

What readers are saying about Rails Test Prescriptions

This a must-have book for those new to testing on a team that thinks,

"We don’t have time for testing," and for experienced developers look-

ing to round out their testing skills. If you want to write better code,

deploy with confidence, and accelerate your team’s velocity, you

should read this book!

John McCaffrey

Rails Developer/Project Manager,

Railsperformance.blogspot.com

Rails Test Prescriptions presents a nuanced and unbiased overview

of the tools and techniques professionals use to test their Rails apps

every day. A must-read for any Rails developer, whether you’ve never

written a single test or you’ve written thousands.

David Chelimsky

Senior Software Engineer, DRW Trading

Rails Test Prescriptions is a great resource for anyone interested in

getting better at testing Rails applications. New readers will find many

helpful guides, and experienced readers will discover many lesser-

known tips and tricks.

Nick Gauthier

Developer, SmartLogic Solutions

If you are comfortable working with Rails, yet have no experience writ-

ing tests for it, this book is an excellent resource for getting up to

speed on the most successful tools used to test drive your develop-

ment.

Adam Williams

(@aiwilliams)

Noel has dispensed a fantastic collection of prescriptions for all kind

of testing maladies. Whether you are a budding intern, or a highly

specialized surgeon, this book will provide you with the information

you need to improve your testing health.

Christopher Redinger

Principal, Relevance, Inc.

Testing is a given in the Rails world, but the varied options can be

daunting if you are just starting to learn the framework. Noel provides

a solid tour of the options and techniques for testing a Rails applica-

tion that will help guide you past some of the initial dark corners. If

you are entering the world of Ruby on Rails, I’d recommend keeping a

copy of Rails Test Prescriptions at hand.

Corey Haines

Software Journeyman

Rails Test Prescriptions
Keeping Your Application Healthy

Noel Rappin

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Colleen Toporek

Indexing: Potomac Indexing, LLC

Copy edit: Kim Wimpsett

Production: Janet Furlow

Customer support: Ellie Callahan

International: Juliet Benda

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-64-6

ISBN-13: 978-1-934356-64-7

Printed on acid-free paper.

P1.0 printing, February 2011

Version: 2011-2-14

http://www.pragprog.com

Contents
I Getting Started with Testing in Rails 12

1 The Goals of Automated Developer Testing 13

1.1 A Testing Fable . 13

1.2 Who Are You? . 15

1.3 The Power of Testing First 16

1.4 What Is TDD Good For? 17

1.5 When TDD Needs Some Help 19

1.6 Coming Up Next... 20

1.7 Acknowledgments . 22

2 The Basics of Rails Testing 24

2.1 What’s a Test? . 24

2.2 What Goes in a Test? 26

2.3 Setup and Teardown 29

2.4 What Can You Test in Rails? 32

2.5 What Happens When Tests Run? 34

2.6 Running the Rails Tests 36

2.7 More Info: Getting Data into the Test 38

2.8 Beyond the Basics . 41

3 Writing Your First Tests 42

3.1 The First Test-First 44

3.2 The First Refactor . 47

3.3 More Validations . 49

3.4 Security Now! . 53

3.5 Applying Security . 55

3.6 Punishing Miscreants 56

3.7 Road Map . 60

CONTENTS 8

4 TDD, Rails Style 61

4.1 Now for a View Test 61

4.2 Testing the Project View: A Cascade of Tests 64

4.3 So Far, So Good . 70

II Testing Application Data 71

5 Testing Models with Rails Unit Tests 72

5.1 What’s Available in a Model Test 72

5.2 What to Test in a Model Test 74

5.3 OK, Funny Man, What Is a Good Model Test Class? 74

5.4 Asserting a Difference, or Not 76

5.5 Testing Active Record Finders 77

5.6 Coming Up Next . 80

6 Creating Model Test Data with Fixtures and Factories 81

6.1 Defining Fixture Data 81

6.2 Loading Fixture Data 84

6.3 Why Fixtures Are a Pain 85

6.4 Using Factories to Fix Fixtures 86

6.5 Data Factories . 87

6.6 Installing factory_girl 87

6.7 Creating and Using Simple Factories 88

6.8 Sequencing for Unique Attributes 90

6.9 Freedom of Association 91

6.10 Factories of the World Unite 93

6.11 Managing Date and Time Data 95

6.12 Model Data Summary 99

7 Using Mock Objects 101

7.1 What’s a Mock Object? 101

7.2 Stubs . 103

7.3 Stubs with Parameters 108

7.4 Mock, Mock, Mock 112

7.5 Mock Objects and Behavior-Driven Development . . 114

7.6 Mock Dos and Mock Don’ts 117

7.7 Comparing Mock Object Libraries 118

7.8 Mock Object Summary 126

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=8

CONTENTS 9

III Testing User-Facing Layers 127

8 Testing Controllers with Functional Tests 128

8.1 What’s Available in a Controller Test? 128

8.2 What to Test . 129

8.3 Simulating a Controller Call 130

8.4 Testing Controller Response 133

8.5 Testing Returned Data 134

8.6 Testing Routes . 137

8.7 Coming Up . 138

9 Testing Views 139

9.1 The Goals of View Testing 139

9.2 Keys to Successful View Testing 140

9.3 Using assert_select 141

9.4 Testing Outgoing Email 146

9.5 Testing Helpers . 148

9.6 Testing Block Helpers 150

9.7 Using assert_select in Helper Tests 151

9.8 How Much Time Should You Spend on Helpers? . . 153

9.9 When to View Test . 153

10 Testing JavaScript and Ajax 155

10.1 First Off, RJS . 156

10.2 Testing JavaScript from Rails with Jasmine 158

10.3 Getting Started with Jasmine 158

10.4 Running Jasmine Tests 159

10.5 Writing Jasmine Tests 161

10.6 Integrating Jasmine with Dynamic Rails 165

IV Testing Framework Extensions 168

11 Write Cleaner Tests with Shoulda and Contexts 169

11.1 Contexts . 170

11.2 Basics of Shoulda . 173

11.3 Single Assertion Testing 173

11.4 Shoulda Assertions 175

11.5 Shoulda One-Liners 176

11.6 Writing Your Own Shoulda Matcher 179

11.7 Single-Line Test Tools 183

11.8 When to Use Shoulda 185

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=9

CONTENTS 10

12 RSpec 186

12.1 Getting Started with RSpec 187

12.2 RSpec in Ten Minutes 189

12.3 RSpec and Rails . 199

12.4 Running RSpec . 209

12.5 RSpec in Practice . 209

12.6 Creating Your Own Matchers 211

12.7 Summarizing RSpec 213

V Testing Everything All Together 214

13 Testing Workflow with Integration Tests 215

13.1 What to Test in an Integration Test 216

13.2 What’s Available in an Integration Test? 216

13.3 Simulating Multipart Interaction 218

13.4 Simulating a Multiuser Interaction 220

13.5 When to Use Integration Tests 223

14 Write Better Integration Tests with Webrat and

Capybara 224

14.1 Installing Webrat and Capybara 225

14.2 Using the Acceptance Testing Rodents 226

14.3 A Brief Example . 229

14.4 Webrat and Ajax . 232

14.5 Capybara and Ajax 232

14.6 Why Use the Rodents? 234

15 Acceptance Testing with Cucumber 235

15.1 Getting Started with Cucumber 235

15.2 Writing Cucumber Features 237

15.3 Writing Cucumber Step Definitions 240

15.4 Making Step Definitions Pass 244

15.5 The Edit Scenario: Specifying Paths 246

15.6 Login and Session Issues with Cucumber 251

15.7 Annotating Cucumber Features with Tags 252

15.8 Implicit vs. Explicit Cucumber Tests 253

15.9 Is Cucumber Good for You? 255

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=10

CONTENTS 11

VI Testing Your Tests 257

16 Using Rcov to Measure Test Coverage 258

16.1 85 Percent of What? 259

16.2 Installing Rcov . 260

16.3 Rcov and Rails . 261

16.4 Rcov Output . 262

16.5 Command-Line Rcov 264

16.6 Rcov and RSpec and Cucumber 267

16.7 Rcov Tricks . 267

16.8 How Much Coverage Is Enough? 269

17 Beyond Coverage: What Makes Good Tests? 270

17.1 The Five Habits of Highly Successful Tests 271

17.2 Troubleshooting . 278

17.3 From Greenfield to Legacy 281

18 Testing a Legacy Application 282

18.1 Accept That You’re Powerless in the Face of a

Higher Power . 283

18.2 Basic Setup . 283

18.3 Test-Driven Exploration 285

18.4 Dependency Removal 288

18.5 Don’t Look Back . 297

19 Performance Testing and Performance Improvement 298

19.1 Performance and Benchmark Testing 299

19.2 Focusing Test Execution 306

19.3 Using Autotest . 309

19.4 Making Your Tests Faster 313

19.5 Using a Faster Test Runner 316

19.6 And in the End... 320

A Sample Application Setup 321

A.1 Basic Rails . 321

A.2 Devise . 322

A.3 Huddle’s Data Models 323

A.4 First Tests . 324

B Bibliography 326

Index 327

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=11

Part I

Getting Started with Testing in

Rails

Chapter 1

The Goals of Automated
Developer Testing

1.1 A Testing Fable

Imagine two programmers working on the same task. Both are equally

skilled, charming, and delightful people, motivated to do a high-quality

job as quickly as possible. The task is not trivial but not wildly complex

either; for the sake of discussion, we’ll say it’s behavior based on a new

user registering for a website and entering pertinent information.

The first developer, who we’ll call Ernie,1 says, “This is pretty easy, and

I’ve done it before. I don’t need to write tests.” And in five minutes Ernie

has a working method ready to verify.

Our second developer is, of course, named Bert. Bert says, “I need to

write some tests.”2 Bert starts writing a test, and in five minutes, he

has a solid test of the new feature. Five minutes more, Bert also has a

working method ready to verify. Because this is a fable, we are going to

assume that Ernie is allergic to automated testing, while Bert is simi-

larly averse to manually running against the app in the browser.

At this point, you no doubt expect me to say that even though it has

taken Bert more time to write the method, Bert has written code that

is more likely to be correct, robust, and easy to maintain. That’s true.

1. Because that’s his name.
2. Actually, if Bert is really into Agile, he probably asks, “Who am I going to pair with?”

but that’s an issue for another day.

A TESTING FABLE 14

But I’m also going to say that there’s a good chance Bert will be done

before Ernie.

Observe our programmers a bit further. Ernie has a five-minute lead,

but both people need to verify their work. Ernie needs to test in a

browser; we said the task requires a user to log in. Let’s say it takes

Ernie one minute to set up the task and run the action in his develop-

ment environment. Bert verifies by running the test—that takes about

ten seconds. (Remember, Bert has to run only one test, not the entire

suite.)

Let’s say it takes each developer three tries to get it right. Since running

the test is faster than verifying in the browser, Bert gains a little bit

each try. After verifying the code three times, Bert is only two and half

minutes behind Ernie.3

At this point, with the task complete, both break for lunch (a burrito for

Bert, an egg salad sandwich for Ernie, thanks for asking). After lunch,

they start on the next task, which is a special case of the first task.

Bert has most of his test setup in place, so writing the test only takes

him two minutes. Still, it’s not looking good for Bert, even after another

three rounds trying to get the code right. He’s still a solid two minutes

behind Ernie.

Bear with me one more step, and we’ll get to the punch line. Ernie and

Bert are both conscientious programmers, and they want to clean their

code up with a little refactoring. Now Ernie is in trouble. Each time

he tries the refactoring, he has to spend two minutes verifying both

tasks, but Bert’s test suite still takes only about ten seconds. After

three more tries to get the refactoring right, Bert finishes the whole

thing and checks it in three and a half minutes ahead of Ernie.4

My story is obviously simplified, but let’s talk a moment about what I

didn’t assume. I didn’t assume that the actual time Bert spent on task

was smaller, and I didn’t assume that the tests would help Bert find

errors more easily—although I think that would be true.5 The main

3. In a slight nod to reality, let’s assume that both of them need to verify one last time

in the browser once they think they are done. Since they both need to do this, it’s not an

advantage for either one.
4. Bert then catches his train home and has a pleasant evening. Ernie just misses his

train, gets caught in a sudden rainstorm, and generally has a miserable evening. If only

he had run his tests....
5. Of course, I didn’t assume that Bert would have to track down a broken test in some

other part of the application, either.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=14

WHO ARE YOU? 15

point here is that it’s frequently faster to run multiple verifications of

your code as an automated test than to always check manually. And

that advantage is only going to increase as the code gets more complex.

There are many beneficial side effects of having accurate tests. You’ll

have better-designed code in which you’ll have more confidence. But

the most important benefit is that if you do testing well, you’ll notice

that your work goes faster. You may not see it at first, but at some

point in a well-run test-driven project, you’ll notice fewer bugs and that

the bugs that do exist are easier to find. You’ll notice that it’s easier

to add new features and easier to modify existing ones. As far as I’m

concerned, the only code-quality metric that has any validity is how

easy it is over time to find bugs and add new behavior.

Of course, it doesn’t always work out that way. The tests might have

bugs. Environmental issues may mean things that work in a test envi-

ronment won’t work in a development environment. Code changes will

break tests. Adding tests to already existing code is a pain. Like any

other programming tool, there are a lot of ways to cause yourself pain

with testing.

1.2 Who Are You?

The goal of this book is to show you how to apply a test-driven process

as you build your Rails application. I’ll show you what’s available and

try to give you some idea of what kind of tools are best used in what

circumstances. Still, tools come and tools go, so what I’m really hoping

is that you come away from this book committed to the idea of writing

better code through the small steps of a TDD or BDD process.

There are some things I’m assuming about you.

I’m assuming that you are already comfortable with Ruby and Rails and

that you don’t need this book to explain how to get started creating a

Rails application in and of itself.

I am not assuming you have any particular familiarity with testing

frameworks or testing tools used within Rails. If you do have familiar-

ity, you may find some of the early chapters redundant. However, if you

have tried to use test frameworks but got frustrated and didn’t think

they were effective, I recommend Chapter 3, Writing Your First Tests, on

page 42 and Chapter 4, TDD, Rails Style, on page 61, since they walk

through the TDD process for a small piece of Rails functionality.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=15

THE POWER OF TESTING FIRST 16

Over the course of this book, we’ll go through the tools that are available

for writing tests, and we’ll talk about them with an eye toward making

them useful in building your application. This is Rails, so naturally I

have my own opinions, but all the tools have the same goal: to help you

to write great applications that do great things and still catch the train

home.

1.3 The Power of Testing First

The way to succeed with Test-Driven Development (TDD) is to trust the

process. The classic process goes like this:

1. Create a test. The test should be short and test for one thing in

your code. The result of the test should be deterministic.

2. Make sure the test fails. Verifying the test failure before you write

code helps ensure that the test really does what you expect.

3. Write the simplest code that could possibly make the test pass.

Don’t worry about good code yet. Don’t look ahead. Sometimes,

just write enough code to clear the current error.

4. Refactor. After the test passes. Clean up duplication. Optimize.

This is where design happens, so don’t skip this. Remember to

run the tests at the end to make sure you haven’t changed any

behavior.

Repeat until done. This will, on paper at least, ensure that your code is

always as simple as possible and always is completely covered by tests.

We’ll spend most of the rest of this book talking about the details of

step 1 and how to use Rails tools to write useful tests.

If you use this process, you will find that it changes the structure of the

code you write. The simple fact that you are continually aligning your

code to the tests results in code that is made up of small methods, each

of which does one thing. These methods tend to be loosely coupled and

have minimal side effects.

As it happens, the hallmark of well-designed code is small methods

that do one thing, are loosely coupled, and have minimal side effects.

I used to think that was kind of a lucky coincidence, but now I think

it’s a direct side effect of building the code in tandem with the tests.

In effect, the tests act as a universal client for the entire code base,

guiding all the code to have clean interactions between parts because

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=16

WHAT IS TDD GOOD FOR? 17

A Historical Parallel

What’s a Rails book without a good Franklin Roosevelt anec-
dote, right?

There’s a widely told and probably apocryphal story about FDR
meeting with a group of activists pushing a reform agenda—
exactly what the group wanted seems to have been lost to
history.

Anyway, when they were done with the meeting, FDR is sup-
posed to have said to them, “I agree with you. I want to do it;
now go make me do it.”

Ignore for the moment the question of whether this statement
makes sense as politics; it makes perfect sense as a test-driven
development motto. Your requirements determine what your
applications want to do. Your tests make the application do it.

the tests, acting as a third-party interloper, have to get in between all

the parts of the code in order to work.

This theory explains why writing the code first causes so much pain

when writing tests even if you just wait a little bit to get to the tests.

When the tests are written first, or in very close intertwined proximity

to the code, then the tests drive the code’s structure and enable the

code to have the good high-cohesion/low-coupling structure. When the

tests come later, they have to conform to the existing code, and it’s

amazing how easily and quickly code written without tests will move

toward low-cohesion and high-coupling forms that are much harder to

cover with tests. If your only experience with writing unit tests comes

only long after the initial code was written, the experience was likely

quite painful. Don’t let that turn you away from a TDD approach; the

tests and code you will write with TDD are much different.

1.4 What Is TDD Good For?

The primary purpose of this style of testing where the developer is writ-

ing tests for her own benefit is to improve the structure of the code.

That is, TDD is a software development technique rather than a com-

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=17

WHAT IS TDD GOOD FOR? 18

plete testing program. (Don’t believe me, ask Kent Beck, who is most

responsible for TDD as a concept and who said, “Correctness is a side

effect” on a recent podcast.)6

Automated developer tests are a wonderful way of showing that the

program does what the developer thinks it does, but they are a lousy

way of showing that what the developer thinks is what the program

actually should do. “But the tests pass!” is not likely to be comforting to

a customer when the developer’s assumptions are just flat-out wrong.7

Automated developer testing is not a substitute for acceptance testing

with users or customers (which can itself be partially automated via

something like Cucumber) or some kind of QA phase where users or

testers pound away at the actual program trying to break something.

This goal can be taken too far, however. You sometimes see an argu-

ment against Test-Driven Development that runs something like this:

“The purpose of testing is to verify that my program is correct. I can

never prove this with 100 percent certainty. Therefore, testing has no

value.” (RSpec and Behavior-Driven Development were created, in part,

to combat this attitude.) Ultimately, though, testing has a lot of positive

benefits for coding, even beyond verification.

Preventing regression is often presented as one of the paramount ben-

efits of a test-driven development process. And if you are expecting me

to disagree out of spite, you’re out of luck. Being able to squash regres-

sions before anybody outside of your laptop sees them is one of the key

ways in which strict testing will speed up your development over time.

To make this work best, of course, you need good tests.

Another common benefit you may have heard in connection with auto-

mated tests is that they provide an alternate method of documenting

your program. The tests, in essence, provide a detailed, functional spec-

ification of the behavior of the program.

That’s the theory. My experience with tests acting as documentation is

mixed, to say the least. Still, it’s useful to keep this in mind as a goal,

and most of the things that make tests work better as documentation

will also make the tests work better, period.

To make your tests effective as documentation, focus on giving your

tests descriptive names, keeping tests short, and refactoring out com-

6. http://twit.tv/floss87. Good interview, recommended.
7. He says, speaking from painful experience....

Report erratum

this copy is (P1.0 printing, February 2011)

http://twit.tv/floss87
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=18

WHEN TDD NEEDS SOME HELP 19

mon setup and assertion parts. The documentation advantage of refac-

toring is removing clutter from the test itself—when a test has a lot of

raggedy setup and assertions, it can be hard for a reader to focus on the

important functional part. Also, with common features factored out, it’s

easier to focus on what’s different in each individual test.

In a testing environment, blank-page problems are almost completely

nonexistent. I can always think of something that the program needs to

do, so I write a test for that. When you’re working test-first, the actual

order in which pieces are written is not so important. Once a test is

written, the path to the next one is usually clear, and so on, and so on.

1.5 When TDD Needs Some Help

Test-Driven Development is very helpful, but it’s not going to solve all of

your development problems by itself. There are areas where developer

testing doesn’t apply or doesn’t work very well.

I mentioned one case already—developer tests are not very good at

determining whether the application is behaving correctly according to

requirements. Strict TDD is not very good at acceptance testing. There

are, however, automated tools that do try to tackle acceptance testing.

Within the Rails community, the most prominent of these is Cucum-

ber; see Chapter 15, Acceptance Testing with Cucumber, on page 235.

Cucumber can be integrated with TDD—you’ll see this called outside-in

testing or see the acronym ATDD for Acceptance Test–Driven Design.

That’s a perfectly valid and useful test paradigm, but it’s an extension

of the classic TDD process.

Testing your application assumes that you know the right answer. And

although you will have clear requirements or a definitive source of cor-

rect output some of the time, other times you don’t know what exactly

the program needs to do. In this exploratory mode, TDD is less benefi-

cial, because it’s hard to write tests if you don’t know what assertions

to make about the program. Often this happens during initial develop-

ment or during a proof of concept. I find myself in this position a lot

when view testing—I don’t know what to test for until I get some of the

view up and visible.

In classic Extreme Programming parlance, this kind of programming is

called a spike, as in, “I don’t know if we can do what we need with the

Twitter API; let’s spend a day working on a spike for it.” When working

in spike mode, TDD is generally not used, but it’s also the expectation

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=19

COMING UP NEXT... 20

that the code written during the spike is not used in production; it’s

just a proof of concept.

When view testing, or in other nonspike situations where I’m not quite

sure what output to test for, I tend to go into a “test-next” mode, where

I write the code first, but in a TDD-sized small chunk, and then imme-

diately write the test. This works as long as I make the switch between

test and code frequently enough to get the benefit of having the code

and test inform each other’s design.

TDD is not a complete solution for verifying your application. We’ve

already talked about acceptance tests, but it’s also true that TDD tends

to be thin in terms of the amount of unit tests written. For one thing,

a strict TDD process would never write a test that you expect to pass.

In practice, though, I do this all the time. Sometimes I see and create

an abstraction in the code, but there are still valid test cases to write.

In particular, I’ll often write code for potential error conditions even if I

think they are already covered in the code. It’s a balance, because you

lose some of the benefit of TDD by creating too many test cases that

don’t drive code changes. One way to keep the balance is to make a

list of the test cases before you start writing the tests—that way you’ll

remember to cover all the interesting cases.

And hey, some things are just hard. In particular, some parts of your

application are going to be very dependent on an external piece of code

in a way that makes it hard to isolate them for unit testing. Mock

objects, described in Chapter 7, Using Mock Objects, on page 101, can

be one way to work around this issue. But there are definitely cases

where the cost of testing a feature like this is higher than the value of

the tests. To be clear, I don’t think that is a common occurrence, but it

would be wrong to pretend that there’s never a case where the cost of

the test is too high.

1.6 Coming Up Next...

This book is divided into six parts.

Part I, which you are currently in the middle of, is an introduction to

Rails testing. The next chapter, Chapter 2, The Basics of Rails Testing,

on page 24, covers what you need to know to get started with unit test-

ing in Ruby and Rails, covering Test::Unit, Test-Driven Design, and the

basic workflow of a Ruby test. The following two chapters, Chapter 3,

Writing Your First Tests, on page 42 and Chapter 4, TDD, Rails Style,

on page 61, present a tutorial or walk-through of a basic Rails feature

realized using TDD.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=20

COMING UP NEXT... 21

Words to Live By

Any change to the logic of the program should be driven by a
failed test.

A test should be as close as possible to the associated code.

If it’s not tested, it’s broken.

Testing is supposed to help for the long term. The long term starts
tomorrow, or maybe after lunch.

It’s not done until it works.

Tests are code; refactor them too.

Start a bug fix by writing a test.

Part II of the book is about application data. Most of your Rails tests

will cover model code, discussed in Chapter 5, Testing Models with Rails

Unit Tests, on page 72. You’ll often need sample data to run tests, and

Chapter 6, Creating Model Test Data with Fixtures and Factories, on

page 81 talks about the two most common ways to manage test data.

Sometimes, though, you just need to bypass normal behavior entirely,

and Chapter 7, Using Mock Objects, on page 101 talks about the stan-

dard way of replacing normal program behavior as needed in testing.

The models are the back room of your code, and Part III talks about

testing the user-facing parts of your application. In Chapter 8, Test-

ing Controllers with Functional Tests, on page 128, we’ll talk about

the standard Rails way of testing controllers, while Chapter 9, Test-

ing Views, on page 139 discusses view testing. Increasingly, front-end

code includes Ajax and JavaScript, discussed in Chapter 10, Testing

JavaScript and Ajax, on page 155, which introduces the Jasmine frame-

work for JavaScript testing.

The second half of the book is largely about extensions to core Rails

testing. Part IV covers two of the biggest. Shoulda is covered in Chap-

ter 11, Write Cleaner Tests with Shoulda and Contexts, on page 169,

while RSpec gets its due in Chapter 12, RSpec, on page 186.

Part V of the book covers integration and acceptance testing that exer-

cises your entire application stack. First, Rails core integration testing

is covered in Chapter 13, Testing Workflow with Integration Tests, on

page 215. Webrat and Capybara are tools that give integration tests

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=21

ACKNOWLEDGMENTS 22

more clarity and power, and they get their own chapter in Chapter 14,

Write Better Integration Tests with Webrat and Capybara, on page 224.

Cucumber has become a very popular tool for acceptance testing, and

Chapter 15, Acceptance Testing with Cucumber, on page 235 tells you

all about it.

The last part of the book is about evaluating your tests. The most

common objective measure of tests is code coverage, which you will

read about in Chapter 16, Using Rcov to Measure Test Coverage, on

page 258. Coverage isn’t everything in testing style, though, and Chap-

ter 17, Beyond Coverage: What Makes Good Tests?, on page 270 talks

about five other habits of highly successful tests. Adding tests to an

existing application has its own challenges, discussed in Chapter 18,

Testing a Legacy Application, on page 282. Finally, making your tests

run faster is always a good thing, and Chapter 19, Performance Test-

ing and Performance Improvement, on page 298 covers many different

strategies.

Ready? Me too.

1.7 Acknowledgments

Over the course of the two years that I have been working on this

project, I have had the guidance and support of many people. I hope

I haven’t forgotten anyone.

Back when this was just a DIY project, several people acted as early

readers and offered useful comments including Paul Barry, Anthony

Caliendo, Brian Dillard, Sean Hussey, John McCaffrey, Matt Polito, and

Christopher Redinger. Alan Choyna and David DiGioia helped support

the original Rails Prescriptions website. Alice Toth provided the origi-

nal website design. Dana Jones made many, many valuable editorial

corrections early in the life of the book.

Brian Hogan was the first person to suggest that this book might work

for Pragmatic. Gregg Pollack was the second, and Gregg’s kind words

about this project on the official Rails blog were the push I needed to

actually submit it.

Everybody I’ve worked with at Pragmatic has been outstanding. Dave

Thomas and Andy Hunt said nice things about early chapters of the

book, which was very encouraging. I doubt very much that Dave

Thomas remembers when I introduced myself to him at Rails Edge in

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=22

ACKNOWLEDGMENTS 23

Chicago in 2007, but he was encouraging even then. Susannah Pfalzer

was the first person that I dealt with at Pragmatic, and she was helpful

in guiding the transition. On a related note, David Chelimsky has also

been very helpful and gracious to the “other” Chicago-based Pragmatic

book about testing.

Colleen Toporek was the editor on this book at Pragmatic and has done

a great job of keeping me on track and keeping the text of the book

clear and consistent. It’s easy when working on a book by yourself to

think that you don’t need an editor; thanks to Colleen for reminding

me why a great editor is so very important. The copyedit was done by

Kim Wimpsett, the book was indexed by Potomac Indexing LLC, and

the book was typeset by Steve Peter.

Obtiva has been a great place to be, and the chance to work with and

get insight from so many talented people has benefited both me and this

book. Particular thanks to Dave Hoover, whose pairing session during

my interview helped convince me that Obtiva was where I should be.

Technical reviewers of this manuscript include Trevor Burnham, Paul

Butcher, Nick Gauthier, Brian Hogan, Dana Jones, Mike Mangino, John

McCaffrey, Michael Niessner, and Christopher Redinger. Thanks to

them for their feedback, along with everybody who took the time to

submit errata to the Pragmatic website.

For boring technical reasons, I am 100 percent positive that Matt Polito

was the first person to purchase this book from the Pragmatic website,

which was awesome. Thanks to Matt, Ray Hightower, and the rest of

the organizers of Chicago Ruby for giving me the opportunity to present

some of this material to a live audience.

This book is a commercial product built on the time and generosity

of developers who build amazing things and present them free to the

world. Thanks to all of you, too many to name, who have so enriched

all of our professional lives.

My family has been very supporting and encouraging throughout. My

parents, Donna and Donnie, are always my biggest fans. My children,

Emma and Elliot, are clever, funny, and amazing. And last in the list,

but first in my life, Erin. I hope to be as good at anything as you are at

everything. Thank you for your love, your friendship, and your smile.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=23

Chapter 2

The Basics of Rails Testing
Let’s start at the very beginning. For Rails testing, the beginning is the

set of tools, conventions, and practices that make up the test facilities

provided by Rails core. The basic Rails test functionality consists of the

standard Ruby library Test:Unit, plus the Rails standard mechanisms for

placing tests in the project, adding data to tests, and running tests.

All the basic features of building Rails tests are covered in this chapter.

Once we have that foundation in place, we’ll use these features in a

Rails Test-Driven Development process in Chapter 3, Writing Your First

Tests, on page 42.

2.1 What’s a Test?

The individual test is the most basic unit of Rails testing. There are

two ways to define an individual test in Rails, and they are functionally

equivalent. In the older style, any method whose name starts with test_

is considered a test:

def test_that_a_new_user_has_a_valid_name

test logic here

end

In the newer style (Rails 2.2 and up), a more declarative syntax can be

used with the method test():

test "that a new user has a valid name" do

test logic here

end

WHAT’S A TEST? 25

There’s Always Some Version Confusion

Here’s the short answer to what versions of different software
we’re talking about: by default, Rails 3.0.x, Test::Unit 1.3, and
Ruby 1.8.7 (and later, RSpec 2.x). Where Rails 2.x is substan-
tially different, I’ll note that. For the most part, the differences
between Ruby 1.8.7 and 1.9.2 don’t significantly impact the
code in this book.

We’re dealing with three separate entities that are in the pro-
cess of transitioning between major versions. Rails is moving
between the 2.x version stream and the 3.x versions. The Ruby
language version 1.9.x is coming down the pike, and a recent
fork of Test::Unit leaves 1.3 and a 2.0 version in the wild.

To sweeten the deal, Ruby 1.9.2 uses a different default test
library called minitest, which is mostly a smaller, faster replace-
ment for Test::Unit 1.3. However, Ruby 1.9.2 keeps a module
called Test::Unit as a wrapper around minitest, for backward-
compatibility purposes.

For its part, Rails smooths out the difference between minitest
and Test::Unit 1.3 and adds its own features on top of both. For
our purposes, we don’t need to worry about the difference,
and to minimize confusion (too late?), I’ll continue to refer to
that library as Test::Unit. Since I’m boldly assuming you are writ-
ing a Rails application, I’m not going to sweat the difference
between what’s in Rails and what’s in Test::Unit. Test::Unit 2.0
doesn’t seem to have much of a constituency at the moment,
so I’m going to ignore it.

Behind the scenes, those two definitions will result in the same test

being executed.1

You can’t just slap a test method inside any old class. The tests you

write need to be defined inside a subclass of Test::Unit::TestCase. Rails

provides its own generic subclass called ActiveSupport::TestCase. You’d

use ActiveSupport::TestCase as the parent class of any of your Rails tests.

Rails also defines its own subclasses of ActiveSupport::TestCase for testing

controllers and integration testing.

1. A beta reader points out that using a non-ASCII character in the test name may cause

the test to be ignored in some environments.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=25

WHAT GOES IN A TEST? 26

2.2 What Goes in a Test?

Anything you want, followed by some assertions.

When testing from within Rails, the entire Rails environment is auto-

matically loaded as part of test startup, so any part of your Rails appli-

cation along with any required plugin or gem is available. In general,

a specific test class is tied to a specific application class, and tests in

that test class exist to validate the behavior of the matching application

class. That’s good practice and is enforced by the structure of Test::Unit

within Rails. If you find yourself testing functionality outside the class

your test is tied to, you should probably rethink your approach.

Inside each test, you are generally trying to do four things:

• Set up the data needed for the test. As a general rule, create as

few data objects as possible for each test—it’ll make the tests run

faster. If you find yourself creating a lot of objects, it’s often a sign

you aren’t testing small enough units.

• Perform the action that triggers the behavior being tested. In a

Rails controller test, for example, it’s generally the call to a con-

troller action. In a model test, it’s a call to the model method under

test.

• Perform one or more assertions to verify that the behavior trig-

gered in the previous step had the expected results. This usually

involves making assertions about the state of the system after the

action, although another style of testing, discussed in more detail

in Chapter 7, Using Mock Objects, on page 101, makes assertions

about the behavior of the application when the method under test

is invoked. In either case, this is a step you want to take care to

get right—a badly written assertion can leave you with a test that

does not accurately reflect system behavior. A test that fails when

the behavior is working is bad, but one that passes even though

the underlying behavior is broken is even worse.

• Tear down any data structures that need to be removed before

the next test runs. In Rails, this step is rarely needed, because

most of the major bookkeeping—resetting the database state, for

example—is handled by the framework. However, there are some

testing tools that require a teardown statement in order to keep

each individual test nicely independent.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=26

WHAT GOES IN A TEST? 27

Setup, teardown, and assertions all get some special structure from

the testing framework. Let’s talk about assertions first. The vanilla

Test::Unit defines about twenty different methods that assert the pres-

ence or absence of a particular state. From a programmer perspective,

the simplest of these methods is the plain assert() method, which takes

a boolean argument. If the argument is true, the assertion passes; if

the argument is false, the assertion fails, and the current test stops

execution at that point. Normally, you’d have an expression evaluating

to a boolean as the argument to assert(), as in this example verifying

how long a man’s legs should be:

test "ask abe the length of a man's legs" do

@user = User.new

assert (@user.leg.length == "long enough to reach the ground")

end

I’ll mention this once here, and you can apply it to all the assertions

discussed in the next few pages: assert() and all the other Test::Unit

assertion methods take an optional last argument with a string mes-

sage to be displayed on failure. In most cases, the default message and

the resulting stack trace are plenty good enough to diagnose failures,

so the messages are rarely used.

From a user perspective, the simplest method is assert(), but inside the

Test::Unit code, almost everything is built on top of assert_block(), which

takes a no-argument block and passes if the block evaluates to true.

test "ask abe the length of a man's legs" do

@user = User.new

assert_block { @user.leg.length == "long enough to reach the ground" }

end

The most commonly used assertion is assert_equal(), which takes two

arguments: an expected value and the actual computed value. The

method passes if the two arguments are equal using Ruby’s == operator.

test "ask abe the length of a man's legs" do

@user = User.new

assert_equal "long enough to reach the ground", @user.leg.length

end

Although it is functionally irrelevant which order the arguments come

in, the error message that you will receive on failure assumes that the

first argument is the expected value and the second argument is the

actual calculated value. Mixing up the two will cause confusion when

you are trying to track down a failed test. You can negate this assertion

with the converse method assert_not_equal().

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=27

WHAT GOES IN A TEST? 28

Those are the most commonly used assertions, but Test::Unit defines

a handful of others. All of these take an optional message as a last

argument, which I’m leaving off because I want you not to use it. Let’s

take these in groups:

• assert_in_delta(expected, actual, delta)

Like assert_equal(), but for floating-point numbers. Passes if the

two floating-points are within the delta value of each other.

• assert_instance_of(klass, object)

assert_kind_of(klass, object)

Passes if the object and the class have the relationship implied by

the name of the method.

• assert_match(pattern, string)

assert_no_match(pattern, string)

Like assert_equal(), but for regular expressions.

• assert_operator(left, operator, right)

I’ve never actually seen this in the wild. Passes if the left and

right objects have the relationship stated by the operator, as in

assert_operator 6, :<, 10. Uses send() to send the operator to the left

operand.

• assert_nil(object)

assert_not_nil(object)

At the risk of sounding snobby, these two really should be self-

evident.

• assert_raise(*args, &block)

assert_nothing_raised(*args, &block)

The argument to the positive method is an exception class, and

then the assertion passes if the associated block of code raises

that exception. The negative method passes if the block does not

raise an exception. The negative method does not care what kind

of exception is raised.

• assert_same(expected, actual)

assert_not_same(expected, actual)

Like assert_equal(), but for actual object equality.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=28

SETUP AND TEARDOWN 29

• assert_respond_to(object, method)

Passes if object.respond_to?(method) is true.

• assert_send(array)

Really odd method that takes an array of the form [receiver, method,

argument_list] and passes if the snippet receiver.method(argument_list)

is true.

• assert_throws(symbol, &block)

assert_nothing_thrown(&block)

Like assert_raise, but for Ruby’s rarely used catch/throw mecha-

nism.

2.3 Setup and Teardown

Let’s look at a pair of tests. The exact functionality isn’t important right

now; we’re interested in the structure of the test:

test "a user should be able to see an update within the project" do

fred = User.new(:name => "Fred")

barney = User.new(:name => "Barney")

project = Project.new(:name => "Project Runway")

project.users << fred

project.users << barney

barney.create_status_report("I'm writing a test")

assert_equal("I'm writing a test", fred.project_statuses[0].text)

end

test "a user should not be able to see from a different project" do

fred = User.new(:name => "Fred")

barney = User.new(:name => "Barney")

project = Project.new(:name => "Project Runway")

other = Project.new(:name => "Project Other")

project.users << fred

other.users << barney

barney.create_status_report("I'm writing a test")

assert_equal(0, fred.project_statuses.count)

end

These tests share some common code. The common setup is only a few

lines, but a real set of tests could wind up with far more duplication.

Your first signal that something is wrong is that the setup has prob-

ably been copied and pasted from one test to the next. Copying and

pasting multiple lines of code is almost always a heads-up to at least

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=29

SETUP AND TEARDOWN 30

consider what you are doing to see if there is a commonality that you

can refactor.

The classic way of managing duplicate setup using Test::Unit is to move

the common code to the setup() method, which is automatically called

by the test framework before each test:

def setup

@fred = User.new(:name => "Fred")

@barney = User.new(:name => "Barney")

@project = Project.new(:name => "Project Runway")

@project.users << fred

end

test "a user should be able to see an update from a friend" do

@project.users << @barney

@barney.update_status("I'm writing a test")

assert_equal("I'm writing a test", @fred.project_statuses[0].text)

end

test "a user should not be able to see an update from a non-friend" do

other = Project.new(:name => "Project Other")

other.users << @barney

@barney.update_status("I'm writing a test")

assert_equal(0, @fred.project_statuses.count)

end

Moving the common setup code to the setup() method solves a couple of

problems. The setup() code is automatically executed before each test,

guaranteeing that each test is executed in the same environment. Also,

moving the setup out of the test method makes it easier to write each

individual test and also easier to follow the unique purpose of each test.

There’s some debate over whether the setup methods really are clearer;

there’s also a school of thought that says that moving anything into a

setup method makes the test harder to follow. In general, if the setup

gets too complex, you start to have problems—but in most model and

controller tests, you can keep the common setup simple enough to be

clear.

Over time, the setup() method, like any initializer, can become cluttered

with multiple independent small setups jammed together in the same

method. And don’t forget that right below the sign that says “Don’t

Repeat Yourself” is another one that says “A Method Should Do Exactly

One Thing” (the acronym AMSDEOT is nowhere near as catchy as DRY,

though).2 A confused setup method violates the AMSDEOT principle.

2. I’m also a big fan of CAPITROAE: “Cut And Paste Is The Root Of All Evil.”

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=30

SETUP AND TEARDOWN 31

Relief for this arrived in Rails 2.2, which converted setup code to a

block declaration similar to the way that before_filter() is handled in

controllers. In Rails 2.2, you can declare methods to be run during

setup by using the setup() call and placing something like this in your

test class or in test/test_helper.rb:

setup :setup_users

def setup_users

@fred = User.new(:name => "Fred")

@barney = User.new(:name => "Barney")

end

What’s particularly nice about this is that—as with before filters—you

can have multiple setup blocks or methods, and they will all be exe-

cuted before each test:

setup :create_fred

setup :create_barney

def create_fred

@fred = User.new(:name => "Fred")

end

def create_barney

@barney = User.new(:name => "Barney")

end

Setup methods are executed in the order in which they are declared.

Calls to setup() in the test/test_helper.rb file will always be declared and

thus executed before any method in the actual test file. You can also

define the setup as a block:

setup do

User.create(:name => "Fred")

User.create(:name => "Barney")

end

This is not recommended in Rails 2, though, because the inside of the

block is evaluated in class context—you can initialize global or class

settings, but you can’t create instance variables that are accessible

from your tests. In Rails 3, the block is evaluated in instance context.

There is a similar mechanism to control what happens at the end of

tests. The teardown() method has the same declaration rules as setup():

teardown :reset_globals

def reset_globals

#whatever

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=31

WHAT CAN YOU TEST IN RAILS? 32

Because Rails handles the rollback of database data in testing, it’s not

all that common to see teardowns used in Rails testing. Normally you’d

use it to reset third-party tools outside of Rails. For example, certain

mock object packages, such as FlexMock, require a method to be called

at teardown to reset object status.

You’re likely eventually to have one or more basic setup methods shared

among multiple controller or unit tests. If the setup methods start to

crowd out the test_helper.rb file, you can create a test/setup_methods.rb

file with a module containing all the setup methods:

module SetupMethods

def setup_users

fred = User.new(:name => "Fred")

barney = User.new(:name => "Barney")

end

put more setup methods here

end

Then the test class can include the module and declare any relevant

methods as setups:

class UserTest < ActiveSupport::TestCase

include SetupMethods

setup :setup_users

test "my test" do

end

end

The include and the setup call can also go in the test/test_helper.rb file.

2.4 What Can You Test in Rails?

When testing a Rails application, Rails specifies the default location of

tests based on the class being tested. All Rails tests go in the test direc-

tory of the application. Rails assumes a consistent relationship between

controllers and models on one hand and their test files on the other.

This makes it easy to know where to put new tests and enables exter-

nal tools like autotest (see Section 19.3, Using Autotest, on page 309) to

know what tests to run when an application file changes. You can see

the app directory of a Rails application and its associate test directory

in Figure 2.1, on the next page.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=32

WHAT CAN YOU TEST IN RAILS? 33

Figure 2.1: Directory comparison

Tests for Rails models are in the test/unit directory. Each test is named

for its model, so by convention the test file test/unit/user_test.rb contains

the class UserTest and is expected to correspond to the Rails model file in

app/models/user.rb. In Rails 2.0 and up, unit tests are subclasses of the

Rails ActiveSupport class ActiveSupport::TestCase, which is a subclass

of the Ruby standard library class Test::Unit::TestCase. When you create

a model using a Rails generator, the associated unit test class is also

created for you.

Functional tests and Rails controllers have a similar relationship. Tests

for Rails controllers are in the test/functional directory. The file app/

controllers/users_controller.rb contains the class UsersController. The tests

for that class are in test/functional/users_controller_test.rb, and the test

class is named UsersControllerTest. In current versions of Rails, all con-

troller tests are subclasses of the Rails class ActionController::TestCase,

which is a subclass of the same ActiveSupport::TestCase used for models.

Any time you create a controller using one of the three or four standard

Rails generators that include controllers, an associated functional test

file is created for you. (In Rails 2.3 and up, a test file is also created for

the helper module and stored in test/unit/helpers.)

Rails also creates a file called test/test_helper.rb, which contains fea-

tures and settings common to all of your tests. This file is required

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=33

WHAT HAPPENS WHEN TESTS RUN? 34

by any Rails test file.3 The provided file re-opens the class ActiveSup-

port::TestCase to allow you to add your own methods, which are then

available to all your tests. Typically, this involves initialization and tear-

down, complex data setups, and complex assertions. Other sections in

this book will cover those possibilities in more detail.

There are two other kinds of tests in the standard Rails toolbox. The

first, integration tests, are perhaps the most ignored feature of Rails

testing. By design, integration tests are used to test sequences of events

that span multiple actions or controllers. However, they don’t easily

map to the various test-first methodologies, and Rails developers tend

to overlook them. That’s unfortunate, because integration tests are a

good way to validate complex interactions in an application, as well as

ensure that there are no holes in the controller tests. Integration tests

are created using the Rails generator script/generate integration_test, and

are not automatically created by any other Rails generator. Integration

tests will be discussed in more detail in Chapter 13, Testing Workflow

with Integration Tests, on page 215.

Performance tests are different from the other automated test types.

They are not intended to verify the correctness of your program; in-

stead, they give access to profiling information about the actions called

during the test. Essentially, performance tests are wrappers around the

ruby-prof profiler, but if you’ve ever tried to get ruby-prof working, you’ll

appreciate the help. Performance tests are created using the Rails gen-

erator, script/generate performance_test, and are not automatically cre-

ated by other Rails generators. Unlike the other Rails tests—functional,

unit, and integration—performance tests are not automatically run by

the Rails test runners. We’ll talk about performance testing a little

bit more in Chapter 19, Performance Testing and Performance Improve-

ment, on page 298.

2.5 What Happens When Tests Run?

Each time you run a test task in Rails, the following steps take place.

You can see the entire workflow in Figure 2.2, on the following page.

3. Not automatically, however: Rails places the require statement at the top of its gener-

ated files. If you create your own files, you need to add the statement yourself.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=34

WHAT HAPPENS WHEN TESTS RUN? 35

Test run

start

Initial Database

preset

Identify files

to run

For each file

Identify tests

to run

For each test

Run setup

Run test

Run

teardown

Database

reset

Figure 2.2: Test flow

The test database, as determined by the entry with the symbol test in

the config/database.yml file, is cleared of all data.4

Based on which test task is being run, a list of test files that matches

the criteria for the task is generated. For example, running just the rake

test:functionals task generates a list of all the test files in test/functionals,

and no others.

Once the list of test files is created, each test file is loaded one by one.

Like any other Ruby file, loading the file causes any module or class-

level code to be interpreted. Although it’s pretty rare to have any class-

level initialization in a test file, you’ll sometimes have additional classes

in the file besides the test class itself (for example, a specialized mock

object class).

After a file is loaded, all the test methods in the file are identified. In ver-

sions of Rails before 2.2, a test method is any method in the test class

4. If you run your test via the command-line rake task, then Rails will automatically

apply any pending migrations. If you run via a different method—an IDE, for example—

you may need to apply pending migrations to the test environment yourself.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=35

RUNNING THE RAILS TESTS 36

that starts with test_. In Rails 2.2 and up, an additional test method is

added that allows you to also create tests with a more natural block

syntax (test "should pass this" do end). Test add-ons like Shoulda also offer

different ways to define tests.

For each test method that has been identified by the test framework,

the test method is executed. However, execution does not mean just

running the test method itself—the test framework also executes setup

code before the test method and teardown code after the test method.

Here are the steps for running an individual test method:

1. Reset fixture data. By default, fixtures are loaded once per test

suite, with each actual test being run inside a database trans-

action. At the end of each test method, the transaction is rolled

back, allowing the next test to continue with a pristine state. More

details on fixture loading are available in Section 6.2, Loading Fix-

ture Data, on page 84.

2. Run any defined setup blocks. In versions of Rails before 2.2, there

is only one setup method per test case. In Rails 2.2 and up, multi-

ple setup methods can be declared. Note that setup blocks can be

in the actual test class or in any parent classes or included mod-

ules. There are more details in Section 2.3, Setup and Teardown,

on page 29.

3. Run the actual test method. The method execution ends when a

runtime error or a failed assertion is encountered. If neither of

those happens, then the test method passes. Yay!

4. Run all teardown blocks. Teardown blocks are declared similarly

to setup blocks.

5. Roll back or delete the fixtures, as described in step 1. The result

of each test is passed back to the test runner for display in the

console or IDE window running the test. Typically, failures and

errors return stacktraces from the offending point in the code.

2.6 Running the Rails Tests

Rails provides several commands to run all or part of your test suite.

The most common test to run is the Rake default testing task, invoked

with either rake test or simply rake. The default task combines three

subtasks, which can be individually invoked as rake test:functionals, rake

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=36

RUNNING THE RAILS TESTS 37

test:units, and rake test:integration. Each of these tasks runs any file match-

ing the pattern *_test.rb in the appropriate directory. The command-line

output looks something like this:

$ rake

(in /Users/noel/Projects/huddle) /System/Library/Frameworks/

Ruby.framework/Versions/1.8/usr/bin/ruby -Ilib:test

"/Library/Ruby/Gems/1.8/gems/rake-0.8.3/lib/rake/rake_test_loader.rb"

<ALL TESTS>

Loaded suite /Library/Ruby/Gems/1.8/gems/rake-0.8.3/lib/rake/

rake_test_loader Started

.....EE...E.E.E.................

Finished in 2.138619 seconds.

Each successful test method is represented by a dot. If a test triggers an

actual exception or error, it’s represented by an E; if the test merely

caused an assertion inside the test to fail, it’s represented by an F. After

the run-through, each error and failure will have a message and a stack

trace.

Rails provides two helpful but often-overlooked convenience tasks for testing

the files you are currently working on. The task rake test:recent looks for

any controller or model file that has changed in the last ten minutes and

runs the associated functional or unit test. The task rake test:uncommitted

works similarly on any controller or model file that has been changed

since you last committed to your source control repository. You must be

using Subversion or Git to take advantage of the uncommitted task.

To run performance tests, use rake test:benchmark or rake test:profile. The

two test types differ primarily in the output they present. A benchmark

test outputs about five simple values for each performance run, includ-

ing elapsed overall time and memory used. On first run, each test also

generates a CSV file for output values. Further benchmark test runs

append values to the CSV file, allowing for easy visualization of perform-

ance changes over time.

A profile test splits the timing data for each test based on the methods

in which the test execution takes place and returns the amount of time

spent in each method for the purpose of trying to determine where your

application bottlenecks are. The output of a profile test can be either a

list of methods and their data or a call graph associating each method

with the methods that call it and the methods it calls.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=37

MORE INFO: GETTING DATA INTO THE TEST 38

Tests for all your plugins can be run using rake test:plugins. Individual

test files can also be run just by invoking them from the command line,

as in ruby test/unit/user_test.rb. (In recent versions of Rails, you may need

to adjust your Ruby load path such that the require test_helper line at

the beginning of the test files finds the test helper file.)

If you are using an IDE such as Eclipse or NetBeans, the IDE should

provide a command to run tests within the IDE itself—typically, this

will either run the rake command line in a console window (NetBeans)

or invoke a custom test runner that essentially does the same thing but

is prettier (Eclipse, RubyMine). The IDE should also have commands for

running an individual test file or an individual test method.

2.7 More Info: Getting Data into the Test

Often, testing a feature properly requires data to be created in order to

build a meaningful test setup. A reporting feature might best be tested

with a number of different data items that fill different columns in a

report. Or a social networking feature might require the creation of

several users in various relationship permutations for proper testing.

There are a number of ways to conveniently create sample data for

tests. Rails core offers an easy-to-use, if somewhat limited, feature

called fixtures. Generically, a fixture is any predefined set of data used

by multiple tests as a baseline. Fixtures in Rails are a core mechanism

for defining and using known data in tests. Specifically, every ActiveRe-

cord model gets an associated set of fixture data in test/fixtures, where

data objects can be specified in YAML format.

Rails fixtures give you a consistent, potentially complex data set that

is automatically created before each test. Although fixtures have been

part of Rails since the beginning, most of the time I choose to use other

tools that use a factory pattern for generating sample data. Although it’s

true that fixtures have strong limitations and factory creation methods

are more flexible and generally lighter weight, we’ll focus on fixtures

here because they are easy to use and part of Rails core. You will find

much more discussion on the why fixture data is less commonly used

and what kinds of tools are used instead in Chapter 6, Creating Model

Test Data with Fixtures and Factories, on page 81.

The directory test/fixtures is expected to contain a YAML file for each

ActiveRecord model. So, app/models/user.rb is attached to test/fixtures/

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=38

MORE INFO: GETTING DATA INTO THE TEST 39

user.yml. The fixture files are created automatically by the Rails genera-

tors when a model is created. If you create an ActiveRecord model man-

ually, you’ll also need to create the associated YAML file. The reverse is

also true: if you remove an ActiveRecord file, you need to remove the

YAML file. Otherwise, you will be unable to run tests, since Rails will try

to load the fixture data into the test database for the missing ActiveRe-

cord class. The data placed in the fixture files is automatically loaded

into the test database before each test.5

Rails fixtures are described in YAML, which has a strict, nested format;

at the top level, each individual model gets a name, followed by a colon.

After that, the data for that model is indented, Python-style. Each line

starts with the key, followed by a colon, followed by the value, like this:6

Download huddle/test/fixtures/projects.yml

huddle:

name: Huddle Project

To start a new model, outdent back to the left edge and start again

with a name for the model. Those top-level names, such as huddle in

the previous file, have no particular meaning in Rails beyond being

an identifier to that particular fixture within the test environment. The

keys in the YAML file must be columns in the database table for that

model (meaning that they can’t be arbitrary methods in the Ruby code

the way they can be when calling new() or create()).

Once this code is in the YAML file, then an object is generated from it, is

loaded into the database before every test,7 and is by default accessible

anywhere, in any test, using the method call projects(:huddle).

Here’s some sample fixture data for a status report class we’ll use in a

later example:

Download huddle/test/fixtures/status_reports.yml

ben_tue:

project: huddle

user: ben

yesterday: Worked on Huddle UI

today: Doing some testing

status_date: 2009-01-06

5. Fixture data can also be loaded into the development database using the rake

db:load:fixtures task.
6. There’s more to YAML syntax, of course, but there’s no need to go beyond the basics

here.
7. Well. . . it’s a little more complicated than that. See Section 6.2, Loading Fixture Data,

on page 84 for more.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle/test/fixtures/projects.yml
http://media.pragprog.com/titles/nrtest/code/huddle/test/fixtures/status_reports.yml
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=39

MORE INFO: GETTING DATA INTO THE TEST 40

ben_wed:

project: huddle

user: ben

yesterday: Did Some Testing

today: More Testing

status_date: 2009-01-07

There are a couple of things to note about the fixtures. We do not need

to specify an id for each fixture; Rails automatically generates one for

us. Also, when I said that all the keys had to be database columns,

that wasn’t strictly true; they can also be associations. If the key is an

association, the value represents the name of a fixture in the related

table (or a comma-separated list of fixture names for a one-to-many

relationship). If we do specify an id in the YAML file, the nifty auto-

association feature will not work.8 Also, as you can see here, dates are

automatically converted from string representations.

Fixture files are interpreted by Rails as ERb, so you can loop or dynam-

ically generate data with the full power of Ruby. Also, when copying and

pasting YAML data into a text file, remember that YAML files require a

specific whitespace layout: the outdented fixture names need to be in

the leftmost column of the line. Give fixtures meaningful names; it’ll

help later. (The Rails default names are a pain in the neck to keep

straight.)

Although fixtures have many wonderful qualities—they’re always avail-

able, relatively easy to set up, and consistent across all tests—they can

also be kind of brittle. For example, if you are testing a reporting func-

tion, the results you are expecting are sensitively dependent on the

makeup of the data in the fixtures. This dependency can cause at least

two serious problems. First, if there’s a lot of data in the fixtures, the

results you are testing against can easily become opaque and hard to

verify. Second, if anybody ever adds more data to the fixture, it can eas-

ily break all the reporting tests—a bit of a momentum-killer. As such,

a number of alternatives for fixtures have been developed that make it

easier to define test data specific to individual tests. We’ll cover those

in Section 6.4, Using Factories to Fix Fixtures, on page 86.

8. All this fancy id mapping is a Rails 2.0 and up feature. Before, we had to track the id

values manually—which was a total pain for many-to-many join tables.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=40

BEYOND THE BASICS 41

2.8 Beyond the Basics

Test::Unit and Rails combine to provide a common set of testing tools

that are always available from any Rails application. If you’ve used

other frameworks, particularly from a few years back, you may remem-

ber that setting up a group of tests into test cases and test suites was

always something of a pain. Not so in Rails, where the design goal is

to reduce unnecessary duplication of effort, especially when creating

tests. Rails provides standard ways to define tests, a standard location

for each test, a way to add data into the test, and easy ways to run the

tests in different combinations.

With this introduction to the basic core of Rails testing in hand, it’s

time to see a more detailed example. Over the next two chapters, we’ll

take an almost new Rails application and add new features to it using

a test-driven approach.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=41

Chapter 3

Writing Your First Tests
You have a problem. You are the team leader for a development team

that is distributed across multiple locations. As an agile development

team, your project has a daily stand-up meeting, sometimes called a

scrum, where everybody briefly describes what they did yesterday, what

they plan on doing today, and if anything is blocking them from getting

their work done.

However, since your team is geographically distributed, you need to do

these scrums via email. That’s not the worst thing ever, but it does lead

to annoying email threads, and I think we can all do better with a little

web application magic. Let’s create an application called Huddle, which

will support entering and viewing these daily status messages.

Since you are a Rails developer who wants to use test-driven methods,

the first thing you should ask is, “What do I test?” Test-driven devel-

opers start an application by writing tests. In that spirit, we’re going

to initiate our tour of Rails testing by writing lots of tests. Specifically,

we’re going to walk through the first few test-driven feature cycles of

the Huddle application to give you the feel of Test-Driven Development

(TDD) using Rails.

We’ll use a hands-on approach and walk through the specifics of how to

write your first tests. We’ll talk about how the practice of working “test

first” improves development, but more importantly, we’ll show what

working in a test-driven style looks like. This chapter uses the test-

ing tools that are available in core Rails and will be limited to common

Rails tasks such as creating and submitting a web form. At the end of

this chapter, you should have a good sense of how TDD development

CHAPTER 3. WRITING YOUR FIRST TESTS 43

A Word About Best Practices

There’s a tension in this section between making the introduc-
tion to Rails testing as simple and clear as possible and present-
ing the tests using what I would consider to be best practices.
In particular, many of my regular testing practices depend on
third-party tools that we’re not going to cover in this walk-
through.

In this chapter, I decided to focus on making testing as easy as
possible to explain while still using good coding practice, and I
included some discussion of where improvements might come.
We’ll go over coding style and practice considerations again
later in the book.

works in Rails, and you’ll be ready to explore the third-party tools and

more detailed topics in the rest of the book.

Appendix A, on page 321, contains the steps for creating the skeleton

application we’re starting with—including the initial setup, creation of

Rails scaffolds, addition of Devise for user authentication, and other

things that are necessary to the application but beside the point for our

tutorial. If you’d like to start at the same place, the code samples for

this chapter are available for download at http://www.pragprog.com/titles/

nrtest/source_code. The code for this application was written and tested

against Rails 3.0.1

We’re going to do this in a reasonably strict test-driven style, meaning

no new logic will be added to the application except in response to a

failing test. We’ll be a little more lenient with view code. We’re assum-

ing a basic understanding of standard Rails concepts; in other words,

you don’t need to be told what a controller is. For the moment, we’re

also going to limit ourselves to test tools provided by core Rails. Later

in the book, we’ll spend a lot of time covering third-party tools, espe-

cially in Chapter 11, Write Cleaner Tests with Shoulda and Contexts,

on page 169 and Chapter 12, RSpec, on page 186. But in the name of

keeping it simple, we’ll start with vanilla core Rails.

1. Significant differences with Rails 2.3.x will be noted.

Report erratum

this copy is (P1.0 printing, February 2011)

http://www.pragprog.com/titles/nrtest/source_code
http://www.pragprog.com/titles/nrtest/source_code
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=43

THE FIRST TEST-FIRST 44

3.1 The First Test-First

The first question to ask is, “What do I test?” The answer comes from

your requirements. Without some sense of what your program should

be doing, it’s hard to write tests that describe that behavior in code.

The form and formality of your requirements will depend on the needs

of your project. In this case, you are your own client, and it’s kind of

a small project, and we don’t have space in this book for military-level

precision. So, the informal list of the first three stories in the application

looks something like this:

• A user is part of a project. A user can enter his scrum status for

that project.

• For the purpose of adding a testable constraint, let’s say the user’s

status report has yesterday’s status and today’s expected work,

and the user must include text in at least one of these items.

• Members of the project can see a timeline of status reports. This

one will get covered in Chapter 4, TDD, Rails Style, on page 61.

Over the rest of this tutorial, we’ll go after these stories one by one.

Any time we add or change the logic of the application, we’ll write a

test. The exact starting point of the first test is not important (although

it’s helpful to have at least some sense of where you are going); you

can start with any requirement or feature in the program that can be

objectively specified.

Our starting point for Huddle is the need to have a status report that

is created as part of a project. The report should have all its values,

including the date, set correctly. Because I think the code for this fea-

ture might be in the StatusReportsController, I’m going to put the test for

this feature in test/functional/status_reports_controller_test.rb.

Line 1 test "creation of status report with data" do

- assert_difference('StatusReport.count', 1) do

- post :create, :status_report => {
- :project_id => projects(:one).to_param,
5 :user_id => users(:one).to_param,
- :yesterday => "I did stuff",
- :today => "I'll do stuff"}
- end

- actual = assigns(:status_report)
10 assert_equal(projects(:one).id, actual.project.id)

- assert_equal(users(:one).id, actual.user.id)
- assert_equal(Date.today.to_s(:db), actual.status_date.to_s(:db))
- assert_redirected_to status_report_path(actual)
- end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=44

THE FIRST TEST-FIRST 45

Let’s walk through this test in detail.

Line 3 simulates a post call to the create action of the StatusReportsCon-

troller. The second argument to this call simulates the URL parameters

of the call—effectively, you are setting up the params hash that will be

used in the action. As part of that hash, the call references users(:one),

which is a fixture, or set of known sample data that can be used in test-

ing. This particular fixture set was created in Appendix A, on page 321,

and it defines the data object accessed as users(:one). Section 2.7, More

Info: Getting Data into the Test, on page 38 has more detail on fixtures.

Going back to the test itself, the block that starts in line 2 and ends in

line 8 uses the assert_difference() method to assert that there is one more

StatusReport object in the database at the end of the block than at the

beginning. More plainly, the method is asserting that a new StatusReport

instance has been created.

Line 9 uses the Rails test framework assigns() method, allowing access

to instance variables set in the controller being tested—in this case,

the controller variable @status_report, which should be the newly created

instance. You don’t need the @ symbol in the argument to assigns().

Starting with line 10, there are three lines asserting that a project, user,

and status date are added to the newly created object.2 Line 13 asserts

that the result of the controller call is a redirect to the show page of the

newly created StatusReport.

Although people will certainly quibble with the style and structure of

this test, it is a basic, straightforward test of the desired functionality.

This is the maximum amount of complexity that I’m comfortable having

in a single test. In some cases, the amount of data or validation needed

in a test suggests the need to refactor some of the complexity into setup

methods or custom assertion methods.

Rather than start with a controller test, I could start by testing the

model behavior. The model test is probably closer to the code that will

be written, since good Rails style places complexity in the model. How-

ever, I sometimes find that it is easier to specify the desired result when

I start testing via the controller. Another option would be to start with

an integration or Cucumber-based acceptance test (described in more

detail in Chapter 15, Acceptance Testing with Cucumber, on page 235).

2. If this test is run at just the right moment before midnight, 12 will fail because the

date has changed during the running of the code. Section 6.11, Managing Date and Time

Data, on page 95 discusses working around this problem in more detail.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=45

THE FIRST TEST-FIRST 46

We’re testing status_date because we know new code will be needed to

add that attribute to the object, and we’re testing the existence of the

project and user objects because the requirements need relationships

to be set up between the models. We’re not testing the today and yes-

terday texts because that’s part of core ActiveRecord—we could test it,

but it would be redundant. Redundancy is not always bad in testing,

but right now it’s unnecessary.

I often use a testing style that limits each individual test to a single

assertion and might therefore separate this test into four different tests

sharing a common setup. The advantage of this one-assertion-per-test

style is that each assertion is able to pass or fail separately. As written,

the first failure prevents the rest of the tests from running. Although it’s

a good point that assertions should be independent, in this case it’s eas-

ier to follow the intent of the test when similar assertions are grouped.

Also, single assertion tests are easier to write with a little help from

third-party tools. In Section 11.7, Single-Line Test Tools, on page 183,

we’ll see some tools that make it easier to write single-assertion tests.

When we run the tests, we get an error. The stack trace for the error

looks like this:

1) Error:

test_creation_of_status_report_with_data(StatusReportsControllerTest):

ArgumentError: wrong number of arguments (1 for 0)

/test/functional/status_reports_controller_test.rb:58:in `to_s'

/test/functional/status_reports_controller_test.rb:58:in

`test_creation_of_status_report_with_data'

The line with the error is assert_equal(Date.today.to_s(:db), actual.status_

date.to_s(:db)), and strictly speaking, the error message says that to_s,

which converts the object to a string, is being called with the wrong

number of arguments: (1 for 0), which means the method was called

with one argument but expected zero.

This error message is technically true but misleading. The real error

is that actual.status_date is nil and not Date.today. That error manifests

itself as a “wrong number of arguments” because the test converts both

dates to strings. The method to_s() takes no arguments for most classes,

but Rails ActiveSupport overrides the method for Date with an optional

format argument. Since our test results in a nil value instead of a Date,

the extra argument causes an error.3

3. Why convert to strings, you ask? Because you get much more readable error messages

if the values are both strings.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=46

THE FIRST REFACTOR 47

Also, notice that the user and project parts of the test already pass. This

is a Rails feature. With the use of user:references in the script/generate

command line (the exact setup commands are listed in Appendix A, on

page 321), Rails automatically adds the belongs_to association to the

StatusReport class. As we’ll see later, it doesn’t add the relationship in

the other direction.

Now let’s make the test pass. The classic process says to do the sim-

plest thing that could possibly work. It’s a good idea to just make the

immediate error or failure go away, even if we suspect there are further

errors waiting in the test. Doing so keeps the test/code cycle short and

prevents the code from getting unnecessarily complex.

To get past the test failure, add a line toward the beginning of the

create() method in app/controllers/status_reports_controller.rb so that the

method starts like so:

def create

@status_report = StatusReport.new(params[:status_report])

@status_report.status_date = Date.today # ==> the new line

the rest of the method as before

end

3.2 The First Refactor

We fixed the immediate problem, and the test passes. We now enter

the refactoring step. There isn’t much here to refactor, but we have one

detail we can tweak: it’s better not to set the status_date in the controller.

Good Rails practice moves complexity from controllers to models where

possible. For one thing, placing code in the models tends to decrease

duplication where functionality is used by multiple controller actions.

For another, code in the model is easier to test.

Ordinarily, we would not be writing tests during refactoring, just using

existing tests to verify that behavior hasn’t changed. However, when

moving code from one layer, the controller, to another, the model, it

helps to create tests in the new class. Especially here, because our

new behavior will be slightly different, we want the status_date to be

automatically set whenever the report is saved.

The unit test goes in test/unit/status_report_test.rb:

Line 1 test "saving a status report saves the status date" do

2 actual = StatusReport.new
3 actual.save
4 assert_equal(Date.today.to_s, actual.status_date.to_s)
5 end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=47

THE FIRST REFACTOR 48

The test fails. As referenced in a previous footnote, in line 4 we’re com-

paring literal string objects rather than the dates.

To pass the test, we add a before_save() callback to the StatusReport

class:

class StatusReport < ActiveRecord::Base

belongs_to :project

belongs_to :user

before_save :set_status_date

def set_status_date

self.status_date = Date.today

end

end

Now the test passes. But there’s one more thing to worry about—if the

status_date has already been set before the report is saved, the original

date should be used. As the code stands now, the status_date will change

whenever the model is edited. In the TDD process, we force ourselves

to make that code change by exposing the error with a test. Here’s how,

in test/unit/status_report_test.rb:

Line 1 test "saving a status report that has a date doesn't override" do

2 actual = StatusReport.new(:status_date => 10.days.ago.to_date)
3 actual.save
4 actual.reload
5 assert_equal(10.days.ago.to_date.to_s, actual.status_date.to_s)
6 end

The to_date() methods in lines 2 and 5 are there to convert between

10.days.ago, which is a Ruby DateTime object, and the status_date, which

is a Ruby Date object. Without that conversion, we will get an error

because the string formats won’t match in line 5.

The reload() call in line 4 forces ActiveRecord to re-retrieve the record

from the database. ActiveRecord does not prevent a database record

from having multiple live objects pointing to it. In this particular case,

the controller creates a new instance from the database and saves that

instance, without touching the actual variable created for the test. As a

result, the database version has typecast the status_date to a Date when

saving, but the live version in memory hasn’t gotten that change.

In general, it’s a good idea to reload any object being tested and saved.

This is most commonly an issue in controller tests, where you might

create an object during setup and then another object is created during

the controller action that is backed by the same database record. In

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=48

MORE VALIDATIONS 49

that case, the object you are holding on to in the test does not reflect

changes made to the database during the controller action, leading to

hours of fun as you try to figure out why your test is failing. Reloading

will allow the object in your tests to see changes to the database made

after the object was created.

One way to make the new test pass is this very slight change to the

model:

Download huddle3/app/models/status_report.rb

def set_status_date

self.status_date = Date.today if status_date.nil?

end

And now the scary part: removing the status-changing line from the

controller and making sure that the tests pass again. This involves

removing the line of code that we just added to the controller a cou-

ple of seconds ago.

It just takes a second to remove the line, and then we can rerun rake to

verify that the tests still pass.

