, 153–157
testing serialization, 159–

161
testing template, 150–153
using for serialization,

158–159
when to use, 147

presenting a record
creating presenter in-

stance, 144–145
putting together Designer

Dashboard view, 145–
146

using in applications,
146–149

preventDefault() function, 103

primary navigation, 14

progress input type, 142

<progress> tag, 5

project management applica-
tions, about, 1

pseudo-class selectors
about, 22
:after, 36

push notifications
example, 190
to users, 189

Q
query times, fixing, 227

R
Rails, using JavaScript from,

101–110

Rails 3.1 “junk drawer”, 13

Rails View, compatibility is-
sues, xii

Rails View rules, 233–234

Rake task, 111

range input type, 142

readability of templates
about, 49
choosing language, 49–50
simplifying complex out-

put, 56–62
standardizing coding

practices, 51–55

Redis, getting, 208

remote forms, building, 106–
110

require directive, 83, 104, 123

require directives, 130

require_tree directive, 74–75

researching browser support,
45

researching browser support
online, 47

reset technique, 10

responsive design (@media
queries), making apps ac-
cessible using, 168–174

Ruby on Rails, inventors of,
60

S
SaaS (software-as-a-service),

207

Safari
approach to fonts, 95
Web Inspector, 219, 221

sandbox tools, testing IE
with, 44

SASS
Bourbon extension of, 88
CSS default processor, 76
utility functions for col-

ors, 82
vs. SCSS, 79

Sassy CSS, learning, 76–87

SauceLabs’ OnDemand, 117

scenarios, in Cucumber, 111

screen displays, parameters
for, 170

Scripted GUI Testing with Ru-

by, 117

SCSS
defining and using vari-

ables, 81–82
@import rule in>, 82–83
learning, 76–87
mixins, 84–85, 166
referencing images from,

87
simplifying advanced se-

lectors, 76–81
support in page frame, 23
vs. SASS, 79

search forms, implemented
using form_tag(), 121

search input type, 142

secondary navigation, 33–34

Section 508 Amendment, re-
quiring accessibility to
websites, 60

<section> tag
about, 4
rendering list of creation

activity in, 26–27
styling content for side-

bar, 24–26
using for sidebar, 23–24

<select> tag, grouping options
in, 129–130

Selectivizr, 22

selector inheritance, 85–86

Selenium IDE
in Firefox, 117
manual testing with,

116–118

semantic form tags, using,
119–121

semantic markup
HTML5 and, 3–6
styling header with, 16

Semantic.gs, building mobile
grid, 166–167

semantic_form_for() helper, 138

serve files, creating font to,
94

serving
creating font file, 93–95
font file, 95–99

setup_designer() utility, 150–151

side-by-side fields, in forms,
124–125

Index • 243

sidebar
about purpose of, 23
adding, 23–28

sitemaps, generating, 218

Sitepoint
Dust Me Selectors from,

214–215
learning table-based lay-

out, 201

soft wrapping, to control line
length, 54

spaces vs. tabs, 51

sprites
adding, 88–92
checking loading speed of

images using, 219
simple setup, 89

Sprocket, directives, 74–75

Sprockets
about, 74
asset pipeline and, 13
finding files, 75–76
require directive in, 83,

104

static asset servers, CDNs
and, 227

statistical significance, 212–
213

style sheets
browser, getting on same

page , 10–12
creating sidebar/specific,

24–26

Sublime Text (text editor), 50

<summary> tag, 5

SVG font format, 93

SVG to HTML, image optimiza-
tion using, 222

SVGZ images, image optimiza-
tion using, 222

synchronous to asynchronous
form, 108–109

T
tabbing order, changing, 127–

130

table-based markup, for en-
suring similar email presen-
tations, 201–205

tabs
building, 29–30
differentiating active tabs

from inactive tabs, 30–
33

indenting without hard,
51–53

navigation, 30
vs. spaces, 51

"tag soup", 39

tags, lining up, 54–55

targeting, and fixing IE is-
sues, 45–47

templates
about readability of, 49
adding multiple pages

using jQuery Mobile,
185

choosing language, 49–50
creating mobile, 176
handling email, 191–195
inserting content into

ERB, with concatena-
tion tags, 109

simplifying complex out-
put, 56–62

standardizing coding
practices, 51–55

testing presenters, 150–
153

using mobile-specific,
174–179

using presenters in, 145–
149

testing, 214, see also perfor-
mance testing and mainte-
nance

A/B, with Vanity, 207–
214

across clients, 196–205
Ajax, 110–116
by email service, 195
emails locally, 195–196
manual, with Selenium