3.3 More Validations

While we’re looking at the status report model, there is another one of

our original three requirements we can cover, namely, the requirement

that a user must enter text in at least one of the yesterday and today

boxes. Back in test/unit/status_report_test.rb:

Download huddle3/test/unit/status_report_test.rb

test "a report with both blank is not valid" do

actual = StatusReport.new(:today => "", :yesterday => "")

assert !actual.valid?

end

The simplest way to pass this test is by placing the following line of

code in app/models/status_report.rb:

validates_presence_of :yesterday, :today

That’s great! With that line of code in place, everything will be swell.

Nothing can go wrong. (Cue ominous music.) Let’s run rake:

1) Failure:

test_saving_a_status_report_saves_the_status_date(StatusReportTest)

[/test/unit/status_report_test.rb:9]:

<"2009-08-26"> expected but was

<"">.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/models/status_report.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/test/unit/status_report_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=49

MORE VALIDATIONS 50

2) Error:

test_saving_with_a_date_doesn't_override(StatusReportTest):

ActiveRecord::RecordNotFound: Couldn't find StatusReport without an ID

/test/unit/status_report_test.rb:17:in

`test_saving_with_a_date_doesn't_override'

What? Well, you’ve probably figured it out, but adding the validation

causes problems in other tests.4 Specifically, status reports that were

created by other tests without either text field being set are now fail-

ing their saves because they are invalid. This is admittedly annoying,

because it’s not really a regression in the code: the actual code in the

browser probably still works fine. It’s more that the shifting definition

of what makes a valid StatusReport is now tripping up older tests that

used insufficiently robust data.

Fixing the failing tests is straightforward. To fix the two tests in test/unit/

status_report_test.rb, add the arguments (:today => "t", :yesterday => "y") to

each StatusReport.new() method call, giving the following:

Download huddle3/test/unit/status_report_test.rb

Line 1 test "saving a status report saves the status date" do

- actual = StatusReport.new(:today => "t", :yesterday => "y")
- actual.save
- assert_equal(Date.today.to_s, actual.status_date.to_s)
5 end

-

- test "saving with a date doesn't override" do

- actual = StatusReport.new(:status_date => 10.days.ago.to_date,
- :today => "t", :yesterday => "y")

10 actual.save
- actual.reload
- assert_equal(10.days.ago.to_date.to_s, actual.status_date.to_s)
- end

This puts enough data in the report to make the test pass—we don’t

need to care what the data actually is. For Rails 2.x, a similar change

needs to be made in test/functional/status_reports_controller_test.rb:

Download huddle/test/functional/status_reports_controller_test.rb

test "should create status_report" do

assert_difference('StatusReport.count') do

post :create, :status_report => {:today => "t", :yesterday => "y"}

end

assert_redirected_to status_report_path(assigns(:status_report))

end

4. In Rails 2.x, you also get a test failure in StatusReportTest for the test of the create

action because of a difference in the behavior of the generated test. In Rails 3, that action

is passed default values based on fixture data, so the validation works. In Rails 2, the

generated test passes an empty hash to the controller.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/unit/status_report_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle/test/functional/status_reports_controller_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=50

MORE VALIDATIONS 51

And now we’re back at all passing. This is, frankly, the kind of thing

that causes people to develop an aversion to testing: sometimes it seems

like a boatload of busywork to have to go back in and change all those

older tests. And, well, it can be. There are a couple of ways you can

minimize the annoyance and keep the benefits of working test-first.

One helpful technique is to keep a very tight loop between writing tests

and writing code and to run the test suite frequently (ideally, we’d run

it constantly using autotest or a similar continuous-test execution tool,

Section 19.3, Using Autotest, on page 309). The tighter the loop and the

fewer lines of code we write in each back-and-forth, the easier it is to

find and track down these structural test problems.

Second, and more specific to these kinds of validation problems, using

some kind of factory tool or common setup method to generate well-

structured default data makes it much easier to keep data in sync with

changing definitions of validity. Much more on that topic in Section 6.4,

Using Factories to Fix Fixtures, on page 86.

Anyway, fixing the older data is a distraction: we have a larger problem.

Remember, we wanted the status to be invalid only if both today and

yesterday were blank. We need to write a couple of follow-up tests to

confirm that we haven’t overshot the mark. The tests go in test/unit/

status_report_test.rb.

Download huddle3/test/unit/status_report_test.rb

test "a report with yesterday blank is valid" do

actual = StatusReport.new(:today => "today", :yesterday => "")

assert actual.valid?

end

test "a report with today blank is valid" do

actual = StatusReport.new(:today => "", :yesterday => "yesterday")

assert actual.valid?

end

Oops.

1) Failure:

test_a_test_with_today_blank_is_valid(StatusReportTest)

[/test/unit/status_report_test.rb:36]:

<false> is not true.

2) Failure:

test_a_test_with_yesterday_blank_is_valid(StatusReportTest)

[/test/unit/status_report_test.rb:31]:

<false> is not true.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/unit/status_report_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=51

MORE VALIDATIONS 52

At this point, we want to move to a custom validation, because the

validation functions provided by Rails won’t quite get this right for us.

Replace the validation line in app/model/status_report.rb with the follow-

ing call to plain validate() and the associated method:

Download huddle3/app/models/status_report.rb

validate :validate_has_at_least_one_status

def validate_has_at_least_one_status

if today.blank? && yesterday.blank?

errors[:base] << "Must have at least one status set"

end

end

And we’re back to passing.5 This, by the way, is the first line of code

we’ve seen in this chapter that is different for Rails 3 and Rails 2. The

previous is for Rails 3. In Rails 2, the error is added with the method

call errors.add_to_base().

Here are a couple of points on the question of what to test and when:

• The general situation here is very important. Always try to test a

boundary from both sides. If you are testing that an administrator

should see a certain link, you also need to test that a regular user

can’t see it. Your tests will give you an accurate picture of your

application only if they cover the requirement boundaries from

both sides.

• Although we don’t need to test the Rails validation methods as

such, we do need to verify the operational behavior that a model

object in a certain state is invalid. In a strict TDD process, it’s the

test for validity that causes us to add the Rails validation method

in the first place.

• Whether to go back and add a controller test to validate behavior

for invalid objects is an open question. As a matter of course, we

insert a generic test into our controller scaffold using mock objects

to cover the general failure case (shown in detail in Chapter 7,

Using Mock Objects, on page 101), which means we don’t need

to go back and test the controller behavior for each and every

different possible kind of model failure, unless, of course, each

specific failure actually dictates different controller behavior.

5. One early reviewer pointed out that this can, in fact, be done with the core Rails

validations, namely, a pair of validates_presence_of() calls with the if option.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/models/status_report.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=52

SECURITY NOW! 53

Now, this may seem like a lot of work because we’ve been going through

every step in excruciating detail. In practice, though, each of these test

cycles is very quick—in the five- to fifteen-minute range for relatively

simple tests like these.

3.4 Security Now!

Let’s take a look at Huddle’s login and security models that use the

Devise gem. Devise has its own set of tests, so we don’t need to write

tests for the basic behavior of login and logout. We do need to write

tests to cover parts of the application-specific security model for who

can see and edit what different things. Let’s say that our authentication

requirements are as follows:

1. Users must be logged in to view or create a status report.

2. Users must always have a current project chosen. Right now, any

user can see and create a status report on any project. Assigning

users to projects may or may not happen later. At the moment, we

don’t care.

3. Users can only edit their own reports. Again, there may or may

not be admin functionality later; we’ll cross that bridge when we

get to it.

To enforce a Devise login globally throughout the app, we need to add

the following inside the ApplicationController. In a slight break from nor-

mal procedure, we’ll implement the forced login in the code first.

Download huddle3/app/controllers/application_controller.rb

before_filter :authenticate_user!

Why not do this test first? It’s because most of the functionality is

already tested by Devise and because the authentication model is

super-basic and application-wide. If and when the login model gets

more complex (if, for example, there were public reports that did not

require a login), we’d start adding some tests.

Despite not adding any new tests, we suddenly have no shortage of

failing tests just from adding the login requirement. Running rake, the

unit tests pass, but the controller tests...well:

15 tests, 0 assertions, 0 failures, 15 errors

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/controllers/application_controller.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=53

SECURITY NOW! 54

The test failures are all due to the login requirement: every controller

test is now being redirected to the login page. What we want is for all

our tests to take place in the context of an active login.

There are two things we need to do to get Devise to play nicely with

our tests. First, we need to add the following lines to the bottom of our

test/test_helper.rb file. Note that this goes outside the ActiveSupport::Test-

Case class already being defined in the test helper file.

Download huddle3/test/test_helper.rb

class ActionController::TestCase

include Devise::TestHelpers

end

Then, in the body of the ActiveSupport::TestCase declaration in the same

file, add the following method:

Download huddle3/test/test_helper.rb

def login_as_one

sign_in(users(:one))

end

In the two controller tests where the controller requires a login (namely,

ProjectsControllerTest and StatusReportsControllerTest), place the following

line inside the test class at the top of the class declaration:

setup :login_as_one

This is the first time we’ve used the setup/teardown mechanism as

implemented in Rails 2.2 and up; you can see the mechanism in more

detail in Section 2.5, What Happens When Tests Run?, on page 34. The

login_as_one() method is called before each and every individual test in

those controllers, using the mechanism Devise provides to fake a user

login. Setups are invoked in the order declared, which is why we can’t

just put this setup line in the test helper and declare it only once. If

we try, the login_as_one() method is invoked before the setup in the

actual controller test class. Since the controller test setup hasn’t been

called, the session object used for tests hasn’t been created, and the

login_as_one() method will cause an error.

The Devise mechanism is simple. The call to login_as_one() directly calls

the Devise sign_in(), which simulates a fake user login.

With this setup in place, the tests pass again.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/test_helper.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/test/test_helper.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=54

APPLYING SECURITY 55

3.5 Applying Security

Now that user login is required, the form for creating a status report

should no longer have the user_id as an entry in the form, since the cur-

rently logged-in user is assumed to be the creator. Similarly, although

we haven’t specified a mechanism for setting it, the project_id will always

be an implicit current project and also doesn’t need to be specified in a

form. That leads us to a new test...well, actually an edit of an existing

test. In test_helper.rb, add the following helper method to set a current

project in the test session:

Download huddle3/test/test_helper.rb

def set_current_project(symbol)

@request.session[:project_id] = projects(symbol).id

end

Then change the previously written status report test to remove the

project and user from the test we wrote a few pages ago:

Download huddle3/test/functional/status_reports_controller_test.rb

Line 1 test "creation of status report with data" do

- set_current_project(:one)
- assert_difference('StatusReport.count', 1) do

- post :create, :status_report => {
5 :yesterday => "I did stuff",
- :today => "I'll do stuff"}
- end

- actual = assigns(:status_report)
- assert_equal(projects(:one).id, actual.project.id)

10 assert_equal(users(:one).id, actual.user.id)
- assert_equal(Date.today.to_s(:db), actual.status_date.to_s(:db))
- assert_redirected_to status_report_path(actual)
- end

The test helper method created in the first snippet and called in line

2 shown previously sets the current project in the test session; for the

moment, we don’t care that there’s no UI way to set the current project.

Now, the first draft of this section of the book actually presented this

as a separate test; as a general rule, it’s not a good idea to edit exist-

ing tests unless they are actually broken by some change to the code.

In this case, though, the behavior of the original test is really danger-

ous and must change—we don’t want the user_id from the form to be

acknowledged at all in order to prevent a malicious user from post-

ing nasty things under your good name. So, we edit the existing test

instead.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/test_helper.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/test/functional/status_reports_controller_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=55

PUNISHING MISCREANTS 56

Preventing the malicious user is the next test, but let’s pass this one

first. The create() method in StatusReportsController needs to be changed

so that it starts:

def create

params[:status_report].merge!(:user_id => current_user.id,

:project_id => current_project.id)

@status_report = StatusReport.new(params[:status_report])

rest of method as before

end

The current_user() method is defined by Devise and, since we are requir-

ing a login to get this far, is guaranteed to be non-nil. We also need a

current_project() that will always be non-nil. Put this in the Application-

Controller:

Download huddle3/app/controllers/application_controller.rb

helper_method :current_project

def current_project

project = Project.find(session[:project_id]) rescue Project.last

end

If there is no project_id in the session, the method returns the most

recently created project. That’s almost certainly not the final logic, but

we can get by with it for now.

3.6 Punishing Miscreants

The time has come to punish evildoers who try to get around the site by

putting somebody else’s user_id into their form submit. Right now, based

on the previous code, the submitted ID is ignored, and the actually-

logged-in user is used instead. But why not kick out any user trying to

fake a user_id? The test, in status_reports_controller_test.rb, looks like this:

Download huddle3/test/functional/status_reports_controller_test.rb

Line 1 test "redirect and logout if the user tries to snipe a user id" do

- noel = User.create!(:email => "railsprescriptions@gmail.com",
- :password => "banana", :password_confirmation => "banana")
- set_current_project(:one)
5 assert_no_difference('StatusReport.count') do

- post :create, :status_report => {
- :user_id => noel.id,
- :yesterday => "I did stuff",
- :today => "I'll do stuff"}

10 end

- assert_nil session[:user_id]
- assert_redirected_to(new_user_session_path)
- end

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/controllers/application_controller.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/test/functional/status_reports_controller_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=56

PUNISHING MISCREANTS 57

There are a few differences between this test and the previous one. In

line 7, we’ve added the user_id for a newly created user to the params. In

line 5, we’re explicitly testing that StatusReport.count does not change—

that no new report is created. Finally, lines 11 and 12 assert that the

user is logged out and bounced back to the login page.

There are several things about that test that will fail at the moment

(although it makes sense long term to keep it as one test). It’s best to

fix these things one at a time. The first failure is the assert_no_difference()

call, so we need to prevent the creation of the new object.

The first attempt has two problems. First, it’s ugly. Second, it doesn’t

work:

Line 1 def create
- if params[:status_report][:user_id].nil? ||
- (params[:status_report][:user_id] == current_user.id)
- params[:status_report].merge!(:user_id => current_user.id,
5 :project_id => current_project.id)
- @status_report = StatusReport.new(params[:status_report])
- end

- respond_to do |format|
- if @status_report && @status_report.save

10 flash[:notice] = 'StatusReport was successfully created.'
- format.html { redirect_to(@status_report) }
- format.xml { render :xml => @status_report, :status => :created,
- :location => @status_report }
- else

15 format.html { render :action => "new" }
- format.xml { render :xml => @status_report.errors,
- :status => :unprocessable_entity }
- end

- end

20 end

In lines 2–6, we’re attempting to create the object only if there is a user

ID; and if the ID differs from the current user, the existence of the object

is a prerequisite for the save test in line 9.

It doesn’t work because in the failure case, the code tries to render the

new action, which assumes the existence of @status_report. We could try

to make that a redirect in line 16, but that’s going down a rat hole that

we’d only have to walk away from in just a second. Let’s try a more

general solution:

Line 1 def create
- if (params[:status_report][:user_id] &&
- params[:status_report][:user_id] != current_user.id)

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=57

PUNISHING MISCREANTS 58

- sign_out(current_user)
5 redirect_to new_user_session_path
- return

- end

- params[:status_report].merge!(:user_id => current_user.id,
- :project_id => current_project.id)

10 @status_report = StatusReport.new(params[:status_report])
- respond_to do |format|
- if @status_report.save
- flash[:notice] = 'StatusReport was successfully created.'
- format.html { redirect_to(@status_report) }

15 format.xml { render :xml => @status_report, :status => :created,
- :location => @status_report }
- else

- format.html { render :action => "new" }
- format.xml { render :xml => @status_report.errors,

20 :status => :unprocessable_entity }
- end

- end

- end

Now the tests all pass. The if statement on line 2 grabs invalid forms,

and the logout and redirect happen there, with the return on line 6 pre-

venting further processing.

It would be nice to make this a more general method—the problem is

that if we just convert the initial if statement into a helper method, the

return statement still needs to be in the actual controller action. If it’s

not, the action continues to process, and we get a double-render error.

Here’s one solution: the general part of method goes in the Application-

Controller. It performs the same test against the current user’s ID, does

the logout and redirect if they don’t match, and returns true:

Download huddle3/app/controllers/application_controller.rb

def redirect_if_not_current_user(user_id)

if user_id && user_id != current_user.id

sign_out(current_user)

redirect_to new_user_session_path

return true

end

false

end

The controller method now needs to take that result and use it to stop

its own processing.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/controllers/application_controller.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=58

PUNISHING MISCREANTS 59

Download huddle3/app/controllers/status_reports_controller.rb

Line 1 def create
- redirect_if_not_current_user(params[:status_report][:user_id]) and return

- params[:status_report].merge!(:user_id => current_user.id,
- :project_id => current_project.id)
5 @status_report = StatusReport.new(params[:status_report])
-

- respond_to do |format|
- if @status_report.save
- format.html { redirect_to(@status_report,

10 :notice => 'Status report was successfully created.') }
- format.xml { render :xml => @status_report, :status => :created,
- :location => @status_report }
- else

- format.html { render :action => "new" }
15 format.xml { render :xml => @status_report.errors,

- :status => :unprocessable_entity }
- end

- end

- end

Line 2 is the key here: it calls the general method and then returns if

the result is true. That version is the most readable, even if it’s a bit

Perl-ish. We could also try the following:

return if redirect_if_not_current_user(params[:status_report][:user_id])

Or:

if redirect_if_not_current_user(params[:status_report][:user_id])

return

end

Or, we could try using a before_filter at the top of the controller:

before_filter :redirect_if_not_current_user, :only => [:create]

In that case, we don’t need anything in the create() method, but the

helper method needs to change in a couple of ways. First, the return

value needs to flip and return false if the redirect happens in order to

stop further processing and return true if the user is OK. Second, filter

methods can’t take arguments, so the extraction from params[:status_

report][:user_id] needs to take place in the filter method itself.

With that refactoring, the tests pass again.

Testing for security is generally time well spent—security tests are rel-

atively easy to write, since in many cases we’re just testing for a redi-

rection to a login page or that key data didn’t display. The trick is to be

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/controllers/status_reports_controller.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=59

ROAD MAP 60

creative and try to think of all the oddball ways that somebody might

be able to submit data to flummox our application.

3.7 Road Map

In this chapter, we started a new Rails application and wrote the first

couple of features of that application using Test-Driven Development.

We added features to our controller, moved them to the model, and val-

idated the model more tightly. We also tested and added authentication

logic.

We’re not done touring Rails core TDD procedures, though. In the next

chapter, we’ll look at view logic and show how to use TDD within Rails

to create a feature end-to-end.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=60

Chapter 4

TDD, Rails Style
Now that we’ve got some successful test/code/refactor cycles down,

we’ll go through a more complicated TDD example, this time adding

display logic to the application. In this example, we’ll cascade our tests

from layer to layer, between the controller, model, and view.

4.1 Now for a View Test

We’ve tested some model logic and some controller logic, but we still

have two view tests that need to be written to close out the initial data

entry feature. We’d like to validate that the form being generated actu-

ally contains the field names that the create() method expects—this

little gap is one of the easiest ways for a problem to slip through the

cracks of an otherwise air-tight Rails TDD process. Then let’s test that

the project show page actually displays the timeline of status reports

for the project.

Testing view logic is a little bit different from testing model or controller

logic. It’s more impressionistic and less precise. When testing views, it’s

important to keep the larger goal of specifying the application logic in

mind and not fritter away huge amounts of time trying to get the view

tests ultra-complete and correct. It’s easy to write view tests that are

detailed but add little to the amount of coverage in the test suite and

are prone to breaking any time a web designer looks at the HTML code

cross-eyed.

NOW FOR A VIEW TEST 62

Make Those Pop-Culture References Work for You

This could well be the goofiest tip I give in this whole book, but
when I create test data for users that have some kind of rela-
tionship, I find it valuable to give those users names that are
meaningful in terms of some reference or other—for instance,
Fred and Barney, Homer and Marge, or Lois and Clark. This sim-
ple trick helps keep the expected relationship between the var-
ious pieces of test data straight in your mind. Obviously, you
can take this too far, and there will always be somebody on
the team who doesn’t know the reference. It sounds silly, but
at the very least, it’ll make you smile every now and then when
looking at your code.

These issues are covered more completely in Chapter 9, Testing Views,

on page 139, but here are three tips to keep in mind as we embark on

two sets of view tests:

• Consider moving view logic to helpers where possible. In the core

Rails setup, it’s much easier to individually test a helper than it

is to individually test a view partial (although if you use RSpec,

you can test view partials directly—more on this in Chapter 12,

RSpec, on page 186). On the other hand, moving view code from

HTML/ERb and into Ruby methods could cause a web-only design

team to come after you with torches and pitchforks. So beware.

• Remember that the purpose of view testing is for the developer to

validate the logical correctness of the application. Automated view

testing isn’t (and in Rails, really can’t be) a substitute for walking

though the site and checking that things line up and look nice.

• Test at the semantic level, not the display level. Liberally assign

DOM IDs and classes to the elements of the view, and test for

the existence of those elements, rather than the actual text. Obvi-

ously, there are limits; sometimes the actual text is critical. But

the advantage of DOM ID testing is that it doesn’t break every time

the content team updates the text or when the designer changes

the CSS styles.

Our first view test will just validate that the form elements actually exist

as we want them to, which means the attributes that will be automat-

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=62

NOW FOR A VIEW TEST 63

ically added by the controller shouldn’t be in the form. With core Rails

test structures, this test goes with the controller in test/functional/status_

reports_controller_test.rb:

Download huddle3/test/functional/status_reports_controller_test.rb

Line 1 test "new form has expected elements" do

2 get :new
3 assert_select "form[id=new_status_report][action=/status_reports]" do

4 assert_select "#status_report_project", :count => 0
5 assert_select "#status_report_user", :count => 0
6 assert_select "textarea#status_report_today"
7 assert_select "textarea#status_report_yesterday"
8 assert_select "#status_report_status_date_1i", :count => 0
9 end

10 end

This is a reasonably straightforward view test, which simulates a GET

request for the new status report form in line 2 and then uses assert_

select() to verify several features of the output of the call. The assert_

select() method has about seventy-eleven different options, all of which

are lovingly detailed in Chapter 9, Testing Views, on page 139. For now,

the basic point to remember is that the first argument to assert_select() is

a CSS-like selector, and the remaining arguments are assertions about

elements in the output that match the selector.1 For our purposes, the

most useful option is :text, which is either a string or a regular expres-

sion. If this option is specified, the internal contents of tags that match

the selector are checked to see whether any matches the argument. The

second most useful option is :count, which is the number of elements

in the view that match the selector. If :count is not specified, the expec-

tation is that there will be at least one match. If :count and :text are

specified, :count is the number of items that match both the selector

and the text.

You can also nest assert_select() calls using blocks; this step adds the

additional constraint that the assertions inside the block must all be

true inside the body of a tag that matches the outer assert_select().

This constraint can also be described in a single assert_select() call

using compound selectors like ul > li. In the previous test, the outer

assert_select() matches a form tag with the ID and action that we would

expect by Rails convention for a new form action. All the other assert_

select() calls validate the elements inside that form tag. Specifically, we

1. One handy feature of assert_select() is that it parses the HTML markup and will spit

out a warning if the HTML is badly formed—for instance, if it is missing an end tag.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/functional/status_reports_controller_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=63

TESTING THE PROJECT VIEW: A CASCADE OF TESTS 64

are testing that there will not be a project, user, or date tag of any kind

and also that there will be text area entry tags for the yesterday and

today status report fields.

There could be some quibbling back and forth on the exact structure of

these tests. We’ve chosen to test the form fields based on their DOM IDs,

knowing that Rails has a consistent pattern for IDs and the name field

of the tag. For me, DOM IDs work a little bit better with the assert_select()

syntax.2 Still, a clueless programmer who was breaking the Rails con-

ventions could cause a bug without failing this view test. That said,

chasing down every way the view could break would take all our efforts,

forever: try to limit view testing to things that are likely sources of error

or regression.

Passing the test is quite easy: just remove the form elements for the

project, user, and date. However, unlike the model tests, even with the

passing test, this view is in no way, shape, or form fit to be in a pro-

duction application. You need styling; the Rails scaffold HTML is not

optimal—that sort of thing. . . .

At this point, from the limited perspective of the server-side logic, the

feature is essentially finished, but we must go into the browser and test

it, no matter how complete we think the tests are. Tests are great and

wonderful, but the user isn’t going to care about our code coverage if it

doesn’t work in the browser. Writing tests minimizes the amount of time

we spend cycling through the browser, but in no way does automated

testing mean we can stop using the browser.

But here in tutorial world, let’s move on to the display functionality

for an entire project within Huddle. So far, we’ve covered the major

features of Rails TDD, and we’ve tested models, controllers, and views,

but we’ve only tested them in isolation. To close out this walk-through,

let’s take a slightly larger piece of functionality and show how you might

move back and forth between code and tests and, between the different

kinds of test, when building a complete slice of your application.

4.2 Testing the Project View: A Cascade of Tests

In Huddle, a project page should show a timeline of status reports for

that project. This functionality requires at least a controller and a view

2. Another approach is to say that these tests should track the name directly, as in

assert_select "textarea[name = ?]", "status_report[today]".

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=64

TESTING THE PROJECT VIEW: A CASCADE OF TESTS 65

test to start, and we may use some model tests later. We are going

to need some status report data for this test, and we haven’t discussed

fixtures yet. To get these tests to work, we first need to get some sample

data into our test, and then we’ll use that data to specify the behavior

of the application.

Testing the View

To test the view, we need some fixture data. Add the following to test/

fixtures/projects.yml to create some projects:

Download huddle3/test/fixtures/projects.yml

huddle:

name: Huddle Project

We’ll also want some status reports, in test/fixtures/status_reports.yml.

Download huddle3/test/fixtures/status_reports.yml

one_tue:

project: huddle

user: one

yesterday: Worked on Huddle UI

today: Doing some testing

status_date: 2009-01-06

one_wed:

project: huddle

user: one

yesterday: Did Some Testing

today: More Testing

status_date: 2009-01-07

Download huddle3/test/fixtures/status_reports.yml

two_tue:

project: huddle

user: two

yesterday: set up huddle schema

today: pair programming with one

status_date: 2009-01-06

two_wed:

project: huddle

user: two

yesterday: sick

today: trying to pair again

status_date: 2009-01-07

We can start testing using this fixture data. The project controller meth-

od for show() should gather the reports for that project and group them

by date.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/fixtures/projects.yml
http://media.pragprog.com/titles/nrtest/code/huddle3/test/fixtures/status_reports.yml
http://media.pragprog.com/titles/nrtest/code/huddle3/test/fixtures/status_reports.yml
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=65

TESTING THE PROJECT VIEW: A CASCADE OF TESTS 66

This goes in test/functional/projects_controller_test.rb:

Download huddle3/test/functional/projects_controller_test.rb

Line 1 test "project timeline index should be sorted correctly" do

2 set_current_project(:huddle)
3 get :show, :id => projects(:huddle).id
4 expected_keys = assigns(:reports).keys.sort.map{ |d| d.to_s(:db) }
5 assert_equal(["2009-01-06", "2009-01-07"], expected_keys)
6 assert_equal(
7 [status_reports(:one_tue).id, status_reports(:two_tue).id],
8 assigns(:reports)[Date.parse("2009-01-06")].map(&:id))
9 end

In lines 4–5, this asserts that an object called @reports is created, and

its keys are the dates of the reports that are found. Lines 6–8 assert

that each key contains its reports, sorted by the name of the user (well,

technically, the email of the user—we’re not using name fields in the

user model just yet).

That test will, of course, fail, because assigns(:reports) is nil.

Moving to the controller itself, let’s just defer the assignment to the

model. In app/controllers/projects_controller.rb:

Download huddle3/app/controllers/projects_controller.rb

def show

@project = Project.find(params[:id])

@reports = @project.reports_grouped_by_day

respond_to do |format|

format.html # show.html.erb

format.xml { render :xml => @project }

end

end

That means we now need a model test in test/unit/project_test.rb:

Download huddle3/test/unit/project_test.rb

test "should be able to retrieve projects based on day" do

actual = projects(:huddle).reports_grouped_by_day

expected_keys = actual.keys.sort.map{ |d| d.to_s(:db) }

assert_equal(["2009-01-06", "2009-01-07"], expected_keys)

assert_equal([status_reports(:one_tue).id, status_reports(:two_tue).id],

actual[Date.parse("2009-01-06")].map(&:id))

end

This is a direct swipe of the code we just put in the controller test,

which opens up the question of whether we need both the controller

and the model test. The model test is important because it’s closest

to the actual implementation and is the easiest place to write error-

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/functional/projects_controller_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/app/controllers/projects_controller.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/test/unit/project_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=66

TESTING THE PROJECT VIEW: A CASCADE OF TESTS 67

case tests. The controller test adds just the piece of information that

the model method is, in fact, called by the controller—strictly speaking,

the controller test does not need to revalidate the model logic. You could

potentially remove the model-specific assertions from the controller test

if you wanted. This is a classic place for a mock object call in the con-

troller, which would prevent the controller test from depending on the

specific code in the model. Mock objects are a huge topic in their own

right and are covered in more detail in Chapter 7, Using Mock Objects,

on page 101. For our purposes right now, the duplicate test is not a

problem.3

Anyway, passing this test requires some code. In app/models/project.rb:

Download huddle3/app/models/project.rb

has_many :status_reports

def reports_grouped_by_day

status_reports.by_user_name.group_by(&:status_date)

end

Previously, this model was blank: we added the has_many line here

because it’s needed to pass the test. Note that we don’t need to sep-

arately test what has_many does—that’s part of the Rails framework

itself. The need for the association line came immediately as we started

writing tests for the functionality of that model.4

The actual method uses the Rails ActiveSupport group_by(), which re-

turns the hash structure we want. The by_user_name will be a named

scope inside StatusReports() that sorts the reports based on the user’s

login. As I worked on this method, it became clear that the named scope

was going to be complex enough to require its own test. In test/unit/

status_report_test.rb:

Download huddle3/test/unit/status_report_test.rb

test "by user name should sort as expected" do

reports = StatusReport.by_user_name

expected = reports.map { |r| r.user.email }

assert_equal ["one@one.com", "one@one.com",

"two@two.com", "two@two.com"], expected

end

3. Another option is to use an integration test or a Cucumber acceptance test in place

of the controller test.
4. A framework like Shoulda gives easy, one-line tests for associations—in which case,

it might be worth throwing in the single line.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/models/project.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/test/unit/status_report_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=67

TESTING THE PROJECT VIEW: A CASCADE OF TESTS 68

You only do this because the named scope crosses an association. For a

simple scope, it might not be worth the trouble, since the functionality

is mostly covered by Rails and is also easily covered by the existing test.

Essentially, you might write the test if you’re nervous that you might

not write the scope correctly.

There are two overlapping issues here: when to test functionality pro-

vided by the framework and when to test private or subordinate meth-

ods that are called only by other tested methods. The guideline is that

a new test needs to be written only if the logic of the application has

changed. For instance, if we refactor a smaller method out of a larger,

already tested method, we won’t need to also write targeted tests against

the smaller method—it is just a restructuring of the already-tested

logic. Should the subordinate method later gain additional logic, we’ll

need to write tests for that method. If we find a bug in the smaller

method, then it should have tests immediately.

The scope in app/model/status_report.rb looks like this:

Download huddle3/app/models/status_report.rb

scope :by_user_name, :include => "user",

:order => "users.email ASC",

:conditions => "user_id IS NOT NULL"

And all the tests pass.5

This is the order in which I actually wrote this code the first time I went

through it: controller test, model test in Project, Project model imple-

mentation (after checking, the one liner was written directly), scope

test, then scope code (with a little flailing in there about exactly how

to manage the users table). It may not be strictly test-first, but in the

entire process, I never wrote more than about five lines of code on one

side of the test/code divide without jumping to the other, and I never

went more than a minute or two without running the test suite.

And that’s the key to success with TDD. Keep a tight feedback loop

between the code and tests: don’t ever let one or the other get too far

out in front.

5. In Rails 2.x that code would start with named_scope instead of scope. In Rails 3, this

can also be written as a regular class find method, since Rails 3 ActiveRecord pieces can

be composed like named scopes.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/models/status_report.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=68

TESTING THE PROJECT VIEW: A CASCADE OF TESTS 69

Now we need a genuine view test to validate that something reason-

able is going into the view layer. Back in test/functional/projects_controller_

test.rb:

Download huddle3/test/functional/projects_controller_test.rb

test "index should display project timeline" do

set_current_project(:huddle)

get :show, :id => projects(:huddle).id

assert_select "div[id *= day]", :count => 2

assert_select "div#2009-01-06_day" do

assert_select "div[id *= report]", :count => 2

assert_select "div#?", dom_id(status_reports(:one_tue))

assert_select "div#?", dom_id(status_reports(:two_tue))

end

assert_select "div#2009-01-07_day" do

assert_select "div[id *= report]", :count => 2

assert_select "div#?", dom_id(status_reports(:one_wed))

assert_select "div#?", dom_id(status_reports(:two_wed))

end

end

Continuing with the idea of semantic-level tests for the view layer, this

test checks to see that there is some kind of div tag for each day and

that inside that tag is a div tagged for each status report. Even putting

in a div might be overly specific—it’s possible these might be table rows

or something. The count tests are to prevent more content showing up

than expected, something that is not caught by just testing for the

existence of known tags. In this case, we’re also testing that there are

exactly two days worth of reports and that each day has two reports.

This is calibrated to match the fixture data we just set up and gives a

quick look at one weakness of fixtures—a change to that fixture data

could break this test.

Also, for this to work, add this line inside the class definition in test/test_

helper.rb:

Download huddle3/test/test_helper.rb

include ActionController::RecordIdentifier

This allows us to use the dom_id() method in tests, which is handy.6

6. In Rails 2.x include the module with the line include ActionView::Helpers::

RecordIdentificationHelper instead.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/functional/projects_controller_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/test/test_helper.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=69

SO FAR, SO GOOD 70

Putting aside that there are a jillion ways the view code could pass the

letter of this test and violate the spirit, here’s the basic structure of a

passing view, in app/views/projects/show.html.erb:

Download huddle3/app/views/projects/show.html.erb

<h2>Status Reports for <%= @project.name %></h2>

<% @reports.keys.sort.each do |date| %>

<div id="<%= date.to_s(:db) %>_day">

<h3>Reports for <%= date.to_s(:long) %></h3>

<% @reports[date].each do |report| %>

<div id="<%= dom_id(report) %>">

Yesterday I: <%= report.yesterday %>

Today I will: <%= report.today %>

</div>

<% end %>

</div>

<% end %>

This gives the view a div for each date and a nested div for each individ-

ual report.

4.3 So Far, So Good

At this point, we’ve completed our initial walk-through of Rails test-

driven development. You should be able to add tests to a Rails appli-

cation; use fixture data; test your controllers, models, and views; and

have a feel for how the TDD quick test/code feedback loop works in

practice.

The rest of the book is divided up based on what part of the application

is under test. Part II deals with testing ActiveRecord models, getting

data into your tests via fixtures and factories, and other data-related

topics. Part III discusses testing controllers, views, and helpers, each of

which has some special mechanisms to make the process easier.

The big third-party test frameworks, Shoulda and RSpec, are discussed

in Part IV, while Part V covers integration testing, both using Rails itself

and using external tools such as Webrat and Cucumber. Finally, Part

VI talks about how to evaluate and improve your tests, using coverage

testing, managing performance, and troubleshooting.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/views/projects/show.html.erb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=70

Part II

Testing Application Data

Chapter 5

Testing Models
with Rails Unit Tests

The overwhelming majority of data in a typical Rails application is

accessed via ActiveRecord objects that connect to a SQL database.

These objects are tested using model tests. Model tests, which core

Rails calls unit tests, are the most basic level of the Rails testing func-

tionality, by which I mean they are the closest to Ruby’s Test::Unit and

the foundation on which the test structures for controllers and views

are built. Model tests in Rails are just Test::Unit plus the ability to set

up data in fixtures; the block syntax for describing setup, teardown,

and tests; and a couple of additional assertion methods. Model tests

that you write are placed in the test/unit directory.1 We’re starting our

tour of the Rails stack with model tests because model tests have the

fewest dependencies on Rails-specific features and are usually the eas-

iest place to start testing your application. Later, we’ll move forward

to controller testing, view testing, integration testing, and other Rails

tools.

5.1 What’s Available in a Model Test

Rails model tests are subclasses of ActiveSupport::TestCase, which is a

subclass of the core Ruby Test::Unit::TestCase. Model tests also include a

couple of modules from the Rails core mixed in to provide additional

functionality. All told, the following functionality is added to Ruby unit

1. While I’m here, does it bother anybody else that app/controllers and app/models are

plural, while test/functional and test/unit are singular?

WHAT’S AVAILABLE IN A MODEL TEST 73

What’s in a Name, Part One

Tests for Rails models are usually referred to as unit tests, but as
much as I hate being pedantic and technical, I prefer to call
them model tests. (Who am I kidding, I love being pedantic
and technical.) My basic problem is that unit test has a specific
meaning that, depending on how you look at it, either includes
Rails functional tests or doesn’t include either kind of test. (Jay
Fields, for example, argues that Rails model tests aren’t really
unit tests because they require an external database.) Person-
ally, I find it less confusing to use unit test as a generic term for all
developer testing and model test for tests that actually validate
Rails models.

tests to make them Rails model tests (as we’ll see in Chapter 8, Testing

Controllers with Functional Tests, on page 128, controller tests have

even more additions):

• The ability to load data from fixtures before each test.

• The Shoulda and RSpec-inspired test syntax: test "do something" do.

• Multiple setup and teardown block syntax, discussed in further

detail in Section 2.3, Setup and Teardown, on page 29.

• The assert_difference() and assert_no_difference() methods.

• The assert_valid() test, which verifies that an ActiveRecord model

is—wait for it—valid according to the rules of that model.

• A couple of little-known database helper methods that you can

gain access to by making your test case a subclass of ActiveRe-

cord::TestCase: assert_date_from_db(), assert_sql(), assert_queries(),

and assert_no_queries(). These are used internally by the Rails core

test system and don’t seem have a lot of value outside core.

• The test/test_helper.rb, required by all Rails-generated model tests

and part of your application, injects some additional methods into

ActiveSupport::TestCase.2 This is a good place to put common setup

and assertion methods needed by all tests.

2. Before Rails 2.2, the injects were into Test::Unit::TestCase, even in Rails 2.1, where

ActiveSupport::TestCase was already being used by the model tests.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=73

WHAT TO TEST IN A MODEL TEST 74

5.2 What to Test in a Model Test

Models. Next question?

5.3 OK, Funny Man, What Is a Good Model Test Class?

The goal is to have each model’s individual test file cover pretty much

100 percent of the code in that model. Other models or controller tests

will probably incidentally touch code in the model, but that’s not a

replacement for effective tests for a particular model in its own test file.

Tests should be as close as possible to the code being described.

You don’t need to write a separate test for the existence of relationships

like belongs_to or has_many—Rails tests those features thoroughly, and

if you don’t have a relationship you expect, you’ll get failures all over

the place.3 The existence of the relationship should be driven by a test

that needs the relationship in order to deliver functionality. You should

write tests to cover validations in order to ensure that the difference

between a valid and invalid object is what you expect. Named scopes are

somewhere between relationships and methods. Simple named scopes

can probably be treated like relationships, but anything complicated—

with a lambda block, for example—should probably be tested. More on

that in Section 5.5, Testing Active Record Finders, on page 77.

How many tests do you need? The strict test-driven answer is that all

new logic should be driven by a failing test, and conversely, each new

test should fail and trigger a new piece of code logic. A typical progres-

sion looks something like this (if you keep your methods smaller and

simpler, you’ll tend to need fewer tests for each method):

• One test of the normal, happy-path case.

• One test for each alternate branch through the code. Refactor-

ing here often causes the method to be split into multiple smaller

methods.

• At least one test for known error cases, such as being passed

nil arguments, as needed.4 My position, which is perhaps a lit-

tle cranky, is that you should include this only if you either really

3. Brian Hogan pointed out in review—I paraphrase here—that this may be an overly

optimistic view of the stability of Rails core. True enough. The place to catch that is

probably at the integration test level.
4. I’m tempted to go on a rant about programmers putting too much error-checking in

their code, but this really isn’t the place.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=74

OK, FUNNY MAN, WHAT IS A GOOD MODEL TEST CLASS? 75

need the error case to do something specific or have reason to

doubt that an expected error case is really being treated as an

error.

Keep each individual test small. In many cases, you only need to create

a single model object for a unit test. You may find it helpful to list out

all the cases you want to test before you start writing the tests. That’s

fine, but you still want to write and pass the tests one at a time.

If a single call to the method causes multiple changes in the model,

it’s fine to have all the assertions in a single test; you don’t have to

be a purist about keeping only a single assertion in a test method. In

this example from a tracking system, marking a story complete triggers

several different changes in the method. It can be awkward and hard

to follow to have each of these assertions in a different method. Here’s

an example:

test "mark a story complete" do

story = stories(:incomplete)

assert_difference "story.task_logs.count", 1 do

story.complete!(users(:quentin))

end

assert story.completed?

assert !story.blocked?

assert_equal(Date.today.to_s(:db), story.end_date)

assert_equal("completed", story.most_recent_log.end_state)

end

By contrast, here’s the one assertion per test version:

test "mark a story complete and add a task log" do

assert_difference "story.task_logs.count", 1 do

stories(:incomplete).complete!(users(:quentin))

end

end

test "mark a story complete and the story should be completed" do

story = stories(:incomplete)

story.complete!

assert story.completed?

end

And so on. To be fair, the one-at-a-time tests are verbose because I’m

using only core Rails methods. With contexts and a couple of other

tricks, these tests can be written more compactly (see Section 11.1,

Contexts, on page 170 and Section 11.7, Single-Line Test Tools, on

page 183. RSpec also has similar features described in Chapter 12,

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=75

ASSERTING A DIFFERENCE, OR NOT 76

RSpec, on page 186). Written with those tools, the one-assertion-per-

test version can be more readable than the all-in-one-test version.

There’s a trade-off: by putting all the assertions in the same test meth-

od, you gain clarity and cohesion benefits, but prevent the tests from

running independently. In the all-in-one test, if assert story.completed?

fails, you won’t even get to the check for assert !story.blocked. If all the

assertions are in separate tests, everything runs independently, but it’s

harder to determine how tests are related. (The multiple test version

also runs more slowly.)

That said, when you are writing separate tests that cover different

branches of the method or the error tests, they should be different test

methods (unless the method setup is extremely simple):

test "full names" do

u1 = User.create(:first_name => "Fred", :last_name => "Flintstone")

assert_equal("Fred Flintstone", user.full name)

end

test "full names with a middle initial" do

u1 = User.create(:first_name => "Fred", :last_name => "Flintstone"

:middle_initial => "D")

assert_equal("Fred D. Flintstone", user.full name)

end

test "full name where there's no first name" do

u1 = User.create(:last_name => "Flintstone")

assert_equal("Flintstone", user.full name)

end

In this case, you do want each test to run independently; trying to

stuff all the branches into a single test will be very hard to read going

forward.

5.4 Asserting a Difference, or Not

The two assertions that Rails adds to the basic unit test are powerful

replacements for a common test pattern. The following test asserts that

after a create() call, there is one more user than there was previously:

test "creating creates a user" do

pre = User.count

User.create(:first_name => "Noel")

post = User.count

assert_equal(pre + 1, post)

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=76

TESTING ACTIVE RECORD FINDERS 77

With assert_difference(), the test can be written without the duplicate call

to User.count():

test "creating creates a user" do

assert_difference 'User.count' do

User.create(:first_name => "Noel")

end

end

The first argument to assert_difference() is a string of Ruby code. The

value of the string is calculated using eval(). The code inside the block

is executed, and the value of the string is re-calculated. By default,

the expectation is that the new value will be one more than the old

value, but you can adjust this by passing in a second argument, such

as assert_difference("User.count", 0), in order to assert no change, or assert_

difference("User.count", -1), to assert the removal of a user.

If you’d like to check multiple code snippets, you have two options. The

calls to assert_difference() can be nested:

test "create a user and a log entry" do

assert_difference 'User.count' do

assert_difference 'LogEntry.count' do

User.create(:first_name => "Noel")

end

end

end

Or, if the difference number is the same for all the snippets, the snip-

pets can be passed in a list:

test "creating creates a user" do

assert_difference ['User.count', 'LogEntry.count'] do

User.create(:first_name => "Noel")

end

end

Finally, assert_no_difference(’User.count’) is syntactic sugar for assert_

difference(’User.count’, 0).

5.5 Testing Active Record Finders

In Rails 3, you can write individual pieces of database logic as separate

methods and compose them arbitrarily. For example, if you often find

yourself needing, say, users sorted by email address or a list of all active

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=77

TESTING ACTIVE RECORD FINDERS 78

users or to only get five users out of your database find call, you can

write all of those as separate finder methods:5

def self.by_email

order("email ASC")

end

def self.active_only

where(:active => true)

end

def self.limit_to(x)

limit(x)

end

These methods can then be used like any other ActiveRecord find()

command.

User.by_email

User.active_only

User.limit_to(5)

But the best part is that these methods can be composed, which gives

you a very readable way to express complex database queries:

User.active_only.by_email.limit_to(5)

Being able to compose this logic, therefore, is awesome. But these meth-

ods occupy an awkward place between methods you might write and

Rails core features, leading to the question of how best to test func-

tionality you’ve placed in a named scope declaration. Here are some

guidelines.

Class finders are often extracted during a refactoring step. In this case,

you may not need any new test to cover the scope—like any other

method extracted in refactoring, it’s not a change in logic, so it’s already

covered for TDD purposes by the original test. Even so, if the finder

method winds up in a different class than the original method, it’s often

useful to transfer the test logic dealing with the scope to a test in the

new class.

The pitfall you want to avoid when testing any database find behavior

is testing the nature of the SQL call to the database rather than testing

5. In Rails 2, you would write these as named_scopes, which allows them to be com-

posed the same way. You can use scopes in Rails 3, but the composable nature of all

ActiveModel queries makes that less necessary.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=78

TESTING ACTIVE RECORD FINDERS 79

the results of the call. In other words, it’s not all that hard to extract

the parameters the named scope object is going to use to contact the

database. However, only testing that your method winds up with {:active

=> true} as its find parameters actually doesn’t help you any. Just testing

the parameters says nothing about the actual database behavior, and

it’s the actual behavior that you are normally looking to validate.

The following method can be helpful; it can be used to test any method

that extracts a set of records from the database (which means that it

doesn’t help testing methods that just affect, say, the output sort order).

This method is in Shoulda syntax and takes the finder method under

test as a symbol, any arguments that get passed to the method, and

then a block:

Download huddle/test/test_helper.rb

Line 1 def self.should_match_find_method(named_scope, *args, &block)
- should "match a find method #{named_scope}" do

- ar_class = self.class.model_class
- found_objects = ar_class.send(named_scope, *args)
5 assert !found_objects.blank?
- found_objects.each do |obj|
- assert block.call(obj)
- end

-

10 unfound_objects = ar_class.all - found_objects
- assert !unfound_objects.blank?
- unfound_objects.each do |obj|
- assert !block.call(obj)
- end

15 end

- end

This code does three things. First, in line 3 and line 4, it extracts the

model class being tested and calls the find method on that model class,

resulting in a set of instances of that model. Then in lines 5–8, each

instance in the list of matching objects is tested against the block and

must return true for the test to pass. Just as importantly, lines 11–14

run the block against all the instances that weren’t returned by the

method and assert that the block is false for each one.

A sample usage of this test might look like this—notice that the test is a

class-level method that assumes the user population has already been

created in setup:

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle/test/test_helper.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=79

COMING UP NEXT 80

setup :create_users

def create_users

active_user = User.create(:active => true)

inactive_user = User.create(:inactive => true)

end

should_match_find_method :active_only { :active == true }

This test verifies that the named scope correctly sorts the universe of

users into active and inactive groups. You don’t need to create dozens

and dozens of user objects for this test to work—you just need at least

one in each category. Creating extra objects just slows the test down.

A nice feature of this test style is that the test will be relatively robust

against new objects being created. For example, if you also have fixture

data in your tests, any new users created in fixtures will simply be split

into the correct group and validated. The test will continue to pass.

5.6 Coming Up Next

Rails unit tests are not the only important part of testing data. Over

the remaining chapters in this part, we’ll compare fixture data against

factory data and see when you might use one or the other. We’ll show

how to use mock objects to test parts of your application that might

otherwise be hard to reach. And we’ll cover some tricky kinds of data,

such as date and times, that isn’t fully test-covered.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=80

Chapter 6

Creating Model Test Data with
Fixtures and Factories

One of the most valuable ways in which Ruby on Rails supports auto-

mated testing is through the use of easily created data that is accessi-

ble to all the tests in your system, no matter when or where you write

those tests. It’s sometimes hard for an experienced Rails programmer

to remember just how exciting the YAML fixtures used to seem. You

can just set up data once? In an easy format? And it’s always there?

Amazing.

Over time, the infatuation with fixtures dims a bit, but fixtures are still

a quick and easy way to get data into your tests. In this chapter, we’ll

discuss how to use fixtures, and then we’ll discuss the problems with

fixtures. Many of the shortcomings with fixtures have been addressed

by a variety of tools that use the factory pattern to create data objects.

We’ll discuss those factory tools and how using them differs from using

fixtures.

6.1 Defining Fixture Data

A fixture is the baseline, or fixed state, known to exist at the beginning

of a test. The existence of a fixed state makes it possible to write tests

that make assumptions based on that particular set of data. In Rails,

the fixtures that are available out of the box are defined in a set of

YAML files that are automatically converted to ActiveRecord objects and

loaded for each test.

DEFINING FIXTURE DATA 82

Under normal circumstances, each model in your application will have

an associated fixture file. The fixture file is in YAML format, a data-

description format often used as an easier-to-type alternative to XML.1

The details of YAML syntax are both way outside the scope of this book

and largely irrelevant to fixtures—YAML contains a number of advanced

features that don’t need to concern us here.

Each entry in a fixture file starts with an identifier for that entry, fol-

lowed by the attributes for that entry. This sample contains two entries

for a hypothetical User class and would go in test/fixtures/users.yml:

Line 1 fred:

2 first_name: Fred
3 last_name: Flintstone
4 email: fflint@slaterockandgravel.com
5

6 barney:

7 first_name: Barney
8 last_name: Rubble
9 email: brubble@slaterockandgravel.com/

YAML syntax is somewhat reminiscent of Python, both in the colon used

to separate key/value pairs (also a feature of Ruby 1.9) and in the use

of indentation to mark the bounds of each entry. The fact that line 6,

barney:, is outdented two spaces indicates to the YAML parser that a

new entry has begun. Strings do not need to be enclosed in quotation

marks, although it doesn’t hurt if you find it more readable.2 A multiline

string can be specified by putting a pipe character (|) on the line with

the attribute name. The multiline string can then be written over the

next set of lines; each line must be indented relative to the line with the

attribute name. Once again, outdenting indicates the end of the string.

fred:

first_name: Fred

last_name: Flintstone

description: |

Fred is very tall.

He is not very small.

The Rails fixture creation process uses information in your database

to coerce the values to the proper type. I write dates in SQL format

(yyyy-mm-dd), though any format readable by Ruby’s Date.parse() will

work.

1. YAML stands for Yet Another Markup Language, which you probably figured out

already.
2. Quotation marks are necessary around a string if the YAML parser would find the

string ambiguous, such as if the string itself contains a colon followed by a space.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=82

DEFINING FIXTURE DATA 83

The identifier that introduces each record is then used to access the

individual fixture entry within your tests. Assuming that this is the

User class, you’d be able to retrieve these entries throughout your test

suite as users(:fred) and users(:barney), respectively. Unless you like trying

to figure out what’s special about users(:user_10), I recommend mean-

ingful entry names, especially for entries that expose special cases:

users(:user_with_no_first_name).

An older mechanism for allowing access to fixtures as instance vari-

ables (in this case, @fred and @barney) can be turned on by setting

self.use_instantiated_fixtures = true in the test/test_helper.rb file. This style is

largely deprecated; it’s rather slow, and when all fixtures are loaded,

it requires all your fixture entries to have different names across all

classes. The feature is still there, however, and you might occasionally

see it used in (really) old legacy code.

Unlike the normal way of creating ActiveRecord models, the YAML data

is converted to a database record directly, without going through the

normal ActiveRecord creation methods. (To be clear, when you use the

data in your tests, those are ActiveRecord models—only the original cre-

ation of the data to the database bypasses ActiveRecord.) This means

you can’t use arbitrary methods of the model as attributes in the fixture

the way you can in a create() call. Fixture attributes have to be either

actual database columns or ActiveRecord associations explicitly defined

in the model. Removing a database column from your model and forget-

ting to take it out of the fixtures is a good way to have every single one

of your tests error out. The fixture loading mechanism also bypasses

any validations you have created on your ActiveRecord, meaning that

there is no way to guarantee the validity of fixture data on load, short

of explicitly testing each fixture yourself.

You do not need to specify the id for a fixture (although you can if

you want). If you do not specify an id explicitly, the id is generated

for you based on the YAML identifier name of the entry. If you allow

Rails to generate these ids, then you get a side benefit: an easier way of

specifying relationships between fixture objects. If your models have a

relationship with models in another fixture file, the other object can be

referenced using the name of the relationship and the identifier of the

YAML entry in the other file. In other words, if we have a company.yml

with this:

slate:

name: SlateCo

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=83

LOADING FIXTURE DATA 84

and we also have a user model that belongs_to: company, then we can

do the following in our user.yml file:

fred:

first_name: Fred

last_name: Flintstone

company: slate

If the relationship is has_many, the multiple values in the relationship

can be specified as a comma-delimited list. This is true even if the two

objects are in a has_and_belongs_to_many relationship via a join table,

although a has_many :through relationship does need to have the join

model entry explicitly specified.

fred:

first_name: Fred

last_name: Flintstone

company: slate

roles: miner, digger, dino_wrangler

This is very handy and a vast improvement over the older functionality,

where all the id columns had to be explicitly filled with the id number

of the other model.

Fixture files are also interpreted as ERb files, which means you can

have dynamic attributes like this:

fred:

last_login_time: <%= 5.days.ago %>

Or you can specify multiple entries dynamically, like this:

<% 10.times do |i| %>

task_<%=i%>:

name: "Task <%= i %>"

<% end %>

In the second case, notice that the identifier still needs to be at the

leftmost column; you can’t indent the inside of the block the way that

normal Ruby style would suggest.

6.2 Loading Fixture Data

Fixture loading is covered by a few parameters that have default val-

ues, which are set in the test/test_helper.rb file. The most important is

the fixtures :all method call, which ensures that all your fixture files are

loaded in all your tests. Back in the day,3 the prevailing style was to

3. In other words, Rails 1.x. You know, 2006.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=84

WHY FIXTURES ARE A PAIN 85

declare which fixtures needed to be loaded in each individual test file.

That got to be annoying once your models were intertwined enough to

need to load bunches of them in each test file, so in the fullness of time,

loading all fixtures all the time became the default. (Speculating wildly,

this was about the same time that transactional fixtures were added,

minimizing the performance cost of loading all that data.)

By default, fixtures are loaded just once, and every test method takes

place inside a database transaction. At the end of the test method,

the transaction is rolled back, and the initial fixture state is thereby

restored. This dramatically reduces test time4 unless your database

doesn’t support transactions (most likely because you are using MySQL

with MyISAM tables).

Fixture transactions are also a problem if you are actually trying to

test transactional behavior in your application, in which case the fix-

ture transaction will overwhelm the transaction you are trying to test.

If you need less aggressive transaction behavior, you can go into the

test/test_helper.rb file and change the value in the assignment self.use_

transactional_fixtures = true to false. That will change the value for all tests,

but you can also override the value on a class-by-class basis by includ-

ing the assignment (set to false) in your individual class. There’s no way

to change this behavior to be fine-grained enough to use the nontrans-

actional behavior for only a single method.

6.3 Why Fixtures Are a Pain

As great as fixtures are when you are starting out, using them long-

term on complex projects exposes problems. Here are some things to

keep an eye on.

Fixtures Are Global

There is only one set of fixtures in a default Rails application. So, the

temptation to keep adding new data points to the fixture set every time

you need a corner case is pretty much overwhelming. The problem is

that every time you add a user because you need to test what happens

when a left-handed user sends a message to another user with a friend

relationship who happens to live in Fiji, or whatever oddball scenario

you need, every other test has to deal with that data point being part of

the test data.

4. I almost wrote “This is super-nifty” but decided that wasn’t professional enough.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=85

USING FACTORIES TO FIX FIXTURES 86

Fixtures Are Spread Out

Fixtures live in their own directory, and each model has its own fixture

file. That’s fine, until you start needing to manage connections and a

simple setup of a user commenting on a post related to a given article

quickly spans across four different fixture files, with no easy way to

trace the relationships. I’m a big fan of “small and plentiful” over “large

and few” when it comes to code structure, but even I find fixtures too

spread out.

Fixtures Are Distant

If you are doing a complex test based on the specific fixture lineup,

you’ll often wind up with the end data being based on the fixture setup

in such a way that, when reading the test, it’s not clear exactly how

the final value is derived. You need to go back to the fixture files to

understand the calculation.

Fixtures Are Brittle

Of course, once you add that left-handed user to your fixture set, you’re

guaranteed to break any test that depends on the exact makeup of the

entire user population—tests for searching and reporting are notorious

culprits here. There aren’t many more effective ways to kill your team’s

enthusiasm for testing like having to fix twenty-five tests on the other

side of the world every time you add new sample data.

Sounds grim, right? It’s not. Not only are fixtures perfectly suitable for

simple projects, the Rails community has responded to the weaknesses

of fixtures by creating factory tools that can replace fixtures in creating

test data.

6.4 Using Factories to Fix Fixtures

The goals of a fixture replacement system are to take the three largest

problems with fixtures—they are global, spread out, and brittle—and

turn them into strengths. We want the system to be the following:

• Local: Each individual test should have its setup data tuned to the

needs of that test. The setup data should be defined as closely as

possible to the actual test.

• Compact: The setup data should be easy and quick to generate;

otherwise, lazy programmers (like me) just won’t do it. It should

be possible to generate a complex network of objects in just a few

lines.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=86

DATA FACTORIES 87

• Robust: Tests should not be dependent on changes made to setup

data in other tests. We should even be able to specify more data in

the current test without breaking other tests.

Generically, the answer to the fixture problem is a data factory.

6.5 Data Factories

The idea behind a data factory is that rather than specifying all the test

data exactly, you provide a blueprint for creating a sample instance of

your model. When you need data for a specific test, you call a factory

method, which gives you an element based on your blueprint. You can

override the blueprint to specify any data attributes required to make

your test work out. Calling the factory method is simple enough to make

it feasible to set up a useful amount of data in each test.

The original factory tool was Scott Taylor’s FixtureReplacement (http://

replacefixtures.rubyforge.org/). More recently, the ThoughtBot team be-

hind Shoulda and other great tools provided factory_girl (http://github.

com/thoughtbot/factory_girl/tree/master). I also like Pete Yandell’s Machin-

ist (http://github.com/notahat/machinist/tree/master).

The basic structure of all three tools is similar. Each gives you a syntax

to create the factory blueprints and an API for creating the new objects.

Both factory_girl and Machinist also provide a mechanism for creating

unique streams of values according to a pattern, while FixtureReplace-

ment has the most flexible creation syntax.

This chapter will use factory_girl as the primary example of how factory

tools work. Specifically, we’ll be using factory_girl 2.0, which is in beta

as I write this. I’ve picked factory_girl because it’s clearly emerged as

the mindshare leader among these tools and the 2.0 beta because I

like the streamlined syntax choices in 2.0. Machinist, also in a 2.0 beta

cycle, has very similar syntax and structure, while factory_girl 1.3 is

similar in functionality but with a more verbose syntax.

6.6 Installing factory_girl

To install factory_girl in a Rails 3 project, you should install the fac-

tory_girl_rails gem by placing the following in your Gemfile:

gem 'factory_girl_rails'

Report erratum

this copy is (P1.0 printing, February 2011)

http://replacefixtures.rubyforge.org/
http://replacefixtures.rubyforge.org/
http://github.com/thoughtbot/factory_girl/tree/master
http://github.com/thoughtbot/factory_girl/tree/master
http://github.com/notahat/machinist/tree/master
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=87

CREATING AND USING SIMPLE FACTORIES 88

However, if you are trying to install factory_girl while 2.0 is still in beta,

there’s a little bit of a version hiccup at the moment, because the fac-

tory_girl_rails gem is tied to version 1.3. Luckily, there are some forks

of the factory_girl_rails gem that just update its gem dependencies. For

example:

gem 'factory_girl_rails',

:git => "http://github.com/CodeMonkeySteve/factory_girl_rails.git"

All this should work itself out when factory_girl 2.0 becomes official.

If you’re working in a Rails 2.x application, you can just do the follow-

ing:

gem 'factory_girl'

Or, while factory_girl 2.0 is still in beta, you need to get the beta directly

from GitHub, since the Rails-only extensions are specific to Rails 3.

gem 'factory_girl',

:git => 'http://github.com/thoughtbot/factory_girl.git'

In Rails 3, factory_girl automatically loads if installed. Factory files

with the following names are automatically loaded: test/factories.rb, spec/

factories.rb, test/factories/*.rb, spec/factories/*.rb. Factories defined any

other place need to be explicitly required into the program.

6.7 Creating and Using Simple Factories

All the definitions of your factories go inside a call to FactoryGirl.define(),

which takes a block. Inside that block, factories can be declared to

define default data. The factory takes a block in which you can define

default values on an attribute-by-attribute basis.

A very simple example for our Huddle network might look like this;

each attribute has a simple default value. We’ll get to associations in a

moment. By default, the blueprints go in test/factories.rb.

FactoryGirl.define do

factory :project do

name "Dog Meet Dog Dot Com"

start_date Date.parse("2009-01-23")

end

end

Note the absence of equals signs—these are not assignments. Techni-

cally, they are function calls, so if it makes it more readable to write the

lines like name("Dog Meet Dog Dot Com"), go for it.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=88

CREATING AND USING SIMPLE FACTORIES 89

In the previous factory, all the values are static and determined when

the factory file is loaded. If you want a dynamic value to be determined

when an individual factory object is created, just pass a block instead

of a value; the block will be evaluated when each new factory is called.

FactoryGirl.define do

factory :project do

name "Dog Meet Dog Dot Com"

start_date { Date.today - rand(50) }

end

end

You can also refer to a previously assigned value later in the factory,

which is where these factories start to get powerful:

FactoryGirl.define do

factory :project do

name "Dog Meet Dog Dot Com"

url { "#{name.downcase.gsub!(" ", "_")}" }

end

end

What’s nice about this is that the factory will still use the value in

the name attribute to calculate the URL, even if you pass the name in

yourself:

test "factory girl url" do

soup = Factory.create(:project, :name => "Soups Online")

assert_equal("soups_online", soup.url)

end

Inside the factory, you can call any attribute in the model that has a

setter method; in other words, any virtual attribute in the model (like

the password attribute of a Devise User model) is fair game.

You can use this factory in several different ways. The most common is

to use the Factory.create() method.

setup do

@project = Factory.create(:project)

end

This call to create() creates a Project instance using the default values

defined in the factories file and saves it to the database. Validations on

your ActiveRecord model will be called. (To be specific, factory_girl will

call save!() on the object before it is returned.)

factory_girl provides three other build strategies that you can use if you

don’t want to actually save a new record to the database. If you want a

real ActiveRecord instance, just not saved, call Factory.build(:project). The

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=89

SEQUENCING FOR UNIQUE ATTRIBUTES 90

call Factory.attributes_for(:project) does not create an ActiveRecord object;

it just returns a hash of the attributes defined by the factory. This is

useful for use simulating an HTTP POST call in a controller test. You

can also try Factory.stub(:project), which returns an object where the

attributes are created as stubs. If you use the stub version, then any

call that attempts to access the database via that object, for example, a

call to save(), will result in an error.

Under normal circumstances, factory_girl considers create() to be the

default and provides the shortcut Factory(:project). You can change the

default strategy on a class-by-class basis, but I don’t recommend it; the

readability confusion isn’t worth the slightly briefer syntax.

When you call a factory, you can override any of the default values by

passing a hash to the factory_girl creation method, like so:

setup do

@project = Factory.create(:project, :name => "Soups Online")

@other_project = Factory.create(:project, :name => "Google Thumbnail")

end

6.8 Sequencing for Unique Attributes

Often you need to have a value in your factory that is unique, even if you

specify several objects. Email addresses are a common example, since

many applications will require an email address to be unique in order

to validate them. While you could explicitly specify an email address

every time you call your User factory, that’s an error-prone pain in the

neck. You can avoid this problem in factory_girl with sequences.

Declaring a sequence is simple. A sequence is defined inside the main

FactoryGirl block and takes one argument that is incremented each time

the sequence is invoked.

FactoryGirl.define do

sequence :name do |n|

"Project_#{n}"

end

end

The sequence can be referred to explicitly:

factory :project do

name { Factory.next(:name) }

url { "#{name.downcase.gsub!(" ", "_")}" }

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=90

FREEDOM OF ASSOCIATION 91

But if the attribute has the same name as the sequence, factory_girl

provides an implicit shortcut:

factory :project do

name

url { "#{name.downcase.gsub!(" ", "_")}" }

end

If the sequence is used in only one place, you can declare it inside the

factory definition where it is used.

factory :project do

sequence(:name) { |n| "Project_#{n}" }

url { "#{name.downcase.gsub!(" ", "_")}" }

end

6.9 Freedom of Association

It’s easy to specify related objects in your factories. In this example, the

factory for the Project class calls the User factory to create the associated

object by explicitly noting that the user is an association. (In a one-to-

many relationship, you probably want to do this from the belongs_to()

side. In a many-to-many relationship, it doesn’t matter what side cre-

ates the items.) However, you do need to make sure that only one side of

the relationship creates items; otherwise, you can get a circular depen-

dency and a stack-too-deep exception. This example also uses the Faker

gem (http://faker.rubyforge.org/) to generate random structured data.

factory :user do

first_name { Faker::Name.first_name }

last_name { Faker::Name.last_name }

end

factory :project do

name "Dog Meet Dog Dot Com"

association :user, :factory => :user

end

You can specify values for the subordinate object by adding them to

the end of the association() call just like any other factory_girl factory

invocation. In this snippet, every user created from a project association

will have the first name Noel.

factory :project do

name "Dog Meet Dog Dot Com"

association :user, :factory => :user, :first_name => "Noel"

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://faker.rubyforge.org/
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=91

FREEDOM OF ASSOCIATION 92

If the factory name and the association name match, the factory can be

left off:

factory :project do

name "Dog Meet Dog Dot Com"

association :user

end

If you are following Rails conventions and the model name matches the

attribute name in the expected way, the factory can be simplified even

further:

factory :project do

name "Dog Meet Dog Dot Com"

user

end

In either case, creating a Project object via factory_girl implicitly creates,

verifies, and saves a User object. As with regular attributes, the value of

the associated object is available for later attribute blocks:

factory :project do

name "Dog Meet Dog Dot Com"

user

label { "#{user.first_name}'s project"}

end

You can pass in your own associated object just as with any other

attribute defined in the factory. This is how you can create multiple

sibling objects:

setup do

me = Factory(:user, :first_name => "Noel",

:last_name => "Rappin")

my_project = Factory(:project, :user => me)

my_other_project= Factory(:project,

:name => "Soups Online", :user => me)

end

If you don’t want the related object to be created, you need to explicitly

set the object to nil when calling make():

Factory(:project, :user => nil)

You’ll often find yourself wanting to create multiple factories from the

same class. Users representing different roles or different classes of

products...that kind of thing. You can specify a class name that is dif-

ferent from the factory name rather easily using the class option.

factory :cool_project, :class => Project do

«»

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=92

FACTORIES OF THE WORLD UNITE 93

You can also have one factory inherit from another factory, which keeps

you from having to specify common default values in each factory.

factory :project do

name "Dog Meet Dog Dot Com"

user

label { "#{user.first_name}'s project"}

end

factory :cool_project, :parent => :project do

label { "A really nifty project" }

end

In this snippet, the cool_project factory also has a default user and a

default name of “Dog Meet Dog Dot Com.” Personally, I don’t find the

duplication of attributes to be onerous enough to justify the loss of

readability—imagine that the project and cool_project factories are 300

lines apart in the factory file and trying to trace where the name value

comes from.

Finally, factory_girl allows you to specify an arbitrary action after the

factory is called by defining a callback method, either after_build(), after_

create(), or after_stub(). These methods take a block and are called after

the factory is invoked with the given build strategy, although calling a

factory with create() will invoke both the after_build() and after_create()

callbacks. The callback blocks take an optional argument, which is the

fully created factory object.

6.10 Factories of the World Unite: Preventing Factory Abuse

The temptation when converting a project from fixtures to factories is

to replicate your entire fixture setup from factory objects. You will get

some benefits: the factory object will probably be easier to read and

maintain than the fixtures were, and all your existing tests will pass.

However, the factory tests will probably be significantly slower than

transactional fixtures, and you still have the problem of global, faraway

data definitions—though at least with factories, new tests can avoid

using the global data.

The way to use factories is to create less data for each test. Create only

the smallest amount of data needed to expose the issue in each test.

This practice speeds up the test, makes the issue easy to see rather

than burying it among dozens of fixtures, and makes the correctness of

the test itself easier to verify.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=93

FACTORIES OF THE WORLD UNITE 94

Factories and RESTful Authentication

The RESTful Authentication gem, which is commonly used for
managing user logins, has a couple of mild testing gotchas
when using factories.

First, the UserTest class generated by RESTful Authentication
contains a private method called create_user(). If you are
using FixtureReplacement, that’s a name crash with the user-
generation method automatically created from your User class
blueprint. In this case, you can change the name of the
method in the UserTest class, adjust the tests that call it, and
move on from there.

More generally, RESTful Authentication provides test user
accounts as fixtures. If you are truly going to avoid fixtures and
you are using an older version of RESTful Authentication, then
you may run into a problem with the login_as() method pro-
vided by RESTful Authentication and used throughout tests to
set up a logged-in user. The login_as() method expects to take
a symbol and look up the user data using the fixture-based
users(:symbol)() method. Even if you convert the RESTful Authen-
tication fixture data to a factory-based setup method (use-
ful if only because the RESTful Authentication accounts have
known, encrypted passwords), you still need to change the
login_as() method in lib/authenticated_test_helper.rb to take an
actual User object rather than a symbol:

def login_as(user)
@request.session[:user_id] = user ? user.id : nil

end

You can then use this with your factories with code like this:

setup do
login_as(User.make(:role => "admin"))

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=94

MANAGING DATE AND TIME DATA 95

6.11 Managing Date and Time Data

Calendar logic has a well-deserved reputation as one of the most annoy-

ing parts of a program that doesn’t actually involve Unicode. Testing

calendar logic—time-based reports, automatic logouts, “1 day ago” text

displays—can be a headache, but there are a couple of things you can

do to simplify the time logic beast.

You’re Doing It Wrong

Picture this. You’ve got a YAML file with some projects:

runway:

name: Project Runway

start_date: 2010-01-20

greenlight:

name: Project Greenlight

start_date: 2010-02-04

gutenberg:

name: Project Gutenberg

start_date: 2010-01-31

You’d like to test some time-based code, like might be used in a search

or report result; this goes in test/unit/project_test.rb:

test "reports based on start date" do

actual = Project.find_started_in_last(6.months)

assert_equal(3, actual.size)

end

Here’s the code that makes the test pass, from app/models/project.rb:

def self.find_started_in_last(time_span)

old_time = Date.today - time_span

all(:conditions => ["start_date > ?", old_time.to_s(:db)])

end

On January 20, 2010, the test passes. And on the 21st it will pass, and

the day after....

Six months from now, though, on about June 20th, when you’ve prob-

ably long forgotten about this test, this data, and maybe even this

project, the test will suddenly fail. And you’ll spend way too much time

trying to figure out what happened, until you remember the date issue

and realize that the January 20th project has moved out of the six-

month time span specified in the test. Of course, changing all the dates

just pushes the problem forward and gives you time to forget all about

it again.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=95

MANAGING DATE AND TIME DATA 96

This issue may sound silly to some, but like many of the more ridicu-

lous examples in the book, this is a mistake that happened to me and

can end up costing a lot of time.

Long ago, when I was young and foolish, I solved this problem by

adding an optional argument to just about every method that used

Date.today(), allowing an optional time to be passed to the method and

allowing an explicit date to be used for testing. This was way more work

than was actually needed, so here are a couple of better ideas.

Relative Dates in Fixtures

As mentioned in Section 2.7, More Info: Getting Data into the Test, on

page 38, fixture files are evaluated as ERb files before loading. For our

purposes, that’s helpful because it allows us to specify dates dynami-

cally, like so:

runway:

name: Project Runway

start_date: <%= Date.today - 1.month %>

greenlight:

name: Project Greenlight

start_date: <%= Date.today - 1.week %>

gutenberg:

name: Project Gutenberg

start_date: <%= Date.today - 1.day %>

With fixtures written like this, the previous test will always work, since

the start_date of the projects will never fall out of the six-month range.

(If you are using a factory tool instead of fixtures, you can do something

similar in your factory blueprint.)

Although this technique works quite well for keeping test data a con-

sistent relative distance from the test time, it’s less helpful if you are

actually trying to test the exact value of one of the dates—when testing,

say, output display. With the first, static set of fixture data, you could

write the following:

test "that project dates are displayed in this goofy format" do

assert_equal("2010 1 January", projects(:runway).goofy_start_date)

end

This test is a lot more difficult to write if you don’t explicitly know the

value of the project’s start_date. But keep reading.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=96

MANAGING DATE AND TIME DATA 97

Explicit Timestamps

One trick worth mentioning when testing dates is explicitly set-
ting the created_at attribute of your ActiveRecord model. Nor-
mally, created_at is a timestamp automatically generated by
Rails, and it’s often used for the kind of time-based reporting
alluded to in the rest of this section. Since it’s automatically cre-
ated at the current time, you can get into some weird situations
if other dates are specified in the past. Even without that com-
plication, you may still need to explicitly set created_at to use
the attribute to test time-based features.

You can set created_at in the fixture file, just like any other
attribute, or it can be specified in ActiveRecord::create() or
ActiveRecord::new(), specified in a factory blueprint, or just plain
reset with an assignment or update method.

Setting updated_at is trickier. Under normal circumstances, if you
try to explicitly set updated_at, Rails will just automatically reset it
on save, which completely defeats the purpose. To change this
behavior, set the class variable Model.record_timetamps = false

sometime before you save the object with modified update
time. Instead of Model, use the model class that is actu-
ally being saved. After the save, reset things to normal with
Model.record_timestamps = true.∗

∗. See http://www.neeraj.name/blog/articles/800-override-automatic-timestamp-in-activerecrod-rails

for some ways to make this call a little friendlier using Ruby Eigenclasses.

Timecop

Recently, I’ve been solving my time problems with the help of a nice

little gem called Timecop written by John Trupiano, which you can find

at http://github.com/jtrupiano/timecop. Timecop can be placed in your

Bundler Gemfile with the traditional gem "timecop".

Timecop is essentially a super-specific mock object package: it stubs

out Date.today(), DateTime.now(), and Time.now(), allowing you to explic-

itly set the effective date for your tests. Using Timecop, the original test

could be rewritten as follows:

test "reports based on start date" do

Timecop.freeze(Date.parse("2010-02-10"))

actual = Project.find_started_in_last(6.months)

assert_equal(3, actual.size)

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://www.neeraj.name/blog/articles/800-override-automatic-timestamp-in-activerecrod-rails
http://github.com/jtrupiano/timecop
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=97

MANAGING DATE AND TIME DATA 98

The Timecop.freeze() command stubs the current date and time meth-

ods back to the date passed as the argument—in this case, February

10, 2010. Time does not move for the duration of the test. A separate

method, Timecop.travel(), resets the time but lets the system time move

forward from that point onward.

Why both options? It’s because keeping time constant for the life of a

test makes the test environment more consistent. (For example, REST-

ful Authentication has an intermittent test failure if the time rolls over

in just the right way during one test.) But sometimes, it is necessary

for time to move forward, so Timecop offers both options. Along those

lines, it’s sometimes useful to put the following line in a setup method:

Timecop.freeze(Date.today)

with the following line in a teardown block:

Timecop.return

Why? It ensures that the current time doesn’t change for the duration

of each test. Again, with certain kinds of timing-related issues, that

consistency eliminates a possible source of intermittent test failures or

just plain confusion.

The argument to freeze() or travel() is an instance of Date, DateTime, Time,

or a series of arguments of the form (year, month, day, hour=0, minute=0,

second=0). Both methods also take blocks such that the fake time is

good only for the duration of the block:

test "reports based on start date" do

Timecop.freeze(Date.parse("2010-02-10")) do

actual = Project.find_started_in_last(6.months)

assert_equal(3, actual.size)

end

end

The time travel methods can be in your setup or in an individual test.

You can also change the time in the middle of a test to speed up an

ongoing process:

test "is the project over" do

p = Project.new(:start_date => Date.today,

:end_date = Date.today + 8.weeks)

assert !p.complete?

Timecop.freeze(Date.today + 10.weeks)

assert p.complete?

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=98

MODEL DATA SUMMARY 99

Timecop lets you keep explicit dates in your test data without causing

problems later. The only downside is that if you have many tests setting

time to different days, it can get somewhat confusing in the aggregate.

It’s easier if you use the same start date consistently. (On a solo project,

you might use your birthday, for instance, but that’s probably overly

cute for a team project.) A more minor problem is that the line at the

end of your test runs that says how long the test suite took will be

hopelessly messed up because of the continued messing with Time.now.

Comparing Dates and Times

Ruby, not content with a simple date and time system, has three sep-

arate classes that manage date and time data. The Time class is a thin

wrapper around the same Unix C library that pretty much every lan-

guage exposes. (Motto: “Annoying programmers since 1983!”) There are

also the Ruby-specific classes Date and DateTime, which are more flexi-

ble and have a more coherent API but are slower.

For testing purposes, the relevant points are that ActiveRecord uses

Date and DateTime, depending on the specifics of the underlying data-

base column; comparing a Date to a DateTime instance will always fail

(as will trying to add or subtract them), and most of the Rails ActiveSup-

port methods (think 5.days.ago) return DateTime.

In testing, this can lead to a lot of annoying failures, especially when

you have a Date column with no time information—which is recom-

mended if the time is not important.

In general, it’s a good idea to compare dates and times by converting

them using to_s(:db). It avoids the irritating question of object equality,

and you tend to get more readable tests and error messages. When

the exact time of the time object is in question, try to force the issue

by using the Rails ActiveSupport methods to_date(), to_time(), and to_

datetime(). Most commonly, this means something like 5.days.ago.to_

date.to_s(:db), which may read a touch on the awkward side but is a

robust test with a decent error message on failure.

6.12 Model Data Summary

To sum up, Rails provides fixtures as an exceptionally simple way to

create a set of test data that can be shared across multiple tests. How-

ever, fixtures are so simple that they tend to not be adaptable to more

complex product needs. Factory tools, which take a little bit more initial

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=99

MODEL DATA SUMMARY 100

setup, allow for more flexibility in use at some cost in test performance.

The two structures don’t have to be mutually exclusive. One pattern for

combining them is to create exactly one complex scenario in fixtures

for use in integration or complex controller tests and to use factories

for unit tests or simpler controller tests.

Fixtures and factory tools allow you to get test data into your database

in order to create a known baseline for testing. However, in some cases,

you may not want to actually place data in the database. Using the

database from a test may be undesirable for performance reasons,

for philosophical reasons (some people don’t consider it reasonable to

touch the database in a “unit” test), or where logistical reasons make

objects hard to create. In the next chapter, we’ll explore mock objects,

which allow tests to proceed by faking not the data but rather the actual

method calls that produce the data.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=100

Chapter 7

Using Mock Objects
A mock object is a “fake” object used in place of a “real” object for the

purposes of automated testing. A mock might be used when the real

object is unavailable or difficult to access from a test environment—a

common example is an external credit-card payment system. A mock

might also be used to easily re-create a specific application state that

would be otherwise difficult to trigger in a test environment, like a

database or network failure. Mocks can be used strategically to limit

the scope of a test to the object and method specifically under test.

Used in that manner, mocks drive a different style of testing, where the

test is verifying the behavior of the system during the test, rather than

the state of the system at the end of the test.

7.1 What’s a Mock Object?

One complicating factor in dealing with mock objects is that pretty

much everybody who creates a mock framework feels perfectly free to

use slightly different naming conventions than everybody else. Here are

the names that I use, which are—of course—also the correct ones.1

The generic term for any object used as a stand-in for another object

is test double, by analogy to “stunt double,” and with the same conno-

tation of a cheaper or more focused replacement for a more expensive

real object. Colloquially, mock object is also used as the generic term

but—confusingly—is also the name of a specific type of test double.

1. Actually, I believe this naming structure is the creation of Gerard Meszaros in xUnit

Test Patterns [Mes07].

WHAT’S A MOCK OBJECT? 102

A stub is a fake object that returns a predetermined value for a method

call without calling the actual object. We can create a stub as follows

(this uses the Ruby gem Mocha, but you don’t need to worry about the

exact syntax just yet):

thing.stubs(:name).returns("Fred")

That line of code says that if you call thing.name, you’ll get Fred as a

result. Crucially, the actual thing.name method is not touched, so what-

ever value the “real” method would return is not relevant; the Fred

response comes from the stub, not the actual object. If thing.name is

not called in the test, nothing happens.

A mock is similar to a stub, but in addition to returning the fake value,

a mock object also sets a testable expectation that the method being

replaced will actually be called in the test. If the method is not called,

the mock object triggers a test failure. So, when you write the following

snippet to create a mock object instead of a stub:

thing.expects(:name).returns("Fred")

then if you call thing.name in your test, you still get Fred, and the actual

thing.name method is still untouched. But if you don’t call thing.name in

the test, the test fails with what’s generally called a MockExpectationError,

or some such.

In other words, setting a stub on a method is passive and just says,

“Ignore the real implementation of this method and return this value,”

while setting a mock on a method is more aggressive and says, “This

method will return this value, and you better call the method, or else!”

The reason you might set such an expectation is that once you’ve

stubbed the method, it makes no sense to write an assertion on it like

this one:

thing.stubs(:name).returns("Fred")

assert_equal "Fred", thing.name

In this case, you’re just testing that the stub works as advertised—this

test can’t fail. But if you use the mock:

thing.expects(:name).returns("Fred")

then your code actually has to behave a certain way to pass the test.

One of the nice side effects of Ruby’s openness and metaprogramming

functionality is that mock object libraries are easier to write and have

more flexibility and power than similar libraries in other languages

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=102

STUBS 103

(Java, I’m looking at you...). There are at least four widely used Ruby

mock packages as I write this. All have broadly similar features with

slight differences in emphasis and syntax. FlexMock (http://flexmock.

rubyforge.org/) is the oldest though less commonly used these days.

Mocha (http://mocha.rubyforge.org/) is in use by the Rails core team in

integration testing. Double Ruby (http://github.com/btakita/rr/tree/master)

is a newer library with perhaps a cleaner syntax and a couple of unique

features. Finally, RSpec has its own mock library (discussed in Chap-

ter 12, RSpec, on page 186), although it allows you to use any of the

other three if you want.

In the absence of any compelling constituency for any of these three,

we’ll use Mocha in these examples, on the grounds that it’s pretty close

to actually being part of core Rails. However, in Section 7.7, Compar-

ing Mock Object Libraries, on page 118, we’ll compare and contrast the

syntax of the various mock frameworks.

Thus ends the blathering. Here’s how you actually use the things.

Install Mocha as a gem using gem install mocha or gem ’mocha’ in a

Bundler file). To use Mocha, place the following:

require 'mocha'

in any test file that will need it or in test/test_helper.rb.

7.2 Stubs

Although basically similar, stubs and mocks fit into the pattern of your

tests very differently. It is easier to start by describing stubs. A stub is a

replacement for all or part of an object that prevents a normal method

call from happening and instead returns a value that is preset when

the stub is created.

In Mocha, you can create an object that exists only as a set of stubbed

methods by using the stub() method, which is available throughout

your test cases. Since Ruby uses duck typing and therefore cares only

whether objects respond to the messages sent to them, a stub object

created in such a way can be injected into your application as a replace-

ment for a real object.

test "here's a sample stub" do

stubby = stub(:name => "Paul", :weight => 100)

assert_equal("Paul", stubby.name)

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://flexmock.rubyforge.org/
http://flexmock.rubyforge.org/
http://mocha.rubyforge.org/
http://github.com/btakita/rr/tree/master
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=103

STUBS 104

The hash arguments to stub() list the methods that the stubbed object

responds to and the values returned. So, the assertion in the second

line is true because the stub has been preset to respond to the name

message with “Paul.” If you call the stub with a method that is not in the

hash argument, Mocha will return an error. However, Mocha provides

the stub_everything() method, which instead returns nil for methods not

in the hash argument. Using stub_everything() makes sense in the case

where there are a large number of potential methods to be stubbed, but

where the values make so little difference that specifying them reduces

the readability of the test.

In case it’s not clear, this test is a very stupid way to use stubs; I’ve set

up a nice little tautology, and I haven’t actually learned anything about

any larger system around this test.

You would use a bare stub object to stand in for an object that is

unavailable or prohibitively expensive to create or call in the test envi-

ronment. In Ruby, though, you would more often take advantage of

the way Ruby allows you to open up existing classes and objects for

the purposes of adding or overriding methods. It’s easy to take a “real”

object and stub out only the methods that you need. This is extraordi-

narily useful when it comes to actual uses of stub objects.

In Mocha, this is managed with the stubs() method, which is mixed in

to any Ruby object:

Download huddle_mocha/test/unit/project_test.rb

Line 1 test "lets stub an object" do

2 stub_project = Project.new(:name => "Project Greenlight")
3 stub_project.stubs(:name)
4 assert_nil(stub_project.name)
5 end

This test passes: line 3 sets up the stub, and the stub_project.name call

in line 4 is intercepted by the stub to return nil and never even gets to

the actual project name.

Having a stub that always returns nil is a little pointless, so Mocha

allows you to specify a return value for the stubbed method using the

following syntax:

Download huddle_mocha/test/unit/project_test.rb

Line 1 test "lets stub an object again" do

2 stub_project = Project.new(:name => "Project Greenlight")
3 stub_project.stubs(:name).returns("Fred")
4 assert_equal("Fred", stub_project.name)
5 end

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/unit/project_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/unit/project_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=104

STUBS 105

Line 3 is doing the heavy lifting here, tying the return value Fred to the

method :name. Technically, stubs() returns a Mocha Expectation object,

which is effectively a proxy to the real object. The returns() method is a

method of that Expectation object that associates the return value with

the method.

Since classes in Ruby are really just objects themselves, you’d probably

expect that you can stub classes just like stubbing instance objects.

You’d be right:

Download huddle_mocha/test/unit/project_test.rb

Line 1 test "let's stub a class" do

2 Project.stubs(:find).returns(Project.new(:name => "Project Greenlight"))
3 project = Project.find(1)
4 assert_equal("Project Greenlight", project.name)
5 end

In this test, the class Project is being stubbed to return a specific project

instance whenever find() is called. In line 3, the find() method returns

that object via the stub when Project.find() is called.

Now we may be getting somewhere...you’ll notice that this test uses the

results of a find() method without actually touching the database. It’s

not hard to find Rails programmers who would consider the database

to be prohibitively expensive to use in a test environment, and this

is one—admittedly, over-simplified—strategy for avoiding it. Again, re-

member that this stub shouldn’t be used to verify that the find() method

works; it should be used by other tests that need the find() method along

the way to the other logic that is actually under test.

There are a couple of advanced usages of returns() that might be inter-

esting now and again. If you have multiple return values specified, the

stubbed method returns them one at a time, as the following irb ses-

sions shows:

>> stubby = Project.new

=> #<Project id: nil >

>> stubby.stubs(:user_count).returns(1, 2)

=> #<Mocha::Expectation:0x221e470... >, side_effects[]

>> stubby.user_count

=> 1

>> stubby.user_count

=> 2

>> stubby.user_count

=> 2

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/unit/project_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=105

STUBS 106

The return values of the stubbed method walk through the values

passed to returns(). Note that the values don’t cycle; the last value is

repeated over and over again.2

You can get the same effect with a little more syntactic sugar by using

the then() method—you can chain together as many of these as you

want:

stubby.stubs(:user_count).returns(1).then.returns(2)

A very common use of stub objects is to simulate exception conditions.

If you want your stubbed method to raise an exception, you can use

the raises() method, which takes an exception class and an optional

message:

stubby.stubs(:user_count).raises(Exception, "oops")

You can even chain returns() and raises():

stubby.stubs(:user_count).returns(1).then.raises(Exception)

Another common use case is if you want all instances of a class created

during a test to respond to the same stub. This is managed with the

class method any_instance(), followed by any returns() or raises() expecta-

tion you care to add. As in:

Project.any_instance.stubs(:save).returns(false)

With this little trick, you can rectify a nagging annoyance in the stan-

dard Rails scaffolds. As currently constituted (at least, as of this writ-

ing), the Rails-generated tests for a standard script/generate scaffold con-

troller do not cover 100 percent of the controller methods. Specifically,

the failure conditions for create() and update() are not covered. I’ve

always assumed, with no real justification, this oversight was because

the easiest way to test these is with a mock package, and the Rails team

didn’t want to mandate one particular package.3

Since we’ve already mandated a mock package, here are a couple of

sample tests that use the any_instance() call to validate the error behav-

ior for create() and edit().

2. For some reason, the Mocha RDoc says that returns([1, 2]) is the same as returns(1, 2)—

not true, according to my testing. returns([1, 2]) returns the array [1, 2], and returns(1, 2)

returns 1 and then 2 on successive calls.
3. Alternate possibility: they just figured it was too minor to care about.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=106

STUBS 107

This is for the Huddle Project class—you’ll need a slight tweak for your

own classes:

Download huddle_mocha/test/functional/projects_controller_test.rb

Line 1 test "fail create gracefully" do

- assert_no_difference('Project.count') do

- Project.any_instance.stubs(:save).returns(false)
- post :create, :project => {:name => 'Project Runway'}
5 assert_template('new')
- end

- end

-

- test "fail update gracefully" do

10 Project.any_instance.stubs(:update_attributes).returns(false)
- put :update, :id => projects(:huddle).id, :project => {:name => 'fred'}
- assert_template('edit')
- actual = Project.find(projects(:huddle).id)
- assert_not_equal('fred', actual.name)

15 end

These two tests have the same basic format. The first command in

each one sets an any_instance() expectation (lines 3 and 10); then the

actual controller command is run (lines 4 and 11). After that, valida-

tion: first that the error-appropriate template is used (lines 5 and 12)

and then that the actual creation or update did not take place. For

create, that’s the assert_no_difference() call validating that Product.count

doesn’t change, and for update, it’s validating that the :name => ’fred’ in

the update form doesn’t actually get sent to the database.

The truly sharp-eyed among you have probably realized that, while the

create() version of this test needs to use any_instance() because the exact

instance being created is not known at runtime, the update() version

could, in fact, include a stub on project(:huddle).id, since that’s the only

instance under consideration, and its identity is known before the con-

troller call. Fair point. In practice, though, there’s no guarantee that

the find() method in the controller will return the exact same object as

is used in the test—it will most likely create a new instance that is a

copy of the fixture data but loaded from the database. If so, a stub lim-

ited to the particular instance created in the test would not apply to the

instance created in the controller. After we introduce with() in the next

section, we’ll see one potential hack/workaround for this issue.

A related gotcha to watch out for when using any_instance() is that

a stub or mock declared via any_instance() applies only to instances

that are created after the declaration. Specifically, Rails fixture objects,

accessed via one of the special fixture methods like users(:fred) that have

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/functional/projects_controller_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=107

STUBS WITH PARAMETERS 108

already been generated when the test starts will not reply to the stub

or mock—the object needs to be re-created from the database for the

double to apply.

In addition, the find() method call in line 13 is required in order to force

a check all the way back to the database to see whether the database

record is changed—you could get the same effect by calling reload() on

projects(:huddle). Otherwise, changes made to the database won’t have

been reflected on the instance already created and in memory. And, last

and perhaps most obviously, when you adapt this to your own classes,

the form part of the call in line 11 needs to have attributes that are

actually part of the class under consideration.

7.3 Stubs with Parameters

The next level in tuning the stub is to have it return different values

based on the input parameters. In Mocha, this is managed using the

with() method:

Download huddle_mocha/test/unit/project_test.rb

test "let's stub a class again" do

Project.stubs(:find).with(1).returns(

Project.new(:name => "Project Greenlight"))

Project.stubs(:find).with(2).returns(

Project.new(:name => "Project Blue Book"))

assert_equal("Project Greenlight", Project.find(1).name)

assert_equal("Project Blue Book", Project.find(2).name)

end

In its simplest form, shown in the previous example, the with() method

takes one or more arguments. When the stub() method is called, Mocha

searches for a match between the arguments passed and the declared

stubs and returns the value matching those arguments.

One thing to be careful of is that by setting expectations tied to spe-

cific input values, you are limiting the Mocha stub to only those input

values. In other words, if we were to try Project.find(3) in this test, the

test would fail—which is a counterintuitive result for a stub. The failure

triggers the following rather cryptic error message:

test_let's_stub_a_class_again(ProjectTest)

[/test/unit/project_test.rb:43]:

unexpected invocation: Project(id: integer, name: string,

created_at: datetime, updated_at: datetime, start_date: date,

end_date: date).find(3)

satisfied expectations:

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/unit/project_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=108

STUBS WITH PARAMETERS 109

- allowed any number of times, already invoked once:

Project(id: integer, name: string, created_at: datetime,

updated_at: datetime, start_date: date, end_date: date).find(2)

- allowed any number of times, already invoked once:

Project(id: integer, name: string, created_at: datetime,

updated_at: datetime, start_date: date, end_date: date).find(1)

The guts of this message will perhaps be a little clearer after we’ve dis-

cussed mocks a little bit more, but the gist is simple: we did something

Mocha didn’t expect, and Mocha doesn’t like surprises.

A with() descriptor can be attached to either return values or raised

exceptions:

Project.stubs(:find).with(1).returns(

Project.new(:name => "Project Greenlight"))

Project.stubs(:find).with(nil).raises(Exception)

assert_equal("Project Greenlight", Project.find(1).name)

assert_raises(Exception) { Project.find(nil).name }

The with() declaration can be made more complicated in several ways—

frankly, practical application of some of these eludes me, but we’ll run

through them quickly.

Most generally, we can pass a block to with instead of an argument:

proj = Project.new()

proj.stubs(:status).with { |value| value % 2 == 0 }.returns("Active")

proj.stubs(:status).with { |value| value % 3 == 0 }.returns("Asleep")

When the stubbed method is called, if the with() block returns true, then

the expectation is considered matched:

>> proj.status(2)

=> "Active"

If more than one block returns true, it seems as though the last one

declared wins:

>> proj.status(3)

=> "Asleep"

>> proj.status(6)

=> "Asleep"

If none of the blocks returns true, we get a unexpected invocation error,

as we did just a second ago.

Mocha also defines a bunch of parameter matchers that give more flexi-

ble with() behavior. This is an incomplete list of the ones that seem most

useful. Note that all of these behaviors can be implemented using the

block syntax.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=109

STUBS WITH PARAMETERS 110

The instance_of() matcher and its related cousin is_a() match any incom-

ing parameter that is of the given class. Use instance_of() like this:

proj = Project.new()

proj.stubs(:tasks_before).with(instance_of(Date)).returns(3)

proj.stubs(:tasks_before).with(instance_of(String)).raises(Exception)

This or any other Mocha matcher can be negated with the Not() method.

(Yes, it’s capitalized, presumably to avoid weird parse collisions with the

keyword not.)

proj = Project.new()

proj.stubs(:tasks_before).with(Not(instance_of(Date))).returns(3)

We can apply a stub to more than one possible argument with the

any_of() matcher:

proj.stubs(:thing).with(any_of('a', 'b')).returns('abababa')

which would match against either of the following:

proj.thing('a')

proj.thing('b')

We can also nest any_of() with other matchers, though we can quickly

get tangled in a pile of syntax:

proj.stubs(:thing).with(any_of(instance_of(String),

instance_of(Integer))).returns("Argh")

Another useful matcher is regexp_matches(), which allows us to match

against—guess what?—a regular expresssion:

proj.stubs(:thing).with(regexp_matches(/*_user/)).returns("A User!")

A hash argument can be matched against the existence of a specific

key/value pair with the has_entry() matcher.

proj.stubs(:options).with(has_entry(:verbose => true))

The stub in this snippet will match any hash argument that contains

a :verbose => true entry, no matter what the other contents of the hash

might be.

There’s about a dozen more of these matchers, many of which seem to

be, shall we say, somewhat lacking in real-world practical value. Rather

than cluttering your head with a bunch of stuff you’ll never use, I invite

you to check out the Mocha docs at http://mocha.rubyforge.org for a full

listing.

Report erratum

this copy is (P1.0 printing, February 2011)

http://mocha.rubyforge.org
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=110

STUBS WITH PARAMETERS 111

One possible use of with() is to help work around the issue with Active-

Record objects mentioned in the previous section. Anthony Caliendo

came up with the following clever solution for creating a mock or stub

on an ActiveRecord object in your test and getting it to still be applied

to the ActiveRecord object created by the controller.4

Remember, the problem is that the database call from the controller

creates a completely different Ruby object than the one you’ve attached

a stub to. But you can dig into the ActiveRecord internals and define

this in your test helper:

Line 1 def mock_active_records(*records)
2 records.each do |record|
3 record.class.stubs(:instantiate).with(
4 has_entry('id' => record.id.to_s)).returns(record)
5 record.stubs(:reload).returns(record)
6 end

7 end

The key phrase here is stubs(:instantiate).with in line 3. That method is

called with a set of key/value pairs used to create an ActiveRecord

object. Then in line 4, Mocha’s has_entry decorator is used to declare

that if the set of key/value pairs contains an entry for the id that

matches the known record’s ID, then return that object directly. The

instantiate() method is called from ActiveRecord::Base::find(), so any mech-

anism for trying to retrieve this object from the database will be caught

here such that if the ID of the object you are requesting matches one

of the known objects, that object is returned without a new trip to the

database. The reload() method is similarly stubbed.

A sample usage might look like this:

test "My projects might be properly saved" do

@bluebook = Project.make(:name => "Project Bluebook")

@runway = Project.make(:name => "Project Runway")

mock_active_records(@bluebook, @runway)

@bluebook.stubs(:save => true)

@runway.stubs(:save => false)

end

Note that you have to mark the records you are going to use with the

mock_active_records() method as well as actually specify any other stub

or mock on those objects. There are a couple of things to watch out

here, the most glaring of which is that all ActiveRecords you might find

4. This method is described in more detail at http://www.pathf.com/blogs/2009/08/using-mocha-for-activerecord-partial-mocks-with-

Report erratum

this copy is (P1.0 printing, February 2011)

http://www.pathf.com/blogs/2009/08/using-mocha-for-activerecord-partial-mocks-with-finders/
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=111

MOCK, MOCK, MOCK 112

in your test need to be in the mock_active_records() call, since an attempt

to call the stubbed instantiate() method with a nonmatching hash would

trigger an expectation error. In a factory universe, with only a couple of

object defined, that may not be a difficult constraint to live with. Also,

the internals of ActiveRecord may change in the future, causing this

mechanism to stop working.

There is a simpler option if you have only one or two objects to mock

and a simple method under test.

test "My projects might be properly saved" do

@bluebook = Project.make(:name => "Project Bluebook")

Project.stub(:find).return(@bluebook)

@bluebook.stubs(:save => true)

post :update, :id => @bluebook.id

«»

end

All this does is stub the Project class to always return @bluebook when

find() is called. That ensures that the controller method that looks up

the object using find() returns the same object that you’ve set up in the

test. There are sharp limitations here—basically, we’re assuming that

only one Project object needs to be created for the test. But there are a lot

of cases, like a simple update or create method, where that assumption

holds, and this is a reasonably clean way to share a stubbed object

between the test and the method being tested.

7.4 Mock, Mock, Mock

A true mock object retains the basic idea of the stub—returning a spec-

ified value without actually calling a live method—and adds the require-

ment that the specified method must actually be called during the test.

In other words, a mock is like a stub with attitude, expecting—nay,

demanding—that its parameters be matched in the test or else we get a

test failure.

As with stubs, Mocha provides a way to create a mock object from whole

cloth, as well as a way to add mock expectations to an existing object.

The method for bare mock creation is mock():

test "a sample mock" do

mocky = mock(:name => "Paul", :weight => 100)

assert_equal("Paul", mocky.name)

end

As it happens, this test fails:

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=112

MOCK, MOCK, MOCK 113

1) Failure:

test_a_sample_mock(ProjectTest) [/test/unit/project_test.rb:46]:

not all expectations were satisfied

unsatisfied expectations:

- expected exactly once, not yet invoked:

#<Mock:0x25550bc>.weight(any_parameters)

satisfied expectations:

- expected exactly once, already invoked once:

#<Mock:0x25550bc>.name(any_parameters)

It fails because the first line sets up two mock expectations, one for

mocky.name() and one for mocky.weight(), but only one of those two

mocked methods are called in the test. Hence, it’s an unsatisfied expec-

tation. To pass the test, add a call to mocky.weight():

test "a sample mock" do

mocky = mock(:name => "Paul", :weight => 100)

assert_equal("Paul", mocky.name)

assert_equal(100, mocky.weight)

end

The method for adding a mock expectation to an existing object is

expects():5

Download huddle_mocha/test/unit/project_test.rb

test "lets mock an object" do

mock_project = Project.new(:name => "Project Greenlight")

mock_project.expects(:name).returns("Fred")

assert_equal("Fred", mock_project.name)

end

All the modifiers we’ve seen so far were applied to stubs, like returns(),

raises(), any_instance(), and with(), or all the pattern matchers can be

added to a mock statement. For example, the controller test for create

and update failure can be changed to use true mocks:

Download huddle_mocha/test/functional/projects_controller_test.rb

test "mock fail create gracefully" do

assert_no_difference('Project.count') do

Project.any_instance.expects(:save).returns(false)

post :create, :project => {:name => 'Project Runway'}

assert_template('new')

end

end

test "mock fail update gracefully" do

5. I have no idea why they didn’t use mocks, which would seem more consistent.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/unit/project_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/functional/projects_controller_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=113

MOCK OBJECTS AND BEHAVIOR-DRIVEN DEVELOPMENT 114

Project.any_instance.expects(:update_attributes).returns(false)

put :update, :id => projects(:huddle).id, :project => {:name => 'fred'}

assert_template('edit')

actual = Project.find(projects(:huddle).id)

assert_not_equal('fred', actual.name)

end

Again, the behavior of these tests is identical to the stub version, except

for the additional, implicit test that the save() and update_attributes()

methods are, in fact, called during the test.

By default, mock() and expects() set a validation that the associated

method is called exactly once during the test. If that does not meet your

testing needs, Mocha has methods that let you specify the number of

calls to the method. These methods are largely self-explanatory:

proj = Project.new

proj.expects(:name).once

proj.expects(:name).twice

proj.expects(:name).at_least_once

proj.expects(:name).at_most_once

proj.expects(:name).at_least(3)

proj.expects(:name).at_most(3)

proj.expects(:name).times(5)

proj.expects(:name).times(4..6)

proj.expects(:name).never

In practice, the default behavior is good for most usages.

7.5 Mock Objects and Behavior-Driven Development

The interesting thing about using true mocks is that their usage en-

ables a completely different style of testing. In the tests we’ve seen

throughout most of this book, the test validates the result of a com-

putation: it’s testing the end state of a process. When using mocks,

however, we have the opportunity to test the behavior of the process

during the test, rather than the outcome.

An example will help clarify the difference. Back in Section 4.2, Testing

the View, on page 65, the Huddle application had a controller test that

was largely based on the results of a call to the model.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=114

MOCK OBJECTS AND BEHAVIOR-DRIVEN DEVELOPMENT 115

Without mock objects, the test looked like this (from test/functional/

project_controller_test.rb):

Download huddle_mocha/test/functional/projects_controller_test.rb

test "project timeline index should be sorted correctly" do

set_current_project(:huddle)

get :show, :id => projects(:huddle).id

expected_keys = assigns(:reports).keys.sort.map{ |d| d.to_s(:db) }

assert_equal(["2009-01-06", "2009-01-07"], expected_keys)

assert_equal(

[status_reports(:ben_tue).id, status_reports(:jerry_tue).id],

assigns(:reports)[Date.parse("2009-01-06")].map(&:id))

end

As the process played out in that section, the assertions in this test

wound up being copied more or less identically to the model test that

actually exercised the model call that is made by the controller show()

action being tested here. At the time, we mentioned that a mock object

package would be a different way of writing the test. The mocked ver-

sion of the test could look something like this passing test:

Download huddle_mocha/test/functional/projects_controller_test.rb

Line 1 test "mock show test" do

2 set_current_project(:huddle)
3 Project.any_instance.expects(:reports_grouped_by_day).returns(
4 {Date.today => [status_reports(:aaron_tue)]})
5 get :show, :id => projects(:huddle).id
6 assert_not_nil assigns(:reports)
7 end

At first glance, that looks ridiculously minimalist. It doesn’t seem to

actually be asserting much of anything. The trick is the combination of

the mock expectation set in lines 3–4, along with the rest of the tests

that presumably exist in this system. This test validates that the con-

troller calls the model method reports_grouped_by_day() exactly once,

and it validates that the reports variable is set to some value. It also

validates that the controller and view run without error, but that’s sec-

ondary. The test is validating a behavior of the controller method—

namely, that it calls a particular model method, not the state that

results from making that call.

What this test doesn’t do is attempt to validate features that are actu-

ally the purview of other tests. It doesn’t validate the response from the

model method; that’s the job of the model test. What the view layer does

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/functional/projects_controller_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/functional/projects_controller_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=115

MOCK OBJECTS AND BEHAVIOR-DRIVEN DEVELOPMENT 116

with this value is the job of a view test. This test validates that a par-

ticular instance variable is set to a value using a known model method,

on the theory that the job of the controller method is to produce a set

of known values for use by the view. But validating the exact value of

the :reports variable would be pointless (at least in this case), since the

value is completely generated by the mock expectation.

Using mock objects in this style of testing has advantages and disad-

vantages. Speed is a significant advantage: getting values from mocks

is going to be a lot faster than getting values from either a fixture or

a factory database. Another advantage is the encapsulation of tests. In

the previous example, if a bug is introduced into the model object, the

only tests that will fail will be the model tests—the controller tests, pro-

tected by the mock, will be fine. The nonmock version of the controller

test, however, is susceptible to failure based on the results of the model

method. Done right, this kind of encapsulation can make it easier to

diagnose and fix test failures.

However, there are a couple of potential problems to watch out for. One

is a mismatch between the mocked method and the real method. In

the previous controller example, the mock call causes the method to

return a hash where the key is a Date object and the values are lists

of StatusReport objects. If, however, the model method really returns a

hash with the keys as strings, then you can have a case where the con-

troller method passes, the model method passes, but the site as a whole

breaks. In practice, this problem can be covered by using integration

or acceptance tests; see Chapter 13, Testing Workflow with Integration

Tests, on page 215 and Chapter 15, Acceptance Testing with Cucumber,

on page 235.

It’s also not hard to inadvertently create a test that is tautological by

setting a mock to some value and then validating that the mocked

method returns that value (the earlier examples that show how stubbed

methods work have this flaw).

Finally, an elaborate edifice of mocked methods runs the risk of causing

the test to be dependent on very specific details of the method struc-

ture of the object being mocked. This can make the test brittle in the

face of refactorings that might change the object’s methods. Good API

design and an awareness of this potential problem go a long way toward

mitigating the issue.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=116

MOCK DOS AND MOCK DON’TS 117

I have to say, as much as I love using mocks and stubs to cover hard-

to-reach objects and states, my own history with very strict behavior-

based mock test structures hasn’t been great. My experience was that

writing all the mocks around a given object tended to be a drag on the

test process. But I’m wide open to the possibility that this method works

better for others or that I’m not doing it right. Or, to quote Stephen

Bristol:6 “RSpec, done properly, isn’t testing. It is designing.”

7.6 Mock Dos and Mock Don’ts

Here are some guidelines on the best usage of stubs and mocks:

• If you are using your fake objects to take the place of real objects

that are hard or impossible to create in a test environment, it’s

probably a good idea to use stubs rather than mocks. If you are

actually using the fake value as an input to a different process,

then you should test that process directly using the fake value

rather than a mock. Adding the mock expectation just gives you

another thing that can break, which in this use case is probably

not related to what you are actually testing.

• When you are using a true mock to encapsulate a test and isolate

it from methods that are not under test, try to limit the number

of methods you are mocking in one test. The more mocks, the

more vulnerable the test will be to changes in the actual code. A

lot of mocks may indicate that your test is trying to do too much

or might indicate a poor object-oriented design where one class is

asking for too many details of a different class.

• I’ve come to use mocks frequently in controller testing to isolate

the controller test from the behavior of the model, essentially only

testing that the controller makes a specific model call and using

the model test to verify model behavior. Among the benefits of

using mocks this way is you are encouraged to make the inter-

face between your controllers and models as simple as possible.

However, it does mean that the controller test knows more about

your model than it otherwise might, which may make the model

code harder to change.

6. http://twitter.com/stevenbristol/statuses/1221264618

Report erratum

this copy is (P1.0 printing, February 2011)

http://twitter.com/stevenbristol/statuses/1221264618
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=117

COMPARING MOCK OBJECT LIBRARIES 118

• You also need to be careful of mocking methods that have side

effects or that call other methods that might be interesting. The

mock totally bypasses the original method, which means no side

effect and no calling the internal method. Pro tip: saving to the

database and outputting to the response stream are both side

effects.

• Be very nervous if you are specifying a value as a result of a mock

and then asserting the existence of the very same value. One of

the biggest potential problems with any test suite is false positives,

and testing results with mocked values is a really efficient way to

generate false positives.

• A potentially larger problem is the type mismatch issue between

the real method and values being used for mocks. Integration

or acceptance testing can help with this problem, but that’s not

much help during development. I don’t know that there’s an auto-

mated way to ensure that mock values are actually valid possible

results and still get the benefits of using mocks, so it’s something

to keep an eye on.

7.7 Comparing Mock Object Libraries

Now that we’ve spent some time exploring how mock objects work using

Mocha, let’s take a brief look at the various ways that the other popular

Ruby mock libraries manage similar tasks. There are four packages

that are currently popular:

FlexMock

This is the original Ruby mock object package.

Mocha

We’ve already discussed this at some length. It’s quasi-official for

Rails in that it is used in Rails core.

RSpec

The RSpec library, described in more detail in Chapter 12, RSpec,

on page 186, defines its own mock object package

RR

Pronounced “Double Ruby,” it’s the newest entry, with a more con-

cise syntax than the other packages and unique advanced fea-

tures.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=118

COMPARING MOCK OBJECT LIBRARIES 119

This is a quick tour of common features and not a complete look at

each of these packages. Check the documentation for all the details

and quirks—RR, in particular, has features that don’t map to the other

tools.

Loading into Test Suite

The first part of using any of these packages is installing and inte-

grating with Test::Unit. The RSpec mocks, of course, can’t be integrated

with Test::Unit; however, any of the other packages can be integrated with

RSpec by adding the line config.mock_with :rr or :flexmock, or :mocha in

the spec_helper.rb file.

FlexMock

% sudo gem install flexmock

Then, in test_helper.rb, add this:

require 'flexmock/test_unit'

Mocha

sudo gem install mocha

Then, in test_helper.rb, add this:

require 'mocha'

RSpec

N/A

RR

sudo gem install rr

Then, inside the test case declaration in test_helper.rb, add this:

include RR::Adapters::TestUnit

Creating Blank Stubs

The most basic function of any of these packages is creating a sim-

ple stub object in which you can specify the return value of one or

more methods. When those methods are called, the specified value is

returned. If the methods are not called, nothing happens. Here’s the

syntax to create a stub object that is not connected to any preexisting

object in the application.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=119

COMPARING MOCK OBJECT LIBRARIES 120

FlexMock

stub = flexmock("name", :method => result)

Mocha

object = stub(:method => result)

The method/result pairs can also be specified in a block argument

as shown in the next section.

RSpec

stub = stub("name", :method => value)

RR

double = stub(Object.new).method { value }

This can be abbreviated as as follows:

double = stub!.method { value }

Creating Stubs from Existing Objects

Most of the time, though, you’ll want to create stubs that replace meth-

ods on existing objects. In FlexMock and RR, this involves calling a

special method with the object as an argument, as in FlexMock’s flex-

mock(object), while in Mocha and RSPec, this involves calling a method

of the object itself, as in object.stubs. In either case, further informa-

tion about the method being stubbed, and its return value, is usually

chained after the declaration of the stub.

Remember, classes are just another kind of object in Ruby, so class

methods can be treated like any other method, as in stub(User).should_

receive(:find).

FlexMock

stub = flexmock(project).should_receive(:method).and_return(value)

If the object being mocked is a string or symbol, use :base as the

first argument to prevent confusion with a simple test double con-

taining just the name. In other words, the call flexmock("fred") is

ambiguous. As written, it is just a bare FlexMock object with the

name fred. If you actually want to stub methods on the string

"fred", then use flexmock(:base, "fred").

The :safe argument is used in the case where your object being

mocked might already define methods with the same name as the

ones used by FlexMock. When called via :safe, FlexMock will not

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=120

COMPARING MOCK OBJECT LIBRARIES 121

add extra methods to the existing object. Since those methods

don’t exist, a FlexMock object declared with :safe can be used only

by having any expectations defined in an attached block.

mock = flexmock(:base, object)

mock = flexmock(:safe, project) { |mock| mock.should_receive(:a) }

Multiple should_receive calls can be chained to a single stub, in

which case they cycle in the same way as Mocha values. Values

can also be set in a block argument to flexmock(), as follows:

flexmock(obj) do |m|

m.should_receive(:method).and_return(value)

end

To specify errors, and_raise(exception) is used. The syntax :method

=> value can be used as a shortcut for and_return() in either of the

following forms:

flexmock(obj).should_receive(:method => value)

flexmock(obj, :method => value)

Mocha

obj.stubs(:method).returns(value)

obj.stubs(:method, value)

The previous two methods are identical. To specify errors, use

raises(exception) instead of returns. Multiple values in the returns

method cycle can also be written returns(1).then.returns(2).

RSpec

project.stub!(method).and_return(1)

The and_return() method can also take a block or a list of values,

which is treated as Mocha or FlexMock. Use and_raise() to raise an

error.

RR

stub(project).method { value }

This can also be written as follows:

stub(project).method.returns(value)

Creating Mocks with Expectations

All these packages allow you to create a mock object with an expec-

tation that the method will be called a specified amount of times. The

biggest difference here is that FlexMock does not have a separate syntax

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=121

COMPARING MOCK OBJECT LIBRARIES 122

for creating objects with expectations; any doubled object can have an

expectation added by appending a method like once() to the description

chain. In Mocha, RSpec, and RR, test doubles that will have expecta-

tions must be declared as such, using mock() or (in Mocha) expects().

In those libraries, specifying an method with mock() implicitly assumes

that the method will be called exactly once.

Each library offers options to change the expected number of times a

method will be called.

RR has a unique feature called a proxy, where the method is actually

called (as opposed to the return value being set by RR), but you can

still specify an expectation on how many times the method is called.

FlexMock

mock.should_receive(:method).and_return(value).once

Other options include zero_or_more_times(), twice(), never(), and

times(n). You can also use combination methods, as in at_least.

once() or at_most.twice().

Mocha

Bare mock objects are just like bare stub objects, except all meth-

ods are expected to be called once. Existing objects use the

expects() method to be converted to mocks.

mock = mock()

project.expects(:method)

The default is that the method is called exactly once, equal to

project.expects(:method).once. Other options include twice(),

at_least_once(), at_most_once(), at_least(x), at_most(x), times(x),

times(x..y), and never().

RSpec

obj.should_receive(:method).and_return(1)

The default expectation is that the method will be called once. If

the method should never be called, use this:

obj.should_not_receive(:method)

Other method count expectations can be set with once(), twice(),

exactly(n).times(), at_least.once(), at_least(n).times(), at_most.once(),

at_most(n).times(), and any_number_of_times().

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=122

COMPARING MOCK OBJECT LIBRARIES 123

RR

This sets an expectation for a single call. The expected value is the

result of the block.

mock(obj).method { value }

To set an expectation that a method is called more than once, use

this:

mock(obj).method.times(n) { value }

To set an expectation that a method is not called, use this:

do_not_call(obj).method

RR lets you create a proxy that creates an expectation that a

method will be called, but unlike a mock, it actually calls the

method. A block argument to the proxy call allows you to post-

process the output of the actual method:

mock.proxy(project).method { |actual| "#{actual}_mocked" }

Filtering Methods by Argument

All four libraries offer similar syntax for specifying arguments that must

match for the doubled method to be invoked. This allows you to specify

different return values based on the arguments. For example, you could

specify multiple stubs of the find method, each returning a different

model object. In addition to matching based on the exact value of the

arguments, each library offers some more generic matchers based on

class or matching a regular expression or whatnot.

FlexMock

mock.should_receive(:method).with("a")

Also with_any_args() and with_no_args(). If the argument to with() is

a class, any instance of the class matches. If it’s a regular expres-

sion, any string matching the regular expression matches. There

is also a mechanism for more complex logic.

Mocha

project.expects(:method).with(1)

If with() is passed a block, the method matches if the block returns

true. Several other matchers can be combined with the argument,

including instance_of(), Not(), any_of(), and regexp_matchers().

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=123

COMPARING MOCK OBJECT LIBRARIES 124

RSpec

project.should_receive(:method).with(1)

Other filters include anything(), any_instance_of(), hash_including(),

boolean(), duck_type(:message), or a regular expression.

RR

mock(project).method(1) { value }

Just set the arguments to the method when defined. There are

special matchers that can be placed as an argument, including

anything, is_a(), numeric, boolean, and duck_type. You can also put

in a range or a regular expression.

Doubling Any Instance of a Class

Three of the libraries also have special syntax that allow you to spec-

ify stub or mock behavior for any instance of the class that is created

subsequent to that declaration. (Be careful, instances of the class pre-

viously created will not have the double behavior.) Typically, after the

method declares that this double applies to all new instances, any other

filter or expectation can be applied. In each example, the Project class

is being decorated to return false when save() is called.

FlexMock

flexmock(Project).new_instances.should_receive(:save => false)

After new_instances(), any FlexMock expectation or filter can be

used.

Mocha

Project.any_instance.expects(:save).returns(false)

RSpec

RSpec doesn’t have an exact match for this feature; the closest

workaround seems to be this:

Project.stub!(:find).and_return(

mock_model(Project, :save => false))

RR

mock.instance_of(Project).save(false)

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=124

COMPARING MOCK OBJECT LIBRARIES 125

ActiveRecord Mock Features

A couple of the libraries offer special features for ActiveRecord.

FlexMock

flexmock(:model, Project)

Works like a normal stub, with the methods id(), to_params(),

new_record?(), errors(), is_a?(), instance_of?(), kind_of?(), and class()

already stubbed to consistent defaults.

Mocha

N/A

RSpec

mock_model(Project, :method => value)

This requires the rspec-rails plugin and stubs id(), to_param(),

new_record?(), and errors().

RR

N/A

Method Chains

Some of the libraries offer the ability to set a stub or mock on an entire

chain of method calls in one line, without having to explicitly set the

intermediate mock object. This can make code clearer in the odd case

where you need to mock across several objects.

FlexMock

flexmock(project).should_receive("project.leader.address.city")

The resulting mock acts like any other FlexMock object.

Mocha

N/A

RSpec

stub_chain(project.leader.address.city).and_return("Chicago")

RR

stub(project).leader.stub!.address.stub!.city { "Chicago" }

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=125

MOCK OBJECT SUMMARY 126

7.8 Mock Object Summary

In this part of the book, we covered model testing. First, we talked

about the services Rails provides for testing models, and we discussed

fixtures and factories as mechanisms for creating consistent test data.

With this chapter, we’ve started to transition from testing models to

testing the user-facing parts of the application. Mock testing is use-

ful for testing models, but it becomes especially useful when trying to

shield the various layers of your application from each other.

In the next part, we’ll be discussing testing the controller and view lay-

ers. Mock objects can be a very important part of controller testing;

creating mock models allows the controller tests to proceed indepen-

dently of the model test.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=126

Part III

Testing User-Facing Layers

Chapter 8

Testing Controllers with
Functional Tests

Even more than model testing, Rails controller testing depends on

Rails-specific structures and methods. The goal of controller testing

is to simulate a single request to a specific controller method and make

assertions about the result. This may or may not include assertions

about the view output, depending on your taste. Standard Rails func-

tional testing includes both controller and view tests, but third-party

add-ons allow for separate testing of views and partials.

8.1 What’s Available in a Controller Test?

Rails-generated controller tests are subclasses of ActionController::

TestCase, itself a subclass of the ActiveSupport::TestCase used for model

What’s in a Name, Part Two

I don’t want to belabor the point (too late), but as much as I try
to hold to standard Rails naming conventions here, functional
test still doesn’t sit right with me. I’ll stick to controller test and
view test in order to be specific about what the actual goal of
the test is.

WHAT TO TEST 129

testing.1 All the features available for model testing are still present in

controller and view testing. In addition, some additional toys are added

to ActionController::TestCase via a few modules that are mixed into it. This

is what is at your disposal:

• Three instance variables that are the mock object versions of the

@controller, the @request, and the @response. Functionality that

would require a real user request or client browser is stubbed out.

My experience is that I don’t use those directly a whole lot, except

for @response.body, which is helpful for view testing and debugging

by inspecting the body text from inside a test method.

• Four pseudo-hash variables representing control structures. You

have session, cookies, and flash, each of which represents the Rails

construct of the same name, such as session[:user_id]—although the

cookie variable has string keys, not symbol keys. And you have

assigns, which allows access to any instance variable set in the

controller method so that, say, @user in the controller method can

be verified in the test by using assigns(:user). You’re supposed to

access that as a method and not as a hash—assigns[:user] won’t

work (but assigns["user"] will...).

• A method to simulate each HTTP verb for the purpose of pretend-

ing to call a controller: get(), post(), put(), delete(), plus the bonus

xhr() for Ajax calls.

• Several assertions aimed at the specifics of controller and view

testing, the most valuable of which will be covered in more detail

in Chapter 9, Testing Views, on page 139.

8.2 What to Test

The controller part of controller tests is generally straightforward. If you

are following good development practice, the complicated functionality

is in the model and is being tested in your model tests; one of the

reasons this is a best practice is that models are easier to test. Views,

which are genuinely a pain in the neck to test, we’ll cover in Chapter 9,

Testing Views, on page 139.

1. Before I let go of the naming topic entirely, why is it ActionController and ActionView,

but ActiveSupport and ActiveRecord?

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=129

SIMULATING A CONTROLLER CALL 130

A controller test should have one of the following goals:

1. Verifying that an normal, basic user request triggers the expected

ActiveRecord calls and passes the necessary data to the view.

2. Verifying that an ill-formed or otherwise invalid user request is

handled properly, for whatever definition of “properly” fits your

app.

3. Verifying that your security roles work as expected, such as re-

quiring logins for pages as needed and testing that users who enter

a URL for a resource they shouldn’t be able to see is blocked or

diverted. These tests often have a view component: admins should

see a Delete button, but nobody else should.

8.3 Simulating a Controller Call

The general structure of a controller test includes a setup method that

puts the data and session context in place and then an individual test

method that simulates a call to the controller and validates the con-

troller response.2 The most simplified version of this structure looks

something like this:

setup :generic_setup

def generic_setup

@task = Task.create

login_as :admin

end

test "should show a task" do

get :show, :id => @task.id.to_s

assert_equal(@task.id, assigns(:task).id)

assert_response :success

assert_template :show

end

Rails provides a test method for each HTTP verb: get(), post(), put(),

and delete(). Each of these methods works the same way. The first

argument to the simulated call is the controller method to invoke. The

second argument contains the key/value pairs that become the params

of the call. The Rails conventions for placing complex data types into

parameter names holds here, so :task => {:project => {:id => "3"}} creates

params[:task][:project][:id] = "3".

2. If you are heavily into contexts, then the simulated call can go in the context. See

Section 11.1, Contexts, on page 170 for a look at this structure.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=130

SIMULATING A CONTROLLER CALL 131

In most cases, the parameters argument is the only one passed to the

controller and so is written as a list of key/value pairs rolled into a

hash by Ruby. However, there are optional third and fourth arguments

to these test methods that set hashes for the session and flash, respec-

tively. In the following snippet, the session is getting a user ID and

current project, and the flash is getting a notice:

get :show, {:id => @task.id.to_s}, {:user_id => "3",

:current_project => @project.id.to_s}, {:notice => "flash test"}

The xhr() method simulates an Ajax call to the controller. The signa-

ture of the method is a little different; the first argument is the HTTP

verb, the second is the controller method, and the remaining arguments

match the order of the other HTTP mimic methods:

test "my ajax call" do

xhr :post, :create, :task => {:id => "3"}

end

The controller will respond to a test call made with the xhr() exactly the

way it would respond to an actual Ajax request. That is to say, if you

use the more modern respond_to blocks, then the request will match

the format.js block. Alternately, the controller method xhr? will return

true for the action being tested.

There are two gotchas in simulating controller calls. The first is that the

controller method is called directly without working through the routes

file. This means the test is not verifying whether the method in ques-

tion is actually reachable using the given HTTP verb—that can be done

via a separate routing test that we’ll cover later in Section 8.6, Test-

ing Routes, on page 137. This can be particularly annoying for RESTful

controllers, where the HTTP verb is salient, and the test can mask a

potential issue by using an unexpected HTTP verb without catching the

problem.

I get snared by this trap when testing the intersection of Ajax and REST

If the method called via Ajax in the previous example actually doesn’t

expect an HTTP POST (for example, it’s a standard RESTful edit method),

the test passes, but the code fails in the browser.

Another distinction between the test environment and the real request

is that real request parameters are always strings, whereas these test

invocations do not convert the key/value values to strings before calling

the controller method. Under many circumstances this isn’t a big deal—

if you are just doing, say, a find() on an ID parameter, ActiveRecord does

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=131

SIMULATING A CONTROLLER CALL 132

Testing File Uploads

When you want to fake a file upload in a test, Rails pro-
vides the helper method fixture_file_upload() to help. It takes
two arguments: a path to an actual file relative to the
Rails root and a MIME type. You use this as the value
part of a key/value pair being passed to a Rails method
in a controller test, as in post :upload_icon, :icon => fixture_

file_upload(’/public/images/test_icon.png’, ’image/png’). The con-
troller treats that value as though it was an uploaded file.

the right thing regardless. However, if you are depending on an exact

match of the variable (for example, directly comparing the parameter to

an ID), the type may matter, and you might have a test that passes in

the test environment, while the code in the browser fails.

This may become an issue in security testing. If the controller method

looks like this:

def create

if current_user.id == params[:id]

allow

else

deny

end

end

and the test looks like this:

test "I can create"

login_as(@user)

put :create, @user.id

#assert that allowed branch was taken

end

the test will pass because params[:id] in the test is an integer, but the cre-

ate() method will fail in the browser because params[:id] will be a string.

The workaround is to ensure that the test values are converted to

strings in the test. One recommendation is to use @user.to_param as the

argument to put(); this method is preferable to the @user.id.to_s because

it gives you some flexibility if you override the to_param() method later.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=132

TESTING CONTROLLER RESPONSE 133

8.4 Testing Controller Response

The most basic thing you usually want to verify in a controller method

is that it returns the HTTP status code you expect and that the appro-

priate Rails template is placed in charge of returning the response.

Rails provides three assertion methods to help: assert_redirected_to(),

assert_response(), and assert_template().

When you’re expecting a normal HTTP response and not a redirection,

you can indicate your expectation in the test with a combination of

assert_response() and assert_template(), like so:

test "successful index request" do

get :index

assert_response :success

assert_template "index"

end

Let’s break that down. assert_response() actually verifies the response

code sent by Rails to the browser. Typically, the expected value from

the test is :success, meaning code 200, or :redirect, which matches any

of the 300–399 range that indicates a redirect of some form or other.

Other special values are :missing to match a 404 error, and :error, which

matches any of the 500–599 error range. Instead of a special value,

the expected argument can also be the exact integer of the expected

response. All the individual response codes also have their own specific,

if rarely used, symbolic equivalent.3

The assert_template() verifies which template Rails uses to generate the

response. The template name is specified exactly as it would be in the

controller using render :action—the template name can be a string or

a symbol. If the argument is just a single string or symbol, then it

is checked against the name of the main template that rendered the

action. If you call assert_template() with a key value argument of the form

assert_template :partial => ’_user_data_row’, then you are testing whether

the specified partial is called when the controller action is rendered. The

partial name in the test method must include the leading underscore.

Adding the :count option verifies that the specified partial was called a

specific number of times, which is potentially useful for a partial that

is rendered inside a loop.

3. There are about 50 different status codes; the entire list can be found in the Rails

source in actionpack/lib/action_controller/status_codes.rb.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=133

TESTING RETURNED DATA 134

For a redirect, Rails provides assert_redirected_to(), which takes as an

argument any object that can be resolved into a URL. (assert_redirected_

to() implicitly makes a call to assert_response :redirect, so you don’t need

to write a separate assertion for that.)

If the argument to assert_redirected_to() is a hash, as in:

assert_redirected_to :controller => :task, :action => :show, :id => 3

then if the actual redirect URL as specified in the controller also uses

a hash, the Rails test checks only the keys that you actually use in

your assertion, allowing you to check for a partial match. However, if

the actual redirect URL is specified via a named route or RESTful route

mechanism, Rails will insist on an exact match.

You can check against a named or RESTful route method:

assert_redirected_to new_task_url

Or an object that corresponds to a RESTful route:

assert_redirected_to @task

A Rails controller test does not—repeat, does not—follow the redirect.4

Any data validation tests you write apply only to the method before the

redirect occurs. If you need your test to follow the redirection for some

reason, you are cordially invited to try something in an integration test;

see Chapter 13, Testing Workflow with Integration Tests, on page 215.

8.5 Testing Returned Data

Rails allows you to verify the data generated by the controller method

under test through the four collections mentioned earlier: assigns, ses-

sion, cookies, and flash. Of these, assigns, which is a hash of instance

variables created in the controller, is the most commonly used. A typi-

cal use might look like this, with a common use of assigns, and a frankly

contrived use of session:

test "should show task" do

get :show, :id => @task_1.id

assert_response :success

assert_equal @task_1.id, assigns(:task).id

assert_equal "task/show", session[:last_page]

end

4. Prior to Rails 2.2, there was a method that let you follow a redirect from a test, but

only within the same controller. It was deprecated in Rails 2.2.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=134

TESTING RETURNED DATA 135

Gotcha: Requiring a Login

Here’s something that happens to me with disturbing fre-
quency. On sites that require user logins, I often code the site up
a little bit before adding the filter that requires a user login, usu-
ally to get the site architecture correct before forcing the secu-
rity. I add the line before_filter :authenticate_user! for Devise, and
boom—all the controller tests fail because they are redirected
away from the controller because the test does not have a
valid login. It seems it always takes me longer to remember why
this has happened than it should (since it should, by now, take
only about ten seconds). To sum up, remember to put the login
in your tests. With Devise, by default that means putting include

Devise::TestHelpers in a setup block, along with some other setup
that is specified in Section 3.4, Security Now!, on page 53.

The cookies and flash special variables are used similarly, though I don’t

write tests for the flash very often.5

When testing the model data in a controller, keep in mind that you usu-

ally don’t want to duplicate the actual model tests, and you definitely

don’t want the controller test to replace the model test. It’s easier and

more effective to test the model in the model test—there’s less setup,

and the test is generally clearer and more focused. See Section 4.2,

Testing the Project View: A Cascade of Tests, on page 64 for a descrip-

tion of how to interleave controller and model tests with a Test-Driven

Development process.

To Mock or Not to Mock

While you want to make sure and cover any error conditions specific to

the controller itself, you don’t need to test all the error and condition

paths of the model: again, that is best managed in the model test. How-

ever, you do want to verify that the controller gets the expected object.

In many cases, it’s enough to know that the controller object is call-

ing the expected model method and sets the expected variable. Since

the model test covers the result of the model method, knowing that the

5. One thing to note about cookies: in Rails 2.3 and up, cookies in controller tests are

just strings. In prior versions, you could also specify them as CGI::Cookie objects if you

wanted to test cookie attributes. It doesn’t seem like you can test cookie attributes in

Rails 2.3 without manually accessing the request header.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=135

TESTING RETURNED DATA 136

method is called with the expected arguments is enough to verify the

state of the controller.

This is a potentially great use case for mock objects. Mock object tests

are covered in more detail in Chapter 7, Using Mock Objects, on page 101,

but here’s a sample of how they can be used in controller testing, with

the Ruby mock object tool Mocha:

test "should show task" do

task = Task.new

Task.expects(:find).with(1).returns(task)

get :show, :id => 1

assert_response :success

assert_equal task, assigns(:task)

end

The Task.expects line has two separate functions:

• The stub function. Bypassing the real find() method so that if the

object receives a call for find(1), it will return task without calling

the actual Task.find() method. Note that this bypasses the database

entirely.

• The mock function. Setting up an expectation that find(1) will be

called exactly once during this test. If that method is not called,

the test will fail.

The upshot of this is that you can test the controller behavior without

having to worry about the finer points of the model implementation—

in fact, you can test the controller before the model method is even

written. There’s a downside, common to any mock testing. Setting up

the mocks can be time-consuming and brittle, and if the object that

you return from the mock doesn’t match the real method, you may be

obscuring bugs in the controller or view.

One compromise is the concept of a spy, which the Double Ruby mock

object framework allows.6 Essentially, you can identify the model meth-

od as being of interest, then set an assertion that the method has actu-

ally been called. In Double Ruby syntax, the test might look like this:

Line 1 test "should show task" do

2 stub.proxy(Task).find('1')
3 get :show, :id => 1
4 assert_response :success
5 assert_received(Task) { |t| t.find('1') }
6 assert_equal task, assigns(:task)
7 end

6. Spies can also be added to Mocha using an extension gem called Bourne.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=136

TESTING ROUTES 137

There are just two special lines in this snippet. In line 2, a special

Double Ruby construct called a proxy is created. Basically, this just

calls the method normally but marks the method as one for Double

Ruby to keep track of.7 Since Double Ruby is now tracking calls to the

method, you can make assertions based on method counts, in this case

asserting that the Task class actually received a method call find(’1’). I

find this to be a nice way to split the difference between real mocks and

actually testing the model method in the controller.

There’s much, much more on the costs and benefits of mock object

testing in Chapter 7, Using Mock Objects, on page 101. Also, see Sec-

tion 7.2, Stubs, on page 103 for a description about how mock objects

can be used to shore up test coverage of the failure states in code gen-

erated by standard Rails scaffolds.

8.6 Testing Routes

Although the basics of Rails routing is simple, the desire to customize

Rails response to URLs can lead to confusion about exactly what your

application is going to do when converting between an URL and a Rails

action, and vice versa. Rails provides two core methods that you can

use to specify or validate routing behavior.

The two Rails methods, assert_generates() and assert_recognizes(), are

mirror images of each other. Let’s take them in alphabetical order.

The assert_generates() method takes an expected path string as its first

element and a hash of key/value pairs as the second. The test passes

if the Rails router would convert the key/value pairs into the expected

string—it’s doing a string comparison. Here’s an example from Huddle:

assert_generates "/status_reports/1",

{:controller => "status_reports", :action => "show", :id => "1"}

In this case, Rails runs the router against the hash and compares it to

the string.

The inverse method, assert_recognizes(), flips the order of the arguments

and also flips the execution.

assert_recognizes {:controller => "status_reports",

:action => "show", :id => "1"}, "/status_reports/1"

7. You can also choose to post-process the returned result, though an obvious use case

doesn’t leap to mind.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=137

COMING UP 138

In this case, the second argument is run through the Rails router, and

the parameters that it converts to are compared against the hash in the

first argument.

There’s a little bit more flexibility to the arguments in assert_recognizes().

The second argument can also be a hash with two keys, a :path key and

a :method key, which allows you to test RESTful routing like this:

assert_recognizes {:controller => "status_reports",

:action => "update", :id => "1"},

{:path => "/status_reports/1", :method => :put}

For the purposes of this test, the first argument can be written as a

RESTful method or named route method, though it’s not immediately

clear to me why this is an improvement:

assert_recognizes new_status_report_url, 'status_reports/new'

If you want to test items that would be in the query string, you must

pass them as a hash in an optional third argument—just appending

them to the string path argument won’t work:

assert_recognizes {:controller => "status_reports",

:action => "show", :id => "1", :all => true},

"/status_reports/1", {:all => true}

RSpec automatically generates route tests as part of its controller scaf-

fold, but the default tests don’t. I don’t usually make a habit of includ-

ing these tests, but they are handy in cases where the routing instruc-

tions get complicated.

8.7 Coming Up

In this chapter, we covered how to simulate controller actions for test

purposes. Next, we’re going to run through other user-facing parts of

the Rails stack. The next chapter will talk about view testing and when

and why you need it. After that, we’ll discuss testing helpers; nearly

every Rails application I’ve ever seen has untested helpers, and we’ll

show some ways to tackle them. In the following chapter, we’ll close

with an example of how to integrate JavaScript Ajax testing with your

Rails test suite.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=138

Chapter 9

Testing Views
View testing is fundamentally different from testing controllers and

models in that it’s prohibitively time-intensive to fully test the view out-

put, and even when that’s accomplished, it’s still hard to validate the

actual in-browser look of the view. Not to mention that overly detailed

view tests are notoriously brittle in the face of consistent redesign of

the look of your application. Using Rails’ tools, you are best served by

trying to specify and verify the logical and semantic structure of your

application’s output.

9.1 The Goals of View Testing

Successful view testing is an art—it’s hard to find the appropriate bal-

ance between testing so little that the tests have minimal value and

testing so much that they break every time your HTML designer looks

at them cross-eyed.

Create a view test when you want to do one of the following things:

• Validate that the view layer runs without error. This is of course

the bare minimum you’d expect from a view test. That said, you

can save yourself some production deployment embarrassment if

you know that every branch of your views actually runs.

• Validate that the data gathered by the controller is expressed as

expected in the view. You’ll especially want to test that any view

logic dependent on the presence or absence of particular data

works as expected.

• Validate security-based output; for example, administrators may

have links on pages allowing them access to edit mode. Or users

may be able to edit their own posts but not a different user’s. And

so on.

KEYS TO SUCCESSFUL VIEW TESTING 140

A view test, within Rails itself, should not attempt to do any of the

following:

• Validate the exact text or HTML markup of the response. This is

susceptible to random breakage.

• Validate the user-facing look of the site. Even if you could figure

out a reasonable way to do this automatically in Rails, again, it’s

too easily broken. Other tools, such as Selenium, can handle some

of this testing.