IDE, 116–118
metrics, 210–212

testing service, using to test
IE, 45

text editors, 50

text_area() method, 120

TextMate
line tools in, 54
with Whitespace bundle,

50

37signals, as inventors of
Ruby on Rails, 60

Thomas, Dave, 50

thumbnails, 58–60

Tilt library, 76

<time> tag, 5

<title> tag, changing titles for
pages, 28

tooltips, 58

TotalValidator
HTML validation using,

40–41
requirements of applica-

tion, 40
starting test in, 41
validation results, 42

track!() method, 210

TTF TrueType font format, 93

Twitter’s Bootstrap, 13, 166

U
UglifierJS, built-in asset

pipeline, 217

 tags, 29

Unobtrusive JavaScript (UJS),
102, 104, 106

user-interaction solution,
breadcrumbs as, 34–36

UTF-8, using, 8

utility navigation, 14

V
validating code, 39–41

Vanity library
setting up, 208–209
setting up test, 209–212

variables, defining and using
SCSS, 81–82

Varnish Cache, 228

<video> tag, 5

virtual machines, using mul-
tiple IEs on, 43–45

virtual partitions, creating, 44

VTM text editor, 50

W
WAI (Web Accessibility Initia-

tive), 6

Web Development Recipes

(Hogan et al), 117

web font kits, generating, 93

web fonts, using, 92–99

Web Inspector, Safari, 219,
221

web pages, embedding fonts
into, 93

web servers, speeding up, 222

websites
accessibility to, 60

244 • Index

analyzing speed of, 219–
221

Google ranking of, 94
researching browser sup-

port, 47

whitespace
looking like changes, 53
stripping out, 50

Williams, Bruce, 46

WOFF font format, 93

Y
y() method, 75

ySlow (Yahoo), finding prob-
lems using, 217–218

yield, using for retrieving
sidebar main content, 27

YUI, built-in asset pipeline,
217

Index • 245

What you Need to Know
Each new version of the Web brings its own gold rush. Here are your tools.

HTML5 and CSS3 are the future of web development,

but you don’t have to wait to start using them. Even

though the specification is still in development, many

modern browsers and mobile devices already support

HTML5 and CSS3. This book gets you up to speed on

the new HTML5 elements and CSS3 features you can

use right now, and backwards compatible solutions

ensure that you don’t leave users of older browsers

behind.

Brian P. Hogan

(280 pages) ISBN: 9781934356685. $33

http://pragprog.com/titles/bhh5

Modern web development takes more than just HTML

and CSS with a little JavaScript mixed in. Clients want

more responsive sites with faster interfaces that work

on multiple devices, and you need the latest tools and

techniques to make that happen. This book gives you

more than 40 concise, tried-and-true solutions to to-

day’s web development problems, and introduces new

workflows that will expand your skillset.

Brian P. Hogan, Chris Warren, Mike Weber, Chris

Johnson, Aaron Godin

(344 pages) ISBN: 9781934356838. $35

http://pragprog.com/titles/wbdev

http://pragprog.com/titles/bhh5
http://pragprog.com/titles/wbdev

Welcome to the Better Web
You need a better JavaScript and more expressive CSS and HTML today. Start here.

CoffeeScript is JavaScript done right. It provides all of

JavaScript’s functionality wrapped in a cleaner, more

succinct syntax. In the first book on this exciting new

language, CoffeeScript guru Trevor Burnham shows

you how to hold onto all the power and flexibility of

JavaScript while writing clearer, cleaner, and safer

code.

Trevor Burnham

(160 pages) ISBN: 9781934356784. $29

http://pragprog.com/titles/tbcoffee

CSS is fundamental to the web, but it’s a basic lan-

guage and lacks many features. Sass is just like CSS,

but with a whole lot of extra power so you can get more

done, more quickly. Build better web pages today with

Pragmatic Guide to Sass. These concise, easy-to-digest

tips and techniques are the shortcuts experienced CSS

developers need to start developing in Sass today.

Hampton Catlin and Michael Lintorn Catlin

(128 pages) ISBN: 9781934356845. $25

http://pragprog.com/titles/pg_sass

http://pragprog.com/titles/tbcoffee
http://pragprog.com/titles/pg_sass

Go Beyond with Rails and NoSQL
There’s so much new to learn with Rails 3 and the latest crop of NoSQL databases. These

titles will get you up to speed on the latest.

Thousands of developers have used the first edition of

Rails Recipes to solve the hard problems. Now, five

years later, it’s time for the Rails 3.1 edition of this

trusted collection of solutions, completely revised by

Rails master Chad Fowler.

Chad Fowler

(350 pages) ISBN: 9781934356777. $35

http://pragprog.com/titles/rr2

Data is getting bigger and more complex by the day,

and so are your choices in handling it. From traditional

RDBMS to newer NoSQL approaches, Seven Databases

in Seven Weeks takes you on a tour of some of the

hottest open source databases today. In the tradition

of Bruce A. Tate’s Seven Languages in Seven Weeks,

this book goes beyond a basic tutorial to explore the

essential concepts at the core of each technology.