9.2 Keys to Successful View Testing

The lists in the previous section demonstrate that view testing is some-

what different from model or controller testing. View testing is more

impressionistic than model or controller testing. To keep view testing

manageable, you need to assume that the HTML keeps true to the spirit

of the test. That is, if you are testing for the existence of an element

with a DOM ID project_description, then for your own sanity, you need

to assume that the content of that DOM ID will actually be something

related to the project description and not, say, the phase of the moon.

With that in mind, here are some guidelines for keeping your eye on the

ball when writing view tests:

Try not to test for the existence of specific inner text of the HTML tags.

If you feel the need for this kind of double-check, odds are your test

is too specific. Testing for more general regular expression matches is

sometimes useful, though. You may be tempted to say that testing for

the inner text of an HTML tag is OK if you are testing for the exact

contents of a field that you have specifically created in your test data.

Maybe, but don’t blame me when somebody decides to add the phrase

“date of birth” into the actual text field and you have to fix a bunch of

tests. You know your code better than I do, but I’ve seen this movie,

and it rarely ends well.

Instead, test views at the semantic level. Put DOM IDs on HTML tags

all over the place and test for the existence or nonexistence of tags with

the expected DOM IDs. Alternately, consider tagging with CSS classes

that describe the semantic role of some output, even if the CSS class

doesn’t have specific styling associated (for instance, giving all the data

rows of a table a data_row CSS class). This lets you verify the structure

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=140

USING ASSERT_SELECT 141

Validating HTML

A very strong side benefit of assert_select() is that the method
parses the HTML and will emit warnings if the HTML is badly
formed—for example, if an end tag is missing. (Unfortunately,
the warning message doesn’t come with a stack trace, so if a
warning suddenly pops up in the middle of your test suite, it can
be hard to track down.) For this reason, assert_select() is valu-
able to run on your output even if you aren’t doing any other
validations in the call. If you want to test for valid markup more
formally, you can check out the html_test plugin on GitHub.

of your output without being caught up in the content. The extra DOM

IDs also help in Ajax, CSS, and browser debugging later.

The only exceptions to testing for DOM IDs are form elements; you

can test those using their name attribute (which allows you to directly

verify the key that will be in the ensuing POST call). You can even test

the value attribute, at least sometimes.

In addition to testing for what is in the response, testing for what is not

in the response is very useful, especially when dealing with users who

have different roles and therefore different output.

9.3 Using assert_select

The assert_select() method is a powerful and flexible method of validat-

ing HTML content. We use the syntax of CSS selectors to specify HTML

structures to be found in the output. The assert_select() method auto-

matically looks at @response.body to find the output to test against.

Once you’ve found matching structures, you can further test for the

content of the structures or the number of matches found. The basic

structure of assert_select() is copied with slight variation in the accep-

tance test frameworks Webrat and Capybara; see Chapter 14, Write

Better Integration Tests with Webrat and Capybara, on page 224.

The simplest use of assert_select() is merely to test for the existence of a

specific HTML tag:

assert_select("form")

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=141

USING ASSERT_SELECT 142

This assertion is true if there is at least one HTML form element in the

response body. (By the way, the tag selector must be a string, not a

symbol.)

There are three ways to make an assert_select() test more specific. You

can augment the selector using various CSS-style syntax decorations,

you can specify the content of the tag, and you can specify the number

of matching tags that should exist, based on the selector and content.

Or you can do all three.

The least complicated of these three options is to specify the content

of the tag. If the next argument to assert_select() is a string or regu-

lar expression, then the assertion is true only if there is at least one

matching HTML tag with inner content that matches the argument.

String arguments must match the content exactly. Regular expression

arguments must =~ match the contents. The following two examples

both match against Happy Birthday:

assert_select("span", "Happy Birthday")

assert_select("span", /Birthday/)

If the second argument after the selector is a number or a range, the

test validates that the number of matching elements in the response is

either the exact number or in the range. In practice, I use this to vali-

date that, say, an table in an index view has one row for each element

being displayed:

assert_select("tr", 5)

assert_select("tr", 2 .. 3)

You can also write the tests with true and false as the second argument.

True indicates the default “one or more” behavior, and false indicates

that there are no matching elements: assert_select(:form, false). A common

scenario is a view in which different text elements display for different

users. Testing for just the existence of options leaves a hole in the tests:

a view that displays all options at all times will pass the tests. Testing

for the nonexistence of text that shouldn’t exist exposes that particular

bug.

If you want to be bold and specify both text and a count, the final

argument is a hash or some key/value pairs. The keys :text and :count

match the features you’ve already seen:

assert_select("span", :text => "User Name", :count => 5)

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=142

USING ASSERT_SELECT 143

Personally, I find the keys more readable, and I tend to use them even

when specifying only one option. You can also specify range behavior

with the keys :minimum and :maximum.

That brings us to modifying the selector. There are many different selec-

tor modifiers, most of which don’t get used very often. The modifiers boil

down to five types, described in the following sections.

Specify the DOM ID of the Element

You can specify an element by DOM ID using an #, as in "div#user_name_

3". You can leave off the HTML tag if you want; "#user_name_3" matches

any DOM element with that ID, regardless of tag type. In any assert_

select() selector, a ? behaves as it does in an ActiveRecord SQL condition

string, as a placeholder for a value specified later. So, the common use

case of specifying an element using the Rails dom_id() method can be

written as follows:1

assert_select("div#?", dom_id(@user, :name))

This is often easier to read than duplicating the hash symbol to inter-

polate the string. As mentioned previously, I recommend testing for IDs

frequently.

Specify the CSS Class of the Element

The CSS class of the element being searched for can be specified using

., as in "div.headline". Again, you can leave off the HTML tag. Aside from

looking at class rather than ID, the behavior is exactly as described

earlier.

Specify the Value of an Arbitrary HTML Attribute

An assert_select() method can be made to look for any arbitrary HTML

attribute. This is most useful when searching for the name attribute of

input tags. Other, noncontrived examples include the action attribute of

a form tag, the src attribute of an img tag, and the href attribute of an a

tag. The basic syntax looks like this:

assert_select("input[name=user_id]")

1. Remember that you need to include ActionView::Helpers::RecordIdentificationHelper in order

to use dom_id() in your test class.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=143

USING ASSERT_SELECT 144

Note than when testing forms that use Rails naming conventions, you

probably want to use the ? syntax for the case where the name actually

contains a bracket; otherwise, you can put the entire name in quotes:

assert_select("input[name=?]", "user[email]")

assert_select("input[name='user[email]']")

The = operator indicates an exact match with the value of the attribute.

There are a couple of modifiers to the = for different match behavior. The

one I use most often is *=, which is true if the attribute value contains

the specified text, as in assert_select("input[name *= email]"). You can also

use ^= and $= for starts with and ends with, respectively.

Use a Pseudoclass

There are a number of pseudoclass modifiers that can be added to a

selector, including the following:

assert_select("div:first-child")

assert_select("div:last-child")

assert_select("div:only-child")

assert_select("div:nth-child(3)")

assert_select("div:nth-last-child(3)")

To clear up any confusion: you read these as “a div element that is

a first child of its parent,” not as “the first child of a div element.” I

find these helpful when I am testing for output that is in a specific

order, such as a sorted list. It’s easier to test for "li:nth-child(2)" than to

try to extract all the list element text via regular expression and test

for the elements of that resulting list. Also, notice those are dashes

and not underscores in those pseudoclass names. It seems like I’m

always typing them as underscores and then being surprised when the

pseudoclass is not recognized.

Each of these has a more specific modifier, replacing child with of-type,

such as first-of-type, which means the matching tag must be the first of

its siblings of the given HTML type. Read div:first-of-type as “a div element

that is the first div element child of its parent.” (Do I need to mention

that you can use any number as the argument to the nth modifiers?)

Other modifiers that aren’t in the first/last/only genre include the

following:

assert_select("div:root")

assert_select("div:empty")

assert_select("div:not(.headline)")

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=144

USING ASSERT_SELECT 145

The first modifier in the list checks for an element of the given type that

also happens to be the root element. The second looks for an empty

tag, while the not modifier looks for an element of that type that does

not match the given selector—in this case, a div element that does not

have a CSS class of headline. I tend to feel the first two of these are too

fiddly for useful tests, but I’m sure there’s a valuable use case out there

somewhere. The not construct can be helpful for negative testing.

Combine Multiple Selectors

You can use assert_select() to test for different combinations of tags.

Again, the syntax is similar to standard CSS.

assert_select("div.headline span")

That snippet finds all span elements that are inside a div with the class

‘headline‘. Putting a > operator between the two elements means that

the second element must be a direct child of the first, not an arbi-

trary descendant. The + operator means the second element must come

immediately after the first in the document, while the ~ operator means

that the second element comes somewhere after the first.

You can do further testing on the elements that match your selector.

This is most valuable when you want to perform a second match that

is limited to only a particular part of your HTML body, such as if you

want to test for the existence of a particular text input field but only

within a specific form on the page. The most common way to do this

kind of search is by nesting assert_select() calls. Nested assert_select()

calls have an explicit form that shows the general idea:

assert_select("div.headline") do |matching_elements|

matching_elements.each do |element|

assert_select(element, "span")

end

end

To begin with, this example exposes a feature of assert_select() that

hasn’t been mentioned yet. If the first argument to the assert_select()

call is a Rails HTML::Node class, then the search is limited to content

within that HTML node. If no HTML node is specified, then as you have

seen, the default is the response body for the response being tested.

If assert_select() is passed a block element, then the argument to the

block is an array containing all the HTML nodes that match the selec-

tor: in this case, any div element with the DOM class headline. Inside

the block, the matching elements can be iterated on. In this case, they

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=145

TESTING OUTGOING EMAIL 146

are iterated on for the purpose of verifying that all headline elements

contain a span subelement.

This pattern is so common that it has a shortcut, which is used by

passing a block that takes no arguments:

assert_select("div.headline") do

assert_select("span")

end

In this case, any assert_select() method called within the block is auto-

matically applied to all the matching elements and must pass all those

elements in order for the entire assertion to pass—meaning that this

snippet and the previous one are exactly equivalent, and each verifies

that every div.headline element contains at least one span element.

The form where the block takes an argument is more flexible, although

to be honest, I’ve used assert_select() for years without needing that

flexibility—frankly, without even knowing that flexibility existed. If you

need even more flexibility, assert_select() also returns the same array of

matches, so the same test could be written like this:

matching elements = assert_select("div.headline")

matching_elements.each do |element|

assert_select(element, "span")

end

That’s arguably an improvement over the first form: it’s shorter. This

structure is most helpful to debug an assert_select() test that’s failing.

Using assert_select() well is the difference between view tests that actu-

ally help you and view tests that make you tear your hair out, so point

it at those DOM IDs and take advantage of the shortcuts, and you’re off

to a great start.

9.4 Testing Outgoing Email

The process of testing outgoing email is closely related to view testing.

Typically, you are interested in validating two separate pieces of logic:

first, that your application sends an email when expected; and second,

that the email content is what you want. The somewhat indirect nature

of the Rails ActionMailer makes testing email somewhat less obvious

than it might be, but it’s not that hard. This section assumes that you

are using ActionMailer—if you’re using a third-party tool for managing

email, you may need to find a different way to test.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=146

TESTING OUTGOING EMAIL 147

To test emails in Rails, configure your test setup so that ActionMailer

saves emails in a queryable data structure rather than actually mailing

them. This step should be done for you in the Rails config/environments/

test.rb file:

config.action_mailer.delivery_method = :test

Remember to put this next line in your test setup; doing so ensures that

the data structure holding the mailings is emptied. Otherwise, emails

from other tests will linger and make your test results invalid:

ActionMailer::Base.deliveries.clear

The quickest email test you can create is one to find out if an email

has been sent. The method ActionMailer::Base.deliveries.size() returns the

number of emails that have been sent since the last time the Action-

Mailer::Base.deliveries object was cleared. So, a simple way to determine

whether an email has been sent is just to query it:

assert_equal 1, ActionMailer::Base.deliveries.size

Rails provides a shortcut, along the lines of assert_difference. This meth-

od takes a block and determines how many emails are sent in the

course of executing the block:

assert_emails 1 do

get :forgot_password

end

The argument to the assert_emails() method is the number of emails that

need to be sent in the block for the assertion to pass. The assert_emails()

method does not depend on the clear() method having been called; it

does its own tracking of count before and after the block. There’s also

an assert_no_emails(), which is equivalent to assert_emails(0).

If you want to specify the content of the email messages and not just the

count, Rails provides the assert_select_email() method, which you might

use like this:

assert_select_email do

assert_select "div", :text => "Email Reset"

end

What assert_select_email() allows you to do is make assert_select() asser-

tions that will be applied to the body of every email currently in the

ActionMailer::Base.deliveries repository. All emails must pass the asser-

tions in the block for the whole thing to pass. This method works only

if your outgoing emails are of content type text/html, which is a signifi-

cant limitation.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=147

TESTING HELPERS 148

You can test the features of the sent emails directly using code like this:

email = ActionMailer::Base.deliveries.first

assert_equal "Forgot Password Notice", email.subject

assert_equal @user.email, email.to

assert_match /new password/, email.body

The basic accessors have expected names. You can find out more about

how to inspect a mail object at http://guides.rubyonrails.org/action_mailer_

basics.html.

Outside of core Rails, Shoulda provides a couple of helper methods for

testing email; these are described in Section 11.4, Shoulda Assertions,

on page 175. The most robust way of testing emails, though, is linked

to RSpec (see Chapter 12, RSpec, on page 186) and also works great

with Cucumber (see Chapter 15, Acceptance Testing with Cucumber,

on page 235). The email-spec library provides a number of very useful

helpers. For the most part, they are nice, RSpec ways of performing the

tests we’ve already examined, but the library also provides the ability

to follow a link in an email back to the site, which is very helpful for

acceptance testing of user interactions that include email. The library’s

home is http://github.com/bmabey/email-spec.

9.5 Testing Helpers

Helper methods are the storage attic of most Rails applications. Typi-

cally, helper modules contain reusable bits of view logic, such as the

logic to control what output is printed or change the display based

on model data. In practice, helper modules tend to get filled with all

kinds of clutter that doesn’t seem to belong anywhere else. Worse, since

the Rails mechanism for testing helpers was underpowered and under-

publicized, helper methods often aren’t tested even when they contain

significant amounts of logic.

Unfortunately, helpers occupy a somewhat ambiguous place in the

Rails MVC pattern structure. Helpers are sort of in the view layer, but

they are frequently used as a conduit between views and models, or

even views and controllers. Helper tests have a lot in common with

model tests—for instance, individual helper methods can be unit-tested

one at a time. However, in order for helper methods to be properly run

in a test context, at least some of the test controller framework used for

Rails functional tests needs to be loaded, and getting the setup correct

takes a couple of extra steps.

Report erratum

this copy is (P1.0 printing, February 2011)

http://guides.rubyonrails.org/action_mailer_basics.html
http://guides.rubyonrails.org/action_mailer_basics.html
http://github.com/bmabey/email-spec
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=148

TESTING HELPERS 149

There is a core Rails mechanism for testing helpers, added in Rails

2.1 or so; it’s one of the best kept secrets in the entire core stack. (Or

was...as of Rails 2.3, helper tests are generated whenever you generate

controllers.) You can find it in ActionView::TestCase. This class creates a

fake controller environment so that helpers can be loaded, called, and

tested.

For helper tests to work if you’re using anything prior to Rails 2.3,

you must explicitly require ’action_view/test_case’ either in your test/test_

helper.rb file or in the helper test itself. Your actual helper test class is

a subclass of ActionView::TestCase. The Rails-generated test shell looks

like this:

require 'test_helper'

class UsersHelperTest < ActionView::TestCase

end

The naming convention is just like everything else in Rails: add Test to

the end of the name of the helper module to get the class name, and

add _test to get the filename. So, your UsersHelper module is tested in

users_helper_test.rb and is declared as class UsersHelperTest < ActionView::

TestCase. As of Rails 2.3, Rails places helper tests in the test/unit/helpers

directory.

At this point, you are good to go and can test helper methods exactly

as though they were regular model methods (with an exception or two

described in a moment). For example, if you have the following helper

module:

module UsersHelper

def display_name(user)

"#{user.first_name} #{user.last_name}"

end

end

the test is straightforward:

class UsersHelperTest < ActionView::TestCase

test "a users display name" do

@user = User.new(:first_name => "Ron", :last_name => "Lithgow")

assert_equal("Ron Lithgow", display_name(@user))

end

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=149

TESTING BLOCK HELPERS 150

Inside your test class, you should have access to all the helpers in your

project as well as all the regular Rails helpers, which are automatically

loaded by ActionView::TestCase.

9.6 Testing Block Helpers

In Rails 2.2, the private _erbout variable in templates that stored the

output stream was changed to a public instance variable. This change

caused very little stir outside of _erbout’s immediate family, but it did

have two very nice effects. It made it possible to inject text from a helper

directly into the ERb output without fussing around with block vari-

ables, and it also made it easier to test block helpers.

A block helper is a helper function that, when invoked in the ERb

file, takes a block made up of ERb text. Two common uses of block

helpers are as access control, in which the logic in the helper deter-

mines whether the code in the block is invoked, and as wrapper code

for HTML that might surround many different kinds of text—a rounded

rectangle effect, for example.

Here’s a small example of a block helper:

def if_logged_in

yield if logged_in?

end

which would be invoked like so:

<% if_logged_in do %>

<%= link_to "logout", logout_path %>

<% end %>

and which you would test like this (in Rails 2.2 and higher):

test "logged_in" do

assert !logged_in?

assert_nil(if_logged_in {"logged in"})

login_as users(:quentin)

assert logged_in?

assert_equal("logged in", if_logged_in {"logged in"})

end

What we’re taking advantage of here is that the last value in the block

becomes the return value of the block, which becomes the last value

in the method, which becomes the return value of the method. So if

nobody is logged in, the block doesn’t fire, and the method returns nil.

If a user is logged in, then whatever gets passed in the block—in this

case, the literal string logged in—is the returned value of the helper.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=150

USING ASSERT_SELECT IN HELPER TESTS 151

This also works for helpers that concat values directly into the ERb

stream. The somewhat contrived helper:

def make_headline

concat("<h1 class='headline'>#{yield}</h1>")

end

And the test:

test "make headline" do

assert_dom_equal("<h1 class='headline'>fred</h1>",

make_headline { "fred" })

end

Again, we’re taking advantage of concat() returning the final string as

well as placing it into the ERb output. Be careful when using this kind

of testing: you aren’t actually testing the ERb output—just the return

value of the helper method.

If that’s not good enough, you can actually test against the ERb output

by taking advantage of the fact that concat adds its text to an output

buffer that you can also access in your test:

test "make headline with output buffer" do

make_headline { "fred" }

assert_dom_equal("<h1 class='headline'>fred</h1>", output_buffer)

end

In this test, the helper call places the text in the output_buffer, which is

then validated in the final line of the test. The method assert_dom_equal()

tests whether two strings of HTML are equivalent even if their attribute

lists are differently formed.

9.7 Using assert_select in Helper Tests

The output buffer trick is kind of neat, but it would be even nicer if you

could bring the full flexibility of assert_select() to bear on the output.

Under normal circumstances, assert_select() looks to @response.body to

get the text to parse. There are two ways to work around this. You

can fake a @response.body object, or you can point assert_select() at an

arbitrary string.

The arbitrary string mechanism is perhaps simpler—include the follow-

ing method in your test/test_helper.rb.

def assert_select_string(string, *selectors, &block)

doc_root = HTML::Document.new(string).root

assert_select(doc_root, *selectors, &block)

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=151

USING ASSERT_SELECT IN HELPER TESTS 152

This method creates an HTML selector object of the kind that Rails

accepts as the selector first argument of assert_select(). Using this meth-

od would look like this:

test "make headline with response body" do

assert_select_string(display_name(user) "div.first_name")

end

In other cases, you might want to have a more complete controller set-

up, because you are testing session logic. You might also want to call

assert_select() directly. If so, you can add the controller setup easily.

Place this module somewhere, then require it instead of action_view/

test_case:

Download huddle/test/helper_test_case.rb

require 'action_view/test_case'

module ActionView

class TestCase

setup :setup_response

def setup_response

@output_buffer = ""

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

@session = {}

@request.session = @session

end

def session

@request.session

end

def make_response(text)

@response.body = text

end

end

end

This adds a TestResponse object; it also gives you a session object, if you

need that for testing. The new class now has the make_response() meth-

od, which takes arbitrary text and slaps it right into @response.body for

you. All you need to do is call make_response() with whatever text you

want to assert:

test "make headline with response body" do

make_headline { "fred" }

make_response output_buffer

assert_select("h1.headline")

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle/test/helper_test_case.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=152

HOW MUCH TIME SHOULD YOU SPEND ON HELPERS? 153

Gotcha: url_for

Although all core helpers are automatically loaded into the
ActionView test environment, there are one or two that have sig-
nificant dependencies on the real controller object and there-
fore fail with opaque error messages during helper testing. The
most notable of these is url_for(). One workaround is to override
url_for() by defining it in your own test case (the method signa-
ture is def url_for(options = {})). The return value is up to you; I find
a simple stub response is often good enough.

I’m not prepared to defend this as the most elegant way to get assert_

select() into your helper tests, but it does work. I think this mechanism

probably results in more readable tests for block helpers or for nested

assert_select() calls. Note that the ActionView::TestCase() creates its own

new TestResponse object every time you call a helper method—so if for

some odd reason you have a test that depends on the exact @response

object in a helper, you could run into problems with the response object

not holding values from helper call to helper call.

9.8 How Much Time Should You Spend on Helpers?

The amount of time you spend testing helpers really depends on the

helper or, more generally, on how you use helpers. If you have a lot

of view logic in helpers and they are shading toward being presenters

of one kind or another, it’s a good idea to validate any complex logic.

Simple HTML methods, like the make_headline() example here, don’t

require a lot of testing (certainly not if the testing is bogging you down).

However, if you do find a bug in a helper, pull the method into the

garage and cover it with tests.

9.9 When to View Test

It’s important to test view logic in a considered, careful way. In all TDD,

any change to the logic of the program should be driven by a test.

Although you shouldn’t have the bulk of your logic in the view layer,

you’ll need to have some logic surrounding display, and that should be

tested.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=153

WHEN TO VIEW TEST 154

However, complex view logic should be moved to helpers,2 which are

easer to test; see Section 9.5, Testing Helpers, on page 148. A strict

TDD process often breaks down a little in the view. View program-

ming sometimes feels more exploratory to me, so I usually do a little

bit of view code and then cycle back to write a test. As long as the

feedback between test and code is relatively tight, that process won’t

hurt you. View testing can also be managed in an integration test layer

using Cucumber (see Chapter 15, Acceptance Testing with Cucumber,

on page 235) or Rails integration tests; see Chapter 13, Testing Work-

flow with Integration Tests, on page 215. Find the workflow that works

best for you.

2. A number of third-party tools enlarge the helper concept to a full-fledged object called

a Presenter, which effectively mediates between a view and one or more models.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=154

Chapter 10

Testing JavaScript and Ajax
I’ve had this conversation more than once:

ME: What test tools do you use?

SOMEBODY ELSE: Oh, you know, Shoulda, factory_girl.

ME: Do you test your views?

SOMEBODY ELSE: Sometimes. When necessary.

ME: How do you test your Ajax?

SOMEBODY ELSE: [With sad resignation] We don’t.

To be fair, sometimes the roles are reversed, and it’s me observing that

we don’t test our JavaScript.

And really, can you blame me? Testing JavaScript and Ajax is a pain.

For one thing, JavaScript is frequently, well, written in JavaScript. It’s a

nice language, but it has not historically had anywhere near the level of

test framework support and commitment as Ruby.1 Not only that, but

Ajax actions often only happen in the browser. The actions are difficult

to extract for a user test if they exist only in the view layer. Then there’s

the whole browser dependence thing. It’s hard to blame somebody for

chucking the whole testing thing and just writing the code already.

Yet, as more application logic moves to the browser to create cool and

useful user experiences, leaving that code untested becomes a bigger

1. For some reason, JavaScript tool support has always lagged a few years behind simi-

lar languages, probably because of the mistaken impression that JavaScript is just some

kind of toy language. This has started to change over the last few years as frameworks

like Prototype and jQuery have enabled really powerful JavaScript tools.

FIRST OFF, RJS 156

and bigger risk. In this chapter, we’ll walk through some strategies and

tools for testing JavaScript and Ajax from within a Rails application.

This is not meant to be a complete guide to all possible JavaScript

tools; we simply don’t have the space for that. The tool structure that is

outlined in this chapter is one method that I’ve had some success with

and that I think you can be successful with as well. The advantage of

the tool chain described in this chapter is that it allows you to test your

Ajax both in the browser and as part of your regular command-line

Ruby testing. Outside your Rails application, you should also consider

browser-level acceptance tools like Selenium as a way to test your web

application as a whole.

10.1 First Off, RJS

Even in the notoriously fickle-about-new-tools Rails community, the

rise and fall of Ruby JavaScript (RJS) from “cool new tool for writing

Ajax” to “tool whose usage is a slightly embarrassing admission that

you don’t like writing JavaScript” seemed to happen quickly. RJS came

along at a time when the JavaScript toolkits were so clunky that it made

sense to make what was potentially an extra server call and write simple

client-side commands in Ruby so as to avoid writing scary JavaScript.

Since then, the JavaScript tools have made legitimate strides, the idea

of unobtrusive JavaScript has spread, and the Ruby and Rails commu-

nity has gotten more comfortable with the need to write more complex

client-side interactions in JavaScript, all of which have combined to

make RJS seem unneeded at best.

That said, RJS is still nice for quick Ajax features that are inside the

limited RJS feature set and are simple enough not to need the weight

of an entire JavaScript framework, such as a simple dynamic update of

a specific point on the page based on current server data. Plus, since

RJS executes essentially as a Rails controller action, it’s much easier to

test than other JavaScript that exists exclusively in the browser. Also,

legacy Rails projects may still have some RJS that you might want to

bring under test.

Your weapon of choice in testing RJS is the assert_select_rjs() method.

This method is less like the normal assert_select() than you might imag-

ine. The meaning of an assert_select_rjs() call depends slightly on the

number of arguments the method is called with. In what I think of as

the standard way of calling the method, it takes two arguments, the

first of which is a symbol matching an existing RJS Rails method, and

the second of which is a DOM ID.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=156

FIRST OFF, RJS 157

The DOM ID can be static, or can be calculated, as in this example:

assert_select_rjs :replace, dom_id(@project)

This assertion passes if the controller call in question returns an RJS

JavaScript snippet and that snippet contains a call to the RJS replace()

method with a DOM ID matching dom_id(@project). This does not make

any claim—yet—about the text that is being injected into that DOM

element. If the first argument is the RJS method :insert, then the second

method can be the position of the insertion (:top, :bottom, :before, or

:after), in which case the assertion passes only if the method and the

position are called from the RJS. If there is no position argument, any

insertion to the given DOM ID will match.

The assertion in assert_select_rjs() can be made weaker. If there’s no

method symbol, any RJS call to the DOM ID will pass the assertion.

If there are no arguments to assert_select_rjs(), the assertion will pass if

any RJS call is made in the output—not the most helpful assertion in

terms of actually saying something useful.

Clearly, though, the RJS assertion is more valuable, or at least more

detailed, if you can specify details about the HTML being sent back to

the client page. In order to manage that, you need to pass a block to

assert_select_rjs(). As a block container, assert_select_rjs() behaves just like

plain old assert_select(), meaning that you can place assert_select() calls

inside the block and they will be evaluated against the HTML extracted

from the RJS call sent to the client.

assert_select_rjs :replace, dom_id(@project) do

assert_select "div#project_name", :text => @project.name

end

In addition to testing for the existence of the RJS call, the previous snip-

pet also tests that the HTML sent to replace the existing text contains

a div element with @project.name as its content. This works for any RJS

call that is associated with sending text back to the browser—so, for

example, remove() doesn’t need a block call.

If you happen to be using RJS, then the RJS should be tested as though

it was a view, and since RJS pretty much always indicates a change in

application logic, then that means RJS calls nearly always should have

tests. Exactly how detailed the tests need to be is up to you—normally I

do test for the specifics of the text coming back to the browser, but then

most of the time I only use RJS if the call is on the simple side. When the

call gets more complicated, then we move to actual JavaScript, which

needs its own test framework.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=157

TESTING JAVASCRIPT FROM RAILS WITH JASMINE 158

10.2 Testing JavaScript from Rails with Jasmine

Once you outgrow the RJS training wheels and start riding the big-

kid bicycle that is actual JavaScript, the testing awkwardness becomes

apparent. Many JavaScript test frameworks run in a browser, which

is certainly nice for assuring fidelity in that browser but is slow and

unwieldy for TDD-style tight-feedback testing. If only you could work in

both modes...well, you can, using a BDD test framework for JavaScript

called Jasmine, along with a gem that wraps Jasmine in Ruby and

another gem that produces nicer command-line output.

If you are using Jasmine, you are also going to be much happier if you

write using the unobtrusive JavaScript style, which I’ll define as the sep-

aration of JavaScript from the HTML markup. When writing JavaScript

unobtrusively, no JavaScript behavior is specified in the body of the

HTML page. Instead, event handlers are bound to DOM IDs in func-

tions written elsewhere and injected to the page on load.

There are a number of advantages to an unobtrusive style—generally

speaking, it opens browser client JavaScript up to the full range of mod-

ern software techniques. For our purposes here, the biggest advantage

is that JavaScript separated from the HTML view layer is much easier

to isolate and test.

10.3 Getting Started with Jasmine

Jasmine for Rails is distributed as a gem, which gives you access to the

Jasmine test framework from within your Rails application. You can

then add Jasmine to your Bunder Gemfile with gem ’jasmine’ and then

use a bundle install to make sure that everything is in place. With the

gem installed, you can generate Jasmine files:

% bundle exec jasmine init

Jasmine has been installed with example specs.

To run the server:

rake jasmine

To run the automated CI task with Selenium:

rake jasmine:ci

In Rails 2, the startup command is script/generate jasmine.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=158

RUNNING JASMINE TESTS 159

Behind the scenes, Jasmine has created a few files. It has created a

spec/javascripts directory—even if you are using Test::Unit, Jasmine cre-

ates a spec directory. In that directory, Jasmine has placed a sample

file, PlayerSpec.js, which you don’t need to keep, and three other files

that you do need to keep. The file helpers/SpecHelper.js is the Jasmine

analog of Test::Unit’s test_helper.rb, and the support directory has a jas-

mine_runner.rb script and a jasmine.yml configuration file. We’ll talk about

the config file in a bit.

Jasmine also adds two sample files to the public/javascripts directory,

which again you can delete if you don’t need them. Finally, it adds a

Rake file defining two different tasks for running Jasmine.

10.4 Running Jasmine Tests

The Jasmine gem defines two tasks that let you run your Jasmine

specs. The first is simply rake jasmine.

$ rake jasmine

your tests are here:

http://localhost:8888/

The Rake task uses Selenium to allow you to run the tests in a browser.

All you need to do is hit that http://localhost:8888 address helpfully pro-

vided by the Rake task, and the suite will run, as shown in Figure 10.1,

on the following page.2

The in-browser display shows you every test in the Jasmine suite—

green for pass, red for fail. Clicking any test or test group will rerun

those tests.

If you’d like to actually run your tests from a command line, Jasmine

provides the rake jasmine:ci task. Depending on how strict your definition

of “from a command line” is, this task does run tests from a command-

line prompt. Sort of. The output looks like this:

% rake jasmine:ci

Waiting for jasmine server on 49421...

«Some boring stuff»

==> Waiting for Selenium RC server on port 49427... Ready!

Waiting for suite to finish in browser ...

2. I suspect it might be annoying if I was creating new Jasmine projects every day, but

right now, as an author, I’m really happy that the Jasmine team provides a working

sample in their general distribution.

Report erratum

this copy is (P1.0 printing, February 2011)

http://localhost:8888
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=159

RUNNING JASMINE TESTS 160

Figure 10.1: Jasmine

Player

- should be able to play a Song

- tells the current song if the user has made it a favorite

Player when song has been paused

- should indicate that the song is currently paused

- should be possible to resume

Player#resume

- should throw an exception if song is already playing

Finished in 0.048983 seconds

What you can’t see from that session transcript is that the Jasmine

task has actually opened a Firefox browser, is running the tests in that

browser, and is reporting the results back to the terminal session. If

you have a failing test, you will see a stack trace pointing to the offend-

ing line. Since the task needs to start the Jasmine server, a Selenium

remote server, and a Firefox browser window, you can safely surmise

that the 0.048 seconds it takes to actually run the tests is but a small

fraction of the total time the test takes from start to finish.

As the ci suffix indicates, this task is intended to be integrated into

your continuous integration server, where it would be run every time

there’s a new check-in to the code base. If you want something a little

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=160

WRITING JASMINE TESTS 161

more suitable for regular development, you can try the jazz_money gem,3

which uses the harmony gem to execute JavaScript from a Ruby process,

meaning that your Jasmine tests really do run in a terminal session.

10.5 Writing Jasmine Tests

It doesn’t help to know how to run a Jasmine test unless you know

how to write one. Jasmine’s syntax is as much like RSpec as you can

imagine, given that it’s JavaScript and not Ruby. If you aren’t already

familiar with RSpec’s basics, it might be worth going to Chapter 12,

RSpec, on page 186 and then coming back here.

As with RSpec, the basic units of a Jasmine test are denoted with

describe() and it(). Where Ruby uses blocks, JavaScript uses anony-

mous functions, giving you something like this:

describe("on my edit page", function() {

beforeEach(function() {

clearMyValues();

});

it("should do something neat on start", function() {

initValues();

expect(userCount).toEqual(2);

});

});

As with RSpec, describe() creates a group of several related tests, the

beforeEach() function defines a callback that is executed before each

test, and it() describes a test. The method pair expect() and toEqual()

are the Jasmine equivalent of a matcher. To negate the matcher, you

chain in a not() method, as in expect(userCount).not.toEqual(2).

You can nest describe() methods, and the semantics of defining multi-

ple beforeEach() functions are exactly as with the Ruby libraries we’ve

discussed—outermost first. There is an analogous afterEach() method

that is performed after each test, and that, as you’d expect, is executed

in innermost first order. Both the beforeEach() and afterEach() methods

can also be placed outside any describe() method, in which case the

3. As I write this, the jazz_money gem is, wait for it...between versions strongly enough

that I don’t think it’s going to be helpful to provide detailed installation instructions. See

http://github.com/pivotalexperimental/jazz_money for current updates.

Report erratum

this copy is (P1.0 printing, February 2011)

http://github.com/pivotalexperimental/jazz_money
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=161

WRITING JASMINE TESTS 162

function applies to all tests in the file. One twist unique to Jasmine is

that any individual spec can define its own after functionality by defin-

ing a this.after method anywhere within its body that takes a function

argument:

it('does something' function() {

this.after(function() { cleanUp(); })

});

Cleanup at the individual spec level is sometimes necessary to clear

global information about the DOM or event handlers that would other-

wise be persisted between tests.

Jasmine defines about a dozen default matchers. See the Jasmine docs

at http://pivotal.github.com/jasmine/matchers.html for a full list. Here are

the most useful. These should be reasonably self-explanatory.

expect(obj).toBeFalsy;

expect(obj).toBeGreaterThan(value)

expect(num).toBeLessThan(value);

expect(obj).toBeNull;

expect(obj).toBeTruthy;

expect(array).toContain(value);

expect(obj).toEqual(value);

expect(str).toMatch(regex);

Jasmine makes it easy to add your own custom matchers. The first

step is to define the matcher. You have two different parameters to

worry about. The actual value, meaning the argument to the expect()

method, is exposed as this.actual. Any arguments you want to pass to

the matcher itself as part of the matcher logic you can just pass as a

straightforward argument list. The matcher function needs to return

true if the matcher passes. So, a sample matcher might look like this:

function(expected_name) {

return this.actual.name == expected_name;

}

To actually use the matcher, it needs to be registered with Jasmine

using the addMatcher() function, which is available inside any before()

or it() method. The matcher can be defined inline inside addMatcher(),

as follows:

beforeEach(function() {

this.addMatchers({

toHaveTheName: function(expected_name) {

return this.actual.name == expected_name;

}

})

});

Report erratum

this copy is (P1.0 printing, February 2011)

http://pivotal.github.com/jasmine/matchers.html
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=162

WRITING JASMINE TESTS 163

You don’t actually have to define the matcher function inline, of course.

The function can be defined anywhere, assigned to a variable, and ref-

erenced within the addMatchers() function. For that matter, beforeEach()

here can also be defined globally in a helper file.

Of course, saying that we can define the method globally begs the ques-

tion of exactly how the Jasmine gem determines what files to load,

both for testing and as the application to be tested. Unlike Test::Unit

and RSpec, which infer these items from the file system, the Jasmine

gem determines the boundaries of the test suite from entries in the

spec/javascripts/support/jasmine.yml file.

The first thing you can do in the jasmine.yml file is specify the JavaScript

source libraries to load from:

Download huddle3_rspec2/spec/javascripts/support/jasmine.yml

src_files:

- public/javascripts/prototype.js

- public/javascripts/effects.js

- public/javascripts/controls.js

- public/javascripts/dragdrop.js

- public/javascripts/application.js

- public/javascripts/**/*.js

Each line here is a different pattern, and any JavaScript files that

match the pattern are loaded and available to be accessed from Jas-

mine files. The files are loaded in order, which explains why you’d spec-

ify individual files even though the wildcards in the last line cover all

of them. By specifying what files go first, you can make sure that any

dependencies between the files are managed.

Although the JavaScript file list is probably what you would need to edit

the most, the jasmine.yml file also allows you to specify CSS files that

can be used for DOM testing, helper files with, say, custom matcher

functions, and the location of the actual Jasmine spec files.

Jasmine has a very flexible and feature-rich mock framework, which

Jasmine refers to as spies. You declare a spy with the spyOn() method,

which takes two arguments. The first argument is an object, and the

second argument is a string that is the name of a method to which

the object responds. You can also declare an empty spy with Jasmine’s

create_spy() method. So:

var User = {

username: 'zachp',

authenticate: function(password) {

return someWebServiceCall(this.username, password);

},

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/javascripts/support/jasmine.yml
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=163

WRITING JASMINE TESTS 164

authWithCallback: function(password, callbackFunction) {

if authenticate {

return callbackFunction(password);

}

}

};

describe("user stuff", function() {

it('should call authenticate', function() {

var myUser = Object.create(User);

spyOn(myUser, 'authenticate');

// do something

});

it('should authenticate with callback', function() {

var myUser = Object.create(User);

spy = jasmine.createSpy();

myUser.authWithCallback('password', spy);

//do something

});

});

In the previous fragment, I create an object named myUser that knows

about an authenticate() method and then use the spyOn method to cre-

ate a spy for that method. At this point, the only thing the spy does is

block the actual call to the authenticate() method and just return null.

In the second spec, a bare spy is created and passed to the authWith-

Callback() method as the callback function.

So far, that’s not very helpful, but there are a few different ways to add

useful behavior.

We can create an expectation on the spy, effectively testing to see if

the mocked method has been called. Note that when using spyOn(),

the spy is actually part of the object’s namespace, but the bare spy

created using createSpy() can be used directly. So, you’d add the basic

expectation like so:

expect(myUser.authenticate).toHaveBeenCalled()

expect(myUser.authenticate).toHaveBeenCalledWith('password')

expect(spy).toHaveBeenCalled()

expect(spy).toHaveBeenCalledWith('password')

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=164

INTEGRATING JASMINE WITH DYNAMIC RAILS 165

We can augment the spy when it is created to change the default behav-

ior of just returning null. These methods work with spies created with

either spyOn() or createSpy().

spyOn(myUser, 'authenticate').andCallFake(aFunction);

spyOn(myUser, 'authenticate').andCallThrough();

spyOn(myUser, 'authenticate').andReturn(arg);

spyOn(myUser, 'authenticate').andThrow(exception)

The andCallFake() method takes a method as an argument and invokes

that method when the spy is called, exactly analogous to a Ruby mock

package taking a block as an argument. The andCallThrough() method is

unusual in that it allows for spy-like watching behavior and also calls

the original method as though there was no spy. Both andReturn() and

andThrow() specify the behavior of the fake method when called, again

similar to the Ruby mock packages we’ve already seen.

10.6 Integrating Jasmine with Dynamic Rails

If you are reading about Jasmine in this particular book, then you prob-

ably are most interested in testing JavaScript that interacts with your

Rails application. Meaning that much of what you want to test will

be dependent on the particular DOM structure of your pages and the

event bindings that you create. Jasmine is designed to be DOM and

framework agnostic, so it doesn’t offer out-of-the-box support for tight

Rails integration. However, with a little elbow grease, it is possible to

write Jasmine specs that use the output of your Rails app as DOM fix-

tures. There are a couple of ways to do this; the mechanism outlined

here comes from JB Steadman on Pivotal’s blog at http://pivotallabs.com/

users/jb/blog/articles/1152-javascripttests-bind-reality-.

The idea here is to write a script that does nothing but generate HTML

and put it in a temporary file for later loading by Jasmine. The original

Pivotal version used RSpec for this purpose, on the theory that the files

would then be generated as part of your regular test suite. But there’s

nothing magical about RSpec here except that RSpec already has the

Rails environment loaded and primed for easy querying. What you need

is to add a line like the following to any RSpec spec, integration test,

or whatever, which is generating HTML that you’d like to use in a later

Jasmine test.

save_fixture((response.body, 'body'), 'project_file')

Report erratum

this copy is (P1.0 printing, February 2011)

http://pivotallabs.com/users/jb/blog/articles/1152-javascripttests-bind-reality-
http://pivotallabs.com/users/jb/blog/articles/1152-javascripttests-bind-reality-
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=165

INTEGRATING JASMINE WITH DYNAMIC RAILS 166

The save_fixture() method is a helper method from JB’s blog post that I

have tweaked very slightly here:

Download huddle3_rspec2/spec/spec_helper.rb

def save_fixture(raw_markup, name, parent_element="body")

markup = html_for(raw_markup, parent_element)

fixture_path = File.join(RAILS_ROOT, '/tmp/js_dom_fixtures')

Dir.mkdir(fixture_path) unless File.exists?(fixture_path)

fixture_file = File.join(fixture_path, "#{name}.fixture.html.erb")

File.open(fixture_file, 'w') do |file|

file.puts(markup)

end

end

The save_fixture() method gets its HTML text from a method that uses

Nokogiri to extract and clean up the HTML.

Download huddle3_rspec2/spec/spec_helper.rb

def html_for(html, selector)

doc = Nokogiri::HTML(html)

remove_third_party_scripts(doc)

content = doc.css(selector).first.to_s

return convert_body_tag_to_div(content)

end

The exact details of the cleanup methods called here aren’t that impor-

tant. It cleans up third-party scripts by removing a known DOM ele-

ment from the output. More importantly, it changes the body tag to a

regular div tag because, as we’ll see, we’ll be injecting this text into an

already existing Jasmine page. One important fact is that if you are try-

ing this call from an RSpec controller method, you need to have called

render_views (in RSpec 1.x, that’s integrate_views) in the RSpec describe

block so that RSpec will generate output.

From Jasmine, you can then use the fixture with the assistance of some

helper methods that you can find online at http://github.com/pivotaljb/

js-fixture-example or in the code samples for this book at code/huddle3_

rspec2/spec/javascripts/helpers/load_fixture.js. The Github repository is a

full application that shows how to incorporate the fixtures into a Rails

apps. The downside is that it was written for RSpec 1.3, and the RSpec

helper code needs a little bit of tweaking to work in RSpec 2.4

4. Most notably, the RSpec 1.3 helper code is implemented inside the class

Spec::Rails::Examples::ControllerExampleGroup, and in RSpec 2, the fully qualified class name

is RSpec::Rails::ControllerExampleGroup.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/spec_helper.rb
http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/spec_helper.rb
http://github.com/pivotaljb/js-fixture-example
http://github.com/pivotaljb/js-fixture-example
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=166

INTEGRATING JASMINE WITH DYNAMIC RAILS 167

describe("huddle project behavior", function() {

it("does some fancy ajax thing", function() {

spec.loadFixture("project_file");

$(".project").click();

// and then some expectations

});

});

There are a couple of notes here. Once the fixture is loaded, you can

use jQuery or your framework of choice to interact with the DOM.

Any event bindings that are generated as part of that particular page

are also loaded and can then be triggered from the spec. Any event

bindings that are part of an external script that would normally be

loaded before the body of the fixture, such as in an application.js file,

need to be separately loaded in the Jasmine test after the fixture is

loaded. So, for example, if your JavaScript event handlers are nicely

separated into functions, you need to call those functions after loading

the fixture in order for the event handlers to be honored by the Jasmine

code.

Also, you need to clear the global event bindings and DOM after each

test:

Download huddle3_rspec2/spec/javascripts/helpers/SpecHelper.js

beforeEach(function() {

$('#jasmine_content').empty();

spec.clearLiveEventBindings();

});

spec.clearLiveEventBindings = function() {

var events = jQuery.data(document, "events");

for (prop in events) {

delete events[prop];

}

};

Granted, this isn’t exactly a simple process, and I’d hope that a future

version of the Jasmine gem will move some of this into the framework,

at least as an option. That said, this is pretty close to having everything

you’d want in a Rails/Ajax framework: you can use your actual appli-

cation code to drive your JavaScript test, you can run the tests in a

browser or at the command line, and everything is reasonably easy to

create and run. JavaScript testing has gotten a lot better over the past

year, from prohibitively irritating to actually feasible and valuable. As

JavaScript continues to be a big part of dynamic web apps, increased

testing is a very good thing.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/javascripts/helpers/SpecHelper.js
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=167

Part IV

Testing Framework Extensions

Chapter 11

Write Cleaner Tests
with Shoulda and Contexts

The core testing tools distributed with Rails are great, and I would have

killed for them back when I was doing Java applications. Even so, there

are extensions, add-ons, and frameworks that make the tools even more

powerful and allow us to write tests that are even more concise and

clear. We’ve seen a couple of these categories already: data factories

in Section 6.5, Data Factories, on page 87 and mock object tools in

Chapter 7, Using Mock Objects, on page 101.

Data factories and mock tools expand the reach of what we can cleanly

do in a test. Over the next two chapters, we’ll talk about test add-ons

that change the structure of our tests as a whole. In this chapter, we’ll

talk about contexts as a way of denoting groups of related tests and how

the ability to organize tests can lead to a different style of testing where

each test has a single assertion. A Rails add-on called Shoulda adds

this style of testing on top of the standard-issue Test::Unit. In addition,

Shoulda bundles up a lot of common test patterns into one-line macros

that can easily be inserted into our tests.

As we talk about single assertion test styles, we’ll show how Shoulda

implements them on top of Test::Unit while still being useful inside

RSpec. The single-assertion style is more appropriate in some settings

than others, and we’ll also cover some tools that make writing single

assertion tests inside Test::Unit a little bit easier.

In the following chapter, we will look at RSpec. RSpec is not built on

Test::Unit but is a completely parallel testing tool with its own struc-

CONTEXTS 170

ture, syntax, and style. RSpec is designed to allow us to specify system

behavior with an emphasis on making our code read as naturally as

possible.

11.1 Contexts

In Section 2.3, Setup and Teardown, on page 29, we saw how Test::Unit

and Rails allow us to extract common setup and teardown behavior

to methods that are automatically run before or after each test. It’s a

handy feature, with one flaw: the setup methods are common to all

tests in a given class. Since Rails tends to prefer that we keep all tests

for a single controller or model in one file, this can cause problems.

Often, you’ll find that in addition to having setup common to the entire

class, you’ll have subordinate setup common to only a cohesive subset

of the tests. For example, you might be writing controller tests for a

user that is logged in, for one that is not logged in, and for an admin.

While there is common setup to all these tests, each set of tests has a

separate user initialization not shared by the others. If only tests could

be grouped with their own startup method, one not shared by all the

other tests....

Enter the idea of contexts. Contexts are not part of the core Rails test

tools but are implemented very similarly by three different add-ons:

RSpec, Shoulda, and a gem by Jeremy McAnally conveniently called

Context.1 For this discussion, we’ll be using the Shoulda syntax. RSpec

contexts will be discussed in Section 12.2, Contexts with describe, on

page 190.

The context() method is used to group a set of tests into a single set for

the purpose of giving them a common setup and teardown block that is

not shared by other tests in the test class.

The basic idea is that each context has its own methods, run before

and after each test in that context—the Context gem uses before() and

after() as the names of these methods, and Shoulda uses setup() and

teardown(). Not to spoil the next chapter or anything, but RSpec uses

before(:each) and after(:each).

1. As I write this, Shoulda’s status as a stand-alone tool is in flux, and by the time you

read this, there is a pretty good chance that the context part of Shoulda will have also

been extracted into a stand-alone gem.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=170

CONTEXTS 171

Within a context, we define the setup and teardown blocks by calling

the methods setup() and teardown(). We can have as many different

setup or teardown blocks as we want; they will be executed in the order

they are defined. Here’s an example:

class ProjectControllerTest < ActionController::TestCase

context "with an admin user" do

setup do

login_as_admin

end

teardown do

logout

end

test "admin features"

something administrative

end

end

context "with a regular user" do

setup do

login_as_normal

end

test "normal features"

something normal

end

end

end

The tests in each context have the setup() methods for that context run

before each test. We can still use the standard Test::Unit setup and

teardown blocks outside of any context. Those methods would be called

first, before the context setup method, at the beginning of each test.

Since a simple Ruby method creates contexts, we can generate them

dynamically in the same way that tests can be generated dynamically:

["admin", "root"].each do |role|

context "with a #{role} user" do

setup do

@user = User.new(:role => role)

end

test "can login"

this test is run twice, once in each context

end

end

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=171

CONTEXTS 172

I’m not saying I recommend this in general, mind you, but it can be

done. You need to be careful with this kind of metaprogramming in

tests, because the added complexity makes it easier for bugs to get into

the tests, and the metaprogramming will make the test less clear to

future readers.

Contexts can also be nested, which we can accomplish by simply de-

claring a new context inside the old one. We normally do this when we

have a setup that we want shared by other tests that will extend the

setup. In this example, both inner contexts share the @product object,

but one tests for what an administrative user would see, and the other

tests for what a normal user would see:

context "for the product show page" do

setup { @product = Product.create(:name => "Wonderflonium") }

context "with an administrative user" do

setup { User.create(:admin => true) }

should "see an edit link" do

get :show, :id => @product.id.to_s

assert_select "a", "edit"

end

end

context "with a normal user" do

setup { User.create(:admin => false) }

should "not see an edit link" do

get :show, :id => @product.id.to_s

assert_select "a", "edit", :count => 0

end

end

end

The setup blocks are called in the order you’d expect, from the parent

context down to the children—contexts can be nested as deeply as you

want. However, it’s hard to think of a real-world example where you’d

want more than three levels, maybe four. In any case, teardown blocks,

if they exist, are resolved in the reverse order, from child up to parent.

Nested contexts are great in that they can reduce duplication in our

tests, specifically duplication in test setup, which can make it easier

to focus attention on the part of the test that is actually, you know,

testing. However, if the contexts or the tests within get long, it can easily

become hard to follow the execution thread through the various layers

of nested contexts. Sometimes it’s worth it to have a little duplication

in tests in order to make it clear what’s going on.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=172

BASICS OF SHOULDA 173

11.2 Basics of Shoulda

Let’s take a brief moment to talk about the basics of Shoulda. It’s dis-

tributed as a gem, so for Rails 3 all we need to do is include it in the

Bundler Gemfile:

gem "shoulda"

In Rails 2.x, we need the following line in the config.rb file:

config.gem 'shoulda', :lib => 'shoulda'

Once installed, it will insert itself into Test::Unit, so there is no fur-

ther include or require needed to use Shoulda. In addition to work-

ing with Test::Unit, the matcher and assertion features of Shoulda can

also be integrated with RSpec. For that to work, require ’shoulda’ in the

spec/spec_helper.rb file somewhere before the RSpec configuration block.

We have already seen the Shoulda syntax for defining contexts. In

Test::Unit, Shoulda gives us the should() method to define a test, which

is analogous to the Rails standard test() method or to the older-style

Test::Unit construct def test_. This was a lot cooler before Rails added the

test() method, which does effectively the same thing. The method takes

a string name for the test and a block that defines the test. A simple

example follows:

should "actually work" do

@user = User.new

assert @user.valid?

end

This creates a method called test_should_actually_work(), which is incor-

porated into the standard Test::Unit test runner.

Within the body of a context, we can define as many should() tests as

we want. To clarify, should() tests don’t need to be in contexts; contexts

just turn out to be a handy way to group related tests together.

11.3 Single Assertion Testing

When added to Test::Unit, Shoulda has a lot of functional similarities

to RSpec. However, Shoulda popularized a different style of structuring

tests that depends on contexts and nested contexts. The defining fea-

ture of this style is the idea that each test should contain only a single

assertion. In essence, what would otherwise be a test with some setup

and a series of assertions has the setup placed instead in the context

setup, and each assertion becomes a separate test.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=173

SINGLE ASSERTION TESTING 174

To put it another way, a test consists of three basic steps: setting up

the test data, performing some action, and verifying the result. In a

traditional-style Test::Unit test, the setup is in the setup block, and the

action and verification are in the actual test. Typically, a test has more

than one assertion.

In a single-assertion style test, the setup and action are in the context

setup, leaving just the verification in the actual test. As you’ll see in

the next section, Shoulda comes with a lot of macros that are designed

to be used in the body of a context where the action under test has

been performed. The design goal is that each test contain only a single

assertion, but obviously that’s not always feasible. A sample set of tests

about an index page might look like this:

Line 1 context "with the index page" do

-

- setup do

- @p1 = Product.create(:name => "product 1")
5 @p2 = Product.create(:name => "product 2")
- get :index
- end

-

- should "be successful" { assert_response :success }
10 should "set the users" do

- assert_same_elements([@p1, @p2], assigns(:users))
- end

- should "display the table rows" do

- assert_select "tr.product_row", :count => 2
15 end

- end

The action of this test, get :index, is in the context setup in line 6.

Each should() test has one assertion, so the context is effectively what

would have been one test in the more classic test style. In Section 11.4,

Shoulda Assertions, on the following page, we’ll see that Shoulda has

some macros to simplify writing these tests, and in Section 11.7, Single-

Line Test Tools, on page 183, we’ll see some other tools for single-line

tests.

This style has one significant advantage: each individual assertion will

now run independently. If they were all in the same test, a failure in

one assertion prevents later assertions from being evaluated. This gives

us a somewhat more accurate view of our code from the test suite. The

major disadvantage to this style is a loss of speed, since the setup block

is now being called once for each assertion. If the setup adds a lot of

objects to the database, there can be a significant slowdown. As far as

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=174

SHOULDA ASSERTIONS 175

readability goes, I personally don’t see a huge difference between the

two styles, although the one-assertion test may be clearer in simple

cases. It is true, though, that the one-assertion style tends to lead to

more deeply nested contexts that can be hard to wade through.

11.4 Shoulda Assertions

In addition to the context() and should() helpers, Shoulda defines a set

of additional test methods that can make tests easier to read.

First are a couple of methods that could be described as assertions

that should really be in Rails core. Two that are particularly useful are

assert_same_elements() and assert_contains(). The assert_same_elements()

method takes two array arguments and returns true if the arrays con-

tain the same elements, even if the order of the elements differs. So, the

following test will pass:

should "have the same elements" do

assert_same_elements([1, 1, 3, 4], [4, 1, 3, 1])

end

If one array contains an element multiple times, the other array must

contain the same element the same number of times.

Also helpful is assert_contains(), which takes an array and an object.

The assertion passes if the array contains the object. If the object hap-

pens to be a regular expression, the assertion passes if any of the ele-

ments in the array matches the regular expression. The flip side is

assert_does_not_contain():

should "contain things"

assert_contains([1, 2, 3, 4], 2)

assert_does_not_contain([1, 2, 3, 4], 7)

end

For ActiveRecord, we get assert_valid() and assert_save(), both of which

take an ActiveRecord model and return true if the model is either cur-

rently valid or able to be saved. We also get assert_good_value(), the

basic form of which takes three arguments. The first argument is an

ActiveRecord model, the second is an attribute, and the third is a value.

The assertion passes if the value is valid for the attribute, given the val-

idations defined in the model. An optional fourth argument consists

of a string or regular expression that causes the assertion to check

that any validations errors do not match that argument; it limits the

“good” check to a single validation error. The complementary method,

assert_bad_value(), is the exact opposite. In both methods, the first argu-

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=175

SHOULDA ONE-LINERS 176

ment can be a class, in which case a new instance of that class is cre-

ated and used for the assertion.

11.5 Shoulda One-Liners

Shoulda is famous for its one-line test matchers, which are powerful

tests that can be expressed in a single line. In most cases, these tests

are designed to be placed inside contexts or the top-level class, not

inside should() tests. The tests then validate certain conditions based

on the context setup.

Shoulda defines specific one-liners for ActionController, ActionMailer,

ActionView, ActiveRecord, and ActionMailer. In earlier versions of

Shoulda, these tests were effectively class methods that started with

should_. Over time, however, the Shoulda team switched to a more

RSpec-like matcher structure, in which the tests are methods that can

be used after the more generic should or should_not methods, as in the

following ActiveRecord test:

Line 1 class CalendarTest < Test::Unit::TestCase
2 should have_many(:tasks)
3 end

Notice that the call in line 2 is not inside a context or test. Instead, it

generates a test that contains one assertion, namely, that the Calendar

class has a Rails has_many association with the Task class.

Also, every method that can be called after should can also be called

after the method should_not, which reverses the effect of the method:

should_not have_many(:tasks) passes if the class does not have the associ-

ation. Rather than take arguments, many of the matchers have further

methods that can be chained after them to produce the same effect.

If you’re familiar with RSpec, you’ll recognize these features from the

RSpec syntax. (Those of you who are not familiar with RSpec will be

after reading the next chapter.) In fact, it’s an important feature of the

Shoulda matchers that they are fully compatible for inclusion in RSpec

specifications.

Action Controller Macros

The ActionController methods are generally designed to be used inside

a context that makes a controller call in its setup, and they validate

common side effects of controller actions. The following code sample

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=176

SHOULDA ONE-LINERS 177

shows the most useful ones, in a really contrived way. This is not

the complete set; check out the Shoulda documentation at http://dev.

thoughtbot.com/shoulda/ for the whole shebang.

context "with the index page"

setup { get :index }

should assign_to(:projects)

should render_template(:index)

should render_with_layout('application')

should respond_with(:success)

should respond_with_content_type('application/pdf')

end

should route(:get, '/index', :action => :index).to(

:action => :index)

context "with a redirect"

setup { get :an_action_that_redirects }

should redirect_to('route_path')

should set_session(:user_id).to(nil)

should set_the_flash.to(/Sorry/)

end

Let’s look at this a little more closely. First, should assign_to() passes if

the controller sets an instance variable of that name to any value. We

can make the test more specific with two chain methods. The method

with() (as in should assign_to(:project).with(@project)) makes the assertion

pass only if the variable is assigned to that particular value, while the

method with_kind_of() takes a class as an argument and passes if the

assigned value has a kind_of?() relationship with the class.

The should redirect_to() takes any Rails url-convertable() object as the

argument; alternately, the method can take a block that evaluates to

a URL-like object. The should_respond_with_content_type() method takes

a string, which must match the MIME type exactly; a symbol, which

is mapped to a MIME type using Ruby’s standard lookup table; or a

regular expression, which must match the string for the MIME type.

The should set_session() method is analogous to should assign_to() but

checks the session list. The to() chain method takes the expected value

in the session. The should set_the_flash_to() takes either a string or a reg-

ular expression as its argument.

The should route() method is a little special, in that it checks general

routing, rather than anything specific to the particular controller. The

Report erratum

this copy is (P1.0 printing, February 2011)

http://dev.thoughtbot.com/shoulda/
http://dev.thoughtbot.com/shoulda/
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=177

SHOULDA ONE-LINERS 178

first argument is an HTTP verb; the second is a URL string. Remaining

arguments are key/value pairs representing the options set by Rails

during the routing process. If we don’t specify the controller in the

option list, Shoulda will infer the controller from the name of the cur-

rent test class. The to chain method contains the expected route, and

the expected and actual routes are compared using the same logic

as the standard Rails routing tests described in Section 8.6, Testing

Routes, on page 137.

ActiveRecord Macros

There are many ActiveRecord macros, most of which are designed to

be run outside of a context and check the relationships or validations

of the ActiveRecord model. Again, I’ll present sample usage of the most

useful in a slightly contrived test class and put any special notes at the

end:

class ProductTest < ActiveSupport::TestCase

should allow_mass_assignment_of(:name)

should allow_value("123").for(:serial_number)

should belong_to(:company)

should ensure_inclusion_of(:price).in_range(0 .. 100)

should ensure_length_of(:name).is_at_least(5).is_at_most(10)

should have_and_belong_to_many(:orders)

should have_many(:categories)

should have_one(:brand)

should validate_acceptance_of(:agreement)

should validate_numericality_of(:price)

should validate_presence_of(:password)

should validate_uniqueness_of(:email)

end

Some general notes: remember that all of these matchers also work

with the negating should_not() method. All of the matchers that would

expect an error, such as should_not allow_value, take an optional chain

method with_message(), which allows us to test the exact error message.

In older versions of Shoulda, many of these methods took an optional

list of arguments. That functionality seems to have been removed.

The ensure_length_of() matcher has a series of chain methods to specify

the length, including is_at_least(), is_at_most(), and is_equal_to.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=178

WRITING YOUR OWN SHOULDA MATCHER 179

ActionMailer Macros

Shoulda defines one matcher for testing ActionMailer behavior; it is

called should have_sent_email(). With no chain methods, it passes if an

email has been sent. One or more chain methods can be added on:

from(), to(), with_body(), and with_subject().

should have_sent_email.to("mom@mommy.com").with_subject(/laundry/)

All the chain methods take a string, which must be an exact match, or

a regular expression, which must match the email part in question. For

from() and to(), the string or regular expression needs to match only one

of the list of addresses. If multiple email addresses are sent by Action-

Mailer, all the email addresses must match for the entire expression to

pass.

11.6 Writing Your Own Shoulda Matcher

The Shoulda team’s decision to move Shoulda to a higher degree of

RSpec compatibility had undeniable positive benefits—such as, well,

RSpec compatibility and also a more consistent syntax. However, the

ability to easily create our own Shoulda matchers was clearly a casu-

alty. What was once a simple, three-line class method is now about

a page of code. To be fair, if you are in RSpec, you can use RSpec’s

tools for creating custom matchers simply, as shown in Section 12.6,

Creating Your Own Matchers, on page 211. If you aren’t in RSpec-land,

though, you don’t have a lot of tools to hold your hand through the

process. It’s doable, though, and here’s an example. If you are going to

start writing your own Shoulda matchers for Test::Unit, I recommend

digging into the Shoulda source for examples.

We’ll build this Shoulda matcher from the top down. The first thing

we need is the method that will actually be called from the Shoulda

test. The example we’re going to walk through is the ActionController

render_template matcher, which is called something like this:

should render_template(:index)

The first thing we need to define is the actual render_template() method.

Although Ruby syntax flexibility is disguising it, the render_template()

method is actually an instance method of TestCase—which might be

easier to see if we wrote the line fully parenthesized:

should(render_template(:index))

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=179

WRITING YOUR OWN SHOULDA MATCHER 180

So, the render_template method has to be defined as an instance method

of TestCase, and it needs to return a Matcher object—more about this in

a second.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=180

WRITING YOUR OWN SHOULDA MATCHER 181

The actual Shoulda definition of the method looks like this:

module Shoulda

module ActionController

module Matchers

def render_template(template)

RenderTemplateMatcher.new(template, self)

end

end

class RenderTemplateMatcher

Full definition of matcher here

end

end

end

The arguments passed to the matcher class must include the context in

which the matcher was called, handled here by passing self. This allows

the matcher to work both when called from the top level and when

called from within a context and ensures the correct context startup

and teardown are executed around the matcher.

Now, we have to make that method visible to TestCase. As a short exam-

ple, we can just include it inside the test_helper.rb file. For a larger exam-

ple, we can have a separate file that opens the class and manages the

include:

module Test # :nodoc: all

module Unit

class TestCase

include Shoulda::ActionController::Matchers

end

end

end

The render_template() method returns an instance of RenderTemplateM-

atcher. What’s that? Nearly anything we want, within some constraints.

For example, notice that RenderTemplateMatcher, as listed earlier, does

not have a parent matcher class of any kind.

The rest of the Shoulda system does expect the Matcher class to define

a specific set of methods. To wit:

• A description() method that returns a string. This string is used

to give the test a name for the Test::Unit system, so the method

typically uses some of the arguments to the matcher to create a

unique string for each matcher, as in "render template #{@template}".

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=181

WRITING YOUR OWN SHOULDA MATCHER 182

• A method matches?, which takes one argument, the eventual sub-

ject of the test at runtime. It returns true if the matcher matches

and false otherwise. If this method is complex, it will often defer to

private methods of the class to define its logic.

• Methods failure_message() and negative_failure_message(), which re-

turn strings and are used as the display message when the

matcher doesn’t return the expected value. We can make these

plain attributes, in which case default messages are used.

• Any other methods that we want to chain with the matcher would

be defined as instance methods of the matcher class. Typically,

those methods set instance variables that are referred to by the

matches?() method when determining whether the matcher should

pass.

The entire matcher looks like this, a slightly edited code sample straight

from the Shoulda source:

class RenderTemplateMatcher

attr_reader :failure_message, :negative_failure_message

def initialize(template, context)

@template = template.to_s

@context = context

end

def matches?(controller)

@controller = controller

begin

@context.send(:assert_template, @template)

@negative_failure_message = "Didn't expect to render #{@template}"

true

rescue Test::Unit::AssertionFailedError => error

@failure_message = error.message

false

end

end

def description

"render template #{@template}"

end

end

Shoulda matchers aren’t that complicated, but if you find yourself cre-

ating a bunch of them, it might be time to check out RSpec and its more

simplified ways of creating matchers.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=182

SINGLE-LINE TEST TOOLS 183

11.7 Single-Line Test Tools

The single assertion per test style has a lot of nice features, but it can

be kind of verbose, since each single-line test needs its own descrip-

tion string. In this section, we examine two different tools for writing

more concise one-assertion tests. One tool, Zebra, works nicely within

Shoulda, while the other, Testbed, is more of a stand-alone tool. Again,

the following chapter discusses RSpec’s own mechanisms for single-line

tests.

One-Line Tests with Zebra

Zebra, by James Golick, is dedicated to the proposition that test names

are basically just comments and therefore inherently untrustworthy.

With Zebra, we can write very succinct one-line tests.

Install Zebra as a gem by putting it in the gemfile for Rails 3 (gem

’zebra’); or, in Rails 2.3, with the following in an environment file:

config.gem 'giraffesoft-zebra', :lib => 'zebra',

Once installed, Zebra is pretty straightforward to use. Here’s an exam-

ple from within a Shoulda controller test—you can use Zebra outside of

Shoulda, but it works really nicely inside it:

context "GET new" do

setup do

get :new

end

expect { assert_response :success }

expect { assert_select "form[action *= password_resets]" }

expect { assert_select "input[name = email]"}

end

Effectively, what we get here is an anonymous test by calling expect()

with a block argument. Zebra creates regular Test::Unit tests with names

based on the context of the block. In this case, the first Zebra test will

be named test: assert_response :success; if the test fails, that’s the name

we’ll see.

Other than that, the expect() block behaves just like any other test.

The code in the block is executed after the setup; if the assertions fail

or error, they’ll be reported just like any other test. There’s no explicit

requirement that the test block be just one line, but it makes little sense

to use Zebra for longer tests.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=183

SINGLE-LINE TEST TOOLS 184

I don’t know about you, but to me, these tests read great. They are easy

to write and easy to read. I suspect I may like Zebra even more than

James Golick does.

Creating Quick Case Tests with Testbed

Testbed was written by, well, by me. Originally it was just an experi-

ment in metaprogramming, but I find it useful from time to time, so I’ve

continued to use it where appropriate. Testbed is a Rails plugin, and

you can get it at http://github.com/noelrappin/testbed.

Testbed is useful when we need to write a series of tests that validate

the same method or series of methods for a variety of input values—in

other words, something like this, taken from tests I wrote for extensions

to Enumerable:

test "lowest missing number" do

assert_equal([1, 2, 3].lowest_missing_number, 4)

assert_equal([1, 2, 4].lowest_missing_number, 3)

assert_equal([].lowest_missing_number, 1)

end

That test isn’t horrible by any means, but it does put all the asser-

tions in a single test, and in some sense it duplicates the call to low-

est_missing_number(), somewhat obscuring the point of the test. And this

is something of a best case for this kind of test—if the common test

feature is more than one line, these tests can get kind of verbose.

Testbed allows us to put the common method in a block and then pass

each individual input as a separate test. Here’s the same set of tests

using Testbed:

testbed "should return lowest missing number" do |list|

list.lowest_missing_number

end

verify_that([1, 2, 3]).returns(4)

verify_that([1, 2, 4]).returns(3)

verify_that([]).returns(1)

The testbed() method takes a descriptive string and a block. Any ver-

ify_that() methods between that block and the next testbed() creates a

test with a name like test_should return lowest missing number_[1, 2, 3].

When the test is run, the arguments to verify_that() are passed to the

block and can then validate the return value of the block against the

argument to the returns() method. The generic returns() method can take

any argument. There are also specific methods: returns_true(), returns_

false(), and returns_nil().

Report erratum

this copy is (P1.0 printing, February 2011)

http://github.com/noelrappin/testbed
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=184

WHEN TO USE SHOULDA 185

The key to using Testbed is to pass literals or simple objects to the test-

bed and let the block do the heavy lifting. In this example from a time-

sheet application, Testbed uses Timecop (described in Section 6.11,

Timecop, on page 97) to freeze a date and then creates a factory object

and calculates a resource’s anniversary in a given year:

testbed "calculate anniversary" do |start_date, year|

Timecop.freeze(2009, 6, 1)

resource = Resource.make(:start_date => start_date.to_date)

resource.start_date_anniversary(year).to_s(:db)

end

verify_that("May 6, 2007", 2008).returns("2008-05-06")

verify_that("May 6, 2007", nil).returns("2009-05-06")

11.8 When to Use Shoulda

Originally, Shoulda was let into the world as a way to get many of the

advanced features of RSpec without the heavy commitment that RSpec

entailed and without some of the more magical features of RSpec syntax

that some people don’t like. Over time, the Shoulda team became more

comfortable with RSpec, and now Shoulda is probably best understood

as a way to make single-assertion testing easier, no matter which other

tools are in your toolbox.

I love the clarity of the single-line style, especially in simple cases, and

that’s the way I work by default. That said, it’s possible for those tests

to get so tangled in nested contexts that they become hard to read. If

you start to have test failures because other people on your team can’t

trace the flow of action in tests, that’s a real problem and an indication

that you need to dial the nested contexts back. Also, keep an eye on

test speed, and watch out for slow running setups that have to be run

for multiple single-assertion tests.

Now that we’ve seen how contexts and single-line testing work within

Test::Unit, it’s time to see how they play out in RSpec, a library writ-

ten from scratch to support a very strongly natural-language way of

specifying application behavior.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=185

Chapter 12

RSpec
RSpec is a Behavior-Driven Development alternative to Test::Unit for

Ruby applications. I haven’t spent a lot of time parsing the differ-

ence between the original term Test-First Programming, the later term

Test-Driven Development (TDD), and further derived terms like Test-

Driven Design (also TDD) and Behavior-Driven Development (BDD), let

alone more esoteric acronyms like Example-Driven Development (EDD)

or Acceptance Test–Driven Development (ATDD).1

By featuring the word test so prominently, the initial terminology put

the emphasis on testing in and of itself, and certain folks got the idea

the sole point of the process was to verify program correctness. Of

course, as I’ve already quoted once in this book, Kent Beck knows that

“Correctness is a side benefit.” Suggesting that TDD is about correct-

ness may seem a minor point, except that the same folks then had a

tendency to buy into two somewhat more pernicious corollaries:

• If the whole point of Test-Driven Whatever is to verify correctness,

then if the process isn’t 100 percent perfect at proving correctness,

it must be worthless.

• If the whole point of Test-Driven Whatever is verifying correctness,

then it doesn’t matter when I write the tests; I can write them after

I write the code.

In point of fact, the goal of TDD is to improve the quality of your code

in many ways; verifying correctness is only one of them. And it makes

1. The acronym I prefer, Failure-Driven Development (FDD), has never really caught on.

I also like to refer to my preferred Agile process as Boring Software Development, but

that’s another story.

GETTING STARTED WITH RSPEC 187

What’s a Spec?

What do you call the things you write in an RSpec file? If you
are used to TDD and Test::Unit, the temptation to call them tests
can be overwhelming. However, as we’ve discussed, the BDD
theory behind RSpec suggests it’s better not to think of your
RSpec code as tests, which are things happen after the fact.
So, what are they?

The RSpec docs and code refer to the elements of RSpec as
examples. Maybe I’m not going to the right parties, but I’ve
never heard an actual person use that term. (I have, however,
heard people use example group to refer to RSpec’s version
of contexts.) The term I hear most often is simply spec, as in: “I
need to write some specs for that feature.” I’ve tried to use that
term in this section. But I suspect I’ll slip up somewhere. Bear
with me.

a big difference when you write the tests, because the process is much

more effective when the tests come first. That’s why the original name

for the process explicitly called out test-first.

I’m in danger of disappearing into a huge rant here, but here’s the

important part: names like Test-Driven Development tended to lead

people to the conclusion that the TDD process was mainly about verify-

ing existing behavior. This led to a lot of frankly irritating online debates

with people talking past each other because of different interpretations

of what testing meant in test-driven. The term Behavior-Driven Devel-

opment was coined to help win those arguments. Well, an argument

like that can’t really be won, but it was coined to help clarify the terms.

Where the word test implies verifying already written code, the terms

like behavior and specify imply describing the workings of code that has

yet to be written. Ideally, then, discussing your process in BDD terms

makes you more aware of the reason why you are using the process in

the first place. Eventually, RSpec was created as a tool for implement-

ing BDD in Ruby.

12.1 Getting Started with RSpec

RSpec is a large, involved framework, with uses that go well beyond

Rails. We’ll cover the basics here, with special emphasis on uses within

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=187

GETTING STARTED WITH RSPEC 188

Rails and also on the contrast between RSpec and Test::Unit. We

have already alluded to various differences in naming conventions, but

RSpec also tends to favor a different style than Test::Unit, with more

mock objects. This chapter can only scratch the surface of what’s pos-

sible with RSpec; for more details, check out The RSpec Book [CAD+09].

Installing RSpec

Navigating the various RSpec and Rails versions to install RSpec cor-

rectly is a little complicated. For the rest of this chapter, we’re going

to assume Rails 3 and RSpec 2. Where advisable, differences between

RSpec 2 and RSpec 1.3.x will be noted.

Installing older versions of RSpec or installing into older versions of

Rails can get a little dicey. Instructions for different combinations of

Rails and RSpec can be found at http://wiki.github.com/dchelimsky/rspec/

rails.

One initial difference between RSpec 1 and Rspec 2 is that RSpec 2 is

split across multiple gems. For our purposes, however, the most inter-

esting one is rspec-rails. Since the other gems are dependencies on rspec-

rails, importing that gem into a project brings the others along for the

ride.

To get RSpec into your project, include it in your bundler Gemfile like

so:

group :test, :development do

gem "rspec-rails"

end

The rspec-rails gem must be in both the development and test groups in

order for the RSpec generators to be available from the default com-

mand line. As I write this, the current version is 2.3.

Run a bundle install to install the RSpec gems. After that is done, you

can run the initial RSpec generator, which creates the RSpec skeleton

files:

% script/rails generate rspec:install

create .rspec

create spec

create spec/spec_helper.rb

Report erratum

this copy is (P1.0 printing, February 2011)

http://wiki.github.com/dchelimsky/rspec/rails
http://wiki.github.com/dchelimsky/rspec/rails
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=188

RSPEC IN TEN MINUTES 189

You’ll get this:

• The .rspec file, where RSpec run options go. Initially, the only

option is --colour.2

• The spec directory, where your specs go. RSpec does not auto-

matically create subdirectories like controller and model. Those are

created by the generators when you build specs in those directo-

ries for the first time.

• A spec_helper.rb file that is the RSpec analogy to test_helper.rb. It

contains some setup options and is a good place to put methods

you want to be available to all tests.

In addition, the rspec-rails gem does a couple of other things when loaded

via a Rails 3 Railtie subclass:

• Adds a Rake file that resets the default Rake task to run the RSpec

spec files and also defines subtasks such as spec:models to run

part of the specs at once.

• RSpec sets itself up as the test framework for the purposes of

future generators. Later, when you set up, say, a generated model

or resource, RSpec’s generators are automatically invoked to cre-

ate appropriate spec files. This process is different from in Rails

2.x, where RSpec has to provide its own custom generator tasks.

Now that RSpec is installed, let’s go over the basic concepts. They boil

down to four words: describe, it, should, and mock.

12.2 RSpec in Ten Minutes

Here’s just about the smallest RSpec file that still shows off RSpec’s

main features:

describe Project do

it "should be able to abbreviate its name" do

mock_project = mock_model(Project, :name => "My Big Project")

mock_project.abbr.should == "MyBP"

end

end

As small as this example may be, it demonstrates four of the key fea-

tures of RSpec.

2. In RSpec 1.3.x, these options were located in spec/spec.opts.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=189

RSPEC IN TEN MINUTES 190

Contexts with describe

While Shoulda uses the term context to refer to a set of related tests,

RSpec formally calls them example groups, although the term context

is not unheard of informally. An example group is normally declared by

using the describe() method, although RSpec also defines the method

context() as an exact alias.3

The describe() method takes either a String or a Class argument (or

both) and a block containing whatever specifications are being grouped

together, as in the previous example. If the argument to the describe()

method is a class, the specifications described in that block are ex-

pected to relate to that class—we’ll see in a moment how RSpec uses

that information to determine what code is being exercised.

Setup and teardown behavior is accomplished via the before() and

after() methods, each of which take a single argument. If the argument

is :each, the block is executed before or after each specification, as

opposed to the much less often used :all, which indicates the block is

executed once before or after all specifications in the common descrip-

tion are executed.

As with Shoulda contexts, RSpec describe() blocks can be nested, with a

similar meaning for combining before and after blocks. Unlike Shoulda

contexts, all RSpec specifications must be inside a describe() block. In a

related note, in RSpec you don’t need to explicitly declare a subclass as

a wrapper for your specifications the way that all Test::Unit files contain

a subclass of Test::Unit. The outermost describe() block implicitly creates

an instance of a class, including RSpec’s ExampleGroupMethods module,

which has all the actual specification behavior.4

Support methods can be defined inside a describe() block using normal

Ruby syntax and can be used by any spec within the block.

Writing Specs: The “It” Factor

The it() method is used to define actual RSpec specifications or exam-

ples. The it() method takes an optional string that describes the behav-

ior and a block that is executed. RSpec also defines specify() as an alias

3. Stylistically, context() is sometimes used to refer to an inner block with multiple sib-

ling blocks that test different situations: for example, an administrative user vs. a regular

user.
4. Inner nested describe() calls refer to a method defined by ExampleGroupMethods, which

has slightly different behavior than the outermost describe(). As an RSpec user, you nor-

mally don’t need to be concerned about that implementation detail.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=190

RSPEC IN TEN MINUTES 191

to it(). Normally, it() is used when the method takes a string and is used

to give the method a readable natural-language name. For single-line

tests in which a string description is unnecessary, specify() is used to

make the single line read more clearly, as follows:

specify { user.name.should == "fred" }

RSpec has a handy mechanism for marking that a particular specifica-

tion has not yet been implemented in the code. You can define an it()

method without a block. In this case, the test will appear in the RSpec

output as “pending”:

it "should bend steel in its bare hands"

Or you can use the method pending() in the spec block:

it "should bend steel in its bare hands" do

pending "Not implemented yet"

steel.should be_bent

end

This test stops when the pending() method is reached and returns its

result as “pending.” (If the test fails before the pending() is reached, the

failure is treated normally.)

You can also have pending take a block:

it "should bend steel in its bare hands" do

pending "Not implemented yet" do

steel.should be_bent

end

end

The behavior may not be what you expect. The code inside the pending()

block is executed, but any failure there is treated as a “pending” result,

rather than a failure result. However, if the code in the block actually

passes, you’ll get a failure that effectively means, “You said this was

pending, but lo and behold, it actually works. Maybe it’s not actually

pending anymore; please remove the pending block.”

Matching Expectations with “should”

Perhaps the signature part of RSpec syntax is the expression match-

ers that RSpec uses to specify specific features of the program. Where

Test::Unit uses assertions that look like this:

assert_equal(expected, actual)

RSpec uses expression matches to specify desired behavior:

actual.should == expected

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=191

RSPEC IN TEN MINUTES 192

Note the shift in tone from an assertion, potentially implying already

implemented behavior, to “should,” implying future behavior. The

RSpec version, arguably, reads more smoothly, especially given the

other tricks RSpec has for matchers. I find it difficult to remember the

order the expected and actual parameters are supposed to have in the

assert_equal version, but I have very little trouble remembering the order

in the RSpec version.5

The way this works is that the should() method is defined for all Ruby

objects. The should() method takes one argument, a matcher. Normally,

you would use one of the functions that RSpec makes available to

return a specialized matcher. Here’s an example:

actual.should be_true

It’s a easier to see what’s going on if you fully parenthesize, although in

practice, RSpec is written without the parentheses. As in the previous

snippet, showing the parentheses makes it clearer that the matcher is

an argument to should():

actual.should(be_true)

As we’ll see, the matcher itself can have methods chained to it but

remains the argument to should:

actual.should(have(1).user)

When the example is run, the should method evaluates the matcher

based on the criteria that the matcher defines and determines pass or

failure behavior based on the result. With should, if the matcher is true,

the specification passes. With should_not, the behavior is reversed.

RSpec lets us do a lot of different things when defining a specification.

First, we have should_not(), which reverses any matcher, as follows:

actual.should_not == expected

On the matcher side, there are a couple of predefined special matchers:

actual.should be_true

actual.should be_false

actual.should be_close(100, 0.01)

actual.should change(object, :attribute) { block }

actual.should eql("Fred")

actual.should match(regex)

actual.should raise_error(SomeError)

actual.should satisfy { "block value" }

5. This cute little boast did not prevent me from mixing up the actual and expected parts

of the RSpec lines in an early draft of this chapter. I really don’t mess it up in practice.

Really. When the expected value is a literal, it’s much clearer.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=192

RSPEC IN TEN MINUTES 193

Most of these are straightforward: be_close() is for floating-point num-

bers within a delta, change() passes if the value for object.attribute

changes when the block is evaluated, satisfy() passes if the arbitrary

block passed to it returns true, and so on. One of the previous exam-

ples used ==, and you can use other comparison operators, such as

===, =~, >, >=, <, and <=. You should not use the negative operators,

like !=. Instead, use should_not ==.

The most significant piece of RSpec’s magic may be the name mangling

that RSpec does for matchers that it doesn’t recognize. Any matcher of

the form be_whatever() evaluates a corresponding whatever?() predicate

in the expected object—the question mark is important, since that’s the

convention in Ruby of a boolean predicate method.

Every Ruby object responds to nil?, so any object in RSpec can be veri-

fied with the following:

expected.should be_nil

RSpec allows a couple of bits of grammatical syntactic sugar. You can

add a or an to any matcher for readability, and RSpec will ignore it, so

kind_of?() can be tested with the following:

expected.should be_a_kind_of(String)

Also, if the predicate method is in present tense, like matches?, you can

write the expectation as should be_a_match. RSpec will try the method

with an “s”—in this case, matches(). It does not find the method without

the “s”—in this case, match(). The goal is to make your tests read as

close to natural sentences as possible.

Similarly, if the predicate method starts with has, RSpec allows your

matcher to start with have for readability so your tests don’t look like

they have been written by LOLCats:

expected.should have_key(:id)

You can also do this:

expected.should have(11).things

This passes if expected.things.size equals 11. The weird thing about this

construct is if the expected object is actually a collection, you can use

any symbol you want at the end and RSpec just ignores it:

[:a, :b].should have(2).items

[:a, :b].should have(2).gazorgenplatzes

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=193

RSPEC IN TEN MINUTES 194

You can pull the same trick with have_at_least() and have_at_most(). By

the way, if you try to do should_not have_at_least, RSpec tells you the test

is too confusing and to try should have_at_most instead.

You can define your own custom matchers, which we’ll discuss later in

this section, but in general, you’re often better off just adding the pred-

icate method to your class and letting the existing RSpec mechanisms

work.

RSpec and Mocks

Mock objects are very important in RSpec—so important, in fact, that

RSpec has its very own mock framework, subtly different from Flex-

Mock, Mocha, or RR. In particular, RSpec users often strive to use mock

objects to make each individual spec independent to other specs such

that any individual flaw in the application breaks exactly one spec. Like

many design goals, this one is probably honored more in the breach,

but the basic idea of isolating a spec to a particular method, class, or

layer is very important in using RSpec effectively. For a more general

look at how to use mock objects, see Chapter 7, Using Mock Objects, on

page 101.

If you don’t like RSpec’s own mock object framework, use your preferred

mock framework by including a line like this in the file spec_helper.rb:

config.mock_with :mocha

RSpec helpfully includes those lines in comments, so all you need to do

is adjust the commented lines to taste.

The RSpec native mock object package allows you to create bare mock

objects with the method double(), as in:

mock_obj = double("an object")

Without any further description, the mock_obj class does not know

about any methods and will return an expectation error if it is called.

You can quickly get it to silently return null when called by calling the

method as_null_object(). This is often done in the original declaration:

mock_obj = double("an object").as_null_object

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=194

RSPEC IN TEN MINUTES 195

You can stub any method on any object with the method stub().6 This

strategy works for ordinary objects as well as classes. Follow the stub()

with and_return() to set the value that the stubbed method returns.

As a shortcut, you can specify the method and the return value as

a key/value pair when calling stub(). You can also chain stub() with

and_raise(), allowing you to fake an exception being raised:

user.stub(:friend_count).and_return(12)

user.stub(:friend_count => 12)

User.stub(:total_friend_count).and_return(345)

User.stub(:find).and_raise(ActiveRecord::RecordNotFoundException)

If you want the return value of the stubbed method to be dynamic, pass

a block to stub() that will be invoked with any arguments passed to the

method:

user.stub(:find) do |arg|

if arg == 1 User.me else User.you end

end

The and_return() method can take multiple arguments, in which case

RSpec returns the arguments one at time on subsequent calls to the

stubbed method. It will not cycle back to the first argument if more

calls are made but returns the last value over and over again. You can

also pass the block to and_return(), in the same way that you can pass

it to stub().

You can set up a mock expectation on any method of any object by

using the should_receive() method. As discussed in more detail in the

Chapter 7, Using Mock Objects, on page 101, a mock differs from a stub

in that it sets up an expectation that the specific method will be called

and fails the test if that expectation is not met:

user.should_receive(:friend_count).and_return(12)

user.should_not_receive(:friend_count)

As with Mocha, you can filter the mock based on the calling argu-

ments using the with() method. These arguments work for both stub()

and should_receive():

user.should_receive(:is_a_friend?).with(:noel).and_return(true)

There are several matchers that can be used in place of an argument to

with(). They are similar in scope to the Mocha versions, so I won’t cover

6. This is as good a place as any to mention again that we’re talking about RSpec 2; in

RSpec 1, the method was called stub!(), although both RSpec versions alias the other call

as a duplicate of the main one.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=195

RSPEC IN TEN MINUTES 196

them in depth here. Check out the RSpec docs on expectations at http://

rspec.info/documentation/mocks/message_expectations.html.

The default expectation for RSpec is that a mocked method will be

called exactly once, an expectation you can make explicit by including

the method once() in the mock method chain. Again, as with Mocha,

other methods such as twice(), at_least(), at_most(), and exactly(x).times()

can change the default behavior:

user.should_receive(:friend_count).exactly(3).times.and_return(7)

Let Subjects Be Subjects

RSpec has a number of ways to make tests more concise while still

remaining clear. One common issue with test setup is that the before()

blocks become cluttered with a number of different, unrelated setup

items. In Test::Unit, you can have multiple setup methods to clean up

things. In RSpec, you have the let() method:

Line 1 describe "user behavior"
2 let(:me) { User.new(:name => "Noel") }
3 let(:you) { User.new(:name => "Erin") }
4

5 it "should let users be friends" do

6 me.add_friend(you)
7 you.should have(1).friend
8 end

Using let(), you can make a variable available within the current exam-

ple group, without having to place it inside the before() block. Each let()

method takes a symbol argument and a block. The symbol can then be

called as if it was a local variable: the first call to the symbol invokes the

block and caches the result; subsequent calls return the same result

without reinvoking the block. In the previous example, invoking me on

line 6 triggers the let() block on line 2, returning a user object name

“Noel” that can subsequently be used in the example. The you object

behaves similarly, but notice that the you block is triggered by the ref-

erence to you on line 6; when you is referenced in the next line, the

cached object is used.

In essence, a let() call is syntactic sugar for defining a method and

memoizing the result, like this:

def me

@me ||= mock_model(User, :name => "Noel")

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://rspec.info/documentation/mocks/message_expectations.html
http://rspec.info/documentation/mocks/message_expectations.html
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=196

RSPEC IN TEN MINUTES 197

The main gotcha here is that the let block isn’t executed unless it’s

invoked. That’s often a good thing, since your test won’t spend time

creating unused objects. You can get in trouble sometimes if you expect

that the object already exists. For a contrived problem case, note that

this example will fail, since the two let() blocks are never invoked:

describe "user behavior"

let(:me) { User.new(:name => "Noel") }

let(:you) { User.new(:name => "Erin") }

specify { User.count.should == 2 }

end

You can ensure that the block is invoked by using the method let!()

instead of let().

I use let() frequently to clean up example setup and to reduce the need

to create instance variables. When I really want to make my RSpec

code concise, though, I use RSpec’s subject functionality. RSpec uses

subjects to reduce duplication in a series of tests that are all directed at

the same object under test. Fair warning, though—there are definitely

Ruby developers who think the subject stuff is too magical and that it’s

concise at the cost of being clear.7

Say we have a series of tests that look like this:

describe "a lot of tests" do

let(:me) { User.new(:name => "Noel") }

let(:you) { User.new(:name => "Erin") }

before(:each) do

me.add_friend(you)

end

specify { me.should have(1).friend }

specify { me.should be_valid }

specify { me.should be_friends_with(you) }

specify { me.should_not be_friendless }

end

There’s a duplication in those four assertions, namely, that they all

start with me. In this particular case, that’s more in the nature of a

minor annoyance than a serious readability gap. However, you could

easily see a series of tests that need to examine something like me.

friends.first.addresses.first, which is a little annoying to type repeatedly.

7. For the record, I like using subjects, especially because they work nicely with a single-

assertion style.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=197

RSPEC IN TEN MINUTES 198

In RSpec, you can use the subject() method to specify a common receiver

for all the specifications in an example group. The subject() takes a

block and, like let, caches the result after the block is called the first

time. Within the enclosing example group, any should() call without a

receiver uses the defined subject as the receiver. So, the example can

be rewritten as follows:

Line 1 describe "a lot of tests" do

- let(:me) { User.new(:name => "Noel") }
- let(:you) { User.new(:name => "Erin") }
-

5 before(:each) do

- me.add_friend(you)
- end

- subject { me }
- it { should have(1).friend }

10 it { should be_valid }
- it { should be_friends_with(you) }
- it { should_not be_friendless }
- end

The subject() declaration in line 8 means that all the apparently bare

should calls in the next four lines are directed to the subject. Whether

this improves the readability of your tests is subjective—I think it does,

as long as the specifications are short and reasonably close to the sub-

ject declaration. While the subject in this particular test is pretty sim-

ple, the block can be arbitrarily complex. (Also, notice that I’ve switched

from specify() to it(), simply because one reads better than the other if

you say the line out loud.)

One apparent limitation on the use of a subject is that you have to

specify matchers against the subject itself, and not any attribute or

subordinate method of the subject. In the previous code, for exam-

ple, we can specify that the subject should be_valid, but we can’t say

anything about, say, the name of the subject. That’s a constraint that

could severely limit the usefulness of RSpec subjects, so it’s not sur-

prising that there’s actually a way to do it:

Line 1 subject { me }
2 its(:name) { should == "Noel" }
3 its("friends.first.name") { should == "Erin" }

The its() method takes a symbol or string as an argument along with a

block. If the argument is a symbol, the method of that name is called

on the subject, and the resulting value is used as the receiver of the

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=198

RSPEC AND RAILS 199

should() call in the block. In line 2 shown earlier, me.name is called,

since me is the subject and :name is the argument to its(). So, the block

is equivalent to me.name.should == "Noel".

If the argument is a string, RSpec assumes the string is a series of

method names separated by dots. It applies the methods to the subject

and uses the final result as the receiver of the should() in the block.

In line 3, the block is effectively { me.friends.first.name.should == "Erin"}.8

Granted, there is a certain fog-on-fog quality to this. However, since

we’re talking about an implicit receiver based on a previously defined

subject, I find this style to be useful and a good way to briefly specify

simple assertions on an object.

RSpec subjects have one more trick up their sleeve, and if you thought

we were already a little too far into magic land, you might want to avert

your eyes. If the argument to describe() is a class rather than a string, if

that class has a initialize() method that can be called with no arguments,

and if the describe block has no explicitly defined subject, then (and only

then), a new instance of that class will be used as the implicit subject.

You can use its() against the implicit subject:

describe User do

it { should be_valid }

it { should be_friendless }

its(:name) { should be_nil }

end

In most cases, the implicit subject goes a little too far and can be too

subtle to read. That said, it works very nicely with the Shoulda match-

ers, and it makes sense to use this sparingly in cases where the class

under test already has a no-argument constructor and there are simple

specifications of that default state.

12.3 RSpec and Rails

RSpec is not Rails-specific by itself. However, the rspec-rails plug-in

provides several additions to the RSpec core, aimed at integrating

RSpec with Rails. You will get the following:

• Rails generators to create skeleton RSpec files, instead of Test::Unit

files. In Rails 3, these generators are automatically invoked by

8. Technically, RSpec evaluates the its() call as me.send(:friends).send(:first).send(:name), not

as eval("me.friend.first.name"), in case there’s ever a practical difference between the two.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=199

RSPEC AND RAILS 200

Rails if RSpec is installed; in Rails 2, they are a separate set of

generators that you need to use instead of the Rails defaults.

• Custom, Rails-specific example group classes that are automati-

cally associated with the specific RSpec directory that the file is in.

So, files in the spec/controllers directory automatically have RSpec

controller functionality.

• Matchers for specific Rails features that are part of each example

group. In most cases, these matchers are wrappers around Rails

assertions.

In this code sample, I re-created the Huddle application using the steps

from Appendix A, on page 321, up until the point where the appendix

indicates you need to have RSpec installed. At that point, add the fol-

lowing to your bundler Gemfile—remember, we’re using Rails 3 and

RSpec 2:9

group :development, :test do

gem 'rspec-rails', ">= 2.0.0"

end

RSpec needs to be in the test group because it’s a test tool, and it

needs to be in the development group so the generators it defines are

accessible from the command line during development.

At this point, if you continue with the Devise setup, you’ll see an RSpec-

generated test file:

% rails generate devise:install

% rails generate devise User

invoke active_record

create app/models/user.rb

invoke rspec

create spec/models/user_spec.rb

inject app/models/user.rb

create db/migrate/20100822050454_devise_create_users.rb

route devise_for :users

There isn’t much to that generated user_spec.rb file, but note that Rails

automatically passes off to RSpec to create it. We can get a more inter-

esting set of boilerplate tests by re-creating the Huddle resources (out-

put edited to show only RSpec).

9. Instructions on installing RSpec with Rails 2 depend on exact versions and can be

found at http://wiki.github.com/dchelimsky/rspec/rails.

Report erratum

this copy is (P1.0 printing, February 2011)

http://wiki.github.com/dchelimsky/rspec/rails
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=200

RSPEC AND RAILS 201

% rails generate scaffold project name:string

invoke rspec

create spec/controllers/projects_controller_spec.rb

create spec/views/projects/edit.html.erb_spec.rb

create spec/views/projects/index.html.erb_spec.rb

create spec/views/projects/new.html.erb_spec.rb

create spec/views/projects/show.html.erb_spec.rb

invoke helper

create spec/helpers/projects_helper_spec.rb

create spec/routing/projects_routing_spec.rb

invoke rspec

create spec/requests/projects_spec.rb

And similarly, for status reports:

% rails generate scaffold status_report project:references \

user:references yesterday:text today:text status_date:date

invoke rspec

create spec/controllers/status_reports_controller_spec.rb

create spec/views/status_reports/edit.html.erb_spec.rb

create spec/views/status_reports/index.html.erb_spec.rb

create spec/views/status_reports/new.html.erb_spec.rb

create spec/views/status_reports/show.html.erb_spec.rb

invoke helper

create spec/helpers/status_reports_helper_spec.rb

create spec/routing/status_reports_routing_spec.rb

invoke rspec

create spec/requests/status_reports_spec.rb

RSpec’s generated files are slightly different from Test::Unit’s. Most

notably, controller, view, and routing specs are all placed in separate

files. Let’s take a tour of RSpec’s Rails features and walk through the

boilerplate tests.

RSpec and Models

Let’s start with the model tests, because models have the shortest gen-

erated file. Here’s the file for Huddle’s status reports:

Download huddle3_rspec2/spec/models/status_report_spec.rb

require 'spec_helper'

describe StatusReport do

pending "add some examples to (or delete) #{__FILE__}"

end

OK, that’s very short. In fact, it doesn’t do much at all.

RSpec provides three custom matchers for ActiveRecord: one for classes

and two for instances. Qwik Qwiz! I’ll run them here, and then we can

all guess what they do:

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/models/status_report_spec.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=201

RSPEC AND RAILS 202

StatusReport.should have(1).record

StatusReport.should have(5).records

a_report.should have(:no).errors_on(:yesterday)

a_report.should have(1).error_on(:today)

a_report.should be_a_new(StatusReport)

Time is up. The have(x).record construction tests how many rows are

in the database table for that model; basically, it’s StatusReport.all.size

== x. The errors_on() matcher tests for ActiveRecord validation errors

attached to the given attribute. The be_a_new() matcher returns true

if the instance is an unsaved instance of the provided class. You might

most commonly use that to determine whether a controller has cor-

rectly saved a model based on a user’s create request.

RSpec also provides a shortcut for mocking an ActiveRecord model

called, oddly enough, mock_model(). Ordinarily, you’d use this in a

controller or view test to isolate the controller test from model imple-

mentation details so that the controller test is completely independent

from the correctness or even the existence of the model code. Using

mock models makes your controller tests run faster—no trips to the

database—and makes them potentially more robust. Also, it explicitly

places the burden of specifying model behavior in the RSpec model file,

where it belongs. The usage pattern goes something like this:

mock_project = mock_model(Project, :name => "fred")

Project.stub(:find).and_return(mock_project)

The first argument to mock_model() is either a class that extends the

Rails 3 ActiveModel::Naming module or a string. A string argument must

evaluate to either a class that doesn’t exist or a class that extends

ActiveModel::Naming. In other words, you can’t create a mock model of a

non-ActiveRecord class. Any further arguments are key/value pairs for

methods of the model that should be stubbed.10

Using mock_model() provides stubs to make the mock behave like a

consistent ActiveRecord model. The mock_model() method generates an

ID and stubs new_record() and persisted() to be consistent. This behavior

can be overridden by passing as_new_record() to the mock, which causes

it to behave as a new record, meaning no ID.

10. As always, using “model” and “module” in the same paragraph is grounds for

confusion—or at least calls for some vocal warm-ups before I read it out loud.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=202

RSPEC AND RAILS 203

The mocked model also stubs is_a?(), kind_of?(), intstance_of?(), and

class(), to be consistent with the original first argument to the mock_

model() call. If you override save() or update_attributes() to be false, the

mocked model will consistently stub errors.empty?.

RSpec also provides a stub_model(), which is declared almost identi-

cally to mock_model(), with a couple of significant differences. The first

argument to stub_model() must be an ActiveRecord class, though the

following arguments are still key/value pairs. The stub_model() creates

an actual ActiveRecord object, not a mock, and stubs the methods that

are passed in the key/value pairs. The new ActiveRecord object also

prevents the stubbed model from accessing the database by raising an

exception if you try, which should make tests using this object faster.

RSpec and Controllers

In core Rails Test::Unit, both controllers and views are tested using Rails

functional tests. RSpec splits the two apart, with files in the spec/con-

trollers directory to specify controller behavior without calling the views

(at least, not without explicitly being told to) and with separate files in

the spec/views directory for view testing. Again, the idea here is to keep

things as separate and independent as possible. The controller’s job is

to marshal together objects to pass to the view and that behavior can

be specified independent of whether the view properly puts it on the

screen. (Again, there’s also a speed benefit in not running the display

engine where it isn’t needed.)

Let’s talk about the controllers first. RSpec offers a few special matchers

for use in controller testing (some of these are just normal RSpec magic

given boolean methods in ActiveController):

response.should be_success

response.should be_redirect

response.should redirect_to(url or hash)

response.should render_template('app/views/projects/index')

response.should render_template(:partial => "show_form")

There is one RSpec 2 change to be aware of if you are familiar with older

versions of RSpec. Although the controller spec does not render the view

templates by default, unlike RSpec 1.x, the view template must actually

exist in the project. This is because of internal changes in Rails 3. If,

for some reason, you want to throw caution to the wind, override the

RSpec default and integrate view testing with your controller testing.

You can do so by placing the command render_views inside an RSpec

example group. This is not recommended RSpec practice but might be

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=203

RSPEC AND RAILS 204

the easiest way to validate a piece of view behavior too small to get a

view test or a Cucumber test.

The assigns, flash, and session variables are available as hashes. If you

want to test an assigned variable, use the form assigns(:variable).should

== thing.

What do RSpec controller tests look like? Here’s a representative sample

from the generated file (the file is too long to include the entire thing):

Download huddle3_rspec2/spec/controllers/projects_controller_spec.rb

require 'spec_helper'

describe ProjectsController do

def mock_project(stubs={})

@mock_project ||= mock_model(Project, stubs).as_null_object

end

describe "GET index" do

it "assigns all projects as @projects" do

Project.stub(:all) { [mock_project] }

get :index

assigns(:projects).should eq([mock_project])

end

end

Here are some things to note:

• The outermost describe() block contains the controller name as its

description. This is not just a convention; RSpec uses that class

to specify which controller to call for all the tests.

• Innermost describe blocks are split up by controller call and

annotated with the controller action and HTML method being de-

scribed. This is just a convention, but it’s a useful one. If you look

at the actual file, you’ll see that some actions are further split: the

create and edit actions are split into a test with valid data and a

test with invalid data.

• The get() method and other methods that mimic accessing the

controller via a browser action work in RSpec exactly the way they

do in Test::Unit.

• The mock_project() stub is used to manage the result of the find(:all)

call in the index method without actually having to create data,

making the test super-fast.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/controllers/projects_controller_spec.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=204

RSPEC AND RAILS 205

RSpec View Specs

Since RSpec allows you to specify controllers independent of views,

you might assume that you can also specify views independent of con-

trollers. You’d be right.11 The RSpec convention is to place view tests

in the spec/views folder, with one spec file to a view file, so the view in

app/views/projects/edit.html.erb is specified in spec/views/projects/

edit.html.erb_spec.rb. Here’s the scaffold file for the project controller’s

edit view:

Download huddle3_rspec2/spec/views/projects/edit.html.erb_spec.rb

require 'spec_helper'

describe "projects/edit.html.erb" do

before(:each) do

@project = assign(:project, stub_model(Project,

:new_record? => false,

:name => "MyString"

))

end

it "renders the edit project form" do

render

rendered.should have_selector("form", :action => project_path(@project),

:method => "post") do |form|

form.should have_selector("input#project_name", :name => "project[name]")

end

end

end

The basic drill here is simple: in your before() block, use the assign

method to initialize any variables you expect the controller to set up.

You can also tweak this in individual specs to try various logical

branches. Then each actual spec renders the view file and validates

the HTML output.

There’s a couple of things to point out. The outermost describe() block

has the actual path to the view file being rendered, relative to the

app/views directory. This is not, strictly speaking, required. Just useful.

In addition, the render() method, if called with no arguments, renders

the view referenced in the outermost describe() block. (See, I said it was

useful.) You can override that behavior by passing a filename as the first

argument to render (again, the filename is relative to app/views). Any

11. In practice, most RSpec applications use Cucumber as their view testing layer these

days.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/views/projects/edit.html.erb_spec.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=205

RSPEC AND RAILS 206

other options passed to render() behave exactly as in ActionView::Base.

After a call to render, the rendered() method contains the resulting text.

All the standard Rails helper modules are automatically loaded, but any

of the application-specific helper modules that you plan on calling need

to either be explicit, using something like include ProjectsHelper, or be

added to the render() commands, as described in the previous section.

All helper modules are available in the view spec.

For specifying the actual view contents, RSpec defaults to using have_

selector(), which is actually part of Webrat.12 The have_selector() method

is similar to assert_select(), except it supports describing the HTML at-

tributes as key/value pairs, as in have_selector("form", :method => "post""),

as opposed to the assert_select() or CSS syntax form[method=post]. The

Webrat version makes it easier to use dynamic values for the attributes.

Like assert_select(), have_selector() takes count and content options to

specify the number of times the selector is found or the content of the

selector. As you can see from the example, have_selector() can be nested.

If you want a simpler test, use the contain matcher, which does a simple

regular expression match, as follows:

rendered.should contain("Name")

Often, the view layer calls helper methods along the way. In keeping

with best RSpec practice, the idea is to limit the interaction of dif-

ferent levels during testing. That would suggest that helper methods

should be stubbed during view specs and only truly exercised in helper

specs. If you choose to stub out a helper method in your view test, use

the view() object to get the template that has access to the method,

as in view.should_receive(:helper_method).and_return("result"). Section 12.3,

RSpec Helper Specs, on the following page demonstrates how to specify

the helper module in RSpec.

RSpec Routing Specs

Unlike Test::Unit, RSpec provides a separate file specifically for testing

routes. You can test routes using core Rails test features; however,

those tests would normally be combined with the regular controller

tests.

12. Webrat is a runtime dependency of RSpec, which is why we didn’t need to explicitly

install it.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=206

RSPEC AND RAILS 207

RSpec gives you a helper file for each controller, and the default con-

tains a lot of examples that look like this:

Download huddle3_rspec2/spec/routing/projects_routing_spec.rb

it "recognizes and generates #index" do

{ :get => "/projects" }.should route_to(

:controller => "projects", :action => "index")

end

The key matcher here is route_to(), which takes as its receiver a hash

consisting of a key with an HTTP verb, and a value with a URL path

string. As the argument, it contains the resulting Rails params hash.

The actual route_to() matcher defers to the standard Rails assert_

routing(), which tests the relationship in both directions—that the string

routes to the hash and that the hash is routed to from the string.

RSpec also provides a be_routable() method, which is designed to be

used in the negative to show that a specific path—like, say, the Rails

default—is not recognized:

{ :get => "/projects/search/fred" }.should_not be_routable

RSpec Helper Specs

RSpec provides a spec/helpers directory to specify the behavior of helper

modules, an innovation picked up by Rails core in the 2.2 timeframe.

There’s not a lot of magic here; all the generated file does is show a

sample of the kinds of tests you might write:

Download huddle3_rspec2/spec/helpers/projects_helper_spec.rb

require 'spec_helper'

Specs in this file have access to a helper object that includes

the ProjectsHelper. For example:

#

describe ProjectsHelper do

describe "string concat" do

it "concats two strings with spaces" do

helper.concat_strings("this","that").should == "this that"

end

end

end

describe ProjectsHelper do

pending "add some examples to (or delete) #{__FILE__}"

end

If you’d like to take the time to specify helper methods—and I recom-

mend it (otherwise, they tend to become the dark, scary attic of your

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/routing/projects_routing_spec.rb
http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/helpers/projects_helper_spec.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=207

RSPEC AND RAILS 208

application)—RSpec automatically includes all Rails core helper mod-

ules, plus the module specified in the outermost describe() block.

Since you don’t have access to a controller or even a mock controller,

as you might in a Rails core helper test, you might wonder how to test

helpers that assume instance variables from the controller. You can

specify those values into the assigns hash, as you might in a controller

test, and then use the helper() method to call your actual helper method.

Here’s an example to illustrate:

Say we have a helper method that does this:

def headline_project_name

"<h1>#{@project.name.uppercase}</h1>"

end

Temporarily ignore that we should really be passing the project as an

argument rather than assuming it’s an instance variable.

In RSpec, we test that method as follows:

describe ProjectsHelper do

it "should headline a project " do

assigns(:project) = mock_model(Project, :name => "Mock")

helper.headline_project_name.should == "<h1>MOCK</h1>"

end

end

In other words, prefixing the headline_project_name() with helper. gives

us access to the pretend instance variables that we added to the assigns

hash.

RSpec Request Specs

Request specs are the RSpec analog to Test::Unit integration specs. I’m

guessing they don’t get a whole lot of use, since most BDD adherents

use Cucumber for integration testing.

Requests specs are broadly similar to Test::Unit specs, which means

they are also similar to controller specs, except that we specify an entire

path, as in get projects_path, rather than just the name of a method

in the controller under test. For further specification of actions and

output, Webrat or Capybara is strongly recommended.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=208

RUNNING RSPEC 209

12.4 Running RSpec

RSpec provides a couple of different options for running the spec suite.

The simplest option is to use the rspec command, which can take either

a directory or a specific file as its argument.

You also have a set of Rake tasks. The main one, rake spec, is the default

task when RSpec is installed. It runs the entire contents of the spec

directory. As you might expect, you can also limit the task to a spe-

cific subdirectory with spec:controllers, spec:helpers, spec:lib, spec:mailers,

spec:models, spec:requests, and spec:routingspec/views. If you run via

Rake, you can specify standard command-line options by placing them

in the file .rspec. The default looks like this and specifies that RSpec’s

terminal output is in color:

--colour

The rspec --help command gives you a list of options that can be placed

in the .rspec file.

12.5 RSpec in Practice

RSpec suggests a different way of writing tests than Test::Unit, in part

because of its heavy use of mocks and a strong bias toward isolating

tests and keeping controller and model tests separate. For example,

the first test that I wrote in Section 3.1, The First Test-First, on page 44

looked like this in Test::Unit:

test "creation of status report with data" do

assert_difference('StatusReport.count', 1) do

post :create, :status_report => {

:project_id => projects(:one).id,

:user_id => users(:quentin).id,

:yesterday => "I did stuff",

:today => "I'll do stuff"}

end

actual = assigns(:status_report)

assert_equal(projects(:one).id, actual.project.id)

assert_equal(users(:quentin).id, actual.user.id)

assert_equal(Date.today.to_s(:db), actual.status_date.to_s(:db))

assert_redirected_to status_report_path(actual)

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=209

RSPEC IN PRACTICE 210

The translation to RSpec in a style where a mock object is used to cover

the transition between the controller and model layer might look like:

Download huddle3_rspec2/spec/controllers/status_reports_controller_spec.rb

it "assigns a newly created status_report as @status_report" do

StatusReport.stub(:new_from_params).with({'these' => 'params'}) {

mock_status_report(:save => true) }

post :create, :status_report => {'these' => 'params'}

assigns(:status_report).should be(mock_status_report)

end

This is a very slight gloss on the boilerplate RSpec spec for creation in

a controller. The strategy here is to set up a stub on the StatusReport

class such that it responds to the method new_from_params() with a

particular mock object. The spec, then, says that a particular method

of the model is called, and the result is assigned to a particular instance

variable of the controller. Unlike in the Test::Unit test, as far as RSpec

is concerned, exactly what the new_with_params() method does—even

whether the method exists—is the model’s problem and should be dealt

with in model specs.13

In a related story, if you go back to the original test in Section 3.1,

The First Test-First, on page 44 test, the upshot of this particular test

was not a change in the controller; the eventual result was a change

in the model. That’s not a coincidence—since there’s no code change in

the controller, when you isolate the controller from the model, there’s

nothing to test in the controller.

You’ll sometimes hear people say that when done well RSpec testing is

a lot like design—this is what they’re talking about. The structure of

a good RSpec test actually implies the structure of the resulting appli-

cation. Specifically, RSpec’s bias toward testing modules in isolation

encourages you to place your test in the place where the code is actu-

ally changing, which in turn encourages you to write code where the

modules interact as little as possible. From a code quality standpoint,

less interaction is generally a good thing. However, because RSpec is so

keen on isolating modules, it becomes very important to have an end-

to-end test of some kind, such as an integration test or Cucumber test,

to verify that the interface between each module works as you expect.

13. Of course, you can write mock style tests in Test::Unit. I didn’t, in part because in the

tutorial we are using only Rails core features.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/controllers/status_reports_controller_spec.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=210

CREATING YOUR OWN MATCHERS 211

12.6 Creating Your Own Matchers

RSpec’s matchers are great, but eventually you’ll come to a situation

where you’d like a particular matcher syntax to make your tests read

cleanly, and the matcher doesn’t exist. You have a few different options

in that case.

The first option is to just write a predicate method to cover the matcher

you want and let RSpec’s default be_whatever() functionality implicitly

create the matcher. This is sometimes the best solution if you control

the object being covered—you’ll often wind up using the predicate in

your main code. If the object you want to write the matcher on is a

Rails or Ruby library object, it’s more complicated. One possibility is to

monkey-patch the class in your RSpec file. At one time, I recommended

the following code in an RSpec model spec file:

class String

def parsing_to?(hash)

expected = Ingredient.new(hash)

actual = Ingredient.parse(self, Recipe.find(1), 1)

actual == expected

end

end

That led to the following RSpec code:

it "should parse a basic string"

"2 cups carrots, diced".should be_parsing_to(:amount => 2,

:unit => "cups", :ingredient => "carrots",

:instruction => "diced")

end

From a perspective of two years, I’m pretty sure that’s not the best way

to manage the custom matcher. On the other hand, every now and then

I like to advocate for Ruby structures that would make a mainline Java

programmer sputter, so we have that going for us, which is kind of nice.

The way you are supposed to do it is to use the Matchers DSL:

RSpec::Matchers.define :parse_to do |hash|

match do |string|

expected = Ingredient.new(hash)

actual = Ingredient.parse(string, Recipe.find(1), 1)

actual == expected

end

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=211

CREATING YOUR OWN MATCHERS 212

Which parts of the matcher call get translated to which arguments

is critical here and slightly nonintuitive. The recipient of the should()

method—the object being evaluated—is the block argument to the in-

nermost call to match(). In the previous example, that would be the

block argument string. The right side of the RSpec call, which in this

case is the hash containing the expected value, becomes the argument

to the outside method. In the previous snippet, that hash is the hash

argument to the parse_to() method. The block can take a second argu-

ment, the matcher itself, which can be used to specify specific failure

messages if desired. Call this like so:

it "should parse a basic string"

"2 cups carrots, diced".should parse_to(:amount => 2,

:unit => "cups", :ingredient => "carrots",

:instruction => "diced")

end

And the string argument on the left of the matcher is the string argu-

ment to the match() block, while the hash is the argument to the define()

block.

In addition to match(), there are other methods you can call in the

define() block to refine the behavior of the matcher. All these methods

take the same left side of the matcher as the argument to a block.

The most commonly used would be failure_message_for_should(), which

returns the string to use when reporting a positive failure. You also have

failure_message_for_should_not(), which returns the message for negative

failure, and descriptions(), which is used to generate the name of an

example if the example doesn’t have its own name—say when specify()

is used without a string argument.

The most flexible matcher you can build is any arbitrary class that has

a matches?() method and a failure_message_for_should() method, along

with a separate method that returns an instance of that class. Again,

the following snippet would be used the same as the previous two:

Class ParseTo

def initialize(hash)

@hash = hash

end

def matches?(string)

expected = Ingredient.new(hash)

actual = Ingredient.parse(string, Recipe.find(1), 1)

actual == expected

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=212

SUMMARIZING RSPEC 213

def failure_message_for_should(string)

"Bzzz! Wrong!"

end

end

def parse_to(hash)

ParseTo.new(hash)

end

This should look very similar to the description of Shoulda match-

ers in Section 11.6, Writing Your Own Shoulda Matcher, on page 179,

which is why Shoulda matchers can be dropped into RSpec as is.

The failure_message_for_should_not() and description() methods can also be

defined here, along with an optional does_not_match?() method, which,

if defined, is used in the should_not() case.

12.7 Summarizing RSpec

I have what you might call a history with RSpec. There’s a lot about it

I’ve always liked. I love the matchers and the matching syntax and the

string descriptions of tests (which was, of course, widely copied on the

Test::Unit side). Plus, it’s somewhat a purist’s tool, and I’m enough of a

purist to be attracted to it. My first serious incursion into RSpec was

after I researched it for a previous book and decided that it was worth

seriously trying on my next project.

I didn’t last long with it. In retrospect, I realize I was Doing It Wrong:

trying to write heavily mocked and brittle tests. That’s the painful way

to go about RSpec, and the mocks upon mocks can get frustrating.

Since then, single-assertion style has come to RSpec (or perhaps it was

there all along; I just got to a place where I could see its value). In

addition, I had the chance to work with it as my primary test tool for

about eight months. And some recent innovations in Rails testing, such

as Cucumber and Webrat, have tended to favor RSpec. As a result, I

got much more comfortable with RSpec and much more attuned to its

flexibility, and as I said, I’ve always liked the basic syntax.

Even if you don’t like RSpec’s syntax, there is still a lot to take away

from the philosophy of testing that RSpec embodies. RSpec encourages

the use of tests to create the public interface of your program and to

design the interaction of objects. RSpec also encourages tests to be

clear, concise, and independent of each other and independent of the

parts of the program not under test. Using these ideas to guide your

testing improves the quality and usefulness of your tests.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=213

Part V

Testing Everything All Together

Chapter 13

Testing Workflow
with Integration Tests

Integration tests seem to be used less frequently than other Rails built-

in test types. Certainly there is much less online chatter about how and

when to use the built-in integration tests, probably because integration

tests don’t quite map to the classic TDD/BDD process (and where they

might fit in, they’ve been largely supplanted by Cucumber). On the one

hand, this is a shame, because integration tests are a powerful and

flexible way to do high-level testing on your application. Done right,

they can even serve as acceptance tests. On the other hand, I’m as

guilty as anybody of underusing them. For what it’s worth, integration

tests have been extremely handy when I’ve used them.

What’s in a Name, Part Three

I like the name integration tests. So, I’ve got nothing here.

Well, I should point out the difference between an integration
test and an acceptance test. An integration test is written by
the developer for a developer audience, whereas an accep-
tance test is written by or in close consultation with the cus-
tomer for a customer audience. Acceptance tests often have
some kind of domain-specific language magic that allows for
something readable by the customer to be automatically exe-
cuted as a test; see Chapter 15, Acceptance Testing with
Cucumber , on page 235 for details.

WHAT TO TEST IN AN INTEGRATION TEST 216

13.1 What to Test in an Integration Test

Integration tests are the tool of choice in Rails to test any process that

spans one or more controller actions. Two common use cases are a mul-

tistep registration process and a purchase/checkout e-commerce func-

tion. In both cases, the entire user task flow has an integrity that can

be completely tested only when all the steps can be executed together.

As a rule of thumb, if one controller action is communicating with a

future controller action via session state or other data-sharing method,

you probably should have an integration or acceptance test covering

the entire procedure.

Integration tests tend to be written separately from the normal tight

loop of the test-driven development process. Often, a whole bunch of

them are written up front to serve as requirements, a guide to develop-

ment, or proof of completion. Sometimes they are written after primary

development to ensure that pieces that have only been tested sepa-

rately are in fact making the expected communications—for example,

to catch a potential issue created when one method saves to the ses-

sion with one key, while the later method looks for a different key in

the session. Oops.

13.2 What’s Available in an Integration Test?

Rails integration tests are similar to controller tests. They import the

same assertion modules, so any assertion available in a controller test

can also be called from an integration test. The same set of method

names are available to simulate HTTP requests (get, post, put, delete,

head, and xhr), although we’ll see in a second that there are some minor

differences from the controller versions of these methods.

The two biggest differences between integration tests and controller

tests are as follows:

• Integration tests are not tied to a specific controller. This means

the action argument to the HTTP request methods needs to be a

an object that resolves to a known URL in the system. Most often,

this is simply the URL string, such as get ’tasks/show’.

• Integration tests maintain one or more separate sessions that per-

sist between the different simulated user requests—in a controller

test, the session is a characteristic of the response and is not guar-

anteed to behave correctly if you simulate multiple calls.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=216

WHAT’S AVAILABLE IN AN INTEGRATION TEST? 217

With the HTTP simulation methods, you can use any object that Rails

can convert into a URL by using the method url_for(). The argument

could be a hash or a resource object, as in get url_for(tasks(:one)).

The second argument to all the HTTP request methods is a hash of

parameters. Using the second argument is the preferred mechanism

for adding parameters in an integration test, rather than building up

a query string for the URL or using a complex url_for() call. The third

argument (rarely used) contains any arbitrary HTTP headers that you

want to set for the request. As with controller methods, the xhr() method

takes a first argument specifying the HTTP verb and then includes the

same arguments as the other request methods in order.

By default, integration test requests do not follow redirects. However,

each method except xhr() has a via_redirect variant, such as post_via_

redirect(), that performs the request and follows all redirects until it

gets to a result that isn’t a redirect. Any and all session changes it

hits along the way will go into the session object, and the output to

be tested will be the output of the final destination. If you want to

control the redirect behavior less automatically from inside your test,

the integration test method follow_redirect!() will, as you might expect,

follow exactly one redirect, raising an exception if the last request did

not end in a redirect. You can use the integration test method redirect?()

to determine whether the last request was or was not a redirect.1

There are also two methods that allow you to change a setting for

all future requests in a test. The https!() method will make all future

requests behave as though they use HTTPS. Note that this won’t actu-

ally encrypt anything, since there isn’t a real server request being made,

but any other controller-side logic that is dependent on the secure

nature of the request will be appropriately tested. Switching back to

non-HTTPS requests is done using https!(false). Similarly, a multihosted

application can be tested using the host!() method. If your application

has logic that depends on the subdomain, you can switch back and

forth with lines like host!(blog.railsprescriptions.com).

Note that unlike controller tests, integration tests do not allow you to

pass session values into the request methods. You can set the initial

state of the session directly via the session() method, which returns a

hash—so session[:user_id] = 3. You should use this mechanism only for

1. The implementation of redirect?() is status/100 == 3. I’m torn as to whether that is clever

or not.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=217

SIMULATING MULTIPART INTERACTION 218

setting the initial state of the session data. During the actual test, you

should let the session be implicitly set by the controller actions being

tested.

13.3 Simulating Multipart Interaction

The general structure of an integration test is pretty simple: make a

bunch of controller calls, and validate that everything has worked out

as planned.

The key to successful integration testing is to realize that integration

tests have a different purpose than the detailed tests that already exist

(or will exist) in your controller and model tests. Integration tests are for

verifying end-to-end behavior of the application as a whole, not for test-

ing the inner workings of your code. Attempting to use integration tests

to fill the role of unit tests is not only going to make it harder to write

the integration tests, but it’s also going to mean more test breakage

when you make legitimate changes to the application.

The purpose of the integration test during development is to validate

that data getting passed between the different parts of a larger whole is

correctly being saved and correctly being used—you’re trying to avoid

test gaps. The point of using an integration test as an acceptance test

is to perform a high-level verification of the application’s behavior. In

neither case do you need great levels of detail as to the specific HTML

being output or the details of the model back end—that’s a job for the

actual functional or unit tests. You’re trying to test the overall behavior

of the system, without worrying about implementation details.

So, what should an integration test look like? Let’s make up an example

from the Huddle project, the daily scrum support tool from Chapter 3,

Writing Your First Tests, on page 42. Let’s assume that there are a num-

ber of pages from which a user can click a checkbox and add a user to

a list of people to follow. At some point, the user can go to a page that

lists all the people currently being followed, allowing the user to see

their current status or send a message or something.

Create the integration test with the following command:

$ script/generate integration_test add_friends

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=218

SIMULATING MULTIPART INTERACTION 219

Your skeleton test looks like this:

require 'test_helper'

class AddFriendsTest < ActionController::IntegrationTest

fixtures :all

Replace this with your real tests.

test "the truth" do

assert true

end

end

Assuming that all these controller methods actually exist, a first pass

at the integration test might look like this (note that none of the code

that will make this pass actually exists in the project right now):

test "add friends" do

post "sessions/create", :login => "quentin", :password => "monkey"

assert_equal(users(:quentin).id, session[:user_id])

get "users/show", :id => users(:quentin).id

xhr :post, "users/toggle_interest", :id => users(:aaron).id

assert_equal [users(:aaron).id], session[:interest]

get "users/show", :id => users(:old_password_holder).id

xhr :post, "users/toggle_interest",

:id => users(:old_password_holder).id

assert_equal [users(:aaron).id, users(:old_password_holder).id].sort,

session[:interest].sort

#testing removal from the session

xhr :post, "users/toggle_interest",

:id => users(:old_password_holder).id

assert_equal [users(:aaron).id], session[:interest]

get "users/show", :id => users(:rover).id

assert_select "div.interest" do

assert_select div, :text => "Aaron", :count => 1

assert_select div, :text => "Old", :count => 0

end

end

The test is similar to controller tests, so the activity should be relatively

clear; it’s going through some site traversal, occasionally making the

Ajax call back to the server to add or remove an interesting person and

then checking that the session is as expected. At the end, we do just

enough testing of the output to ensure that the values in the session

are actually used.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=219

SIMULATING A MULTIUSER INTERACTION 220

In a real system, you might want to refactor this long test into some

shorter methods that encapsulate a call and some of the assertions

that go with it. Integration tests seem to encourage the creation of rea-

sonably elaborate mechanisms for quickly defining complicated user

behavior—which when taken to their logical conclusion result in Web-

rat or Capybara (see Chapter 14, Write Better Integration Tests with

Webrat and Capybara, on page 224). Here is a sample method, which

takes in a user and an expected list of users already in the session. The

method simulates the Ajax toggle call and confirms that the session

matches the expected list:

def toggle_user(user_symbol, initial_user_expectation)

new_friend = users(user_symbol)

xhr :post, "users/toggle_interest", :id => new_friend.id

expected_users = initial_user_expectation.map { |sym| users(sym).id }

assert_equal expected_users.sort, session[:interest].sort

end

The method would be called like this (note that the arguments are all

symbol names from the fixture list that are converted to user instances

in the method):

toggle_user(:aaron, [:aaron])

toggle_user(:old_password_holder, [:aaron, :old_password_holder])

Using this kind of common factoring makes a dramatic difference in

how quickly you can write integration tests.

13.4 Simulating a Multiuser Interaction

Integration testing has one more trick up its sleeve. Each integration

test gets an implicit session that backs all the controller calls. That’s

nice, but what if you want to test the integration of two or more con-

secutive or simultaneous sessions? This is a common issue in, say, a

social-networking site where users might be communicating with each

other.

Happily, it’s possible to create an arbitrary number of different ses-

sions and validate values against any of them. By calling the method

open_session(), you get a separate session with its own set of instance

variables that you can make requests and perform assertions on. A

sample might look something like this:

test "user interaction" do

aaron_session = open_session

quentin_session = open_session

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=220

SIMULATING A MULTIUSER INTERACTION 221

quentin_session.post("sessions/create", :login => "quentin",

:password => "monkey")

quentin_session.post("messages/send", :to => users(:aaron))

aaron_session.post("sessions/create", :login => "aaron",

:password => "monkey")

aaron_session.get("messages/show")

assert_equal(1, aaron_session.assigns(:messages))

end

Each session is targeted by its own post() or get() messages and its own

set of instance variables. In this case, we’re testing that a message cre-

ated by Quentin shows up in Aaron’s message queue; in a real test, you

might do some slightly more detailed testing, but again, the point here

is making sure that the entire flow works—testing that the show con-

troller action displays messages properly is the work of the controller

and view tests.

You can also invoke open_session() with a block, in which case the ses-

sion created is the argument to the block:

test "user interaction" do

open_session do |quentin_session|

quentin_session.post("sessions/create", :login => "quentin",

:password => "monkey")

quentin_session.post("messages/send", :to => users(:aaron))

end

end

Note that the open_session() call still returns the session object after the

block is evaluated, which means the session can be stored in a variable

for further calls to be made on it even after the block has closed.

The obvious disadvantage of using the block style is that multiple ses-

sions overlapping is awkward. If there’s an obvious advantage, I haven’t

seen it yet.

Where this gets interesting is when you want to integrate those shorter

helper methods with the session—it’s obviously useful to have short-

cuts for interactions that multiple session objects are going to need to

perform. There are some different suggestions that use various meta-

programming contortions to inject helper methods into the session ob-

ject. For instance, the Rails API docs place the open_session() call inside

a login() method.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=221

SIMULATING A MULTIUSER INTERACTION 222

Helper methods defined in a separate module are injected into the ses-

sion by starting the block with an extend call, something like the fol-

lowing:

module MyAssertionModule

def message(to)

post("messages/send", :to => to)

end

end

def login(un, pw)

open_session do |s|

s.extend(MyAssertionModule)

more stuff, including actually making a login request

end

end

test "trying logins"

quentin_session = login("quentin", "monkey")

aaron_session = login("aaron", "monkey")

quentin_sesson.message(users(:aaron))

end

Since the open_session() returns the session and it’s the last expression

in the method, the login() method returns a session, fully logged in and

ready to take more calls. What’s nice about this mechanism is that

the helper methods in the assertion module can use the session as the

implicit self(), so calls within the helper methods can be of the form get

"login" rather than session.get "login".

Still, as much as I generally love all things Ruby and metaprogrammy,

this does feel a little awkward to me. I’m not going to complain if you

want to do something a little more straightforward, like this:

def login_as(session, un, pw)

session.post("session/new", :username => un, :password => pw)

end

def message_from(session, to)

session.post("messages/send", :to => to)

end

test "trying logins" do

quentin_session = open_session

aaron_session = open_session

login_as(quentin_session, "quentin", "monkey")

login_as(aaron_session, "aaron", "monkey")

message_from(quentin_session, aaron_session)

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=222

WHEN TO USE INTEGRATION TESTS 223

13.5 When to Use Integration Tests

The testing tools in this part of the book—Rails integration tests, Web-

rat, Capybara, and Cucumber—are designed to work at a level above

a unit test. These tools work best when you use them to validate the

interaction between components that are unit tested elsewhere. Cu-

cumber, with its natural-language syntax, is ideal for cases in which

a customer or other nondeveloper is creating or approving acceptance

test scenarios. Integration tests tend to be of more use strictly as a

developer tool, although Webrat and Capybara do make the syntax for

specifying interactions much easier to write and read. All three of these

testing tools are also useful as “black-box” tests, in which you interact

with the application only via URL request and evaluate only the appli-

cation response. Black-box testing can be helpful in testing legacy code,

since the tests are not dependent on the actual structure of the code.

Integration or acceptance tests should be used to cover any process in

your application that has multiple steps, is based on previously cre-

ated session data, or otherwise crosses multiple user actions. The trick

is integrating these tests into your TDD process. Often, integration tests

at this level are either written first or last relative to the TDD tests for

a feature. When written first, they can act as acceptance tests and can

drive coding in a TDD fashion—a failing acceptance tests triggers a reg-

ular TDD process to make the acceptance tests past. When written last,

integration tests tend not to drive new code, since they are validating

the interaction between TDD-created components that should already

work.

Rails integration tests offer by far the easiest way to test the behavior

of your application across multiple user sessions—they offer the only

easy way to simulate more than one user hitting the site in a test.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=223

Chapter 14

Write Better Integration Tests
with Webrat and Capybara

Webrat, created by Seth Fitzimmons and maintained by Brian Helm-

kamp, can be used to make acceptance tests—the ones that treat the

application as a black box—easier to write and execute. By now, you

know I can’t resist a good naming story; the “RAT” in Webrat is an

acronym for Ruby Acceptance Testing. When Jonas Nicklas created

a library to augment Webrat as an acceptance tool, he continued the

rodent theme and called his library Capybara.

Although frequently used in conjunction with Cucumber, Webrat and

Capybara can support ordinary Rails integration tests and provide a

more expressive, easy-to-read syntax. In addition, the same test can be

run headless within a Rails environment and, by changing the driver,

also run using a browser-based test environment such as Selenium.

Capybara also allows you to use the Celerity and Culerity gems to test

JavaScript scenarios without opening an actual browser window.

Webrat and Capybara are quite similar. In fact, if Internet scuttlebutt

is to be believed (and really, when has the Internet ever lied?), the two

are likely to merge into a single project by the time you read this. For

the purposes of this chapter, I’m going to treat them as though they are

more or less already merged and note differences between the two as

they arise.

INSTALLING WEBRAT AND CAPYBARA 225

14.1 Installing Webrat and Capybara

Both Webrat and Capybara are test framework-agnostic and will work

inside Rails for Test::Unit/Shoulda, RSpec, and Cucumber. (Outside

Rails, they will also work with Merb and Sinatra, but that’s not our

focus right now.)

Install either as a gem:

$ sudo gem install webrat

$ sudo gem install capybara

Both tools have a dependency on the Nokogiri XML parser. If you are on

Ubuntu Linux, you may need to run this command in order for Noko-

giri to install properly. Installing Capybara on Mac OS X sometimes

requires the use of a library called libffi, which can be installed using

MacPorts with the command sudo port install libffi.1

$ sudo apt-get install libxslt1-dev libxml2-dev.

Once Webrat is installed, a bit of setup code needs to be placed in your

test/test_helper.rb file if you are using Webrat outside of Cucumber:

require "webrat"

Webrat.configure do |config|

config.mode = :rails

end

Note that this code goes outside the TestCase class structure.

Capybara’s default setup is simpler. If you are using Capybara outside

of Cucumber, you need the following:

require 'capybara'

require 'capybara/dsl'

And then inside the module or class using the Capybara commands,

you need an include Capybara call.

Cucumber, for its part, automatically detects which of the two libraries

is installed for the application and generates the appropriate installa-

tion and support code. You can also make that decision when generat-

ing Cucumber’s initial support files.

1. Assuming, of course, that you have MacPorts installed. See http://www.macports.org.

Report erratum

this copy is (P1.0 printing, February 2011)

http://www.macports.org
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=225

USING THE ACCEPTANCE TESTING RODENTS 226

14.2 Using the Acceptance Testing Rodents

Webrat and Capybara are relatively simple libraries with two main pur-

poses: first, to provide a DSL for easily specifying form output and user

interaction within an integration or acceptance test, and second, to pro-

vide a similarly uncomplicated way to specify the expected output of an

interaction.

The signature element of the rodent libraries is their flexibility in how

form and link elements are specified in the test; this flexibility is consis-

tent across all of the core API methods listed in a moment. In a Webrat

or Capybara API method, you identify the element to be acted on with

a string. That string, which is called a field identifier or a locator, can

match a DOM element in one of three ways:

• The text of the associated label (or, for anchor tags, the text inside

the tag)

• The DOM ID

• The form field name (or, for anchor tags, the HTML title attribute)

If the field identifier is a regular expression, Webrat will correctly find

a matching field based on the regular expression in any of these attri-

butes except the form field name. Capybara, which is much more

closely tied to XPath in implementation, does not take regular expres-

sions. The XPath back end of Capybara also means that Capybara

lookups are case-sensitive, whereas Webrat lookups are not.

The following HTML snippet would be accessible from Webrat or Capy-

bara as "Phone Number", "phone", or "user[phone]".

<label for="phone">Phone Number</label>

<input id="phone" name="user[phone]" />

Another consistent element throughout these libraries is all methods

that manipulate a form element via a field identifier also serve to verify

the existence of the element—if the library can’t find a matching form

element, the test fails.

Most of your interaction with Webrat or Capybara occurs through the

following nine methods:

• attach_file(field_locator, path, content_type = nil)

Simulates a file attachment to a multipart form. The field_locator

is the field getting the file, as specified previously. The path is the

path to the local file, and the content_type is an optional MIME

type. The Capybara version does not take a third argument.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=226

USING THE ACCEPTANCE TESTING RODENTS 227

• check(field_locator)

Asserts that the field matching field_locator is a checkbox and

changes the checkbox to its checked state.

• choose(field_locator)

Similar to check() but for radio buttons. Any other radio buttons

in the same group would then be unchosen.

• click_button(value = nil)

Clicks a submit button; if the value is passed, then uses that as a

field locator to find the button. In Webrat, if there is no value, then

it will click the first button on the page. In Capybara, the locator

value is required.

• click_link(text_or_title_or_id, options = {})

Clicks an anchor link as specified by the first argument. The text_

or_title_or_id argument is similar to a field locator, except it matches

against the text of the anchor tag, as well as the DOM ID or HTML

title attribute. One quirk is that for text or title, Webrat does a sub-

string text match, but DOM IDs must match exactly. Webrat intel-

ligently handles in the text by treating it as a space and is

also smart enough to follow the Rails JavaScript that fakes HTTP

verbs (but not smart enough to follow Rails link_to_remote() calls).

We’ll talk more about Capybara and JavaScript in a moment.

In Webrat, you can override the HTTP verb by passing a :method

option, and you can disable the Rails HTTP checking by passing

:javascript => false. The similar click_link_within() takes as arguments

a CSS-style selector and the text or title, clicking a link only if

there is a matching link within a DOM element matching the selec-

tor.

Capybara has a different way to limit scope and takes no optional

arguments. Capybara also does not perform any special treatment

of arguments.

• fill_in(field_locator, options = {})

This method has one option, and it’s used in every call, as in

fill_in("Email", :with => "railsprescriptions@gmail.com"). It looks for an

input field or text area that matches the field locator and sets

that field’s value to the :with option when the form is eventually

submitted.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=227

USING THE ACCEPTANCE TESTING RODENTS 228

• save_and_open_page()

This is a wildly helpful method used to diagnose tests that aren’t

working as expected. It causes the current response to be saved

to a file (including any DOM changes from other methods like

fill_in) and then opened in your default browser.2 This is helpful

in Cucumber tests, too.

• select(option_text, options = {})

Also used with an option most of the time, select("Automotive", :from

=> "Industry"). This method causes an HTML option with the given

display text to be the selected option in its select menu. If a :from

option is specified, that is used as a field locator for the select box.

• select_date(date_to_select, options = {})

select_datetime(time_to_select, options = {})

select_time(time_to_select, options = {})

This trio of methods, which are only in Webrat, lets you specify an

entire date/time series of pickers in one go, assuming that your

form uses the Rails default date and time pickers. Most JavaScript

pickers give you a text field that you can manipulate via fill_in(). The

:from() option is used as in select(), and these methods all share

an :id_prefix option that matches a prefix specified when the date

fields are created.

• uncheck(field_locator)

The converse of check().