Eric Redmond and Jim Wilson

(330 pages) ISBN: 9781934356920. $35

http://pragprog.com/titles/rwdata

http://pragprog.com/titles/rr2
http://pragprog.com/titles/rwdata

Testing is only the beginning
Start with Test Driven Development, Domain Driven Design, and Acceptance Test Driven

Planning in Ruby. Then add Shoulda, Cucumber, Factory Girl, and Rcov for the ultimate

in Ruby and Rails development.

Behaviour-Driven Development (BDD) gives you the

best of Test Driven Development, Domain Driven De-

sign, and Acceptance Test Driven Planning techniques,

so you can create better software with self-document-

ing, executable tests that bring users and developers

together with a common language.

Get the most out of BDD in Ruby with The RSpec Book,

written by the lead developer of RSpec, David Chelim-

sky.

David Chelimsky, Dave Astels, Zach Dennis, Aslak

Hellesøy, Bryan Helmkamp, Dan North

(448 pages) ISBN: 9781934356371. $38.95

http://pragprog.com/titles/achbd

Rails Test Prescriptions is a comprehensive guide to

testing Rails applications, covering Test-Driven Devel-

opment from both a theoretical perspective (why to

test) and from a practical perspective (how to test effec-

tively). It covers the core Rails testing tools and proce-

dures for Rails 2 and Rails 3, and introduces popular

add-ons, including RSpec, Shoulda, Cucumber, Factory

Girl, and Rcov.

Noel Rappin

(368 pages) ISBN: 9781934356647. $34.95

http://pragprog.com/titles/nrtest

http://pragprog.com/titles/achbd
http://pragprog.com/titles/nrtest

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

http://pragprog.com/titles/warv
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available

for purchase at our store: http://pragprog.com/titles/warv

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/titles/warv
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/warv
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

1

2

3

4

5

6

7

8

9

10

R U L E S F O R T H E V I E W

Our markup should have meaning. We write templates using
semantic HTML.

Our style sheets should handle presentation. We don’t use markup
to style or use images when CSS will do.

Our templates should be free of client-side code. We unobtrusively
attach behavior from our JavaScript files.

Our templates should be easy to read. We consistently indent
correctly using spaces instead of tabs, type lines no longer than

eighty characters, and extract complex logic to helpers
and presenters.

Our templates should be easy to find. We use standard naming con-
ven- tions and place them in the directory for the related

resource (or the layout).

Our markup should be easy for the entire team to modify. We
prefer rendering partials over generating markup from Ruby code.

Our technology choices should help, not hinder, the team. We
use the templating language and tools that work best for all of us.

Our designs for the Web should work on a variety of devices and
browsers. We build for the simplest interactions first and support

progressive enhancement.

Our designs for email must work for a wide range of providers. We
use HTML tables and images as necessary and always provide a

plain-text alternative.

Our application should perform as well as it needs to, when it needs
to. We implement the most elegant approach first, then

we optimize when necessary.

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Taming the Wild West
	Who Should Read This Book?
	Ruby and Rails Versions
	What Is in the Book?
	How to Read This Book
	Online Resources

	1. Creating an Application Layout
	Creating a Basic Layout
	Setting Up a Boilerplate
	Building the Page Frame
	Adding a Sidebar
	Adding Navigation
	Displaying Notifications
	Validating Our Code
	Testing Internet Explorer
	Wrapping Up

	2. Improving Readability
	Choosing a Templating Language
	Standardizing Coding Practices
	Simplifying Complex Output
	Working with Models
	Displaying Conditional Content
	Adding Model DOM IDs for JavaScript
	Cleaning Up
	Wrapping Up

	3. Adding Cascading Style Sheets
	Using the Asset Pipeline
	Learning SCSS
	Adding Sprites
	Using Web Fonts
	Wrapping Up

	4. Adding JavaScript
	Using JavaScript from Rails
	Testing Ajax
	Wrapping Up

	5. Building Maintainable Forms
	Using Semantic Form Tags
	Building Custom Form Builders
	Looking Toward the Future of HTML5 Form Elements
	Wrapping Up

	6. Using Presenters
	Presenting a Record
	Presenting Multiple Records
	Using Presenters for Serialization
	Wrapping Up

	7. Handling Mobile Views
	Building a Flexible Layout
	The Next Level with Responsive Design (@media queries)
	Using Mobile-Specific Templates
	Using jQuery Mobile
	Wrapping Up

	8. Working with Email
	Building a Mailer
	Handling Email Templates
	Testing Locally
	Testing Across Clients
	Wrapping Up

	9. Optimizing Performance
	A/B Testing with Vanity
	Performance Testing and Maintenance
	Wrapping Up
	Where Do We Go from Here?

	Part I—Appendices
	A1. The Rails View Rules
	A2. Bibliography

	Index