• visit(url = nil, http_method = :get, data = {})

Creates a browser request to the specified URL, using the specified

HTTP verb and passing the key/value pairs in the data argument

as parameters. Normally, you’d use this at the beginning of a test;

later requests would be triggered by click_button() or click_link(). In

Capybara, the method signature is visit(path, attributes = {}), and the

HTTP verb is preset to GET.

2. The Webrat docs say the opening works only in Mac OS X, but the docs

for the gem Webrat uses (Launchy) doesn’t seem to make any similar claim. See

http://ramblingsonrails.com/using-webrats-save_and_open_page-on-linux for Linux instructions.

Report erratum

this copy is (P1.0 printing, February 2011)

http://ramblingsonrails.com/using-webrats-save_and_open_page-on-linux
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=228

A BRIEF EXAMPLE 229

14.3 A Brief Example

In Section 13.3, Simulating Multipart Interaction, on page 218, we saw

an example of an integration test that used the Rails core integration

test features to test adding a friend to Huddle. Let’s take a look at what

that test might look like in a more rodent-y style. Here’s the test using

Webrat. There are a couple of different ways this might go:

Line 1 test "add friends" do

- visit login_path
- fill_in :login, :with => "quentin"
- fill_in :password, :with => "monkey"
5 click_button :login
- assert_equal(users(:quentin).id, session[:user_id])
-

- visit users_path(users(:quentin))
- click "toggle_for_aaron"

10 assert_equal [users(:aaron).id], session[:interest]
-

- visit users_path(users(:old_password_holder))
- click "Toggle"
- assert_equal [users(:aaron).id, users(:old_password_holder).id].sort,

15 session[:interest].sort
-

- visit users_path(users(:old_password_holder))
- click "Toggle"
- assert_equal [users(:aaron).id], session[:interest]

20

- visit users_path(users(:rover))
- assert_select "div.interest" do

- assert_select div, :text => "Aaron", :count => 1
- assert_select div, :text => "Old", :count => 0

25 end

- end

There are a few things that are interesting about this test relative to the

basic integration test.

This test has much more of an acceptance test style than the origi-

nal test. The language has changed, moving away from application-like

language such as get "users/show", :id => users(:quentin).id to the somewhat

more user-level language visit users_path(users(:quentin)) and click "Toggle".3

Where the original integration test made server calls directly from code,

this test infers server calls based on simulating form submits and user

3. I can’t imagine it makes much difference, but you can assume that I mean the cap-

italized “Toggle” to be the text label, and the lowercase ”toggle_for_aaron“ to be a DOM

ID.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=229

A BRIEF EXAMPLE 230

clicks. In cases like the login on lines 2–5, this makes the code more

verbose. However, it makes the test a more complete exercise of the

entire stack from start to finish.

Almost. Because here’s a critical point: compared to the original test,

this test cheats. In the original plain integration test, the toggle calls

were all xhr() calls triggering an Ajax response. Webrat, however, doesn’t

handle Ajax (unless, as we’ll see in Section 14.4, Webrat and Ajax, on

page 232, you configure it to run much slower Selenium tests). In this

case, the Webrat test is assuming that the toggle method links will still

return the same values if called from something other than an Ajax

link.

Capybara and Webrat each have their own methods for asserting out-

put in both Test::Unit and RSpec flavors. Webrat has the following for

Test::Unit:

assert_contain("text")

assert_not_contain("text")

assert_have_selector("selector", :attribute => "something")

assert_have_no_selector("selector", :attribute => "something")

assert_have_xpath("xpath")

assert_have_no_xpath("xpath")

which look like this in RSpec:

response.should contain("text")

response.should_not contain("text")

response.should have_selector("selector", :attribute => "something")

response.should_not have_selector("selector", :attribute => "something")

response.should have_xpath("xpath")

response.should_not have_xpath("xpath")

The contain methods merely search for text within the output (the re-

sponse body is the implicit source for output in all the Test::Unit meth-

ods). The selector methods are just like assert_select() with two differ-

ences. Instead of specifying content with the :text option, these methods

use :content, and any HTML attribute does not need to be specified in

the selector but can be specified as a key/value pair argument, as in

assert_have_selector("a", :href => /solr/). The value part of the argument can

be a string or a regex.

Capybara has a slightly different set of tools for specifying output. By

default, these tools are XPath-based, but if you’re like me and are more

comfortable using CSS selectors, you can set CSS as the default by

placing the line of code Capybara.default_selector = :css somewhere in

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=230

A BRIEF EXAMPLE 231

your test, like in a setup block. The last couple of lines of the previous

test might look like this in Capybara:

within("div.interest") do

page.has_css?("div", :text => "Aaron", :count => 1)

page.has_no_css?("div", :text => "Old")

end

The CSS default selector value applies only to the within() method. In

this case, within() acts the same as the outer assert_select() block;

namely, it checks for the existence of the selector and limits searches

inside the block to the portion of the page inside that matching tag. In

Capybara, a within() is not limited to being used with the query meth-

ods but can be placed around the interaction methods to limit their

searches to a particular part of the page.

Capybara’s overall query methods are a little different. The generic one

is also named has_selector?(). This method takes either a CSS selector

or an XPath expression but does not take arbitrary HTML attributes

as options the way the Webrat method does. It does take :count and

:text options for the basics and also takes a :visible option, which can be

set to true or false and filters based on display status. Capybara also

defines has_css?() and has_xpath?(), which both just delegate back to

has_selector?(). Capybara has a has_content(); like the Webrat method, it

searches for text within the page.

All of these methods have associated negative versions, such as has_no_

selector(). Because these methods are defined on the page object and

are booleans with a question mark, RSpec’s normal magic renaming

allows them to be used as RSpec matchers, like so:

within("div.interest") do

page.should have_css("div", :text => "Aaron", :count => 1)

page.should_not have_css?("div", :text => "Old")

end

Capybara also defines a bunch of specific matcher methods aimed at

specific elements. All of these take a string argument, which is a Capy-

bara locator, so matches the DOM ID or element text, and all have

associated negative methods.

has_button?

has_checked_field?

has_content?

has_field?

has_link?

has_select?

has_table?

has_unchecked_field?

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=231

WEBRAT AND AJAX 232

14.4 Webrat and Ajax

Webrat has a significant Achilles’ heel when run from within Rails. It

does not have its own JavaScript interpreter, so any JavaScript in the

page you are loading, the link you are clicking, or the form you are

filling will be quietly ignored. This is a limitation when trying to test an

application with any kind of significant Ajax or JavaScript component.

As a partial workaround, Webrat can be used to drive tests with in-

browser verification using Selenium or Watir. You must have the tool

you want to use installed, and you need a Rails environment set up for

type selenium, meaning a database.yml listing and a file in config/environ-

ments. Somewhere in that environment or the test file, you need the

following configuration code:

Webrat.configure do |config|

config.mode = :selenium

end

You can set the port that Selenium listens on inside that same configure

block with the method config.application_port; avoid Selenium’s default

port, which is 4444.

In this configuration, Webrat will run a Mongrel server and simulate

browser interactions via Selenium, which allows you to test your Java-

Script.4

14.5 Capybara and Ajax

Capybara has a slightly more advanced approach to Ajax testing. Al-

though it still doesn’t support Ajax through the Rails default stack,

it does provide drivers for two tools that can run JavaScript without

requiring a browser window. Capybara can take advantage of Celer-

ity, which is a headless browser simulator running under JRuby (see

http://celerity.rubyforge.org/), or, in the very likely event you aren’t using

JRuby, there is Culerity (see http://github.com/langalex/culerity for infor-

mation and installation details), which is designed to run in your regu-

lar test stack and spawn a JRuby/Celerity process for your JavaScript

requests.

4. (Thanks to the Webrat wiki at http://wiki.github.com/brynary/webrat/selenium for these

instructions.)

Report erratum

this copy is (P1.0 printing, February 2011)

http://celerity.rubyforge.org/
http://github.com/langalex/culerity
http://wiki.github.com/brynary/webrat/selenium
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=232

CAPYBARA AND AJAX 233

You can change the default driver in Capybara with the line Capy-

bara.default_driver = :culerity, where the valid drivers are :celerity, :culer-

ity, :rack_test, and :selenium. The RackTest driver is used for any Rack

application that the Capybara tests are being run within, including

Rails. You can override the driver for a single test by using a line

such as Capybara.current_driver = :selenium and then return to the default

with Capybara.use_default_driver. This allows you to only specify the slow

JavaScript drivers for those tests that actually require them. In Chap-

ter 15, Acceptance Testing with Cucumber, on page 235, we’ll see that

Capybara also allows you to manage the drivers on a test-by-test basis

in Cucumber.

Capybara has one additional trick for managing Ajax. By definition, an

Ajax call is, well, asynchronous. That’s great in a web page, since it

means the entire page doesn’t hang while waiting for the result. But it’s

a problem for a test, since the test doesn’t wait for the result. Because

the test normally wouldn’t wait, assertions that might depend on the

Ajax call having finished might fail because the test goes faster than

the Ajax call.

Capybara gets around this by inserting wait periods into the test. In

essence, any Capybara query call such as has_css?() continues to check

the page until the expected DOM elements show up or until two seconds

have passed—at which point the test will throw up its virtual hands in

exasperation and fail. If you have particularly slow Ajax elements and

you can’t speed them up for some reason, you can change the wait time

with Capybara.default_wait_time = 3; the right-hand side is the timeout in

seconds.

This causes a weird gotcha when testing for the removal of text. As we

saw in Section 14.3, A Brief Example, on page 229, Capybara provides

explicit negative methods, like has_no_css?(). You should always use the

negative method, as opposed to something like !has_css?.5 The reason

for this is Capybara’s wait behavior. Let’s say you are testing that an

Ajax call removes a DOM element from the page. When the negative

method has_no_css?() is called and the Ajax method hasn’t returned,

the element may still be there, but the negative method knows to wait

and check again for the removal of the element. If you erroneously use

the positive method has_css?(), the method will see that the element

in question is there and immediately stop waiting, since the positive

5. In RSpec, you should avoid should_not have_css.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=233

WHY USE THE RODENTS? 234

method’s purpose in life is to wait until something shows up. Then the

bang operator would cause the entire assertion to fail. The lesson is

that Capybara provides negative methods for a reason, and you should

use them.

There’s one other minor gotcha when using Rails as a driver: Capybara

doesn’t like an anchor tag with just a hash href, as in , so

you’ll need to avoid that in your Rails code.

14.6 Why Use the Rodents?

In some sense, it’s difficult to provide stand-alone examples of Webrat

and Capybara, because both tools have seen most of their usage inside

Cucumber tests. Used with the core Rails tools, though, they can make

the Rails integration tests behave more like acceptance tests. If Cucum-

ber is not an option for practical or aesthetic reasons, adding either of

these libraries can give you some of the acceptance test benefit.

At the moment, I tend to start a new project with Capybara, but there

isn’t enough difference between the two right now that I’d feel the need

to convert already existing Webrat code. Of course, by the time you read

this, the tools might have merged, in which case you should definitely

use the one left standing.

Having looked at what core Rails offers for acceptance and integration

testing, it’s time to move on to a library that is specifically designed for

acceptance testing, namely, Cucumber.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=234

Chapter 15

Acceptance Testing
with Cucumber

Cucumber is a tool for writing acceptance tests in plain language (I

almost said in plain English, but that’s too limiting—Cucumber speaks

a lot of different languages, including LOLcat). It can be a great way to

do acceptance testing simply and clearly, especially when you want a

nontechnical client to sign off on your acceptance tests. On the other

hand, Cucumber can also be a tempting way to spin your wheels while

feeling like you are accomplishing something. There’s a sweet spot, and

we’ll take a look at where that is in this chapter.

15.1 Getting Started with Cucumber

Cucumber is distributed as a gem. As I write this, the stable gem

is 0.9.2. You also want to install either Webrat or Capybara, which

Cucumber will use to define common web-browser simulation tasks

(see Chapter 14, Write Better Integration Tests with Webrat and Capy-

bara, on page 224). Like RSpec, Cucumber has both a core gem and a

separate gem for the Rails-specific parts.

If you’re using Rails 3 and Bundler, the Cucumber gems go in your

Gemfile like this—you can substitute Webrat for Capybara if you’d like.

The cucumber-rails gem will automatically bring in the core cucumber

gem.

group :test do

gem 'capybara'

gem 'database_cleaner'

gem 'cucumber-rails'

end

GETTING STARTED WITH CUCUMBER 236

In Rails 2.3.x, the Cucumber gem can be specified in your environ-

ment.rb file or the test.rb-specific environment file. Then a rake gems:install

and a rake gems:unpack:dependencies put Cucumber in the vendor/gems

directory.

In either case, expect Cucumber to bring in a number of other gem

dependencies. The GitHub wiki page for Cucumber at http://wiki.github.

com/aslakhellesoy/cucumber is the best source for complete documenta-

tion and project status.

To start using Cucumber for Rails testing, you need to generate some

files. Run the following command from the root directory of your appli-

cation. In Rails 2.3.x, the command looks like this:

$ script/generate cucumber --testunit --capybara

create config/cucumber.yml

create config/environments/cucumber.rb

create script/cucumber

exists features/step_definitions

create features/step_definitions/web_steps.rb

exists features/support

create features/support/paths.rb

create features/support/env.rb

exists lib/tasks

create lib/tasks/cucumber.rake

In Rails 3, that first command is as follows:

script/rails generate cucumber:install --testunit --capybara

The options after the word cucumber allow Cucumber to generate sup-

port files based on the other tools you are using. I’ve decided to use

the Test::Unit version of the Huddle code and also chosen Capybara.

Unsurprisingly, the other supported options are --rspec and --webrat.

However, the choice of tools should not affect the Cucumber experi-

ence overall. (Capybara, though, has a greater ability to test JavaScript

actions through Cucumber.)

The generator creates a features directory, into which your actual Cu-

cumber features go, as well as two subdirectories. One of the subdirec-

tories contains some setup code; the other will be where you put your

Cucumber step definitions, which we’ll learn more about in a moment.

You also get a Rake file and a cucumber script, which lets you run

Cucumber features from the command line and can be used to run

just one Cucumber feature file, among other tricks. If you look at the

database.yml file, you’ll see that it has been augmented with a Cucum-

ber environment entry, making it at least theoretically possible to run

Report erratum

this copy is (P1.0 printing, February 2011)

http://wiki.github.com/aslakhellesoy/cucumber
http://wiki.github.com/aslakhellesoy/cucumber
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=236

WRITING CUCUMBER FEATURES 237

your Cucumber features simultaneously with other tests and not have

the two tests trip over each other. By default, Cucumber features run

in the “test” environment, but you can change this by editing the fea-

tures/support/env.rb file line whose default is ENV["RAILS_ENV"] ||= "test".1 The

cucumber.yml file contains some setup settings that need not concern us

at the moment.

15.2 Writing Cucumber Features

Cucumber allows you to write acceptance tests for new features in a

lightly structured natural-language format and then convert those tests

into executable Ruby code that can be evaluated for correctness. We’ll

talk more about how this might affect your workflow in a little bit. First,

let’s go through an example.

Right now, the Huddle application doesn’t have much of a user inter-

face. There’s no way to associate a user or a user’s status reports with

a project, for example. So, let’s create one. From the Huddle root direc-

tory, run the following command:

$ script/rails generate cucumber:feature users_and_projects

exist features/step_definitions

create features/manage_users_and_projects.feature

create features/step_definitions/users_and_projects_steps.rb

gsub features/support/paths.rb

In Rails 2.x, the initial command is script/generate feature.

The Cucumber generator gives you a feature file where you put the

actual Cucumber code2 and a Ruby file where you put the step defi-

nitions that bridge the gap between Cucumber and your actual Rails

application. There’s also some boilerplate code, which is useful if you

are trying to do acceptance test for basic CRUD functionality. (We are

not, so I’m deleting it all.) There’s related boilerplate in the step defini-

tion file that’s going away as well.

1. If you follow Cucumber development, you may have some whiplash here, because

Cucumber did have a default “cucumber” Rails environment for a while, but it was

removed as the default in the 0.9.x line.
2. Technically, Cucumber is the entire system. The feature language is called Gherkin

(an outstandingly fun word to say over and over again).

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=237

WRITING CUCUMBER FEATURES 238

Instead, I’m going to describe the feature I do want. A Cucumber feature

starts with a header:

Download huddle3/features/manage_users_and_projects.feature

Feature: Add users to project

In order to make this program even minimally useable

Pretty much everybody on the planet

wants to be able to add users to a project

This is strictly for humans. The only Cucumber requirement in version

0.7 and up is that the first real line of the file (“real” line means not a

comment and not a tag) must start off with the keyword Feature. Earlier

versions of Cucumber have no constraints on the header.

After the header, there’s an optional background section.

Download huddle3/features/manage_users_and_projects.feature

Background:

Given a project named "Conquer The World"

And the following users

| login| email | password| password_confirmation|

| alpha| alpha@example.com| alpha1 | alpha1 |

| beta | beta@example.com | beta12 | beta12 |

The Background line is indented in-line with the In order to lines, meaning

that it’s two spaces in from the left side. Statements within the back-

ground are indented a further two spaces—Cucumber uses the inden-

tation to infer structure, similar to Python or YAML. The Background

statements are analogous to a startup block and are evaluated before

each scenario is run. We’ll walk through the details of the statements

in the background in just a moment.

An individual unit of a Cucumber feature is called a scenario. I’ve

defined two. The first goes to the edit page display for a project:

Download huddle3/features/manage_users_and_projects.feature

Scenario: See user display on edit page

Given that user "alpha" is a member of the project

When I visit the edit page for the project

Then I should see 2 checkboxes

And the "alpha" checkbox should be checked

And the "beta" checkbox should not be checked

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/features/manage_users_and_projects.feature
http://media.pragprog.com/titles/nrtest/code/huddle3/features/manage_users_and_projects.feature
http://media.pragprog.com/titles/nrtest/code/huddle3/features/manage_users_and_projects.feature
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=238

WRITING CUCUMBER FEATURES 239

And the second goes to what happens when the edit form is actually

submitted:

Download huddle3/features/manage_users_and_projects.feature

Scenario: See users in project edit

Given I am on the edit page for "Conquer The World"

When I check "alpha"

And I press "Update"

Then I am taken to the show page for "Conquer The World"

And I should see "alpha@example.com"

And I should not see "beta@example.com"

A Cucumber scenario has a basic structure with three parts: Given,

which indicates a precondition to the action; When, indicating a user

action that changes the state of the application; and Then, verifying

the result of the state change. A line beginning with And belongs to

its most immediate predecessor clause. For the most part, though, the

distinction between Given, When, and Then is for the humans; Cucum-

ber does not require the steps to be in a particular order, nor is the

Given/When/Then header used to determine which step definition is

matched.

Obviously, the items in the Background clause are all expected to be

Given. As for the rest of each clause, that’s pretty much free-form; it’s

the step definitions that give those structure. Oh—the thing that looks

like a table in the Background clause. Guess what? It’s a table, and that’s

the preferred method of defining a set of data for a Cucumber feature,

rather than using fixtures or factories.

As it happens, this feature can be executed right now, using the com-

mand rake cucumber. At the moment, however, we must comment out

the before_filter :require_user line in app/controllers/application_controller.rb.

(We’ll see how to handle logins from Cucumber in Section 15.6, Login

and Session Issues with Cucumber, on page 251.) Running the features

is not going to do much yet.

Each scenario gets run step-by-step; if your terminal accepts it, the

results are color-coded for success, failure, skipped due to an earlier

failure, and undefined. Here is enough of the output to get the gist:

$ rake cucumber

UUUUUUU--UU---U--

2 scenarios (2 undefined)

15 steps (7 skipped, 8 undefined)

0m0.022s

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/features/manage_users_and_projects.feature
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=239

WRITING CUCUMBER STEP DEFINITIONS 240

At the end, you get a summary. The “15 steps” is a count of the steps

in the background section as part of each test: the two scenarios define

eleven steps, then the two background steps are run twice, giving a total

of fifteen steps. After that, you get some handy boilerplate descriptions

of the steps that are undefined, suitable for pasting directly into your

step definition page.

You can implement step definitions for undefined steps

with these snippets:

Given /^a project named "([^\"]*)"$/ do |arg1|

pending # express the regexp above with the code you wish you had

end

Given /^the following users$/ do |table|

table is a Cucumber::Ast::Table

pending # express the regexp above with the code you wish you had

end

«many other undefined steps»

At this point, it’s time to tell Cucumber what each of these steps should

actually do.

15.3 Writing Cucumber Step Definitions

Step definitions need to be created for each undefined step. Cucum-

ber does its level best to create useful step definition shells for unde-

fined steps when run. We can paste these shells directly into the fea-

tures/step_definitions/users_and_projects_steps.rb file, at least as a start.

As you can see from the sample, each step definition starts with a regu-

lar expression that defines what steps match it. When a matching step

is found, the block attached to that step definition is executed. Groups

in the regular expression that are, as always, marked by parentheses,

are passed as arguments to the block, which enables a single step def-

inition to match many different steps. Since we want this step to actu-

ally create a project, we need to tell Cucumber how to accomplish that

creation:

Download huddle3/features/step_definitions/users_and_projects_steps.rb

Given /^a project named "(.*)"$/ do |project_name|

@project = Project.create!(:name => project_name)

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/features/step_definitions/users_and_projects_steps.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=240

WRITING CUCUMBER STEP DEFINITIONS 241

Running Cucumber

The cucumber-rails gem provides three separate Rake tasks
to run Cucumber; rake cucumber (also aliased as rake cucum-

ber:ok) is the default. This will run all features that are not tagged
as @wip, or “work in progress.” See Section 15.7, Annotating
Cucumber Features with Tags, on page 252.

Alternately, you can run only in-progress features with the com-
mand rake cucumber:wip, which runs all scenarios tagged with
@wip. The cucumber:wip task also has the same behavior as
a Cucumber command-line option also called wip, namely,
that it expects all the tests to fail—otherwise they wouldn’t be
“work in progress.” The cucumber:wip task also fails if there are
more than three scenarios tagged as wip, although you can
change this parameter by editing the default options in the con-

fig/cucumber.yml file.

You can run both in-progress and not-in-progress tasks with the
rake cucumber:all task, which will run all scenarios. Alternately,
you can run rake cucumber:rerun, which when first called will run
the entire suite and make a note of which scenarios failed.
If there are known failing scenarios, subsequent runs of rake

cucumber:rerun will automatically be limited to the failing sce-
narios until they pass.

You can also use the cucumber command-line script directly for
more options, including the ability to specify tagged scenarios
to run. There’s more on that in Section 15.7, Annotating Cucum-
ber Features with Tags, on page 252. Further behavior of the
Rake tasks can be tweaked by changing parameters that are
stored in the file config/cucumber.yml.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=241

WRITING CUCUMBER STEP DEFINITIONS 242

This step definition matches the step Given a project named "Conquer The

World". The regular expression group notation causes Conquer The World

to be the argument to the block and, eventually, the name of a new

project added to the database. Assigning that project to @project allows

the project to be accessed from other steps, though you do need to be

careful with instance variables. Creating too many instance variables

makes steps more interdependent, and as a result, it’s more challenging

to reuse steps in multiple scenarios.

The way I like to work when using Cucumber is to go one step at a

time. Define the step, and then add any regular tests and code needed

to make the step pass. (At least, that’s how I like to work with Cucumber

this week. It’s very flexible, and my workflow changes.) In other words,

a failing line in a Cucumber scenario triggers a regular Rails test in the

same way that a failing Rails test triggers application code. Sometimes

this means going back to Cucumber and changing the scenarios around

some, especially when setting up the available data.

This step already passes. Let’s move on. The next step is And the follow-

ing users. The step definition is as follows:

Download huddle3/features/step_definitions/users_and_projects_steps.rb

Given /^the following users$/ do |user_data|

User.create!(user_data.hashes)

end

Starting with maybe the most obvious point, even though the step is

actually introduced in the scenario with And since it’s actually part of

the Given clause, we describe it with a Given step definition.

The body of this definition shows how to use the table data. The data

comes in as a custom Cucumber object; calling hashes() on the object

converts the object to an array of hashes, with keys corresponding to

the first row of the table and the values corresponding to each remain-

ing row in turn. With the table that was written in the feature, this

means that two users are created with the logins alpha and beta. This

step passes already as well.

Moving on to the actual scenario, we start with one more given: Given

that user "alpha" is a member of the project. This is another relatively easy

one that passes without much further work:

Download huddle3/features/step_definitions/users_and_projects_steps.rb

Given /^that user "(.*)" is a member of the project$/ do |login|

User.find_by_login(login).projects << @project

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/features/step_definitions/users_and_projects_steps.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/features/step_definitions/users_and_projects_steps.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=242

WRITING CUCUMBER STEP DEFINITIONS 243

To make this work, we need to add has_and_belongs_to_many() lines to

both Project and User. In app/models/project.rb, do this:

class Project < ActiveRecord::Base

has_many :status_reports

has_and_belongs_to_many :users

And in app/models/user.rb, do this:

class User < ActiveRecord::Base

has_and_belongs_to_many :projects

OK, we have one more that will pass before we get to the hard stuff:

Download huddle3/features/step_definitions/users_and_projects_steps.rb

When /^I visit the edit page for the project$/ do

visit("/projects/#{@project.id}/edit")

end

In this case, I’m using the visit() method, provided by Capybara to simu-

late a browser call to the given URL. You can read more about Capybara

in Chapter 14, Write Better Integration Tests with Webrat and Capybara,

on page 224; for the moment, all we need to know is that Cucumber

lets us call Capybara functions to simulate user actions. This step also

passes as is.

If you are at all inclined to be skeptical about Cucumber’s general awe-

someness, right about now you may be wondering “What’s the point of

all this silliness?” So far, we’ve written some formal-sounding natural

language stuff and some Ruby that has served merely to confirm things

about our application that we already know, at the cost of something

like a page of code.

True, so far—although to some extent this is a side effect of the fact that

we’re adding Cucumber tests to an application that already exists. In

much the same way that adding tests to an existing legacy application

has some cost, adding the first Cucumber tests to an existing non-

Cucumber’d program has some cost. In essence, we’re paying off some

of the technical debt accrued by Huddle for not having acceptance tests.

However, it is easier to add Cucumber tests to an existing program than

unit tests—since Cucumber works only at the level of user input and

output, any crazy or messed-up code structures in the application code

don’t really affect it.

As for the eventual benefit, bear with me for a little bit. I’ll make that

case after we complete the successful scenarios.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/features/step_definitions/users_and_projects_steps.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=243

MAKING STEP DEFINITIONS PASS 244

15.4 Making Step Definitions Pass

We’re going to write the next three step definitions together and then

make them all pass. The first step definition to write is for the step Then

I should see 2 checkboxes. The definition of the step looks for checkboxes

in the HTML using Capybara’s page.has_css?() method, which is, for our

purposes, effectively equivalent to assert_select():

Download huddle3/features/step_definitions/users_and_projects_steps.rb

Then /^I should see (.*) checkboxes$/ do |checkbox_count|

page.has_css?("input[type = checkbox][id *= user]",

:count => checkbox_count.to_i)

end

The next step definition to write is for the step Then the "alpha" check-

box should be checked. As it happens, this step is already defined by

Cucumber as part of the web_steps.rb file:

Download huddle3/features/step_definitions/web_steps.rb

Then /^the "([^"]*)" checkbox should be checked$/ do |label, selector|

with_scope(selector) do

field_checked = find_field(label)['checked']

if field_checked.respond_to? :should

field_checked.should be_true

else

assert field_checked

end

end

end

After that comes the step Then the "beta" checkbox should not be checked.

That one is also defined by Cucumber.

Download huddle3/features/step_definitions/web_steps.rb

Then /^the "([^"]*)" checkbox should not be checked$/ do |label, selector|

with_scope(selector) do

field_checked = find_field(label)['checked']

if field_checked.respond_to? :should

field_checked.should be_false

else

assert !field_checked

end

end

end

Both of these steps are defined similarly, using Capybara to find the

desired checkbox in the DOM and then using either RSpec matchers or

Test::Unit assertions to verify that the checkbox is or is not checked.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/features/step_definitions/users_and_projects_steps.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/features/step_definitions/web_steps.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/features/step_definitions/web_steps.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=244

MAKING STEP DEFINITIONS PASS 245

Does Cucumber Replace Tests?

There’s an ongoing debate among Rails testing people over
whether Cucumber is best used in addition to the TDD/BDD
tests you would already be writing or whether Cucumber
should be used to replace some of those tests, particularly the
controller and view tests. One side says that the Cucumber
test already covers the code added by a controller test. The
other side says that although the same code is touched by
each test, the tests have different purposes and are both use-
ful. In essence, the question is whether writing unit or functional
tests has value beyond merely verifying correctness, since the
Cucumber test already verifies that. Cucumber’s value in end-
to-end testing and keeping development focused does not
replace the exploration, design, or code-quality benefits of a
regular TDD process.

The goal of Cucumber is to test end-to-end from a user per-
spective. As such, Cucumber is not the place to test internals
of the program that only tangentially show up to users. Internal
logic of models should be tested in unit tests. Best practice sug-
gests that controllers shouldn’t have much logic of their own,
which means you might not need many controller tests—not
because the Cucumber tests replace them but because there
isn’t much controller logic to test.

That said, I do often find Cucumber to be an easier way
to specify view tests than the view test facilities provided by
Test::Unit or RSpec. As a result, I find myself basically moving the
view tests I would normally have written to Cucumber.

The answer to whether Cucumber replaces regular tests is,
sometimes. Cucumber does not eliminate the need for the
benefits of TDD in regular testing. However, Cucumber can be
used as an easy way to write TDD tests for user-facing code.
The point of Cucumber is decidedly not to get bogged down
in whether you need extra tests. The goal of Cucumber is to
write better code and focus your development efforts. Try using
Cucumber a few different ways and see what works best for
you.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=245

THE EDIT SCENARIO: SPECIFYING PATHS 246

With the step definitions for our scenario complete and two of them not

passing, we finally have a direction for our code. We need to add the

checkboxes to the edit view for the project.

Adding the checkboxes to the edit screen probably does not require

me to change the controller code. What with this being the Cucumber

chapter and all, I’m feeling bold, so let’s go to directly to the view.

I inserted this right below the name field in the file app/views/project/

edit.html.erb. I am under no illusion that this view code will scale beyond

about ten users.

Download huddle3/app/views/projects/edit.html.erb

<h2>Users In Project</h2>

<table>

<% User.all.each do |user| %>

<tr>

<td>

<%= check_box_tag "users_in_project[]", user.id,

user.projects.exists?(@project.id),

:id => dom_id(user, :checkbox) %>

</td>

<td>

<label for="<%= dom_id(user, :checkbox) %>">

<%= user.login %>

</label>

</td>

</tr>

<% end %>

</table>

So, for each user in the database, we add a table row with a checkbox

and username. The label tag is important here, because that’s what the

Cucumber/Capybara steps are looking for.

At this point, the scenario passes. Yay, us! Now let’s get to work on the

next one.

15.5 The Edit Scenario: Specifying Paths

Since it’s been pages and pages since we’ve seen the second scenario,

I’ll rerun it here:

Download huddle3/features/manage_users_and_projects.feature

Scenario: See users in project edit

Given I am on the edit page for "Conquer The World"

When I check "alpha"

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/views/projects/edit.html.erb
http://media.pragprog.com/titles/nrtest/code/huddle3/features/manage_users_and_projects.feature
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=246

THE EDIT SCENARIO: SPECIFYING PATHS 247

And I press "Update"

Then I am taken to the show page for "Conquer The World"

And I should see "alpha@example.com"

And I should not see "beta@example.com"

This scenario currently fails right off the bat with Given I am on the edit

page for "Conquer The World". Hmm. Given I am on is a preexisting web

step, but the rest of step assumes something that can be converted to

a URL.

Let’s try this:

Given /I am on the edit page for "(.*)"/ do |project_name|

@project = Project.find_by_name(project_name)

visit("/projects/#{@project.id}/edit")

end

Seems reasonable, if very similar to the When statement I wrote a couple

of paragraphs back. The problem, though, is that Cucumber doesn’t

like it:

Ambiguous match of "I am on the edit page for "Conquer The World"":

features/step_definitions/web_steps.rb:18:in `/^I am on (.+)$/'

features/step_definitions/users_and_projects_steps.rb:15:

in `/I am on the edit page for "(.*)"/'

And that answers the question of what Cucumber does if there’s a step

that matches two definitions.

There’s another way to specify the path. The definition for the default

Cucumber step /I am on (.*)/ defers to a method called path_to(), which

is passed the regular expression group as an argument. That method

is defined in the file features/support/paths.rb as follows:

def path_to(page_name)

case page_name

when /the home\s?page/

'/'

Add more mappings here.

Here is an example that pulls values out of the Regexp:

#

when /^(.*)'s profile page$/i

user_profile_path(User.find_by_login($1))

else

begin

page_name =~ /the (.*) page/

path_components = $1.split(/\s+/)

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=247

THE EDIT SCENARIO: SPECIFYING PATHS 248

self.send(path_components.push('path').join('_').to_sym)

rescue Object => e

raise "Can't find mapping from \"#{page_name}\" to a path.\n" +

"Now, go and add a mapping in #{__FILE__}"

end

end

end

See that part where it helpfully says “add a mapping”? What we want to

do here is add more where clauses that return some kind of Rails URL-

like object. So, delete the Given clause we just wrote, and add the fol-

lowing When clause to the path_to() method in features/support/paths.rb:

Download huddle3/features/support/paths.rb

when /edit page for "(.*)"/

@project = Project.find_by_name($1)

edit_project_path(@project)

I want to walk through this step-by-step:

1. Cucumber sees the step Given I am on the edit page for "Conquer The

World".

2. The step is matched to the existing web step Given /^I am on (.+)$/.

3. The web step takes as an argument the grouped text, the edit page

for "Conquer The World", and passes it to the path_to() method.

4. The path_to() method matches the regular expression we have just

added, /edit page for "(.*)"/.

5. The grouped text in this regex is used to convert that expression

to the RESTful edit path for the associated project. The $1 is a

Ruby global for the first match group of the most recently matched

regular expression. Although that’s a Perlism that I don’t normally

use in my Ruby code, it’s the easiest way to get at the regular

expression match data that’s in the when clause.

There are two ways of looking at this mechanism. On the plus side, it’s

a very flexible way to allow a path to be specified in a meaningful plain-

language way. On the other hand, it has a certain fog-on-fog quality,

and there’s a lot of indirection.

At this point, the step should pass, and the next two steps, When I check

"alpha" and And I press "Update", should also pass because they are web

steps that are dependent only on the existence of the form elements we

created for the first scenario. They have the effect of mimicking the user

actions of checking a checkbox and submitting the edit form with one

user checked.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/features/support/paths.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=248

THE EDIT SCENARIO: SPECIFYING PATHS 249

Route Support

One problem with the path_to() method is that it requires you to
separately enter paths before they can be used by Cucumber.
This feels like duplication. To prevent unnecessary duplication,
Cucumber recently added the snippet in the else clause, origi-
nally posted by Solomon White. It infers a RESTful route from the
text. This code replaces the else clause of the path_to() method:

Using this snippet, something like “the story page” would con-
vert to story_path, while “the edit user page” would send the
route edit_user_path.

The fourth step, Then I am taken to the show page for "Conquer The World",

needs to be defined. The intent of this step is to validate that the form

submission takes the user to the page intended. The step definition

looks like this:

Download huddle3/features/step_definitions/users_and_projects_steps.rb

Then /^I am taken to (.*)$/ do |path|

assert(current_url.ends_with?(path_to(path)))

end

This definition is dependent on another clause in the path_to() method,

very similar to the last one:

Download huddle3/features/support/paths.rb

when /show page for "(.*)"/

@project = Project.find_by_name($1)

project_path(@project)

The step definition is comparing the URL for the current page, which

will be http://www.example.com/projects/1 to the URL path output from

path_1, which will be projects/1.

Now we’re at the meat of the scenario. The last two steps, And I should

see "alpha@example.com" and And I should not see "beta@example.com", are

web steps that search for specific text in the body output. In this case,

we’re assuming that the eventual project show page will include the

emails of the users on the project—and not include the emails of users

who aren’t in the project.

You have to be careful here: the Cucumber test is explicitly not testing

that the user has actually been added to the project in the database.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/features/step_definitions/users_and_projects_steps.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/features/support/paths.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=249

THE EDIT SCENARIO: SPECIFYING PATHS 250

You could write such a test, but it is considered better practice to man-

age that at the controller and model test levels and keep Cucumber at

the level of user interaction. That’s fine, but it’s also true that we could

make the Cucumber test pass by just including the text string in the

output. Or, more insidiously, by just passing the form submission data

to the view without saving it.

My point here is not that Cucumber is bad—it’s not. It’s more to say that

Cucumber is only part of your nutritious testing breakfast. In this case,

we are going to change the controller, so we should step down to con-

troller tests. Put this controller test in test/functional/projects_controller_

test.rb:

Download huddle3/test/functional/projects_controller_test.rb

test "should update with users" do

set_current_project(:huddle)

put :update, :id => projects(:huddle).id,

:users_in_project => [users(:quentin).id]

huddle = Project.find_by_name("Huddle")

assert_equal [users(:quentin).id], huddle.user_ids

end

This confirms that sending user IDs to the update will be converted to

users in the actual project. The case where there are no users being

passed is actually being taken care of by the already existing update

test. To pass the controller test, the following goes into update() in

app/controllers/projects_controller.rb:

Download huddle3/app/controllers/projects_controller.rb

def update

@project = Project.find(params[:id])

@users = begin User.find(params[:users_in_project]) rescue [] end

@project.users = @users

respond_to do |format|

if @project.update_attributes(params[:project])

flash[:notice] = 'Project was successfully updated.'

format.html { redirect_to(@project) }

format.xml { head :ok }

else

format.html { render :action => "edit" }

format.xml { render :xml => @project.errors,

:status => :unprocessable_entity }

end

end

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/functional/projects_controller_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/app/controllers/projects_controller.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=250

LOGIN AND SESSION ISSUES WITH CUCUMBER 251

That passes the controller test and puts the data in the database. But

to pass the Cucumber test, the data needs to get into the view. Please

add the following to the beginning of the app/views/projects/show.html.erb

file:

Download huddle3/app/views/projects/show.html.erb

<h2>Users for <%= @project.name %></h2>

<table border="0" width="">

<% @project.users.each do |user| %>

<tr>

<td><%= user.login %></td>

<td><%= user.email %></td>

</tr>

<% end %>

</table>

I will grant that the previous is not anything like a beautiful design.

But Cucumber doesn’t care and happily passes. All green; the feature

is complete, for some definition of complete.

15.6 Login and Session Issues with Cucumber

There’s a big issue that we’ve kind of glossed over so far: authentication.

In a real application, we’d probably need to be logged in to view and edit

projects. From a controller test, simulating a login is easy—we have

direct access to the controller and session, so we can add the fake user

directly to the fake session.

From Cucumber, we don’t have access to the controller or the session,

so we need to log in by simulating user actions. Something like this

works if we are using Devise:

Given /^the user successfully logs into Huddle$/ do

@user = User.create!(:email => "email@email.com",

:password => "password",

:password_confirmation => "password")

visit "login"

fill_in("user_email", :with => @user.email)

fill_in("user_password", :with => "password")

click_button("Sign In")

end

This step definition creates a user as an instance variable and then

travels to the Devise login screen and simulates filling in and submit-

ting the login form with Webrat or Capybara. If we wanted a specific

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/app/views/projects/show.html.erb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=251

ANNOTATING CUCUMBER FEATURES WITH TAGS 252

username, it’d be easy enough to change the step definition to take one

in. On the plus side, this is largely boilerplate and can be applied to

most projects with little or no modification.

Anything session-based will have a similar issue and needs to be gen-

erated by simulating user actions. Again, this indicates that Cucumber

isn’t going to solve all your testing problems—just some of them.

15.7 Annotating Cucumber Features with Tags

Cucumber test suites, especially on large sites, tend to be slow. Even

with the recent speed improvements in parsing the feature files, the

end-to-end testing is still slow relative to unit tests. To speed up the

development test/code loop, it’s handy to be able to run a limited subset

of the Cucumber features so that you can focus on the scenarios that

are actually under development.

In Cucumber, you can separate scenarios or features into groups by

using tags. To define a tag, put the tag in the line before the scenario

declaration, preceded by the @ symbol:

@userpage

Scenario: See user display on edit page

Given that user "alpha" is a member of the project

When I visit the edit page for the project

Then I should see 2 checkboxes

If you want to have multiple tags apply to the same scenario, the tags

all go on the same line with a space between them. You can then use the

tags by specifying them from the Cucumber command line. For exam-

ple, to only run scenarios with the userpage tag, use this command:

cucumber --tags @userpage

You can run all the scenarios that don’t have a particular tag by pref-

acing the tag with a tilde:

cucumber --tags ~@userpage

If you want to make things more complicated, you can logically com-

bine tags. If you include multiple --tags options, they act as a logical

and. To run scenarios that are both @userpage and @complete, use this

command:

cucumber --tags @userpage --tags @complete

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=252

IMPLICIT VS. EXPLICIT CUCUMBER TESTS 253

For logical or behavior, include multiple tags in the same option, sep-

arated by commas. To run @userpage or @reporting scenarios, you’d do

this:

cucumber --tags @userpage,@reporting

Also, you can specify a limit to the number of scenarios that can be run

with a given tag. Running Cucumber will fail if the number of tagged

tests exceeds the limit:

cucumber --tags @userpage:3

This behavior is used by the default cucumber:wip task, but I’m not sure

how useful it is in general.

Cucumber gives privileged status to the @wip tag, which stands for

“work in progress.” The @wip tag is special because Cucumber gives

you the default Rake task rake cucumber:wip, which runs only those

scenarios that have @wip tags.

If you are using Capybara, then the Capybara/Cucumber combination

uses the special tag @javascript to indicate a scenario that should be

run using Capybara’s JavaScript driver, which is usually Selenium or

Culerity. The JavaScript driver is used instead of the default headless

stack. This behavior is not dependent on the command-line options; the

JavaScript driver will be applied to all appropriately tagged scenarios.

Naturally, you’d expect those scenarios to run more slowly.

15.8 Implicit vs. Explicit Cucumber Tests

After writing Cucumber tests for a while, issues of style and structure

start to show. One of the first questions is whether to put specific details

of the scenario in the Cucumber feature or in the step definition.

For example, a scenario that requires differentiating a newly created

user from an experienced user could be written in any of the following

ways (and others, but these are enough to make the point):

Given a user named "Noel Rappin" who joined the site 2 years ago

Given a pre-existing user named "Noel Rappin"

Given a pre-existing user

The topmost version is the most explicit; the step definition would take

the data in the Cucumber step and use that directly. The bottom-most

version is completely implicit; the step definition will need to create a

user and creation time on its own. The middle one, obviously, is in the

middle.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=253

IMPLICIT VS. EXPLICIT CUCUMBER TESTS 254

Toward Cucumber Style

The key to whether you have a good or bad experience with
Cucumber is how well you write the step definitions. Here are
some guidelines that I’ve found useful:

• Let the scenario have the natural language that feels right
for your context, and smooth things out in the step defini-
tion.

• Try not to include code in your feature descriptions. This
includes CSS selectors.

• Where possible, keep the step definitions simple; they
absolutely need to be 100 percent accurate.

• I find it better to have multiple simple steps than to have
one step that performs tricky regular expression acrobat-
ics.

• Keep the When and Then steps at the level of the user,
rather than the database.

• As with other tests, verifying what isn’t there is as important
as verifying what is.

• Cucumber is not the place to sweat implementation
details; save that for the regular tests.

• Avoid tautological tests—it’s pretty easy for the indirec-
tions of the step definitions to mask an always-passing
step.

There are advantages to each way. The implicit view leads to simpler,

more natural-sounding Cucumber scenarios and is generally going to

be easier for a nontechnical client to use. However, the step definitions

are more complex and need to manage more implicit data, leading to

a greater possibility of error in the step definitions. It’s also less likely

that you’ll be able to reuse implicit definitions. An explicit Cucumber

step leads to simpler step definitions, but it can be hard to distinguish

the salient details of the Cucumber step. For example, a client who saw

a line of code similar to the explicit line here wondered what was special

about “two years ago.”

There isn’t a particular right answer here; it’s something to keep in

mind as you write your Cucumber tests.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=254

IS CUCUMBER GOOD FOR YOU? 255

15.9 Is Cucumber Good for You?

For a long time, Cucumber and its predecessor StoryRunner were on

my list of interesting projects to get around to someday, but it didn’t

seem tremendously practical. One of the things that made me turn the

corner and start using it was the realization that a lot of my objec-

tions to Cucumber—writing extra code, the fact that the tests might

not always be accurate, that kind of thing—were similar to the kinds of

objections I’m always hearing about Test-Driven Development in gen-

eral. That gave me pause, and I decided to make a concerted effort to

try to figure out Cucumber.

It turned out that the analogy to regular TDD continued to hold as

I used Cucumber. The startup costs turned out to generally be less

than I feared, but the benefit of specifying end-to-end behavior of the

application turned out to be high. Somewhat surprisingly, I found that

my coding sessions were more focused when I used Cucumber, and I

had a much better sense of what needed to be completed and what

needed to be done next.

What I ended up with was a double loop, where a failing Cucumber test

triggers a regular unit test and a failing unit test triggers code. It’s not

a perfect analogy—unit tests have design value and can cover areas of

the program that are difficult to reach from Cucumber—but it’s a good

way to think of Cucumber’s place.

If you are dealing with a client or nonprogramming customer, the value

of an acceptance test that is both natural language and executable is

outstanding. My only caution at the moment would be that even though

there isn’t much structure in Cucumber tests, there still is some. We

tend to use the Given/When/Then structure for user stories even with-

out Cucumber, but my first attempts at executing some of them in

Cucumber still required some translation. For example, the story defi-

nitions tended to do too much in one scenario. Be prepared to go back

and forth and rewrite your Cucumber steps a little bit over time, for

clarity and as new features become apparent. Also, try to keep your

step namespace clean; on large projects, finding the steps can become

a problem.

Where is the sweet spot for using Cucumber? Cucumber’s strengths

are in its ability to easily specify and document the end-to-end behav-

ior of your application. It makes an excellent blueprint, both in the

sense of describing what needs to be done and in the sense of allowing

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=255

IS CUCUMBER GOOD FOR YOU? 256

you to plan the direction of development. It makes an excellent com-

plement to a typical TDD/BDD process, taking a big-picture role that

smaller unit tests can’t really play. Where you can get in trouble with

Cucumber is by trying to move it to areas where it’s not really strong,

such as attempting to manage model or implementation details. Keep

Cucumber in its appropriate place. If you make sure you aren’t forever

fiddling with the details of the steps and use it to drive your regular

tests the same way you use tests to drive code, Cucumber will improve

your code.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=256

Part VI

Testing Your Tests

Chapter 16

Using Rcov
to Measure Test Coverage

Test coverage is the most commonly used numerical metric for evalu-

ating the quality of tests. Coverage measures the amount of application

code that is actually executed over the course of running a test suite. At

the end of the day, this is usually expressed as a percentage, as in, “My

project has 85 percent test coverage” or, in other words, “85 percent of

my application code is actually touched when the tests run.”

In the right circumstances, you can get into a nice little argument about

how meaningful test coverage is, but most people agree on the following

points:

• The absence of code coverage indicates a potential problem—a

part of your code is not being tested at all. How big a problem

that is depends on the context.

• The existence of code coverage, in and of itself, means very little.

The coverage metric says nothing about whether the application

code being executed is actually being verified at all, let alone being

verified completely.

• That said, in conjunction with good testing practices, a cover-

age run might say something useful about your test suite and its

reach. To put it another way, if you are using good TDD practices,

you probably are getting good test coverage, but coverage by itself

doesn’t indicate that you are using good TDD practices.

85 PERCENT OF WHAT? 259

16.1 85 Percent of What?

Did you see where I tried to put one by you right there in the first para-

graph of this chapter? When I referred to a project having “85 percent”

test coverage. Leading to the natural follow-up question, “85 percent

of what, exactly?” Good question. While the idea of code coverage may

seem intuitively clear, nothing is simple once the computer scientists

get done with it.

Wikipedia currently lists no less than seven different ways to measure

coverage, ranging from the theoretically useful to the downright goofy.

But really, there are only two measures that are both easy enough to

calculate and useful enough to have any currency at all. Line coverage

is a measure of the percentage of actual, textual lines of code in your

application that are executed by your test suite. The alternative, branch

coverage, attempts to measure each branch of your code and counts

each branch equally. (Spoiler alert: Rcov measures line coverage.) For

example, say you have a method like the following:

def code_coverage_example_silly_method

if something_good

tell_all_my_friends

else

ignore_it

run_in_circles

scream_and_shout

jump_up_and_down

run_in_circles_some_more

whine_all_day

end

end

If you only had a test for the case where something_good == true—and

don’t we all wish that was the only case we ever had to test—then a

line coverage estimate would say you had covered four of the twelve

lines, for 33 percent coverage. Specifically, the tests would cover the

def itself, the if statement, the tell_all_my_friends, and the end at the end

of the method. A branch coverage estimate, on the other hand, would

determine that this method has two branches (the if clause and the else

clause) and one of them is covered, for 50 percent branch coverage.

In theory, branch coverage provides a “truthier” picture of your cover-

age. In the previous method, all six lines in the else clause are essen-

tially one unit; they are either all tested or all not. It makes very lit-

tle sense for the length of each branch to have an effect on how that

branch is weighted for calculating code coverage. On the other hand,

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=259

INSTALLING RCOV 260

the practical difference between the two measures is usually not all

that great on real code, and line coverage is about a jillion times easier

to calculate. Also, 100 percent is 100 percent either way. I submit that

if you are deeply concerned about the difference between branch and

code coverage in your app, you have bigger problems than your code

coverage.

Still, there are some odd artifacts from Rcov’s use of line coverage. The

most potentially annoying is for fans of single-line if statements or post-

statement if clauses, as follows:

return nil if x

if x then 3 else 2 end

Rcov will happily mark the entire line as covered, whether or not the

if statement is actually tested in both true and false states. Again, this

is more an annoyance than a life-or-death concern, and I absolutely

would not recommend adjusting your code style to accommodate Rcov,

but it is something to keep an eye on.

16.2 Installing Rcov

Like so many things in life, installing Rcov is at least 10 percent more

complicated than it should be. You download the gem normally but

then need to install a native extension that allows Rcov to run quickly.

Without the extension, Rcov pretty much runs in geologic time: instru-

menting for code coverage is a slow process.

As I write this, the current, live official version of the Rcov gem is a fork

of the original gem maintained by Relevance, a leading Rails consult-

ing shop. As far as http://www.rubygems.org is concerned, the Relevance

version is now the canonical version of Rcov. To install the gem, do this:

$ sudo gem install rcov

If you have not been able to download a binary, once Rcov has been

installed as a gem, you must compile the native binary that allows

Rcov to run quickly enough to actually be useful. Those of you who

are not Windows users need to navigate in the command terminal to

the Rcov gem directory (the exact directory will depend on your system;

for a native Mac OS X installation, it’s /Library/Ruby/Gems/1.8/gems/rcov-

VERSION) and run the following:

$ sudo ruby setup.rb

Report erratum

this copy is (P1.0 printing, February 2011)

http://www.rubygems.org
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=260

RCOV AND RAILS 261

Windows users aren’t officially supported (at least as of the note that

I see dated February 28, 2010); however, you should be able to install

Rcov via the Windows development kit at http://www.rubyinstaller.org. Note

that Ruby 1.9.x is not supported yet but is in progress.

Windows users can still create a binary from the original prerelevance

version of Rcov by downloading the binary file rcovert.so from http://

eigenclass.org/static/rcov/binary-win32/rcovrt.so and placing the file in the

Ruby extension directory, which if you used the standard one-click

installer, is probably c:\ruby\lib\ruby\site_ruby\1.8\i386-mswin32\.

At this point, you might want to try a simple command like rcov --version

to make sure that everything is installed correctly.

16.3 Rcov and Rails

Don’t worry, installation fans, we’re not done yet. There’s still a separate

plugin for integrating Rcov with Rails. Luckily, this one is pretty easy:

$./script/plugin install http://svn.codahale.com/rails_rcov

In Test::Unit, this gives you a series of Rake tasks; we’ll talk about

RSpec in Section 16.6, Rcov and RSpec and Cucumber, on page 267.

Specifically, each rake:test task you have defined gets a rake test:rcov

and a rake test:clobber_rcov, such as rake test:functionals:rcov and rake

test:functionals:clobber_rcov. The global test task is test:test:rcov. The Rcov

task runs the associated tests using Rcov, resulting in an Rcov report.

This report is placed in a coverage directory at the top level of your Rails

app. The clobber task clears out the report data from that directory. You

can also run coverage on a specific test file by including the file as the

TEST option, as follows:

$ rake rcov TEST=file_to_test.rb

There are some things to be aware of. First, you really don’t want those

coverage files in your source control, so be sure to use the appropriate

ignore mechanism to keep that coverage directory out of the source con-

trol tree. Second, the rails_rcov plugin depends on the existence of Rcov.

This means your staging and production environments either need to

have Rcov installed or need to have the plugin removed, which you can

do as part of your Capistrano deploy script, perhaps.

Finally and most importantly, Rcov completely ignores view files that

aren’t “real” Ruby, such as ERb and Haml. While I suppose in the

abstract I’d kind of like to see my view coverage, I have to admit that

Report erratum

this copy is (P1.0 printing, February 2011)

http://www.rubyinstaller.org
http://eigenclass.org/static/rcov/binary-win32/rcovrt.so
http://eigenclass.org/static/rcov/binary-win32/rcovrt.so
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=261

RCOV OUTPUT 262

The Invisible Class Gotcha

Since the Rcov output contains only files that are touched by
the test suite, a file that is completely untouched will not show
up with 0 percent coverage—it just won’t show up, period. As a
result, your coverage score will be artificially high, and you may
not see the problem. What with Rails making it pretty easy to
get every file in your app at least minimally touched by a test,
it’s rare to get bitten by this problem. But it does happen—well,
it’s happened to me—so I thought I’d mention it.

in practice my attitude is more along the lines of “one less thing to

worry about today.” Ideally, you’ll be putting any complicated logic in

the model or helper, where it can be tested and the test coverage can

be measured.

16.4 Rcov Output

When you run Rcov from one of the Rails Rake tasks, you get output in

your console, as well as a full HTML output report. (In the next section,

we’ll talk about how to tweak that output.)

The console output is simply a list of touched files and will show up

after the normal Test::Unit output. Here’s an edited look at the text:

+--+-------+-------+--------

| File | Lines | LOC | COV |

+-- -----+-------+-------+--------+

|app/controllers/application_controller.rb | 75 | 50 | 86.0% |

|app/controllers/projects_controller.rb | 87 | 61 | 80.3% |

|app/controllers/status_reports_controller.rb | 91 | 65 | 80.0% |

|app/controllers/user_sessions_controller.rb | 25 | 20 | 60.0% |

|app/helpers/application_helper.rb | 3 | 2 | 100.0% |

+--+-------+-------+--------+

|Total | 78429 | 41952 | 51.2% |

+--+-------+-------+--------+

The columns are filename, total lines of text in the file, actual lines of

code in the file (meaning, lines that are not blank and are not com-

ments), and percentage of lines of code that are covered. The last line

of the output is a sum for the project as a whole.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=262

RCOV OUTPUT 263

Figure 16.1: Rcov index page

You’ll note, especially if you have an unusual Ruby installation, that

the default Rake task will include seemingly zillions of gem, plugin,

and library files that you don’t really care about, which are also getting

included in the total, making it less useful than it might be. The next

section discusses how to get those lines out of your reports to make

them more meaningful.

Inside the coverage directory, Rcov has created an entire directory for

your coverage report. If you open the index.html file in that directory, you

will see something like Figure 16.1—I’ve filtered it to the app directory

to make the output more meaningful. Depending on your setup, you

might need to limit yourself to just one of the Rcov tests, such as rake

test:units:rcov, in order to get a meaningful index file.

At the top of the page, you’ll see pull-downs that do some JavaScript

filtering of the code based on a top-level directory or a threshold value

for coverage, showing only those files below a specified value. Both of

these filters are new in the Relevance Rcov and are greatly welcome.

The columns here are the same as the console output with the addition

of Total Coverage, which is the percentage of lines covered, counting

both code and noncode lines of text.

What does it mean to cover a comment, blank line, or other nonex-

ecutable line? Rcov claims to infer coverage of nonexecuted lines by

attaching them to the lines nearest them, so an end is considered to

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=263

COMMAND-LINE RCOV 264

Figure 16.2: Rcov file page

have been executed if its associated block or if statement is covered,

and a comment is generally attached to the first executable line of code

after the comment. In practice, the code percentage in the last column

is going to be the most useful.

Clicking any of the filenames takes you to an individual report for that

file, as shown Figure 16.2.

By default, the individual report shows various shades of green for

covered code (a different green for nonexecutable lines that have been

inferred by Rcov) and various shades of red for uncovered lines—these

are the ones that might need more testing.

16.5 Command-Line Rcov

You can run Rcov directly from the command line without Rake. By

way of comparison, the system command generated by the default Rake

Rcov task looks like this:

$ rcov -o "/Users/noel/Projects/tasker/coverage/test" -T

-x "rubygems/*,rcov*" --rails -I"lib:test"

"/Library/Ruby/Gems/1.8/gems/rake-0.8.7/lib/rake/rake_test_loader.rb"

test_file_1.rb test_file_2.rb

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=264

COMMAND-LINE RCOV 265

The command is all on one line and has a list of actual files at the end

after the options. Although normal usage is for those executed files to

be tests, they can be any Ruby script.

An important note: any of Rcov’s command-line options can be passed

to the Rake task by including them as a string in an RCOVOPTS com-

mand-line variable, as follows:

$ rake rcov RCOVOPTS="--only-uncovered --sort coverage"

Here’s a brief guide to the most useful Rcov command-line options. In

the next section, I’ll show you how to roll your own Rake tasks to make

the Rcov report more useful. As with most Unix command-line utilities,

many of these options have a single-dash shortcut and a double-dash

full name. This is not a complete list.

--aggregate FILE

Aggregate the current data with existing data from a previous run

that is in the associated Rcov data file.

--annotate -a

Generate annotated source code.

--comments

Mark all comments as covered (the default is the opposite, --no-

comments).

--exclude PATTERNS --x

Do not generate coverage information for files matching the list of

comma-separated regular expression patterns.

--html

Generate HTML output. The opposite is --no-html.

--include DIR:DIR -I DIR:DIR

A colon-separated list of paths to be included in the load path.

--include-file PATTERNS -i PATTERNS

Only generate coverage information for files matching the given

set of comma-separate regular expression patterns. The inverse of

--exclude.

--no-color -n

Generates output that is colorblind-safe.

--only-uncovered

A synonym for threshold 100.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=265

COMMAND-LINE RCOV 266

--output DIR -o DIR

The directory to which the HTML output reports will be saved.

--rails

Equivalent to -x config/,environment/,vendor/.

--save FILE

Saves raw coverage info to a file. Use with --text-coverage-diff.

--sort OPTION

Sorts files in the output by the option. The option is name, loc, or

coverage.

--sort-reverse

Reverses the list of sorted files.

--spec-only

Only count code that is covered from within an RSpec spec. In

normal RSpec usage, this is redundant.

--text-coverage-diff FILE -D FILE

Compares this coverage run with a previous run that was saved

using --save.

--test-unit-only

Only count code is covered from within a Test::Unit test. In normal

Rails usage, this is redundant.

--text-report -T

Place a detailed report in standard output (default).

--text-summary -t

Place a summary in standard output.

--threshold VALUE

Outputs data only for files with coverage below the value, as in

--threshold 95.

--xrefs

Generates a cross-referenced report showing where methods are

called from.

If you need to pass options to the program being run by Rcov, not just

Rcov itself, you do that by placing those options after a double-dash in

the output, as follows:

$ rcov --only-uncovered script.rb -- --opt-to-script

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=266

RCOV AND RSPEC AND CUCUMBER 267

16.6 Rcov and RSpec and Cucumber

RSpec and Cucumber use a similar mechanism for integrating with

Rcov. In both cases, the recommended way to run coverage of your

Cucumber feature set is by also by creating a new Cucumber Rake task

in the Rake file created by the tool. For RSpec, that’s lib/tasks/rspec.rake;

for Cucumber, it’s lib/tasks/cucumber.rake. In RSpec 1.3.x and 2.x, a

spec:rcov task is predefined, but you can add Rcov support to any cus-

tom RSpec Rake task. The key is to set a task variable rcov to true inside

the task you create. For RSpec, you get something like this:

RSpec::Core::RakeTask.new(:rcov => "db:test:prepare") do |t|

t.pattern = "./spec/**/*_spec.rb"

t.rcov = true

end

In Cucumber, the task looks like this one, which uses other options

from the default Cucumber rake:ok task:

Cucumber::Rake::Task.new({:coverage => 'db:test:prepare'}) do |t|

t.binary = vendored_cucumber_bin

t.fork = true

t.rcov = true

t.rcov_opts = %w(--rails --exclude \/Library\/Ruby\/)

end

The rcov_opts variable, which works in both RSpec and Cucumber, takes

command-line options that would be sent to Rcov. The options are

expected to be in an array. If no options are set, the Cucumber default

is %w{-–rails -–exclude osx\/objc,gems\/}. To my knowledge, RSpec does

not have a default.

If those options are good for you, you can just append to the list using

something like t.rcov_opts << %w(aggregate data\/coverage.data). In

RSpec 1.3.x, Rcov options can be placed in spec/rcov.opts, one option

to a line, similar to the way that spec.opts works.

16.7 Rcov Tricks

Personally, I find the default Rcov tasks kind of inflexible and irritating,

which is why I wrote my own. The main goal of this was to provide two

different views of my test coverage, the first being just the model and

helper tests against the model and helper code only and the second

aggregating that report with the result of the controller test against the

entire app directory. I also wanted some better control over the output.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=267

RCOV TRICKS 268

The simpler part of this is just a Rake task to delete the last round of

data, to be invoked as rake test:coverage:clean. I’m hoping you are basi-

cally familiar with writing Rake tasks, because explaining all of Rake

is way out of scope. (See http://rake.rubyforge.org for full Rake docs or

http://jasonseifer.com/2010/04/06/rake-tutorial for a good tutorial by Jason

Seifer.)

namespace :test do

namespace :coverage do

desc "Delete aggregate coverage data."

task :clean do

rm_rf "tmp/functional"

rm_rf "tmp/unit"

rm_f "tmp/coverage.data"

end

end

end

That done, it’s time to define the actual rake test:coverage task. What I’m

doing here is defining a blank task that is dependent on the cleanup

task and then defining two tasks, one for each coverage run. Each

of these tasks is dynamically made an antecedent of the main rake

test:coverage task. I’m helped greatly here by the Rcov::RcovTask class

defined by Rcov. Here’s the code (this is not the only or even necessar-

ily the best way to write this task):

namespace :test

task :coverage => "test:coverage:clean"

%w(unit functional).each do |target|

namespace :coverage do

Rcov::RcovTask.new("cov_#{target}") do |t|

t.libs << "test"

t.test_files = FileList["test/#{target}/**/*_test.rb"]

t.verbose = true

t.rcov_opts << '--rails --aggregate data/coverage.data'

t.rcov_opts << '--exclude app/controllers/' if target == "unit"

t.rcov_opts << '--exclude db/'

t.rcov_opts << '--exclude lib/authenticated'

t.rcov_opts << '--exclude vendor/plugins'

t.rcov_opts << '--exclude /Library/Ruby/'

t.output_dir = "data/#{target}"

end

end

task :coverage => "test:coverage:cov_#{target}"

end

end

The Rcov::RcovTask.new() method takes an initializing block; in that

block, we set up any options to the task that we want. The class defines

Report erratum

this copy is (P1.0 printing, February 2011)

http://rake.rubyforge.org
http://jasonseifer.com/2010/04/06/rake-tutorial
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=268

HOW MUCH COVERAGE IS ENOUGH? 269

a number of attributes to help. Just in this example, you can see libs,

which contains directories to be added to the load path; test_files, which

takes the list of test files to be run; verbose, which specifies output ver-

bosity; output_dir, which is the directory where Rcov writes to; and then

rcov_opts, which takes any other arguments you want.

Note that the two tasks differ only in their test directories and in that

the unit test task excludes the controller directory. Rcov options being

used include the --aggregate option, which allows the data from the unit

test to be rolled into the controller run to create a combined coverage

report the second time through.

This is what I use to measure coverage on my projects. Season to taste,

and try it on your own.

16.8 How Much Coverage Is Enough?

How valuable is code coverage? The inimitable Jay Fields, who has

probably forgotten more about testing than I ever knew, compares code

coverage to money—in that having a lot of it doesn’t necessarily mean

you are happy, but having none pretty much sucks.

It’s not hard for a Rails project to run at 100 percent coverage, but

there’s having coverage for the purpose of getting the magic 100 num-

ber, and there’s having coverage as a result of an actual test-driven

development project, plus some occasional corner filling. The magic

number on its own is probably useless; however, going through the

process is quite valuable.

If you are executing the process correctly, your coverage should be 100

percent or pretty close as a natural side effect. If you find yourself writ-

ing an awful lot of tests after the fact just to get the number up, it’s a

hint that you could stand to improve your TDD process.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=269

Chapter 17

Beyond Coverage:
What Makes Good Tests?

One of the great things about the Ruby and Rails community is the

extent to which they have accepted the idea that Test-Driven Design is

a good process for developing software. That’s a huge accomplishment

and a genuine difference between the Rails community and other pro-

gramming groups that I have been part of. We’ve spent a lot of time

in this book on the mechanics of Ruby on Rails testing, how the tools

work, how to get them running, and how to manage the basic TDD

process. In other words, we’ve been talking about the craft of testing.

Now, I’d like to talk about the art of testing: what makes a good test,

how to balance testing priorities, how to troubleshoot, and, in the next

chapter, how to test when you already have a pile of bad code.

I’d like to see the discussion of testing in the Ruby community move

to the next step, which is how to improve the quality of the tests you

write. I see two modes of debate about testing in the community, both

of which are interesting at times, but neither of which is the discussion

I want to have at the moment.

• TDD/BDD naming debate. I’ve been testing for long enough that

I still need to catch myself from calling it Test-First Programming.

So, I don’t have a lot of patience when I refer to TDD, only to be

greeted with an eye-roll and “Don’t you mean BDD?” response.

We probably all have better things to do then argue over Scrabble

tiles.

• Tools you should never use. There have been a lot of posts over the

last few months—some insightful, some less so—on the general

THE FIVE HABITS OF HIGHLY SUCCESSFUL TESTS 271

theme of “Why You Should [Never/Always] Use Cucumber.” Tool

choice is a useful discussion, but almost any of the popular tools

in Rails can be used effectively, so this debate doesn’t necessarily

give much guidance as to how to test well.

There’s a more fundamental debate lurking behind both of these dis-

cussions: a debate over what makes a test or a suite of tests effec-

tive and useful over the life of your application. To date, there’s really

only one commonly accepted objective metric of test quality—coverage.

As we saw in Chapter 16, Using Rcov to Measure Test Coverage, on

page 258, though, coverage is a flawed measure of test quality.

For the purposes of this discussion, we’ll use a more subjective metric:

that a good test saves time and effort over the long term, while a poor

test costs time and effort. Using my own test experiences, I’ve focused

on five qualities that tend to make a test successful by this metric. The

absence of these qualities, on the other hand, is often a sign that the

test could be a problem in the future.

17.1 The Five Habits of Highly Successful Tests

The best, if most general, piece of advice I can give about the style and

structure of automated tests is this: remember your tests are also code.

Also, remember your tests are code that don’t have tests. Your code is

verified by your tests, but your tests are verified by nothing. So, having

your tests be as clear and manageable as possible is the only way to

keep your tests honest and keep them going.1

A successful test has the following five features:

• Independence

• Repeatability

• Clarity

• Conciseness

• Robustness

1. That said, in practice I’m slightly more willing to allow duplication in tests in the

name of readability. But only slightly.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=271

THE FIVE HABITS OF HIGHLY SUCCESSFUL TESTS 272

Independence

A test is independent if the test does not depend on any external tests or

data to run. An independent test suite gives the same results no matter

what order the tests are run and also tends to limit the scope of test

failures to only those tests that cover the buggy method. In contrast, a

change in one part of an application with a very dependent test suite

could trigger failures throughout your tests. A clear sign that your tests

are not independent is if you have test failures that happen only when

the test suite is run in a particular order—in fully independent tests,

the order in which they are run should not matter.

The biggest impediment to independence in the test suite itself is the

use of global data. If the application is poorly designed, it may be diffi-

cult or impossible to make the tests fully independent of one another,

but that’s not exactly our lookout at the moment. Rails fixtures are not

the only possible cause of global data in a Rails test suite, but they are

a really common cause. Somewhat less common in a Rails context is

using a tool or third-party library in a setup and not tearing it down.

For example, the FlexMock mock object tool needs to be explicitly torn

down between tests, as does the Timecop time-freezing gem.

Other than the use of fixtures, most Rails developers know to steer

clear of global data in general, not just in a test suite and for the same

reason—code that has strange, hard-to-trace dependencies. One rea-

son factory tools are preferable to fixtures is that they result in tests

that have better independence.

Repeatability

A test is repeatable if running the same test multiple times gives the

same result. That is to say, a test is repeatable if running the same test

multiple times gives the same result.2 The hallmark of a test suite that

lacks repeatability is intermittent test failure.

Two classic causes of repeatability problems are time and date testing

and random numbers. In both cases, the issue is that your test data

changes from test to test. The date and time have a nasty habit of

continuing to get higher, while random data tends to stubbornly insist

on being random.

2. Sorry, couldn’t resist. If it’s any consolation, the joke also didn’t get a laugh when I

did it as part of an actual talk.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=272

THE FIVE HABITS OF HIGHLY SUCCESSFUL TESTS 273

The problems with the two types of data are slightly different. Dates

and times tend to lead to intermittent failures when certain magic time

boundaries are crossed. Random numbers, in contrast, make it some-

what difficult to test both the randomness of the number and that the

randomly generated number is used properly in whatever calculation

requires it.

The basic order of attack is similar for both cases and applies to any

constantly changing dataset. The goal is a combination of encapsula-

tion and mocking. Encapsulation generally involves creating a service

object that wraps the changing functionality. By wrapping the function-

ality, you make it easier to stub or mock the output values, providing

the consistency you need for testing. You might, for example, create

a RandomService class that wraps Ruby’s rand() method and, critically,

provides a way for you to preset a stream of output values either by

using an existing mock package or by giving the service object a way to

use a predefined value stream. Once you have verified that the random

service class is random with its own unit tests, the service class can

be stubbed in any other test to provide oxymoronic consistent random

behavior.

The exact mix of encapsulation and mocking varies. Timecop, for exam-

ple, stubs the time and date classes with no encapsulation. That said,

nearly every time I talk about Timecop in a public forum, some audience

member is sure to point out that creating a time service is a superior

solution.

Clarity

A test is clear if its purpose is immediately understandable. Clarity in

testing has two components. The first is the standard sort of readability

that applies to tests as it applies to any code. The second is the kind of

clarity that describes how the test fits into the larger test suite. Every

test should have a point, meaning it should test something different

from the other tests, and that purpose should be easy to discern from

reading the test.

Fixtures are a test-specific issue that can lead to poor clarity, specifi-

cally, the way fixtures tend to create to “magic” results. To wit:

test "the sum should be 37" do

assert_equal(37, User.all_total_points)

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=273

THE FIVE HABITS OF HIGHLY SUCCESSFUL TESTS 274

Where does the 37 come from? Well, if you were to peek into the user

fixture file of this fake example, you’d see that somehow the totals of

the total points of all the users in that file add up to 37. The test passes.

Yay?

The two most relevant problems for the current discussion are the

magic literal, 37, which comes from nowhere, and the fact that the name

of the test is utterly opaque about whether this is a test for the main-

line case, a test for a common error condition, or a test that exists only

because the coder was bored and thought it would be fun. Combine

these problems, and it quickly becomes next to impossible to fix the

test a few months later when a change to the User class or the fixture

file breaks it.

Naming obviously helps with the latter problem. Factory tools have their

place solving clarity issues, as well. Since the defaults for a factory def-

inition are preset, the definition of an object created in the test can be

limited to only the attributes that are actually important to test behav-

ing as expected. Showing those attributes in the test is an important

clue toward the programmer intent. Rewriting the test with a little more

clarity might result in this:

test "total points should round to the nearest integer" do

User.make(:points => 32.1)

User.make(:points => 5.3)

assert_equal(37, User.all_total_points)

end

It’s not poetry, but at the very least, an interested reader now knows

where that pesky 37 comes from and where the test fits in the grand

scheme of things. The reader might then have a better chance of fixing

the test if something breaks. The test is also more independent, since

it no longer relies on global fixtures—making it less likely to break.

We’ll talk more about long tests in the next section, but as far as clarity

goes, long tests tend to muddy the water and make it hard to iden-

tify the critical parts of the test. Basically, the guideline is that tests are

code, and for the most part, the same principles that would guide refac-

toring and cleaning up code apply. This is especially true of the rule that

states “A method should only do one thing,” which here means splitting

up test setups into semantically meaningful parts, as well as keeping

each test focused on one particular goal.

On the other hand, if you can’t write clean tests, consider the possibility

that it is the code’s fault, and you need to do some redesign. If it’s

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=274

THE FIVE HABITS OF HIGHLY SUCCESSFUL TESTS 275

hard to set up a clean test, that often indicates the code has too many

internal dependencies.

There’s an old programming aphorism that since debugging is more

complicated than coding, if you’ve written code that is as complicated

as you can make it, then you are by definition not skilled enough to

debug it. Because tests don’t have their own tests and need to be cor-

rect, this aphorism suggests that you should keep your tests simple,

so as to give yourself some cognitive room to understand them. In par-

ticular, this guideline argues against clever tricks to reduce duplication

among multiple tests that share a similar structure. If you find yourself

starting to metaprogram to generate multiple tests in your suite, you’re

probably going to find that complexity working against you at some

point. You never want to be in a position to have to decide whether a

bug is in your test or in the code. Well, you’ll be in that position at some

point, but it’s an easier place to be if the test side is relatively simple.

Conciseness

A test is concise if it uses the minimum amount of code and objects to

achieve its goal. Concise and clear are sometimes in conflict, as in the

previous example, where the clear version is a couple of lines longer

than the original version. Most of the time, I’d say clear beats concise—

we’re not playing code golf here. Conciseness is useful only to the extent

that it makes writing and maintaining the test suite easier.

Conciseness often involves writing the minimal amount of tests or cre-

ating the minimal amount of objects to test a feature. In addition to

being clearer, concise tests will run faster, which is a big deal when you

are running your test suite dozens of times a day. A slow test suite is

a pain in the neck in all kinds of ways, obvious and subtle, and one of

the best ways to prevent a slow suite is not to write slow tests.

To put this another way, how many objects do you need to create to test

a sort? A simple sort can be tested with two objects, though I often use

three because the difference between the initial input and the sorted

input is easier to see in the test. (As an aside, if you are testing a sort,

be sure to declare the items in a different order than the eventual sort;

otherwise, it’s hard to trigger a failure from the test.) Creating any more

objects is unnecessary and makes the test slower to write and run.

To look at the issue of conciseness in another way, let’s say you have a

feature in which a user is given a different title based on some kind of

point count; a user with less than 500 points is a novice, 501–1000 is

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=275

THE FIVE HABITS OF HIGHLY SUCCESSFUL TESTS 276

an apprentice, 1001–2000 is a journeyman, 2001–5000 is a guru, and

5001 and up is a super Jedi rock star. How many assertions do you

need to test that functionality?

In this case, there’s a legitimate possibility of difference of opinion. I’d

test the following cases—setup obviously is being handwaved here, and

in practice I’d probably do separate single assertion tests. Also, in prac-

tice I’d be writing code after each new assertion.

def assert_user_level(points, level)

User.make(:points => points)

assert_equal(level, user.level)

end

def test_user_point_level

assert_user_level(1, "novice")

assert_user_level(501, "apprentice")

assert_user_level(1001, "journeyman")

assert_user_level(2001, "guru")

assert_user_level(5001, "super jedi rock star")

assert_user_level(0, "novice")

assert_user_level(500, "novice")

assert_user_level(nil, "novice")

end

That works out to one assertion for the start of each new level, plus an

assertion for the special cases 0 and nil, and an assertion at the end of a

level to assure that I don’t have an off-by-one bug. That’s a total of eight

assertions. Given the way this code would probably be implemented, as

a case statement with the while clauses using ranges, I don’t feel the

need to test the end condition of more than one field, nor do I feel the

need to test every point value in a range. (Don’t laugh, I’ve seen tests

that would have effectively looped over every integer in the range and

tested all of them. Unsurprisingly, that was on a Java project.)

Robustness

A test is robust if it actually tests the logic as intended. That is, the

test passes when the underlying code is correct and fails when the

underlying code is wrong. It seems simple enough, but we’ve already

seen cases in this book of tests that miss the mark.

A frequent cause of brittle tests is targeting the assertions of the test

at surface features that might change even if the underlying logic stays

the same. The classic example along these lines is view testing, in which

you base the assertion on the actual creative text on the page that will

frequently change, even though the basic logic stays the same.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=276

THE FIVE HABITS OF HIGHLY SUCCESSFUL TESTS 277

Like so:

test "the view should show the project section" do

get :dashboard

assert_select("h2", :text => "My Projects")

end

It seems a perfectly valid test (or, if you are using Cucumber for integra-

tion testing, a perfectly valid Cucumber step definition)—right up until

somebody decides that “My Projects” is a lame header and decides to

go with “My Happy Fun-Time Projects.” And breaks your test. You are

often better served by testing something that slightly insulated from

surface changes, like a DOM ID.

test "the view should show the project section" do

get :dashboard

assert_select("h2#projects")

end

The basic issue here is not limited to view testing. There are areas of

model testing in which testing to a surface feature might be brittle in

the face of trivial changes to the model (as opposed to tests that are

brittle in the face of changes to the test data itself, which we’ve already

discussed). For example, the test in the previous section with the novice

levels is actually dependent on the specific values of the level bound-

aries. You might want to make the test more robust with something like

this:

def assert_user_level(points, level)

User.make(:points => points)

assert_equal(level, user.level)

end

def test_user_point_level

assert_user_level(User::NOVICE_BOUND + 1, "novice")

assert_user_level(User::APPRENTICE_BOUND + 1, "apprentice")

And so on...

end

You must be cautious at this point, because the other side of robust-

ness is not just a test that brittlely fails when the logic is good but a test

that stubbornly passes even if the underlying code is bad—a tautology,

in other words. The previous test isn’t a tautology, but you can see how

it might easily get there.

Speaking of tautologies, mock objects have their own special robust-

ness issues. As discussed in Chapter 7, Using Mock Objects, on page 101,

it’s easy to create a tautology by using a mock object. It’s also easy to

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=277

TROUBLESHOOTING 278

create a brittle test by virtue of the fact that a mock object often creates

a hard expectation of exactly what methods will be called on the mock

object. If you add an unexpected method call to the code being tested,

then you can get mock object failures simply because an unexpected

method has been called. I’ve had changes to a login filter cause hun-

dreds of test failures because mock users going through the login filter

bounced off the new call. One workaround, depending on your mock

package, is to use something like Mocha’s mock_everything() method,

which automatically returns nil for any unexpected method call without

triggering an error.

17.2 Troubleshooting

Dot, dot, dot, dot, dot—tests are passing, looks like it’s time for lunch—

dot, dot, dot, dot, F. F? F? But the code works. I know it does. I think it

does. Why is my test failing?

One of the most frustrating moments in the life of a TDD developer is

when a test is failing and it’s not clear why, as opposed to the more

normal case in which the test fails as expected. Here’s a grab bag of

tips, tricks, hints, and thoughts to get us all through that difficult time.

Look for What Changed

This may be the most obvious piece of advice in the history of ever, but

it’s worth repeating, mantra-like, when confronted with a bad bug:

When a formerly passing test fails, it means something changed.

It may be in the code, the system, or the test. But it’s probably not

sunspots, and it’s probably not evil spirits possessing your MacBook.3

Looking through recent changes can help you figure out what the cause

of the failure is. Git’s bisect tool does this automatically; or you can just

look through recent changes in your source control viewer of choice. If

the test was passing at one time, there’s a good chance the answer is

in there somewhere.

This is a great argument in favor of committing to your source control

very, very frequently (especially when you are using Git and can do local

commits) so that your changes are very granular.

3. Unless you are living in a Charles Stross novel. Or programming in Perl.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=278

TROUBLESHOOTING 279

Remember, a change to a fixture file can cause test failures all over

the place—removing a model without deleting the fixture file will create

errors in every test. Also, if you have a database migration, rake will

automatically load the new structure to the test database, but the spec,

cucumber, and autotest commands do not do so by default.

Isolate the Failure

When looking at a small number of failing tests, it’s helpful to be able to

run just those tests. Autotest is outstanding for this, since it runs the

failing tests over and over until they pass. Cucumber’s default behavior

also reruns failing tests. This is especially helpful if you have a number

of failing tests that are not in the same test class.

The little code and terminal snippet at http://gist.github.com/101130 is

very helpful for quickly running one class at a time, which is almost like

isolating a failing test, or at least close enough to be useful. Depending

on your IDE and test framework of choice, you may also be able to run

individual tests from the IDE.

Isolating tests makes the tests run faster when you are focused on

just a few tests and also makes any diagnostics you insert easier to

interpret.

Here are two valuable tips that I’ve learned from listening to and reading

Kent Beck:

• Back out your entire most recent change since your last passing

test and start over. This works best if you work in very small incre-

ments, but it gets you out of the “I know I typed something wrong,

but I just can’t see it” nightmare.

• Replace all the expressions in the method under test with literals—

if that passes, put the expressions back one by one until you find

the culprit.

Diagnostics

I’m not a big fan of using stop-and-step debuggers, graphical or com-

mand line. I’ve used them when I’ve been in an IDE, but I’ve never

really used the Rails command-line debugger. I haven’t found that to

be a great experience compared to having tests in which I can make

assertions.

Normally, to diagnose what’s going on in a test, I either add additional

assertions in the test or have the code print information to the console

Report erratum

this copy is (P1.0 printing, February 2011)

http://gist.github.com/101130
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=279

TROUBLESHOOTING 280

or log. If I diagnose via assertions, generally I’m able to test the values

of variables in more detail.

For some reason, I see a lot of people using Ruby’s puts() method to write

to the console—I recommend p(), which calls inspect() on the object

before printing and generally results in more informative output. As a

matter of course, I put require pp in my test_helper.rb file, which allows

me to use pp() to get pretty-printed output, which is nice for nested

data structures. Also, y() gives a YAML representation of the output—

very readable for ActiveRecord objects. The gem awesome_print provides

the ap method for an extremely readable output of complex data struc-

tures.

>> x = {1 => ['a', 'b'], 2 => 'c'}

>> puts x

1ab2c

>> p x

{1=>["a", "b"], 2=>"c"}

>> pp x

{1=>["a", "b"], 2=>"c"}

>> y x

1:

- a

- b

2: c

>> require 'ap'

=> true

>> ap x

{

1 => [

[0] "a",

[1] "b"

],

2 => "c"

}

I’ve been known to bury print statements all over the place—controllers,

Rails itself (often educational). This is especially true if I have Autotest

limiting the test-run to the one failing test. Just remember to take the

print statements out when you are done. Adding additional assertions

to the test can also act as a substitute for print statements.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=280

FROM GREENFIELD TO LEGACY 281

If you need to get to the log, most frequently because you are running

Passenger and trying to get output from the actual running app, you

can write to the log from anywhere in your Rails app using Rails.logger.

error(). You can substitute any of the other log levels for error, but why

bother?

If you are using Cucumber or Webrat/Capybara, Webrat and Capybara

have the save_and_open_page() method, which is outstandingly helpful.

It takes the current Webrat DOM, including any changes you’ve made

using Webrat form methods, saves the page to a temp file, and opens

it in your default browser. The resulting page may be missing some

images, and you can’t really follow links, but you can see what page

you got, and it’s much easier to inspect the source in the browser using

Firebug or the WebKit web inspector and then from print response.body.

Clear Your Head

Take a walk. Force your pair to solve the problem. Get a cup of coffee

(actually, I hate coffee; get a Diet Coke). Take a nap. All these clear-

your-head steps really do work. Try to explain the problem to somebody

else—often, the act of explaining the issue helps identify something you

overlooked.

It’s tempting to comment-out the offending test; then your suite passes,

and all seems well. That’s generally a bad idea, although sometimes a

major refactoring can genuinely make tests obsolete.

17.3 From Greenfield to Legacy

All of these style issues are helpful in planning and executing your

tests. Like most testing advice, though, they have one thing in common:

they are much easier to apply to a new application than to a pile of

untested code that already exists. In the next chapter, we’ll explore the

special challenges that come from trying to add TDD to a project that

has gone without for far too long.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=281

Chapter 18

Testing a Legacy Application
You’ve been asked to take over coding on an existing project. Theoreti-

cally, you just need to add a few new features to the existing code base,

which is working fine. Well, there’s the odd bug—weird stuff the origi-

nal coders never could track down. Also, the new features to be added

involve changes to nearly every model in the application. Oh, and the

previous coders didn’t pay much attention to testing. There’s a test here

or there, but overall, not much. The actual code has more spaghetti

than a pasta factory, and you have no idea what some of those “tricky”

code snippets do, and...

It wasn’t all that long ago that there were no Rails legacy projects, but

there are many these days. And so we have come upon a new situation:

all the advice in this book so far is well and good, but what if you’re not

starting your TDD experience with a new application? What if you are

starting with an existing code base?

Entire books have been written on working with legacy code bases. In

this chapter, we’re going to focus on techniques for getting legacy code

under test. There are many other issues that you’ll need to deal with in

a legacy code base. Getting the legacy system up and running can be a

chore, and there are a variety of techniques for safely adding features

to or refactoring existing code. We will only discuss those topics here

as they intersect with testing. For a more detailed look at managing

a legacy project, check out Michael Feathers’s Working Effectively with

Legacy Code [Fea04]. For more Rails-specific advice, look at Mike Gun-

derloy’s self-published Rails Rescue Handbook, available at http://www.

railsrescuebook.com.

http://www.railsrescuebook.com
http://www.railsrescuebook.com

ACCEPT THAT YOU’RE POWERLESS IN THE FACE OF A HIGHER POWER 283

18.1 Accept That You’re Powerless in the Face of a Higher Power

Namely, the previous coders’ stupidity, a truly awesome resource.1 You

aren’t going to convert this beast of an old project into a marvel of

elegant, test-driven code with nearly full coverage overnight. It’s just

not going to happen.

Shake your fists, and curse the previous programmer’s name if it makes

you feel better.2 Get it all out of your system, and then move on and

start working with the code base.

There are two reasons it’s a bad idea to do nothing but add test coverage

to a legacy project first thing. From a purely logistical standpoint, when

you take over a legacy project, you are often expected to do something

with it, and going off in the corner and doing nothing but writing tests

for weeks at a time may not be perceived as forward motion by your

new client. Obviously, every situation is different, but it’s rare to find a

client that considers test coverage a “quick win.”

The second reason that starting out by adding only test coverage does

not work has to do the often-noted paradox of legacy development.

Legacy code, by its nature, is often too interdependent to make it easy

to unit test without substantial refactoring. However, substantial refac-

toring without unit tests is a great way to introduce bugs into the code

base—especially when working with new code that you may not yet fully

understand. This is also unlikely to be considered a “quick win.”

What will work is to proceed in an agile fashion, making small steps

that you can verify. You need to tweak the existing code as little as

possible to get it to a state you can live with. Then you can ensure that

the new code you write is as good, and as tested, as possible.

18.2 Basic Setup

When you are presented with a new code base for the first time, your

first job is figuring out exactly what the heck is going on. Toward that

end, there are three things you should do immediately. The next three

sections define the foundation steps in converting a legacy project into

a project that can proceed with a solid Agile and TDD work cycle.

1. This is doubly true if you are the previous coder and coming back to fix bad code you

wrote in the past.
2. Again, doubly true if the previous programmer was you.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=283

BASIC SETUP 284

Get the Project Under Source Control

It probably is under source control, but you can’t be too careful. While

starting on a new legacy code base is not the time to get fancy with new

tools, you will be much better served by using Git or some other source

control system that lets you easily create and manipulate branches.

This will enable you to easily explore changes to the code base using

branches as scratch pads that can be kept or discarded as needed.

Get It Running

If the legacy project was conceived without much knowledge of Rails

community practices (evidenced by the lack of tests), it won’t be a sur-

prise if the production environment is also a little sketchy. Conven-

tional wisdom suggests that your development, staging, and production

environments should be as similar as possible to prevent environment-

specific errors. And although this is true in general, if your legacy

project is being run by some random goofy server setup, it may be

difficult or impossible to replicate that setup on your staging server, let

alone your development machine.

If the exact production environment isn’t an option, the staging and

development environments should be as generic as possible. If possible,

push to migrate the production environment to a less fragile and more

standard environment as soon as possible.

Get the Test Suite Running

At first glance this may strike you as a totally useless piece of advice.

If the legacy team has been ignoring tests, nothing is there, right? Of

course everything will run.

Well, not necessarily. There are at least two things you need to look out

for. Even if the previous coders totally ignored tests, Rails still probably

autogenerated test code. The most likely problem you’ll run into is that

fixtures, generated when the initial model was created, have moved out

of date. If columns were deleted or renamed, the fixtures won’t load, and

you’ll get errors galore. It’s only slightly less likely that the generated

controller tests for a generated scaffold have drifted out of date with the

code; if authentication and roles were added later, for example, you will

need to match that authentication in the tests.

In some ways, your job is harder if the previous coder flirted with writ-

ing tests and then gave it up because he had not yet read this book.

(I’m assuming.) In that case, you’re likely to have all kinds of tests that

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=284

TEST-DRIVEN EXPLORATION 285

may or may not have passed at one point and have since been broken

by later code, combined with inattention. You have to assume for the

moment that the code is right and the tests are wrong—the exact oppo-

site of a standard TDD scenario. Take this opportunity to learn how the

legacy code works, but do not change the code to match the tests at

this point. If you can’t figure out how to make a test pass, comment it

out or delete it, add a note, and come back to it when you have a more

thorough test scaffold in place. As we’ve discussed, test coverage is not

the priority at this stage.

18.3 Test-Driven Exploration

Testing a legacy code base starts in earnest when there is a change

to make. Often the first order of business on a new project is dealing

with a critical bug left by the previous team—something that must be

accomplished while preserving existing behavior and does not demand

a dramatic refactoring of the application.

In this case, there are two goals to getting the code under test. You

want to be able to tell when the bug has been fixed; this step involves

a more or less standard TDD bug-fixing session with one or more fail-

ing tests isolating the bug, which pass when the bug is fixed. Also, you

must confirm that any existing correct behavior hasn’t been compro-

mised. In a project that was TDD from the beginning, you’d already

have this ability, but in a test-less legacy project, you need to build up

that coverage.

Generally speaking, tests against an existing system come in two fla-

vors: black-box and white-box testing—the phrases far predate soft-

ware testing and apply to any kind of test process. A black-box test

is so called because it ignores the internal structure of the application

and tests only top-level input into the system and the output that is

returned. Conversely, a white-box test uses knowledge about system

internals to explicitly test specific paths through the code.

Black-Box Testing with Cucumber

We’ve already seen black-box testing of Rails applications in this book,

although we didn’t call it that. According to our definition, a black-

box test of a Rails application works only at the level of user input

and system output, typically HTML. Sounds a lot like a Cucumber test,

right? Or any kind of integration test, but since Cucumber is outside

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=285

TEST-DRIVEN EXPLORATION 286

the normal Rails code, it’s ideal for interaction with legacy code. The

main benefit of using Cucumber against a legacy database is its black-

box nature. The acceptance tests interact with the system basically as

a user would. Since there is no interaction with the internal structure

of the code, it’s possible to write acceptance tests no matter how gunky

the code is.

Cucumber can be useful in a bug situation because bugs are often

specified in terms of the users’ actions and responses. These actions

and responses are reasonably straightforward to translate to Cucum-

ber, and it’s easy to recognize if you’ve changed the behavior. In addi-

tion, it’s not unheard of for a code base with few tests also to lack writ-

ten requirements; the acceptance tests act as baseline requirements as

you move forward.

It’s not all sweet Cucumber salad, though. Acceptance-level tests are

relatively easy to write for a legacy application but have somewhat lim-

ited utility. A Cucumber test won’t tell you where in the application you

need to make the change that fixes the bug or adds the feature. Also,

Cucumber tests tend to run slowly, so you don’t want them to be the

only part of your test arsenal.

White-Box Testing

Eventually, there’s no way around writing real unit tests. There are two

distinct kinds of user tests that are helpful when dealing with legacy

applications. We’ll talk about the standard TDD tests in a moment; first,

let’s examine the unit test equivalent of the Cucumber tests discussed

in the previous section. These tests are used to figure out what is actu-

ally going on in the application—a process we might call Test-Driven

Exploration, if we didn’t have enough three-letter acronyms already.

The basic process is straightforward: the difficulty of implementation

depends on just how tangled the code is. First, select a method to test.

Ideally, the method should be related to a change you are planning to

make in the app, although this process also works for “what is going on

here” exploration.

Let’s write a test for this method that we know will fail. We don’t need

to go deep into the internals for this. What we are doing is basically

sonar—sending a test into the depths of the code and hoping to get a

signal back.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=286

TEST-DRIVEN EXPLORATION 287

Luckily, even the most test-ignored Rails app probably still has the test

directory, so we can write the first test without too much trouble:

test "calculation of sales tax" do

user = User.create(:state => :il)

order = user.orders.create

order.line_items.create(:price => 250)

order.line_items.create(:price => 300)

assert_in_delta(order.sales_tax, -300000)

end

What we have here is a simple, straightforward test, right up until the

last line (insert cheesy DJ scratch-record sound effect). We don’t really

expect the sales tax to be –300,000. But we don’t want to guess what it

is: we’ll let the app tell us.

Run the test. At this point, one of two things will happen.3 Most of the

time the test will error out because there is some object dependency we

didn’t know about, some value is not as expected, or we have otherwise

disturbed the delicate balance that our legacy app needs in order to

function. We’ll need to figure out how to smooth things over. Often,

we’ll have to create more objects. In this example, we might explicitly

create Product objects. The object chain can get unwieldy, which is OK

at this point: the goal is to understand what’s happening. If the code

itself is unwieldy, let the test stand as a monument to things that need

to be changed.

Eventually, we run out of errors, the application spits out the sales tax,

and the test has a normal validation failure—since, again, the answer

probably isn’t –300,000. At this point, we insert the actual value into

the test and declare victory. We have some test coverage and a greater

understanding of how the application fits together. It’s time to move on

to the next test, most likely trying the existing method in some other

test case, such as a case designed to trigger a bad response.

We don’t care if the value for the sales tax is actually correct. Well, we

care in the sense that calculating sales tax is important from a business

perspective; however, from a test perspective, we must assume that the

code is correct so we have a stable base when we start making changes

because of all the bugs.

3. Well, three things, if we include the very small chance that the sales tax really is

–300,000.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=287

DEPENDENCY REMOVAL 288

What Tools Should I Use? (Legacy Edition)

Taking over a legacy code base has the side effect of clari-
fying tool decisions we might otherwise agonize over. To wit, if
the previous coder used a tool and there’s anything at all sal-
vageable, use that tool. We don’t want to be in the position
of adding code coverage while juggling our RSpec tests with a
batch of existing Shoulda/Test::Unit tests. I recommend adding
a factory tool if there isn’t one already in the mix. It’s likely that
writing tests for the legacy app will require creating complete
chains of related objects. Setting up a factory tool to create
the associations all at once saves a lot of time.

There are, of course, exceptions to this rule. Two that spring to
mind are when the original developer has chosen a tool that’s
just unsuitable to support the kind of testing weight we want to
put on it. More often, the existing tests are useless, and it’s best
to delete them quickly and start over, at which point we can
pick whatever tools we want.∗

∗. Mike Gunderloy presents a simple rule for initial triage of legacy tests in the
Rails Rescue Handbook : if you can’t figure out what a test is doing in five min-
utes, delete it.

The Rails console is our friend and ally during this exploration pro-

cess. The console is a great way to try some of these object interactions

quickly. Once we figure things out in the console, we transfer the com-

mands to the test so they can be run repeatedly.

18.4 Dependency Removal

Dependencies are the single most challenging issue in legacy testing.

Perhaps the greatest virtue of well-done TDD code is that the tests force

individual pieces of the code to be maximally independent of each other.

Without tests, legacy code has a tendency to be highly interdependent.

This makes adding tests difficult in several ways: multiple objects might

need to be created to test a single method; or it might be hard to limit

a test to a true functional unit, if that unit is hard to reach or encased

in some massive 300-line method. There are ways, though, to have the

code we need to test be codependent no more and separate enough to

enable the tests we must write.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=288

DEPENDENCY REMOVAL 289

Keep It Separate, Stranger

Maybe the easiest way to keep our new code from being dependent on

legacy code is to separate it ourselves. Where possible, write new code

in new methods or new classes, and merely call them from the existing

legacy mess. In theory, this leaves our new code unencumbered enough

to be written via TDD.

Let’s try a brief example. Consider a possible and kind of messy method

from a social networking site called Flitter:

class Flit

def process_flit

if text =~ /##/

flit.text = "testing: remove this code after 3/10/08"

end

if text.ends_with?("%fb%")

send_to_facebook

else if user.flits_in_last_day > 423

return

end

flit_server.check_for_mentions(self)

flit_server.follower_list(user)

user.update_attributes(:flit_count => user.flit_count + 1)

and so it goes...

end

end

Within this tangled mess, we must add a new feature: if a flit contains

text of the form $username, the user in question must be informed of

the message. We could just add another if statement in the long line

of if statements already in the method, but then it’s very hard to test

the new behavior without testing all the process_flit() apparatus, which

brings in all kinds of other stuff. (In real life, this method could be

300 lines, and for all we know it could invoke PayPal.) Instead, we add

the line check_for_dollar_sign to the method in the appropriate place and

write the new method using regular TDD. If we’re feeling adventurous

and it seems plausible, a mock test to confirm that process_flit() calls

check_for_dollar_sign() might also be appropriate.

If we are adding or extracting a lot of functionality, we might consider

creating our own separate class, rather than just a method. One sign

that a new class is warranted is if it passes the same set of instance

variables to multiple methods. I’m a big fan of classes that represent

processes and replace long complex methods. For testing purposes,

moving new code to a new class can make testing the new code eas-

ier, because the new code is less dependent on the existing application.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=289

DEPENDENCY REMOVAL 290

Legacy Databases, Testing, and You

If our legacy application has only a nodding relationship with
Rails common standards, chances are the database is also
a mess. Many issues that plague a legacy database can be
frustrating (such as odd naming conventions or unusual use of
ActiveRecord features), but they don’t affect our ability to test
the features.

We do need to be careful if the database has added con-
straints that are not evident in the code. Typically, this involves
column constraints that go beyond any validations specified
in the ActiveRecord model or foreign key constraints that are
not specified anywhere in the Rails code. Foreign key con-
straints are hardest to deal with. Rails has no native mecha-
nism for specifying foreign constraints, but they are beloved by
database admins the world over.

From a testing perspective, the problem is twofold. First, there
is business logic outside the Rails code and in the database
where it is hard to find, test, and change. Even worse, foreign
key constraints add dependencies that require certain objects
to be created together. In a test environment, that kind of
dependency leads to mysterious bugs: the database doesn’t
let you create test data, and there are objects that need to
be created that have nothing to do with the test but are only
there to make the database happy. It’s something to keep a
close eye on in a legacy application created by a database-
heavy development team that didn’t trust ActiveRecord.

Although this technique helps us make a clean break from the legacy

code, it has the short-term effect of making the code more opaque. In

the words of Michael Feathers, “When you break dependencies in legacy

code, you often have to suspend your sense of aesthetics a bit” (From

Working Effectively with Legacy Code [Fea04]). To put it another way,

you know when you’re cleaning off your desk, you have an intermedi-

ate stage in which the room is covered in piles of paper, and it looks

like an even bigger mess? Or is that just me? In any case, we’re in an

intermediate state here, between the undifferentiated mass of the orig-

inal to the nicely factored and organized new version. Building up the

test suite one broken dependency at a time moves us steadily toward

cleaner code.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=290

DEPENDENCY REMOVAL 291

Using Mock Objects to Remove Dependencies

If you don’t want to start off at 20,000-feet with acceptance tests, mock

object testing is another way to get tests started without disrupting the

untested code.

In a legacy context, the advantage to using mock objects is their ability

to isolate a single class and method from the rest of the application by

creating a mock or stub for any other method called from the method

being tested. When working with a legacy application, this allows us to

temporarily put aside the issue of how shaky the rest of the application

may be and focus on the single part we are trying to figure out at that

very moment. Similarly, factory objects make it easy to specify data as

needed to easily isolate a legacy method.

In practice, this is very similar to the mock-heavy test practice associ-

ated with RSpec—only the code already exists, so it’s not test-first or

behavior-first. Here’s what we do for a legacy method we need to put

under test. First, we take the following legacy method (which we can

assume is part of some kind of nebulous order model):

def calculate_order_status

self.total = 0

line_items.each do |item|

if item.quantity.blank?

LineItem.delete(item.id)

next

end

if item.cost.nil? then item.cost = 0 end

if credit_card_is_valid? && item.ready_to_ship?

self.total += item.cost * item.quantity

end

end

self.to_be_paid = self.total - self.amount_paid

if self.to_be_paid == 0

self.paid_in_full = true

end

end

This code is a bit of a mess. It’s doing things that should be part of the

LineItem class, and it probably could stand to be split. Of course, this

example barely scratches the surface of how tangled a poorly written

legacy system might be.4

4. You really want to beware the ones with 300+ line controller methods.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=291

DEPENDENCY REMOVAL 292

This code calls a number of things that are probably attributes that

could be set with data, such as amount_paid or item.quantity, but it also

calls a few things that could be complex methods in their own right,

such as credit_card_is_valid?() or item.ready_to_ship().

A possible test for this code would mock those methods and might look

like this (assume we’re using factory_girl and have blueprints set):

Line 1 test "calculating order status" do

- order = Factory(:order, :amount_paid => 2.50)
- order.expects(:credit_card_is_valid?).at_least_once.returns(true)
- item1 = Factory(:line_item, :quantity => 1, :cost => 3.50)
5 item1.expects(:ready_to_ship?).returns(true)
- item2 = Factory(:line_item, :quantity => 2, :cost => 5)
- item2.expects(:ready_to_ship?).returns(false)
- order << item1
- order << item2

10 order.calculate_order_status
- assert_equal 3.50, order.total
- assert !order.paid_in_full
- end

Lines 2 and 3 set up the order and a mock for the credit_card_is_valid?()

method. Lines 4–9 set up the items, with the actual test action taking

place in line 10 and the last lines performing the validation. In a full

test suite, we’d test a couple of other combinations of values, so some of

the mock setup would probably be extracted to a repeatable method—

either an explicit setup block or a method that is called by each test.

The strength of this process is that it allows us to unit test without

further tangling the existing code logic: it’s possible that credit_card_is_

valid?() depends on another three different attributes of the order, the

user, or the payment system, and that’s a mess that we don’t want to

get into at this particular moment. The mock test lets us isolate logic

issues. An additional strength of this style of mock object testing is that

it limits test coverage to the method under test, making the coverage

report more accurate.

However, there are some problems to watch out for. It can become time-

consuming to set up the external mocks for a complex method, and we

run the same risk as with any mock object testing, namely, that our

test becomes a tautology because it’s just parroting the input to the

mock objects. We have to keep the mock data to the external methods

and classes in order to avoid that problem.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=292

DEPENDENCY REMOVAL 293

Find the Seam

Mock objects are a specific version of a more general technique for

working with legacy code, which involves finding seams in the code

and exploiting them to make testing the legacy functionality possible.

A seam is a place where we can change the behavior of our applica-

tion without changing the actual code. A mock object package acts as

a seam because adding the mock object, which happens in the test,

changes the behavior of the code by mandating a specific response to a

method call without actually executing the method. Again, the behav-

ior of the method under test changes in the test environment without

affecting behavior in the production and without changing the existing

development code.

It sounds magical, but the basic idea is simple, and Ruby makes it easy

to execute. Essentially, redirect a method call from its intended target

to some other code that we want to run during tests. A mock object

does this by replacing the entire method call with a return value, but

the generic form lets us do anything we want instead of the method

call. We might do this if we wanted a side effect that a mock package

wouldn’t normally provide, such as diagnostic logging. Alternately, we

might want a more elaborate processing of arguments or state than a

mock can easily provide, to re-create the output of a web service our

application depends on, for example.5

Let’s take some sample Ruby code that we want to test. In this sample,

flit_server is an object in our system representing an internal server, and

those innocent-looking calls are actually genuine external service calls

to a real server that exists in production but not in the test:

def process_flit

a bunch of messy stuff

flit_server.check_for_mentions(self)

more messy stuff

flit_server.follower_list(user)

more messy stuff

end

5. Some mock packages do let us pass an arbitrary block as the result of the stubbed

call, but if the result we need is complicated, it’s often more readable to create our own

object.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=293

DEPENDENCY REMOVAL 294

Now we need to get the process_flit() method under test. The test might

look like this:

test "a flit is processed correctly if it has followers" do

user = User.create(:screen_name => "zot")

follower = user.followers.create(:screen_name => "jennyw")

flit = Flit.new(user, "Hello to $jennyw, How are things on earth?")

flit.process_flit

assert_equal(1, follower.timeline.size)

end

For this test to work, we need to prevent the flit_server object in the origi-

nal code from actually calling the production server that will not exist in

the test environment. For the sake of argument, we’ll assume there’s a

compelling reason a normal mock package can’t be used here—possibly

because the flit_server object is too tightly intertwined with the rest of the

code. We have two problems to solve. We need to create a flit_server object

that will perform test-safe activities when called, and we need to inject

that object into the test so it is the object used when the method is run

under test.

Luckily for us, Ruby is extremely flexible when it comes to redirect-

ing code execution.6 In a compiled object-oriented language, we might

have to create a new subclass of the expected object and override the

methods in question. We can do that in Ruby, too:

class TestFlitServer < FlitServer

def check_for_mentions(flit)

test code

end

def follower_list(user)

test code

end

end

Depending on the details of the FlitServer class, there may be other meth-

ods that we must override, such as the constructor.

There are a couple of other Ruby ways to do something similar. Rather

than create a subclass, we can create an instance for testing and add

overriding methods to that instance’s singleton class.

6. Of course, this is exactly the kind of flexibility that drives security-minded program-

mers from other languages crazy. But here we’re using for it good, not evil.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=294

DEPENDENCY REMOVAL 295

That class might be defined like this:

test_server = FlitServer.new

class << test_server

def check_for_mentions(flit)

test code

end

def follower_list(user)

test code

end

end

Alternately, we could create a complete dummy class that covers the

calls made by our method under test. Since Ruby doesn’t do any type

checking beyond seeing whether the object responds to methods, that’s

perfectly fine:

class FakeServer

def check_for_mentions(flit)

test code

end

def follower_list(user)

test code

end

end

Now we need to inject our new object into the test code. In some sense,

what we’re doing here is reimplementing what a mock object package

would be doing. We can try to inject in the test itself by doing the same

thing to the flit object that we did for the flit_server object. Here’s an

example:

Class TestFlit < Flit

def flit_server

TestFlitServer.new

end

end

test "a flit is processed correctly if it has followers" do

user = User.create(:screen_name => "zot")

follower = user.followers.create(:screen_name => "jennyw")

flit = TestFlit.new(user, "Hello to $jennyw, How are things on earth?")

flit.process_flit

assert_equal(1, follower.timeline.size)

end

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=295

DEPENDENCY REMOVAL 296

In this case, we’re mimicking the first option by subclassing Flit. The

other two options shown earlier also have analogous usages inside the

test.

If we are willing to allow a little bit of manipulation of the original code,

we can use Ruby’s default arguments to get an almost-seam:

def process_flit(flit_server = nil)

flit_server ||= self.flit_server

a bunch of messy stuff

flit_server.check_for_mentions(self)

more messy stuff

flit_server.follower_list(user)

more messy stuff

end

In the new method, flit_server is a local, which, if not passed as an argu-

ment, is given the value of the object’s instance method. Thanks to

the magic of Ruby’s ||= operator, if the argument is passed a value, the

passed value is used for the rest of the method. The existing legacy

code, which does not use this argument, behaves as is, but it gives us

a lever to insert our own server in the test by calling process_flit with the

test server as an argument:

test "a flit is processed correctly if it has followers" do

user = User.create(:screen_name => "zot")

follower = user.followers.create(:screen_name => "jennyw")

flit = Flit.new(user, "Hello to $jennyw, How are things on earth?")

flit.process_flit(TestFlitServer.new)

assert_equal(1, follower.timeline.size)

end

Although this mechanism is slightly intrusive to the original code, you’ll

probably find you use this pattern often, not just for testing code but

also as you add new features to existing code. The default argument

lets new code have new behavior, while leaving old code behavior un-

touched.

Each legacy program you work on is going to have its own quirks and

require its own kind of creativity using these methods or others to bring

the code the kind of test coverage needed to confidently move forward

with bug fixes and new features. As you tackle new problems, remem-

ber that reducing dependencies makes it easier to test your code, makes

the code cleaner, and makes future work that much easier.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=296

DON’T LOOK BACK 297

18.5 Don’t Look Back

It’s almost certainly not worth your time and effort to cover an entire

complex legacy application before writing any code. I love tests, but

the risks involved in doing that much coverage work at once are high,

especially if the customer is expecting you to start working on new

functionality.

You draw a line in the sand and start working in a test-driven mode

moving forward. One critical element of moving forward is to ensure

that every bug fix starts by writing a failing test somewhere—whether

unit, functional, or integration. This is a good way to ramp up tests

on your project and allows you to organically build test coverage over

time with relatively small risk to your deadlines or chance of breaking

existing functionality.

Similarly, new features must be added using a TDD process. In the

beginning, this often requires the heightened use of mock objects, but

over time, the code base and the test coverage both improve.

If you are like me, the temptation to clean up the entire code base at

once can be almost overwhelming. In this situation, lie down until the

feeling passes or you are so close to your deadline that fixing everything

is no longer a viable option.

Do one thing at a time, to the extent possible. Don’t extend test coverage

while you are adding new functionality. Do not try to clean the code up

while you are extending test coverage (occasionally this will be unavoid-

able, but keep it to a minimum). The fewer things you have moving at

any one time, the easier it will be to identify the culprit when things go

wrong.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=297

Chapter 19

Performance Testing and
Performance Improvement

Talking about “performance” in your tests usually refers to two sep-

arate tasks. The first is performance testing, or using your test suite

to automate testing of the actual performance of your application. The

second is test performance, or trying to get your test suite itself to run

as quickly as possible.

The tools Rails provides to set up and evaluate the results of perfor-

mance testing are relatively simple to use, at least compared to the

convoluted setups required before performance tests were added to

core Rails. The results of these tools can be used to compare appli-

cation performance over time, as well as track down the exact location

of performance bottlenecks.

The tools to improve how fast your test suite runs are largely outside

the test framework. Generally, test performance comes in three flavors.

You can write tests that take fewer system resources to run, choose

an alternate test runner that better takes advantage of available CPU

time, or modify your environment to allow common test activities to run

faster. The last option is mostly applicable to something like a dedicated

continuous integration server, which does little or nothing besides run

tests.

Effective TDD depends on a tight loop between writing a small amount

of test code and writing a small amount of application code, and so

on, back and forth. The implicit assumption is that you can run the

relevant tests quickly enough to enable you to bounce back and forth

PERFORMANCE AND BENCHMARK TESTING 299

between tests and code. However, as your application grows, your test

suite takes longer to run. A slow test suite saps your productivity

steadily and consistently. The slower it takes to run the suite, the more

true TDD becomes painful, and the less often the test suite is run. All

of this discourages the constant feedback that TDD—and agile coding

in general—depend on.

Efforts to speed up your test suite tend to fall into one of the following

categories:

• Focusing test execution so you only run tests most directly con-

nected to the code you are writing. This isn’t exactly a performance

fix, but it has a similar, practical effect.

• Making performance improvements in your actual application. I

trust it’s clear why that would speed up your tests and why we

aren’t going to spend much time on it in this particular book.

• Improving the performance of your tests themselves, typically by

reducing the amount of time spent setting up tests.

• Using a faster test runner. We will talk about two kinds here: test

servers that stay loaded in the background and reduce the need to

continually restart the Rails environment, and networked servers

that try to find unused processors on your network and use them

to run tests in parallel.

19.1 Performance and Benchmark Testing

Like the criminal justice system in the Law & Order opening narration,

Rails performance tests have two separate but equal parts. In a bench-

mark test, a block of code, usually containing one or more page hits, is

run multiple times. The benchmark test simply measures how long the

test code takes to run. The data is then stored, allowing you to com-

pare the current performance of the code with past performance. The

goal of a benchmark suite is as a first hint that something has actually

caused your code to slow down. Alternately, benchmarks can be used

as a before-and-after when you plan on making a major performance

change, as proof that the change has value.

In a profile test, the goal is to dissect a particular part of your applica-

tion to determine exactly what pieces of that code are causing perfor-

mance problems. In a profile test, you typically target a smallish piece

of code: a single controller or model call, for example. The profiler keeps

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=299

PERFORMANCE AND BENCHMARK TESTING 300

track of the amount of time your application spends in each separate

method that is touched during execution. At the end, you get a rather

complicated report that might be able to tell you what parts of your

code it’s worth your time to optimize.

You need to have the ruby-prof gem in your project in order to run perfor-

mance tests. There’s some additional magic you can add to your Ruby

if you want to test object creation, rather than just CPU time, but we’ll

get to that in a moment.

gem "ruby-prof"

Create a new performance test in Rails by using a generator:1

% rails generate performance_test huddle_performance

invoke test_unit

create test/performance/huddle_performance_test.rb

Exciting. The last argument of the command is the name of the test and

is completely arbitrary. You get a short piece of Rails code:

require 'test_helper'

require 'rails/performance_test_help'

class HuddlePerformanceTest < ActionDispatch::PerformanceTest

Replace this with your real tests.

def test_homepage

get '/'

end

end

This should look something like an integration test without assertions,

largely because it is basically an integration test without assertions.

(The class ActionDispatch::PerformanceTest is a subclass of ActionDispatch::

IntegrationTest.) All the integration test syntax for accessing the appli-

cation and managing sessions will work inside a performance test.

Although strictly speaking the performance test is not limited to full-

stack testing, you could have a test that exercises some random model

call. Mostly, though, the full-stack measures are going to be most inter-

esting to benchmark.

Your suite of tests, then, consists of a series of page views you consider

important for getting an overall sense of how your application responds.

Typically, that includes the home page, any other very popular page,

1. Rails applications do generate one for you at test/performance/browsing_test.rb, although

it’s not clear exactly why or why the initial test is ever-so-slightly different from the ones

created by the generator.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=300

PERFORMANCE AND BENCHMARK TESTING 301

and possibly any page load you might consider a potential problem.

For the Huddle app we’ve been intermittently using as an example, a

possible suite might look like this:

Download huddle3/test/performance/huddle_performance_test.rb

test "projects page" do

get projects_path

end

test "show a project" do

get projects_path(:id => 1)

end

test "status reports page" do

get status_reports_path

end

There are two very important things that I’m hand waving at the mo-

ment: the process of logging in a user and the necessity of having data

in the database during the production test. Hold that thought.

While you are holding, run the test using the rake test:benchmark com-

mand:

% rake test:benchmark

«»

BrowsingTest#test_homepage (92 ms warmup)

wall_time: 2 ms

memory: 0.00 KB

objects: 0

gc_runs: 0

gc_time: 0 ms

That’s only part of the output; you’ll get one listing for each test in

the class. The benchmark test runner runs each test four times and

presents the average. The wall_time is the actual amount of real time

that passes during that test. Any other applications running on your

machine will affect this metric—turning your Handbrake video trans-

coding off is probably a good idea.

There are four other metrics: memory allocated during the test, objects

allocated during the test, number of times the Ruby garbage collector

is invoked, and amount of time spent in the Ruby garbage collector. All

those numbers are zero right now. Unfortunately, that’s not because

we’ve created the perfect memory usage application but rather because

the version of Ruby we are using is not instrumented to count these

metrics.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/performance/huddle_performance_test.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=301

PERFORMANCE AND BENCHMARK TESTING 302

To get these metrics, you have to patch your Ruby 1.8 and recompile.

Full instructions are available at the Rails Guides site at http://guides.

rubyonrails.org/performance_testing.html#installing-gc-patched-ruby.2

In addition to the console display, the benchmark results are also

stored in a series of CSV files that go in tmp/performance—an unfor-

tunate choice, since the CSV files are actually not temporary. You get

one file per individual test metric or five files per individual test method

in your performance test suite (for gc runs, gc time, memory, objects,

and wall time). Each file has the measured data included with the time

of the test run, the application name, the version of Rails, and the ver-

sion of Ruby, like so:3

measurement,created_at,app,rails,ruby,platform

0.00452983379364014,2010-09-16T18:36:46Z,,3.0.0.beta4,ruby-1.8.7.174,

universal-darwin10.0

What’s nice about this is when you run the suite again, Rails just

appends the new line to the end of the same file, which is why they

aren’t really temporary files. The CSV data makes graphing the data a

snap and makes it very easy to show performance trends over time.

Of course, in order to track trends over time, you need to actually run

the tests over time, which takes some planning and foresight. One pos-

sibility is to place the benchmark tests on your continuous integration

server and run the benchmark every night or so. The daily data can be

very useful in detecting when part of your application’s performance is

slowly getting worse. (If you are really brave, you don’t allow any check-

ins that slow the benchmarks; I think WebKit had that rule for some

time.) However, even one benchmark before a major change and one

benchmark after can give you some confidence that application perfor-

mance is heading in the right direction.

One of the problems in fixing a performance problem is that it is not

always clear exactly which part of the application is causing the bot-

tleneck. That’s where a profile test comes in. The profile test traces the

executing code and marks how much time is spent in each method. It’s

up to you to figure out how to interpret this information.

2. The instructions assume you are using the standard MRI Ruby inter-

preter. If you are using RVM, you can install the gc-patch as a patch; see

http://blog.ninjahideout.com/posts/ruby-summer-of-code-wrap-up for suggestions.
3. Hmm...neither Rails 3.0.0.beta4 nor Ruby 1.8.7 patch level 174 is current as I write

this; I think I need to update the Huddle code again.

Report erratum

this copy is (P1.0 printing, February 2011)

http://guides.rubyonrails.org/performance_testing.html#installing-gc-patched-ruby
http://guides.rubyonrails.org/performance_testing.html#installing-gc-patched-ruby
http://blog.ninjahideout.com/posts/ruby-summer-of-code-wrap-up
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=302

PERFORMANCE AND BENCHMARK TESTING 303

Running a profile test is easy; just use the rake command:

% rake test:profile

(in /Users/noel/Dropbox/pragprog/nrtest/Book/code/huddle3)

Loaded suite /Library/Ruby/Gems/1.8/gems/rake-0.8.7/lib/rake/rake_test_loader

Started

BrowsingTest#test_homepage (97 ms warmup)

process_time: 4 ms

memory: unsupported

objects: unsupported

The output continues, with one heading for each test in your perfor-

mance suite. Notice the profile test is much, much slower than the

benchmark test—the bookkeeping for the profile data adds a consid-

erable amount of overhead. That’s one reason the profile test runs the

suite only once, rather than the four times that the benchmark test

runs.

The profile test drops three files into test/performance for each individual

test method. One of them, which ends in _tree.txt, is aimed at being

consumed by a separate graphical analyzer called kcachegrind. If that

name is meaningful to you, have at it—the rest of us will move on to

the human-readable files.

The easier of the two remaining files to interpret is the flat text file,

which looks roughly like this (only the beginning of the file, edited a

bit):

Thread ID: 2148237740

Total: 0.019577

%self total self wait child calls name

3.91 0.00 0.00 0.00 0.00 367 Hash#[]

3.39 0.00 0.00 0.00 0.00 54 Array#each

1.72 0.00 0.00 0.00 0.00 69 Class#new

Each row of the table has six columns. This is a slightly weird data

set, since it’s based on the Huddle app that basically does nothing; in

a real application, there’d be numbers in most of those columns. The

rightmost column is the name of a method in the format Class#method.

The leftmost column is the percentage of program execution time actu-

ally spent in the method. Often, that’s the most important number. The

next four columns are all based on clock time—that’s actual CPU time,

not the benchmark metric of “wall time” that passes while the computer

is doing something else.

The total column is the total amount of clock time spent in that method

or any methods called from that method. The self column is the amount

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=303

PERFORMANCE AND BENCHMARK TESTING 304

Figure 19.1: Performance test graph

of CPU time spent just in the method itself. The self column is the

basis for the percentage in the leftmost %self column. The wait column

is time spent doing nothing—honestly, I have no idea what triggers that

column, unless maybe it’s garbage collection. And the final floating-

point column, child, is time spent in the method calls that come from

the method. So, total is equal to self plus wait plus child. The calls column

is the integer count of the number of times the method is called.

The other file, which ends in graph.html, presents basically the same

information but breaks down where method calls come from and go to.

You can see a sample in Figure 19.1.

In each table row, the bold method name is the central point of interest.

The methods above call the bolded method, and the ones below are

methods that are called by the bold method. The column headers are

the same as in the flat file, with a couple of exceptions. The leftmost

column is total%, analogous to self%, but for the total time spent in the

method and all called methods. You will only see total% and self% for

the bold method in each row. For the nonbold methods, the CPU time

columns are only for those calls that are related to the bold method.

The call row is interpreted slightly differently for nonbold methods in

each row. For calling methods, you have two numbers: the number of

calls that come from that method and the total number of calls made to

the bold method. For called methods, it’s the same idea, but you’ll see

the total number of calls that come from the bold method against the

total number of calls to that method in the program as a whole. The last

column only shows for calling methods and is the line number where

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=304

PERFORMANCE AND BENCHMARK TESTING 305

the actual method call to the bold method takes place. If your system is

in a known configuration, both the method name and the line number

are clickable and will open your text editor to the appropriate file and

location.

What you do with all this information is something of a dark art. Mostly,

you’re looking for outliers and surprises.4 Focus on the methods that

have the most time and/or calls. Keep the balance of time and calls

clear when you look for a fix, because the remedy for a method that

takes up 20 percent of your runtime is different if the method is called

twice or 2,000 times. In the former case, you look for ways to speed

up the method; in the latter, you look for ways to call the method less

frequently.

One issue you may have noticed with these examples is that perfor-

mance testing is more meaningful the closer you can get to replicating

the production environment. Replicating the server settings of produc-

tion is difficult in a development environment; if you have the resources

to create a staging server suitable for performance testing, that’s great.

Database performance is particularly sensitive to the amount and dis-

tribution of data, and you can often get a reasonable facsimile of pro-

duction data available to you in development.5

Once you have a reasonable amount of data, the problem is getting

Rails to use that database. By default, Rails runs performance testing

in the test environment, which means the database is shared with all

your other tests and cleared before each test run—neither of which is

particularly useful for performance testing.

This leaves you with two options. One is to load your production data

into the test environment before the tests run. Although you can do

this in the setup to your test, it’s probably better to create a sepa-

rate Rake task or script that loads the data and then invokes the rake

test:benchmark or rake test:profile task, as desired. On Stack Overflow,

somebody going by the name of Chang notes that if you are using

SQLite3, this is as simple as cp db/production.sqlite3 db/test.sqlite3, which

4. There are other ways to access performance data about your Rails app, including

log analyzers and external monitors such as NewRelic. I’m deliberately limiting the focus

here to the methods available from the Rails test suite.
5. Obviously, this is impossible if you are on the order of Twitter or Facebook, or some-

thing like that, but most production apps with performance problems aren’t at that scale.

Anyway, you don’t have to be perfect: any step closer to real data makes performance

testing that much more meaningful.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=305

FOCUSING TEST EXECUTION 306

shows a certain flavor of nuts-and-bolts genius, I think. In MySQL, you

could do something similar with a database dump file, but it would be

kind of slow for a larger dataset.

The other option is to create a full performance entry in database.yml

and point it to a database instance with your performance data. Then

you need to get Rails to run your tests in a performance environment.

This takes some sneakiness, because Rails will abort a test run if it

determines the environment is not test.

Still, it can be done.6 Create a copy of your test_helper.rb file, and call it

performance_test_helper.rb. Change the very beginning of the file to read

like this:

Download huddle3/test/performance_test_helper.rb

ENV["RAILS_ENV"] = "test"

require File.expand_path('../../config/environment', __FILE__)

require 'rails/test_help'

Rails.env = "performance"

ActiveRecord::Base.establish_connection

The rest of the file you can take or leave—you may not need all the

junk in your regular test_helper.rb to support performance testing. What

we’re doing is loading Rails in a test environment and then switch-

ing to a performance environment and reconnecting to the database,

which points you at the database specified for the performance entry

you put in the database.yml. This works, but with the downside that it

loads application configuration based on the config/environments/test.rb

settings, since Rails needs to boot in the test environment. In most

cases, this shouldn’t be a problem. You also need to change the line

in all your performance tests from require ’test_helper’ to require ’pefor-

mance_test_helper’.

19.2 Focusing Test Execution

I admit it, being able to run only one of your tests at a time is “speeding

up” your test suite in much the same way that pushing everything to

the back of your desk drawer is an organization plan—it kind of helps

for a while, but eventually you have to deal with the mess. On the other

hand, speaking, you know, purely hypothetically, you may someday

6. Credit to Rails Core contributor Pratik Naik, who did this in the Rails 2.2 time-

frame at http://m.onkey.org/2009/7/29/running-rails-performance-tests-on-real-data. The version

here works in Rails 3.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3/test/performance_test_helper.rb
http://m.onkey.org/2009/7/29/running-rails-performance-tests-on-real-data
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=306

FOCUSING TEST EXECUTION 307

find yourself dropped into a project where the entire test suite takes

twenty agonizing minutes to run, and being able to run a limited set of

tests is the difference between finishing the feature today or sometime

just after the heat death of the universe.

Test::Unit, RSpec, and Cucumber all have different mechanisms for

allowing small groups of tests to be run. We’ve discussed some of these

methods in other chapters, but I want to bring them all together in one

place.

In Test::Unit, in addition to being able to break the tests down by type,

you have the following options:

• Any Test::Unit file (technically, any file that requires test/unit) can

be run on its own by invoking it as a Ruby script, as in ruby -Itest

test/unit/my_test.rb. This allows you to run the test from the Rails

root directory.

• Rails offers the rake test:recent task, which looks at any file that

has been touched in the last ten minutes and attempts to run its

associated test file.

• Rails offers the rake test:uncommitted task, which looks at all un-

committed files and attempts to run the associated test files.

In RSpec, most of your support for minimal test runs comes from using

the rspec command,7 rather than a Rake task. You can give the rspec

command a series of arguments that are RSpec files or directories con-

taining RSpec files. You can filter further with command-line options:

• The -e or --example option takes text such as -e project, converts

it to a Ruby regular expression, and runs any spec whose full

description—the spec name and any descriptions it is nested in—

matches the regular expression.

• The -l or --line_number option assumes the command is targeted at

a single file, the argument is a number, and the spec at that line

number is executed.

In RSpec 2.0, individual specs can be decorated with metadata, which,

if you are determined enough, can be used to limit the scope of a test

run. Basically, any spec or description definition takes an optional,

7. In RSpec 1.x, it’s the spec command, which has slightly different command-line argu-

ments.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=307

FOCUSING TEST EXECUTION 308

completely arbitrary hash argument as the last argument. For exam-

ple, a spec definition might read like this:

it "does something cool", :cool => true do

«Your Spec Here»

end

In RSpec 2.0, there’s no way to use these properties from the command

line—the feature is planned for a later release, after some feedback in

how people might use the metadata has been received. However, you

can go in to the spec.helper method and filter a test run based on this

data. Inside the RSpec.configure block, you need a line like one of these

two:

c.filter_run :cool => true

c.filter_run_excluding :cool => true

Using filter_run() causes only specs or contexts with metadata matching

the key/value argument to run. Conversely, filter_run_excluding() runs

all the specs except those that match the key/value argument. The

value argument of the key/value pair can be a lambda instead of a

static value, which allows you to filter based on runtime environment

information.8

Although the lack of command-line support makes this feature a little

awkward to use, there are two things you can do to help. One is the

run_all_when_everything_filtered_attribute, which, like it says on the label,

changes RSpec’s behavior so that if the described filter blocks every

test, RSpec will run all the tests instead. In other words, you could do

something like this:

c.filter_run :in_progress => true

c.run_all_when_everything_filtered = true

Now, if there are specs tagged as in_progress, those specs will be run.

But if there are no such tags, all specs are filtered, and per the second

line, RSpec then runs all the tests. This keeps you from having to con-

tinuously change the RSpec config just to have some focused testing.

You can also simulate command-line support by making the filter use

the value of an environment variable that you might set at the command

line.

8. Thanks to David Chelimsky (http://blog.davidchelimsky.net/2010/06/14/filtering-examples-in-rspec-2/)

and Nathan Van der Auwera (http://www.dixis.com/?p=283) for blog discussions of this fea-

ture.

Report erratum

this copy is (P1.0 printing, February 2011)

http://blog.davidchelimsky.net/2010/06/14/filtering-examples-in-rspec-2/
http://www.dixis.com/?p=283
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=308

USING AUTOTEST 309

if ENV['FOCUS_TESTS']

c.filter_run :in_progress => true

end

That can then be invoked from the command line like this:

spec FOCUS_TESTS=true

Cucumber also has command-line mechanisms for limiting the features

executed in a Cucumber run. The cucumber command takes a file or a

directory as its main argument. This can be augmented.

• If you follow the filename with a colon and a line number, then only

the feature at that line is run. You can use multiple line numbers,

as in cucumber login.feature:12:35.

• Cucumber allows you to annotate tests with tags, as described

earlier in Section 15.7, Annotating Cucumber Features with Tags,

on page 252. That section also shows how to invoke tags from the

command line and the special status of the @wip tag.

• You can instruct Cucumber to make a list of failing specs for the

purpose of only rerunning those specs the next time around. The

command-line magic for this is a little arcane, since the output

of failing tests needed to manage this feature is considered a for-

matter. So, the command is cucumber --format rerun --out rerun.txt,

but the filename at the end is arbitrary. After that test runs, you

can use cucumber @rerun.txt to pick up the failed test information

and run only those tests. The Rake task rake cucumber:rerun is a

shortcut for this behavior.

19.3 Using Autotest

Autotest is a very simple tool that will, if you are like me, quickly

become indispensable. It’s something of a bridge between the focused

setups discussed earlier and the alternate test background runners dis-

cussed next. When you run autotest, it will execute all your tests. After

that, it runs in the background. When you save a file, the tests asso-

ciated with that file are rerun. If you have a failing test or tests, those

tests will be rerun first, and when the failing tests pass, the entire test

suite will be reexecuted to confirm that all your tests pass again.

In Rails 3, Autotest goes in the test group of your Bundler gem file:

gem 'autotest'

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=309

USING AUTOTEST 310

If you are not using RSpec, you may also need the autotest-rails gem in

your bundler file. Whether you are running Test::Unit or RSpec, start

it off by running autotest from the command line in the root directory of

your Rails application.9 Autotest will run all your tests from your test or

spec directory. At one point, Autotest ran the tests in a random order

by default, but that does not seem to be the default behavior anymore.

After the tests run, Autotest waits. When you save a file, if Autotest can

determine which tests are associated with the file, Autotest will run

those tests. For a controller, it runs the associated functional test; for a

model, it runs the associated unit test. A change to a test file runs that

test. A change to a fixture file will also trigger the associated test file

for that model. Edits in the config or test_helper.rb files trigger the entire

suite, and a change to the application helper also generally triggers a

lot of tests. Edits elsewhere in the system, such as helper files or files

in odd directories, may be ignored, but you can configure Autotest to

map arbitrary files to tests—more on that in a moment.

If you have a failing test, Autotest’s behavior changes slightly. The fail-

ure message and stack trace of all failing tests appears at the end of

the Autotest run. After that, if you change any of the files associated

with the failing tests, Autotest runs the failing tests first. If the tests

still fail, Autotest stops. If you change files not associated with a failing

test, Autotest runs the test associated with the change and then tries

the failing tests again. Any newly failing tests are added to the list of

failing tests. In any case, if a run makes all previously failing tests pass,

Autotest automatically runs the entire test suite to ensure that there

have been no regressions, although this behavior can be turned off by

starting Autotest with the option -c.

At any time, you can hit Ctrl-C to cause Autotest to reset the list of cur-

rently failing tests and rerun the entire test suite from scratch. Hitting

Ctrl-C twice in succession quits Autotest.

Here’s where Autotest excels. If you are running something like a regu-

lar TDD, you’ll write a new test that will fail, and Autotest will contin-

ually rerun that test every time you save until the test passes. At the

simplest level, this removes the need to continually invoke the tests in

your IDE or command line. More helpfully, limiting the test suite to the

few failing tests leads to faster test runs and quicker feedback to your

actual code.

9. In RSpec 1.x, the command is autospec.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=310

USING AUTOTEST 311

Autotest on the Mac

Autotest does its magic by polling the operating system for file
changes. The downside is that it can be somewhat processor-
intensive, even when idling. If you are using Mac OS X 10.5 or
newer, you can use the OS X FSEvent library to allow Autotest
to receive notifications of file changes rather than polling. Nat-
urally, this is much less processor-intensive. To use this, you need
to install the autotest-fsevent gem. Then, in your .autotest file, add
the line require ’autotest/fsevent’. The fsevent line must be last in
the file.

A little more subtly, it makes it easier to inspect what’s happening in the

code. I’m not really one for the Rails debugger, preferring the humble

print statement for determining what’s happening. The huge advantage

of running only one or two tests when in failure mode is that you can

throw your print statements anywhere in the app with impunity, know-

ing that you’ll see the relevant output only. I’ve been known to add a

print statement deep in Rails core when I need to find out what’s going

on, and it all works pretty darn smoothly with Autotest (you can get the

same effect in other IDEs, but Autotest works nicely).

There are a number of plugins and hooks that you can use to customize

Autotest’s behavior. Autotest looks for a file named .autotest either in

your user home directory or in your project’s root directory.

If you’d like Autotest to exhibit some custom behavior, add your own

event-handling blocks. The basic form is this:

Autotest.add_hook :waiting do

puts

puts "# Waiting since #{Time.now.strftime "%Y-%m-%d %H:%M:%S"}"

puts

end

The previous is actually the autotest/timestamp.rb plugin, which you can

find in the ZenTest directory in your very own Ruby Gems directory.

The symbol :waiting in line 1 is the actual hook, and the block is run

at a time indicated by the hook. In this case, when Autotest goes into

waiting mode, it adds a timestamp to your console output, which is

helpful in telling you that Autotest is actually done for the moment.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=311

USING AUTOTEST 312

The available hooks are :all_good, :initialize, :interrupt, :quit, :ran_command,

:reset, :run_command, and :waiting.10 Most of these are self-explanatory.

You get :run_command at the beginning of an Autotest test cycle and

:ran_command at the end. The :all_good hook runs after :ran_command

after Autotest runs a complete, clean test suite.

Often, what you want to do is create a mapping so that Autotest asso-

ciates a file with a specific test or set of tests. Here’s an example from

the auotest-rails plugin, which is automatically invoked if Autotest de-

tects that it is being started from a Rails application:

add_mapping %r%^app/models/(.*)\.rb$% do |_, m|

"test/unit/#{m[1]}_test.rb"

end

The add_mapping() command takes a regular expression—the one here

uses a custom delimiter to avoid having to escape all the slashes in the

path name—and a block. The block should itself take two arguments:

the filename matched and the actual regular expression match object.

The result of the block is a filename or a list of filenames. You can

obtain a list of files that match a given regular expression by using the

method files_matching() inside the block with a regular expression as the

argument. When Autotest is running and detects a newly saved file, it

searches for the mappings created by add_mapping() calls. If the file

matches the regular expression argument to add_mapping(), the block

is invoked, and the test file or list of test files returned by that block is

added to the list of test files to run.

You can also specify that a file should not trigger tests by calling

add_exception() with a regular expression argument. Any file matching

that regex will not trigger tests, even if it matches other mappings.

Autotest comes with several plugins that can be included in your local

Autotest run by requiring the module in your .autotest file. The following

is a partial list of available plugins (we have already covered autotest/

timestamp).

autotest/autoupdate allows you to run an arbitrary command after Auto-

test has been sleeping for a while, which you can manage by set-

ting Autotest::Autoupdate.update_cmd = whatever in your .autotest file. The

default command is svn up—this is designed as a way to ensure your

code is always up-to-date with the repository.

10. That list is from the code itself; oddly, as I write this, the documentation has a differ-

ent list.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=312

MAKING YOUR TESTS FASTER 313

A number of plugins allow various notifications. On Mac OS X, the

autotest/growl plugin uses the popular Growl notification utility. The

autotest/jabber plugin can be configured to send an IM message via Jab-

ber. Similarly, autotest/blame, which can be configured to use Adium

or iChat in an OS X envrionment, sends out a status message with

your code-to-test ratio. If you are on a Linux/KDE environment, the

autotest/kdenotify plugin uses knotify. If you are on Linux/GTK, use auto-

test/notify. On Windows, the notification application is Snarl, and the

plugin is autotest/snarl.

The autotest/email_notify plugin lets you send an email when Autotest

completes a run, which seems like it would have a high chance of

getting annoying but might be the guts of a continuous integration

environment.

The autotest/heckle plugin lets you specify classes to be run through

the Heckle mutation tester after a clean Autotest run. You can auto-

matically run an rcov report after a clean run by using the autotest/rcov

plugin.

Several plugins allow for different output. The autotest/html_console plu-

gin drops an HTML file in a directory of your choosing. Using autotest/

pretty on OS X gives you a small window that displays a history of your

Autotest run, with red squares representing failures and green squares

representing success. The autotest/redgreen plugin colors the output of

the Autotest report based on success or failure.

The autotest/menu plugin gives a menu of options rather than the more

opaque Ctrl-C mechanism.

The autotest/migrate plugin fixes a minor Rails pain by automatically

running Rails database migrations when autotest starts. Otherwise,

you need to update the test database using the normal Rake com-

mands.

19.4 Making Your Tests Faster

The steps you can take to improving your test performance are divided

into things that are almost always a good idea and things that speed the

test up at the cost of other positive features—usually independence or

clarity—and should be done only when there seems to be a significant

test performance issue separate from the performance of the applica-

tion in general.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=313

MAKING YOUR TESTS FASTER 314

RSpec offers you the ability to identify your slowest tests, a handy piece

of information when you are trying to speed up your test suite. In RSpec

2.0, the command for is rspec -f p, and in RSpec 1.3, the command is

spec -f o.

The first general principle of speeding up your tests is to remember that

Cucumber and integration tests are generally slower than controller

tests because they hit the entire Rails stack, and controller tests are

slower than model tests because they hit part of the Rails stack. So,

oversimplifying, a fast test suite has a lot of model tests, a few controller

tests, and relatively few integration tests.

If you are practicing good Rails thin-controller design, you probably

won’t have many controller tests, and the ones you do will frequently

interact with mock objects rather than actual ActiveRecord objects.

However, if you are using Cucumber in an acceptance test–driven pro-

cess, you will probably wind up with a lot of relatively slow Cucumber

tests. This is especially true given that you can go pretty far in a Rails

application without a lot of model logic and therefore without a lot of

model tests.

Within model and controller tests, you can keep speed under control

by limiting the amount that each test does. In particular, you want to

minimize contact with the database. In a controller test, this means

mocked method calls, which is fine, since most of what we need to test

at the controller level is just that specific model methods are called.

In a model test, this means creating the minimum number of objects

required for a test and not using model objects without saving them

to the database where required. ActiveRecord makes this a challenge

sometimes because associations depend on IDs that are assigned auto-

matically only when an object is saved.

In desperate circumstances, you can fake a saved object by explicitly

assigning it an ID, though I don’t recommend making a habit of it,

because it’s dangerous. If you have an existing test that saves a lot

of objects to the database and isn’t amenable to either creating fewer

objects or mocking the objects out, you can interrupt normal database

interactions by overriding or monkey-patching the method ActiveRe-

cord::Base#columns().

One key thing to do is limit the number of objects you create for each

test. Ideally, a true unit test can be performed on a single object, with

any other references being managed via mocking. That’s not always

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=314

MAKING YOUR TESTS FASTER 315

desirable—too many mocks in a single test runs the risk of making a

brittle test. However, too many mocks in a single test should also be

taken to suggest that your code is trying to tell you that there are too

many internal dependencies, and it is time to factor.

And now we have arrived at fixtures and factories. As great as factory

tools are for creating a single focused object, because Rails loads fix-

tures only once, factories are much slower for creating a lot of objects

than fixtures are. When factory tools first came out, it was a common

pattern to migrate fixture tests to factories by creating a great blob of

factory objects to match the fixtures. Naturally, this turned out to be

kind of slow—factories are intended to guide you toward more focused

unit tests.

That said, fixtures have a useful role in a Rails test structure. You may

have a lot of classes that are background data, in which the database

is a nearly static list of items. The first general example that comes to

mind is a list of countries, but your application may have other kinds

of list data that is, for one reason or another, stored in the database. In

that case, it can be helpful to load up all these background objects in

fixtures, especially for integration testing, where your application may

expect all this data to be in place.11

Another, fairly quick way to speed up a test has to do with contexts

and single-assertion testing. Aesthetically, I love single assertion test-

ing, but there’s no denying that it can slow down a test suite. More

accurately, it can exacerbate the effect of a badly structured test by

running the setup multiple times. If you have a series of single asser-

tion tests that have some setup behind them, you’ll get some speedup

just by rolling them back together into a single test with a setup block

that is executed only once.

In RSpec, you need to do that by hand, but if you are using Test::Unit

and Shoulda contexts, you can use the fast_context gem. With that

gem installed, you can replace any call to the Should context() method

with the method call fast_context(), and the gem will automatically roll

together all the tests inside that context into a single test.

11. If your app depends on a lot of static data actually existing in the database, you might

want to rethink your design decisions, but that’s another story.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=315

USING A FASTER TEST RUNNER 316

This can give you a big speedup.12 However, it does require that all

your single-assertion tests are actually independent and have no side

effects. But if you’ve been following all the advice so far, you’re doing

that anyway. Single-assertion is very nice during active development.

But if you are having a speed issue and want to go back and update

parts of the code that aren’t under active development to roll the tests

together, that’s potentially a big speed win for not much cost.

19.5 Using a Faster Test Runner

At some point, you’ll reach the end of what you can reasonably do by

changing the content of your tests or your application, and it’s time to

starting changing the context in which those tests run. A number of

tools allow you to use your machine resources more efficiently, either

by reducing the amount of time spent starting up the Rails environment

or by allowing you to run tests in parallel. We’ll cover some of the tools

here, but this list is not intended to be exhaustive; there are a lot of

different tools out there.

Before we dive into various test servers, it’s worth mentioning that you

may be able to get a speed boost just by changing Ruby versions. Ruby

1.9.2 is significantly faster than Ruby 1.8.7, but 1.9.2 may not be feasi-

ble for your production system. The team that created Phusion Passen-

ger also created a Ruby 1.8.7–compatible interpreter called the Ruby

Enterprise Edition (REE), which is optimized for server use and uses

less memory than the basic Ruby 1.8.7. Converting to REE should be

simple for most Ruby 1.8.7, and you could see a big speedup.13 JRuby

is also a possibility for its overall performance, but JRuby’s big down-

side for TDD purposes is that its startup time is pretty slow, which can

be an issue if you are starting an interpreter every five minutes to run

your new tests.

That brings us to Spork, which allows you to keep a Ruby interpreter

open and run RSpec and Cucumber tests in that interpreter without

restarting Rails.14 The name presumably comes from a combination of

12. Nick Gauthier, in his Grease Your Suite presentation,

http://grease-your-suite.heroku.com, describes a test suite that went from 13:15 to 5:32

using just fast_context.
13. My experience is that you can get about 10–20 percent speedup with little effort. Nick

Gauthier’s previously mentioned presentation suggests that you can do a lot better if you

have the RAM and are willing to tweak some environment variables.
14. There’s a plugin that ties Spork to Test::Unit, which we won’t be discussing here.

Report erratum

this copy is (P1.0 printing, February 2011)

http://grease-your-suite.heroku.com
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=316

USING A FASTER TEST RUNNER 317

“spec” and the fact that Spork “forks” a new process when you run your

tests.

As I write this, Spork is not fully integrated with RSpec 2, but work is

in progress, and I expect the Spork installation process not to change

substantially. Spork is a gem, so for Rails 3, you need gem ’spork’ in the

test group of your Gemfile.

With the gem installed, run the following command:

spork --bootstrap

Bootstrapping Spork puts the following code in your spec/spec_helper.rb

file:

Download huddle3_rspec2/spec/spec_helper.rb

Spork.prefork do

Loading more in this block will cause your tests to run faster. However,

if you change any configuration or code from libraries loaded here, you'll

need to restart spork for it take effect.

end

Spork.each_run do

This code will be run each time you run your specs.

end

There are also some commented instructions; let’s walk through them.

Spork has two kinds of initialization. It runs one block of code exactly

once when the Spork server starts and never again, and then a separate

block of code gets executed each time Spork spawns a new test process.

What Spork wants you to do is split all the items in your spec_helper.rb

file (aside from the two require statements needed to load Spork itself)

into one of two piles. Any code that you want to run once goes inside

the Spork.prefork block. Code you want executed each time goes inside

the Spork.each_run block.

I really do mean everything—the other require statements, the RSpec.

configure block, any helper methods you are defining—the whole ball

of wax goes in either the prefork block or the each_run block. The per-

formance trade-off is simple. For any code that you put in the prefork

block, you get the benefit of only needing to run it once for the life of

the Spork server, but if anything in that block changes, you’ll need to

restart the Spork server to see that change.

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle3_rspec2/spec/spec_helper.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=317

USING A FASTER TEST RUNNER 318

You don’t need to worry about what happens if you’ve defined the Spork

blocks and then run tests without an active Spork server. The blocks

just execute on startup, and everything is fine.

Once you have the blocks defined, start a Spork server with the follow-

ing simple command:

$ spork

spork

Using RSpec

Preloading Rails environment

Loading Spork.prefork block...

No server is running

Running specs locally:

Spork is ready and listening on 8989!

On the RSpec side, you need to add --drb to the rspec.opts file or add it

as a command-line option when you run your specs. RSpec uses the

Spork server to get a preloaded process to run, which should start up

faster than a normal RSpec session.

Cucumber usage is similar. You can facilitate Spork setup by adding

--spork to the command when you generate the initial Cucumber files;

the same --drb option causes Cucumber to search for the Spork server.

Spork is handy, but it doesn’t actually improve the usage patterns of

your CPU during test. If you are using a development machine that has

a lot of CPUs or if you are on a network that has a lot of idle processing

power at any given time, look at one of several tools that try to run your

tests in parallel across multiple cores. We’re going to briefly take a look

at two representative sample tools, with the understanding that this

is a rapidly changing area; no one tool seems to be best for all users

(the best tool depends on your situation), and now that you know that

tools like this exist, finding the current state of the art should be much

easier.

First up is parallel_tests, which you can find at http://github.com/grosser/

parallel_tests. The parallel_tests gem supports creating multiple test en-

vironments that run parts of your test suite simultaneously. It’s a gem,

so in Rails 3, you’ll need it in your bundler file as gem "parallel_tests".

Like RSpec, you’ll want it in your development and test group.

Report erratum

this copy is (P1.0 printing, February 2011)

http://github.com/grosser/parallel_tests
http://github.com/grosser/parallel_tests
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=318

USING A FASTER TEST RUNNER 319

With the gem installed, you need to add support for multiple test data-

bases. In your database.yml, augment the name of your test database

by appending an environment variable like so:

test:

database: huddle_test<%= ENV['TEST_ENV_NUMBER'] %>

The database.yml file is evaluated via ERb when loaded, and the test

number gets the appropriate value based on parallel_tests managing

the various test processes that it creates.

After you change the ERb, create the actual database instances, and

load the database schema into them:

% rake parallel:create

% rake parallel:prepare

Then you can run the test with rake parallel:test for Test::Unit, rake par-

allel:spec for RSpec, and rake parallel:features for Cucumber. If you have

multiple CPUs, multiple parallel test process will be spawned to run all

your tests.

Note that the overall processor time needed to run the tests does not go

down. Actually, it goes up, because each process needs its own startup

time. However, the amount of actual clock time that passes should go

down as the test runs simultaneously. One side effect, though, is that

your machine will be pretty thoroughly jammed while the tests run, so

if you like checking email during test runs, be advised that’s going to

slow down quite a bit. Also, Spork and parallel_test do not get along at

all—don’t run them together.

If you are looking for a simple way to distribute tests across your

network, Specjour works for networks that have the Bonjour protocol

installed. Specjour is a gem, so the usual gem "specjour" goes into the

bundler file.

To use specjour, identify the machines on your network that are avail-

able to run tests, and set up your application to allow those tests to run.

Discovery of available machines is managed automatically by specjour.

Setting up a worker machine is as simple as the command specjour. The

worker machine won’t necessarily start with your code, so you need to

be sure that Ruby is available on that machine, as well as the rsync

system command, which is used to move files back and forth.

In your actual Rails project, modify the database.yml in exactly the

way specified earlier for parallel_tests. Unlike parallel_tests, specjour

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=319

AND IN THE END... 320

will create the parallel database instances for you. Then running rake

specjour or rake specjour:cucumber should start the specjour system

searching for available workers on the network. You can have specjour

running as a manager on the same machine if you just want the par-

allel tests feature, and not the searching the network feature. You can

also limit specjour to a particular number of CPUs or to only accept

requests from specific projects.

If you need more complex network behavior, take a look at Hydra, http://

github.com/ngauthier/hydra/wiki, which allows for more flexibility.

A slow test suite destroys TDD by making it harder to run the tests

with the frequency that good TDD process requires. Although there are

no one-size-fits-all solutions to performance issues, in application code

or in testing, the options described in this chapter should give you a

good start in diagnosing and taking steps to improve the performance

of your tests.

19.6 And in the End...

I’ve tried to present the most current, flexible, and powerful tools and

practices for Test-Driven Development. It’s been about ten years since I

first used JUnit for TDD, and there’s no other single tool or innovation

I’ve come upon that has improved the quality of my code and the quality

of the time I spend developing.

Tools in this part of the world change fast, and I’m sure that by the time

you read this, parts of the books seem out-of-date at best and primitive

at worst. If only I could predict which parts...I hope that you’ll find

some core principles here that will be valuable no matter what kinds

of applications you build or what kinds of tools are created. Take small

steps, write the code first, and let the code and tests feed back on each

other frequently.

Now, go out and test something.

Report erratum

this copy is (P1.0 printing, February 2011)

http://github.com/ngauthier/hydra/wiki
http://github.com/ngauthier/hydra/wiki
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=320

Appendix A

Sample Application Setup
Most of the test examples in this book are based on a simple Rails

application called Huddle, which supports Agile teams by allowing them

to enter their daily status scrums online. Although the sample code

for the Huddle application is contained in the code samples for each

chapter, I know that many people like to create the entire example from

scratch.

A.1 Basic Rails

This appendix lists the steps I took to create a simple Rails application

with Devise for user authentication. The installation instructions for

other third-party plugins and gems are contained in the chapter where

the extension is used.

You won’t need anything for this setup other than Ruby, Rails, and

SQLite3. A Rails 3 installation will also need the bundler gem. The Rails

3 installation instructions will take center stage in this chapter, and

where Rails 2.x differs, that will be noted separately.

Let’s start with the creation of the Huddle app using the rails command.

In Rails 2.x, the initial command is rails huddle; in Rails 3.x, the com-

mand is rails new huddle. Here is the Rails 3 version:

% rails new huddle

«many lines of response»

% cd huddle

% rake db:create:all

(in /Users/noel/Documents/pragprog/nrtest/Book/code/huddle)

I’m using the system gem installation of Rails because I expect to have

multiple copies of Huddle and don’t want to have multiple copies of

DEVISE 322

Rails in my repository. That doesn’t apply to you, though. If you are

planning to go back and forth between multiple Rails projects on the

same machine, I strongly urge you to check out RVM, the Ruby Version

Manager, which allows you to have a custom Ruby version and set of

gems for each project. Find it at http://rvm.beginrescueend.com/.

In Rails 3.x, gem management, including that of the Rails gems, is han-

dled by bundler. The Gemfile in your newly created application contains

a command starting with gem ’rails’, which ties your application to a

specific Rails version. There is also a commented-out command to use

if you want the cutting-edge version of Rails. We’re not going to worry

about the finer points of bundler here; see http://gembundler.com for

more details.

If you are running a Rails 2.3.x application and if you want to have

Rails in your vendor/rails directory, run the following command:

% rake rails:freeze:edge RELEASE=2.3.5

Alternately, you can download the Rails release from GitHub at http://

github.com/rails/rails/tree/master and place it in vendor/rails.

A.2 Devise

Devise is a Rails authentication solution that is distributed as a Rails

engine, which, in theory, allows for it to be added to an application

with fewer steps. It’s also quite modular, allowing you to choose a set of

authentication features that you might want. These steps are based on

the Readme at http://github.com/plataformatec/devise.

Rails 3 and Rails 2 use different versions of the Devise gem. For Rails

3, install via the following:

gem install devise

For Rails 2, install via the older version:

gem install devise --version=1.0.8

In Rails 3.x, gems are managed in bundler. You need to add the follow-

ing line to your Gemfile to get the Devise gem included:

gem "devise"

Devise creates its files via a generator. The Rails 3 command is as

follows:

rails generate devise:install

Report erratum

this copy is (P1.0 printing, February 2011)

http://rvm.beginrescueend.com/
http://gembundler.com
http://github.com/rails/rails/tree/master
http://github.com/rails/rails/tree/master
http://github.com/plataformatec/devise
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=322

HUDDLE’S DATA MODELS 323

And here is the command for Rails 2:

ruby script/generate devise_install

In Rails 3, Devise creates an initializer file in config/initializers/devise.rb

that has a lot of potential options that we are going to leave untouched

for the moment. It also creates a locales file for internationalization

purposes. The generator also puts some helpful manual tasks into the

console, which require us to do the following:

1. Add the line config.action_mailer.default_url_options = { :host => ’local-

host:3000’ } to the file config/environments/development.rb. In a real

system, we’d need other lines for other environments.

2. Uncomment the line root :to => "welcome#index" in config/routes.rb.

3. Add the following two lines to app/views/layouts/application.html.erb

between the body tags:

<p class="notice"><%= notice %></p>

<p class="alert"><%= alert %></p>

Now we can create our user model with this line. Please note that if

you are building the RSpec version of this app, you must have included

RSpec in the Gemfile before going any further. See Section 12.3, RSpec

and Rails, on page 199 for more information.

$ rails generate devise User

This creates a user model, with tests, a database migration, and a route

that references the Devise engine. The fixture file created for a user is

invalid; it doesn’t have any data, and the tests are going to change.

Please edit test/fixtures/users.yml to the following:1

one:

email: "one@one.com"

two:

email: "two@two.com"

That should be enough to get us started.

A.3 Huddle’s Data Models

With the Devise boilerplate done, we just need to create the basic data

structures used for Huddle. We already have a user model generated by

1. RSpec users don’t need to mess with this.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=323

FIRST TESTS 324

Devise. We’ll need a model for the status reports and one for the project.

Right now, a Project is just a string:

% rails generate scaffold project name:string

A StatusReport has references to Project and User, plus text fields for the

“what I did yesterday” and “what I’m going to do today” reports. I’ve also

added an explicit date for the status, separate from the created_at field.

% rails generate scaffold status_report project:references \

user:references yesterday:text today:text status_date:date

Projects and users have a many-to-many relationship, so you’ll need a

join table for that:

% rails generate migration project_user_join

Edit the migration to look like this:

Download huddle/db/migrate/20090825045451_project_user_join.rb

class ProjectUserJoin < ActiveRecord::Migration

def self.up

create_table :projects_users, :force => true, :id => false do |t|

t.references :project

t.references :user

t.timestamps

end

end

def self.down

drop_table :projects_users

end

end

Then run rake db:migrate one more time.

A.4 First Tests

That’s a long way just to get started. Sorry, it’s the kind of setup you

have to get out of the way to do any kind of example complex enough

to be useful.

It’s worth pointing out, though, that we already have some tests. Run-

ning the default Rake testing task gives output like this (output slightly

truncated):

% rake

(in /Users/noel/Dropbox/sites/huddle3)

Loaded suite /Library/Ruby/Gems/1.8/gems/rake-0.8.7/lib/rake/rake_test_loader

Report erratum

this copy is (P1.0 printing, February 2011)

http://media.pragprog.com/titles/nrtest/code/huddle/db/migrate/20090825045451_project_user_join.rb
http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=324

FIRST TESTS 325

Started

...

Finished in 0.059271 seconds.

3 tests, 3 assertions, 0 failures, 0 errors

Loaded suite /Library/Ruby/Gems/1.8/gems/rake-0.8.7/lib/rake/rake_test_loader

Started

.............

Finished in 0.775038 seconds.

14 tests, 20 assertions, 0 failures, 0 errors

The first batch is the unit tests; Rails creates a dummy test for each model.

The bottom tests are the functional tests. Rails creates a basic suite for

each controller scaffold that covers the successful cases of each scaffold

method. (The failure cases can easily be covered with mock objects.)

Congratulations, the setup is out of the way; you can now rejoin the

rest of the book, already in progress.

Report erratum

this copy is (P1.0 printing, February 2011)

http://books.pragprog.com/titles/nrtest/errata/add?pdf_page=325

Appendix B

Bibliography

[CAD+09] David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesøy,

Bryan Helmkamp, and Dan North. The RSpec Book. The

Pragmatic Programmers, LLC, Raleigh, NC, and Dallas, TX,

2009.

[Fea04] Michael Feathers. Working Effectively with Legacy Code.

Prentice Hall, Englewood Cliffs, NJ, 2004.

[Mes07] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code.

Addison-Wesley, Reading, MA, 2007.

Index
Symbols
!= operator, 193

 tag, 227

*= operator, 144

+ operator, 145

< operator, 193

<= operator, 193

== operator, 27

== operator, 144

=== operator, 193

=~ operator, 193

> operator, 145, 193

@wip tag, 241, 253, 309

$1, 248

$= operator, 144

_erbout variable, 150

| character, 82

^= operator, 144

~ operator, 145

200-599 HTTP response codes, 133

A
-a option, 265

a tag, 143

Acceptance Test–Driven

Development/Design (ATDD), 19,

186

acceptance testing

vs. automated developer testing, 18,

19

Capybara, 224–234

Cucumber, 235–256

vs. integration testing, 215

legacy code, 286

speed, 314

in TDD process, 223

Webrat, 224–234

ActionController, 176, 177, 179

ActionController::TestCase, 33, 129

ActionDispatch::PerformanceTest class, 300

ActionMailer, 146, 176, 179

ActionView, 176

ActionView::TestCase class, 149, 153

ActiveRecord, 72–80

factories and, 89

macros, 178

output, 280

RSpec, 202

Shoulda, 175, 176

stubs and, 111, 125

test speed and, 314

timestamps, 97

YAML files and, 38, 83

see also factories; fixtures

ActiveSupport::TestCase

model tests, 73

parent class, 25

unit tests, 33

add_exception(), 312

add_mapping(), 312

addMatcher(), 162

Adium, 313

:after position, 157

after(), 170, 190

after(:each)(), 170

after_build(), 93

after_create(), 93

after_stub(), 93

afterEach(), 161

--aggregate FILE option, 265, 269

Ajax, 155–167

Capybara and, 232

DOM IDs and, 141

simulating calls, 129, 131

wait periods, 233

Webrat and, 232

:all option, 190

:all_good hook, 312

ANCHOR LINKS AT_LEAST(N).TIMES()

anchor links, 227

anchor tags, 226, 234

And scenario part, 239

and_raise(), 121, 195

and_return(), 121, 195

andCallFake(), 165

andCallThrough(), 165

andCallReturn(), 165

andThrow(), 165

--annotate option, 265

any_instance(), 106, 107, 113, 124

any_instance_of(), 124

any_of(), 110, 123

anything(), 124

ap method, 280

app/controllers/users_controller.rb file, 33

app directory, 32

app/models/user.rb file, 33, 38

ApplicationController, 53, 58

arbitrary string mechanism, 151

as_new_record(), 202

as_null_object(), 194

assert(), 27

assert_bad_value(), 176

assert_block(), 27

assert_contain(), 230

assert_contains(), 175

assert_date_from_db(), 73

assert_difference(), 45, 73, 77

assert_does_not_contain(), 175

assert_dom_equal(), 151

assert_emails(), 147

assert_equal(), 27, 192

assert_generates(), 137

assert_good_value(), 175

assert_have_no_selector(), 230

assert_have_no_xpath(), 230

assert_have_selector(), 230

assert_have_xpath(), 230

assert_in_delta(), 28

assert_instance_of(), 28

assert_kind_of(), 28

assert_match(), 28

assert_nil(), 28

assert_no_difference(), 73, 77

assert_no_emails(), 147

assert_no_match(), 28

assert_no_queries(), 73

assert_no_contain(), 230

assert_not_equal(), 27

assert_not_nil(), 28

assert_not_same(), 28

assert_nothing_raised(), 28

assert_nothing_thrown(), 29

assert_operator(), 28

assert_queries(), 73

assert_raise(), 28

assert_recognizes(), 137

assert_redirected_to(), 133, 134

assert_respond_to(), 29

assert_response :redirect(), 134

assert_response(), 133

assert_same(), 28

assert_same_elements(), 175

assert_save(), 175

assert_select(), 63, 141–146, 151, 157

assert_select_email(), 147

assert_select_rjs(), 156

assert_send(), 29

assert_sql(), 73

assert_template(), 133

assert_throws(), 29

assert_valid(), 73, 175

assertions

controller testing, 133

difference, 76

email testing, 147

helper methods, 73

JavaScript, 156

methods, 27–29

order of, 27

routes testing, 137

Shoulda, 175

single, 46, 75, 169, 173, 183, 191,

315

in test process, 26

view testing, 141–147, 151

Webrat, 230

assigns, 208

assigns variable, 129, 134, 204

assigns(), 45

association(), 91

associations

attributes, 92

automatic adding, 47

factories and, 91

keys, 40

legacy code, 288

named scopes and, 68

test speed and, 314

at_least(), 114, 122, 196

at_least(n).times(), 122

328

AT_LEAST.ONCE() -C OPTION

at_least.once(), 114, 122

at_most(), 114, 122, 196

at_most(n).times(), 122

at_most.once(), 114, 122

at_most.twice(), 122

ATDD (Acceptance Test–Driven

Development/Design), 19, 186

attach_file(), 226

attributes, factory, 89, 90, 92

authentication, 53, 94, 251, 321

auto-generated tests and legacy code,

284

automated developer testing vs.

acceptance testing, 18, 19

automated developer tests

see also TDD

autospec tag, 310

Autotest, 51, 279, 280, 309–313

autotest, 51

autotest-fsevent gem, 311

autotest-rails gem, 310

autotest/autoupdate, 312

autotest/blame plugin, 313

autotest/email_notify plugin, 313

autotest/growl plugin, 313

autotest/heckle plugin, 313

autotest/html_console plugin, 313

autotest/jabber plugin, 313

autotest/kdenotify plugin, 313

autotest/menu plugin, 313

autotest/migrate plugin, 313

autotest/notify plugin, 313

autotest/pretty plugin, 313

autotest/rcov plugin, 313

autotest/redgreen plugin, 313

autotest/snarl plugin, 313

autotest/timestamp.rb plugin, 311

Autotest::Autoupdate.update_cmd =

whatever, 312

awesome_print gem, 280

B
Background line, 238

background objects, 315

:base, 120

basics of Rails testing, 24–41

BDD (Behavior-Driven Development)

Cucumber and, 245

mock objects and, 114

terminology, 186, 270

be_a_new() matcher, 202

be_routable(), 207

be_whatever(), 193, 211

Beck, Kent, 18, 186, 279

:before position, 157

before(), 170, 190

before(:each)(), 170

before_filter, 59

before_save(), 48

beforeEach(), 161

Behavior-Driven Development, see

BDD (Behavior-Driven

Development)

benchmark testing, 37, 299–302

see also performance testing

best practices, 43, 245

bisect tool, 278

black-box testing, 223, 224, 285

blame plugin, 313

block helpers, 150

blocks

assert_select(), 146

assertion methods, 27, 63

attribute, 92

factories and, 88

mock objects and, 195

multiple sessions and, 221

pending, 191

proxy calls and, 123

RJS calls, 157

RSpec and, 190, 191

setup, 31, 36

Spork, 317

step definitions and, 240

stubs and, 109, 121

Zebra and, 183

body tag, 166

boolean(), 124

:bottom position, 157

Bourne gem, 136

branch coverage, 259

see also test coverage

Bristol, Stephen, 117

browser testing, 64

buffers, Erb output, 151

bugs, see debugging

bundler, 322

buttons, 227, 231

by_user_name, 67

C
-c option, 310

329

CALENDAR LOGIC CONTROLLER TESTING

calendar logic, 95

Caliendo, Anthony, 111

call row, 304

callback blocks, 93

calls column, 303

Capybara, 223–234, 253

Cucumber installation and, 235

debugging, 281

request specs and, 208

simulating user actions, 243

catch assertions, 29

--capybara option, 236

Celerity, 224, 232, 253

:celerity driver, 233

chain(), 125

chaining

associations, 288

method calls in mock objects, 125

stubs, 195

Chang, 306

check(), 227

checkboxes, 227, 228, 244

Chelimsky, David, 308

child column, 303

child/parent contexts, 172

child/parent modifiers, 144

choose(), 227

clarity, test, 273

class finders, 78

:class option, 92

class(), 125, 203

classes

controller testing and, 129

directories, 32

doubling instances, 124

dummy, 295

factories and, 92

helper methods and, 149

legacy code and, 289

performance testing, 300

RSpec and, 190, 200

stubs and, 106, 120

subjects and, 199

test files and, 35

test placement, 25

clear(), 147

click_button(), 227

click_link(), 227

click_link_within(), 227

clobbertask, 261

code coverage, see test coverage

code writing

balancing with testing, 20, 51, 68,

252, 299

TDD’s effect on, 16

cohesion, 17

color, 189, 209, 265

--colour option, 189

column constraints, 290

combining selectors, 145

command-line prompt

Cucumber, 236, 241, 309

debugging, 279

Jasmine, 159

limiting tests with, 307

Rcov, 264

RSpec, 307

--comments option, 265

comparison operators, 193

concat(), 151

conciseness, test, 275

constraints, database, 290

contain matcher, 206

:content option, 230

content_type, 226

Context gem, 170

context(), 170, 190, 315

contexts, 75, 169–185

RSpec, 190, 315

simulating controller calls, 130

speed, 315

continuous integration

benchmark testing, 302

Jasmine and, 160

test performance and, 298

continuous-test execution tool, see

autotest

controller calls, simulating, 130

controller testing, 128–138

classes, 33

Cucumber and, 245

directories, 33

failure conditions and stubs, 106

vs. integration testing, 216

invalid objects, 52

legacy code, 284

mock objects and, 117

need for, 66

reloading, 48

RSpec, 203

speed, 314

subclasses, 25

330

@CONTROLLER VARIABLE DESCRIBE()

walk-through, 42–60

@controller variable, 129

converting

dates, 46, 48

values to strings, 132, 137

cookies, 135

cookies variable, 129, 134

:count option, 63, 133, 142, 231

coupling, 17

coverage directory, 263

create(), 45, 89, 106

create_spy(), 163

create_user(), 94

created_at attribute, 97

CRUD functionality, 237

CSS classes, 141, 143

CSS selectors, 231

CSV files, 37, 302

Cucumber, 235–256

black-box testing, 286

Capybara and Webrat installation,

225

documentation, 236

driver management, 233

email testing, 148

features writing, 237–240

guidelines, 254

installing, 235

limiting tests, 309

log viewing, 281

parallel testing, 319

Rcov and, 267

rerunning failed tests, 279

RSpec and, 205

save_and_open_page(), 228

Specjour, 320

speed, 286, 314

Spork, 318

step definitions, 240–251

tags, 241, 252, 309

in TDD process, 19, 245, 255

test style, 253

view testing and, 154

when to use, 223

cucumber gem, 235

cucumber --format rerun --out rerun.txt

command, 309

cucumber @rerun.txt, 309

cucumber script, 236

cucumber-rails gem, 235

cucumber.yml file, 236

cucumber:wip, 253

Culerity, 224, 232

:culerity driver, 233

custom matchers

Jasmine, 162

RSpec, 211–213

Shoulda, 179

custom validations, 52

D
-D FILE option, 266

data setup, 38

names, 62

performance testing and, 305

in test process, 26

see also fixtures

data, sample, see fixtures

data, time, see time data

database migration, 279

database migrations, 313

database.yml, 306, 319

databases, legacy, 290

see also legacy code

Date class, 99

Date objects, 48

Date.today(), 96, 97

dates

comparing, 99

errors, 46

fixtures, 95–99

independence and, 272

objects, 48

selecting in Capybara and Webrat,

228

YAML files and, 82

DateTime class, 99

DateTime objects, 48

DateTime.now(), 97

debugging, 279

assert_select(), 146

with Cucumber, 286

DOM IDs and, 141

legacy code, 285

legacy databases, 290

reducing with TDD, 15

default values, overriding in factories,

90

define(), 212

delete(), 129, 130

dependencies, 287–296

describe(), 161, 190, 204, 205

331

DESCRIPTION() EXTERNAL MONITORS

description(), 181

descriptions(), 212

developer testing, see automated

developer testing

Devise, 53, 135, 251, 321, 322

differences, asserting, 76

directories

Cucumber, 236

fixtures, 86

helper methods, 149

Jasmine, 159

JavaScript, 159

legacy code tests, 287

Rcov, 263

RSpec, 189

test, 32

div element, 157

div tag, 69, 166

documentation, tests as, 18

does_not_match?(), 213

DOM IDs

adding dom_id() method, 69

Capybara and Webrat, 226, 227

JavaScript and, 157, 158

view testing with, 62, 141, 143

dom_id(), 69, 143

Double Ruby, 103, 118–125, 136

double(), 194

doubling instances, 124

drivers, Capybara, 233, 253

duck_type(), 124

dummy classes, 295

duplicating

attributes, 93

setups, 30, 172

dynamic contexts, 171

dynamic values, factories and, 89

E
-e option, 307

:each, 190

each_run block, 317

Eclipse, 38

EDD (Example Driven Development),

186

edit(), 107

edit_user_path, 249

else clause, 249

email testing, 146, 179

email, Autotest, 313

email-spec library, 148

empty modifier, 144

encapsulation, 273

environment variable, 308

ERb

block helpers, 150

dates and, 96

fixture files, 40, 84

parallel testing, 319

Rcov and, 262

:error value, 133

errors

ActiveRecord, 125, 202

assertion order and, 27

date, 46

HTTP response codes, 133

indicators, 37

known error testing, 74

stubs, 108

errors(), 125

errors.add_to_base(), 52

errors.empty?, 203

errors_on(), 202

eval(), 77

event bindings, 167

event handling blocks, 311

exactly(n).times(), 122

exactly(x).times(), 196

Example Driven Development (EDD),

186

example groups, 190

--example option, 307

ExampleGroupMethods class, 190

examples, RSpec, see specs

exceptions

assertions, 28

indicators, 37

raising with stubs, 106, 109, 121,

195

--exclude PATTERNS option, 265

expect(), 161, 162, 183

expectations

legacy code and, 287

mock objects, 121, 196

RSpec matchers, 191–196

expects(), 113, 122, 123

explicit testing, 253

exploration, test-driven, 285–288

extend(), 222

external monitors, 305

332

FACTORIES FUNCTIONAL TESTING

F
factories, 81, 86–100

associations and, 91

attributes, 90, 92

clarity and, 274

independence and, 272

legacy code and, 288, 291

multiple, 92

relative dates and, 96

RESTful Authentication, 94

speed and, 315

tips, 93

tools, 87

Factory.attributes_for(), 90

Factory.build(), 90

Factory.create(), 89

Factory.stub(), 90

factory_girl, 87–93, 292

FactoryGirl.define(), 88

failure_message(), 182

failure_message_for_should(), 212

failure_message_for_should_not(), 212

failures

Autotest and, 310

indicators, 37

limiting tests to, 309

matchers, 182, 212

messages, 27

stubs, 108

troubleshooting, 278–281

validations and, 49

faking saved objects, 314

faking user ids, 56

fast_context gem, 315

Feathers, Michael, 282, 290

Feature keyword, 238

features, Cucumber, 237–240

field identifiers, 226

field_locator, 226

Fields, Jay, 73, 269

file attachments, simulating, 226

file upload testing, 132

files_matching(), 312

fill_in(), 227, 228

filter_run(), 308

filter_run_excluding(), 308

filtering

before filter, 59

mock objects, 123, 196

Rcov, 263

RSpec, 307

find(), 78, 105

finder methods, 78–80

Fitzimmons, Seth, 224

fixture_file_upload(), 132

FixtureReplacement, 87, 94

fixtures, 81–100

adding, 65

clarity and, 273

dates, 95–99

defined, 38, 81

directories, 86

factories, 86–100

failures and, 279

file, 38

id, 40, 83

independence and, 272

instantiated, 83

legacy code and, 284

loading, 84

names, 83

problems with, 85

resetting, 36

speed and, 315

stubs and, 108

syntax, 82

transactions, 85

YAML file format and, 38, 81

see also factories

fixtures file, 38

fixtures: all, 84

flash variable, 129, 131, 134, 204

flat text file, 303

FlexMock, 32, 103, 118–125

flexmock(), 120

Flitter, 289, 293–296

floating point numbers, 28

floating-point numbers, 193

follow_redirect!(), 217

foreign key constraints, 290

form elements testing, 141, 142

form tag, 64, 143

forms testing, 144

freeze(), 98

:from option, 228

from(), 179

functional directory, 33

functional testing, 33, 37, 128

see also controller testing; view

testing

333

GARBAGE COLLECTOR HUDDLE

G
garbage collector, 302

Gauthier, Nick, 316

gc, see garbage collector

gc-patch, 302

generators

Cucumber, 237

performance testing, 300

RSpec, 189, 200

scaffolds, 284

get(), 129, 130, 204

Gherkin, 237

Git, 37, 278, 284

Given scenario part, 239

global data, 272

Golick, James, 183

graph.html file, 304

graphical analyzer file, 303

graphs, performance testing, 304

group_by(), 67

Growl, 313

GTK environment, 313

Gunderloy, Mike, 282, 288

H
Haml, 262

harmony gem, 161

has_and_belongs_to_many, 84, 243

has_button?, 231

has_checked_field?, 231

has_content?, 231

has_css?(), 231, 244

has_entry(), 110

has_field?, 231

has_link?, 231

has_many, 67, 84

has_many :through, 84

has_select?, 231

has_selector?(), 231

has_table?, 231

has_unchecked_field?, 231

has_xpath?(), 231

hash variables, 129, 134

hash_including(), 124

hashes(), 242

have(x).record, 202

have_selector(), 206

Heckle, 313

Helmkamp, Brian, 224

helper methods

ActiveRecord objects, 73

Jasmine, 166

multiple sessions and, 221

RSpec, 206, 207, 308

security, 55

view tests and, 62, 148–153

helper module directory, 33

helper(), 208

Hogan, Brian, 74

hooks, Autotest, 311

host!(), 217

href attribute, 143

HTML

acceptance testing with Capybara

and Webrat, 226–234

attributes testing, 141, 143

Autotest plugin, 313

nodes, 145

parsing, 63, 141

Rcov option, 265

RJS calls, 157

view testing tags, 140

--html option, 265

HTML::Node class, 145

html_test plugin, 141

HTTP

integration testing, 216

status codes, 133

test methods, 130

verbs in Capybara and Webrat, 227

verbs in controller testing, 129

verbs in RSpec, 207

verbs in Shoulda, 177

HTTPS, 217

https!(), 217

Huddle

Cucumber, 236–253

factories in, 88

first test (model and controller),

42–60

fixture data, 39

integration testing, 218

mock objects, 115

parallel testing, 319

performance testing, 300, 303

refactoring, 47

routes testing, 137

RSpec, 200–210

second test (view), 61–70

security, 53–60

setup, 321–325

stubs, 107

334

HYDRA KNOWN ERROR TESTING

Webrat, 229

Hydra, 320

I
-i DIR:DIR option, 265

-i PATTERNS option, 265

iChat, 313

id fixture, 40, 83

id(), 125

:id_prefix option, 228

IDEs

individual testing and, 279

testing within, 38

if option, 52

if statements and clauses, 260

IM messages, 313

img tag, 143

implicit testing, 253

--include DIR:DIR option, 265

--include-file PATTERNS option, 265

independence, test, 272

see also removing dependencies

individual testing, 24

commands, 38

overview, 26

running, 279

see also unit testing

inheriting factories, 93

:initialize hook, 312

injects, 73, 295

input tags, 143

inspect(), 280

installing

Capybara, 225

Cucumber, 235

Devise, 322

Double Ruby, 119

factory_girl, 87

FlexMock, 119

Jasmine, 158

Mocha, 103, 119

Rails, 321

Rcov, 260

RSpec, 188, 200

Shoulda, 173

Webrat, 225

Zebra, 183

instance variables

controller testing, 45, 129

fixtures, 83

helper methods and, 208

legacy code, 289

step definitions and, 242

instance_of(), 110, 123

instance_of?(), 125, 203

instances, doubling, 124

instantiate(), 111

instantiated fixtures, 83

integration testing, 34, 215–223

vs. acceptance testing, 215

Capybara, 223–234

commands, 37

vs. controller testing, 216

Cucumber, 223

legacy code, 286

performance testing, 300

speed, 314

subclasses, 25

view testing and, 154

Webrat, 223–234

:interrupt hook, 312

invalid objects, 52

is_a(), 110, 124

is_a?(), 125, 203

is_at_least(), 178

is_at_most(), 178

is_equal_to(), 178

it(), 161, 191, 198

J
Jabber, 313

Jasmine, 158–167

jasmine gem, 158

jasmine.yml file, 159, 163

jasmine_runner.rb file, 159

JavaScript, 155–167

Capybara and, 224, 232

Cucumber tags and, 253

Webrat and, 232

jazz_money gem, 161

jQuery, 167

JRuby, 232, 316

K
KDE environment, 313

keys

association, 40

YAML, 39

kind_of?(), 193

kind_of?(), 125, 177, 203

known error testing, 74

335

-1 OPTION MOCK OBJECTS

L
-1 option, 307

legacy code testing, 282–297

legacy databases, 290

let(), 196–199

libffi, 225

limiting

Capybara and Webrat, 227

Cucumber, 252

tests, 307–309, 314

line coverage, 259

see also test coverage

--line_number option, 307

Linux

Autotest, 313

Capybara and, 225

Webrat and, 225, 228

locators, 226

log, 281

log analyzers, 305

login(), 222

login_as(), 94

login_as_one(), 54

logins

adding to tests, 135

Cucumber, 251

with Devise, 53

faked, 56

multiple sessions and, 222

RESTful Authentication, 94

long tests, 274

see also speeding up tests

looping testing and coding, 20, 51, 68,

252, 299

M
Mac OS X

Autotest, 311, 313

installing Capybara and Webrat, 225

Rcov installation, 260

Machinist, 87

mail objects, 148

see also email testing

make(), 92

make_response(), 152

mappings, 312

match(), 193, 212

Matcher object, 181

matchers

Capybara and Webrat, 231

controller testing, 203

Jasmine, 162

mock object statements, 113, 123,

196

RSpec, 191–196, 200, 202, 211

Shoulda, 176–182

stubs, 109

subjects, 198

Matchers DSL, 211

matches(), 193

matches?(), 182, 212

:maximum option, 143

McAnally, Jeremy, 170

memory allocated, 302

menu plugin for Autotest, 313

Meszaros, Gerard, 101

:method => value(), 121

:method key, 138

:method option, 227

MIME types, 132, 177, 226

:minimum option, 143

minitests, 25

:missing value, 133

Mocha, 103–126

compared to other packages,

118–125

controller testing with, 136

creating mock objects, 112

installing, 103

methods, 104, 108, 114

specifying number of calls, 114

spies, 136

stubs, 103–112

Mocha Expectation object, 105

mock objects, 20, 101–126

advantages, 116

BDD and, 114

chain of method calls, 125

controller testing and, 67, 136

creating, 112, 194

defined, 101

expectations, 121

filtering, 123, 196

guidelines, 117

independence and, 273

Jasmine, 163

legacy code and, 291–296

packages, 103, 118–125, 293

problems, 116

removing dependencies with,

291–296

robustness, 277

336

MOCK() PARENT/CHILD CONTEXTS

RSpec, 194, 202

stubs, 103–112, 117

teardown and, 32

test speed and, 314

mock(), 112, 122

mock_active_records(), 111

mock_everything(), 278

mock_model(), 202

mock_obj class, 194

mock_project(), 204

MockExpectationError, 102

mocky.name(), 113

mocky.weight(), 113

model testing, 72–80

controller testing and, 135

directories, 33

robustness, 277

RSpec, 201

speed, 314

vs. unit testing, 73

walk-through, 42–60

see also unit testing

models, creating, 39

multiline strings, 82

multipart interaction in integration

testing, 218

multiple sibling objects, 92

multiuser interaction in integration

testing, 220

MySQL, 85, 306

N
-n option, 265

Naik, Pratik, 306

name attributes testing, 141, 143

name column, 303

named scopes, 67, 74, 78

named_scope, 68, 78

names

fixtures, 83

models, 39

test, 25, 183, 274

test clarity and, 274

test data, 62

negative_failure_message(), 182

nesting

assert_select(), 145

contexts, 172

Jasmine, 161

RSpec blocks, 190

NetBeans, 38

networked servers, 299, 319

never(), 114, 122

new_from_params(), 210

new_instances(), 124

new_record(), 125, 202

NewRelic, 305

Nicklas, Jonas, 224

nil variable, 92, 104

nil?, 193

--no-color option, 265

--no-comments option, 265

Nokogiri XML parser, 225

non-ASCII characters, 25

not modifier, 144

Not(), 110, 123

not(), 161

notifications, 313

numeric(), 124

O
-o DIR option, 266

objects allocated, 302

of-type modifier, 144

once(), 114, 122, 196

one-assertion tests, see single-line

testing

one-line test matchers, Shoulda,

176–182

--only-uncovered option, 265

open_session(), 220

outgoing email testing, 146

--output DIR option, 266

output_buffer variable, 151

outside-in testing, 19

overriding

ActiveRecord::Base#columns, 314

default values in factories, 90

methods in legacy code, 294

render(), 205

P
p(), 280

parallel testing, 318

parallel_tests gem, 318

parameters

controller testing and, 130, 132

integration testing, 217

simulating, 45

stubs, 108–112

params hash, 45, 130, 207

parent/child contexts, 172

337

PARENT/CHILD MODIFIERS RCOVOPTS VARIABLE

parent/child modifiers, 144

:partial value, 133

partials, 133

path, 226

:path key, 138

path_to(), 247, 249

paths, specifying, 247

pending blocks, 191

pending migrations, 35

pending(), 191

performance testing, 34, 37, 298–306

performance, test, 298, 307–320

persisted(), 202

pipe character, 82

plugins testing, 38

post simulating, 45

post(), 129, 130

pp(), 280

predicate method, 193, 211

prefixes, 228

prefork block, 317

Presenter objects, 154

pretty-print output, 280

print response.body, 281

print statements, 280, 311

production environment, 284, 305

profile testing, 37, 299, 302–306

project_id, 55

projects(), 39

ProjectsControllerTest, 54

proxies

Double Ruby, 137

mock objects with expectations, 122

pseudo-hash variables, 129, 134

pseudoclass modifiers, 144

put(), 129, 130

puts(), 280

Q
quality, test, 270–281

see also test coverage

query strings, 138

:quit hook, 312

quotation marks, YAML string parsing,

82

R
:rack_test driver, 233

RackTest driver, 233

radio buttons, 227

Rails Guides, 302

rails huddle, 321

rails new huddle(), 321

--rails option, 266

Rails Rescue Handbook, 282, 288

Rails versions, 25

Rails.logger.error(), 281

rails_rcov plugin, 261

raised exceptions, 106, 109, 121, 195

raises(), 106, 113, 121

rake task, 37

rake cucumber, 239, 241

rake cucumber:all, 241

rake cucumber:rerun, 241, 309

rake cucumber:wip, 241, 253

rake jasmine, 159

rake jasmine:ci, 159

rake parallel:features, 319

rake parallel:spec, 319

rake spec, 209

rake specjour, 320

rake specjour:cucumber, 320

Rake tasks

default, 37, 209

parallel testing, 319

pending migrations and, 35

profile testing, 303

Rcov, 261

recent files, 307

rerunning failed tests, 309

RSpec, 189

Specjour, 320

tutorial, 268

rake test, see Rake tasks

rake test:benchmark, 37

rake test:clobber_rcov, 261

rake test:coverage:, 268

rake test:functionals, 37

rake test:integration, 37

rake test:plugins, 38

rake test:profile, 37, 303

rake test:rcov, 261

rake test:recent, 37, 307

rake test:uncommitted, 37, 307

rake test:units, 37

:ran_command hook, 312

random numbers, 272

Rcov, 258–269, 313

rcov variable, 267

Rcov::RcovTaskclass, 268

rcov_opts variable, 267

RCOVOPTS variable, 265

338

RECENT TASKS RSPEC

recent tasks, 307

:redirect value, 133

redirect(), 217

redirecting

controller tests and, 133

faked logins, 57

integration tests and, 217

legacy code, 293

REE (Ruby Enterprise Edition), 316

refactoring

documentation and, 19

Huddle test, 47

legacy code, 283

need for, 45

retesting and, 68

regexp_matches(), 110, 123

regressions, 18, 310

regular expressions

assertions, 28

field identifiers and, 226

matching in stubs, 110, 123

matching paths, 248

Rcov, 265

RSpec, 307

step definitions and, 240

view testing and, 140

view testing with, 142

Webrat and, 226

relationships

factories and, 91

model testing and, 74

relative dates in fixtures and factories,

96

Relevance, 260

reload(), 48, 111

reloading test objects, 48

removing dependencies, 288–296

see also independence, test

render(), 205

render_template(), 179

render_views tag, 166

rendered(), 206

RenderTemplateMatcher, 181

repeatability, test, 272

replace(), 157

@reporting scenarios, 253

@request variable, 129

request specs, 208

require statements, 34

@rerun.txt, 309

rerunning failed tests, 309

:reset hook, 312

resetting

Autotest, 310

fixture data, 36

@response variable, 129

@response.body variable, 129, 141, 151

RESTful Authentication, 94

RESTful routing, 131, 134, 138, 249

returns(), 105, 113, 184

returns_false(), 184

returns_nil(), 184

returns_true(), 184

RJS, 156

robustness, test, 276

Roosevelt, Franklin, 17

root modifier, 144

root directory, 307

route_to(), 207

routes testing, 137

controller tests and, 131

Cucumber, 249

RSpec, 207

Shoulda and, 177

RR, see Double Ruby

RSpec, 186–213

contexts, 190, 315

controller testing, 203

count code, 266

Cucumber and, 205

custom matchers, 211–213

Devise and, 323

email testing, 148

helper methods, 206, 207

installing, 188, 200

let(), 196–199

limiting tests, 307

matchers, 191–196, 202, 231

mock library, 103, 118–125, 194

mock objects, 202

model testing, 201

Parallel testing, 319

Rcov and, 267

request specs, 208

routes testing, 138, 207

Shoulda integration, 173

Shoulda matchers and, 213

Spork, 318

stubs, 195

test speed, 314

testing style and, 209

view testing, 205

339

.RSPEC FILE SHOULD RENDER_WITH_LAYOUT()

.rspec file, 189

The RSpec Book, 188

rspec command, 209, 307

--rspec option, 236

rspec-f p, 314

rspec-rails gem, 188, 199

Ruby

patching, 302

versions, 25, 316

Ruby Eigenclasses, 97

Ruby JavaScript, see RJS

Ruby Version Manager, see RVM

ruby-prof, 34, 300

RubyMine, 38

run_all_when_everything_filtered_attribute,

308

:run_command hook, 312

RVM, 302, 322

S
:safe, 121

sample data, see fixtures

--save FILE option, 266

save!(), 89

save(), 114, 203

save_and_open_page(), 228, 281

save_fixture(), 166

scaffolds, 106, 284, 325

scenarios, Cucumber, 238

scopes, named, 67, 74, 78

script/generate integration_test, 34

script/generate performance_test, 34

script/generate feature, 237

scrums, 42

see also Huddle

seams, 293–296

security

controller testing, 130, 132

helper methods, 55

Huddle example, 53–60

view testing and, 139

Seifer, Jason, 268

select(), 228

select_date(), 228

select_datetime(), 228

select_time(), 228

selector modifiers, 143–146

Selenium, 156, 159, 224, 232, 253

:selenium driver, 233

%self column, 303

self column, 303

self% row, 304

self(), 222

sequences, attribute, 90

session variable, 129, 131, 134, 204

session(), 218

sessions

Cucumber and, 251

multiple, 220

values in integration testing, 218

setup, 29–32

blocks, 31

controller testing, 130

data, 26

duplicating, 30, 172

legacy code testing, 283

login_as_one(), 54

RSpec, 190

in test process, 36

see also contexts

setup(), 30, 170

setup_methods.rb file, 32

should allow_mass_assignment_of(), 178

should allow_value(), 178

should assign_to(), 177

should be_a_kind_of(), 193

should be_close(), 192

should be_false, 192

should be_nil, 193

should be_redirect, 203

should be_routable(), 207

should be_success, 203

should be_true, 192

should belong_to(), 178

should change(), 192

should ensure_inclusion_of(), 178

should ensure_length_of(), 178

should eql(), 192

should have(), 193

should have_and_belong_to_many(), 178

should have_at_least(), 194

should have_at_most(), 194

should have_many(), 178

should have_one(), 178

should have_sent_email(), 179

should match(), 192

should not_be_routable(), 207

should raise_error(), 192

should redirect_to(), 177, 203

should render_template(), 177, 203

should render_views(), 204

should render_with_layout(), 177

340

SHOULD RESPOND_WITH() SUBJECTS

should respond_with(), 177

should respond_with_content_type(), 177

should route(), 177

should satisfy(), 192

should set_session(), 177

should set_the_flash_to(), 177

should validate_acceptance_of(), 178

should validate_numericality_of(), 178

should validate_presence_of(), 178

should validate_uniqueness_of(), 178

should(), 173, 176, 192, 198, 212

should_not(), 176, 192, 213

should_not_have_many(), 176

should_not_receive(), 122

should_receive(), 121, 123, 195

Shoulda, 169–185

contexts, 315

email testing, 148

RSpec and, 213

show(), 65

simulating

controller calls, 130

file attachments, 226

logins, 251

multipart interaction in integration

testing, 218

multiuser interaction in integration

testing, 220

single-line testing

advantages, 46

model testing, 75

RSpec, 191

Shoulda, 169, 173, 183

speed, 315

Snarl, 313

--sort OPTION, 266

--sort-reverse option, 266

source control, 284

span subelement, 146

spec directory, 159, 189

spec-f o, 314

--spec-only option, 266

spec/views, 209

spec:controllers, 209

spec:helpers, 209

spec:lib, 209

spec:models, 209

spec:rcov task, 267

spec:requests, 209

spec:routing, 209

spec_helper.rb file, 189, 317

specify(), 191, 198

Specjour, 319

specs

defined, 187

filtering with, 308

request specs, 208

writing, 191

see also RSpec

speeding up tests, 313–320

spies, 136, 163

spike mode, 20

Spork, 316–318

spork gem, 317

Spork.each_run block, 317

Spork.prefork block, 317

spyOn(), 163

SQL databases

ActiveRecord objects testing, 72–80

performance testing and, 306

SQLite3, 306

src attribute, 143

status codes, HTTP, 133

status reports, see Huddle

status_reports_controller_test.rb, 44

StatusReportsController, 44

StatusReportsControllerTest, 54

Steadman, JB, 165

step definitions, 240–251, 254

StoryRunner, 255

strings

view testing with, 142

YAML parsing, 82

stub(), 103, 195

stub_everything(), 104

stub_model(), 203

stubs, 103–112

controller testing with, 136

creating, 119

defined, 102

factories and, 90

guidelines, 117

legacy code and, 291

methods, 103

vs. mock objects, 117

parameters and, 108–112

RSpec, 195, 202

Timecop, 97

stubs(), 104

subclasses, test placement, 25

subject(), 198

subjects, 196–199

341

SUBMIT BUTTONS TIME.NOW()

submit buttons, 227

Subversion, 37

:success value, 133

successful tests, see testing, quality

surface features and test robustness,

277

svn up(), 312

symbols, RESTful Authentication and,

94

T
-T option, 266

-t option, 266

tables

Cucumber, 239, 242

matcher method in Capybara, 231

--tags option, 252

tags, Cucumber, 241, 252, 309

Task.expects, 136

tautologies, 277, 292

Taylor, Scott, 87

TDD (Test-Driven Development)

acceptance testing and, 223

advantages of, 14

benefits, 18

Cucumber and, 245, 255

goals, 186

integration testing and, 216, 223

limitations, 19

maxims, 21

overview, 16

performance and, 299, 320

terminology, 186, 270

uses, 17

view testing in, 154

see also looping testing and coding

teardown

contexts and, 170

independence and, 272

method, 31

RSpec, 190

in test process, 26, 36

see also contexts

teardown(), 31, 170

templates

HTTP response codes, 133

view, 203

temporary files, 302

test coverage, 258–269

see also testing, quality

test directory, 32, 287

test doubles, 101, 122

see also mock objects

test environment, 305

test runners, 299, 316–320

test servers, 299, 316–320

test(), 24

Test-Driven Development, see TDD

(Test-Driven Development)

test-driven exploration, 285–288

test-next mode, 20, 252, 299

--test-unit-only option, 266

Test::Unit 2.0, 25

Test::Unit::TestCase parent class, 25

test:test:rcov, 261

Test:Unit library

basic testing with, 24

limiting tests, 307

methods, 27

model testing and, 72

test_helper.rb file, 31, 33, 306

test_should_actually_work(), 173

TestBed, 183, 184

testbed(), 184

testing

principles, 52

process overview, 26, 34

quality, 270–281

TestResponse object, 152

:text option, 63, 142, 231

--text-coverage-diff FILE option, 266

--text-report option, 266

--text-summary option, 266

text_or_title_or_id variable, 227

Then scenario part, 239, 254

then(), 106

this.actual, 162

this.after(), 162

ThoughtBot, 87

--threshold option, 265, 266

:through option, 84

throw assertions, 29

time

comparing, 99

selecting in Capybara and Webrat,

228

see also dates

Time class, 99

time data

fixtures, 95–99

independence and, 272

Time.now(), 97

342

TIMECOP WATIR

Timecop, 97, 273

Timecop.freeze(), 98

Timecop.travel(), 98

times(), 114, 122

timestamps, 97, 311

to(), 177, 179

to_date(), 48, 99

to_datetime(), 99

to_param(), 132

to_params(), 125

to_s, 46, 99

to_time(), 99

toBeFalsy, 162

toBeGreaterThan(), 162

toBeLessThan(), 162

toBeNull, 162

toBeTruthy, 162

toContain(), 162

toEqual(), 161, 162

toHaveBeenCalled(), 164

toHaveBeenCalledWith(), 164

toMatch(), 162

:top position, 157

total column, 303

total% row, 304

transactions, fixtures and, 85

travel(), 98

troubleshooting, 278–281

Trupiano, John, 97

twice(), 114, 122, 196

U
Ubuntu Linux, 225

uncheck(), 228

uncommitted task, 37, 307

unit/helpers file, 33

unit testing

commands, 37

directories, 33

legacy code, 286

limitations, 20

see also model testing

unobtrusive JavaScript style, 158

update(), 106

update_attributes(), 114, 203

updated_at attribute, 97

url_convertable(), 177

url_for(), 153, 217

URLs, 228, 243, 247

user facing tests, see view testing

@user.id.to_s, 132

@user.to_param, 132

user.yml file, 38

user:references and associations, 47

user_id, faked, 56

user_test.rb file, 33

@userpage scenarios, 253

users(:symbol)(), 94

users_controller.rb file, 33

UsersController class, 33

UsersControllerTest class, 33

V
validate(), 52

validates_presence_of(), 49, 52

validations

custom, 52

factories and, 89

form elements in view testing, 63

model tests and, 74

problems with, 49

value attributes testing, 141

values, factories and, 89

Van der Auwera, Nathan, 308

verify_that(), 184

verifying applications, 20

versions, 25

via_redirect(), 217

view partials, 62

view testing, 139–154

controller tests and, 128

Cucumber and, 245

difficulties with, 19

goals, 139

helper methods, 148–153

JavaScript, 155–167

Rcov, 262

robustness, 277

RSpec, 205

in TDD process, 154

tips, 61, 140

walk-through, 61–70

view(), 206

:visible option, 231

visit(), 228, 243

W
wait column, 303

wait periods, 233

:waiting hook, 311

wall_time, 301

Watir, 232

343

WEB STEPS ZERO_OR_MORE_TIMES()

web steps, 249

Webrat, 223–234

Cucumber installation and, 235

debugging, 281

installation, 206

request specs and, 208

--webrat option, 236

Webrat wiki, 232

whatever?(), 193

When scenario part, 239, 254

White, Solomon, 249

white-box testing, 285, 286

Windows

Autotest, 313

Rcov installation, 261

@wip, 241

with(), 108, 113, 123, 177, 195

with_any_args(), 123

with_body(), 179

with_kind_of(), 177

with_no_args(), 123

with_subject(), 179

within(), 231

workflow, test, 34

Working Effectively with Legacy Code,

282, 290

X
xhr(), 129, 131, 217

xhr?(), 131

XML parser, Nokogiri, 225

XPath, 226, 230, 231

--xrefs option, 266

xUnit Test Patterns, 101

Y
y(), 280

YAML files, 38, 81, 280

YAML syntax, 82

Yandell, Pete, 87

Z
Zebra, 183

zero_or_more_times(), 122

344

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of January 2011; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails 2009 9781934356166 792

Arduino: A Quick-Start Guide 2011 9781934356661 275

Beginning Mac Programming: Develop with

Objective-C and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Cocoa Programming: A Quick-Start Guide for

Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Driving Technical Change: Why People on Your

Team Don’t Act on Good Ideas, and How to

Convince Them They Should

2010 9781934356609 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

Continued on next page

pragprog.com

Title Year ISBN Pages

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2010 9781934356562 320

HTML5 and CSS3: Develop with Tomorrow’s

Standards Today

2010 9781934356685 280

Interface Oriented Design 2006 9780976694052 240

iPad Programming: A Quick-Start Guide for

iPhone Developers

2010 9781934356579 248

iPhone SDK Development 2009 9781934356258 576

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program 2009 9781934356364 240

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby

Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Guide to Git 2010 9781934356722 168

Pragmatic Guide to JavaScript 2010 9781934356678 150

Pragmatic Guide to Subversion 2010 9781934356616 150

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Continued on next page

Title Year ISBN Pages

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 944

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails for .NET Developers 2008 9781934356203 300

Rails for PHP Developers 2008 9781934356043 432

Rails Recipes 2006 9780977616602 350

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages

2010 9781934356593 300

Ship It! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

2010 9781934356555 352

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

Test-Drive ASP.NET MVC 2010 9781934356531 296

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Agile Samurai: How Agile Masters Deliver

Great Software

2010 9781934356586 280

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 232

The RSpec Book: Behaviour-Driven Development

with RSpec, Cucumber, and Friends

2010 9781934356371 448

Continued on next page

Title Year ISBN Pages

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

More Books

Agile in a Flash
The best agile book isn’t a book: Agile in a Flash is

a unique deck of index cards that fit neatly in your

pocket. You can tape them to the wall. Spread them

out on your project table. Get stains on them over

lunch. These cards are meant to be used, not just

read.

Agile in a Flash: Speed-Learning Agile Software

Development

Jeff Langr and Tim Ottinger

(110 pages) ISBN: 978-1-93435-671-5. $15.00

http://pragprog.com/titles/olag

The Agile Samurai
Faced with a software project of epic proportions?

Tired of over-committing and under-delivering?

Enter the dojo of the agile samurai, where agile

expert Jonathan Rasmusson shows you how to

kick-start, execute, and deliver your agile projects.

You’ll see how agile software delivery really works

and how to help your team get agile fast, while

having fun along the way.

The Agile Samurai: How Agile Masters Deliver

Great Software

Jonathan Rasmusson

(275 pages) ISBN: 9781934356586. $34.95

http://pragprog.com/titles/jtrap

http://pragprog.com/titles/olag
http://pragprog.com/titles/jtrap

More Books

Debug It!
Debug It! will equip you with the tools, techniques,

and approaches to help you tackle any bug with

confidence. These secrets of professional debugging

illuminate every stage of the bug life cycle, from

constructing software that makes debugging easy;

through bug detection, reproduction, and

diagnosis; to rolling out your eventual fix. Learn

better debugging whether you’re writing Java or

assembly language, targeting servers or embedded

micro-controllers, or using agile or traditional

approaches.

Debug It! Find, Repair, and Prevent Bugs in Your

Code

Paul Butcher

(232 pages) ISBN: 978-1-9343562-8-9. $34.95

http://pragprog.com/titles/pbdp

SQL Antipatterns
If you’re programming applications that store data,

then chances are you’re using SQL, either directly

or through a mapping layer. But most of the SQL

that gets used is inefficient, hard to maintain, and

sometimes just plain wrong. This book shows you

all the common mistakes, and then leads you

through the best fixes. What’s more, it shows you

what’s behind these fixes, so you’ll learn a lot about

relational databases along the way.

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

Bill Karwin

(300 pages) ISBN: 978-19343565-5-5. $34.95

http://pragprog.com/titles/bksqla

http://pragprog.com/titles/pbdp
http://pragprog.com/titles/bksqla

More Books

Arduino: A Quick Start Guide
Arduino is an open-source platform that makes DIY

electronics projects easier than ever. Readers with

no electronics experience can create their first

gadgets within a few minutes. This book is

up-to-date for the new Arduino Uno board, with

step-by-step instructions for building a universal

remote, a motion-sensing game controller, and

many other fun, useful projects.

Arduino: A Quick Start Guide

Maik Schmidt

(275 pages) ISBN: 9781934356661. $35.00

http://pragprog.com/titles/msard

HTML5 and CSS3
HTML5 and CSS3 are the future of web

development, but you don’t have to wait to start

using them. Even though the specification is still in

development, many modern browsers and mobile

devices already support HTML5 and CSS3. This

book gets you up to speed on the new HTML5

elements and CSS3 features you can use right now,

and backwards compatible solutions ensure that

you don’t leave users of older browsers behind.

HTML5 and CSS3: Develop with Tomorrow’s

Standards Today

Brian P. Hogan

(280 pages) ISBN: 9781934356685. $33.00

http://pragprog.com/titles/bhh5

http://pragprog.com/titles/msard
http://pragprog.com/titles/bhh5

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home page for Rails Test Prescriptions

http://pragprog.com/titles/nrtest

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/nrtest.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/nrtest
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/nrtest
www.pragprog.com/catalog

	Contents
	Getting Started with Testing in Rails
	The Goals of Automated Developer Testing
	A Testing Fable
	Who Are You?
	The Power of Testing First
	What Is TDD Good For?
	When TDD Needs Some Help
	Coming Up Next...
	Acknowledgments

	The Basics of Rails Testing
	What's a Test?
	What Goes in a Test?
	Setup and Teardown
	What Can You Test in Rails?
	What Happens When Tests Run?
	Running the Rails Tests
	More Info: Getting Data into the Test
	Beyond the Basics

	Writing Your First Tests
	The First Test-First
	The First Refactor
	More Validations
	Security Now!
	Applying Security
	Punishing Miscreants
	Road Map

	TDD, Rails Style
	Now for a View Test
	Testing the Project View: A Cascade of Tests
	So Far, So Good

	Testing Application Data
	Testing Models with Rails Unit Tests
	What's Available in a Model Test
	What to Test in a Model Test
	OK, Funny Man, What Is a Good Model Test Class?
	Asserting a Difference, or Not
	Testing Active Record Finders
	Coming Up Next

	Creating Model Test Data with Fixtures and Factories
	Defining Fixture Data
	Loading Fixture Data
	Why Fixtures Are a Pain
	Using Factories to Fix Fixtures
	Data Factories
	Installing factory_girl
	Creating and Using Simple Factories
	Sequencing for Unique Attributes
	Freedom of Association
	Factories of the World Unite
	Managing Date and Time Data
	Model Data Summary

	Using Mock Objects
	What's a Mock Object?
	Stubs
	Stubs with Parameters
	Mock, Mock, Mock
	Mock Objects and Behavior-Driven Development
	Mock Dos and Mock Don'ts
	Comparing Mock Object Libraries
	Mock Object Summary

	Testing User-Facing Layers
	Testing Controllers with Functional Tests
	What's Available in a Controller Test?
	What to Test
	Simulating a Controller Call
	Testing Controller Response
	Testing Returned Data
	Testing Routes
	Coming Up

	Testing Views
	The Goals of View Testing
	Keys to Successful View Testing
	Using assert_select
	Testing Outgoing Email
	Testing Helpers
	Testing Block Helpers
	Using assert_select in Helper Tests
	How Much Time Should You Spend on Helpers?
	When to View Test

	Testing JavaScript and Ajax
	First Off, RJS
	Testing JavaScript from Rails with Jasmine
	Getting Started with Jasmine
	Running Jasmine Tests
	Writing Jasmine Tests
	Integrating Jasmine with Dynamic Rails

	Testing Framework Extensions
	Write Cleaner Tests with Shoulda and Contexts
	Contexts
	Basics of Shoulda
	Single Assertion Testing
	Shoulda Assertions
	Shoulda One-Liners
	Writing Your Own Shoulda Matcher
	Single-Line Test Tools
	When to Use Shoulda

	RSpec
	Getting Started with RSpec
	RSpec in Ten Minutes
	RSpec and Rails
	Running RSpec
	RSpec in Practice
	Creating Your Own Matchers
	Summarizing RSpec

	Testing Everything All Together
	Testing Workflow with Integration Tests
	What to Test in an Integration Test
	What's Available in an Integration Test?
	Simulating Multipart Interaction
	Simulating a Multiuser Interaction
	When to Use Integration Tests

	Write Better Integration Tests with Webrat and Capybara
	Installing Webrat and Capybara
	Using the Acceptance Testing Rodents
	A Brief Example
	Webrat and Ajax
	Capybara and Ajax
	Why Use the Rodents?

	Acceptance Testing with Cucumber
	Getting Started with Cucumber
	Writing Cucumber Features
	Writing Cucumber Step Definitions
	Making Step Definitions Pass
	The Edit Scenario: Specifying Paths
	Login and Session Issues with Cucumber
	Annotating Cucumber Features with Tags
	Implicit vs. Explicit Cucumber Tests
	Is Cucumber Good for You?

	Testing Your Tests
	Using Rcov to Measure Test Coverage
	85 Percent of What?
	Installing Rcov
	Rcov and Rails
	Rcov Output
	Command-Line Rcov
	Rcov and RSpec and Cucumber
	Rcov Tricks
	How Much Coverage Is Enough?

	Beyond Coverage: What Makes Good Tests?
	The Five Habits of Highly Successful Tests
	Troubleshooting
	From Greenfield to Legacy

	Testing a Legacy Application
	Accept That You're Powerless in the Face of a Higher Power
	Basic Setup
	Test-Driven Exploration
	Dependency Removal
	Don't Look Back

	Performance Testing and Performance Improvement
	Performance and Benchmark Testing
	Focusing Test Execution
	Using Autotest
	Making Your Tests Faster
	Using a Faster Test Runner
	And in the End...

	Sample Application Setup
	Basic Rails
	Devise
	Huddle's Data Models
	First Tests

	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	

